
�

Writing Device Drivers for LynxOS
LynxOS Release 4.0

DOC-0452-00

Product names mentioned in Writing Device Drivers for LynxOS are trademarks of their respective manufacturers and are
used here for identification purposes only.

Copyright ©1987 - 2002, LynuxWorks, Inc. All rights reserved.
U.S. Patents 5,469,571; 5,594,903

Printed in the United States of America.

All rights reserved. No part of Writing Device Drivers for LynxOS may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise, without the
prior written permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; all such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for any
indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in all cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

 Contents
PREFACE ..XIII

For More Information ...xiii

Typographical Conventions .. xiv

Special Notes ... xv

Technical Support .. xv

LynuxWorks U.S. Headquarters .. xv
LynuxWorks Europe .. xv
World Wide Web .. xv

CHAPTER 1 DEVICE DRIVER BASICS ... 1

What is a Device Driver? ... 1

Types of Device Drivers ... 3
Device Drivers and Devices ... 3

LynxOS Device Driver Components ... 4

Entry Point Functions ... 6
Data Structures ... 8
Handling Interrupts ... 10
Other Components .. 12

LynxOS Kernel Support Functions ... 13

Device Driver Development and Installation .. 13

Referencing Device Drivers .. 14

Major and Minor Device Designations .. 15
Referencing Driver and Device IDs Under LynxOS 17
Application Access to Devices and Drivers ... 18

CHAPTER 2 ENTRY POINT FUNCTIONS.. 21

Entry Point Functions .. 21
Writing Device Drivers for LynxOS iii

Contents

Required Functions .. 22
Declaring the Entry Point Functions .. 22
install() ... 23
uninstall() ... 24
open() ... 25
close() ... 26
read() .. 27
write() ... 28
ioctl() .. 28
select() .. 30
strategy() ... 32

CHAPTER 3 MEMORY MANAGEMENT ... 37

LynxOS Virtual Memory Model ... 37

DMA Transfers .. 38

LynxOS Address Types ... 38

Allocating Memory ... 39

Memory Locking ... 41

mem_lock() .. 41
mem_unlock() .. 42

Address Translation ... 43

Virtual Address Conversion ... 45

Validating Addresses ... 46

Accessing User Space from Interrupt Handlers and Kernel Threads 47

Accessing Hardware .. 49

Using permap() ... 50
Device Access on x86 Systems .. 51
Device Access on PowerPC Systems ... 55

CHAPTER 4 SYNCHRONIZATION.. 61

Introduction ... 61

What is Synchronization? ... 63

Kernel Semaphores .. 67

Other Kernel Semaphore Functions ... 68
Using Kernel Semaphores for Mutual Exclusion 68
Priority Inheritance Semaphores .. 69
Event Synchronization ... 69
Handling Signals .. 69
iv Writing Device Drivers for LynxOS

Using sreset() with Event Synchronization Semaphores 70
Resource Pool Management ... 72

Combining Synchronization Mechanisms ... 73

Manipulating a Free List .. 73

Signal Handling and Real-Time Response .. 76

CHAPTER 5 INTERRUPT AND TIMEOUT HANDLING... 79

Introduction ... 79

Timeout Interrupts .. 80
Interrupts and Real-Time Response ... 80

LynxOS Interrupt Handlers ... 80

iointset() .. 81
iointclr() .. 81
Sharing IRQs .. 82
Interrupt Vector Values .. 82

Interrupt Levels .. 83

Implementing an Interrupt Handler ... 86

Use of Queues .. 86
Interrupt Handler Considerations ... 88
Example Code .. 88

x86 IRQ Device Defaults .. 95

Timeout Handlers .. 97

CHAPTER 6 KERNEL THREADS AND PRIORITY TRACKING ... 101

Device Drivers in LynxOS .. 101

Interrupt Latency .. 101
Interrupt Dispatch Time ... 102
Driver Response Time .. 102
Task Response Time .. 102
Task Completion Time ... 102

Real-Time Response .. 103

Kernel Threads .. 103

Creating Kernel Threads .. 104

Structure of a Kernel Thread ... 105

Exclusive Access .. 105
Multiple Access .. 107

Priority Tracking .. 109
Writing Device Drivers for LynxOS v

Contents

User and Kernel Priorities .. 111
Exclusive Access .. 112
Multiple Access .. 114
Non-Atomic Requests .. 115

Controlling Interrupts .. 116

CHAPTER 7 NETWORK DEVICE DRIVERS ... 119

Kernel Data Structures .. 119

struct ether_header ... 120
struct arpcom .. 120
struct sockaddr .. 120
struct sockaddr_in .. 120
struct in_addr .. 121
struct ifnet ... 121
struct mbuf .. 122

Statics Structure ... 127

Packet Queues ... 127

Driver Entry Points .. 128

install Entry Point ... 128
Initializing the Ethernet Address .. 129
Initializing the ifnet Structure .. 129

Packet Output .. 130

ether_output Function .. 130
Kernel Thread Processing .. 132

Packet Input ... 132

Determining Packet Type ... 133
Copying Data to mbufs .. 133
Enqueueing Packet ... 134
Statistics Counters .. 134

ioctl Entry Point ... 134

SIOCSIFADDR .. 134
SIOCSIFFLAGS .. 135

watchdog Entry Point .. 136

reset Entry Point .. 136

Kernel Thread .. 136

Priority Tracking ... 137

Driver Configuration File .. 137

IP Multicasting Support ... 138
vi Writing Device Drivers for LynxOS

ether_multi Structure .. 138

CHAPTER 8 INSTALLATION AND DEBUGGING .. 141

Static Versus Dynamic Installation ... 141

Static Installation .. 141
Dynamic Installation .. 142

Static Installation Procedure .. 142

Driver Source Code .. 143
Device and Driver Configuration File .. 143
Configuration File: CONFIG.TBL ... 144

Rebuilding the Kernel .. 145

Dynamic Installation Procedure .. 145

Driver Source Code .. 145
Driver Installation ... 147
Device Information Definition and Declaration 150
Device Installation .. 151
Node Creation ... 151
Device and Driver Uninstallation ... 151
Common Error Messages During Dynamic Installation 152

Debugging ... 152

Communicating with the Device Driver .. 153
Simple Kernel Debugger (SKDB) .. 154
Handling Bus Errors ... 154
Probing for Devices .. 155

Additional Notes .. 155

CHAPTER 9 DEVICE RESOURCE MANAGER (DRM).. 157

DRM Concepts .. 158

Device Tree .. 158
DRM Components .. 159
DRM Nodes .. 160
DRM Node States ... 162
DRM Initialization ... 164

DRM Service Routines .. 164

Interface Specification .. 166

Using DRM Facilities from Device Drivers .. 168

Device Identification .. 168
Device Interrupt Management .. 169
Writing Device Drivers for LynxOS vii

Contents

Device Address Space Management .. 170
Device I/O .. 170
DRM Tree Traversal .. 171
Device Insertion/Removal .. 171

Using DRM Facilities from Applications .. 172

Hot Swap Management Applications ... 175

Example Driver ... 177

Sample Application ... 182

CHAPTER 10 WRITING FLASH MEMORY TECHNOLOGY DRIVERS (MTDS) 189

Cache Management .. 190

Interface Overview .. 190

Registering with flash_mgr ... 190

MTD Registration Data .. 191

Deregistering from flash_mgr ... 201

Writing Callback Routines .. 201

Operation Code .. 201
Flash Virtual Base .. 202
Operation Parameter ... 202
MTD-Specific Data .. 203
Return Code .. 203
Synchronization .. 203

CHAPTER 11 WRITING PC CARD CLIENT DRIVERS .. 205

Card Services Overview .. 206

Card Services Initialization .. 206
Logical Sockets .. 206
Card Services Groups ... 206

Card Services Calling Conventions ... 209

Header Files .. 209
Synopsis ... 209

Client Structure .. 210

Detecting the Presence of Card Services .. 210
Client Registration .. 210
PC Card Identification .. 212
PC Card Configuration ... 213
Client Deregistration .. 215
Sample Client Drivers .. 215
viii Writing Device Drivers for LynxOS

Card Services Reference .. 217

AccessConfigReg ... 218
DeregisterClient .. 219
ErrorName .. 219
GetCardServicesInfo .. 220
GetConfigurationInfo ... 221
GetFirstTuple .. 224
GetNextTuple ... 226
ParseTuple .. 227
RegisterClient ... 237
ReleaseConfiguration ... 238
ReleaseIO ... 239
ReleaseIRQ ... 240
RequestConfiguration ... 240
RequestIO ... 242
RequestIRQ .. 243
ServiceName .. 244

PC Card Support .. 245

Installing and Removing PC Card Support ... 246

PC Card Support Architecture ... 246

Socket Services ... 247
Card Services .. 247
Client Device Drivers ... 247
PC Card Enabler ... 248
PC Card Utilities .. 248

Using a PC Card .. 248

Supported Cards ... 249
Hot Swapping ... 249

Adding Support for a New PC Card .. 250

Adding Support to PC Card Enabler .. 250
Create New Device Driver ... 251

Adding Support for a New PCMCIA Adapter .. 251

Supported PCMCIA Adapters .. 252

Troubleshooting ... 252

Writing PC Card Socket Services .. 257

Socket Services Overview ... 258

Socket Services Groups .. 258

Socket Services Structure .. 259

Header Files .. 259
Writing Device Drivers for LynxOS ix

Contents

Registration .. 260
Event Notification .. 260
Socket Services Callback ... 260

Socket Services Reference .. 261

SS_GetInfo ... 261
SS_InquireSocket ... 262
SS_SetSocket ... 262
SS_GetSocket ... 263
SS_InquireWindow .. 263
SS_SetWindow ... 264
SS_GetWindow .. 265

APPENDIX A PORTING LINUX DRIVERS TO LYNXOS ... 267

GPL Issues ... 267

Driver Installation .. 268

Using a Device .. 268

Major and Minor Numbers ... 268

Accessing a Device .. 269

Driver Entry Points .. 269

System Call Processing ... 270

Preemption ... 271
Signal Handling .. 272

Interrupts .. 272

How Linux Handles Interrupts ... 273
How LynxOS Handles Interrupts ... 273
Registering Interrupts ... 273

Blocking and Non-Blocking I/O ... 274

Bottom-Halves and Kernel Threads .. 274

Kernel Support ... 275

Kernel Timer Support ... 275
Semaphore Support .. 275
LynxOS Semaphore Support .. 276

Address Translation ... 276

Address Translation for Linux ... 276
Address Translation for LynxOS ... 277

Driver Problem Reporting ... 277

Communications with Applications .. 277

Scheduling Differences ... 278
x Writing Device Drivers for LynxOS

Linux Scheduling ... 278
LynxOS Scheduling ... 279

Differences in Setting up a Driver ... 280

Setup ... 280
Installation .. 280
Device Access: open() and close() ... 281
Device Access: read() and write(): ... 281
Device Access: Control .. 282

APPENDIX B PORTING UNIX DRIVERS TO LYNXOS ... 285

Kernel and Driver Design Goals ... 285

Porting Strategy ... 286

Driver Structure ... 287

Overall Structure .. 287
Global Variables ... 287
Major and Minor Device Numbers .. 287

Driver Interface with Kernel .. 288

Driver Service Calls ... 288

Initialization Routine ... 294

Probing for Devices .. 295

Interrupt Handling ... 296

U Structure ... 296

u_base, u_count, u_offset ... 296
u_fmode .. 297
u_error .. 297
u_segflg .. 297
u_procp ... 297
u_tsav, u_nofault .. 297

Reentrance and Synchronization ... 298

Critical Code Regions .. 298
Event Synchronization ... 298

Driver Interface with User Applications ... 299

Entry Points .. 299
Major and Minor Device Numbers .. 300
open/close ... 301
read/write .. 301
ioctl ... 302
select ... 303
Writing Device Drivers for LynxOS xi

Contents

Accessing User Space .. 303
Returning Errors to User Application .. 304

LynxOS Kernel Threads .. 305

Dynamic Installation ... 305

POSIX Programming Model ... 305

Asynchronous I/O .. 305
Synchronous I/O Multiplexing and Polling ... 305

APPENDIX C SAMPLE DEVICE DRIVER .. 307

Header Files ... 307

ptrinfo.h .. 307
prtioclt.h ... 307

Driver Code ... 307

INDEX .. 317
xii Writing Device Drivers for LynxOS

Preface
This guide contains information used to support the development of LynxOS
device drivers. It covers:

• Device driver structure and organization,

• LynxOS system calls that support device drivers, and

• Device driver installation and referencing under LynxOS.

For More Information

For more information on the features of LynxOS, refer to the following printed and
online documentation.

• Release Notes

This printed document contains late-breaking information about the
current release.

• LynxOS Installation Guide

This manual supports the initial installation and configuration of LynxOS
and the X Windows System.

• LynxOS User’s Guide

This document contains information about basic system administration
and kernel level specifics of LynxOS. It contains a “Quick Starting”
chapter and covers a range of topics, including tuning system
performance and creating kernel images for embedded applications.

• Online information

Information about commands and utilities is provided online in text
format through the man command. For example, a user wanting
Writing Device Drivers for LynxOS xiii

Preface

information about the GNU compiler would use the following syntax,
where gcc is the argument for information about the GNU compiler:

man gcc

More recent versions of the documentation listed here may also be found online.

Typographical Conventions

The typefaces used in this manual, summarized below, emphasize important
concepts. All references to file names and commands are case sensitive and should
be typed accurately.

Kind of Text Examples

 Body text; italicized for emphasis, new
terms, and book titles

Refer to the LynxOS User’s Guide.

Environment variables, file names,
functions, methods, options, parameter
names, path names, commands, and
computer data
Commands that need to be highlighted
within body text, or commands that must be
typed as is by the user are bolded.

ls
-l
myprog.c
/dev/null
login: myname
cd /usr/home

Text that represents a variable, such as a file
name or a value that must be entered by the
user

cat filename
mv file1 file2

Blocks of text that appear on the display
screen after entering instructions or
commands

Loading file /tftpboot/shell.kdi
into 0x4000
.....................
File loaded. Size is 1314816
Copyright 2000 LynuxWorks, Inc.
All rights reserved.

LynxOS (ppc) created Mon Jul 17
17:50:22 GMT 2000
user name:

Keyboard options, button names, and menu
sequences

Enter, Ctrl-C
xiv Writing Device Drivers for LynxOS

Special Notes

Special Notes

The following notations highlight any key points and cautionary notes that may
appear in this manual.

Technical Support

LynuxWorks Technical Support is available Monday through Friday (holidays
excluded) between 8:00 AM and 5:00 PM Pacific Time (U.S. Headquarters) or
between 9:00 AM and 6:00 PM Central European Time (Europe).

The LynuxWorks World Wide Web home page provides additional information
about our products and LynuxWorks news groups.

LynuxWorks U.S. Headquarters

Internet: support@lnxw.com
Phone: (408) 979-3940
Fax: (408) 979-3945

LynuxWorks Europe

Internet: tech_europe@lnxw.com
Phone: (+33) 1 30 85 06 00
Fax: (+33) 1 30 85 06 06

World Wide Web

http://www.lynuxworks.com

NOTE: These callouts note important or useful points in the text.

CAUTION! Used for situations that present minor hazards that may interfere with
or threaten equipment/performance.
Writing Device Drivers for LynxOS xv

Preface
xvi Writing Device Drivers for LynxOS

CHAPTER 1 Device Driver Basics
This chapter covers the basic concepts of LynxOS device drivers. The topics
covered are:

• Device driver overview,

• Components of a LynxOS device driver,

• Kernel support functions overview, and

• Summary of the development and installation process under LynxOS.

This chapter covers topics applicable to the development of device drivers under
LynxOS and is not intended to be an introduction to device driver development.
The reader is assumed to be familiar with the concepts of driver development
within a kernel environment.

What is a Device Driver?

The device driver is a software interface between the OS and hardware that hides
the implementation specifics of the hardware from the OS. It provides the
mechanism for the kernel to communicate with a particular type of device.
Typically, these communication requests are to transfer data to and from the device
or to control the device in some manner. The device driver provides the predefined
and consistent interface for the kernel to make these requests. The following figure
diagrams the LynxOS device driver model.
Writing Device Drivers for LynxOS 1

Chapter 1 - Device Driver Basics
The device driver is linked into the kernel and interfaces directly with the
controller card of a particular piece of hardware (drives, printers and modems, for
example). An application can request access to devices using LynxOS I/O-related
system calls such as open(), read(), or write().

The kernel invokes the appropriate routines within the device driver code to handle
the I/O requests of an application. In addition, a device driver can also be invoked
in response to file system operations, interrupts, timeouts or bus errors or a change
in the process using the device.

Figure 1-1: LynxOS Device Driver Interface Model

User
Application

Device
Driver

Device
Driver

Device
Driver

Device
Driver

LynxOS Kernel

SCSI
Controller

Disk

Disk

Disk

Serial
Controller

Modem

Mouse

Ethernet
Controller

Ethernet

Application Virtual Address Space

Kernel Virtual Address Space

Hardware
2 Writing Device Drivers for LynxOS

Types of Device Drivers

Types of Device Drivers

Device drivers are classified as either block or character types. The primary
difference between the two types is that block type device drivers use a fixed size
data format when transferring data and character type drivers do not.

Block type device drivers are well suited for storage devices like disk and tape
drives and off-board RAM or shared memory. Block device driver characteristics
include:

• Data transfers in multiples of a fixed sized buffer (512 bytes for
example),

• Kernel-buffered data transfer requests,

• Concept of position on a device, and

• File system support.

Character type drivers typically support data transfer devices such as serial and
parallel ports, clocks and timers, network adapters, and A/D or D/A convertors.
Character type device driver characteristics include:

• Operate on arbitrarily sized data structures,

• No kernel buffering

• May or may not have concept of position on device.

Most block type devices are supported by both a block and a character type device
driver. The character type driver is a counterpart to the block driver code to support
the character (also known as raw) data transfer capability of the block device
(CD-ROM drive, for example).

Device Drivers and Devices

The terms device driver and driver are used synonymously throughout this
document. Device and hardware are used interchangeably and refer to a physical
device except within the context of installation. Within this context, device
installation refers to the process of loading a device driver and creating a device
node under LynxOS for access to the device’s controller. This process is covered in
Chapter 8, “Installation and Debugging,”. Hardware installation is used to refer to
the act of installing a physical device.
Writing Device Drivers for LynxOS 3

Chapter 1 - Device Driver Basics

LynxOS Device Driver Components

A LynxOS device driver consists of code and supporting data structures. The
device driver also has various installation attributes that categorize its existence
within the LynxOS environment.

The device driver code is a program module that is incorporated into the kernel. It
does not have a main() routine. A basic device driver is composed of a set of
entry point functions, an interrupt service routine, and kernel threads. (Although
not an absolute requirement by the device driver interface specification, the
interrupt service routine and kernel threads are essential to sustaining the hard real-
time requirements of LynxOS.) Additionally, a device driver may include a timeout
handler, a bus error handler, and one or more shared resources such as semaphores,
buffers, and queues (refer to “Other Components” on page 12 for more
information).

The supporting data structures for a device driver consists of:

• Device information

• Statics

• dldd

These data structures are implemented as C struct data types. The device
information and statics data structures are memory buffers used by the device
driver routines. The dldd data structure is only used with dynamically installed
device drivers and provide the mechanism for registering the entry point function
names with the kernel.

The installation attributes of a device driver become known when the driver code
and device are installed into LynxOS. These attributes characterize how the device
driver is incorporated into the kernel (statically or dynamically) and how the
hardware it supports is accessed by the kernel (driver ID, device ID, and device
nodes). The driver ID, device ID, and device node name are specific to the actual
driver installation. The device driver has no knowledge of these attributes. Driver
IDs, device IDs, and device node names are covered later in the chapter in
“Referencing Device Drivers” on page 14.

A diagram of the LynxOS device driver is shown in the following figure.
4 Writing Device Drivers for LynxOS

LynxOS Device Driver Components
Note that the device information structure is external to the driver code. This data
structure is instantiated independently of the device driver itself. The kernel passes
the address of the device information structure to the driver when the device is
installed. This data structure is described in the section “Device Information Data
Structure” on page 8 and the process of instantiating this structure is described in
Chapter 8, “Installation and Debugging,”

Figure 1-2: lynxos Device Driver Components

devinstall()
{
 ...
}

devopen()
{
 ...
}

devread()
{
 ...
}

devuninstall()
{
 ...
}

inthndlr()
{
 ...
}

kthread()
{
 ...
}

dldd*

Static
Data

Structure

*Dynamic Install Only

Device
Information

Data
Structure

LynxOS Kernel

Device Driver Code Module
Writing Device Drivers for LynxOS 5

Chapter 1 - Device Driver Basics

Entry Point Functions

The entry point functions are the main access points into the device driver. The
entry point function interface is predefined and the developer must supply the code
that interacts with the hardware. This section provides a brief overview of the entry
point functions. They are described in detail in Chapter 2, “Entry Point Functions,”
The table below summarizes the entry point functions.

The install() and uninstall() functions provide a mechanism for
initializing and removing a device driver. Well known I/O-related system calls map
to the following entry point functions: open(), close(), read(), write(),
ioctl(), and select() (see next figure). The strategy() entry point is
used to provide block-oriented I/O scheduling of reads or writes to a block device.
The mmap() entry point is used to support data mapped to memory.

Table 1-1: LynxOS Entry Point Functions Summary

Entry Point Description

install() Initializes the hardware and allocates resources required
by the device driver.

uninstall() Deallocates resources allocated by the device driver
(shared memory and used interrupt vectors, for example).

open() Initializes minor devices.

close() Called only when the last open file descriptor pointing to a
minor device is closed.

read() Reads data from the device.

write() Sends data to the device.

ioctl() Executes a device-specific command.

select() Supports I/O polling or multiplexing.

strategy() Schedules a read or write operation on a block device.

mmap() Maps data to memory.
6 Writing Device Drivers for LynxOS

Naming Convention
The set of entry points required for device drivers varies from device to device.
The inherent characteristics, attributes, and purpose of the hardware determine
which entry points are needed. However, for entry point routines not implemented,
an empty routine, or one that simply returns the system defined constant, OK,
should be provided.

Naming Convention
An identifier should be prepended to the standard entry point function names to
uniquely identify them. The identifier chosen is entirely up to the developer,
however, it is recommend that a convention be selected that identifies the intended

Figure 1-3: Mapping to Entry Point Functions

...

fd = open(...);

devinstall()
{
 ...
}
devopen()
{
 ...
}
devread()
{
 ...
}
devwrite()
{
 ...
}
devclose()
{
 ...
}
devuninstall()
{
 ...
}

...

byte_ct = read(...);

byte_ct = write(...);

...

stat = close(...);

User Application Driver Code

LynxOS
Kernel
Writing Device Drivers for LynxOS 7

Chapter 1 - Device Driver Basics

device. For example, to name entry point functions for a device driver that supports
the Xyz SCSI controller, XyzSCSI_install(), XyxSCSI_open(),
XyzSCSI_read() and so on, can be used.

Data Structures

The data structures, device information and statics, are used in conjunction with
the device driver code to provide a mechanism to pass device-specific information
to the driver and to provide the driver routines with a shared memory area to place
information about the state or status of the device and the driver. The dldd data
structure is used to pass the entry point function names to the kernel for
dynamically installed device drivers.

The device information and statics data structures are discussed in abstract terms
because their structures are not predefined and their purposes vary. Concrete
examples are provided to illustrate their usage. However, keep in mind that their
field structure is determined by the particular device they are supporting and the
developer is free to define them as appropriate.

Device Information Data Structure
The device information data structure is used to pass hardware-specific parameters
to the device driver. These parameters (typically, configuration parameters) are
essential to the proper functioning of the device driver code but would limit the
driver’s range of applicability if hardcoded. These parameters are typically
unknown until the hardware is actually installed. They include items such as I/O
address, IRQ level, and available resources.

Other uses of the device information structure include:

• Specifying specific operational characteristics of a controller card.

• Accessing special capabilities of the device.

• Accessing a specific port on a multifunction controller.

• Supporting multiple instances of a controller within the same system.

The device information data structure exists within the kernel address space. The
kernel passes the address of this data structure to the install() entry point

NOTE: In the coding examples that are used in this chapter and in the remaining
chapters of this book, dev_ is prepended to the entry point function names as a
generic device driver identifier.
8 Writing Device Drivers for LynxOS

Statics Data Structure

function. The device information data structure is deallocated when the device is
uninstalled. An example of this data structure is shown below.

typedef struct adapter_info {
 unsigned char scsi_id; /* SCSI ID of host adapter */
 unsigned short base_address; /* adapter base I/O address */
 unsigned short dma_chan; /* DMA channel used */
 unsigned short vector; /* interrupt vector */
 unsigned short level; /* interrupt level */
 unsigned short performance;
};

The developer is free to choose the structure name and make the field declarations
appropriate to the hardware’s attributes. An empty data structure is also allowable.
The data structure definition is placed into a header file and is incorporated into the
device driver module using the compiler #include directive.

With the values contained in the device information structure, the install()
entry point can access and initialize the hardware. The process of initializing and
instantiating the device information data structure, installing devices, and the
mechanism used to pass the initialized structure to the driver is discussed in
Chapter 8, “Installation and Debugging,”

Statics Data Structure
The statics data structure is a memory buffer commonly shared by the functions of
the device driver. It is dynamically allocated and initialized by the install()
entry point function. Its address is returned to the kernel by the install() entry
point. The kernel passes the address of the statics structure to other entry point
functions.

The developer is free to choose the structure name and make the field declarations
appropriate to the requirements of the device driver. An empty data structure is also
allowable. The statics data structure definition can be placed into a header file and
incorporated into the device driver module using the compiler #include
directive or placed within the driver code module. An example statics structure is
shown below.

struct if_3c5x9_statics {
struct arpcom ds_ac; /* Ethernet common part */
int flags ; /* interface flags */
int int_sem; /* semaphore for interrupts */
int io_int; /* flag to indicate I/O interrupt */
int xcvr_type; /* xcvr type */
int slot; /* slot type: EISA or PCMCIA */
int xmt_mon_cntr; /* xmit hang monitor counter */
int if_3c5x9_cip_cnt0; /* global cip counter */
int show_overruns;

...
} ;
Writing Device Drivers for LynxOS 9

Chapter 1 - Device Driver Basics

dldd Data Structure
The dldd data structure supports dynamic installation of device drivers. If used, the
dldd structure is initialized within the driver code module. This data structure
cannot exist in a device driver that is to be statically installed.

The names of the entry point functions are assigned to the fields of this structure
and subsequently passed to the kernel when the device driver is installed. The dldd
data structure is defined in <dldd.h>. The variable name associated with this data
structure must be entry_points. For example:

#include <dldd.h>
static struct dldd entry_points =
{

 dev_open, dev_close, dev_read, dev_write,
 dev_select, dev_ioctl, dev_install,
 dev_uninstall, dev_mmap
};

The dev_mmap field is used only by the mem and zero device drivers. All
others can omit mmap.

For block-type drivers, dev_read is replaced with dev_strategy, and
dev_write is replaced with NULL. The name of the data structure is
block_entry_points. Any unused entry point function names can be replaced
with NULL.

Handling Interrupts

Interrupts are external hardware signals delivered to the processor to indicate the
occurrence of a specific event. Interrupts may signify:

• Completion of an operation

• Device has data available

• Device is ready for input or a command

• Device has changed status

Interrupt handlers are functions created by the developer to be part of the device
driver code. They can be written to service the interrupt directly or can be used in
conjunction with a kernel thread that can more effectively handle post interrupt
processing in a scheduled and prioritized manner. Because interrupt handlers have
the highest run priority, the minimization of the length of each is paramount.

NOTE: The static keyword is omitted on PowerPC platforms.
10 Writing Device Drivers for LynxOS

Interrupts and Real-Time Response

Interrupt handling is covered in more detail in Chapter 5, “Interrupt and Timeout
Handling,”

Interrupts and Real-Time Response
In a normal system, interrupts have a higher priority than any task. A task,
regardless of its priority, is interrupted if an interrupt is pending (unless the
interrupts have been disabled). The result could mean that a low priority interrupt
could interrupt a task that is executing with real-time constraints.

Using kernel threads, delays of this sort are significantly reduced. Instead of the
interrupt service routine doing all the servicing of the interrupt, a kernel thread is
used to perform the function previously performed by the interrupt routine.

Because the kernel thread is running at the application’s priority (actually, at half a
priority level higher), it is scheduled according to process priority and not
hardware priority. This ensures that the interrupt service time is kept to a minimum
and the task response time is kept short. The use of kernel threads for servicing
interrupts is covered in detail in Chapter 6, “Kernel Threads and Priority
Tracking,”

Kernel Threads
To off-load processing from interrupt-based sections of a device driver, LynxOS
offers a feature known as kernel threads, also referred to as system threads. Kernel
threads are defined as independently schedulable entities which reside in the
kernel’s virtual address space. They closely resemble processes but do not have the
memory overhead associated with processes.

Although kernel threads have independent stack and register areas, the kernel
threads share both text and data segments with the kernel. Each kernel thread has a
priority associated with it, which is used by the operating system to schedule it.
Kernel threads can be used to improve the interrupt and task response times
considerably. Thus, they are often used in device drivers.

Priority tracking is the method used to dynamically determine the kernel thread’s
priority. The kernel thread assumes the same priority as the highest-priority
application which it is currently servicing.

Kernel threads and priority tracking are covered in detail in Chapter 6, “Kernel
Threads and Priority Tracking,”
Writing Device Drivers for LynxOS 11

Chapter 1 - Device Driver Basics

Other Components

Other components of a device driver include:

• Shared resources

• Timeout handler

• Error handler

These components may not be necessary in simple device drivers but may have a
major role in the proper operation of more complex ones.

Shared Resources
Shared resources include memory objects such as semaphores, buffers, and queues.
Semaphores are instrumental in the implementation of synchronization. They can
be used as mutexes to protect critical code regions, as counters to manage shared
resources, and as the gating object for event synchronization. (See Chapter 4,
“Synchronization,”) Buffers and queues are data objects shared by the functions of
the device drivers. These data objects must be instantiated using special system
calls that allocate the appropriate type of kernel memory (Chapter 3, “Memory
Management,”).

Timeout Handler
Timeouts are interrupts called by the clock interrupt handler. Timeouts can be used
to generate interrupts at precise intervals of 10 millisecond granularity. LynxOS
provides the system function timeout() to set up timeout handlers. Timeout
handling is covered in Chapter 5, “Interrupt and Timeout Handling,”

Error Handler
An error handler is useful because it can change the default system behavior should
a bus error occur. By default, LynxOS displays a message that a problem has
occurred and attempts to halt the system. In most situations, system halts caused by
bus errors can be avoided by implementing an error handler. More information on
bus error handling can be found in “Handling Bus Errors” on page 154.
12 Writing Device Drivers for LynxOS

LynxOS Kernel Support Functions

LynxOS Kernel Support Functions

The kernel support functions available to a device driver fall into the following
categories:

• Memory management,

• Synchronization, and

• Exception handling.

Memory management functions are available for the allocation and deallocation of
memory objects that the device driver uses and for validating memory pointers
passed to the device driver routines. Memory management functions are covered in
detail in Chapter 3, “Memory Management,”

Synchronization mechanisms which include mutual exclusion, disabling interrupts
and preemption, and shared resource management are covered in Chapter 4,
“Synchronization,”

Exception handling is implemented using interrupt service routines, timeout
handlers and bus error handlers. These topics are covered in Chapter 5, “Interrupt
and Timeout Handling,” and Chapter 8, “Installation and Debugging,”

Device Driver Development and Installation

The development process consists of defining and coding the required entry point
routines and supporting functions and defining the necessary device information
and statics structures and shared data resources. The table “Summary of Device
Driver Components” summarized the components to be considered in the
development of a device driver. An example device driver is provided in
Appendix C. Other examples can be found in /sys/devices.

Installation consists of choosing an installation method, dynamic or static, then
performing the necessary steps, based on the method chosen, to incorporate the
device driver into the LynxOS kernel. Device driver installation is covered in
Chapter 8, “Installation and Debugging,”
Writing Device Drivers for LynxOS 13

Chapter 1 - Device Driver Basics
Referencing Device Drivers

The LynxOS kernel maintains a set of tables to keep track of installed drivers and
devices. Each device driver is assigned a driver ID and each installed device a
device ID.

The kernel assigns driver IDs when the device code module is loaded. Each driver
ID is unique. For block-type device drivers, the block driver and its character
counterpart receive different driver IDs.

Table 1-2: Summary of Device Driver Components

Component Description

Entry point functions These are the core access points into the device driver. They
are called by the kernel. Not all entry point functions need to
be implemented.

Device information
structure

This data structure is instantiated external to the device driver
and its address is passed to the install() entry point
function. It typically contains information that characterizes
the major device such as I/O address, IRQ, and available
resources.

Statics structure This data structure is commonly shared by device driver entry
point functions and supporting routines. Its use varies in
complexity.

dldd structure This data structure is required by device drivers that are
installed dynamically.

Interrupt handler Used to service interrupts.

Shared resources Shared resources includes semaphores, buffers, queues, and
any other data objects shared by device driver routines.

Kernel threads Kernel threads are standard components of LynxOS and can
be used in conjunction with interrupt and timeout handlers to
handle the servicing of an interrupt more efficiently.

Timeout handler A type of interrupt that is generated in conjunction with the
clock interrupt handler

Error handler Code that can prevent a system halt due to a bus error
14 Writing Device Drivers for LynxOS

Major and Minor Device Designations

Device IDs are assigned when the device is installed. A device is installed when its
device information block (See “Device Information Data Structure” on page 8.) is
loaded into the OS.

Major and Minor Device Designations

Each installed device has a major device and minor device component associated
with it and each of these components has its own ID. The major and minor device
IDs are also referred to as major and minor numbers.

The major device component is essentially the instantiation of the device
information block for the device. The minor device component is used in a number
of ways and one or more minor devices can exist for each major device. It is also
possible for a device driver to support multiple major devices.

Major devices generally refer to a single controller card. Minor devices commonly
refer to a single channel (sub-device) on a controller card but may also refer to
different modes of dealing with the major device.

The major device correlates to the ID assigned to the device when it is installed by
the LynxOS devinstall command or by the cdv_install() or
bdv_install() system calls. These routines associate a major device to a
specific driver and loads the device information block for the device. The
following figure shows the relationship between drivers and major and minor
devices.
Writing Device Drivers for LynxOS 15

Chapter 1 - Device Driver Basics
Some examples of minor device usage include:

• For SCSI controllers

- SCSI target ID

- Target type (tape or disk)

- Partition

• For floppy disk controllers

- Physical drive

- Density

Figure 1-4: Major and Minor Devices

Ethernet Driver (Driver ID = 2)SCSI Driver (Driver ID = 1)

LynxOS Kernel

SCSI
Controller

Disk

Disk

Disk

SCSI_Info

SCSI Device
Device ID = 0

Ethernet
Controller

Ether 0 Device
Device ID = 1

Ethernet
Controller

Ether 1 Device
Device ID = 2

Major Device

Minor Devices

Device Info
Block

Eth0_Info

Device Info
Block

Eth1_Info

Device Info
Block

ID = 1

ID = 2

ID = 3
16 Writing Device Drivers for LynxOS

Referencing Driver and Device IDs Under LynxOS

Minor devices are defined within the device driver code and are initialized by way
of the open() entry point function. The meaning of the minor device is
interpreted only by the device driver code. The minor device number is assigned by
the developer. The minor device number is only necessary if the major device
supports multiple minor devices. For hardware in which a minor device is not
applicable, zero is used as the minor device number.

Referencing Driver and Device IDs Under LynxOS

Drivers and devices in LynxOS can be referenced by used their identification
numbers. The LynxOS commands drivers and devices are used to list
installed device drivers and devices.

Drivers
Drivers are referenced using a unique driver identification number. This number is
assigned automatically during kernel configuration. Drivers supporting raw
(character) and block interfaces have separate driver identification numbers for
each interface. The drivers command displays the drivers currently installed in
the system and their unique driver identification numbers.

Following is a sample output of the drivers command.

Devices
Each device is identified by a pair of major/minor numbers. LynxOS automatically
assigns the major numbers during kernel generation. Character and block
interfaces for the same device are indicated by different major numbers.

drivers
id type major devs. start size name
0 char 1 0 0 null
1 char 1 0 0 mem
2 char 1 0 0 ctrl driver
3 char 1 0 0 Raw floppy
4 block 1 0 0 Floppy
5 char 1 0 0 SIM1542 RAW SCSI
6 block 1 0 0 SIM1542 BLK SCSI
7 char 1 0 0 kdconsole
8 char 2 0 0 serial

Figure 1-5: Sample drivers Command Output
Writing Device Drivers for LynxOS 17

Chapter 1 - Device Driver Basics

To view major devices installed on the system, use the devices command.
A sample output of the devices command is shown below. The id column of
contains the major number of the device.

Minor devices are identified by the minor device number. These numbers may be
used to indicate devices with different attributes. Minor device numbers are only
necessary if there are multiple minor devices per major device. The meaning of the
minor device number is selected and interpreted only by the device driver. The
kernel does not attach a special meaning to the minor number. For example,
different device drivers use the minor device number in different ways: device
type, SCSI target ID (e.g., a SCSI disk controller driver), or a partition (e.g., an
IDE disk controller driver).

Application Access to Devices and Drivers

Like UNIX, LynxOS is designed so that devices and drivers appear as special
device files in the file system. Applications can access devices and drivers using
the special device files. These files usually reside in the /dev directory (although
they can be put anywhere) and are viewable, like other files, through the ls -l

command.

The device special files are named the same way as regular files and are identified
by the device type (character (c) or block (b)) in the first character of the first
column of the listing. Special device files have a file size of 0; however, they do
occupy an inode and take up directory space for their name.

Below is a sample listing of the /dev directory using the ls -l command
(a heading as been added for clarity). The size column shows the major and minor

#devices
id type driver use count start size name
0 char 0 2 0 0 null device
1 char 1 1 0 0 memory
2 char 2 0 0 0 ctrl dev
3 char 3 0 db0d7008 0 raw Floppy 0–3
4 char 5 1 db0d8a70 0 SIM1542 RAW SCSI
5 char 7 9 db0d8fd8 0 kdconsole
6 char 8 0 db0dc260 0 com 1
7 char 8 0 db0dce40 0 com 2
0 block 4 0 db0d7008 0 Floppy 0–3
1 block 6 2 db0d8a70 0 SIM1542 SCSI

Figure 1-6: Sample devices Command Output
18 Writing Device Drivers for LynxOS

Mapping Device Names to Driver Names

numbers of the devices, respectively. Special device files are created with the
mknod utility.

Mapping Device Names to Driver Names
The following method can be used to map a device name to a driver:

1. Use the ls -l command on the /dev directory to obtain the listing of
all the device names in the system. Determine the major and minor
numbers associated with the device name. For example, in the example
above, the device com1 would be a character device with a major device
number of 6 and a minor device number of 0.

2. Use the devices command to get a listing of all the devices in the
system. The value in the id column corresponds to the major device
number obtained above. If there is more than one entry with the same ID,
the device type (character or block) eliminates any ambiguity. After
locating the entry for the driver in question, look in the driver column for
the driver ID. For example, in the sample drivers output above, com1
has a driver ID of 8.

3. Use the drivers command to get a listing of all the drivers in the
system. With the driver ID obtained in the above step, obtain the name of
the driver. For com1, the driver name is serial, which is the driver
with ID 8 as shown in the sample drivers listing above.

Permissions Links Owner Maj,Min # Mod. Date Dev. File Name
----------- ----- ----- -------- --------- --------------
crw-rw-rw- 1 root 0,0 Mar 29 01:57 null
crw-r--r-- 1 root 1,0 Mar 29 01:52 mem
crw-rw-rw- 1 root 2,0 Mar 29 01:52 tty
crw-rw-rw- 1 root 3,12 Mar 29 01:52 rfd1440.0
crw------- 1 root 4,0 Mar 29 01:52 rsd1542.0
crw------- 1 root 4,16 Mar 29 01:52 rsd1542.0a
crw--w--w- 1 chris 5,0 Mar 29 01:58 atc0
crw--w--w- 1 root 5,1 Mar 29 01:57 atc1
crw-rw-rw- 1 root 6,0 Mar 29 01:52 com1
crw-rw-rw- 1 root 7,0 Mar 29 01:52 com2
brw-rw-rw- 1 root 0,12 Mar 29 01:52 fd1440.0
brw------- 1 root 1,0 Mar 29 01:52 sd1542.0
brw------- 1 root 1,16 Mar 29 01:52 sd1542.0a

Figure 1-7: Sample /dev Directory Listing
Writing Device Drivers for LynxOS 19

Chapter 1 - Device Driver Basics
20 Writing Device Drivers for LynxOS

CHAPTER 2 Entry Point Functions
This chapter describes the entry point functions and provides basic examples on
their usage.

Entry Point Functions

The table below lists LynxOS entry point functions and summarizes their usage.

Table 2-1: LynxOS Entry Point Functions

Entry Point

Function
Description

install() Initializes the hardware and allocates shared memory buffers.

uninstall() Deallocates shared memory and clears used interrupt vectors.

open() Initializes minor devices.

close() Called only when the last open file descriptor pointing to a minor
device is closed.

read() Reads data from the device.

write() Sends data to the device.

ioctl() Executes a device-specific command.

select() Supports I/O polling or multiplexing.

strategy() Schedules read and write operations on a block device.

mmap() Maps data to memory.
Writing Device Drivers for LynxOS 21

Chapter 2 - Entry Point Functions

Required Functions

Not all entry point functions are required for a device driver. The functions to
implement are determined by the inherent characteristics of the device, the device
driver type (block or character), and whether the device driver is statically or
dynamically installed. Following are some general guidelines.

• All device drivers require install().

• The uninstall() routine is only required in dynamically installed
device drivers.

• Block device drivers use the strategy() entry point and character
types do not.

• strategy() replaces read() in block device drivers.

• The select() entry point is used to support I/O polling or
multiplexing.

• For entry point routines not implemented, an empty routine or one that
simple returns the system defined constant, OK, should be provided.

Declaring the Entry Point Functions

The entry point functions are declared within the driver code module and their
addresses are identified to the kernel upon driver installation. Because device
drivers can be installed statically or dynamically, two distinct processes exist for
registering the entry point function names with the kernel.

In a static installation, the driver code and data are incorporated into the kernel
image. (This process follows the conventional UNIX model.) The entry point
function names are also declared in a configuration file, which is subsequently
incorporated into the kernel build process. Device driver installation is covered in
detail in Chapter 8, “Installation and Debugging.”

A device driver can also be installed dynamically using the drinstall program
or the dr_install() system call. A data structure named entry_points is
used to pass the addresses of the entry point functions to the kernel. This data
structure is initialized within the driver code module. Its type is dldd, which is
defined in <dldd.h>. The dldd data structure is described in Chapter 1, “Device
Driver Basics.” Device driver installation is covered in detail in Chapter 8,
“Installation and Debugging.”
22 Writing Device Drivers for LynxOS

install()

install()

The install() entry point function is invoked each time the device driver is
installed for a major device. This entry point is responsible for initializing the
major device (see “Major and Minor Device Designations” on page 15). Block-
and character-type device drivers use slightly different versions of install().

For character-type device drivers, the prototype for install() is:

char *install(devinfo *info)

where:

info Is a pointer to a device information structure

For block-type device drivers, the prototype for install() is:

char *install(devinfo *info, statics *s)

where:

info Is a pointer to a device information structure

s Is a pointer to a statics data structure

info points to a device information data structure. (See “Device Information Data
Structure” on page 8.) This data structure characterizes the major device that the
instantiation of the driver supports. Typically, this structure holds configuration
information such as IRQ level, I/O address, or available resources. The device
driver uses this information to initialize the major device.

At a minimum, the install() entry point should initialize the major device and
in character-type device drivers, and allocate memory for the statics data structure.
(See “Statics Data Structure” on page 9.)

The install() entry point should also initialize the statics data structure,
register the interrupt handler and kernel threads. The data received from the device
information data structure should also be copied to the statics data structure for use
by the other entry points, if appropriate.

The install() entry point returns either SYSERR or a pointer to a statics data
structure. If a bus error occurs while install() is being executed, it is
automatically aborted with the same effect as if a SYSERR has been returned.

install() Example
In the example below, the dev_install() routine checks for the existence of
the device using device_is_present() (which is a supporting routine located
Writing Device Drivers for LynxOS 23

Chapter 2 - Entry Point Functions

elsewhere in the driver code). If the device is present, the statics structure (s) is
allocated and initialized; otherwise dev_install() returns SYSERR.

Next, dev_install() attempts to initialize the hardware with the supporting
routine device_init(). If the initialization succeeds, dev_install() returns
the address of the statics structure; otherwise, the statics structure is deallocated
and dev_install() returns SYSERR.

char *dev_install(devinfo *info)
{
 struct statics *s;
 int error_found = 0;

 /* Check for existence of device. If present
 allocate and initialize statics struct. */
 if (device_is_present(info))
 {
 s = (struct statics *)sysbrk((long)sizeof(*s));
 bzero(s, sizeof (*s));
 s->io_addr = info->io_addr;
 s->intr_vec = info->intr_vec;
 ...
 }
 else
 return ((char *)SYSERR);

 /* Initialize device */
 error_found = device_init(s);
 if (error_found)
 {
 sysfree(s, (long) sizeof (*s));
 return ((char *)SYSERR);
 }
 else
 return ((char *) s);
}

uninstall()

The uninstall() entry point function is invoked when a device driver is
dynamically removed from the system by way of the devinstall system
command or the cdv_uninstall() or bdv_uninstall() system calls.

The prototype for uninstall() is:

int uninstall(statics *s)

where:

s Is a pointer to a statics data structure

The uninstall() entry point must free up the statics structure, s, (see “Statics
Data Structure” on page 9) and any other resources allocated or set by the device
driver. Dynamically allocated memory for data structures or queues must be
24 Writing Device Drivers for LynxOS

uninstall() Example

deallocated and all used interrupt vectors must be cleared. Also, if applicable to the
hardware, an attempt should be made to put the device into an inactive state. The
uninstall() entry point must return either OK or SYSERR.

uninstall() Example
In the following example, the dev_uninstall() routine first attempts to put the
hardware into an initialized state with the device_init() (a supporting routine
located elsewhere in the driver code). Next the interrupt vector used by the device
driver is cleared and the statics structure is deallocated.

If device_init() succeeds, dev_uninstall() returns OK; otherwise it
returns SYSERR.

int dev_uninstall(statics *s)
{
 int error_found = 0;

 /* Attempt to put the device into an initialized state */
 error_found = device_init(s);

 /* clear interrupt vector then deallocate statics structure*/
 iointclr(s->vector);
 sysfree(s, (long) sizeof(*status));

 if (error_found)
 return SYSERR;

 return OK;
}

open()

The open() entry point function is called in response to each open system call
made by an application. It is used to perform minor device initialization (see
“Major and Minor Device Designations” on page 15) and can also be used to
register ISRs and kernel threads.

The prototype for open() is:

int open(statics *s, int devno, file *f)

where:

s Is a pointer to a statics data structure

devno Contains the major and minor device numbers

f Is a pointer to a file structure
Writing Device Drivers for LynxOS 25

Chapter 2 - Entry Point Functions

For every minor device accessed by the application program, the open() entry
point of the driver is accessed. Thus, if synchronization is required between minor
devices (of the same major device), the open() entry point handles it. Every
open() system call on a device managed by a driver results in the invocation of
the open() entry point.

Note that the open() entry point is not reentrant, though it is preemptive. Only
one user task can execute the entry point code at a time for a particular device.
Therefore, synchronization between tasks is not necessary in this entry point.

devno contains the major and minor device numbers (devno is the same as
f->dev). To extract the major and minor device numbers from devno, use the
major() and minor() macros, respectively. Refer to man pages for more
information on macros major() and minor().

The file pointer f is defined in <file.h>. The�open() entry point must return
either OK or SYSERR.

open() Example
#include <file.h>

int dev_open(statics *s, int devno, file *f)
{
 int minDevNo, majDevNo;

 minDevNo = minor(devno);
 majDevNo = major(devno);
 /* perform initializing specific to minor device */
return (OK);
}

close()

The close() entry point function is called when the last open file descriptor
pointing to a minor device is closed.

Specific allocation of memory done in the open() entry point routine is
deallocated in the close entry point. As with the open() entry point, the
close() entry point is not reentrant.

The prototype for close() is:

int close(statics *s, file *f)

where:

s Is a pointer to a statics data structure
26 Writing Device Drivers for LynxOS

close() Example

f Is a pointer to a file structure

The file pointer f is defined in <file.h>. The close() entry point must return
either OK or SYSERR.

close() Example
#include <file.h>

int dev_close(statics *s, file *f)
{

 /* perform de-initializing specific to minor device */
return (OK);
}

read()

The read() entry point function is invoked in response to a read() system
call. This entry point function is required to copy a specified amount of data from
the device into a buffer designated by the calling routine.

The prototype for read() is:

int read(statics *s, file *f, char *buf, int count)

where:

s Is a pointer to a statics data structure

f Is a pointer to a file structure

buf Is a pointer to a character buffer

count Specifies the number of bytes to copy

The file pointer f is defined in <file.h>. The read() entry point routine
attempts to copy from the input device count bytes of data into character buffer
buf. If fewer bytes of data are copied than requested, read() returns the number
of bytes actually copied, including zero, if appropriate. If any errors occur,
SYSERR is returned.

read() Example
#include <file.h>

int dev_read(statics *s, file *f, char *buf, int count)
{

Writing Device Drivers for LynxOS 27

Chapter 2 - Entry Point Functions

 int byteCt;

 /* perform copy operation */
return (byteCt);
}

write()

The write() entry point function is invoked in response to a write() system
call. This entry point function is required to copy a specified amount of data from a
buffer designated by the calling routine to the output device.

The prototype for write() is:

int write(statics *s, file *f, char *buf, int count)

where:

s Is a pointer to a statics data structure

f Is a pointer to a file structure

buf Is a pointer to a character buffer

count Specifies the number of bytes to copy

The file pointer f is defined in <file.h>. The write() entry point routine
attempts to copy to the output device count bytes of data from character buffer
buf. If fewer bytes of data are copied than requested, write() returns the
number of bytes actually copied, including zero, if appropriate. If any errors occur,
SYSERR is returned.

write() Example
#include <file.h>

int dev_write(statics *s, file *f, char *buf, int count)
{
 int byteCt;

 /* perform copy operation */
return (byteCt);
}

ioctl()

The ioctl() entry point function is called when the ioctl() system call is
invoked for a particular device. This entry point is used to set certain parameters in
the device or obtain information about the state of the device.
28 Writing Device Drivers for LynxOS

ioctl()

For character type device drivers, the prototype for ioctl() is:

int ioctl(statics *s, file *f, int command, char *arg)

where:

s Is a pointer to a statics data structure

f Is a pointer to a file structure

command Specifies the command to execute

arg Is a pointer to a command argument

For block type device drivers, the prototype for ioctl() is:

int ioctl(statics *s, int devno, int command, char *arg)

where:

s Is a pointer to a statics data structure

devno Indicates a device number

command Specifies the command to execute

arg Is a pointer to a command argument

The file pointer f is defined in <file.h>.

The driver defines the meaning of command and arg except for FIOPRIO and
FIOASYNC, which are predefined and used by LynxOS to communicate with the
drivers. If the arg field is to be used as a memory pointer, it should first be
checked for validity with either rbounds() or wbounds(). (See “Validating
Addresses” on page 46.)

The kernel uses FIOPRIO to signal the change of a task priority to the driver that
is doing priority tracking. FIOASYNC is invoked when a task invokes the
fcntl() system call on an open file, setting or changing the value of the
FNDELAY or FASYNC flag.

The kernel might change the priority of an I/O task in the case of priority
inheritance to elevate the priority of a task that has locked a resource that another
higher priority task is blocked on (see Chapter 6, “Kernel Threads and Priority
Tracking.”).

The ioctl() entry point returns OK or SYSERR.
Writing Device Drivers for LynxOS 29

Chapter 2 - Entry Point Functions

ioctl() Example
Character type device driver:

int dev_ioctl(statics *s, file *f, int command, char *arg)
{
/* depending on the command, copy relevant
 information to or from the arg structure */
}

Block type device driver:

int dev_ioctl(statics *s, int devno, int command, char *arg)
{
/* depending on the command copy relevant
 information to or from the arg structure */
}

select()

The select() entry point function supports I/O polling or multiplexing.

The prototype for select() is:

int select(statics *s, file *f, int which, sel *ffs)

where:

s Is a pointer to a statics data structure

f Is a pointer to a file structure

which Specifies the condition to monitor

ffs Is a pointer to a sel data structure

The file pointer f is defined in <file.h>.

The which parameter is either SREAD, SWRITE, or SEXCEPT, indicating that the
select() entry point is monitoring a read, write, or exception condition
respectively. The select() entry point returns OK or SYSERR.

The following fields are required in the statics structure to support the select()
system call:

struct statics
{
...
 int *rsel_sem; /* sem for select read */
 int *wsel_sem; /* sem for select write */
 int *esel_sem; /* sem for select exception */
 int n_spacefree; /* space available for write */
 int n_data; /* data available for read */
 int error; /* error condition */
};
30 Writing Device Drivers for LynxOS

select() Example

The iosem field in the sel structure is a pointer to a flag that indicates whether
the condition being polled by the user task is true or not. The sel_sem field is a
pointer to a semaphore that the driver signals at the appropriate time (see below).
The value of the semaphore itself is managed by the kernel and should never be
modified by the driver. A driver must always set the iosem and sel_sem fields
in the select() entry point.

A driver that supports select must also test and signal the select semaphores at the
appropriate points in the driver, usually the interrupt handler or kernel thread. This
should be done when data becomes available for reading, when space is available
for writing or when an error condition is detected. For example:

/* data input */
s->n_data++;
disable (ps);
if (s->rsel_sem)
 ssignal (s->rsel_sem);
restore (ps);

/* data output */
s->n_spacefree++;
disable (ps);
if (s->wsel_sem)
 ssignal (s->wsel_sem);
restore (ps);

/* errors, exceptions */
if (error_found)
{
 s->error++;
 disable (ps);
 if (s->esel_sem)
 ssignal (s->esel_sem);
 restore (ps);
}

select() Example
int dev_select (statics *s, file *f, int which, sel *ffs)
{
 switch (which)
{
 case SREAD:
 ffs->iosem = &s->n_data;
 ffs->sel_sem = &s->rsel_sem;
 break;
 case SWRITE:
 ffs->iosem = &s->n_spacefree;
 ffs->sel_sem = &s->wsel_sem;
 break;
 case SEXCEPT:
 ffs->iosem = &s->error;
 ffs->sel_sem = &s->esel_sem;
 break;
}

Writing Device Drivers for LynxOS 31

Chapter 2 - Entry Point Functions

 return (OK);
}

strategy()

The strategy() entry point function is used only in block device drivers. It is
used in place of the read() and write() entry point functions, which occur
only in character device drivers.

When a process attempts to read or write from a file, the file system composes a
linked list of data structures. Each data structure is of data type struct
buf_entry, and describes the operation required for a single logical block of data.
The entire linked list of these structures defines all the actions required of the
device driver to complete the read or write operation.

The prototype for strategy() is:

int strategy(char *s, buf_entry *bp)

where:

s Is a pointer to a statics data structure

bp Is a pointer to the first structure in a linked list of
buf_entry structures
32 Writing Device Drivers for LynxOS

strategy()

The interface between the LynxOS file system and the device driver’s strategy
function is illustrated in the following diagram.

When the application uses a read() or write() system call, the file system
module identifies which logical blocks of the file need to be read or written. It
composes a linked list of buf_entry structures, each one describing the
processing to be done for each logical block.

Memory blocks in the file system cache are set aside for the read or write. For a
write, the data to be written into the disk block is copied to the cache location. For
a read, the cache location is empty and receives the block of data when it is fetched
from the disk. In each buf_entry structure, the pointer named memblock
points to the corresponding cache block.

The linked list of buf_entry structures is used as the second argument to the
strategy() entry point function. The strategy() entry point is responsible
for causing the data to be moved between the cache and the disk. Typically, the

Figure 2-1: LynxOS File System and strategy() Interface

Read

Application

File Cache

File System

strategy() Entry Point
Function

Read

Write

Write

Subroutines
Writing Device Drivers for LynxOS 33

Chapter 2 - Entry Point Functions

actual data transfer is not accomplished by the strategy() entry point function
itself. Instead, the buf_entry structures are passed to other functions that
perform the transfer.

The buf_entry structure is defined in /usr/include/disk.h. It is defined as
follows:

struct buf_entry {
 int b_device; /* major/minor */
 char *memblk; /* src or dest */
 long b_number; /* block number */
 int b_status; /* op and status */
 int b_rwsem; /* done sem */
 int b_error; /* error flag */
 struct buf_entry *av_forw; /* next */
 struct buf_entry *av_back; /* avail */
 int w_count; /* avail */
};

where:

b_device Encoded major and minor device number

memblk Memory source or destination returned by mmchain()

b_number Source or destination block on the device

b_status Specifies the type of transfer to perform, and the status of
the transfer - The device is read if B_READ is set, or
written to if B_READ is not set. To specify the status of
the transfer, set B_DONE prior to signaling b_rwsem
semaphore if the transfer is successful.

b_rwsem Semaphore to ssignal() when the transfer is complete

b_error Set non-negative if the transfer fails

av_forw Pointer to the next buffer to transfer, or NULL if end of list
(may be changed by driver)

av_black, w_count Fields available to driver for its own purposes
(LynxOS drivers use w_count to store the priority for
priority tracking.)

NOTE: Set B_ERROR in addition to the b_error field if the transfer fails.
34 Writing Device Drivers for LynxOS

mmap() Example

mmap()

The mmap() entry point is used to access memory-mapped character devices. The
mmap() entry point is called as a result of the mmap(2) system call, allowing a
character device to be mapped to memory space.

The prototype of the mmap entry point is described below:

mmap(struct file *f, kadd_t st, size_t len,
int prot, int flags, off_t off)

Where:

f a pointer to a file

st the kernel address

len the size of the memory space

prot the bit field that specifies the protection bits

flags used to set flags

off the offset of memory

The file pointer f is defined in <file.h>. The mmap() entry point must return
either OK or SYSERR. The prot field can include:

PROT_READ Read access

PROT_WRITE Write access

PROT_EXEC Executable

PROT_USER Specific User

PROT_ALL Any User

mmap() Example
#include <rcsid.h>

/* memdrvr.c - memread */

#include <kernel.h>
#include <errno.h>
#include <sys/file.h>
#include <inode.h>
#include <memobj.h>

extern MemoryObject *Phys_mem_object;

int memopen(char *stats, int dev, struct file *f)
{

Writing Device Drivers for LynxOS 35

Chapter 2 - Entry Point Functions

 f->inode->i_memobj = Phys_mem_object;
 return (OK);
}
int memclose(char *stats, struct file *f)
{
 f->inode->i_memobj = NULL;
 return (OK);
}

int memread(char *s, struct file *f, char *buff, int count)
{
 int i;
 char *seekp;

 seekp = (char *)(unsigned int)f->position; /* Don’t need a */
/* long long to */
/* access memory */

 if (recoset()) {
 noreco();
 pseterr(EFAULT);
 return SYSERR;
 }
 for (i = 0; i < count; i++) {
 buff[i] = *seekp++; /* If a fault occurrs seekp */

/* is the fault address */
}

noreco();
 f->position = (long long)((unsigned int)seekp);
 return i;
}

int memwrite(char *s, struct file *f, char *buff, int count)
{
 int i;
 char *seekp;

 seekp = (char *)(unsigned int)f->position;

 if (recoset()) {
 noreco();
 pseterr(EFAULT);
 return SYSERR;
 }
 for (i = 0; i < count; i++) {

*seekp++ = buff[i];
 }
 noreco();
 f->position = (long long)((unsigned int)seekp);
 return i;
}

kaddr_t memmmap(struct file *f, kaddr_t st, size_t len,
int prot, int flags, off_t off)

{
 /* pass through the request to the real mapping function */
 return phys_memory_mmap(f, st, len, prot, flags, off);
}

36 Writing Device Drivers for LynxOS

CHAPTER 3 Memory Management
This chapter covers memory management issues and the LynxOS system calls that
support device driver memory management. It describes the LynxOS memory
model, supported address types, memory allocation, memory locking, address
translation, accessing user space from interrupt handlers and kernel threads, and
hardware access.

LynxOS Virtual Memory Model

LynxOS uses a virtual addressing architecture. All memory addresses generated by
the CPU are translated by the hardware MMU (Memory Management Unit). Each
user task has its own protected virtual address space that prevents tasks from
interfering with each other.

The kernel, which includes device drivers, and the currently executing user task
exist within the same virtual address space. The user task is mapped into the lower
part, the kernel into the upper part. Only the part of the virtual map occupied by the
user task is remapped during a context switch. Applications cannot access the part
of the address space occupied by the kernel and its data structures. The constant
OSBASE defines the upper limit of the user accessible space. Addresses above this
limit are accessible only by the kernel.

Kernel code, on the other hand, has access to the entire virtual address space. This
facilitates the passing of data between drivers and user tasks. A device driver, as
part of the kernel, can read or write a user address as a direct memory reference,
without the need to use special functions. Because of this, precautions should be
taken to restrict the access of the device driver only to necessary structures.

Please see “Accessing Hardware” on page 49 for detailed LynxOS virtual memory
maps of the currently supported platforms.
Writing Device Drivers for LynxOS 37

Chapter 3 - Memory Management

DMA Transfers

All addresses generated by the CPU are treated as virtual and are converted to
physical addresses by the MMU. This makes the programming of DMA transfers
slightly more complicated because memory that is contiguous in virtual space can
be mapped to non-contiguous physical pages. DMA devices, however, typically
work with physical addresses. Therefore, a driver must convert virtual addresses to
their corresponding physical addresses before passing them to a DMA controller.

In addition, user memory may be paged, which can lead to changes in the virtual to
physical address mapping and to a physical page being reallocated to another user
task. Paging must therefore be suppressed on user memory that is involved in a
DMA transfer by locking the memory region.

The sections “Memory Locking” on page 41 and “Address Translation” on page 43
covers memory locking and address translation issues and functions relating to
DMA transfers.

LynxOS Address Types

A LynxOS driver must deal with several different address types. These include:

Table 3-1: Address Types

Type Description

User Virtual These addresses are passed to the driver from a user application.
Typically they are addresses of buffers or data structures used to
transfer data between the application and a device. They are
valid only when the user task that passed the address is the
current task.

Kernel Virtual These are addresses of kernel functions and variables that can be
used by a driver. The mapping of kernel virtual addresses is
permanent so they are valid from anywhere within a device
driver. They are not accessible from an application.
38 Writing Device Drivers for LynxOS

Allocating Memory
Allocating Memory

The the following table summarizes the LynxOS memory allocation and
deallocation functions that support device drivers. Note that these system calls
cannot be called from within an ISR.

Allocated memory comes from the kernel address space and is not accessible to
applications. Refer to section “Address Translation” on page 43 for address
translation considerations. A complete description of these functions is available in
their respective man pages.

Kernel Direct Mapped A region of the kernel virtual space that is directly mapped to
physical memory (that is, contiguous virtual addresses map to
contiguous physical addresses) - The base of this region is
defined by the constant PHYSBASE, which maps to the start of
RAM. The size of the region is platform-dependent.

NOTE: Memory that exists on devices or non-system
buses (PCI or VME for example) is not accessible by way
of PHYSBASE.

Physical Physical memory is the non-translated address for memory.
Physical addresses are used when a driver needs to set up
pointers to physical memory for controllers that bypass the
MMU (DMA controllers, for example).

Device Device addresses include I/O port addresses, PCI addresses,
VME addresses, and so on.

Table 3-1: Address Types (Continued)

Type Description
Writing Device Drivers for LynxOS 39

Chapter 3 - Memory Management

Table 3-2: Memory Allocation Functions

System Call Summary

sysbrk() sysbrk() is useful for allocating shared static data structures
and queues used by the device driver. It is recommended that
sysbrk() be used primarily in the install() and
open() entry point routines though it can be used in any of the
others.
The prototype for sysbrk() is:

char * sysbrk(long size)

size is the number of bytes required. sysbrk() returns
NULL if no memory is available.

NOTE: malloc() cannot be used within device drivers.

sysfree() sysfree() deallocates memory allocated by sysbrk() and
returns it to the free list.
The prototype for sysfree() is:

void sysfree(char *p, long size)

p is the pointer to the memory to free and size is its size.

get1page() get1page() allocates one page of physical memory and returns
a virtual address that can be used to access it. get1page() is
useful for obtaining buffers for DMA. The virtual address is above
OSBASE, and is thus valid in the context of any task including
interrupt service routines.
The page of memory is PAGESIZE in length (4096 bytes for
example) and is defined in <kernel.h>.
The prototype for get1page() is:

char * get1page()

get1page() returns NULL if no memory is available.

free1page() free1page() releases a page of memory allocated by
get1page().
The prototype for free1page() is:

void free1page(char * addr)

addr is pointer to the page of memory to free.
40 Writing Device Drivers for LynxOS

Memory Locking
Memory Locking

LynxOS provides mem_lock() and mem_unlock() system calls for locking
and unlocking user memory. These functions are provided to support DMA
transfers.

User memory may be paged, which can lead to changes in the virtual to physical
address mapping and to a physical page being reallocated to another user task. For
DMA transfers, paging must be suppressed on user memory.

If paging has not been activated, either by the vmstart command or a system
call, these routines have no effect. Because a device driver cannot determine if
paging is active, it should always lock memory used with DMA transfers.

mem_lock()

The mem_lock() system call is used to prevent a region of memory from being
paged. mem_lock() cannot be used from within an ISR.

alloc_cmem() alloc_cmem() returns a block of contiguous physical memory.
It is useful for obtaining DMA buffers for devices incapable of
scatter/gather transfers. It is recommended that alloc_cmem()
be used primarily in the install() entry point routine, or if
necessary, in the open() entry point, though it can be used any
of the others.
The prototype for alloc_cmem() is:

char * alloc_cmem(int size)

size is the number of bytes to allocate. alloc_cmem()
returns a pointer to a block of pages contiguous in memory. The
pointer it returns is a virtual address. If insufficient memory is
available, alloc_cmem() returns NULL.

free_cmem() free_cmem() releases the memory allocated by
alloc_cmem().
The prototype for free_cmem() is:

void free_cmem(char * p, int size)

p is the pointer to the memory to free and size is its size.

Table 3-2: Memory Allocation Functions (Continued)

System Call Summary
Writing Device Drivers for LynxOS 41

Chapter 3 - Memory Management

The prototype for mem_lock() is:

int mem_lock(int pid, long size, char * uaddr)

where

pid Specifies a process ID

size Specifies a memory size

uaddr Specifies a start address

The arguments specify the start address (uaddr) and size (size) of a memory
region in the process specified by pid. These typically correspond to the
arguments passed to the read() or write() entry point functions of the device
driver.

The getpid() system call can be used to get the process ID of the current task.
For example:

/* Lock user memory to prevent paging */
if (mem_lock (pid = getpid(), uaddr, size) == SYSERR)
{

pseterr (ENOMEM);
return (SYSERR);

}

If paging is activated and any virtual addresses in the specified range are not
currently mapped to physical memory, mem_lock() attempts to allocate and map
the address into physical memory. If there is not enough physical memory to do
this, SYSERR is returned. Otherwise, OK is returned. A successful return means
that the specified virtual address range is mapped to physical memory and is
locked. If paging is not activated, mem_lock() returns OK.

It is permissible to lock the same address multiple times. This may occur, for
example, when locking overlapping regions. However, the memory must be
unlocked the same number of times.

mem_unlock()

The mem_unlock() function is used to unlock memory locked by mem_lock().
mem_unlock() cannot be used from within an ISR.

The prototype for mem_unlock() is:

int mem_unlock(int pid, char * vaddr, long size, int dirty)

NOTE: Kernel memory is not paged. Therefore, memory allocated with
sysbrk(), get1page() or alloc_cmem() does not require locking.
42 Writing Device Drivers for LynxOS

Address Translation

where:

pid Specifies a process ID

vaddr Specifies a start address

size Specifies a memory size

dirty Specifies whether or not to write memory to a swap file

/* Unlock user memory */
if (mem_unlock (pid, uaddr, size, dirty) == SYSERR)
{

return (SYSERR); /* error set to EINVAL by
 mem_unlock */
}

Once memory is unlocked it becomes eligible for paging again. Attempting to
unlock memory that was not previously locked causes the routine to return
SYSERR. A successful unlock returns OK. If paging is not activated,
mem_unlock() returns OK.

If the memory contents are modified by another processor, such as a DMA
controller, the dirty flag should be set to 1. This ensures that the contents are
written out to the swap file if the memory region is subsequently paged out.

A driver should always ensure that any locked memory is released when a task
closes the device or when the device is uninstalled. Pages that remain locked after a
task has exited, though usable by other tasks, will not be paged.

Address Translation

Device drivers must convert virtual addresses to their corresponding physical
addresses before passing them to a DMA controller. However, the physical address
range of virtual memory segments are not guaranteed to be contiguous as depicted
in the figure below.
Writing Device Drivers for LynxOS 43

Chapter 3 - Memory Management

The mmchain() system call is used to obtain the physical addresses and sizes of
all memory pages that make up a contiguous virtual memory segment.
mmchain() cannot be used from within an ISR.

The prototype for mmchain() is:

int mmchain(dmachain *array, char *vaddr, long size)

where:

array Pointer to a dmachain object

vaddr Start address of a virtual memory segment

size Size of the virtual memory segment

Figure 3-1: Virtual to Physical Memory Mapping

Virtual Memory

Page 1

Page 2

Page 3

Page 4

Physical Memory
44 Writing Device Drivers for LynxOS

Virtual Address Conversion

mmchain() writes into array the physical addresses and sizes of all memory
pages that make up the contiguous virtual memory segment described by vaddr
and size, and returns the number of elements written into array. If no physical
memory is mapped to a virtual address, mmchain() sets the converted address
to 0. To ensure valid mappings, mem_lock() should be used prior to
mmchain().

array is an array of dmachain structures (defined in <mem.h>). The size of
array must be one more than the number of memory pages contained in size.
The size of array can be computed as follows:

{(size + PAGESIZE - 1) / PAGESIZE} + 1

The physical addresses returned are offset by PHYSBASE. For maximum
portability, the physical address should be offset by the system constant,
drambase. The start of RAM is contained in drambase.

For example:

#include <mem.h>
#include <kernel.h>
struct dmachain array[NCHAIN];
mmchain (array, virtaddr, nbytes);
for (i = 0; i < nsegments; i++) {

physaddr = array[i].address - PHYSBASE + drambase;
length = array[i].count;
...

}

The virtual memory segment used with mmchain() refers to the memory space
owned by the current process. The system call mmchainjob() can be used to
obtain a dmachain array for a specific process. Refer to the man page for
mmchainjob() for more information.

Virtual Address Conversion

A single virtual address can be converted to its physical addresses using
get_phys(). get_phys() cannot be used from within an ISR.

The prototype for get_phys() is:

char *get_phys(kaddr_t vaddr)

where:

vaddr Is a virtual address

The address returned is a kernel direct mapped address that is offset by PHYSBASE.
To convert this address to its physical address, PHYSBASE must be subtracted and
drambase added. For example:
Writing Device Drivers for LynxOS 45

Chapter 3 - Memory Management

physaddr = (get_phys (vaddr) - PHYSBASE + drambase);

The start of RAM is contained in drambase. On most platforms, this is 0, but for
maximum portability, it should be used in the calculation.

Validating Addresses

The addresses passed into the ioctl() entry point function by application code
must be validated before they can be used. The functions rbounds() and
wbounds() are used for this purpose. These calls may be used in an interrupt
routine.

The prototype for rbounds() is:

long rbounds(unsigned long addr)

where:

addr The address to be inspected

The prototype for wbounds() is:

long wbounds(unsigned long addr)

where:

addr The address to be inspected

The return value from rbounds() should be compared to the size of the object
the device driver expects to be referenced. The error code EFAULT should be
returned if addr is found to be erroneous.

rbounds() returns the number of bytes to the next boundary of non-readable
memory in the virtual address space of the calling process. In other words, it
returns the number of bytes readable starting at addr.

• If the address is in the text segment, the distance from addr to the end
of the text segment is returned.

• If the address is in the BSS, the distance from addr to the current break
is returned.

• If the address is in the user stack, the distance to the beginning (top) of
the stack is returned.

• If the address is in a shared memory segment, the distance to the end of
that shared memory segment is returned.
46 Writing Device Drivers for LynxOS

Accessing User Space from Interrupt Handlers and Kernel Threads

• If the address lies anywhere else (between the break and the current stack

pointer, for example), rbounds() returns 0.

wbounds() returns the number of bytes to the next boundary of non-writable
memory in the virtual address space. This works similarly to rbounds(), except
that checking for addr in the text segment is not done.

Accessing User Space from Interrupt Handlers and Kernel
Threads

Interrupt handlers and kernel threads execute asynchronously with respect to the
user task making requests to the driver. An interrupt handler executes in the context
of the task that was current when the interrupt occurred. Kernel threads execute in
the context of the null process (process 0). Because the null process has no user
context associated with it, the switch to a kernel thread is much quicker than to a
user thread. It is sometimes necessary for an interrupt handler or a kernel thread to
access a location in a user task, even though the target task may not be the currently
mapped task. This requires some special considerations. The key to understanding
how this can be done is the fact that there is a second virtual address that can be
used to access an address in user space.
Writing Device Drivers for LynxOS 47

Chapter 3 - Memory Management
As the figure above shows, for any address in user space there are in fact two
virtual addresses mapped to the physical address. One is the user virtual address
(a). However, this mapping is valid only when the user task is the current task. So,
it cannot be used from an interrupt handler or kernel thread. This mapping may
also be changed if paging is activated. The second mapping is the direct mapped
kernel virtual address (b). This mapping is permanent so it can safely be used
anywhere in a driver.

Therefore, care must be taken when accessing user space from an interrupt handler
or kernel thread. The driver must first convert the user virtual address to its
corresponding kernel direct mapped address in the top-half routine (usually the
ioctl() entry point) and then pass this address to the interrupt handler or kernel
thread by way of the statics structure (see “Statics Data Structure” on page 9). The
user address must also be locked to prevent the address mapping from being
changed by the paging system.

In the following example, u_addr and size specify the virtual address and size
of the user memory to be accessed; this is passed to the driver from the application.

Figure 3-2: Aliasing a User Virtual Address

Virtual Address Space

OS Space

b

User Space

a

Physical Address Space
48 Writing Device Drivers for LynxOS

Accessing Hardware

dev_ioctl (s, f, cmd, arg)
struct statics *s;
struct file *f;
char *arg;
{

char *kvaddr;
...
if (mem_lock (getpid (), u_addr, size) == SYSERR)
{

pseterr (ENOMEM);
return (SYSERR);

}
kvaddr = get_phys (u_addr); /* convert user addr */
s->u_status = kvaddr; /* save for later use */
s->u_size = size;
s->u_addr = u_addr; /* used for unlocking memory */
s->pid = getpid ();
...
}

The pointer can now be used from an interrupt handler or kernel thread to access
the user memory.

kernel_thread (s)
struct statics *s;
{

...
if (s->u_status)
{

(s->u_status) = status; / pass info to user task */
/* unlock user memory */
mem_unlock (s->pid, s->u_addr, s->size, 0);
s->u_status = NULL);

}
...
}

Accessing Hardware

This section describes how device drivers access the hardware layer and illustrates
the virtual address mappings used by LynxOS on different hardware platforms.

The following sections contain platform-specific information about hardware
device access from LynxOS. Each section contains memory map figures to
illustrate the mapping of LynxOS virtual addresses to the hardware device.

In general, the kernel has permissions to access the full virtual address space while
the user processes have restricted access. The table below shows a generalization
of this concept.
Writing Device Drivers for LynxOS 49

Chapter 3 - Memory Management
Using permap()

The function permap() allows a driver to map a memory-mapped device into the
kernel virtual address map so that the device can be accessed from the driver. If the
memory region in which the device resides is already mapped, then it is not
necessary to use permap().

The virtual address PHYSBASE is always mapped to the physical address
corresponding to the start of RAM. The size of the mapped region is equal to the
system RAM size (up to 512 MB). The permap() function must be used to
access devices that are outside of the pre-mapped region (640 KB to 1 MB). For
example, in a VMEbus-based PC, the VMEbus is often mapped in the high end of
the physical address space, above 512 MB. The code to map this using permap()
would be similar to:

/* VMEADDR: physical address where VMEbus appears */
#define VMEADDR 0x40000000

/* VMESIZE: window size onto VMEbus */
#define VMESIZE 0x00100000

/* vme_addr: virtual address 32 bit VMEbus accesses */
unsigned long *vme_vaddr;
vme_vaddr=(unsigned long *) permap ((long)VMEADDR,(long)VMESIZE);

The physical address passed to permap() must be aligned on a page boundary.
The size, in bytes, must be a multiple of PAGESIZE.

Table 3-3: Virtual Memory Access to User Processes

LynxOS Virtual Memory Area Permissions

OSBASE and above Kernel only; no user access

SPECPAGE Read-only to user

Kernel Stack Read-only to user

Shared Memory Depends on mapping

User Stack Read-write to user

User Data Read-write to user

User Text Read-only to user
50 Writing Device Drivers for LynxOS

Device Access on x86 Systems

Device Access on x86 Systems

Reading and Writing Device Registers
The majority of devices for x86 systems exist in the CPU’s I/O space, which is
accessed with the in and out instructions. The file port_ops_x86.h (located
in $ENV_PREFIX/sys/include/family/x86/) contains macros that can be
called to read and write device registers.

The memory on I/O devices in the 640 KB to 1 MB range can be directly accessed
using the PHYSBASE offset. The constant PHYSBASE is defined in kernel.h (in
$ENV_PREFIX/sys/include/kernel/). For example, to access I/O devices
using the PHYSBASE offset:

/* RAMBASE: RAMbase address of Ethernet controller */
#define RAMBASE 0xCC000
unsigned long * vaddr;
vaddr = (unsigned long *) (PHYSBASE + RAMBASE);

The following two figures illustrate the LynxOS virtual memory model on the x86
platform.
Writing Device Drivers for LynxOS 51

Chapter 3 - Memory Management
Figure 3-3: LynxOS x86 Kernel Access Virtual Memory Map

'LUHFW�0DSSHG

3K\VLFDO�0HPRU\
�����0%�

3+<6%$6(�YLUWXDO�PHPRU\�LV�PDSSHG����
ZLWK�WKH�ILUVW�����0%�SK\VLFDO�PHPRU\

SHUPDS����5HJLRQ

$GGUHVV�6SDFH
����0%�

'HYLFH�PDSSLQJ�VSDFH�IRU�QRQ�'50
PDQDJHG�GHYLFHV��JURZV�GRZQ���SHUPDS��
PDSV�D�SK\VLFDO�DGGUHVV�LQWR�WKH�UHJLRQ�DQG
UHWXUQV�D�SRLQWHU�WR�WKH�YLUWXDO�DGGUHVV��7KH
NHUQHO�DOVR�XVHV�WKLV�VSDFH�IRU�NHUQHO�WKUHDG
VWDFNV

0HPRU\�PDSSHG�LQ�3(5/,0,7�LV�QRW�FDFKHG�

&$87,21���SHUPDS���LV�QHYHU�UHWXUQHG�WR
WKH�YLUWXDO�PDS��2QFH�WKH����0%�VSDFH�LV
H[KDXVWHG��QR�PRUH�SHUPDS�YLUWXDO�VSDFH�LV
DYDLODEOH�

3&,�'HYLFH

0HPRU\
�����0%�

'50�PDSV�WKH�3&,�GHYLFH�SK\VLFDO�PHPRU\
DGGUHVVHV�WR�WKLV�VSDFH�

.HUQHO�0HPRU\
�WH[W��GDWD��%66��KHDS�

����0%�

&RQWDLQV�NHUQHO�WH[W��GDWD��%66��KHDS��DQG
WKH�LQWHUUXSW�VWDFN�

.HUQHO
V�VWDFN�LV�FXUUHQWO\�H[HFXWLQJ
FRQWH[W
V�VWDFN�

,65V�LQLWLDOO\�XVH�FXUUHQW�FRQWH[W
V�VWDFN�
WKHQ�VZLWFK�WR�WKH�LQWHUUXSW�VWDFN�EHIRUH
H[HFXWLQJ�GULYHU�,65�FRGH�

63(&3$*(
���.%�

8QLTXH�SURFHVV�LQIRUPDWLRQ��FRQWDLQV�WKH
VWUXFWXUH�SVVHQWU\�

)LJXUH�QRW�WR�VFDOH

�[))))))))

3+<6%$6(B(1'

�[(�������

3+<6%$6(

3(5/,0,7

�['&������

�[%&������

26(1'

26/,0,7

3&,B0(0B63$&(

�[%�������

26%$6(

�[%�)))���
52 Writing Device Drivers for LynxOS

Reading and Writing Device Registers
Figure 3-4: LynxOS x86 User Access Virtual Memory Map

7RWDO�8VHU

0HPRU\�����*%

6KDUHG�0HPRU\
&RPPRQ�PHPRU\�DUHD�DYDLODEOH�WR�DOO
SURFHVVHV�YLD�WKH�VKDUHG�PHPRU\�IDFLOLWLHV�

6WDWLF�8VHU�7H[W

�[%�)))���

8VHU�7KUHDG

6WDFNV
(grows down to stacklimit)

8VHU�+HDS

�,QFUHDVHV�LQ�VL]H�WR

GDWD�OLPLW�

,QLWLDO�WKUHDG�VWDFNOLPLW�VHW�LQ /etc/starttab�
$GGLWLRQDO�WKUHDG�VWDFNV�VWDUW�EHORZ�WKH
VWDFNOLPLW�DQG�HDFK�LV�D�IL[HG�VL]H��7KH
DPRXQW�RI�YLUWXDO�DGGUHVV�VSDFH�DOORFDWHG
FDQ�EH�VHW�ZLWK PTHREAD_CREATE()�

8VHU�KHDS�VWDUWV�MXVW�DERYH�XVHU�%66�DQG
LQFUHDVHV�LQ�VL]H��8VHU�KHDS�ZLOO�LQFUHDVH�LQ
VL]H�WR�WKH�GDWD�OLPLW�VHW�LQ�/etc/starttab.

8VHU�%66

8VHU�'DWD

(QG�RI�8VHU�%66��XQLQLWLDOL]HG�GDWD��

(QG�RI�8VHU�GDWD��LQLWLDOL]HG�GDWD��

(QG�RI�8VHU�WH[W�

8VHU�WH[W�VL]H�OLPLWHG�E\�WH[W�OLPLW�LQ
/etc/starttab�

�[��������
)LJXUH�QRW�WR�VFDOH
Writing Device Drivers for LynxOS 53

Chapter 3 - Memory Management
Figure 3-5: x86 Shared Applications

LynxOS static applications are linked at a default starting address of 0.

7RWDO�8VHU

0HPRU\�����*%

6KDUHG�0HPRU\
&RPPRQ�PHPRU\�DUHD�DYDLODEOH�WR�DOO
SURFHVVHV�YLD�WKH�VKDUHG�PHPRU\�IDFLOLWLHV�

6WDWLF�8VHU�7H[W

�[%�)))���

8VHU�7KUHDG

6WDFNV
(grows down to stacklimit)

8VHU�+HDS

�,QFUHDVHV�LQ�VL]H�WR

GDWD�OLPLW�

,QLWLDO�WKUHDG�VWDFNOLPLW�VHW�LQ /etc/starttab�
$GGLWLRQDO�WKUHDG�VWDFNV�VWDUW�EHORZ�WKH
VWDFNOLPLW�DQG�HDFK�LV�D�IL[HG�VL]H��7KH
DPRXQW�RI�YLUWXDO�DGGUHVV�VSDFH�DOORFDWHG
FDQ�EH�VHW�ZLWK PTHREAD_CREATE()�

8VHU�KHDS�VWDUWV�MXVW�DERYH�XVHU�%66�DQG
LQFUHDVHV�LQ�VL]H��8VHU�KHDS�ZLOO�LQFUHDVH�LQ
VL]H�WR�WKH�GDWD�OLPLW�VHW�LQ�/etc/starttab.

8VHU�%66

8VHU�'DWD

(QG�RI�8VHU�%66��XQLQLWLDOL]HG�GDWD��

(QG�RI�8VHU�GDWD��LQLWLDOL]HG�GDWD��

(QG�RI�8VHU�WH[W�

8VHU�WH[W�VL]H�OLPLWHG�E\�WH[W�OLPLW�LQ
/etc/starttab�

�[�������� 6KDUHG�/LEUDULHV

OG�VR�EVV

OG�VR�GDWD

OG�VR�WH[W

�[��������)LJXUH�QRW�WR�VFDOH
54 Writing Device Drivers for LynxOS

Device Access on PowerPC Systems

LynxOS dynamic user applications (applications that use shared libraries) are
linked at a default starting address of 0x00400000 (4 MB).

Linux dynamic user applications are linked at a default starting address of
0x080000000 (128 MB).

ld.so is loaded into location 0x0 and the virtual address space between the end
of ld.so and the start of the application is used for shared libraries.

Device Access on PowerPC Systems

ISA Bus Access
The PowerPC reference platform contains a primary PCI bus and a secondary ISA
bus for system I/O. All access to the ISA bus goes through the PCI bus and the
PCI-to-ISA bridge hardware. On Motorola VME systems, the VME bus interfaces
to the PCI bus through the VME-to-PCI bridge hardware. The PReP reference
memory map defines all physical addresses above 2 GB to be directed to the PCI
bus and all physical addresses less than 2 GB as memory access (see following
figure). The PCI devices on the PCI bus are configured to claim address ranges.
The ISA Bridge hardware claims all unclaimed PCI addresses. This is referred to
as subtractive decoding.

The physical address of all ISA devices are mapped to 2GB + default ISA address
on x86 in a 64 K address range. For example, the serial ports COM1 and COM2
reside at 0x3F8 and 0x2F8 on x86-based PCs. On the PReP reference hardware,
COM1 and COM2 are mapped to 0X800003F8 and 0X800002F8. It is possible to
think of ISA devices being shifted by 2 GB address as memory-mapped devices
rather than I/O-mapped devices. To ensure that access to the I/O devices occurs as
desired, it is necessary to add the PowerPC eieio (enforce in-order execution of
I/O) instruction for access to the device. A service function eieio() is provided
by the LynxOS kernel. Also, if there is a necessity to ensure completion of all
writes, the PowerPC instruction sync is available as a driver service call
do_sync().

PCI Support Facilities
Earlier releases of LynxOS provided a set of functions called PCI support facilities,
for accessing PCI devices on PCI Bus0. These functions have been superseded by
the Device Resource Manager. New device drivers should be written using the
DRM, not the PCI support facilities.
Writing Device Drivers for LynxOS 55

Chapter 3 - Memory Management

Device Resource Manager
Device Resource Manager is a LynxOS module that manages device resources.
The DRM assists device drivers in identifying and setting up devices, as well as
accessing and managing the device resource space. Developers of new device
drivers should use the DRM for managing PCI devices. Chapter 9 describes the
DRM in detail.

The following figures illustrate the LynxOS virtual memory model on the
PowerPC platform.
56 Writing Device Drivers for LynxOS

Device Resource Manager
Figure 3-6: LynxOS PowerPC Kernel Access Virtual Memory Map

7UDS�3DJHV

���.%�

90(�6+257,2��

3&,B0(063$&(

�����0%�

3+<6%$6(

�����0%�

�[))))))))

,2%$6(

�����0%�

90(%$6(��

3&,B0(063$&(

�����0%�

26%$6(

�����0%�

63(&3$*(

���.%�

.HUQHO�6WDFN

����.%��SHU�WKUHDG

�[)�������

�[(�������

�['�������

�[&�������

�[%�������

�[$))))���

�[��������

�[��������

$OLDVHG�SK\VLFDO�PHPRU\�PDS�IRU�XVH�E\
NHUQHO�DQG�GHYLFH�GULYHUV���7KH�,2%$6(�LV
QRW�DOLDVHG�LQ�WKLV�VSDFH�

0HPRU\�PDSSHG�,�2�VHJPHQW���,QFOXGHV
,6$�,2��3&,�,2��3&,�0(0��DQG�JUDSKLFV
PHPRU\�

90(�VSDFH�PDSSHG�YLD�%$7�UHJLVWHUV�IRU

SODWIRUPV�ZLWK�90(�VXSSRUW��RU�XVHG�IRU
3&,B0(063$&(�RQ�&3&,�SODWIRUPV�

90(�6KRUW�,�2�VSDFH�PDSSHG�YLD�%$7
UHJLVWHUV�IRU�SODWIRUPV�ZLWK�90(�6XSSRUW��RU
XVHG�IRU�3&,B0(063$&(�RQ�&3&,�SODWIRUPV�

.HUQHO�WH[W��GDWD��%66�DQG�G\QDPLF�PHPRU\
DOORFDWLRQ�DUHD�

3HU�SURFHVV�NHUQHO�GDWD���6L]H�LV�FRQVWDQW�

3HU�WKUHDG�NHUQHO�VWDFN���6L]H�LV�FRQVWDQW
DQG�JURZV�GRZQZDUGV���,W�DOVR�WDNHV�GHYLFH
LQWHUUXSWV�

/RZ�OHYHO�WUDS�KDQGOHUV���7HPSRUDU\�VDYH

DUHD�

)LJXUH�QRW�WR�VFDOH

�[$�������

8VHU�$UHD
5HIHU�WR�8VHU�DUHD�PHPRU\�PDS���$UHD�FDQ
EH�DFFHVVHG�E\�NHUQHO�
Writing Device Drivers for LynxOS 57

Chapter 3 - Memory Management
Figure 3-7: LynxOS PowerPC User Access Virtual Memory Map

�[$�������

&RPPRQ�VKDUHG�PHPRU\�VHJPHQWV�IRU�DOO
SURFHVVHV�XVLQJ�VKDUHG�PHPRU\�IDFLOLWLHV�

6L]H�LV�G\QDPLF�DQG�GHSHQGV�RQ�VKDUHG
PHPRU\�XVDJH�

)LJXUH�QRW�WR�VFDOH

�[��������

8VHU�SURJUDP�VWDFN���,QLWLDOO\���.%��WKH�XVHU

VWDFN�JURZV�GRZQZDUG�WR�D�PD[LPXP
67$&./,0,7�VL]H�DV�GHILQHG�LQ

/etc/starttab.

$GGLWLRQDO�WKUHDG�VWDFNV�VWDUW�EHORZ�WKH
VWDFNOLPLW�VHW�LQ /etc/starttab�

8VHU�SURJUDP�GDWD���6L]H�LV�GHWHUPLQHG

E\�WKH�SURJUDP��7KH�SURJUDP�GDWD�ZLOO
EHJLQ�DIWHU�WKH�SURJUDP�WH[W�

6WDWLF�8VHU�SURJUDP�WH[W�

6KDUHG�0HPRU\

8VHU�7H[W

8VHU�'DWD

8VHU�%66

7KUHDG�6WDFNV
�JURZV�GRZQ�WR�VWDFNOLPLW�

8VHU�+HDS
�LQFUHDVHV�LQ�VL]H

WR�GDWD�OLPLW�

8VHU�KHDS�VWDUWV�MXVW�DERYH�XVHU�%66�DQG
LQFUHDVHV�LQ�VL]H���8VHU�KHDS�ZLOO�LQFUHDVH

LQ�VL]H�WR�WKH�GDWD�OLPLW�VHW�LQ�/etc/
starttab�
58 Writing Device Drivers for LynxOS

Device Resource Manager
Figure 3-8: PowerPC Shared Applications

LynxOS static applications are linked at a default starting address of 0x2000.

�[$�������

&RPPRQ�VKDUHG�PHPRU\�VHJPHQWV�IRU�DOO
SURFHVVHV�XVLQJ�VKDUHG�PHPRU\�IDFLOLWLHV�
6L]H�LV�G\QDPLF�DQG�GHSHQGV�RQ�VKDUHG
PHPRU\�XVDJH�

)LJXUH�QRW�WR�VFDOH

�[��������

8VHU�SURJUDP�VWDFN���,QLWLDOO\���.%��WKH�XVHU
VWDFN�JURZV�GRZQZDUG�WR�D�PD[LPXP
67$&./,0,7�VL]H�DV�GHILQHG�LQ
/etc/starttab.

$GGLWLRQDO�WKUHDG�VWDFNV�VWDUW�EHORZ�WKH
VWDFNOLPLW�VHW�LQ /etc/starttab�

8VHU�SURJUDP�GDWD���6L]H�LV�GHWHUPLQHG
E\�WKH�SURJUDP��7KH�SURJUDP�GDWD�ZLOO

EHJLQ�DIWHU�WKH�SURJUDP�WH[W�

6WDWLF�8VHU�SURJUDP�WH[W�

6KDUHG�0HPRU\

8VHU�7H[W

8VHU�'DWD

8VHU�%66

7KUHDG�6WDFNV
�JURZV�GRZQ�WR�VWDFNOLPLW�

8VHU�+HDS
�LQFUHDVHV�LQ�VL]H

WR�GDWD�OLPLW�

8VHU�KHDS�VWDUWV�MXVW�DERYH�XVHU�%66�DQG
LQFUHDVHV�LQ�VL]H���8VHU�KHDS�ZLOO�LQFUHDVH
LQ�VL]H�WR�WKH�GDWD�OLPLW�VHW�LQ�/etc/
starttab�

6KDUHG�/LEUDULHV

OG�VR�EVV

OG�VR�GDWD

OG�VR�WH[W
�[��������
Writing Device Drivers for LynxOS 59

Chapter 3 - Memory Management

LynxOS dynamic user applications (applications that use shared libraries) are
linked at a default starting address of 0x00400000 (4 MB).

Linux dynamic user applications are linked at a default starting address of
0x080000000 (128 MB).

ld.so is loaded location 0x2000 and the virtual address space between the end of
ld.so and the start of the application is used for shared libraries.
60 Writing Device Drivers for LynxOS

CHAPTER 4 Synchronization
This chapter describes synchronization issues and the LynxOS mechanisms
available to device drivers to handle these issues.

Introduction

There are a number of synchronization mechanisms that can be used in a LynxOS
device driver. These include:

• Kernel Semaphores

• Disabling interrupts

• Disabling preemption

Kernel semaphores can be used to protect critical code regions as well as to
manage shared data and resources in a controlled manner. The functions supporting
kernel semaphores include: swait(), ssignal(), ssignaln(), and
sreset().

Disabling interrupts and preemption are mechanisms used to protect code segments
that are considered atomic and must be completed without interruption. The calls
that support disabling of interrupts and preemption include: disable(),
restore(), sdisable(), and srestore().
Writing Device Drivers for LynxOS 61

Chapter 4 - Synchronization

The following table summarizes the LynxOS synchronization functions that
support device drivers. A complete description of these functions is available in
their respective man pages.

Table 4-1: Synchronization Support Functions

Call Summary

swait() swait() causes the calling process to wait on a semaphore.
The prototype for swait() is:

int swait(int *s, int flag)

s is a pointer to a semaphore and flag is an argument that
specifies whether or not signals are delivered to the process while it
is waiting. swait() cannot be used from within an ISR.

ssignal() ssignal() increments a semaphore and wakes up one process
that is waiting on that semaphore. Processes are awakened in priority
order.
The prototype for ssignal() is:

int ssignal(int *s)

s is a pointer to a semaphore.

disable() disable() disables interrupts and task preemption.
The prototype for disable() is:

void disable(int ps)

ps must be a local stack variable of the invoking function.

restore() restore() restores interrupts and task preemption.
The prototype for restore() is:

void restore(int ps)

ps is the same variable used in the corresponding disable()
call.

sdisable() sdisable() disables task preemption.
The prototype for disable() is:

void disable(int ps)

ps must be a local stack variable of the invoking function.
62 Writing Device Drivers for LynxOS

What is Synchronization?
What is Synchronization?

Synchronization ensures that certain events occur in a definite order within a non-
deterministic environment (such as a concurrent, preemptive operating system). In
a device driver this usually means ensuring that shared resources such as devices,
buffers, queues, an so on are accessed in a protected and controlled manner so that
processes do not interfere with each other’s access to shared resources.

Synchronization provides:

srestore() srestore() restores task preemption.
The prototype for srestore() is:

void srestore(int ps)

ps is the same variable used in the corresponding sdisable()
call.

sreset() sreset() wakes up all processes that are waiting on a semaphore
and sets the semaphore value to zero.
The prototype for sreset() is:

void sreset(int *s)

s is a pointer to a semaphore.

signaln() ssignaln() signals a semaphore a specified number of times.
The prototype for signaln() is:

int signaln(int *s, int count)

s is a pointer to a semaphore and count is the number of times to
signal the semaphore.

scount() scount() returns the value of the semaphore.
The prototype for scount() is:

int scount(int *s)

If the value of s is negative, it indicates the number of processes that
are waiting on the semaphore. If s is zero, no processes are waiting
on the semaphore. If the value is greater than zero, it represents the
number of times the semaphore can be waited on without having to
wait for the semaphore to be signaled (see ssignal()).

pi_init() Used to initialize a priority inheritance semaphore.

Table 4-1: Synchronization Support Functions (Continued)

Call Summary
Writing Device Drivers for LynxOS 63

Chapter 4 - Synchronization

• Methods that support the coordinated use of shared resources by causing

processes to suspend execution when a shared resource is not available.

• Protection to critical code sections. These are code segments considered
to be atomic that must be all completed or not at all.

• Mechanisms to prevent system failure due to inherent conditions of
concurrent and preemptive operating system environments such as race
conditions and deadlock.

Managing Shared Data Resources
Semaphores are a mechanism available to LynxOS device drivers to manage
shared resources (statics structure and shared buffers and queues, for example).
Semaphores can partition the device driver code into critical code regions that must
obtain access to a shared resource before continuing to execute. The semaphore is a
mechanism used to lock and release a shared resource. Code that must access the
shared resource can only do so if the resource is unlocked. If the shared resource is
unlocked, the code locks it and proceeds. If the shared resource is locked, the code
must wait (block) until the resource becomes free.

The mechanism of locking and releasing shared resources with semaphores is
described in more detail in “Kernel Semaphores” on page 67.

Protecting Critical Code Sections
Within a device driver, it is necessary to prevent interrupt routines from accessing
shared data or resources such as buffers or queues that are being modified by a
process. To accomplish this, interrupts can be disabled with the disable()
function and subsequently re-enabled with the restore() function.

It is important to keep the code being executed between the disable() and
restore() functions short in order to avoid degradation of the overall system
response to interrupts. (Note that disable() also disables task preemption.)

Following is a basic example using disable() and restore():

int ps;
disable (ps); /* disable all interrupts */
...
...
restore (ps); /* restore interrupt state */

The variable ps must be a local variable and should never be modified by the
driver. Each call to disable() must have a corresponding call to restore(),
using the same variable.
64 Writing Device Drivers for LynxOS

Protecting Critical Code Sections
The sdisable() and srestore() functions are used to disable task
preemption only. Disabling of task preemption is necessary to prevent the kernel,
other drivers, or applications from accessing shared data and resources while they
are being modified by a device driver process. The kernel continues to handle
interrupts while preemption is disabled.

The sdisable() and srestore() functions are used in much the same way as
disable() and restore(). Following is a basic example of sdisable() and
srestore():

int ps;
sdisable (ps); /* disable task preemption */
...
...
restore (ps); /* restore preemption state */

The variable ps must be a local variable and should never be modified by the
driver. Each call to sdisable() must have a corresponding call to
srestore(), using the same variable.

A critical code region is blocked out by the disable()/restore() or
sdisable()/srestore() calls. Within a device driver, the critical code region
should only contain the instructions necessary to complete an atomic transaction on
a shared resource and interrupts and task preemption must be re-enabled
immediately after the transaction is complete.

Nesting Critical Regions
It is also possible to nest critical regions. As a general rule, a less selective
mechanism can be nested inside a more selective one. For instance, the following
is permissible:

int sps, ps;
sdisable (sps);
...
disable (ps);

NOTE: The restore() function actually restores the state that existed before
disable() was called. So, if interrupts were already disabled when disable()
was called, the first call to restore() does not re-enable them.

NOTE: The srestore() function actually restores the state that existed before
sdisable() was called. So if interrupts were already disabled when
sdisable() was called, the (first) call to srestore() does not re-enable them.
Writing Device Drivers for LynxOS 65

Chapter 4 - Synchronization

...
restore (ps);
...
srestore (sps);

Note that different local variables must be used for the two mechanisms. However,
the converse is not true. It is not permitted to do the following:

disable (ps);
...
sdisable (sps);
...
srestore (sps);
...
restore (ps);

In any case, the inner sdisable()/srestore() is completely redundant, as
preemption is already disabled by the outer disable().

Avoiding Deadlock & Race Conditions
Deadlock typically occurs when two semaphores are not accessed in the same
order in two different processes (or threads). As a result, each process is holding a
semaphore and is waiting to gain access to the semaphore that the other process is
holding. In this condition the processes wait forever for a semaphore that will
never be released.

Deadlock can be avoided by ensuring that multiple semaphores are always
acquired in the same order by every process. This ensures that two processes do not
gain access to two different semaphores and wait indefinitely for the other to
release the second semaphore.

Race conditions occur when two or more processes access the same shared
resource at the same time. In particular, problems occur when a process that is
accessing a shared resource gets preempted by another process that accesses the
same resource and changes the state of that resource before the first process has
completed its transaction on the resource. The result is that the first process is now
working with a compromised version of the shared resource.

To avoid race conditions, shared data and resources must be accessed in a
controlled manner. The code that accesses shared resources should be considered a
critical code region, which can be protected from preemption by disabling
interrupts or preemption.
66 Writing Device Drivers for LynxOS

Kernel Semaphores

Kernel Semaphores

A kernel semaphore is an integer variable that is declared by the device driver.
Semaphores must be visible in all contexts. This means that the memory for a
semaphore must not be allocated on the stack.

Kernel semaphores are counting semaphores, they can be initialized to any non-
negative value. A semaphore is acquired using the swait() function.

If the semaphore value is greater than zero, it is simply decremented and the task
continues. If the semaphore value is less than or equal to zero, the task blocks and
is put on the wait queue of the semaphore. Tasks on this queue are kept in priority
order.

A semaphore is signaled using the ssignal() function. If there are tasks waiting
on the semaphore’s queue, the highest priority task is woken up. Otherwise the
semaphore value is incremented.

Kernel semaphores have state. The semaphore’s value remembers how many times
the semaphore has been waited on or signaled. This is important for event
synchronization. If an event occurs but there are no tasks waiting for that event, the
fact that the event occurred is not forgotten.

Kernel semaphores are not owned by a particular task. Any task can signal a
semaphore, not just the task that initialized it. This is necessary to allow kernel
semaphores to be used as an event synchronization mechanism but requires care
when the semaphore is used for mutual exclusion.

The flag argument to the swait() function allows a task to specify how
signals are handled while it is blocked on a semaphore. If the task does not block,
this argument is not used. There are three possibilities for flag, specified using
symbolic constants defined in kernel.h:

SEM_SIGIGNORE Signals have no effect on the blocked task. Any signals sent to
the task while it is waiting on the semaphore remain pending
and will be delivered at some future time.

SEM_SIGRETRY Signals are delivered to the task. If the task’s signal handler
returns, the task automatically waits again on the semaphore.
Signal delivery is transparent to the driver as the swait()
function does not indicate whether any signals were delivered.

SEM_SIGABORT If a signal is sent to the task while it is blocked on the
semaphore, the swait() is aborted. The task is woken up
and swait() returns a nonzero value. The signal remains
pending.
Writing Device Drivers for LynxOS 67

Chapter 4 - Synchronization

Other Kernel Semaphore Functions

There are a number of other functions used to manipulate kernel semaphores.
These are:

Using Kernel Semaphores for Mutual Exclusion

When used to protect a critical code region, the kernel semaphore should be
initialized to 1 or -1. This allows the first task to lock the semaphore and enter the
region. Other tasks (including a kernel thread) that attempt to enter the same region
will block until the semaphore is unlocked. Each call to swait() must have a
corresponding call to ssignal().

swait (&s->mutex, SEM_SIGIGNORE);
/* enter critical code region */
...
...
/* access resource */
...
ssignal (&s->mutex); /* leave critical code region */

Signals can normally be ignored when using a kernel semaphore as a mutex.
Compared to waiting for an I/O device, a critical code region is relatively short so
there is little need to be able to interrupt a task that is waiting on the mutex. Unlike
an event, which is never guaranteed to occur, execution of a critical code region
cannot fail. The task holding the mutex is bound, sooner or later, to get to the point
where the mutex is released.

ssignal(n) Used to signal a semaphore n times. This is equivalent to
calling ssignal() n times.

sreset() Resets the semaphore value to 0 and wakes up all tasks that are
waiting on the semaphore.

scount() Returns the semaphore value.

CAUTION! sreset() and ssignaln() should never be used on a kernel
semaphore that is used for mutual exclusion as in both cases this could lead to
more than one task executing the critical code concurrently.
68 Writing Device Drivers for LynxOS

Priority Inheritance Semaphores

Priority Inheritance Semaphores

In a multi-tasking system that uses a fixed priority scheduler, a problem known as
priority inversion can occur. Consider a situation where a task holds some
resource. This task is preempted by a higher priority task that requires access to the
same resource. The higher priority task must wait until the lower priority task
releases the resource. But the lower priority task may be prevented from executing
(and therefore from releasing the resource) by other tasks of intermediate priority.

One solution to this problem is to use priority inheritance whereby the priority of
the task holding the resource is temporarily raised to the priority of the highest
priority task waiting for that resource until it releases the resource. LynxOS kernel
semaphores support priority inheritance. In order to function with priority
inheritance, the semaphore’s value must be initialized by the kernel function
pi_init().

pi_init (&s->mutex);

This feature is should only used in the context of a kernel semaphore being used as
a mutex mechanism.

Event Synchronization

A kernel semaphore is the mechanism used to implement event synchronization in
a LynxOS driver. The value of the semaphore should be initialized to 0, indicating
that no events have occurred.

Waiting for an event:

if (swait (&s->event_sem, SEM_SIGABORT))
{

pseterr (EINTR);
return (SYSERR);

}

Signaling an event:

ssignal (&s->event_sem);

Handling Signals

Because there is often no guarantee that an event will occur, signals should be
allowed to abort the swait() using SEM_SIGABORT. This way, a task can be
interrupted if the event it is waiting for never arrives. If signals are ignored, there is
no way to interrupt the task in the case of problems, so the task can remain blocked
indefinitely. The driver must check the return code from swait() to determine
Writing Device Drivers for LynxOS 69

Chapter 4 - Synchronization

whether a signal has been received. As an alternative to SEM_SIGABORT, timeouts
can be used if the timing of events is known in advance.

It is sometimes useful for an application to be able to handle signals while it is
blocked on a semaphore but without aborting the wait. This is possible using the
SEM_SIGRETRY flag to swait(). Signals are delivered to the application and the
swait() automatically restarted. There is no way for the driver to know whether
any signals were delivered while the task was blocked on the semaphore.

A word of caution is necessary concerning the use of SEM_SIGRETRY. If the signal
handler in the application calls exit(3), then the swait() in the driver will
never return. This could cause problems if the task had blocked while holding
some resources. These resources will never be freed. To avoid this type of problem,
a driver can use SEM_SIGABORT in conjunction with the kernel function
deliversigs(). This allows the application to receive signals in a timely
fashion, but without the risk of losing resources in the driver.

if (swait (&s->event_sem, SEM_SIGABORT)
{

cleanup (s); /* prepare for possible termination by signal handler */
deliversigs (); /* may never return */

}

Using sreset() with Event Synchronization Semaphores

Two example uses of sreset() discussed below are:

• Handling error conditions.

• Variable length data transfers (with multiple consumers).

Handling Error Conditions
A driver must handle errors that may occur. For example, what should it do if an
unrecoverable error is detected on a device? A frequent approach is to set an error
flag and wake up any tasks that are waiting on the device:

if (error_found) {
s->error++;
sreset (&s->event_sem);

}

But the driver cannot assume that when swait() returns, the expected event has
occurred. The swait() could have been woken up because an error was
detected. So some extra logic is required when using the event synchronization
semaphore:
70 Writing Device Drivers for LynxOS

Variable Length Transfers

if (swait (&s->event_sem, SEM_SIGABORT))
{

pseterr (EINTR);
return (SYSERR);

}
if (s->error)
{

pseterr (EIO);
return (SYSERR);

}

Variable Length Transfers
The second example with sreset() uses the following scenario: A device or
producer process generates data at a variable rate. Data can also be consumed in
variable sized pieces by multiple tasks. At some point, a number of consumer tasks
may be blocked on an event synchronization semaphore, each waiting for different
amounts of data, as illustrated below.

When data becomes available, what should the driver do? Without adding extra
complexity and overhead to the driver, there is no easy way for the driver to
calculate how many of the waiting tasks it can satisfy (and should, therefore, wake
up). A simple solution is to call sreset(), which will wake all tasks, which then
consume the available data according to their priorities. Tasks that are awakened
but find no data have to wait again on the event semaphore.

Caution when Using sreset()
To maintain coherency of the semaphore queue, sreset() must synchronize
with calls to ssignal(). Because ssignal() can be called from an interrupt
handler, sreset() disables interrupts internally while it is waking up all the
blocked tasks. Because the number of tasks blocked on a semaphore is not limited,
this could lead to unbounded interrupt disable times if sreset() is used without
proper consideration.

Figure 4-1: Synchronization Mechanisms

Semaphore
Task 1
Request size: 5

Task 2
Request size: 10

Task 3
Request size: 6
Writing Device Drivers for LynxOS 71

Chapter 4 - Synchronization

To avoid this problem, another technique must be used in driver design where an
unknown number of tasks could be blocked on a semaphore. One possibility is to
wake tasks in a cascade manner. The call to sreset() is replaced by a call to
ssignal(), which wakes up the first blocked task. This task is then responsible
for unblocking the next blocked task, which unblocks the next one, and so on, until
there are no more blocked tasks. A negative semaphore indicates that there are
blocked tasks. This is illustrated in the modified error handling code from the
previous section:

if (error_found)
{

s->error++;
if (s->event_sem < 0)

ssignal (&s->event_sem);
}
...
if (swait (&s->event_sem, SEM_SIGABORT))
{

pseterr (EINTR);
return (SYSERR);

}
if (s->error)
{

if (s->event_sem < 0)
ssignal (&s->event_sem);
pseterr (EIO);
return (SYSERR);

}

Because tasks are queued on a semaphore in priority order, they will still be
awakened and executed in the same order as when using sreset(). There is no
penalty with using this technique.

Resource Pool Management

LynxOS kernel semaphores can also be used as a counting semaphore for
managing a resource pool. The value of the semaphore should be initialized to the
number of resources in the pool. To allocate a resource, swait() is used.
ssignal() is used to free a resource. The following code shows an example of
using swait() to allocate and ssignal() to free a resource.

struct resource *
allocate (s)
struct statics *s;
{

struct resource *resource;
int ps;
swait (&s->pool_sem, SEM_SIGRETRY);
sdisable (ps);
resource = s->pool_freelist;
s->pool_freelist = resource->next;
srestore (ps);
72 Writing Device Drivers for LynxOS

Combining Synchronization Mechanisms

return (resource);

}
free (s, resource)
struct statics *s;
struct resource *resource;
{

struct resource *resource;
int ps;
sdisable (ps);
resource->next = s->pool_freelist;
s->pool_freelist = resource;
srestore (ps);
ssignal (&s->pool_sem);

}

The counting semaphore functions implicitly as an event synchronization
semaphore too. When the pool is empty, an attempt to allocate will block until
another task frees a resource.

A mutex mechanism is still needed to protect the code that manipulates the free
list. The combining of different synchronization techniques is discussed more fully
in the following section.

Combining Synchronization Mechanisms

The examples discussed in the preceding sections have all been fairly
straightforward in that they have only used one synchronization mechanism. In an
actual driver, the scenarios are often far more complex and require combining
different techniques. The following sections discuss when and how
synchronization mechanisms should be combined.

Manipulating a Free List

This example illustrates the use of interrupt disabling to remove an item from a
free list, but in particular, what the driver can do if the free list is empty.

One possibility is that the driver blocks until another task puts something back on
the free list. This scenario requires the use of a mutex and an event synchronization
semaphore. Two different approaches to this problem are illustrated in the
following examples. The first example is deliberately complicated to demonstrate
various synchronization techniques.

/* get_item : get item off free list, blocking if
list is empty */
struct item *
get_item (s)
struct statics *s;
{

Writing Device Drivers for LynxOS 73

Chapter 4 - Synchronization

struct item *p;
int ps;
do
{

disable (ps); /* enter critical code */
if (p = s->freelist) /* take 1st item on list */

s->freelist = p->next;
else

/* list was empty, so wait */
swait (&s->freelist_sem, SEM_SIGIGNORE);

restore (ps); /* exit critical code */
} while (!p);

return (p);
}

/* put_item : put item on free list, wake up waiting tasks */
put_item (s, p)
struct statics *s;
struct item *p;
{

int ps;
disable (ps); /* enter critical code */
p->next = s->freelist; /* put item on list */
s->freelist = p;
if (s->freelist_sem < 0)

ssignal (&s->freelist_sem); /* wake up waiter */
restore (ps); /* exit critical code */

}

There are a number of points of interest illustrated by this example:

• The example uses SEM_SIGIGNORE for simplicity. If SEM_SIGABORT
is used, the return value from swait() must be checked.

• The example uses the disable()/restore() mechanism for mutual
exclusion. This allows the free list to be accessed from an interrupt
handler using put_item(). get_item() should never be called from
an interrupt handler though, as it may block. If the free list is not accessed
by the interrupt handler, sdisable()/srestore() can be used
instead.

• The get_item() function uses the value of the item taken off the list to
determine if the list was empty or not. Note that the freelist_sem()
is being used simply as an event synchronization mechanism, not a
counting semaphore. (Managing a free list with a counting semaphore is
illustrated in the second approach). As a consequence, the code that puts
items back on the free list must signal the semaphore only if there is a
task waiting. Otherwise, if the semaphore was signalled every time an
item is put back, the semaphore count would become positive and a task
calling swait() in get_item() would return immediately, even
though the list is still empty.

• Blocking with interrupts disabled may seem at first like a dangerous thing
to do. This is necessary, as restoring interrupts before the swait()
74 Writing Device Drivers for LynxOS

Manipulating a Free List

would introduce a race condition. LynxOS saves the interrupt state on a
per task basis. So, when this task blocks and the scheduler switches to
another task, the interrupt state will be set to that associated with the new
task. But, from the point of view of the task executing the above code, the
swait() executes atomically with interrupts disabled.

• swait()/ssignal() cannot be used as the mutex mechanism in this
particular example as this could lead to a deadlock situation where one
task is blocked in the swait() while holding the mutex. Other tasks
wishing to put items back on the list will not be able to enter the critical
region. If a critical code region may block, care must be taken not to
introduce possibility of a deadlock. To avoid a deadlock,
sdisable()/srestore() or disable()/restore() should be used
as the mutex mechanism rather than swait()/ssignal(). But, once
again, the critical code region must be kept as short as possible to avoid
having an adverse effect on the system’s real-time responsiveness. An
alternative would be to raise an error condition if the list is empty, rather
than block. This would allow swait()/ssignal() to be used as the
mutex mechanism.

• A call to ssignal() in put_item() may make a higher priority task
eligible to execute but the context switch will not occur until preemption
is re-enabled with restore().

In the second approach to this problem, a kernel semaphore is used as a counting
semaphore to manage items on the free list. The value of the semaphore should be
initialized to the number of items on the list.

struct item *
get_item (s)
struct statics *s;
{

struct item *p;
int ps;

swait (&s->free_count, SEM_SIGRETRY);
disable (ps);
p = s->freelist;
s->freelist = p->next;
restore (ps);
return (p);

}

put_item (s, p)
struct statics *s;
struct item *p;
{

int ps;
disable (ps);
p->next = s->freelist;
s->freelist = p;
restore (ps);
Writing Device Drivers for LynxOS 75

Chapter 4 - Synchronization

ssignal (&s->free_count);

}

This code illustrates the following points:

• A kernel semaphore used as a counting semaphore incorporates the
functionality of an event synchronization semaphore. swait() blocks
when no items are available and ssignal() wakes up waiting tasks.

• The example uses the disable()/restore() mechanism for mutual
exclusion. This allows the free list to be accessed from an interrupt
handler using put_item(). get_item() should never be called from
an interrupt handler though, as it may block. If the free list is not accessed
by the interrupt handler, sdisable()/srestore() can be used
instead.

• The event synchronization is outside of the critical code region so there is
no possibility of deadlock. Therefore, swait()/ssignal() could be
used as the mutex mechanism if the code does not need to be called from
an interrupt handler.

• The function put_item() could be modified to allow several items to
be put back on the list using ssignaln(). But items can only be
consumed one at time, since there is no function swaitn().

Signal Handling and Real-Time Response

“Handling Signals” on page 69 discussed the use of the SEM_SIGRETRY flag with
swait(). It is not advisable to use swait() with this flag inside a critical code
region protected with disable()/restore() or sdisable()/srestore().
The reason for this is that, internally, swait() calls the kernel function
deliversigs() to deliver signals when the SEM_SIGRETRY flag is used. If the
swait() is within a region with interrupts or preemption disabled, then the
execution time for deliversigs() will contribute to the total interrupt or
preemption disable time, as illustrated in the following example:

sdisable (ps); /* enter critical region */
...
swait (&s->event_sem, SEM_SIGRETRY);

/* may call deliversigs internally */
...
srestore (ps); /* leave critical region */

In order to minimize the disable times it is better to use SEM_SIGABORT and re-
enable interrupts or preemption before calling deliversigs(). The above code
then becomes:
76 Writing Device Drivers for LynxOS

Signal Handling and Real-Time Response

sdisable (ps); /* enter critical region */
...
while (swait (&s->event_sem, SEM_SIGABORT))
{

srestore (ps); /* re-enable pre-emption before delivering signals */
deliversigs (); /* may never return */
sdisable (ps);

}
...
srestore (ps); /* leave critical region */
Writing Device Drivers for LynxOS 77

Chapter 4 - Synchronization
78 Writing Device Drivers for LynxOS

CHAPTER 5 Interrupt and Timeout Handling
This chapter discusses issues related to the design and implementation of interrupt
service routines (ISRs) and timeout handlers.

Introduction

Interrupts are external hardware exception conditions that are delivered to the
processor to indicate the occurrence of a specific event. ISRs are useful for:

• Indication of the completion of an operation

For example, an interrupt could be generated indicating the completion of
a DMA (Direct Memory Access) transfer. The device driver would give a
command to the DMA controller to transfer a block of data and set the
vector for the interrupt generated by the controller to a specific driver
function. This, in turn, would signal a semaphore to wake up any system
or user threads waiting on the completion of the DMA transfer.

• Data availability

The availability of data at a port is often indicated by an interrupt. A tty
driver receives an interrupt when a character is ready to be read from the
port, for example.

• Device ready for a command

A printer generates an interrupt when it has printed a character and is
ready to print the next character.
Writing Device Drivers for LynxOS 79

Chapter 5 - Interrupt and Timeout Handling

Timeout Interrupts

LynxOS timeout handlers are called by the clock interrupt handler and therefore
are considered to be similar to any interrupt handler. Instructions for setting up
timeout handlers are provided in “Timeout Handlers” on page 97.

Interrupts and Real-Time Response

A task, regardless of its priority, is interrupted if an interrupt is pending and
interrupts are enabled. This could result in low priority interrupt service routines
executing before high priority tasks that have real-time constraints.

To offload processing from interrupt-based sections of a device driver, LynxOS
offers a feature known as kernel threads. Kernel threads are independently
schedulable entities that closely resemble processes but do not have the memory
overhead associated with processes.

Using kernel threads, delays are significantly reduced. Instead of the interrupt
service routine handling all the servicing of the interrupt, a kernel thread is used to
perform the function previously performed by the interrupt routine. A kernel thread
is scheduled according to process priority and not hardware priority. This ensures
that the interrupt service time is kept to a minimum and the task response time is
kept short. The use of kernel threads is covered in detail in Chapter 6, “Kernel
Threads and Priority Tracking.”

LynxOS Interrupt Handlers

Interrupt handlers in LynxOS are specified in the install() or open() entry
point functions and are cleared in the uninstall() or close() entry points.
Interrupt handlers run before any other kernel or application processing is
completed.

Interrupt handlers are declared and reset using the functions iointset() and
iointclr(). The table below summarizes iointset() and iointclr().

Table 5-1: iointset() and iointclr() Summary

iointset() The iointset() function specifies the routine to run when an
interrupt occurs.

iointclr() The iointclr() function removes an interrupt vector from the
interrupt vector table.
80 Writing Device Drivers for LynxOS

iointset()

Interrupt handlers cannot directly use application virtual addresses. The application
virtual addresses must be translated to kernel virtual addresses before they can be
accessed by driver routines. Refer to Chapter 3, “Memory Management.” for more
information on address translation.

iointset()

The device driver registers its interrupt handler routine with the LynxOS interrupt
dispatcher using the iointset() function call. The interrupt dispatcher
subsequently calls the interrupt handler routine when an interrupt occurs.
iointset() cannot be called from within an ISR.

The prototype for iointset() is:

int iointset(int vector, int (*function)(), char *argument)

where:

vector Is an interrupt vector number

function Is a pointer to the interrupt handler function

argument Is a pointer to an argument string

The interrupt vector number used by the hardware sending the interrupt is specified
by the vector argument. The interrupt dispatcher calls the routine given by
function. The interrupt dispatcher passes arguments to the interrupt handler.

On x86 and SPARC systems, iointset() returns the index of the previous
interrupt vector. This can be used with ioint_link() to share interrupt vectors.

iointclr()

The iointclr() function clears an interrupt vector from the stack of interrupt
handlers. iointclr() cannot be called from within an ISR.

The prototype for iointclr() is:

void iointclr(int vector)

where:

vector Is an interrupt vector number

NOTE: When using DRM, register interrupt handlers with
drm_register_isr(), not iointset().
Writing Device Drivers for LynxOS 81

Chapter 5 - Interrupt and Timeout Handling

The vector argument specifies the interrupt vector number to clear.

For each interrupt vector, the kernel maintains a stack of interrupt handlers. If a
device driver installs a new interrupt handler at a position occupied by an existing
handler, the old handler is reinstalled when iointclr() is called for vector.

Sharing IRQs

ioint_link() is used on hardware where two or more drivers must share the
same interrupt vector. To share an interrupt, each interrupt routine must check if its
device has interrupted and then act accordingly; it must also call the next interrupt
routine on the list that has the same hardware vector.

When a device driver shares an interrupt with other drivers, it can use the value
returned by iointset() as a key to the next interrupt handler on the stack of
interrupt handlers. After processing the interrupt, the interrupt handler can use
ioint_link() to cause the next interrupt handler in the stack to be dispatched.
For example:

dev_install(info)
{...

s=sysbrk(...);
...
s->key = iointset(vector, int_handler, s);
...

int_handler(s)
{

...

...
ioint_link(s->key);

}

Interrupt Vector Values

x86
On the x86 platform, iointset() and iointclr() require the interrupt
vector number, not the address of the vector. The interrupt vector number (0–15)
must also be offset by 32. For example:

iointset (irq + 32, intr_handler, s);
iointclr (irq + 32);

NOTE: The default handler for interrupts is code that causes kernel panic and a halt.
82 Writing Device Drivers for LynxOS

PowerPC

PowerPC
Many PowerPC systems have two or more interrupt controllers. For example the
Motorola 16xx series and the PowerStack series have an i8259-compatible
interrupt controller to handle ISA interrupts and the VMECHIP2 handles VME
interrupts. On the Motorola PowerPlus systems, there are three interrupt
controllers. There is an MPIC device, which is the master interrupt controller, and
handles interrupts from PCI, timers, and cascaded interrupt controllers. There is a
i8259-compatible interrupt controller to handle ISA-based interrupts. The Universe
VME controller handles the VME interrupts on some of the PowerPlus systems.

The PowerPC processor has only one interrupt input. The LynxOS interrupt
dispatch routine determines the source of the interrupt and uses a table with
256 entries to dispatch the interrupt service routine. The vector parameter to
iointset() is the index to this table.

To maintain compatibility with x86-based device drivers, the ISA interrupt
controller uses MASTER_BASE (32) as the base vector. The PowerPlus systems
use the MPIC_BASE (4) as the base vector for the MPIC. The VME controllers
use the VME_IRQBASE (48) as the base vector.

The interrupt vector space is divided as follows:

As in the x86-based systems, iointset() returns a key, which can be used in
ioint_link() to share interrupts. For device drivers using the PCI service
functions, the pci_what_irq(slot) returns a vector, which can be used
directly in the iointset() function.

Interrupt Levels

When a device generates an interrupt, the interrupt signal is propagated from the
device through the bridge or bus controller. Some boards may have a single
interrupt controller, while others may have two or more.

0...3 Reserved vectors

4...28 MPIC vectors

29...31 Reserved vectors

32...48 ISA vectors

48...255 VME vectors
Writing Device Drivers for LynxOS 83

Chapter 5 - Interrupt and Timeout Handling

The figure below shows a typical configuration on x86-based computers, where
two Intel 8259 interrupt controllers are cascaded. INT1 is called the master
controller, because it is closest to the CPU. INT2 is called the slave controller.

When one of the IRQ input lines of an interrupt controller is asserted, the controller
asserts its int+ output line. For INT1, this signals the CPU that an interrupt has
occurred. For INT2, the interrupt signal is passed to INT1, which then signals the
CPU.

When the CPU is signaled, it communicates with the interrupt controllers to
determine which IRQ line has been asserted. The CPU executes the interrupt
handler that was most recently registered for that IRQ. When the handler
terminates, the CPU continues where it left off before executing the handler.

The Intel 8259 interrupt controllers are cascaded as shown in the figure below.

Figure 5-1: Intel 8259 Interrupt Controller Configuration

The interrupt controllers are programmed so that each IRQ input has a distinct
interrupt priority. When an interrupt handler is servicing an interrupt, it may be
preempted when another device asserts an interrupt with a higher priority.

,17��

,17��

7R�&38 LQW�� IRQ 0

IRQ 1

IRQ 2

IRQ 3

IRQ 4

IRQ 5

IRQ 6

IRQ 7

IRQ 8

IRQ 9

IRQ 10

IRQ 11

IRQ 12

IRQ 13

IRQ 14

IRQ 15

LQW��

)URP
LQWHUUXSWLQJ

GHYLFHV
84 Writing Device Drivers for LynxOS

Interrupt Levels

The following table shows the IRQs, sorted by interrupt priority, with the most
favorable priority at the top, and the least favorable at the bottom.

On all Board Support Packages (BSPs), IRQ 1 is used for the keyboard and has the
most favorable priority. IRQ 0 is used for the real-time clock and has the least
favorable priority. This means that the clock interrupt handler could be preempted
by any other interrupt, whereas the keyboard handler cannot.

IRQ 2 is used to cascade interrupts from Controller INT2 to Controller INT1. The
use of the other IRQs may vary for different BSPs.

The assignment of priorities to IRQs is made by the kernel code at boot time. The
assignments are found in the file /sys/bsp.xxx/bsp.intr.c. In some BSPs,
the assignment can be configured at kernel build time.

Table 5-2: Interrupt Priority

Interrupt Priority

(1 = Highest)
IRQ

1
(cascade)
2
3
4
5

IRQ 1
IRQ 2
IRQ 8
IRQ 9
IRQ 10
IRQ 11

6
7
8
9
10

IRQ 12
IRQ 13
IRQ 14
IRQ 15
IRQ 3

11
12
13
14
15

IRQ 4
IRQ 5
IRQ 6
IRQ 7
IRQ 0
Writing Device Drivers for LynxOS 85

Chapter 5 - Interrupt and Timeout Handling

Implementing an Interrupt Handler

A typical approach to the organizational structure of a device driver that contains
an interrupt handler is to divide the code into two components called process
context functions and kernel context functions (see figure below).

Process context functions are the driver entry point functions and other supporting
code, and the kernel context functions are the interrupt handler, and its subroutine
send. Between the two halves are shared data structures (read and write queues in
this example) internal to the device driver.

The send routine is a device driver supporting function used to send data to the
hardware. (See “send() Routine” on page 92 for an example.)

Use of Queues

Queues are often used to communicate between the process context and kernel
context functions. Examples of the use of queues to communicate between entry
points and interrupt handlers are:

Figure 5-2: Top/Bottom Model for Device Drivers

Read Write Other Entry Points

Driver Entry Points

Read
Queue

Write
Queue

Interrupt Handler

Send

Hardware

Kernel
context

functions

Process
context

functions
86 Writing Device Drivers for LynxOS

Use of Queues

• For communication from the write() entry point to interrupt handler.

A counting semaphore, initialized to the size of the queue, tracks the free
space in the write() entry point. The swait() function is called, and
if space is available in the queue a character is queued. The interrupt
handler subsequently removes the character from queue and signals the
semaphore using ssignal().

• For communicating from interrupt handler to the read() entry point.

The semaphore in the read() entry point tracks data availability in the
queue. The swait() routine blocks until data is available in the queue.
The interrupt handler posts the data to the queue, signaling the semaphore
that data is available, if queue space is available. If queue space is
unavailable, an error flag is set.

Following is an example code structure.

dev_read()
{

swait(&receive_data_available,SEM_SIGIGNORE);
disable();
dequeue_receive_data();
restore();

}

dev_write()
{

disable();
swait(&space_on_queue_available,SEM_SIGIGNORE);
enqueue_send_data();
if (no_interrupt_pending)
output_data();
restore();

}

interrupt_handler()
{

if (data_received)
{

enqueue_receive_data();
ssignal(&receive_data_available);

}
else
{

if (dequeue_send_data())
output_data();

else no_interrupt_pending = 1;
}

}

Writing Device Drivers for LynxOS 87

Chapter 5 - Interrupt and Timeout Handling

Interrupt Handler Considerations

Following are programming considerations to use when creating an interrupt
handler.

• Use disable() and restore() in the entry point functions and their
subroutines to prevent interrupts from accessing data structures that are
being modified.

• Application virtual addresses cannot be directly accessed from the
interrupt handler.

• Translate application virtual addresses to kernel addresses in the entry
point functions prior to making them available to the interrupt routines.

Example Code

Following is an example of an interrupt-based printer device driver.

Device Information Definition
/* ptrinfo.h */
struct ptrinfo
{

int port;
int irq;
int qlen;

};

The device information definition has three variables associated with the
interrupting driver. The port variable is the port number for the printer; irq is
the interrupt line on which the printer interrupts the system; and qlen is the
length of the queue used to communicate between the top and bottom halves of the
driver.

Device Information Declaration
/* ptrinfo.c */
#include "ptrinfo.h"
struct ptrinfo ptrinfo0 =
{

/* port */ 0x378,
/* irq */ 7,
/* qlen */ 100

};
main()
{

write(1, &ptrinfo0, sizeof(struct ptrinfo));
}

88 Writing Device Drivers for LynxOS

Declaration for ioctl

The device information declaration for the device information definition gives the
port address for the printer port, which is 0x378. The IRQ line on which the printer
interrupts is 7, and the queue length is 100. The program ptrinfo.c is compiled
and executed to create a data file to be passed to the install routine during
dynamic installation. (See Chapter 8, “Installation and Debugging.” for more on
dynamic installation.)

Declaration for ioctl
/* ptrioctl.h */

#define PTRSTATUS 500

struct ptrstatus {
 int chars; /* characters printed */
 int lines; /* lines printed */
};

The ioctl() routine in this driver returns the number of characters and lines
printed out so far. Thus, the user can issue the ioctl system call with the
appropriate command and pointer to the structure defined above.

Driver Source Code
/* ptrdrvr.c */

#include <kernel.h>
#include <mem.h>
#include <file.h>
#include <errno.h>
#include <ioctl.h>
#include "ptrinfo.h"
#include "ptrioctl.h"

/* ports */
#define PP_DATA 0 /* data port offset */
#define PP_STATUS 1 /* status port offset */
#define PP_CONTROL 2 /* control port offset */

/* status bits */
#define PP_BUSY 0x80 /* printer busy */
#define PP_PE 0x20 /* out of paper */
#define PP_SLCT 0x10 /* printer is selected */
#define PP_ERROR 0x08 /* printer detected error */

/* control bits */
#define PP_IENABLE 0x10 /* interrupt enable */
#define PP_SLCTIN 0x08 /* select printer */
#define PP_INIT 0x04 /* start printer */
#define PP_AUTOLF 0x02 /* auto line feed */
#define PP_STROBE 0x01 /* strobe printer */

#define port_in(addr) __inb /* copy 1 byte from port */
#define port_out(data,addr) __outb(addr,data) /* copy 1 byte to port */
Writing Device Drivers for LynxOS 89

Chapter 5 - Interrupt and Timeout Handling

typedef unsigned short ptype;

Statics Structure
struct ptrstatics {
 ptype datap; /* data port address */
 ptype controlp; /* cntrl port address */
 char control; /* control bits */
 int irq; /* IRQ number */
 int closing; /* closing device */
 int close_sem; /* semaphore for close */
 int expecting; /* expecting an int.? */
 int nextnl; /* output a ’\r’ next? */
 int chars; /* printed since open */
 int lines; /* printed since open */
 int qlen; /* characters in queue */
 char *q; /* base queue address */
 int head; /* head of queue */
 int tail; /* tail of queue */
 int qdata; /* data in the queue */
 int free_sem; /* free queue space */
};

The statics structure for the interrupt handling printer driver is shown above. The
IRQ (irq) number, the queue length (qlen) and port address (dport) are copied
from the device information definition.

chars and lines store the number of characters and lines printed out so far. q is
the base address of the queue. head and tail keep track of data in the queue.

close_sem is a semaphore used for ensuring that the output queue is fully
drained before the device is closed. expecting is initially reset to indicate that
the first character has to be output before an interrupt is received by the system.
nextnl is used for mapping \n (newline) to \r\n (carriage return/line feed).

install() Entry Point
#define PERR (struct ptrstatics *) SYSERR

char *dev_install(info)
struct ptrinfo *info;
{
 struct ptrstatics *s;
 extern void ptrint();
 int i;

 /* probe for the printer */
 port_out(1, info->port+PP_DATA);
 if (port_in(info->port+PP_DATA) != 1)
{
 return (char *) PERR;
 }

 if (!(s = (struct ptrstatics *)sysbrk ((long)sizeof *s)))
 return (char *) PERR;
90 Writing Device Drivers for LynxOS

Declaration for ioctl

 if (!(s->q = sysbrk((long)info->qlen)))
{
 sysfree(s, (long)sizeof *s);
 return (char *) SYSERR;
 }

 /* initialize statics */
 s->datap = info->port + PP_DATA;
 s->controlp = info->port + PP_CONTROL;
 s->control = PP_SLCTIN | PP_INIT;
 s->irq = info->irq;
 s->expecting = 0;
 s->closing = s->close_sem = 0;
 s->nextnl = 0;
 s->free_sem = s->qlen = info->qlen;
 s->qdata = s->head = s->tail = 0;
 s->lines = s->chars = 0;

 /* initialize printer */
 iointset(32+s->irq, ptrint, s);
 port_out(PP_SLCTIN, s->controlp);
 for (i = 0; i < 100; i++) ;
 port_out(s->control, s->controlp);

 return (char *) s;
}

The install() entry point function checks for the existence of the printer. The
data is written onto the port and read back immediately. If the data is not the same,
then there is no printer. Once the presence of the printer is confirmed, the statics
structure and the queue are allocated. The fields within the structure are initialized.

free_sem is initialized to the queue length and the irq number is copied into
the statics data structure. The routine iointset() is called to initialize an
interrupt handler for the given interrupt vector. (The offset of 32 is added to the
irq number before passing it to the routine on the x86.) Finally, an initialization
sequence is sent to the printer.

Notice that there is a timing loop between the two port_out calls. This is
required for the transmitted data to be latched properly. The pointer to the statics
structure is returned.

uninstall() Entry Point
void dev_uninstall(s)
struct ptrstatics *s;
{
 iointclr(32+s->irq);
 sysfree(s->q, (long)s->qlen);
 sysfree(s, (long)sizeof *s);
}

The uninstall() entry point clears the interrupt vector by using the
iointclr() function. uninstall() frees the memory associated with the
queue and the statics structure.
Writing Device Drivers for LynxOS 91

Chapter 5 - Interrupt and Timeout Handling

open() Entry Point

int dev_open(s, devno, f)
struct ptrstatics *s;
int devno;
struct file *f;
{

if (f->access_mode & FREAD)
{

 pseterr(EINVAL);
 return SYSERR;

}
 return OK;
}

The open() entry point checks for the access mode of the device and returns an
error if the application has tried to open it in read mode.

close() Entry Point
int dev_close(s, f)
struct ptrstatics *s;
struct file *f;
{
 int ps;

 disable(ps);
 if (s->expecting)
{
 s->closing = 1;
 restore(ps);
 swait(&s->close_sem, SEM_SIGIGNORE);
 s->closing = 0;
 } else
{
 restore(ps);
}
 s->lines = s->chars = 0;
 return OK;
}

The close() entry point function ensures that the characters to be output are
complete before the device is closed. It checks whether s->expecting is 1. This
indicates that there are characters present in the queue. If this is true, it sets the
s->closing flag and waits in the swait() routine for the interrupt handler to
signal that all characters are output and the device can be closed. It also resets the
chars and lines fields in the statics structure definition.

send() Routine
/* assumes:
** data in the queue
** interrupts disabled
*/
void send(s)
struct ptrstatics *s;
92 Writing Device Drivers for LynxOS

Declaration for ioctl

{
 char c;

 if (s->nextnl) {
 c = ’\r’;
 s->nextnl = 0;
 s->lines++;
 } else {
 c = s->q[s->head++];
 s->head %= s->qlen;
 s->qdata--;
 ssignal(&s->free_sem);
 s->nextnl = c == ’\n’;
 s->chars++;
 }
 port_out(c, s->datap);
 port_out(s->control | PP_STROBE, s->controlp);
 port_out(s->control | PP_IENABLE, s->controlp);
}

This routine outputs a character into the port by dequeuing from the queue. If a
new line is found it puts out a \r and resets the nextnl flag. If not, it dequeues
from the head of the queue, adjusts the head pointer to wrap around, and signals the
semaphore while keeping track of the free space in the queue. This routine then
increments the number of characters s->chars.

The routine then puts a character onto the printer port. The while loop to check
the status port is no longer necessary because the interrupt signifies that it is safe to
write. The character is just put onto the data port. After this, to latch the byte onto
the printer, a high-low strobe is put onto the control port.

Interrupt() Handler
void ptrint(s)
struct ptrstatics *s;
{
 if (s->qdata || s->nextnl)

{
 send(s);
 } else

{
 s->expecting = 0;
 if (s->closing) ssignal(&s->close_sem);
 /* disable ptr interrupts: */
 port_out(s->control, s->controlp);
 }
}

If the queue has data in it, or if a new line is indicated, the routine send() is
called to output the character onto the port. If not, it indicates that the queue is
empty and thus s->expecting is set to zero. Further, if the closing flag is
set, it indicates that the close() entry point routine is in an swait() state.
Thus, an ssignal routine is called to awaken the semaphore. Finally, an
initialization sequence is sent to the control port.
Writing Device Drivers for LynxOS 93

Chapter 5 - Interrupt and Timeout Handling

write() Entry Point

int dev_write(s, f, buff, count)
struct ptrstatics *s;
struct file *f;
char *buff;
int count;
{
 int i = count, ps;
 while (i--)

{
 swait(&s->free_sem, SEM_SIGRETRY);
 disable(ps);
 s->q[s->tail++] = *buff++;
 s->tail %= s->qlen;
 s->qdata++;
 if (!s->expecting)

{
 send(s);
 s->expecting = 1;
 }
 restore(ps);
 }
 return count;
}

The write() entry point has a loop for count characters to be output onto the
queue. The swait() inside the loop tracks the free space in the queue. If there is
space in the queue a character is queued.

The disable() and restore() function calls provide protection for the
critical region of code, which is used by the interrupt handler. The character is
queued to the tail of the queue. The qdata variable (which keeps track of the
number of characters in the queue) is incremented. If expecting is zero, the first
character on the queue is sent to the port and expecting is set to one.

ioctl() Entry Point
int dev_ioctl(s, f, command, arg)
struct ptrstatics *s;
struct file *f;
int command;
char *arg;
{
 switch (command) {
 case PTRSTATUS:
 if (wbounds(arg) < sizeof(struct ptrstatus))

{
 pseterr(EFAULT);
 return SYSERR;
 }
 ((struct ptrstatus *)arg)->chars = s->chars;
 ((struct ptrstatus *)arg)->lines = s->lines;
 break;

 case FIOPRIO:
 case FIOASYNC:
94 Writing Device Drivers for LynxOS

x86 IRQ Device Defaults

 break;

 default:
 pseterr(EINVAL);
 return SYSERR;
 }
 return OK;
}

The ioctl() entry point handles the case for PTRSTATUS. The user can invoke
this from an application program to determine the number of characters actually
output onto the port. arg is the pointer to the user buffer. The check by
wbounds() confirms that the user pointer has writable memory allocated to it.

x86 IRQ Device Defaults

The following table is a list of devices with their interrupt (also called IRQ) levels,
I/O addresses and additional default information. No two devices with the same
IRQ can be configured into the LynxOS kernel at the same time..

Table 5-3: x86 Default Device Configuration

IRQ1 IOBASE2 DMA

Channel3
Device Comments

0 N/A N/A timer

1 0x3B4 0x3D4
0x3C4 0x3C5
0x3CE 0x3CF

atc
Keyboard

2 N/A N/A Cascade

3 0x2F8 N/A com2

3 N/A N/A atcinfo

4 0x3F8 N/A com1

5 0x3E8 N/A com3

5 0x240 N/A wd3e

5 0x3F0 N/A
if_3c579

Slot number 7
TP = 0, AUI = 1, BNC = 3 (default 3)

5 0x240 N/A
if_3c509

Slot number 0
TP = 0, AUI = 1, BNC = 3 (default 3)

5 0x240 N/A
if_wd3e

On board RAM address4: 0xcc000
16 bit access 1

6 0x3F2-0x3F7 N/A flopinfo 8237 DMA controller

7 0x378 N/A ptrinfo
Writing Device Drivers for LynxOS 95

Chapter 5 - Interrupt and Timeout Handling
7 0x200 N/A pcxe On board RAMbase: 0xd0000

8 N/A rtclock Real-time clock

9 N/A atc Vertical sync. interrupt

9 0x3E0 N/A com4

10 Unused by default.

11 0x330-0x332 5 a_scsiinfo.c
sim1542_info

bus_on5: 8
bus_off6: 40

11 0x3307 5 sim_1742_info Edge/Level8: edge(1)

11 N/A 5 sim2742_info EISA slot9: 2

12 Unused by default.

13 Unused by default.

14 0x1F1-0x1F7,
0x3F6-0x3F7

hdinfo
Defaults are hard coded in driver; primary controller.

15 Unused by default.

- 0x340 N/A sim1522_info PIO mode only

10 N/A N/A sim2940_info No user configurable options.

1. IRQ: interrupt used by the device.
2. IOBASE: 1 or memory locations that are used to communicate with the device.
3. DMA channel: DMA channel used by the device
4. On board RAM address: Some boards have memory mapped to a particular range in the I/O space. This number is the

start of such memory. The size of memory varies from card to card.
5. bus_on- micro-seconds a device is allowed to stay on the bus.
6. bus_off- micro-seconds a device stay off after being on the bus.
7. Only applies in 1542-mode.
8. Edge/Level- A type of interrupt; LynuxWorks does not support level interrupts.
9. EISA slot- A specific slot that a card must be in for the device to work.
10.PCI card; the interrupt is assigned by the system BIOS.

Table 5-3: x86 Default Device Configuration (Continued)

IRQ1 IOBASE2 DMA

Channel3
Device Comments
96 Writing Device Drivers for LynxOS

Timeout Handlers

Timeout Handlers

A timeout handler can be set up using the timeout driver service call, timeout().

The prototype for timeout() is:

int timeout(void (*handler)(), char *arg, int interval)

where:

handler Specifies the function to call

arg Specifies an argument for function handler

interval Specifies a timeout interval (10 millisecond granularity)

The timeout causes the function handler to be called with one argument,
arg, after interval has expired. timeout() returns a non-negative timeout
ID if there is a timer available. This ID can be used to track or cancel the timeout.

A timeout can be canceled before the routine is called using cancel_timeout()
and passing it the timeout ID. Care should be taken to cancel only a pending
timeout. The check for a timeout expiration and cancelling timeout should be done
atomically with interrupts disabled.

Following is a basic timeout handler algorithm.

entry_point()
{

int ps;
sem = 0;
/* start device operations */
timeoutID = timeout(timeoutHandler, arg, 1);
swait(&sem, -1);
disable(ps);
if (timeoutID)
{

cancel_timeout(timeoutID);
timeoutID = 0;

}
restore(ps);

}

timeoutHandler(arg)
{

/* do timeout processing */
timeoutID = 0;
ssignal(&sem);

}

NOTE: timeout() and cancel_timeout() calls may be used in an interrupt
routine, but should not be used in a device driver install() entry point routine.
Writing Device Drivers for LynxOS 97

Chapter 5 - Interrupt and Timeout Handling

ISR()
{

ssignal(&sem);
}

LynxOS timeout handlers are called by the clock interrupt handler. Timeout
routines are handled in the kernel using a delta queue to check for all expired
timers. Because the timeout handler is called from the clock interrupt handler, it
should not execute for a long period of time. If a lengthy timeout processing is
needed inside the timeout handler routine, it is better to handle the timeout inside a
kernel thread. (See Chapter 6, “Kernel Threads and Priority Tracking.” for more
information on kernel threads.) The timeout handler can simply increment a
variable indicating the number of timeouts accumulated and signal the kernel
thread. The kernel thread wakes up and handles the more complicated processing
associated with the timeout.

Using kernel threads ensures that the thread can call routines, which can use
semaphores for mutual exclusion instead of interrupt disabling, thus improving
real-time response. The thread can handle all accumulated timeouts and once this is
completed it blocks on the semaphore.

Following is an example timeout handler algorithm implemented with kernel
threads.

entry_point()
{

event_sem = 0;
timeoutCt = 0;
tid = timeout(timeoutHandler, arg, ticks);

}

timeoutHandler(arg)
{

timeoutCt++;
ssignal(&event_sem);

}

Thread()
{

int ps;
int touts;
for (;;)

{
swait(&event_sem, -1);
disable(ps);
touts = timeoutCt;
timeoutCt = 0;

NOTE: Expired timers are checked in the clock interrupt handler and timeout
handlers are called from there. Thus, a timeout handler cannot block on a
semaphore.
98 Writing Device Drivers for LynxOS

Timeout Handlers

restore(ps);
while (touts--)

timeout_processing();
}

}

timeout_processing()
{

swait(&mutex_sem, -1);
/* do timeout processing */
ssignal(&mutex_sem);

}

Writing Device Drivers for LynxOS 99

Chapter 5 - Interrupt and Timeout Handling
100 Writing Device Drivers for LynxOS

CHAPTER 6 Kernel Threads and Priority

Tracking
Kernel threads keep drivers from interfering with the real-time response of the
overall system. LynxOS kernel threads are designed specifically to increase driver
functionality while decreasing driver response time, task response time, and task
completion time. This chapter covers the implementation of kernel threads within a
device driver.

Device Drivers in LynxOS

Device drivers form an important part of any operating system, but even more so in
a real-time operating system such as LynxOS. The impact of the device driver
performance on overall system performance is considerable. Since it is imperative
for the operating system to provide deterministic response time to real-world
events, device drivers must be designed with determinism in mind.

Some of the important components of real-time response are described in the
following sections.

Interrupt Latency

Interrupt latency is the time taken for the system to acknowledge a hardware
interrupt. This time is measured from when the hardware raises an interrupt to
when the system starts executing the first instruction of the interrupt routine (in the
case of LynxOS, this routine is the interrupt dispatcher). This time is dependent on
the interrupt hardware design of the system and the longest time interrupts are
disabled in the kernel or device drivers.
Writing Device Drivers for LynxOS 101

Chapter 6 - Kernel Threads and Priority Tracking

Interrupt Dispatch Time

Interrupt dispatch time is the time taken for the system to recognize the interrupt
and begin executing the first instruction of the interrupt handler. Included in this
time is the latency of the LynxOS interrupt dispatcher (usually negligible).

Driver Response Time

The driver response time is the sum of the interrupt latency and the interrupt
dispatch time. This is also known as the interrupt response time.

Task Response Time

The task response time is the time taken by the operating system to begin running
the first instruction of an application task after an interrupt has been received that
makes the application ready to run. This figure is the total of:

• The driver response time (including the delays imposed by additional
interrupts)

• The longest preemption time

• The context switch time

• The scheduling time

• The system call return time

Only the driver response time and the preemption time are under the control of the
device driver writer. The other times depend on the implementation of LynxOS on
the platform for which the driver is being written.

Task Completion Time

The task completion time is the time taken for a task to complete execution,
including the time to process all interrupts which may occur during the execution
of the application task.

NOTE: The device driver developer should be aware of all delays that interrupts
could potentially cause to an application. This is important when considering the
overall responsiveness of the “application-plus-kernel” combination in the worst-
possible timing scenario.
102 Writing Device Drivers for LynxOS

Real-Time Response

Real-Time Response

To improve the real-time response of any operating system, the most important
parameters are the driver response time, task response time, and the task
completion time. The time taken by the driver in the system can have a direct effect
on the system’s overall real-time response. A single breach of this convention can
cause a high performance real-time system to miss a real-time deadline.

In a normal system, interrupts have a higher priority than any task. A task,
regardless of its priority, is interrupted if an interrupt is pending (unless the
interrupts have been disabled). The result could mean that a low priority interrupt
could interrupt a task executing with real-time constraints.

A classic example of this would be a task collecting data for a real-time data
acquisition system and being interrupted by a low priority printer interrupt. The
task would not continue execution until the interrupt service routine had finished.

With kernel threads, delays of this sort are significantly reduced. Instead of the
interrupt service routine servicing the interrupt, a kernel thread is used to perform
the function previously performed by the interrupt routine. The interrupt service
routine is now reduced to merely signalling a semaphore, which the kernel thread
is waiting on.

Since the kernel thread is running at the application’s priority (actually it is running
at half a priority level higher), it is scheduled according to process priority and not
hardware priority. This ensures that the interrupt service time is kept to a minimum
and the task response time is kept short. A further result of this is that the task
completion time is also reduced.

The use of kernel threads and priority tracking in LynxOS drivers are the
cornerstone to guaranteeing deterministic real-time performance.

Kernel Threads

Kernel threads execute in the virtual memory context of the null process, which is
process 0. However, kernel threads do not have any user code associated with
them, so context switch times for kernel threads are quicker than for user threads.
Like all other tasks in the system, kernel threads have a scheduling priority that the
driver can change dynamically to implement priority tracking. They are scheduled
with the SCHED_FIFO algorithm.
Writing Device Drivers for LynxOS 103

Chapter 6 - Kernel Threads and Priority Tracking

Creating Kernel Threads

A kernel thread is created once in the install or open entry point. The
advantage of starting it in open is that, if the device is never opened, the driver
doesn’t use up kernel resources unnecessarily. However, as the thread is only
created once, the open routine must check whether this is the first call to open.
One thread is created for each interrupting device, which normally corresponds to a
major device.

The following code fragment illustrates how a thread might be started from the
install entry point:

int threadfunc ();
int stacksize, priority;
char *threadname;

s->st_id = ststart (threadfunc, stacksize, priority, threadname, 1, s);
if (s->st_id == SYSERR)
{
 sysfree (s, sizeof (struct statics));
 pseterr (EAGAIN);
 return (SYSERR);
}

The thread function specifies a C function to be executed by the thread. The
structure of the thread code is discussed in the next section.

The second argument specifies the thread’s stack size. This stack does not grow
dynamically, so enough space must be allocated to hold all the thread’s local
variables.

As kernel threads are preemptive tasks, they have a scheduling priority, just like
other user threads in the system, which determines the order of execution between
tasks. The priorities of kernel threads are discussed more fully in the “Priority
Tracking” on page 109. It is usual to create the thread with a priority of one.

The thread name is an arbitrary character string which is printed in the name
column by the ps T command. It will be truncated to PNMLEN characters
(including NULL terminator). PNMLEN is currently 32; see the proc.h file.

The last two parameters allow arguments to be passed to the thread. In most cases,
it is sufficient to pass the address of the statics structure, which normally contains
all other information the thread might need for communication and
synchronization with the rest of the driver.
104 Writing Device Drivers for LynxOS

Structure of a Kernel Thread

Structure of a Kernel Thread

The structure of a kernel thread and the way in which it communicates with the rest
of the driver depends largely on the way in which the particular device is used. For
the purposes of illustration, two different driver designs are discussed.

• Exclusive access: Only one user task is allowed to use the device at a
time. The exclusive access is often enforced in the open entry point.

• Multiple access: Multiple user tasks are permitted to have the device
open and make requests.

Exclusive Access

If we consider synchronous transfers only, this type of driver will typically have
the following structure:

• The top-half entry point (read/write) starts the data transfer on the
device, then blocks, waiting for I/O completion.

• The interrupt handler signals the kernel thread when the I/O completes.

• The kernel thread consists of an infinite for loop, which does the
following:

- Waits for work to do

- Processes interrupt

- Wakes up user tasks

The statics structure contains a number of variables for communication between
the thread and the other entry points. These would include synchronization
semaphores, error status, transfer length, etc.

Top-Half Entry Point
The read/write entry point code is not any different from a driver that does not
use kernel threads. It starts an operation on the device, then blocks on an event
synchronization semaphore.

drv_read (s, f, buff, count)
struct statics *s;
struct file *f;
char *buff;
int count;
{

Writing Device Drivers for LynxOS 105

Chapter 6 - Kernel Threads and Priority Tracking

 start_IO (s, buff, count, READ);
 /* start I/O on device */
 swait (&s->io_sem, SEM_SIGABORT);
 /* wait for I/O completion */
 if (s->error) { /* check error status */
 pseterr (EIO);
 return (SYSERR);
 }
 return (s->count); /* return # bytes transfered */
}

Interrupt Handler
Apart from any operations that may be necessary to acknowledge the hardware
interrupt, the interrupt handler’s only responsibility is to signal the kernel thread,
informing it that there is some work to do:

intr_handler (s)
struct statics *s;
{
 ssignal (&s->intr_sem); /* wake up kernel thread */
}

Kernel Thread
The kernel thread waits on an event synchronization semaphore. When an interrupt
occurs, the thread is woken up by the interrupt handler. It processes the interrupt,
checking the device status for errors, and wakes up the user task that is waiting for
I/O completion. For best system real-time performance, the kernel thread should
re-enable interrupts from the device.

kthread (s)
struct statics *s;
{
 for (;;) {
 swait (&s->intr_sem, SEM_SIGIGNORE);
 /* wait for work to do*/
 ...
 /* process interrupt, check for errors etc. */
 ...
 if (error_found)
 s->error = 1;
 /* tell user task there was an error */
 ssignal (&s->io_sem); /* wake up user task */
 }
}

106 Writing Device Drivers for LynxOS

Multiple Access

Multiple Access

In this type of design, any number of user tasks can open a device and make
requests to the driver. But as most devices can only perform one operation at a
time, requests from multiple tasks must be held in a queue.

In a system without kernel threads, the structure of such a driver is:

• The top-half routine starts the operation immediately if the device is idle,
otherwise it enqueues the request. It then blocks, waiting for the request
to be completed.

• The interrupt handler processes interrupts, does all I/O completion, wakes
up the user task and then starts the next operation on the device
immediately if there are queued requests.

The problem with this strategy is that it can lead to an overly long interrupt routine
owing to the large amount of work done in the handler. Since interrupt handlers are
not preemptive, this can have an adverse effect on system response times. When
multiple requests are queued up, the next operation is started immediately after the
previous one has finished. The result of this is that a heavily-used device can
generate a series of interrupts in rapid succession until the request queue is
emptied. Even if the requests were made by low priority tasks, the processing of
these interrupts and requests will take priority over high priority tasks because it is
done within the interrupt handler.

The use of kernel threads resolves these problems by off-loading the interrupt
handler. A kernel thread is responsible for dequeuing and starting requests,
handling I/O completion and waking up the user tasks. The next figure illustrates
the overall design.

A data structure containing variables for event synchronization, error status, etc., is
used to describe each request. The pending request queue and list of free request
headers are part of the statics structure. The interrupt handler code is the same as in
exclusive access design.
Writing Device Drivers for LynxOS 107

Chapter 6 - Kernel Threads and Priority Tracking
Figure 6-1: Interrupt Handler Design

Top-Half Entry Point
drv_read (s, f, buff, count)
struct statics *s;
struct file *f;
char *buff;
int count;
{
 struct req_hdr *req;

 ...
 enqueue (s, req); /* enqueue request */
 swait (&req->io_sem, SEM_SIGABORT);
 /* wait for I/O completion */
 ...
}

Kernel Thread
kthread (s)
struct statics *s;
{
 struct req_hdr *curr_req;

 for (;;) {
 curr_req = dequeue (s); /* wait for a request */
 start_IO (s, curr_req); /* start I/O operation */
 /* wait for I/O completion */
 swait (&s->intr_sem, SEM_SIGIGNORE);
108 Writing Device Drivers for LynxOS

Priority Tracking

 ...
 /* process interrupt, check for errors etc. */
 ...
 if (error_found)
 /* tell user task there was an error */
 curr_req->error = 1;
 /* wake up user task */
 ssignal (&curr_req->io_sem);
 }
}

Priority Tracking

The previous examples did not discuss the priority of the kernel thread. It was
assumed to be set statically when the thread is created. There is a fundamental
problem with using a static thread priority in that, whatever priority is chosen,
there are always some conceivable situations where the order of task execution
does not meet real-time requirements. The same is true of systems that implement
separate scheduling classes for system- and user-level tasks.

The next figure shows two possible scenarios in a system using a static thread
priority. In both scenarios, Task A uses a device that generates work for the kernel
thread. Other tasks with different priorities exist in the system. These are
represented by Task B.

Figure 6-2: Scheduling with Static Thread Priorities
Writing Device Drivers for LynxOS 109

Chapter 6 - Kernel Threads and Priority Tracking

In the first scenario, Task B has a priority higher than Task A but lower than that of
the kernel thread. The kernel thread will be scheduled before Task B, even though
it is processing requests on behalf of a lower priority task. This is essentially the
same situation that occurs when interrupt processing is done in the interrupt
handler. In Scenario 2, the situation is reversed. The kernel thread is preempted by
Task B resulting in Task A being delayed.

The only solution that can meet the requirements of a deterministic real-time
system with bounded response times is to allow the kernel thread priority to
dynamically follow the priorities of the tasks that are using a device.
110 Writing Device Drivers for LynxOS

User and Kernel Priorities

User and Kernel Priorities

User applications can use 256 priority levels from 0–255. However, internally, the
kernel uses 512 priority levels, 0–511. The user priority is converted to the internal
representation simply by multiplying it by two, as illustrated in the figure below.

Figure 6-3: User and Kernel Priorities

As can be seen, a user task will always have an even priority at the kernel level.
This results in “empty,” odd priority slots between the user priorities. These slots
play an important role in priority tracking.

The following examples discuss exclusive and multiple access driver designs for
illustrating priority tracking techniques.
Writing Device Drivers for LynxOS 111

Chapter 6 - Kernel Threads and Priority Tracking

Exclusive Access

Whenever a request is made to the driver, the top-half entry point must set the
kernel thread priority to the priority of the user task.

drv_read (s, f, buff, count)
struct statics *s;
struct file *f;
char *buff;
int count;
{
 uprio = _getpriority ();
 /* get priority of current task */
 stsetprio (s->kt_id, (uprio << 1) + 1);
 /* set k.t. priority */
 start_IO (s, buff, count, READ);
 /* start I/O on device */
 swait (&s->io_sem, SEM_SIGABORT);
 /* wait for I/O completion */
 if (s->error) {
 /* check error status */
 pseterr (EIO);
 return (SYSERR);
 }
 return (s->count);
 /* return # bytes transfered */
}

The expression (uprio << 1) + 1 converts the user priority to a kernel-level
priority. The thread priority is in fact set to the odd numbered kernel priority just
above the priority of the user task. This ensures that the kernel thread executes
before any tasks at the same or lower priority as the user task making the request
but after any user tasks of higher priority, as shown in the figure below.
112 Writing Device Drivers for LynxOS

Exclusive Access
When the request has been completed, the thread resets its priority to its initial
value.

kthread (s)
struct statics *s;
{
 for (;;) {
 swait (&s->intr_sem, SEM_SIGIGNORE);
 /* wait for work to do */
 ...
 /* process interrupt, check for errors etc. */
 ...
 if (error_found)
 s->error = 1;
 /*tell user task there was an error*/
 ssignal (&s->io_sem);
 /* wake up user task */
 stsetprio (s->kt_id, 1);
 /* reset kernel thread priority */
 }
}

Figure 6-4: Kernel Thread Priorities

Kernel Priorities

User priority n + 1

User priority n

Priority of kernel thread
serving user task at priority n
Writing Device Drivers for LynxOS 113

Chapter 6 - Kernel Threads and Priority Tracking

Multiple Access

As previously discussed, the driver maintains a queue of pending requests from a
number of user tasks. These tasks probably have different priorities. Therefore, the
driver must ensure that the kernel thread is always running at the priority of the
highest priority user task that has a request pending. If the requests are queued in
priority order this ensures that the thread is always processing the highest priority
request. The thread priority must be checked and adjusted at two places: whenever
a new request is made, and whenever a request is completed.

How can the driver keep track of the priorities of all the user tasks that have
outstanding requests? In order to do so, the driver must use a special data structure,
struct priotrack, defined in st.h. Basically, the structure is a set of counters,
one for each priority level. The value of each counter represents the number of
outstanding requests at that priority. The values of the counters are incremented
and decremented using the routines priot_add and priot_remove. The
routine priot_max returns the highest priority in the set.

The use of these routines is illustrated in the following code examples.

Top-Half Entry Point
The top-half entry point must first use priot_add to add the new request to the
set of tracked requests. The code then decides whether the kernel thread’s priority
must be adjusted. This will be necessary if the priority of the task making the new
request is higher than the thread’s current priority. A variable in the statics structure
is used to track the kernel thread’s current priority. The request header must also
contain a field specifying the priority of the task making each request. This is used
by the kernel thread.

drv_read (s, f, buff, count)
struct statics *s;
struct file *f;
char *buff;
int count;
{
 ...
 uprio = _getpriority (); /* get user task priority */
 req->prio = uprio; /* save for later use */
 enqueue (s, req); /* enqueue request */
 /*
 * Do priority tracking. Add priority of new request
 * to set. If priority of new request is higher than
 * current thread priority, adjust thread priority.
 */
 swait(&s->prio_sem, SEM_SIGIGNORE);
 /* synchronize with kernel thread */
 priot_add (&s->priotrack, uprio, 1);
 if (uprio > s->kt_prio) {
 stsetprio (s->kt_id, (uprio << 1) + 1);
114 Writing Device Drivers for LynxOS

Kernel Thread

 s->kt_prio = uprio;
 }
 ssignal(&s->prio_sem);
 swait (&req->io_sem, SEM_SIGABORT);
 /* wait for I/O completion */
 ...
}

Kernel Thread
When the kernel thread has finished processing a request, the priority of the
completed request is removed from the set using priot_remove. The thread must
then determine whether to change its priority, depending on the priorities of the
remaining pending requests. The thread uses priot_max to determine the highest
priority pending request.

kthread (s)
struct statics *s;
{
 ...
 for (;;) {
 ...
 curr_req = dequeue (s); /* wait for a request */
 start_IO (s, curr_req); /* start I/O operation */
 swait (&s->intr_sem, SEM_SIGIGNORE);
 /* wait for I/O completion */
 ...
 /* process interrupt, check for errors etc. */
 ...
 /*
 * Do priority tracking. Remove priority of
 * completed request from set. Determine high
 * priority of remaining requests. If this is
 * lower than current priority, adjust thread
 * priority.
 */
 swait(&s->prio_sem, SEM_SIGIGNORE);
 /* synchronize with top-half */
 priot_remove (&s->priotrack, curr_req->prio);
 maxprio = priot_max (&s->priotrack);
 if (maxprio < s->kt_prio) {
 stsetprio (s->kt_id, (maxprio << 1) + 1);
 s->kt_prio = maxprio;
 }
 ssignal(&s->prio_sem);
 ...
 }
}

Non-Atomic Requests

The previous examples implicitly assumed that requests made to the driver are
handled atomically. That is to say, the device handles an arbitrary-size data
transfer. This is not always the case. Many devices have a limit on the size of the
Writing Device Drivers for LynxOS 115

Chapter 6 - Kernel Threads and Priority Tracking

transfer that can be made, in which case, the driver may have to divide the user
data into smaller blocks. A good example is a driver for a serial device. A user task
may request a transfer of many bytes, but the device can only transfer one byte at a
time. The driver must split the request into multiple single byte requests.

From the point of view of priority tracking, a single task requesting an n byte
transfer is equivalent to n tasks requesting single-byte transfers. Since each byte
is handled as a separate transfer by the driver (each byte generates an interrupt), the
priority tracking counters must count the number of bytes rather than the number
of requests.

The functions priot_addn and priot_removen can be used to add and
remove multiple requests to the set of tracked priorities. What is defined as a
request depends on the way the driver is implemented. It will not always
correspond on a one-to-one basis with a request at the application level.

Taking again the example of a driver for a serial device, a single request at the
application level consists of a call to the driver to transfer a buffer of length
n bytes. However, the driver will split the buffer into n single-byte transfers,
each byte representing a request at the driver level. The top-half entry point would
add n requests to the set of tracked priorities using priot_addn. As each byte is
transferred, the kernel thread would remove each request priority using
priot_remove.

The priority of the kernel thread would only be updated when all bytes have been
transferred. It is very important that the priority tracking is based on requests as
defined at the driver level, not the application level, in order for the priority
tracking to work correctly.

Controlling Interrupts

One of the problems discussed concerning drivers that perform all interrupt
processing in the interrupt handler is that in certain circumstances, a device can
generate a series of interrupts in rapid succession. For many devices, the use of a
kernel thread and priority tracking illustrated above resolves the problem.

Take, for example, a disk driver. The figure below represents a situation that can
occur in a system without kernel threads. A lower priority task makes multiple
requests to the driver. Before these requests are completed, a higher priority task
begins execution. But the higher priority task is continually interrupted by the
interrupt handler for the disk. Because of the amount of processing that can be
done within the interrupt handler and because the number of requests queued up
116 Writing Device Drivers for LynxOS

Controlling Interrupts

for the disk could have been very large, the response time of the system and
execution time for the higher priority task is essentially unbounded.

The next figure shows the same scenario using kernel threads. The important thing
to note is that the higher priority task can only be interrupted once by the disk. The
kernel thread is responsible for starting the next operation on the disk, but because
the kernel thread’s priority is based on Task B’s priority, it will not run until the
higher priority task has completed. In addition, the length of time during which
Task A is interrupted by the interrupt handler is a small constant time, as the
majority of the interrupt processing has been moved to the kernel thread.

Figure 6-5: Interrupt Handling without Kernel Threads

Interrupt
Handler

P
rio

rit
y

Time

Task A

Task B

Interrupts from disk used by Task B

Lower priority Task B makes
multiple requests to disk driver

Higher priority Task A
contintually interrupted
by disk interrupts
Writing Device Drivers for LynxOS 117

Chapter 6 - Kernel Threads and Priority Tracking
This scheme takes care of devices where requests are generated by lower priority
user tasks. But what about devices where data is being sent from a remote system?
The local operating system cannot control when or how many packets are received
over an Ethernet connection. Or a user typing at a keyboard could generate
multiple interrupts.

The solution to these situations is again based on the use of kernel threads. For
such devices, the interrupt handler must disable further interrupts from the device.
Interrupts are then re-enabled by the corresponding kernel thread. So again, a
device can only generate a single interrupt until the thread has been scheduled to
run.

Any higher priority tasks will execute to completion before the device-related
thread and can be interrupted by a maximum of one interrupt from each device.
The use of this technique requires that the device has the ability to store some small
amount of incoming data locally during the time that its interrupt is disabled. This
is not usually a problem for most devices.

Figure 6-6: Interrupt Handling with Kernel Threads

Interrupt
Handler

P
rio

rit
y

Time

Task A

Task B

Interrupts from disk used by Task B

Lower priority Task B makes
multiple requests to disk driver

Kernel thread starts next
request on disk

Kernel
Thread
118 Writing Device Drivers for LynxOS

CHAPTER 7 Network Device Drivers
A network driver is defined as a link-level device driver that interfaces with the
LynxOS TCP/IP module. Unlike other drivers, a network driver does not interface
directly with user applications. It interfaces instead with the LynxOS TCP/IP
module. This interface is defined by a set of driver entry points and data structures,
described in the following sections.

Kernel threads play an important role in LynxOS networking software, not only
within the drivers, but also as part of the TCP/IP module.

The example code below illustrates these points for an Ethernet device. These
examples can easily be adapted to other technologies.

Kernel Data Structures

A network driver must make use of a number of kernel data structures. Each of
these structures is briefly described here and its use is further illustrated.

A driver must include the following header files, which define these structures and
various symbolic constants used in the rest of this chapter:

#include <types.h>
#include <io.h>
#include <ioctl.h>
#include <socket.h>
#include <bsd/in.h>
#include <bsd/if.h>
#include <bsd/if_ether.h>
#include <bsd/in_var.h
#include <bsd/bsd_mbuf.h>
#include <bsd/netisr.h>
Writing Device Drivers for LynxOS 119

Chapter 7 - Network Device Drivers

struct ether_header

The Ethernet header must be prefixed to every outgoing packet. It specifies the
destination and source Ethernet addresses and a packet type. The symbolic
constants ETHERTYPE_IP, ETHERTYPE_ARP and ETHERTYPE_RARP can be
used for the packet type.

struct ether_header {
u_char ether_dhost[6]; /* dest Ethernet addr */
u_char ether_shost[6]; /* source Ethernet addr */
u_short ether_type; /* Ethernet packet type */

}

struct arpcom

The arpcom structure is used for communication between the TCP/IP module
and the network interface driver. It contains the ifnet structure (described
below) and the interface’s Ethernet and Internet addresses. This structure must be
the first element in the statics structure.

struct arpcom {
struct ifnet ac_if;/* network visible interface */
u_char ac_enaddr[6]; /* Ethernet address */
struct in_addr ac_ipaddr; /* Internet address */
struct ether_multi *ac_multiaddrs;

/* list of ether multicast addrs */
int ac_multicnt;/* length of ac_multiaddrs list */

};

struct sockaddr

This is a generic structure for specifying socket addresses, containing an address
family field and up to 14 bytes of protocol-specific address data.

struct sockaddr {
u_char sa_len; /* total length */
u_char sa_family; /* address family */
char sa_data[14]; /* longer; addr value */

};

struct sockaddr_in

A structure used for specifying socket addresses for the Internet protocol family

struct sockaddr_in {
u_char sin_len;
u_char sin_family; /* always AF_INET */
u_short sin_port; /* port number */
struct in_addr sin_addr; /* host Internet addr */
char sin_zero[8];

};
120 Writing Device Drivers for LynxOS

struct in_addr

struct in_addr

Structure specifying a 32 bit host Internet address

struct in_addr {
u_long s_addr;

};

struct ifnet

This is the principle data structure used to communicate between the driver and the
TCP/IP module. struct ifnet is defined in /usr/include/bsd/if_var.h.
It provides the TCP/IP software with a generic hardware-independent interface to
the network drivers. It specifies a number of entry points that the TCP/IP module
can call in the driver, a flag variable indicating general characteristics and current
state of the interface, a queue for outgoing packets, and a number of statistics
counters.

struct ifnet {
char *if_name; /* name, e.g. "wd" or "oblan" */
char *p; /* user defined field */
struct ifnet *if_next;
/* all struct ifnets are chained */
struct ifaddr *if_addrlist;
/* linked list of addresses */
int if_pcount; /* number of promiscuous listeners */
caddr_t if_bpf; /* packet filter structure */
u_short if_index; /* numeric abbreviation for if */
short if_unit; /* sub-unit for lower level driver */
short if_timer; /* time ‘til if_-watchdog called */
short if_flags; /* up/down, broadcast, etc. */

struct if_data {
/* generic interface information */
u_char ifi_type; /* Ethernet, tokenring etc */
u_char ifi_addrlen; /* media address length */
u_char ifi_hdrlen; /* media header length */
u_long ifi_mtu; /* maximum transmission unit */
u_long ifi_metric;/* routing metric (external) */
u_long ifi_baudrate; /* line speed */

/* volatile statistics */
u_long ifi_ipackets;/* packets received on i/f */
u_long ifi_ierrors; /* input errors on i/f */
u_long ifi_opackets; /* packets sent on i/f */
u_long ifi_oerrors; /* ouput errors on i/f */
u_long ifi_collisions;
/* collisions on csma i/f */
u_long ifi_ibytes;
/* total number of bytes received */
u_long ifi_obytes;
/* total number of octets sent */
u_long ifi_imcasts;
/* packets received via multi-cast */
u_long ifi_omcasts;
/* packets sent via multi-cast */
u_long ifi_iqdrops;
Writing Device Drivers for LynxOS 121

Chapter 7 - Network Device Drivers

/* dropped on input, this interface */
u_long ifi_noproto;
/* destined for unsupported protocol */
struct timeval ifi_lastchange;/* last updated */

} if_data;

/* procedure handles */
int (*if_init)(); /* init routine */
int (*if_output)(); /* output routine */
int (*if_start)(); /* initiate output routine */
int (*if_done)(); /* output complete routine */
int (*if_ioctl)(); /* ioctl routine */
int (*if_reset)(); /* bus reset routine */
int (*if_watchdog)(); /* timer routine */
int (*if_setprio)(); /* prio tracking of kthread */

/* output queue */
struct ifqueue {

struct mbuf *ifq_head;
struct mbuf *ifq_tail;
int ifq_len;
int ifq_maxlen;
int ifq_drops;

} if_snd;
struct raweth *if_raweth;

};

The symbolic constants IFF_UP, IFF_RUNNING, and IFF_BROADCAST can be
used to set bits in the if_flags field.

Looking at the arpcom structure, notice that the first member is an ifnet
structure. A driver should declare a struct arpcom as part of the statics
structure and use the ifnet structure within this. There is an important reason for
this, explained in “ioctl Entry Point” on page 134.

struct mbuf

Data packets are passed between the TCP/IP module and a network interface driver
using mbuf structures. This structure is designed to allow the efficient
encapsulation and decapsulation of protocol packets without copying data. A
number of functions and macros are defined in mbuf.h for using mbuf
structures.

/* header at beginning of each mbuf: */
struct m_hdr {

struct mbuf *mh_next; /* next buffer in chain */
struct mbuf *mh_nextpkt; /* next chain in queue */
int mh_len; /* amount of data in this mbuf */
caddr_t mh_data; /* location of data */
short mh_type; /* type of data in this mbuf */
short mh_flags; /* flags; see below */

};

/* record/packet header in first mbuf of chain;
* valid if M_PKTHDR set
*/
122 Writing Device Drivers for LynxOS

Adding or Removing Data in an mbuf

struct pkthdr {

int len; /* total packet length */
struct ifnet *rcvif; /* rcv interface */

};

/* description of external storage mapped into mbuf,
* valid if M_EXT set
 */

struct m_ext {
caddr_t ext_buf; /* start of buffer */
void (*ext_free)(); /* free routine */
u_int ext_size; /* size of buffer, for ext_free */

};

struct mbuf {
struct m_hdr m_hdr;
union {

struct {
struct pkthdr MH_pkthdr; /* M_PKTHDR set */
union {

struct m_ext MH_ext; /* M_EXT set */
char MH_databuf[MHLEN];

} MH_dat;
} MH;
char M_databuf[MLEN]; /* !M_PKTHDR, !M_EXT */

} M_dat;
};

#define m_next m_hdr.mh_next
#define m_len m_hdr.mh_len
#define m_data m_hdr.mh_data
#define m_type m_hdr.mh_type
#define m_flags m_hdr.mh_flags
#define m_nextpkt m_hdr.mh_nextpkt
#define m_act m_nextpkt
#define m_pkthdr M_dat.MH.MH_pkthdr
#define m_ext M_dat.MH.MH_dat.MH_ext
#define m_pktdat M_dat.MH.MH_dat.MH_databuf
#define m_dat M_dat.M_databuf

Adding or Removing Data in an mbuf
The position and size of data currently in an mbuf are identified by a pointer and
a length. By changing these values, data can be added or deleted at the beginning
or end of the mbuf. A pointer to the start of the data in the mbuf can be obtained
using the mtod macro. The pointer is cast as an arbitrary data type, specified as an
argument to the macro. For example:

char *cp;
struct mbuf *mb;

cp = mtod (mb, char *);
/* get pointer to data in mbuf */
Writing Device Drivers for LynxOS 123

Chapter 7 - Network Device Drivers

The macro dtom takes a pointer to data placed anywhere within the data portion
of the mbuf and returns a pointer to the mbuf structure itself. For example, if we
know that cp points within the data area of an mbuf, the sequence will be:

struct mbuf *mb;
char *cp;

mb = dtom(cp);

Data is added to the head of an mbuf by decrementing the m_data pointer,
incrementing the m_len value and copying the data using a function such as
bcopy. Data is added to the tail of an mbuf in a similar manner by incrementing
the m_len value. The ability to add data to the tail of an mbuf is useful for
implementing trailer protocols; LynxOS does not currently support such protocols.

Data is removed from the head or tail of an mbuf by simply incrementing the
m_data pointer or decrementing m_len.

Allocating mbufs
The above examples did not discuss what to do when sufficient space is not
available in an mbuf to add data. In this case, a new mbuf can be allocated using
the function m_get. The new mbuf is linked onto the existing mbuf chain using
its m_next field. m_get can be replaced with MGET, which is a macro rather
than a function call. MGET produces faster code whereas m_get results in smaller
code. The example to add data to the beginning of a packet now becomes:

struct mbuf *m;
caddr_t src, dst;

MGET(m, M_DONTWAIT, MT_HEADER);
if (m == NULL)

return (ENOBUFS);
dst = mtod (m, caddr_t);
bcopy (src, dst, n);

The second argument to m_get or MGET specifies whether the function should
block or return an error when no mbufs are available. A driver should use
M_DONTWAIT, which causes the mbuf pointer to be set to 0 if no mbufs are free.

The third argument to m_get or MGET specifies how the mbuf will be used.
This is for statistical purposes only and is used, for example, by the command
netstat -m. The types used by a network driver are MT_HEADER for protocol
headers and MT_DATA for data packets.
124 Writing Device Drivers for LynxOS

mbuf Clusters

mbuf Clusters
When receiving packets from a network interface, a driver must allocate mbufs to
store the data. If the data packets are large enough, a structure known as an mbuf
cluster can be used. A cluster can hold more data than a regular mbuf; MCLBYTES
bytes as opposed to MLEN. As a rule, there is benefit to be gained from using a
cluster if the packet is larger than MCLBYTES/2.

Freeing mbufs
Because there is a limited number of mbufs in the system, the driver must take
care to free mbufs at appropriate points. These are listed below:

Packet Output:

• Interface is down

• Address family not supported

• No mbufs for Ethernet header

• if_snd queue is full

• After packet has been transferred to interface

Packet Input:

• Not enough mbufs to receive packet

• Unknown Ethernet packet type

• Input queue is full

The sections “Packet Input” and “Packet Output” show appropriate code examples
for each of the above situations. Failure to free them will eventually lead to the
system running out of mbufs.

Table 7-1: Summary of Commonly Used mbuf Macros

Macro Description

MCLGET Get a cluster and set the data pointer of the mbuf to point to the
cluster.

MFREE Free the mbuf. On return, the mbuf successor (pointed to by
m->m_next) is stored in the second argument.

MGETHDR Allocate an mbuf and initialize it as a packet header.
Writing Device Drivers for LynxOS 125

Chapter 7 - Network Device Drivers
MH_ALIGN Set the m_data pointer to an mbuf containing a packet header to
place an object of the specified size at the end of mbuf, longword
aligned.

M_PREPEND Prepend specified bytes of data in front of the data in the mbuf.

dtom Convert the data pointer within mbuf to mbuf pointer.

mtod Convert mbuf pointer to data pointer of specified type.

NOTE: MCLGET, MFREE, MGETHDR, MH_ALIGN, and M_PREPEND are protected
by network semaphore lock.

Table 7-2: Summary of Commonly Used mbuf Functions

Function Description

m_adj Remove data from mbuf at start or end.

m_cat Concatenate one mbuf chain to another.

m_copy Version of m_copym that does not wait

m_copydata Copy data from mbuf chain to a buffer.

m_copyback Copy data from buffer to an mbuf chain.

m_copym Create a new mbuf chain from an existing mbuf chain.

m_devget Create a new mbuf chain with a packet header from data in a buffer.

m_free A function version of MFREE macro

m_freem Free all mbufs in a chain.

m_get A functional version of MGET macro.

m_getclr Get an mbuf and clear the buffer.

m_gethdr A function version of the MGETHDR macro.

m_pullup Pull up data so that a certain number of bytes of data are stored
contiguously in the first mbuf in the chain.

Table 7-1: Summary of Commonly Used mbuf Macros (Continued)

Macro Description
126 Writing Device Drivers for LynxOS

Statics Structure

Statics Structure

In keeping with the general design philosophy of LynxOS drivers, network drivers
should define a statics structure for all device-specific information. However, the
TCP/IP software has no knowledge of this structure, which is specific to each
network interface, and does not pass it as an argument to the driver entry points.

The solution to this situation is for the ifnet structure to be contained within the
statics structure. The user-defined field, p, in the ifnet structure, is initialized to
contain the address of the statics structure.

Given the address of the ifnet structure passed to the entry point from the
TCP/IP software, the driver can obtain the address of the statics structure as
follows:

struct ifnet *ifp;
struct statics *s = (struct statics *) ifp->p;

The arpcom structure must be the first element in the statics structure. In the code
examples below, the arpcom structure is named ac.

Packet Queues

A number of queues are used for transferring data between the interface and the
TCP/IP software. There is an output queue for each interface, contained in the
ifnet structure. There are two input queues used by all network interfaces. One
for IP packets and another for ARP/RARP packets. All queues are accessed using
the macros IF_ENQUEUE, IF_DEQUEUE, IF_QFULL, or IF_DROP.
Writing Device Drivers for LynxOS 127

Chapter 7 - Network Device Drivers

Driver Entry Points

A network driver contains the following entry points:

By convention, the entry point names are prefixed with the driver name.

install Entry Point

In addition to the usual things done in the install routine (allocation and
initialization of the statics structure, declaration of interrupt handler, etc.), the
driver must also fill in the fields of the ifnet structure and make the interface
known to the TCP/IP software. Note also that hardware initialization is normally
done in the ioctl routine rather than in the install routine.

Finding the Interface Name
The install routine must initialize the if_name field in the ifnet structure.
This is the name by which the interface is known to the TCP/IP software. It is used,
for example, as an argument to the ifconfig and netstat utilities.

Table 7-3: Network Driver Entry Points

Entry Point Description

install/uninstall Called by the kernel in the usual manner. The install
routine must perform a number of tasks specific to network
drivers.

interrupt handler The interrupt handler is declared and called in exactly the
same manner as for other drivers.

output Called by TCP/IP software to transmit packets on the
network interface

ioctl Called by TCP/IP software to perform a number of
commands on the network interface.

watchdog Called by the TCP/IP software after a user-specified
timeout period.

reset Called by the kernel during the reboot sequence.

setprio Called by the TCP/IP software to implement priority
tracking.
128 Writing Device Drivers for LynxOS

Initializing the Ethernet Address

The interface name is a user-defined field specified in the driver’s device
configuration file (drvr.cfg) in the /sys/lynx.os directory. The usual
technique used by the driver to find this field is to search the ucdevsw table for
an entry with a matching device information structure address. ucdevsw is a
kernel table containing entries for all the character devices declared in the
CONFIG.TBL file. The kernel variable nucdevsw gives the size of this table.

extern int nucdevsw;
extern struct udevsw_entry ucdevsw[];
struct statics *s;
struct ifnet *ifp;

ifp->if_name = (char *) 0;
for (i = 0; i < nucdevsw; i++) {

if (ucdevsw[i].info == (char *) info) {
if (strlen (ucdevsw[i].name) > IFNAMSIZ) {

sysfree (s, (long) sizeof (struct statics));
return ((char *) SYSERR);

}
ifp->if_name = ucdevsw[i].name;
break;

}
}
if (ifp->if_name == (char*) 0) {

sysfree (s, (long) sizeof (struct statics));
return ((char *) SYSERR);

}

Initializing the Ethernet Address

The ac_enaddr field in the arpcom structure is used to hold the interface’s
Ethernet address, which must be included in the Ethernet header added to all
outgoing packets. The install routine should initialize this field by reading the
Ethernet address from the hardware.

struct statics *s;

get_ether_addr (&s->ac.ac_enaddr);

In the above example, get_ether_addr would be a user written function that
reads the Ethernet address from the hardware.

Initializing the ifnet Structure

The various fields in the ifnet structure should be initialized to appropriate
values. Unused fields should be set to zero or NULL. Once the structure has been

NOTE: This method only works for statically installed drivers. Dynamically
installed drivers do not have an entry in the ucdevsw table.
Writing Device Drivers for LynxOS 129

Chapter 7 - Network Device Drivers

initialized, the network interface is made known to the TCP/IP module by calling
the appropriate network interface attach routine, for example
ether_ifattach() for Ethernet drivers.

struct statics *s;
struct ifnet *ifp;

ifp->if_timer = 0 ;
ifp->p = (char *) s;/* address of statics structure */
ifp->if_unit = 0;
ifp->if_init = NULL;
ifp->if_output = ether_output;
ifp->if_ioctl = drvr_ioctl;
ifp->if_reset = drvr_reset;
ifp->if_start = drvr_start;
ifp->if_setprio = drvr_setprio;
ifp->if_watchdog = drvr_watchdog;

ether_ifattach (ifp);

Note that the if_output handle in the ifnet structure should point to the
ether_output routine in the TCP/IP module. Previously it pointed to the driver
specific local routine. In BSD 4.4, most of the hardware-independent output code
has been moved to the ether_output routine. After the ether_output
routine has packaged the data for output, it calls a start routine specified by
if_start, a member of the interface ifnet structure. For example:

ifp->if_start = lanstart;

Packet Output

The processing of outgoing packets is divided into two parts. The first part
concerns the TCP/IP module, which is responsible for queueing the packet on the
interface’s output queue. The actual transmission of packets to the hardware is
handled by the driver start routine and the kernel thread. The driver is
responsible in all cases for freeing the mbufs holding the data once the packet has
been transmitted or when an error is encountered.

ether_output Function

A number of tasks previously performed by the driver output routine are now done
in TCP/IP module by ether_output routine. Thus the if_output field of the
interface ifnet structure is initialized to the address of the ether_output
routine in the driver install routine:

ifp->if_output = ether_output;
130 Writing Device Drivers for LynxOS

ether_output Function

This causes ether_output routine to be called indirectly when the TCP/IP
module has a packet to transmit. After enqueuing the packet to transmit,
ether_output calls a device-specific function indirectly through the if_start
pointer in the ifnet structure. For example, if ifp points to an ifnet
structure,

(*ifp->if_start)(ifp),

the if_start field is also initialized by the driver install routine. The driver
start routine starts output on the interface if resources are available. Before
removing packets from the output queue for transmission, the code normally has to
test whether the transmitter is idle and ready to accept a new packet. It typically
dequeues a packet (which is enqueued by ether_output) and transmits it.

if (ds->xmt_pending) {
/* if already one transmission is in progress */

return 1;
}
IF_DEQUEUE(&ifp->if_snd, m);
if (m == 0) {

return 0;
}
ds->xmt_pending = 1;

 ...
 ...
/* Initiate transmission if using Berkeley packet filter */
if (ifp->if_bpf)

bpf_mtup(m)
return 0;

One important point to consider is that the start routine can now be called by the
TCP/IP module (by way of ether_output) and the driver stream task upon
receiving an interrupt. Thus, the start routine must protect code and data in the
critical area. For example, it could check a pending flag, which is set before
starting to transmit, and cleared when a transmit done interrupt is received. If the
transmit start routine is not reentrant, it could signal a semaphore in order to notify
the driver’s kernel thread that packets are now available on the output queue. The
routine should then return 0 to indicate success. For example:

ssignal(&s->thread_sem);
return (0);

Also note that the total data available in an mbuf can be obtained from the mbuf
packet header. For example:

/* put mbuf data into TFD data area */
length = m->m_pkthdr.len;
m_copydata(m, 0, length, p);
m_freem(m);
Writing Device Drivers for LynxOS 131

Chapter 7 - Network Device Drivers

Kernel Thread Processing

The kernel thread must perform the following activities relating to packet output.

• Start transmission

• Maintain statistics counters

Starting Transmission
As explained above, the kernel thread also calls the driver start routine to start
transmission. The transmit start routine dequeues a packet from the interface send
queue and transmits it.

Statistics Counters
The counters relating to packet output are the if_opackets, if_oerrors, and
if_collisions fields in the ifnet structure. The if_opackets counter
should be incremented for each packet that is successfully transmitted by the
interface without error. If the interface indicates that an error occurred during
transmission, the if_oerrors counter should be incremented. The driver should
also interrogate the interface to determine how many collisions, if any, occurred
during transmission. A collision is not necessarily an error condition. An interface
normally makes a number of attempts to send a packet before raising an error
condition.

Packet Input

When packets are received by a network interface they must be copied from the
device to mbufs and passed to the TCP/IP software. Because this can take a
significant amount of time, the bulk of the processing of incoming packets should
be done by the driver’s kernel thread so that it does not impact the system’s real-
time performance. The interrupt handler routine should do the minimum necessary
to ensure that the interface continues to function correctly.

To maintain bounded system response times, the interrupt handler should also
disable further interrupts from the interface. These will be re-enabled by the
driver’s kernel thread. The processing of input packets involves the following
activities:

• Determining packet type
132 Writing Device Drivers for LynxOS

Determining Packet Type

• Copying data from interface into mbufs

• Stripping off Ethernet header

• Enqueueing packet on input queue

• Re-enabling receiver interrupts

• Maintaining statistics counters

Determining Packet Type

The packet type is specified in the Ethernet header and is used by the driver to
determine where to send the packet received. In the following code, the ptr
variable is assumed to be a pointer to the start of the received Ethernet frame. The
use of the ntohs function ensures the portability of code across different CPU
architectures.

ether_type = ntohs (((struct ether_header *)ptr)->ether_type);

Copying Data to mbufs

Most network devices have local RAM, which is visible to the device driver. On
packet reception, the driver must allocate sufficient mbufs to hold the received
packet, copy the data to the mbufs, then pass the mbuf chain to the TCP/IP
software. The ifnet structure is added to the start of the packet so that the upper
layers can easily identify the originating interface. The Ethernet header must be
stripped from the received packet. This can be achieved simply by not copying it
into the mbuf(s). If the entire packet can not be copied, any allocated mbufs
must be freed. The following code outlines how a packet is copied from the
hardware to mbufs using the m_devget routine. m_devget is called with the
address and the size of the buffer that contains the received packet. It creates a new
mbuf chain and returns the pointer to the chain.

m = m_devget(buf, len, 0, ifp, 0);

ifp is the device interface pointer. The variable buf points to the received data.
This is usually an address in the interface’s local RAM.

By default, m_devget uses bcopy, which copies data one byte at a time.

A driver can provide a different algorithm for more efficiency and pass its address
to the m_devget routine.
Writing Device Drivers for LynxOS 133

Chapter 7 - Network Device Drivers

Enqueueing Packet

The packet read routine finally calls a TCP/IP module called ether_input to
enqueue the received packet on one of the TCP/IP software’s input queues for
further processing.

struct ifnet *ifnet;
struct ether_header *et;
struct mbuf *m;

ether_input(ifp, et, m);

Statistics Counters

The counters relating to packet input are the if_ipackets and if_ierrors
fields in the ifnet structure. The if_ipackets counter should be incremented
for each packet that is successfully transferred from the interface and enqueued on
the TCP/IP input queue. Receive errors are normally indicated by the interface in a
status register. In this case the if_ierrors counter should be incremented.

ioctl Entry Point

The ioctl entry point is called by the TCP/IP software in the following syntax:

drvr_ioctl (ifp, cmd, arg)
struct ifnet *ifp;
int cmd; /* ioctl command id */
caddr_t arg; /* command specific data */

The ioctl function must support the two commands SIOCSIFADDR and
SIOCSIFFLAGS.

SIOCSIFADDR

This command is used to set the network interface’s IP address. Currently, the only
address family supported is Internet. Typically this ioctl gets called by the
ifconfig utility. The driver should set the IFF_UP bit in the if_flags and
call the drvr_init function to initialize the interface. The argument passed to
the ioctl routine is cast to a pointer to an ifaddr structure, which is then used
to initialize the interface’s Internet address in the arpcom structure. The driver
should also call arpwhohas to broadcast its Internet address on the network. This
allows other nodes to add an entry for this interface in their ARP tables.
134 Writing Device Drivers for LynxOS

SIOCSIFFLAGS

SIOCSIFFLAGS

This command is used to bring the interface up or down and is called, for example,
by the command ifconfig name up. The TCP/IP software sets or resets the
IFF_UP bit in the if_flags field before calling the driver’s ioctl entry point
to indicate the action to be taken. An interface that is down cannot transmit
packets.

When the interface is brought up, the driver should call the drvr_init function
to initialize the interface. When the interface is brought down, the interface should
be reset by calling drvr_reset. In both cases, the statistics counters in the
ifnet structure should be zeroed.

The driver normally defines a flag in the statics structure that it uses to keep track
of the current state of the interface (s->ds_flags in the example code below).

struct statics *s;
struct ifaddr *ifa;

case SIOCSIFADDR:
ifa = (struct ifaddr *) arg;
ifp->if_flags |= IFF_UP;
drvr_init (s);
switch (ifa->ifa_addr->sa_family) {

case AF_INET :
((struct arpcom*)ifp)->ac_ipaddr = IA_SIN

(ifa)->sin_addr;
arpwhohas ((struct arpcom*)ifp, &IA_SIN
(ifa)->sin_addr);

break;
default :

break;
}
break;

case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 && s->ds_flags & DSF_RUNNING) {

drvr_reset (s); /* interface going down */
s->ds_flags &= ~DSF_RUNNING;

} else if ((ifp->if_flags & IFF_UP) &&
!(s->ds_flags & DSF_RUNNING)) {

drvr_init(s); /* interface coming up */
}
ifp->if_ipackets = 0 ;
ifp->if_opackets = 0 ;
ifp->if_ierrors = 0 ;
ifp->if_oerrors = 0 ;
ifp->if_collisions = 0 ;
break;
Writing Device Drivers for LynxOS 135

Chapter 7 - Network Device Drivers

watchdog Entry Point

The watchdog entry point can be used to implement a function that periodically
monitors the operation of the interface, checking for conditions such as a hung
transmitter. The function can then take corrective action if necessary. If the driver
does not have a watchdog function, the corresponding field in the ifnet structure
should be set to NULL before calling if_attach.

The watchdog function is used in conjunction with the if_timer field in the
ifnet structure. This field specifies a timeout interval in seconds. At the
expiration of this interval, the TCP/IP module calls the watchdog entry point in
the driver, passing it the p field from the ifnet structure as an argument. The p
field is normally used to contain the address of the statics structure.

Note that the timeout interval specified by if_timer is a one-shot function. The
driver must reset it to a non-zero value to cause the watchdog function to be called
again. Setting the if_timer value to 0 disables the watchdog function.

reset Entry Point

This entry point is called by the kernel during a reboot sequence, passing it the p
field from the ifnet structure, which is normally the address of the statics
structure. This function may also be called internally from the driver’s ioctl
entry point. The function should reset the hardware, putting it into an inactive state.

Kernel Thread

The kernel thread receives events from two sources, the interrupt handler
(indicating completion of a packet transmission or reception) and the driver output
routine (indicating the availability of packets on the if_snd queue). A single
event synchronization semaphore is used for both purposes. The thread should
handle interrupts first and then the packets on the output queue. The general
structure of the thread looks something like:

struct statics *s;

for (;;) {
swait (&s->threadsem, SEM_SIGIGNORE);
handle_interrupts (s);/* handle any interrupts */
output_packets (s);
/* start tranmitter if necessary */

}

136 Writing Device Drivers for LynxOS

Priority Tracking

The precise details of the thread code depend on the hardware architecture. The
function for processing interrupts contains the packet input code discussed above.
It also maintains the various statistics counters. Also, receiver interrupts, if
disabled by the interrupt handler, are re-enabled at this point. The output function
performs the tasks discussed above in the “Packet Output” section.

Priority Tracking

Whenever the set of user tasks using the TCP/IP software changes or the priority of
one of these tasks changes, the setprio entry point in the driver is invoked to
allow the driver to properly implement priority tracking on its kernel thread. The
entry point is passed two parameters, the address of the ifnet structure and the
priority that the kernel thread should be set to. For example:

drvrsetprio (ifp, prio)
struct ifnet *ifp;
int prio;

{
int ktid; /* kernel thread id */

ktid = ((struct statics *) (ifp->p))->kthread_id;
stsetprio (ktid, prio);

}

Driver Configuration File

The driver configuration file drvr.cfg in the /sys/lynx.os directory needs
to declare only the install (and uninstall) entry points. The other entry
points are declared to the TCP/IP module dynamically using the if_attach
function. A typical configuration file looks something like:

C:wd3e: \
::::: \
:::wd3einstall:wd3euninstall

D:wd:wd3e0_info::
N:wd:0:
Writing Device Drivers for LynxOS 137

Chapter 7 - Network Device Drivers

IP Multicasting Support

ether_multi Structure

For each Ethernet interface there is a list of Ethernet multicast address ranges to be
received by the hardware. This list defines the multicast filtering to be
implemented by the device. Each address range is stored in an ether_multi
structure. For example:

struct ether_multi {
u_char enm_addrlo[6]; /* low/only addr of range */
u_char enm_addrhi[6]; /* high/only addr of range */
struct arpcom *enm_ac; /* back pointer to arpcom */
u_int enm_refcount; /* num claims to addr/range */
struct ether_multi *enm_next;
/* ptr to next ether_multi */

};

The entire list of ether_multi is attached to the interface’s arpcom structure.

• If the interface supports IP multicasting, the install routine should set
the IFF_MULTICAST flag. For example:

ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST;

ifp is a pointer to the interface ifnet structure.

• Two new ioctls need to be added. These are SIOCADDMULTI to add
the multicast address to the reception list and SIOCDELMULTI to delete
the multicast address from the reception list. For example:

case SIOCADDMULTI:
case SIOCDELMULTI:

/* Update our multi-cast list */
error = (cmd == SIOCADDMULTI) ?
ether_addmulti((struct ifreq *)data, &s->es_ac) :

ether_delmulti((struct ifreq *)data, &s->es_ac);

if (error == ENETRESET) {
/*
* Multi-cast list has changed; set the
* hardware filter accordingly.
*/

lanreset(s);
error = 0;

}

• The driver reset routine must program the controller filter registers from
the filter mask calculated from the multicast list associated with this
interface. This list is available in the arpcom structure and there are
macros available to access the list. For example:
138 Writing Device Drivers for LynxOS

ether_multi Structure

struct ifnet *ifp = &s->s_if;
register struct ether_multi *enm;
register int i, len;
struct ether_multistep step;

/*
* Set up multi-cast address filter by passing
* all multi-cast addresses through a crc
* generator, and then using the high order 6
* bits as a index into the 64 bit logical
* address filter. The high order two bits
* select the word, while the rest of the bits
* select the bit within the word.
*/

bzero(s->mcast_filter, sizeof(s->mcast_filter));
ifp->if_flags &= ~IFF_ALLMULTI;
ETHER_FIRST_MULTI(step, &s->es_ac, enm);

while (enm != NULL) {
if (bcmp((caddr_t)&enm->enm_addrlo,

(caddr_t)&enm->enm_addrhi,
sizeof(enm->enm_addrlo)) != 0) {

/*
* We must listen to a range of multi-cast
* addresses. For now, just accept all
* multi-casts, rather than trying to set only
* those filter bits needed to match the
* range.
* (At this time, the only use of address
* ranges is for IP multi-cast routing, for
* which the range is big enough to require
* all bits set.)
*/
for (i=0; i<8; i++)

s->mcast_filter[i] = 0xff;
ifp->if_flags |= IFF_ALLMULTI;
break;
}

getcrc((unsigned char *)&enm->enm_addrlo,
s->mcast_filter);
ETHER_NEXT_MULTI(step, enm);

}

• If the driver input routine receives an Ethernet multicast packet, it should
set the M_MCAST flag in the mbuf before passing that mbuf to
ether_input. For example:

char *buf;
struct ether_header *et;
u_short ether_type;
struct mbuf *m = (struct mbuf *)NULL;
int flags = 0;

/* set buf to point to start of received frame */
...
...
et = (struct ether_header *) buf;
ether_type = ntohs((u_short) et->ether_type);

if (et->ether_dhost[0] & 1)
Writing Device Drivers for LynxOS 139

Chapter 7 - Network Device Drivers

flags |= M_MCAST;

/* pull packet off interface */
...
...
m->m_flags |= flags;
ether_input(ifp, et, m);
140 Writing Device Drivers for LynxOS

CHAPTER 8 Installation and Debugging
This chapter discusses the two methods of device driver installation in LynxOS:
static and dynamic.

Static Versus Dynamic Installation

This section provides a comparison the two methods of device driver installation to
assist the developer in choosing the type of installation to suit specific
requirements.

Static Installation

With this method, the driver object code is incorporated into the image of the
kernel. The driver object code is linked with the kernel routines and is installed
during system start-up. A driver installed in this manner can be removed; however
its text and data segments remain within the body of the kernel.

The advantages of static installation are:

• Devices are instantly available upon system start-up, simplifying system
administration. The initial console and root file system devices must use
static installation.

• The installation procedure can be avoided each time the system reboots.

• Static linking allows the driver symbols to be visible from within the
kernel debugger.

NOTE: While neither installation method affects a device driver’s functionality, it is
recommended to use dynamic installation during the development of a new driver.
The device driver can be installed statically after it has been fully tested.
Writing Device Drivers for LynxOS 141

Chapter 8 - Installation and Debugging

Dynamic Installation

This method allows the installation of a driver after the operating system is booted.
The driver object code is attached to the end of the kernel image and the operating
system dynamically adds this driver to its internal structure. A driver installed in
this fashion can also be removed dynamically.

The advantages of dynamic installation are as follows:

• Dynamic installation is useful when the device driver is being written.
The ease of installation and uninstallation makes it ideal for faster
development and debugging.

• More than one driver can be used for the same device. If there is a need to
use two drivers for the same device, they can be installed according to
system needs.

• Memory is not wasted on seldom-used drivers. They are allocated only
when needed.

Static Installation Procedure

The code organization for static installation is shown in the table below.

Table 8-1: Code Organization for Static Installation

Directory File Description

/ lynx.os LynxOS kernel

/sys/lib libdrivers.a Drivers object code library

libdevices.a Device information declarations

/sys/dheaders devinfo.h Device information definition

/sys/devices devinfo.c Device configuration file

Makefile Instructions for making devlib.a

/sys/drivers/drvr driver source The source code for driver drvr to be installed

/sys/lynx.os CONFIG.TBL Master device and driver configuration file.

Makefile Instructions for making /lynx.os

/etc nodetab Device nodes

/sys/cfg driv.cfg Configuration file for driv driver and its devices
142 Writing Device Drivers for LynxOS

Driver Source Code

The following steps describe how to implement a static installation:

1. Create a device information definition and declaration. Place the device
information definition file devinfo.h in the directory /sys/dheaders
along with the existing header files for other drivers in the system.

2. Make sure that the device information declaration file devinfo.c is in
the /sys/devices directory and has the following lines in the file in
addition to the declaration.

#include "../dheaders/devinfo.h"

This ensures the presence of the device information definition.

3. Compile the devinfo.c file and update the
/sys/lib/libdevices.a library file to include devinfo.o. This
may also be automated by adding devinfo.c to the Makefile. For
example:

DEVICE_FILES=atcinfo.x dtinfo.x flopinfo.x devinfo.x

4. To update /sys/lib/libdevices.a, enter:

make install

Driver Source Code

Assuming the new driver is called driver, the following steps must be followed
for driver code installation.

1. Make a new directory driver under /sys/drivers and place the code
of the device driver there.

2. Create a Makefile to compile the device driver.

3. Update the library file /sys/lib/libdrivers.a with the driver
object file using the command:

make install

Device and Driver Configuration File

The device and driver configuration file should be created with the appropriate
entry points, major device declarations, and minor device declarations. The system
configuration file is CONFIG.TBL in the /sys/lynx.os directory.

The CONFIG.TBL file is used with the config utility to produce driver and
device configuration tables for LynxOS. Drivers, major devices, and minor devices
Writing Device Drivers for LynxOS 143

Chapter 8 - Installation and Debugging

are listed in this configuration file. Each time the system is rebuilt, config reads
CONFIG.TBL and produces a new set of tables and a corresponding nodetab file
for use with the mknod utility.

Configuration File: CONFIG.TBL

The parsing of the configuration files in LynxOS follows these rules:

• Commands are designated by single letters as the first character in a line.

• The field delimiter is a colon (:).

• Spaces between the delimiter are not ignored. They are treated literally.

• Blank lines are ignored.

The special characters in the configuration file are

The format of a device driver entry with its major and minor device declarations
should look like this:

Character device
C:driver name:driveropen:driverclose: \

:driverread:driverwrite: \
:driverselect:driverioctl: \
:driverinstall:driveruninstall

D:some driver:devinfo::
N:minor_device1:minor_number
N:minor_device2:minor_number

Block device
B:driver name:driveropen:driverclose: \

:driverstrategy:: \
:driverselect:driverioctl: \
:driverinstall:driveruninstall

D:some driver:devinfo::
N:minor_device1:minor_number
N:minor_device2:minor_number

Table 8-2: Special Characters

Character Description

Indicates a comment in the configuration file. The rest of the line is
ignored when this is the first character in any line.

\ The continuation character to continue a line even within a comment

: If the : is the first character in the line, it is ignored.

I:filename Indicates that the contents of the file filename should replace the
declaration.
144 Writing Device Drivers for LynxOS

Rebuilding the Kernel

The entry points should appear in the same order as they are shown here. If a
particular entry point is not implemented, the field is left out, but the delimiter
should still be in place.

If above declarations are in a file driver.cfg, the entry

I:driver.cfg

should be inserted into the CONFIG.TBL file.

Rebuilding the Kernel

To rebuild the LynxOS kernel, type the following commands:

cd /sys/lynx.os
make install

For the applications programs to use a device, a node must be created in the file
system with mknod. This can be done automatically by using the nodetab file
created by config.

When the system is rebooted to use the newly-created operating system, the
reboot command should be given the N flag:

reboot -aN

The N flag instructs init to run mknod and create all the nodes mentioned in the
new nodetab.

Dynamic Installation Procedure

Dynamic installation requires a single driver object file, and a pointer to the entry
points must be declared. The location of the driver source code is irrelevant in
dynamic installation. The installation of the dynamically-loaded device driver need
not be done manually. A shell script can be written or a C program can be used to
install the device driver after system startup.

Driver Source Code

To install a device driver dynamically the entry points must be declared in a
structure defined in dldd.h. The variable should be named entry_points and
for a block composite driver, block_entry_points is also required.
Writing Device Drivers for LynxOS 145

Chapter 8 - Installation and Debugging

The format of the dldd structure is illustrated below:

#include <dldd.h>
static struct dldd entry_points = { open, close, read

write, select, ioctl, install, uninstall, 0}

For block composite drivers, the block driver entry points are specified as:

static struct dldd block_entry_points =
{ b_open, b_close, b_strategy, ionull, ionull, b_ioctl, b_install,

b_uninstall, 0}

The include file dldd.h must be included in the driver source code and the
declaration must contain the entry points in the same order as they appear above. If
a particular entry point is not present in a driver, the field in the dldd structure
should refer to the external function ionull, which is a kernel function that
simply returns OK. The last field in the dldd structure was used for STREAMS
drivers, which are no longer supported by LynxOS. STREAMS functionality can
be replicated with mmap(). See the mmap() man page for details.

The following example shows the null device driver that will be installed
dynamically.

/* -------------- NULLDRVR.C ------------------*/

#include <conf.h>
#include <kernel.h>
#include <file.h>
#include <dldd.h>

extern int ionull ();
}
nullread(s, f, buff, count)
char *s;
struct file *f;
char *buff;
register int count;
{

return 0;
}
nullwrite(s, f, buff, count)
char *s;
struct file *f;
char *buff;
register int count;
{

return (count);
}
nullioctl()
{

pseterr (EINVAL);
return (SYSERR);

}

NOTE: On the PowerPC platform, the dldd structure should not be declared
static.
146 Writing Device Drivers for LynxOS

Driver Installation

nullselect()
{

return (SYSERR);
}
int nullinstall()
{

return (0);
}
int nulluninstall()
{

return (OK);
}
static struct dldd entry_points = {

ionull,
ionull,
nullread,
nullwrite,
nullselect,
nullioctl,
nullinstall,
nulluninstall,
(kaddr_t *) 0

};

Note that calls to a driver entry point replaced by ionull still succeed. If a driver
does not support certain functionality, then it must include an entry point that
explicitly returns SYSERR, as in the case of the ioctl() and select() entry
point functions in the above example. This causes calls to these entry points from
an application task to fail with an error.

Driver Installation

In this release of LynxOS, follow these recommendations for compiling and
installing dynamic device drivers on a specific LynxOS platform.

x86
LynxOS supports dynamic driver installation with the GNU C compiler. To
compile a dynamically-loadable device driver, the command to be used depends on
whether you are compiling on a Lynx OSa native development system, or on a
cross development host:

On a LynxOS native development system:

/usr/i386-coff-lynxos/usr/bin/gcc -c -o driver.obj\
driver.c -I/sys/include/kernel\
-I/sys/include/family/x86 -D__LYNXOS

NOTE: To dynamically install the null driver on the PowerPC platform, omit the
keyword static from the struct dldd declaration.
Writing Device Drivers for LynxOS 147

Chapter 8 - Installation and Debugging

On a LynxOS cross development host:

$(ENV_PREFIX)/cdk/platform-coff-x86/usr/bin/gcc -c -o\
driver.obj driver.c -I/sys/include/kernel\
-I/sys/include/family/x86 -D__LYNXOS

where platform is

sunos For SunOS targets

win32 For Windows targets

hpux For HP/UX targets

linux For Linux targets

PowerPC
LynxOS for PowerPC supports dynamic driver installation with the GNU C
compiler but requires a special import file for the linker. The import file contains a
list of driver service calls used by the device driver. An example is shown in the
steps below.

1. Compile the driver with GNU C. The command for compiling the driver
depends on whether the target is a native target, or if it is an AIX, SunOS,
Windows, HP/UX, or Linux cross target.

A)For LynxOS native development systems:

/usr/ppc-xcoff-lynxos/usr/bin/gcc -c -o driver.o\
driver.c -I/sys/include/kernel\
-I/sys/include/family/ppc -D__LYNXOS

B)On cross development systems:

NOTE: The current release of LynxOS does not support a.out format dynamic
drivers.
148 Writing Device Drivers for LynxOS

All Platforms

$(ENV_PREFIX)/cdk/platform-xcoff-ppc/usr/bin/gcc\
-c -o driver.o driver.c -I/sys/include/kernel\
-I/sys/include/family/ppc -D__LYNXOS

where platform is

sunos For SunOS targets

win32 For Windows targets

hpux For HP/UX targets

linux For Linux targets

2. Create an import file. For example, the file driver.import contains:

sysbrk
iointset
fclear
iointclr
get1page
free1page

3. Now create a dynamically-loadable object module using ld:

- On a LynxOS native development system:

ld -bM:SRE -bimport:driver.import -o driver.obj\
driver.o

- On a cross development host:

$(ENV_PREFIX)/cdk/platform-xcoff-ppc/usr/bin/ld\
-bM:SRE -bimport:driver.import -o driver.obj\
driver.o

The option -BM:SRE tells the linker this is a shared reusable module.
The option -bimport tells the linker the name of the import file.
platform is the same as described in Step 1.

This will create an object module that has a loader section for dynamic linking and
stub functions for kernel callbacks.

All Platforms
Once a dynamic driver object module has been created, this object module can now
be dynamically installed.

For character device drivers, enter:
Writing Device Drivers for LynxOS 149

Chapter 8 - Installation and Debugging

drinstall -c driver.obj

For block device drivers, enter:

drinstall -b driver.obj

If successful, drinstall or dr_install returns the unique driver-id that
is defined internally by the LynxOS kernel. For the block composite driver, the
driver-id returned will be a logical OR of the character driver-id in the
lower 16 bits and the block driver-id in the upper 16 bits.

It is also possible to use a program to install a driver by using the system call
drinstall().

For a character device driver, use:

dr_install("./driver.obj", CHARDRIVER);

For a block device driver, use:

dr_install("./driver.obj", BLOCKDRIVER);

Device Information Definition and Declaration

The device information definition is created the same way as in the static
installation. To create a device information declaration a program has to be written
to instantiate the device information definition.

Assuming the device information definition appears as:

struct my_device_info {
 int address;
 int interrupt_vector;
};

/* myprogram.c */

struct my_device_info devinfo = { 0xd000, 4 };

main()
{
 write(1, &devinfo, sizeof(struct \
 my_device_info));
}

This program can be compiled and executed while redirecting the output to a file.
When compiling the program, use the default ELF-based compiler.

On a LynxOS native development system:

gcc -o myprogram myprogram.c

On a cross development host:
150 Writing Device Drivers for LynxOS

Device Installation

$(ENV_PREFIX)/bin/gcc -o myprogram myprogram.c

Then run the program on the target computer. Redirect standard output to a file.

./myprogram > mydevice_info

Device Installation

The installation of the device should be done after the installation of the driver. The
two ways of installing devices are either through the devinstall utility program
or cdv_install and bdv_install system calls. For example:

devinstall -c -d driver_id mydevice_info

devinstall -b -e raw_driver_id -d block_driver_id \
mydevice_info

The driver_id is the identification number returned by the drinstall
command or system call. This installs the appropriate device with the
corresponding driver and assigns a major device number to it (in this case, we
assume this is major_no).

Node Creation

Unlike the static installation, there is no feature to automatically generate the nodes
under dynamic installation. This should be done manually using the mknod
command. (See the LynxOS User’s Guide.)

By convention, the node is typically created in the /dev directory. The
creation of the nodes allows application programs to access the driver by opening
and closing the file that has been associated with the driver through the mknod
command.

mknod /dev/device c major_no minor_no

The major_no is the number assigned to the device after a devinstall
command. This can be obtained by using the devices command. The
minor_no is the minor device number, which can be specified by the user in the
range of 0-255. The c indicating a character device could also be a b to indicate a
block device.

Device and Driver Uninstallation

Dynamically loaded device drivers can be uninstalled when they are no longer
needed in the system. This can help in removing unwanted code in physical
Writing Device Drivers for LynxOS 151

Chapter 8 - Installation and Debugging

memory when it is no longer relevant. Removal is performed with the drinstall
command. However, the device attached to the driver has to be uninstalled before
uninstalling the driver. Removing the device is accomplished with the
devinstall command.

For character devices:

devinstall -u -c device_id

For block devices:

devinstall -u -b device_id

After the device is uninstalled the driver can be uninstalled using the command:

drinstall -u driver_id

Common Error Messages During Dynamic Installation

The following list describes some common error messages that may be
encountered during dynamic installation of a device driver. In this case, the
LynxOS kernel assists in debugging efforts by printing help messages to the
system console.

• Bad Exec Format

This is usually seen when a drinstall command is executed. It
indicates that a symbol in the device driver has not been resolved with the
kernel symbols. Make sure that there are no symbols that cannot be
resolved by the kernel and that the structure dldd has been declared inside
the driver.

• Device Busy

This error message is seen when attempting to uninstall the driver before
uninstalling the device. The correct order is to uninstall the device before
uninstalling the driver.

Debugging

This section describes some of the techniques and mechanisms available to assist
with the debugging process.

NOTE: A driver cannot be dynamically installed on a kernel that has been stripped.
152 Writing Device Drivers for LynxOS

Communicating with the Device Driver

Communicating with the Device Driver

Because device drivers are not attached to a particular control terminal, ordinary
printf() statements do not work. LynxOS provides the device driver service
routines kkprintf() and cprintf() to assist in debugging. Both have the
same syntax as the printf() system call.

The kkprintf() routine always outputs to the debug terminal. The
kkprintf() routine can be used in interrupt routines, however, with caution. If
the operating system configuration includes a device that uses the hardware used
by kkprintf(), programs that access the device may hang the system.

The device driver support routine cprintf() prints to the current console.
Unlike kkprintf(), cprintf() cannot be used in an interrupt routine or
where interrupts or preemption are disabled.

Following are some tips for using kkprintf() and cprintf().

• The debug terminal is configured as COM2 on the x86 platform and
TTY0 on the PowerPC. Currently, the debug terminals are not
configurable.

• Insert kkprintf() statements in the install() entry routine of the
new driver. After the devinstall command is executed, the
install() entry point is invoked. This is a good way of identifying if
the install() entry point is invoked, and if the device information
declaration passed is received properly.

• Insert kkprintf() statements in the uninstall() entry point. After
every uninstall the uninstall() entry point is invoked and the
kkprintf() statements should be seen.

• Initially, it is advisable to put a kkprintf() statement at the beginning
of every entry point to make sure it is invoked properly. Once an entry
point function is working properly the kkprintf() statements can be
removed.

• Using kprintf() and cprintf() statements for debugging can
affect the timing characteristics of the driver and may mask timing-
related problems. A way to reduce this debugging overhead involves
having the driver write status information to an internal chunk of
memory. When a failure occurs, use SKDB (see below) to investigate this
area in memory.
Writing Device Drivers for LynxOS 153

Chapter 8 - Installation and Debugging

Simple Kernel Debugger (SKDB)

The Simple Kernel Debugger can also be used to debug device drivers. It allows
breakpoints to be set and can display stack trace and register information.
However, since the symbol table of a dynamic device driver is not added to the
symbol table of the kernel, SKDB may not be useful for debugging dynamic device
drivers. A serial connection to a second machine running kermit to capture
debugging output from SKDB is also possible. See the LynxOS Total/db Guide for
more information on SKDB.

Handling Bus Errors

A bus error occurs when access to an invalid address is made. The function
recoset() can be used to change the default system behavior when a bus error
occurs. By default, the bus fault handler calls panic(), which displays a message
that a serious problem has occurred and attempts to shut down the system.

Before attempting a process that may cause a bus error, use recoset(). If a bus
error occurs, program execution continues as if returning from recoset() with a
non-zero return value. A branch to the code to handle the error condition can then
be made. Restore the default bus error handler with noreco().

For example:

...
p = <some device address>
if (!recoset()) /* setup recoset() and establish branch back to point */
{

x = *p /* possible bus error, if device not present */
}
else
{
/* code to handle bus error, if it occurs */
}
noreco();
...

In the example, if a bus error occurs at x = *p, program execution changes with a
branch back to if (!recoset()). At this point the if condition is evaluated as
if recoset() returned a negative value, and program flow continues with the
code to handle the error.

NOTE: The install() entry point function is protected from crashing if a bus
error occurs and pointers passed to the read() and write() entry points are
validated by the OS so bus errors will not occur. Pointers passed to the ioctl()
entry point function must be checked with rbounds() or wbounds().
154 Writing Device Drivers for LynxOS

Probing for Devices

Probing for Devices

It is very common for the device driver to test for the presence of a device during
the install() entry point. For this reason, LynxOS handles bus errors during
execution of the install routine, thus relieving the driver of this responsibility.
If a bus error occurs, the kernel does not return to the install routine from the
bus error handler. The error is taken to mean that the device is not present and user
tasks will not be permitted to open it.

Additional Notes

• Statically installed device drivers in LynxOS can also be uninstalled
dynamically. However, the memory reclamation of the TEXT section is
not done in this case.

• Symbols from two or more dynamically-loaded device drivers cannot be
resolved. If there are two dynamically-loaded device drivers using
function f(), the code for function f() has to be present in both the
drivers’ source code. This is because if one of the drivers is loaded
initially, function f() does not get resolved with the second device driver
even though it is in memory. Thus, only statically-loaded drivers’
symbols are resolved with dynamic drivers.

• Garbage collection is not provided in LynxOS. Thus, any memory that is
dynamically allocated must be freed before uninstalling the device driver.
Writing Device Drivers for LynxOS 155

Chapter 8 - Installation and Debugging
156 Writing Device Drivers for LynxOS

CHAPTER 9 Device Resource Manager

(DRM)
The Device Resource Manager (DRM) is a LynxOS module that functions as an
intermediary between the operating system, device drivers, and physical devices
and buses. The DRM provides a standard set of service routines that device drivers
can use to access devices or buses without having to know device- or bus-specific
configuration options. DRM services include device identification, interrupt
resource management, device I/O to drivers, and device address space
management. The DRM also supports dynamic insertion and deletion of devices.

This chapter introduces DRM concepts and explains DRM components. Sample
code is provided for DRM interfaces and services. The PCI bus layer is described
in detail with a sample driver and application. This chapter provides information
on the following topics:

• DRM Concepts

• DRM Service Routines

• Using DRM Facilities from Device Drivers

• Using DRM Facilities from Applications

• Advanced Topics

• PCI Bus Layer

• Example Driver

• Sample Application
Writing Device Drivers for LynxOS 157

Chapter 9 - Device Resource Manager (DRM)

DRM Concepts

Device Tree

The Device Tree is a hierarchical representation of the physical device layout of
the hardware. DRM builds a device tree during kernel initialization. The device
tree is made up of nodes representing the I/O controllers, host bridges, bus
controllers, and bridges. The root node of this device tree represents the system
controller (CPU). There are two types of nodes in the device tree: DRM bus nodes
and DRM device nodes.

DRM bus nodes represent physical buses available on the system, while DRM
device nodes represent physical devices attached to the bus.

The DRM nodes are linked together to form parent, child, and sibling relationships.
A typical device tree is shown in the figure below. To support Hot Swap
environments, DRM nodes are inserted and removed from the device tree,
mimicking Hot Swap insertion and extraction of system devices.

Figure 9-1: Device Tree

e

158 Writing Device Drivers for LynxOS

DRM Components

DRM Components

A module view of DRM and related components is shown in the following figure.
A brief description of each module is given below the figure.

• DRM - DRM provides device drivers with a generalized device
management interface.

• KERNEL - The LynxOS kernel provides service to applications and
device drivers. DRM uses many of the kernel service routines.

• BUS LAYER - These modules perform bus-specific operations. DRM
uses the service routines of the bus layer to provide service to the device
drivers.

• DEVICE DRIVER - These modules provide a generic application
programming interface to specific devices.

• BSP - The Board Support Package (BSP) provides a programming
interface to the specific hardware architecture hosting LynxOS. This
module also provides device configuration information to other modules.

Figure 9-2: Module View
Writing Device Drivers for LynxOS 159

Chapter 9 - Device Resource Manager (DRM)

Bus Layer
DRM uses bus layer modules to support devices connected to many different kinds
of buses. There are numerous bus architectures, many of which are standardized.
Typical bus architectures seen in systems are the ISA, PCI, and VME standards,
however, proprietary bus architectures also exist. DRM needs a specific bus layer
module to support a specific kind of bus architecture. The device drivers use DRM
service routines to interface to the bus layers. The bus layers interface with the BSP
to get board-specific information.

The bus layers provide the following service routines to DRM:

• Find bus nodes and device nodes

• Initialize bus and device nodes

• Allocate resources for bus and device nodes

• Free resources from bus and device nodes

• Map and unmap a device resource

• Perform device I/O

• Insert a bus or device node

• Remove a bus or device node

LynxOS supports only one bus layer, which is used for managing PCI and
CompactPCI devices. Some of the DRM functions described later in this chapter
require the bus layer ID. The correct symbol to use is PCI_BUSLAYER.

DRM Nodes

A DRM node is a software representation of the physical device. Each node
contains fields that provide identification, device state, interrupt routing, bus-
specific properties, and links to traverse the device tree. DRM service routines are
used to access the DRM node fields. These routines provide device drivers access
to DRM facilities via a standard interface. This eliminates the need to know
implementation details of the specific software structure. Some of the important
fields of the DRM node are shown in the next table.
160 Writing Device Drivers for LynxOS

DRM Nodes

NOTE: Subsequent coding examples in this chapter make reference to a data
structure of type drm_node_s. This structure is a data item used internally by the
LynxOS kernel as the software representation of a DRM node and is not intended
to be accessed at the driver or user level. LynxOS does not export a definition of
this structure. The coding examples use opaque pointers, which are passed around
and are not meant to be dereferenced.

Table 9-1: DRM Node Fields

Field Name Description

vendor_id This field is used for device vendor identification.

device_id This field identifies the DRM node.

pbuslayer_id This field identifies the primary bus layer of the bus/device node.

sbuslayer_id This field identifies the secondary bus layer of a bus node.

node_type This field indicates the node type--bus node or device node--and
indicates if it is statically or dynamically configured.

drm_state This field describes the life cycle state of the DRM node. DRM
nodes include: IDLE, SELECTED, READY, or ACTIVE.

parent This field links this node to its parent node. The root node has
this field set to NULL to indicate that it has no parent.

child This field links to the child node of this bus node. Only bus nodes
have children.

sibling This field links to the sibling node of this DRM node. The last
sibling of a bus has this field set to NULL.

intr_flg This field indicates if the device raises an interrupt to request
service.

intr_cntlr If the device uses interrupt service, this field indicates the
controller to which the device is connected.

intr_irq This indicates the interrupt request line of the controller to which
this device is connected.

drm_tstamp This field indicates when this node was created.

prop This field links to bus-specific properties of the device.
Writing Device Drivers for LynxOS 161

Chapter 9 - Device Resource Manager (DRM)

DRM Node States

The status of a DRM node is indicated by its state. Initially, a DRM node is set to
IDLE when it is created. Devices that are removed from the DRM tree, or
undetected devices are considered UNKNOWN. The UNKNOWN state is not used by
DRM, but the state is used to denote a device that is unrecognized to DRM. The
following diagram details the stages of DRM node states.
162 Writing Device Drivers for LynxOS

DRM Node States
Figure 9-3: DRM Node States

,'/(

6(/(&7('

5($'<

$&7,9(

A device is discovered/inserted into the DRM tree and initialized to a
minimal extent. The buslayer_id, device_id and vendor_id
node fields identify the node. Some of its bus-specific properties are
initialized. System resources are not allocated to the device. Devices for
which drivers are not available, or devices that are not needed, are left in
this state. IDLE nodes are created by the drm_locate() or the
drm_insertnode() service routines. IDLE nodes are deleted by the
drm_delete_node() service routine.

Devices needed by the system are set to the SELECTED state and resources
are allocated to them. In Hot Swap and high availability, environments ,
configuration-specific policies control the selection of nodes. IDLE DRM
nodes are selected by the drm_select_node() service routine.
SELECTED nodes are set to the IDLE state by the
drm_unselect_node() service routine.

When resources are allocated to the SELECTED node, it is set to a READY
state. A node in the READY state is fully initialized, but is not in use.
System resources and bus resources are assigned to this node. In case the
resource allocation for the DRM node fails, the node remains in the
SELECTED state. A SELECTED node is set to the READY state by the
drm_alloc_resource() service routine. The READY nodes are put into
a SELECTED state by the drm_free_resource() service routine.

A DRM node in use by a device driver is in the ACTIVE state. Either the
drm_get_handle() or drm_claim_handle() service routines
make a DRM node ACTIVE. A driver releases a device by using the
drm_free_handle() service routine. This causes the DRM node to go
into a READY state.

81.12:1

Devices that exist in the system, but are not known to DRM are considered
UNKNOWN. DRM does not use this state, but it is useful for users to
think of all devices unrecognized by DRM to be in this state. Deleting a
DRM node makes the device UNKNOWN to DRM. Once the DRM has
initialized a device node, it is considered IDLE.

��������
	
�
� ������
���
Writing Device Drivers for LynxOS 163

Chapter 9 - Device Resource Manager (DRM)

DRM Initialization

The DRM module is initialized during LynxOS kernel initialization. DRM builds a
device tree of all visible devices and brings them up to a READY state, if possible.
This is to enable all statically linked drivers to claim the DRM nodes and bring up
the basic system service routines. Some DRM nodes may be left in the SELECTED
state after kernel initialization is complete. Typically, this can be the result of
unavailable resources.

LynxOS provides the ability to control PCI resource allocation. PCI resources can
be allocated either by the BIOS or by DRM. By default, LynxOS x86 distributions
use the BIOS to handle resource allocation. For other platforms, DRM handles the
resource allocation. Because DRM uses the same set of interfaces, whether or not it
handles resource allocation, device drivers do not need to change.

For more information on PCI resource allocation and DRM, see the chapter “PCI
Resource Allocator for LynxOS” in the LynxOS User’s Guide.

DRM Service Routines

DRM service routines are used by device drivers to identify, setup and manage
device resources. Typically, they are used in the install() and uninstall()
entry points of the device driver. Device drivers locate the device they need to
service and obtain an identifying handle. This handle is used in subsequent DRM
calls to reference the device. The table below gives a brief description of each
service routine and typical usage. See the DRM man pages for more details.
Additionally, see “Example Driver” on page 177.

Table 9-2: Summary of DRM Services

Service Description Usage

drm_get_handle Searches for a DRM node with a specific vendor
and device identification and claims it for use.

All Drivers

drm_free_handle Releases a DRM node and makes it READY. All Drivers

drm_register_isr Sets up an interrupt service routine. All Drivers

drm_unregister_isr Clears an interrupt service routine. All Drivers

drm_map_resource Creates an address translation for a device
resource.

All Drivers
164 Writing Device Drivers for LynxOS

DRM Service Routines
drm_unmap_resource Removes an address translation for a device
resource.

All Drivers

drm_device_read Performs a read on a device resource. All Drivers

drm_device_write Performs a write on a device resource. All Drivers

drm_locate Locates and builds the DRM device tree. It
probes for devices and bridges recursively and
builds the DRM subtree.

General Device
Management

drm_insertnode Inserts a DRM node with specific properties.
Only a single node is added to the DRM tree by
this service routine.

General Device
Management

drm_delete_subtree Removes a DRM subtree. Only nodes in the
IDLE state are removed.

General Device
Management

drm_prune_subtree Removes a DRM subtree. Nodes in the READY
state are brought to the IDLE state and then
deleted.

General Device
Management

drm_select_node Selects a node for resource allocation. General Device
Management

drm_select_subtree Selects a DRM subtree for resource allocation.
All the nodes in the subtree are SELECTED.

General Device
Management

drm_unselect_node Ignores a DRM node for resource allocation. General Device
Management

drm_unselect_subtree Ignores an entire DRM subtree for resource
allocation.

General Device
Management

drm_alloc_resource Allocates a resource to a DRM node or subtree. General Device
Management

drm_free_resource Frees a resource from a DRM node or subtree. General Device
Management

drm_claim_handle Claims a DRM node, given its handle. The DRM
node is now ACTIVE.

General Device
Management

drm_getroot Gets the handle to the root DRM node. General Device
Management

drm_getchild Gets the handle to the child DRM node. General Device
Management

Table 9-2: Summary of DRM Services (Continued)

Service Description Usage
Writing Device Drivers for LynxOS 165

Chapter 9 - Device Resource Manager (DRM)
Interface Specification

Device drivers call DRM service routines like any standard kernel service routine.
The following table provides a synopsis of the service routines and their interface
specification. Refer to LynxOS man pages for a complete description.

drm_getsibling Gets the handle to the sibling DRM node. General Device
Management

drm_getparent Gets the handle to the parent DRM node. General Device
Management

drm_getnode Gets the DRM node contents. General Device
Management

drm_setnode Sets the DRM node contents. General Device
Management

Table 9-2: Summary of DRM Services (Continued)

Service Description Usage

Table 9-3: DRM Service Routine Interface Specification

Name Synopsis

drm_locate() int drm_locate(struct drm_node_s *handle)

drm_insertnode()

int drm_insertnode(struct drm_node_s
*parent_node, void *prop,
struct drm_node_s **new_node)

drm_delete_subtree()
int drm_delete_subtree(struct drm_node_s
*handle)

drm_prune_subtree() int drm_prune_subtree(struct drm_node_s *handle)

drm_select_subtree()
int drm_select_subtree(struct drm_node_s
*handle)

drm_unselect_subtree()
int drm_unselect_subtree(struct drm_node_s

*handle)

drm_select_node() int drm_select_node(struct drm_node_s *handle)

drm_unselect_node() int drm_unselect_node(struct drm_node_s *handle)

drm_alloc_resource()
int drm_alloc_resource(struct drm_node_s
*handle)
166 Writing Device Drivers for LynxOS

Interface Specification
drm_free_resource() int drm_free_resource(struct drm_node_s *handle)

drm_get_handle()

int drm_get_handle(int buslayer_id,
int vendor_id,
int device_id, struct drm_node_s **handle)

drm_claim_handle() int drm_claim_handle(struct drm_node_s *handle)

drm_free_handle() int drm_free_handle(struct drm_node_s *handle)

drm_register_isr()
int drm_register_isr(struct drm_node_s

*handle, void (isr)(), void *args)

drm_unregister_isr()
int drm_unregister_isr(struct drm_node_s
*handle)

drm_map_resource()
int drm_map_resource(struct drm_node_s *handle,

int resource_id, addr_t *vaddr)

drm_unmap_resource()

int drm_unmap_resource(struct drm_node_s
*handle,

int resource_id)

drm_device_read()

int drm_device_read(struct drm_node_s *handle,
int resource_id,
unsigned int offset, unsigned int size,
void *buffer)

drm_device_write()

int drm_device_write(struct drm_node_s *handle,
int resource_id, unsigned in offset,
unsigned int size, void *buffer)

drm_getroot() int drm_getroot(struct drm_node_s **root_handle)

drm_getchild()
int drm_getchild(struct drm_node_s *handle,

struct drm_node_s **child)

drm_getsibling()
int drm_getsibling(struct *handle,

struct drm_node_s **sibling)

drm_getparent()
int drm_getparent (struct drm_nodes_s *handle,

struct drm_node_s **parent)

drm_getnode()
int drm_getnode (struct drm_nodes_s *src,

struct drm_node_s **dest)

drm_setnode() int drm_setnode (struct drm_nodes_s *handle)

Table 9-3: DRM Service Routine Interface Specification (Continued)

Name Synopsis
Writing Device Drivers for LynxOS 167

Chapter 9 - Device Resource Manager (DRM)

Using DRM Facilities from Device Drivers

Device Identification

In the install() device driver entry point a driver attempts to connect to the
device it intends to use. To locate its device, the driver needs to use the
drm_get_handle() service routine. drm_get_handle() returns a pointer to
the DRM node handle via its handle argument. The driver specifies the device it is
interested in by using drm_get_handle() in the following manner:

install() {

ret = drm_get_handle(buslayer_id,
vendor_id, device_id, &handle)
if(ret)
{

/* device not found .. abort installation */
}

}

It is possible to supply a wild card to drm_get_handle() using
vendor_id = -1 and device_id = -1 as parameters. This claims and returns
the first READY device in an unspecified search order. The driver examines the
properties of the device to perform a selection. The driver needs to subsequently
release the unused devices.

It is also possible to navigate the device tree using traversal functions and to obtain
handles for the nodes. Device selection is performed by other modules, drivers or
system management applications. If device selection has been done by some other
means, the driver claims the device by using the drm_claim_handle() service
routine, taking the node handle as a parameter.

install() {

/* handle obtained externally */
ret = drm_claim_handle(handle);
if(ret)
{

/* Cannot claim device -- abort device install */
}

..
}

The drm_free_handle() service routine is used to release the handle. The
release of the device is typically done in the uninstall() routine of the driver.
The drm_free_handle() takes the node handle to be freed as a parameter.
168 Writing Device Drivers for LynxOS

Device Interrupt Management

uninstall() {

ret = drm_free_handle(handle);
if(ret)
{

/* Error freeing handle, perhaps handle is bogus? */
}

}

In Hot Swap environments, system management service routines select, make
devices ready, and provide node handles for drivers to claim and use. The system
management service routines facilitate the selection and dynamic loading of
needed drivers and provides them with node handles for use.

Device Interrupt Management

DRM maintains all interrupt routing data for a device node. Drivers use the
drm_register_isr() service routine to register an interrupt service routine and
the drm_unregister_isr() service routine to clear a registration. Typically,
this service routine is used in the install() and uninstall() entry points of
the driver. To support sharing of interrupts in a hot swap/high availability
environment, DRM internally dispatches all ISRs sharing an interrupt. The
returned link_id is NULL, and the iointlink() kernel service routine does
not perform any dispatches.

The following code segments illustrate the use of these DRM service routines:

install() {
int ret, link_id;
ret = drm_get_handle(buslayer_id, vendor_id,
device_id, &handle);
link_id = drm_register_isr(handle, isr_func, args);

}

uninstall() {
ret = drm_unregister_isr(handle);
if(Ret)
{

/* Cannot unregister isr? bogus handle? */
}
ret = drm_free_handle(handle);
if(ret)
{

/* Cannot free handle, is handle bogus? */
}

}

The interrupt management service routines return a status message when applied to
a polled mode device.
Writing Device Drivers for LynxOS 169

Chapter 9 - Device Resource Manager (DRM)

Device Address Space Management

Many devices have internal resources that need to be mapped into the processor
address space. The bus layers define such device-specific resources. For example,
the configuration registers, the bus number, device number, and the function
number of PCI devices are considered resources. The bus layer defines resource
IDs to identify device-specific resources. Some of the device resources may need
to be allocated. For example, the base address registers of a PCI device space need
to be assigned a unique bus address space. DRM provides service routines to map
and unmap a device resource into the processor address space. The function
drm_map_resource() takes as parameters the device handle, resource ID and a
pointer to store the returned virtual address. The drm_unmap_resource() takes
as parameters a device handle and resource ID.

The following code fragment illustrates the use of these service routines:

install() {
ret = drm_get_handle(PCI_BUSLAYER,SYMBIOS_VID,NCR825_ID,

&handle);
if(ret)
{

/* Cannot find the scsi controller */
}
link_id = drm_register_isr(handle,scsi_isr,

scsi_isr_args);
ret = drm_map_resource(handle,PCI_RESID_BAR1,

&scsi_vaddr);
if(ret)
{

/* Bogus resource_id ? */
/* resource not mappable */
/* invalid device handle ? */

}
scsi_control_regs = (struct scsi_control *)(scsi_vaddr);
ret =drm_unmap_resource(handle,PCI_RESID_BAR1);
if(ret)
{

/* Bogus handle */
/* resource is not mappable */
/* resource was not mapped */
/* invalid resource_id */

}
}

Device I/O

DRM provides service routines to perform read and write to bus layer-defined
resources. The drm_device_read() service routine allows the driver to read a
device-specific resource. The drm_device_write() service routine allows the
driver to perform a write operation to a device-specific resource. The resource IDs
are usually specified in a bus layer-specific header file. For example, the file
machine/pci_resource.h defines the PCIBUSLAYER resources. Both these
170 Writing Device Drivers for LynxOS

DRM Tree Traversal

service routines use the handle, resource ID, offset, size and a buffer
as parameters. The meaning of the offset and size parameters is defined by
the bus layer. Drivers implement platform-independent methods of accessing
device resources by using these service routines. The following code fragment
illustrates the use of these service routines.

#include <machine/pci_resource.h>
...

/* Enable PCI_IO_SPACE */
ret = drm_device_read(handle,PCI_RESID_CMDREG,0,0,

&pci_cmd);
if(ret)
{

/* could not read device resource? validate parameters? */
}
pci_cmd |= PCI_IO_SPACE_ENABLE;
ret = drm_device_write(handle,PCI_RESID_CMDREG,0,0,

&pci_cmd);
if(ret)
{

/* could not write device resource? validate parameters? */
}

This code is platform independent. The service routines take care of endian
conversion, serialization, and other platform-specific operations.

DRM Tree Traversal

DRM provides a set of functions to navigate the device tree. Most of these
functions take a reference node as input and provide a target node as output. The
functions are listed below:

drm_getroot(&handle) returns the root of the device tree in handle.

drm_getparent(node,&handle) returns the parent of node in handle.

drm_getchild(node,&handle) returns the child of node in handle.

drm_getsibling(node,&handle) returns the sibling of node in handle.

Device Insertion/Removal

DRM provides two service routines that add nodes to the DRM tree:
drm_locate() recursively finds and creates DRM nodes given a parent node as
reference; drm_insertnode() inserts one node. The drm_insertnode()
service routine is used when sufficient data is known about the device being
inserted. The drm_locate() service routine is used to build entire subtrees.
Writing Device Drivers for LynxOS 171

Chapter 9 - Device Resource Manager (DRM)

A typical application involves inserting the bridge device corresponding to a slot,
using the drm_insertnode() service routine. For a given configuration, the
geographic data associated with the slots is generally known. This data is used to
insert the bridge device. The data that is needed to insert a node is bus layer
specific. For the PCIBUSLAYER, the PCI device number and function number are
provided. The reference parent node determines the bus number of the node being
inserted. Also, the bus layer determines the location of the inserted node in the
DRM tree. Once the bridge is inserted, the drm_locate() service routine is used
to recursively build the subtree below the bridge.

The drm_locate() and drm_insertnode() service routines initialize the
DRM nodes to the IDLE state. The drm_selectnode() or
drm_select_subtree() service routines are used to select the desired nodes
and sets the nodes to the SELECTED state. The drm_alloc_resource()
service routines are used to set the nodes to a READY state. DRM nodes in the
READY state are available to be claimed by device drivers. After being claimed, the
node is set to the ACTIVE state.

During extraction, device drivers release the DRM node using the
drm_free_handle() service routine. This brings the DRM node back to a
READY state. Resources associated with the nodes are released by using the
drm_free_resource() service routine. This sets the nodes to the SELECTED
state. The DRM nodes are then put in an IDLE state by using the
drm_unselect_subtree() or drm_unselect_node() service routines. The
IDLE nodes are removed by using the drm_delete_subtree(), or
drm_delete_node() service routines. This last operation puts the device back
into an unknown state. The device is now extracted from the system. A
convenience function, drm_prune_subtree(), removes DRM’s knowledge of
an entire subtree. This routine operates on subtrees that are in the READY state.

When DRM nodes are inserted, they are time-stamped to assist in locating recently
inserted nodes. Most of the DRM facilities are accessed by user mode programs
using the sysctl() interface.

Using DRM Facilities from Applications

User mode applications use the sysctl() interface to get access to DRM
facilities. It is possible to traverse the DRM tree, get node data, and to perform
insertions and deletions using the sysctl() interface. The
sys/drm_sysctl.h header file defines the MIB names and sysctl() data
172 Writing Device Drivers for LynxOS

Using DRM Facilities from Applications

structures that are used. See the sysctl() man page for details on how to use the
system call. The sysctl() call is invoked as:

(int) ret = sysctl(int *name, u_int namelen,
void *oldp, size_t *oldlenp,
void *newp, size_t newlen);

sysctl() parameters are described in the table below.

The top-level MIB name to access DRM-related information is CTL_HW. The
second-level MIB name to access DRM information is HW_DRM. The third-level
names provide DRM-specific facilities as described in the following table.
Writing Device Drivers for LynxOS 173

Chapter 9 - Device Resource Manager (DRM)

Table 9-4: sysctl() Parameters and DRM-Specific Facilities

DRM Facility Description

DRM_GET_ROOT This provides the sysctl() interface to the
drm_getroot() service routine. The handle to the root of
the DRM tree is returned in oldp. In the current
implementation of DRM, the handle is returned as a
(void *) pointer with a size of 32 bits. A buffer that is
sufficient to hold a (void *) pointer needs to be provided
in oldp to hold the returned handle. For example, the
sysctl() system call is made as follows:
{

int mib[3];
void *handle;
int len;
mib[0] = CTL_HW;
mib[1] = HW_DRM;
mib[2] = DRM_GET_ROOT;
len = sizeof(handle);
ret = sysctl(mib,3,&handle,

&len, 0,0);
}

DRM_GET_PARENT This provides the sysctl() interface to the
drm_getparent() service routine. The fourth-level MIB
name is set to the handle of the reference node for which a
parent node is desired. The parent handle is returned in oldp
in a manner similar to DRM_GET_ROOT. An example of the
sysctl() system call follows:
{

int mib[4];
void *parent_handle;
int len;
mib[0] = CTL_HW;
mib[1] = HW_DRM;
mib[2] = DRM_GET_PARENT;
mib[3] = handle;
/* handle to the reference node */
len = sizeof(parent_handle);
ret = sysctl(mib,4,&parent_handle,

&len, 0,0);
}

DRM_GET_CHILD This provides the sysctl() interface to the
drm_getchild() service routine. The fourth-level MIB
name is set to the handle of the reference node. The child
handle is returned in oldp in a manner similar to
DRM_GET_PARENT.
174 Writing Device Drivers for LynxOS

Hot Swap Management Applications
Hot Swap Management Applications

There are special facilities available for Hot Swap management applications. These
facilities are specified as commands to the DRM_CMD third-level facility. The table
below lists the commands that are available at this level.

DRM_GET_SIBLING This provides the sysctl() interface to the
drm_getsibling() service routine. The fourth-level
name is set to the handle of the reference node. The sibling
handle is returned in oldp in a manner similar to
DRM_GET_PARENT.

DRM_GET_NODE This call provides the DRM node data to the application. The
fourth-level name is set to the handle of the reference node. The
DRM node data is returned in a drm_sc_node structure
given in oldp. Look for the definition of drm_sc_node in
sys/drm_sysctl.h. A typical use of DRM_GET_NODE is
as follows:
{

int mib[4];
struct drm_sc_node node;
int len;mib[0] = CTL_HW;
mib[1] = HW_DRM;
mib[2] = DRM_GET_NODE;
mib[3] = handle; /* handle to the reference node */
len = sizeof(node);
/* get the data */
ret = sysctl(mib,4,&node, &len, 0,0);
printf("Vendor ID =

%x\n",node.vendor_id);
printf("Device ID = %x\n",

node.device_id);
printf(" Primary buslayer ID =

%d\n",node.pbuslayer_id);
printf(" Node type =

%d\n",node.node_type);
printf(" Node state = %d\n",node.state);
if(node.node_type & DRM_BUS)
{

printf("Secondary buslayer_id
d\n",node.sbuslayer_id);

}
}

Table 9-4: sysctl() Parameters and DRM-Specific Facilities (Continued)

DRM Facility Description
Writing Device Drivers for LynxOS 175

Chapter 9 - Device Resource Manager (DRM)
The following code fragments illustrate how this interface is used.

do_probe(void *ref_node) {
int mib[5];
int retval;
int len;
int ret;
mib[0] = CTL_HW;
mib[1] = HW_DRM;
mib[2] = DRM_CMD;
mib[3] = CMD_PROBE;
mib[4] = ref_node;
len = sizeof(retval);
/* perform the probe */
ret = sysctl(mib,5,&retval,&len,0,0);

...
}

A sample of the CMD_INSERT code is shown below. The prop structure is filled
in with bus layer-specific data that provides information on the node being
inserted. The ref_node is the parent node of the node to be inserted.

do_insert(void *ref_node, void *prop, prop_len) {
int mib[5];
int handle;

Table 9-5: Hot Swap Facilities

Facility Description

CMD_PROBE Provides a sysctl() interface to the drm_locate()
service routine. The fifth-level name provides a reference
node for the probe.

CMD_SELECT Provides the sysctl() interface for the
drm_select_subtree() and
drm_select_node() service routines.

CMD_ALLOC Provides a sysctl() interface to the
drm_alloc_resource() service routine.

CMD_PRUNE Provides a sysctl() interface to the
drm_prune_subtree() service routine.

CMD_UNSELECT Provides a sysctl() interface to
drm_unselect_subtree() and
drm_unselect_node() service routines.

CMD_INSERT Provides the sysctl() interface to the
drm_insertnode() service routine.

CMD_FREE drm_free resource service routine
176 Writing Device Drivers for LynxOS

Example Driver

int len;
int ret;
mib[0] = CTL_HW;
mib[1] = HW_DRM;
mib[2] = DRM_CMD;
mib[3] = CMD_INSERT;
mib[4] = ref_node;
len = sizeof(handle);
/* perform the insert */
ret = sysctl(mib,5,&handle,&len,prop,prop_len);
...

}

Example Driver

/* This is a sample driver for a hypothetical PCI device. This PCI device has a
vendor_id of ABC_VENDORID and a device_id ABC_DEVICEID. This device has one base
address register implemented as a PCI Memory BAR and needs 4K of space. The
device registers are implemented in this space. The device needs a interrupt
service routine to handle events raised by the device. It may be possible that
there are multiple of these devices in the system. */

#include <pci_resource.h>

#define PCI_IO_ENABLE 0x1
#define PCI_MEM_ENABLE 0x2
#define PCI_BUSMASTER_ENABLE 0x4

struct device_registers {
unsigned int register1;
unsigned int register2;
unsigned int register3;
unsigned int register4;

};

struct device_static {
struct drm_node_s *handle;
struct device_register *regptr;
int bus_number;
int device_number;
int func_number;

};

abc_install(struct info_t *info)
{

struct device_static *static_ptr;
int rv = 0;
unsigned int val;

/* Allocate device static block */

static_ptr = (struct device_static *)
 sysbrk(sizeof(struct device_static));
Writing Device Drivers for LynxOS 177

Chapter 9 - Device Resource Manager (DRM)

if(!static_ptr)
{

/* memory allocation failed !! */
goto error_0;

}

/* Find the device ABC_VENDORID, ABC_DEVICEID. Every call to abc_install()
by the OS, installs a ABC device. The number of times abc_install() is called
depends on how many static devices for ABC have been configured via the standard
LynxOS device configuration facilities. This entry point is also called during
a dynamic device install. */

/* A Hot Swap capable driver may replace the next call with drm_claim_handle()
and pass the handle given by the system management layer, instead of finding the
device by itself */

#if !defined(HOTSWAP)

rv = drm_get_handle(PCI_BUSLAYER,
ABC_VENDORID,ABC_DEVICEID,
&(static_ptr->handle));

#else /* Hot Swap capable */

rv = drm_claim_dhandle(info->handle);
static_ptr->handle = info->handle;

#endif

if(rv)
{
/* drm_get_handle or drm_claim_handle failed to find a

device. return failure to the OS saying install failed. */

debug(("failed to find device(%x,%x)\n",
ABC_VENDORID,ABC_DEVICEID));

goto error_1;
}

/* Register an interrupt service routine for this
device */

rv = drm_register_isr(static_ptr->handle,
abc_isr, NULL);

if(rv == SYSERR)
{

/*If register isr fails release the handle and exit*/

debug(("drm_register_isr failed %d\n",rv));
goto error_2;

}

/* Map in the memory base address register (BAR) */

rv = drm_map_resource(static_ptr->handle,
PCI_RESID_BAR0,
&(static_ptr->regptr));

if(rv)
{

178 Writing Device Drivers for LynxOS

Example Driver

/*drm_map_resource failed , release the device and

exit*/

debug(("drm_map_resource failed with %d\n",rv));

goto error_3;

}

/* Enable the device for memory access */

rv = drm_device_read(static_ptr->handle,
PCI_RESID_CMDREG,0,0,&val);

if(rv)
{

debug(("drm_device_read failed with %d\n",rv));
goto error_4;

}

val |= PCI_MEM_ENABLE ;

rv = drm_device_write(static_ptr->handle,
PCI_RESID_CMDREG,0,0,&val);

if(rv)
{

debug(("drm_device_write failed to update the
command register, error = %d\n",rv);

goto error_4;
}

/* Read the Geographic properties of the device, this
is used by the driver to uniquely identify the
device */

rv = drm_device_read(static_ptr->handle,
PCI_RESID_BUSNO,0,0,
&(static_ptr->bus_number));

if(rv)
{

debug(("drm_device_read failed to read bus
number %d\n",rv));

goto erro_4;
}

rv = drm_device_read(static_ptr->handle,
PCI_RESID_DEVNO,0,0,
&(static_ptr->device_number));

if(rv)
{

debug(("drm_device_read failed to read device
number %d\n",rv));

goto error_4;
}

rv = drm_device_read(static_ptr->handle,
Writing Device Drivers for LynxOS 179

Chapter 9 - Device Resource Manager (DRM)

PCI_RESID_FUNCNO,0,0,
&(static_ptr->func_number));

if(rv)
{

debug(("drm_device_read failed to read function
number %d\n",rv));

goto error_4 ;
}

/* perform any device specific initializations here,
the following statements are just illustrative */

/* recoset() is used to catch any bus errors */

if(!recoset())
{

static_ptr->regptr.register1 = 0;
static_ptr->regptr.register2 = 9600;
static_ptr->regptr.register3 = 1024;

if(static_ptr->regptr.register4 == 0x4)
{

static_ptr->regptr.register3 = 4096;
}

} else {
/* caught a bus error */
goto error_4;

}
noreco(); /* ……………… and so on */

/* Succesfull exit from the install routine, return
the static pointer */

return(static_ptr);

error_4:

drm_unmap_resource(static_ptr->handle,
PCI_RESID_BAR0);

error_3:

drm_unregister_isr(static_ptr->handle);

error_2:

drm_free_handle(static_ptr->handle);

error_1:

sysfree(static_ptr,sizeof(struct device_static));

error_0:

return(SYSERR);

} /* abc_install */

abc_uninstall(struct device_static *static_ptr)
180 Writing Device Drivers for LynxOS

Example Driver

{

unsigned int val;
int rv = 0;

/* perform any device specific shutdowns */

static_ptr->regptr.register1 = 0xff ;

/* and so on */

/* Disable the device from responding to memory access */

rv = drm_device_read(static_ptr->handle,
PCI_RESID_CMDREG,0,0,&val);

if(rv)
{

debug(("failed to read device %d\n",rv));
}
val &= ~(PCI_MEM_ENABLE);
rv = drm_device_write(static_ptr->handle,

PCI_RESID_CMDREG,0,0,&val);
if(rv)
{

debug(("failed to write device %d\n",rv));
}

/* Unmap the memory resource */

rv = drm_unmap_resource(static_ptr->handle,
PCI_RESID_BAR0);

if(rv)
{

debug(("failed to unmap resource %d\n",rv));
}

/* unregister the isr */

rv = drm_unregister_isr(static_ptr->handle);
if(rv)
{

debug(("failed to unregister isr %d\n",rv));
}
/* release the device handle */

rv = drm_free_handle(static_ptr->handle);
if(rv)
{

debug(("Failed to free the device handle %d\n",
rv));

}

sysfree(static_ptr,sizeof(struct device_static));

return(0);
}

/* The other entry points of the driver are device specific */

abc_open(…) {
}

Writing Device Drivers for LynxOS 181

Chapter 9 - Device Resource Manager (DRM)

abc_read(…) {
}

abc_write(…) {
}

abc_ioctl(…) {
}

abc_close(…) {
}

abc_isr(...) {
}

Sample Application
/*
**

This program lists all boards in a Motorola 8216 chasis
**
*/

#include "errno.h"
#include <pci_resource.h>
#include "sys/sysctl.h"
#include "sys/drm_sysctl.h"
#include "sys/pci_sysctl.h"

#define TRUE 1
#define FALSE 0

#define OK TRUE
#define NOT_OK FALSE

#define DEV_NODE8
#define BUS_NODE4

#define MAX_SLOT 16
unsigned int root_node = 0;
unsigned int curr_node = 0;

struct drm_sc_node sc_node;
struct pci_sc_node pci_node;
struct pci_sc_busnode pci_busnode;
int mib[12];
int miblen;

int retval;
int cpx_slot;
struct drm_node_s *slot_handle;
struct drm_node_s *domainA_handle;
int slot_tbl[MAX_SLOT+1];

main()
{

182 Writing Device Drivers for LynxOS

Sample Application

int ret;
int dev_no;
unsigned int len;

printf("Slot#State\n");

/* Get the root node */

mib[0] = CTL_HW;
mib[1] = HW_DRM;
mib[2] = DRM_GET_ROOT;

len = sizeof(root_node);

ret = sysctl(mib,3,&root_node,&len,NULL,0);

if(ret)
{

perror("hsls-1:");
return(1);

}

curr_node = root_node;

/* Get the DomainA Bridge */

while(OK == get_next_node())
{

if(check_node(0x26,0x1011) == OK) break;
}

domainA_handle = (struct drm_node_s *)curr_node;

/* Init slot table */

for(cpx_slot = 1; cpx_slot < MAX_SLOT+1;
cpx_slot++)

{
slot_tbl[cpx_slot] = 0;

}

/* Get the child of the Domain Bridge */

ret =get_handle(domainA_handle,DRM_GET_CHILD,
&slot_handle);

/* Get all the siblings and populate the slot table */
/*
The slot number (index to slot_tbl) is derived from the
pci-device number from the following Motorola 8216
specific formula:

slot_number = 15 - pci_device_no ;
And depends on the wiring of the cPCI backplane.
*/

while(slot_handle)
{

dev_no = get_devno(slot_handle);
slot_tbl[15-dev_no] = (int)slot_handle;
ret = get_handle(slot_handle,DRM_GET_SIBLING,

&slot_handle);
if(ret == NOT_OK) break;
Writing Device Drivers for LynxOS 183

Chapter 9 - Device Resource Manager (DRM)

}

/* Display the slot table */

for(cpx_slot = 1; cpx_slot < MAX_SLOT+1; cpx_slot++) {
switch(cpx_slot) {

case 7:
case 9:
printf("%4.4d %s\n",cpx_slot,
"System Controller");
break;
case 8:
case 10:
printf("%4.4d %s\n",cpx_slot,
"Not Present");
break;
default:
if(slot_tbl[cpx_slot])
{
printf("%4.4d %s\n",cpx_slot,
"occupied");
} else {
printf("%4.4d %s\n",cpx_slot,
"empty");
}
break;

}
}

}

/* Traverse the DRM Tree */

int get_next_node() {

if(TRUE == has_child())
{

get_child();
return OK;

}

if(TRUE == has_sibling())
{

get_sibling();
return(OK);

}

while(TRUE == has_parent())
{

get_parent();
if(TRUE == has_sibling())
{

get_sibling();
return(OK);

}
}
return(NOT_OK);

}

/* Get a parent,child or sibling node */

int get_node(type)
int type;
{

184 Writing Device Drivers for LynxOS

Sample Application

int ret;
unsigned int node;
unsigned int len;

mib[0] = CTL_HW;
mib[1] = HW_DRM;
mib[2] = type;
mib[3] = curr_node;

len = sizeof(node);
ret = sysctl(mib,4,&node,&len,NULL,0);

if(ret)
{

perror("hsls-2:");
return(1);

}

return(node);

}

/* Check if currnode has children */

int has_child()
{

unsigned int node;
node = get_node(DRM_GET_CHILD);

if(!node || node == -1)
return(FALSE);

else
return(TRUE);

}

/* Get child of current node */

get_child()
{

return curr_node = get_node(DRM_GET_CHILD);
}

/* Check if curr node has sibling */

int has_sibling()
{

unsigned int node;
node = get_node(DRM_GET_SIBLING);
if(!node || node == -1)

return(FALSE);
else

return(TRUE);
}

/* Get sibling of current node */

get_sibling()
{

return curr_node = get_node(DRM_GET_SIBLING);
}

Writing Device Drivers for LynxOS 185

Chapter 9 - Device Resource Manager (DRM)

/* Check if current node has a parent */

int has_parent()
{

unsigned int node;
node = get_node(DRM_GET_PARENT);
if(!node || node == -1)

return(FALSE);
else

return(TRUE);
}

/* Get current node’s parent */

get_parent()
{

return curr_node = get_node(DRM_GET_PARENT);
}

/* Check if current node matches given vendor,device id */

check_node(int dev,int vend)
{

int ret;
unsigned int len;

mib[0] = CTL_HW;
mib[1] = HW_DRM;
mib[2] = DRM_GET_NODE;
mib[3] = curr_node;

len = sizeof(sc_node);
ret = sysctl(mib,4,&sc_node,&len,NULL,0);

if(ret)
{

perror("hsls-3:");
return(1);

}

if((dev == sc_node.device_id) &&
 (vend == sc_node.vendor_id)) return (OK);

return(NOT_OK);
}

/* Get the PCI device number given a node handle */

int get_devno(handle)
void *handle;
{

int ret;
unsigned int len;

mib[0] = CTL_HW;
mib[1] = HW_DRM;
mib[2] = DRM_GET_NODE;
mib[3] = (int)handle;
186 Writing Device Drivers for LynxOS

Sample Application

len = sizeof(sc_node);
ret = sysctl(mib,4,&sc_node,&len,NULL,0);

if(ret)
{

perror("hsls-4:");
return(NOT_OK);

}

if((sc_node.pbuslayer_id == PCI_BUSLAYER) &&
 ((sc_node.node_type & DEV_NODE) == DEV_NODE))
{

mib[0] = CTL_HW;
mib[1] = HW_DRM;
mib[2] = DRM_PCI;
mib[3] = PCI_GET_DEVNODE;
mib[4] = (int)handle;

len = sizeof(pci_node);
ret = sysctl(mib,5,&pci_node,&len,NULL,0);

if(ret)
{

perror("hsls-5:");
return(NOT_OK);

}

return(pci_node.device_no);
}

if (((sc_node.node_type & BUS_NODE) == BUS_NODE) &&
 (sc_node.pbuslayer_id == PCI_BUSLAYER) &&
 (sc_node.sbuslayer_id == PCI_BUSLAYER))
{

mib[0] = CTL_HW;
mib[1] = HW_DRM;
mib[2] = DRM_PCI;
mib[3] = PCI_GET_BUSNODE;
mib[4] = (int)handle;

len = sizeof(pci_busnode);
ret = sysctl(mib,5,&pci_busnode,&len,NULL,0);

if(ret)
{

perror("hsls-6:");
return(NOT_OK);

}

return(pci_busnode.device_no);
}

return(NOT_OK);
}

/* Given a reference handle, get the handle of it’s parent,child or sibling */

int get_handle(handle,type,result)
void *handle;
int type;
void **result;
{

Writing Device Drivers for LynxOS 187

Chapter 9 - Device Resource Manager (DRM)

int ret;
unsigned int node;
unsigned int len;

mib[0] = CTL_HW;
mib[1] = HW_DRM;
mib[2] = type;
mib[3] = (int)handle;

len = sizeof(node);
ret = sysctl(mib,4,&node,&len,NULL,0);

if(ret)
{

perror("hsls-7:");
return(NOT_OK);

}

*result = (void *)node;
return(OK);

}

188 Writing Device Drivers for LynxOS

CHAPTER 10 Writing Flash Memory

Technology Drivers (MTDs)
Access to a linear flash device in LynxOS is implemented through a two layer
model. The upper layer, flash_mgr(4), implements the user interface and
encompasses all common algorithms required to access any linear flash device.
This includes argument checking, memory mapping (if required) and adjustments,
synchronization, and so on. The lower layer is a Memory Technology Driver
(MTD), which is a device driver responsible for implementing hardware-specific
details of programming a particular flash device.

The MTD does not interface directly with user applications. It interacts with the
flash_mgr module, through an interface defined by a set of entry points and data
structures, described in the following sections.

This two layer model provides a unified interface to any flash device and removes
the need for redundant algorithms within MTD modules.

Figure 10-1: Flash Manager & MTD Overview

��������	
�	�

��������	

07' 07' 07'

+: +: +:
Writing Device Drivers for LynxOS 189

Chapter 10 - Writing Flash Memory Technology Drivers (MTDs)

Cache Management

The cache of a flash device can be managed by either the MTD or flash_mgr.
For a flash device with unequal segment sizes, the MTD must mange the cache.
flash_mgr requires that the sector sizes beof equal size.

Interface Overview

An MTD is implemented as a character device driver. From the point of view of the
device driver structure, an MTD is very simple - there are only two entry points
required by the LynxOS character device interface that are used in an MTD. These
are install and uninstall.

In the install routine, an MTD registers a callback routine, along with some
related data, with the flash_mgr module. The callback routine is responsible for
implementing a fixed set of flash memory operations for the particular flash
device. flash_mgr invokes the callback routine any time there is the need to
access the flash device at the physical level.

In the uninstall routine, the MTD deregisters the callback, thus notifying the
flash_mgr that the MTD is no longer available for device accesses.

While there is the single flash_mgr component in the kernel, there may be
multiple active (registered) MTDs, each implementing access to its own flash
device. flash_mgr supports multiple opens to different flash devices and
concurrent I/O operations for them. The Flash ID, passed by an MTD to
flash_mgr at registration time, is used as a key for mapping application requests
to a particular MTD.

The following sections provide a detailed description of the interface between the
flash_mgr module and an MTD. All entry points and data structures are defined
in the header file $ENV_PREFIX/sys/dheaders/flash_mtd.h.

Registering with flash_mgr

An MTD registers with flash_mgr by invoking the flash_mtd_register
entry point. A pointer to the MTD registration data is passed as the only parameter
to the routine.
190 Writing Device Drivers for LynxOS

MTD Registration Data

MTD Registration Data

The MTD registration data, as passed by an MTD to flash_mgr, is described by
the following data structures:

typedef struct flash_mtd_area_s
{
 u_int offset; /* Offset from Flash Base*/
 u_int size; /* Size in Bytes */
}
flash_mtd_area_t;

typedef struct flash_mtd_register_s
{
 int flash_id; /* Flash ID */
 u_int mtd_attr; /* MTD Attributes */
 u_int flash_addr; /* Flash Base */
 u_int sector_size;/* Sector Size (bytes) */
 u_int flash_size; /* Flash Size (bytes) */
 char * info_str; /* Device Info String */
 flash_mtd_area_t /* Device Control */
 /* Registers */
 spec_locs[FLASH_MTD_SPEC_LOC_NUM];
 flash_mtd_area_t /* Partitions Info */
 parts[FLASH_MTD_PART_NUM];
 void * user_param; /* MTD Specific Data */
 flash_mtd_callback_t /* Pointer to Callback */
 callback;
}
flash_mtd_register_t;

To register with flash_mgr, an MTD must fill in a structure of type
flash_mtd_register_t with the registration data. The various fields in the
structure should be initialized to appropriate values. Once the structure has been
initialized, the MTD makes itself known to flash_mgr by calling
flash_mtd_register and passing the address of the structure as the parameter.
If registration is successful, flash_mtd_register returns zero. For example:

char * flash_example_install(
 flash_example_info_t * info)
{
 flash_mtd_register_t reg_data;
 ...
 /* Fill in the registration data.
 */
 reg_data.flash_id = ...;
 ...
 /* Register with the flash manager.
 */
 if (flash_mtd_register(& reg_data) != 0)
 {
 return (char *) SYSERR;
 }
 ...
}

The following provides example registration code for the Intel i28F400 flash
device.
Writing Device Drivers for LynxOS 191

Chapter 10 - Writing Flash Memory Technology Drivers (MTDs)

/*
** Install entry point
**
** Dependency: This function has Falcon-specific code.
**
*/
char *
i28F400_r_install(i28F400_info_t *info)
{
 int i;
 i28F400_statics_t *s;
 flash_mtd_register_t reg;
 u_int *romAbasesiz_reg;

 /* Allocate a statics structure */
 s = (i28F400_statics_t *)sysbrk(sizeof(i28F400_statics_t));
 if (s == NULL) {
 s = (i28F400_statics_t *)SYSERR;
 return (char *)s;
 }

 /* Map the ROM A Base/Size Register */
 romAbasesiz_reg = map_romA_basesiz_reg();

 /* Calculate flash memory size */
 s->flash_size = calc_i28f400_size(romAbasesiz_reg);
 if ((int)s->flash_size == SYSERR) {
 sysfree(s, (long)sizeof(*s));
 s = (i28F400_statics_t *)SYSERR;
 goto i28F400_r_install_done;
 }

 /* Map the entire flash address space */
 s->vaddr = (char *)map_28F400(romAbasesiz_reg, s->flash_size);
 if (s->vaddr == (char *)SYSERR) {
 sysfree(s, (long)sizeof(*s));
 s = (i28F400_statics_t *)SYSERR;
 goto i28F400_r_install_done;
 }

 /* Write enable flash bank A */
 i28F400_write_enable(romAbasesiz_reg);

 /* Set the flash device to Read Array mode */
 set_read_array_28f400(romAbasesiz_reg, (u_int *)s->vaddr, s-
>flash_size);

 /* Get device id and mfr id */
 s->i28F400_ids = get_i28F400_ids(romAbasesiz_reg, (u_int *)s->vaddr,
 s->flash_size);
 if (s->i28F400_ids < 0) {
 sysfree(s, (long)sizeof(*s));
 s = (i28F400_statics_t *)SYSERR;
 goto i28F400_r_install_done;
 }

 /* Fill up the statics structure */

 s->flash_id = info->flash_id;
 s->romAbasesiz_reg = romAbasesiz_reg;

 /* Fill up block layout */
 fill_block_layout((s->i28F400_ids & 0x0000FFFF), &s->layout[0]);
192 Writing Device Drivers for LynxOS

MTD Registration Data

 /* Allocate space for cache */
 s->cache = alloc_28F400_cache();
 if (s->cache == NULL) {
 sysfree(s, (long)sizeof(*s));
 s = (i28F400_statics_t *)SYSERR;
 goto i28F400_r_install_done;
 }
 s->cache->blkno = 0;
 s->cache->dirty = 0;
 memcpy(s->cache->cache, s->vaddr + s->layout[0].offset, s-
>layout[0].size);

 s->erase_sem = 1;
 s->erased_bitmap = 0;

 /* Prepare registration information */

 /* No command registers */
 for (i = 0; i < FLASH_MTD_SPEC_LOC_NUM; i++) {
 reg.spec_locs[i].size = 0;
 }

 /* Set up partitions */
 for (i = 0; i < FLASH_MTD_PART_NUM; i++) {
 reg.parts[i].offset = info->parts[i].offset;
 reg.parts[i].size = info->parts[i].size;
 }

 /* Registration attributes */
 reg.mtd_attr = FLASH_MTD_ATTR_NO_MAP | /* Already mapped */
 FLASH_MTD_ATTR_READ | /* Read Op. */
 FLASH_MTD_ATTR_WRITE | /* Write Op. */
#if defined(PSEUDO)
 FLASH_MTD_ATTR_OPEN | /* Open Op. */
#endif
 FLASH_MTD_ATTR_CLOSE | /* Close Op. */
 FLASH_MTD_ATTR_ERASE | /* Erase Op. */
 FLASH_MTD_ATTR_ERASE_ALL | /* Erase All Op. */
 FLASH_MTD_ATTR_SPECIFIC; /* MTD specific operations */

 reg.flash_id = s->flash_id;
 reg.flash_addr = (u_int)s->vaddr;
 reg.sector_size = n_8KB * 4;

 reg.flash_size = s->flash_size;
 reg.info_str = "Intel 28F400 Flash";
 reg.user_param = s;
 reg.callback = i28F400_callback;

 /* Register with the flash manager */
 if (flash_mtd_register(®)) {
 free_i28F400_statics(s);
 s = (i28F400_statics_t *)SYSERR;
 }

i28F400_r_install_done:
 /* Write disable flash bank A */
 i28F400_write_disable(romAbasesiz_reg);
 return (char *)s;
}

Writing Device Drivers for LynxOS 193

Chapter 10 - Writing Flash Memory Technology Drivers (MTDs)

Flash ID
The Flash ID is one of the most important elements of the registration data. It is an
integer key used by flash_mgr to identify a particular MTD among all the MTD
modules installed in the kernel. The flash ID number is also used to generate the
minor number for the flash device. All flash devices use the same major number.
To access a flash device, the application opens a corresponding device special file.
The Flash ID is encoded into a 4 bit field within the minor device number.
flash_mgr extracts it and uses it as a key to map application requests to a
particular MTD module.

The following describes the minor number layout for flash device nodes:

76.43..0

VPPPDDDD

Where:

• V specifies the verification mode. If this bit is set, driver operates in the
transparent verification-on-write-and-erase mode. Otherwise, driver
operates in the no-verification mode.

• P is a 3-bit field specifying the partition number. A value of 0 corresonds
to the entire flash device; any other value (1 to 7) defines the partition
number. The partition information is passed to flash_mgr by the MTD
at the registration time.

• D is a 4-bit field specifying the Flash ID. The Flash ID can range from 0
to 15. The Flash ID is used by the flash_mgr to map a request to the
corresponding MTD. MTD passes its Flash ID to flash_mgr at
registration time.

The Flash ID number is chosen by the developer, and set by the MTD at
registration time. A Flash ID number must be unique for each MTD configured
into the kernel. The 4 bit Flash ID field in the minor number allows you to install
up to 16 MTDs simultaneously, with Flash IDs ranging from 0 to 15. For an easier
configuration, it is recommended that the Flash ID be copied from the device
information block, as shown in the example below:

reg_data.flash_id = info->flash_id;

Note that once you modify the Flash ID of an MTD, you have to change the minor
numbers for all corresponding device nodes accordingly. By default, special nodes
for the flash devices are installed in the configuration file
$ENV_PREFIX/sys/cfg/flash.cfg.
194 Writing Device Drivers for LynxOS

Device Info String

For example,

AM29LV160BT on-board flash MTD, id 5
N:flash_am29lv160bt.0:5:0600
N:flash_am29lv160bt.1:21:0600
N:flash_am29lv160bt.2:37:0600
N:flash_am29lv160bt.3:53:0600

Where:

N:<flash_device.n>:<minor#>:<file_permissions>

Device Info String
The info_str field is a pointer to the device information string. This is an
arbitrary character string describing the flash device. flash_mgr returns this
string as a part of the flash information block whenever an application issues a
FLASH_GET_INFO ioctl command. The string must be contained in a
nonautomatic variable. For example:

reg_data.info_str = “rpxl8xx on-board FLASH”;

Flash Size
The size of the flash memory is passed to flash_mgr through the flash_size
field. Size is specified in bytes:

reg_data.flash_size = 4 * MByte;

Sector Size
The size of the flash device sector is passed to flash_mgr through the
sector_size field. The sector size should be the smallest sector size of a device,
specified in bytes:

reg_data.flash_size = 256 * KByte;
Writing Device Drivers for LynxOS 195

Chapter 10 - Writing Flash Memory Technology Drivers (MTDs)

Registration Attributes
The registration attributes are passed to flash_mgr through the mtd_attr field
as a bitwise combination of the following logical flags:

Table 10-1: MTD Registration Attributes

Attribute Description

FLASH_MTD_ATTR_READ MTD supports read accesses to the flash device.

FLASH_MTD_ATTR_WRITE MTD supports write accesses to the flash device.

FLASH_MTD_ATTR_ERASE_ALL MTD supports erase of the entire flash device. If this flag is
not specified, any ioctl request for FLASH_ERASE_ALL is
denied.

FLASH_MTD_ATTR_ERASE MTD supports erase of a particular sector of the flash device.
If this flag is not specified, any ioctl request for
FLASH_ERASE_BLOCK is denied.

FLASH_MTD_ATTR_SPECIFIC MTD supports device-specific operations. If this flag is not
specified, any ioctl request for FLASH_SPECIFIC is
denied.

FLASH_MTD_ATTR_FF_ERASED For this device, an erased byte returns 0xFF on a read
access. Specification of this flag for a device granting this
condition is likely to improve the overall driver throughput.
This flag is used only if the flash_mgr is used to manage
the cache.

FLASH_MTD_ATTR_AUTO_READ MTD relies on flash_mgr to execute read accesses. The
MTD callback routine is not invoked upon a read request
from user application. Instead, flash_mgr reads flash
memory as conventional memory. If this flag is specified,
FLASH_MTD_ATTR_READ is ignored. This flag is used
only if the flash_mgr is used to manage the cache.

FLASH_MTD_ATTR_NO_MAP Entire flash memory is already mapped into a contiguous
region of the kernel virtual space by the MTD. No mapping is
needed in flash_mgr. If this flag is specified,
flash_mgr interprets the flash base address as a virtual
address in the kernel space. The MTD must manage the cache
if the flash memory sector sizes are different.
196 Writing Device Drivers for LynxOS

Flash Base Address
The following example shows how the mtd_attr field can be initialized for the
registration:

reg.mtd_attr = FLASH_MTD_ATTR_NO_MAP |
 /* Already mapped */
 FLASH_MTD_ATTR_WRITE |
 /* Write Op. */
 FLASH_MTD_ATTR_AUTO_READ |
 /* No Read Op. */
 FLASH_MTD_ATTR_ERASE |
 /* Erase Op. */
 FLASH_MTD_ATTR_ERASE_ALL |
 /* Erase All Op. */
 FLASH_MTD_ATTR_FF_ERASED |
 /* 0xFF if erased */
 FLASH_MTD_ATTR_CACHE;
 /* Flash cached */

Flash Base Address
The flash_base field is used to pass the base address of the flash memory to
flash_mgr. Interpretation of this field depends on whether the
FLASH_MTD_ATTR_NO_MAP flag is set in the mtd_attr field.

FLASH_MTD_ATTR_MAP_SPECIFIC MTD notifies flash_mgr that whenever a
FLASH_MTD_REQ_SPECIFIC operation is invoked on the
MTD, the entire flash memory must be mapped into a
contiguous region of the kernel virtual space. If this flag is
not specified, any ioctl request for FLASH_SPECIFIC
is denied.

FLASH_MTD_ATTR_CACHE MTD requests that the special flash cache be enabled by
flash_mgr. The flash cache resides on top of the in-
memory disk cache and is useful only if flash device is
accessed through the block interface of flash_mgr.
Synchronization of a flash device with enabled flash cache
requires execution of the flash_sync(1) utility after a
write out of the disk cache.
Flash cache is designed to both improve the overall flash file
system access rate and prevent the flash memory exhaustion.
It is especially efficient for devices with a large sector size.

FLASH_MTD_ATTR_OPEN This flag requests the open MTD callback to be called.

FLASH_MTD_ATTR_CLOSE This flag requests the close MTD callback to be called.

Table 10-1: MTD Registration Attributes (Continued)

Attribute Description
Writing Device Drivers for LynxOS 197

Chapter 10 - Writing Flash Memory Technology Drivers (MTDs)

If the flag is set, flash_mgr interprets the base address as a virtual address in the
kernel memory map and relies on the entire flash memory to be already mapped
into the kernel space. flash_base in this case contains a starting address of the
flash memory in the virtual space. In the following example MTD uses the
permap(9) kernel service to map the entire flash into the kernel space:

 /* Notify flash_mgr that flash is mapped by the MTD.
 */
reg.mtd_attr = FLASH_MTD_ATTR_NO_MAP | ... ;
 /* Map the flash; set flash_base to the
 * virtual address.
 */
reg.flash_base = (u_int) permap(FLASH_PHYS_BASE,
 FLASH_SIZE);

If the flag is not set, flash_mgr interprets the base address as a physical address
of the flash memory in the system memory map. In this case, flash_mgr takes
over the burden of mapping the flash memory and guarantees that whenever the
MTD callback routine is invoked, part of flash memory on which the operation is
executed is mapped into the kernel virtual space. The following example illustrates
this approach:

 /* Notify flash_mgr that flash is not mapped.
 */
reg.mtd_attr = /* no FLASH_MTD_ATTR_NO_MAP */ | ... ;
 /* Set flash_base to the physical address.
 */
reg.flash_base = FLASH_PHYS_BASE;

Device Control Registers
An MTD is allowed to register up to three control register windows. A control
register window is an address range within the flash memory that is used to access
hardware control and status registers. Usually, an MTD needs to be able to access
the control and status registers in order to program certain operations of the flash
device (for example, flash erase).

Note that registration of control registers windows is needed only if an MTD does
not use the FLASH_MTD_ATTR_NO_MAP attribute to register with the flash_mgr
module. In this case flash_mgr takes over the responsibility of mapping the
hardware registers and guarantees that any time the MTD callback routine is
invoked, all registered control registers windows are mapped into the kernel virtual
space.

NOTE: If the flash device is used to store crash dump data, the base address must be
mapped manually.
198 Writing Device Drivers for LynxOS

Partition Information

Because the hardware control registers are located within the flash memory address
range, there is no need to define control registers windows for an MTD that uses
the FLASH_MTD_ATTR_NO_MAP attribute for the registration. As soon as the MTD
creates the mapping for the entire flash memory, the control registers windows
become mapped automatically.

The control registers windows are created by initializing the spec_locs array. If
a window is unused, the corresponding size field should be set to zero.

The following example shows registration of two control registers windows:

 /* Notify flash_mgr that flash is not mapped.
 */
reg.mtd_attr = /* no FLASH_MTD_ATTR_NO_MAP */ | ... ;
 /* Define the hardware registers windows.
 */
for (i = 0; i < FLASH_MTD_SPEC_LOC_NUM; i ++)
{
 reg.spec_locs[i].size = 0;
}
reg.spec_locs[0].offset = 0x5555 * 4;
 /* Command Reg1 */
reg.spec_locs[0].size = 4;/* 4 bytes */
reg.spec_locs[1].offset = 0x2AAA * 4;
 /* Command Reg2 */
reg.spec_locs[1].size = 4;/* 4 bytes */

Partition Information
A flash memory device can be divided in up to seven possible overlapping
partitions. Unlike a conventional disk, there is no partition table or a similar
partition descriptor maintained in flash memory. Instead, the partitions data is
maintained in the software tables of flash_mgr on a per-device basis. Device
partition information is passed by an MTD to the flash_mtd module at
registration time and is effective until the MTD is deregistered.

Device partition information is passed to the flash_mgr through the parts
field, which is a 7 entry table of partition descriptors. Each entry of the table
contains information about one partition of the flash device. The entry with index 0
defines partition number 1, the entry with index 1 partition number 2, and so on. If
an entry has the size field set to zero, the corresponding partition is undefined
and cannot be accessed from user applications.

To get access to a flash partition, an application opens a corresponding device
special node. The partition number is encoded as a 3 bit field into the device minor
number. A value of 0 corresponds to the entire flash device; any other value
(1 to 7) defines the partition number.
Writing Device Drivers for LynxOS 199

Chapter 10 - Writing Flash Memory Technology Drivers (MTDs)

Other than passing the partition information to flash_mgr at the registration
time, an MTD is insensitive to device partitions. Flash addresses and sector
numbers passed to the MTD callback routine by flash_mgr are relative to the
flash memory base.

To allow for easy partitioning of a flash device, it is recommended that the
partitions information be copied from the device information block, as shown in
the example below:

for (i = 0; i < FLASH_MTD_PART_NUM; i ++)
{
 reg.parts[i] = info->parts[i];
}

The user can change the device partitions by modifying the device information
block and rebuilding the kernel. Shown below is a sample device block for the
above example:

flash_example_info_t flash_example_info =
{
 ...
 /* Device Partitions :
 * there are 7 partitions;
 * there must be an entry for each.
 * If a partition is unused, size is set to 0.
 */
 0 * MByte, 1 * MByte, /* Partition 1: 0 - 1 MB */
 1 * MByte, 3 * MByte, /* Partition 2: 1 MB - 4 MB */
 0, 0, /* Partition 3: unused */
 0, 0, /* Partition 4: unused */
 0, 0, /* Partition 5: unused */
 0, 0, /* Partition 6: unused */
 0, 0, /* Partition 7: unused */
};

Callback Routine
A pointer to the callback routine is passed to flash_mgr through the callback
field. Pointer to MTD specific data is passed through the user_param field. This
pointer is passed back to the callback routine any time the callback is invoked by
flash_mgr.

The following example shows registration of a callback routine. A pointer to the
MTD statics structure is registered as the MTD specific data:

flash_statics_t * s;
...
reg.user_param = s;
reg.callback = flash_example_callback;
200 Writing Device Drivers for LynxOS

Deregistering from flash_mgr

Deregistering from flash_mgr

An MTD deregisters from flash_mgr by invoking the
flash_mtd_deregister entry point. The Flash ID is passed as the only
parameter to the routine. For example:

void flash_example_uninstall(
 flash_example_statics_t * s)
{
 ...
 /* Deregister the MTD.
 */
 flash_mtd_deregister(s->flash_id);

Writing Callback Routines

The MTD callback routine is invoked by the flash_mgr module with the
following syntax:

int flash_mtd_rpxl_callback (
 int op, /* Operation Code */
 u_int flash_base, /* Flash in Virtual Space */
 flash_mtd_param_t * op_param, /* Operation Parameter */
 void * user_param, /* MTD Specific Data */

int flags); /* MTD Flags */

Operation Code

The first parameter contains an operation code, which can be any of the following:

FLASH_MTD_REQ_READ Request to read a specified area of flash memory
into a memory buffer

FLASH_MTD_REQ_WRITE Request to write a memory buffer into a specified
area of flash memory

FLASH_MTD_REQ_ERASE Request to erase specified sectors of flash device

FLASH_MTD_REQ_ERASE_ALL Request to erase the entire flash device

FLASH_MTD_REQ_SPECIFIC Request to execute a device-specific operation -
Operation code and a single operation parameter are
passed through the additional parameter.

FLASH_MTD_REQ_OPEN Request to open the flash device

FLASH_MTD_REQ_CLOSE Request to close the flash device
Writing Device Drivers for LynxOS 201

Chapter 10 - Writing Flash Memory Technology Drivers (MTDs)

Flash Virtual Base

The second parameter contains an address of the flash memory base in the kernel
virtual space. The MTD should use it to convert relative flash addresses to absolute
addresses in the kernel space. For example:

 /* Execute a flash command.
 */
* (u_char *) (flash_base + 0x5555 * 4 + chip) = 0xAA;
* (u_char *) (flash_base + 0x2AAA * 4 + chip) = 0x55;
* (u_char *) (flash_base + 0x5555 * 4 + chip) = cmd;

Operation Parameter

The third parameter is supplementary to the operation code parameter and contains
a description of the requested operation. The following type is used:

typedef union flash_mtd_param_u
{
 struct {
 void * buf; /* Data Buffer */
 flash_mtd_area_t area; /* Flash Area */
 } rw;
 struct {
 u_int start_sector; /* First Sector */
 u_int sectors_num; /* Number of Sectors */
 }erase;
 struct {
 int req_code; /* Request Code */
 void * req_param; /* Request Parameters */
 }specific;
}
flash_mtd_param_t;

The rw structure is used when the operation code is equal to either
FLASH_MTD_REQ_READ or FLASH_MTD_REQ_WRITE. The buf pointer
specifies a data buffer in memory. The area structure specifies an area in flash.
Offset is relative to the flash base.

The erase structure is used when the operation code is equal to
FLASH_MTD_REQ_ERASE. The start_sector field specifies the first sector to
erase. The sectors_num field specifies number of sectors to erase.

The specific structure is used when the operation code is equal to
FLASH_MTD_REQ_SPECIFIC. The req_code field contains an MTD-specific
operation code. The req_param field is a pointer to an operation specific
parameters area.

FLASH_MTD_REQ_OPEN and FLASH_MTD_REQ_CLOSE do not use this argument.
202 Writing Device Drivers for LynxOS

MTD-Specific Data

MTD-Specific Data

The fourth parameter is a pointer to the MTD specific data. flash_mgr sets this
parameter to the value passed by the MTD through the user_param field of the
MTD registration data.

Return Code

If an operation completes successfully, the callback routine returns zero. Any other
value indicates a failure.

Synchronization

The flash_mgr layer resolves all synchronization issues prior to invoking an
MTD callback routine. An MTD is guaranteed that:

• Invocation of FLASH_MTD_REQ_WRITE is delayed until the MTD has
finished all operations in progress.

• Invocation of FLASH_MTD_REQ_ERASE or
FLASH_MTD_REQ_ERASE_ALL is delayed until the MTD has finished all
operations in progress.

• Invocation of FLASH_MTD_REQ_SPECIFIC is delayed until the MTD
has finished all operations in progress.

• Invocation of FLASH_MTD_REQ_READ is delayed until the MTD has
finished write, erase or device-specific operations in progress.
Writing Device Drivers for LynxOS 203

Chapter 10 - Writing Flash Memory Technology Drivers (MTDs)
204 Writing Device Drivers for LynxOS

CHAPTER 11 Writing PC Card Client Drivers
The LynxOS PC Card package architecture is based upon the PCMCIA/JEIDA PC
Card Architecture specification. The following figure illustrates the card package
architecture.

Figure 11-1: PC Card Architecture

Socket Services provides a standardized interface to manipulate PC Cards, sockets
and adapters. A host system may have more than one PC Card adapter present.
Each adapter has its own Socket Services instance.

Each instance of Socket Services registers with Card Services and notifies it about
status changes in PC Cards or sockets.

����������	

�����

����

������
������

������
������

������
��
����

�������

������
��
����

�������

�� ��
Writing Device Drivers for LynxOS 205

Chapter 11 - Writing PC Card Client Drivers

By making all accesses to adapters, sockets, and PC Cards through the Socket
Services interface, higher-level software is unaffected by different
implementations of the hardware. Only the hardware-specific Socket Services code
needs to modified to accommodate a new hardware implementation.

Card Services coordinates access to PC Cards, sockets and system resources
among multiple clients. There is only one instance of Card Services in the system.
Card Services makes all access to the hardware level through the Socket Services
interface. All Socket Services status change reporting is routed to Card Services.
Card Services then notifies the appropriate clients. Card Services preserves for its
clients an abstract, hardware-independent view of a card and its resources.

Client Device Drivers refers to all users of Card Services. In the LynxOS PC Card
architecture, users of Card Services are device drivers. They use a standardized
API to access Card Services.

Card Services Overview

Card Services Initialization

Card Services is implemented as a device driver. There is only one instance of Card
Services present in the system. At installation time, Card Services initializes its
resource databases and prepares to handle registration requests from both Socket
Services and client device drivers. The Card Services driver must be installed prior
to any other PC Card-related driver.

Logical Sockets

The Card Services interface uses logical socket numbers to identify the socket a
service is intended to access. The first physical socket on the first physical adapter
is logical socket 0. The last logical socket is the total number of sockets less one.

Card Services Groups

The services defined by the card services interface can be divided into six
functional groups. These are:
206 Writing Device Drivers for LynxOS

Client Services

• Client Services

• Client Utilities

• Resource Management Services

• Advanced Client Services

• Bulk Memory Services

• Special Services

Client Services
The following services are used for client initialization and registration.

• DeregisterClient

• GetCardServicesInfo

• RegisterClient

Client Utilities
The following services are used to perform common tasks required by all clients.

• GetFirstTuple

• GetNextTuple

Resource Management Services
The following services provide basic access to available system resources. These
services combine knowledge of the current status of system resources with the
underlying Socket Services adapter control services.

• GetConfigurationInfo

• GetFirstWindow (not supported)

• GetNextWindow (not supported)

• ReleaseConfiguration

• ReleaseIO

• ReleaseIRQ

• ReleaseWindow (not supported)
Writing Device Drivers for LynxOS 207

Chapter 11 - Writing PC Card Client Drivers

• RequestConfiguration

• RequestIO

• RequestIRQ

• RequestWindow (not supported)

Advanced Client Services
The following are advanced client services.

• AccessConfigReg

• GetFirstClient

• GetNextClient

• RegisterMTD (not supported)

Bulk Memory Services
The following services provide various memory operations for memory clients that
require isolation from the details of underlying memory technology hardware.

• CloseMemory (not supported)

• CopyMemory (not supported)

• OpenMemory (not supported)

• ReadMemory (not supported)

• WriteMemory (not supported)

Special Services
The following are services providing miscellaneous operations for client drivers.

• ErrorName

• ParseTuple

• ServiceName
208 Writing Device Drivers for LynxOS

Card Services Calling Conventions

Card Services Calling Conventions

The Card Services interface consists of the CardServices() function.
CardServices() provides the API for all card services.

Header Files

All prototypes and constants needed to access card services from client device
drivers are located in the following header files:

Synopsis

The prototype for CardServices() is:

int CardServices(int Service, void * Handle, void * Pointer,
 int rgLength, void * ArgPointer);

The CardServices() parameters are defined as follows:

After invocation, a service returns a completion code, unique for a particular
service, as defined “Card Services Reference” on page 217.

Table 11-1: Card Services Header Files

File Description

/sys/dheaders/pcmcia_cs.h Contains definitions common for all services.

/sys/dheaders/pcmcia_cs_tuple.h
Contains definitions required by the tuple
parsing services.

Service Specifies the service code. Services details are documented in
“Card Services Reference” on page 217.

Handle Is the client handle returned by the RegisterClient
service. It is not used by any other service. The
RegisterClient service places a new client handle in the
location pointed to by this argument.

Pointer Is a service-dependent value.

ArgLength Is the size of the structure pointed to by ArgPointer.

ArgPointer Is a pointer to service-dependent data.
Writing Device Drivers for LynxOS 209

Chapter 11 - Writing PC Card Client Drivers

Client Structure

A client device driver is a device driver that uses the API defined by
CardServices().

The following tasks are common for client device drivers:

• Detecting the presence of card services

• Registration with card services to receive event notifications

• Identification of a PC Card

• Requesting system resources for a PC Card

• Configuration of a PC Card

• Deregistration of the client

These steps are described below and are illustrated by a sample client device driver
acting as a PC Card enabler.

Detecting the Presence of Card Services

The presence of card services is detected using the GetCardServicesInfo
service. For example:

int code;
pcmcia_cs_information_t cs_info;

/* Get Card Services information. */
code = CardServices(GetCardServicesInfo, (void *)0, (void *)0,
 sizeof(cs_info), &cs_info);
if (code != PCMCIA_CS_SUCCESS)
{
 return (char *)SYSERR;
}

 /* Detect the presence of Card Services. */
if (cs_info.signature[0] != ’C’ || cs_info.signature[1] != ’S’)
{
 return (char *)SYSERR;
}

Client Registration

Following initialization, a client registers itself with card services to specify the
event notification it is to receive. The RegisterClient service is used to
register a new client. At registration time, the client specifies its type, thus defining
its priority for event notification. I/O clients are notified of events first, memory
210 Writing Device Drivers for LynxOS

Client Callback

technology drivers are notified next, and memory clients are notified last. Also, the
client provides the event mask that defines the events to be notified of. For
example:

pcmcia_cs_register_t reg;
int code;

 /* I/O type client, create artificial insertion event
 * for all card inserted at the registration time.
 */
reg.attributes = PCMCIA_CS_ATTR_IO | PCMCIA_CS_ATTR_INSERT;

 /* Receive notification of PCMCIA_CS_EVENT_REMOVAL and
 * PCMCIA_CS_EVENT_INSERTION events.
 */
reg.event_mask = PCMCIA_CS_EVENT_REMOVAL | PCMCIA_CS_EVENT_INSERTION;

 /* No client specific data is needed.
 */
reg.client_data = (void *)0;

 /* Now register. NULL in the Handle param will prevent Card Services
 * from returning a client handle.
 */
code = CardServices(RegisterClient, (void *)0, ex_callback,
 sizeof(reg), ®);
if (code != PCMCIA_CS_SUCCESS)
{
 return SYSERR;}

Client Callback
Card services notifies clients of events through a single callback routine that is
specified at client registration. A client receives notification of an event along with
various event-specific data.

The prototype for callback() is:

int callback(int event, int socket, void * handle, void * buffer,
 pcmcia_cs_mtd_request_t * mtd_request, void * client_param);

where:

event
Is the event code. Events are listed and described in the table,
“Events.”

socket
Is the logical socket with which the event is associated.
socket is meaningful only for status change events.

handle Is the client handle.
Writing Device Drivers for LynxOS 211

Chapter 11 - Writing PC Card Client Drivers

Events
The following events are supported:

PC Card Identification

When a client receives the PCMCIA_CS_EVENT_INSERTION event, it must first
identify the just inserted PC Card. PC Card identification can be accomplished by
using the card and manufacturer identification numbers present in the mandatory
MANFID tuple. This tuple is parsed automatically by card services on card insertion

buffer, mtd_request
These arguments are used by memory technology drivers (not
supported).

client_param Is client-specific data provided at registration.

Table 11-2: Events

Event Syntax/Description

PCMCIA_CS_EVENT_REG_COMPLETE

callback(PCMCIA_CS_EVENT_REG_COMPLETE,
0, handle, NULL, NULL, param);

This is the first and mandatory event each client receives as soon as
registration is complete. This event arrives before
RegisterClient service completion to ensure determinism of
control flow.

PCMCIA_CS_EVENT_INSERTION

callback(PCMCIA_CS_EVENT_INSERTION,
socket, handle, NULL, NULL,
param);

This event occurs when card services detects an operational PC Card
in the logical socket socket. The callback receives an artificial
PCMCIA_CS_EVENT_INSERTION event for all sockets that
contain a PC Card if the client has registered with the
PCMCIA_CS_ATTR_INSERTION attribute. The artificial insertion
event arrives before RegisterClient service completion to
ensure determinism of control flow.

PCMCIA_CS_EVENT_REMOVAL

callback(PCMCIA_CS_EVENT_REMOVE,
socket, handle, NULL, NULL,
param);

This event occurs when card services detects removal of a PC Card
from the logical socket socket.
212 Writing Device Drivers for LynxOS

PC Card Configuration

and is provided to client in the data returned by the GetConfigurationInfo
service. For example:

pcmcia_cs_config_info_t config_info;
int code;

 /* A part of callback code.
 * Use the socket number from callback arguments.
 */
config_info.socket = socket;
code = CardServices(GetConfigurationInfo, handle, (void *)0,
 sizeof(config_info), &config_info);
if (code != PCMCIA_CS_SUCCESS)
{
 return SYSERR;
}

if (config_info.manuf_code == 0x101 &&
 config_info.manuf_info == 0x589)
{
 /* This is a 3COM 3c589x PC Card.
 */
}

An alternate method to identify the PC card is to use the client utilities services to
find some other tuples that contain card identification information, and parse them
using the ParseTuple service. For example:

pcmcia_cs_tuple_t tuple;
pcmcia_cs_tuple_data_t tuple_data;
int code;

 /* Find mandatory Version1 tuple.
 */
tuple.socket = socket;
tuple.code = PCMCIA_CS_TUPLE_VERS_1;
code = CardServices(GetFirstTuple, handle, (void *)0,
 sizeof(tuple), &tuple);
if (code == PCMCIA_CS_SUCCESS)
{
 code = CardServices(ParseTuple, handle, &tuple,
 sizeof(tuple_data), &tuple_data);
 if (code != PCMCIA_CS_SUCCESS)
 {
 return SYSERR;
 }
 kkprintf("CARD DETECTED: v%d.%d\n",

tuple_data.vers_1.major, tuple_data.vers_1.minor);
kkprintf(" %s\n", tuple_data.vers_1.manf_name);
kkprintf(" %s\n", tuple_data.vers_1.prod_name);
kkprintf(" %s\n", tuple_data.vers_1.lot_info);
kkprintf(" %s\n", tuple_data.vers_1.prog_info);

}

PC Card Configuration

To configure a PC Card, the client must first reserve appropriate system resources
(I/O range and optional IRQ) using the RequestIO and RequestIRQ services.
Writing Device Drivers for LynxOS 213

Chapter 11 - Writing PC Card Client Drivers

Reservation is necessary to prevent possible configuration conflicts with other
client device drivers. For example:

pcmcia_cs_request_io_t io;
pcmcia_cs_request_irq_t irq;
int code;

 /* Request I/O range 0x200-0x210.
 */
io.socket = socket;
io.base_port1 = 0x200;
io.num_ports1 = 0x10;
io.attributes1 = 0;
io.base_port2 = 0;
io.num_ports2 = 0;
io.attributes2 = 0;

code = CardServices(RequestIO, handle, (void *)0,
 sizeof(io), &io);
if (code != PCMCIA_CS_SUCCESS)
{
 return SYSERR;
}

 /* Request IRQ 14.
 */
irq.socket = socket;
irq.assigned_irq = 32 + 14;
code = CardServices(RequestIRQ, handle, (void *)0,
 sizeof(irq), &irq);
if (code != PCMCIA_CS_SUCCESS)
{
 return SYSERR;
}

Actual configuration of a PC Card is performed by the RequestConfiguration
service. It applies the specified voltage to the card and reserves the I/O address
ranges and IRQ for corresponding socket. For example:

pcmcia_cs_request_config_t config;
int code;

 /* Apply the voltage and configure the card
 */
config.socket = socket;
config.vcc = 50;
config.vpp = 50;
config.int_type = PCMCIA_CS_INTERFACE_IO;
config.option = 1 + 0x40;
config.present = PCMCIA_CS_PRESENT_OPTION;
code = CardServices(RequestConfiguration, handle, (void *)0,

sizeof(config), &config);
if (code != PCMCIA_CS_SUCCESS)
{
 return SYSERR;
}

214 Writing Device Drivers for LynxOS

Client Deregistration

Client Deregistration

To deregister a client, the DeregisterClient service is used. The client handle
obtained using the RegisterClient service is passed to CardServices().
For example:

int code;

code = CardServices(DeregisterClient, handle, (void *)0, 0, (void *)0
);
if (code != PCMCIA_CS_SUCCESS)
{
 return SYSERR;
}

Sample Client Drivers

PC Card Enabler
An enabler is a client device driver that detects insertion of a certain PC Card and
configures it. The enabler allows standard device drivers to work with the PC Card
as a conventional ISA device. The simplest enabler is a character device driver that
has only install and uninstall entry point functions. At installation, the
enabler detects the presence of card services and registers with it, requesting to
receive card insertion events. Upon receiving a card insertion event, the enabler
identifies the PC Card. If a supported card is inserted, the enabler configures it.

As soon as the PC Card configuration is complete, an appropriate dynamic device
driver can be installed. The PC Card is controlled as if it were an ISA device.

If both enabler and driver are linked statically into the kernel, the enabler is
installed before the driver. The card must be inserted prior to system boot and the
driver should work without any changes.

NOTE: Note that you must ensure that the driver is configured to use the same IRQ
and I/O ports range as used by the enabler to configure the card.
Writing Device Drivers for LynxOS 215

Chapter 11 - Writing PC Card Client Drivers

A sample driver layout is illustrated below:

Addition to Existing ISA Device Driver
It is possible to add the enabler code to an existing device driver of a conventional
ISA card. This approach allows you to create a hot swap-capable device driver for
the PC Card device. The driver can be statically or dynamically linked into the
kernel.

A driver with an embedded enabler should return success at installation, whether it
finds the card or not. However, it should be modified to reject any user accesses to
the device until the enabler detects and configures the PC Card. As soon as the PC
Card configuration is complete, the driver should perform the initialization
procedure, which would have been otherwise performed at installation of the
conventional device driver. Upon a request to remove the card, the driver should
attempt to shut down the device.

install • Detects card services presence.
• Registers I/O type client with attributes shown in the following

example:

/* I/O type client, create artificial insertion event
* for all card inserted at the registration time.
*/

reg.attributes = PCMCIA_CS_ATTR_IO | PCMCIA_CS_ATTR_INSERT;
reg.event_mask = PCMCIA_CS_EVENT_INSERTION;

uninstall • Deregisters the client.

callback • Upon receipt of PCMCIA_CS_EVENT_INSERTION event,
identifies and configure the card.
216 Writing Device Drivers for LynxOS

Card Services Reference

A sample driver layout is illustrated below:

Card Services Reference

This section provides a description of the services supported by Card Services.
Card Services uses the CardServices() API for access to all services.
CardServices() is defined as follows:

int CardServices(int Service, void * Handle, void * Pointer,
 int rgLength, void * ArgPointer);

where:

install • Detect card services presence.
• Register I/O type client with attributes shown in the following

example:

/* I/O type client, create artificial insertion event
* for all card inserted at the registration time.
*/

reg.attributes = PCMCIA_CS_ATTR_IO | PCMCIA_CS_ATTR_INSERT;
reg.event_mask = PCMCIA_CS_EVENT_INSERTION |

PCMCIA_CS_EVENT_REMOVAL

• Do not perform any device initialization, to ensure proper operation if
the card is not present in the socket.

• Set up a flag ensuring that any user access to the device is rejected.
The flag can be either a global variable or contained in the statics
structure of the driver.

uninstall • Deregister the client.

callback • Upon PCMCIA_CS_EVENT_INSERTION event, identify and
configure the card. Perform device initialization, then de-assert the
access rejection flag. Upon PCMCIA_CS_EVENT_REMOVAL
event, safely shut down the device, terminate the device driver
operation, and set the access rejection flag again.

open��read���� • If the access rejection flag is set, return ENXIO. Operate as usual
otherwise.

Service Specifies the service code.

Handle Is the client handle returned by the RegisterClient
service. It is not used by any other service. The
RegisterClient service places a new client handle in the
location pointed to by this argument.
Writing Device Drivers for LynxOS 217

Chapter 11 - Writing PC Card Client Drivers

AccessConfigReg

AccessConfigReg allows a client to read or write a PC Card Configuration
Register. ArgPointer must be a pointer to a pcmcia_cs_access_reg_t
structure.

The pcmcia_cs_access_reg_t structure is defined as follows:

typedef struct pcmcia_cs_access_reg_s
{
 int socket; /* logical socket */
 int action; /* action to be performed */
 int offset; /* offset to status register */
 unsigned char value; /* value to read or write */
}
pcmcia_cs_access_reg_t;

where:

EXAMPLE

pcmcia_cs_access_reg_t access_reg;

/* get the value of Configuration Option Register */

access_reg.socket = 0;
access_reg.action = PCMCIA_CS_ACCESS_READ;
access_reg.offset = 0;
res = CardServices(AccessConfigReg, NULL, NULL, sizeof(access_reg),

&access_reg);
if (res == PCMCIA_CS_SUCCESS)

Pointer Is a service-dependent value.

ArgLength Is the size of the structure pointed to by ArgPointer.

ArgPointer Is a pointer to service-dependent data.

socket Is a logical socket.

action Is the code of the action to be executed. action can be set to
either PCMCIA_CS_ACCESS_READ or
PCMCIA_CS_ACCESS_WRITE.
If action is set to PCMCIA_CS_ACCESS_WRITE, value is
written to the PC Card Configuration Register.
If action is set to PCMCIA_CS_ACCESS_READ, value is
set to the current value of the PC Card Configuration Register.

offset This is the byte offset to the status register. This is relative to the PC
Card configuration register base.

value Contains the value to read or write.
218 Writing Device Drivers for LynxOS

DeregisterClient

{
 cprintf("Configuration Option Register: 0x%x\n", access_reg.value);
}

RETURN CODES

DeregisterClient

The DeregisterClient service removes a client from the list of registered
clients maintained by card services. The client handle is passed in the Handle
parameter.

EXAMPLE

res = CardServices(DeregisterClient, NULL, NULL, 0, NULL);
name.code = res;
CardServices(ErrorName, NULL, NULL, 0, &name);

if (res == PCMCIA_CS_SUCCESS)
{
cprintf(“I am not a client anymore\n”);
}

RETURN CODES

ErrorName

ErrorName service returns a character string corresponding to a specified error
code returned previously by Card Services. ArgPointer must be a pointer to a
pcmcia_cs_name_t structure.

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_BAD_SOCKET Specified socket is invalid.

PCMCIA_CS_NO_CARD No PC Card in the socket.

PCMCIA_CS_BAD_ARG_LENGTH ArgLength is invalid.

PCMCIA_CS_BAD_ARGS Specified arguments are invalid.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_BAD_HANDLE Client handle is invalid.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.
Writing Device Drivers for LynxOS 219

Chapter 11 - Writing PC Card Client Drivers

The pcmcia_cs_name_t structure is defined as follows:

typedef struct pcmcia_cs_name_s
{
 int code;
 char * name;
}
pcmcia_cs_name_t;

where:

EXAMPLE

pcmcia_cs_name_t;

res = CardServices (DeregisterClient, NULL, NULL, 0, NULL);
name.code = res;
CardServices(ErrorName, NULL, NULL, 0, &name);

/* should print PCMCIA_CS_BAD_HANDLE */
cprintf(“code 0x%x, name %s\n”, name.code, name.name);

RETURN CODES

GetCardServicesInfo

GetCardServicesInfo service returns the number of installed logical sockets
and information about Card Services that includes the vendor revision number and
release compliance code. ArgPointer must be a pointer to a
pcmcia_cs_information_t structure.

The pcmcia_cs_information_t structure is defined as follows:

typedef struct pcmcia_cs_information_s
{
 char signature[2]; /* "CS" */
 int count; /* number of sockets */
 int revision; /* BCD value of CS revision */
 short cs_level; /* BCD value of CD release */
 char * vendor_string; /* vendor string */
}
pcmcia_cs_information_t;

code Is the error code.

name Is a pointer to the string that contains the error name.

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.
220 Writing Device Drivers for LynxOS

GetConfigurationInfo

where:

EXAMPLE

pcmcia_cs_information_t info;

res = CardServices(GetCardServicesInfo, NULL, NULL, sizeof(info), &info
);

if (res == PCMCIA_CS_SUCCESS)
{
 if (info.signature[0] == ’C’ &&
 info.signature[1] == ’S’)
 {
 cprintf("Card Services detected!\n");
 }
}

RETURN CODES

GetConfigurationInfo

GetConfigurationInfo service returns information about the specified socket
and PC Card installed in the socket. ArgPointer must be a pointer to a
pcmcia_cs_config_info_t structure.

The pcmcia_cs_config_info_t structure is defined as follows:

typedef struct pcmcia_cs_config_info_s
{
 int socket; /* logical socket */
 int attributes; /* bit-mapped attributes */
 int vcc; /* Vcc settings */
 int vpp; /* Vpp settings */
 int int_type; /* interface type */

signature[] Contains ‘CS’ if card services is installed.

count Is the number of logical sockets.

revision Is the binary coded decimal (BCD) value of the
CardServices() revision.

cs_level Is the BCD value of the CardServices() release.

vendor_string Is a vendor-specific string.

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.

PCMCIA_CS_BAD_ARG_LENGTH ArgLength is invalid.
Writing Device Drivers for LynxOS 221

Chapter 11 - Writing PC Card Client Drivers

 unsigned config_base; /* base address of config register */
 unsigned manuf_code; /* from Manufacturer ID tuple */
 unsigned manuf_info; /* from Manufacturer ID tuple */
 unsigned base_port1; /* base address for a range */
 int num_ports1; /* number of contiguous ports */
 int attributes1; /* bit-mapped port attributes */
 unsigned base_port2; /* base address for a range */
 int num_ports2; /* number of contiguous ports */
 int attributes2; /* bit-mapped port attributes */
 int assigned_irq;/* irq assigned to PC Card */
 unsigned char status; /* Card Status register settings */
 unsigned char pin; /* Card Pin register settings */
 unsigned char copy; /* Card Copy register settings */
 unsigned char option; /* Card Option register settings */
 int present; /* Card Configuration registers present */
}
pcmcia_cs_config_info_t;

where:

socket Is the logical socket.

attributes Is the bit mapped socket attributes. attributes is a bitwise
combination of the constants:
• PCMCIA_CS_SATTR_ON - The socket contains a PC Card.
• PCMCIA_CS_SATTR_CONFIGURED - The PC Card installed in

the socket has been configured using the
RequestConfiguration service.

vcc Is the voltage applied to the Vcc pin of a PC Card. The voltage is
expressed in tenths of a volt.

vpp Is the voltage applied to the Vpp pins of a PC Card. The voltage is
expressed in tenths of a volt.

int_type Interface type. Must be set to:
• PCMCIA_CS_INTERFACE_NONE - For the simplest interface,

featuring only card detection
• PCMCIA_CS_INTERFACE_MEM - For a memory only interface
• PCMCIA_CS_INTERFACE_IO - For a memory and I/O

interface

config_base Is the card base address of the configuration registers area.

manuf_code Is the manufacturer number from the MANFID tuple.

manuf_info Is the product identification number from the MANFID tuple.

base_port1 Is the base port number for I/O window 1.

num_ports1 Is the number of contiguous ports in I/O window 1.

attributes1 If set to PCMCIA_CS_IO_ATTR_8BIT, the I/O window has an
8 bit width.
222 Writing Device Drivers for LynxOS

GetConfigurationInfo

EXAMPLE

pcmcia_cs_config_info_t info;

info.socket = 0;
res = CardServices(GetConfigurationInfo, NULL, NULL, sizeof(info),

&info);
if (res == PCMCIA_CS_SUCCESS)
{
 if (info.attributes & PCMCIA_CS_SATTR_ON)
{

cprintf("Socket #0 contains a PC Card!\n");
}
}

RETURN CODES

base_port2 Is the base port number for I/O window 2.

num_ports2 Is the number of contiguous ports in I/O window 2.

attributes2 If set to PCMCIA_CS_IO_ATTR_8BIT, the I/O window has an
8 bit width.

assigned_irq Is the IRQ assigned to the PC Card.

status Is the card status register settings, if present.

pin Is the card pin register settings, if present.

copy Is the card socket/copy register settings, if present.

option Is the card option register settings, if present.

present Specifies if the card configuration registers are present. A bitwise
combination of the following constants:
• PCMCIA_CS_PRESENT_STATUS - Status register is present.
• PCMCIA_CS_PRESENT_PIN - Pin register is present.
• PCMCIA_CS_PRESENT_COPY - Copy register is present.
• PCMCIA_CS_PRESENT_OPTION - Option register is present.

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.

PCMCIA_CS_BAD_ARG_LENGTH ArgLength is invalid.

PCMCIA_CS_BAD_SOCKET Specified socket is invalid.
Writing Device Drivers for LynxOS 223

Chapter 11 - Writing PC Card Client Drivers

GetFirstTuple

The GetFirstTuple service returns the first tuple of the specified type in the
CIS for the specified socket. ArgPointer must be a pointer to a
pcmcia_cs_tuple_t structure.

The pcmcia_cs_tuple_t structure is defined as follows:

typedef struct pcmcia_cs_tuple_s
{
 int socket; /* Socket id */
 int code; /* Requested tuple code */
 pcmcia_cs_tuple_internal_t internal; /* Internal state */
}
pcmcia_cs_tuple_t;

where:

The following predefined constants can be used to specify a tuple code:

socket Is the logical socket.

code Is the tuple code. See table below.

internal Is the Card Services CIS state information. This field is used internally
by Card Services.

PCMCIA_CS_TUPLE_DEVICE (0x01)

PCMCIA_CS_TUPLE_INDIRECT (0x03)

PCMCIA_CS_TUPLE_CONFIG_CB (0x04)

PCMCIA_CS_TUPLE_CFTABLE_ENTRY_CB (0x05)

PCMCIA_CS_TUPLE_LONGLINK_MFC (0x06)

PCMCIA_CS_TUPLE_BAR (0x07)

PCMCIA_CS_TUPLE_CHECKSUM (0x10)

PCMCIA_CS_TUPLE_VERS_1 (0x15)

PCMCIA_CS_TUPLE_ALTSTR (0x16)

PCMCIA_CS_TUPLE_DEVICE_A (0x17)

PCMCIA_CS_TUPLE_JEDEC_C (0x18)

PCMCIA_CS_TUPLE_JEDEC_A (0x19)

PCMCIA_CS_TUPLE_CONFIG (0x1A)

PCMCIA_CS_TUPLE_CFTABLE_ENTRY (0x1B)
224 Writing Device Drivers for LynxOS

GetFirstTuple

EXAMPLE

pcmcia_cs_tuple_t tuple;

tuple.socket = 0;
tuple.code = PCMCIA_CS_TUPLE_VERS_1;
res = CardServices(GetFirstTuple, NULL, NULL, sizeof(tuple), &tuple);

if (res == PCMCIA_CS_SUCCESS)
{
 cprintf("Vers1 tuple found\n");
}

RETURN CODES

PCMCIA_CS_TUPLE_DEVICE_OC (0x1C)

PCMCIA_CS_TUPLE_DEVICE_OA (0x1D)

PCMCIA_CS_TUPLE_DEVICEGEO (0x1E)

PCMCIA_CS_TUPLE_DEVICEGEO_A (0x1F)

PCMCIA_CS_TUPLE_MANFID (0x20)

PCMCIA_CS_TUPLE_FUNCID (0x21)

PCMCIA_CS_TUPLE_FUNCE (0x22)

PCMCIA_CS_TUPLE_SWIL (0x23)

PCMCIA_CS_TUPLE_VERS_2 (0x40)

PCMCIA_CS_TUPLE_FORMAT (0x41)

PCMCIA_CS_TUPLE_GEOMETRY (0x42)

PCMCIA_CS_TUPLE_BYTEORDER (0x43)

PCMCIA_CS_TUPLE_DATE (0x44)

PCMCIA_CS_TUPLE_BATTERY (0x45)

PCMCIA_CS_TUPLE_ORG (0x46)

PCMCIA_CS_TUPLE_FORMAT_A (0x47)

PCMCIA_CS_TUPLE_SPCL (0x90)

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_BAD_SOCKET Specified socket is invalid.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.
Writing Device Drivers for LynxOS 225

Chapter 11 - Writing PC Card Client Drivers

GetNextTuple

The GetNextTuple service returns the next tuple of the specified type in the CIS
for the specified socket. ArgPointer must be a pointer to the
pcmcia_cs_tuple_t structure returned by a GetFirstTuple or a previous
GetNextTuple request.

EXAMPLE

pcmcia_cs_tuple_t tuple;

tuple.socket = 0;
tuple.code = PCMCIA_CS_TUPLE_VERS_1;
res = CardServices(GetFirstTuple, NULL, NULL, sizeof(tuple), &tuple);

if (res == PCMCIA_CS_SUCCESS)
{
 cprintf("Vers1 tuple found\n");
}

res = CardServices(GetNextTuple, NULL, NULL, sizeof(tuple), &tuple);

if (res == PCMCIA_CS_SUCCESS)
{
 cprintf("Another Vers1 tuple found\n");
}

RETURN CODES

PCMCIA_CS_BAD_ARG_LENGTH ArgLength is invalid.

PCMCIA_CS_NO_CARD No PC Card in socket.

PCMCIA_CS_NO_MORE_ITEMS No tuples with specified code.

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_BAD_SOCKET Specified socket is invalid.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.

PCMCIA_CS_BAD_ARG_LENGTH ArgLength is invalid.

PCMCIA_CS_NO_CARD No PC Card in socket.

PCMCIA_CS_NO_MORE_ITEMS No tuples with specified code.
226 Writing Device Drivers for LynxOS

ParseTuple

ParseTuple

The ParseTuple service parses a tuple. Pointer must be a pointer to the
pcmcia_cs_tuple_t structure returned by a GetFirstTuple or
GetNextTuple request. The ParseTuple service fills a
pcmcia_cs_tuple_data_t structure pointed to by the ArgPointer
parameter. The pcmcia_cs_tuple_data_t structure is defined as follows:

typedef union pcmcia_cs_tuple_data_u
{
 pcmcia_cs_tuple_device_t device;
 pcmcia_cs_tuple_bar_t bar;
 pcmcia_cs_tuple_checksum_t checksum;
 pcmcia_cs_tuple_vers_1_t vers_1;
 pcmcia_cs_tuple_altstr_t altstr;
 pcmcia_cs_tuple_jedec_t jedec;
 pcmcia_cs_tuple_config_t config;
 pcmcia_cs_tuple_cftable_entry_t entry;
 pcmcia_cs_tuple_device_o_t device_o;
 pcmcia_cs_tuple_devicegeo_t devicegeo;
 pcmcia_cs_tuple_manfid_t manfid;
 pcmcia_cs_tuple_funcid_t funcid;
 pcmcia_cs_tuple_funce_t funce;
 pcmcia_cs_tuple_swil_t swil;
 pcmcia_cs_tuple_vers_2_t vers_2;
 pcmcia_cs_tuple_format_t format;
 pcmcia_cs_tuple_geometry_t geo;
 pcmcia_cs_tuple_byteorder_t order;
 pcmcia_cs_tuple_date_t date;
 pcmcia_cs_tuple_battery_t battery;
 pcmcia_cs_tuple_org_t org;
 pcmcia_cs_tuple_spcl_t spcl;}
pcmcia_cs_tuple_data_t;

Supported Tuple Codes
This section lists the supported tuple codes and field sets that support each. For
detailed information about each field semantics, refer to the PCMIA\JEIDA
Metaformat Specification.

PCMCIA_CS_TUPLE_DEVICE

PCMCIA_CS_TUPLE_DEVICE_A

typedef struct pcmcia_cs_tuple_device_s
{
 int ndev; /* Number of device structs */
 struct
 {
 u_char type; /* Type of device */
 u_char wps; /* Write protect switch */
 u_char units; /* Number of mem units */
 u_long unit_size; /* Mem unit’s size */
 u_long speed; /* Card’s speed */
 u_long size; /* Full size of mem */
 }
 dev[MAX_DEVICES];
Writing Device Drivers for LynxOS 227

Chapter 11 - Writing PC Card Client Drivers

}
pcmcia_cs_tuple_device_t;

PCMCIA_CS_TUPLE_BAR

typedef struct pcmcia_cs_tuple_bar_s
{
 struct
 {
 u_int below : 1; /* Below 1 Mb bit */
 u_int cache : 2; /* Prefetchable/Cacheable */
 u_int addr_spc : 1; /* Address space bit */
 u_int indicator : 3; /* Address space indicator */
 }
 attr; /* Attributes */
 u_long size; /* Base Address Register size */
}
pcmcia_cs_tuple_bar_t;

PCMCIA_CS_TUPLE_CHECKSUM

typedef struct pcmcia_cs_tuple_checksum_s
{
 u_short address; /* Checksumed address */
 u_short length; /* Length of checksumed space */
 u_char checksum; /* Checksum */
}
pcmcia_cs_tuple_checksum_t;

PCMCIA_CS_TUPLE_VERS_1

typedef struct pcmcia_cs_tuple_vers_1_s
{
 u_char major; /* Major version */
 u_char minor; /* Minor version */
 char manf_name[MAX_STRING_LEN]; /* Manufacturer name */
 char prod_name[MAX_STRING_LEN]; /* Product name */
 char lot_info[MAX_STRING_LEN]; /* Lot number */
 char prog_info[MAX_STRING_LEN]; /* Programming conditions */
}
pcmcia_cs_tuple_vers_1_t;

PCMCIA_CS_TUPLE_ALTSTR

typedef struct pcmcia_cs_tuple_altstr_s
{
 char escape[MAX_ESCAPE_SEQ_LEN]; /* Alternative string */
 /* escape sequence */
 char altstrings[MAX_ALTSTRINGS][MAX_STRING_LEN];
 /* Strings in alternative */
 /* language (corresponding to */
 /* vers_1 or vers_2 tuples) */
}
pcmcia_cs_tuple_altstr_t;

PCMCIA_CS_TUPLE_JEDEC
PCMCIA_CS_TUPLE_JEDEC_A

typedef struct pcmcia_cs_tuple_jedec_s
{
 int ndev; /* Number of device structs */
228 Writing Device Drivers for LynxOS

Supported Tuple Codes

 /* (corresponding to last */
 /* device tuple) */
 struct
 {
 u_char manf; /* Manufacturer number */
 u_char units; /* Number of mem units */
 u_long unit_size; /* Mem unit’s size */
 u_long size; /* Full size of used mem */
 }
 dev[MAX_DEVICES];
}
pcmcia_cs_tuple_jedec_t;

PCMCIA_CS_TUPLE_CONFIG

typedef struct pcmcia_cs_tuple_config_s
{
 struct
 {
 u_int mask_size : 4; /* Size of Configuration */
 /* Registers presence mask */
 /* field in bytes (minus 1) */
 u_int addr_size : 2; /* Size of Configuration */
 /* Registers base address */
 /* field in bytes (minus 1) */
 }
 sizes;
 u_char index; /* Last index */
 u_long base; /* Base address */
 u_char mask[16]; /* Conf. Reg. presence masks */
 u_char subtuple[MAX_DATA_SIZE];
 /* Optional additional data */
 u_char size; /* Size of subtuple data */
}
pcmcia_cs_tuple_config_t;

PCMCIA_CS_TUPLE_CFTABLE_ENTRY

typedef struct pcmcia_cs_tuple_power_s
{
 struct
 {
 u_int pdown : 1; /* Power down bit */
 u_int peak : 1; /* Peak current bit */
 u_int avg : 1; /* Average current bit */
 u_int stat : 1; /* Static current bit */
 u_int max_v : 1; /* Maximum voltage bit */
 u_int min_v : 1; /* Minimum voltage bit */
 u_int nom_v : 1; /* Nominal voltage bit */
 }
 select;
 struct
 {
 u_long value; /* Value corresponding to */
 /* field in select structure */
 u_char flags; /* Flags corresponding to */
 /* field in select structure */
 }
 values[7];
}
pcmcia_cs_tuple_power_t;
Writing Device Drivers for LynxOS 229

Chapter 11 - Writing PC Card Client Drivers

typedef struct pcmcia_cs_tuple_timing_s
{
 u_long wait; /* Max Wait time */
 u_long ready; /* Max Ready time */
 u_long reserved; /* reserved */
 u_char waitscale; /* Wait scale */
 u_char rdyscale; /* Ready scale */
 u_char rsvscale; /* Reserved scale */
 struct
 {
 u_int wait : 1; /* Wait bit */
 u_int ready : 1; /* Ready bit */
 u_int reserved : 1; /* Reserved bit */
 }
 select;
}
pcmcia_cs_tuple_timing_t;

typedef struct pcmcia_cs_tuple_iospace_s
{
 struct
 {
 u_int range : 1; /* Range bit */
 u_int bus8_16 : 2; /* Bus width info */
 u_int ioaddrlines : 5; /* Total number of address */
 /* lines */
 }
 iospace_desc;
 struct
 {
 u_int len_size : 2; /* Size of length field */
 u_int addr_size : 2; /* Size of address field */
 u_int num_fields : 4; /* Total number of range */
 /* fields (minus 1) */
 }
 range_desc;
 struct
 {
 u_long base; /* Start of the next I/O */
 /* Block */
 u_long length; /* Length of the next I/O */
 /* Block */
 }
 range[16];
}
pcmcia_cs_tuple_iospace_t;

typedef struct pcmcia_cs_tuple_irq_s
{
 struct
 {
 u_int share : 1; /* Share bit */
 u_int pulse : 1; /* Pulse bit */
 u_int level : 1; /* Level bit */
 u_int mask : 1; /* Mask bit */
 u_int vend : 1; /* Vendor specific signal */
 u_int berr : 1; /* Bus error signal */
 u_int iock : 1; /* I/O check signal */
 u_int nmi : 1; /* Non-maskable interrupt */
 u_int irqn : 4; /* One of possible lines */
 }
 irq_desc;
 u_short irq_mask; /* IRQ lines mask */
230 Writing Device Drivers for LynxOS

Supported Tuple Codes

}
pcmcia_cs_tuple_irq_t;

typedef struct pcmcia_cs_tuple_mem_s
{
 struct
 {
 u_int host_addr : 1; /* Host address bit */
 u_int caddr_size : 2; /* Size of card address */
 u_int len_size : 2; /* Size of length */
 u_int windows : 3; /* The number of window */
 /* descriptors (minus 1) */
 }
 mem_desc;
 struct
 {
 u_long length; /* The length of the window */
 /* in units of 256 bytes */
 u_long card_addr; /* The address to be accessed */
 /* on the card corresponding */
 /* to the host address */
 u_long host_addr; /* The physical address in */
 /* the host-address space */
 /* where the block of memory */
 /* must be placed */
 }
 window[8];
}
pcmcia_cs_tuple_mem_t;

typedef struct pcmcia_cs_tuple_misc_s
{
 u_int pdown : 1; /* Power down bit */
 u_int read_only : 1; /* Read only bit */
 u_int audio : 1; /* Audio bit */
 u_int max_twins : 3; /* Max Twin cards (minus 1) */
 u_int dma_width : 1; /* The DMA data transfer */
 /* width */
 u_int dma_req : 2; /* DMA request signal */
}
pcmcia_cs_tuple_misc_t;

typedef struct pcmcia_cs_tuple_cftable_entry_s
{
 struct
 {
 u_int interface : 1; /* Interface bit */
 u_int dflt : 1; /* Default bit */
 u_int entry_num : 6; /* Value is to be written to */
 /* the Card Configuration */
 /* Register to enable the */
 /* configuration described in */
 /* the tuple */
 }
 index;
 struct
 {
 u_int wait_req : 1; /* WAIT# Signal support */
 /* required for Memory Cycles */
 u_int rdy_active : 1; /* READY Status Active */
 u_int wp_active : 1; /* Write Protect Status is */
 /* active */
 u_int bvd_active : 1; /* BVD1 and BVD2 signals are */
Writing Device Drivers for LynxOS 231

Chapter 11 - Writing PC Card Client Drivers

 /* active */
 u_int type : 4; /* Interface type */
 }
 interface;
 struct
 {
 u_int misc : 1; /* Miscell. structure bit */
 u_int memspace : 2; /* Memspace structure */
 /* descriptor */
 u_int irq : 1; /* IRQ structure bit */
 u_int iospace : 1; /* IO space structure bit */
 u_int timing : 1; /* Timing structure bit */
 u_int power : 2; /* Number of power structures */
 }
 select;
 pcmcia_cs_tuple_power_t power[3];
 /* Power structures */
 pcmcia_cs_tuple_timing_t timing;
 /* Timing structure */
 pcmcia_cs_tuple_iospace_t iospace;
 /* IO space structure */
 pcmcia_cs_tuple_irq_t irq;
 /* IRQ structure */
 pcmcia_cs_tuple_mem_t mem;
 /* Memspace structure */
 pcmcia_cs_tuple_misc_t misc;
 /* Miscellaneous structure */
 u_char subtuple[MAX_DATA_SIZE];
 /* Optional additional data */
 u_char size;
/* Size of subtuple data */
}
pcmcia_cs_tuple_cftable_entry_t;

PCMCIA_CS_TUPLE_DEVICE_OC
PCMCIA_CS_TUPLE_DEVICE_OA

typedef struct pcmcia_cs_tuple_device_o_s
{
 int ndev; /* Number of device structs */
 struct
 {
 u_int vcc_used : 2; /* Vcc voltage */
 u_int mwait : 1; /* MWait bit */
 }
 info;
 struct
 {
 u_char type; /* Type of device */
 u_char wps; /* Write protect switch */
 u_char units; /* Number of mem units */
 u_long unit_size; /* Mem unit’s size */
 u_long speed; /* Card’s speed */
 u_long size; /* Full size of mem */
 }
 dev[MAX_DEVICES];
}
pcmcia_cs_tuple_device_o_t;

PCMCIA_CS_TUPLE_DEVICEGEO
PCMCIA_CS_TUPLE_DEVICEGEO_A
232 Writing Device Drivers for LynxOS

Supported Tuple Codes

typedef struct pcmcia_cs_tuple_devicegeo_s
{
 int ndev; /* Number of device structs */
 struct
 {
 u_char bus; /* Card interface width */
 /* (2^(bus - 1)) */
 u_char erase; /* Minimum erase block */
 /* size (2^(erase - 1)) */
 u_char read; /* Minimum read block */
 /* size (2^(read - 1)) */
 u_char write; /* Minimum write block */
 /* size (2^(write - 1)) */
 u_char partition; /* Minimal partition size */
 /* (2^(partition - 1)) */
 u_char hwil; /* Hardware interleave */
 /* (2^(hwil - 1)) */
 }
 dev[MAX_DEVICES];
}
pcmcia_cs_tuple_devicegeo_t;

PCMCIA_CS_TUPLE_MANFID

typedef struct pcmcia_cs_tuple_manfid_s
{
 u_short code; /* Manufacture code */
 u_short card; /* Card info */
}
pcmcia_cs_tuple_manfid_t;

PCMCIA_CS_TUPLE_FUNCID

typedef struct pcmcia_cs_tuple_funcid_s
{
 u_int func : 8; /* Type of card */
 u_int rom : 1; /* ROM bit */
 u_int post : 1; /* POST bit */
}
pcmcia_cs_tuple_funcid_t;

PCMCIA_CS_TUPLE_FUNCE

typedef struct pcmcia_cs_tuple_funce_s
{
 u_char type; /* Type of extended data */
 u_char data[MAX_DATA_SIZE]; /* Function information */
 u_char size; /* Size of extended data */
}
pcmcia_cs_tuple_funce_t;

PCMCIA_CS_TUPLE_SWIL

typedef struct pcmcia_cs_tuple_swil_s
{
 u_char interleave; /* Interleave factor */
}
pcmcia_cs_tuple_swil_t;

PCMCIA_CS_TUPLE_VERS_2

typedef struct pcmcia_cs_tuple_vers_2_s
Writing Device Drivers for LynxOS 233

Chapter 11 - Writing PC Card Client Drivers

{
 u_char version; /* Structure version */
 u_char comply; /* Level of compliance */
 u_short first_addr; /* Byte address of first */
 /* data byte in card */
 u_char rsv1; /* Reserved */
 u_char rsv2; /* Reserved */
 u_char vendor1; /* Vendor specific */
 u_char vendor2; /* Vendor specific */
 u_char copies; /* Number of copies of CIS */
 /* present on the device */
 u_char soft_vend[MAX_STRING_LEN];
 /* Vendor of software that */
 /* formatted the card */
 u_char card_info[MAX_STRING_LEN];
 /* Informational message */
 /* about the card */
pcmcia_cs_tuple_vers_2_t;

PCMCIA_CS_TUPLE_FORMAT
PCMCIA_CS_TUPLE_FORMAT_A

typedef struct pcmcia_cs_tuple_format_s
{
 u_char type; /* Format type code */
 struct
 {
 u_int type : 3; /* Error code type */
 u_int length : 4; /* Error code length */
 }
 err_code; /* Error detection method and */
 /* length of error detection */
 /* code */
 u_long offset; /* Byte address of the first */
 /* data byte in partition */
 u_long size; /* Number of data bytes in */
 /* this partition */
 union
 {
 struct
 {
 u_short block_size; /* Block size */
 u_long blocks; /* Number of data blocks */
 u_long err_loc; /* Location of the error */
 /* detection code */
 u_char bar; /* Base Address Register */
 /* Indicator */
 }
 disk; /* Disk like regions */
 struct
 {
 u_char flags; /* Various flags */
 u_char reserved; /* Reserved */
 u_long addr; /* Physical address at which */
 /* this memory partition */
 /* should be mapped */
 u_long err_loc; /* Location of the error */
 /* detection code */
 u_char bar; /* Base Address Register */
 /* Indicator */
 }
 memory; /* Memory like regions */
234 Writing Device Drivers for LynxOS

Supported Tuple Codes

 }
 info; /* Additional information, */
 /* interpreted based on value */
 /* of ’type’ field */
}
pcmcia_cs_tuple_format_t;

PCMCIA_CS_TUPLE_GEOMETRY

typedef struct pcmcia_cs_tuple_geometry_s
{
 u_char sectors; /* Sectors per track */
 u_char tracks; /* Tracks per cylinder */
 u_char cylinders; /* Total number of cylinders */
}
pcmcia_cs_tuple_geometry_t;

PCMCIA_CS_TUPLE_BYTEORDER

typedef struct pcmcia_cs_tuple_byteorder_s
{
 u_char byteorder; /* Byte order code */
 u_char bytemap; /* Byte mapping code */
}
pcmcia_cs_tuple_byteorder_t;

PCMCIA_CS_TUPLE_DATE

typedef struct pcmcia_cs_tuple_date_s
{
 struct
 {
 u_char seconds; /* Seconds */
 u_char minutes; /* Minutes */
 u_char hours; /* Hours */
 }
 time; /* The time at which the card */
 /* was initialized */
 struct
 {
 u_char day; /* Day */
 u_char month; /* Month */
 u_char year; /* Year */
 }
 day; /* The date the card was */
 /* initialized */
}
pcmcia_cs_tuple_date_t;

PCMCIA_CS_TUPLE_BATTERY

typedef struct pcmcia_cs_tuple_battery_s
{
 struct
 {
 u_char seconds; /* Seconds */
 u_char minutes; /* Minutes */
 u_char hours; /* Hours */
 }
 rday; /* The date on which the */
 /* battery was last replaced */
 struct
Writing Device Drivers for LynxOS 235

Chapter 11 - Writing PC Card Client Drivers

 {
 u_char seconds; /* Seconds */
 u_char minutes; /* Minutes */
 u_char hours; /* Hours */
 }
 xday; /* The date on which the */
 /* battery should be replaced */
}
pcmcia_cs_tuple_battery_t;

PCMCIA_CS_TUPLE_ORG

typedef struct pcmcia_cs_tuple_org_s
{
 u_char type; /* Data organization code */
 u_char fs_info[MAX_STRING_LEN];
 /* Text description of this */
 /* organization */
}
pcmcia_cs_tuple_org_t;

PCMCIA_CS_TUPLE_SPCL

typedef struct pcmcia_cs_tuple_spcl_s
{
 u_long id; /* PCMCIA or JEIDA assigned */
 /* value */
 u_char seq; /* Tuple number in sequence */
 u_char data[MAX_DATA_SIZE];
 /* The data component */
 u_char size; /* Size of data */
}
pcmcia_cs_tuple_spcl_t;

EXAMPLE

pcmcia_cs_tuple_data_t tuple_data;

tuple.socket = 0;
tuple.code = PCMCIA_CS_TUPLE_VERS_1;
res = CardServices(GetFirstTuple, handle, (void *)0, sizeof(tuple),
&tuple);
if (res == PCMCIA_CS_SUCCESS)
{
 res = CardServices(ParseTuple, handle, &tuple, sizeof(tuple_data),
 &tuple_data);

 if (res == PCMCIA_CS_SUCCESS)
 {
 cprintf("CARD DETECTED: v%d.%d\n", tuple_data.vers_1.major,
 tuple_data.vers_1.minor);
 cprintf(" %s\n", tuple_data.vers_1.manf_name);
 cprintf(" %s\n", tuple_data.vers_1.prod_name);
 cprintf(" %s\n", tuple_data.vers_1.lot_info);
 cprintf(" %s\n", tuple_data.vers_1.prog_info);
 }
}

236 Writing Device Drivers for LynxOS

RegisterClient

RETURN CODES

RegisterClient

The RegisterClient service registers a client with Card Services.
ArgPointer must be a pointer to a pcmcia_cs_register_t structure. The
client callback handler entry point is passed in Pointer. If the Handle argument
is not NULL, the service places the new client handle into the location pointed by
Handle.

The pcmcia_cs_register_t structure is defined as follows:

typedef struct pcmcia_cs_register_s
{
 int attributes; /* bit-mapped client attributes */
 int event_mask; /* notification events */
 void * client_data; /* user-specific client */
}
pcmcia_cs_register_t;

where:

EXAMPLE

pcmcia_cs_register_t reg;

reg.attributes = PCMCIA_CS_ATTR_IO | PCMCIA_CS_ATTR_INSERT;
reg.event_mask = PCMCIA_CS_EVENT_INSERTION;

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_BAD_SOCKET Specified socket is invalid.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.

PCMCIA_CS_BAD_ARG_LENGTH ArgLength is invalid.

attributes Are bit mapped client attributes. Bit mapped client attributes are
bitwise combinations of the followings constants:
• PCMCIA_CS_ATTR_MEM - Memory client device driver
• PCMCIA_CS_ATTR_MTD - Memory technology driver
• PCMCIA_CS_ATTR_IO - I/O client device driver
• PCMCIA_CS_ATTR_INSERT - If specified, the client receives

an artificial PCMCIA_CS_EVENT_INSERTION event for
every socket that contains a PC Card.

event_mask Are events of which to notify the client - A bitwise combination of
event codes.

client_data Is user-specific data.
Writing Device Drivers for LynxOS 237

Chapter 11 - Writing PC Card Client Drivers

reg.client_data = NULL;
res = CardServices(RegisterClient, NULL, callback, sizeof(reg), ®);

if (res == PCMCIA_CS_SUCCESS)
{
 cprintf("Registration complete\n");
}

RETURN CODES

ReleaseConfiguration

ReleaseConfiguration service returns a PC Card and its socket to a simple
interface and configuration zero. ArgPointer must be a pointer to a
pcmcia_cs_release_config_t structure.

The pcmcia_cs_release_config_t structure is defined as follows:

typedef struct pcmcia_cs_release_config_s
{
 int socket; /* logical socket */
}
pcmcia_cs_release_config_t;

where:

socket Is a logical socket.

EXAMPLE

pcmcia_cs_release_config_t release;

release.socket = 0;
res = CardServices(ReleaseConfiguration, NULL, NULL, sizeof(release),
 &release);

if (res == PCMCIA_CS_SUCCESS)
{
 cprintf("Configuration released\n");
}

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.

PCMCIA_CS_BAD_ARG_LENGTH ArgLength is invalid.

PCMCIA_CS_BAD_ATTRIBUTE Incorrect client type.
238 Writing Device Drivers for LynxOS

ReleaseIO

RETURN CODES

ReleaseIO

The ReleaseIO service releases the I/O addresses requested with the
RequestIO service. Only the Card Services resource database is modified by a
call to this service. No changes are made in the socket adapter. ArgPointer must
be a pointer to a pcmcia_cs_release_io_t structure.

The pcmcia_cs_release_io_t structure is defined as follows:

typedef struct pcmcia_cs_release_io_s
{
 int socket; /* logical socket */
}
pcmcia_cs_release_io_t;

where:

socket Is a logical socket.

EXAMPLE

pcmcia_cs_release_io_t release;

release.socket = 0;
res = CardServices(ReleaseIO, NULL, NULL, sizeof(release),
 &release);

if (res == PCMCIA_CS_SUCCESS)
{
 cprintf("IO released\n");
}

RETURN CODES

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.

PCMCIA_CS_BAD_ARG_LENGTH ArgLength is invalid.

PCMCIA_CS_BAD_SOCKET Specified socket is invalid.

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.

PCMCIA_CS_BAD_ARG_LENGTH ArgLength is invalid.

PCMCIA_CS_BAD_SOCKET Specified socket is invalid.
Writing Device Drivers for LynxOS 239

Chapter 11 - Writing PC Card Client Drivers

ReleaseIRQ

The ReleaseIRQ service releases a previously allocated interrupt line. Only the
Card Services resource database is modified by a call to this service. No changes
are made in the socket adapter. The ArgPointer must be a pointer to a
pcmcia_cs_release_irq_t structure.

The pcmcia_cs_release_irq_t structure is defined as follows:

typedef struct pcmcia_cs_release_irq_s
{
 int socket; /* logical socket */
}
pcmcia_cs_release_irq_t;

where:

socket Is a logical socket.

EXAMPLE

pcmcia_cs_release_irq_t release;

release.socket = 0;
res = CardServices(ReleaseIRQ, NULL, NULL, sizeof(release),
 &release);

if (res == PCMCIA_CS_SUCCESS)
{
 cprintf("IRQ released\n");
}

RETURN CODES

RequestConfiguration

RequestConfiguration service configures the PC Card and socket.
ArgPointer must be a pointer to a pcmcia_cs_request_config_t
structure.

The pcmcia_cs_request_config_t structure is defined as follows:

typedef struct pcmcia_cs_request_config_s
{
 int socket; /* logical socket */

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.

PCMCIA_CS_BAD_ARG_LENGTH ArgLength is invalid.

PCMCIA_CS_BAD_SOCKET Specified socket is invalid.
240 Writing Device Drivers for LynxOS

RequestConfiguration

 int vcc; /* Vcc settings */
 int vpp; /* Vpp settings */
 int int_type; /* interface type */
 unsigned char status; /* Card Status register settings */
 unsigned char pin; /* Card Pin register settings */
 unsigned char copy; /* Card Copy register settings */
 unsigned char option; /* Card Option register settings */
 int present; /* Card Configuration registers present */
}
pcmcia_cs_request_config_t;

where:

EXAMPLE

pcmcia_cs_request_config_t req;

req.socket = 0;
req.vcc = 50;
req.vpp = 50;
req.int_type = PCMCIA_CS_INTERFACE_MEM;
req.present = 0;
res = CardServices(RequestConfiguration, NULL, NULL, sizeof(req), &req
);

if (res == PCMCIA_CS_SUCCESS)
{

socket Is a logical socket.

vcc Is the Vcc setting. The voltage is expressed in tenths of a volt.

vpp Is the Vpp setting. The voltage is expressed in tenths of a volt.

int_type Is the interface type. Must be set to:
• PCMCIA_CS_INTERFACE_NONE - Is for the simplest interface,

featuring only card detection.
• PCMCIA_CS_INTERFACE_MEM - Is for memory only interface.
• PCMCIA_CS_INTERFACE_IO - Is for memory and I/O interface.

status Is the Card Status register settings, if present.

pin Is the Card Pin register settings, if present.

copy Is the Card Socket/Copy register settings, if present.

option Is the Card Option register settings, if present.

present Specifies Card Configuration registers present. present is a bitwise
combination of the following constants:
• PCMCIA_CS_PRESENT_STATUS - The status register is present.
• PCMCIA_CS_PRESENT_PIN - The pin register is present.
• PCMCIA_CS_PRESENT_COPY - The copy register is present.
• PCMCIA_CS_PRESENT_OPTION - The option register is present.
Only those registers that are specified using this field are set.
Writing Device Drivers for LynxOS 241

Chapter 11 - Writing PC Card Client Drivers

 cprintf("Configuration succeeded\n");
}

RETURN CODES

RequestIO

The RequestIO service reserves the specified I/O range for later assignment
using the RequestConfiguration service. ArgPointer must be a pointer to
a pcmcia_cs_request_io_t structure.

The pcmcia_cs_request_io_t structure is defined as follows:

typedef struct pcmcia_cs_request_io_s
{
 int socket; /* logical socket */
 unsigned base_port1; /* base port address for range */
 int num_ports1; /* number of contiguous ports */
 int attributes1; /* bit-mapped port attributes */
 unsigned base_port2; /* base port address for range */
 int num_ports2; /* number of contiguous ports */
 int attributes2; /* bit-mapped port attributes */
}
pcmcia_cs_request_io_t;

where

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.

PCMCIA_CS_BAD_ARG_LENGTH ArgLength is invalid.

PCMCIA_CS_BAD_SOCKET Specified socket is invalid.

PCMCIA_CS_CONFIGURATION_LOCKED The RequestConfiguration
service has already been called for
this socket but a matching
ReleaseConfiguration has
not.

PCMCIA_CS_NO_CARD No PC Card in socket.

socket Is a logical socket.

base_port1 Is the base port number for I/O window 1.

num_ports1 Is the number of contiguous ports in I/O window 1.

attributes1 If set to PCMCIA_CS_IO_ATTR_8BIT, the I/O window has an
8 bit width.
242 Writing Device Drivers for LynxOS

RequestIRQ

EXAMPLE

pcmcia_cs_request_io_t req;

req.socket = 0;
req.base_port1 = 0x3f0;
req.num_ports1 = 32;
req.attributes1 = 0;
req.base_port2 = 0x1f0;
req.num_ports2 = 4;
req.attributes1 = 0;
res = CardServices(RequestIO, NULL, NULL, sizeof(req), &req);

if (res == PCMCIA_CS_SUCCESS)
{
 cprintf("I/O range request successful\n");
}

RETURN CODES

RequestIRQ

The RequestIRQ service reserves the specified IRQ line for later assignment
using the RequestConfiguration service. The ArgPointer must be a pointer
to a pcmcia_cs_request_irq_t structure.

base_port2 Is the base port number for I/O window 2.

num_ports2 Is the number of contiguous ports in I/O window 2.

attributes2 If set to PCMCIA_CS_IO_ATTR_8BIT, the I/O window has an
8 bit width.

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.

PCMCIA_CS_BAD_ARG_LENGTH ArgLength is invalid.

PCMCIA_CS_BAD_SOCKET Specified socket is invalid.

PCMCIA_CS_CONFIGURATION_LOCKED The RequestConfiguration
service has already been called for this
socket but a matching
ReleaseConfiguration has
not.

PCMCIA_CS_OUT_OF_RESOURCE Requested I/O window is already in
use.
Writing Device Drivers for LynxOS 243

Chapter 11 - Writing PC Card Client Drivers

The pcmcia_cs_request_irq_t structure is defined as follows:

typedef struct pcmcia_cs_request_irq_s
{
 int socket; /* logical socket */
 int assigned_irq; /* irq assigned to PC Card */
}
pcmcia_cs_request_irq_t;

where:

EXAMPLE

pcmcia_cs_request_irq_t req;

req.socket = 0;
req.assigned_irq = 14;
res = CardServices(RequestIRQ, NULL, NULL, sizeof(req), &req);

if (res == PCMCIA_CS_SUCCESS)
{
 cprintf("IRQ request successful\n");

}

RETURN CODES

ServiceName

ServiceName service returns a character string corresponding to a specified
request code. ArgPointer must be a pointer to a pcmcia_cs_name_t
structure.

socket Is a logical socket.

assigned_irq Is the IRQ line.

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.

PCMCIA_CS_BAD_ARG_LENGTH ArgLength is invalid.

PCMCIA_CS_BAD_SOCKET Specified socket is invalid.

PCMCIA_CS_CONFIGURATION_LOCKED The RequestConfiguration
service has already been called for this
socket but a matching
ReleaseConfiguration has not.

PCMCIA_CS_OUT_OF_RESOURCE Requested I/O window is already in use.
244 Writing Device Drivers for LynxOS

PC Card Support

The pcmcia_cs_name_t structure is defined as follows:

typedef struct pcmcia_cs_name_s
{
 int code;
 char * name;
}
pcmcia_cs_name_t;

where

EXAMPLE

pcmcia_cs_name_t name;
name.code = GetConfigurationInfo;
CardServices(ServiceName, NULL, NULL, 0, &name);

/* should print GetConfigurationInfo */
cprintf("code 0x%x, name %s\n", name.code, name.name);

RETURN CODES

PC Card Support

PC Card Support is a facility that enables the use of PC Card (PCMCIA) devices in
the LynxOS environment. Features supported by the PC Card subsystem include:

• Extendable support for several widely used PC Card devices. Supported
cards are accessible as conventional ISA devices controlled by standard
LynxOS device drivers.

• Simple and platform-independent means for developing new PC Card
software (PC Card enablers and PC Card drivers).

• Support of preinstalled PC Card devices, thus allowing root file system to
reside on a PC Card disk.

• Support of runtime insertion and extraction of PC Card devices.

code Is the request code.

name Is a pointer to a string containing the request name.

PCMCIA_CS_SUCCESS Request succeeded.

PCMCIA_CS_UNSUPPORTED_SERVICE Service is not supported.
Writing Device Drivers for LynxOS 245

Chapter 11 - Writing PC Card Client Drivers

Installing and Removing PC Card Support

.PC Card Support can be installed and removed after initial installation of LynxOS.

To install PC Card Support enter the following commands:

cd /sys/lynx.os
make install.pcmcia

To remove PC Card Support enter the following commands:

cd /sys/lynx.os
make uninstall.pcmcia

PC Card Support Architecture

The LynxOS PC Card subsystem is based upon the PCMCIA/JEIDA PC Card
architecture specification. It has three main layers (see figure below). At the lowest
level is Socket Services. The next level is Card Services. Layered on the top of
Card Services are client device drivers. All these components are kernel entities.
User mode applications interact with PC Card devices and the PC Card subsystem
using interfaces defined by client device drivers.

Figure 11-2: PC Card Support Architecture

Applications

Device Drivers

Card Services

Socket Services

PCMCIA Host
Bus Adapter

PC PC
246 Writing Device Drivers for LynxOS

Socket Services

Socket Services

Socket Services provides a standardized interface to manipulate PC Cards, sockets
and adapters.

Host systems may have more than one PC Card adapter present. Each adapter has
its own Socket Services. All instances of Socket Services are intended to support a
single instance of Card Services. A socket service registers with Card Services and
notifies it of status changes on PC Cards or in sockets.

By making all accesses to adapters, sockets, and PC Cards through the socket
services interface, higher-level software is unaffected by different implementations
of the hardware. Only hardware-specific socket services implementations must be
modified to accommodate any different hardware implementations.

LynxOS PC Card Support implements socket services as an ordinary device driver.
Refer to “Writing PC Card Socket Services” on page 257 for a detailed discussion
of interfaces defined by Socket Services and for information on how to develop a
new socket service.

Card Services

Above the Socket Services layer is the Card Services layer. Card Services
coordinates accesses to PC Cards, sockets, and system resources among multiple
clients. There is only one instance of Card Services in the system.

Card Services makes all accesses to the hardware level through the Socket Services
interface. All Socket Services status change reporting is routed to Card Services.
Card Services then notifies the appropriate clients. Card Services preserves for its
clients an abstract, hardware-independent view of a card and associated system
resources.

LynxOS PC Card Support implements the Card Services as an ordinary device
driver. Refer to “Writing PC Card Socket Services” on page 257” for a detailed
discussion of interfaces defined by Card Services.

Client Device Drivers

Client Device Drivers refers to all users of Card Services. In a LynxOS PC Card
subsystem, users of Card Services are devices drivers that use the standardized API
CardServices() to manipulate PC Cards, sockets, and adapters.
Writing Device Drivers for LynxOS 247

Chapter 11 - Writing PC Card Client Drivers

PC Card Enabler

LynxOS PC Card support includes a special client device driver called the PC Card
Enabler. This driver responds to runtime insertion and removal events and provides
the following services to the rest of the system:

• Card Configuration - Configured card acts as an ISA device.

• Automatic installation and deinstallation of static device drivers in
response to card insertion and removal

• ioctl-based API to user mode applications - The API allows
applications to monitor status of the PC Card subsystem.

Refer to pcmcia_enabler(4) man page for a detailed description of the PC
Card Enabler.

PC Card Utilities

LynxOS PC Card support includes the following utilities:

• pcmcia_info - An information utility that displays information about all
logical PCMCIA sockets and PC Card devices present in the system

• pcmcia_shu - A control utility used to prepare a socket for card removal

• pcmcia_d - A daemon that automatically handles dynamic driver
installation and deinstallation in response to card insertion and removal.

For a complete discussion of each utility, refer to an appropriate man page.

Using a PC Card

When a supported PC Card is inserted before system boot, it is automatically
configured by the PC Card Enabler. It can then be accessed as an ISA device using
the existing device driver.
248 Writing Device Drivers for LynxOS

Supported Cards

Supported Cards

The following PC Cards are supported by the PC Card Enabler and work with the
specified standard LynxOS driver:

Hot Swapping

Hot swapping is used to refer to the ability of PC Cards to be inserted and removed
when power is applied to the machine and OS is running, and the ability of the
system to automatically detect and react to configuration changes.

When a card is being inserted on a running system, it is handled by the PC Card
Enabler exactly the same way as a card inserted to a socket prior to boot. If the card
is supported, it is configured as specified in the PC Card Enabler configuration
tables.

There are two ways to automatically install an appropriate device driver in
response to card insertion.

One way is to use the PC Card Enabler static driver installation feature. It allows
for an automatic call to the device driver install entry point function of a static
driver that failed to install a major device at the boot time due to the absence of a
device. Because the PC Card Enabler calls the install entry point after the PC
Card device has been inserted and configured on the I/O bus, the driver can
successfully create an appropriate major device and return success, thus making
the PC Card device available for the device driver operations.

Information about statically linked device drivers supported by the PC Card
subsystem is located in the configuration file
/sys/devices/pcmcia_enabler_info.c. Please refer to
pcmcia_enabler(4) man page for a detailed description of the PC Card Enabler
facility.

The second way is to use pcmcia_d daemon program. This daemon program
responds to card insertion events, and acts according to the configuration data in

Table 11-3: Supported PC Cards

PC Card Driver for x86 Driver for MPC860

3Com 3C589x EtherLinkIII
Ethernet adapter

if_3c5x9 if_3c5x9

Adaptec SlimSCSI SCSI adapter sim1522 sim1522_8xx

EigerStar ATA Hard Disk ide ide
Writing Device Drivers for LynxOS 249

Chapter 11 - Writing PC Card Client Drivers

the configuration files. The key responsibility of pcmcia_d is to dynamically
install an appropriate device driver, create a device node, and invoke an optional
script configuring the PC Card for operation in the system. For instance, the script
can mount an inserted PC Card disk as a LynxOS file system. Please refer to
pcmcia_d(1) man page for a detailed description of the pcmcia_d daemon.

It is possible to remove a PC Card from a running system. Prior to removal, call the
pcmcia_shu utility to prepare the socket for card removal. pcmcia_shu is
responsible for ensuring that no device driver is accessing the device being
removed. pcmcia_shu interacts with the PC Card Enabler and pcmcia_d to
handle the removal request. An attempt to deinstall the driver is made. In addition,
if the driver has been deinstalled by the pcmcia_d daemon, the daemon calls an
optional user script that removes the device special node.

Request to remove a PC Card device may fail, for example, if the PC Card disk
being removed is mounted as a file system. Appropriate steps must be taken to
ensure that the PC Card removed is not used by any application. Removing a card
without a successful card shutdown may cause a system crash.

Adding Support for a New PC Card

You can add support for a new PC Card by adding support to the PC Card Enabler
configuration tables or by developing of a new client device driver.

Adding Support to PC Card Enabler

To add support for a new card, add a new entry to the PC Card Enabler
configuration table. The required information includes the manufacturer and
product identification numbers from the card MANFID tuple, Configuration Table
Entry index, and the configuration to which the entry corresponds.

You can use the pcmcia_info utility to find out various information about the
PC Card. For instance, if the PC Card device is inserted into the first PCMCIA
socket, pcmcia_info creates a display similar to one shown below:

lynx1# pcmcia_info 0
Card in socket #0 : [0x0106 0x0000]

Current configuration:
I/O range 1: 0x1f0 0x8
I/O range 2: 0x3f6 0x1
IRQ: 46

+-------+------------+------------+-------+
| Index | Range1 | Range2 | Width |
250 Writing Device Drivers for LynxOS

Create New Device Driver

+-------+------------+------------+-------+
0x01	N * 0x10	n/a	16
0x02	0x1f0 0x08	0x3f6 0x01	16
*0x03	0x170 0x08	0x376 0x01	16
+-------+------------+------------+-------+

The first line indicates that there is a PC Card device found in the PCMCIA socket,
and its manufacturer and product identification numbers are 0x0106 and
0x0000 respectively.

The table shows correspondence between a Configuration Table Entry and I/O
ranges used by the particular configuration. Choose an entry with the configuration
most appropriate for the host system.

To add a new entry to the PC Card Enabler configuration table, use the information
obtained using pcmcia_info to define an entry corresponding to the new PC
Card device. A detailed description of the PC Card Enabler configuration table
format is available in pcmcia_enabler(4) man page.

Next configure the existing LynxOS driver capable of controlling the ISA device.
Configure the driver to ensure that it uses I/O ranges and IRQ line identical to
those specified in the PC Card Enabler configuration table.

Create New Device Driver

A new device driver should be a regular device driver using the Card Services API
to detect, identify, and configure the PC Card prior to any normal mode accesses to
the device. Refer to “Writing PC Card Socket Services” on page 257 for a detailed
specification of the Card Services API.

Adding Support for a New PCMCIA Adapter

Adding support for a new PCMCIA adapter involves development of a new Socket
Services device driver. No changes to other components of the PC Card Support
software are necessary. Refer to “Writing PC Card Socket Services” on page 257
for a detailed specification of the Socket Services API and information on how to
develop a new Socket Services driver.
Writing Device Drivers for LynxOS 251

Chapter 11 - Writing PC Card Client Drivers

Supported PCMCIA Adapters

The following PCMCIA adapters are supported by the LynxOS PC Card
subsystem:

Troubleshooting

This section provides troubleshooting tips that support the EtherLinkIII PC Card
on the x86 platform.

1. Check that Socket Services information structure contains the correct
information about the PCMCIA adapter(s) installed in your system:

Open the /sys/devices/pcmcia_ss_pci_info.c file. Find the
description of your adapter(s) in the sspci_known_adapters array.
The current revision of the driver has only two entries - one for the
O2Micro OZ6860 adapter, another for all other i82365-compatible
adapters. All adapters other than OZ6860 are configured in the ISA
legacy mode. If you are having problems with your adapter, try to
increase the verbosity level by setting the SSPCI_FLAG_VERBOSE flag
in the attributes field of the adapter entry. Additional debug information
may help to understand the problem. Note that the debug output is sent to
COM2. Another field that you might want to change in the Socket Services
information file is the interrupt delivery mode. Refer to the next
troubleshooting tip for details. Note the possible ISA locations table. You
can add ISA port address to the sspci_isa_locations array, if you
know that your adapter uses an alternate ISA port.

Modify the file as necessary and rebuild the Socket Services device and
the kernel.

2. Check the IRQ numbers and I/O addresses in the Enabler table and in the
EtherLinkIII device information file are the same and are not in use by
some other device:

Table 11-4: Supported PCMCIA Adapters

PCMCIA Adapter Architecture

Embedded RPXL823 PCMCIA Interface RPXL823

i82365 compatible ISA/PCI PCMCIA Adapter x86 adapters
252 Writing Device Drivers for LynxOS

Troubleshooting

Open /sys/devices/pcmcia_enabler_info.c. Find the following
entry in the pcmcia_enabler_card_table_cfg structure:

{
0x101, 0x589, /* 3COM 3c589x cards */

#ifdef __x86__
0x110, 0x10, 16,

#else
0x220, 0x10, 16, /* 0x220-0x230 */

#endif

0x0, 0x0, 0x0, /* unused */
0x1 | 0x40, /* config index 1 */

/* level mode intrs */
#ifdef __x86__

10
#else

9 /* IRQ 9 */
#endif

},

The first two fields identify the card. The third field is the base I/O
address of the card. The last field is the IRQ number assigned to the card.
Note that 32 is not added to the IRQ number.

Open /sys/devices/if_3c589x_pcmcia_info.c. Observe the
following structure:

struct if_3c5x9_info if_3c589x_pcmcia_info = {
 0x110,
 32 + 10,
 0, /* (EISA only) slot number, ISA set to zero */
 0, /* TP = 0, AUI = 1, BNC = 3 */
 3 /* bus type, ISA = 1, EISA = 2, PCMCIA = 3 */
};

The first field of the structure is the base I/O address of the device. The
second field is the IRQ number. Note that here, 32 is added to the IRQ
number. The assigned IRQ number must be the same in both files, and
not in use by any other device. The I/O address must also be the same in
both files. The I/O range used by the EtherLinkIII card must not overlap
with I/O ranges used by other devices.

Unfortunately, there is no simple way to determine the IRQ numbers and
I/O ranges are already in use. The device information files for all
configured devices have to be examined. As a starting point, try the
following configurations:

- For a laptop computer: I/O address = 0x110, IRQ = 10.

- For a desktop computer: I/O address = 0x220, IRQ = 9,12,15.
Writing Device Drivers for LynxOS 253

Chapter 11 - Writing PC Card Client Drivers

It is also possible that different values have to be used. Note that the I/O
range must start at the 16 byte boundary. For example, 0x220 and 0x230
are valid, while 0x223 and 0x228 are not.

If no IRQ and base address combination works for the card, try to enable
the PC Card I/O interrupts emulation mode in the Socket Services driver.
To enable emulation, modify
/sys/devices/pcmcia_ss_pci_info.c.

Find in the supported adapters table the entry containing information
about the PCMCIA adapter, and add the SSPCI_FLAG_EMU flag to the
attributes field.

To change the configuration edit the appropriate files, rebuild the device
information files and the kernel. For example:

cd /sys/devices
vi pcmcia_enabler_info.c

Make necessary corrections.

vi if_3c589x_pcmcia_info.c

Make necessary corrections.

make install
cd /sys/lynx.os
make install
cd /dev
mknod -a /etc/nodetab

3. Shut down the host computer. Remove all PC Cards from the PCMCIA
sockets. Insert the EtherLinkIII PC Card into PCMCIA socket #0. Boot.

If the system hangs, go to troubleshooting tip 2 and change the values of
IRQ number, I/O address, or both. Start with IRQ number the I/O
address. IRQ 9,10,11,12,15 are good examples.

4. Execute:

ls -1 /dev/pcmcia* /dev/el_pc

The following lines should be present in the output:

/dev/el_pc
/dev/pcmcia_enabler

If any of the above nodes is not present, check CONFIG.TBL and make
sure that all listed devices are installed. Rebuild the kernel if necessary.
254 Writing Device Drivers for LynxOS

Troubleshooting

Rebuild the contents of /dev directory from /etc/nodetab using the
following commands:

cd /dev
mknod -a /etc/nodetab

5. Execute:

devices | grep -i "pcmcia \| CardBus/i82365"

The output should be similar to the following:

Possible mismatches are explained below:

- Some of the devices are not present. Check CONFIG.TBL and make
sure that all listed devices are installed. Rebuild the kernel if necessary.

- All devices are present, but “PCI CardBus SS” is not installed
((no dev) value in device start address column). Make sure that a
PCMCIA adapter is present in the system and that it is i82365-
compatible. This package does not support other types of PCMCIA
adapters. If you are using an adapter other than OZ6860, make sure
that the appropriate ISA port is listed in the possible ISA locations
table in the Socket Services information file. Also ensure that the
device configuration files are listed in CONFIG.TBL and are in proper
order. Rebuild the kernel if necessary.

- All devices are present, but “pcmcia CS” or “PCMCIA Enabler” is not
installed ((no dev) value in device start address column). Make sure
that device configuration files are listed in CONFIG.TBL and are in
proper order. Rebuild the kernel if necessary.

6. Execute:

pcmcia_info

35 char 36 0 db27d6d8 0 pcmcia CS
36 char 37 0 0 0 CardBus/i82365
SS
37 char 38 0 db280178 0 PCMCIA Enabler

Figure 11-3: devices Command Output
Writing Device Drivers for LynxOS 255

Chapter 11 - Writing PC Card Client Drivers

You should see a table of the following format:

+----------+---------+------------+--------+--------+
| Socket # | Present | Configured | Code | Card |
+----------+---------+------------+--------+--------+
| 0*| Yes | Yes | 0x0101 | 0x0589 |
| 1 | No | No | n/a | n/a |
+----------+---------+------------+--------+--------+

Possible mismatches are explained below:

- Message “failed to open file /dev/pcmcia_enabler”.
Rebuild the contents of /dev from /etc/nodetab using the
commands:

cd /dev
mknod -a /etc/nodetab

- The table shown by the pcmcia_info utility is empty. Make sure
that a PCMCIA adapter is present in the system and that it is i82365-
compatible. This package does not support other types of PCMCIA
adapters. If you are using an adapter other than OZ6860, make sure
that the appropriate ISA port is listed in the possible ISA locations
table in the Socket Services information file.

- The card is not marked as present. Check that the card is properly
installed in the socket.

- The card is not marked as configured. There is no description for this
card in Card Enabler’s information table. Check that Code and Card
values provided by pcmcia_info match the values for the 3C589C
card in the Card Enabler information file. These values should be equal
to 0x0101 and 0x0589 respectively. If pcmcia_info gives
different values, the wrong card is inserted. Also try different IRQ and
I/O address settings (see Step 2).

7. Execute:

pcmcia_info 0

This command gives more information about a PC Card in socket #0.
256 Writing Device Drivers for LynxOS

Writing PC Card Socket Services

The sample output is given below:

Card in socket #0 : [0x0101 0x0589]

Current configuration:
I/O range 1: 0x110 0x10
I/O range 2: n/a
IRQ: 9

+-------+------------+------------+-------+
| Index | Range1 | Range2 | Width |
+-------+------------+------------+-------+
| *0x01 | N * 0x10 | n/a | 16 |
+-------+------------+------------+-------+

Note the Current configuration section of the output. The values
of I/O range 1 and IRQ should match the corresponding values in
if_3c589x_pcmcia_info.c. If this is not so, correct
if_3c589x_pcmcia_info.c or the card descriptions table in the Card
Enabler information file as described in Step 2.

8. Execute:

devices | grep el_pc

The output should be similar to the following:

38 char 39 0 db2802b8 0 el_pc

If there is no el_pc device listed, check that the line
I:3c589x_pcmcia.cfg is present in CONFIG.TBL file.

If el_pc device is present but not installed ((no dev) value in the
device start address column), check that IRQ value and I/O base address
are the same in the output of pcmcia_info 0 command and in the
if_3c589x_pcmcia_info.c file.

Also make sure that the line I:3c589x_pcmcia.cfg has been placed
in CONFIG.TBL after the three lines describing the PCMCIA devices
(I:pcmcia_cs.cfg, I:pcmcia_ss_pci.cfg,
I:pcmcia_enabler.cfg).

Try different IRQ and I/O address settings (see Step 2).

Writing PC Card Socket Services

Socket Services is defined as a device driver that interfaces to the Card Services
module and implements hardware-specific details of programming a specific
PCMCIA adapter. The interface between Card Services and Socket Services is
Writing Device Drivers for LynxOS 257

Chapter 11 - Writing PC Card Client Drivers

defined by a set of driver entry points and data structures, described in the
following sections.

Socket Services Overview

Socket Services is the lower layer in the PC Card Support subsystem. Socket
Services provides a unified software interface to the PCMCIA sockets hardware. It
masks the hardware implementation details, providing an abstraction layer that
allows for development of higher-level software without explicit knowledge of the
underlying hardware interfaces.

Socket Services handles the hardware as a number of objects of different types. A
PCMCIA adapter is the hardware that connects a host system bus to PC Card
sockets. A host system may have more than one adapter. There is one instance of
Socket Services for each adapter present in the system. Socket Services reports the
number of sockets and windows implemented by the adapter it services. An
adapter has one or more sockets. Sockets are receptacles for PC Cards and the
source of status change events. A range in the PC Card memory or I/O address
space can be mapped into the host system space through a window. Most adapters
provide a limited number of windows and each window has different mapping
capabilities. Socket Services reports the characteristics of each window to the
higher-level PC Card Support layers.

Socket Services Groups

The Socket Services interface can be divided into three functional groups of
services.

• Adapter Services

• Socket Services

• Window Services

Adapter Services
Socket Services controls the adapter using the following SS_GetInfo service.
258 Writing Device Drivers for LynxOS

Socket Services

Socket Services
Socket Services controls sockets using the following services:

• SS_GetSocket

• SS_SetSocket

• SS_InquireSocket

Window Services
Socket Services controls windows using the following services:

• SS_GetWindow

• SS_SetWindow

• SS_InquireWindow

Socket Services Structure

LynxOS PC Card Support implements a Socket Services as an ordinary device
driver. A Socket Services registers with Card Services at installation. As soon as
the registration is complete, the Socket Services resources are available to Card
Services and its clients. Socket Services drivers should be installed after Card
Services, but before any client device drivers.

Header Files

All prototypes and constants needed to implement the Socket Services interface are
defined in the following header files:

Table 11-5: Socket Services Header Files

Header File Description

/sys/dheaders/pcmcia_ss.h Contains definitions of the Socket Services
interface.

/sys/dheaders/pcmcia_cs_ss.h Contains prototypes for the Socket Services
callback, registration entry point, and event
notification entry point.
Writing Device Drivers for LynxOS 259

Chapter 11 - Writing PC Card Client Drivers

Registration

To register with Card Services, a Socket Services calls the
pcmcia_cs_register_ss function, passing all necessary registration data as the
parameters. The registration data consists of a callback entry point and user
specific data to be passed to the callback:

id = pcmcia_cs_register_ss(callback, statics_ptr);

pcmcia_cs_register_ss returns a Socket Services identification number. The
Socket Services identification number is passed back to Card Services when
Socket Services notifies it of a status change event. If registration fails,
pcmcia_cs_register_ss returns -1.

Event Notification

Socket Services intercepts status changes and reports them to Card Services. Status
change detection can be interrupt-driven or polled, depending on the hardware
features of the PCMCIA adapter. If the adapter supports interrupt-driven delivery
of status change events, Socket Services should install an interrupt handler and
process status change interrupts within the handler. If the adapter does not
implement an interrupt for the status change events, Socket Services should use a
polling based technique to detect status changes in the PCMCIA sockets.

Socket Services reports a status change event to Card Services by calling the
pcmcia_cs_event entry point. Socket status, socket number, and Socket
Services identification number obtained at registration time must be passed as the
parameters. For example:

pcmcia_cs_event(status, socket, id);

Socket Services Callback

Card Services invokes a Socket Services through the callback interface. The
callback entry point is provided by Socket Services at the registration time.

The callback routine has the following syntax:

int callback(void * stat, int service, int Number, void * ArgPointer);

where:

stat Is the user-specific data registered through
pcmcia_cs_register_ss.

service Specifies the service code.
260 Writing Device Drivers for LynxOS

Socket Services Reference

Each service must return one of the following constants:

Socket Services Reference

SS_GetInfo

The SS_GetInfo service returns information about the PCMCIA adapter and the
Socket Services. ArgPointer must be a pointer to a
pcmcia_ss_information_t structure.

The pcmcia_ss_information_t structure is defined as follows:

typedef struct pcmcia_ss_information_s
{
 int revision; /* version */
 int sockets_num; /* number of sockets */
 int windows_num; /* number of windows */
 char * name; /* HBA name */
 char * vendor; /* vendor */
}
pcmcia_ss_information_t;

where:

Number Identifies an object on which to manipulate. Must be either a
window or socket number, depending on the service.

ArgPointer Is service-specific data.

PCMCIA_SS_SUCCESS Request succeeded.

PCMCIA_SS_UNSUPPORTED Service or feature is not supported.

PCMICA_SS_BAD_VOLTAGE Voltage specified for the SS_SetSocket
request cannot be applied.

revision Is the binary coded decimal (BCD) value of the SS version
number.

sockets_num Specifies the number of sockets.

windows_num Specifies the number of windows.

name Is the PCMCIA adapter name.

vendor Is the vendor-specific string.
Writing Device Drivers for LynxOS 261

Chapter 11 - Writing PC Card Client Drivers

SS_InquireSocket

The SS_InquireSocket service returns the read-only information about the
specified socket. Number must be set to the socket number. ArgPointer must
be a pointer to a pcmcia_ss_inquire_socket_t structure.

The pcmcia_ss_inquire_socket_t structure is defined as follows:

typedef struct pcmcia_ss_inquire_socket_s
{
 int status;
}
pcmcia_ss_inquire_socket_t;

where:

SS_SetSocket

The SS_SetSocket service configures the specified socket. Number must be
set to the socket number. ArgPointer must be a pointer to a
pcmcia_ss_socket_t structure.

The pcmcia_ss_socket_t structure is defined as follows:

typedef struct pcmcia_ss_socket_s
{
 int interface; /* interface type */
 int irq; /* assigned IRQ */
 int vcc; /* voltage applied to Vcc pin */
 int vpp; /* voltage applied to Vpp pins */
}
pcmcia_ss_socket_t;

status Is the bit mapped socket status. A bitwise combination of the
following constants:
• PCMCIA_SS_STATUS_DETECT - PC Card is present in the socket.
• PCMCIA_SS_STATUS_CHANGE - Status change event in I/O PC

Card
• PCMCIA_SS_STATUS_BATTERY_DEAD - Battery dead event in

memory PC Card
• PCMCIA_SS_STATUS_BATTERY_LOW - Battery low event in

memory PC Card
• PCMCIA_SS_STATUS_READY - Ready event in I/O PC Card
262 Writing Device Drivers for LynxOS

SS_GetSocket

where:

SS_GetSocket

The SS_GetSocket service returns the configuration of the specified socket.
Number must be set to the socket number. ArgPointer must be a pointer to a
pcmcia_ss_socket_t structure.

SS_InquireWindow

The SS_InquireWindow service returns the read-only information about the
specified window. Number must be set to the window number. ArgPointer
must be a pointer to a pcmcia_ss_inquire_window_t structure.

The pcmcia_ss_inquire_window_t structure is defined as follows:

typedef struct pcmcia_ss_inquire_window_s
{
 int type; /* supported window types */
 int socket; /* bit pattern */

 /* io window characteristics */
 pcmcia_ss_io_win_chars_t io_chars;

 /* memory window characteristics */
 pcmcia_ss_memory_win_chars_t memory_chars;
}
pcmcia_ss_inquire_window_t;

interface Is the interface type. This field must be set to one of the following
constants:
• PCMCIA_SS_INTERFACE_NONE - Simplest interface, featuring

only card detection
• PCMCIA_SS_INTERFACE_MEM - Memory only interface
• PCMCIA_SS_INTERFACE_IO - Memory and I/O interface.

irq Specifies the IRQ line. A value of 0 means no steering. This field is
meaningful only if interface is set to
PCMCIA_SS_INTERFACE_IO.

vcc Is the voltage applied to the Vcc pin. The voltage is defined in tenths
of a volt.

vpp Is the voltage applied to the Vpp pins. The voltage is defined in tenths
of a volt.
Writing Device Drivers for LynxOS 263

Chapter 11 - Writing PC Card Client Drivers

where:

SS_SetWindow

The SS_SetWindow service configures the specified window. Number must be
set to the window number. ArgPointer must be a pointer to a
pcmcia_ss_window_t structure.

The pcmcia_ss_window_t structure is defined as follows:

typedef struct pcmcia_ss_window_s
{
 int socket; /* socket index */
 int type; /* window type (IO/ATTR/COMMON) */
 unsigned base; /* card base */
 int size; /* in bytes */
 int data_width; /* 8 or 16 */
 int access_speed; /* access speed for common type */
 unsigned offset; /* window offset */
 int valid; /* validity flag */
}
pcmcia_ss_window_t;

where:

type Specifies the type of the window. Must be a bitwise combination
of the following constants:
• PCMCIA_SS_WINDOW_COMMON - memory window
• PCMCIA_SS_WINDOW_ATTR - attribute window
• PCMCIA_SS_WINDOW_IO - I/O window

socket Specifies sockets to which this window can be assigned. Each bit
corresponds to a single socket. The least significant bit
corresponds to the socket 0.

io_chars Specifies window characteristics when used as an I/O window.
Currently unused.

memory_chars Specifies window characteristics when used as a common
window. Currently unused.

socket Is the socket number.

type Specifies the window type. Must be set to one of the following
constants:
• PCMCIA_SS_WINDOW_COMMON - memory window
• PCMCIA_SS_WINDOW_ATTR - attribute window
• PCMCIA_SS_WINDOW_IO - I/O window.

base Specifies the host base address of the window.
264 Writing Device Drivers for LynxOS

SS_GetWindow

SS_GetWindow

The SS_GetWindow service gets the configuration of the specified window.
Number must be set to the window number. ArgPointer must be a pointer to a
pcmcia_ss_window_t structure.

size Is the number of bytes in the window.

data_width Is the data width in bits. Must be set to 8 or 16.

access_speed Specifies the window access speed in nanoseconds. This field is
used only if the type field is set to
PCMCIA_SS_WINDOW_COMMON.

offset Is the offset to the window.

valid Is the window validity flag. If set to zero, the window is
disabled.
Writing Device Drivers for LynxOS 265

Chapter 11 - Writing PC Card Client Drivers

266 Writing Device Drivers for LynxOS

APPENDIX A Porting Linux Drivers to LynxOS
Due to the popularity of Linux, and the growing population of open source
developers, a great deal of device driver code is freely accessible. Though it may
not be practical for use directly on most real-time operating systems, many of these
drivers can provide important benefits in understanding how a particular device
must be manipulated.

For LynxOS developers, however, these device drivers are similar in structure to a
LynxOS device driver, with the primary difference being the inherent real-time
conditions. If a LynxOS developer needs a device driver and a Linux driver already
exists, it is a relatively straightforward process to port it.

This appendix examines the differences and requirements of Linux and LynxOS at
the device driver level.

GPL Issues

It is important to take note of GPL issues before using any GPL driver source code.
Note that:

• Any modification to the Linux source must be made freely available to
the rest of the world under the GPL license.

• You cannot distribute the driver statically linked to the LynxOS kernel.
The ported driver must be dynamically installed, as LynxOS is not GPL
code.

• No copyright text can be changed.

• If you use the driver source as a reference and write a completely new
driver, there are no restrictions on what you may do with the final
product, it is yours, not subject to the GPL.
Writing Device Drivers for LynxOS 267

Appendix A - Porting Linux Drivers to LynxOS

Driver Installation

Driver installation between Linux and LynxOS systems are similar. The following
table provides a comparison of static and dynamic installs for both systems.

Using a Device

For both Linux and LynxOS, devices are accessed through a special file called a
node, typically located in the /dev directory. Nodes can be created with the mknod
utility. The following is an example listing of two devices. Note that the com1
device node is a character device (leading “c” character), and the scsi drive is a
block device (leading “b” character):

crw--ww- 1 root 6,0 Sep 3 12:01 /dev/com1

brw----- 1 root 1, 16 Sep 29 19:58 /dev/sd0a

Once a node is opened with the open() call, it can be accessed with any standard
file operation (read(), write(), ioctl()).

Major and Minor Numbers

Major and Minor numbers are used to identify a device. For LynxOS, the order of
the driver .cfg pointed to in the /sys/lynx.os/CONFIG.TBL file specifies the
major number of the device.

Table A-1: Driver Installation Differences

Install

Type
Linux LynxOS

Static Link Driver with kernel from the directory
linux/drivers with Makefile.

Link driver with kernel from directory
sys/drivers and sys/devices with
Makefile

Dynamic With insmod, execute init_module()
With mmod, execute
cleanup_module()
module_init()
module_exit()

Use drinstall and devinstall -
c/-b
Or, use drvinstall() to install
Use drinstall, devinstall -u or
drvuninstall() to uninstall.
268 Writing Device Drivers for LynxOS

Accessing a Device

For Linux, drivers can be statically or dynamically assigned major and minor
numbers, however the proc/devices directory should be checked for number
availability.

Accessing a Device

The facilities for accessing a device are described below for both LynxOS and
Linux:

Driver Entry Points

The driver APIs for both Linux and LynxOS are fairly standard. They provide
entry points from user space to driver space through a series of system calls. The
following table shows the correlating calls between Linux and LynxOS.

Table A-2: Device Access Differences

Function Linux Facilities LynxOS Facilities

mmap() mmap() from application mmap() from application

I/O port access insb(), outsb(), readb/writeb
insw(), outsw(), readw/writew
instl(), outsl(), readl/writel

__inb(), __outb()
__inw(), __outw()
__inl(), __outl()

Physical to virtual
address translation

vremap() can be used to map a physical
address into a kernel address. The function
ioremap() can also be used.

permap() can be used to map a
physical address into a kernel
virtual address.

PCI autoconfig
access

PCI functions are used to handle PCI devices. DRM (Device Resource
Manager) is a set of functions
used to access PCI devices.

Table A-3: Linux and LynxOS Entry Points

Linux Call LynxOS Call

setup(), module_init() install()

init(), init_module() install()

cleanup_module(),
module_exit()

uninstall()
Writing Device Drivers for LynxOS 269

Appendix A - Porting Linux Drivers to LynxOS
System Call Processing

The processing of system calls is similar on both LynxOS and Linux systems. The
following table describes the differences.:

open() open()

release() close()

read() read()

write() write()

ioctl() ioctl()

select() select()

lseek() ioctl()

mmap() ioremap() mmap()

readdir(), fsync(), fasync() strategy()

check_media(), change(),
revalidate()

N/A

Table A-3: Linux and LynxOS Entry Points (Continued)

Linux Call LynxOS Call

Table A-4: System Call Action Differences

Action Linux LynxOS

System call executed When a task performs a system call,
it is run in the task’s context. The
state changes from user to system.

When a task performs a system call,
it is run in the task’s context. The
state changes from user to system.

Running process A running process is called a task
and can be a process or thread.

A running process is executed by at
least the initial thread or the main
thread.

Scheduling The entities that get scheduled
according to their priority are tasks

The entities that get scheduled
according to their priority are user
threads or kernel threads.
270 Writing Device Drivers for LynxOS

Preemption
Preemption

System calls can be preempted on both systems, but the degree of preemption is
different

ISRs (Interrupt Service
Request)

ISRs will run automatically in the
current thread context when an
interrupt occurs.

ISRs will run automatically in the
current thread context when an
interrupt occurs

ID Changes One PID value for both threads and
processes is used.

PID for processes and TID (Thread
ID) for threads.)

Table A-4: System Call Action Differences

Action Linux LynxOS

Table A-5: Preemption Differences

Linux LynxOS

The running system call can be preempted by
another task or by a slow interrupt.

The running thread can be preempted in the middle
of its system call by another, higher priority thread,
or by an interrupt.

The running system call can be preempted when it
goes to sleep through the use of
interruptible_sleep_on() option.

Preemption is implicit and can be disabled and
restored with the functions sdisable() and
srestore() (although there are non-reentrant
areas in the kernel where this should not be done.)

The structure task_struct contains the priority value
of the running task

The system call can get its priority with the
function _getpriority().
Writing Device Drivers for LynxOS 271

Appendix A - Porting Linux Drivers to LynxOS

Signal Handling

Signal handling also differs between the two systems

Error Handling
LynxOS and Linux handle error returns from system calls differently

Interrupts

When porting Linux device drivers to LynxOS, it is important to understand the
differences in how both operating systems handle interrupt requests. Linux has a
multi-stage mechanism used to prioritize tasks. LynxOS uses a similar mechanism,
but it uses the priority of the interrupt as the basis for prioritization. Later
processing within the kernel thread that handles the interrupt provides another level
of prioritization.

Table A-6: Signal Handling Comparison

Linux LynxOS

The state of the task defines how systems are
handled while blocking. The states
TASK_INTERRUPTABLE and
TASK_UNINTERRUPTIBLE are used to define
the state of the task.

The flag’s semaphore is used in the system call to
define how signals are handled during blocking:

IGNORE_SIGS
DELIVER_SIGS
ABORT_ON_SIGS

While blocking, these functions define if the task is
interruptible:

Interruptible_sleep_on()
Sleep_on()
Wake_up_interruptible()
Wake_up()

For interrupt handling during blocking, the
swait() or tswait() calls are used to affect
behavior.

Table A-7: Error Handling Comparison

Linux LynxOS

The error value returned by the last system call can
be stored in a global variable called errno.

The error value of the last system call can be set
with pseterr() or retrieved with pgeterr().
The errno value in user context will then contain
the appropriate value.
272 Writing Device Drivers for LynxOS

How Linux Handles Interrupts

How Linux Handles Interrupts

Linux provides two types of interrupt service routines: Slow and Fast. Slow
interrupt routines can be interrupted by fast routines. Fast routines can only be
interrupted if it is enabled in the ISR (Interrupt Service Routine). Linux uses the
cli() and sti() calls to disable and restore interrupts.

How LynxOS Handles Interrupts

LynxOS provides a single interrupt routine, which is prioritized exclusively by the
hardware. Interrupts can be interrupted by other interrupts of a higher priority only.
LynxOS uses the functions disable() and restore() to disable and restore
interrupts. In addition, LynxOS drivers can use kernel threads for devices with
unbounded interrupt latency to create bounded interrupt response.

Registering Interrupts

Interrupts are registered differently on LynxOS and Linux systems.

Registering Interrupts for Linux
Linux uses request_irq() function to register both fast and slow interrupt
routines. An example prototype of an ISR is:

void do_irq(int irq, void *dev_id, struct pt_regs *regs);

The function to clear the ISR is called free_irq(). Interrupts can also be linked
with the SA_SHIRQ flag when calling request_irq().

Registering Interrupts for LynxOS
LynxOS registers interrupts with the iointset() function. The prototype of the
ISR is:

void do_irq(char *s);

ISRs are cleared with the iointclr() function. The address passed to the ISR is
generally the address of the static structure of the device driver installed. Interrupts
can be linked under LynxOS with ioint_link().
Writing Device Drivers for LynxOS 273

Appendix A - Porting Linux Drivers to LynxOS

Blocking and Non-Blocking I/O

Both Linux and LynxOS support devices that include blocking and non-blocking
I/O. The following table describes the differences between how the two systems
handle these features.

Bottom-Halves and Kernel Threads

This section outlines the behaviors used in handling prioritized interrupts.

Linux uses a bottom-half handler to process an interrupt that requires extensive
processing, but is not time critical. Bottom half drivers are installed using
init_bh() and removed with remove_bh(). An ISR can mark the bottom half of
an ISR that needs to execute by using the function mark_bh(). Once marked,
every bottom half handler runs automatically after slow interrupts occur, as well as
whenever the scheduler invokes them.

LynxOS uses kernel threads to handle prioritized interrupt processing. Whenever
an ISR is too long, its code can be placed into a kernel thread. The ISR can then
signal the kernel thread to execute with an ssignal() semaphore. Kernel threads
can be created with the ststart() call and removed with the stremove() call.

Table A-8: Blocking & Non-Blocking I/O Differences

Action Linux LynxOS

Ability to select blocking
or non-blocking

Read and write can be blocking or
non-blocking. This is set when the
device is opened.

Read and write can be blocking or
non-blocking. This is set when the
device is opened.

Non-blocking setting Set through O_NONBLOCK flag
passed through read or write in
struct of file.

Set through O_NONBLOCK flag
passed through read or write in
struct of file.

Behavior if data is not
available

The function
interruptible_sleep_on() can be
set to wait synchronously for data.

A semaphore can be set to wait
synchronously with the functions
wait() or tswait().

Behavior during wait Task is put into the waiting queue. The thread is put into a waiting state.

Behavior during data
available

The interrupt can call wake_up()
to allow the task to continue.

The ISR can post the semaphore
with ssignal() and the thread
continues according to its priority.
274 Writing Device Drivers for LynxOS

Kernel Support

Kernel threads in LynxOS are scheduled for execution by prioritizing them at half
a priority higher than the process which is using them. This is possible because
although LynxOS has 256 user priorities, it really has 512 internal priorities to
allow for this half-priority increase. The reason for this is to allow thread
processing to complete before the user process that requested it runs.

Kernel Support

Memory allocation within the kernel is performed in similar ways.

Kernel Timer Support

Kernel timer support is provided under both systems with the following calls:.

Semaphore Support

Semaphores are available on both systems.

Table A-9: Memory Allocation Differences

Action Linux LynxOS

Get a page unsigned long get_free_page(int
priority)

alloc_page

char *get1page();
void free1page(char *p);

Get free memory void *kmalloc(size_t size, int
priority)

void * vmalloc(unsigned long
size);

char *sysbrk(long size);
void sysfree(char *p, long size)

Allocate contiguous
physical memory

kmalloc() with priority set to
GFP_DMA with GFP_KERNEL or
GFP_ATOMIC

char *alloc_cmem(int size);
void free_cmem(char *p, int
size);

Table A-10: Kernel Timer Support Differences

Action Linux LynxOS

Adding a timer void add_timer(struct
timer_list *timer);

int timeout(int (*func()),
char *arg, int interval);

Removing a timer int del_timer(struct
timer_list *timer);

cancel_timeout(int num);
Writing Device Drivers for LynxOS 275

Appendix A - Porting Linux Drivers to LynxOS

Linux Semaphore Support
Under Linux, a semaphore is waited on with the down system call:

void down(struct semaphore *sem);

It is signaled with the up call:

void up (struct semaphore *sem);

Tasks blocked that are waiting on a semaphore can be woken up with the wake_up
call:

void wake_up(struct wait_queue *p)

LynxOS Semaphore Support

Under LynxOS, semaphores are waited on and signaled with the swait(),
ssignal(), ssignaln() (for signaling multiple time) and sreset() using the
following calls:

int swait(int *sem, int flag);

int ssignal(int *sem);

int ssignaln(int *sem, int count);

int sreset(int *sem)

Threads and processes waiting on a semaphore can be woken up in priority order
with the sreset() call. Also, semaphores in LynxOS can be set to operate as
priority inheritance semaphores to alleviate problems with priority inversion.

Address Translation

Address Translation for Linux

For Linux, when accessing a virtual user address from within a system call or any
interrupt routine, the data needs to be copied from one address space to another.
The functions used to copy to and from the kernel are:

• put_user() - Copies data from system space to user space

• get_user() - Copies data from user space to system space

The functions used to copy to and from user space to system space are:
276 Writing Device Drivers for LynxOS

Address Translation for LynxOS

• copy_from_user() - Copy from user space to system space

• copy_to_user() - Copies data from system space to user space

The address of the process context can be retrieved from the current pointer of the
current process context.

To validate addresses, the function access_ok() can be used with the
VERIFY_WRITE flag to check for write permission. The access_ok() function
with the VERIFY_READ flag can be used to check for read permission.

Address Translation for LynxOS

LynxOS allows direct access to user address space from entry points, as well as
from within the system call, without the need for address translation. Interrupts and
kernel threads do need to translate a user address to the kernel virtual address space
with get_phys(). In all cases, user code can never directly access the kernel
address space. Additionally, the currtptr pointer within the current system call
contains the address of the process context.

Address validation under LynxOS is performed with the rbounds() and
wbounds() calls. Users can also use the NOT_ALIGNED() function to see if an
address is valid for use as anything other than a character pointer (returns nonzero
value if this is true).

Driver Problem Reporting

Linux allows you to report problems within device drivers with sprintf() and
vsprintf() to send strings to the console device. LynxOS uses cprintf() and
kkprintf() to perform this same function.

A convention is to use cprintf() for error message reporting and kkprintf()
for debug output.

Communications with Applications

Both Linux and LynxOS allow signals to be sent to user applications from within
kernel space. Linux provides send_sig(), which can send one of 32 different
signals. LynxOS uses _kill() or _killpg() (for a group of processes). For
LynxOS, 64 different signals are supported (required by the POSIX API.)
Writing Device Drivers for LynxOS 277

Appendix A - Porting Linux Drivers to LynxOS

Scheduling Differences

LynxOS differs from Linux in the way that it schedules the handling of interrupts.
There is also a difference in the way schedules and threads are processed. These
differences can affect the way in which drivers must be written to respond to user
applications.

Linux Scheduling

Linux is designed as a “fair share” scheduling model. Linux tasks can have a
priority associated with them, but this is not used as an absolute determinant of the
process priority. The “real” priority of a process (what the scheduler uses to
determine what to schedule next) is completely dynamic on a Linux system. The
scheduler keeps track of the processes that have been running, and which processes
have been denied running. The scheduler then attempts to balance the execution
time for each. For example, if a task is running for a length of time, the scheduler
lowers its “real” priority, allowing other waiting tasks to run.

Linux also distinguishes between tasks that perform different kinds of activities
and attempts to grant them CPU time accordingly.

For interactive processes (ones that interact with users), the wakeup time must be
short. This is important, because these kinds of processes spend much of their time
waiting for input from mice, command shells, etc. Typically, the average delay in
waking these kinds of processes up must fall between 50 and 150 ms to keep up
with users.

For batch processes, a rapid wakeup time is not required, as these typically run in
the background. Because these processes can afford to wait, they are often the first
ones to be penalized by the scheduler to maintain responsiveness for the interactive
processes.

For real-time processes, extremely strong scheduling requirements are enforced.
These processes can never be blocked by lower-priority processes and must always
be responded to in a very short time. Also, the variance of the response time should
be minimal. Examples of these kinds of tasks include sound applications, and data
collection and control.

The Linux scheduler generally behaves in the following way:

1. Initialization, static priority is assigned by the user and the dynamic
priority is equal to the static priority.

2. For each clock tick (occurring at 10 ms):
278 Writing Device Drivers for LynxOS

LynxOS Scheduling

- The dynamic priority is decremented.

- The “goodness”value is computed (it is equal to the sum of the static
and dynamic priorities).

- If the dynamic priority decreases to 0, than the goodness value
decreases to 0 as well.

3. When the scheduler is invoked, it gives the CPU time to the task with the
highest “goodness” (need_resched(), dynamic = 0, block/yield)

4. When all tasks reach Dynamic = 0, all dynamic priorities are re-
initialized to their static value and all tasks have the chance to run their
time quantum.

5. When the real-time flag is set for a task, it implies that its goodness value
is always be kept high.

At the heart of this scheduling algorithm, the notion of a “goodness” value for each
task is what controls what tasks run when. As previously mentioned, Linux
behaves differently based on the type of task it is running. The goodness value
determines this behavior. Here are the different actions taken when the value of
goodness changes (c is the value returned by the goodness() call):

• c= -1000

This task must never be selected. This value is returned when the run
queue list contains only the init_task.

• c = 0

The task has exhausted its run time quantum. Unless this task is the first
task in the run queue list and all the other runnable tasks have exhausted
their quantum, it will not be selected for execution.

• 0 < c < 1000

The task is a conventional task that has not exhausted its quantum. Note
that a higher value of c denotes a higher level of goodness.

• c >= 1000

The task is a real-time process because the goodness value is very high.

LynxOS Scheduling

LynxOS uses a strict round-robin scheduler with fixed priority levels (there is a
slight exception to this rule for priority inheritance scheduling). There are 256
Writing Device Drivers for LynxOS 279

Appendix A - Porting Linux Drivers to LynxOS

priority levels in comparison to Linux’s 99 (although Linux can also have negative
priority levels). Kernel threads are scheduled in the global scheduling space along
with user processes and user threads. Priority tracking and priority inheritance are
also supported.

In general, LynxOS schedules processes and threads (tasks) in a strict priority
sense. There is no other scheduling criteria for a process other than its priority.
Tasks with a high priority ready to run are allowed to run immediately, preempting
lower-priority running tasks. Also, the period of time that a high priority task takes
to begin running is guaranteed to be bounded.

If a priority inheritance semaphore is used, the scheduler will alter the priority of
the tasks involved by temporarily incrementing the priority of a high priority task
that is waiting on a resource locked by a priority inheritance semaphore in the
possession of a lower priority task. This keeps the high priority task from being
denied by a medium priority task that preempts the lower priority task to keep it
from completing its use of the resource.

The LynxOS scheduler runs each task within a priority level in turn for the period
of time specified by that level’s quantum (this is user-modifiable). If all the tasks
within a particular priority level are waiting for I/O, tasks from the next lower
priority queue are run.

Like Linux, tasks can voluntarily yield the CPU by using the yield() call.

Differences in Setting up a Driver

Setup

For Linux, the setup() function can be used to pass device-specific data to a
driver for initialization. For LynxOS, the convention is to declare for every driver a
structure that contains all the values that the device needs to be initialized with.
The LynxOS install() entry point allocates memory for the driver and performs
device initialization. The address of the driver info structure will then be passed
automatically by the kernel to all the other entry points.

Installation

For Linux, a driver is registered within the kernel with the register_chrdev()
or register_blkdev(). These functions are used by the Linux init() function.
280 Writing Device Drivers for LynxOS

Device Access: open() and close()

The major number can be choose or the kernel will find the highest free available
one. The init() call also should check to see if the device is present.

LynxOS allows the device driver to be performed either statically or dynamically.
The major device number cannot be choose, it is dictated by the kernel that finds
the highest free available one. The LynxOS install() routine checks to see if the
device is present and available.

Device Access: open() and close()

Linux passes the open() call the following information:

int open(struct inode *inode, struct file *file);

Here, the inode value contains the node information for device access.

The file variable contains the access mode, position in the device and the
functions that can be used in the inodes.

open() should return a 0 (for success) or an error value on failure.

The release() call is used to close the device:

void release(struct inode *inode; struct file *file);

LynxOS operates similarly, but the data structure for the device is passed to the
open() and close() calls directly:

int open(char *s, struct file *file);

Here, s is passed by the kernel automatically and is the address for the data
structure returned from install().

The file variable contains the access mode, position in the device and the major and
minor numbers of the device.

LynxOS device drivers are closed with a close() call:

int close(char *s, struct file *file);

Both open() and close() should return OK or SYSERR.

Device Access: read() and write():

Reading and writing are performed with similar calls on both systems. For Linux,
read() is called as follows:

int read(struct inode *inode, struct file *file, char
*buffer, int count);
Writing Device Drivers for LynxOS 281

Appendix A - Porting Linux Drivers to LynxOS

This call should return the number of bytes read or an error.

write() is called as follows:

int write(struct inode *inode, struct file *file, char
*buffer, int count);

It should return the number of bytes written or an error.

Data in both cases needs to be copied from one address space (user) to another
(system or kernel space of the driver).

LynxOS operates similarly, with the read() call declared as follows:

int read(char *s, struct file *file, char *buffer, int
count);

This call should return the number of bytes read or an error.

For the write() call:

int write(char *s, struct file *file, char *buffer, int
count);

This call should return the number of bytes written or an error.

The entry points can directly use the buffer address to access count data.

Device Access: Control

The ioctl() and select() calls are universal in both LynxOS and Linux, as
well as the calls for device control. The ioctl() call allows control of a device
and select() allows you to wait on multiple channels of the device.

For Linux, ioctl() is called as follows:

int ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg);

This call should return a 0 or an error.

The select() call is used as follows:

int select(struct inode *inode, struct file *file, int
sel_type, slect_table *wait);

It should return a 0 or 1 when one of the devices becomes available.

LynxOS is similar, with the exception of passing the control structure first for
ioctl():
282 Writing Device Drivers for LynxOS

Device Access: Control

int ioctl(char *s, struct file *file, int cmd, char
*arg);

This should return OK or SYSERR.

For select():

int select(char *s, struct file *file, int which, struct
sel *ffs);

Return value should be 0 or SYSERR.
Writing Device Drivers for LynxOS 283

Appendix A - Porting Linux Drivers to LynxOS
284 Writing Device Drivers for LynxOS

APPENDIX B Porting UNIX Drivers to LynxOS
This appendix discusses the similarities and differences between device drivers
under LynxOS and UNIX. It is intended to serve two main purposes:

• To provide some guidelines to developers wishing to port existing UNIX
drivers to LynxOS in order to reuse existing code.

• To provide a pedagogical stepping stone for developers who are already
experienced with UNIX drivers.

The material that follows describes a feature of a UNIX device driver and points
out the corresponding feature in a LynxOS device driver. This appendix
supplements the more detailed coverage of LynxOS device drivers that can be
found in previous chapters of this manual. Certain LynxOS features not used in a
UNIX driver are, consequently, mentioned very briefly only. The versions of the
UNIX kernel referred to in this chapter are, for the most part, SVR3.2 and SVR4.

Kernel and Driver Design Goals

A frequently asked question is whether it would be possible to achieve source-level
or even binary compatibility between UNIX and LynxOS drivers. While this--with
some effort--might be technically feasible, the result would probably not be
acceptable for designers of real-time systems.

This is because the fundamental differences in the design goals of LynxOS as
compared to the UNIX kernel. The latter was designed for multi-user time-sharing
systems, while LynxOS was designed specifically for hard real-time systems.
These differences in design goals influence the choice of kernel data structures and
algorithms, including those used in device drivers.

The differences are also seen in the services provided by the kernel to device
drivers. The LynxOS kernel provides many services that meet specific
requirements of real-time systems. These features would not be found in a UNIX
Writing Device Drivers for LynxOS 285

Appendix B - Porting UNIX Drivers to LynxOS

driver. On the contrary, a UNIX driver may use some services that would result in a
detrimental effect on a real-time performance.

Another significant difference is preemptability. The UNIX kernel was originally
written to be uninterruptible, though some UNIX kernels now exist that are
preemptive to some extent. The LynxOS kernel, including device drivers, is fully
preemptive. This has a major influence on the way a driver is written.

Different design goals can also be noted at the level of the drivers themselves.
UNIX drivers are generally designed to make the most efficient use of I/O devices,
thereby maximizing throughput. This goal leads to the use of specific driver
techniques such as the chaining of I/O requests, processing of interrupts within an
interrupt handler, and the starting of the next I/O operation from within the
interrupt handler. In contrast, a LynxOS driver must be designed to have a minimal
impact on real-time performance, respecting the relative priorities of the tasks that
are using the devices. The way in which interrupts are handled is probably the
largest difference between a UNIX and a LynxOS driver.

Given these differences, both at the kernel and driver level, it is clear that in order
to respect real-time demands, a port is preferred in providing compatibility.

Porting Strategy

Porting a UNIX driver can be broadly divided into three stages as follows:

• Stage One

- Driver interface with kernel

- Driver interface with application

- The U structure

- Reentry and synchronization

• Stage Two

- System threads and priority tracking

• Stage Three

- Dynamic installation

- POSIX programming model

The first stage allows the developer to reach a point where a working LynxOS
driver can be tested for functionality. While enabling the re-use of a driver in a
286 Writing Device Drivers for LynxOS

Driver Structure

relatively short time, this initial port does not take advantage of the real-time
aspects of LynxOS, and the driver could have a detrimental effect on the system
response time. In order for the driver to conform to the real-time characteristics of
LynxOS, the implementation of Stage Two is absolutely necessary. The features in
Stage Three are optional but may be advantageous in certain situations.

Driver Structure

Overall Structure

A LynxOS and a UNIX driver are quite similar in overall structure. Each consists
of a number of entry points, including an initialization routine and an interrupt
handler. A LynxOS driver has, in addition, one or more kernel threads.

Global Variables

A UNIX driver typically makes widespread use of global variables, which is the
most common way for the driver entry points to share information. A LynxOS
driver can and should be written without the use of any global variables. The
LynxOS kernel provides an elegant means to communicate driver state between
entry points. Use of this mechanism is essential to allow dynamic install and
uninstall of a driver.

Major and Minor Device Numbers

There is an important difference in the way UNIX and LynxOS use major device
numbers. Under UNIX, the major device number is used to distinguish between
different drivers. The minor number distinguishes between different devices

Table B-1: UNIX v/s LynxOS Structure

LynxOS Driver UNIX Driver

Initialization Initialization

Entry points Entry points

Interrupt handler Interrupt handler

Kernel threads
Writing Device Drivers for LynxOS 287

Appendix B - Porting UNIX Drivers to LynxOS

controlled by the same driver. Under LynxOS, each driver has a unique driver ID,
though this number is never used by the driver code. Different devices controlled
by the same driver are identified by different major numbers (as opposed to the
minor number in UNIX). The use of the minor device number is defined entirely
by the driver. LynxOS driver IDs and major numbers are allocated automatically
during a kernel build.

Driver Interface with Kernel

The interface between the UNIX kernel and a driver is defined by the driver
service calls, the init entry point, and the interrupt handler.

Driver Service Calls

The services provided by a kernel to device drivers can be grouped into several
functional classes:

• Memory Management

• Synchronization

• DMA Transfers and Raw I/O

• Block I/O

• Driver Debugging

Memory Management
This section describes the functions used for allocating memory and for translating
memory addresses.
288 Writing Device Drivers for LynxOS

Synchronization

Memory Allocation
Functions used for the allocation of memory for the driver’s internal use are as
follows:

The functions sysbrk and sysfree are the nearest equivalent to UNIX
kmem_alloc and kmem_free. The UNIX function kmem_alloc can sleep
while waiting for free space. The LynxOS functions never sleep, instead, they
return SYSERR if the memory request cannot be satisfied immediately.

Address Translation

The functions required for converting virtual to physical addresses are as follows:

Note that mmchain returns a kernel virtual address. To convert this to a physical
address, the constant PHYSBASE must be subtracted.

Synchronization
In non-preemptive UNIX kernels, synchronization is a fairly straightforward
matter. But in a fully preemptive kernel such as LynxOS it is much more complex.
This can represent a significant portion of the porting effort. For more information,
see Chapter 4, “Synchronization.”

Table B-2: Internal Use Memory Allocation Functions

LynxOS UNIX

sysbrk, sysfree, get1page,
free1page, alloc_cmem,
free_cmem

kmem_alloc, kmem_free

Table B-3: Virtual to Physical Address Conversion Functions

LynxOS UNIX

User virtual to physical mmchain, mmchainjob vtop

Kernel virtual to

physical

mmchainjob (job 0) addr –
PHYSBASE

kvtophys
Writing Device Drivers for LynxOS 289

Appendix B - Porting UNIX Drivers to LynxOS

DMA Transfers and Raw I/O
Setting up DMA transfers requires the following kernel services:

• Memory locking

• Split transfer into physically contiguous pieces

• Virtual to physical address translation

The following code fragments illustrate typical SVR4 driver code for performing a
DMA transfer to user space.

UNIX
read (dev, uio)
dev_t dev;
struct uio *uio;
{
 physiock (mybreak, 0, dev, B_READ, nblocks, uio);
}

mybreak (bp)
struct buf *bp;
{
 dma_pageio (mystrategy, bp);
}

mystrategy (bp)
struct buf *bp;
{
 physaddr = vtop (bp->b_addr, bp->b_proc);
 /* start DMA transfer */
}

The key functions in the previous code fragment are:

LynxOS
read (s, f, buff, count)
struct statics *s;
struct file *f;
char *buff;
int count;
{
 struct dmachain *array;

physiock Faults in and locks memory pages.

dma_pageio Breaks transfer blocks into 512 byte blocks and calls strategy
routine.

mystrategy Converts user virtual address to physical address, sets up and
initiates DMA transfer (user written).
290 Writing Device Drivers for LynxOS

Block Input/Output

 int np, nc, pid, i;

 pid = getpid ();
 np = npages (buff, count);
 array = (struct dmachain *) sysbrk (np * sizeof
 (struct dmachain));
 mem_lock (pid, buff, count);
 nc = mmchain (array, buff, count);
 for (i = 0; i < nc; i++) {
 /*
 * Do DMA transfer at physical address
 * array[i].address, length array[i].count
 */
 array[i].address -= PHYSBASE;
 /* convert to physical address */
 do_dma (&array[i]); /* user supplied routine */
 }
 sysfree (array, np * sizeof (struct dmachain));
 mem_unlock (pid, buff, count, TRUE);
}

The key functions in the previous code fragment are:

Note that whereas UNIX uses the block interface (strategy entry point) for raw
I/O, LynxOS uses the character interface read and write entry points.

Block Input/Output

strategy Entry Point
Both UNIX and LynxOS block drivers have a strategy entry point that is called
by the kernel’s block buffering I/O subsystem to perform transfers to block
devices.

mem_lock Faults in and locks pages.

mmchain Converts virtual address range to list of kernel virtual addresses.
These are converted to physical addresses using PHYSBASE

mem_unlock Unlocks memory pages.

Table B-4: Strategy Entry Point Comparison

LynxOS UNIX

strategy (s, bp)
struct statics *s;
struct buf_entry *bp;

strategy (bp)
struct buf *bp;
Writing Device Drivers for LynxOS 291

Appendix B - Porting UNIX Drivers to LynxOS

As with other entry points, the LynxOS strategy routine is passed the address of the
device’s statics structure as the first argument.

buf Structure
This data structure defines the buffers that are used to hold the data blocks from a
block device. In LynxOS, this structure is of type struct buf_entry. The
correspondence between the fields is shown below.

Table B-5: buf Data Structure Comparison

 LynxOS struct buf_entry UNIX struct buf

int b_status
struct buf_entry *av_forw
struct buf_entry *av_back
int b_device

char *memblk
long b_number

int b_flags
struct buf *av_forw
struct buf *av_back
o_dev_t b_dev
unsigned b_count
caddr_t b_addr
daddr_t b_blkno
char b_oerror
unsigned int b_resid
clock_t b_start
struct proc *b_proc
struct page *b_pages
long b_bufsize
int (*b_iodone)()
struct vnode *b_vp
int b_error
dev_t b_edev
292 Writing Device Drivers for LynxOS

Block Input/Output

The symbolic constants used to specify bits in the b_flags field are shown
below.

Block I/O Support Routines
UNIX provides a number of support routines for block device drivers.

The following code fragment shows how these routines are typically used in the
strategy entry point and interrupt handler of a UNIX driver.

UNIX
xx_strategy (bp)
struct buf *bp;
{
 /* start transfer on device ... */

 /* if transfer is asynchronous, return, else wait
 for completion */

 if (bp->flags & B_ASYNC)
 return (0);
 biowait (bp);
}

xx_intr ()
{
 if (error_condition)
 bp->b_error |= B_ERROR;
 biodone (bp); /* wake up process */
}

Table B-6: b_flags Field Comparison

LynxOS UNIX

B_BUSY
B_DONE
B_ERROR

B_PHYS
B_READ
B_WANTED
B_ASYNC

B_BUSY
B_DONE
B_ERROR
B_PAGEIO
B_PHYS
B_READ
B_WANTED
B_ASYNC

biowait Suspend, waiting for I/O completion

biodone Wakeup process and release buffer

brelse Put buffer back on free list
Writing Device Drivers for LynxOS 293

Appendix B - Porting UNIX Drivers to LynxOS

 LynxOS does not provide the biowait or biodone routines, but the code to
implement the required functionality is straightforward, as shown below.

LynxOS
strategy (s, bp)
struct statics *s;
struct buf_entry *bp;
{
 /* start transfer on device ... */

 swait (&s->devsem); /* wait for device completion */
 bp->b_status |= B_DONE;
 /* set bits to indicate transfer status */
 if (s->error)
 bp->b_status |= B_ERROR;
 if (bp->b_status & B_ASYNC) {
 /* if async transfer, release buffer ... */
 ssignal (&bp->b_rwsem);
 brelse (bp);
 } else
 ssignal (&bp->b_rwsem);
 /* ... else wakeup waiting task */
}

Driver Debugging

UNIX

LynxOS

Initialization Routine

Although both UNIX and LynxOS drivers have an initialization routine, the way in
which they are used differs in some important ways. By convention, the UNIX
routine is called xxxinit, in LynxOS xxxinstall.

printf Print message on system console (uses polling)

uprintf Print message on user terminal (uses driver)

kprintf Print message on debug console (uses polling)

cprintf Print message on system console (uses driver)
294 Writing Device Drivers for LynxOS

Probing for Devices

UNIX

• Initialization is called once during bootup.

• Initializes all hardware and software.

• Device-specific information is kept in statically allocated structures.

• Maximum number of supported devices is hardcoded.

• Limited number of configuration parameters

LynxOS

• Initialization routine is called for every major device.

• Device structure allocated dynamically.

• Number of supported devices not limited.

• User-defined configuration parameters

Probing for Devices

One of the tasks usually performed by the initialization routine is to test for the
presence of a device. UNIX drivers must handle bus errors. In LynxOS this is
handled automatically. Typical UNIX and LynxOS code is illustrated below:

UNIX init Routine
#define MAX_CONT 4 /* no. of supported controllers */
struct csb csb[MAX_CONT]; /* controller status blocks */

xx_init ()
{
 for (i = 0; i < xx_ccnt; i++) {
 if (setjmp (u.u_tsav) == 0) {
 u.u_nofault = TRUE;
 /* touch the device here */
 u.u_nofault = FALSE;
 /* Initialize hardware and software */
 } else
 xx_addr[i] = 0; /* device not present */
 }
}

 LynxOS install Routine
xx_install (info)
struct xxinfo *info;
 /* user defined configuration parameters */
Writing Device Drivers for LynxOS 295

Appendix B - Porting UNIX Drivers to LynxOS

{
 /* Touch device here */
 /* If we get here, we know device is present */
 s = (struct statics *) sysbrk (sizeof (struct
 statics s));
 /* Initialize software and hardware */
 return (s);
}

Interrupt Handling

In SystemV, the details of a device’s interrupt capabilities are defined statically in
configuration files external to the driver. The name of the interrupt handler is
xxx_intr, where xxx_ is the specified driver prefix.

Because LynxOS supports dynamic driver installation and deinstallation, attaching
and detaching an interrupt handler is done within the driver code using the
functions iointset() and iointcl(). This is done in the install() and
uninstall() entry points. The device’s interrupt vector is normally passed to
the install routine in the device information structure.

For x86
iointset (32 + info->vector, intr_handler, s);

U Structure

Unlike most UNIX kernels, LynxOS does not have a U structure. The following
paragraphs discuss the most commonly used members of this structure and how the
equivalent functionality is implemented in a LynxOS driver.

u_base, u_count, u_offset

Older versions of UNIX used these fields to specify the details of a data transfer in
the read/write entry points. The driver modifies these during the course of the
transfer. The return value received by the application is the initial u_count value
minus its final value. More recent implementations of UNIX have replaced them
with a uio structure.

In a LynxOS driver, the user buffer address and size are passed directly as
arguments to the driver entry point. An important difference from UNIX is that the
296 Writing Device Drivers for LynxOS

u_fmode

value returned to the application is the value returned by the driver entry point. The
seek position on the device is specified by the field position in the file
structure. The driver is responsible for setting this at the end of a transfer.

u_fmode

This field holds the file mode flags. Its main use is in the read/write entry points to
test for non-blocking I/O. It is also used to test, for example, if an application is
trying to read from a device opened in write only mode.

In LynxOS, the file mode is held in the access_mode field of the file structure.

u_error

This field contains an error code, which is copied to the application’s errno
variable.

A LynxOS driver specifies an error code with the pseterr() function.

u_segflg

This field indicates whether a data transfer is to or from user or kernel space. It is
necessary to know this because the user process and kernel have separate virtual
address spaces.

In LynxOS, the user process and kernel exist within the same virtual space, so this
functionality is not required.

u_procp

This field is a pointer used to process table entry for the current process. UNIX
device drivers seldom need to access this field explicitly. In LynxOS, each process
is identified by a unique job number which can be accessed in the driver top-half
routines to provide similar functionality. The function getpid() can also be used
to find the process ID number.

u_tsav, u_nofault

These are used for trapping bus errors, typically in the init() routine.
Writing Device Drivers for LynxOS 297

Appendix B - Porting UNIX Drivers to LynxOS

In the install routine of a LynxOS driver, bus errors are handled automatically.
Elsewhere in a driver, the routines noreco() and recoset() must be used to
catch bus errors.

Reentrance and Synchronization

Critical Code Regions

Accesses to shared data structures and hardware registers must be serialized. The
synchronization mechanisms used in a UNIX driver depend very much on whether
the driver is preemptive. SVR4 driver code is not preemptive, though synchronous
preemption is possible if a driver calls sleep(). Drivers written for such kernels
only need to synchronize with the interrupt level routines. This is done with the�
spln and splx functions. The LynxOS equivalent of these functions are
disable() and restore() although there is an important difference. The
LynxOS functions disable and restore all interrupts, but interrupt nesting is not
possible.

Drivers under LynxOS are fully preemptive. Appropriate synchronization must be
added to make the driver reentrant.

Event Synchronization

This type of synchronization involves waiting for an event (buffer free, transfer
complete, data ready, and so on) to occur.

LynxOS swait/ssignal

UNIX sleep/wakeup

The UNIX sleep() function specifies a priority, which is assigned to the process
when it wakes up. LynxOS uses fixed scheduling priorities. A task priority can
only be changed on request from the user application. Both UNIX sleep and
LynxOS swait() use an argument to specify how signals are handled during the
time the task is blocked. It is difficult to find an exact correspondence in behavior
in all cases.
298 Writing Device Drivers for LynxOS

UNIX sleep Priority

UNIX sleep Priority

Another important difference is that wakeup() is stateless. It can only wake tasks
that are blocked on the event at the time that wakeup() is called. On the other
hand, ssignal() has a counter associated with it. This difference can have an
influence on driver design. More care is needed with synchronization in the
stateless case. Though this problem is normally solved by the fact that a UNIX
driver is not preemptive.

Driver Interface with User Applications

The driver interface with the application covers the following topics:

• Driver entry points

• Accessing user address space

• Returning errors

Entry Points

There are a number of general remarks that can be made that apply to all entry
points.

• In a LynxOS driver the first argument to all entry points is a pointer to the
statics structure allocated by the install routine.

• LynxOS does not use the UNIX cred_t credentials structure.

<= PZERO Signals are ignored. Use the symbolic constant
SEM_SIGIGNORE with swait.

> PZERO Signals are delivered but sleep never returns. The nearest
equivalent with swait is to use the symbolic constant
SEM_SIGRETRY. However, the swait is automatically
restarted and eventually returns.

> PZERO | PCATCH sleep is aborted and returns 1 on receipt of a signal. The
LynxOS equivalent is to use the symbolic constant
SEM_SIGABORT. However, swait returns a non-zero value
(not necessarily 1).
Writing Device Drivers for LynxOS 299

Appendix B - Porting UNIX Drivers to LynxOS

• In LynxOS, the device number is passed only to the open entry point.

Other entry points can access the device number and access the mode in
the file structure.

int flag = f->access_mode;
int dev = f->dev;

Major and Minor Device Numbers

As discussed above, there is an important difference in the way UNIX and LynxOS
use the device numbers. Typically, a UNIX driver uses (part of) the minor number
to index into an array containing state variables for each device, as illustrated
below.

UNIX
/* number of supported controllers */
#define MAX_CONT 4

/* controller status blocks */
struct csb csb[MAX_CONT];

/* number of configured controllers */
extern int xxx__ccnt;

xxx_open (dev, mode, otyp, cred)
dev_t *dev;
int mode;
int otyp;
cred_t *cred;
{
 struct csb *csbp;
 int cntlr;

 cntlr = getminor (*dev) & 0xf;
 if (cntlr >= xxx__ccnt || cntlr >= MAX_CONT)
 return (ENXIO);
 csbp = &csb[cntlr];

This code is unnecessary in the LynxOS driver because the address the controller’s
status block is passed as an argument to the entry points.

LynxOS
xxx_open (s, dev, f)
struct statics *s;
int dev;
struct file *f;

NOTE: UNIX drivers usually use the term controller status block and use a
statics structure. They are more or less the same thing.
300 Writing Device Drivers for LynxOS

open/close

open/close

As shown in the listing above:

• LynxOS passes the device number to open, like SVR3. SVR4 passes a
pointer to the device number.

• LynxOS does not have an equivalent of the otyp field.

• The LynxOS kernel only calls the close entry point on the last close of
a device.

read/write

The UNIX uio structure specifies a list of user buffers. Earlier UNIX kernels
used the clist data structure for character storage.

In a LynxOS driver, the user buffer is specified by buff and count. The entry
point is called once for each buffer in scatter/gather I/O (readv/writev). LynxOS
does not use the clist data structure.

Table B-7: open/close Comparison

UNIX LynxOS

open (dev,mode,otyp,cred)
dev_t *dev; /* SVR4 */
int mode;
int otyp;
cred_t *cred;

close (dev,mode,otyp,cred)
dev_t dev;
int mode;
int otyp;
cred_t *cred;

open (s, dev, f)
struct statics *s;
int dev;
struct file *f;

close (s, f)
struct statics *s;
struct file *f;

Table B-8: read/write Comparison

LynxOS UNIX

read (s, f, buff, count)
struct statics *s;
struct file *f;
char *buff;
int count;

read (dev, uiop, credp)
dev_t dev;
uio_t *uiop;
cred_t *credp;
Writing Device Drivers for LynxOS 301

Appendix B - Porting UNIX Drivers to LynxOS

The following code fragments compare typical write entry point logic used to
transmit all user data. Note that in LynxOS, the driver is responsible for positioning
the seek pointer (f->position). Another important difference is that the UNIX
driver returns the number of bytes not transmitted.

ioctl

If arg is a pointer, the LynxOS driver must check the validity of the address with
rbounds() and wbounds().

Table B-9: write Comparison

LynxOS UNIX

for (i = 0; i < count; i++)
transmit (buff[i]);

f->position += count;
return (count);

while ((c = uwritec (uio)) >=0)
transmit (c);

return (0);

Table B-10: ioctl Comparison

LynxOS UNIX

ioctl (s, f, cmd, arg)
struct statics *s;
struct file *f;
int cmd;
int arg;

ioctl(dev, cmd, arg, mode,
cred, rval)

dev_t dev;
int cmd;
int arg;
int mode;
cred_t *credp;
int *rval;
302 Writing Device Drivers for LynxOS

select

select

Accessing User Space

UNIX
The currently executing user process and the kernel may have separate virtual
address spaces. In this case, kernel service routines are used to transfer data to and
from user space. These routines usually handle invalid user addresses.

Table B-11: select Comparison

LynxOS UNIX

struct statics {
...
 int space_free;
 /* for output */
 int data_ready;
 /* on input */
 int *rsel_sem, *wsel_sem;
};
select (s, f, which, ffs)
struct statics *s;
struct file *f;
int which;
struct sel *ffs;
{
switch (which) {
 case SREAD:
 ffs->iosem = &s->data_ready;
 ffs->sel_sem = &s->rsel_sem;
 break;
 case SWRITE:
 ffs->iosem = &s->space_free;
 ffs->sel_sem = &s->wsel_sem;
 break;
 case SEXCEPT:
 return (SYSERR);
}
return(OK);
}
s->data_ready = 1;
disable (ps);
if (s->rsel_sem)
 ssignal (s->rsel_sem);
restore (ps);
s->space_free = 1;
disable (ps);
if (s->wsel_sem)
 ssignal (s->wsel_sem);
restore (ps);

extern int selwait;
struct proc *selr, *selw;
select (dev, rw)
dev_t dev;
int rw;
{
switch (rw) {
 case FREAD:
 selr = u.u_procp;
 break;
 case FWRITE:
 selw = u.u_procp;
 break;
}
return(0);

}
/*Data Input */
if (selr) {
 selwakeup (selr, coll);
 selr = 0;
}
/* Data Output */
if (selw) {
 selwakeup (selw, coll);
 selw = 0
}

Writing Device Drivers for LynxOS 303

Appendix B - Porting UNIX Drivers to LynxOS

LynxOS
The current user process and the kernel exist in same virtual space. The kernel
(including drivers) can access the whole of the virtual space. Therefore, drivers can
transfer data to and from user space directly using a pointer.

The following code fragments illustrate how data might be transferred from user
space in an ioctl entry point.

Returning Errors to User Application

UNIX

Earlier versions used the u_error field in the u structure. SVR4 uses the entry
point return value.

LynxOS
Uses the pseterr function and return the value SYSERR.

The following code fragments illustrate how a driver returns the error EIO:

Table B-12: ioctl Data Transfer Example

LynxOS UNIX

if (rbounds (useraddr) < nbytes) {
pseterr (EFAULT);
 return (SYSERR);
}
while (nbytes--)
 *kernaddr++=*useraddr++;

char *useraddr, *kernaddr;
int nbytes;
if (copyin (useraddr, kernaddr,
nbytes) == -1)
 return (EFAULT);

Table B-13: Returning Errors

LynxOS UNIX SVR3 UNIX SVR4

pseterr (EIO);
return (SYSERR);

u.u_error = EIO;
return;

return (EIO);
304 Writing Device Drivers for LynxOS

LynxOS Kernel Threads

LynxOS Kernel Threads

When using kernel threads, interrupt processing is performed by a preemptive,
prioritized task. This is essential in order to maintain deterministic system response
times. Using the UNIX interrupt architecture, where all interrupt processing is
done in the interrupt handler itself, will lead to a degradation of the system’s real-
time performance.

Dynamic Installation

LynxOS supports the dynamic installation and deinstallation of drivers. This
greatly facilitates the driver development and debugging phases as a kernel rebuild
and reboot is not necessary each time the driver is modified. If the port has been
done correctly, the only addition required to support dynamic installation is the
declaration of the entry_points structure.

POSIX Programming Model

The LynxOS implementation of the POSIX.1 and POSIX.1b features permit much
simpler driver design for supporting asynchronous I/O, non-blocking I/O, and
synchronous I/O multiplexing and polling.

Asynchronous I/O

The complexity of handling asynchronous transfers is hidden from the application
and driver developer. The POSIX API provides services to the application
developer, and the driver sees only synchronous requests. Therefore, code to
handle asynchronous transfers can be removed from a UNIX driver if the LynxOS
version is only intended for use with POSIX conforming applications.

Synchronous I/O Multiplexing and Polling

This functionality is provided by the select system call at the application level
and the select entry point in a driver. The POSIX standard does not define a
select function. So, if the LynxOS driver is only intended for use with POSIX
conforming applications, the select entry point can be removed.
Writing Device Drivers for LynxOS 305

Appendix B - Porting UNIX Drivers to LynxOS
306 Writing Device Drivers for LynxOS

APPENDIX C Sample Device Driver
Header Files

ptrinfo.h

/* ptrinfo.h */
struct ptrinfo {
int port;

};

prtioclt.h

/* ptrioctl.h */
#define PTRSTATUS 500
struct ptrstatus {
int chars; /* characters printed */
int lines; /* lines printed */

};

Driver Code

/* ptrdrvr.c - using threads */
#include <kernel.h>
#include <mem.h>
#include <sys/file.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <conf.h>
Writing Device Drivers for LynxOS 307

Appendix C - Sample Device Driver

#include <st.h>
#include "ptrinfo.h"
#include "ptrioctl.h"

/* ports */

#define PP_DATA 0 /* data port offset */
#define PP_STATUS 1 /* status port offset */
#define PP_CONTROL 2 /* control port offset */

/* status bits */

#define PP_BUSY 0x80 /* printer busy */
#define PP_PE 0x20 /* out of paper */
#define PP_SLCT 0x10 /* printer is selected */
#define PP_ERROR 0x08 /* printer detected error */

/* control bits */

#define PP_IENABLE 0x10 /* interrupt enable */
#define PP_SLCTIN 0x08 /* select printer */
#define PP_INIT 0x04 /* start printer */
#define PP_AUTOLF 0x02 /* auto line feed */
#define PP_STROBE 0x01 /* strobe printer */

#define port_in(addr) __inb(addr)
#define port_out(data,addr) __outb(addr,data)

typedef unsigned short ptype;

#define STACKSIZE PAGESIZE

struct qentry {
char c; /* character */
int pri; /* its priority */
};

struct ptrstatics {
ptype datap; /* data port address */
ptype controlp; /* cntrl port address */
char control; /* control bits */
int irq; /* IRQ number */
int closing; /* closing device */
int close_sem; /* sempahore for close */
int expecting; /* expecting an int.? */
int nextnl; /* output a ’\r’ next? */
308 Writing Device Drivers for LynxOS

Driver Code

int chars; /* printed since open */
int lines; /* printed since open */
int qlen; /* characters in queue */
struct qentry *q; /* the queue itself */
int head; /* head of queue */
int tail; /* tail of queue */
int qdata; /* data in the queue */
int free_sem; /* free queue space */
int stid; /* thread id */
int int_sem; /* interrupt semaphore */
int qsem; /* queue protection */
struct priotrack pt; /* pri. tracking */
int curpri; /* current priority */
int prio_sem; /* pri. trking sem */
};

/*
static port_in(), port_out();

asm {
port_in: /* byte = port_in(port) *
mov EAX, 0
mov EDX, 4[ESP]
in AL, DX
ret

port_out: /* port_out(byte, port) *
mov EDX, 8[ESP]
mov EAX, 4[ESP]
out DX, AL
ret

}
*/

#define PERR (char *) SYSERR

char *ptrinstall(info)
struct ptrinfo *info;
{
struct ptrstatics *s;
static void ptrint(), ptrthread(), ptruninstall();
int i;

/* probe for the printer */

port_out(1, info->port+PP_DATA);
Writing Device Drivers for LynxOS 309

Appendix C - Sample Device Driver

if (port_in(info->port+PP_DATA) != 1)
return PERR;

s = (struct ptrstatics *)
sysbrk((long)sizeof *s);
if (!s) return PERR;
s->q = (struct qentry *)

sysbrk((long)info->qlen * sizeof(struct qentry));
if (!s->q) {
sysfree(s, (long)sizeof *s);

return PERR;
}

/* initialize statics */

s->datap = info->port + PP_DATA;
s->controlp = info->port + PP_CONTROL;
s->control = PP_SLCTIN | PP_INIT;
s->irq = info->irq;
s->expecting = 0;
s->lines = s->chars = 0;
s->closing = s->close_sem = 0;
s->nextnl = 0;
s->free_sem = s->qlen = info->qlen;
s->qdata = s->head = s->tail = 0;
s->int_sem = 0;
s->qsem = -1;
bzero(&s->pt, sizeof(struct priotrack));
s->curpri = 0;
s->prio_sem = -1;

/* initialize printer */

iointset(32+s->irq, ptrint, s);
port_out(PP_SLCTIN, s->controlp);
for (i = 0; i < 100; i++) ;
port_out(s->control, s->controlp);

s->stid = ststart(ptrthread, STACKSIZE,
s->curpri, "ptr thread", 1, s);

if (s->stid == SYSERR) {
ptruninstall(s);
return PERR;

}
return (char *) s;
}

310 Writing Device Drivers for LynxOS

Driver Code

int ptruninstall(s)

 struct ptrstatics *s;
{
 if (s->stid != SYSERR) stremove(s->stid);
 iointclr(32+s->irq);
 sysfree(s->q, (long)s->qlen *

 sizeof(struct qentry));
 sysfree(s, (long)sizeof *s);
}

int ptropen(s, devno, f)
 struct ptrstatics *s;
 int devno;
 struct file *f;
{
 if (f->access_mode & FREAD) {
 pseterr(EINVAL);
 return SYSERR;
 }
 if (minor(devno)) {
 pseterr(ENXIO);
 return SYSERR;
 }
 return OK;
}

int ptrclose(s, f)
 struct ptrstatics *s;
 struct file *f;
{
 swait(&s->qsem, SEM_SIGIGNORE);
 if (s->expecting) {
 s->closing = 1;
 ssignal(&s->qsem);
 swait(&s->close_sem, SEM_SIGIGNORE);
 s->closing = 0;
 } else {
 ssignal(&s->qsem);
 }
 s->lines = s->chars = 0;
 return OK;
}
int ptrselect()
{
 return OK;
Writing Device Drivers for LynxOS 311

Appendix C - Sample Device Driver

}

/* assumes:
 ** data in the queue
 ** queue access disabled
 */

void send(s)
 struct ptrstatics *s;
{
 int prio;
 char c;

 if (s->nextnl) {
 c = ’\r’;
 prio = s->nextnl;
 s->nextnl = 0;
 s->lines++;
 } else {
 c = s->q[s->head].c;
 prio = s->q[s->head++].pri;
 s->head %= s->qlen;
 s->qdata--;
 ssignal(&s->free_sem);
 s->nextnl = c == ’\n’? prio : 0;
 s->chars++;
 }

 port_out(c, s->datap);
 port_out(s->control | PP_STROBE, s->controlp);
 port_out(s->control | PP_IENABLE, s->controlp);

 if (!s->nextnl) {
 swait(&s->prio_sem, SEM_SIGIGNORE);
 priot_remove(&s->pt, prio);
 if (prio == s->curpri) {
 prio = priot_max(&s->pt);
 if (prio != s->curpri) {

s->curpri = prio;
stsetprio(s->stid, (prio<<1)+1);

 }
 }
 ssignal(&s->prio_sem);
 }
}

312 Writing Device Drivers for LynxOS

Driver Code

void ptrint(s)
 struct ptrstatics *s;
{
 ssignal(&s->int_sem);
}

void ptrthread(s)
 struct ptrstatics *s;
{
 for (;;) {
 swait(&s->int_sem, SEM_SIGIGNORE);
 swait(&s->qsem, SEM_SIGIGNORE);
 if (s->qdata || s->nextnl) {
 send(s);
 } else {
 s->expecting = 0;
 /* disable ptr interrupts: */
 port_out(s->control, s->controlp);
 if (s->closing) ssignal(&s->close_sem);
 }
 ssignal(&s->qsem);
 }
}

/* This function ptrthread() is really the only difference
between this
 driver and the others. It is a kernel thread used by the
driver to send
 characters out to the printer. */

int ptrwrite(s, f, buff, count)
 struct ptrstatics *s;
 struct file *f;
 char *buff;
 int count;
{
 int i = count, myprio;
 myprio = _getpriority();
 swait(&s->prio_sem, SEM_SIGIGNORE);
 priot_addn(&s->pt, myprio, count);
 if (myprio > s->curpri) {
 s->curpri = myprio;
 stsetprio(s->stid, (myprio<<1)+1);
 }
Writing Device Drivers for LynxOS 313

Appendix C - Sample Device Driver

 ssignal(&s->prio_sem);

 while (i--) {
 while (swait(&s->free_sem, SEM_SIGABORT)) {
 swait(&s->prio_sem, SEM_SIGABORT);
 priot_removen(&s->pt, myprio, i+1);
 if (s->curpri == myprio) {

s->curpri = priot_max(&s->pt);
if (s->curpri < myprio) {
 stsetprio(s->stid,(s->curpri<<1)+1);
}

 }
 ssignal(&s->prio_sem);
 deliversigs();

 priot_addn(&s->pt, myprio, i+1);
 if (myprio > s->curpri) {

s->curpri = myprio;
stsetprio(s->stid, (myprio<<1)+1);

 }
 ssignal(&s->prio_sem);
 }

 swait(&s->qsem, SEM_SIGIGNORE);

 s->q[s->tail].c = *buff++;
 s->q[s->tail++].pri = myprio;
 s->tail %= s->qlen;
 s->qdata++;
 if (!s->expecting) {
 send(s);
 s->expecting = 1;
 }
 ssignal(&s->qsem);
 }
 return count;
}

int ptrioctl(s, f, command, arg)
 struct ptrstatics *s;
 struct file *f;
 int command;
 char *arg;
{
 switch (command) {
314 Writing Device Drivers for LynxOS

Driver Code

 case PTRSTATUS:
 if (wbounds((int)arg) < sizeof(struct ptrstatus)) {
 pseterr(EFAULT);
 return SYSERR;
 }
 ((struct ptrstatus *)arg)->chars = s->chars;
 ((struct ptrstatus *)arg)->lines = s->lines;
 break;

 case FIOPRIO:

 case FIOASYNC:

 break;

 default:

 pseterr(EINVAL);
 return SYSERR;
 }

 return OK;
}

#include <dldd.h>

static struct dldd entry_points = {
 ptropen, ptrclose, 0, ptrwrite,
 ptrselect, ptrioctl,
 ptrinstall, ptruninstall, (char *) 0
 };
Writing Device Drivers for LynxOS 315

Appendix C - Sample Device Driver
316 Writing Device Drivers for LynxOS

Index
Symbols

#include directive 9
/dev directory 18

A

Accessing Hardware 49–60
address

converting virtual to physical 43
device 39
flash memory base in kernel virtual

space 202
kernel direct mapped 39
kernel virtual 38
physical 39
user virtual 38
validating 46

address space management 157, 170
address translation 43

creating and removing 164
UNIX drivers 289

address types, LynxOS 38
aliasing user virtual address 48
application

access to devices and drivers 18
example 182
managing Hot Swap 175
signal handler 70
using DRM facilities 172

B

base address, flash memory 197
block device 3

raw data transfer capability 3
uninstalling dynamic 152
UNIX driver 291

block device driver
buffers 3
characteristics 3
dynamic installation 150
entry point functions 22
file system support 3
install() 23
ioctl() 29
ioctl() example 30
kernel buffering 3
strategy() 32
UNIX I/O support routines 293

blocking 64
with interrupts disabled 74

bridge device, inserting 172
BSP, relationship to DRM 159
buf_entry data structure 33
buffer, block device driver 3
buffers 12
bus architecture 160
bus error handler 4, 12
bus errors 154
bus layer

of a bus node 161
of a bus/device node 161
relationship to DRM 159
Writing Device Drivers for LynxOS 317

Index

C

callback routine, writing 201
flash virtual base 202
MTD specific data 203
operation code 201
operation parameter 202
return code 203
synchronization 203

Card Services 205
access to PC cards 206
advanced client services 208
bulk memory services 208
calling conventions 209
client callback 211
client device drivers 206, 247
client services 207
client utilities 207
detecting presence of 210
event notification 210

event code 211
event logical socket 211
events supported 212

groups 206
header files 209
Initialization 206
interface 209
logical sockets 206
Overview 206
reference of supported services 217

AccessConfigReg 218
DeregisterClient 219
ErrorName 219
GetCardServiceInfo 220
GetConfigurationInfo 221
GetFirstTuple 224
GetNextTuple 226
ParseTuple 227

tuple codes 227
RegisterClient 237
ReleaseConfiguration 238
ReleaseIO 239
ReleaseIRQ 240
RequestConfiguration 240
RequestIO 242
RequestIRQ 243
ServiceName 244

resource management 207
special services 208

CardServices() function 209
client device drivers 210

adding to ISA driver 216
deregistering 215
identifying PC card 212
PC card configuring 213
registration 210
sample PC card enabler 215

parameters 209
synopsis 209

changing priority of an I/O task 29
character device 3

uninstalling dynamic 152
character device driver

characteristics 3
dynamic installation 149
entry point functions 22
install() 23
ioctl() example 30
MTD 190
read() 27
write() 28

clock interrupt handler 12, 80, 85, 98
close() 21, 26, 80

example 27
code, blocking 64
code, example device driver 307
code, nesting 65
code, partitioning 64
code, protecting 64, 68
combining synchronization mechanisms 73
components, device driver, summary 14
concurrent operating system 63
CONFIG.TBL 144
configuration file, network driver 137
consumer tasks 71
contacting LynuxWorks xv
Contents iii
context switch time 102
context switch time, kernel threads 103
controlling interrupts 116
copying data from a buffer 28
copying data from a device 27
Copyright Information ii
counting semaphore 67, 72

to manage free list 75
cprintf() 153
critical code regions, UNIX driver 298
318 Writing Device Drivers for LynxOS

D

data availability indication 79
data packet

freeing mbuf 125
input 132

copying data to mbufs 133
determining packet type 133
enqueueing packet 134
processing 132
statistics counters 134

output 130
ether_output function 130
kernel thread processing 132

passing 122
queues 127

input 127
output 127

data structures
device information 4
dldd 4
entry_points 22
for user task priority tracking 114
functionality 8
statics 4

data transfer, limited size 115
data, holding from block device 292
deadlock 64, 66, 75
debug terminal 153
Debugging 152

bus errors 154
device driver service routines 153
hanging the system 153
overhead 153
SKDB 154

definition
device driver 1
device installation 3
interrupt handlers 10
interrupts 10, 79
kernel semaphore 67
kernel threads 11, 80
synchronization 63
timeout 12

device
access mode 92
flash, linear 189
Insertion/Removal 171
installation 3

interrupt management with DRM 169
interrupt signal 83
probing for 155, 165
readiness indication 79
resource ID 170
resource management with DRM 170
setting parameters 28
state 28
testing for presence 155

device address 39
Device Address Space Management 157, 170
device and driver configuration file, creating 143
Device Defaults

x86 95
device driver

adding to ISA driver 216
Card Services 206
components 4
components, summary 14
data structures 4
definition 1
development and installation 13
Example, LynxOS 307
Example, PCI 177
exclusive access 105
hardware access 49
installation 141
installation attributes 4
interrupt-based 88

close() 92
declaration for ioctl 89
device information declaration 88
device information definition 88
install() 90
interrupt handler 93
ioctl() entry point 94
open() 92
send() 92
source code 89
statics structure 90
uninstall() 91
write() 94

multiple access 105, 107
network 119
PC card client driver 205
PC card enabler 215
shared resources 4
Socket Services 247
static versus dynamic installation 141
supporting multiple major devices 15
Writing Device Drivers for LynxOS 319

Index

types 3
UNIX initialization routine 294
using DRM facilities 168
with interrupt handler code 86

Device Driver Basics 1–19
device I/O to drivers 157, 170
device ID 14, 17
Device Identification 157, 168
device information block 15
device information data structure 4, 23

deallocation 9
example 9
function 8
instantiating 5
parameters included 8

device information declaration 88, 143, 150
device information definition 88, 143, 150
Device Interrupt Management 157, 169
device registers, reading writing 51
Device Resource Manager 55, 56
Device Resource Manager (DRM) 157–188
device special files 18
device tree 158

adding nodes 171
building 165
DRM bus nodes 158
DRM device nodes 158
navigating 168, 171

devices command 19
devices Command Output 18
devinfo.h header file 143
direct mapped kernel virtual address 48
direct memory access 38
disabling interrupts 61, 62
disabling preemption 61, 62, 65
dldd data structure 4

format 146
functionality 10

dldd.h include file 145
DMA buffers, obtaining 40, 41
DMA controller 38, 39, 43, 79
DMA transfer 38, 79

paging 38, 41
UNIX drivers 290

documents, LynxOS xiii
documents, online xiii
drinstall() system call 150
driver and device configuration tables 143
driver code

attaching to end of kernel image 142

installation 143, 145
linking with kernel 141

driver ID 14, 17
driver response time 102
drivers command 19
drivers command output 17
DRM 55, 56

bus layer relationship 160
components 159
concepts 158
device tree 158, 171
Hot Swap management facilities 176
identifying device handle 165
Initialization 164
Interface Specification 166
module view 159
Node States 162
nodes 160

bus 158
device 158
fields 161
life cycle state 161, 163

read and write to bus layer-defined
resources 170

registering interrupt handlers 81
resource allocation 165
service routines 160, 164

device insertion/removal 171
summary 164

services 157
device address space

management 170
device I/O to drivers 170
device identification 168
Device Interrupt Management 169

using from applications 172
sysctl() interface 172

using from device drivers 168
dynamic installation 141, 142

advantages 142
block driver 150
character driver 149
device and driver uninstallation 151
dr_install() 22
drinstall() 22
drivers 10
entry point functions 22
error messages 152
import file 148
procedure 145
320 Writing Device Drivers for LynxOS

All Platforms 149
device information definition and

declaration 150
device installation 151
driver source code 145
node creation 151
PowerPC 148
x86 147

uninstall() 24

E

eieio() 55
Entry Point Functions 21–??
entry point functions 4, 6

addresses 22
close() 6
install() 6
ioctl() 6
naming 7
open() 6
read() 6
registering names 22
select() 6
sharing information 287
strategy() 6
uninstall() 6
usage guidelines 22
watchdog 136
write() 6

entry points, network driver 128
error conditions, handling 70
error messages, dynamic installation 152
ether_output function 130
Ethernet address, network driver 129
Ethernet header 120, 129, 133
event synchronization 67, 69
event synchronization semaphore 70, 73
Example Application 182
Example device driver 13

driver code 307
header files 307
PCI device 177

Example PC card enabler 215
Example, interrupt-based printer device

driver 88
exception handling 13
Exclusive access 105

interrupt handler 106
kernel thread 106
kernel thread priority 113
priority tracking 112
top-half entry point 105

F

file.h header file 26, 27, 28, 29, 30, 35
fixed priority scheduler 69
flash cache 197
flash device, linear

access to partition 199
base address 197
mapping to contiguous kernel virtual

space 197
MTD callback routine 190, 200
partition information 199
partitioning 200
sector size 195
size 195
two layer model for access 189

Memory Technology Driver 189
user interface 189

Flash ID, registration data 194
flash information block 195
flash_mgr module 189

deregistering with 201
flash partition data 199
registering with 190

free list
accessing from interrupt handler 74, 76
managing with counting semaphore 75
manipulating 73

functionality, data structures 8
functions, mbuf 126

G

GNU C compiler, installing driver with 147

H

handling, signals 69, 76
hardware access 49
Writing Device Drivers for LynxOS 321

Index

platform-specific 49
PowerPC systems 55

ISA bus 55
PCI support facility 55

x86 systems 51
reading writing device registers 51

hardware exception conditions 79
hardware interrupt, acknowledging 101, 106
header files

Card Services 209
devinfo.h 143
example device driver 307
file.h 26, 27, 28, 29, 30, 35
kernel data structure 119
kernel.h 51, 67
mem.h 45
port_ops_x86.h 51
Socket Services 259
st.h 114

Hot Swap 158, 169, 249
PC Card Enabler 249
pcmcia_d daemon 249

Hot Swap management applications 175

I

I/O address 8, 23
I/O polling 30
I/O port address 39
I/O system calls 2
ifconfig utility 128, 134
ifnet, network driver 129
import file, dynamic installation 148
install() 21, 23, 40, 41, 80

block device driver 23
character device driver 23
example 23
functionality 23
network driver 128

finding interface name 128
initializing Ethernet address 129
initializing ifnet structure 129

Installation and Debugging 141–155
installation attributes, device driver 4
installation, UNIX driver 305
installing, driver source code 143, 145
instantiating device information structure 5
Intel 8259 interrupt controller 84

interrupt 10
and real-time response 80
controlling 116
definition 79
disabling 61, 62
dispatch time 102
handlers 10
latency 101
levels 83
management 157
managing with DRM 169
pending 80
priority 103
processing in interrupt handler v/s kernel

thread 117
response time 102
restoring 62
sharing 82
unbounded disable times 71
using kernel threads 11
vector

interrupt handler stack 82
sharing 81
values, PowerPC 83
values, x86 82

Interrupt and Timeout Handling 79–99
interrupt controller 83

master and slave 84
programming 84

interrupt dispatcher 81
interrupt handler 10

accessing free list 74, 76
accessing user space 47
asynchronous execution 47
clearing 80
declaring and resetting 80
implementing 86
location in device driver 86
processing interrupts within 116
programming considerations 88
registering 23
registering with DRM 81
specifying 80
UNIX driver 296

interrupt handlers, LynxOS 80
interrupt service routine 4, 79

registering 169
setting and clearing 164

interrupt state, saving on a task basis 75
interrupt vector 79
322 Writing Device Drivers for LynxOS

interrupt vector number 81
interrupt vector space 83
interrupt vector table 80
interrupt vector, clearing 81
invoking a device driver 2
ioctl() 21

block device driver 29
example, block device driver 30
example, character device driver 30
network driver 134

SIOCSIFADDR 134
SIOCSIFFLAGS 135

validating addresses to 46
ioctl() system call 28
iointclr() 80, 81
iointset() 80, 81
IP multicasting support 138

ether_multi structure 138
IRQ

interrupt priority 85
level 8, 23
sharing 82

IRQ device default configuration 95
ISA bus access, x86 55
ISA device physical address 55
ISA interrupts 83
ISR 79

uses 79

K

kernel address space 39
kernel buffering 3
kernel data structure 119

header files included 119
host Internet address 121
socket addresses 120
symbolic constants 119

kernel direct mapped address 39
kernel rebuilding 145
kernel semaphore 61, 67

definition 67
functions 68
incrementing 62
memory allocation 67
signaling 63, 67
state 67
using as counting semaphore 76

using for mutual exclusion 68
value 67
wait queue 67

kernel support functions 13
exception handling 13
memory management 13
synchronization 13

kernel thread 4, 11, 103
accessing user space 47
context switch time 103
creating 104
data packet output 132

starting transmission 132
statistics counters 132

definition 80
execution context 47
network device 136
priority 103
processing incoming packets 132
processing interrupts within 117
scheduling priority 80, 104
signaling 106
stack size 104
static thread priority 109
structure 105
switching to 47
TCP/IP module 119

Kernel Threads and Priority Tracking 101–118
kernel virtual address 38
kernel.h header file 51, 67
keyboard 85
kkprintf() 153

L

Linux device drivers
GPL issues 267

Linux device drivers, porting to LynxOS
Accessing a device 269
blocking & non-blocking I/O 274
bottom halves and kernel threads 274
driver setup differences 280
Entry points 269
Error Handling 272
Installation 268
Interrupts 272
kernel support 275
memory address translation 276
Writing Device Drivers for LynxOS 323

Index

Preemption 271
scheduling differences 278
Signal Handling 272
System call processing 270

Linux Drivers
Porting 267

LynuxWorks, contacting xv
LynuxWorks, Inc. ii
LynxOS device driver components 4, 5
LynxOS device driver interface model 2
LynxOS driver

major number 288
priority tracking 34

LynxOS entry point functions summary 6
LynxOS features not used in UNIX drivers 285
LynxOS File System and strategy() Interface 33

M

macros, mbuf 125
major and minor device declarations 144
major and minor devices 16
major device

device information block 15
single controller card 15

major number 15
LynxOS drivers 288

major() 26
malloc() 40
mapping

device names to driver names 19
LynxOS virtual addresses to hardware 49
to entry point functions 7
user space address to virtual addresses 48
virtual to physical memory 44

mem.h header file 45
mem_unlock() 42
memlock() 41
memory

allocating 39, 40, 41
allocating for kernel semaphore 67
allocation functions 39
kernel access 37
locking 41
management 13
user accessible space 37

memory locking 41
mem_lock() 41

mem_unlock() 41, 42
Memory Management 37–60
Memory Management Unit 37
memory mapping, virtual to physical 38
memory operations, Card Services 208
memory-mapped device 50
minor device

examples of usage 16
file descriptor 26
initialization 25
single channel or sub-device 15
synchronization between 26

minor number 15
Flash ID 194
flash partition number 199

minor() 26
mknod utility 19
mmap() 21, 35
MMU 37

bypassing 39
MTD 189

callback routine 190, 200
flash virtual base 202
MTD specific data 203
operation code 201
operation parameter 202
return code 203
synchronization 203
writing 201

character device interface routines 190
control register windows 198
deregistering with flash_mgr 201
Device Control Registers 198
Device Info String 195
flash base address 197
Flash ID 194
flash memory size 195
interface overview 190
partition information 199
registering with flash_mgr 190
registration attributes 196
registration data 191
write, read, erase flash device 196

multicast address ranges 138
Multiple access 105, 107

non-atomic requests 115
priority tracking 114

kernel thread 115
top-half entry point 114

with kernel threads
324 Writing Device Drivers for LynxOS

interrupt handler 108
kernel thread 108
top-half entry point 108

without kernel threads 107
multiplexing 30
mutex mechanisms 75
mutual exclusion 13, 68

disable()/restore() mechanism 74

N

naming entry point functions 7
network device

kernel thread 136
local RAM 133
resetting hardware 136

Network Device Drivers 119–140
network driver 119

communicating with TCP/IP module 121
device configuration file 129, 137
entry points 128
hardware independent interface 121
hardware initialization 128
ioctl() 134

SIOCSIFADDR 134
SIOCSIFFLAGS 135

IP multicasting support 138
packet input 132
packet output 130

ether_output 130
kernel thread processing 132

packet queues 127
priority tracking 137
reset entry point 136
statics data structure 127
watchdog entry point 136

network interface
bring up or down 135
checking operation 136
initializing Ethernet address 129
initializing ifnet structure 129
name 128
packet queues 127
setting IP address 134

node creation 151
nodetab file 144, 145
non-atomic requests 115
non-deterministic environment 63

O

online documentation xiii
open() 21, 25, 40, 41, 80

example 26
open() system call 26
OSBASE constant 37

P

packet queues 127
paging 38, 41
PC Card

adding support for new 250
new driver 251
PC Card Enabler 250

client drivers 205
Configuration Register 218
configuring by client device drivers 213
Hot Swap 249
hot-swap capable driver 216
identification by client device drivers 212
IRQ 223
manipulating 205, 247
removing from running system 250
Socket Services

writing 257
supported by Enabler 249
using 248

PC Card Enabler 248
configuration tables 250
static driver installation 249

PC Card package architecture, LynxOS 205
PC Card Support

architecture 246
Card Services 247
features 245
installing 246
Socket Services 247
Troubleshooting 252
utilities 248

PCI address 39
PCI devices, managing 56
PCI support facility, PowerPC 55
PCMCIA Adapter

adding support for new 251
supported 252
Writing Device Drivers for LynxOS 325

Index

PCMCIA/JEIDA PC Card architecture

specification 205, 246
pcmcia_d daemon, dynamic driver

installation 250
permap() 50
permissions for LynxOS virtual memory

access 50
PHYSBASE constant 39
physical address 39

ISA devices 55
physical device layout 158
physical memory 39

allocating 40
allocating contiguous 41

PID, getting for task 42
port_ops_x86.h header file 51
Porting Linux Drivers to LynxOS 267
Porting UNIX Drivers to LynxOS 285–305
PowerPC

ddld structure 146
dynamic driver installation 148
interrupt vector values 83
ISA Bridge 55
PCI-to-ISA bridge 55
subtractive decoding 55
VME-to-PCI bridge 55

PowerPC hardware access 55
PCI support facility 55

PowerPC Kernel Access Virtual Memory Map,
LynxOS 57

PowerPC User Access Virtual Memory Map,
LynxOS 58

preemption 13
restoring 62
UNIX driver code 298

preemption, disabling 61, 62, 65
preemptive operating system 63
pre-mapped region 50
printf() 153
priority

interrupts v/s tasks 103
inversion 69
kernel thread 104, 109
UNIX driver 298
user v/s kernel 111

priority inheritance 29, 69
semaphores 69

priority levels, user applications 111
priority scheduler, fixed 69
priority tracking 11, 29, 109

driver-level requests 116
exclusive access driver 112
multiple access driver 114
network driver 137
w_count 34

probing for devices 155
processes

awakening 62
number of, waiting on a semaphore 63

producer process 71
protecting critical code sections 64, 68

Q

queues 12
in device driver code 86
using 86

R

race conditions 64, 66, 75
rbounds() 154

values returned 46
read() 21, 27

example 27
read() system call 27, 33
reading writing device registers, x86 51
real-time clock 85
real-time response 101, 103

and interrupts 80
and signal handling 76

rebuilding kernel 145
Reference manuals xiii
requests, driver-level 116
reset Entry Point 136
resource

allocation 72
availability 8, 23
required by device driver 6, 21

resource pool management 72

S

scatter/gather transfers 41
scheduling with static thread priorities 109
326 Writing Device Drivers for LynxOS

select() 21, 30

example 31
select() system call 30
semaphores 12

event synchronization 70
priority inheritance 69

serial device, data transfer 116
service routines, DRM 164
shared resources 12

accessing 63
shared static data structures and queues,

allocating 40
sharing IRQs 82
signal handler, application 70
signal handling 69
signal handling and real-time response 76
signaling, kernel thread 106
signaling, semaphore 67
signals and tasks 67
Simple Kernel Debugger 154
SKDB 154
sleep() 298
Socket Services 205

access to PC Cards 206, 247
callback entry point 260
event notification 260
Groups 258

Adapter Services 258
Socket Services 259
Window Services 259

header files 259
identification number 260
information structure 252
invoking 260
overview 258
PC Card, writing 257
reference 261
registering with Card Services 260
SS_GetInfo 261
SS_GetSocket 263
SS_GetWindow 265
SS_InquireSocket 262
SS_InquireWindow 263
SS_SetSocket 262
SS_SetWindow 264
status change reporting 206
status changes 260
structure 259

Special Note formats xv
sreset() 63

caution when using 71
handling error conditions 70
synchronizing with calls to ssignal() 71
using with event synchronization

semaphores 70
variable length transfers 71

st.h header file 114
stack size, kernel thread 104
state, semaphore 67
static installation 141

advantages 141
code organization 142
entry point functions 22
procedure 142

CONFIG.TBL 144
device and driver configuration

file 143
driver source code 143

statics data structure 4, 23, 24, 25, 26, 27, 28, 29,
30, 32
example 9
function 9
network driver 127

statistics counters, data packet input 134
statistics counters, data packet output 132
strategy() 21, 32

UNIX driver 291
struct arpcom 120
struct ether_header 120
struct ifnet 121

network interface attach routine 130
struct in_addr 121
struct mbuf 122

adding or removing data 123
allocating 124
clusters 125
commonly used functions 126
commonly used macros 125
copying incoming packets to 133
freeing 125
packet header 131
position and size of data 123

struct sockaddr 120
struct sockaddr_in 120
structure, interrupt-based driver 87
structure, kernel thread 105
symbolic constants, kernel data structure 119
Synchronization 61–77
synchronization 12, 298

between minor devices 26
Writing Device Drivers for LynxOS 327

Index

by flash_mgr for flash device 203
combining mechanisms 73

manipulating free list 73
definition 63
event 67, 69
mutual exclusion 13
preemption 13
UNIX driver 289, 298

synchronization functions
disable() 62
pi_init() 63
restore() 62
scount() 63
sdisable() 62
signaln() 63
sreset() 63
srestore() 63
ssignal() 62
swait() 62

sysbrk() 40
sysctl() interface

accessing DRM 172
parameters 174

sysfree() 40
system calls, I/O 2
system halts 12
system management service routines 169
system response time 107
SystemV, interrupt capabilities 296

T

task
completion time 102
consumer 71
getting PID 42
indefinite blocking 69
preemption 62
priority 103
response time 102
semaphore signaling 67
signal handler 67
virtual address space 37

TCP/IP module
calling driver start routine 131
communicating with driver 121
kernel threads 119
transmitting packets 131

Technical Support xv
timeout 12

cancelling 97
interrupts 80
interval 97
lengthy processing 98
using for events 70

timeout handler 4, 12, 79, 97
algorithm 97
algorithm with kernel threads 98
calling 98

timeout ID 97
timeout() 97
transfers, direct memory 38
Typographical Conventions xiv

U

U structure 296
u_base, u_count, u_offset 296
u_error 297
u_fmode 297
u_procp 297
u_segflg 297
u_tsav, u_nofault 297

uninstall() 21, 24, 80
example 25
functions 24

uninstallation, dynamic 151
UNIX driver

address translation 289
block I/O support routines 293
buf structure 292
debugging 294
DMA transfers and raw I/O 290
event synchronization 298
handling interrupts 286
initialization routine 294

probing for devices 295
installation method 305
interface with kernel 288

driver service calls 288
interface with user applications 299

accessing user space 303
entry points 299
error return 304
ioctl 302
major and minor numbers 300
328 Writing Device Drivers for LynxOS

open/close 301
read/write 301
select 303

interrupt handling 296, 305
kernel and driver goals 285
LynxOS features not used 285
memory management functions 288
porting strategy 286
porting to LynxOS 285
POSIX model 305
reentrance and synchronization 298
sleep() function 298
source/binary compatibility 285
structure 287

global variables 287
synchronization 289
transfers to block devices 291
U structure 296

user and kernel priorities 111
user space address, mapping to virtual

addresses 48
user space, accessing from interrupt handler and

kernel threads 47
user virtual address 38

aliasing 48

V

validating addresses 46
variable length transfers 71
vector, interrupt 79

clearing 81
interrupt handler stack 82
sharing 81
values, PowerPC 83
values, x86 82

virtual address conversion 45
Virtual Address Model, LynxOS 37
virtual map

memory-mapped device 50
PowerPC kernel access 57
PowerPC user access 58
remapping during context switches 37
x86 kernel access 52
x86 user access 53

virtual memory
LynxOS access permissions 50
mapping to physical memory 44

pre-mapped region 50
VME address 39
VME interrupts 83
vmstart command 41

W

watchdog entry point 136
disabling 136

wbounds() 154
write() 21, 28

example 28
write() system call 28, 33
Writing Flash Memory Technology Drivers

(MTDs) 189–203
Writing PC Card Client Drivers 205–265

X

x86
devices 51
dynamic driver installation 147
interrupt vector values 82
Kernel Access Virtual Memory Map 52
User Access Virtual Memory Map 53

x86 hardware access 51
ISA bus 55
reading writing device registers 51
Writing Device Drivers for LynxOS 329

Index
330 Writing Device Drivers for LynxOS

	Writing Device Drivers for LynxOS
	Contents
	Preface
	For More Information
	Typographical Conventions
	Special Notes
	Technical Support
	LynuxWorks U.S. Headquarters
	LynuxWorks Europe
	World Wide Web

	Chapter 1 Device Driver Basics
	What is a Device Driver?
	Types of Device Drivers
	Device Drivers and Devices

	LynxOS Device Driver Components
	Entry Point Functions
	Naming Convention

	Data Structures
	Device Information Data Structure
	Statics Data Structure
	dldd Data Structure

	Handling Interrupts
	Interrupts and Real-Time Response
	Kernel Threads

	Other Components
	Shared Resources
	Timeout Handler
	Error Handler

	LynxOS Kernel Support Functions
	Device Driver Development and Installation
	Referencing Device Drivers
	Major and Minor Device Designations
	Referencing Driver and Device IDs Under LynxOS
	Drivers
	Devices

	Application Access to Devices and Drivers
	Mapping Device Names to Driver Names

	Chapter 2 Entry Point Functions
	Entry Point Functions
	Required Functions
	Declaring the Entry Point Functions
	install()
	install() Example

	uninstall()
	uninstall() Example

	open()
	open() Example

	close()
	close() Example

	read()
	read() Example

	write()
	write() Example

	ioctl()
	ioctl() Example

	select()
	select() Example

	strategy()
	mmap() Example

	Chapter 3 Memory Management
	LynxOS Virtual Memory Model
	DMA Transfers

	LynxOS Address Types
	Allocating Memory
	Memory Locking
	mem_lock()
	mem_unlock()

	Address Translation
	Virtual Address Conversion

	Validating Addresses
	Accessing User Space from Interrupt Handlers and Kernel Threads
	Accessing Hardware
	Using permap()
	Device Access on x86 Systems
	Reading and Writing Device Registers

	Device Access on PowerPC Systems
	ISA Bus Access
	PCI Support Facilities
	Device Resource Manager

	Chapter 4 Synchronization
	Introduction
	What is Synchronization?
	Managing Shared Data Resources
	Protecting Critical Code Sections
	Avoiding Deadlock & Race Conditions

	Kernel Semaphores
	Other Kernel Semaphore Functions
	Using Kernel Semaphores for Mutual Exclusion
	Priority Inheritance Semaphores
	Event Synchronization
	Handling Signals
	Using sreset() with Event Synchronization Semaphores
	Handling Error Conditions
	Variable Length Transfers

	Resource Pool Management

	Combining Synchronization Mechanisms
	Manipulating a Free List

	Signal Handling and Real-Time Response

	Chapter 5 Interrupt and Timeout Handling
	Introduction
	Timeout Interrupts
	Interrupts and Real-Time Response

	LynxOS Interrupt Handlers
	iointset()
	iointclr()
	Sharing IRQs
	Interrupt Vector Values
	x86
	PowerPC

	Interrupt Levels
	Implementing an Interrupt Handler
	Use of Queues
	Interrupt Handler Considerations
	Example Code
	Device Information Definition
	Device Information Declaration
	Declaration for ioctl

	x86 IRQ Device Defaults
	Timeout Handlers

	Chapter 6 Kernel Threads and Priority Tracking
	Device Drivers in LynxOS
	Interrupt Latency
	Interrupt Dispatch Time
	Driver Response Time
	Task Response Time
	Task Completion Time

	Real-Time Response
	Kernel Threads
	Creating Kernel Threads

	Structure of a Kernel Thread
	Exclusive Access
	Top-Half Entry Point
	Interrupt Handler
	Kernel Thread

	Multiple Access
	Top-Half Entry Point
	Kernel Thread

	Priority Tracking
	User and Kernel Priorities
	Exclusive Access
	Multiple Access
	Top-Half Entry Point
	Kernel Thread

	Non-Atomic Requests

	Controlling Interrupts

	Chapter 7 Network Device Drivers
	Kernel Data Structures
	struct ether_header
	struct arpcom
	struct sockaddr
	struct sockaddr_in
	struct in_addr
	struct ifnet
	struct mbuf
	Adding or Removing Data in an mbuf
	Allocating mbufs
	mbuf Clusters
	Freeing mbufs

	Statics Structure
	Packet Queues
	Driver Entry Points
	install Entry Point
	Finding the Interface Name

	Initializing the Ethernet Address
	Initializing the ifnet Structure

	Packet Output
	ether_output Function
	Kernel Thread Processing
	Starting Transmission
	Statistics Counters

	Packet Input
	Determining Packet Type
	Copying Data to mbufs
	Enqueueing Packet
	Statistics Counters

	ioctl Entry Point
	SIOCSIFADDR
	SIOCSIFFLAGS

	watchdog Entry Point
	reset Entry Point
	Kernel Thread
	Priority Tracking
	Driver Configuration File
	IP Multicasting Support
	ether_multi Structure

	Chapter 8 Installation and Debugging
	Static Versus Dynamic Installation
	Static Installation
	Dynamic Installation

	Static Installation Procedure
	Driver Source Code
	Device and Driver Configuration File
	Configuration File: CONFIG.TBL

	Rebuilding the Kernel
	Dynamic Installation Procedure
	Driver Source Code
	Driver Installation
	x86
	PowerPC
	All Platforms

	Device Information Definition and Declaration
	Device Installation
	Node Creation
	Device and Driver Uninstallation
	Common Error Messages During Dynamic Installation

	Debugging
	Communicating with the Device Driver
	Simple Kernel Debugger (SKDB)
	Handling Bus Errors
	Probing for Devices

	Additional Notes

	Chapter 9 Device Resource Manager (DRM)
	DRM Concepts
	Device Tree
	DRM Components
	Bus Layer

	DRM Nodes
	DRM Node States
	DRM Initialization

	DRM Service Routines
	Interface Specification

	Using DRM Facilities from Device Drivers
	Device Identification
	Device Interrupt Management
	Device Address Space Management
	Device I/O
	DRM Tree Traversal
	Device Insertion/Removal

	Using DRM Facilities from Applications
	Hot Swap Management Applications

	Example Driver
	Sample Application

	Chapter 10 Writing Flash Memory Technology Drivers (MTDs)
	Cache Management
	Interface Overview
	Registering with flash_mgr
	MTD Registration Data
	Flash ID
	Device Info String
	Flash Size
	Sector Size
	Registration Attributes
	Flash Base Address
	Device Control Registers
	Partition Information
	Callback Routine

	Deregistering from flash_mgr
	Writing Callback Routines
	Operation Code
	Flash Virtual Base
	Operation Parameter
	MTD-Specific Data
	Return Code
	Synchronization

	Chapter 11 Writing PC Card Client Drivers
	Card Services Overview
	Card Services Initialization
	Logical Sockets
	Card Services Groups
	Client Services
	Client Utilities
	Resource Management Services
	Advanced Client Services
	Bulk Memory Services
	Special Services

	Card Services Calling Conventions
	Header Files
	Synopsis

	Client Structure
	Detecting the Presence of Card Services
	Client Registration
	Client Callback
	Events

	PC Card Identification
	PC Card Configuration
	Client Deregistration
	Sample Client Drivers
	PC Card Enabler
	Addition to Existing ISA Device Driver

	Card Services Reference
	AccessConfigReg
	DeregisterClient
	ErrorName
	GetCardServicesInfo
	GetConfigurationInfo
	GetFirstTuple
	GetNextTuple
	ParseTuple
	Supported Tuple Codes

	RegisterClient
	ReleaseConfiguration
	ReleaseIO
	ReleaseIRQ
	RequestConfiguration
	RequestIO
	RequestIRQ
	ServiceName

	PC Card Support
	Installing and Removing PC Card Support
	PC Card Support Architecture
	Socket Services
	Card Services
	Client Device Drivers
	PC Card Enabler
	PC Card Utilities

	Using a PC Card
	Supported Cards
	Hot Swapping

	Adding Support for a New PC Card
	Adding Support to PC Card Enabler
	Create New Device Driver

	Adding Support for a New PCMCIA Adapter
	Supported PCMCIA Adapters

	Troubleshooting
	Writing PC Card Socket Services
	Socket Services Overview
	Socket Services Groups
	Adapter Services
	Socket Services
	Window Services

	Socket Services Structure
	Header Files
	Registration
	Event Notification
	Socket Services Callback

	Socket Services Reference
	SS_GetInfo
	SS_InquireSocket
	SS_SetSocket
	SS_GetSocket
	SS_InquireWindow
	SS_SetWindow
	SS_GetWindow

	Appendix A Porting Linux Drivers to LynxOS
	GPL Issues
	Driver Installation
	Using a Device
	Major and Minor Numbers

	Accessing a Device
	Driver Entry Points
	System Call Processing
	Preemption
	Signal Handling
	Error Handling

	Interrupts
	How Linux Handles Interrupts
	How LynxOS Handles Interrupts
	Registering Interrupts
	Registering Interrupts for Linux
	Registering Interrupts for LynxOS

	Blocking and Non-Blocking I/O
	Bottom-Halves and Kernel Threads
	Kernel Support
	Kernel Timer Support
	Semaphore Support
	Linux Semaphore Support

	LynxOS Semaphore Support

	Address Translation
	Address Translation for Linux
	Address Translation for LynxOS

	Driver Problem Reporting
	Communications with Applications
	Scheduling Differences
	Linux Scheduling
	LynxOS Scheduling

	Differences in Setting up a Driver
	Setup
	Installation
	Device Access: open() and close()
	Device Access: read() and write():
	Device Access: Control

	Appendix B Porting UNIX Drivers to LynxOS
	Kernel and Driver Design Goals
	Porting Strategy
	Driver Structure
	Overall Structure
	Global Variables
	Major and Minor Device Numbers

	Driver Interface with Kernel
	Driver Service Calls
	Memory Management
	Synchronization
	DMA Transfers and Raw I/O
	Block Input/Output
	Driver Debugging

	Initialization Routine
	Probing for Devices

	Interrupt Handling
	U Structure
	u_base, u_count, u_offset
	u_fmode
	u_error
	u_segflg
	u_procp
	u_tsav, u_nofault

	Reentrance and Synchronization
	Critical Code Regions
	Event Synchronization
	UNIX sleep Priority

	Driver Interface with User Applications
	Entry Points
	Major and Minor Device Numbers
	open/close
	read/write
	ioctl
	select
	Accessing User Space
	Returning Errors to User Application

	LynxOS Kernel Threads
	Dynamic Installation
	POSIX Programming Model
	Asynchronous I/O
	Synchronous I/O Multiplexing and Polling

	Appendix C Sample Device Driver
	Header Files
	ptrinfo.h
	prtioclt.h

	Driver Code

	Index

