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Preface

This guide contains information used to support the development of LynxOS
device drivers. It covers:

» Devicedriver structure and organization,
e LynxOS system calls that support device drivers, and

* Devicedriver installation and referencing under LynxOS.

For More Information

For more information on the features of LynxOS, refer to the following printed and
online documentation.

¢ Release Notes

This printed document contains late-breaking information about the
current release.

¢ LynxOSInstallation Guide

Thismanual supportstheinitial installation and configuration of LynxOS
and the X Windows System.

¢ LynxOSUser’'s Guide

This document contains information about basic system administration
and kernel level specifics of LynxOS. It contains a“ Quick Starting”
chapter and covers arange of topics, including tuning system
performance and creating kernel images for embedded applications.

¢ Onlineinformation

Information about commands and utilitiesis provided onlinein text
format through the man command. For example, a user wanting

Writing Device Drivers for LynxOS xiii
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information about the GNU compiler would use the following syntax,
where gcc isthe argument for information about the GNU compiler:

man gcc

More recent versions of the documentation listed here may also be found online.

Typographical Conventions

The typefaces used in this manual, summarized below, emphasi ze important
concepts. All referencesto file names and commands are case sensitive and should

Xiv

be typed accurately.

Kind of Text

Body text; italicized for enphasis, new
terms, and book titles

Environment variables, file names,
functions, methods, options, parameter
names, path names, commands, and
computer data

Commands that need to be highlighted
within body text, or commands that must be
typed asis by the user are bol ded.

Text that represents avariable, such asafile
name or avalue that must be entered by the
user

Blocks of text that appear on the display
screen after entering instructions or
commands

Keyboard options, button names, and menu
sequences

Writing Device Drivers for LynxOS

Examples

Refer to the LynxOS User’s Guide.

I's

-1

nyprog.c

/ dev/ nul |

| ogi n: nyname
# cd /usr/hone

cat filenane
mv filel file2

Loading file /tftpboot/shell.kdi
into 0x4000

File loaded. Size i's 1314816
Copyright 2000 LynuxWorks, Inc.
Al rights reserved.

LynxCS (ppc) created Mon Jul 17

17:50: 22 GMr 2000
user narre:

Enter, Ctrl-C



Special Notes

Special Notes

The following notations highlight any key points and cautionary notes that may
appear in this manual.

NoTE: These callouts note important or useful pointsin the text.

CauTioN! Used for situations that present minor hazards that may interfere with
or threaten equipment/performance.

Technical Support

LynuxWorks Technical Support is available Monday through Friday (holidays
excluded) between 8:00 AM and 5:00 PM Pacific Time (U.S. Headquarters) or
between 9:00 AM and 6:00 PM Central European Time (Europe).

The LynuxWorks World Wide Web home page provides additional information
about our products and LynuxWorks news groups.

LynuxWorks U.S. Headquarters

Internet. support @ nxw. com
Phone: (408) 979-3940
Fax: (408) 979-3945

LynuxWorks Europe

Internet: t ech_eur ope@ nxw. com
Phone: (+33) 1 3085 06 00
Fax: (+33) 1 30 85 06 06

World Wide Web

http://ww. | ynuxwor ks. com
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CHAPTER 1 De\/l Ce Drlver BaSI CS

This chapter covers the basic concepts of LynxOS device drivers. The topics
covered are:

* Devicedriver overview,

e Components of aLynxOS device driver,

» Kernel support functions overview, and

e Summary of the development and installation process under LynxOS.

This chapter covers topics applicable to the development of device drivers under
LynxOS and is not intended to be an introduction to device driver development.
The reader is assumed to be familiar with the concepts of driver development
within akernel environment.

What is a Device Driver?

The device driver is a software interface between the OS and hardware that hides
the implementation specifics of the hardware from the OS. It provides the
mechanism for the kernel to communicate with a particular type of device.
Typically, these communication requests are to transfer datato and from the device
or to control the device in some manner. The device driver provides the predefined
and consistent interface for the kernel to make these requests. The following figure
diagrams the LynxOS device driver model.
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Figure 1-1: LynxOS Device Driver Interface Model

The device driver islinked into the kernel and interfaces directly with the
controller card of a particular piece of hardware (drives, printers and modems, for
example). An application can request access to devices using LynxOS 1/O-rel ated
system callssuch as open(), read(),or wite().

The kernel invokes the appropriate routines within the device driver codeto handle
the 1/0 requests of an application. In addition, a device driver can also be invoked
in response to file system operations, interrupts, timeouts or bus errors or a change
in the process using the device.
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Types of Device Drivers

Device drivers are classified as either block or character types. The primary
difference between the two typesisthat block type device drivers use afixed size
dataformat when transferring data and character type drivers do not.

Block type device drivers are well suited for storage devices like disk and tape
drives and off-board RAM or shared memory. Block device driver characteristics
include:

« Datatransfersin multiples of afixed sized buffer (512 bytes for
example),

« Kernel-buffered data transfer requests,
e Concept of position on adevice, and
¢ File system support.

Character type driverstypically support data transfer devices such as serial and
parallel ports, clocks and timers, network adapters, and A/D or D/A convertors.
Character type device driver characteristics include:

e Operate on arbitrarily sized data structures,
* Nokernel buffering
e May or may not have concept of position on device.

Most block type devices are supported by both a block and a character type device
driver. The character type driver is a counterpart to the block driver code to support
the character (also known as raw) data transfer capability of the block device
(CD-ROM drive, for example).

Device Drivers and Devices

Theterms device driver and driver are used synonymously throughout this
document. Device and hardware are used interchangeably and refer to a physical
device except within the context of installation. Within this context, device
installation refers to the process of loading a device driver and creating a device
node under LynxOS for accessto the device's controller. This processis coveredin
Chapter 8, “Installation and Debugging,”. Hardware installation is used to refer to
the act of installing a physical device.
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LynxOS Device Driver Components

A LynxOS device driver consists of code and supporting data structures. The
device driver also has various installation attributes that categorize its existence
within the LynxOS environment.

The device driver code is a program module that is incorporated into the kernel. It
doesnot havea mai n() routine. A basic device driver is composed of a set of
entry point functions, an interrupt service routine, and kernel threads. (Although
not an absol ute requirement by the device driver interface specification, the
interrupt service routine and kernel threads are essential to sustaining the hard real-
time requirements of LynxOS.) Additionally, adevice driver may include atimeout
handler, abus error handler, and one or more shared resources such as semaphores,
buffers, and queues (refer to “ Other Components’ on page 12 for more
information).

The supporting data structures for a device driver consists of:
» Deviceinformation
+  Statics
» didd

These data structures are implemented as C struct datatypes. The device
information and statics data structures are memory buffers used by the device
driver routines. The didd data structure is only used with dynamically installed
device drivers and provide the mechanism for registering the entry point function
names with the kernel.

The installation attributes of a device driver become known when the driver code
and device areinstalled into LynxOS. These attributes characterize how the device
driver isincorporated into the kernel (statically or dynamically) and how the
hardware it supportsis accessed by the kernel (driver ID, device ID, and device
nodes). Thedriver ID, device ID, and device node name are specific to the actual
driver installation. The device driver has no knowledge of these attributes. Driver
IDs, device IDs, and device node names are covered later in the chapter in
“Referencing Device Drivers’ on page 14.

A diagram of the LynxOS device driver is shown in the following figure.
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Figure 1-2: lynxos Device Driver Components

Note that the device information structure is external to the driver code. This data
structure isinstantiated independently of the device driver itself. The kernel passes
the address of the device information structure to the driver when the deviceis
installed. This data structure is described in the section “Device Information Data
Structure” on page 8 and the process of instantiating this structure is described in
Chapter 8, “Installation and Debugging,”
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Entry Point Functions

The entry point functions are the main access points into the device driver. The
entry point function interface is predefined and the devel oper must supply the code
that interacts with the hardware. This section provides a brief overview of the entry
point functions. They are described in detail in Chapter 2, “ Entry Point Functions,”
The table below summarizes the entry point functions.

Table 1-1: LynxOS Entry Point Functions Summary

Entry Point

Description

install ()

Initializes the hardware and allocates resources required
by the device driver.

uninstall ()

Deall ocates resources alocated by the device driver
(shared memory and used interrupt vectors, for example).

open() Initializes minor devices.

cl ose() Called only when the last open file descriptor pointing to a
minor deviceis closed.

read() Reads data from the device.

wite() Sends data to the device.

ioctl () Executes a device-specific command.

sel ect () Supports 1/0 polling or multiplexing.

strategy()

Schedules aread or write operation on ablock device.

nmep()

Maps data to memory.

The instal | () and uninstall () functionsprovideamechanism for
initializing and removing adevice driver. Well known |/O-related system calls map
to the following entry point functions. open(), cl ose(), read(), wite(),
ioctl(),and select() (seenextfigure). The strategy() entry pointis
used to provide block-oriented 1/0 scheduling of reads or writes to a block device.
Themmap() entry point is used to support data mapped to memory.
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User Application

fd = open(...);

byte_ct = read(...);

byte_ct = wite(...);

stat = close(...);

Driver Code

devinstal | ()

—~

s

evopen()

-~ -

}
devread()
{

———> .
I I
—+——» devwrite()
{

}
— 3| devcl ose()
{

}
devuni nstal | ()
{

}

LynxOS
Kernel

Figure 1-3: Mapping to Entry Point Functions

The set of entry points required for device drivers varies from device to device.
Theinherent characteristics, attributes, and purpose of the hardware determine
which entry points are needed. However, for entry point routines not implemented,
an empty routine, or one that simply returns the system defined constant, OK,

should be provided.

Naming Convention

An identifier should be prepended to the standard entry point function names to
uniquely identify them. The identifier chosen is entirely up to the developer,
however, it is recommend that a convention be selected that identifies the intended

Writing Device Drivers for LynxOS
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device. For example, to name entry point functionsfor adevice driver that supports
the Xyz SCSI controller, XyzSCSI _install (), XyxSCSI _open(),
XyzSCS| _read() andsoon, can be used.

NoTE: In the coding examples that are used in this chapter and in the remaining
chapters of thisbook, dev_ is prepended to the entry point function names as a
generic device driver identifier.

Data Structures

The data structures, device information and statics, are used in conjunction with
the device driver code to provide a mechanism to pass device-specific information
to the driver and to provide the driver routines with a shared memory areato place
information about the state or status of the device and the driver. The didd data
structure is used to pass the entry point function names to the kernel for
dynamically installed device drivers.

The device information and statics data structures are discussed in abstract terms
because their structures are not predefined and their purposes vary. Concrete
examples are provided to illustrate their usage. However, keep in mind that their
field structure is determined by the particular device they are supporting and the
developer isfreeto define them as appropriate.

Device Information Data Structure

The device information data structure is used to pass hardware-specific parameters
to the device driver. These parameters (typically, configuration parameters) are
essential to the proper functioning of the device driver code but would limit the
driver’'s range of applicability if hardcoded. These parameters are typically
unknown until the hardware is actually installed. They includeitems such as1/0
address, IRQ level, and available resources.

Other uses of the device information structure include:
» Specifying specific operational characteristics of a controller card.
» Accessing specia capabilities of the device.
» Accessing a specific port on a multifunction controller.
»  Supporting multiple instances of a controller within the same system.

The device information data structure exists within the kernel address space. The
kernel passes the address of this data structuretothe i nstal | () entry point
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function. The device information data structure is deall ocated when the device is
uninstalled. An example of this data structure is shown below.

typedef struct adapter_info {

unsi gned char scsi_id; /* SCSI 1D of host adapter */
unsi gned short base_address; /* adapter base |/O address */
unsi gned short dnma_chan; /* DVA channel used */
unsi gned short vector; /* interrupt vector */
unsi gned short |evel; I* interrupt |evel */

unsi gned short perfornance;
b
The developer is free to choose the structure name and make the field declarations
appropriate to the hardware’s attributes. An empty data structure is also allowable.
The data structure definition is placed into aheader file and isincorporated into the
device driver module using the compiler #i ncl ude directive.

With the values contained in the device information structure, the i nstal | ()
entry point can access and initialize the hardware. The process of initializing and
instantiating the device information data structure, installing devices, and the
mechanism used to pass the initialized structure to the driver is discussed in
Chapter 8, “Installation and Debugging,”

Statics Data Structure

The statics data structure is a memory buffer commonly shared by the functions of
the device driver. It is dynamicaly allocated and initialized by the i nstal I ()
entry point function. Its addressisreturned to the kernel by the i nstal | () entry
point. The kernel passes the address of the statics structure to other entry point
functions.

The developer is free to choose the structure name and make the field declarations
appropriate to the requirements of the device driver. An empty datastructureisalso
allowable. The statics data structure definition can be placed into a header file and
incorporated into the device driver module using the compiler #i ncl ude
directive or placed within the driver code module. An example statics structureis
shown below.

struct if_3c5x9_statics {
struct arpcomds_ac; /* Ethernet common part */

int flags ; /* interface flags */

int int_sem /* semaphore for interrupts */

int io_int; /* flag to indicate |/Ointerrupt */
int xcvr_type; /* xcvr type */

int slot; /* slot type: EISA or PCMCIA */

int xnt_non_cntr; /* xmit hang nonitor counter */

int if_3c5x9_cip_cnt0; /* global cip counter */
int show overruns;
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dldd Data Structure

The didd data structure supports dynamic installation of device drivers. If used, the
didd structureisinitialized within the driver code module. This data structure
cannot exist in a device driver that isto be statically installed.

The names of the entry point functions are assigned to the fields of this structure
and subsequently passed to the kernel when the device driver isinstalled. The didd
datastructureisdefinedin <dl dd. h>. The variable name associated with this data
structure must be ent ry_poi nt s. For example:

#i ncl ude <dl dd. h>
static struct dldd entry_points =

{
dev_open, dev_close, dev_read, dev_wite,
dev_select, dev_ioctl, dev_install,
dev_uninstall, dev_nmap

h

NoOTE: The static keyword is omitted on PowerPC platforms.

The dev_mmap fieldisused only by the mem and zer o devicedrivers. All
others can omit mmap.

For block-typedrivers, dev_read isreplaced with dev_str at egy, and
dev_writ e isreplaced with NULL. The name of the data structureis

bl ock_entry_poi nt s. Any unused entry point function names can be replaced
with NULL.

Handling Interrupts

Interrupts are external hardware signals delivered to the processor to indicate the
occurrence of a specific event. Interrupts may signify:

e Completion of an operation

» Device hasdata available

» Deviceisready for input or acommand
» Device has changed status

Interrupt handlers are functions created by the developer to be part of the device
driver code. They can be written to service the interrupt directly or can be used in
conjunction with akernel thread that can more effectively handle post interrupt
processing in a scheduled and prioritized manner. Because interrupt handlers have
the highest run priority, the minimization of the length of each is paramount.
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Interrupts and Real-Time Response

Interrupt handling is covered in more detail in Chapter 5, “Interrupt and Timeout
Handling,”

Interrupts and Real-Time Response

In anormal system, interrupts have a higher priority than any task. A task,
regardless of its priority, isinterrupted if an interrupt is pending (unless the
interrupts have been disabled). The result could mean that alow priority interrupt
could interrupt atask that is executing with real-time constraints.

Using kernel threads, delays of this sort are significantly reduced. Instead of the
interrupt service routine doing all the servicing of the interrupt, akernel thread is
used to perform the function previously performed by the interrupt routine.

Because the kernel thread is running at the application’s priority (actualy, at half a
priority level higher), it is scheduled according to process priority and not
hardware priority. This ensures that the interrupt service timeiskept to aminimum
and the task response time is kept short. The use of kernel threads for servicing
interruptsis covered in detail in Chapter 6, “Kernel Threads and Priority
Tracking,”

Kernel Threads

To off-load processing from interrupt-based sections of a device driver, LynxOS
offers afeature known as kernel threads, also referred to as system threads. Kernel
threads are defined as independently schedulable entities which reside in the
kernel’s virtual address space. They closely resemble processes but do not have the
memory overhead associated with processes.

Although kernel threads have independent stack and register areas, the kernel
threads share both text and data segments with the kernel. Each kernel thread hasa
priority associated with it, which is used by the operating system to scheduleit.
Kernel threads can be used to improve the interrupt and task response times
considerably. Thus, they are often used in device drivers.

Priority tracking is the method used to dynamically determine the kernel thread’s
priority. The kernel thread assumes the same priority as the highest-priority
application which it is currently servicing.

Kernel threads and priority tracking are covered in detail in Chapter 6, “Kernel
Threads and Priority Tracking,”
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Other Components

Other components of adevice driver include:
» Shared resources
» Timeout handler
» Error handler

These components may not be necessary in simple device drivers but may have a
major rolein the proper operation of more complex ones.

Shared Resources

Shared resourcesinclude memory objects such as semaphores, buffers, and queues.
Semaphores are instrumental in the implementation of synchronization. They can
be used as mutexes to protect critical code regions, as counters to manage shared
resources, and as the gating object for event synchronization. (See Chapter 4,
“Synchronization,”) Buffers and queues are data objects shared by the functions of
the device drivers. These data objects must be instantiated using special system
callsthat allocate the appropriate type of kernel memory (Chapter 3, “Memory
Management,”).

Timeout Handler

Timeouts are interrupts called by the clock interrupt handler. Timeouts can be used
to generate interrupts at precise intervals of 10 millisecond granularity. LynxOS
provides the system function ti meout () to set up timeout handlers. Timeout
handling is covered in Chapter 5, “Interrupt and Timeout Handling,”

Error Handler

Anerror handler isuseful becauseit can change the default system behavior should
abus error occur. By default, LynxOS displays a message that a problem has
occurred and attemptsto halt the system. In most situations, system halts caused by
bus errors can be avoided by implementing an error handler. More information on
bus error handling can be found in “Handling Bus Errors’ on page 154.
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LynxOS Kernel Support Functions
The kernel support functions available to a device driver fall into the following
categories:
e Memory management,
e Synchronization, and
e Exception handling.

Memory management functions are available for the all ocation and deall ocation of
memory objects that the device driver uses and for validating memory pointers
passed to the device driver routines. Memory management functions are coveredin
detail in Chapter 3, “Memory Management,”

Synchronization mechanisms which include mutual exclusion, disabling interrupts
and preemption, and shared resource management are covered in Chapter 4,
“Synchronization,”

Exception handling isimplemented using interrupt service routines, timeout
handlers and bus error handlers. These topics are covered in Chapter 5, “ Interrupt
and Timeout Handling,” and Chapter 8, “Installation and Debugging,”

Device Driver Development and Installation

The devel opment process consists of defining and coding the required entry point
routines and supporting functions and defining the necessary device information
and statics structures and shared data resources. The table “ Summary of Device
Driver Components’ summarized the components to be considered in the
development of a device driver. An example device driver is provided in
Appendix C. Other examples can be foundin / sys/ devi ces.

Installation consists of choosing an installation method, dynamic or static, then
performing the necessary steps, based on the method chosen, to incorporate the
device driver into the LynxOS kernel. Device driver installation is covered in
Chapter 8, “Installation and Debugging,”
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Table 1-2: Summary of Device Driver Components

Component Description

Entry point functions These are the core access points into the device driver. They
are called by the kernel. Not al entry point functions need to
be implemented.

Device information Thisdata structureis instantiated external to the device driver

structure and itsaddressispassedtothe i nstal | () entry point

function. It typically containsinformation that characterizes
the major device such as 1/0O address, IRQ, and available

resources.

Statics structure This data structure is commonly shared by device driver entry
point functions and supporting routines. Its use variesin
complexity.

didd structure This data structure is required by device driversthat are
installed dynamically.

Interrupt handler Used to service interrupts.

Shared resources Shared resources includes semaphores, buffers, queues, and

any other data objects shared by device driver routines.

Kernel threads Kernel threads are standard components of LynxOS and can
be used in conjunction with interrupt and timeout handlers to
handle the servicing of an interrupt more efficiently.

Timeout handler A type of interrupt that is generated in conjunction with the
clock interrupt handler

Error handler Code that can prevent a system halt due to abus error

Referencing Device Drivers

The LynxOS kernel maintains a set of tables to keep track of installed drivers and
devices. Each device driver isassigned adriver ID and each installed device a
device ID.

The kernel assigns driver IDs when the device code module is loaded. Each driver
ID isunique. For block-type device drivers, the block driver and its character
counterpart receive different driver 1Ds.
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Major and Minor Device Designations

DeviceIDs are assigned when the deviceisinstaled. A deviceisinstalled when its
deviceinformation block (See “Device Information Data Structure” on page 8.) is
loaded into the OS.

Major and Minor Device Designations

Each installed device has a major device and minor device component associated
with it and each of these components hasits own ID. The major and minor device
IDs are also referred to as major and minor numbers.

The major device component is essentially the instantiation of the device
information block for the device. The minor device component is used in anumber
of ways and one or more minor devices can exist for each major device. Itisalso
possible for adevice driver to support multiple major devices.

Mgajor devices generally refer to asingle controller card. Minor devices commonly
refer to asingle channel (sub-device) on a controller card but may also refer to
different modes of dealing with the major device.

The major device correlates to the ID assigned to the device when it isinstalled by
the LynxOS devi nst al | command or by the cdv_instal | () or
bdv_install () system calls. These routines associate amajor deviceto a
specific driver and | oads the device information block for the device. The
following figure shows the relationship between drivers and major and minor
devices.
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Figure 1-4: Major and Minor Devices

Some examples of minor device usage include:

For SCSI controllers
SCSl target ID

Target type (tape or disk)
Partition

For floppy disk controllers

Physical drive

Density
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Referencing Driver and Device IDs Under LynxOS

Minor devices are defined within the device driver code and are initialized by way
of the open() entry point function. The meaning of the minor deviceis
interpreted only by the device driver code. The minor device number isassigned by
the developer. The minor device number is only necessary if the major device
supports multiple minor devices. For hardware in which a minor device is not
applicable, zero is used as the minor device number.

Referencing Driver and Device IDs Under LynxOS

Drivers and devicesin LynxOS can be referenced by used their identification
numbers. The LynxOS commands dri vers and devi ces areusedto list
installed device drivers and devices.

Drivers

Drivers are referenced using a unique driver identification number. This number is
assigned automatically during kernel configuration. Drivers supporting raw
(character) and block interfaces have separate driver identification numbers for
each interface. The dri vers command displaysthe drivers currently installed in
the system and their unique driver identification numbers.

Following is a sample output of the dri vers command.

# drivers
id type maj or devs. start size nane
0 char 1 0 0 nul |
1 char 1 0 0 mem
2 char 1 0 0 ctrl driver
3 char 1 0 0 Raw f| oppy
4 bl ock 1 0 0 Fl oppy
5 char 1 0 0 SI ML542 RAW SCsSI
6 bl ock 1 0 0 SI ML542 BLK SCSI
7 char 1 0 0 kdconsol e
8 char 2 0 0 serial
Figure 1-5: Sample dri vers Command Output
Devices

Each deviceisidentified by apair of major/minor numbers. LynxOS automatically
assigns the major numbers during kernel generation. Character and block
interfaces for the same device are indicated by different major numbers.
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To view major devices installed on the system, usethe devi ces command.
A sample output of the devi ces command is shown below. The i d column of
contains the major number of the device.

#devi ces

id type driver use count start si ze nanme

0 char 0 2 0 0 nul | device

1 char 1 1 0 0 menory

2 char 2 0 0 0 ctrl dev

3 char 3 0 db0d7008 0 raw Fl oppy 0-3
4 char 5 1 db0d8a70 0 SI ML542 RAW SCSI
5 char 7 9 db0d8f d8 0 kdconsol e

6 char 8 0 db0dc260 0 com1

7 char 8 0 db0dce40 0 com 2

0 bl ock 4 0 db0d7008 0 Fl oppy 0-3

1 bl ock 6 2 db0d8a70 0 SI ML542 SCSI

Figure 1-6: Sample devi ces Command Output

Minor devices are identified by the minor device number. These numbers may be
used to indicate devices with different attributes. Minor device numbers are only
necessary if there are multiple minor devices per major device. The meaning of the
minor device number is selected and interpreted only by the device driver. The
kernel does not attach a special meaning to the minor number. For example,
different device drivers use the minor device number in different ways: device
type, SCSI target ID (e.g., a SCSI disk controller driver), or apartition (e.g., an
IDE disk controller driver).

Application Access to Devices and Drivers

Like UNIX, LynxOS is designed so that devices and drivers appear as special
devicefilesin thefile system. Applications can access devices and drivers using
the special devicefiles. Thesefilesusualy resideinthe / dev directory (although
they can be put anywhere) and are viewable, like other files, throughthe 1's -1
command.

The device special files are named the same way as regular files and are identified
by the device type (character (c) or block (b)) in the first character of the first
column of thelisting. Special devicefiles have afile size of 0; however, they do
occupy an inode and take up directory space for their name.

Below isasamplelisting of the / dev directory usingthe |'s -1 command
(aheading as been added for clarity). The size column shows the major and minor
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numbers of the devices, respectively. Specia device files are created with the
mknod utility.

Per mi ssi ons Li nks Onner Maj,Mn # NMd. Date Dev. File Nane
CrW- I W wW 1 r oot 0,0 Mar 29 01:57 nul |
CrWr--r-- 1 r oot 1,0 Mar 29 01:52 mem

CrW I W w 1 r oot 2,0 Mar 29 01:52 tty

CrW- I W W 1 r oot 3,12 Mar 29 01:52 rfd1440.0
Crw ------ 1 r oot 4,0 Mar 29 01:52 rsd1542.0
Crw------ 1 root 4,16 Mar 29 01:52 rsd1542. 0a
CrW - W - W 1 chris 50 Mar 29 01:58 atcO

Cr W - W - W 1 r oot 51 Mar 29 01:57 atcl
CrW- T W T W 1 root 6,0 Mar 29 01:52 coml
CrW-T W w 1 r oot 7,0 Mar 29 01:52 con

brw rw rw 1 r oot 0,12 Mar 29 01:52 fd1440.0
brw------ 1 r oot 1,0 Mar 29 01:52 sd1542. 0
brw ------ 1 r oot 1,16 Mar 29 01:52 sd1542. 0a

Figure 1-7: Sample / dev Directory Listing

Mapping Device Names to Driver Names
The following method can be used to map a device name to adriver:

1. Usethe I's -1 commandonthe / dev directory to obtain thelisting of
all the device namesin the system. Determine the major and minor
numbers associated with the device name. For example, in the example
above, thedevice contl would be a character device with amajor device
number of 6 and a minor device number of O.

2. Usethe devi ces command to get alisting of all the devicesin the
system. Thevalueinthe i d column corresponds to the major device
number obtained above. If there is more than one entry with the same ID,
the device type (character or block) eliminates any ambiguity. After
locating the entry for the driver in question, look in the driver column for
the driver ID. For example, in the sample drivers output above, cont
has adriver ID of 8.

3. Usethe drivers command to get alisting of al the driversin the
system. With the driver 1D obtained in the above step, obtain the name of
thedriver. For cont, thedriver nameis seri al , which isthe driver
with ID 8 as shown in the sample drivers listing above.
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swmz ENEry Point Functions

This chapter describes the entry point functions and provides basic examples on

their usage.

Entry Point Functions

The table below lists LynxOS entry point functions and summarizes their usage.

Table 2-1: LynxOS Entry Point Functions

Entry Point —
Function Description
install () Initializes the hardware and allocates shared memory buffers.

uninstall ()

Deallocates shared memory and clears used interrupt vectors.

open() Initializes minor devices.

cl ose() Called only when the |ast open file descriptor pointing to a minor
deviceis closed.

read() Reads data from the device.

wite() Sends data to the device.

ioctl() Executes a device-specific command.

sel ect () Supports 1/0 palling or multiplexing.

strategy()

Schedules read and write operations on a block device.

mep( )

Maps data to memory.
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Required Functions

Not all entry point functions are required for a device driver. The functionsto
implement are determined by the inherent characteristics of the device, the device
driver type (block or character), and whether the device driver is statically or
dynamically installed. Following are some general guidelines.

» All devicedriversrequire instal | ().

e The uninstall () routineisonly required in dynamically installed
devicedrivers.

» Block device driversusethe strategy() entry point and character
types do not.

» strategy() replaces read() inblock devicedrivers.

» The sel ect () entry pointisused to support I/O polling or
multiplexing.

» For entry point routines not implemented, an empty routine or one that
simple returns the system defined constant, OK, should be provided.

Declaring the Entry Point Functions

The entry point functions are declared within the driver code module and their
addresses are identified to the kernel upon driver installation. Because device
drivers can be installed statically or dynamically, two distinct processes exist for
registering the entry point function names with the kernel.

In astatic installation, the driver code and data are incorporated into the kernel
image. (This process follows the conventional UNIX model.) The entry point
function names are also declared in a configuration file, which is subsequently
incorporated into the kernel build process. Device driver installation is covered in
detail in Chapter 8, “Installation and Debugging.”

A devicedriver can also beinstalled dynamically using the dri nstal | program
orthe dr _install () systemcal. A datastructurenamed entry_points is
used to pass the addresses of the entry point functionsto the kernel. This data
structure isinitialized within the driver code module. Itstypeisdl dd, whichis
defined in <dl dd. h>. The dldd data structure is described in Chapter 1, “Device
Driver Basics.” Device driver installation is covered in detail in Chapter 8,
“Installation and Debugging.”

Writing Device Drivers for LynxOS



install()

install()

The install () entry point function isinvoked each time the device driver is
installed for amajor device. This entry point is responsible for initializing the

major device (see “Major and Minor Device Designations’ on page 15). Block-
and character-type device drivers use dightly different versionsof i nstal | ().

For character-type device drivers, the prototype for instal | () is:
char *install (devinfo *info)
where;
info Isa pointer to a device information structure
For block-type device drivers, the prototypefor i nstal | () is
char *install (devinfo *info, statics *s)
where:
info Isa pointer to a device information structure
s Is apointer to a statics data structure

i nf o pointsto adeviceinformation datastructure. (See “ Device Information Data
Structure” on page 8.) This data structure characterizes the major device that the
instantiation of the driver supports. Typically, this structure holds configuration
information such as IRQ level, I/0 address, or available resources. The device
driver uses thisinformation to initialize the major device.

Ataminimum, the i nstal | () entry point should initialize the major device and
in character-type device drivers, and allocate memory for the statics data structure.
(See “Statics Data Structure” on page 9.)

The instal | () entry point should also initialize the statics data structure,
register the interrupt handler and kernel threads. The data received from the device
information data structure should also be copied to the statics data structure for use
by the other entry points, if appropriate.

The instal | () entry point returns either SYSERR or a pointer to a statics data
structure. If abus error occurswhile i nstal | () isbeing executed, it is
automatically aborted with the same effect asif a SYSERR has been returned.

install() Example

In the example below, the dev_i nstal | () routine checks for the existence of
thedeviceusing devi ce_i s_present () (whichisasupporting routine located
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elsewherein the driver code). If the device is present, the statics structure (s) is
alocated and initialized; otherwise dev_instal | () returns SYSERR.

Next, dev_i nstal | () attemptsto initiaize the hardware with the supporting
routine devi ce_i ni t (). If theinitialization succeeds, dev_i nstal | () returns
the address of the statics structure; otherwise, the statics structure is deall ocated
and dev_install () returns SYSERR.

char *dev_install(devinfo *info)
{

struct statics *s;
int error_found = 0;

/* Check for existence of device. If present
allocate and initialize statics struct. */
if (device_is_present(info))

{

s = (struct statics *)sysbrk((long)sizeof(*s));
bzero(s, sizeof (*s));

s->i o_addr = info->io_addr;

s->intr_vec = info->intr_vec;

}
el se
return ((char *)SYSERR);

/* Initialize device */
error_found = device_init(s);
if (error_found)

sysfree(s, (long) sizeof (*s));

return ((char *)SYSERR);
}

el se
return ((char *) s);

uninstall()

The uninstal | () entry point function isinvoked when adevice driver is
dynamically removed from the system by way of the devi nstal | system
command or the cdv_uninstal | () or bdv_uninstall () systemcalls.

The prototypefor uni nstal | () is:
int uninstall(statics *s)
where:
s Is a pointer to a statics data structure

The uni nstal | () entry point must free up the statics structure, s, (see“Statics
Data Structure” on page 9) and any other resources allocated or set by the device
driver. Dynamically allocated memory for data structures or queues must be
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deallocated and all used interrupt vectors must be cleared. Also, if applicable to the
hardware, an attempt should be made to put the device into an inactive state. The

uninstal | () entry point must return either OK or SYSERR.

uninstall() Example

Inthefollowing example, the dev_uni nstal | () routinefirst attemptsto put the
hardware into an initialized state with the devi ce_i ni t () (asupporting routine
located elsewhere in the driver code). Next the interrupt vector used by the device

driver is cleared and the statics structure is deallocated.

If device_init() succeeds, dev_uninstall () returns OK; otherwiseit
returns SYSERR.

int dev_uninstall(statics *s)

{

int error_found = 0;

/* Attenpt to put the device into an initialized state */
error_found = device_init(s);

/* clear interrupt vector then deallocate statics structure*/
iointclr(s->vector);
sysfree(s, (long) sizeof(*status));

if (error_found)
return SYSERR

return OK;

open()

The open() entry point function is called in response to each open system call
made by an application. It is used to perform minor device initialization (see
“Magjor and Minor Device Designations’ on page 15) and can also be used to
register ISRs and kernel threads.

The prototype for open() is:

int open(statics *s, int devno, file *f)

where:
S Is a pointer to a statics data structure
devno Contains the major and minor device numbers
f Isapointer to afile structure
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For every minor device accessed by the application program, the open() entry
point of the driver is accessed. Thus, if synchronization is required between minor
devices (of the same mgjor device), the open() entry point handlesit. Every
open() system call on adevice managed by adriver results in the invocation of
the open() entry point.

Note that the open() entry point is not reentrant, though it is preemptive. Only
one user task can execute the entry point code at atime for a particular device.
Therefore, synchronization between tasks is not necessary in this entry point.

devno containsthe major and minor device numbers (devno isthe same as

f - >dev). To extract the major and minor device numbers from devno, usethe
maj or () and minor () macros, respectively. Refer to man pages for more
information on macros maj or () and mi nor ().

Thefile pointer f isdefinedin <file. h>. The open() entry point must return
either OK or SYSERR.

open() Example
#i nclude <file.h>
int dev_open(statics *s, int devno, file *f)
int mnDevNo, maj DevNo;
m nDevNo = mi nor (devno);
maj DevNo = maj or (devno);
/* performinitializing specific to mnor device */

return (OK);
}

close()

The cl ose() entry point function is called when the last open file descriptor
pointing to a minor deviceis closed.

Specific alocation of memory donein the open() entry point routineis
deallocated inthe cl ose entry point. Aswiththe open() entry point, the
cl ose() entry point is not reentrant.

The prototypefor cl ose() is:
int close(statics *s, file *f)
where:

s Is a pointer to a statics data structure
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f Isapointer to afile structure

Thefilepointer f isdefinedin <file. h>. The cl ose() entry point must return
either OK or SYSERR.

close() Example

#include <file.h>

int dev_close(statics *s, file *f)

{

/* performde-initializing specific to mnor device */
return (OK);
}

read()

The read() entry point functionisinvoked inresponsetoa read() system
call. This entry point function is required to copy a specified amount of data from
the device into a buffer designated by the calling routine.

The prototypefor read() is:

int read(statics *s, file *f, char *buf, int count)

where:
s Is a pointer to a statics data structure
f Isapointer to afile structure
buf Isapointer to a character buffer
count Specifies the number of bytes to copy

Thefilepointer f isdefinedin <file. h>. The read() entry pointroutine
attemptsto copy from the input device count bytes of datainto character buffer
buf . If fewer bytes of dataare copied than requested, read() returnsthe number
of bytes actually copied, including zero, if appropriate. If any errors occur,
SYSERR s returned.

read() Example

#i nclude <file.h>

int dev_read(statics *s, file *f, char *buf, int count)

{
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int byteCt;
/* perform copy operation */

return (byteCt);
}

write()

The wite() entry point functionisinvokedinresponsetoa write() system
call. Thisentry point function is required to copy a specified amount of datafrom a
buffer designated by the calling routine to the output device.

The prototypefor write() is

int wite(statics *s, file *f, char *buf, int count)

where:
s Is a pointer to a statics data structure
f Isapointer to afile structure
buf Isapointer to a character buffer
count Specifies the number of bytes to copy

Thefile pointer f isdefinedin <file. h> The wite() entry pointroutine
attempts to copy to the output device count bytes of datafrom character buffer
buf . If fewer bytes of data are copied than requested, wri t e() returnsthe
number of bytes actually copied, including zero, if appropriate. If any errors occur,
SYSERR isreturned.

write() Example

#include <file.h>
int deV_write(statics *s, file *f, char *buf, int count)
int byteCt;

/* perform copy operation */
return (byteCt);
}

ioctl()

The ioctl () entry point functioniscaled whenthe i octl () systemcalis
invoked for aparticular device. This entry point is used to set certain parametersin
the device or obtain information about the state of the device.
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For character type device drivers, the prototypefor i octl () is:

int ioctl(statics *s, file *f, int command, char *arg)

where:
s Isapointer to a statics data structure
f Isapointer to afile structure
command Specifies the command to execute
arg Isa pointer to acommand argument

For block type device drivers, the prototype for i oct ! () is:

int ioctl(statics *s, int devno, int command, char *arg)

where:
s Is a pointer to a statics data structure
devno Indicates a device number
conmmand Specifies the command to execute
arg Isa pointer to acommand argument

Thefile pointer f isdefinedin <file. h>.

The driver definesthe meaning of command and ar g except for FI OPRI O and
FI OASYNC, which are predefined and used by LynxOS to communicate with the
drivers. If the arg field isto be used asamemory pointer, it should first be
checked for validity with either r bounds() or wbounds() . (See“Validating
Addresses’ on page 46.)

Thekernel uses FI OPRI O to signal the change of atask priority to the driver that
isdoing priority tracking. FI QASYNC isinvoked when atask invokes the

fcentl () system call onan open file, setting or changing the value of the
FNDELAY or FASYNC flag.

The kernel might change the priority of an 1/0 task in the case of priority
inheritance to elevate the priority of atask that has locked a resource that another
higher priority task is blocked on (see Chapter 6, “Kernel Threads and Priority
Tracking.”).

The ioctl () entry pointreturns OK or SYSERR.
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ioctl() Example
Character type device driver:
int dev_ioctl(statics *s, file *f, int conmand, char *arg)

/* dependi ng on the command, copy rel evant
information to or fromthe arg structure */
}

Block type device driver:
int dev_ioctl(statics *s, int devno, int command, char *arg)

/* dependi ng on the command copy rel evant
information to or fromthe arg structure */
}

select()
The sel ect () entry point function supports I/O polling or multiplexing.

The prototype for sel ect () is:

int select(statics *s, file *f, int which, sel *ffs)

where:
s Is apointer to a statics data structure
f Isapointer to afile structure
whi ch Specifies the condition to monitor
ffs Isapointer toa sel datastructure

Thefile pointer f isdefinedin <file. h>.

The whi ch parameter iseither SREAD, SWRI TE, or SEXCEPT, indicating that the
sel ect () entry point is monitoring aread, write, or exception condition
respectively. The sel ect () entry point returns OK or SYSERR.

Thefollowing fields are required in the statics structure to support the sel ect ()

system call:

struct statics

{
int *rsel _sem /* semfor select read */
int *wsel _sem /* semfor select wite */
int *esel _sem /* sem for select exception */
int n_spacefree; /* space available for wite */
int n_data; /* data available for read */
int error; /* error condition */

b
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The i osem fieldinthe sel structureisapointer to aflag that indicates whether
the condition being polled by the user task is true or not. The sel _sem fieldisa
pointer to a semaphore that the driver signals at the appropriate time (see below).
The value of the semaphore itself is managed by the kernel and should never be
modified by the driver. A driver must always set the i osem and sel _sem fields
inthe sel ect () entry point.

A driver that supports select must also test and signal the select semaphores at the
appropriate pointsin the driver, usualy the interrupt handler or kernel thread. This
should be done when data becomes available for reading, when space is available

for writing or when an error condition is detected. For example:

/* data input */
s->n_dat a++;
di sable (ps);
if (s->rsel_sem

ssignal (s->rsel_sem;
restore (ps);

/* data output */
s->n_spacefree++;
di sable (ps);
if (s->wsel_sem

ssignal (s->wsel _sen);
restore (ps);

/* errors, exceptions */
if (error_found)
{
S->error++;
di sabl e (ps);
if (s->esel_sen)
ssignal (s->esel_sem;
restore (ps);

}

select() Example
int dev_select (statics *s, file *f, int which, sel *ffs)

swi tch (which)
{

case SREAD:
ffs->i osem = &s->n_dat a;
ffs->sel _sem = &s->rsel _sem
break;

case SWRI TE:
ffs->i osem = &s->n_spacefree;
ffs->sel _sem = &s->wsel _sem
break;

case SEXCEPT:
ffs->i osem = &s->error;
ffs->sel _sem = &s->esel _sem
break;
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return (OK);

strategy()

The strategy() entry pointfunctionisused only inblock device drivers. Itis
used in place of the read() and wite() entry point functions, which occur
only in character device drivers.

When a process attempts to read or write from afile, the file system composes a
linked list of data structures. Each data structure is of datatype st ruct

buf _ent ry, and describes the operation required for asinglelogical block of data.
The entire linked list of these structures defines all the actions required of the
device driver to complete the read or write operation.

The prototypefor strategy() is
int strategy(char *s, buf_entry *bp)
where:
s Is apointer to a statics data structure

bp Isapointer to thefirst structure in alinked list of
buf _entry structures
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The interface between the LynxOS file system and the device driver’s st r at egy
functionisillustrated in the following diagram.

Application
A

/
File System

A
h J

File Cache

A

 J

strategy() Entry Point
Function

i

Subroutines

Figure 2-1: LynxOS File System and strategy() Interface

When the application usesa read() or write() systemcal, thefilesystem
module identifies which logical blocks of the file need to be read or written. It
composes alinked list of buf _entry structures, each one describing the
processing to be done for each logical block.

Memory blocksin the file system cache are set aside for the read or write. For a
write, the data to be written into the disk block is copied to the cache location. For
aread, the cache location is empty and receives the block of datawhen it isfetched
fromthedisk. Ineach buf _entry structure, the pointer named menbl ock
points to the corresponding cache block.

Thelinked list of buf _entry structuresis used asthe second argument to the
strategy() entry point function. The strategy() entry pointisresponsible
for causing the data to be moved between the cache and the disk. Typically, the
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actual datatransfer is not accomplished by the st rat egy() entry point function
itself. Instead, the buf _entry structures are passed to other functions that

perform the transfer.

The buf _entry structureisdefinedin / usr/i ncl ude/ di sk. h. Itisdefined as

follows:

struct buf_entry {
int b_device;
char *menbl k;

long b_nunber;

int b_status;
int b_rwsem
int b_error;

/* major/mnor */
/* src or dest */
/* bl ock nunber */
/* op and status */
/* done sem */

/* error flag */

struct buf_entry *av_forw, /* next */
struct buf_entry *av_back; /* avail */
int w_count; /* avail */

where:
b_devi ce
menbl k
b_nunber

b_status

b _rwsem
b _error

av_forw

av_bl ack, w_

Encoded major and minor device number
Memory source or destination returned by nmmrchai n()
Source or destination block on the device

Specifiesthe type of transfer to perform, and the status of
thetransfer - The deviceisread if B_READ isset, or
writtentoif B_READ isnot set. To specify the status of
the transfer, set B_DONE prior to signaling b_rwsem
semaphore if the transfer is successful.

Semaphoreto ssi gnal () whenthetransfer iscomplete
Set non-negative if the transfer fails

Pointer to the next buffer to transfer, or NULL if end of list
(may be changed by driver)

count Fields available to driver for its own purposes
(LynxOS driversuse w_count to storethe priority for
priority tracking.)

NOTE: Set B_ERROR inadditiontothe b_error fieldif the transfer fails.
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mmap()

Themmap() entry point is used to access memory-mapped character devices. The
mrap() entry point is called as aresult of the map(2) system call, allowing a
character device to be mapped to memory space.

The prototype of the mmap entry point is described below:

mmap(struct file *f, kadd_t st, size_t len,
int prot, int flags, off_t off)

Where:
f apointer to afile
st the kernel address
I en the size of the memory space
prot  thebit field that specifies the protection bits
flags usedto setflags
of f the offset of memory

Thefile pointer f isdefinedin <file. h> The nmap() entry point must return
either OK or SYSERR. The prot field caninclude:

PROT_READ Read access
PROT_WRI TE  Write access
PROT_EXEC Executable
PROT_USER Specific User
PROT_ALL Any User

mmap() Example
#i ncl ude <rcsid. h>
/* mendrvr.c - nenread */
#i ncl ude <kernel . h>
#i ncl ude <errno. h>
#incl ude <sys/file.h>
#i ncl ude <i node. h>
#i ncl ude <nenobj . h>

extern MenoryQbj ect *Phys_nem obj ect ;

int menppen(char *stats, int dev, struct file *f)
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f->i node->i _menobj = Phys_nem obj ect;
return (OK);

int menclose(char *stats, struct file *f)

f->i node->i _nenmobj = NULL;
return (OK);
}

int menread(char *s, struct file *f, char *buff, int count)

int i;
char *seekp;

seekp = (char *)(unsigned int)f->position; /* Don’t need a */
/* long long to */
/* access nenory */
if (recoset()) {
noreco();
pset err (EFAULT) ;
return SYSERR,

for (i =0; i < count; i++) {
buff[i] = *seekp++; /* |f a fault occurrs seekp */
/* is the fault address */
noreco();
f->position = (long I ong)((unsigned int)seekp);
return i;

}

int memwite(char *s, struct file *f, char *buff, int count)

int i;
char *seekp;

seekp = (char *)(unsigned int)f->position;

if (recoset()) {
noreco();
pset err (EFAULT) ;
return SYSERR

}
for (i =0; i < count; i++) {
*seekp++ = buff[i];
}
noreco();
f->position = (long I ong)((unsigned int)seekp);
return i;

}

kaddr _t nmenmmmap(struct file *f, kaddr_t st, size_t len,
int prot, int flags, off_t off)
{

/* pass through the request to the real nmapping function */
return phys_menory_mmap(f, st, len, prot, flags, off);
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This chapter covers memory management issues and the LynxOS system calls that
support device driver memory management. It describes the LynxOS memory
model, supported address types, memory allocation, memory locking, address
translation, accessing user space from interrupt handlers and kernel threads, and
hardware access.

LynxOS Virtual Memory Model

LynxOS usesavirtual addressing architecture. All memory addresses generated by
the CPU are translated by the hardware MMU (Memory Management Unit). Each
user task hasits own protected virtual address space that prevents tasks from
interfering with each other.

The kernel, which includes device drivers, and the currently executing user task
exist within the same virtual address space. The user task is mapped into the lower
part, the kernel into the upper part. Only the part of the virtual map occupied by the
user task is remapped during a context switch. Applications cannot access the part
of the address space occupied by the kernel and its data structures. The constant
OSBASE defines the upper limit of the user accessible space. Addresses above this
limit are accessible only by the kernel.

Kernel code, on the other hand, has access to the entire virtual address space. This
facilitates the passing of data between drivers and user tasks. A device driver, as
part of the kernel, can read or write auser address as a direct memory reference,
without the need to use special functions. Because of this, precautions should be
taken to restrict the access of the device driver only to necessary structures.

Please see “ Accessing Hardware” on page 49 for detailed LynxOS virtua memory
maps of the currently supported platforms.

Writing Device Drivers for LynxOS 37



Chapter 3 - Memory Management

DMA Transfers

All addresses generated by the CPU are treated as virtual and are converted to
physical addresses by the MMU. This makes the programming of DMA transfers
dlightly more complicated because memory that is contiguous in virtual space can
be mapped to non-contiguous physical pages. DMA devices, however, typically
work with physical addresses. Therefore, adriver must convert virtual addressesto
their corresponding physical addresses before passing them to aDMA controller.

In addition, user memory may be paged, which can lead to changesin the virtual to
physical address mapping and to a physical page being reallocated to another user
task. Paging must therefore be suppressed on user memory that isinvolved in a
DMA transfer by locking the memory region.

The sections“Memory Locking” on page 41 and “ Address Trandlation” on page 43
covers memory locking and address translation issues and functions relating to
DMA transfers.

LynxOS Address Types

38

A LynxOS driver must deal with several different address types. These include:

Table 3-1: Address Types

Type Description

User Virtua These addresses are passed to the driver from a user application.
Typically they are addresses of buffers or data structures used to
transfer data between the application and adevice. They are
valid only when the user task that passed the address isthe
current task.

Kernel Virtual These are addresses of kernel functions and variablesthat can be
used by adriver. The mapping of kernel virtual addressesis
permanent so they are valid from anywhere within a device
driver. They are not accessible from an application.
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Table 3-1: Address Types (Continued)

Type

Description

Kernel Direct Mapped

A region of the kernel virtual space that is directly mapped to
physical memory (that is, contiguous virtual addresses map to
contiguous physical addresses) - The base of thisregion is
defined by the constant PHYSBASE, which maps to the start of
RAM. The size of the region is platform-dependent.

NoOTE: Memory that exists on devices or non-system

buses (PCI or VME for example) is not accessible by way
of PHYSBASE.

Physical

Physical memory is the non-trand ated address for memory.
Physical addresses are used when a driver needs to set up
pointersto physical memory for controllers that bypass the
MMU (DMA controllers, for example).

Device

Device addresses include 1/0 port addresses, PCl addresses,
VME addresses, and so on.

Allocating Memory

The the following table summarizes the LynxOS memory allocation and
deallocation functions that support device drivers. Note that these system calls
cannot be called from within an ISR.

Allocated memory comes from the kernel address space and is not accessible to
applications. Refer to section “ Address Translation” on page 43 for address
translation considerations. A complete description of these functionsisavailablein
their respective man pages.
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Table 3-2: Memory Allocation Functions

System Call

Summary

sysbrk()

sysbr k() isuseful for alocating shared static data structures
and queues used by the device driver. It is recommended that
sysbrk() beusedprimarily inthe i nstal |l () and
open() entry point routines though it can be used in any of the
others.

The prototypefor sysbrk() is

char * sysbrk(long size)

si ze isthe number of bytesrequired. sysbrk() returns
NULL if no memory isavailable.

NOTE: mal | oc() cannot be used within device drivers.

sysfree()

sysfree() dealocatesmemory allocatedby sysbr k() and
returnsit to the free list.
The prototypefor sysfree() is

voi d sysfree(char *p, long size)

p isthe pointer to the memory to freeand si ze isitssize.

get 1page()

get 1page() allocatesone page of physical memory and returns
avirtual address that can be used to accessit. get 1page() is
useful for obtaining buffersfor DMA. Thevirtual addressisabove
OSBASE, and is thus valid in the context of any task including
interrupt service routines.

The page of memory is PACGESI ZE in length (4096 bytes for
example) and isdefinedin <ker nel . h>.

The prototypefor get 1page() is

char * get lpage()

get 1page() returns NULL if no memory isavailable.

freelpage()

freelpage() releasesapage of memory alocated by

get 1page().
The prototypefor freelpage() is

voi d freelpage(char * addr)

addr ispointer to the page of memory to free.
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Table 3-2: Memory Allocation Functions (Continued)

System Call Summary

al l oc_crmem() al  oc_cren() returnsablock of contiguous physical memory.
It is useful for obtaining DMA buffers for devices incapable of
scatter/gather transfers. It isrecommended that al | oc_cnemn()
be used primarily inthe i nstal | () entry point routine, or if
necessary, inthe open() entry point, though it can be used any
of the others.

The prototypefor al | oc_cnem() is:

char * alloc_cnmen(int size)

si ze isthenumber of bytesto allocate. al | oc_cremn()
returns a pointer to a block of pages contiguousin memory. The
pointer it returnsis avirtual address. If insufficient memory is
available, al | oc_cren() returns NULL.

free_crmem() free_crmen() releasesthe memory alocated by
al l oc_crmem() .
The prototypefor free_crmen() s

void free_cnen(char * p, int size)

p isthe pointer to the memory to freeand si ze isitssize.

Memory Locking

LynxOS provides nmem | ock() and mem unl ock() system callsfor locking
and unlocking user memory. These functions are provided to support DMA
transfers.

User memory may be paged, which can lead to changes in the virtual to physical
address mapping and to a physical page being reallocated to another user task. For
DMA transfers, paging must be suppressed on user memory.

If paging has not been activated, either by the vist art command or a system
call, these routines have no effect. Because a device driver cannot determine if
paging is active, it should alwayslock memory used with DMA transfers.

mem_lock()

The mem | ock() system call isused to prevent aregion of memory from being
paged. mem | ock() cannot be used from within an ISR.
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The prototypefor nem | ock() is

int mem/lock(int pid, long size, char * uaddr)

where
pid Specifies a process ID
si ze Specifies amemory size
uaddr Specifies a start address

The arguments specify the start address (uaddr ) and size (si ze) of amemory
region in the process specified by pi d. Thesetypically correspond to the
argumentspassed tothe read() or write() entry point functions of the device
driver.

The get pi d() system call can be used to get the process ID of the current task.
For example:

/* Lock user nenory to prevent paging */

if (mem.lock (pid = getpid(), uaddr, size) == SYSERR)

{ pseterr (ENOVEM ;

return (SYSERR);

}
If paging is activated and any virtual addressesin the specified range are not
currently mapped to physical memory, mem | ock() attemptsto allocate and map
the address into physical memory. If there is not enough physical memory to do
this, SYSERR isreturned. Otherwise, OK isreturned. A successful return means
that the specified virtual address range is mapped to physical memory and is
locked. If paging is not activated, nmem | ock() returns OK.

It is permissible to lock the same address multiple times. This may occur, for
example, when locking overlapping regions. However, the memory must be
unlocked the same number of times.

NoTE: Kernel memory is not paged. Therefore, memory allocated with
sysbrk(), getlpage() or alloc_cnmen() doesnotrequirelocking.

mem_unlock()

The mem unl ock() functionisused to unlock memory locked by mem | ock() .
mem unl ock() cannot be used from within an ISR.

The prototype for nem unl ock() is:

int mem.unlock(int pid, char * vaddr, long size, int dirty)
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where:
pi d Specifiesaprocess ID
vaddr Specifies a start address
si ze Specifies amemory size
dirty Specifies whether or not to write memory to a swap file
/* Unl ock user nenory */
if (mem.unlock (pid, uaddr, size, dirty) == SYSERR)
{ return (SYSERR); /* error set to EINVAL by

mem unl ock */
}
Once memory is unlocked it becomes eligible for paging again. Attempting to
unlock memory that was not previously locked causes the routine to return
SYSERR. A successful unlock returns OK. If paging is not activated,
mem unl ock() returns OK.

If the memory contents are modified by another processor, such asaDMA
controller, the dirty flag should be set to 1. This ensures that the contents are
written out to the swap file if the memory region is subsequently paged out.

A driver should always ensure that any locked memory is released when atask
closesthe device or when the device is uninstalled. Pages that remain locked after a
task has exited, though usable by other tasks, will not be paged.

Address Translation

Device drivers must convert virtual addressesto their corresponding physical
addresses before passing them to aDMA controller. However, the physical address
range of virtual memory segments are not guaranteed to be contiguous as depicted
in the figure bel ow.
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Virtual Memory Physical Memory

Page 1

Page 2

Page 3 | I

Page 4

Figure 3-1: Virtual to Physical Memory Mapping

The mchai n() system call is used to obtain the physical addresses and sizes of
all memory pages that make up a contiguous virtual memory segment.
mrchai n() cannot be used from within an ISR.

The prototype for mthai n() is.

i nt mmchai n(dmachai n *array, char *vaddr, |ong size)

where:
array Pointer to a dnachai n object
vaddr Start address of a virtual memory segment
si ze Size of the virtual memory segment
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mrchai n() writesinto array the physical addresses and sizes of all memory
pages that make up the contiguous virtual memory segment described by vaddr
and si ze, and returns the number of elements writteninto ar r ay. If no physical
memory is mapped to avirtual address, nmthai n() setsthe converted address
to 0. To ensure valid mappings, mem | ock() should be used prior to

nmchai n() .

array isanarray of dmachai n structures (defined in <mem h>). The size of
array must be one more than the number of memory pages contained in si ze.
Thesizeof array canbecomputed asfollows:

{(size + PAGESIZE - 1) /| PAGESIZE} + 1

The physical addresses returned are offset by PHYSBASE. For maximum
portability, the physical address should be offset by the system constant,
dr anmbase. The start of RAM iscontained in dr anbase.

For example:

#i ncl ude <mem h>

#i ncl ude <kernel . h>

struct dmachai n array[ NCHAI N] ;
mchain (array, virtaddr, nbytes);

for (i =0; i < nsegnents; i++) {
physaddr = array[i].address - PHYSBASE + dranbase;
length = array[i].count;

,

The virtual memory segment used with nmthai n() refersto the memory space
owned by the current process. The system call nmchai nj ob() can beusedto
obtain a dmachai n array for a specific process. Refer to the man page for
mrchai nj ob() for moreinformation.

Virtual Address Conversion

A single virtual address can be converted to its physical addresses using
get _phys(). get _phys() cannot be used from within an ISR.

The prototype for get _phys() is
char *get_phys(kaddr _t vaddr)
where:
vaddr Isavirtual address

The addressreturned isakernel direct mapped addressthat is offset by PHYSBASE.
To convert thisaddressto its physical address, PHYSBASE must be subtracted and
dr anbase added. For example:
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physaddr = (get_phys (vaddr) - PHYSBASE + dranbase);

The start of RAM iscontained in dr anbase. On most platforms, thisis O, but for
maximum portability, it should be used in the calculation.

Validating Addresses

46

The addresses passed into the i oct | () entry point function by application code
must be validated before they can be used. The functions r bounds() and
wbounds() are used for this purpose. These calls may be used in an interrupt
routine.

The prototype for rbounds() s
| ong rbounds(unsi gned | ong addr)
where:
addr The address to be inspected
The prototype for wbounds() is:
| ong wbounds(unsi gned | ong addr)
where;
addr The address to be inspected

Thereturn value from rbounds() should be compared to the size of the object
the device driver expects to be referenced. The error code EFAULT should be
returned if addr isfound to be erroneous.

rbounds() returnsthe number of bytes to the next boundary of non-readable
memory in the virtual address space of the calling process. In other words, it
returns the number of bytes readable starting at addr .

« If the addressisin the text segment, the distance from addr to the end
of the text segment is returned.

* |f theaddressisinthe BSS, the distance from addr to the current break
is returned.

» If theaddressisin the user stack, the distance to the beginning (top) of
the stack is returned.

» If theaddressisin a shared memory segment, the distance to the end of
that shared memory segment is returned.
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e If theaddresslies anywhere el se (between the break and the current stack
pointer, for example), r bounds() returnsO.

wbounds() returnsthe number of bytes to the next boundary of non-writable
memory in the virtual address space. Thisworks similarly to r bounds() , except
that checking for addr in the text segment is not done.

Accessing User Space from Interrupt Handlers and Kernel
Threads

Interrupt handlers and kernel threads execute asynchronously with respect to the
user task making requeststo thedriver. Aninterrupt handler executesin the context
of the task that was current when the interrupt occurred. Kernel threads execute in
the context of the null process (process 0). Because the null process has no user
context associated with it, the switch to akernel thread is much quicker than to a
user thread. It is sometimes necessary for an interrupt handler or akernel thread to
access alocation in auser task, even though the target task may not be the currently
mapped task. This requires some special considerations. The key to understanding
how this can be done is the fact that there is a second virtual address that can be
used to access an address in user space.
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Virtual Address Space Physical Address Space

OS Space

b

User Space

Figure 3-2: Aliasing a User Virtual Address

Asthe figure above shows, for any addressin user space there are in fact two
virtual addresses mapped to the physical address. One is the user virtual address
(a). However, this mapping is valid only when the user task is the current task. So,
it cannot be used from an interrupt handler or kernel thread. This mapping may
also be changed if paging is activated. The second mapping is the direct mapped
kernel virtual address (b). This mapping is permanent so it can safely be used
anywherein adriver.

Therefore, care must be taken when accessing user space from an interrupt handler
or kernel thread. The driver must first convert the user virtual addressto its
corresponding kernel direct mapped address in the top-half routine (usually the

i octl () entry point) and then pass this address to the interrupt handler or kernel
thread by way of the statics structure (see “ Statics Data Structure” on page 9). The
user address must also be locked to prevent the address mapping from being
changed by the paging system.

Inthefollowing example, u_addr and si ze specify thevirtual addressand size
of the user memory to be accessed; thisis passed to the driver from the application.
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dev_ioctl (s, f, cmd, arg)
struct statics *s;

struct file *f;

char *arg;

char *kvaddr;

ii"(mam_l ock (getpid (), u_addr, size) == SYSERR)
{

pseterr (ENOVEM ;

return (SYSERR);

kvaddr = get_phys (u_addr); /* convert user addr */
s->u_status = kvaddr; /* save for later use */
s->u_si ze = size;

s->u_addr = u_addr; /* used for unlocking nenmory */
s->pid = getpid ();

}

The pointer can now be used from an interrupt handler or kernel thread to access
the user memory.

kernel _thread (s)
struct statics *s;

{
i f I (s->u_status)

*(s->u_status) = status; /* pass info to user task */
/* unlock user nenory */

mem unl ock (s->pid, s->u_addr, s->size, 0);

s->u_status = NULL);

}

Accessing Hardware

This section describes how device drivers access the hardware layer and illustrates
the virtual address mappings used by LynxOS on different hardware platforms.

The following sections contain platform-specific information about hardware
device access from LynxOS. Each section contains memory map figures to
illustrate the mapping of LynxOS virtual addresses to the hardware device.

In general, the kernel has permissions to access the full virtual address space while
the user processes have restricted access. The table below shows a generalization
of this concept.
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Table 3-3: Virtual Memory Access to User Processes

LynxOS Virtual Memory Area Permissions

OSBASE and above Kernel only; no user access
SPECPAGE Read-only to user

Kernel Stack Read-only to user

Shared Memory Depends on mapping

User Stack Read-write to user

User Data Read-write to user

User Text Read-only to user

Using permap()

Thefunction per map() alowsadriver to map amemory-mapped device into the
kernel virtual address map so that the device can be accessed from the driver. If the
memory region in which the device resides is already mapped, then it is not
necessary to use per map() .

Thevirtual address PHYSBASE is always mapped to the physical address
corresponding to the start of RAM. The size of the mapped region is equal to the
system RAM size (up to 512 MB). The per map() function must be used to
access devices that are outside of the pre-mapped region (640 KB to 1 MB). For
example, in aVMEbus-based PC, the VMEbus is often mapped in the high end of
the physical address space, above 512 MB. The codeto map thisusing per map()
would be similar to:

/* VMEADDR: physical address where VMEbus appears */
#defi ne VMEADDR 0x40000000

/* VMESI ZE: wi ndow si ze onto VMEbus */
#define VMESI ZE 0x00100000

/* vme_addr: virtual address 32 bit VMEbus accesses */
unsi gned | ong *vne_vaddr;
vne_vaddr =(unsi gned | ong *) permap ((|ong) VMEADDR, (| ong) VMESI ZE) ;

The physical address passedto per map() must be aigned on a page boundary.
The size, in bytes, must be amultiple of PAGESI ZE.
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Device Access on x86 Systems

Reading and Writing Device Registers

The majority of devices for x86 systems exist in the CPU’s I/O space, whichis
accessed withthe i n and out instructions. Thefile port _ops_x86. h (located
in $ENV_PREFI X/ sys/ i ncl ude/ f ami | y/ x86/ ) contains macros that can be
called to read and write device registers.

The memory on I/O devicesin the 640 KB to 1 MB range can be directly accessed
using the PHYSBASE offset. The constant PHYSBASE isdefinedin kernel . h (in
$ENV_PREFI X/ sys/ i ncl ude/ ker nel /). For example, to access I/O devices
using the PHYSBASE offset:

/* RAMBASE: RAMbase address of Ethernet controller */

#def i ne RAMBASE 0xCC000

unsi gned | ong * vaddr;
vaddr = (unsigned |ong *) (PHYSBASE + RAMBASE);

The following two figures illustrate the LynxOS virtual memory model on the x86
platform.
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OXFFFFFFFF
PHYSBASE_END

Direct Mapped

Physical Memory
(512 MB)

PHYSBASE virtual memory is mapped 1-1
with the first 512 MB physical memory

0xE0000000
PHYSBASE
PERLIMIT

permap () Region

Address Space
(64 MB)

Device mapping space for non-DRM
managed devices (grows down). permap()
maps a physical address into the region and
returns a pointer to the virtual address. The
kernel also uses this space for kernel thread
stacks

Memory mapped in PERLIMIT is not cached.

CAUTION!: permap() is never returned to
the virtual map. Once the 64 MB space is
exhausted, no more permap virtual space is
available.

0xDC000000

PCI Device

Memory
(512 MB)

DRM maps the PCI device physical memory
addresses to this space.

0xBC000000
OSEND
OSLIMIT
PCI_MEM_SPACE

Kernel Memory
(text, data, BSS, heap)

Contains kernel text, data, BSS, heap, and
the interrupt stack.

Kernel's stack is currently executing
context's stack.

(64 MB)
ISRs initially use current context's stack,
then switch to the interrupt stack before
executing driver ISR code.
0xB8000000 SPECPAGE Unique process information; contains the
OSBASE (4 KB) structure pssentry.
0xB7FFFO00 Figure not to scale

Figure 3-3: LynxOS x86 Kernel Access Virtual Memory Map
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OxB7FFF000
Total User
Memory 2.8GB |
Common memory area available to all
Shared Memory processes via the shared memory facilities.
User Thread
Stacks
(grows down to stacklimit)
Initial thread stacklimit set in /etc/starttab.
Additional thread stacks start below the
stacklimit and each is a fixed size. The
amount of virtual address space allocated
can be set with PTHREAD_CREATE() .
User Heap User heap starts just above user BSS and
(Increases in size to increases in size. User heap will increase in
data limit) size to the data limit set in /etc/starttab.
User BSS End of User BSS (uninitialized data).
User Data End of User data (initialized data).
End of User text.
Static User Text User text size limited by text limit in
letc/starttab.
0x00400000
Figure not to scale

Figure 3-4: LynxOS x86 User Access Virtual Memory Map
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0xB7FFFO00

Total User
Memory 2.8 GB

Shared Memory

Common memory area available to all
processes via the shared memory facilities.

User Thread
Stacks

(grows down to stacklimit)

-

User Heap

(Increases in size to
data limit)

User BSS

User Data

Static User Text

Initial thread stacklimit set in /etc/starttab.
Additional thread stacks start below the
stacklimit and each is a fixed size. The
amount of virtual address space allocated
can be set with PTHREAD_CREATE() .

User heap starts just above user BSS and
increases in size. User heap will increase in
size to the data limit setin/etc/starttab.

End of User BSS (uninitialized data).

End of User data (initialized data).

0x00400000

0x00000000

Shared Libraries

i Id.so bss

| Id.so data

Id.so text

End of User text.

User text size limited by text limit in
letc/starttab.

Figure not to scale

Figure 3-5: x86 Shared Applications

LynxOS static applications are linked at a default starting address of 0.
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LynxOS dynamic user applications (applications that use shared libraries) are
linked at a default starting address of 0x00400000 (4 MB).

Linux dynamic user applications are linked at a default starting address of
0x080000000 (128 MB).

I d. so isloaded into location 0x0 and the virtual address space between the end
of 1d.so andthe start of the application is used for shared libraries.

Device Access on PowerPC Systems

ISA Bus Access

The PowerPC reference platform contains a primary PCI bus and a secondary |SA
bus for system I/O. All accessto the ISA bus goes through the PCI bus and the
PCI-to-1SA bridge hardware. On MotorolaVME systems, the VME bus interfaces
to the PCI bus through the VME-to-PCl bridge hardware. The PReP reference
memory map defines all physical addresses above 2 GB to be directed to the PCI
bus and all physical addresses |ess than 2 GB as memory access (see following
figure). The PCI devices on the PCI bus are configured to claim address ranges.
The ISA Bridge hardware claims all unclaimed PCI addresses. Thisisreferred to
as subtractive decoding.

The physical address of all ISA devices are mapped to 2GB + default | SA address
on x86 in a64 K address range. For example, the serial ports COM1 and COM2
reside at 0x3F8 and 0x2F8 on x86-based PCs. On the PReP reference hardware,
COM1 and COM2 are mapped to 0X800003F8 and 0X800002F8. It is possible to
think of |SA devices being shifted by 2 GB address as memory-mapped devices
rather than |/O-mapped devices. To ensure that access to the 1/0O devices occurs as
desired, it is necessary to add the PowerPC eieio (enforce in-order execution of
1/0) instruction for access to the device. A servicefunction ei ei o() isprovided
by the LynxOS kernel. Also, if thereis a necessity to ensure completion of all
writes, the PowerPC instruction sync isavailable asadriver service cal
do_sync() .

PCI Support Facilities

Earlier releases of LynxOS provided aset of functions called PCI support facilities,
for accessing PCI devices on PCl Bus0. These functions have been superseded by
the Device Resource Manager. New device drivers should be written using the
DRM, not the PCI support facilities.
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Device Resource Manager

Device Resource Manager is a LynxOS module that manages device resources.
The DRM assists device drivers in identifying and setting up devices, aswell as
accessing and managing the device resource space. Developers of new device
drivers should use the DRM for managing PCI devices. Chapter 9 describes the
DRM in detail.

The following figuresillustrate the LynxOS virtual memory model on the
PowerPC platform.
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OXFFFFFFFF

0xF0000000

O0xE0000000

0xD0000000

0xC0000000

0xB000000O

OxAFFFF000

0xA0000000

0x00002000

0x00000000

Aliased physical memory map for use by

PHYSBASE kernel and device drivers. The IOBASE is
(256 MB) not aliased in this space.
Memory mapped I/O segment. Includes
IOBASE ISA-IO, PCI-IO, PCI-MEM, and graphics
(256 MB) memory.
VMEBASE / VME space mapped via BAT registers for
PCI_MEMSPACE platforms with VME support, or used for
(256 MB) PCI_MEMSPACE on CPCI platforms.

VME-SHORTIO /
PCI_MEMSPACE

VME Short I/0 space mapped via BAT
registers for platforms with VME Support, or

(256 MB) used for PCI_MEMSPACE on CPCI platforms.
OSBASE Kernel text, data, BSS and dynamic memory
(256 MB) allocation area.

SP(E4CKPBA)GE Per-process kernel data. Size is constant.

Kernel Stack L
(32 KB) per thread

Per-thread kernel stack. Size is constant
and grows downwards. It also takes device
interrupts.

Refer to User area memory map. Area can

User Area be accessed by kernel.
Trap Pages Low-level trap handlers. Temporary save
(8 KB) area.

Figure not to scale

Figure 3-6: LynxOS PowerPC Kernel Access Virtual Memory Map
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0xA0000000

0x00002000

Shared Memory

Common shared memory segments for all
processes using shared memory facilities.
Size is dynamic and depends on shared
memory usage.

Thread Stacks

(grows down to stacklimit)

| User Heap
| (increases in size
i to data limit)

User program stack. Initially 8 KB, the user
stack grows downward to a maximum
STACKLIMIT size as defined in
/etc/starttab.

Additional thread stacks start below the
stacklimit set in /etc/starttab.

User heap starts just above user BSS and
increases in size. User heap will increase
in size to the data limit set in / etc/
starttab.

User program data. Size is determined
by the program. The program data will
begin after the program text.

Static User program text.

Figure not to scale

Figure 3-7: LynxOS PowerPC User Access Virtual Memory Map
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0xA0000000
Common shared memory segments for all
processes using shared memory facilities.
Shared Memory Size is dynamic and depends on shared
memory usage.
R User program stack. Initially 8 KB, the user
| | stack grows downward to a maximum
| Thread Stacks | STACKLIMIT size as defined in
! (grows down to stacklimit) | /etc/starttab.
Additional thread stacks start below the
stacklimit setin /etc/starttab.
| u H ! User heap starts just above user BSS and
3 . ser eap ! increases in size. User heap will increase
| (increases in size | in size to the data limit set in / et c/
! to data limit) | starttab.
User program data. Size is determined
by the program. The program data will
begin after the program text.
Static User program text.
0x00002000
Shared Libraries
Id.so bss
Id.so data
Id.so text _
0x00000000 Figure not to scale

Figure 3-8: PowerPC Shared Applications
LynxOS static applications are linked at a default starting address of 0x2000.
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LynxOS dynamic user applications (applications that use shared libraries) are
linked at a default starting address of 0x00400000 (4 MB).

Linux dynamic user applications are linked at a default starting address of
0x080000000 (128 MB).

I d. so isloaded location 0x2000 and the virtual address space between the end of
I d. so and the start of the application is used for shared libraries.
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This chapter describes synchronization issues and the LynxOS mechanisms
available to device drivers to handle these issues.

Introduction

There are a number of synchronization mechanisms that can be used in a LynxOS
device driver. These include:

e Kernel Semaphores
e Disabling interrupts
e Disabling preemption

Kernel semaphores can be used to protect critical code regions aswell asto
manage shared data and resourcesin a controlled manner. The functions supporting
kernel semaphoresinclude: swait (), ssignal (), ssignal n(),and

sreset ().

Disabling interrupts and preemption are mechanisms used to protect code segments
that are considered atomic and must be completed without interruption. The calls
that support disabling of interrupts and preemption include: di sabl e(),
restore(), sdisable(),and srestore().
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The following table summarizes the LynxOS synchronization functions that
support device drivers. A complete description of these functionsis availablein
their respective man pages.

Table 4-1: Synchronization Support Functions

Call Summary
swai t () swai t () causesthe calling process to wait on a semaphore.
The prototypefor swait () is
int swait(int *s, int flag)
s isapointer to asemaphoreand f | ag isan argument that
specifies whether or not signals are delivered to the process while it
iswaiting. swai t () cannot be used from within an ISR.
ssignal () ssi gnal () increments asemaphore and wakes up one process
that iswaiting on that semaphore. Processes are awakened in priority
order.
The prototypefor ssi gnal () is:
int ssignal (int *s)
S isapointer to a semaphore.
di sabl e() di sabl e() disablesinterruptsand task preemption.
The prototypefor di sabl e() is:
voi d di sabl e(int ps)
ps must be alocal stack variable of the invoking function.
restore() restore() restoresinterruptsand task preemption.
The prototypefor restore() is
void restore(int ps)
ps isthe same variable used in the corresponding di sabl e()
call.
sdi sabl e() sdi sabl e() disablestask preemption.
The prototypefor di sabl e() is:
voi d di sabl e(int ps)
ps must be alocal stack variable of the invoking function.
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Table 4-1: Synchronization Support Functions (Continued)

Call

Summary

srestore()

srestore() restorestask preemption.
The prototypefor srestore() is

voi d srestore(int ps)

ps isthe same variable used in the corresponding sdi sabl e()
cal.

sreset ()

sreset () wakesup al processesthat are waiting on a semaphore
and sets the semaphore value to zero.
The prototypefor sreset () is:

voi d sreset(int *s)

S isapointer to a semaphore.

signal n()

ssi gnhal n() signasasemaphore a specified number of times.
The prototypefor si gnal n() is:

int signaln(int *s, int count)

s isapointer to asemaphoreand count isthe number of timesto
signal the semaphore.

scount ()

scount () returnsthe value of the semaphore.
The prototypefor scount () is:

int scount(int *s)

If thevalue of s isnegative, it indicatesthe number of processes that
are waiting on the semaphore. If s is zero, no processes are waiting

on the semaphore. If the value is greater than zero, it represents the

number of times the semaphore can be waited on without having to

wait for the semaphore to be signaled (see ssi gnal () ).

pi _init()

Used to initialize a priority inheritance semaphore.

What is Synchronization?

Synchronization ensures that certain events occur in a definite order within a non-
deterministic environment (such as a concurrent, preemptive operating system). In
adevice driver this usually means ensuring that shared resources such as devices,
buffers, queues, an so on are accessed in a protected and controlled manner so that
processes do not interfere with each other’s access to shared resources.

Synchronization provides:
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» Methods that support the coordinated use of shared resources by causing
processes to suspend execution when a shared resourceis not available.

» Protection to critical code sections. These are code segments considered
to be atomic that must be all completed or not at all.

* Mechanismsto prevent system failure due to inherent conditions of
concurrent and preemptive operating system environments such as race
conditions and deadl ock.

Managing Shared Data Resources

Semaphores are a mechanism available to LynxOS device drivers to manage
shared resources (statics structure and shared buffers and queues, for example).
Semaphores can partition the device driver code into critical code regionsthat must
obtain access to a shared resource before continuing to execute. The semaphoreisa
mechanism used to lock and rel ease a shared resource. Code that must access the
shared resource can only do so if the resource is unlocked. If the shared resourceis
unlocked, the code locksit and proceeds. If the shared resource is locked, the code
must wait (block) until the resource becomes free.

The mechanism of locking and releasing shared resources with semaphoresis
described in more detail in “Kernel Semaphores’ on page 67.

Protecting Critical Code Sections

Within adevice driver, it is necessary to prevent interrupt routines from accessing
shared data or resources such as buffers or queues that are being modified by a
process. To accomplish this, interrupts can be disabled with the di sabl e()
function and subsequently re-enabled with the rest ore() function.

It isimportant to keep the code being executed between the di sabl e() and
restore() functionsshortin order to avoid degradation of the overall system
response to interrupts. (Notethat di sabl e() also disablestask preemption.)

Following isabasic exampleusing di sabl e() and restore():
int ps;
di sable (ps); /* disable all interrupts */
;éétore(ps); /* restore interrupt state */

The variable ps must be alocal variable and should never be modified by the
driver. Each call to di sabl e() must have a corresponding call to restore(),
using the same variable.
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NoOTE: The restore() function actually restoresthe state that existed before
di sabl e() wascdled. So, if interrupts were already disabled when di sabl e()
was called, thefirst call to rest ore() does not re-enable them.

The sdi sabl e() and srestore() functionsare used to disable task
preemption only. Disabling of task preemption is necessary to prevent the kernel,
other drivers, or applications from accessing shared data and resources while they
are being modified by a device driver process. The kernel continuesto handle
interrupts while preemption is disabled.

The sdi sabl e() and srestore() functionsareusedin muchthe sameway as
di sabl e() and restore().Followingisabasic exampleof sdi sabl e() and
srestore():

int ps;
sdisable (ps); /* disable task preenption */

restore (ps); /* restore preenption state */

The variable ps must be alocal variable and should never be modified by the
driver. Each call to sdi sabl e() must have acorresponding call to
srestore(), using the same variable.

NoOTE: The srestore() function actually restores the state that existed before
sdi sabl e() wascalled. Soif interrupts were already disabled when
sdi sabl e() wascalled, the (first) call to srestore() doesnot re-enablethem.

A critical code region isblocked out by the di sabl e() /restore() or

sdi sabl e() /srestore() calls. Within adevice driver, the critical code region
should only contain the instructions necessary to complete an atomic transaction on
a shared resource and interrupts and task preemption must be re-enabled
immediately after the transaction is complete.

Nesting Critical Regions

It isalso possible to nest critical regions. As agenera rule, aless selective
mechanism can be nested inside a more selective one. For instance, the following
ispermissible:

int sps, ps;
sdi sabl e (sps);

d| éabl e (ps);
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restore (ps);
srestore (sps);

Note that different local variables must be used for the two mechanisms. However,
the converseis not true. It is not permitted to do the following:

di sable (ps);
Sdl sabl e (sps);
's.réstore (sps);
-ré-store (ps);

In any case, theinner sdi sabl e()/srestore() iscompletely redundant, as
preemption is already disabled by the outer di sabl e().

Avoiding Deadlock & Race Conditions

Deadlock typically occurs when two semaphores are not accessed in the same
order in two different processes (or threads). As aresult, each processis holding a
semaphore and is waiting to gain access to the semaphore that the other processis
holding. In this condition the processes wait forever for a semaphore that will
never be released.

Deadlock can be avoided by ensuring that multiple semaphores are always
acquired in the same order by every process. This ensures that two processes do not
gain access to two different semaphores and wait indefinitely for the other to
release the second semaphore.

Race conditions occur when two or more processes access the same shared
resource at the same time. In particular, problems occur when a process that is
accessing a shared resource gets preempted by another process that accesses the
same resource and changes the state of that resource before the first process has
completed its transaction on the resource. The result is that the first processis now
working with a compromised version of the shared resource.

To avoid race conditions, shared data and resources must be accessed in a
controlled manner. The code that accesses shared resources should be considered a
critical code region, which can be protected from preemption by disabling
interrupts or preemption.
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Kernel Semaphores

A kernel semaphoreisan integer variable that is declared by the device driver.
Semaphores must be visiblein all contexts. This means that the memory for a
semaphore must not be allocated on the stack.

Kernel semaphores are counting semaphores, they can be initialized to any non-
negative value. A semaphoreis acquired using the swai t () function.

If the semaphore value is greater than zero, it is simply decremented and the task
continues. If the semaphore value isless than or equal to zero, the task blocks and
is put on the wait queue of the semaphore. Tasks on this queue are kept in priority
order.

A semaphoreissignaled using the ssi gnal () function. If there are tasks waiting
on the semaphore’s queue, the highest priority task is woken up. Otherwise the
semaphore value is incremented.

Kernel semaphores have state. The semaphore’s value remembers how many times
the semaphore has been waited on or signaled. Thisisimportant for event
synchronization. If an event occurs but there are no tasks waiting for that event, the
fact that the event occurred is not forgotten.

Kernel semaphores are not owned by a particular task. Any task can signal a
semaphore, not just the task that initialized it. Thisis necessary to allow kernel
semaphores to be used as an event synchronization mechanism but requires care
when the semaphore is used for mutual exclusion.

The flag argument tothe swait () function allows atask to specify how
signals are handled while it is blocked on a semaphore. If the task does not block,
this argument is not used. There are three possibilitiesfor f | ag, specified using
symbolic constants defined in ker nel . h:

SEM _SI G GNORE Signals have no effect on the blocked task. Any signals sent to
the task while it iswaiting on the semaphore remain pending
and will be delivered at some future time.

SEM SI GRETRY Signals are delivered to the task. If the task’s signal handler
returns, the task automatically waits again on the semaphore.
Signdl delivery istransparent to the driver asthe swai t ()
function does not indicate whether any signals were delivered.

SEM_SI GABORT If asignal is sent to the task whileit is blocked on the
semaphore, the swai t () isaborted. The task iswoken up
and swai t () returnsanonzerovalue. The signa remains

pending.
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Other Kernel Semaphore Functions

There are anumber of other functions used to manipul ate kernel semaphores.
These are:

ssi gnal (n) Used to signal asemaphore n times. Thisis equivaent to
cdling ssignal () n times.

sreset () Resets the semaphore value to 0 and wakes up al tasks that are
waiting on the semaphore.

scount () Returns the semaphore value.

Using Kernel Semaphores for Mutual Exclusion

When used to protect a critical code region, the kernel semaphore should be
initialized to 1 or -1. This allows the first task to lock the semaphore and enter the
region. Other tasks (including akernel thread) that attempt to enter the same region
will block until the semaphoreis unlocked. Each call to swai t () must havea
corresponding call to ssi gnal ().

swait (&s->mutex, SEM SI G GNORE)
/* enter critical code region */

/* access resource */

ssignal (&s->nutex); /* leave critical code region */

Signals can normally be ignored when using a kernel semaphore as a mutex.
Compared to waiting for an 1/0 device, a critical code region isrelatively short so
thereislittle need to be able to interrupt atask that iswaiting on the mutex. Unlike
an event, which is never guaranteed to occur, execution of acritical code region
cannot fail. The task holding the mutex is bound, sooner or later, to get to the point
where the mutex is released.

CAuUTION! sreset () and ssignal n() should never be used on a kernel
semaphore that is used for mutual exclusion asin both cases this could lead to
more than one task executing the critical code concurrently.

68
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Priority Inheritance Semaphores

In amulti-tasking system that uses a fixed priority scheduler, a problem known as
priority inversion can occur. Consider a situation where a task holds some
resource. Thistask is preempted by ahigher priority task that requires accessto the
same resource. The higher priority task must wait until the lower priority task
releases the resource. But the lower priority task may be prevented from executing
(and therefore from releasing the resource) by other tasks of intermediate priority.

One solution to this problem isto use priority inheritance whereby the priority of
the task holding the resource is temporarily raised to the priority of the highest
priority task waiting for that resource until it rel eases the resource. LynxOS kernel
semaphores support priority inheritance. In order to function with priority
inheritance, the semaphore’'s value must be initialized by the kernel function
pi_init().

pi_init (&s->nutex);

Thisfeature is should only used in the context of a kernel semaphore being used as
amutex mechanism.

Event Synchronization

A kernel semaphore is the mechanism used to implement event synchronization in
aLynxOS driver. The value of the semaphore should beinitialized to 0, indicating
that no events have occurred.
Waiting for an event:

if (swait (&s->event_sem SEM S| GABORT))

{

pseterr (EINTR);
return (SYSERR);
}

Signaling an event:

ssi gnal (&s->event_sem;

Handling Signals

Because there is often no guarantee that an event will occur, signals should be
allowed to abort the swai t () using SEM S| GABORT. Thisway, atask can be
interrupted if the event it iswaiting for never arrives. If signalsareignored, thereis
no way to interrupt the task in the case of problems, so the task can remain blocked
indefinitely. The driver must check the return code from swai t () to determine
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whether asignal has been received. Asan alternativeto SEM SI GABORT, timeouts
can be used if the timing of eventsis known in advance.

It is sometimes useful for an application to be able to handle signals whileitis
blocked on a semaphore but without aborting the wait. Thisis possible using the
SEM SI GRETRY flagto swai t () . Signalsare delivered to the application and the
swai t () automatically restarted. Thereis no way for the driver to know whether
any signals were delivered while the task was blocked on the semaphore.

A word of caution is necessary concerning the use of SEM SI GRETRY. If the signal
handler in the application calls exi t ( 3), thenthe swai t () inthedriver will
never return. This could cause problemsif the task had blocked while holding
some resources. These resources will never be freed. To avoid thistype of problem,
adriver can use SEM SI GABORT in conjunction with the kernel function

del i ver si gs() . Thisallowsthe application to receive signalsin atimely
fashion, but without the risk of losing resources in the driver.

if (swait (&s->event_sem SEM S| GABORT)

cleanup (s); /* prepare for possible term nation by signal handler */
deliversigs (); /* may never return */

}

Using sreset() with Event Synchronization Semaphores
Two example uses of sreset () discussed below are:

« Handling error conditions.

e Variable length data transfers (with multiple consumers).

Handling Error Conditions

A driver must handle errors that may occur. For example, what should it do if an
unrecoverable error is detected on adevice? A frequent approach isto set an error
flag and wake up any tasks that are waiting on the device:

if (error_found) {

S->error ++,

} sreset (&s->event_sen);
But the driver cannot assume that when swai t () returns, the expected event has
occurred. The swai t () could have been woken up because an error was
detected. So some extralogic is required when using the event synchronization
semaphore;
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if (swait (&s->event_sem SEM SI GABORT))
{

pseterr (EINTR);
return (SYSERR);

if (s->error)

pseterr (EIO;
return (SYSERR);
}

Variable Length Transfers

The second example with sreset () usesthe following scenario: A device or
producer process generates data at a variable rate. Data can also be consumed in
variable sized pieces by multiple tasks. At some point, anumber of consumer tasks
may be blocked on an event synchronization semaphore, each waiting for different
amounts of data, as illustrated below.

O > > >

Task 1 Task 2 Task 3

Semaphore Request size: 5 Request size: 10  Request size: 6

Figure 4-1: Synchronization Mechanisms

When data becomes available, what should the driver do? Without adding extra
complexity and overhead to the driver, thereis no easy way for the driver to
calculate how many of the waiting tasksit can satisfy (and should, therefore, wake
up). A simple solutionistocall sreset (), whichwill wake all tasks, which then
consume the avail able data according to their priorities. Tasks that are awakened
but find no data have to wait again on the event semaphore.

Caution when Using sreset()

To maintain coherency of the semaphore queue, sreset () must synchronize
with callsto ssi gnal (). Because ssi gnal () can be called from an interrupt
handler, sreset () disablesinterruptsinternally whileitiswaking up al the
blocked tasks. Because the number of tasks blocked on a semaphoreis not limited,
this could lead to unbounded interrupt disabletimesif sreset () isusedwithout
proper consideration.
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To avoid this problem, another technique must be used in driver design where an
unknown number of tasks could be blocked on a semaphore. One possibility isto
wake tasks in a cascade manner. Thecall to sreset () isreplaced by acall to
ssi gnal (), which wakes up the first blocked task. This task is then responsible
for unblocking the next blocked task, which unblocks the next one, and so on, until
there are no more blocked tasks. A negative semaphore indicates that there are
blocked tasks. Thisisillustrated in the modified error handling code from the
previous section:

if (error_found)

{
S->error++;
if (s->event_sem< 0)
ssi gnal (&s->event_sem;

if (swait (&s->event_sem SEM S| GABORT))

pseterr (EINTR);
return (SYSERR);

if (s->error)

if (s->event_sem < 0)
ssignal (&s->event_sen);
pseterr (EIO);
return (SYSERR);

}

Because tasks are queued on a semaphore in priority order, they will still be

awakened and executed in the same order aswhen using sreset () . Thereisno
penalty with using this technique.

Resource Pool Management

LynxOS kernel semaphores can aso be used as a counting semaphore for
managing a resource pool. The value of the semaphore should be initialized to the
number of resources in the pool. To allocate aresource, swai t () isused.

ssi gnal () isusedto free aresource. The following code shows an example of
using swait () toalocateand ssignal () tofreearesource.

struct resource *

all ocate (s)

struct statics *s;

{
struct resource *resource;
int ps;
swait (&s->pool _sem SEM S| GRETRY);
sdi sabl e (ps);
resource = s->pool _freelist;
s->pool _freelist = resource->next;
srestore (ps);
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return (resource);

}

free (s, resource)

struct statics *s;

struct resource *resource;

{
struct resource *resource;
int ps;
sdi sabl e (ps);
resource->next = s->pool _freelist;
s->pool _freelist = resource;
srestore (ps);
ssi gnal (&s->pool _sen);

}

The counting semaphore functions implicitly as an event synchronization
semaphore too. When the pool is empty, an attempt to allocate will block until
another task frees aresource.

A mutex mechanism is still needed to protect the code that manipulates the free
list. The combining of different synchronization techniquesis discussed more fully
in the following section.

Combining Synchronization Mechanisms

The examples discussed in the preceding sections have all been fairly
straightforward in that they have only used one synchronization mechanism. In an
actual driver, the scenarios are often far more complex and require combining
different techniques. The following sections discuss when and how

synchroni zation mechanisms should be combined.

Manipulating a Free List

This example illustrates the use of interrupt disabling to remove an item from a
freelist, but in particular, what the driver can do if the freelist is empty.

One possihility isthat the driver blocks until another task puts something back on
thefreelist. This scenario requires the use of amutex and an event synchronization
semaphore. Two different approaches to this problem areillustrated in the
following examples. The first example is deliberately complicated to demonstrate
various synchronization techniques.

/* get_item: get itemoff free list, blocking if

list is enpty */

struct item*

get _item (s)

struct statics *s;

{
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struct item *p;
int ps;
do

{

}

di sabl e (ps); /* enter critical code */
if (p=s->freelist) /* take 1st itemon list */
s->freelist = p->next;
el se
/* list was enpty, so wait */
swait (&s->freelist_sem SEM SI G GNORE);
restore (ps); /* exit critical code */
while (!p);

return (p);

/* put_item: put itemon free list, wake up waiting tasks */
put_item (s, p)

struct statics *s;

struct item *p;

{

}

int ps;

di sabl e (ps); /* enter critical code */
p->next = s->freelist; /* put itemon list */
s->freelist = p;

if (s->freelist_sem< 0)

ssignal (&s->freelist_sem; /* wake up waiter */

restore (ps); /* exit critical code */

There are anumber of points of interest illustrated by this example:

The example uses SEM SI Gl GNORE for simplicity. If SEM_SI GABORT
isused, the return value from swai t () must be checked.

The example usesthe di sabl e()/restore() mechanism for mutual
exclusion. This allows the free list to be accessed from an interrupt
handler using put _i ten(). get _i tenm() should never be called from
aninterrupt handler though, asit may block. If thefreelist isnot accessed
by the interrupt handler, sdi sabl e()/srestore() canbeused
instead.

The get i tem() function usesthe value of theitem taken off thelist to
determineif the list was empty or not. Note that the freel i st _sen()
is being used simply as an event synchronization mechanism, not a
counting semaphore. (Managing a free list with a counting semaphoreis
illustrated in the second approach). As a consegquence, the code that puts
items back on the free list must signal the semaphore only if thereisa
task waiting. Otherwise, if the semaphore was signalled every time an
item is put back, the semaphore count would become positive and a task
caling swait() in get_iten() would returnimmediately, even
though the list is still empty.

Blocking with interrupts disabled may seem at first like adangerousthing
to do. Thisis necessary, as restoring interrupts before the swai t ()
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would introduce a race condition. LynxOS saves the interrupt state on a
per task basis. So, when this task blocks and the scheduler switches to
another task, the interrupt state will be set to that associated with the new
task. But, from the point of view of the task executing the above code, the
swai t () executes atomically with interrupts disabled.

swai t () /ssi gnal () cannot be used as the mutex mechanismin this
particular example as this could lead to a deadlock situation where one
task isblocked inthe swai t () while holding the mutex. Other tasks
wishing to put items back on the list will not be able to enter the critical
region. If acritical code region may block, care must be taken not to
introduce possihility of a deadlock. To avoid a deadlock,

sdi sabl e()/srestore() or disable()/restore() shouldbeused
as the mutex mechanism rather than swai t () /ssi gnal () . But, once
again, the critical code region must be kept as short as possible to avoid
having an adverse effect on the system’s real -time responsiveness. An
alternative would be to raise an error condition if thelist is empty, rather
than block. Thiswould allow swai t () /ssi gnal () tobeused asthe
mutex mechanism.

A cdlto ssignal () in put_iten() may makeahigher priority task
eligible to execute but the context switch will not occur until preemption
isre-enabled with restore().

In the second approach to this problem, a kernel semaphore is used as a counting
semaphore to manage items on the free list. The value of the semaphore should be
initialized to the number of items on the list.

struct item*
get _item (s)
struct statics *s;

{

}

struct item *p;
int ps;

swait (&s->free_count, SEM S| GRETRY);
di sabl e (ps);

p = s->freelist;

s->freelist = p->next;

restore (ps);

return (p);

put_item (s, p)
struct statics *s;
struct item *p;

{

int ps;

di sabl e (ps);

p->next = s->freelist;
s->freelist = p;
restore (ps);
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ssignal (&s->free_count);

This code illustrates the following points:

* A kernel semaphore used as a counting semaphore incorporates the
functionality of an event synchronization semaphore. swai t () blocks
when no items are availableand ssi gnal () wakes up waiting tasks.

» Theexample usesthe di sabl e() /restore() mechanism for mutual
exclusion. This allows the free list to be accessed from an interrupt
handler using put _i ten(). get _itenm() should never be called from
an interrupt handler though, asit may block. If thefreelist isnot accessed
by the interrupt handler, sdi sabl e()/srestore() canbeused
instead.

» Theevent synchronization is outside of the critical code region so thereis
no possibility of deadlock. Therefore, swait ()/ssignal () could be
used as the mutex mechanism if the code does not need to be called from
an interrupt handler.

» Thefunction put _iten() couldbe modified to allow several itemsto
be put back on thelist using ssi gnal n() . But items can only be
consumed one at time, since thereisno function swai t n() .

Signal Handling and Real-Time Response

76

“Handling Signals’ on page 69 discussed the use of the SEM_SI GRETRY flag with
swai t (). Itisnot advisabletouse swai t () withthisflaginsideacritical code
region protected with di sabl e()/restore() or sdisable()/srestore().
Thereason for thisisthat, internally, swai t () callsthe kernel function

del i versi gs() toddiver signaswhenthe SEM SI GRETRY flagisused. If the
swai t () iswithinaregion with interrupts or preemption disabled, then the
execution timefor del i versi gs() will contribute to the total interrupt or
preemption disable time, asillustrated in the following example:

sdi sabl e (ps); /* enter critical region */

swait (&s->event_sem SEM S| GRETRY);
/* may call deliversigs internally */

srestore (ps); /* leave critical region */

In order to minimize the disable timesit is better to use SEM S| GABORT and re-
enable interrupts or preemption before calling del i ver si gs() . The above code
then becomes:
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sdi sabl e (ps); /* enter critical region */

while (swait (&s->event_sem SEM SI GABORT))
srestore (ps); /* re-enable pre-enption before delivering signals */
deliversigs (); /* may never return */

sdi sabl e (ps);
}

srestore (ps); /* leave critical region */
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awrems . INtErrupt and Timeout Handling

This chapter discusses issues related to the design and implementation of interrupt
service routines (1SRs) and timeout handlers.

Introduction

Interrupts are external hardware exception conditions that are delivered to the
processor to indicate the occurrence of a specific event. ISRs are useful for:

Indication of the completion of an operation

For example, an interrupt could be generated indicating the compl etion of
aDMA (Direct Memory Access) transfer. The device driver would give a
command to the DMA controller to transfer a block of data and set the
vector for theinterrupt generated by the controller to a specific driver
function. This, in turn, would signal a semaphore to wake up any system
or user threads waiting on the completion of the DMA transfer.

Data availability

The availability of dataat a port isoften indicated by an interrupt. A tty
driver receives an interrupt when a character is ready to be read from the
port, for example.

Device ready for acommand

A printer generates an interrupt when it has printed a character and is
ready to print the next character.
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Timeout Interrupts

LynxOS timeout handlers are called by the clock interrupt handler and therefore
are considered to be similar to any interrupt handler. Instructions for setting up
timeout handlers are provided in “ Timeout Handlers” on page 97.

Interrupts and Real-Time Response

A task, regardless of its priority, isinterrupted if an interrupt is pending and
interrupts are enabled. This could result in low priority interrupt service routines
executing before high priority tasks that have real-time constraints.

To offload processing from interrupt-based sections of a device driver, LynxOS
offers afeature known as kernel threads. Kernel threads are independently
schedulable entities that closely resemble processes but do not have the memory
overhead associated with processes.

Using kernel threads, delays are significantly reduced. Instead of the interrupt
service routine handling all the servicing of the interrupt, akernel thread is used to
perform the function previously performed by the interrupt routine. A kernel thread
is scheduled according to process priority and not hardware priority. This ensures
that the interrupt service timeis kept to aminimum and the task response timeis
kept short. The use of kernel threads is covered in detail in Chapter 6, “Kernel
Threads and Priority Tracking.”

LynxOS Interrupt Handlers

80

Interrupt handlersin LynxOS are specified inthe i nstal | () or open() entry
point functions and are cleared inthe uni nstal | () or cl ose() entry points.
Interrupt handlers run before any other kernel or application processing is
completed.

Interrupt handlers are declared and reset using the functions i oi nt set () and
i oi ntclr().Thetable below summarizes i oi ntset() and iointclr().

Table 5-1: iointset() and iointclr() Summary

iointset() The i oi ntset () function specifiesthe routine to run when an
interrupt occurs.

iointclr() The i ointclr() functionremovesan interrupt vector from the
interrupt vector table.
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Interrupt handlers cannot directly use application virtual addresses. The application
virtual addresses must be trandated to kernel virtual addresses before they can be
accessed by driver routines. Refer to Chapter 3, “Memory Management.” for more
information on address translation.

iointset()

The device driver registersitsinterrupt handler routine with the LynxOS interrupt
dispatcher using the i oi nt set () function call. The interrupt dispatcher
subsequently calls the interrupt handler routine when an interrupt occurs.

i oi ntset () cannot be called from within an ISR.

The prototypefor i oi ntset () is:

int iointset(int vector, int (*function)(), char *argunent)

where:
vect or Isan interrupt vector number
function Isapointer to the interrupt handler function
ar gunent Is a pointer to an argument string

Theinterrupt vector number used by the hardware sending the interrupt is specified
by the vect or argument. The interrupt dispatcher calls the routine given by
functi on. Theinterrupt dispatcher passes ar gunent s to theinterrupt handler.

On x86 and SPARC systems, i oi nt set () returnsthe index of the previous
interrupt vector. This can be used with i oi nt _| i nk() to shareinterrupt vectors.

NoOTE: When using DRM, register interrupt handlers with
drmregister_isr(),not iointset().

iointclr()

The ioi ntclr() function clearsan interrupt vector from the stack of interrupt
handlers. i oi ntclr() cannot becalled from within an ISR.

The prototypefor i ointclr() is
void iointclr(int vector)
where:

vect or Isaninterrupt vector number
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The vect or argument specifies the interrupt vector number to clear.

For each interrupt vector, the kernel maintains a stack of interrupt handlers. If a
device driver installs anew interrupt handler at a position occupied by an existing
handler, the old handler isreinstalled when i oi ntclr () iscaledfor vector.

NoTE: The default handler for interruptsis code that causes kernel panic and a halt.

Sharing IRQs

i oi nt_link() isusedon hardwarewheretwo or more drivers must share the
sameinterrupt vector. To share an interrupt, each interrupt routine must check if its
device hasinterrupted and then act accordingly; it must also call the next interrupt
routine on the list that has the same hardware vector.

When adevice driver shares an interrupt with other drivers, it can use the value
returned by i oi ntset () asakey to the next interrupt handler on the stack of
interrupt handlers. After processing the interrupt, the interrupt handler can use

i oi nt _link() tocausethenextinterrupt handler in the stack to be dispatched.
For example:

dev_install (info)
{...
s=sysbrk(...);
-s‘- ->key = iointset(vector, int_handler, s);

i nt _handl er (s)

{

i oi nt_Iink(s->key);

}

Interrupt Vector Values

X86

On the x86 platform, i oi ntset () and iointclr() requiretheinterrupt
vector number, not the address of the vector. The interrupt vector number (0-15)
must also be offset by 32. For example:

iointset (irgq + 32, intr_handler, s);
iointclr (irg + 32);
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PowerPC

Many PowerPC systems have two or more interrupt controllers. For example the
Motorola 16xx series and the PowerStack series have an i8259-compatible
interrupt controller to handle ISA interrupts and the VMECHIP2 handles VME
interrupts. On the Motorola PowerPlus systems, there are three interrupt
controllers. Thereisan MPIC device, which is the master interrupt controller, and
handles interrupts from PCI, timers, and cascaded interrupt controllers. Thereisa
18259-compatible interrupt controller to handle | SA-based interrupts. The Universe
VME controller handles the VME interrupts on some of the PowerPlus systems.

The PowerPC processor has only oneinterrupt input. The LynxOS interrupt
dispatch routine determines the source of the interrupt and uses a table with
256 entries to dispatch the interrupt serviceroutine. The vect or parameter to
i oi ntset () istheindex to thistable.

To maintain compatibility with x86-based device drivers, the ISA interrupt
controller uses MASTER BASE (32) asthe base vector. The PowerPlus systems
usethe MPI C BASE (4) asthe base vector for the MPIC. The VME controllers
usethe VME_| RQBASE (48) asthe base vector.

Theinterrupt vector spaceis divided as follows:

0..3 Reserved vectors
4..28 MPIC vectors
29..31 Reserved vectors
32..48 ISA vectors
48...255 VME vectors

Asin the x86-based systems, i oi nt set () returnsakey, which can beusedin
i oi nt_link() toshareinterrupts. For device drivers using the PCI service
functions, the pci _what _i rq(sl ot) returnsavector, which can be used
directly inthe i oi nt set () function.

Interrupt Levels

When a device generates an interrupt, the interrupt signal is propagated from the
device through the bridge or bus controller. Some boards may have asingle
interrupt controller, while others may have two or more.
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The figure below shows atypical configuration on x86-based computers, where
two Intel 8259 interrupt controllers are cascaded. INT1 is called the master
controller, becauseit is closest to the CPU. INT2 is called the slave controller.

When one of the IRQ input lines of an interrupt controller is asserted, the controller
assertsitsint+ output line. For INT1, this signals the CPU that an interrupt has
occurred. For INT2, the interrupt signal is passed to INT1, which then signalsthe
CPU.

When the CPU is signaled, it communicates with the interrupt controllers to
determine which IRQ line has been asserted. The CPU executes the interrupt
handler that was most recently registered for that IRQ. When the handler
terminates, the CPU continues where it | eft off before executing the handler.

The Intel 8259 interrupt controllers are cascaded as shown in the figure bel ow.

ToCPU | int+ IRQ 0 B
I From
RQ 1 int + IRQ 8 | interrupting
RQ 2 devices
RQ9 [~
IRQ 3 —
RQ 10 |
RQ 4 —
RQ11 [~
RQ 5 —
RQ12 [~
IRQ 6 —
RQ13 [~
RQ 7 —
RQ14 [~
INT 1 RQ15 [
INT 2

Figure 5-1: Intel 8259 Interrupt Controller Configuration

Theinterrupt controllers are programmed so that each IRQ input has a distinct
interrupt priority. When an interrupt handler is servicing an interrupt, it may be
preempted when another device asserts an interrupt with a higher priority.
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The following table shows the IRQs, sorted by interrupt priority, with the most

favorable priority at the top, and the least favorable at the bottom.

Table 5-2: Interrupt Priority

Interrupt Priority

(1 = Highest) IRQ
1 IRQ 1
(cascade) IRQ2
2 IRQ 8
3 IRQ9
4 IRQ 10
5 IRQ 11
6 IRQ 12
7 IRQ 13
8 IRQ 14
9 IRQ 15
10 IRQ 3
11 IRQ 4
12 IRQ5
13 IRQ 6
14 IRQ7
15 IRQ O

On all Board Support Packages (BSPs), IRQ 1 isused for the keyboard and has the

most favorable priority. IRQ O is used for the real-time clock and has the least

favorable priority. This means that the clock interrupt handler could be preempted
by any other interrupt, whereas the keyboard handler cannot.

IRQ 2 is used to cascade interrupts from Controller INT2 to Controller INT1. The
use of the other IRQs may vary for different BSPs.

The assignment of priorities to IRQs is made by the kernel code at boot time. The
assignments are found in thefile / sys/ bsp. xxx/ bsp. i ntr. c. In some BSPs,
the assignment can be configured at kernel build time.
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Implementing an Interrupt Handler

A typical approach to the organizational structure of adevice driver that contains
an interrupt handler isto divide the code into two components called process
context functions and kernel context functions (see figure bel ow).

Process - -
context Driver Entry Points
functions
Read Write Other Entry Points
A
‘ 4
Read | Write R
Queue {i Queue Send
, i
Kernel Y
context Interrupt Handler
functions ¢
Hardware <

Figure 5-2: Top/Bottom Model for Device Drivers

Process context functions are the driver entry point functions and other supporting
code, and the kernel context functions are the interrupt handler, and its subroutine
send. Between the two halves are shared data structures (read and write queuesin
this example) internal to the device driver.

The send routineisadevice driver supporting function used to send data to the
hardware. (See “send() Routine” on page 92 for an example.)

Use of Queues

Queues are often used to communi cate between the process context and kernel
context functions. Exampl es of the use of queuesto communicate between entry
points and interrupt handlers are:
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e For communication fromthe wri te() entry point tointerrupt handler.

A counting semaphore, initialized to the size of the queue, tracks the free
spaceinthe write() entrypoint. The swait () functioniscalled, and
if spaceis available in the queue a character is queued. The interrupt
handler subsequently removes the character from queue and signals the
semaphoreusing ssi gnal ().

e For communicating from interrupt handler to the read() entry point.

The semaphoreinthe read() entry point tracks data availability in the
gueue. The swai t () routine blocks until datais availablein the queue.
Theinterrupt handler posts the data to the queue, signaling the semaphore
that datais available, if queue spaceisavailable. If queue spaceis
unavailable, an error flag is set.

Following is an example code structure.
dev_read()

swai t (&r ecei ve_dat a_avai | abl e, SEM SI G GNORE) ;
di sabl e();

dequeue_recei ve_data();

restore();

}
dev_write()

di sabl e();

swai t (& pace_on_queue_avai | abl e, SEM S| G GNORE) ;
enqueue_send_data();

if (no_interrupt_pendi ng)

out put _data();

restore();

}

i nterrupt _handl er ()

if (data_received)
{
enqueue_recei ve_data();
ssignal (& eceive_data_avail able);

}

el se

if (dequeue_send_data())
out put _data();
el se no_interrupt_pending = 1;
}
}
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Interrupt Handler Considerations

Following are programming considerations to use when creating an interrupt
handler.

e Use disable() and restore() intheentry point functionsand their
subroutines to prevent interrupts from accessing data structures that are
being modified.

e Application virtual addresses cannot be directly accessed from the
interrupt handler.

» Trandlate application virtual addresses to kernel addresses in the entry
point functions prior to making them available to the interrupt routines.

Example Code
Following is an example of an interrupt-based printer device driver.

Device Information Definition

/* ptrinfo.h */
struct ptrinfo
{

int port;

int irq;

int glen;
}s
The device information definition has three variables associated with the
interrupting driver. The port variableisthe port number for the printer; irq is
the interrupt line on which the printer interrupts the system; and gl en isthe
length of the queue used to communi cate between the top and bottom halves of the
driver.

Device Information Declaration
/* ptrinfo.c */
#i nclude "ptrinfo.h"
struct ptrinfo ptrinfo0 =
/* port */ 0x378,
I*irq *I 7,
/* glen */ 100
mai n()

wite(l, &ptrinfo0, sizeof(struct ptrinfo));
}
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Declaration for ioctl

The device information declaration for the device information definition gives the
port address for the printer port, which is 0x378. The IRQ line on which the printer
interruptsis 7, and the queue length is 100. The program pt ri nf o. ¢ iscompiled
and executed to create a datafile to be passed to the i nst al | routine during
dynamic installation. (See Chapter 8, “Installation and Debugging.” for more on
dynamic installation.)

Declaration for ioctl
/* ptrioctl.h */
#defi ne PTRSTATUS 500

struct ptrstatus {
int chars; /* characters printed */
int lines; /* lines printed */

b
The i octl () routinein thisdriver returnsthe number of characters and lines

printed out so far. Thus, the user can issuethe i oct| system call with the
appropriate command and pointer to the structure defined above.

Driver Source Code
/* ptrdrvr.c */

#i ncl ude <kernel . h>
#i ncl ude <mem h>
#include <file.h>

#i ncl ude <errno. h>

#i ncl ude <ioctl.h>

#i nclude "ptrinfo.h"
#include "ptrioctl.h"

/* ports */

#def i ne PP_DATA 0 /* data port offset */

#def i ne PP_STATUS 1 /* status port offset */
#def i ne PP_CONTROL 2 /* control port offset */
/* status bits */

#def i ne PP_BUSY 0x80 /* printer busy */

#defi ne PP_PE 0x20 /* out of paper */

#defi ne PP_SLCT 0x10 /* printer is selected */
#def i ne PP_ERROR 0x08 /* printer detected error */

/* control bits */

#define PP_I| ENABLE  0x10 /* interrupt enable */
#define PP_SLCTIN 0x08 /* select printer */
#define PP_INT 0x04 /* start printer */
#defi ne PP_AUTOLF 0x02 /* auto line feed */
#def i ne PP_STROBE 0x01 /* strobe printer */

#define port_in(addr) i nb /* copy 1 byte fromport */

#def i ne port_out (data, addr) —out b(addr,data) /* copy 1 byte to port */
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typedef unsigned short ptype;

Statics Structure

struct ptrstatics {

ptype dat ap; /* data port address */
ptype control p; /* cntrl port address */
char control; /* control bits */
int irg; /* 1 RQ nunber */
int closing; /* cl osing device */
int close_sem /* semaphore for close */
int expecting; /* expecting an int.? */
int nextnl; /* output a "\r’ next? */
int chars; /* printed since open */
int lines; /* printed since open */
int glen; /* characters in queue */
char *q; /* base queue address */
int head; /* head of queue */
int tail; /* tail of queue */
int gdata; /* data in the queue */
int free_sem /* free queue space */

h
The statics structure for the interrupt handling printer driver is shown above. The
IRQ (i r q) number, the queue length (gl en) and port address (dpor t ) are copied
from the device information definition.

chars and |i nes storethe number of charactersand lines printed out so far. g is
the base address of the queue. head and tai | keep track of datain the queue.

cl ose_sem isasemaphore used for ensuring that the output queue is fully
drained before the deviceisclosed. expecti ng isinitialy reset to indicate that
thefirst character has to be output before an interrupt is received by the system.
nextnl isusedfor mapping \ n (newline) to \r\ n (carriage return/line feed).

install() Entry Point
#define PERR (struct ptrstatics *) SYSERR

char *dev_install (info)
struct ptrinfo *info;

{
struct ptrstatics *s;
extern void ptrint();
int i;
/* probe for the printer */
port_out (1, info->port+PP_DATA);
if (port_in(info->port+PP_DATA) != 1)
{

return (char *) PERR
}

if (!(s = (struct ptrstatics *)sysbrk ((long)sizeof *s)))
return (char *) PERR
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if (!(s->q = sysbrk((long)info->qglen)))

sysfree(s, (long)sizeof *s);
return (char *) SYSERR

/* initialize statics */
->datap = info->port + PP_DATA,
->controlp = info->port + PP_CONTROL;
->control = PP_SLCTIN| PP INT;
->irg = info->irq;
->expecting = 0;
->closing = s->close_sem = 0;
->nextnl = 0;
->free_sem = s->glen = info->qlen;
->qdata = s->head = s->tail = 0;
->lines = s->chars = 0;

nnnnuonnonononon

/* initialize printer */
i oi ntset(32+s->irq, ptrint, s);
port_out (PP_SLCTIN, s->controlp);
for (i =0; i < 100; i++) ;
port_out (s->control, s->controlp);

return (char *) s;
}
The instal | () entry point function checks for the existence of the printer. The
datais written onto the port and read back immediately. If the datais not the same,
then there is no printer. Once the presence of the printer is confirmed, the statics
structure and the queue are allocated. The fields within the structure areinitialized.

free_sem isinitialized to the queue length and the i r ¢ number is copied into
the statics data structure. Theroutine i oi nt set () iscaledtoinitiaize an
interrupt handler for the given interrupt vector. (The offset of 32 is added to the

i rg number before passing it to the routine on the x86.) Finaly, an initialization
seguence is sent to the printer.

Notice that there is atiming loop between thetwo port _out cals. Thisis
required for the transmitted data to be latched properly. The pointer to the statics
structure is returned.

uninstall() Entry Point

void dev_uninstall(s)
struct ptrstatics *s;

{
iointclr(32+s->irq);
sysfree(s->q, (long)s->qglen);
sysfree(s, (long)sizeof *s);
}

The uni nstal | () entry point clears the interrupt vector by using the
iointclr() function. uni nstall () freesthe memory associated with the
gueue and the statics structure.
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open() Entry Point

int dev_open(s, devno, f)
struct ptrstatics *s;

int devno;

struct file *f;

if (f->access_npde & FREAD)

{
pseterr (El NVAL) ;

return SYSERR
}

return OK;
}
The open() entry point checks for the access mode of the device and returns an
error if the application has tried to open it in read mode.

close() Entry Point

int dev_close(s, f)
struct ptrstatics *s;
struct file *f;

{

int ps;

di sabl e(ps);
if (s->expecting)

s->closing = 1;
restore(ps);
swai t (&s->cl ose_sem SEM SI G GNORE) ;
s->closing = 0;
} else

restore(ps);

s->lines = s->chars = 0;
return OK;
}

The cl ose() entry point function ensures that the characters to be output are
complete before the deviceis closed. It checkswhether s- >expecting isl. This
indicates that there are characters present in the queue. If thisistrue, it setsthe
s->cl osi ng flagand waitsinthe swai t () routine for theinterrupt handler to
signal that all characters are output and the device can be closed. It also resets the
chars and |ines fieldsin the statics structure definition.

send() Routine

/* assunes:

*x data in the queue
*x interrupts disabl ed
*/

voi d send(s)
struct ptrstatics *s;
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char c;

if (s->nextnl) {
c ="\r";
s->nextnl = 0;
s->| i nes++;
} else {
¢ = s->q[s->head++];
s->head % s->gl en;

s->qdata- - ;
ssignal (&s->free_sem;
s->nextnl = ¢ =="'\n";

s->char s++;

}

port_out(c, s->datap);

port _out (s->control | PP_STROBE, s->controlp);
port _out (s->control | PP_I ENABLE, s->controlp);

}
This routine outputs a character into the port by dequeuing from the queue. If a
new lineisfound it putsout a \ r and resetsthe next nl flag. If not, it dequeues
from the head of the queue, adjusts the head pointer to wrap around, and signalsthe
semaphore while keeping track of the free space in the queue. This routine then
increments the number of characters s- >chars.

The routine then puts a character onto the printer port. The whi | e loop to check

the status port is no longer necessary because the interrupt signifiesthat it is safeto
write. The character isjust put onto the data port. After this, to latch the byte onto

the printer, a high-low strobeis put onto the control port.

Interrupt() Handler

void ptrint(s)
struct ptrstatics *s;

if (s->qdata || s->nextnl)

send(s);
} else

{
s->expecting = 0;
if (s->closing) ssignal (&s->close_sen);

/* disable ptr interrupts: */

port_out (s->control, s->controlp);

}

}

If the queue hasdatain it, or if anew lineisindicated, theroutine send() is
called to output the character onto the port. If not, it indicates that the queueis
empty and thus s- >expecti ng isset to zero. Further, if the cl osi ng flagis
set, it indicatesthat the cl ose() entry point routineisinan swait () state.
Thus, an ssi gnal routineis called to awaken the semaphore. Finally, an
initialization sequence is sent to the control port.
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write() Entry Point

int dev_wite(s, f, buff, count)
struct ptrstatics *s;
struct file *f;

char *buff;

int count;

{
int i = count, ps;
while (i--)

{

swai t (&s->free_sem SEM S| GRETRY);

di sabl e(ps);

s->q[s->tail ++] = *buff ++;

s->tail % s->qglen;
s->qdat a++;
if (!s->expecting)

send(s);
s->expecting = 1;

restore(ps);

}

return count;

}

The wite() entry pointhasaloopfor count charactersto be output onto the
gueue. The swai t () insidethe loop tracks the free space in the queue. If thereis

space in the queue a character is queued.

The di sabl e() and restore() function cals provide protection for the
critical region of code, which is used by the interrupt handler. The character is
queued to the tail of the queue. The gdat a variable (which keepstrack of the
number of charactersin the queue) isincremented. If expecti ng iszero, thefirst
character on the queue is sent to the port and expecti ng isset to one.

ioctl() Entry Point

int dev_ioctl(s, f, command, arg)

struct ptrstatics *s;
struct file *f;

int conmand;

char *arg;

switch (command) {
case PTRSTATUS:

if (wbounds(arg) < sizeof (struct

pset err (EFAULT) ;
return SYSERR,

((struct ptrstatus *)arg)->chars
((struct ptrstatus *)arg)->lines

br eak;

case FIOPRI O
case FlI CASYNC:
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br eak;

defaul t:
pseterr ( EI NVAL) ;
return SYSERR,
}

return OK;
}
The ioctl () entry point handlesthe casefor PTRSTATUS. The user can invoke
this from an application program to determine the number of characters actually
output onto the port. ar g isthe pointer to the user buffer. The check by
wbounds() confirmsthat the user pointer has writable memory alocated to it.

x86 IRQ Device Defaults

Thefollowing tableisalist of devices with their interrupt (also caled IRQ) levels,
I/O addresses and additional default information. No two devices with the same
IRQ can be configured into the LynxOS kernel at the sametime..

Table 5-3: x86 Default Device Configuration

IRQ! | 1oBASEZ | DMA 3 | Device Comments
Channel

0 N/A N/A timer
1 0x3B4 0x3D4 Keyboard

0x3C4 0x3C5 atc

0x3CE 0x3CF
2 N/A N/A Cascade
3 O0x2F8 N/A conR
3 N/A N/A atcinfo
4 0x3F8 N/A coml
5 Ox3E8 N/A conB
5 0x240 N/A wd3e
° OcF NA if_3c579 ?St:ncl)],n;\b& ! 1, BNC = 3 (default 3)
° 0240 VA if_3c509 ?gt:n&n;xba 2 1, BNC = 3 (default 3)
5 0x240 N/A it wdse On board RAM address”: 0xcc000

- 16 bit access 1

6 O0x3F2-0x3F7 N/A f1opinfo 8237 DMA controller
7 0x378 N/A ptrinfo
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Table 5-3: x86 Default Device Configuration (Continued)

DMA .
IRQ! | IOBASE? 3 | Device Comments
Channel
7 0x200 N/A pcxe On board RAMbase: 0xd0000
8 N/A rtcl ock Real-time clock
9 N/A atc Vertical sync. interrupt
9 Ox3E0 N/A comd
10 Unused by default.
11 0x330-0x332 5 a_scsiinfo.c bus on®: 8
si ml542_i nfo bus_off8: 40
1 0x3307 5 sim 1742_info Edge/Level®: edge(1)
11 N/A 5 sin2742_info EISA dot% 2
12 Unused by default.
13 Unused by default.
14 Ox1F1-0x1F7, hdi nf o Defaults are hard coded in driver; primary controller.
O0x3F6-0x3F7

15 Unused by default.
- 0x340 N/A si ml522_i nfo PIO mode only
10 N/A N/A si m2940_i nf o No user configurable options.

1. IRQ: interrupt used by the device.

2. IOBASE: 1 or memory locations that are used to communicate with the device.

3. DMA channel: DMA channel used by the device

4. On board RAM address: Some boards have memory mapped to a particular range in the 1/0 space. This number isthe

5
6.
7
8.
9.
1
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start of such memory. The size of memory varies from card to card.

. bus_on- micro-seconds a device is allowed to stay on the bus.
. bus_off- micro-seconds adevice stay off after being on the bus.
. Only appliesin 1542-mode.

Edge/Level- A type of interrupt; LynuxWorks does not support level interrupts.
EISA slot- A specific slot that a card must be in for the device to work.

0.PCI card; the interrupt is assigned by the system BIOS.
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Timeout Handlers
A timeout handler can be set up using the timeout driver service cal, ti meout ().
The prototype for ti meout () is
int tinmeout(void (*handler)(), char *arg, int interval)

where:

handl er Specifies the function to call

arg Specifies an argument for function handler

i nterval Specifies atimeout interval (10 millisecond granularity)

The ti meout causesthefunction handl er to be called with one argument,
arg, after i nterval hasexpired. ti meout () returnsanon-negative timeout
ID if thereisatimer available. ThisID can be used to track or cancel the timeout.

A timeout can be canceled beforetheroutineiscalled using cancel _ti meout ()
and passing it the timeout ID. Care should be taken to cancel only a pending
timeout. The check for atimeout expiration and cancelling timeout should be done
atomically with interrupts disabled.

NOTE: ti neout () and cancel _ti meout () callsmay beusedinan interrupt
routine, but should not be used in adevicedriver i nstal | () entry point routine.

Following is a basic timeout handler algorithm.
entry_point()
{

int ps;
sem = 0;
/* start device operations */
tineoutl D = tineout(tinmeoutHandler, arg, 1);
swait(&sem -1);
di sabl e(ps);
if (tineoutlD)
{
cancel _timeout (timeoutlD);
timeout!I D = O;

restore(ps);

ti meout Handl er (arg)
/* do timeout processing */

timeout! D = O;
ssi gnal (&semn);
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I SR()
{

ssi gnal (&sem;
}

LynxOS timeout handlers are called by the clock interrupt handler. Timeout
routines are handled in the kernel using a delta queue to check for all expired
timers. Because the timeout handler is called from the clock interrupt handler, it
should not execute for along period of time. If alengthy timeout processing is
needed inside the timeout handler routine, it is better to handle the timeout inside a
kernel thread. (See Chapter 6, “Kernel Threads and Priority Tracking.” for more
information on kernel threads.) The timeout handler can simply increment a
variable indicating the number of timeouts accumulated and signal the kernel
thread. The kernel thread wakes up and handl es the more complicated processing
associated with the timeout.

Using kernel threads ensures that the thread can call routines, which can use
semaphores for mutual exclusion instead of interrupt disabling, thusimproving
real-time response. The thread can handle all accumulated timeouts and oncethisis
completed it blocks on the semaphore.

NoTE: Expired timers are checked in the clock interrupt handler and timeout
handlers are called from there. Thus, atimeout handler cannot block on a
semaphore.

Following is an example timeout handler algorithm implemented with kernel
threads.

entry_point()
{

event _sem = O;
timeoutCt = 0;
tid = timeout(tinmeoutHandl er, arg, ticks);

}

ti meout Handl er (ar g)
{
timeout Ct ++;
ssi gnal (&event _sem;

}
Thread()
{

int ps;

int touts;

for (5)

{

swai t (&event _sem -1);
di sabl e(ps);
touts = tineoutCt;
timeoutt = 0;
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restore(ps);
while (touts--)
ti meout _processing();

}
}
ti meout _processing()
{
swai t (&t ex_sem -1);
/* do timeout processing */
ssi gnal (&mut ex_sem;
}
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wwms Kernel Threads and Priority
Tracking

Kernel threads keep drivers from interfering with the real-time response of the
overall system. LynxOS kernel threads are designed specifically to increase driver
functionality while decreasing driver response time, task response time, and task
completion time. This chapter coverstheimplementation of kernel threadswithin a
device driver.

Device Drivers in LynxOS

Devicedriversform animportant part of any operating system, but even moresoin
areal-time operating system such as LynxOS. The impact of the device driver
performance on overall system performance is considerable. Sinceit isimperative
for the operating system to provide deterministic response time to real-world
events, device drivers must be designed with determinism in mind.

Some of the important components of real-time response are described in the
following sections.

Interrupt Latency

Interrupt latency is the time taken for the system to acknowledge a hardware
interrupt. Thistime is measured from when the hardware rai ses an interrupt to
when the system starts executing the first instruction of the interrupt routine (in the
case of LynxOS, this routine isthe interrupt dispatcher). Thistimeis dependent on
the interrupt hardware design of the system and the longest time interrupts are
disabled in the kernel or device drivers.
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Interrupt Dispatch Time

Interrupt dispatch time is the time taken for the system to recognize the interrupt
and begin executing the first instruction of the interrupt handler. Included in this
time isthe latency of the LynxOS interrupt dispatcher (usually negligible).

Driver Response Time

The driver response time is the sum of the interrupt latency and the interrupt
dispatch time. Thisis also known as the interrupt response time.

Task Response Time

The task response time is the time taken by the operating system to begin running
the first instruction of an application task after an interrupt has been received that
makes the application ready to run. Thisfigure isthe total of:

e Thedriver response time (including the delays imposed by additional
interrupts)

e Thelongest preemption time
* The context switch time

» The scheduling time

* Thesystem call return time

Only the driver response time and the preemption time are under the control of the
device driver writer. The other times depend on the implementation of LynxOS on
the platform for which the driver is being written.

Task Completion Time

The task completion time is the time taken for atask to complete execution,
including the time to process al interrupts which may occur during the execution
of the application task.

NoTE: The device driver developer should be aware of al delays that interrupts
could potentially cause to an application. This isimportant when considering the
overall responsiveness of the “application-plus-kernel” combination in the worst-
possible timing scenario.
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Real-Time Response

To improve the real-time response of any operating system, the most important
parameters are the driver response time, task response time, and the task
completion time. The time taken by the driver in the system can have adirect effect
on the system’s overall real-time response. A single breach of this convention can
cause a high performance real-time system to miss a real-time deadline.

Inanormal system, interrupts have a higher priority than any task. A task,
regardless of its priority, isinterrupted if an interrupt is pending (unless the
interrupts have been disabled). The result could mean that alow priority interrupt
could interrupt atask executing with real-time constraints.

A classic example of thiswould be atask collecting data for areal-time data
acquisition system and being interrupted by alow priority printer interrupt. The
task would not continue execution until the interrupt service routine had finished.

With kernel threads, delays of this sort are significantly reduced. Instead of the
interrupt service routine servicing the interrupt, akernel thread is used to perform
the function previously performed by the interrupt routine. The interrupt service
routine is now reduced to merely signalling a semaphore, which the kernel thread
iswaiting on.

Since the kernel thread isrunning at the application’s priority (actualy itisrunning
at half a priority level higher), it is scheduled according to process priority and not
hardware priority. This ensuresthat the interrupt service timeiskept to aminimum
and the task response time is kept short. A further result of thisisthat the task
completion timeis also reduced.

The use of kernel threads and priority tracking in LynxOS drivers are the
cornerstone to guaranteeing deterministic real-time performance.

Kernel Threads

Kernel threads execute in the virtual memory context of the null process, whichiis
process 0. However, kernel threads do not have any user code associated with
them, so context switch times for kernel threads are quicker than for user threads.
Like all other tasksin the system, kernel threads have a scheduling priority that the
driver can change dynamically to implement priority tracking. They are scheduled
with the SCHED FI FO agorithm.
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Creating Kernel Threads

A kernel thread is created onceinthe i nstal | or open entry point. The
advantage of starting itin open isthat, if the device is never opened, the driver
doesn’t use up kernel resources unnecessarily. However, as the thread is only
created once, the open routine must check whether thisisthefirst call to open.
Onethread is created for each interrupting device, which normally correspondsto a
major device.

The following code fragment illustrates how a thread might be started from the
instal | entry point:
int threadfunc ();

int stacksize, priority;
char *t hreadnane;

s->st_id = ststart (threadfunc, stacksize, priority, threadname, 1, s);
if (s->st_id == SYSERR)

sysfree (s, sizeof (struct statics));
pseterr (EAGAIN);
return (SYSERR);
}
The thread function specifies a C function to be executed by the thread. The

structure of the thread code is discussed in the next section.

The second argument specifies the thread's stack size. This stack does not grow
dynamically, so enough space must be allocated to hold all the thread's local
variables.

Askernel threads are preemptive tasks, they have a scheduling priority, just like
other user threads in the system, which determines the order of execution between
tasks. The priorities of kernel threads are discussed more fully in the “Priority
Tracking” on page 109. It is usual to create the thread with a priority of one.

The thread nameis an arbitrary character string which is printed in the name
column by the ps T command. It will be truncated to PNMLEN characters
(including NULL terminator). PNMLEN iscurrently 32; seethe proc. h file.

The last two parameters allow arguments to be passed to the thread. In most cases,
it is sufficient to pass the address of the statics structure, which normally contains
all other information the thread might need for communication and
synchronization with the rest of the driver.
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Structure of a Kernel Thread

The structure of akernel thread and the way in which it communicates with the rest
of the driver depends largely on the way in which the particular deviceis used. For
the purposes of illustration, two different driver designs are discussed.

e Exclusive access: Only one user task is allowed to use the device at a
time. The exclusive access is often enforced in the open entry point.

e Multiple access: Multiple user tasks are permitted to have the device
open and make requests.

Exclusive Access

If we consider synchronous transfers only, thistype of driver will typically have
the following structure;

e Thetop-haf entry point (r ead/wr i t e) startsthe data transfer on the
device, then blocks, waiting for 1/0 completion.

e Theinterrupt handler signals the kernel thread when the I/O completes.

e Thekernel thread consists of an infinite f or loop, which doesthe
following:

- Waitsfor work todo
- Processesinterrupt
- Wakesup user tasks

The statics structure contains a number of variables for communication between
the thread and the other entry points. These would include synchronization
semaphores, error status, transfer length, etc.

Top-Half Entry Point

The read/wite entry point codeis not any different from adriver that does not
use kernel threads. It starts an operation on the device, then blocks on an event
synchronization semaphore.

drv_read (s, f, buff, count)

struct statics *s;

struct file *f;

char *buff;
int count;
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start_I O (s, buff, count, READ);
/* start 1/0 on device */
swait (&s->io_sem SEM S| GABORT);
/* wait for 1/0O conpletion */
if (s->error) { /* check error status */
pseterr (EIO;
return (SYSERR);
}

return (s->count); /* return # bytes transfered */

Interrupt Handler

Apart from any operations that may be necessary to acknowledge the hardware
interrupt, the interrupt handler’s only responsibility isto signal the kernel thread,
informing it that there is some work to do:

intr_handl er (s)

struct statics *s;

{

ssignal (&s->intr_sem; /* wake up kernel thread */

Kernel Thread

The kernel thread waits on an event synchronization semaphore. When an interrupt
occurs, the thread is woken up by the interrupt handler. It processes the interrupt,
checking the device status for errors, and wakes up the user task that iswaiting for
1/O completion. For best system real-time performance, the kernel thread should
re-enable interrupts from the device.

kt hread (s)
struct statics *s;

for (;;) {
swait (&s->intr_sem SEM S| G GNORE);
/* wait for work to do*/

/* process interrupt, check for errors etc. */
if (error_found)
s->error = 1;

/* tell user task there was an error */
ssignal (&s->io_sen); /* wake up user task */
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Multiple Access

In thistype of design, any number of user tasks can open a device and make
requests to the driver. But as most devices can only perform one operation at a
time, requests from multiple tasks must be held in a queue.

In a system without kernel threads, the structure of such adriver is:

e Thetop-half routine starts the operation immediately if the deviceisidle,
otherwise it enqueues the request. It then blocks, waiting for the request
to be completed.

e Theinterrupt handler processesinterrupts, doesall I/O completion, wakes
up the user task and then starts the next operation on the device
immediately if there are queued requests.

The problem with this strategy isthat it can lead to an overly long interrupt routine
owing to the large amount of work done in the handler. Since interrupt handlers are
not preemptive, this can have an adverse effect on system response times. When
multiple requests are queued up, the next operation is started immediately after the
previous one has finished. The result of thisisthat a heavily-used device can
generate a series of interruptsin rapid succession until the request queueis
emptied. Even if the requests were made by low priority tasks, the processing of
these interrupts and requests will take priority over high priority tasks becauseit is
done within the interrupt handler.

The use of kernel threads resolves these problems by off-loading the interrupt
handler. A kernel thread is responsible for dequeuing and starting requests,
handling 1/0 completion and waking up the user tasks. The next figure illustrates
the overall design.

A data structure containing variables for event synchronization, error status, etc., is
used to describe each request. The pending request queue and list of free request
headers are part of the statics structure. The interrupt handler codeisthe sameasin
exclusive access design.
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request queue kernel thread interrupt handler

User tasks

Figure 6-1: Interrupt Handler Design

Top-Half Entry Point

drv_read (s, f, buff, count)
struct statics *s;

struct file *f;

char *buff;

int count;

struct req_hdr *req;
enqueue (s, req); /* enqueue request */

swait (& eq->i o_sem SEM S| GABORT);
/* wait for I/O conpletion */

Kernel Thread

kthread (s)
struct statics *s;

struct req_hdr *curr_req;

for (5:) {
curr_req = dequeue (s); /* wait for a request */
start _|O (s, curr_req); /* start I/O operation */
/* wait for 1/0O conpletion */
swait (&s->intr_sem SEM Sl 3 GNORE);

108 Writing Device Drivers for LynxOS



Priority Tracking

/* process interrupt, check for errors etc. */

if (error_found)
/* tell user task there was an error */
curr_reqg->error = 1;

/* wake up user task */

ssignal (&curr_reqg->io_sen);

Priority Tracking

The previous examples did not discuss the priority of the kernel thread. It was
assumed to be set statically when the thread is created. There is afundamental
problem with using a static thread priority in that, whatever priority is chosen,
there are always some conceivabl e situations where the order of task execution
does not meet real-time requirements. The same is true of systems that implement
separate scheduling classes for system- and user-level tasks.

The next figure shows two possible scenarios in a system using a static thread
priority. In both scenarios, Task A uses a device that generates work for the kernel
thread. Other tasks with different priorities exist in the system. These are
represented by Task B.

Kernel
Thread

Scenario 1 Scenario 2

Kernel
Thread

Priority

Figure 6-2: Scheduling with Static Thread Priorities
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Inthefirst scenario, Task B hasa priority higher than Task A but lower than that of
the kernel thread. The kernel thread will be scheduled before Task B, even though
it is processing requests on behalf of alower priority task. Thisis essentially the
same situation that occurs when interrupt processing is done in the interrupt
handler. In Scenario 2, the situation is reversed. The kernel thread is preempted by
Task B resulting in Task A being delayed.

The only solution that can meet the requirements of a deterministic real-time
system with bounded response timesis to alow the kernel thread priority to
dynamically follow the priorities of the tasks that are using adevice.
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User and Kernel Priorities

User applications can use 256 priority levels from 0-255. However, internaly, the
kernel uses 512 priority levels, 0-511. The user priority is converted to the internal
representation simply by multiplying it by two, asillustrated in the figure bel ow.

User Priorities

]

Z!

K XXX R KX T EXE T
ARG

511

Kernel Priorities

510
509
508

o~NW

Figure 6-3: User and Kernel Priorities

As can be seen, auser task will always have an even priority at the kernel level.
Thisresultsin “empty,” odd priority slots between the user priorities. These slots

play an important role in priority tracking.

The following examples discuss exclusive and multiple access driver designs for

illustrating priority tracking techniques.
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Exclusive Access

Whenever arequest is made to the driver, the top-half entry point must set the
kernel thread priority to the priority of the user task.

drv_read (s, f, buff, count)
struct statics *s;
struct file *f;
char *buff;
int count;
{
uprio = _getpriority ();
/* get priority of current task */
stsetprio (s->kt_id, (uprio << 1) + 1);
/* set k.t. priority */
start_I O (s, buff, count, READ);
/* start 1/0O on device */
swait (&s->io_sem SEM S| GABORT);
/* wait for 1/0O conpletion */
if (s->error) {
/* check error status */
pseterr (EIO;
return (SYSERR);
}
return (s->count);
/* return # bytes transfered */

}
Theexpression (uprio << 1) + 1 convertsthe user priority to akernel-level
priority. The thread priority isin fact set to the odd numbered kernel priority just
above the priority of the user task. This ensures that the kernel thread executes
before any tasks at the same or lower priority as the user task making the request
but after any user tasks of higher priority, as shown in the figure below.
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Kernel Priorities

User priority n + 1——9

Priority of kernel thread
serving user task at priority n

User priority n ———

Figure 6-4: Kernel Thread Priorities

When the request has been completed, the thread resetsits priority to itsinitial
value.

kt hread (s)
struct statics *s;

for (i3) {
swait (&s->intr_sem SEM S| G GNORE);
/* wait for work to do */

/* process interrupt, check for errors etc. */

if (error_found)
s->error = 1;
/*tell user task there was an error*/
ssignal (&s->io0_sen);
/* wake up user task */
stsetprio (s->kt_id, 1);
/* reset kernel thread priority */
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Multiple Access

As previously discussed, the driver maintains a queue of pending requests from a
number of user tasks. These tasks probably have different priorities. Therefore, the
driver must ensure that the kernel thread is always running at the priority of the
highest priority user task that has a request pending. If the requests are queued in
priority order this ensures that the thread is always processing the highest priority
request. The thread priority must be checked and adjusted at two places: whenever
anew reguest is made, and whenever arequest is completed.

How can the driver keep track of the priorities of all the user tasks that have
outstanding requests? In order to do so, the driver must use aspecial data structure,
struct priotrack,definedin st. h. Basicaly, the structureisaset of counters,
one for each priority level. The value of each counter represents the number of
outstanding requests at that priority. The values of the counters are incremented
and decremented using the routines pri ot _add and pri ot _renove. The
routine pri ot _max returnsthe highest priority in the set.

The use of these routinesisillustrated in the following code examples.

Top-Half Entry Point

The top-half entry point must first use pri ot _add to add the new request to the
set of tracked requests. The code then decides whether the kernel thread’s priority
must be adjusted. Thiswill be necessary if the priority of the task making the new
request is higher than the thread’s current priority. A variablein the statics structure
isused to track the kernel thread's current priority. The request header must also
contain afield specifying the priority of the task making each request. Thisis used
by the kernel thread.

drv_read (s, f, buff, count)

struct statics *s;

struct file *f;

char *buff;

int count;

{

.u.p.rio = _getpriority (); [/* get user task priority */

reg->prio = uprio; /* save for later use */
enqueue (s, req); /* enqueue request */
/*

* Do priority tracking. Add priority of new request
* to set. If priority of new request is higher than
* current thread priority, adjust thread priority.
*/
swai t (&s->prio_sem SEM S| G GNORE) ;
/* synchronize with kernel thread */
priot_add (&s->priotrack, uprio, 1);
if (uprio > s->kt_prio) {

stsetprio (s->kt_id, (uprio << 1) + 1);
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s->kt _prio = uprio;

ssi gnal (&s->prio_sem;
swait (& eg->i o_sem SEM S| GABORT);
/* wait for I/O conpletion */

Kernel Thread

When the kernel thread has finished processing arequest, the priority of the
completed request isremoved fromthe set using pri ot _r enove. Thethread must
then determine whether to change its priority, depending on the priorities of the
remaining pending requests. Thethread uses pri ot _max to determinethe highest
priority pending request.

kt hread (s)
struct statics *s;

{
for (i1) {
;:ﬁ.rr_req = dequeue (s); /* wait for a request */
start _1O (s, curr_req); /* start |/O operation */

swait (&s->intr_sem SEM S| G GNORE);
/* wait for I/0O conpletion */

/* process interrupt, check for errors etc. */

/*
* Do priority tracking. Renpve priority of
* conpl eted request fromset. Determ ne high
* priority of remaining requests. If this is
* | ower than current priority, adjust thread
* priority.
*/
swai t (&s->prio_sem SEM SI G GNORE);
/* synchronize with top-half */
priot_renove (&s->priotrack, curr_reqg->prio);
maxprio = priot_max (&s->priotrack);
if (maxprio < s->kt_prio) {
stsetprio (s->kt_id, (maxprio << 1) + 1);
s->kt _prio = maxprio;

ssi gnal (&s->prio_sen;

Non-Atomic Requests

The previous examplesimplicitly assumed that requests made to the driver are
handled atomically. That isto say, the device handles an arbitrary-size data
transfer. Thisis not always the case. Many devices have alimit on the size of the
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transfer that can be made, in which case, the driver may have to divide the user
datainto smaller blocks. A good exampleisadriver for aserial device. A user task
may request atransfer of many bytes, but the device can only transfer one byte at a
time. The driver must split the request into multiple single byte requests.

From the point of view of priority tracking, a single task requesting an n byte
transfer isequivalent to n tasksrequesting single-byte transfers. Since each byte
ishandled as a separate transfer by the driver (each byte generates an interrupt), the
priority tracking counters must count the number of bytes rather than the number
of requests.

Thefunctions pri ot _addn andpriot_renoven canbe usedto addand
remove multiple requests to the set of tracked priorities. What is defined as a
request depends on the way the driver isimplemented. It will not aways
correspond on a one-to-one basis with arequest at the application level.

Taking again the example of adriver for aserial device, asingle request at the
application level consists of acall to the driver to transfer abuffer of length

n bytes. However, the driver will split the buffer into n single-byte transfers,
each byte representing arequest at the driver level. The top-half entry point would
add n requeststo the set of tracked prioritiesusing pri ot _addn. Aseach byteis
transferred, the kernel thread would remove each request priority using
priot_renove.

The priority of the kernel thread would only be updated when all bytes have been
transferred. It is very important that the priority tracking is based on requests as
defined at the driver level, not the application level, in order for the priority
tracking to work correctly.

Controlling Interrupts

116

One of the problems discussed concerning drivers that perform all interrupt
processing in the interrupt handler is that in certain circumstances, a device can
generate a series of interruptsin rapid succession. For many devices, the use of a
kernel thread and priority tracking illustrated above resolves the problem.

Take, for example, adisk driver. The figure below represents a situation that can
occur in asystem without kernel threads. A lower priority task makes multiple
requests to the driver. Before these requests are completed, a higher priority task
begins execution. But the higher priority task is continually interrupted by the
interrupt handler for the disk. Because of the amount of processing that can be
done within the interrupt handler and because the number of requests queued up
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for the disk could have been very large, the response time of the system and
execution time for the higher priority task is essentially unbounded.

> A
S
e Interrupts from disk used by Task B
Interrupt
Handler
Task A
Higher priority Task A
contintually interrupted
by disk interrupts
Task B |:| Lower priority Task B makes
multiple requests to disk driver
Time

Figure 6-5: Interrupt Handling without Kernel Threads

The next figure shows the same scenario using kernel threads. The important thing
to note isthat the higher priority task can only be interrupted once by the disk. The
kernel thread is responsible for starting the next operation on the disk, but because
the kernel thread’s priority is based on Task B’s priority, it will not run until the
higher priority task has completed. In addition, the length of time during which
Task A isinterrupted by the interrupt handler isa small constant time, asthe
majority of the interrupt processing has been moved to the kernel thread.
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Figure 6-6: Interrupt Handling with Kernel Threads

This scheme takes care of devices where requests are generated by lower priority
user tasks. But what about devices where datais being sent from aremote system?
Thelocal operating system cannot control when or how many packets are received
over an Ethernet connection. Or a user typing at a keyboard could generate
multiple interrupts.

The solution to these situations is again based on the use of kernel threads. For
such devices, the interrupt handler must disable further interrupts from the device.
Interrupts are then re-enabled by the corresponding kernel thread. So again, a
device can only generate a single interrupt until the thread has been scheduled to
run.

Any higher priority tasks will execute to completion before the device-related
thread and can be interrupted by a maximum of one interrupt from each device.
The use of thistechnique requiresthat the device has the ability to store some small
amount of incoming data locally during the time that itsinterrupt is disabled. This
isnot usually a problem for most devices.
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A network driver is defined as alink-level device driver that interfaces with the
LynxOS TCP/IP module. Unlike other drivers, anetwork driver does not interface
directly with user applications. It interfaces instead with the LynxOS TCPF/IP
module. Thisinterface is defined by a set of driver entry points and data structures,
described in the following sections.

Kernel threads play an important role in LynxOS networking software, not only
within the drivers, but also as part of the TCP/IP module.

The example code below illustrates these points for an Ethernet device. These
examples can easily be adapted to other technologies.

Kernel Data Structures

A network driver must make use of anumber of kernel data structures. Each of
these structuresis briefly described here and its useis further illustrated.

A driver must include the following header files, which define these structures and
various symbolic constants used in the rest of this chapter:

#i ncl ude <types. h>

#i ncl ude <io. h>

#i ncl ude <ioctl.h>

#i ncl ude <socket . h>

#i ncl ude <bsd/in. h>

#i ncl ude <bsd/if.h>

#i ncl ude <bsd/if_ether.h>
#i ncl ude <bsd/in_var.h

#i ncl ude <bsd/bsd_nbuf. h>
#i ncl ude <bsd/netisr.h>
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struct ether_header

The Ethernet header must be prefixed to every outgoing packet. It specifiesthe
destination and source Ethernet addresses and a packet type. The symbolic
constants ETHERTYPE | P, ETHERTYPE_ARP and ETHERTYPE_RARP can be

used for the packet type.
struct ether_header {
u_char ether_dhost[6]; /* dest Ethernet addr */
u_char ether_shost[6]; /* source Ethernet addr */
u_short ether_type; /* Ethernet packet type */
}
struct arpcom

The ar pcom structure is used for communication between the TCP/IP module
and the network interface driver. It containsthe i f net structure (described
below) and the interface’s Ethernet and Internet addresses. This structure must be
thefirst element in the statics structure.
struct arpcom {

struct ifnet ac_if;/* network visible interface */

u_char ac_enaddr|[6]; /* Ethernet address */

struct in_addr ac_ipaddr; /* Internet address */

struct ether_multi *ac_nultiaddrs;

/* list of ether nulticast addrs */
int ac_multicnt;/* length of ac_multiaddrs |ist */

h

struct sockaddr

Thisisageneric structure for specifying socket addresses, containing an address
family field and up to 14 bytes of protocol-specific address data.

struct sockaddr {

u_char sa_len; /* total length */
u_char sa_fanmly; /* address famly */
char sa_data[ 14]; /* longer; addr value */

b

struct sockaddr _in
A structure used for specifying socket addresses for the Internet protocol family

struct sockaddr_in {

u_char sin_len;

u_char sin_famly; /* al ways AF_I NET */
u_short sin_port; /* port nunber */
struct in_addr sin_addr; /* host Internet addr */
char sin_zero[8];

b

120 Writing Device Drivers for LynxOS



struct in_addr

structin_addr
Structure specifying a 32 bit host Internet address

struct in_addr {
u_l ong s_addr;

b

structifnet

Thisisthe principle data structure used to communicate between the driver and the
TCP/IPmodule. struct ifnet isdefinedin /usr/include/bsd/if _var. h.
It provides the TCP/IP software with a generic hardware-independent interface to
the network drivers. It specifies a number of entry points that the TCP/IP module
can cal in the driver, aflag variable indicating general characteristics and current
state of the interface, a queue for outgoing packets, and a number of statistics
counters.
struct ifnet {

char *if_nane; /* name, e.g. "wd" or "oblan" */

char *p; /* user defined field */

struct ifnet *if_next;

/* all struct ifnets are chained */

struct ifaddr *if_addrlist;

/* linked list of addresses */
int if_pcount; /* nunber of prom scuous listeners */

caddr _t if_bpf; /* packet filter structure */
u_short if_index; /* nuneric abbreviation for if */
short if_unit; /* sub-unit for |lower level driver */
short if_tinmer; /* time ‘til if_-watchdog called */
short if_flags; /* up/down, broadcast, etc. */

struct if_data {
/* generic interface information */

u_char ifi_type; /* Ethernet, tokenring etc */
u_char ifi_addrlen; /* media address | ength */
u_char ifi_hdrlen; /* nmedia header length */
u_long ifi_ntu; /* maxi mum transm ssion unit */
u_long ifi_metric;/* routing netric (external) */
u_long ifi_baudrate; /* line speed */

/* volatile statistics */
u_long ifi_ipackets;/* packets received on i/f */

u_long ifi_ierrors; /* input errors on i/f */
u_long ifi_opackets; /* packets sent on i/f */
u_long ifi_oerrors; /* ouput errors on i/f */

u_long ifi_collisions;

/* collisions on csma i/f */

u_long ifi_ibytes;

/* total nunber of bytes received */
u_long ifi_obytes;

/* total nunber of octets sent */
u_long ifi_intasts;

/* packets received via nmulti-cast */
u_long ifi_ontasts;

/* packets sent via multi-cast */
u_long ifi_iqdrops;
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/* dropped on input, this interface */

u_long ifi_noproto;

/* destined for unsupported protocol */

struct timeval ifi_lastchange;/* |ast updated */

} if_data;

/* procedure handl es */

int (*if_init)(); /* init routine */
int (*if_output)(); /* output routine */
int (*if_start)(); /* initiate output routine */
int (*if_done)(); /* output conplete routine */
int (*if_ioctl)(); /* ioctl routine */
int (*if_reset)(); /* bus reset routine */
int (*if_watchdog)(); /* timer routine */
i

nt (*if_setprio)(); /* prio tracking of kthread */

/* output queue */
struct ifqueue {
struct nbuf *ifqg_head;
struct nmbuf *ifq_tail;
int ifg_len;
int ifg_maxlen;
int ifq_drops;
} if_snd;
struct raweth *if_raweth;
h
The symbolic constants | FF_UP, | FF_RUNNI NG and | FF_BROADCAST can be

used to set bitsinthe i f _fl ags field.

Looking at the ar pcom structure, notice that the first member isan i f net
structure. A driver should declarea struct ar pcom as part of the statics
structure and usethe i f net structure within this. Thereis an important reason for
this, explained in “ioctl Entry Point” on page 134.

struct mbuf

Data packets are passed between the TCP/IP module and a network interface driver
using mbuf structures. This structure is designed to allow the efficient
encapsulation and decapsulation of protocol packets without copying data. A
number of functions and macros are defined in mbuf . h for using mbuf
structures.

/* header at beginning of each nbuf: */
struct mhdr {

struct mbuf *mh_next; /* next buffer in chain */

struct mbuf *mh_next pkt; /* next chain in queue */

int nmh_l en; /* amount of data in this mbuf */
caddr_t nh_data; /* location of data */

short mh_t ype; /* type of data in this nmbuf */
short mh_f 1 ags; /* flags; see below */

b

/* record/ packet header in first nbuf of chain;
* valid if MPKTHDR set

*

/
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struct pkthdr {
int len; /* total packet l|ength */
struct ifnet *rcvif; /* rcv interface */

b

/* description of external storage napped into nbuf,
* valid if MEXT set

*/
struct mext {

caddr _t ext_buf; /* start of buffer */

void (*ext_free)(); /* free routine */

u_int ext _si ze; /* size of buffer, for ext_free */
b

struct nmbuf {
struct mhdr mhdr;

uni on {
struct {
struct pkthdr MH_pkthdr; /* M PKTHDR set */
uni on {
struct mext M _ext; /* MEXT set */
char MH_dat abuf [ VHLEN] ;
} MH_dat;
} MH
char M dat abuf [ MLEN ; /* I M PKTHDR, ! M EXT */
} Mdat;
b
#def i ne m_next m_hdr . mh_next
#define mlen m_hdr. nmh_|l en
#define mdata m_hdr. mh_dat a
#define mtype m_hdr. mh_type
#define mflags m_hdr. mh_f | ags
#def i ne m_next pkt m_hdr . mh_next pkt
#define m act m_next pkt
#def i ne m_pkt hdr M dat . MVH. MH_pkt hdr
#defi ne m ext M dat . MVH. MH_dat . MH_ext
#def i ne m pkt dat M dat . MVH. MH_dat . MH_dat abuf
#def i ne m dat M dat . M _dat abuf

Adding or Removing Data in an mbuf

The position and size of data currently inan nbuf areidentified by a pointer and
alength. By changing these values, data can be added or deleted at the beginning
or end of the mbuf . A pointer to the start of the datain the nmbuf can be obtained
usingthe nt od macro. The pointer is cast asan arbitrary datatype, specified asan
argument to the macro. For example:

char *cp;
struct nbuf *nb;

cp = nmtod (nmb, char *);
/* get pointer to data in mbuf */
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Themacro dt om takes a pointer to data placed anywhere within the data portion
of the mbuf and returnsapointer tothe nmbuf structureitself. For example, if we
know that cp points within the data area of an nbuf , the sequence will be;

struct nbuf *nb;
char *cp;

nmb = dton(cp);

Datais added to the head of an nbuf by decrementing the m dat a pointer,
incrementing the m | en value and copying the data using a function such as
bcopy. Datais added to the tail of an mbuf inasimilar manner by incrementing
the m | en value. The ability to add datato thetail of an mbuf isuseful for
implementing trailer protocols; LynxOS does not currently support such protocols.

Datais removed from the head or tail of an nbuf by simply incrementing the
m dat a pointer or decrementing m | en.

Allocating mbufs

The above examples did not discuss what to do when sufficient space is not
availableinan nmbuf toadddata Inthiscase, anew nbuf canbeallocated using
thefunction m get . Thenew nbuf islinked ontotheexisting mbuf chain using
its m next field. m get can bereplaced with MGET, which isamacro rather
thanafunction call. MGET producesfaster code whereas m get resultsinsmaller
code. The example to add datato the beginning of a packet now becomes:

struct nbuf *m
caddr _t src, dst;

MGET(m M _DONTWAI T, MI_HEADER) ;
if (m== NULL)
return (ENOBUFS);
dst = ntod (m caddr_t);
bcopy (src, dst, n);

The second argument to m get or MGET specifies whether the function should
block or return an error when no nbuf s are available. A driver should use
M_DONTWAI T, which causesthe nbuf pointer tobesetto 0if no nbufs arefree.

Thethird argument to m get or MGET specifieshow the mbuf will be used.
Thisisfor statistical purposes only and is used, for example, by the command
net stat -m Thetypes used by anetwork driver are MI_HEADER for protocol
headersand MI_DATA for data packets.
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mbuf Clusters

When receiving packets from a network interface, adriver must allocate nbuf s to
store the data. If the data packets are large enough, a structure known asan nbuf
cluster can be used. A cluster can hold more datathan aregular mbuf ; MCLBYTES
bytes as opposed to MLEN. As arule, there is benefit to be gained from using a
cluster if the packet islarger than MCLBYTES/ 2.

Freeing mbufs

Because thereisalimited number of mbuf s inthe system, the driver must take
careto free mbuf s at appropriate points. These are listed bel ow:

Packet Outpuit:

e Interfaceisdown

¢ Address family not supported

* No nbufs for Ethernet header

e if_snd queueisfull

e After packet has been transferred to interface
Packet Inpuit:

¢ Not enough nbufs to receive packet

¢ Unknown Ethernet packet type

e Input queueisfull

The sections “Packet Input” and “Packet Output” show appropriate code examples
for each of the above situations. Failure to free them will eventually lead to the
system running out of nbuf s.

Table 7-1: Summary of Commonly Used mbuf Macros

Macro Description

MCLGET Get acluster and set the data pointer of the nbuf to point to the
cluster.

MFREE Freethe nmbuf . Onreturn, the mbuf successor (pointed to by

m >m_next ) is stored in the second argument.

MGETHDR Allocatean mbuf andinitializeit as a packet header.
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Table 7-1: Summary of Commonly Used mbuf Macros (Continued)

Macro Description

VH_ALI GN Setthe m dat a pointer toan mbuf containing a packet header to
place an object of the specified size at the end of nbuf , longword
aligned.

M_PREPEND Prepend specified bytes of datain front of the datainthe nbuf .

dt om Convert the data pointer within nmbuf to nmbuf pointer.

nm od Convert mbuf pointer to data pointer of specified type.

NOTE: MCLGET, MFREE, MGETHDR, MH_ALI G\, and M PREPEND are protected
by network semaphore lock.

Table 7-2: Summary of Commonly Used mbuf Functions

Function Description

m_adj Remove datafrom nbuf at start or end.
m cat Concatenate one nbuf chain to another.
m_copy Version of m_copym that does not wait

m_copydat a Copy datafrom mbuf chain to abuffer.

m_copyback Copy data from buffer toan nbuf chain.

m copym Createanew mnbuf chainfrom anexisting nbuf chain.

m _devget Createanew nbuf chainwith apacket header from datain a buffer.
mfree A function version of MFREE macro

m freem Freeadl nbufs inachain.

m get A functional version of MGET macro.

m getclr Get an nmbuf and clear the buffer.

m_get hdr A function version of the MGETHDR macro.

m pul | up Pull up data so that a certain number of bytes of data are stored

contiguously inthefirst mbuf inthechain.
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Statics Structure

In keeping with the general design philosophy of LynxOS drivers, network drivers
should define a statics structure for all device-specific information. However, the
TCP/IP software has no knowledge of this structure, which is specific to each
network interface, and does not pass it as an argument to the driver entry points.

The solution to thissituationisfor the i f net structure to be contained within the
statics structure. The user-defined field, p, inthe i f net structure, isinitialized to
contain the address of the statics structure.

Given the address of the i f net structure passed to the entry point from the
TCP/IP software, the driver can obtain the address of the statics structure as
follows:

struct ifnet *ifp;
struct statics *s = (struct statics *) ifp->p;

The ar pcom structure must be the first element in the statics structure. In the code
examples below, the ar pcom structureis named ac.

Packet Queues

A number of queues are used for transferring data between the interface and the
TCP/IP software. There is an output queue for each interface, contained in the

i f net structure. There are two input queues used by all network interfaces. One
for 1P packets and another for ARP/RARP packets. All queues are accessed using
the macros | F_ENQUEUE, | F_DEQUEUE, | F_QFULL, or | F_DROP.
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Driver Entry Points
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A network driver contains the following entry points:

Table 7-3: Network Driver Entry Points

Entry Point Description

install/uninstall Called by the kernel in the usual manner. The i nst al |
routine must perform a number of tasks specific to network
drivers.

interrupt handl er The interrupt handler is declared and called in exactly the
same manner as for other drivers.

out put Called by TCP/IP software to transmit packets on the
network interface

ioctl Called by TCP/IP software to perform a number of
commands on the network interface.

wat chdog Called by the TCP/IP software after a user-specified
timeout period.

reset Called by the kernel during the reboot sequence.

setprio Called by the TCP/IP software to implement priority
tracking.

By convention, the entry point names are prefixed with the driver name.

install Entry Point

In addition to the usual things doneinthe i nstal | routine (allocation and
initialization of the statics structure, declaration of interrupt handler, etc.), the
driver must also fill in the fields of the i f net structure and make the interface
known to the TCP/IP software. Note also that hardware initiaization is normally
doneinthe i oct!| routinerather thaninthe install routine.

Finding the Interface Name

The i nstal | routinemustinitializethe i f _nane fieldinthe i f net structure.
Thisisthe name by which the interface isknown to the TCP/IP software. It isused,
for example, asan argument to the i f confi g and net stat utilities.
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Theinterface name is a user-defined field specified in the driver’s device
configuration file (drvr. cfg) inthe / sys/ | ynx. os directory. The usual
technique used by the driver to find thisfield isto search the ucdevsw tablefor
an entry with amatching device information structure address. ucdevsw isa
kernel table containing entries for all the character devices declared in the

CONFI G TBL file. The kernel variable nucdevsw givesthe size of thistable.

extern int nucdevsw,

extern struct udevsw entry ucdevsw];
struct statics *s;

struct ifnet *ifp;

ifp->f_nane = (char *) O;
for (i = 0; i < nucdevsw, i++) {
if (ucdevswfi].info == (char *) info) {
if (strlen (ucdevswfi].nane) > | FNAMSI Z) {
sysfree (s, (long) sizeof (struct statics));
return ((char *) SYSERR);

i fp->i f_nane = ucdevswi]. nane;
br eak;

}

}

if (ifp->if_name == (char*) 0) {
sysfree (s, (long) sizeof (struct statics));
return ((char *) SYSERR);

NoTE: This method only works for statically installed drivers. Dynamically
installed drivers do not have an entry in the ucdevsw table.

Initializing the Ethernet Address

The ac_enaddr fieldinthe ar pcom structureis used to hold the interface’'s
Ethernet address, which must be included in the Ethernet header added to all
outgoing packets. The i nstal | routine should initialize this field by reading the
Ethernet address from the hardware.

struct statics *s;
get _ether_addr (&s->ac.ac_enaddr);

In the above example, get _et her _addr would be a user written function that
reads the Ethernet address from the hardware.

Initializing the ifnet Structure

Thevariousfieldsinthe i f net structure should be initialized to appropriate
values. Unused fields should be set to zero or NULL. Once the structure has been
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initialized, the network interface is made known to the TCP/IP module by calling
the appropriate network interface attach routine, for example
ether_ifattach() for Ethernet drivers.

struct statics *s;
struct ifnet *ifp;

ifp->if_timer =0 ;

ifp->p = (char *) s;/* address of statics structure */
ifp->if_unit = 0;

ifp->if_init = NULL;

i fp->if_output = ether_output;

ifp->if_ioctl drvr_ioctl;

ifp->if_reset drvr_reset;

ifp->if_start = drvr_start;

ifp->f_setprio = drvr_setprio;

i fp->if_watchdog = drvr_watchdog;

ether_ifattach (ifp);

Notethat the i f _out put handleinthe i f net structure should point to the

et her _out put routinein the TCP/IP module. Previously it pointed to the driver
specific local routine. In BSD 4.4, most of the hardware-independent output code
has been moved to the et her _out put routine. After the et her _out put
routine has packaged the data for output, it calls a start routine specified by

i f_start,amember of theinterface i f net structure. For example:

ifp->if_start = lanstart;

Packet Output

130

The processing of outgoing packets is divided into two parts. The first part
concerns the TCP/IP module, which is responsible for queueing the packet on the
interface’s output queue. The actual transmission of packets to the hardwareis
handled by the driver start routine and the kernel thread. The driver is
responsiblein all casesfor freeing the nmbuf s holding the data once the packet has
been transmitted or when an error is encountered.

ether_output Function

A number of tasks previously performed by the driver output routine are now done
in TCP/IP moduleby et her _out put routine. Thusthe i f _out put field of the
interface i f net structureisinitialized to the address of the et her _out put
routineinthedriver i nstal | routine:

ifp->if_output = ether_output;
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This causes et her _out put routine to be called indirectly when the TCP/IP
modul e has a packet to transmit. After enqueuing the packet to transmit,

et her _out put calsadevice-specific functionindirectly throughthe i f _start
pointer inthe i f net structure. For example, if i fp pointstoan i f net
structure,

(*ifp->if_start)(ifp),

theif_start fieldisasoinitiaized by thedriver i nstal | routine. Thedriver
start routine starts output on the interface if resources are available. Before
removing packets from the output queue for transmission, the code normally hasto
test whether the transmitter isidle and ready to accept a new packet. It typically
dequeues a packet (which is enqueued by et her _out put ) and transmitsiit.

if (ds->xnt_pending) {

/* if already one transmission is in progress */
return 1;

}
| F_DEQUEUE( & fp->if_snd, m;
if (m==0) {

return O;

}

ds->xnt _pending = 1;

/* Initiate transmission if using Berkeley packet filter */
if (ifp->if_bpf)

bpf _nt up(m
return O;

One important point to consider is that the start routine can now be called by the
TCP/IP module (by way of et her _out put ) and the driver stream task upon
receiving an interrupt. Thus, the start routine must protect code and data in the
critical area. For example, it could check a pending flag, which is set before
starting to transmit, and cleared when a transmit done interrupt is received. If the
transmit start routine is not reentrant, it could signal a semaphorein order to notify
the driver’'s kernel thread that packets are now available on the output queue. The
routine should then return 0 to indicate success. For example:

ssi gnal (&s- >t hread_sem);
return (0);

Also note that the total dataavailablein an nbuf can be obtained from the nbuf
packet header. For example:

/* put nbuf data into TFD data area */

I ength = m>m pkthdr.|en;

m copydata(m 0, length, p);
mfreem(m;
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Kernel Thread Processing
The kernel thread must perform the following activities relating to packet output.
e Start transmission

* Maintain statistics counters

Starting Transmission

As explained above, the kernel thread also calls the driver start routine to start
transmission. The transmit start routine dequeues a packet from the interface send
gueue and transmits it.

Statistics Counters

The counters relating to packet output arethe i f _opackets, i f_oerrors, and
if_collisions fieldsinthe i fnet sructure. The i f _opackets counter
should be incremented for each packet that is successfully transmitted by the
interface without error. If the interface indicates that an error occurred during
transmission, the i f _oerrors counter should be incremented. The driver should
aso interrogate the interface to determine how many collisions, if any, occurred
during transmission. A collision is not necessarily an error condition. An interface
normally makes a number of attemptsto send a packet before raising an error
condition.

Packet Input
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When packets are received by a network interface they must be copied from the
deviceto mbufs and passed to the TCP/IP software. Because this can take a
significant amount of time, the bulk of the processing of incoming packets should
be done by the driver’s kernel thread so that it does not impact the system’sreal-
time performance. The interrupt handler routine should do the minimum necessary
to ensure that the interface continues to function correctly.

To maintain bounded system response times, the interrupt handler should also
disable further interrupts from the interface. These will be re-enabled by the
driver’s kernel thread. The processing of input packets involves the following
activities:

» Determining packet type
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e Copying datafrom interfaceinto nbuf s
e Stripping off Ethernet header

« Enqueueing packet on input queue

¢ Re-enabling receiver interrupts

e Maintaining statistics counters

Determining Packet Type

The packet type is specified in the Ethernet header and is used by the driver to
determine where to send the packet received. In the following code, the pt r
variable is assumed to be a pointer to the start of the received Ethernet frame. The
use of the nt ohs function ensures the portability of code across different CPU
architectures.

ether_type = ntohs (((struct ether_header *)ptr)->ether_type);

Copying Data to mbufs

Most network devices have local RAM, which isvisible to the device driver. On
packet reception, the driver must allocate sufficient mbuf s to hold the received
packet, copy the datato the nbuf s, then passthe nbuf chainto the TCP/IP
software. The i f net structureis added to the start of the packet so that the upper
layers can easily identify the originating interface. The Ethernet header must be
stripped from the received packet. This can be achieved simply by not copying it
into the mbuf (s). If the entire packet can not be copied, any alocated nbuf s
must be freed. The following code outlines how a packet is copied from the
hardwareto nmbufs usingthe m devget routine. m devget iscalled withthe
address and the size of the buffer that containsthe received packet. It createsanew
mbuf chain and returns the pointer to the chain.

m = mdevget (buf, len, 0, ifp, 0);

i f p isthe deviceinterface pointer. The variable buf pointsto thereceived data.
Thisisusualy an addressin the interface’s local RAM.

By default, m devget uses bcopy, which copies data one byte at atime.

A driver can provide a different algorithm for more efficiency and pass its address
tothe m devget routine.
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Enqueueing Packet

The packet read routinefinaly callsaTCP/IPmodule called et her _i nput to
enqueue the received packet on one of the TCP/IP software’s input queues for
further processing.

struct ifnet *ifnet;

struct ether_header *et;
struct nmbuf *m

ether_input(ifp, et, m;

Statistics Counters

The countersrelating to packet input arethe i f _i packets and if_ierrors
fildsinthe i f net structure. The i f _i packet s counter should be incremented
for each packet that is successfully transferred from the interface and enqueued on
the TCP/IP input queue. Receive errors are normally indicated by the interfacein a
status register. Inthiscasethe i f _i errors counter should be incremented.

ioctl Entry Point
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The ioct!| entry pointiscalled by the TCP/IP software in the following syntax:

drvr_ioctl (ifp, cnd, arg)

struct ifnet *ifp;

int cnd; /* ioctl command id */
caddr _t arg; /* comand specific data */

The i oct!| function must support the two commands SI OCSI FADDR and
SI OCSI FFLAGS.

SIOCSIFADDR

This command is used to set the network interface’s | P address. Currently, the only
address family supported is Internet. Typically this i oct| getscalled by the

i fconfig utility. Thedriver should setthe | FF_UP bitinthe i f _fl ags and
call the drvr _init functiontoinitiaize the interface. The argument passed to
the i oct| routineiscasttoapointertoan i faddr structure, which isthen used
toinitialize the interface’s Internet addressin the ar pcom structure. The driver
should also call ar pwhohas to broadcast its Internet address on the network. This
allows other nodes to add an entry for thisinterface in their ARP tables.
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SIOCSIFFLAGS

This command is used to bring the interface up or down and is called, for example,
by the command i f confi g name up. The TCP/IP software sets or resets the

| FF_UP hitinthe i f _f| ags field beforecallingthedriver’'s i oct| entry point
to indicate the action to be taken. An interface that is down cannot transmit
packets.

When the interface is brought up, the driver should call the drvr _i nit function
toinitialize the interface. When the interface is brought down, the interface should
bereset by caling drvr_reset . Inboth cases, the statistics countersin the

i fnet structure should be zeroed.

The driver normally defines a flag in the statics structure that it uses to keep track
of the current state of the interface (s- >ds_f | ags in the example code below).

struct statics *s;
struct ifaddr *ifa;

case S| OCSI FADDR:
ifa = (struct ifaddr *) arg;
ifp->if_flags |= | FF_UP;
drvr_init (s);
switch (ifa->fa_addr->sa_famly) {
case AF_INET :
((struct arpcont)ifp)->ac_ipaddr = A SIN
(ifa)->sin_addr;
ar pwhohas ((struct arpcont)ifp, & A_SIN
(ifa)->sin_addr);
break;
defaul t :
br eak;
}

br eak;

case S| OCS| FFLAGS:

if ((ifp->if_flags & IFF_UP) == 0 && s->ds_flags & DSF_RUNNI NG {
drvr_reset (s); /* interface going down */
s->ds_flags & ~DSF_RUNNI NG

} elseif ((ifp->if_flags & |FF_UP) &&
I (s->ds_flags & DSF_RUNNING)) {

drvr_init(s); /* interface coming up */

}
i fp->if_ipackets
i fp->i f_opackets
ifp->if_ierrors
ifp->f_oerrors
ifp->if_collisions
break;

o
oo ooo
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watchdog Entry Point

The wat chdog entry point can be used to implement afunction that periodically
monitors the operation of the interface, checking for conditions such as a hung
transmitter. The function can then take corrective action if necessary. If the driver
does not have awatchdog function, the corresponding fieldinthe i f net structure
should besetto NULL beforecalling i f _att ach.

The watchdog function is used in conjunction withthe i f _ti mer fieldinthe

i fnet structure. Thisfield specifies atimeout interval in seconds. At the
expiration of thisinterval, the TCP/IP module callsthe wat chdog entry point in
thedriver, passing it the p field from the i f net structure as an argument. The p
field is normally used to contain the address of the statics structure.

Note that the timeout interval specified by i f _ti mer isaone-shot function. The
driver must reset it to anon-zero value to cause the watchdog function to be called
again. Settingthe i f _ti mer valueto O disables the watchdog function.

reset Entry Point

This entry point is called by the kernel during a reboot sequence, passing it the p
field fromthe i f net structure, which is normally the address of the statics
structure. This function may also be called internally from the driver’s i oct |
entry point. The function should reset the hardware, putting it into an inactive state.

Kernel Thread
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The kernel thread receives events from two sources, the interrupt handler
(indicating completion of apacket transmission or reception) and the driver output
routine (indicating the availability of packetsonthe i f _snd queue). A single
event synchronization semaphore is used for both purposes. The thread should
handle interrupts first and then the packets on the output queue. The general
structure of the thread |ooks something like:

struct statics *s;

for (;;) {
swait (&s->threadsem SEM S| G GNORE);
handl e_i nterrupts (s);/* handle any interrupts */
out put _packets (s);
/* start tranmitter if necessary */

}
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The precise details of the thread code depend on the hardware architecture. The
function for processing interrupts contains the packet input code discussed above.
It also maintains the various statistics counters. Also, receiver interrupts, if
disabled by the interrupt handler, are re-enabled at this point. The output function
performs the tasks discussed above in the “ Packet Output” section.

Priority Tracking

Whenever the set of user tasks using the TCP/I P software changes or the priority of
one of these tasks changes, the set pri o entry point in the driver isinvoked to
allow the driver to properly implement priority tracking on its kernel thread. The
entry point is passed two parameters, the address of the i f net structure and the
priority that the kernel thread should be set to. For example:

drvrsetprio (ifp, prio)

struct ifnet *ifp;
int prio;

int ktid; /* kernel thread id */
ktid = ((struct statics *) (ifp->p))->kthread_id;

stsetprio (ktid, prio);
}

Driver Configuration File

The driver configuration file drvr. cfg inthe /sys/|ynx. os directory needs
todeclareonly the i nstal | (and uni nst al | ) entry points. The other entry
points are declared to the TCP/IP module dynamically using the i f _attach
function. A typical configuration file looks something like:

:::wd3ei nstal | : wd3euni nstal |
:wd3e0_i nfo::
0:
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IP Multicasting Support
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ether_multi Structure

For each Ethernet interface thereis alist of Ethernet multicast address rangesto be
received by the hardware. Thislist defines the multicast filtering to be
implemented by the device. Each addressrangeisstoredinan et her _mul tii
structure. For example:

struct ether_multi {

u_char enmaddrlo[6]; /* lowonly addr of range */
u_char enm.addrhi[6]; /* high/only addr of range */
struct arpcom *enm ac; /* back pointer to arpcom */
u_int enmrefcount; /* numclains to addr/range */
struct ether_multi *enm next;
/* ptr to next ether_nulti */

b

Theentirelist of ether _nul ti isattached totheinterface’s ar pcom structure.

If the interface supports |P multicasting, the i nst al | routine should set
the | FF_MULTI CAST flag. For example:

ifp->if_flags = | FF_BROADCAST | | FF_MJLTI CAST;

i f p isapointer totheinterface i f net structure.

Twonew ioctls needtobeadded. Theseare SI OCCADDMULTI to add
the multicast address to the reception list and SI OCCDELMULTI to delete
the multicast address from the reception list. For example:

case S| OCADDMULTI :
case S| OCDELMULTI :
/* Update our multi-cast list */
error = (crmd == SI OCADDMULTI) ?
ether_addmul ti ((struct ifreq *)data, &s->es_ac) :
ether_delmulti((struct ifreq *)data, &s->es_ac);

if (error == ENETRESET) {
/*
* Multi-cast |list has changed; set the
* hardware filter accordingly.
*/
| anreset (s);
error = 0;

}
The driver reset routine must program the controller filter registers from
the filter mask calculated from the multicast list associated with this
interface. Thislist isavailableinthe ar pcom structure and there are
macros available to access the list. For example:
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struct ifnet *ifp = &->s_if;
register struct ether_nulti *enm
register int i, len;

struct ether_nultistep step;

/
Set up nulti-cast address filter by passing
all multi-cast addresses through a crc
generator, and then using the high order 6
bits as a index into the 64 bit |ogical
address filter. The high order two bits
select the word, while the rest of the bits
select the bit within the word.

/

* ok ok ok ok ok % %

bzero(s->ntast_filter, sizeof(s->ntast_filter));
ifp->f_flags & ~IFF_ALLMILTI;
ETHER _FI RST_MJULTI (step, &s->es_ac, enn);

while (enm!= NULL) {
if (bcnp((caddr_t)&nm >enm addrl o,
(caddr _t) &nm >enm addr hi ,
si zeof (enm >enm addrl o)) != 0) {
/*
* We nust listen to a range of multi-cast
* addresses. For now, just accept all
* nulti-casts, rather than trying to set only
* those filter bits needed to match the
* range.
* (At this time, the only use of address
* ranges is for IP multi-cast routing, for
* which the range is big enough to require
* all bits set.)
*/
for (i=0; i<8; i++)
s->ntast _filter[i] = Oxff;
ifp->if_flags | = | FF_ALLMULTI;
break;
}
getcrc((unsigned char *)&enm >enm addrl o,
s->ntast_filter);
ETHER_NEXT_MULTI (step, enm;
}

e If thedriver input routine receives an Ethernet multicast packet, it should
setthe M_MCAST flag inthe nbuf beforepassingthat nbuf to
et her _i nput . For example:
char *buf;
struct ether_header *et;
u_short ether_type;

struct nmbuf *m = (struct nmbuf *)NULL;
int flags = 0;

/* set buf to point to start of received frame */
et = (struct ether_header *) buf;
ether_type = ntohs((u_short) et->ether_type);

if (et->ether_dhost[0] & 1)

Writing Device Drivers for LynxOS 139



Chapter 7 - Network Device Drivers

flags | = M _MCAST;

/* pull packet off interface */

.r'r*.r'>m_flags | = flags;
ether_input(ifp, et, m;
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This chapter discusses the two methods of device driver installation in LynxOS:
static and dynamic.

Static Versus Dynamic Installation

This section provides a comparison the two methods of device driver installation to
assist the developer in choosing the type of installation to suit specific
reguirements.

Static Installation

With this method, the driver object code isincorporated into the image of the
kernel. The driver object codeis linked with the kernel routines and isinstalled
during system start-up. A driver installed in this manner can be removed; however
its text and data segments remain within the body of the kernel.

The advantages of static installation are:

« Devicesareinstantly available upon system start-up, simplifying system
administration. The initial console and root file system devices must use
static installation.

e Theinstallation procedure can be avoided each time the system reboots.

e Static linking allows the driver symbolsto be visible from within the
kernel debugger.

NoTe: While neither installation method affects adevice driver’sfunctionality, it is
recommended to use dynamic installation during the development of anew driver.
The device driver can be installed statically after it has been fully tested.
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Dynamic Installation

This method allowsthe installation of adriver after the operating system is booted.
The driver object code is attached to the end of the kernel image and the operating
system dynamically adds this driver to itsinternal structure. A driver installed in
this fashion can also be removed dynamically.

The advantages of dynamic installation are as follows:

« Dynamicinstalation is useful when the device driver is being written.
The ease of installation and uninstallation makes it ideal for faster
development and debugging.

* Morethan onedriver can be used for the same device. If thereisaneed to
use two drivers for the same device, they can be installed according to
system needs.

» Memory is not wasted on seldom-used drivers. They are allocated only
when needed.

Static Installation Procedure

The code organization for static installation is shown in the table below.

Table 8-1: Code Organization for Static Installation

Directory File Description
/ | ynx. os LynxOS kernel
/sys/lib l'ibdrivers.a Drivers object code library

| i bdevi ces. a

Device information declarations

/ sys/ dheader s devinfo.h Device information definition

/ sys/ devi ces devinfo.c Device configuration file
Makefil e Instructions for making devl i b. a

[ sys/drivers/drvr driver source The source code for driver drvr tobeinstaled

/ sys/ |l ynx. os CONFI G TBL Master device and driver configuration file.
Makefil e Instructions for making /| ynx. os

letc nodet ab Device nodes

/sys/cfg driv.cfg Configuration filefor driv driver and its devices
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Driver Source Code

The following steps describe how to implement a static installation:

1. Create adevice information definition and declaration. Place the device
information definitionfiledevi nf o. hiinthedirectory / sys/ dheader s
along with the existing header files for other driversin the system.

2. Make surethat the device information declaration file devi nf o. ¢ isin
the / sys/ devi ces directory and has the following linesin thefilein
addition to the declaration.

#i ncl ude "../dheader s/ devi nfo. h"
This ensures the presence of the device information definition.

3. Compilethe devi nfo. ¢ file and update the
/'sys/lib/libdevices.a library filetoinclude devi nf o. 0. This
may also be automated by adding devi nfo. ¢ tothe Makefil e. For
example:

DEVI CE_FI LES=at ci nfo. x dtinfo.x flopinfo.x devinfo.x
4. Toupdate /sys/lib/libdevices. a, enter:

make install

Driver Source Code

Assuming the new driver iscalled dri ver, the following steps must be followed
for driver code installation.

1. Make anew directory driver under /sys/drivers and placethe code
of the device driver there.

2. Createa Makefil e tocompilethedevicedriver.

3. Updatethelibrary file /sys/1ib/1ibdrivers.a withthedriver
object file using the command:

make install

Device and Driver Configuration File

The device and driver configuration file should be created with the appropriate
entry points, major device declarations, and minor device declarations. The system
configuration fileis CONFI G. TBL inthe /sys/ | ynx. os directory.

The CONFI G TBL fileisused withthe confi g utility to produce driver and
device configuration tablesfor LynxOS. Drivers, major devices, and minor devices
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are listed in this configuration file. Each time the systemisrebuilt, confi g reads
CONFI G TBL and produces anew set of tables and a corresponding nodet ab file
for use with the nknod utility.

Configuration File: CONFIG.TBL
The parsing of the configuration filesin LynxOS follows these rules:
« Commands are designated by single letters as the first character in aline.
* Thefield delimiter isacolon (: ).
» Spaces between the delimiter are not ignored. They are treated literally.
* Blank lines areignored.

The special charactersin the configuration file are

Table 8-2: Special Characters

Character Description

# Indicates a comment in the configuration file. The rest of the lineis
ignored when thisisthefirst character in any line.

\ The continuation character to continue a line even within a comment

If the : isthefirst character intheline, it isignored.

I:fil enane | Indicatesthat the contents of thefile fi | enane should replace the
declaration.

The format of adevice driver entry with its major and minor device declarations
should look likethis:

# Character device

C.driver name:driveropen:driverclose: \
cdriverread:driverwite: \
cdriverselect:driverioctl: \
cdriverinstall:driveruninstall

: sone driver: devinfo::

: m nor _devi cel: m nor _nunber

: m nor _devi ce2: m nor _nunber

Z2Z09

Bl ock device

:driver nane:driveropen:driverclose: \
cdriverstrategy:: \
cdriverselect:driverioctl: \
cdriverinstall:driveruninstall

; some driver:devinfo::

. m nor _devi cel: m nor _nunber

; m nor _devi ce2: m nor _nunber

W #*

ZZ9
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Rebuilding the Kernel

The entry points should appear in the same order as they are shown here. If a
particular entry point is not implemented, the field is left out, but the delimiter
should still bein place.

If above declarationsarein afile dri ver. cf g, the entry
l:driver.cfg

should be inserted into the CONFI G TBL file.

Rebuilding the Kernel
To rebuild the LynxOS kernel, type the following commands:

cd /sys/lynx. os
make install

For the applications programs to use a device, a node must be created in thefile
system with nknod. This can be done automatically by using the nodet ab file
created by confi g.

When the system is rebooted to use the newly-created operating system, the
r eboot command should be given the N flag:

reboot -aN

The Nflag instructsi ni t to run mknod and create all the nodes mentioned in the
new nodet ab.

Dynamic Installation Procedure

Dynamic installation requires a single driver object file, and a pointer to the entry
points must be declared. The location of the driver source codeisirrelevant in
dynamic installation. Theinstallation of the dynamically-loaded device driver need
not be done manually. A shell script can be written or a C program can be used to
install the device driver after system startup.

Driver Source Code

Toinstall adevice driver dynamically the entry points must be declared in a
structure defined in dI dd. h. The variable should be named entry_poi nts and
for ablock composite driver, bl ock_entry_poi nts isalsorequired.
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The format of the dldd structureisillustrated below:

#i ncl ude <dl dd. h>
static struct dldd entry_points = { open, close, read
wite, select, ioctl, install, uninstall, 0}

For block composite drivers, the block driver entry points are specified as:

static struct dldd block_entry_points =
{ b_open, b_close, b_strategy, ionull, ionull, b_ioctl, b_install,
b_uninstall, 0}

Theincludefile dl dd. h must be included in the driver source code and the
declaration must contain the entry pointsin the same order asthey appear above. If
aparticular entry point is not present in adriver, the field in the didd structure
should refer to the external function i onul |, whichisakernel function that
simply returns OK. The last field in the didd structure was used for STREAMS
drivers, which are no longer supported by LynxOS. STREAMS functionality can
be replicated with mmap() . Seethe mmap() man page for details.

NoTEe: On the PowerPC platform, the dldd structure should not be declared
static.

The following example shows the null device driver that will be installed
dynamically.

J* e NULLDRVR. C == -« -smmmmmeamae- *]

#i ncl ude <conf. h>
#i ncl ude <kernel . h>
#include <file.h>
#i ncl ude <dl dd. h>

extern int ionull ();

nul l read(s, f, buff, count)
char *s;

struct file *f;

char *buff;

regi ster int count;

{

return O;

nullwite(s, f, buff, count)
char *s;

struct file *f;

char *buff;

register int count;

{
return (count);

nul lioctl ()

pseterr (EINVAL);
return (SYSERR);

146 Writing Device Drivers for LynxOS



Driver Installation

nul | sel ect ()
return (SYSERR);

int nullinstall()

{

return (0);
int nulluninstall()

return (OK);

static struct dldd entry_points = {
ionull,
ionull,
nul | read,
nul lwite,
nul | sel ect,
nul lioctl,
nullinstall,
nul luni nstal |,
(kaddr_t *) 0
b

Note that callsto adriver entry point replaced by i onul | till succeed. If adriver
does not support certain functionality, then it must include an entry point that
explicitly returns SYSERR, asin the case of the i oct!l () and sel ect () entry
point functions in the above example. This causes calls to these entry points from
an application task to fail with an error.

NoTE: To dynamically install the null driver on the PowerPC platform, omit the
keyword static fromthe struct dl dd declaration.

Driver Installation

In this release of LynxOS, follow these recommendations for compiling and
installing dynamic device drivers on a specific LynxOS platform.

X86

LynxOS supports dynamic driver installation with the GNU C compiler. To
compile adynamically-loadable device driver, the command to be used depends on
whether you are compiling on a Lynx OSa native development system, or on a
cross development host:

On a LynxOS native devel opment system:

/usr/i386-coff-Iynxos/usr/bin/gcc -c -o driver.obj\
driver.c -1/sys/include/kernel\
-1/sys/include/fam|y/x86 -D__LYNXCS
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On a LynxOS cross development host:

$(ENV_PREFI X) / cdk/ pl at f or m cof f - x86/ usr/bin/gcc -c -o\
driver.obj driver.c -1/sys/include/kernel\
-1/sys/include/fam |y/x86 -D__LYNXCS

where pl atformis

sunos For SunOS targets
Wi n32 For Windows targets
hpux For HP/UX targets
l'i nux For Linux targets

NOTE: The current release of LynxOS does not support a. out format dynamic
drivers.

PowerPC

LynxOS for PowerPC supports dynamic driver installation with the GNU C
compiler but requires aspecial import file for the linker. The import file contains a
list of driver service calls used by the device driver. An example is shown in the
steps below.

1. Compilethe driver with GNU C. The command for compiling the driver
depends on whether the target isa native target, or if itisan AlX, SunOS,
Windows, HP/UX, or Linux cross target.

A)For LynxOS native development systems:

/usr/ ppc-xcof f-1ynxos/usr/bin/gcc -c -o driver.o\
driver.c -1/sys/include/kernel\
-1/ sys/include/fam |y/ppc -D__LYNXCS

B)On cross development systems:
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$( ENV_PREFI X) / cdk/ pl at f or m xcof f - ppc/ usr/ bi n/ gcc\
-c -o driver.o driver.c -1/sys/include/kernel\
-1/ sys/include/fam|y/ppc -D__LYNXCS

where pl atform is
sunos For SunOS targets
wi n32 For Windows targets
hpux For HP/UX targets
I'i nux For Linux targets
2. Createanimport file. For example, thefile dri ver.inport contains:

syshrk

i oi ntset
fclear
iointclr
get 1page
freelpage

3. Now create a dynamically-loadable object module using | d:
- OnalynxOS native devel opment system:

Id -bM SRE -binport:driver.inport -o driver.obj\
driver.o

- Onacrossdevelopment host:

$( ENV_PREFI X) / cdk/ pl at f or m xcof f - ppc/ usr/ bi n/1 d\
-bM SRE - bi nport:driver.inport -o driver. obj\
driver.o

The option - BM SRE tellsthe linker thisis a shared reusable module.
The option - bi mport tellsthe linker the name of the import file.
pl at f or m isthe same as described in Step 1.

Thiswill create an object module that has aloader section for dynamic linking and
stub functions for kernel callbacks.

All Platforms

Once adynamic driver object modul e has been created, this object modul e can now
be dynamically installed.

For character device drivers, enter:

Writing Device Drivers for LynxOS 149



Chapter 8 - Installation and Debugging

150

drinstall -c driver.obj
For block device drivers, enter:
drinstall -b driver.obj

If successful, drinstall or dr_install returnstheunique driver-id that
is defined internally by the LynxOS kernel. For the block composite driver, the
driver-id returned will bealogical OR of the character driver-id inthe
lower 16 bits and the block dri ver-id intheupper 16 bits.

It isaso possible to use a program to install adriver by using the system call
drinstall ().

For a character device driver, use:

dr _install("./driver.obj", CHARDRI VER);
For ablock device driver, use:

dr_install ("./driver.obj", BLOCKDRI VER);

Device Information Definition and Declaration

The device information definition is created the same way asin the static
installation. To create a device information declaration a program has to be written
to instantiate the device information definition.

Assuming the device information definition appears as:
struct my_device_info {

int address;
int interrupt_vector;

b
/* nyprogramc */
struct ny_device_info devinfo = { 0xd000, 4 };
mai n()
wite(l, &devinfo, sizeof(struct \

ny_devi ce_info));

}

This program can be compiled and executed while redirecting the output to afile.
When compiling the program, use the default EL F-based compiler.

On a LynxOS native development system:
gcc -0 myprogram nyprogram c

On a cross devel opment host:
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$( ENV_PREFI X) / bi n/ gcc -0 myprogram myprogram c
Then run the program on the target computer. Redirect standard output to afile.

./ myprogram > nydevi ce_i nfo

Device Installation

Theinstallation of the device should be done after theinstallation of thedriver. The
two ways of installing devices are either through the devi nst al | utility program
or cdv_install and bdv_install system cals. For example:

devinstall -c -d driver_id nydevice_info

devinstall -b -e raw driver_id -d block _driver_id \
nydevi ce_i nfo

The driver_id istheidentification number returned by the dri nstal |
command or system call. Thisinstalls the appropriate device with the
corresponding driver and assigns a major device number to it (in this case, we
assume thisis maj or _no).

Node Creation

Unlikethe static installation, thereis no feature to automatically generate the nodes
under dynamic installation. This should be done manually using the nknod
command. (See the LynxOS User’s Guide.)

By convention, the node istypically created inthe / dev directory. The
creation of the nodes allows application programs to access the driver by opening
and closing the file that has been associated with the driver through the nknod
command.

nknod / dev/ device ¢ maj or_no mninor_no

The maj or _no isthe number assigned to the device after a devi nst al |
command. This can be obtained by using the devi ces command. The

mi nor _no isthe minor device number, which can be specified by the user in the
range of 0-255. The c indicating a character device could also be ab to indicate a
block device.

Device and Driver Uninstallation

Dynamically loaded device drivers can be uninstalled when they are no longer
needed in the system. This can help in removing unwanted code in physical
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memory whenitisnolonger relevant. Removal is performed withthe dri nstal |
command. However, the device attached to the driver has to be uninstalled before
uninstalling the driver. Removing the device is accomplished with the

devi nstal | command.

For character devices:
devinstall -u -c device_id
For block devices:
devinstall -u -b device_id
After the device is uninstalled the driver can be uninstalled using the command:

drinstall -u driver_id

Common Error Messages During Dynamic Installation

The following list describes some common error messages that may be
encountered during dynamic installation of a device driver. In this case, the
LynxOS kernel assists in debugging efforts by printing help messages to the
system console.

* Bad Exec Format

Thisisusualy seenwhena drinstal | command is executed. It
indicates that a symbol in the device driver has not been resolved with the
kernel symbols. Make sure that there are no symbols that cannot be
resolved by the kernel and that the structure dldd has been declared inside
the driver.

» DeviceBusy

This error message is seen when attempting to uninstall the driver before
uninstalling the device. The correct order isto uninstall the device before
uninstalling the driver.

NoOTE: A driver cannot be dynamically installed on akernel that has been stripped.

Debugging

152

This section describes some of the techniques and mechanisms available to assist
with the debugging process.
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Communicating with the Device Driver

Because device drivers are not attached to a particular control terminal, ordinary
printf() statementsdo not work. LynxOS provides the device driver service

routines kkprintf() and cprintf() toassistindebugging. Both havethe

same syntax asthe printf () systemcall.

The kkprintf() routineaways outputs to the debug terminal. The
kkprintf() routinecan be used ininterrupt routines, however, with caution. If
the operating system configuration includes a device that uses the hardware used
by kkprintf (), programsthat access the device may hang the system.

The device driver support routine cprintf () printsto the current console.
Unlike kkprintf (), cprintf() cannotbeusedinaninterrupt routine or
where interrupts or preemption are disabled.

Following are some tipsfor using kkprintf() and cprintf().

e Thedebugterminal is configured as COVR on the x86 platform and
TTYO on the PowerPC. Currently, the debug terminals are not
configurable.

e Insert kkprintf() statementsinthe install () entry routineof the
new driver. After the devi nstal | command is executed, the
install () entrypointisinvoked. Thisisagood way of identifying if
the instal | () entry pointisinvoked, and if the device information
declaration passed is received properly.

e Insert kkprintf() statementsinthe uninstall () entry point. After
every uningtall the uni nstal | () entry pointisinvoked and the
kkprintf () statementsshould be seen.

e Initidly, itisadvisableto put a kkprint f () statement at the beginning
of every entry point to make sureit isinvoked properly. Once an entry
point function is working properly the kkprintf () statementscanbe
removed.

e Using kprintf() and cprintf() statementsfor debugging can
affect the timing characteristics of the driver and may mask timing-
related problems. A way to reduce this debugging overhead involves
having the driver write status information to an internal chunk of
memory. When afailure occurs, use SKDB (see below) to investigate this
areain memory.
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Simple Kernel Debugger (SKDB)

The Simple Kernel Debugger can also be used to debug device drivers. It allows
breakpoints to be set and can display stack trace and register information.
However, since the symbol table of a dynamic device driver is not added to the
symbol table of the kernel, SKDB may not be useful for debugging dynamic device
drivers. A serial connection to a second machine running kermit to capture
debugging output from SKDB is aso possible. See the LynxOS Total/db Guide for
more information on SKDB.

Handling Bus Errors

A bus error occurs when access to an invalid address is made. The function
recoset () can be used to change the default system behavior when a bus error
occurs. By default, the bus fault handler calls pani ¢() , which displays a message
that a serious problem has occurred and attempts to shut down the system.

Before attempting a process that may cause abus error, use recoset (). If abus
error occurs, program execution continues asif returning from recoset () witha
non-zero return value. A branch to the code to handle the error condition can then
be made. Restore the default bus error handler with nor eco() .

For example:

p = <sone devi ce address>
if (!recoset()) /* setup recoset() and establish branch back to point */

{

X = *p /* possible bus error, if device not present */

}

el se

/* code to handle bus error, if it occurs */

noreco();
Inthe example, if abuserror occursat x = *p, program execution changeswith a
branchbackto i f (!recoset()).Atthispointtheif conditionisevauated as

if recoset () returned anegative value, and program flow continues with the
code to handle the error.

NoTE: The instal | () entry point function is protected from crashing if a bus
error occurs and pointers passed to the read() and wite() entry pointsare
validated by the OS so bus errors will not occur. Pointers passed to the i oct | ()
entry point function must be checked with r bounds() or wbounds().
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Probing for Devices

It isvery common for the device driver to test for the presence of a device during
the instal | () entry point. For this reason, LynxOS handles bus errors during
execution of the i nst al | routine, thus relieving the driver of this responsibility.
If abuserror occurs, the kernel does not return to the i nstal | routine from the
bus error handler. The error is taken to mean that the deviceis not present and user
tasks will not be permitted to open it.

Additional Notes

Statically installed device driversin LynxOS can also be uninstalled
dynamically. However, the memory reclamation of the TEXT sectionis
not donein this case.

Symbols from two or more dynamically-loaded device drivers cannot be
resolved. If there are two dynamically-loaded device drivers using
functionf (), the codefor function f () hasto be present in both the
drivers source code. Thisis because if one of the driversis |oaded
initially, functionf () does not get resolved with the second device driver
even though it isin memory. Thus, only statically-loaded drivers
symbols are resolved with dynamic drivers.

Garbage collection is not provided in LynxOS. Thus, any memory that is
dynamically allocated must be freed before uninstalling the device driver.
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cwes DEVICEe Resource Manager
(DRM)

The Device Resource Manager (DRM) isa LynxOS module that functions as an
intermediary between the operating system, device drivers, and physical devices
and buses. The DRM provides a standard set of service routines that device drivers
can use to access devices or buses without having to know device- or bus-specific
configuration options. DRM services include device identification, interrupt
resource management, device 1/O to drivers, and device address space
management. The DRM also supports dynamic insertion and deletion of devices.

This chapter introduces DRM concepts and explains DRM components. Sample
code is provided for DRM interfaces and services. The PCl bus layer is described
in detail with a sample driver and application. This chapter provides information
on the following topics:

 DRM Concepts

* DRM Service Routines

¢ Using DRM Facilities from Device Drivers
e Using DRM Facilities from Applications

e Advanced Topics

e PCIl Bus Layer

e Example Driver

e Sample Application
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DRM Concepts

Device Tree

The Device Treeis a hierarchical representation of the physical device layout of
the hardware. DRM builds a device tree during kernel initialization. The device
tree is made up of nodes representing the 1/0O controllers, host bridges, bus
controllers, and bridges. The root node of this device tree represents the system
controller (CPU). There are two types of nodesin the device tree: DRM bus nodes
and DRM device nodes.

DRM bus nodes represent physical buses available on the system, while DRM
device nodes represent physical devices attached to the bus.

The DRM nodes are linked together to form parent, child, and sibling relationships.
A typical devicetreeis shown in the figure below. To support Hot Swap
environments, DRM nodes are inserted and removed from the device tree,
mimicking Hot Swap insertion and extraction of system devices.

System Controller
(CPU)
Bridge

PCI Host
Bridge

Ethernet SCsI
ISA Device PCI,ZPCI Device
Bridge Bridge
| I—l—l
[ | |

|KBDD& Mouse Prigter_ Port | COM I?orts PCI2PCI PCI2PCI
evice evice Device Bridge Bridge

I_I_|I_I_|

Ethernet ISDN Telco Telco
Device Device || Device | | Device

Figure 9-1: Device Tree
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DRM Components

A module view of DRM and related components is shown in the following figure.
A brief description of each module is given below the figure.

Device

Board Support )
Driver

Package
and Configuration
Management

Bus-layer

Figure 9-2: Module View

« DRM - DRM provides device drivers with ageneralized device
management interface.

« KERNEL - The LynxOS kernel provides service to applications and
device drivers. DRM uses many of the kernel service routines.

¢ BUSLAYER - These modules perform bus-specific operations. DRM
uses the service routines of the bus layer to provide service to the device
drivers.

« DEVICE DRIVER - These modules provide a generic application
programming interface to specific devices.

e BSP - The Board Support Package (BSP) provides a programming
interface to the specific hardware architecture hosting LynxOS. This
modul e also provides device configuration information to other modules.
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Bus Layer

DRM uses bus layer modules to support devices connected to many different kinds
of buses. There are numerous bus architectures, many of which are standardized.
Typical bus architectures seen in systems are the ISA, PCI, and VME standards,
however, proprietary bus architectures also exist. DRM needs a specific bus layer
modul e to support a specific kind of bus architecture. The device drivers use DRM
serviceroutinesto interface to the bus layers. The buslayersinterface with the BSP
to get board-specific information.

The bus layers provide the following service routines to DRM:
» Find bus nodes and device nodes
* Initialize bus and device nodes
+ Allocate resources for bus and device nodes
» Freeresources from bus and device nodes
» Map and unmap a device resource
» Perform device l/O
* Insert abus or device node
* Remove abus or device node

LynxOS supports only one bus layer, which is used for managing PCl and
CompactPCI devices. Some of the DRM functions described later in this chapter
require the bus layer ID. The correct symbol to useis PCl _BUSLAYER.

DRM Nodes

A DRM node is a software representation of the physical device. Each node
contains fields that provide identification, device state, interrupt routing, bus-
specific properties, and links to traverse the device tree. DRM service routines are
used to access the DRM node fields. These routines provide device drivers access
to DRM facilities via a standard interface. This eliminates the need to know
implementation details of the specific software structure. Some of the important
fields of the DRM node are shown in the next table.
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NOTE: Subsequent coding examplesin this chapter make reference to adata
structure of type dr m node_s. Thisstructure is adataitem used internally by the
LynxOS kernel as the software representation of a DRM node and is not intended
to be accessed at the driver or user level. LynxOS does not export a definition of
this structure. The coding examples use opaque pointers, which are passed around
and are not meant to be dereferenced.

Table 9-1: DRM Node Fields

Field Name Description

vendor _id Thisfield is used for device vendor identification.

device_id Thisfield identifies the DRM node.

pbusl ayer _id Thisfield identifies the primary bus layer of the bus/device node.

sbusl ayer _id

Thisfield identifies the secondary bus layer of abus node.

node_t ype Thisfield indicates the node type--bus node or device node--and
indicatesif it is statically or dynamically configured.

drmstate Thisfield describes the life cycle state of the DRM node. DRM
nodesinclude: | DLE, SELECTED, READY, or ACTI VE.

par ent Thisfield links this node to its parent node. The root node has
thisfieldsetto NULL to indicate that it has no parent.

child Thisfield links to the child node of this bus node. Only bus nodes
have children.

si bling Thisfield links to the sibling node of this DRM node. The last
sibling of abus hasthisfield setto NULL.

intr_flg Thisfield indicates if the device raises an interrupt to request
service.

intr_cntlr If the device usesinterrupt service, thisfield indicates the
controller to which the device is connected.

intr_irq Thisindicates the interrupt request line of the controller to which
this device is connected.

drmtstanp This field indicates when this node was created.

prop Thisfield links to bus-specific properties of the device.

Writing Device Drivers for LynxOS 161



Chapter 9 - Device Resource Manager (DRM)

DRM Node States

The status of a DRM node isindicated by its state. Initially, aDRM node is set to
I DLE when it iscreated. Devicesthat are removed from the DRM tree, or
undetected devices are considered UNKNOWN. The UNKNOWN state is not used by
DRM, but the state is used to denote a device that is unrecognized to DRM. The
following diagram details the stages of DRM node states.
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DRM Node
State

‘ Devices that exist in the system, but are not known to DRM are considered |
| UNKNOWN. DRM does not use this state, but it is useful for usersto
UNKNOWN 1 1 think of all devices unrecognized by DRM to bein this state. Deleting a

Description

DRM node makes the device UNKNOWN to DRM. Oncethe DRM has
initialized a device node, it is considered IDLE. !

A deviceis discovered/inserted into the DRM tree and initialized to a
minimal extent. Thebusl ayer _i d,devi ce_i d andvendor _i d
node fields identify the node. Some of its bus-specific properties are
initialized. System resources are not allocated to the device. Devices for
which drivers are not available, or devices that are not needed, are left in
this state. IDLE nodes are created by thedr m_| ocat e() or the
drm_i nsertnode() serviceroutines. IDLE nodes are deleted by the
drm del et e_node() serviceroutine.

IDLE

v 1

SELECTED

Devices needed by the system are set to the SELECTED state and resources
are allocated to them. In Hot Swap and high availability, environments,
configuration-specific policies control the selection of nodes. IDLE DRM
nodes are selected by thedr m_sel ect _node() serviceroutine.
SELECTED nodes are set to the IDLE state by the

dr m_unsel ect _node() serviceroutine.

v ¢

When resources are allocated to the SELECTED node, it is set to a READY
state. A node in the READY stateisfully initialized, but isnot in use.
System resources and bus resources are assigned to this node. In case the
READY resource allocation for the DRM node fails, the node remainsin the
SELECTED state. A SELECTED node is set to the READY state by the

drm al l oc_resource() serviceroutine. The READY nodes are put into
a SELECTED state by the drm_free_resource() service routine.

A DRM nodein use by adevicedriver isin the ACTIVE state. Either the

drm get _handl e() ordrm cl ai m_handl e() serviceroutines
ACTIVE make a DRM node ACTIVE. A driver releases a device by using the
drm free_handl e() serviceroutine. This causes the DRM node to go
into aREADY state.

Figure 9-3: DRM Node States
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DRM Initialization

The DRM moduleisinitialized during LynxOS kernel initialization. DRM buildsa
device tree of all visible devices and bringsthem up to a READY state, if possible.
Thisisto enable all statically linked driversto claim the DRM nodes and bring up
the basic system service routines. Some DRM nodes may be left inthe SELECTED
state after kernel initialization is complete. Typically, this can be the result of
unavailable resources.

LynxOS provides the ability to control PCI resource allocation. PCI resources can
be allocated either by the BIOS or by DRM. By default, LynxOS x86 distributions
use the BIOS to handle resource all ocation. For other platforms, DRM handles the
resource all ocation. Because DRM uses the same set of interfaces, whether or not it
handles resource all ocation, device drivers do not need to change.

For more information on PCI resource allocation and DRM, see the chapter “PCl
Resource Allocator for LynxOS’ in the LynxOS User’s Guide.

DRM Service Routines

DRM service routines are used by device drivers to identify, setup and manage
deviceresources. Typically, they areusedinthe i nstal | () and uninstall ()
entry points of the device driver. Device drivers|ocate the device they need to
service and obtain an identifying handle. This handle is used in subsequent DRM
callsto reference the device. The table below gives a brief description of each
service routine and typical usage. See the DRM man pages for more details.
Additionally, see “ Example Driver” on page 177.

Table 9-2: Summary of DRM Services

Service Description Usage

drm get _handl e Searches for a DRM node with a specific vendor | All Drivers
and device identification and claimsit for use.

drm free_handl e Releases a DRM node and makesit READY. All Drivers

drmregister_isr Sets up an interrupt service routine. All Drivers

drm unregi ster_isr Clears an interrupt service routine. All Drivers

drm_map_resource Creates an address trandation for a device All Drivers
resource.
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Table 9-2: Summary of DRM Services (Continued)

Service Description Usage

dr m_ unmap_r esour ce Removes an address trandation for adevice All Drivers
resource.

drm devi ce_r ead Performsa read on adevice resource. All Drivers

drmdevice wite Performsa wri t e onadevice resource. All Drivers

drm |l ocate

Locates and builds the DRM devicetree. It
probes for devices and bridges recursively and
builds the DRM subtree.

Genera Device
Management

drm.i nsertnode

Inserts a DRM node with specific properties.
Only asingle node is added to the DRM tree by
this service routine.

Genera Device
Management

drm del ete_subtree

Removes a DRM subtree. Only nodesin the
| DLE state are removed.

Genera Device
Management

drm prune_subtree

Removes a DRM subtree. Nodesin the READY
state are brought to the | DLE state and then
deleted.

General Device
Management

drm sel ect _node

Selects anode for resource allocation.

General Device
Management

drm sel ect _subtree

Selectsa DRM subtree for resource allocation.
All the nodes in the subtree are SELECTED.

General Device
Management

dr m unsel ect _node

Ignores a DRM node for resource allocation.

General Device
Management

drm unsel ect _subtree

Ignores an entire DRM subtree for resource
alocation.

Genera Device
Management

drmal |l oc_resource

Allocates aresource to aDRM node or subtree.

General Device
Management

drm free_resource

Frees aresource from a DRM node or subtree.

General Device
Management

drm cl ai m handl e

Claims aDRM node, given its handle. The DRM
nodeisnow ACTI VE.

Genera Device
Management

dr m_get r oot

Gets the handle to the root DRM node.

General Device
Management

drmgetchild

Gets the handle to the child DRM node.

General Device
Management
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Table 9-2: Summary of DRM Services (Continued)

Service Description Usage

drm get si bling Gets the handle to the sibling DRM node. General Device
Management

dr m_get par ent Gets the handle to the parent DRM node. Genera Device
Management

dr m_get node Gets the DRM node contents. General Device
Management

drm set node Setsthe DRM node contents. General Device
Management

Interface Specification

Devicedrivers call DRM service routines like any standard kernel service routine.
The following table provides a synopsis of the service routines and their interface
specification. Refer to LynxOS man pages for a complete description.

Table 9-3: DRM Service Routine Interface Specification

Name Synopsis

drm | ocate() int drm|ocate(struct drmnode_s *handl e)

int drm.insertnode(struct drm.node_s
drm i nsert node() *par ent _node, void *prop,
struct drmnode_s **new_node)

int drmdel ete_subtree(struct drm.node_s
*handl e)

drm del et e_subtree()

drm prune_subtree() int drm prune_subtree(struct drmnode_s *handl e)

int drmsel ect_subtree(struct drmnode_s
*handl e)

drm sel ect _subtree()

int drm.unsel ect_subtree(struct drm node_s
drm unsel ect _subtree() = - - -

*handl e)
drm sel ect _node() int drmsel ect _node(struct drm node_s *handl e)
dr m_unsel ect _node() int drm.unsel ect_node(struct drmnode_s *handl e)

int drmalloc_resource(struct drm.node_s
*handl e)

drm al | oc_resource()
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Table 9-3: DRM Service Routine Interface Specification (Continued)

Name

Synopsis

drm free_resource()

int drmfree_resource(struct drmnode_s *handl e)

drm get _handl e()

int drmget_handl e(i nt buslayer_id,
int vendor_id,
int device_id, struct drmnode_s **handl e)

drm cl ai m handl e()

int drmclai mhandl e(struct drmnode_s *handl e)

drm free_handl e()

int drmfree_handl e(struct drm node_s *handl e)

drmregister_isr()

int drmregister_isr(struct drmnode_s
*handl e, void (isr)(), void *args)

drm.unregister_isr()

int drmunregister_isr(struct drmnode_s
*handl e)

drm_map_resource()

int drm map_resource(struct drmnode_s *handl e,
int resource_id, addr_t *vaddr)

drm_unmap_resource()

int drm unnmap_resource(struct drm.node_s
*handl e,
int resource_id)

drm devi ce_read()

int drmdevice_read(struct drmnode_s *handl e,
int resource_id,
unsigned int offset, unsigned int size,
voi d *huffer)

drm device_wite()

int drmdevice_wite(struct drmnode_s *handl e,
int resource_id, unsigned in offset,
unsi gned int size, void *buffer)

drm getroot ()

int drmgetroot(struct drmnode_s **root_handl e)

drm getchild()

int drmgetchild(struct drmnode_s *handl e,
struct drm.node_s **chil d)

drm_getsi bling()

int drmgetsibling(struct *handl e,
struct drm.node_s **sibling)

drm get parent ()

int drmgetparent (struct drmnodes_s *handl e,
struct drm.node_s **parent)

drm_get node()

int drmgetnode (struct drm.nodes_s *src
struct drmnode_s **dest)

drm set node()

int drmsetnode (struct drmnodes_s *handl e)

Writing Device Drivers for LynxOS 167



Chapter 9 - Device Resource Manager (DRM)

Using DRM Facilities from Device Drivers

168

Device Identification

Inthe instal | () devicedriver entry point adriver attempts to connect to the
deviceit intendsto use. To locate its device, the driver needs to use the

drm get _handl e() serviceroutine. dr m get _handl e() returnsa pointer to
the DRM node handle viaits handle argument. The driver specifies the deviceit is
interested in by using dr m get _handl e() inthefollowing manner:

install () {

ret = drm.get_handl e(busl ayer_id,
vendor _id, device_id, &handle)
if(ret)

/* device not found .. abort installation */
}
}

It ispossible to supply awild card to dr m get _handl e() using

vendor _id = -1 and device_id = -1 asparameters. Thisclaimsand returns
thefirst READY devicein an unspecified search order. The driver examines the
properties of the device to perform a selection. The driver needs to subsequently
release the unused devices.

It isalso possible to navigate the device tree using traversal functions and to obtain
handles for the nodes. Device selection is performed by other modules, drivers or
system management applications. If device selection has been done by some other
means, the driver claimsthe device by using the dr m cl ai m handl e() service
routine, taking the node handle as a parameter.

install () {

/* handl e obtained externally */
ret = drm.cl ai m handl e(handl e);
if(ret)

{

/* Cannot claimdevice -- abort device install */

}
s
The drm free_handl e() serviceroutineis used to release the handle. The

release of the deviceistypically doneinthe uni nstal | () routine of the driver.
The drm free_handl e() takesthe node handleto be freed as a parameter.
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uninstal | () {

ret = drm free_handl e(handl e);
if(ret)

/* Error freeing handl e, perhaps handle is bogus? */
}
}

In Hot Swap environments, system management service routines select, make
devices ready, and provide node handles for driversto claim and use. The system
management service routines facilitate the selection and dynamic loading of
needed drivers and provides them with node handles for use.

Device Interrupt Management

DRM maintains al interrupt routing data for a device node. Drivers use the

drm register_isr() serviceroutineto register aninterrupt service routine and
the drm unregi ster_isr() serviceroutineto clear aregistration. Typically,
thisserviceroutineisusedinthe i nstal | () and uninstal | () entry pointsof
the driver. To support sharing of interrupts in a hot swap/high availability
environment, DRM internally dispatches all I1SRs sharing an interrupt. The
returned |i nk_id is NULL, andthe i oi ntlink() kernel serviceroutine does
not perform any dispatches.

The following code segmentsiillustrate the use of these DRM service routines:

install () {
int ret, link_id;
ret = drm.get_handl e(busl ayer _id, vendor_id,
device_id, &handle);
link_id = drmregister_isr(handle, isr_func, args);

}

uninstal | () {
ret = drm.unregister_isr(handle);
i f(Ret)

/* Cannot unregister isr? bogus handl e? */

}
ret = drm free_handl e(handl e);
if(ret)

/* Cannot free handle, is handl e bogus? */

}
}

Theinterrupt management service routines return a status message when applied to
a polled mode device.
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Device Address Space Management

Many devices have internal resources that need to be mapped into the processor
address space. The bus layers define such device-specific resources. For example,
the configuration registers, the bus number, device number, and the function
number of PCI devices are considered resources. The bus layer defines resource
IDsto identify device-specific resources. Some of the device resources may need
to be allocated. For example, the base address registers of a PCl device space need
to be assigned a unique bus address space. DRM provides service routines to map
and unmap a device resource into the processor address space. The function

drm nmap_resource() takesas parameters the device handle, resource ID and a
pointer to store the returned virtual address. The dr m unmap_r esour ce() takes
as parameters a device handle and resource ID.

The following code fragment illustrates the use of these service routines:

install () {
ret = drm get_handl e( PCI _BUSLAYER, SYMBI OS_VI D, NCR825_1I D,
&handl e) ;
if(ret)

/* Cannot find the scsi controller */

link_id = drmregister_isr(handl e, scsi_isr,
scsi_isr_args);
ret = drm map_resource(handl e, PCl _RESI D BAR1,
&scsi _vaddr);
if(ret)
{

/* Bogus resource_id ? */
/* resource not nappable */
/* invalid device handle ? */

}

scsi_control _regs = (struct scsi_control *)(scsi_vaddr);
ret =drm_unmap_resour ce(handl e, PCl _RESI D _BAR1) ;

if(ret)

/* Bogus handl e */
/* resource is not mappable */
/* resource was not mapped */
/* invalid resource_id */
}
}

Device I/0

DRM provides service routines to perform read and write to bus layer-defined
resources. The dr m devi ce_read() serviceroutine allowsthe driver toread a
device-specific resource. The drm devi ce_write() serviceroutinealowsthe
driver to perform awrite operation to a device-specific resource. The resource IDs
are usually specified in a bus layer-specific header file. For example, the file
machi ne/ pci _resource. h definesthe PCl BUSLAYER resources. Both these
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serviceroutinesusethe handl e, resource |1 D, of fset, size anda buffer
as parameters. The meaning of the of f set and si ze parametersis defined by
the bus layer. Drivers implement platform-independent methods of accessing
device resources by using these service routines. The following code fragment
illustrates the use of these service routines.

#i ncl ude <nmachi ne/ pci _resource. h>

/* Enabl e PClI _| O SPACE */

ret = drm.devi ce_read(handl e, PCl _RESI D CMVDREG, 0, 0,
&pci _cnd) ;

if(ret)

/* could not read device resource? validate paraneters? */

}

pci _cnd | = PCl _| O _SPACE_ENABLE;

ret = drmdevice_wite(handl e, PCl _RESI D CVDREG, 0, 0,
&pci _cnd) ;

if(ret)

/* could not wite device resource? validate paraneters? */

}

This code is platform independent. The service routines take care of endian
conversion, serialization, and other platform-specific operations.

DRM Tree Traversal

DRM provides a set of functionsto navigate the device tree. Most of these
functions take a reference node as input and provide a target node as output. The
functions are listed below:

dr m_get r oot ( &andl e) returnsthe root of the device treein handle.
dr m_get par ent (node, &andl e) returnsthe parent of node in handle.
dr m_get chi | d( node, &andl e) returnsthe child of node in handle.

dr m_get si bl i ng( node, &andl e) returnsthe sibling of nodein handl e.

Device Insertion/Removal

DRM provides two service routines that add nodes to the DRM tree;

drm | ocat e() recursively findsand creates DRM nodes given a parent node as
reference; drm i nsertnode() insertsonenode. The dr m i nsert node()
serviceroutine is used when sufficient data is known about the device being
inserted. The drm | ocat e() serviceroutineis used to build entire subtrees.
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A typical application involves inserting the bridge device corresponding to a slot,
using the drm i nsert node() serviceroutine. For agiven configuration, the
geographic data associated with the dotsis generally known. This datais used to
insert the bridge device. The datathat is needed to insert anode is bus layer
specific. For the PClI BUSLAYER, the PCI device number and function number are
provided. The reference parent node determines the bus number of the node being
inserted. Also, the bus layer determines the location of the inserted node in the
DRM tree. Oncethe bridgeisinserted, the dr m | ocat e() serviceroutineisused
to recursively build the subtree below the bridge.

The drm | ocate() and drm.insertnode() serviceroutinesinitializethe
DRM nodestothe | DLE state. The dr m sel ect node() or

drm sel ect _subtree() serviceroutinesare used to select the desired nodes
and sets the nodesto the SELECTED state. The drm al | oc_resource()
service routines are used to set the nodesto a READY state. DRM nodesin the
READY state are availableto be claimed by device drivers. After being claimed, the
nodeisset tothe ACTI VE state.

During extraction, device drivers release the DRM node using the

drm free_handl e() serviceroutine. This bringsthe DRM node back to a
READY state. Resources associated with the nodes are released by using the

drm free_resource() serviceroutine. This setsthe nodesto the SELECTED
state. The DRM nodes arethen putinan | DLE state by using the

drm unsel ect _subtree() or drm unsel ect _node() serviceroutines. The
| DLE nodes are removed by using the dr m del et e_subtree(), or

drm del et e_node() serviceroutines. Thislast operation puts the device back
into an unknown state. The device is now extracted from the system. A
convenience function, drm prune_subt ree() , removes DRM’s knowledge of
an entire subtree. This routine operates on subtreesthat arein the READY state.

When DRM nodes are inserted, they are time-stamped to assist in locating recently
inserted nodes. Most of the DRM facilities are accessed by user mode programs
using the sysctl () interface.

Using DRM Facilities from Applications

172

User mode applications usethe sysct | () interfaceto get accessto DRM
facilities. It is possible to traverse the DRM tree, get node data, and to perform
insertions and deletions using the sysct 1 () interface. The

sys/ drm sysct| . h header file definesthe MIB namesand sysct!| () data
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structuresthat are used. Seethe sysct | () man pagefor details on how to usethe
system call. The sysct | () call isinvoked as:

(int) ret = sysctl(int *nane, u_int nanelen,
void *ol dp, size_t *oldlenp,
void *newp, size_t new en);

sysctl () parametersare described in the table below.

The top-level MIB name to access DRM-related information is CTL_HW The
second-level MIB name to access DRM information is HW DRM The third-level
names provide DRM-specific facilities as described in the following table.
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Table 9-4: sysctl() Parameters and DRM-Specific Facilities

DRM Facility

Description

DRM GET_ROOT

Thisprovidesthe sysct| () interfacetothe
drm get r oot () serviceroutine. The handle to the root of
the DRM treeisreturnedin ol dp. Inthe current
implementation of DRM, the handle is returned as a
(voi d *) pointer with asize of 32 bits. A buffer that is
sufficienttoholda (voi d *) pointer needs to be provided
in ol dp to hold the returned handle. For example, the
sysctl () system call ismade asfollows:
{

int nib[3];

voi d *handl e;

int len;

mb[0] = CTL_HW

mib[1] = HW DRM

nib[2] = DRM GET_ROOT;

I en = sizeof (handl e);

ret = sysctl(mb, 3, &andl e,

& en, 0,0);

}

DRM _GET_PARENT

Thisprovidesthe sysct| () interfacetothe

dr m_get parent () serviceroutine. The fourth-level MIB
name is set to the handle of the reference node for which a
parent node is desired. The parent handleisreturnedin ol dp
inamanner similar to DRM_GET_ROOT. An example of the
sysctl () systemcall follows:

{

int mb[4];

voi d *parent _handl e;

int len;

mb[0] = CTL_HW

m b[1] = HW DRM

m b[2] = DRM GET_PARENT;
m b[ 3] = handl e;

/* handle to the reference node */
I en = sizeof (parent_handl e);
ret = sysctl(mb, 4, &ar ent _handl e,
& en, 0,0);
}

DRM GET_CHI LD

Thisprovidesthe sysct| () interfacetothe

drm get chil d() serviceroutine. The fourth-level MIB
name is set to the handle of the reference node. The child
handleisreturnedin ol dp inamanner similar to

DRM GET_PARENT.
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Table 9-4: sysctl() Parameters and DRM-Specific Facilities (Continued)

DRM Facility Description

DRM GET_SI BLI NG | Thisprovidesthe sysct! () interfaceto the

drm get si bl i ng() serviceroutine. The fourth-level
name is set to the handle of the reference node. The sibling
handleisreturnedin ol dp inamanner similar to

DRM GET_PARENT.

DRM_GET_NODE This call provides the DRM node data to the application. The
fourth-level nameis set to the handle of the reference node. The
DRM node dataisreturnedina dr m_sc_node structure
givenin ol dp. Look for thedefinitionof dr m sc_node in
sys/ drm sysctl . h.Atypical useof DRM CGET_NCDE is
asfollows:

{

int mb[4];
struct drm.sc_node node;
int len;mb[0] = CTL_HW
mib[1] = HWDRM
m b[ 2] DRM_GET_NCDE;
m b[3] = handle; /* handle to the reference node */
len = sizeof (node);
/* get the data */
ret = sysctl(nib, 4, &ode, & en, 0,0);
printf("Vendor ID =

%\ n", node. vendor _i d) ;
printf("Device ID = %\n",

node. devi ce_i d);

printf(" Primary buslayer ID =

%\ n", node. pbusl ayer _i d);
printf(" Node type =

%\ n", node. node_t ype) ;
printf(" Node state = %\ n", node. state);
i f (node. node_type & DRM BUS)

printf("Secondary buslayer_id
d\ n", node. sbusl ayer _i d);
}
}

Hot Swap Management Applications

There are special facilitiesavailable for Hot Swap management applications. These
facilities are specified as commandsto the DRM_CMD third-level facility. The table
below lists the commands that are available at this level.
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Table 9-5: Hot Swap Facilities

Facility Description

CVD_PROBE Providesa sysct| () interfacetothe dr m_| ocat e()
service routine. The fifth-level name provides areference
node for the probe.

CMD_SELECT Providesthe sysct| () interfacefor the

drm sel ect _subtree() and
drm sel ect _node() serviceroutines.

CVD_ALLOC Providesa sysct! () interfacetothe

drm al | oc_resource() serviceroutine.
CVD_PRUNE Providesa sysct! () interfacetothe

drm prune_subtree() serviceroutine.
CVD_UNSELECT Providesa sysct!| () interfaceto

drm unsel ect _subtree() and
drm_unsel ect _node() serviceroutines.

CMVD_I NSERT Providesthe sysctl () interfacetothe
drm. i nsertnode() serviceroutine.

CVD_FREE drm free resource service routine

The following code fragmentsillustrate how thisinterfaceis used.

do_probe(void *ref_node) {

int mb[5];

int retval;

int len;

int ret;

m b[0] = CTL_HW

m b[1] = HW DRM

m b[2] = DRM CMD;
m b[ 3] = CVD_PROBE;
m b[4] = ref_node;

len = sizeof(retval);
/* performthe probe */
ret = sysctl(nmib,5,&etval, & en,0,0);
-
A sample of the CVD_| NSERT codeis shown below. The prop structureisfilled
in with bus layer-specific data that provides information on the node being
inserted. The ref _node isthe parent node of the node to be inserted.
do_insert(void *ref_node, void *prop, prop_len) {

int mb[5];
int handle;
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int len;

int ret;

m b[0] = CTL_HW
mb[1] = HW.DRM

m b[2] = DRM_CMD;
m b[ 3] = CMD_| NSERT;

m b[4] = ref_node;

I en = sizeof (handl e);

/* performthe insert */

ret = sysctl(mb,5, &andl e, & en, prop, prop_| en);

Example Driver

/* This is a sanple driver for a hypothetical PCl device. This PCl device has a
vendor_i d of ABC_VENDORI D and a device_i d ABC_DEVI CEID. This devi ce has one base
address register inplemented as a PCI Menory BAR and needs 4K of space. The
device registers are inplemented in this space. The device needs a interrupt
service routine to handl e events raised by the device. It may be possible that
there are nultiple of these devices in the system */

#i ncl ude <pci _resource. h>

#define PCl _| O ENABLE 0x1
#define PCl _MEM ENABLE 0x2
#def i ne PCl _BUSMASTER_ENABLE 0x4

struct device_registers {
unsi gned int registerl;
unsi gned int register2;
unsi gned int register3;
unsigned int register4,;

b

struct device_static {
struct drm.onode_s *handl e;
struct device_register *regptr;
int bus_nunber;
int device_nunber;
int func_nunber;

b

abc_install (struct info_t *info)

{

struct device_static *static_ptr;
int rv =0;

unsi gned int val;

/* Allocate device static block */

static_ptr = (struct device_static *)
sysbrk(sizeof (struct device_static));
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if(!static_ptr)

{
/* menory allocation failed !'! */
goto error_O;

}

/* Find the device ABC VENDORI D, ABC DEVICEID. Every call to abc_install()
by the OS, installs a ABC device. The nunber of tinmes abc_install() is called
depends on how nany static devices for ABC have been configured via the standard
LynxCS device configuration facilities. This entry point is also called during
a dynam c device install. */

/* A Hot Swap capable driver may replace the next call with drmclai mhandl e()
and pass the handl e given by the system managenent | ayer, instead of finding the
device by itself */
#if !defined( HOTSWAP)
rv = drm get_handl e( PCl _BUSLAYER,
ABC_VENDOR!I D, ABC_DEVI CEI D,
&(static_ptr->handle));
#el se /* Hot Swap capable */

rv = drmcl ai m_dhandl e(i nf o- >handl e) ;
static_ptr->handl e = info->handle;

#endi f
if(rv)
{

/* drm.get_handl e or drmclaimhandle failed to find a
device. return failure to the OS saying install failed. */

debug(("failed to find device(%, %)\n",
ABC_VENDORI D, ABC_DEVI CEI D)) ;
goto error_1;

}

/* Register an interrupt service routine for this
device */

rv = drmregister_isr(static_ptr->handle,
abc_isr, NULL);

if(rv == SYSERR)
{

/*1f register isr fails release the handle and exit*/

debug(("drmregister_isr failed %\n",rv));
goto error_2;

}
/* Map in the nenory base address register (BAR) */
rv = drm.map_resource(static_ptr->handl e,

PClI _RESI D_BARO,

&(static_ptr->regptr));

if(rv)
{
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/*drm map_resource failed , release the device and
exit*/

debug(("drm map_resource failed with %\n",rv));

goto error_3;

}

/* Enabl e the device for nenory access */

rv = drmdevi ce_read(static_ptr->handl e,
PCl _RESI D_CMDREG, 0, 0, &val ) ;

if(rv)
{

debug(("drmdevice_read failed with %d\n",rv));
goto error_4;

}
val |= PCl_MEM ENABLE ;

rv = drmdevice_wite(static_ptr->handl e,
PCl _RESI D_CMDREG, 0, 0, &val ) ;

if(rv)
{

debug(("drmdevice_wite failed to update the
comrand register, error = %\n",rv);
goto error_4;

/* Read the Ceographic properties of the device, this
is used by the driver to uniquely identify the
device */

rv = drmdevi ce_read(static_ptr->handl e,
PClI _RESI D_BUSNQ, 0, 0,
&(static_ptr->bus_nunber));

if(rv)
{

debug(("drm device_read failed to read bus
nunmber %\n",rv));
goto erro_4;

}
rv = drmdevice_read(static_ptr->handl e,
PClI _RESI D_DEVNQ, 0, 0,
&(static_ptr->device_nunber));
if(rv)
{
debug(("drm.device_read failed to read device
nunber %@\ n",rv));
goto error_4;

}

rv = drm.devi ce_read(static_ptr->handle,
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PCl _RESI D_FUNCNQ, 0, 0,
&(static_ptr->func_nunber));

if(rv)
{
debug(("drmdevice_read failed to read function

nunber %\n",rv));
goto error_4 ;

/* perform any device specific initializations here,
the following statements are just illustrative */

/* recoset() is used to catch any bus errors */

if(!recoset())

static_ptr->regptr.registerl = 0;
static_ptr->regptr.register2 = 9600;
static_ptr->regptr.register3 = 1024,

if(static_ptr->regptr.registerd4d == 0x4)
static_ptr->regptr.register3 = 4096;
} else {
/* caught a bus error */
goto error_4;

noreco(); /* .. and so on */

/* Succesfull exit fromthe install routine, return
the static pointer */

return(static_ptr);
error_4:

drm unmap_r esource(static_ptr->handl e,
PCl _RESI D BARO) ;

error_3:
drm.unregister_isr(static_ptr->handle);
error_2:
drm free_handl e(static_ptr->handl e);
error_1:
sysfree(static_ptr, si zeof (struct device_static));
error_0:
return( SYSERR) ;
} /* abc_install */

abc_uninstal | (struct device_static *static_ptr)
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}

unsi gned int val;
int rv = 0;

/* perform any device specific shutdowns */
static_ptr->regptr.registerl = Oxff ;

/* and so on */

/* Disable the device fromresponding to nenory access */
rv = drmdevi ce_read(static_ptr->handle,

PCl _RESI D_CMVDREG, 0, 0, &val ) ;
if(rv)

debug((“failed to read device %\n",rv));

val & ~(PCl_MEM ENABLE);
rv = drmdevice_wite(static_ptr->handl e,

PCl _RESI D_CMDREG, 0, 0, &val ) ;
if(rv)

debug(("failed to wite device %\n",rv));

/* Unnmap the nenory resource */

rv = drm.unmap_resource(static_ptr->handl e,
PCl _RESI D_BARO) ;

if(rv)

debug(("failed to unmap resource %\n",rv));

/* unregister the isr */

rv = drmunregister_isr(static_ptr->handle);
if(rv)

debug(("failed to unregister isr %\n",rv));
/* rel ease the device handle */

rv = drmfree_handl e(static_ptr->handle);
if(rv)

debug(("Failed to free the device handle %\ n",

rv));
}

sysfree(static_ptr, sizeof (struct device_static));

return(0);

/* The other entry points of the driver are device specific */

abc_open(..) {
}
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abc_read(.) {
}

abc_wite(..) {
abc_ioctl (..) {
abc_close(..) {

}

abc_isr(...) {
}

Sample Application

| *
L

This programlists all boards in a Mdtorola 8216 chasis

Kk kkkkhkkhkkhkkhkhkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkkkk kK k%

*/

#i ncl ude "errno. h"

#i ncl ude <pci _resource. h>
#i nclude "sys/sysctl.h"
#include "sys/drmsysctl.h"
#i nclude "sys/pci_sysctl.h"

#define TRUE 1
#defi ne FALSE 0

#define OK TRUE
#defi ne NOT_OK FALSE

#def i ne DEV_NODES8
#def i ne BUS_NODE4

#defi ne MAX_SLOT 16
unsi gned int root_node

0;
unsi gned int curr_node 0;

struct drm.sc_node sc_node;

struct pci_sc_node pci_node;
struct pci_sc_busnode pci _busnode;
int mb[12];

int mblen;

int retval;

int cpx_slot;

struct drm.onode_s *slot_handl e;
struct drmnode_s *domai nA_handl e;
int slot_tbl[ MAX_SLOT+1];

mai n()
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int ret;

int dev_no;

unsigned int |en;
printf("Slot#State\n");

/* CGet the root node */

mb[0] = CTL_HW
mb[1] = HW DRM
mb[2] = DRM GET_ROOT;

I en = sizeof (root_node);

ret = sysctl(mib, 3, & oot _node, & en, NULL, 0);
if(ret)

{

perror(“hsls-1:");
return(l);

}

curr_node = root_node;

/* Get the Donmi nA Bridge */
whi | e(OK == get_next_node())

i f(check_node(0x26,0x1011) == OK) break;
}

domai nA_handl e = (struct drm.node_s *)curr_node;
/* Init slot table */

for(cpx_slot = 1; cpx_slot < MAX_SLOT+1;
cpx_sl ot ++)

slot_tbl[cpx_slot] = 0;
}

/* Get the child of the Donmin Bridge */

ret =get_handl e( donai nA_handl e, DRM GET_CHI LD,
&sl ot _handl e) ;

/* Get all the siblings and popul ate the slot table */
/'k
The slot nunmber (index to slot_tbl) is derived fromthe
pci -devi ce nunber fromthe follow ng Mdtorola 8216
specific formul a:

sl ot _nunber = 15 - pci_device_no ;
And depends on the wiring of the cPCl backpl ane.
*/

whi | e(sl ot _handl e)
{
dev_no = get_devno(sl ot _handl e);
sl ot _tbl[15-dev_no] = (int)slot_handle;
ret = get_handl e(sl ot _handl e, DRM GET_SI BLI NG,
&sl ot _handl e) ;
if(ret == NOT_OK) break;
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}
/* Display the slot table */

for(cpx_slot = 1; cpx_slot < MAX_SLOT+1; cpx_sl ot ++)
switch(cpx_slot) {
case 7:
case 9:
printf ("%l 4d %\ n", cpx_slot,
"System Controller");
break;
case 8:
case 10:
printf("%. 4d %\ n", cpx_slot,
"Not Present");
br eak;
defaul t:
if(slot_tbhl[cpx_slot])
{
printf("%. 4d 9%\ n", cpx_slot,
"occupi ed");
} else {
printf ("% 4d %\ n", cpx_slot,
;errpty");

br eak;

}
/* Traverse the DRM Tree */
int get_next_node() {

i f (TRUE == has_chil d())

{
get _child();
return OK;
}
i f(TRUE == has_sibling())
{
get _sibling();
return( oK) ;
}
whi | e(TRUE == has_parent())
{

get _parent();
if(TRUE == has_sibling())
{
get _sibling();
return(OK);
}

}
return(NOT_OK) ;
}

/* Get a parent,child or sibling node */

int get_node(type)
int type;
{
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/*

35
=

}
/*

get
{

}
/*

in

{

=

}
| *

get
{

int ret;
unsi gned int node;
unsigned int |en;

m b[0] = CTL_HW
mib[1] = HWDRM

m b[2] = type;

m b[3] = curr_node;

| en = sizeof (node);

ret sysctl (m b, 4, &ode, & en, NULL, 0);
if(ret)
{
perror("hsls-2:");
return(1);
}

return(node);

Check if currnode has children */
has_chi I d()

unsi gned int node;
node = get_node(DRM GET_CHI LD);

if(!node || node == -1)
return(FALSE);

el se
return(TRUE);

Get child of current node */

_child()

return curr_node = get_node( DRM CGET_CHI LD);

Check if curr node has sibling */
has_si bl i ng()

unsi gned int node;
node = get_node(DRM GET_SI BLI NG) ;
if(!node || node == -1)
return(FALSE);
el se
return(TRUE);

Get sibling of current node */

_sibling()

return curr_node = get_node(DRM GET_SI BLI NG ;
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/* Check if current node has a parent */

int has_parent()

{
unsi gned int node;
node = get_node( DRM CGET_PARENT) ;
if(!node || node == -1)
return(FALSE);
el se
return(TRUE) ;
}

/* Get current node’s parent */
get _parent ()
{

return curr_node = get_node( DRM GET_PARENT) ;
}

/* Check if current node matches given vendor, device id */

check_node(int dev,int vend)

{
int ret;
unsigned int |en;
m b[0] = CTL_HW
m b[1] = HW DRM
m b[2] = DRM GET_NODE;
m b[ 3] = curr_node;
I en = sizeof (sc_node);
ret = sysctl(mb, 4, &c_node, & en, NULL, 0) ;
if(ret)
{
perror("hsls-3:");
return(1);
}
if((dev == sc_node. devi ce_id) &&
(vend == sc_node. vendor_id)) return (OK);
return(NOT_OK) ;
}

/* Cet the PCI device nunber given a node handle */

int get_devno(handl e)
voi d *handl e;

{

unsigned int len;

m b[ 0] = CTL_HW
m b[1] = HW DRM
m b[2] = DRM GET_NCDE;
m b[3] = (int)handle;
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I en = sizeof (sc_node);
ret = sysctl(mb, 4, &c_node, & en, NULL, 0) ;

if(ret)

perror("hsls-4:");
return(NOT_OK) ;

i f ((sc_node. pbusl ayer _id == PCl _BUSLAYER) &&
((sc_node. node_type & DEV_NODE) == DEV_NODE))

{
m b[0] = CTL_HW
mb[1] = HW DRM
m b[2] = DRM_PCl;
m b[3] = PCl _GET_DEVNCDE;
m b[4] = (int)handl e;
I en = sizeof (pci_node);
ret = sysctl(mb,5, &ci_node, & en, NULL, 0);
if(ret)
{
perror("hsls-5:");
return(NOT_OK) ;
return(pci _node. devi ce_no);
}

if (((sc_node.node_type & BUS NODE) == BUS_NODE) &&
(sc_node. pbusl ayer _id == PCl _BUSLAYER) &&
(sc_node. shusl ayer _id == PCl _BUSLAYER))
mi b[ 0] CTL_HW

HW DRM

DRM _PCI ;

PCl _GET_BUSNODE;

(int)handl e;

3

=

N
[IRRTIRTRRTINT

| en = sizeof (pci _busnode);
t = sysctl(m b, 5, &ci _busnode, & en, NULL, 0) ;

if(ret)
{

perror(“hsls-6:");
return(NOT_OK) ;
}

return(pci_busnode. devi ce_no);

}

return(NOT_OK) ;
}

/* Gven a reference handl e, get the handle of it’'s parent,child or sibling */

int get_handl e(handl e, type, result)
voi d *handl e;

int type;

void **result;

{
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int ret;
unsi gned int node;
unsigned int |en;

mb[0] = CTL_HW
mb[1] = HW DRM
mb[2] = type;

m b[3] = (int)handle;

I en = sizeof (node);

ret sysct!l (m b, 4, &ode, & en, NULL, 0);
if(ret)
{
perror("hsls-7:");
return(NOT_OK) ;
}
*result = (void *)node;
return(OK);
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Technology Drivers (MTDs)

Accessto alinear flash device in LynxOS isimplemented through atwo layer
model. The upper layer, f1 ash_ngr (4), implements the user interface and
encompasses all common algorithms required to access any linear flash device.
This includes argument checking, memory mapping (if required) and adjustments,
synchronization, and so on. The lower layer isaMemory Technology Driver
(MTD), which isadevice driver responsible for implementing hardware-specific
details of programming a particular flash device.

The MTD does not interface directly with user applications. It interacts with the
f1 ash_mgr module, through an interface defined by a set of entry points and data
structures, described in the following sections.

Thistwo layer model provides a unified interface to any flash device and removes
the need for redundant algorithms within MTD modules.

LynxOS Kernel
3
Flash Manager
$ 3 3
MTD MTD MTD
3 I 3
HW HW HW

Figure 10-1: Flash Manager & MTD Overview
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Cache Management

The cache of aflash device can be managed by either the MTD or fl ash_ngr.
For aflash device with unequal segment sizes, the MTD must mange the cache.
fl ash_ngr requiresthat the sector sizes beof equal size.

Interface Overview

AnMTD isimplemented as a character device driver. From the point of view of the
device driver structure, an MTD is very simple - there are only two entry points
required by the LynxOS character deviceinterface that are used inan MTD. These
are install and uninstall.

Inthe instal | routine, an MTD registers a callback routine, along with some
related data, withthe f1 ash_ngr module. The callback routineis responsible for
implementing afixed set of flash memory operations for the particular flash
device. fl ash_ngr invokesthe callback routine any time thereis the need to
access the flash device at the physical level.

Inthe uni nstal | routine, the MTD deregisters the callback, thus notifying the
flash_ngr that the MTD isno longer available for device accesses.

Whilethereisthesingle f1 ash_ngr component in the kernel, there may be
multiple active (registered) MTDs, each implementing access to its own flash
device. flash_ngr supports multiple opensto different flash devices and
concurrent |/O operations for them. The Flash ID, passed by an MTD to
flash_ngr at registration time, isused as akey for mapping application requests
to aparticular MTD.

The following sections provide a detailed description of the interface between the
fl ash_nmgr module and an MTD. All entry points and data structures are defined
in the header file $ENV_PREFI X/ sys/ dheader s/ fl ash_ntd. h.

Registering with flash_mgr

An MTD registerswith fl ash_mgr by invokingthe fl ash_nt d_regi ster
entry point. A pointer to the MTD registration datais passed as the only parameter
to the routine.
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MTD Registration Data

The MTD registration data, as passed by anMTD to | ash_nyr, isdescribed by
the following data structures:

typedef struct flash_ntd_area_s

u_int of f set; /* Offset fromFlash Base*/
u_int si ze; /* Size in Bytes */

flash_nmtd_area_t;

typedef struct flash_ntd_register_s

int flash_id; /* Flash ID */
u_int nd_attr; /* MID Attributes */
u_int flash_addr; /* Flash Base */
u_int sector_size;/* Sector Size (bytes) */
u_int flash_size; /* Flash Size (bytes) */
char * info_str; /* Device Info String */
flash_ntd_area_t /* Device Control */
/* Registers */
spec_| ocs[ FLASH_MID_SPEC LOC_NUM ;
flash_ntd_area_t /* Partitions Info */
parts[ FLASH MID_PART_NUM ;
void * user _param /* MID Specific Data */
flash_ntd_cal | back_t /* Pointer to Call back */
cal | back;

}
flash_ntd_register_t;

To register with f1 ash_ngr, an MTD must fill in astructure of type
flash_ntd_register_t withtheregistration data. The variousfieldsin the
structure should be initialized to appropriate values. Once the structure has been
initialized, the MTD makesitself knownto fl ash_ngr by calling

flash_nt d_regi ster and passing the address of the structure as the parameter.
If registration is successful, flash_nt d_regi ster returnszero. For example:

char * flash_exanple_install(
flash_exanmple_info_t * info )

flash_ntd_register_t reg_data;
/* Fill in the registration data.
*
reg_/data.flash_id S
/: Regi ster with the flash nmanager.
if (/flash_md_register( & reg_data ) !'=0)

return (char *) SYSERR
}

}

The following provides example registration code for the Intel i28F400 flash
device.
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/*
* %
* %
* %

* %

*/

char

Install entry point

Dependency: This function has Fal con-specific code.

*

i 28F400_r _instal | (i 28F400_i nfo_t *i nfo)

{

int i;

i 28F400_statics_t *s;
flash_mtd_register_t reg;
u_i nt *romAbasesi z_reg;

/* Allocate a statics structure */
s = (i28F400_statics_t *)sysbrk(sizeof (i 28F400_statics_t));
if (s == NULL) {

s = (i28F400_statics_t *)SYSERR

return (char *)s;

}

/* Map the ROM A Base/ Size Register */
romAbasesi z_reg = map_romA basesi z_reg();

/* Calculate flash nenory size */
s->flash_size = cal c_i 28f 400_si ze(romAbasesi z_reg) ;
if ((int)s->flash_size == SYSERR) {
sysfree(s, (long)sizeof(*s));
s = (i28F400_statics_t *)SYSERR
goto i 28F400_r_instal |l _done;
}

/* Map the entire flash address space */
s->vaddr = (char *)map_28F400(r omAbasesi z_reg, s->flash_size);
if (s->vaddr == (char *)SYSERR) {
sysfree(s, (long)sizeof(*s));
s = (i28F400_statics_t *)SYSERR;
goto i 28F400_r _install _done;
}

/* Wite enable flash bank A */
i 28F400_wr i t e_enabl e(r omAbasesi z_reg);

/* Set the flash device to Read Array node */
set _read_array_28f 400(r omAbasesi z_reg, (u_int *)s->vaddr, s-

>f | ash_si ze);

/* Cet device id and nfr id */
s->i 28F400_i ds = get_i 28F400_i ds(romAbasesi z_reg, (u_int *)s->vaddr,
s->fl ash_si ze);
if (s->i28F400_ids < 0) {
sysfree(s, (long)sizeof(*s));
s = (i28F400_statics_t *)SYSERR
goto i 28F400_r _install _done;

}
/* Fill up the statics structure */
s->flash_id = info->flash_id;

s->romAbasesi z_reg = romAbasesi z_reg;

/* Fill up block layout */
fill_block_| ayout ((s->i 28F400_i ds & Ox0000FFFF), &s->layout[0]);
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/* Allocate space for cache */
s->cache = all oc_28F400_cache();
if (s->cache == NULL) {
sysfree(s, (long)sizeof(*s));
s = (i28F400_statics_t *)SYSERR;
goto i 28F400_r_instal |l _done;
}
s->cache->bl kno = 0;
s->cache->dirty = 0;
mencpy(s->cache- >cache, s->vaddr + s->layout[0].offset, s-
>| ayout [ 0] . si ze);

s->erase_sem = 1;
s->erased_bitmap = 0;

/* Prepare registration infornmation */
/* No command registers */

for (i =0; i < FLASH MID_SPEC LOC_NUM i ++) {
reg.spec_locs[i].size = 0;

/* Set up partitions */
for (i = 0; i < FLASH MID_PART NUM i ++) {

reg.parts[i].offset = info->parts[i].offset;
reg.parts[i].size = info->parts[i].size;
}
/* Registration attributes */
reg.ntd_attr = FLASH MID_ATTR_NO_MAP | /* Already napped */
FLASH MID_ATTR_READ | /* Read Op. */
FLASH MID_ATTR WRI TE | /* Wite Qp. */
#if defined( PSEUDO )
FLASH MID_ATTR_OPEN | /* Open Op. */
#endi f

FLASH MID_ATTR_CLOSE | /* Close Op. */

FLASH MID_ATTR_ERASE | /* Erase Op. */

FLASH MID_ATTR_ERASE_ALL | /* Erase All Op. */
FLASH MID_ATTR_SPECI FI C; /* MID specific operations */

reg.flash_id = s->flash_id;
reg.flash_addr = (u_int)s->vaddr;
reg.sector_size = n_8KB * 4;

reg.flash_size = s->fl ash_si ze;
reg.info_str = "Intel 28F400 Fl ash";
reg. user_param = s;

reg. cal |l back = i 28F400_cal | back;

/* Register with the flash manager */
if (flash_ntd_register(&eg)) {
free_i 28F400_st atics(s);
s = (i28F400_statics_t *)SYSERR;
}

i 28F400_r _i nst al | _done:
/* Wite disable flash bank A */
i 28F400_wri t e_di sabl e(r omAbasesi z_reg);
return (char *)s;
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194

Flash ID

The Flash ID is one of the most important el ements of the registration data. It isan
integer key used by f1 ash_ngr toidentify aparticular MTD among all the MTD
modulesinstalled in the kernel. The flash ID number is also used to generate the
minor number for the flash device. All flash devices use the same major number.
To access aflash device, the application opens a corresponding device specia file.
The Flash ID is encoded into a 4 bit field within the minor device number.
flash_ngr extractsit and usesit as akey to map application requeststo a
particular MTD module.

The following describes the minor number layout for flash device nodes:

76.43..0
VPPPDDDD
Where:

» Vgpecifiesthe verification mode. If thisbit is set, driver operatesin the
transparent verification-on-write-and-erase mode. Otherwise, driver
operates in the no-verification mode.

* Pisa3-bit field specifying the partition number. A value of O corresonds
to the entire flash device; any other value (1 to 7) defines the partition
number. The partition information ispassed to f | ash_ngr by the MTD
at the registration time.

e Disad4-hit field specifying the Flash ID. The Flash ID can range from 0
to 15. The Flash ID isused by thef | ash_ngr to map arequest to the
corresponding MTD. MTD passesitsFlashID tof | ash_ngr at
registration time.

The Flash ID number is chosen by the devel oper, and set by the MTD at
registration time. A Flash ID number must be unique for each MTD configured
into the kernel. The 4 bit Flash ID field in the minor number alows you to install
up to 16 MTDs simultaneoudly, with Flash IDs ranging from 0 to 15. For an easier
configuration, it is recommended that the Flash ID be copied from the device
information block, as shown in the example below:

reg_data.flash_id = info->flash_id;

Note that once you modify the Flash ID of an MTD, you have to change the minor
numbers for all corresponding device nodes accordingly. By default, special nodes
for the flash devices are installed in the configuration file

$ENV_PREFI X/ sys/ cf g/ f | ash. cf g.
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For example,

# AMRILV160BT on-board flash MID, id 5
N: f 1 ash_an29l v160bt . 0: 5: 0600
N: f 1 ash_an9l v160bt. 1: 21: 0600
N: f 1 ash_an9l v160bt . 2: 37: 0600
N: f | ash_anR9l v160bt . 3: 53: 0600

Where:

N: <fl ash_devi ce. n>: <m nor #>: <fi |l e_perm ssi ons>

Device Info String

The info_str fieldisapointer to the device information string. Thisisan
arbitrary character string describing the flash device. f1 ash_ngr returnsthis
string as a part of the flash information block whenever an application issues a
FLASH GET_I NFO i oct! command. The string must be contained in a
nonautomatic variable. For example:

reg_data.info_str = “rpxl 8xx on-board FLASH';

Flash Size

The size of the flash memory ispassedto f | ash_ngr throughthe fl ash_si ze
field. Sizeis specified in bytes:

reg_data.flash_size = 4 * MByte;

Sector Size

The size of the flash device sector ispassedto f1 ash_nmgr through the
sect or _si ze field. The sector size should be the smallest sector size of adevice,
specified in bytes:

reg_data.flash_size = 256 * KByte;
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Registration Attributes

Theregistration attributes are passedto f | ash_ngr throughthe ntd_attr field
as a bitwise combination of the following logical flags:

Table 10-1: MTD Registration Attributes

Attribute

Description

FLASH MID_ATTR READ

MTD supports read accesses to the flash device.

FLASH MID_ATTR WRI TE

MTD supports write accesses to the flash device.

FLASH MID_ATTR_ERASE_ALL

MTD supports erase of the entire flash device. If thisflag is
not specified, any ioctl request for FLASH_ERASE_ALL is
denied.

FLASH MID_ATTR ERASE

MTD supports erase of a particular sector of the flash device.
If thisflag is not specified, any i oct| request for
FLASH_ERASE_BLOCK isdenied.

FLASH MID_ATTR_SPECI FI C

MTD supports device-specific operations. If thisflag is not
specified, any i oct| request for FLASH SPECI FI C is
denied.

FLASH MID_ATTR FF_ERASED

For this device, an erased byte returns OxFF onaread
access. Specification of this flag for a device granting this
condition islikely to improve the overall driver throughput.
Thisflagisused only if the f | ash_ngr isused to manage
the cache.

FLASH MID_ATTR_AUTO_READ

MTD relieson fl ash_ngr to execute read accesses. The
MTD callback routine is not invoked upon aread request
from user application. Instead, fl ash_ngr readsflash
memory as conventional memory. If thisflag is specified,
FLASH MID_ATTR_READ isignored. Thisflagis used
only if the fl ash_ngr isused to manage the cache.

FLASH MID_ATTR NO_MAP

Entire flash memory is already mapped into a contiguous
region of the kernel virtual space by the MTD. No mappingis
neededin fl ash_mgr. If thisflag is specified,

fl ash_mgr interpretsthe flash base address as a virtual
addressin the kernel space. The MTD must manage the cache
if the flash memory sector sizes are different.
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Table 10-1: MTD Registration Attributes (Continued)

Attribute Description

FLASH MID_ATTR_MAP_SPECI FI C | MTD notifies f1 ash_ngr that whenever a

FLASH MID_REQ SPECI FI C operationisinvoked on the
MTD, the entire flash memory must be mapped into a
contiguous region of the kerndl virtual space. If thisflagis
not specified, any i oct | requestfor FLASH_SPECI FI C
is denied.

FLASH_MID_ATTR_CACHE MTD requests that the special flash cache be enabled by

f I ash_ngr . The flash cache resides on top of thein-
memory disk cache and is useful only if flash deviceis
accessed through the block interface of fl ash_ngr.
Synchronization of aflash device with enabled flash cache
requires execution of the fl ash_sync(1) utility aftera
write out of the disk cache.

Flash cacheis designed to both improve the overall flash file
system access rate and prevent the flash memory exhaustion.
It is especialy efficient for devices with alarge sector size.

FLASH MID_ATTR_OPEN This flag requests the open MTD callback to be called.
FLASH MID_ATTR _CLGCSE This flag requests the close MTD callback to be called.

The following example showshow the ntd_attr field can beinitiaized for the

reglstratlon:
reg.ntd_attr = FLASH MID_ATTR_NO_MAP |
/* Al ready mapped */
FLASH_MID_ATTR WRI TE |
/* Wite Op. */
FLASH_MID_ATTR_AUTO READ |
/* No Read Op. */
FLASH MID_ATTR_ERASE |
/* Erase Op. */
FLASH _MID_ATTR_ERASE ALL |
/* Erase All Op. */
FLASH MID_ATTR_FF_ERASED |
/* OxFF if erased */
FLASH_MID_ATTR_CACHE;
/* Flash cached */

Flash Base Address

The fl ash_base fieldisused to passthe base address of the flash memory to
f1 ash_nygr. Interpretation of thisfield depends on whether the
FLASH MID_ATTR _NO MAP flagissetinthe nmtd_attr field.
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If theflagisset, fl ash_ngr interpretsthe base address asavirtual addressin the
kernel memory map and relies on the entire flash memory to be already mapped
into the kernel space. fl ash_base inthiscase contains a starting address of the
flash memory in the virtua space. In the following example MTD uses the
per map(9) kernel service to map the entire flash into the kernel space:
/* Notify flash_ngr that flash is napped by the MID.
*)
reg.ntd_attr = FLASH_MID_ATTR_NO MAP | ... ;
/* Map the flash; set flash_base to the
* virtual address.
*/
reg. flash_base = (u_int) permap( FLASH PHYS_BASE,
FLASH SI ZE );
If theflagisnot set, fl ash_ngr interpretsthe base address as a physical address
of the flash memory in the system memory map. Inthiscase, fl ash_ngr takes
over the burden of mapping the flash memory and guarantees that whenever the
MTD callback routine isinvoked, part of flash memory on which the operation is
executed is mapped into the kernel virtual space. The following exampleillustrates
this approach:
/* Notify flash_ngr that flash is not mapped.
*/
reg.ntd_attr = /* no FLASH MID ATTR_ NO MAP */ | ... ;
/* Set flash_base to the physical address.
*/
reg. flash_base = FLASH PHYS_BASE;

NoTE: If the flash deviceis used to store crash dump data, the base address must be
mapped manually.

Device Control Registers

An MTD is allowed to register up to three control register windows. A control
register window is an address range within the flash memory that is used to access
hardware control and status registers. Usually, an MTD needs to be able to access
the control and status registersin order to program certain operations of the flash
device (for example, flash erase).

Note that registration of control registers windowsis needed only if an MTD does
not usethe FLASH_MID_ATTR_NO _MAP attributeto register withthe f 1 ash_ngr
module. Inthiscase f| ash_ngr takes over the responsibility of mapping the
hardware registers and guarantees that any time the MTD callback routineis
invoked, all registered control registers windows are mapped into the kernel virtual
space.
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Because the hardware control registers are located within the flash memory address
range, there is no need to define control registers windows for an MTD that uses
the FLASH MI'D_ATTR_NO MAP attributefor theregistration. Assoon asthe MTD
creates the mapping for the entire flash memory, the control registers windows
become mapped automatically.

The control registers windows are created by initializing the spec_I| ocs array. If
awindow is unused, the corresponding si ze field should be set to zero.

The following example shows registration of two control registers windows:

/* Notify flash_nmgr that flash is not mapped.
*/
reg.ntd_attr = /* no FLASH MID_ ATTR_ NO MAP */ | ... ;
/* Define the hardware regi sters wi ndows.
*/
for (i =0; i < FLASH MID SPEC LOC NUM i ++ )
{

reg.spec_locs[i].size = 0;

reg.spec_|l ocs[0].of fset = 0x5555 * 4;

/* Conmand Regl */
reg. spec_|l ocs[ 0] . si ze = 4;/* 4 bytes */
reg.spec_l ocs[1].of fset = Ox2AAA * 4;

/* Conmand Reg2 */
reg. spec_|l ocs[1]. si ze = 4;/* 4 bytes */

Partition Information

A flash memory device can be divided in up to seven possible overlapping
partitions. Unlike a conventional disk, thereis no partition table or a similar
partition descriptor maintained in flash memory. Instead, the partitions datais
maintained in the softwaretables of f1 ash_nmgr on aper-device basis. Device
partition information is passed by an MTD to the fl ash_nt d module at
registration time and is effective until the MTD is deregistered.

Device partition information is passed to the f| ash_nmgr through the parts
field, which isa 7 entry table of partition descriptors. Each entry of the table
contains information about one partition of the flash device. The entry with index O
defines partition number 1, the entry with index 1 partition number 2, and so on. If
an entry hasthe si ze field set to zero, the corresponding partition is undefined
and cannot be accessed from user applications.

To get access to a flash partition, an application opens a corresponding device
specia node. The partition number is encoded as a3 bit field into the device minor
number. A value of 0 correspondsto the entire flash device; any other value

(1 to 7) defines the partition number.
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Other than passing the partition informationto f | ash_ngr at the registration
time, an MTD isinsensitive to device partitions. Flash addresses and sector
numbers passed to the MTD callback routineby f1 ash_ngr arerelativeto the
flash memory base.

To allow for easy partitioning of aflash device, it is recommended that the
partitions information be copied from the device information block, as shown in
the exampl e below:

for (i =0; i < FLASH MID_PART_NUM i ++ )
{

reg.parts[i] = info->parts[i];

The user can change the device partitions by modifying the device information
block and rebuilding the kernel. Shown below is a sample device block for the
above example:

flash_exanpl e_info_t flash_exanple_info =

{

/* Device Partitions :

* there are 7 partitions;

* there nust be an entry for each.

* |f a partition is unused, size is set to O.
*/

0 * MByte, 1 * MByte, /* Partition 1: 0 - 1 MB */
1 * MByte, 3 * MByte, /* Partition 2: 1 MB - 4 MB */
0, 0 /* Partition 3: unused */
0, 0 /* Partition 4: unused */
0, 0 /* Partition 5: unused */
0, 0 /* Partition 6: unused */
0, 0 /* Partition 7: unused */

Callback Routine

A pointer to the callback routineispassedto f1 ash_ngr throughthe cal | back
field. Pointer to MTD specific datais passed through the user _par am field. This
pointer is passed back to the callback routine any time the callback is invoked by
flash_ngr.

The following example shows registration of a callback routine. A pointer to the
MTD statics structure is registered as the MTD specific data:

flash_statics_t * s;

reg. user_param = s;
reg. cal | back = flash_exanpl e_cal | back;
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Deregistering from flash_mgr

AnMTD deregistersfrom fl ash_ngr by invoking the
flash_nt d_der egi st er entry point. The Flash ID is passed as the only
parameter to the routine. For example:

void flash_exanpl e_uninstall (
flash_exanpl e_statics_t * s )
{

/* Der egi ster the MID.
*
/
flash_nmtd_deregister( s->flash_id );

Writing Callback Routines

The MTD callback routineisinvoked by the f1 ash_ngr module with the
following syntax:

int flash_ntd_rpxl _callback (

int op, /* Operation Code */
u_int flash_base, /* Flash in Virtual Space */
flash_ntd_paramt * op_param /* Operation Paraneter */
void * user_param /* MID Specific Data */
int flags); /* MID Fl ags */

Operation Code
The first parameter contains an operation code, which can be any of the following:

FLASH MID_REQ READ Request to read a specified area of flash memory
into amemory buffer

FLASH MID_REQ WRI TE Request to write amemory buffer into a specified
area of flash memory

FLASH _MID_REQ ERASE Request to erase specified sectors of flash device

FLASH MID_REQ ERASE _ALL | Request to erase the entire flash device

FLASH MID_REQ SPECI FI C | Request to execute a device-specific operation -
Operation code and a single operation parameter are
passed through the additional parameter.

FLASH _MID_REQ OPEN Request to open the flash device

FLASH MID REQ CLCSE Request to close the flash device
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Flash Virtual Base

The second parameter contains an address of the flash memory base in the kernel
virtual space. The MTD should useit to convert relative flash addresses to absolute
addressesin the kernel space. For example:

/* Execute a flash command.
*/

* (u_char *) ( flash_base + 0x5555 * 4 + chip ) = OxAA
* (u_char *) ( flash_base + Ox2AAA * 4 + chip ) = 0x55;
* (u_char *) ( flash_base + 0x5555 * 4 + chip ) = cnd;

Operation Parameter

Thethird parameter is supplementary to the operation code parameter and contains
adescription of the requested operation. The following typeis used:

typedef union flash_ntd_paramu

{

struct {
void * buf ; /* Data Buffer */
flash_ntd_area_t area; /* Flash Area */
}orw
struct {
u_int start_sector; /* First Sector */
u_int sectors_num /* Number of Sectors */
}erase;
struct {
int req_code; /* Request Code */
void * req_param /* Request Paraneters */
}specific;

}
flash_md_paramt;

Ther wstructure is used when the operation code is equal to either

FLASH MID_REQ READ or FLASH MID _REQ WRI TE. The buf pointer
specifies a data buffer in memory. The ar ea structure specifies an areain flash.
Offset is relative to the flash base.

The erase structure is used when the operation code is equal to
FLASH MID REQ ERASE. The start_sector field specifiesthefirst sector to
erase. The sect ors_num field specifies number of sectorsto erase.

The speci fic structureis used when the operation code is equal to

FLASH MID_REQ SPECI FI C. The req_code field contains an MTD-specific
operation code. The r eq_par am field is a pointer to an operation specific
parameters area

FLASH MID_REQ OPEN and FLASH MrD _REQ CLOSE do not use this argument.
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MTD-Specific Data

The fourth parameter is a pointer to the MTD specific data. fl ash_ngr setsthis
parameter to the value passed by the MTD through the user _par am field of the
MTD registration data.

Return Code

If an operation completes successfully, the callback routine returns zero. Any other
value indicates afailure.

Synchronization

The fl ash_ngr layer resolvesal synchronization issues prior to invoking an
MTD callback routine. An MTD is guaranteed that:

e Invocation of FLASH MID_REQ WRI TE isdelayed until the MTD has
finished all operationsin progress.

e Invocation of FLASH MID REQ ERASE or
FLASH MID_REQ ERASE ALL isdelayed until the MTD hasfinished all
operations in progress.

e Invocation of FLASH MID_REQ SPECI FI C isdelayed until the MTD
has finished all operationsin progress.

¢ Invocation of FLASH MI'D_REQ READ isdelayed until the MTD has
finished write, erase or device-specific operations in progress.
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The LynxOS PC Card package architecture is based upon the PCM CIA/JEIDA PC
Card Architecture specification. The following figure illustrates the card package

architecture.
Applications
1
Device
1
Card
Socket Socket
Services Services
PCMCIA PCMCIA
Host Bus Host Bus
Adapter Adapter
PC PC

Figure 11-1: PC Card Architecture

Socket Services provides a standardized interface to manipulate PC Cards, sockets
and adapters. A host system may have more than one PC Card adapter present.
Each adapter has its own Socket Services instance.

Each instance of Socket Services registers with Card Services and notifies it about
status changes in PC Cards or sockets.
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By making al accesses to adapters, sockets, and PC Cards through the Socket
Services interface, higher-level software is unaffected by different
implementations of the hardware. Only the hardware-specific Socket Services code
needs to modified to accommodate a new hardware implementation.

Card Services coordinates access to PC Cards, sockets and system resources
among multiple clients. Thereis only one instance of Card Servicesin the system.
Card Services makes all access to the hardware level through the Socket Services
interface. All Socket Services status change reporting is routed to Card Services.
Card Services then notifies the appropriate clients. Card Services preservesfor its
clients an abstract, hardware-independent view of acard and its resources.

Client Device Drivers refersto all users of Card Services. In the LynxOS PC Card
architecture, users of Card Services are device drivers. They use a standardized
API to access Card Services.

Card Services Overview

206

Card Services Initialization

Card Servicesisimplemented as adevice driver. Thereisonly oneinstance of Card
Services present in the system. At installation time, Card Servicesinitializesits
resource databases and prepares to handle registration requests from both Socket
Services and client device drivers. The Card Services driver must be installed prior
to any other PC Card-related driver.

Logical Sockets

The Card Services interface uses logical socket numbers to identify the socket a
service isintended to access. Thefirst physical socket on the first physical adapter
islogical socket 0. Thelast logical socket isthe total number of sockets less one.

Card Services Groups

The services defined by the card services interface can be divided into six
functional groups. These are;
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* Client Services

» Client Utilities

¢ Resource Management Services
¢ Advanced Client Services

¢ Bulk Memory Services

e Specia Services

Client Services

The following services are used for client initialization and registration.
e Deregisterdient
e GetCardServiceslnfo

* Registerdient

Client Utilities

The following services are used to perform common tasks required by all clients.
e GetFirstTuple
e Get Next Tupl e

Resource Management Services

The following services provide basic access to available system resources. These
services combine knowledge of the current status of system resources with the
underlying Socket Services adapter control services.

e GCetConfigurationlnfo

e GetFirstWndow (not supported)
e Get Next W ndow (not supported)
* Rel easeConfiguration

* Rel easel O

¢ Rel easel RQ

¢ Rel easeW ndow (not supported)
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Request Confi gurati on
Request | O

Request | RQ

Request W ndow (not supported)

Advanced Client Services
The following are advanced client services.

AccessConfi gReg
GetFirstdient

Get Next Cl i ent

Regi st er MID (not supported)

Bulk Memory Services

Thefollowing services provide various memory operations for memory clientsthat
require isolation from the details of underlying memory technology hardware.

C oseMenory (not supported)
CopyMenory (not supported)
OpenMenory (not supported)
ReadMenory (not supported)
W iteMenory (notsupported)

Special Services
The following are services providing miscellaneous operations for client drivers.

Er r or Name
Par seTupl e

Ser vi ceNane
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Card Services Calling Conventions

The Card Servicesinterface consists of the Car dServi ces() function.
Car dSer vi ces() providesthe API for all card services.

Header Files

All prototypes and constants needed to access card services from client device
drivers are located in the following header files:

Table 11-1: Card Services Header Files

File Description

/ sys/ dheaders/ pcntia_cs. h Contains definitions common for all services.

Contains definitions required by the tuple

/ sys/ dheader s/ pcntia_cs_tuple.h . .
parsing services.

Synopsis
The prototype for Car dServi ces() is

int CardServices( int Service, void * Handle, void * Pointer,
int rgLength, void * ArgPointer );

The CardServi ces() parameters are defined asfollows:

Servi ce Specifies the service code. Services details are documented in
“Card Services Reference’ on page 217.

Handl e Isthe client handle returned by the Regi sterd i ent
service. It isnot used by any other service. The

Regi st er d i ent service placesanew client handlein the
location pointed to by this argument.

Poi nt er Is a service-dependent value.
ArglLength Isthe size of the structure pointed to by Ar gPoi nt er.
Ar gPoi nt er Is apointer to service-dependent data.

After invocation, a service returns a completion code, unique for a particular
service, as defined “ Card Services Reference” on page 217.
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A client device driver isadevice driver that uses the API defined by
Car dServi ces() .

The following tasks are common for client device drivers:
» Detecting the presence of card services
* Registration with card servicesto receive event notifications
* ldentification of a PC Card
* Regquesting system resources for a PC Card
e Configuration of aPC Card
» Deregistration of the client

These steps are described below and areillustrated by a sample client device driver
acting as a PC Card enabler.

Detecting the Presence of Card Services

The presence of card servicesis detected using the Get Car dSer vi cesl nfo
service. For example:

int code;
pcnti a_cs_information_t cs_info;

/* Get Card Services infornmation. */
code = CardServices( CetCardServiceslinfo, ( void* )0, ( void * )O,
sizeof ( cs_info ), &s_info );
if ( code !'= POMCI A CS_SUCCESS )
{
return (char *)SYSERR;

}

/* Detect the presence of Card Services. */
if ( cs_info.signature[0] !="C || cs_info.signature[l] !="S )

return (char *)SYSERR
}

Client Registration

Following initialization, a client registers itself with card services to specify the
event notification it isto receive. The Regi sterd i ent serviceisused to
register anew client. At registration time, the client specifiesitstype, thus defining
its priority for event notification. I/O clients are notified of events first, memory
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technology drivers are notified next, and memory clients are notified last. Also, the
client provides the event mask that defines the events to be notified of. For
example:

pcntia_cs_register_t reg;
int code;

/* 1/Otype client, create artificial insertion event
* for all card inserted at the registration tine.
*/
reg.attributes = PCMCIA CS_ATTR IO | PCMCI A _CS _ATTR_| NSERT;

/* Receive notification of PCMCI A _CS_EVENT_REMOVAL and
* PCMClI A_CS_EVENT_I NSERTI ON events.
*/
reg. event _mask = PCMCI A CS_EVENT_REMOVAL | PCMCI A_CS_EVENT_I| NSERTI ON;

/* No client specific data is needed.
*
/
reg.client_data = ( void * )O0;
/* Now register. NULL in the Handle paramwi || prevent Card Services
* fromreturning a client handle.
*
/
code = CardServices( RegisterCient, ( void * )0, ex_call back,
sizeof ( reg ), &eg);
if ( code !'= PCMCI A_CS_SUCCESS )

return SYSERR; }

Client Callback

Card services notifies clients of events through a single callback routine that is
specified at client registration. A client receives notification of an event along with
various event-specific data.

The prototype for cal | back() is

int callback( int event, int socket, void * handle, void * buffer,
pcntia_cs_ntd_request _t * ntd_request, void * client_param);

where:
event Isthe event code. Events are listed and described in the table,
“Events.”
socket Isthe logical socket with which the event is associated.
socket ismeaningful only for status change events.
handl e Isthe client handle.
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These arguments are used by memory technology drivers (not

buffer, nmtd _request
e supported).

client_param Is client-specific data provided at registration.

Events
The following events are supported:

Table 11-2: Events

Event Syntax/Description

cal | back( PCMCI A_CS_EVENT_REG_COWPLETE,
0, handl e, NULL, NULL, param;

Thisisthe first and mandatory event each client receives as soon as
registration is complete. This event arrives before

Regi st er i ent service completion to ensure determinism of
control flow.

PCMCI A_CS_EVENT_REG_COWPLETE

cal | back( PCMCI A_CS_EVENT_| NSERTI ON,
socket, handl e, NULL, NULL,
param);

This event occurs when card services detects an operational PC Card
inthelogical socket socket . The callback receives an artificial
PCMClI A_CS_EVENT_| NSERTI ON event for all sockets that
contain a PC Card if the client has registered with the

PCMClI A_CS_ATTR_| NSERTI ON attribute. The artificial insertion
event arrives before Regi ster 0 i ent service completion to
ensure determinism of control flow.

PCMCI A_CS_EVENT_| NSERTI ON

cal | back( PCMCI A_CS _EVENT_REMOVE,
socket, handl e, NULL, NULL,

param);
PCMCI A_CS_EVENT_REMOVAL

This event occurs when card services detects removal of a PC Card
from the logical socket socket .

PC Card Identification

When aclient receivesthe PCMCI A CS_EVENT _| NSERTI ON event, it must first
identify the just inserted PC Card. PC Card identification can be accomplished by
using the card and manufacturer identification numbers present in the mandatory
MANFI D tuple. Thistupleis parsed automatically by card serviceson card insertion
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and is provided to client in the data returned by the Get Confi gurati onlnfo
service. For example:

pcntia_cs_config_info_t config_info;
int code;

/* A part of callback code.
* Use the socket nunber from call back argunents.
*/
config_i nfo.socket = socket;
code = CardServices( GetConfigurationlnfo, handle, (void *)O,
sizeof ( config_info ), &config_info );
if ( code !'= PCMCI A_CS_SUCCESS )

{

return SYSERR;
}
if ( config_info.mnuf_code == 0x101 &&

config_i nfo. manuf _info == 0x589 )
/* This is a 3COM 3c589x PC Card.
*
/

}

An alternate method to identify the PC card is to use the client utilities servicesto
find some other tuplesthat contain card identification information, and parse them
using the Par seTupl e service. For example:

pcntia_cs_tuple_t tupl e;
pcntia_cs_tuple_data_t tuple_data;
int code;

/* Find nandatory Versionl tuple.
*/
tupl e. socket = socket;
tupl e.code = PCMCI A_CS_TUPLE_VERS 1;
code = CardServices( GetFirstTuple, handle, (void *)O,
sizeof ( tuple ), &uple );
if ( code == PCMCI A_CS_SUCCESS )

code = CardServices( ParseTuple, handle, & uple,
sizeof ( tuple_data ), &uple_data );
if ( code !'= PCMCI A_CS SUCCESS )
{
return SYSERR;

}
kkprintf( "CARD DETECTED: v%l. %\ n",
tupl e_data.vers_1.major, tuple_data.vers_1.mnor );

kkprintf( " %\n", tuple_data.vers_1. manf_nane );
kkprintf( " %\n", tuple_data.vers_1.prod_nane );
kkprintf( " %\ n", tuple_data.vers_1.lot_info );
kkprintf( " %\n", tuple_data.vers_1.prog_info );
}
PC Card Configuration

To configure a PC Card, the client must first reserve appropriate system resources
(I/O range and optional IRQ) using the Request | O and Request | RQ services.
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Reservation is necessary to prevent possible configuration conflicts with other
client device drivers. For example:

pcncia_cs_request_io_t io;

pcntia_cs_request_irqg_t irq;

int code;

/* Request 1/0O range 0x200-0x210.

*/
i 0. socket = socket;
i0.base_portl = 0x200;
io.numportsl = 0x10;
io.attributesl = 0;
i 0.base_port2 = 0;
io.numports2 = 0;
io.attributes2 = 0;

code = CardServices( Request! O handle, ( void * )O,
sizeof ( io ), &o0);
if ( code != PCMCI A CS_SUCCESS )

{
return SYSERR;
}
/* Request |RQ 14.
*
/
irq.socket = socket;

irg.assigned_irq = 32 + 14;

code = CardServices( Request!RQ handle, ( void * )O,
sizeof (irqg), &rq);

if ( code != PCMCI A_CS_SUCCESS )

return SYSERR
}

Actual configuration of aPC Card is performed by the Request Confi gur ati on
service. It applies the specified voltage to the card and reserves the I/O address
ranges and |RQ for corresponding socket. For example:

pcntia_cs_request_config_t config;
int code;

/* Apply the voltage and configure the card
*/

confi g. socket = socket;

config.vce = 50;

config.vpp = 50;

config.int_type = PCMCI A_CS_| NTERFACE_| G,
config.option = 1 + 0x40;

config. present PCMCI A_CS_PRESENT_OPTI ON,;

code = CardServices( RequestConfiguration, handle, ( void * )0,
sizeof ( config ), &config );

if ( code !'= POMCI A CS SUCCESS )

return SYSERR,
}
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Client Deregistration

To deregister aclient, the Der egi sterC i ent serviceisused. Theclient handle
obtained using the Regi sterd i ent serviceispassedto CardServices().
For example:

int code;

code = CardServices( DeregisterCient, handle, ( void * )0, 0, ( void * )0

).
if ( code !'= POMCI A_CS SUCCESS )

{
return SYSERR;

}

Sample Client Drivers

PC Card Enabler

An enabler isaclient device driver that detects insertion of a certain PC Card and
configuresit. The enabler allows standard device drivers to work with the PC Card
asaconventional | SA device. The simplest enabler isacharacter device driver that
hasonly install and uninstall entry point functions. At installation, the
enabler detects the presence of card services and registers with it, requesting to
receive card insertion events. Upon receiving a card insertion event, the enabler
identifies the PC Card. If a supported card isinserted, the enabler configuresiit.

As soon as the PC Card configuration is complete, an appropriate dynamic device
driver can beinstalled. The PC Card is controlled asif it were an ISA device.

If both enabler and driver are linked statically into the kernel, the enabler is
installed before the driver. The card must be inserted prior to system boot and the
driver should work without any changes.

NoOTE: Note that you must ensure that the driver is configured to use the same IRQ
and 1/O ports range as used by the enabler to configure the card.
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A sampledriver layout isillustrated below:

install * Detects card services presence.
* Registers 1/0 type client with attributes shown in the following
example:
/* 1/Otype client, create artificial insertion event
* for all card inserted at the registration tine.
*|
reg.attributes = PCMCIA CS ATTR 10| PCMCI A_CS_ATTR | NSERT;
reg. event_mask = PCMCI A_CS_EVENT_I| NSERTI ON;
uni nst al | * Deregisters the client.
cal | back » Upon receipt of PCMCI A_CS_EVENT_| NSERTI ON event,
identifies and configure the card.

Addition to Existing ISA Device Driver

It is possible to add the enabler code to an existing device driver of a conventional
ISA card. This approach allows you to create a hot swap-capable device driver for
the PC Card device. The driver can be statically or dynamically linked into the

kernel.

A driver with an embedded enabler should return success at installation, whether it
finds the card or not. However, it should be modified to reject any user accesses to
the device until the enabler detects and configures the PC Card. As soon as the PC
Card configuration is complete, the driver should perform the initialization
procedure, which would have been otherwise performed at installation of the
conventional device driver. Upon arequest to remove the card, the driver should
attempt to shut down the device.
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A sampledriver layout isillustrated below:

install * Detect card services presence.
* Register 1/0 type client with attributes shown in the following
example:

/* 1/Otype client, create artificial insertion event
* for all card inserted at the registration tine.
*/
reg.attributes = PCMOIA CS ATTR 10| POMCI A_CS_ATTR_I NSERT;
reg. event_mask = PCMCI A_CS_EVENT_| NSERTI ON |
PCMCI A_CS_EVENT_REMOVAL

* Do not perform any deviceinitialization, to ensure proper operation if
the card is not present in the socket.

* Set up aflag ensuring that any user accessto the deviceis rejected.
The flag can be either a global variable or contained in the statics
structure of the driver.

uni nstal | * Deregister the client.

cal | back *Upon PCMCI A_CS_EVENT_| NSERTI ON event, identify and
configure the card. Perform device initialization, then de-assert the
accessrgjection flag. Upon PCMCI A_CS_EVENT _REMOVAL
event, safely shut down the device, terminate the device driver
operation, and set the access rejection flag again.

open,read,.. |«Iftheaccessreectionflagisset, return ENXI O. Operate as usual
otherwise.

Card Services Reference

This section provides a description of the services supported by Card Services.
Card Services usesthe CardServi ces() API for accessto all services.
Car dServi ces() isdefined asfollows:

int CardServices( int Service, void * Handle, void * Pointer,
int rgLength, void * ArgPointer );

where:
Servi ce Specifies the service code.
Handl e Isthe client handle returned by the Regi sterd i ent

service. It isnot used by any other service. The
Regi ster i ent service placesanew client handlein the
location pointed to by this argument.
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Poi nt er Is a service-dependent value.

ArglLength Isthe size of the structure pointed to by Ar gPoi nter.

Ar gPoi nt er Isapointer to service-dependent data.
AccessConfigReg

AccessConfi gReg alowsaclient to read or write a PC Card Configuration
Register. ArgPoi nter must beapointertoa pcnti a_cs_access_reg_t
structure.

The pcnti a_cs_access_reg_t structureisdefined asfollows:

typedef struct pcntia_cs_access_reg_s

int socket; /* |ogical socket */
int action; /* action to be perforned */
int offset; /* offset to status register */
unsigned char value; /* value to read or wite */

}

pcnci a_cs_access_reg_t;

where:

socket Isalogical socket.

action Isthe code of the action to be executed. acti on canbesetto
either PCMCI A_CS_ACCESS_READ or
PCMCI A_CS_ACCESS WRI TE.
If action issetto PCMCI A_CS_ACCESS WRI TE, val ue is
written to the PC Card Configuration Register.
If action issetto PCMCI A CS _ACCESS READ, val ue is
set to the current value of the PC Card Configuration Register.

of f set Thisisthe byte offset to the status register. Thisis relative to the PC
Card configuration register base.

val ue Contains the value to read or write.

EXAMPLE

pcnci a_cs_access_reg_t access_reg;

/* get the value of Configuration Option Register */

access_reg. socket = 0;
access_reg. acti on = PCMCl A_CS_ACCESS_READ;
access_reg.of fset = 0;

res = CardServices( AccessConfigReg, NULL, NULL, sizeof( access_reg ),
&access_reg );
if ( res == PCMCI A_CS_SUCCESS )
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cprintf( "Configuration Option Register: Ox%\n", access_reg.value );

RETURN CODES

PCMCI A_CS_SUCCESS

Request succeeded.

PCMCI A_CS_BAD_SOCKET

Specified socket isinvalid.

PCMCI A_CS_NO_CARD

No PC Card in the socket.

PCMCI A_CS_BAD_ARG_LENGTH

ArgLengt h isinvalid.

PCMCI A_CS_BAD_ARGS

Specified arguments are invalid.

PCMCI A_CS_UNSUPPORTED_SERVI CE

Serviceis not supported.

DeregisterClient

The Deregi sterdient serviceremovesaclient from thelist of registered
clients maintained by card services. The client handle is passed in the Handl e

parameter.
EXAMPLE

res = CardServices( Deregisterdient,

nane. code = res;

NULL, NULL, 0, NULL );

CardServi ces( ErrorName, NULL, NULL, O, &nane );

if ( res == PCMCl A_CS_SUCCESS )
{

cprintf( “I amnot a client anynore\n” );

RETURN CODES

PCMCl A_CS_SUCCESS

Request succeeded.

PCMCI A_CS_BAD_HANDLE

Client handleisinvalid.

PCMCI A_CS_UNSUPPORTED_SERVI CE

Serviceis not supported.

ErrorName

Error Name service returns a character string corresponding to a specified error
code returned previously by Card Services. Ar gPoi nt er must be a pointer to a

pcnti a_cs_nane_t structure.
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The pcnti a_cs_nanme_t structure is defined as follows:
typedef struct pcntia_cs_nanme_s

int code;
char * nane;

}

pcnti a_cs_nane_t;

where;
code Isthe error code.
name Is apointer to the string that contains the error name.
EXAMPLE

pcncia_cs_nane_t;

res = CardServices ( DeregisterClient, NULL, NULL, 0, NULL );
nane. code = res;
CardServi ces( ErrorName, NULL, NULL, O, &nane );

/* should print PCMCl A_CS_BAD_HANDLE */
cprintf( “code Ox%, name %\n”, nane.code, name.nane );

RETURN CODES

PCMCI A_CS_SUCCESS Request succeeded.

PCMCI A_CS_UNSUPPCORTED_SERVI CE Service is not supported.

GetCardServicesinfo

Get Car dSer vi cesl nf o service returns the number of installed logical sockets
and information about Card Services that includes the vendor revision number and
release compliance code. Ar gPoi nt er must be apointer to a

pcnti a_cs_informati on_t structure.

The pcntia_cs_information_t structure isdefined asfollows:

typedef struct pcntia_cs_information_s

char signature[2]; /* "CS" */
int count; /* nunber of sockets */
int revision; /* BCD val ue of CS revision */
short cs_level; /* BCD val ue of CD release */
char * vendor_string; /* vendor string */

}

pcntia_cs_information_t;
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where:

si gnature[] Contains‘CS' if card servicesisinstalled.

count Is the number of logical sockets.

revision Is the binary coded decimal (BCD) value of the

CardServi ces() revision.
cs_| evel Isthe BCD value of the Car dSer vi ces() release.
vendor _string Is avendor-specific string.
EXAMPLE

pcntia_cs_i nformation_t info;

)

if ( res == PCMCI A_CS_SUCCESS )

if ( info.signature[0] ==
info.signature[ 1] ==

cprintf( "Card Services

}
RETURN CODES

C &
'S )

detected!\n" );

res = CardServices( CetCardServiceslnfo, NULL, NULL, sizeof( info), & nfo

PCMCI A_CS_SUCCESS

Request succeeded.

PCMCI A_CS_UNSUPPCORTED_SERVI CE Serviceis not supported.

PCMCI A_CS_BAD_ARG_LENGTH

ArglLengt h isinvalid.

GetConfigurationinfo

Get Confi gurati onl nf o service returnsinformation about the specified socket
and PC Card installed in the socket. Ar gPoi nt er must be a pointer to a
pcntia_cs_config_info_t structure.

Thepcnti a_cs_config_ info_t structureisdefined asfollows:

typedef struct pcntia_cs_config_info_s

int socket ;

int attributes;
int vce;

int vpp;

int int_type;

| *
/*
/*
| *
/*

| ogi cal socket
bit-mapped attributes
Vcc settings

Vpp settings
interface type
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unsi gned
unsi gned
unsi gned
unsi gned
int
int
unsi gned
int
int
int
unsi gned
unsi gned
unsi gned
unsi gned
int

}

config_base; /* base address of config register */
manuf _code; /* from Manufacturer ID tuple */
manuf _info; /* from Manufacturer ID tuple */
base_portl; /* base address for a range */
num portsl; /* nunmber of contiguous ports */
attributesl; /* bit-mapped port attributes */
base_port2; /* base address for a range */
num ports2; /* nunber of contiguous ports */
attributes2; /* bit-mpped port attributes */
assigned_irq;/* irq assigned to PC Card */
char status; /* Card Status register settings */
char pin; /* Card Pin register settings */
char copy; /* Card Copy register settings */
char option; /* Card Option register settings */
present; /* Card Configuration registers present */

pcntia_cs_config_info_t;

where:
socket Isthe logical socket.
attributes Isthe bit mapped socket attributes. attri but es isabitwise
combination of the constants:
« PCMCI A_CS_SATTR_ON - The socket contains a PC Card.
* PCMCI A_CS_SATTR_CONFI GURED - The PC Card installed in
the socket has been configured using the
Request Confi gurati on service.
vce Is the voltage applied to the Vcc pin of aPC Card. The voltageis
expressed in tenths of avolt.
vpp Isthe voltage applied to the Vpp pins of a PC Card. The voltageis
expressed in tenths of avolt.
int_type Interface type. Must be set to:

*« PCMCI A_CS_| NTERFACE_NONE - For the simplest interface,
featuring only card detection

« PCMCI A_CS_| NTERFACE_MEM - For amemory only interface

«PCMCI A_CS_| NTERFACE_| O - For amemory and 1/0O
interface

config_base

Isthe card base address of the configuration registers area.

nmanuf _code

Is the manufacturer number from the MANFI D tuple.

manuf _i nfo

I's the product identification number from the MANFI D tuple.

base_port1l

Is the base port number for I/0O window 1.

num portsi

Is the number of contiguous portsin I/O window 1.

attributesl

If setto PCMCI A CS | O ATTR 8BI T, the I/O window has an
8 bit width.
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base_port2

I's the base port number for I/0 window 2.

num ports2

Is the number of contiguous portsin I/O window 2.

attributes2

If setto PCMCI A_CS_| O ATTR 8Bl T, the I/O window has an
8 bit width.

assigned_irq

Isthe IRQ assigned to the PC Card.

status Isthe card status register settings, if present.

pin Isthe card pin register settings, if present.

copy Isthe card socket/copy register settings, if present.

option Isthe card option register settings, if present.

present Specifiesif the card configuration registers are present. A bitwise
combination of the following constants:
* PCMCI A_CS_PRESENT_STATUS - Status register is present.
* PCMCI A_CS_PRESENT_PI N- Pinregister is present.
* PCMClI A_CS_PRESENT_CCOPY - Copy register is present.
* PCMCI A_CS_PRESENT_OPTI ON- Option register is present.

EXAMPLE

pcntia_cs_config_info_t info

i nfo.socket = 0
res = CardServices( GetConfigurationlnfo, NULL, NULL, sizeof( info )
& nfo );

if ( res ==

{

PCMCI A_CS_SUCCESS )

if (info.attributes & PCMCI A CS_SATTR ON )

cprintf( "Socket #0 contains a PC Card!\n" );

}
}

RETURN CODES

PCMCI A_CS_SUCCESS Request succeeded.

PCMCI A_CS_UNSUPPORTED_SERVI CE Serviceis not supported.

PCMCI A_CS_BAD_ARG_LENGTH ArglLengt h isinvdid.

PCMCI A_CS_BAD_SOCKET Specified socket isinvalid.

Writing Device Drivers for LynxOS

223



Chapter 11 - Writing PC Card Client Drivers

GetFirstTuple

The Get Fi r st Tupl e service returnsthe first tuple of the specified typein the
ClISfor the specified socket. Ar gPoi nt er must be a pointer to a
pcntia_cs_tupl e_t structure.

The pcnti a_cs_tupl e_t structureisdefined as follows:

typedef struct pcntia_cs_tuple_s

int socket; /* Socket id */
int code; /* Requested tuple code */
pcntia_cs_tuple_internal _t internal; /* Internal state */

}

pcntia_cs_tuple_t;

where:
socket Isthelogical socket.
code Isthe tuple code. See table below.
i nternal Isthe Card Services CIS state information. Thisfield isused internally
by Card Services.

The following predefined constants can be used to specify atuple code:

PCMCI A CS _TUPLE_DEVI CE (0x01)
PCMCI A_CS_TUPLE_| NDI RECT (0x03)
PCMCI A_CS_TUPLE_CONFI G CB (0x04)
PCMCI A CS _TUPLE CFTABLE_ENTRY_CB | (OX05)
PCMCI A CS TUPLE_LONGLI NK_MFC (0x06)
PCMCI A_CS_TUPLE BAR (0x07)
PCMCI A_CS_TUPLE_CHECKSUM (0x10)
PCMCI A_CS TUPLE VERS 1 (0x15)
PCMCI A_CS_TUPLE_ALTSTR (0x16)
PCMCI A_CS_TUPLE_DEVI CE_A (0x17)
PCMCI A_CS_TUPLE_JEDEC C (0x18)
PCMCI A_CS_TUPLE_JEDEC A (0x19)
PCMCI A_CS_TUPLE_CONFI G (Ox1A)
PCMCI A_CS_TUPLE_CFTABLE_ENTRY (0x1B)
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PCMCI A_CS_TUPLE_DEVI CE_OC (0x1C)
PCMCI A_CS_TUPLE_DEVI CE_OA (0x1D)
PCMCI A_CS_TUPLE_DEVI CEGEO (OX1E)
PCMCI A_CS_TUPLE_DEVI CEGEO A (OX1F)
PCMCI A_CS_TUPLE_NMANFI D (0x20)
PCMCI A_CS_TUPLE_FUNCI D (0x21)
PCMCI A_CS_TUPLE_FUNCE (0x22)
PCMCI A_CS_TUPLE_SW L (0x23)
PCMCI A_CS_TUPLE_VERS 2 (0x40)
PCMCI A_CS_TUPLE_FORMAT (Ox41)
PCMCI A_CS_TUPLE_GEOVETRY (0x42)
PCMCI A_CS_TUPLE_BYTEORDER (0x43)
PCMCI A CS_TUPLE_DATE (Ox44)
PCMCI A_CS_TUPLE_BATTERY (Ox45)
PCMCI A_CS_TUPLE_ORG (Ox46)
PCMCI A_CS_TUPLE_FORMAT A (0x47)
PCMCI A CS _TUPLE_SPCL (0x90)

EXAMPLE
pcntia_cs_tuple_t tuple;

tupl e. socket = 0;

tupl e. code = PCMCI A CS_TUPLE_VERS_1;

res = CardServices( GetFirstTuple, NULL, NULL, sizeof( tuple ), &uple );
if ( res == PCMCOl A CS_SUCCESS )
cprintf( "Versl tuple found\n" );
RETURN CODES
PCMCI A_CS_SUCCESS Request succeeded.

PCMCI A_CS_BAD_SOCKET

Specified socket isinvalid.

PCMC! A_CS_UNSUPPORTED_SERVI CE

Serviceis not supported.
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PCMCI A CS_BAD_ARG_LENGTH

ArglLengt h isinvalid.

PCMCI A_CS_NO_CARD

No PC Card in socket.

PCMCI A_CS_NO_MORE_| TEMB

No tuples with specified code.

GetNextTuple

The Get Next Tupl e servicereturnsthe next tuple of the specified typeinthe CIS
for the specified socket. Ar gPoi nt er must be a pointer to the
pcntia_cs_tupl e_t structurereturned by a Get Fi r st Tupl e or aprevious

Get Next Tupl e request.
EXAMPLE
pcntia_cs_tuple_t tuple;

tupl e. socket = 0;

tupl e.code = PCMCI A_CS_TUPLE_VERS_1;

res = CardServices( GetFirstTuple,

if ( res == POMCI A CS_SUCCESS )

cprintf( "Versl tuple found\n" );

res = CardServices( GetNextTuple,

if ( res == PCMCI A_CS_SUCCESS )

NULL, NULL,

NULL, NULL, sizeof( tuple ), &uple );

sizeof ( tuple ), &uple );

cprintf( "Another Versl tuple found\n" );

RETURN CODES

PCMC A_CS_SUCCESS

Request succeeded.

PCMCI A_CS_BAD_SOCKET

Specified socket isinvalid.

PCMCI A_CS_UNSUPPORTED_SERVI CE

Serviceis not supported.

PCMCI A_CS_BAD ARG LENGTH

ArglLengt h isinvalid.

PCMCI A_CS_NO_CARD

No PC Card in socket.

PCMC A_CS_NO_MORE_| TEMS

No tuples with specified code.
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ParseTuple

The ParseTupl e service parsesatuple. Poi nt er must be a pointer to the
pcntia_cs_tupl e_t structurereturned by a Get Fi r st Tupl e or

Get Next Tupl e request. The ParseTupl e servicefillsa

pcnti a_cs_tupl e_data_t structure pointed to by the Ar gPoi nt er
parameter. The pcnti a_cs_tupl e_data_t structureis defined as follows:

typedef union pcntia_cs_tuple_data_u

pcnti a_cs_tupl e_devi ce_t devi ce;
pcnti a_cs_tupl e_bar _t bar;

pcnti a_cs_t upl e_checksum t checksum
pcntia_cs_tuple_vers_1_t vers_1;
pcntia_cs_tuple_altstr_t altstr;
pcntia_cs_tupl e_jedec_t j edec;
pcntia_cs_tuple_config_t config;
pcntia_cs_tuple_cftable_entry_t entry;
pcnti a_cs_tupl e_device_o_t devi ce_o;
pcnti a_cs_t upl e_devi cegeo_t devi cegeo;
pcnti a_cs_tupl e_manfid_t manfi d;
pcntia_cs_tuple_funcid_t funci d;
pcnti a_cs_tupl e_funce_t funce;
pcntia_cs_tuple_swl _t SWil;
pcntia_cs_tuple_vers_2_t vers_2;
pcntia_cs_tupl e_format _t format ;
pcnti a_cs_tupl e_geonetry_t geo;

pcnti a_cs_tupl e_byt eorder _t order;
pcntia_cs_tupl e_date_t dat e;
pcntia_cs_tuple_battery_t battery;
pcntia_cs_tuple_org_t org;

pcnti a_cs_tupl e_spcl _t spcl ;}

pcntia_cs_tuple_data_t;

Supported Tuple Codes

This section lists the supported tuple codes and field sets that support each. For
detailed information about each field semantics, refer to the PCMIA\JEIDA

Metaformat Specification.

PCMCI A_CS_TUPLE_DEVI CE
PCMCI A_CS_TUPLE_DEVI CE_A

typedef struct

pcntia_cs_tupl e_device_s

int ndev; /* Nunber of device structs */

struct

{
u_char type; /* Type of device */
u_char wps; /* Wite protect switch */
u_char units; /* Nunber of memunits */
u_long unit_size; /* Memunit's size */
u_|l ong speed; /* Card's speed */
u_l ong size; /* Full size of nem */

}
dev[ MAX_DEVI CES] ;
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}

pcnti a_cs_tupl e_device_t;
PCMCI A_CS_TUPLE_BAR

typedef struct pcntia_cs_tuple_bar_s
struct

u_i nt bel ow 1; /* Below 1 My bit

u_int cache . 2; |* Prefetchabl e/ Cacheabl e
u_int addr_spc : 1; /* Address space bit

u_int indicator 3; /* Address space indicator

}
attr; /* Attributes
u_l ong size; /* Base Address Register size

}

pcnti a_cs_tupl e_bar _t;
PCMCI A CS_TUPLE_CHECKSUM

typedef struct pcntia_cs_tuple_checksums

u_short address; /* Checksunmed address */
u_short |ength; /* Length of checksunmed space */
u_char checksum /* Checksum */

}

pcnti a_cs_tupl e_checksum t;
PCMCI A CS _TUPLE_VERS 1
typedef struct pcntia_cs_tuple_vers_1_s

u_char maj or; /* Major version
u_char mnor; /* M nor version

*/

*/
*/

*/
*/

char manf _nane[ MAX_STRI NG _LEN]; /* Manufacturer nane

char prod_nane[ MAX_STRI NG LEN]; /* Product nane
char I ot _info[ MAX_STRING LEN]; /* Lot nunber

}

pcncia_cs_tuple_vers_1_t;

PCMCI A_CS_TUPLE_ALTSTR

char prog_i nf o[ MAX_STRI NG LEN]; /* Progranm ng conditions

typedef struct pcntia_cs_tuple_altstr_s

char escape[ MAX_ESCAPE SEQ LEN]; /* Alternative string

/* escape sequence
char al tstrings[ MAX_ALTSTRI NGS] [ MAX_STRI NG_LEN] ;

/* Strings in alternative
/* language (corresponding to
/* vers_1 or vers_2 tuples)

pcntia_cs_tuple_altstr_t;

PCMCI A_CS_TUPLE_JEDEC
PCMCI A_CS_TUPLE_JEDEC A

typedef struct pcntia_cs_tuple_jedec_s

int ndev; /* Nunber of device structs */
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/*
/*

struct
u_char manf; /*
u_char units; /*
u_long unit_size; /*
u_l ong size; I*

}
dev[ MAX_DEVI CES] ;
}

pcntia_cs_tuple_jedec_t;

(corresponding to |ast
device tuple)

Manuf act urer nunber
Nunmber of memunits
Mem unit’s size

Full size of used mem

PCMCI A_CS_TUPLE_CONFI G

typedef struct pcntia_cs_

{
struct
{
u_int mask_size : 4;
u_int addr_size : 2;
13
si zes;

u_char i ndex;
u_l ong base;
u_char mask[ 16];

tuple_config_s

/* Size of Configuration
/* Regi sters presence nask
/* field in bytes (mnus 1)
/* Size of Configuration
/* Regi sters base address
/* field in bytes (mnus 1)

/* Last index
/* Base address
/* Conf. Reg. presence nask

u_char subt upl e[ MAX_DATA_SI ZE] ;

u_char size;

}

pcntia_cs_tuple_config_t;

/* Optional additional data
/* Size of subtuple data

PCMCI A_CS_TUPLE_CFTABLE_ENTRY

typedef struct pcntia_cs_tuple_power_s

struct
{
u_int pdown : 1; /*
u_int peak 1, /*
u_int avg 1, /*
u_int stat 1, /*
u_int max_v: 1, [*
u_int minwv: 1, /*
u_int nomv : 1, /*
}
sel ect;
struct
{
u_|l ong val ue; /*
/*
u_char fl ags; /*
/*
val ues[ 7] ;

}

pcnti a_cs_t upl e_power _t;

Power down bit

Peak current bit
Average current bit
Static current bit
Maxi mum vol t age bit
M ni mum vol t age bit
Nomi nal voltage bit

Val ue corresponding to
field in select structure
Fl ags corresponding to
field in select structure
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typedef struct

u_l ong
u_l ong
u_l ong
u_char
u_char
u_char
struct
t
u_int
u_int
u_int
}
sel ect;

}

wai t ;
ready;
reserved

wai t scal e;

rdyscal e
rsvscal e

wai t
ready

reserved :

1;
1;
1;

pcntia_cs_tuple_timng_s

/* Max Wit time  */
/* Max Ready tine */

/* reserved */
/* Vit scale */
/* Ready scal e */

/* Reserved scale */

/* Wait bit */
/* Ready bit */
/* Reserved bit */

pcntia_cs_tuple_timng_t;

typedef struct

struct
{
u_int
u_int
u_int

range
bus8_16

i oaddrlines :

i ospace_desc;

struct

{

u_int

len_size

u_i nt addr_size
u_int numfields

range_desc;

struct

u_l ong base;

u_l ong |l ength;

}
range[ 16] ;

pcnti a_cs_tupl e_i ospace_s

1; /* Range bit
2; /* Bus width info
5

/* lines

; /* Size of length f

NN

4; [* Total nunber of
/* fields (mnus 1)

/* Start of the next
/* Bl ock

/* Length of the next

/* Bl ock

pcntia_cs_tupl e_i ospace_t;

typedef struct

struct

{

nt
nt
nt
nt
nt
nt
nt
nt
nt

ccCccCcoCccocccoccoccC

}

share :
pul se :
level :
mask
vend
berr

i ock
nm
irgn

irq_desc;

u_short

i rq_mask
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pcntia_cs_tuple_irq_s

Share bit

Pul se bit

Level bit

Mask bit

Vendor specific signal
Bus error signal

1/ O check signal

Non- maskabl e interrupt
One of possible lines

I RQ I'i nes mask

/* Total nunber of address

ield

/* Size of address field

range

/0

*/
*/
*/
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*/
*/
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}

pcntia_cs_tuple_irqg_t;

typedef struct pcntia_cs_tuple_nems

struct
{
u_int host_addr : 1; /* Host address bit */
u_int caddr_size : 2; /* Size of card address */
u_int len_size : 2; |I* Size of length */
u_i nt wi ndows : 3; /* The nunber of w ndow */
/* descriptors (mnus 1) */
}
mem desc;
struct
u_l ong | ength; /* The length of the window */
/* in units of 256 bytes */
u_l ong card_addr; /* The address to be accessed */
/* on the card corresponding */
/* to the host address */
u_|l ong host _addr; /* The physical address in */
/* the host-address space */
/* where the block of nmemory */
/* nust be pl aced */
}
wi ndowf 8] ;

pcntia_cs_tuple_nmemt;

typedef struct pcntia_cs_tuple_msc_s

u_i nt pdown 1, /* Power down bit */
u_int read_only : 1; /* Read only bit */
u_int audio :1; /* Audio bit */
u_int max_twins : 3; /* Max Twin cards (mnus 1) */
u_int dma_width : 1; /* The DVA data transfer */

/* width */
u_int dma_req : 2; /* DMA request signal */

}

pcntia_cs_tuple_msc_t;

typedef struct pcntia_cs_tuple_cftable_entry_s

struct
{
u_int interface : 1; /* Interface bit */
u_int dflt 1, /* Default bit */
u_int entry_num : 6; /* Value is to be witten to */
/* the Card Configuration */
/* Register to enable the */
/* configuration described in */
/* the tuple */
}
i ndex;
struct
{
u_int wait_req 1, /* WAIT# Signal support */
/* required for Menory Cycles */
u_int rdy_active : 1; /* READY Status Active */
u_int wp_active : 1; /* Wite Protect Status is */
/* active */

u_int bvd_active : 1; /* BVDl and BVD2 signals are */
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/* active
u_int type : 4; |* Interface type
}
interface;
struct
{
u_int msc 1; /* Mscell. structure bit
u_i nt nmenspace 2; /* Memspace structure
/* descriptor
u_int irq 1; /* IRQ structure bit
u_int iospace 1; /* 10 space structure bit
u_int timng 1, /* Timng structure bit
u_int power 2; /* Nunber of power structures
}
sel ect;
pcnti a_cs_tupl e_power _t power [ 3] ;
/* Power structures
pcntia_cs_tuple_timng_t timng;
/* Timng structure
pcnti a_cs_tupl e_i ospace_t iospace;
/* 10 space structure
pcncia_cs_tuple_irqg_t irg;
/* 1RQ structure
pcntia_cs_tuple_nmem t mem
/* Menspace structure
pcntia_cs_tuple_m sc_t m sc;

/* M scel | aneous structure

u_char subt upl e[ MAX_DATA_SI ZE] ;
/* Optional additional data
u_char si ze;
/* Size of subtuple data */

}

pcntia_cs_tuple_cftable_entry_t;
PCMCI A CS_TUPLE_DEVI CE_OC
PCMCI A_CS_TUPLE_DEVI CE_OA

typedef struct pcntia_cs_tuple_device_o_s

int ndev; /* Nunmber of device structs */

struct

{
u_int vcc_used : 2; /* Vcc voltage */
u_int mwait D1 /* MMt bit */

}

info;

struct

{
u_char type; /* Type of device */
u_char wps; /* Wite protect switch */
u_char units; /* Nunmber of nmemunits */
u_long unit_size; /* Memunit’'s size */
u_|l ong speed; /* Card' s speed */
u_l ong size; /* Full size of nem */

}
dev[ MAX_DEVI CES] ;
}

pcncia_cs_tupl e_device_o_t;

PCMCI A_CS_TUPLE_DEVI CEGEO
PCMCI A_CS_TUPLE_DEVI CEGEO A

Writing Device Drivers for LynxOS

*/
*/

*/
*/
*/
*/
*/

*/

*/

*/

*/

*/

*/

*/

*/



Supported Tuple Codes

typedef struct pcntia_cs_tuple_devicegeo_s

int ndev; /* Nunber of device structs */
struct
{
u_char bus; /* Card interface width */
/* (2°(bus - 1)) */
u_char erase; /* M ni mum er ase bl ock */
/* size (2"(erase - 1)) */
u_char read; /* M ni mum read bl ock */
/* size (2" (read - 1)) */
u_char write; /* Mninumwite block */
/* size (2M(wite - 1)) */
u_char partition; /* Mnimal partition size */
/* (2"(partition - 1)) */
u_char hwil; /* Hardware interleave */
[* (2°(hwi |l - 1)) */

}
dev[ MAX_DEVI CES] ;
}

pcnti a_cs_t upl e_devi cegeo_t ;
PCMCI A CS_TUPLE_NANFI D

typedef struct pcntia_cs_tuple_nanfid_s

u_short code; /* Manufacture code */
u_short card; /* Card info */

}

pcntia_cs_tuple_manfid_t;
PCMCI A_CS_TUPLE_FUNCI D

typedef struct pcntia_cs_tuple_funcid_s
u_int func : 8; /* Type of card */
u_int rom : 1; /* ROMbit */
u_int post : 1; /* POST bit */

}

pcntia_cs_tupl e_funcid_t;

PCMCI A_CS_TUPLE_FUNCE

typedef struct pcntia_cs_tuple_funce_s

u_char type; /* Type of extended data */
u_char data[ MAX_DATA SI ZE]; /* Function information */
u_char size; /* Size of extended data */

}

pcntia_cs_tuple_funce_t;
PCMCI A CS_TUPLE_SW L
typedef struct pcntia_cs_tuple_swil_s
u_char interleave; /* Interleave factor */
i)cm:i a_cs_tuple_swl_t;

PCMCI A_CS_TUPLE_VERS 2

typedef struct pcntia_cs_tuple_vers_2_s
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{
u_char version; /* Structure version */
u_char conply; /* Level of conpliance */
u_short first_addr; /* Byte address of first */
/* data byte in card */
u_char rsvl; /* Reserved */
u_char rsv2; /* Reserved */
u_char vendor1; /* Vendor specific */
u_char vendor 2; /* Vendor specific */
u_char copies; /* Nunber of copies of CIS */
/* present on the device */
u_char soft_vend][ MAX_STRI NG_LEN] ;
/* Vendor of software that */
/* formatted the card */
u_char card_i nf o[ MAX_STRI NG_LEN] ;

/* Informational message */
/* about the card */

pcntia_cs_tuple_vers_2_t;

PCMCI A_CS_TUPLE_FORVAT
PCMCI A_CS_TUPLE_FORMAT A

typedef struct pcntia_cs_tuple_format_s

u_char type;
struct

{
u_int type 13,
u_int length : 4;
}

err_code;

u_l ong of fset;
u_l ong size;

uni on

{

struct

{
u_short bl ock_si ze;
u_long bl ocks;
u_long err_loc;

u_char bar;

}
di sk;
struct

{
u_char flags;
u_char reserved;
u_l ong addr;

u_long err_loc;

u_char bar;

}

nmenory;
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}

i nfo; /* Additional information, */
/* interpreted based on value */
/* of "type' field */

}

pcntia_cs_tuple_format _t;
PCMCI A CS_TUPLE_GEOVETRY

typedef struct pcntia_cs_tuple_geonetry_s

u_char sectors; /* Sectors per track */
u_char tracks; /* Tracks per cylinder */
u_char cylinders; /* Total nunber of cylinders */

}

pcntia_cs_tupl e_geonetry_t;
PCMCI A_CS_TUPLE_BYTEORDER

typedef struct pcntia_cs_tuple_byteorder_s

{
u_char byteorder; /* Byte order code */
u_char byt emap; /* Byte mapping code */
}

pcnti a_cs_tupl e_byteorder _t;
PCMCI A CS_TUPLE_DATE

typedef struct pcntia_cs_tuple_date_s

struct
{
u_char seconds; /* Seconds */
u_char mnutes; /* Mnutes */
u_char hours; /* Hours */
}
tinme; /* The tinme at which the card */
/* was initialized */
struct
{
u_char day; /* Day */
u_char nont h; /* Month */
u_char year; /* Year */
}
day; /* The date the card was */
/* initialized */

}

pcntia_cs_tuple_date_t;
PCMCI A_CS_TUPLE_BATTERY

typedef struct pcntia_cs_tuple_battery_s

struct
{
u_char seconds; /* Seconds */
u_char mnutes; /* Mnutes */
u_char hours; /* Hours */
}
rday; /* The date on which the */
/* battery was |ast replaced */
struct
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{
u_char seconds; /* Seconds */
u_char mnutes; /* Mnutes */
u_char hours; /* Hours */

}

xday; /* The date on which the */

/* battery should be replaced */
}

pcnti a_cs_tupl e_battery_t;
PCMCI A_CS_TUPLE_CRG
typedef struct pcntia_cs_tuple_org_s

u_char type; /* Data organi zati on code */
u_char fs_info[ MAX_STRI NG LEN];
/* Text description of this */
/* organi zation */
}

pcntia_cs_tuple_org_t;
PCMCI A_CS_TUPLE_SPCL

typedef struct pcntia_cs_tuple_spcl_s

u_long id; /* PCMCI A or JEI DA assigned */
/* val ue */
u_char seq; /* Tupl e nunber in sequence */
u_char dat a[ MAX_DATA_SI ZE] ;
/* The data conponent */
u_char size; /* Size of data */
}
pcntia_cs_tupl e_spcl _t;
EXAMPLE

pcntia_cs_tuple_data_t tuple_data;

tupl e. socket = 0;

tupl e.code = PCMCI A_CS_TUPLE_VERS_1;

res = CardServices( CetFirstTuple, handle, (void *)0, sizeof( tuple ),
&uple );

if ( res == PCMCI A_CS_SUCCESS )

res = CardServices( ParseTuple, handle, & uple, sizeof( tuple_data ),
& uple_data );

if ( res == PCMCI A_CS_SUCCESS )

cprintf( "CARD DETECTED: v%l. %\ n", tuple_data.vers_1.ngjor,
tupl e_data.vers_1.minor );

cprintf( " %\ n", tuple_data.vers_1.manf_nane );
cprintf( " %\ n", tuple_data.vers_1.prod_nane );
cprintf( " %\ n", tuple_data.vers_l.lot_info );

cprintf( " %\ n", tuple_data.vers_1.prog_info );
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RETURN CODES

PCMCI A_CS SUCCESS Request succeeded.

PCMCI A_CS_BAD_SCOCKET Specified socket isinvalid.
PCMCI A_CS_UNSUPPORTED_SERVI CE Serviceis not supported.
PCMCI A_CS _BAD_ARG LENGTH ArglLengt h isinvalid.

RegisterClient

The Regi sterd ient serviceregistersaclient with Card Services.

Ar gPoi nt er must beapointer toa pcnti a_cs_regi ster_t structure. The
client callback handler entry point ispassedin Poi nt er. If the Handl e argument
isnot NULL, the service places the new client handle into the location pointed by

Handl e.

The pcnti a_cs_regi ster _t structure is defined as follows:

typedef struct

pcnti a_cs_register_s

int attributes; /* bit-mapped client attributes */
int event _mask; /* notification events */
void * client_data; /* user-specific client */

}

pcntia_cs_register_t;

where:

attributes

Are bit mapped client attributes. Bit mapped client attributes are

bitwise combinations of the followings constants:

*PCMCI A_CS_ATTR_MEM- Memory client device driver

*PCMCI A_CS_ATTR_MTD - Memory technology driver

*PCMCI A_CS_ATTR_| O- /O client device driver

* PCMCI A_CS_ATTR | NSERT - If specified, the client receives
an artificial PCMCI A_CS_EVENT _| NSERTI ON event for
every socket that contains a PC Card.

event _mask

Are events of which to notify the client - A bitwise combination of
event codes.

client _data

I's user-specific data.

EXAMPLE

pcntia_cs_register_t reg;

reg.attributes
reg. event _nask

PCMCI A_CS_ATTR | O | PCMCI A_CS_ATTR_| NSERT;
PCMCI A_CS_EVENT_| NSERTI O\,
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reg.client_data = NULL;
res = CardServices( RegisterClient, NULL, callback, sizeof( reg ), &eg);

if ( res == PCMCl A_CS_SUCCESS )

cprintf( "Registration conplete\n" );

RETURN CODES

PCMCI A_CS_SUCCESS Request succeeded.

PCMCI A CS_UNSUPPORTED_ SERVI CE Serviceis not supported.

PCMCI A_CS_BAD_ARG _LENGTH ArglLengt h isinvalid.

PCMCI A_CS_BAD_ATTRI BUTE Incorrect client type.

ReleaseConfiguration

Rel easeConfi guration service returnsaPC Card and its socket to asimple
interface and configuration zero. Ar gPoi nt er must be a pointer to a
pcnti a_cs_rel ease_config_t structure.
The pcnti a_cs_rel ease_config_t structureisdefined asfollows:
typedef struct pcntia_cs_rel ease_config_s
int socket; /* |ogical socket */
}

pcntia_cs_rel ease_config_t;

where;
socket Isalogical socket.
EXAMPLE
pcnti a_cs_rel ease_config_t rel ease;
rel ease. socket = 0;
res = CardServices( Rel easeConfiguration, NULL, NULL, sizeof( release ),
&r el ease );
if ( res == PCMCl A_CS_SUCCESS )

cprintf( "Configuration released\n" );
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RETURN CODES

PCMCI A_CS_SUCCESS

Request succeeded.

PCMCI A_CS_UNSUPPORTED_SERVI CE

Serviceis not supported.

PCMCI A_CS_BAD_ARG_LENGTH

ArglLengt h isinvalid.

PCMCI A_CS_BAD_SOCKET

Specified socket isinvalid.

ReleaselO

The Rel easel O servicereleases the 1/0 addresses requested with the
Request | O service. Only the Card Services resource database is modified by a

call to thisservice. No changes are made in the socket adapter. Ar gPoi nt er must
beapointertoa pcnti a_cs_rel ease_i o_t structure.

The pcntia_cs_rel ease_i o_t structure is defined as follows:

typedef struct pcntia_cs_release_io_s

int socket; /* logical socket */

}

pcntia_cs_rel ease_io_t;

where:

socket Isalogical socket.

EXAMPLE

pcntia_cs_rel ease_i o_t rel ease;

rel ease. socket = O;

res = CardServices( Releasel O, NULL, NULL, sizeof( release ),

&rel ease );
if ( res == PCMCI A_CS_SUCCESS )

cprintf( "IOreleased\n" );

RETURN CODES

PCMCI A_CS_SUCCESS

Request succeeded.

PCMCI A_CS_UNSUPPORTED_SERVI CE

Serviceis not supported.

PCMCI A_CS_BAD_ARG_LENGTH

ArglLengt h isinvalid.

PCMCI A_CS_BAD_SOCKET

Specified socket isinvalid.
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ReleaselRQ

The Rel easel RQ service releases a previoudly allocated interrupt line. Only the
Card Services resource database is modified by acall to this service. No changes
are made in the socket adapter. The Ar gPoi nt er must be a pointer to a
pcntia_cs_rel ease_irq_t structure.

The pcntia_cs_rel ease_irq_t structureisdefined asfollows:
typedef struct pcntia_cs_release_irq_s
int socket; /* |ogical socket */
i)cm:i a_cs_release_irq_t;
where:
socket Isalogical socket.

EXAMPLE

pcnti a_cs_rel ease_irq_t rel ease;

rel ease. socket = 0;

res = CardServices( Rel easel RQ NULL, NULL, sizeof( release ),
&r el ease );

if ( res == PCMCI A_CS_SUCCESS )

{
cprintf( "IRQ released\n" );

RETURN CODES

PCMCI A_CS_SUCCESS Request succeeded.

PCMCI A_CS_UNSUPPORTED_SERVI CE Serviceis not supported.

PCMCI A_CS_BAD_ARG _LENGTH ArglLengt h isinvalid.

PCMCI A_CS_BAD_SOCKET Specified socket isinvalid.

RequestConfiguration

Request Confi gurati on service configuresthe PC Card and socket.
Ar gPoi nt er must beapointer toa pcnti a_cs_request_config_t
structure.

The pcnti a_cs_request _config_t structureisdefined asfollows:
typedef struct pcntia_cs_request_config_s

int socket; /* 1ogical socket */
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int vcc; /* Vcc settings */
int vpp; /* Vpp settings */
int int_type; /* interface type */
unsi gned char st at us; /* Card Status register settings */
unsi gned char pin; /* Card Pin register settings */
unsi gned char copy; /* Card Copy register settings */
unsi gned char option; /* Card Option register settings */
int present; /* Card Configuration registers present */
}
pcnti a_cs_request _config_t;
where:
socket Isalogical socket.
vce Isthe Vcc setting. The voltage is expressed in tenths of avaolt.
vpp Isthe Vpp setting. The voltage is expressed in tenths of avolt.
int_type Isthe interface type. Must be set to:
* PCMCI A_CS_I| NTERFACE_NONE - Isfor the simplest interface,
featuring only card detection.
« PCMCI A_CS_| NTERFACE_MEM- Isfor memory only interface.
*« PCMCI A_CS_| NTERFACE_| O- Isfor memory and I/O interface.
st at us Isthe Card Status register settings, if present.
pin Isthe Card Pin register settings, if present.
copy Is the Card Socket/Copy register settings, if present.
option Is the Card Option register settings, if present.
pr esent Specifies Card Configuration registers present. pr esent isabitwise
combination of the following constants:
* PCMCI A_CS_PRESENT_STATUS - The status register is present.
* PCMCI A_CS_PRESENT_PI N- The pin register is present.
« PCMCI A_CS_PRESENT_COPY - The copy register is present.
* PCMCI A_CS_PRESENT_OPTI ON - The option register is present.
Only those registers that are specified using this field are set.
EXAMPLE
pcnti a_cs_request_config_t req;
req. socket =0
reg.vcc = 50;
req. vpp = 50;
req.int_type = PCMCl A_CS_| NTERFACE_MEM
req. present = 0;

)

if ( res

{

res = CardServices( RequestConfiguration, NULL, NULL, sizeof( req ), &eq

PCMCI A CS_SUCCESS )
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cprintf( "Configuration succeeded\n" );

RETURN CODES

PCMCI A CS_SUCCESS Request succeeded.

PCMCI A_CS_UNSUPPORTED_SERVI CE Serviceis not supported.
PCMCI A_CS_BAD_ARG_LENGTH ArgLengt hisinvalid.
PCMCI A CS_BAD_ SOCKET Specified socket isinvalid.

PCMCI A CS_CONFI GURATI ON_LOCKED The Request Confi guration
service has already been called for
this socket but amatching

Rel easeConfi guration has
not.

PCMCI A_ CS_NO CARD No PC Card in socket.

RequestiO

The Request | O service reserves the specified 1/0 range for later assignment
using the Request Confi gurati on service. ArgPoi nter must be apointer to
a pcnti a_cs_request _i o_t structure.

The pcnti a_cs_request _i o_t structureis defined as follows:

typedef struct pcntia_cs_request_io_s

int socket ; /* | ogical socket */
unsigned base_portl; /* base port address for range */
int numportsl; /* nunber of contiguous ports */
int attributesl; /* bit-nmapped port attributes */
unsigned base_port2; /* base port address for range */
int num ports2; /* nunber of contiguous ports */
int attributes2; /* bit-mapped port attributes */

}

pcntia_cs_request_io_t;

where
socket Isalogical socket.
base_port1l Is the base port number for I/O window 1.
num portsl Is the number of contiguous portsin I/O window 1.

attributesl If setto PCMCI A CS | O ATTR 8BI T, the I/O window has an
8 bit width.
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base_port2 I's the base port number for I/0O window 2.
num ports2 I's the number of contiguous portsin I/O window 2.
attributes2 If setto PCMCI A CS | O ATTR 8BI T, the I/O window has an
8 bit width.

EXAMPLE

pcntia_cs_request _io_t req;

req. socket = 0;

req. base_portl = 0x3fO0;

req.numportsl = 32;

req.attributesl = 0;

req. base_port2 = 0x1fO0;

req. numports2 = 4;

req.attributesl = 0;

res = CardServices(’RequestIQ NULL, NULL, sizeof( req ), &eq );
if ( res == PCMCI A_CS_SUCCESS )

cprintf( "I/ O range request successful\n" );

RETURN CODES

PCMCI A_CS_SUCCESS Request succeeded.

PCMCI A CS_UNSUPPORTED_ SERVI CE Service is not supported.

PCMCI A_CS _BAD_ARG_LENGTH ArglLengt h isinvdid.

PCMCI A_CS_BAD_SOCKET Specified socket isinvalid.

PCMCI A CS_CONFI GURATI ON_LOCKED The Request Confi guration
service has aready been called for this
socket but amatching

Rel easeConfi guration has
not.

PCMCI A CS_OUT_OF RESOURCE Requested 1/0 window is aready in
use.

RequestIiRQ

The Request | RQ service reserves the specified IRQ line for later assignment
using the Request Conf i gur ati on service. The Ar gPoi nt er must be apointer
toa pcnti a_cs_request _irq_t structure.
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The pcnti a_cs_request _irq_t structureisdefined asfollows:
typedef struct pcntia_cs_request_irq_s

int socket; /* 1 ogical socket */
int assigned_irq; /* irq assigned to PC Card */
}

pcnti a_cs_request_irq_t;

where:

socket Isalogical socket.

assigned_irq Isthe IRQ line.
EXAMPLE

pcntia_cs_request_irqg_t req;

req. socket = 0;

req.assigned_irq = 14;

res = CardServices( Requestl RQ NULL, NULL, sizeof( req ), &req);
if ( res == PCMCI A_CS_SUCCESS )

cprintf( "IRQ request successful\n" );

RETURN CODES

PCMCI A_CS_SUCCESS Request succeeded.

PCMCI A_CS_UNSUPPORTED_SERVI CE Service is not supported.

PCMCI A CS BAD ARG LENGTH ArglLengt h isinvalid.

PCMCI A CS BAD_ SOCKET Specified socket isinvalid.

PCMCI A_CS_CONFI GURATI ON_LOCKED | The Request Confi gurati on
service has aready been called for this
socket but a matching

Rel easeConfi gurati on hasnot.

PCMCI A_CS_QOUT_OF_RESOURCE Requested 1/0O window is already in use.

ServiceName

Ser vi ceName service returns a character string corresponding to a specified
request code. Ar gPoi nter must beapointertoa pcnti a_cs_name_t
structure.
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The pcnti a_cs_name_t structure is defined as follows:;
typedef struct pcntia_cs_nane_s

int code;
char * nane;

}

pcnti a_cs_nane_t;

where
code Isthe request code.
nane Isapointer to a string containing the request name.
EXAMPLE

pcnti a_cs_nane_t nane;
nanme. code = Get Confi gurati onl nfo;
Car dServi ces( Servi ceName, NULL, NULL, O, &nane );

/* should print GetConfigurationlnfo */
cprintf( "code Ox%, name ¥%\n", nanme.code, name.nane );

RETURN CODES

PCMCI A_CS_SUCCESS Request succeeded.

PCMCI A_CS_UNSUPPCORTED_SERVI CE | Serviceis not supported.

PC Card Support

PC Card Support isafacility that enables the use of PC Card (PCMCIA) devicesin
the LynxOS environment. Features supported by the PC Card subsystem include:

« Extendable support for several widely used PC Card devices. Supported
cards are accessible as conventional 1SA devices controlled by standard
LynxOS device drivers.

¢ Simple and platform-independent means for developing new PC Card
software (PC Card enablers and PC Card drivers).

e Support of preinstalled PC Card devices, thus allowing root file system to
reside on a PC Card disk.

e Support of runtime insertion and extraction of PC Card devices.
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Installing and Removing PC Card Support
.PC Card Support can be installed and removed after initia installation of LynxOS.
To install PC Card Support enter the following commands:

cd /sys/lynx. os
make install.pcntia

To remove PC Card Support enter the following commands:

cd /sys/lynx. os
make uninstall. pcnti a

PC Card Support Architecture

The LynxOS PC Card subsystem is based upon the PCMCIA/JEIDA PC Card
architecture specification. It hasthree main layers (see figure below). At the lowest
level is Socket Services. The next level is Card Services. Layered on the top of
Card Services are client device drivers. All these components are kernel entities.
User mode applications interact with PC Card devices and the PC Card subsystem
using interfaces defined by client device drivers.

| Applications }—h
[
v

[
‘ Device Drivers hj

[
[

| Card Services |

v

| Socket Services ]

v

‘ PCMCIA Host ‘

Bus Adapter

PC PC

Figure 11-2: PC Card Support Architecture
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Socket Services

Socket Services provides a standardized interface to manipulate PC Cards, sockets
and adapters.

Host systems may have more than one PC Card adapter present. Each adapter has
its own Socket Services. All instances of Socket Services are intended to support a
singleinstance of Card Services. A socket service registerswith Card Servicesand
notifiesit of status changes on PC Cards or in sockets.

By making al accesses to adapters, sockets, and PC Cards through the socket
servicesinterface, higher-level softwareis unaffected by different implementations
of the hardware. Only hardware-specific socket services implementations must be
modified to accommodate any different hardware implementations.

LynxOS PC Card Support implements socket services as an ordinary device driver.
Refer to “Writing PC Card Socket Services’ on page 257 for a detailed discussion
of interfaces defined by Socket Services and for information on how to develop a
new socket service.

Card Services

Above the Socket Services layer isthe Card Services layer. Card Services
coordinates accesses to PC Cards, sockets, and system resources among multiple
clients. Thereis only one instance of Card Servicesin the system.

Card Services makes all accessesto the hardware level through the Socket Services
interface. All Socket Services status change reporting is routed to Card Services.
Card Services then notifies the appropriate clients. Card Services preservesfor its
clients an abstract, hardware-independent view of acard and associated system
resources.

LynxOS PC Card Support implements the Card Services as an ordinary device
driver. Refer to “Writing PC Card Socket Services’ on page 257" for adetailed
discussion of interfaces defined by Card Services.

Client Device Drivers

Client Device Drivers refersto all users of Card Services. In aLynxOS PC Card
subsystem, users of Card Services are devices driversthat use the standardized AP
Car dServi ces() tomanipulate PC Cards, sockets, and adapters.
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PC Card Enabler

LynxOS PC Card support includes aspecial client device driver called the PC Card
Enabler. Thisdriver respondsto runtime insertion and removal events and provides
the following services to the rest of the system:

» Card Configuration - Configured card acts as an ISA device.

» Automatic installation and deinstallation of static device driversin
response to card insertion and removal

* ioctl-based API to user mode applications - The API alows
applications to monitor status of the PC Card subsystem.

Refer to pcnti a_enabl er (4) man page for adetailed description of the PC
Card Enabler.

PC Card Utilities
LynxOS PC Card support includes the following utilities:

e pcnti a_i nfo-Aninformation utility that displaysinformation about all
logical PCMCIA sockets and PC Card devices present in the system

* pcnti a_shu - A control utility used to prepare a socket for card removal

* pcnti a_d - A daemon that automatically handles dynamic driver
installation and deinstallation in response to card insertion and removal.

For a complete discussion of each utility, refer to an appropriate man page.

Using a PC Card

When a supported PC Card is inserted before system boot, it is automatically
configured by the PC Card Enabler. It can then be accessed as an | SA device using
the existing device driver.
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Supported Cards

The following PC Cards are supported by the PC Card Enabler and work with the
specified standard LynxOS driver:

Table 11-3: Supported PC Cards

PC Card Driver for x86 Driver for MPC860
3Com 3C589x EtherLinklll i f_3c5x9 i f_3c5x9

Ethernet adapter

Adaptec SIimSCSI SCS| adapter | si mL522 si mML522_8xx
EigerStar ATA Hard Disk i de i de

Hot Swapping

Hot swapping is used to refer to the ability of PC Cardsto be inserted and removed
when power is applied to the machine and OSis running, and the ability of the
system to automatically detect and react to configuration changes.

When acard is being inserted on arunning system, it is handled by the PC Card
Enabler exactly the same way as a card inserted to a socket prior to boot. If the card
is supported, it is configured as specified in the PC Card Enabler configuration
tables.

There are two ways to automatically install an appropriate device driver in
response to card insertion.

Oneway isto usethe PC Card Enabler static driver installation feature. It allows
for an automatic call to the device driver i nst al | entry point function of a static
driver that failed to install amajor device at the boot time due to the absence of a
device. Because the PC Card Enabler callsthe i nstal | entry point after the PC
Card device has been inserted and configured on the 1/0 bus, the driver can
successfully create an appropriate major device and return success, thus making
the PC Card device available for the device driver operations.

Information about statically linked device drivers supported by the PC Card
subsystem is located in the configuration file

/ sys/ devi ces/ pcnti a_enabl er _i nf o. c. Please refer to

pcnti a_enabl er (4) man pagefor adetailed description of the PC Card Enabler
facility.

The second way isto use pcnti a_d daemon program. This daemon program
responds to card insertion events, and acts according to the configuration datain
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the configuration files. The key responsibility of pcnci a_d isto dynamically
install an appropriate device driver, create a device node, and invoke an optional
script configuring the PC Card for operation in the system. For instance, the script
can mount an inserted PC Card disk as a LynxOS file system. Please refer to
pcnti a_d(1) man page for adetailed description of the pcnti a_d daemon.

It ispossible to remove a PC Card from arunning system. Prior to removal, call the
pcnti a_shu utility to prepare the socket for card removal. pcnti a_shu is
responsible for ensuring that no device driver is accessing the device being
removed. pcnci a_shu interacts with the PC Card Enabler and pcntia_d to
handle the removal request. An attempt to deinstall the driver is made. In addition,
if the driver has been deinstalled by the pcnti a_d daemon, the daemon calls an
optional user script that removes the device special node.

Request to remove a PC Card device may fail, for example, if the PC Card disk
being removed is mounted as a file system. Appropriate steps must be taken to
ensure that the PC Card removed is not used by any application. Removing a card
without a successful card shutdown may cause a system crash.

Adding Support for a New PC Card

250

You can add support for anew PC Card by adding support to the PC Card Enabler
configuration tables or by developing of anew client device driver.

Adding Support to PC Card Enabler

To add support for a new card, add a new entry to the PC Card Enabler
configuration table. The required information includes the manufacturer and
product identification numbers from the card MANFI D tuple, Configuration Table
Entry index, and the configuration to which the entry corresponds.

You can usethe pcnei a_i nf o utility to find out various information about the
PC Card. For instance, if the PC Card device isinserted into the first PCMCIA
socket, pcnti a_i nf o creates adisplay similar to one shown below:

lynx1# pcntia_info O
Card in socket #0 : [ 0x0106 0x0000 ]

Current configuration:
I1/0 range 1: Ox1f0 0x8
1/0 range 2: 0x3f6 0Ox1
IRQ 46

Hommmmaa B Fommmmeeaaaaa B - +
| I'ndex | Rangel | Range2 | Wdth |
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[ B - - E - +
| O0x01 | N=* 0x10 | n/ a | 16 |
| 0x02 | Ox1f0 0x08 | Ox3f6 0x01 | 16 |
| *0x03 | 0x170 0x08 | 0x376 0x01 | 16 |
Fommm oo - O S B, +

Thefirst lineindicatesthat thereisaPC Card device found in the PCM CIA socket,
and its manufacturer and product identification numbers are 0x0106 and
0x0000 respectively.

The table shows correspondence between a Configuration Table Entry and 1/O
ranges used by the particular configuration. Choose an entry with the configuration
most appropriate for the host system.

To add a new entry to the PC Card Enabler configuration table, use theinformation
obtained using pcnci a_i nf o to define an entry corresponding to the new PC
Card device. A detailed description of the PC Card Enabler configuration table
format isavailablein pcnci a_enabl er (4) man page.

Next configure the existing LynxOS driver capable of controlling the ISA device.
Configure the driver to ensure that it uses I/O ranges and IRQ line identical to
those specified in the PC Card Enabler configuration table.

Create New Device Driver

A new device driver should be aregular device driver using the Card Services AP
to detect, identify, and configure the PC Card prior to any normal mode accessesto
the device. Refer to “Writing PC Card Socket Services’ on page 257 for adetailed
specification of the Card Services API.

Adding Support for a New PCMCIA Adapter

Adding support for anew PCMCIA adapter involves development of a new Socket
Services device driver. No changes to other components of the PC Card Support
software are necessary. Refer to “Writing PC Card Socket Services’ on page 257
for a detail ed specification of the Socket Services API and information on how to
develop anew Socket Services driver.
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Supported PCMCIA Adapters

The following PCMCIA adapters are supported by the LynxOS PC Card

subsystem:

Table 11-4: Supported PCMCIA Adapters

PCMCIA Adapter Architecture
Embedded RPXL823 PCMCIA Interface RPXL823
182365 compatible ISA/PCI PCMCIA Adapter x86 adapters

Troubleshooting
This section provides troubleshooting tips that support the EtherLinklIl PC Card

252

on the x86 platform.

1. Check that Socket Services information structure contains the correct

information about the PCM CIA adapter(s) installed in your system:

Openthe / sys/ devi ces/ pcnti a_ss_pci _i nfo. ¢ file Find the
description of your adapter(s) inthe sspci _known_adapt ers array.
The current revision of the driver has only two entries - one for the
0O2Micro OZ6860 adapter, another for all other i82365-compatible
adapters. All adapters other than OZ6860 are configured in the ISA
legacy mode. If you are having problems with your adapter, try to
increase the verbosity level by setting the SSPCI _FLAG VERBOSE flag
in the attributes field of the adapter entry. Additional debug information
may help to understand the problem. Note that the debug output is sent to
cowve. Another field that you might want to change in the Socket Services
information fileisthe interrupt delivery mode. Refer to the next
troubleshooting tip for details. Note the possible | SA locationstable. You
can add | SA port addressto the sspci _i sa_l ocati ons array, if you
know that your adapter uses an alternate ISA port.

Modify the file as necessary and rebuild the Socket Services device and
the kernel.

. Check the IRQ numbers and 1/0 addresses in the Enabler table and in the

EtherLinklll device information file are the same and are not in use by
some other device:
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Open / sys/ devi ces/ pcnti a_enabl er _i nf o. c. Find the following
entry inthe pcnci a_enabl er _card_tabl e_cfg structure:

0x101, 0x589, /* 3COM 3c589x cards */
#ifdef __ x86__

0x110, 0x10, 16,
#el se

0x220, 0x10, 16, /* 0x220-0x230 */
#endi f
0x0, 0x0, 0x0, /* unused */
0x1 | 0x40, /* config index 1 */

/* level node intrs */

#i fdef __x86__

10
#el se

9 /* 1TRQ 9 */
#endi f

}

The first two fieldsidentify the card. The third field is the base I/0
address of the card. Thelast field isthe IRQ number assigned to the card.
Note that 32 is not added to the IRQ number.

Open /sys/ devi ces/if_3c589x_pcnci a_i nf o. c. Observe the
following structure:

struct if_3c5x9_info if_3c589x_pcntia_info = {

0x110,

32 + 10,

o0, /* (EISA only) slot nunber, |1SA set to zero */
0, /* TP =0, AU =1, BNC = 3 */

3 /* bus type, ISA =1, EISA =2, PCMCIA =3 */

b
Thefirst field of the structure is the base 1/0O address of the device. The
second field isthe IRQ number. Note that here, 32 is added to the IRQ
number. The assigned IRQ number must be the same in both files, and
not in use by any other device. The 1/O address must also be the samein
both files. The 1/0 range used by the EtherLinklll card must not overlap
with 1/O ranges used by other devices.

Unfortunately, there is no simple way to determine the IRQ numbers and
I/O ranges are already in use. The device information files for all
configured devices have to be examined. As a starting point, try the
following configurations:

- For alaptop computer: 1/0 address= 0x110, IRQ = 10.
- For adesktop computer: 1/0 address = 0x220, IRQ =9,12,15.
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It isalso possible that different values have to be used. Note that the I/O
range must start at the 16 byte boundary. For example, 0x220 and 0x230
arevalid, while 0x223 and 0x228 are not.

If no IRQ and base address combination works for the card, try to enable
the PC Card 1/O interrupts emulation mode in the Socket Services driver.
To enable emulation, modify

/ sys/ devi ces/ pcnti a_ss_pci _i nfo.c.

Find in the supported adapters table the entry containing information
about the PCMCIA adapter, and add the SSPCI _FLAG EMJ flag to the
attributes field.

To change the configuration edit the appropriate files, rebuild the device
information files and the kernel. For example:

# cd /sys/devices
# vi pcncia_enabler_info.c

Make necessary corrections.
# vi if_3c589x_pcntia_info.c
Make necessary corrections.

meke install

cd /sys/lynx. os

make i nstal

cd /dev

nknod -a /etc/nodetab

H OH H HH

. Shut down the host computer. Remove all PC Cards from the PCMCIA

sockets. Insert the EtherLinkl 1l PC Card into PCMCIA socket #0. Boot.

If the system hangs, go to troubleshooting tip 2 and change the values of
IRQ number, I/O address, or both. Start with IRQ number the 1/O
address. IRQ 9,10,11,12,15 are good examples.

. Execute:

# |ls -1 /dev/pcntia* /dev/el _pc
The following lines should be present in the output:

/ dev/ el _pc
/ dev/ pcnti a_enabl er

If any of the above nodesis not present, check CONFI G TBL and make
sure that all listed devices are installed. Rebuild the kernel if necessary.
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Rebuild the contentsof / dev directory from / et ¢/ nodet ab usingthe
following commands:

# cd /dev
# nknod -a /etc/nodetab
5. Execute:
# devices | grep -i "pcntia \| CardBus/i82365"

The output should be similar to the following:

35
36

37

char
char

char

36 0 db27d6d8 0 pcntia CS
37 0 0 0 Car dBus/ i 82365
38 0 db280178 0 PCMCI A Enabl er

Figure 11-3: devices Command Output

Possible mismatches are explained below:

Some of the devicesarenot present. Check CONFI G TBL and make
surethat all listed devicesareinstalled. Rebuild the kernel if necessary.

All devicesare present, but “ PCl CardBus SS” isnot installed

((no dev) valueindevicestart addresscolumn). Make surethat a
PCMCIA adapter ispresent inthe system and that it isi82365-
compatible. Thispackage does not support other types of PCMCIA
adapters. If you are using an adapter other than OZ6860, make sure
that the appropriate | SA portislisted inthe possible | SA locations
tablein the Socket Servicesinformation file. Also ensurethat the
deviceconfigurationfilesarelistedin CONFI G. TBL and arein proper
order. Rebuild thekernel if necessary.

All devicesare present, but “pcmciaCS” or “PCMCIA Enabler” isnot
installed (( no dev) vaueindevice start addresscolumn). Make sure
that deviceconfiguration filesarelistedin CONFI G. TBL and arein
proper order. Rebuild thekernel if necessary.

6. Execute:

# pcncia_info
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You should see atable of the following format:

[ R Homm e e L e n +
| Socket # | Present | Configured | Code Card |
Fememeeaa R domemeeaaaan Fememannn Fememeas +
| 0*| Yes | Yes | 0x0101 | 0x0589 |
| 1] No | No | nla | nfa |
[ R Fom e L Fommm o= Fommm - - +

Possible mismatches are explained below:

Message “fai l ed to open fil e /dev/pcntia_enabl er”.
Rebuild the contentsof / dev from / et ¢/ nodet ab usingthe
commands:

# cd /dev
# nknod -a /etc/nodetab

Thetableshown by the pcnti a_i nf o utility isempty. Makesure
that aPCMCIA adapter ispresent inthe system and that it isi82365-
compatible. This package does not support other types of PCMCIA
adapters. If you are using an adapter other than OZ6860, make sure
that the appropriate | SA portislisted in the possible | SA locations
tablein the Socket Servicesinformationfile.

The cardisnot marked as present. Check that the card is properly
installed in the socket.

The cardisnot marked as configured. Thereisno description for this
card in Card Enabler’sinformation table. Check that Code and Card
valuesprovidedby pcnti a_i nf o matchthevaluesfor the 3C589C
card inthe Card Enabler informationfile. Thesevalues should be equal
to 0x0101 and 0x0589 respectively. If pcnti a_i nf o gives
different values, thewrong card isinserted. Also try different IRQ and
I/0 address settings (see Step 2).

7. Execute:

# pcncia_info O

This command gives more information about a PC Card in socket #0.
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The sample output is given below:
Card in socket #0 : [ 0x0101 0x0589 ]
Current configuration:

I1/0range 1: 0x110 0x10
I/Orange 2: n/a

IRQ 9

dommmae TR Fommmeaaea dommmn- +
| Index | Rangel | Range2 | Wdth |
T docmmmeaeaan Feeemeneaaea doamenn- +
| *0x01 | N * 0x10 | n/a | 16 |
oo R — B oo - +

Notethe Current configuration section of the output. The values
of 1/0 range 1 and IRQ should match the corresponding valuesin

i f _3c589x_pcnti a_i nf o. c. If thisis not so, correct

i f _3c589x_pcnti a_i nfo. ¢ or the card descriptions table in the Card
Enabler information file as described in Step 2.

8. Execute:
# devices | grep el _pc

The output should be similar to the following:
38 char 39 0 db2802b8 0 el _pc

If thereisno el _pc devicelisted, check that the line
I : 3c589x_pcnti a. cf g ispresentin CONFI G TBL file.

If el _pc deviceispresent but not installed ((no dev) valueinthe
device start address column), check that IRQ value and 1/O base address
arethe samein the output of pcnei a_i nfo 0 command and in the

i f_3c589x_pcnti a_info.c file

Also make sure that theline | : 3c589x_pcnei a. cf g has been placed
in CONFI G. TBL after the three lines describing the PCMCIA devices
(I:pcneia_cs.cfg, |:pcntia_ss_pci.cfg,

| : pcnti a_enabl er. cf g).

Try different IRQ and /O address settings (see Step 2).

Writing PC Card Socket Services

Socket Servicesis defined as adevice driver that interfaces to the Card Services
modul e and implements hardware-specific details of programming a specific
PCMCIA adapter. The interface between Card Services and Socket Servicesis
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defined by a set of driver entry points and data structures, described in the
following sections.

Socket Services Overview

258

Socket Servicesisthe lower layer in the PC Card Support subsystem. Socket
Services provides a unified software interface to the PCMCI A sockets hardware. It
masks the hardware implementation details, providing an abstraction layer that
allows for development of higher-level software without explicit knowledge of the
underlying hardware interfaces.

Socket Services handles the hardware as a number of objects of different types. A
PCMCIA adapter isthe hardware that connects a host system bus to PC Card
sockets. A host system may have more than one adapter. Thereis one instance of
Socket Services for each adapter present in the system. Socket Services reports the
number of sockets and windows implemented by the adapter it services. An
adapter has one or more sockets. Sockets are receptacles for PC Cards and the
source of status change events. A range in the PC Card memory or 1/O address
space can be mapped into the host system space through awindow. Most adapters
provide alimited number of windows and each window has different mapping
capabilities. Socket Services reports the characteristics of each window to the
higher-level PC Card Support layers.

Socket Services Groups

The Socket Services interface can be divided into three functional groups of
services.

* Adapter Services
* Socket Services

e Window Services

Adapter Services
Socket Services controls the adapter using the following SS_Get I nf o service.
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Socket Services

Socket Services controls sockets using the following services:
e SS Get Socket
e SS Set Socket

e SS I nquireSocket

Window Services

Socket Services controls windows using the following services:
e SS_Get W ndow
e SS Set W ndow
e SS_ I nqui reW ndow

Socket Services Structure

LynxOS PC Card Support implements a Socket Services as an ordinary device
driver. A Socket Services registers with Card Services at installation. As soon as
theregistration is complete, the Socket Services resources are available to Card
Services and its clients. Socket Services drivers should be installed after Card
Services, but before any client device drivers.

Header Files

All prototypes and constants needed to implement the Socket Servicesinterface are
defined in the following header files:

Table 11-5: Socket Services Header Files

Header File Description
/ sys/ dheader s/ pcntia_ss. h Contains definitions of the Socket Services
interface.

/ sys/ dheader s/ pcnti a_cs_ss. h | Containsprototypesfor the Socket Services
callback, registration entry point, and event
notification entry point.
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Registration

To register with Card Services, a Socket Services calsthe

pcnti a_cs_regi ster_ss function, passing all necessary registration dataasthe
parameters. The registration data consists of a callback entry point and user
specific data to be passed to the callback:

id = pcntia_cs_register_ss( callback, statics_ptr );
pcnti a_cs_regi ster_ss returns aSocket Servicesidentification number. The
Socket Services identification number is passed back to Card Services when

Socket Services notifiesit of a status change event. If registration fails,
pcntia_cs_regi ster_ss returns-1.

Event Notification

Socket Servicesintercepts status changes and reports them to Card Services. Status
change detection can be interrupt-driven or polled, depending on the hardware
features of the PCMCIA adapter. If the adapter supports interrupt-driven delivery
of status change events, Socket Services should install an interrupt handler and
process status change interrupts within the handler. If the adapter does not
implement an interrupt for the status change events, Socket Services should use a
polling based technique to detect status changes in the PCMCIA sockets.

Socket Services reports a status change event to Card Services by calling the
pcnti a_cs_event entry point. Socket status, socket number, and Socket
Services identification number obtained at registration time must be passed as the
parameters. For example:

pcntia_cs_event ( status, socket, id);

Socket Services Callback

Card Services invokes a Socket Services through the callback interface. The
callback entry point is provided by Socket Services at the registration time.

The callback routine has the following syntax:

int callback( void * stat, int service, int Nunmber, void * ArgPointer );

where:

stat I's the user-specific data registered through
pcnti a_cs_regi ster_ss.

service Specifies the service code.
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Nurber Identifies an object on which to manipulate. Must be either a
window or socket number, depending on the service.

Ar gPoi nt er I's service-specific data.

Each service must return one of the following constants:

PCMCI A_SS SUCCESS Request succeeded.

PCMCI A_SS_UNSUPPORTED Service or feature is not supported.

PCM CA_SS BAD VOLTAGE Voltage specified for the SS_Set Socket
reguest cannot be applied.

Socket Services Reference

SS_Getlnfo

The SS_Get I nf o servicereturnsinformation about the PCMCIA adapter and the
Socket Services. ArgPoi nter must be apointertoa
pcntia_ss_information_t structure.

The pcnti a_ss_i nformation_t structureisdefined as follows:
typedef struct pcntia_ss_information_s

int revision; /* version */
int sockets_num /* nunmber of sockets */
int wi ndows_nunm /* nunber of w ndows */
char * nane; /* HBA nane */
char * vendor; /* vendor */

}

pcntia_ss_information_t;

where:

revision Isthe binary coded decimal (BCD) value of the SS version
number.

socket s_num Specifies the number of sockets.

wi ndows_num Specifies the number of windows.

nane Isthe PCMCIA adapter name.

vendor I's the vendor-specific string.
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SS _InquireSocket

The SS_I nqui reSocket service returns the read-only information about the
specified socket. Nunber must be set to the socket number. Ar gPoi nt er must
be apointer toa pcnti a_ss_i nqui re_socket _t structure.
The pcnti a_ss_i nqui re_socket _t structureisdefined asfollows:
typedef struct pcntia_ss_inquire_socket_s
int status;
}

pcnci a_ss_i nqui re_socket _t;

where:

status Is the bit mapped socket status. A bitwise combination of the

following constants:

«PCMCI A_SS_STATUS_DETECT - PC Card is present in the socket.

« PCMCI A_SS_STATUS_CHANGE - Status change event in 1/0 PC
Card

*« PCMCl A_SS_STATUS_BATTERY_DEAD - Battery dead event in
memory PC Card

«PCMCI A_SS_STATUS_BATTERY_LOW- Battery low event in
memory PC Card

* PCMCl A_SS_STATUS_READY - Ready event in 1/0 PC Card

SS_SetSocket

The SS_Set Socket service configures the specified socket. Number must be
set to the socket number. Ar gPoi nt er must be a pointer to a
pcnti a_ss_socket _t structure.

The pcnti a_ss_socket _t structureis defined as follows:

typedef struct pcntia_ss_socket_s

{

int interface; /* interface type */
int irg; /* assigned | RQ */
int vcc; /* voltage applied to Vcc pin */
int vpp; /* voltage applied to Vpp pins */

}

pcnti a_ss_socket _t;
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where:

interface Isthe interface type. This field must be set to one of the following

constants:

* PCMCI A_SS_| NTERFACE_NONE - Simplest interface, featuring
only card detection

« PCMClI A_SS_| NTERFACE_MEM- Memory only interface

* PCMCl A_SS_| NTERFACE_| O- Memory and I/O interface.

irq Specifiesthe IRQ line. A value of 0 means no steering. Thisfieldis
meaningful only if i nterface issetto
PCMCI A_SS_| NTERFACE_I O

vce Is the voltage applied to the VVcc pin. The voltage is defined in tenths
of avolt.

vpp Isthe voltage applied to the Vpp pins. The voltage is defined in tenths
of avolt.

SS_GetSocket

The SS_Get Socket service returns the configuration of the specified socket.
Nunber must be set to the socket number. Ar gPoi nt er must be a pointer to a
pcnti a_ss_socket _t structure.

SS_InquireWindow

The SS_I nqui reW ndow service returns the read-only information about the
specified window. Nunber must be set to the window number. Ar gPoi nt er
must be a pointer to a pcnti a_ss_i nqui re_wi ndow_t structure.

The pcnti a_ss_i nqui re_wi ndow_t structureis defined as follows:
typedef struct pcntia_ss_inquire_w ndow_s

int type; /* supported wi ndow types */
int socket; /* bit pattern */

/* io window characteristics */
pcntia_ss_io_win_chars_t io_chars;

/* menory wi ndow characteristics */
pcnti a_ss_nenory_wi n_chars_t menory_chars;

}

pcnti a_ss_i nqui re_wi ndow t ;
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where:

type

Specifies the type of the window. Must be a bitwise combination
of the following constants:

* PCMCI A_SS_W NDOW_COVMON - memory window

* PCMCI A_SS_W NDOW ATTR - attribute window

« PCMCI A_SS_W NDOW | O- 1/0 window

socket

Specifies sockets to which this window can be assigned. Each bit
corresponds to asingle socket. The least significant bit
corresponds to the socket 0.

io_chars

Specifies window characteristics when used as an 1/0 window.
Currently unused.

nenory_chars

Specifies window characteristics when used as a common
window. Currently unused.

SS_SetWindow

The SS_Set W ndow service configures the specified window. Nunber must be
set to the window number. Ar gPoi nt er must be a pointer to a
pcnti a_ss_w ndow_t structure.

The pcnti a_ss_wi ndow_t structureis defined as follows:

typedef struct pcntia_ss_w ndow s

int socket ; /* socket index */
int type; /* wi ndow type (1O ATTR/ COWDON) */
unsi gned base; /* card base */
int si ze; /* in bytes */
int data_wi dt h; /* 8 or 16 */
int access_speed; /* access speed for common type */
unsi gned of f set; /* wi ndow of f set */
int val i d; /* validity flag */

}

pcnci a_ss_w ndow_t;

where:

socket Is the socket number.

type Specifies the window type. Must be set to one of the following
constants:
« PCMCI A_SS_W NDOW_COVMON - memory window
« PCMCI A_SS W NDOW ATTR - attribute window
* PCMCI A_SS_W NDOW | O- I/O window.

base Specifies the host base address of the window.
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si ze Is the number of bytesin the window.
data width Is the datawidth in bits. Must be set to 8 or 16.
access_speed Specifies the window access speed in nanoseconds. Thisfieldis

used only if the t ype fieldissetto
PCMCI A_SS_W NDOW_COMMON.

of fset Is the offset to the window.
valid Isthe window validity flag. If set to zero, the window is
disabled.

SS_GetWindow

The SS_Get W ndow service gets the configuration of the specified window.
Nurmber must be set to the window number. Ar gPoi nt er must be apointer to a
pcnti a_ss_wi ndow_t structure.
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meeoxa POrtiNG Linux Driversto LynxOS

Due to the popularity of Linux, and the growing population of open source
developers, agreat deal of device driver codeis freely accessible. Though it may
not be practical for use directly on most real-time operating systems, many of these
drivers can provide important benefits in understanding how a particular device
must be mani pulated.

For LynxOS devel opers, however, these device drivers are similar in structure to a
LynxOS device driver, with the primary difference being the inherent real-time
conditions. If aLynxOS developer needs adevice driver and aLinux driver already
exists, it isarelatively straightforward process to port it.

This appendix examines the differences and requirements of Linux and LynxOS at
the device driver level.

GPL Issues

Itisimportant to take note of GPL issues before using any GPL driver source code.
Note that:

* Any modification to the Linux source must be made freely available to
the rest of the world under the GPL license.

e You cannot distribute the driver statically linked to the LynxOS kernel.
The ported driver must be dynamically installed, as LynxOS is not GPL
code.

« No copyright text can be changed.

¢ If you use the driver source as a reference and write a completely new
driver, there are no restrictions on what you may do with the final
product, it is yours, not subject to the GPL.
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Driver Installation

Driver installation between Linux and LynxOS systems are similar. The following
table provides a comparison of static and dynamic installs for both systems.

Table A-1: Driver Installation Differences

Install

With rmod, execute
cl eanup_nodul e()
nmodul e_init ()
nmodul e_exi t ()

Type Linux LynxOS
Static Link Driver with kernel from the directory | Link driver with kernel from directory
I'i nux/drivers with Makefil e. sys/ drivers andsys/ devi ces with
Makefil e
Dynamic Withi nsnod, executei ni t _nodul e() | Usedrinstall anddevinstall -

c/-b

Or,usedrvinstal | () toinstal
Usedrinstall,devinstall
drvuni nstal | () touninstal.

-uor

Using a Device

For both Linux and LynxOS, devices are accessed through a special file called a
node, typically located in the /dev directory. Nodes can be created with the mknod
utility. The following is an example listing of two devices. Note that the com1
device node is a character device (leading “c” character), and the scsi driveisa
block device (leading “b” character):

crw--ww 1 root 6,0 Sep 3 12: 01 /dev/coml

brw---- 1 root 1, 16 Sep 29 19:58 /dev/sdOa

Once anode is opened with the open() call, it can be accessed with any standard
file operation (read() ,write(),ioctl()).

Major and Minor Numbers

Major and Minor numbers are used to identify adevice. For LynxOS, the order of
thedriver . cf g pointedtointhe/ sys/ | ynx. os/ CONFI G. TBL file specifiesthe
major number of the device.
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For Linux, drivers can be statically or dynamically assigned major and minor
numbers, however the pr oc/ devi ces directory should be checked for number
availability.

Accessing a Device

The facilities for accessing a device are described below for both LynxOS and
Linux:

Table A-2: Device Access Differences

Function Linux Facilities LynxOS Facilities

nmap() mrap() from application mrap() from application

/O port access insb(), outsb(), readb/witeb __inb(), __outh()
insw(), outsw(), readw witew _inw(), __outw()
instl(), outsl (), readl/witel |__inl(), __outl()

Physical tovirtual | vr emap() can be used to map aphysical per map() canbeusedtomapa

addresstrandation | addressinto a kernel address. The function physical addressinto akernel
i oremap() can aso beused. virtual address.

PCI autoconfig PCI functions are used to handle PCI devices. | DRM (Device Resource

access Manager) is aset of functions

used to access PCI devices.

Driver Entry Points

The driver APIsfor both Linux and LynxOS are fairly standard. They provide
entry points from user space to driver space through a series of system calls. The
following table shows the correlating calls between Linux and LynxOS.

Table A-3: Linux and LynxOS Entry Points

Linux Call LynxOS Call
setup(), nodule_init() install ()
init(), init_nodule() install ()
cl eanup_nodul e(), uninstall ()
nodul e_exi t ()
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Table A-3: Linux and LynxOS Entry Points (Continued)

Linux Call LynxOS Call
open() open()

rel ease() cl ose()
read() read()
wite() wite()
ioctl () ioctl ()
sel ect () sel ect ()

| seek() ioctl ()
nmep() iorenap() mep( )
readdir (), fsync(), fasync() strategy()
check_nedi a(), change(), N A

reval i date()

System Call Processing

The processing of system callsis similar on both LynxOS and Linux systems. The
following table describes the differences.:

Table A-4: System Call Action Differences

Action

Linux

LynxOS

System call executed

When atask performs a system call,
itisruninthetask’s context. The
state changes from user to system.

When atask performs a system call,
itisruninthetask’s context. The
state changes from user to system.

Running process

A running processis called atask
and can be aprocess or thread.

A running process is executed by at
least theinitial thread or the main
thread.

Scheduling The entities that get scheduled The entities that get scheduled
according to their priority aretasks | according to their priority are user
threads or kernel threads.
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Preemption

Table A-4: System Call Action Differences

Action Linux

LynxOS

ISRs (Interrupt Service

ISRswill run automatically in the

ISRswill run automatically in the

Request) current thread context when an current thread context when an
interrupt occurs. interrupt occurs
ID Changes One PID valuefor both threadsand | PID for processes and TID (Thread

processesis used.

ID) for threads.)

Preemption

System calls can be preempted on both systems, but the degree of preemption is

different

Table A-5: Preemption Differences

Linux

LynxOS

The running system call can be preempted by
another task or by a slow interrupt.

The running thread can be preempted in the middie
of its system call by another, higher priority thread,
or by an interrupt.

The running system call can be preempted when it
goes to seep through the use of
interruptibl e_sleep_on() option.

Preemption isimplicit and can be disabled and
restored with the functions sdi sabl e() and
srest ore() (athough there are non-reentrant
areas in the kernel where this should not be done.)

The structure task_struct containsthe priority value
of the running task

The system call can get its priority with the
function _get pri ori ty().
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Signal Handling

Signal handling also differs between the two systems

Table A-6: Signal Handling Comparison

Linux

LynxOS

The state of the task defines how systems are
handled while blocking. The states

TASK | NTERRUPTABLE and

TASK _UNI NTERRUPTI BLE are used to define
the state of the task.

Theflag's semaphore is used in the system call to
define how signals are handled during blocking:

| GNORE_SI GS

DELI VER_SI GS

ABORT_ON_SI GS

While blocking, these functions define if thetask is
interruptible:

Interruptible_sleep_on()

Sl eep_on()

Wake_up_i nterrupti bl e()

Wake_up()

For interrupt handling during blocking, the
swai t () ortswait () calsareusedto affect
behavior.

Error Handling

LynxOS and Linux handle error returns from system calls differently

Table A-7: Error Handling Comparison

Linux

LynxOS

The error value returned by the last system call can
be stored in aglobal variable called er r no.

The error value of the last system call can be set
with pset err () or retrieved with pgeterr ().
The errno value in user context will then contain
the appropriate value.

Interrupts

When porting Linux device driversto LynxOS, it isimportant to understand the
differencesin how both operating systems handle interrupt requests. Linux has a
multi-stage mechanism used to prioritize tasks. LynxOS uses a similar mechanism,
but it uses the priority of the interrupt as the basisfor prioritization. Later
processing within the kernel thread that handles the interrupt provides another level

of prioritization.
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How Linux Handles Interrupts

Linux provides two types of interrupt service routines: Slow and Fast. Slow
interrupt routines can be interrupted by fast routines. Fast routines can only be
interrupted if it isenabled in the ISR (Interrupt Service Routine). Linux uses the
cli() andsti () calstodisable and restoreinterrupts.

How LynxOS Handles Interrupts

LynxOS provides a single interrupt routine, which is prioritized exclusively by the
hardware. Interrupts can be interrupted by other interrupts of ahigher priority only.
LynxOS uses the functions di sabl e() andr est ore() to disable and restore
interrupts. In addition, LynxOS drivers can use kernel threads for devices with
unbounded interrupt latency to create bounded interrupt response.

Registering Interrupts
Interrupts are registered differently on LynxOS and Linux systems.

Registering Interrupts for Linux

Linux usesr equest _i rg() function to register both fast and slow interrupt
routines. An example prototype of an ISR is:

void do_irq(int irq, void *dev_id, struct pt_regs *regs);

The function to clear the ISR iscaledfree_i rq() . Interrupts can also be linked
with the SA_SHI RQflag when calling r equest _irq().

Registering Interrupts for LynxOS

LynxOS registers interrupts with the i oi nt set () function. The prototype of the
ISRis:

void do_irqg(char *s);

ISRs are cleared with thei oi nt cl r () function. The address passed to the ISR is
generally the address of the static structure of the device driver installed. Interrupts
can be linked under LynxOSwithi oi nt _| i nk().
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Blocking and Non-Blocking 1/0

Both Linux and LynxOS support devices that include blocking and non-blocking
1/0. The following table describes the differences between how the two systems
handle these features.

Table A-8: Blocking & Non-Blocking 1/0 Differences

Action

Linux

LynxOS

Ability to select blocking
or non-blocking

Read and write can be blocking or
non-blocking. Thisis set when the
device is opened.

Read and write can be blocking or
non-blocking. Thisis set when the
deviceis opened.

Non-blocking setting

Set through O_NONBL OCK flag
passed through read or writein
struct of file.

Set through O_NONBL OCK flag
passed through read or writein
struct of file.

Behavior if datais not
available

The function
interruptible_sleep_on() canbe
set to wait synchronously for data.

A semaphore can be set to wait
synchronously with the functions
wait() ortswait().

Behavior during wait

Task is put into the waiting queue.

Thethread is put into awaiting state.

Behavior during data
available

The interrupt can call wake_up()
to alow the task to continue.

The ISR can post the semaphore
with ssi gnal () and thethread
continues according to its priority.

Bottom-Halves and Kernel Threads

This section outlines the behaviors used in handling prioritized interrupts.

Linux uses a bottom-half handler to process an interrupt that requires extensive
processing, but is not time critical. Bottom half drivers are installed using

i ni t_bh() andremoved withrenmove_bh() . An ISR can mark the bottom half of
an ISR that needs to execute by using the function mar k_bh() . Once marked,
every bottom half handler runs automatically after slow interrupts occur, aswell as
whenever the scheduler invokes them.

LynxOS uses kernel threads to handle prioritized interrupt processing. Whenever
an ISR istoo long, its code can be placed into a kernel thread. The ISR can then
signal the kernel thread to execute with an ssi gnal () semaphore. Kernel threads
can be created with the st st art () call and removed withthest r enove() call.
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Kernel Support

Kernel threads in LynxOS are scheduled for execution by prioritizing them at half
apriority higher than the process which is using them. Thisis possible because
athough LynxOS has 256 user priorities, it really has 512 internal prioritiesto
allow for this half-priority increase. The reason for thisisto alow thread
processing to complete before the user process that requested it runs.

Kernel Support

Memory allocation within the kernel is performed in similar ways.

Table A-9: Memory Allocation Differences

Action Linux LynxOS
Get apage unsi gned | ong get_free_page(int char *get 1page();
priority) voi d freelpage(char *p);

al | oc_page

Get free memory voi d *kmal |l oc(size_t size, int char *sysbrk(long size);
priority) voi d sysfree(char *p, long size)

void * vnal | oc(unsigned | ong

si ze);
Allocatecontiguous | kmal | oc() with priority set to char *al | oc_cmen(int size);
physical memory | GFP_DMA with GFP_KERNEL or ‘S’i‘"zg)ffee—c”m(c“af P int
GFP_ATOM C '

Kernel Timer Support
Kernel timer support is provided under both systems with the following calls..

Table A-10: Kernel Timer Support Differences

Action Linux LynxOS

Adding atimer voi d add_ti mer (struct int timeout(int (*func()),
tinmer_list *timer); char *arg, int interval);

Rem()ving atimer int del _timer(struct cancel _timeout (i nt num;
tinmer_list *timer);

Semaphore Support
Semaphores are available on both systems.
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Linux Semaphore Support

Under Linux, a semaphore is waited on with the down system call:
voi d down(struct semaphore *senj;

Itissignaled with the up call:
voi d up (struct senmaphore *sem;

Tasks blocked that are waiting on a semaphore can be woken up with thewake_up
call:

voi d wake_up(struct wait_queue *p)

LynxOS Semaphore Support

Under LynxOS, semaphores are waited on and signaled with the swai t () ,
ssi gnal (), ssi gnal n() (for signaling multiple time) and sr eset () using the
following calls:

int swait(int *sem int flag);

int ssignal (int *sem;

int ssignaln(int *sem int count);
int sreset(int *sem

Threads and processes waiting on a semaphore can be woken up in priority order
with thesr eset () call. Also, semaphoresin LynxOS can be set to operate as
priority inheritance semaphores to aleviate problems with priority inversion.

Address Translation
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Address Translation for Linux

For Linux, when accessing a virtual user address from within a system call or any
interrupt routine, the data needs to be copied from one address space to another.
The functions used to copy to and from the kernel are:

* put _user () - Copiesdatafrom system space to user space
e get_user () - Copiesdatafrom user space to system space

The functions used to copy to and from user space to system space are;
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e copy_fromuser() -Copyfrom user space to system space
e copy_to_user() - Copiesdatafrom system space to user space

The address of the process context can be retrieved from the current pointer of the
current process context.

To validate addresses, the function access_ok() can be used with the
VERI FY_WRI TE flag to check for write permission. Theaccess_ok() function
with the VERI FY_READ flag can be used to check for read permission.

Address Translation for LynxOS

LynxOS allows direct access to user address space from entry points, as well as
from within the system call, without the need for address translation. Interrupts and
kernel threads do need to trandlate a user addressto the kernel virtual address space
with get _phys() . Inall cases, user code can never directly access the kernel
address space. Additionally, thecur rt pt r pointer within the current system call
contains the address of the process context.

Address validation under LynxOS is performed with the r bounds() and
wbounds() calls. Users can also usethe NOT_ALI GNED( ) function to seeif an
addressisvalid for use as anything other than a character pointer (returns nonzero
valueif thisistrue).

Driver Problem Reporting

Linux allows you to report problems within device driverswith sprint f () and
vsprintf () tosend stringsto the console device. LynxOSusescpri nt f () and
kkprintf() to perform this same function.

A conventionistousecprintf () for error message reporting and kkpri nt f ()
for debug output.

Communications with Applications

Both Linux and LynxOS allow signalsto be sent to user applications from within
kernel space. Linux providessend_si g() , which can send one of 32 different
signals. LynxOSuses _ki Il () or _kill pg() (for agroup of processes). For
LynxOS, 64 different signals are supported (required by the POSIX API.)
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Scheduling Differences
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LynxOS differs from Linux in the way that it schedules the handling of interrupts.
Thereisaso adifference in the way schedules and threads are processed. These
differences can affect the way in which drivers must be written to respond to user
applications.

Linux Scheduling

Linux isdesigned as a“fair share” scheduling model. Linux tasks can have a
priority associated with them, but thisis not used as an absol ute determinant of the
process priority. The “real” priority of a process (what the scheduler usesto
determine what to schedul e next) is completely dynamic on a Linux system. The
scheduler keepstrack of the processes that have been running, and which processes
have been denied running. The scheduler then attempts to balance the execution
time for each. For example, if atask is running for alength of time, the scheduler
lowersits“real” priority, allowing other waiting tasksto run.

Linux also distinguishes between tasks that perform different kinds of activities
and attempts to grant them CPU time accordingly.

For interactive processes (ones that interact with users), the wakeup time must be
short. Thisisimportant, because these kinds of processes spend much of their time
waiting for input from mice, command shells, etc. Typically, the average delay in
waking these kinds of processes up must fall between 50 and 150 msto keep up
with users.

For batch processes, arapid wakeup time is not required, as these typically runin
the background. Because these processes can afford to wait, they are often the first
onesto be penalized by the schedul er to maintain responsiveness for the interactive
processes.

For real-time processes, extremely strong scheduling requirements are enforced.
These processes can never be blocked by lower-priority processes and must always
be responded to in avery short time. Also, the variance of the response time should
be minimal. Examples of these kinds of tasksinclude sound applications, and data
collection and control.

The Linux scheduler generally behavesin the following way:

1. Initialization, static priority is assigned by the user and the dynamic
priority is equal to the static priority.

2. For each clock tick (occurring at 10 ms):
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- Thedynamic priority isdecremented.

- The"goodness’valueiscomputed (it isequal to the sum of the static
and dynamic priorities).

- If thedynamic priority decreasesto 0, than the goodnessvalue
decreasesto O aswell.

3. When the scheduler isinvoked, it gives the CPU time to the task with the

highest “goodness’ (need_r esched(), dynani ¢ = 0, block/yield)

When all tasks reach Dynamic = 0, all dynamic priorities are re-
initialized to their static value and all tasks have the chance to run their
time quantum.

When thereal-time flag is set for atask, it impliesthat its goodness value
is always be kept high.

At the heart of this scheduling algorithm, the notion of a“goodness’ value for each
task iswhat controls what tasks run when. As previously mentioned, Linux
behaves differently based on the type of task it is running. The goodness value
determines this behavior. Here are the different actions taken when the value of
goodness changes (c is the value returned by the goodness() call):

L]

c=-1000

Thistask must never be selected. This value is returned when the run
queue list contains only thei ni t _t ask.

c=0

The task has exhausted its run time quantum. Unless this task is the first
task in the run queue list and all the other runnabl e tasks have exhausted
their quantum, it will not be selected for execution.

0<c< 1000

Thetask is a conventional task that has not exhausted its quantum. Note
that a higher value of ¢ denotes ahigher level of goodness.

¢ >= 1000

The task is areal-time process because the goodness value is very high.

LynxOS Scheduling

LynxOS uses a strict round-robin scheduler with fixed priority levels (thereisa
dight exception to this rule for priority inheritance scheduling). There are 256
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priority levelsin comparison to Linux’s 99 (although Linux can also have negative
priority levels). Kernel threads are scheduled in the global scheduling space along
with user processes and user threads. Priority tracking and priority inheritance are
also supported.

In general, LynxOS schedules processes and threads (tasks) in a strict priority
sense. There is no other scheduling criteriafor a process other than its priority.
Taskswith ahigh priority ready to run are allowed to run immediately, preempting
lower-priority running tasks. Also, the period of time that a high priority task takes
to begin running is guaranteed to be bounded.

If apriority inheritance semaphore is used, the scheduler will alter the priority of
the tasks involved by temporarily incrementing the priority of ahigh priority task
that iswaiting on aresource locked by a priority inheritance semaphorein the
possession of alower priority task. This keeps the high priority task from being
denied by amedium priority task that preempts the lower priority task to keep it
from completing its use of the resource.

The LynxOS scheduler runs each task within a priority level in turn for the period
of time specified by that level’s quantum (thisis user-modifiable). If all the tasks
within a particular priority level are waiting for 1/O, tasks from the next lower
priority queue are run.

Like Linux, tasks can voluntarily yield the CPU by using theyi el d() call.

Differences in Setting up a Driver

280

Setup

For Linux, the set up() function can be used to pass device-specific datato a
driver for initialization. For LynxOS, the convention isto declare for every driver a
structure that contains all the values that the device needs to be initialized with.
TheLynxOSi nst al | () entry point allocates memory for the driver and performs
deviceinitialization. The address of the driver i nf o structure will then be passed
automatically by the kernel to all the other entry paints.

Installation

For Linux, adriver is registered within the kernel with ther egi st er _chrdev()
orregi st er_bl kdev() . Thesefunctionsare used by theLinuxi ni t () function.

Writing Device Drivers for LynxOS



Device Access: open() and close()

The major number can be choose or the kernel will find the highest free available
one. The i nit () call also should check to seeif the device is present.

LynxOS allows the device driver to be performed either statically or dynamically.
The major device number cannot be choosg, it is dictated by the kernel that finds
the highest free available one. The LynxOSi nst al | () routine checksto seeif the
deviceis present and available.

Device Access: open() and close()
Linux passesthe open() call the following information:

int open(struct inode *inode, struct file *file);
Here, thei node value contains the node information for device access.

Thefi | e variable contains the access mode, position in the device and the
functions that can be used in the inodes.

open() should return a0 (for success) or an error value on failure.
Ther el ease() cal isused to close the device:
voi d rel ease(struct inode *inode; struct file *file);

LynxOS operates similarly, but the data structure for the device is passed to the
open() andcl ose() callsdirectly:

int open(char *s, struct file *file);

Here, s is passed by the kernel automatically and is the address for the data
structure returned from install().

Thefile variable contains the access mode, position in the device and the major and
minor numbers of the device.

LynxOS device drivers are closed with acl ose() call:
int close(char *s, struct file *file);

Both open() andcl ose() should return OK or SYSERR.

Device Access: read() and write():

Reading and writing are performed with similar calls on both systems. For Linux,
read() iscaled asfollows:

int read(struct inode *inode, struct file *file, char
*puffer, int count);
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This call should return the number of bytesread or an error.
write() iscaledasfollows:

int wite(struct inode *inode, struct file *file, char
*pbuffer, int count);

It should return the number of bytes written or an error.

Datain both cases needs to be copied from one address space (user) to another
(system or kernel space of the driver).

LynxOS operates similarly, with ther ead() call declared asfollows:

int read(char *s, struct file *file, char *buffer, int
count);

This call should return the number of bytesread or an error.
Forthewrite() cal:

int wite(char *s, struct file *file, char *buffer, int
count);

This call should return the number of bytes written or an error.

The entry points can directly use the buffer address to access count data.

Device Access: Control

Thei octl () andsel ect () callsare universal in both LynxOS and Linux, as
well asthe calls for device control. Thei oct | () call allows control of adevice
and sel ect () allowsyou to wait on multiple channels of the device.

For Linux, i octl () iscaled asfollows:

int ioctl(struct inode *inode, struct file *file,
unsigned int cnd, unsigned long arg);

This call should return a0 or an error.
Thesel ect () cal isused as follows:

int select(struct inode *inode, struct file *file, int
sel _type, slect_table *wait);

It should return a 0 or 1 when one of the devices becomes available.

LynxOSis similar, with the exception of passing the control structure first for
ioctl():
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int ioctl(char *s, struct file *file, int cmd, char
*arg);

This should return OK or SYSERR.
For sel ect ()

int select(char *s, struct file *file, int which, struct
sel *ffs);

Return value should be 0 or SYSERR.
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meeos POrtING UNIX Driversto LynxOS

This appendix discusses the similarities and differences between device drivers
under LynxOS and UNIX. It isintended to serve two main purposes:

* To provide some guidelines to devel opers wishing to port existing UNIX
driversto LynxOS in order to reuse existing code.

e Toprovide apedagogical stepping stone for developers who are already
experienced with UNIX drivers.

The material that follows describes afeature of a UNIX device driver and points
out the corresponding feature in a LynxOS device driver. This appendix
supplements the more detailed coverage of LynxOS device drivers that can be
found in previous chapters of this manual. Certain LynxOS features not used in a
UNIX driver are, consequently, mentioned very briefly only. The versions of the
UNIX kernel referred to in this chapter are, for the most part, SVR3.2 and SVR4.

Kernel and Driver Design Goals

A frequently asked question is whether it would be possible to achieve source-level
or even binary compatibility between UNIX and LynxOS drivers. While this--with
some effort--might be technically feasible, the result would probably not be
acceptable for designers of real-time systems.

This is because the fundamental differencesin the design goals of LynxOS as
compared to the UNIX kernel. The latter was designed for multi-user time-sharing
systems, while LynxOS was designed specifically for hard real-time systems.
These differences in design goal s influence the choice of kernel data structures and
agorithms, including those used in device drivers.

The differences are also seen in the services provided by the kernel to device
drivers. The LynxOS kernel provides many services that meet specific
requirements of real-time systems. These features would not be found in a UNIX
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driver. Onthe contrary, a UNIX driver may use some servicesthat would resultina
detrimental effect on areal-time performance.

Ancther significant difference is preemptability. The UNIX kernel was originaly
written to be uninterruptible, though some UNIX kernels now exist that are
preemptive to some extent. The LynxOS kernel, including device drivers, isfully
preemptive. This has a major influence on the way a driver iswritten.

Different design goals can also be noted at the level of the drivers themselves.
UNIX driversare generally designed to make the most efficient use of 1/O devices,
thereby maximizing throughput. This goal leads to the use of specific driver
techniques such as the chaining of 1/0 requests, processing of interrupts within an
interrupt handler, and the starting of the next 1/O operation from within the
interrupt handler. In contrast, a LynxOS driver must be designed to have aminimal
impact on real-time performance, respecting the relative priorities of the tasks that
are using the devices. The way in which interrupts are handled is probably the
largest difference between a UNIX and a LynxOS driver.

Given these differences, both at the kernel and driver level, it is clear that in order
to respect real-time demands, aport is preferred in providing compatibility.

Porting Strategy
Porting a UNIX driver can be broadly divided into three stages as follows:
e Stage One
- Driverinterfacewith kernel
- Driverinterfacewith application
- TheU structure
- Reentry and synchronization
e Stage Two
- Systemthreadsand priority tracking
e Stage Three
- Dynamicinstallation
- POSIX programming model

Thefirst stage allows the devel oper to reach a point where aworking LynxOS
driver can betested for functionality. While enabling the re-use of adriver in a

286 Writing Device Drivers for LynxOS



Driver Structure

relatively short time, thisinitial port does not take advantage of the real-time
aspects of LynxOS, and the driver could have a detrimental effect on the system
response time. In order for the driver to conform to the real-time characteristics of
LynxOS, the implementation of Stage Two is absolutely necessary. The featuresin
Stage Three are optional but may be advantageous in certain situations.

Driver Structure

Overall Structure

A LynxOS and aUNIX driver are quite similar in overall structure. Each consists
of anumber of entry points, including an initialization routine and an interrupt
handler. A LynxOS driver has, in addition, one or more kernel threads.

Table B-1: UNIX v/s LynxOS Structure

LynxOS Driver UNIX Driver
Initialization Initialization
Entry points Entry points
Interrupt handler Interrupt handler
Kernel threads

Global Variables

A UNIX driver typically makes widespread use of global variables, which isthe
most common way for the driver entry points to share information. A LynxOS
driver can and should be written without the use of any global variables. The
LynxOS kernel provides an elegant means to communicate driver state between
entry points. Use of this mechanism is essentia to alow dynamic install and
uningtall of adriver.

Major and Minor Device Numbers

Thereis an important difference in the way UNIX and LynxOS use major device
numbers. Under UNIX, the major device number is used to distinguish between
different drivers. The minor number distinguishes between different devices
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controlled by the same driver. Under LynxOS, each driver has a unique driver 1D,
though this number is never used by the driver code. Different devices controlled
by the same driver are identified by different major numbers (as opposed to the
minor number in UNIX). The use of the minor device number is defined entirely
by the driver. LynxOS driver IDs and major numbers are allocated automatically
during akernel build.

Driver Interface with Kernel

288

The interface between the UNIX kernel and a driver is defined by the driver
servicecals, the i nit entry point, and the interrupt handler.

Driver Service Calls

The services provided by a kernel to device drivers can be grouped into several
functional classes:

e Memory Management

* Synchronization

* DMA Transfersand Raw 1/0
* Block I/0

» Driver Debugging

Memory Management

This section describes the functions used for allocating memory and for translating
memory addresses.
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Memory Allocation

Functions used for the allocation of memory for the driver’sinterna use are as
follows:

Table B-2: Internal Use Memory Allocation Functions

LynxOS UNIX

sysbrk, sysfree, get lpage, kmem al | oc, kmem free
freelpage, all oc_cnem

free_cmem

Thefunctions sysbrk and sysfree arethenearest equivalent to UNIX
kmem al | oc and kmem free. The UNIX function knmem al | oc can sleep
while waiting for free space. The LynxOS functions never sleep, instead, they
return SYSERR if the memory request cannot be satisfied immediately.

Address Translation
The functions required for converting virtual to physical addresses are as follows:

Table B-3: Virtual to Physical Address Conversion Functions

LynxOS UNIX
User virtual to physical | Mthain, mthai nj ob vtop
Kernel virtual to mthai nj ob (job 0) addr - |kvtophys

Notethat mrchai n returns akernel virtual address. To convert thisto a physical
address, the constant PHYSBASE must be subtracted.

Synchronization

In non-preemptive UNIX kernels, synchronization is afairly straightforward
matter. But in afully preemptive kernel such as LynxOS it is much more complex.
This can represent a significant portion of the porting effort. For more information,
see Chapter 4, “ Synchronization.”
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DMA Transfers and Raw I/O

Setting up DMA transfers requires the following kernel services:

e Memory locking
» Split transfer into physically contiguous pieces
* Virtual to physical address translation

Thefollowing code fragmentsillustrate typical SV R4 driver code for performing a

DMA transfer to user space.

UNIX
read (dev, uio)
dev_t dev;

struct uio *uio;

{
physi ock (nybreak, 0, dev, B _READ, nbl ocks, uio);

nybreak (bp)
struct buf *bp;

{
}

nystrategy (bp)
struct buf *bp;

dma_pagei o (nystrategy, bp);

physaddr = vtop (bp->b_addr, bp->b_proc);
/* start DVA transfer */

}
The key functions in the previous code fragment are:

physi ock Faults in and locks memory pages.

drma_pagei o Breakstransfer blocksinto 512 byteblocksand calls st r at egy
routine.

nystrat egy Converts user virtual addressto physical address, sets up and
initiates DMA transfer (user written).

LynxOS

read (s, f, buff, count)
struct statics *s;
struct file *f;

char *buff;

int count;

{

struct dmachain *array;
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}

int np, nc, pid, i;

pid = getpid ();
np = npages (buff, count);
array = (struct dmachain *) sysbrk (np * sizeof
(struct dmachain));
mem | ock (pid, buff, count);
nc = mmthain (array, buff, count);
for (i =0; i <nc; i++) {
/*
* Do DMVA transfer at physical address
* array[i].address, length array[i].count
*/
array[i].address -= PHYSBASE,
/* convert to physical address */
do_dma (&array[i]); /* user supplied routine */
}
sysfree (array, np * sizeof (struct dmachain));
mem unl ock (pid, buff, count, TRUE);

The key functionsin the previous code fragment are:

mem | ock Faultsin and locks pages.
mrchai n Convertsvirtual addressrangeto list of kernd virtual addresses.
These are converted to physical addressesusing PHYSBASE
mem_unl ock Unlocks memory pages.
Note that whereas UNIX uses the block interface (st r at egy entry point) for raw

I/0, LynxOS uses the character interfaceread and wri t e entry points.

Block Input/Output

strategy Entry Point

Both UNIX and LynxOSblock drivershavea st r at egy entry point that iscalled
by the kernel’s block buffering I/0O subsystem to perform transfers to block

devices.

Table B-4: Strategy Entry Point Comparison

LynxOS UNIX

strategy (s, bp) strategy (bp)
struct statics *s; struct buf *bp;
struct buf_entry *bp;
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Aswith other entry points, the LynxOS strategy routineis passed the address of the
device's statics structure as the first argument.

buf Structure

This data structure defines the buffers that are used to hold the data blocks from a
block device. In LynxOS, this structure is of type struct buf _entry. The
correspondence between the fields is shown bel ow.

Table B-5: buf Data Structure Comparison

LynxOS struct buf_entry UNIX struct buf
int b_status int b_flags
struct buf_entry *av_forw struct buf *av_forw
struct buf_entry *av_back struct buf *av_back
int b_device o_dev_t b_dev

unsi gned b_count
char *nmenbl k caddr _t b_addr
I ong b_nunber daddr _t b_bl kno

char b_oerror
unsigned int b_resid
clock t b start
struct proc *b_proc
struct page *b_pages
| ong b_bufsize

int (*b_i odone) ()
struct vnode *b_vp
int b_error

dev_t b_edev
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The symbolic constants used to specify bitsinthe b_f 1 ags field are shown
bel ow.

Table B-6: b_flags Field Comparison

LynxOS UNIX
B_BUSY B_BUSY
B_DONE B_DONE
B_ERROR B_ERROR
B_PAGEI O
B_PHYS B_PHYS
B_READ B_READ
B_WANTED B_WANTED
B_ASYNC B_ASYNC

Block I/0O Support Routines
UNIX provides a number of support routines for block device drivers.

bi owai t Suspend, waiting for 1/0 completion
bi odone Wakeup process and release buffer
brel se Put buffer back on freelist

The following code fragment shows how these routines are typically used in the
strategy entry point and interrupt handler of a UNIX driver.

UNIX

xx_strategy (bp)
struct buf *bp;
{

/* start transfer on device ... */

/* if transfer is asynchronous, return, else wait
for conpletion */

if (bp->flags & B_ASYNC)
return (0);
bi owai t (bp);
}

xx_intr ()
if (error_condition)

bp->b_error | = B_ERROR
bi odone (bp); /* wake up process */
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LynxOS does not provide the bi owait or bi odone routines, but the code to
implement the required functionality is straightforward, as shown below.

LynxOS

strategy (s, bp)
struct statics *s;
struct buf_entry *bp;
{

/* start transfer on device ... */

swait (&s->devsem); /* wait for device conpletion */
bp->b_status | = B_DONE;
/* set bits to indicate transfer status */
if (s->error)
bp->b_status | = B_ERROR,
if (bp->b_status & B_ASYNC) {

/* if async transfer, release buffer ... */
ssi gnal (&bp->b_rwsen);
brel se (bp);

} else
ssi gnal (&bp->b_rwsen);
/* . el se wakeup waiting task */

Driver Debugging

UNIX
printf Print message on system console (uses polling)
uprintf Print message on user terminal (uses driver)
LynxOS
kprintf Print message on debug console (uses polling)
cprintf Print message on system console (uses driver)

Initialization Routine

Although both UNIX and LynxOS drivers have an initialization routine, theway in
which they are used differs in some important ways. By convention, the UNIX
routineiscalled xxxinit,inLynxOS xxxi nstal | .
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UNIX

Initialization is called once during bootup.

Initializes all hardware and software.

Device-specific information is kept in statically allocated structures.
Maximum number of supported devices is hardcoded.

Limited number of configuration parameters

LynxOS

Initialization routine is called for every major device.
Device structure allocated dynamically.
Number of supported devices not limited.

User-defined configuration parameters

Probing for Devices

One of the tasks usually performed by the initialization routineis to test for the
presence of adevice. UNIX drivers must handle bus errors. In LynxOS thisis
handled automatically. Typical UNIX and LynxOS code is illustrated below:

UNIX init Routine

#define MAX_CONT 4 /* no. of supported controllers */
struct csb csb[ MAX_CONT]; /* controller status bl ocks */

xx_init ()

for (i =0; i < xx_ccnt; i++) {
if (setjmp (u.u_tsav) == 0) {
u. u_nofault = TRUE;
...... /* touch the device here */
u.u_nof ault = FALSE;
...... /* Initialize hardware and software */
} else
xx_addr[i] = 0; /* device not present */

LynxOS install Routine

xx_install (info)
struct xxinfo *info;

/* user defined configuration paraneters */
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/* Touch device here */

/* 1f we get here, we know device is present */
s = (struct statics *) sysbrk (sizeof (struct

statics s));
/* Initialize software and hardware */
return (s);

Interrupt Handling

In SystemV, the details of a device'sinterrupt capabilities are defined statically in
configuration files external to the driver. The name of the interrupt handler is
xxx_i ntr,where xxx_ isthe specified driver prefix.

Because LynxOS supports dynamic driver installation and deinstallation, attaching
and detaching an interrupt handler is done within the driver code using the
functions i oi ntset () and iointcl (). Thisisdoneinthe install () and
uni nstal | () entry points. The device'sinterrupt vector is normally passed to
theinstall routine in the device information structure.

For x86
iointset (32 + info->vector, intr_handler, s);

U Structure
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Unlike most UNIX kernels, LynxOS does not have a U structure. The following
paragraphs discuss the most commonly used members of this structure and how the
equivalent functionality isimplemented in a LynxOS driver.

u_base, u_count, u_offset

Older versions of UNIX used these fields to specify the details of adatatransfer in
the read/write entry points. The driver modifies these during the course of the
transfer. The return value received by the application istheinitial u_count value
minusits final value. More recent implementations of UNIX have replaced them
with a ui o structure.

In aLynxOS driver, the user buffer address and size are passed directly as
arguments to the driver entry point. An important difference from UNIX isthat the
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value returned to the application isthe value returned by the driver entry point. The
seek position on the device is specified by thefield position inthefile
structure. The driver isresponsible for setting this at the end of atransfer.

u_fmode

Thisfield holds the file mode flags. Its main use isin the read/write entry pointsto
test for non-blocking I/O. It is also used to test, for example, if an applicationis
trying to read from a device opened in write only mode.

In LynxOS, the file modeisheld in the access_node field of the file structure.

u_error

Thisfield contains an error code, which is copied to the application’s errno
variable.

A LynxOS driver specifies an error code withthe pseterr () function.

u_segflg

This field indicates whether a data transfer isto or from user or kernel space. It is
necessary to know this because the user process and kernel have separate virtual
address spaces.

In LynxOS, the user process and kernel exist within the same virtual space, so this
functionality is not required.

u_procp

Thisfield is apointer used to process table entry for the current process. UNIX
device drivers seldom need to access thisfield explicitly. In LynxOS, each process
isidentified by a unique job number which can be accessed in the driver top-half
routinesto provide similar functionality. Thefunction get pi d() canalsobeused
to find the process ID number.

u_tsav, u_nofault
These are used for trapping bus errors, typically inthe i nit () routine.
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Intheinstall routine of a LynxOS driver, bus errors are handled automatically.
Elsewherein adriver, theroutines noreco() and recoset () must be used to
catch bus errors.

Reentrance and Synchronization

298

Critical Code Regions

Accesses to shared data structures and hardware registers must be serialized. The
synchronization mechanisms used in aUNIX driver depend very much on whether
the driver is preemptive. SV R4 driver code is not preemptive, though synchronous
preemption is possibleif adriver calls sl eep() . Driverswritten for such kernels
only need to synchronize with the interrupt level routines. Thisis done with the
spl n and spl x functions. The LynxOS equivalent of these functions are

di sabl e() and restore() athough thereisanimportant difference. The
LynxOS functions disable and restore all interrupts, but interrupt nesting is not
possible.

Drivers under LynxOS are fully preemptive. Appropriate synchronization must be
added to make the driver reentrant.

Event Synchronization

This type of synchronization involves waiting for an event (buffer free, transfer
compl ete, data ready, and so on) to occur.

LynxOS swai t /ssi gnal
UNIX sl eep/wakeup

The UNIX sl eep() function specifiesapriority, which isassigned to the process
when it wakes up. LynxOS uses fixed scheduling priorities. A task priority can
only be changed on request from the user application. Both UNIX sl eep and
LynxOS swai t () usean argument to specify how signals are handled during the
time the task is blocked. It is difficult to find an exact correspondence in behavior
inall cases.

Writing Device Drivers for LynxOS



UNIX sleep Priority

UNIX sleep Priority

<= PZERO Signals are ignored. Use the symbolic constant
SEM _SI G GNORE with swai t.

> PZERO Signals are delivered but sl eep never returns. The nearest
equivalent with swai t isto use the symbolic constant
SEM S| GRETRY. However, the swai t isautomatically
restarted and eventually returns.

> PZERO | PCATCH | sl eep isaborted and returns 1 on receipt of asigna. The
LynxOS equivalent is to use the symbolic constant

SEM _SI GABORT. However, swai t returnsanon-zero value
(not necessarily 1).

Another important differenceisthat wakeup() isstateless. It canonly wake tasks
that are blocked on the event at thetime that wakeup() is called. On the other
hand, ssi gnal () hasacounter associated with it. This difference can have an
influence on driver design. More care is needed with synchronization in the

statel ess case. Though this problem is normally solved by the fact that a UNIX
driver is not preemptive.

Driver Interface with User Applications
The driver interface with the application covers the following topics:
e Driver entry points
* Accessing user address space

¢ Returning errors

Entry Points

There are anumber of general remarks that can be made that apply to al entry
points.

¢ InalLynxOSdriver the first argument to all entry pointsisapointer to the
statics structure alocated by the i nstal | routine.

¢ LynxOSdoesnot usethe UNIX cred_t credentials structure.
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e InLynxOS, the device number is passed only to the open entry point.
Other entry points can access the device number and access the mode in
the fil e structure.

int flag = f->access_node;
int dev = f->dev;

Major and Minor Device Numbers

Asdiscussed above, thereis an important difference in theway UNIX and LynxOS
use the device numbers. Typically, aUNIX driver uses (part of) the minor number
toindex into an array containing state variables for each device, asillustrated
below.

UNIX

/* nunber of supported controllers */
#defi ne MAX_CONT 4

/* controller status blocks */
struct csb csb[ MAX_CONT];

/* nunber of configured controllers */
extern int xxx__ccnt;

xxx_open (dev, node, otyp, cred)
dev_t *dev;
int node;
int otyp;
cred_t *cred;
{
struct csb *csbp;
int cntlr;

cntlr = getmnor (*dev) & Oxf;

if (cntlr >= xxx__ccnt || cntlr >= MAX_CONT)
return (ENXI O ;

csbp = &csbh[cntlr];

This code is unnecessary in the LynxOS driver because the address the controller’s
status block is passed as an argument to the entry points.

LynxOS

xxx_open (s, dev, f)
struct statics *s;
int dev;

struct file *f;

NoTe: UNIX driversusually usetheterm controller status block and use a
statics structure. They are more or less the same thing.
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open/close

open/close

Table B-7: open/close Comparison

UNIX

LynxOS

open (dev, node, otyp, cred)
dev_t *dev; [/* SVR4 */

i nt node;

int otyp;

cred_t *cred;

cl ose (dev, node, otyp, cred)
dev_t dev;

i nt node;

int otyp;

cred_t *cred;

open (s, dev, f)
struct statics *s;
int dev;

struct file *f;

close (s, f)
struct statics *s;
struct file *f;

Asshown in the listing above:

e LynxOS passes the device number to open, like SVR3. SVR4 passes a

pointer to the device number.

¢ LynxOS does not have an equivalent of the ot yp field.

¢ TheLynxOSkernel only callsthe cl ose entry point on the last close of

adevice.

read/write

Table B-8: read/write Comparison

struct file *f;
char *buff;
int count;

LynxOS UNIX
read (s, f, buff, count) read (dev, uiop, credp)
struct statics *s; dev_t dev;

uio_t *uiop;
cred_t *credp;

The UNIX ui o structure specifiesalist of user buffers. Earlier UNIX kernels
used the cl i st datastructurefor character storage.

In aLynxOS driver, the user buffer is specified by buff and count. Theentry
point is called once for each buffer in scatter/gather 1/O (r eadv/wr i t ev). LynxOS

does not usethe cli st datastructure.
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The following code fragments compare typical writ e entry point logic used to
transmit all user data. Note that in LynxOS, the driver isresponsible for positioning
the seek pointer (f - >posi ti on). Another important difference is that the UNIX
driver returns the number of bytes not transmitted.

Table B-9: write Comparison

LynxOS UNIX

for (i =0; i <count; i++) |while ((c = uwitec (uio)) >=0)
transmt (buff[i]); transmt (c);

f->position += count; return (0);

return (count);

ioctl

Table B-10: ioctl Comparison

LynxOS UNIX
ioctl (s, f, cnmd, arg) ioctl (dev, cnd, arg, node,
struct statics *s; cred, rval)
struct file *f; dev_t dev;
int cnd; int cnd;
int arg; int arg;
i nt node;
cred_t *credp;
int *rval;

If arg isapointer, the LynxOS driver must check the validity of the address with
rbounds() and wbounds().
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select

Table B-11: select Comparison

LynxOS

struct statics {

int space_free;
/* for output */
int data_ready;
/* on input */
int *rsel _sem *wsel_sem
b

select (s, f, which,
struct statics *s;

struct file *f;

int which;
struct sel

ffs)

*ffs;

{
switch (which) {
case SREAD:
ffs->i osem = &s->dat a_r eady;
ffs->sel _sem = &s->rsel _sem
br eak;
case SWRI TE:
ffs->i osem = &s->space_free;
ffs->sel _sem = &s->wsel _sem
br eak;
case SEXCEPT:
return (SYSERR);

}
return(OK);

s->data_ready = 1;

di sabl e (ps);

if (s->rsel_sen)
ssi gnal

restore (ps);

s->space_free = 1;

di sabl e (ps);

if (s->wsel_sem
ssi gnal

restore (ps);

(s->rsel _sen);

(s->wsel _sem;

UNIX
extern int selwait;
struct proc *selr, *selw
sel ect (dev, rw)
dev_t dev;
int rw
{
switch (rw) {
case FREAD:
selr = u.u_procp;
break;
case FWRI TE:
selw = u.u_procp;
br eak;
return(0);
}
/*Data | nput */
if (selr) {
sel wakeup (selr, coll);
selr = 0;
}
/* Data Qutput */
if (selw {
sel wakeup (selw, coll);
selw =0
}

Accessing User Space

UNIX

The currently executing user process and the kernel may have separate virtua
address spaces. In this case, kernel service routines are used to transfer data to and
from user space. These routines usually handle invalid user addresses.
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LynxOS

The current user process and the kernel exist in same virtual space. The kernel
(including drivers) can access the whole of the virtual space. Therefore, driverscan
transfer data to and from user space directly using a pointer.

The following code fragments illustrate how data might be transferred from user
spaceinan i oct!| entry point.

Table B-12: ioctl Data Transfer Example

LynxOS UNIX
if (rbounds (useraddr) < nbytes) { char *useraddr, *kernaddr;
pseterr (EFAULT); int nbytes;
return (SYSERR); if (copyin (useraddr, kernaddr,
} nbytes) == -1)
while (nbytes--) return (EFAULT);
*ker naddr ++=*user addr ++;

Returning Errors to User Application

UNIX

Earlier versionsused the u_error field intheu structure. SVR4 uses the entry
point return value.

LynxOS
Usesthe pseterr function and return the value SYSERR.

The following code fragmentsillustrate how a driver returns the error El O

Table B-13: Returning Errors

LynxOS UNIX SVR3 UNIX SVR4
pseterr (EIO; u.u_error = EIQ return (EIO;
return (SYSERR); return;
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LynxOS Kernel Threads

When using kernel threads, interrupt processing is performed by a preemptive,
prioritized task. Thisis essential in order to maintain deterministic system response
times. Using the UNIX interrupt architecture, where all interrupt processing is
donein the interrupt handler itself, will lead to a degradation of the system’s real-
time performance.

Dynamic Installation

LynxOS supports the dynamic installation and deinstallation of drivers. This
greatly facilitates the driver devel opment and debugging phases as a kernel rebuild
and reboot is not necessary each time the driver is modified. If the port has been
done correctly, the only addition required to support dynamic installation is the
declaration of the entry_poi nt's structure.

POSIX Programming Model

The LynxOS implementation of the POSIX.1 and POSI X.1b features permit much
simpler driver design for supporting asynchronous 1/0O, non-blocking 1/0, and
synchronous I/0O multiplexing and polling.

Asynchronous I/0

The complexity of handling asynchronous transfers is hidden from the application
and driver developer. The POSIX API provides services to the application
developer, and the driver sees only synchronous requests. Therefore, code to
handle asynchronous transfers can be removed from a UNIX driver if the LynxOS
version is only intended for use with POSIX conforming applications.

Synchronous I/0 Multiplexing and Polling

Thisfunctionality is provided by the sel ect system call at the application level
and the sel ect entry point in adriver. The POSIX standard does not define a
sel ect function. So, if the LynxOS driver is only intended for use with POSIX
conforming applications, the sel ect entry point can be removed.

Writing Device Drivers for LynxOS 305



Appendix B - Porting UNIX Drivers to LynxOS

306 Writing Device Drivers for LynxOS



~eeoce Sample Device Driver

Header Files

ptrinfo.h

/* ptrinfo.h */
struct ptrinfo {

b

int port;

prtioclt.h

/* ptrioctl.h */
#defi ne PTRSTATUS 500
struct ptrstatus {
int chars; /* characters printed */
int |lines; /* lines printed */

}s

Driver Code

/* ptrdrvr.c - using threads */

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<kernel . h>
<mem h>
<sys/file.h>
<errno. h>
<sys/ioctl.h>
<conf. h>
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#i ncl ude <st. h>
#i ncl ude "ptrinfo.h"
#include "ptrioctl.h"

[* ports */

#define PP_DATA O /* data port offset */
#define PP_STATUS 1 /* status port offset */
#define PP_CONTROL 2 /* control port offset */

/* status bits */

#def i ne PP_BUSY 0x80 /* printer busy */
#defi ne PP_PE 0x20 /* out of paper */
#define PP_SLCT 0x10 /* printer is selected */

#defi ne PP_ERROR 0x08 /* printer detected error */

/* control bits */

#defi ne PP_I ENABLE 0x10 /[* interrupt enable */
#define PP_SLCTIN 0x08 /* select printer */
#define PP_INIT 0x04 /* start printer */
#define PP_AUTCLF 0x02 /* auto line feed */
#defi ne PP_STROBE 0x01 /* strobe printer */

#define port_in(addr) __inb(addr)
#defi ne port_out (data,addr) __ outb(addr, data)

t ypedef unsigned short ptype;
#defi ne STACKSI ZE PAGESI ZE

struct gentry {

char c; /* character */

int pri; /* its priority */

b

struct ptrstatics {

pt ype dat ap; /* data port address */
ptype control p; /* cntrl port address */
char control; /* control bits */

int irq; /* 1 RQ nunber */

int closing; /* closing device */

int close_sem /* senpahore for close */
i nt expecting; /* expecting an int.? */
int nextnl; /* output a '\r’ next? */
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int chars; /* printed since open */
int |ines; [* printed since open */
int glen; /* characters in queue */
struct gentry *q; /* the queue itself */

i nt head; /* head of queue */

int tail; /* tail of queue */

i nt gdata; /* data in the queue */
int free_sem /* free queue space */
int stid, /* thread id */

int int_sem /* interrupt senmaphore */
int gsem /* queue protection */
struct priotrack pt; [* pri. tracking */

int curpri; [* current priority */
int prio_sem [* pri. trking sem*/

b

/*

static port_in(), port_out();

asm {
port_in: /* byte = port_in(port) *
nmov EAX, O
nmov EDX, 4[ ESP]
in AL, DX
ret
port_out: /* port_out(byte, port) *

mov EDX, 8[ ESP]
mov EAX, 4[ ESP]
out DX, AL

ret

}
*/

#define PERR (char *) SYSERR

char *ptrinstall (info)
struct ptrinfo *info;

{

struct ptrstatics *s;
static void ptrint(), ptrthread(), ptruninstall();
int i;

/* probe for the printer */

port _out (1, info->port+PP_DATA);
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if (port_in(info->port+PP_DATA) != 1)

return PERR;
s = (struct ptrstatics *)
sysbrk( (1 ong)sizeof *s);
if (!s) return PERR

s->q = (struct qgentry *)

sysbrk((long)info->qglen * sizeof(struct qgentry));

if ('s->q) {
sysfree(s, (long)sizeof *s);
return PERR;

/* initialize statics */

s->datap = info->port + PP_DATA

s->controlp = info->port + PP_CONTRO;

s->control = PP_SLCTIN | PP_INT;
s->irq = info->irq;

s->expecting = O;

s->lines = s->chars = 0;

s->cl osing = s->cl ose_sem = 0;
s->nextnl = O;

s->free_sem = s->ql en = info->qlen;

s->qdata = s->head = s->tail = 0;
s->int_sem= 0;
s->gqsem = -1;

bzero(&s->pt, sizeof(struct priotrack));

s->curpri = 0;
s->prio_sem= -1;

/[* initialize printer */
iointset(32+s->irq, ptrint, s);

port _out (PP_SLCTIN, s->controlp);
for (i =0; i < 100; i++) ;

port_out (s->control, s->controlp);

s->stid = ststart(ptrthread, STACKSI ZE,
s->curpri, "ptr thread",

if (s->stid == SYSERR) {
ptruninstall (s);
return PERR;

}

return (char *) s;

}
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int ptruninstall(s)

}

struct ptrstatics *s;

if (s->stid != SYSERR) strenove(s->stid);
iointclr(32+s->irq);
sysfree(s->q, (long)s->qglen *
si zeof (struct gentry));
sysfree(s, (long)sizeof *s);

int ptropen(s, devno, f)

}

struct ptrstatics *s;
int devno;
struct file *f;

if (f->access_npde & FREAD) ({
pseterr ( El NVAL) ;
return SYSERR,
}
if (mnor(devno)) {
pseterr (ENXI O ;
return SYSERR,
}

return OK;

int ptrclose(s, f)

}

struct ptrstatics *s;
struct file *f;

swai t (&s->gsem SEM S| A GNORE) ;
if (s->expecting) {
s->closing = 1;
ssi gnal (&s->qsen ;
swai t (&s->cl ose_sem SEM Sl G GNORE) ;
s->cl osing = O;

} else {
ssi gnal ( &s->qsem ;
}
s->lines = s->chars = 0O;
return OK

int ptrselect()

{

return OK;
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}

/* assumes:

*x data in the queue

*x queue access disabl ed
*/

voi d send(s)
struct ptrstatics *s;
{ . .
int prio;
char c;

if (s->nextnl) {
c ="\r";
prio = s->nextnl;
s->nextnl = O;
s->| i nes++;
} else {
¢ = s->qg[s->head].c;
prio = s->qg[s->head++].pri;
s->head % s->gl en;
s->qdat a- -;
ssi gnal (&s->free_sen);
s->nextnl = ¢ =='\n"? prio : O;
s->char s++;

}

port_out (c, s->datap);
port _out (s->control | PP_STROBE, s->controlp);
port _out (s->control | PP_IENABLE, s->controlp);

if (!s->nextnl) {
swai t (&s->prio_sem SEM SI d GNORE);
priot_renove(&s->pt, prio);
if (prio == s->curpri) {
prio = priot_nmax(&s->pt);
if (prio !'= s->curpri) {

s->curpri = prio;
stsetprio(s->stid, (prio<<l)+l);
}
}
ssignal (&s->prio_senm;
}

}

312 Writing Device Drivers for LynxOS



Driver Code

void ptrint(s)
struct ptrstatics *s;

{
ssi gnal (&s->i nt_sen)

}

voi d ptrthread(s)
struct ptrstatics *s;

{
for (;;) {
swai t (&s->i nt_sem SEM SI G GNORE) ;
swai t (&s->qgsem SEM S| G GNORE) ;
if (s->qdata || s->nextnl) {
send(s);
} else {
s- >expecting = O;
/* disable ptr interrupts: */
port_out(s->control, s->controlp);
if (s->closing) ssignal (&s->cl ose_sem;
}
ssi gnal (&s->qsemn;
}
}

/* This function ptrthread() is really the only difference
bet ween this

driver and the others. It is a kernel thread used by the
driver to send

characters out to the printer. */

int ptrwite(s, f, buff, count)
struct ptrstatics *s;
struct file *f;

char *buff;
int count;
{
int i = count, myprio;

nyprio = _getpriority();
swai t (&s->prio_sem SEM SId GNORE);
priot_addn(&s->pt, nyprio, count);
if (nmyprio > s->curpri) {
sS->curpri = nyprio;
stsetprio(s->stid, (myprio<<1)+1);
}
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ssignal (&s->prio_sen);

while (i--) {
while (swait(&s->free_sem SEM SIGABORT)) {
swai t (&s->pri o_sem SEM SI GABORT);
priot_renoven(&s->pt, nyprio, i+1);
if (s->curpri == nyprio) {
s->curpri = priot_max(&s->pt);
if (s->curpri < nyprio) {
stsetprio(s->stid, (s->curpri<<1)+1);
}

}
ssi gnal (&s->prio_sen);
del i versigs();

priot_addn(&s->pt, nyprio, i+1);
if (myprio > s->curpri) {
S->curpri = nyprio;
stsetprio(s->stid, (myprio<<l)+1);
}
ssi gnal (&s->prio_sen);
}

swai t (&s->gsem SEM S|l G GNORE) ;

s->q[s->tail].c = *buff++
s->q[s->tail ++].pri = nyprio;
s->tail % s->glen

s- >qdat a++;

if (!s->expecting) {

send(s);
s->expecting = 1
}
ssi gnal (&s->qgsen);

}

return count;

}

int ptrioctl (s, f, command, arg)
struct ptrstatics *s
struct file *f;
i nt conmand;
char *arg;
{

switch (command) {

314 Writing Device Drivers for LynxOS



Driver Code

case PTRSTATUS

if (wbounds((int)arg) < sizeof(struct ptrstatus)) {
pset err ( EFAULT) ;
return SYSERR

}

((struct ptrstatus *)arg)->chars = s->chars;

((struct ptrstatus *)arg)->lines = s->lines;

br eak;

case FIOPRI O

case FI OASYNC.
br eak;

defaul t:

pseterr ( El NVAL) ;
return SYSERR
}

return OK

}

#i ncl ude <dl dd. h>

static struct dldd entry_points = {
ptropen, ptrclose, 0, ptrwite,
ptrsel ect, ptrioctl,
ptrinstall, ptruninstall, (char *) 0

}s
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