
3

LynxOS User�s Guide
LynxOS Release 4.0

DOC-0453-00

Product names mentioned in LynxOS User�s Guide are trademarks of their respective manufacturers and are used here
for identification purposes only.

Copyright ©1987-2002, LynuxWorks, Inc. All rights reserved.
U.S. Patents 5,469,571; 5,594,903

Printed in the United States of America.

All rights reserved. No part of this LynxOS User�s Guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise, without the
prior written permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; all such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for any
indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in all cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

Contents
PREFACE ... XI

For More Information ... xi
Typographical Conventions ...xii
Special Notes ..xiii
Technical Support ...xiii

LynuxWorks U.S. Headquarters ... xiv
LynuxWorks Europe ... xiv
World Wide Web ... xiv

CHAPTER 1 INTRODUCTION.. 1

About LynxOS ... 1
LynxOS Features .. 1
LynxOS Documentation ... 2

About POSIX ... 3
LynxOS and POSIX Standards .. 4
Benefits of POSIX .. 4

CHAPTER 2 GETTING STARTED .. 5

LynxOS Packages .. 5
Starting and Stopping LynxOS .. 6
Starting and Stopping X Windows .. 7

Using PosixWorks Desk ... 7
Basic LynxOS Commands ... 7

LynxOS Man Pages .. 9
Creating File Systems and Making Backups ... 10

Making Backups ... 11
LynxOS Cross Development Environment ... 12
LynxOS User’s Guide iii

Contents

Setting the Cross Development Environment .. 12

The Application Development Process ... 14
Creating Source Code with vi Text Editor ... 15
Example vi C Program ... 17
Compiling and Linking Source Code ... 18
Debugging Source Code ... 18

Creating Custom Kernels .. 20
Making Final Images ... 20

Identifying LynxOS Facilities for Run-Time ... 20

CHAPTER 3 LYNXOS SYSTEM ADMINISTRATION .. 21

System Administration Tasks .. 21
Using the setup Utility .. 21
Managing User Privileges .. 22
Understanding the /etc Directory Contents .. 22

Creating Device Nodes .. 24
LynxOS Device Node Naming Conventions ... 26
Major and Minor Numbers ... 36

Managing Terminals .. 37
Enabling Ports for Login .. 37
Describing Terminals ... 38
Serial Port Configurations .. 39

User Accounts ... 39
Root and Setup Accounts ... 40
Using the adduser Utility .. 40
Using the deluser Utility .. 42

Understanding Security Issues .. 42
File Permissions ... 42
Changing Permissions with chmod .. 43
Default Permissions .. 45
Changing Effective User ID ... 45
Process Protection .. 46

CHAPTER 4 DISK SPACE MANAGEMENT... 47

Formatting Media .. 47
Formatting Floppy Disks .. 48
Formatting SCSI Disks ... 48

Configuring Disk Space .. 49
iv LynxOS User’s Guide

Making File Systems .. 49
Organizing Files ... 50

Managing Disk Space Usage ... 51
The du Command ... 52
Using df Command .. 52
Using the find Command to Determine File Usage 52

Backing Up the System ... 53
The tar Command ... 53
Creating Backup Policies and Procedures .. 54

CHAPTER 5 SHARED LIBRARIES.. 57

Overview ... 57
Creating Shared Libraries by Default ... 58
Single/Multithreaded Applications and Shared Libraries 58

Effects of Using Shared Libraries ... 59
System Memory Usage .. 59
Disk Space Usage ... 60
Code Maintenance .. 61

Determining the Use of Shared Libraries .. 61
Example 1 ... 62
Example 2 ... 64
Example 3 ... 65
Choosing Shared Library Contents .. 68
Updating Shared Libraries .. 68

Libraries Provided ... 69
Creating Shared Libraries ... 70
Linking to a Shared Library ... 71

CHAPTER 6 X & MOTIF DEVELOPMENT PACKAGE... 73

Installing and Starting X .. 73
X Server Features Overview .. 73

X Server Technology from Metro-X .. 74
Networking and the X Server ... 74
X Server Hot Key Exit ... 75
Hot Key Resolution Switching ... 75
Hardware Panning .. 75
Touchscreen Support .. 75
International Keyboard Support ... 76
LynxOS User’s Guide v

Contents

Multiheaded Servers ... 76

X Libraries ... 76
The Development System .. 76
Library Documentation .. 76
x86/PPC Libraries .. 77
Motif Libraries ... 78
Other Libraries ... 79

X Utilities .. 79
imake .. 79
uil .. 79

Troubleshooting X ... 80
Before Contacting LynuxWorks Technical Support 80
Modifying Disk Cache Blocks ... 80
Limited Colors .. 80
Unsupported Programs ... 81
Xconsole and newconsole .. 81
Saving Errors .. 81
Window Manager ... 81
Real-Time Priorities and X .. 81
Serial Printer ... 82
Diamond Viper 550 TNT video card (x86 only) 82
X Development Troubleshooting ... 82

CHAPTER 7 CUSTOMIZING THE DEFAULT LYNXOS KERNEL CONFIGURATION 85

Reasons for Kernel Customization .. 85
Customizing for Performance .. 86
Customizing for Size .. 86
Customizing for Functionality ... 86

Overview of the /sys Directory .. 87
Accessing and Modifying the Main Kernel Directory 88

Customizing from a Cross Development Host .. 93
Adding TCP/IP to a LynxOS Kernel .. 94

Customizing a Kernel for Performance ... 95
Configurable Parameters in /sys/lynx.os/uparam.h 95
Parameter Default Values in /sys/lynx.os/uparam.h 96
Increasing Maximum Processes ... 97

Creating a Kernel for Debugging .. 98
Changing Kernel Size .. 98
vi LynxOS User’s Guide

Determining the Kernel Size .. 99
Removing Unused Device Drivers ... 101

Adding Functionality to a Kernel .. 104
Adding a Custom Device Driver .. 104

Configurable Tick Timer ... 105
Configuring Core Files .. 106

Configurable Options ... 106
Installing Configurable Core File Capability 107
User Definitions in uparam.h ... 108

CHAPTER 8 CREATING KERNEL DOWNLOADABLE IMAGES (KDIS) 111

Overview ... 111
mkimage - the LynxOS KDI Creation Utility ... 111

The mkimage Syntax and Features .. 112
LynxOS Kernel .. 112
Embedded File Systems ... 113

Embedded Root File Systems ... 113
Embedded Stand-Alone File System Images 113

Resident Text Segments .. 114
Creating a KDI Image .. 115

Procedure Overview ... 115
Enabling the RAM Disk Driver .. 116
Modifying Kernel Parameters .. 116
Creating a Specification File .. 116
Testing Kernel Images .. 117

Booting KDIs ... 118
Booting Images over a Network ... 118
Booting Images from ROM .. 119

KDI Build Templates ... 120
Template Conceptual Overview ... 120
Included KDI Build Templates .. 121
kdi Directory Structure ... 123
Restrictions ... 124
Getting Started .. 124
Building KDIs .. 125

Example--Building, Booting, and Using the developer KDI 127
Configuring the Developer KDI ... 127
Configuring the Linux Cross Development Host 128
LynxOS User’s Guide vii

Contents

Booting the KDI ... 129
Using the KDI .. 130

ROMing Issues .. 131
Generating PROM Images on x86 Systems ... 131

Creating Bootable Installation Media .. 132
Creating a Bootable x86 Floppy ... 133
Creating a Bootable x86 or PowerPC CD-ROM 133

CHAPTER 9 LINUX ABI COMPATIBILITY .. 137

Overview ... 137
Installing the Linux ABI Layer ... 138
Linux ABI Layer ... 138

Interoperability with LynxOS Native Applications 139
Linux ABI Shared Libraries ... 140

Adding Linux Shared Libraries to LynxOS .. 141
Linux ABI Shared Libraries that Should Not Be Overwritten 143

Specifying Linux ABI Shared Library Paths ... 143
Running Linux Applications ... 144

Linux Reference Distribution ... 144
Support for Dynamically Linked Applications 145
Exceptions and Limitations .. 146
Extracting RPMs with rpm2cpio .. 146

Example -- Running Opera .. 147
Installing Linux ABI Layer .. 147
Downloading Opera ... 147
Configuring the Linux ABI Layer .. 148

CHAPTER 10 EVENT LOGGING ... 151

The Event Logging System ... 151
Event Logging Components ... 151

Process Flow .. 152
Write Flow .. 152
Read Flow .. 153
Open Flow .. 154
Notify Flow .. 155

Installing the Event Logging System .. 155
Installing on a Native LynxOS System .. 155
viii LynxOS User’s Guide

Installing On a Cross Development System ... 155

Configuring the Event Logging System .. 156
Event Logging Parameters ... 156
Configurable Parameters .. 156

The Event Logging Daemon .. 157
Function Prototypes and Descriptions ... 158

typedefs in eventlog.h ... 158
Writing Log Entries .. 162
Processing Log Entries ... 163
Setting Log Facilities .. 169
Querying Log Entries ... 172

Sample Driver Code .. 175
Kernel Code Example .. 175
User Code Example .. 175

APPENDIX A GLOSSARY.. 177

INDEX .. 183
LynxOS User’s Guide ix

Contents
x LynxOS User’s Guide

Preface
This LynxOS User�s Guide provides information about basic system administration
and kernel configuration for the LynxOS real-time operating system from
LynuxWorks, Inc. This guide covers a wide range of topics, including tuning
system performance, and creating kernel images for embedded applications.

This document assumes that its audience has a basic understanding of the UNIX
environment.

While this document provides information for a variety of readers--system
administrators, network administrators, developers, and end-users of LynxOS--
many of the tasks described in it require root privilege or access to other
information typically given only to system administrators.

For More Information

For information on the features of LynxOS, refer to the following printed and
online documentation.

� Release Notes

This printed document contains details on the features and late-breaking
information about the current release.

� LynxOS Installation Guide

This manual details the installation instructions and configurations of
LynxOS and the X Windows System.

� LynxOS Networking Guide

This guide contains configuration and usage information on the
networking capabilities in LynxOS. It provides information on supported
protocols such as TCP/IP, NFS, DHCP, etc.
LynxOS User’s Guide xi

Preface

� Writing Device Drivers

This guide contains details on writing device drivers for LynxOS.

� Online information

The complete LynxOS documentation set is available on the
Documentation CD-ROM. Books are provided in both HTML and PDF
formats.

Updates to these documents are available online at the LynuxWorks
web site: http://www.lynuxworks.com.

Additional information about commands and utilities is provided online
with the man command. For example, to find information about the GNU
gcc compiler, use the following syntax:

man gcc

Typographical Conventions

The typefaces used in this manual, summarized below, emphasize important
concepts. All references to file names and commands are case sensitive and should
be typed accurately.

Type of Text Examples

Body text; italicized for emphasis, new
terms, and book titles

Refer to the LynxOS User�s Guide.

Environment variables, file names,
functions, methods, options, parameter
names, path names, commands, and
computer data
Commands that need to be highlighted
within body text, or commands that must be
typed as is by the user are bolded.

ls
-l
myprog.c
/dev/null
login: myname
cd /usr/home

Text that represents a variable, such as a file
name or a value that must be entered by the
user

cat filename
mv file1 file2
xii LynxOS User’s Guide

Special Notes
Special Notes

The following notations highlight any key points and cautionary notes that may
appear in this manual.

Technical Support

LynuxWorks Technical Support is available Monday through Friday (holidays
excluded) between 8:00 AM and 5:00 PM Pacific Time (U.S. Headquarters) or
between 9:00 AM and 6:00 PM Central European Time (Europe).

The LynuxWorks World Wide Web home page provides additional information
about our products, and LynuxWorks news groups.

 Blocks of text that appear on the display
screen after entering instructions or
commands

Loading file /tftpboot/shell.kdi
into 0x4000
.....................
File loaded. Size is 1314816
Copyright 2000 LynuxWorks, Inc.
All rights reserved.

LynxOS (ppc) created Mon Jul 17
17:50:22 GMT 2000
user name:

Keyboard options, button names, and menu
sequences

Enter, Ctrl-C

Type of Text Examples

NOTE: These callouts note important or useful points in the text.

CAUTION! Used for situations that present minor hazards that may interfere with
or threaten equipment/performance.
LynxOS User’s Guide xiii

Preface

LynuxWorks U.S. Headquarters

Internet: support@lnxw.com
Phone: (408) 979-3940
Fax: (408) 979-3945

LynuxWorks Europe

Internet: tech_europe@lnxw.com
Phone: (+33) 1 30 85 06 00
Fax: (+33) 1 30 85 06 06

World Wide Web

http://www.lynuxworks.com
xiv LynxOS User’s Guide

CHAPTER 1 Introduction
About LynxOS

LynxOS is a UNIX-compatible, POSIX-compliant, real-time operating system. It
is designed to be used in time-critical applications where predictable real-time
response is crucial. Its full range of functionality facilitates the development of
custom embedded (function-specific) systems in both native and cross
development environments.

LynxOS Features

� Multiprocess and multithreaded environment

� Sophisticated memory management through hardware Memory
Management Unit (MMU)

� Configurable demand-paged virtual memory

� Hierarchical, UNIX-like file system

� Modular scalable architecture

� Kernel threads

� Network File System (NFS)

� Industry standard Networking (TCP/IP)

� Remote Procedure Calls (RPC)

� Support for diskless clients

� X11R6 and Motif graphical user interface

� ELF applications and shared libraries
LynxOS User’s Guide 1

Chapter 1 - Introduction

� Industry standard GNU tools, UNIX-like utilities and UNIX-like shell

scripts

� ROM-able kernel

LynxOS Documentation

Please refer to �For More Information� in the Preface for a list of primary LynxOS
documentation. In addition to online man pages, LynxOS also comes with a suite
of reference guides.

Additional Documentation Resources
LynuxWorks recommends any of a number of commercially available references
for more information about advanced real-time programming, networking, industry
standard tools, and the software engineering processes. The lists of documents that
follow offer the user a starting point in these areas; however, these references
should not be viewed as a complete list of source material.

General UNIX Titles

� Frisch, Aeleen. 1996. Essential System Administration. O�Reilly &
Associates.

� Hunt, Craig. 1998. TCP/IP Network Administration.O�Reilly &
Associates.

� Peek, Jerry, et al. 1997. Learning the Unix Operating System (Nutshell
Handbook). O�Reilly & Associates.

Linux Titles

� Welsh, Matt. 1999. Running Linux. O�Reilly & Associates.

Programming Titles

� Harbison, Samuel, and Guy Steele. 1994. C: A Reference Manual.
Prentice Hall.

� Kernighan, Brian, et al. 1998. The C Programming Language. Prentice
Hall.

� Libes, Don. 1994. Exploring Expect: A Tcl-Based Toolkit for Automating
Interactive Programs. O�Reilly & Associates.
2 LynxOS User’s Guide

About POSIX

� Loukides, Michael Kosta. 1997. Programming with Gnu Software.

O�Reilly & Associates.

� Oram, Andrew, et al. 1991. Managing Projects with Make. O�Reilly &
Associates.

� Ouillane, Steve. 1995. Practical C++ Programming. O�Reilly &
Associates.

� Ouillane, Steve. 1997. Practical C Programming. O�Reilly & Associates.

� Stevens, W. Richard. 1992. Advanced Programming in the UNIX
Environment. Addison-Wesley.

POSIX Titles

� Butenhof, David. 1997. Programming with POSIX Threads. Addison-
Wesley.

� Gallmeister, Bill. 1995. POSIX 4: Programming for the Real World.
O�Reilly & Associates.

� Lewine, Donald. 1991. POSIX Programmer�s Guide. O�Reilly &
Associates.

� Nichols, Bradford, and Dick Buttlar. 1996. Pthreads Programming.
O�Reilly & Associates.

General Software Titles

� Brooks, Frederick. 1975/1995. The Mythical Man-Month, Essays on
Software Engineering. Addison-Wesley.

� Humphrey, Watts S. 1989. Managing the Software Process. Addison-
Wesley

About POSIX

POSIX, the Portable Operating System Interface for UNIX, is both an IEEE
Standard (IEEE 1003.1) and an ISO Standard (ISO 9945-1). Although based on
UNIX, the standard can be adapted to other operating systems. POSIX is a high-
level programmer interface definition of portable operating systems services.

The primary benefit of developing POSIX-conformant software is that it promotes
platform (hardware) independent code, aiding in source code portability.
LynxOS User’s Guide 3

Chapter 1 - Introduction

LynxOS and POSIX Standards

LynxOS conforms to the following POSIX standards:

� POSIX 1003.1 - the operating system interface standard to ensure
application portability

� POSIX 1003.1b - the base real-time extensions to POSIX 1003.1

� POSIX 1003.1c - the threads extensions to POSIX 1003.1

Benefits of POSIX

LynuxWorks views POSIX as a significant benefit to customers allowing
application developers and system integrators the ability to:

� Get products to market faster

� Lower the cost of getting products to market

� Preserve software development investment

� Recycle software

� Gain a higher level of software verification

� Integrate software more easily

� Extend POSIX-conformant software with less error
4 LynxOS User’s Guide

z

CHAPTER 2 Getting Started
This chapter provides a quick overview of basic LynxOS usage and concepts,
including:

� Starting and shutting down the LynxOS Development Environment

� Starting and exiting from the X Windows

� Using PosixWorks Desk

� Using basic UNIX commands

� Creating file systems on floppy disks

� Making backups

� Starting the LynxOS environment for cross development systems

LynxOS Packages

The base LynxOS Windows cross development package includes the following
CD-ROMs:

� Open Development Environment for Windows (ODEW)

This CD-ROM contains:

- Cross Development Kit for Windows (CDK)

- Open Development Environment (ODE)

- Board Support Package (BSP)

� Messenger (only included if required by a BSP)

� Additional Components CD-ROM containing Linux ABI Compatibility
Layer, GNU Zebra Routing Package, OpenSSL Encryption Package
LynxOS User’s Guide 5

Chapter 2 - Getting Started

The base LynxOS UNIX-hosted cross development package includes the following
CD-ROMs:

� Cross Development Kit (CDK)

� Open Development Environment (ODE)

This CD-ROM also contains the Board Support Package (BSP) for a
particular target.

� Additional Components containing Linux ABI Compatibility Layer,
GNU Zebra Routing Package, OpenSSL Encryption Package

� Messenger (only included if required by a BSP)

The native development environment includes the following CD-ROMs:

� Open Development Environment (ODE)

This CD-ROM also contains the Board Support Package (BSP) for a
particular target.

� X & Motif

� Messenger (only included if required by a BSP)

� Additional Components CD-ROM containing Linux ABI Compatibility
Layer, GNU Zebra Routing Package, OpenSSL Encryption Package

Starting and Stopping LynxOS

When powered on, systems running LynxOS boots to a command line prompt. If
password access is enabled, users are prompted to enter a login name and
password. Depending on the system�s user access and privileges configuration, the
initial working directory is either root or the user�s home directory. The pwd
command displays the current working directory.

On a cross development system where LynxOS is installed on top of an existing
operating system (Windows, Linux, Solaris, etc.), the user must navigate to the
LynxOS installation directory and set the LynxOS environment with a SETUP
script. The script SETUP.bash is used for bash shells, and SETUP.csh is used
for C shells. Refer to �Setting the Cross Development Environment� on page 12
for details.

To prevent system corruption, LynxOS must be powered-off with a predefined
shutdown sequence. To properly shutdown LynxOS, use the following command:
6 LynxOS User’s Guide

Starting and Stopping X Windows

reboot -h

The -h option (halt) means that the system is not ready to power off until the
following message indicates disk activity has stopped:

**** LynxOS is down ****

At this point, it is safe to power down the system.

Starting and Stopping X Windows

The native development configuration of LynxOS includes X11R6 and Motif
(referred to as the �X Window System� or just �X Windows�). The X and Motif
Package for LynxOS cross development systems is available separately. X
Windows provides an industry standard graphical user interface (GUI) based on
X11R6. The following command starts X Windows:

startx

The keyboard sequence Ctrl-Alt-Backspace exits X Windows.

Using PosixWorks Desk

PosixWorks Desk provides quick access to LynxOS tools and utilities. Tool bars,
buttons and icons facilitate management of the development environment. The
folder-style file manager allows users to drag and drop files. Users can optionally
install PosixWorks Desk when they install X Windows. Pressing the Help button on
the main tool bar provides detailed information on PosixWorks Desk supported
features.

Basic LynxOS Commands

Most basic LynxOS commands are identical to UNIX commands. This section
briefly describes these basic LynxOS commands.

Further information about these commands is also available through LynxOS man
pages. LynxOS man pages are accessed using the following command syntax:
man command, where command is any LynxOS command verbatim. For more
information, see �LynxOS Man Pages� on page 9.
LynxOS User’s Guide 7

Chapter 2 - Getting Started

Users should familiarize themselves with the following basic LynxOS commands:

Table 2-1: Basic LynxOS Commands

Command Description

cd directory Changes the current working directory to another specified
directory.

cd .. Changes the current working directory back up one level
(..).

cp file1 file2 Copies the contents of file1 to file2, creating a new file
named file2, while preserving the contents and name of
file1 as well.

find . -name file -print Finds files in the current working directory and its subdirectories
with names containing expressions matching -name file, and
prints these file names to the screen.

gcc file Invokes the GNU C compiler (gcc), and compiles the executable
code in the specified file.

less file Displays a specified file�s contents, one screen at a time.
� Pressing the Enter key scrolls the screen down to the next line.
� Pressing the keyboard Space Bar scrolls the screen down to the

next page.
� Pressing the y key scrolls the screen up to the previous line.
� Pressing ctrl-B on the keyboard scrolls the screen up to the

previous page.
Also, the less option has a help facility that describes
additional options, such as string searches, etc.

ls Displays the current working directory�s contents and file
information.

man subject Displays the man page(s) for the specified subject (command,
utility or tool name).

mkdir directory Makes a directory with the specified directory name.

mv file1 file2 Moves contents of, and renames, file1 to file2
(file1 is deleted).

pwd Displays the path of the current working directory.

rm file Removes the specified file.

rmdir directory_name Removes /deletes specified directory.
8 LynxOS User’s Guide

LynxOS Man Pages
LynxOS Man Pages

LynxOS provides man (manual) pages for information and help with commands,
utilities and tools. All LynxOS man pages are called with the syntax:

man subject

Where subject is any LynxOS command, utility or tool name. Users can enter
the man command from anywhere on their systems.

LynxOS man pages are text files located in the /usr/man directory.

The LynxOS man command uses the less command to display the information
one page at a time (see the description of less in the previous section). LynxOS
man pages have the same user interface functionality as read-only files - users can
view a text file and perform some operations on the file, such as scrolling and
string searches, but cannot edit them.

While viewing the man page with the man command, users can get help with
available viewing options by pressing the h key. Pressing the q key then Enter exits
the help session and returns the user to the man page.

If a user is interested in a topic but is not sure what the exact commands are, a man
search can be done for a keyword using the -k option:

man -k keyword

The man command with a -k option is the least restrictive type of search - it is
not case-sensitive, the keyword can be within the description of one or many
commands, options, or the command name itself (as shown in the example
command and its screen return below):

man -k less
less (1) - interactive paginator files, viewing
lesskey (1) - specify key bindings for less
ltgt (3) - test for floating-point less-than or greater-
than

vi file Invokes the vi (visual) text editor, and creates a file with
the specified file name.

reboot -a Reboots LynxOS; the -a argument is optional, and is used
to reboot the system in multi-user mode.

Table 2-1: Basic LynxOS Commands (Continued)

Command Description
LynxOS User’s Guide 9

Chapter 2 - Getting Started

slaveboot (1) - transfers a kernel image to a diskless
SCMP client

Users can also use the more restrictive -f option with the man command --it is
case sensitive--as shown in the example command and its screen return below:

man -f less
less (1) - interactive paginator files, viewing

If neither of these options helps a user find information, the following command
displays an alphabetical list of all LynxOS man pages:

less /usr/man/windex

Creating File Systems and Making Backups

Users can create file systems and make backups to archive important data. The
following steps detail creating a file system on a high-density floppy device,
copying files to the floppy device, and then unmounting the device:

1. Insert an empty, high-density floppy disk into the floppy disk drive.

2. Format the floppy disk in the fdd1440.0 disk drive with the fmtflop
command and -v argument (verbose mode: displays messages as the
floppy is being formatted):

fmtflop -v /dev/fd1440.0

3. Create a LynxOS file system on the floppy disk with the mkfs
command:

mkfs -v /dev/fd1440.0

4. Mount the fd1440.0 floppy disk�s file system with the mount
command onto the mount point directory, /mnt, by entering the
following command:

mount /dev/fd1440.0 /mnt

5. Copy any number of files to the mounted floppy disk file system using
the following command syntax, where directory represents any

NOTE: There can only be one file system mounted on a mount point (/mnt in this
example) at any given time. Use the umount command to unmount a mounted
file system.
10 LynxOS User’s Guide

Making Backups

directory, and file.abc and file.xyz represent any number of files
from that directory:

cp /directory/file.abc file.xyz /mnt

6. With the ls command, validate that the contents were copied to the disk.

ls /mnt

7. Unmount the floppy disk drive when finished:

umount /mnt

Making Backups

The tar archive utility is used to make backups of important data files on a
variety of media. The type (s) of backup media chosen depends on both the
development platform, and the amount of data that is to be backed up.

The following commands are examples of backing up data for a number of
common configurations.

In the example below, the user�s home directory is named /usr/home/mystuff.
To back up the home directory�s contents to a file named backup.tar, the
following syntax is used:

tar -cvf backup.tar /usr/home/mystuff

The -cvf arguments direct tar to perform the following actions:

� c - create a new tar archive

� v - provide verbose screen return (optional)

� f - direct the output to a file located in the current directory.

To back up directly to a device instead of a file, direct the output to a device node
in the /dev directory. For example,

tar -cvf /dev/device /usr/home/mystuff

To list the archival contents of the backup.tar file, the following syntax is used:

tar -tvf backup.tar

In this example, -t is the argument that directs tar to list the archival contents
of the backup.tar file.

To extract archival data in the file backup.tar and place it into
/usr/home/mystuff, the following syntax is used:
LynxOS User’s Guide 11

Chapter 2 - Getting Started

tar -xvf backup.tar /usr/home/mystuff

In the previous example, -x is the argument that directs tar to extract the
archival contents of device /dev/device.

LynxOS Cross Development Environment

The term Cross development is the process of developing an application or kernel
on a host system configuration that is different from the configuration of the target
system (where the application is to be deployed).

The cross development environment provided in LynxOS includes compilers,
linkers, libraries, and other development tools specific to LynxOS. The LynxOS
cross development environment allows the developer the flexibility of creating
LynxOS applications and kernels from a variety of platforms.

When working on a LynxOS cross development system, users must set their host
system environment to use the LynxOS cross development tools before running
any Makefiles or compiling applications. The cross development environment,
once set, provides users the complete functionality of a native development system.
The advantages of this approach is that there is no need to establish a dedicated
machine for cross compiling and cross debugging an application. The application
can be recompiled easily for different platforms, i.e., x86 and UNIX.

Setting the Cross Development Environment

Refer to the LynxOS Installation Guide for information on installing the Cross
Development Kit (CDK) CD-ROM.

Before developing LynxOS applications on a cross development host, users must
set the LynxOS cross development environment with a provided setup script. Two
setup scripts are provided: SETUP.bash, which sets the bash shell environment;
and SETUP.csh, which sets the C shell environment. Users must run one of these
setup scripts, depending on their preferred shell, before compiling or linking
LynxOS applications.

NOTE: If the target directory (in the example above, /usr/home/mystuff)
already exists in the user�s home directory, the tar command with the -x
argument overwrites it with the archival data file (in the example above,
backup.tar).
12 LynxOS User’s Guide

Setting up Cross Development on UNIX Hosts

These setup scripts allow users to develop applications and run Makefiles as if they
were on a native development system. With the exception of running the setup
script, there is no operational difference between the application development
process on a cross development or native development system.

The SETUP.bash and SETUP.csh scripts add the environment variable
ENV_PREFIX to a user�s PATH. The ENV_PREFIX variable specifies the directory
on the host where the LynxOS development tools are located. This allows users to
create their applications with LynxOS-specific compilers, linkers, and libraries.
ENV_PREFIX is set to the first entry of a user�s PATH to ensure that users create
applications with LynxOS-specific tools.

Setting up Cross Development on UNIX Hosts
To develop LynxOS applications on a UNIX cross development host, run the setup
script as follows:

1. Change to the LynxOS cross development directory. This is
/usr/lynx/release/platform, where release is the LynxOS
release number, and platform is the target architecture. For example:

cd /usr/lynx/4.0.0/x86

2. Run the required setup script. For example:

For C shells:

source SETUP.csh

For bash shells:

. SETUP.bash

3. The setup script directs the user to the detected LynxOS development
tools path. If this path is correct, type y. Otherwise, type n and enter the
correct path to the LynxOS cross development tools directory.

Once the setup script has run, users can begin to develop LynxOS
applications on the cross development host.
LynxOS User’s Guide 13

Chapter 2 - Getting Started

Setting up Cross Development on Windows Hosts

1. From a DOS prompt, open a bash shell. For example, type:

c:\ bash

2. Change to the LynxOS cross development directory. This is
/usr/lynx/release/platform, where release is the LynxOS
release number, and platform is the target architecture. For example:

cd /usr/lynx/4.0.0/x86

3. Run the required setup script. For example:

- For C shells:

source SETUP.csh

- For bash shells:

. SETUP.bash

4. The setup script directs the user to the detected LynxOS development
tools path. If this path is correct, type y. Otherwise, type n and enter the
correct path to the LynxOS cross development tools directory.

Once the setup script has run, users can begin to develop LynxOS applications on
the cross development host.

The Application Development Process

The figure below shows the basic steps in the application development process.
14 LynxOS User’s Guide

Creating Source Code with vi Text Editor
Figure 2-1: Application Development Process Overview

Creating Source Code with vi Text Editor

Users familiar with UNIX operating systems should already be familiar with the vi
text editor. LynxOS provides vi as a part of its standard distribution.

For users unfamiliar with vi, this section provides a quick list of important
functions.

vi is a full screen text editor used to create and modify ASCII files. There are two
main modes in vi - command mode and input mode. Command mode is used for
issuing short cursor placement or text selection commands. Input mode is used to
add, change, or delete text in a file.

NOTE: The text editor emacs is also supported by LynxOS for application
development in native development environments.

Application
requirements and

design specifications

Create application
(vi, emacs)

Compile
(gcc)

Debug application
(gdb)

Build application kernel
image

(mkimage)

Deploy application
(Disk, Flash, RAM, CD)

Identify required
LynxOS facilities

Configure LynxOS
kernel
LynxOS User’s Guide 15

Chapter 2 - Getting Started

The following example shows how to create a text file, in this case a simple C
program, using vi (other C program source files can be found in
/src/examples):

1. Create and open a file by typing the following line:

$ vi HelloWorld.c

2. vi opens the new file HelloWorld.c in command mode. Input mode is
set by pressing i.

3. Type some characters.

4. Return to command mode by pressing the Esc key.

5. Close vi, and save all changes by entering the following:

:wq

NOTE: To quit a file, discarding any changes, use the following command after
pressing Esc:

:q!

To quit vi after opening the file as read-only (making no changes), enter the
following command:

:q
16 LynxOS User’s Guide

Basic vi Commands

Basic vi Commands
The following table details basic vi navigation and editing commands used in
Command Mode:

Example vi C Program

Begin vi as shown previously and enter the following text:

#include <stdio.h>
main ()
{
int index = 10;
printf("\n\n*****************\n");
printf("Hello World! \n");
printf("*****************\n\n");
}

Now go into command mode and save the file. This example file is used in the
following section, �Compiling and Linking Source Code� on page 18.

Table 2-2: Basic vi Commands (Command Mode)

To move the cursor

h Move cursor left one character
l Move cursor right one character

k Move cursor up one line

j Move cursor down one line

To delete or undo

x Delete character at cursor

dd Delete row at cursor
u Undo previous action

To switch from command mode to input mode

i Enters input mode and starts insertion before the character at the cursor.

a Enters input mode and starts insertion after the character at the cursor.
LynxOS User’s Guide 17

Chapter 2 - Getting Started

Compiling and Linking Source Code

After entering and saving the source code file, the user can create an executable
application by compiling and linking it with the LynxOS GNU C compiler. To
compile the HelloWorld.c file, enter the following command:

$ gcc HelloWorld.c

If the program compiled without errors a default executable file called a.out is
generated.

Users can rename the executable to something other than a.out by using the
-o name option as shown in the example below:

$ gcc -o HelloWorld HelloWorld.c

The resulting executable is the file HelloWorld. To execute the file, enter the
following command:

$./HelloWorld

The executable prints the following text:

Hello World!

Debugging Source Code

LynuxWorks has two debuggers available for use with LynxOS:

� The GNU Debugger (GDB) - Provided as a standard part of the LynxOS
development environment. For additional information, see the Total/db
User�s Guide.

� TotalView - Offered as an optional separate product; for more
information on TotalView, see the TotalView User�s Guide and TotalView
Supplement for LynxOS Users.

Since TotalView is optional, only gdb is detailed below.

First, for GDB to function properly, the source code being debugged must be
compiled using the -g GDB option as part of the compile command. This option
adds debugging information to the executable. For example, to compile a source
code file named HelloWorld for debugging with GDB, enter:

$ gcc -g -o HelloWorld HelloWorld.c

To start GDB, enter the following command:

$ gdb ./HelloWorld
18 LynxOS User’s Guide

Debugging Source Code

To quit GDB, enter the following command:

(gdb) quit

GDB does not initialize or set any default breakpoints. A breakpoint makes a
program stop whenever a certain point in the program is reached during execution.
Users must provide the initial breakpoint. However, it is usually convenient to set a
breakpoint at main, which is done using the following command:

(gdb) break main.

GDB includes a command recognition feature that requires users to enter only as
many characters of any command as make the command unique. For example, if a
user wants to enter the help command, it is only necessary to type he, then press
the Enter key for GDB to bring up the help list of GDB commands and their
options.

Some basic GDB commands are listed below:

NOTE: The GDB prompt is (gdb).

Table 2-3: Basic GDB Commands

Command Description

help Lists GDB commands and their options. These command and option names
can also be used as arguments to the help command for a display of
detailed information about themselves.

list Displays the source code.

step Steps to the next line of source code.

break option Sets a breakpoint at a specified line number or function.

clear option Clears all breakpoints or the specified breakpoint option.

inspect expression Shows the value of a data structure.

run Runs program to completion or to the next breakpoint.

quit Quits GDB.
LynxOS User’s Guide 19

Chapter 2 - Getting Started

Creating Custom Kernels

Users can customize individual LynxOS kernels specific to the requirements of
their application. The LynxOS kernel can be optimized for maximum memory
footprint economy, an advantage when memory constraints or costs are a key
product requirement.

Unnecessary kernel components and/or features can be removed based upon
specific application requirements.

For more information on LynxOS kernel customizations, see Chapter 7,
�Customizing the Default LynxOS Kernel Configuration� on page 85.

Making Final Images

The LynxOS mkimage utility can be used to create a final application or LynxOS
kernel image, and LynxOS facilities for run-time. The mkimage man page and
Chapter 8, �Creating Kernel Downloadable Images (KDIs)� describe this process
in detail.

Identifying LynxOS Facilities for Run-Time

Users can choose to distribute their final software product as a ROM- or RAM-
based file systems containing a LynxOS kernel and an application. Users can also
choose to distribute their software product as a LynxOS kernel, an application, or
some subset of a development facility packages on more conventional storage
media such as a disk or CD-ROM.

To distribute LynxOS in any of these configurations, users must purchase
appropriate run-time royalty licenses from LynuxWorks.

NOTE: The number of run-time images that can be created depends on the specific
license agreement with LynuxWorks. Users should refer to their specific customer
agreements for details, feature capabilities, allowed time frame, and reporting
procedure.
20 LynxOS User’s Guide

z

CHAPTER 3 LynxOS System Administration
System Administration Tasks

When a LynxOS system is used heavily by several users either for developing
software and/or running applications, it is necessary to perform the following
system administration tasks to maintain performance level:

� Adding and removing system devices and terminals

� User support, including security issues

� Spooling system configuration

� System shutdown and reboot

� Disk space maintenance and backup

Using the setup Utility

The setup utility is used through the initial configuration and any subsequent
reconfiguration. To run setup, log in to the LynxOS system as setup, then type
setup at the command prompt. The setup utility allows users to perform the
following tasks:

� Add a password for the setup and root users

� Set up symbolic links for floppy drives (x86 and certain PowerPCs)

� Enable multiple consoles (x86 and certain PowerPCs)

� Enable ttys for login

� Add/delete users to/from the system

� Enable virtual memory

� Set time, time zone and daylight savings support
LynxOS User’s Guide 21

Chapter 3 - LynxOS System Administration

� Enable Write-Through Cache

The setup utility is a self-documented, menu-driven program. Read all the
instructions displayed by setup before making selections.

Managing User Privileges

Many of the programs described in this chapter are available only to users with
root access. Root users are often called the superuser because they have more
system privileges than other users. The root user has the user ID number 0.

After completing initial system setup, LynuxWorks recommends that a root
password be created. Securing the root account protects the system from unwanted
intrusion or use from unauthorized users.

Understanding the /etc Directory Contents

The files in the /etc directory are routinely used for system maintenance. The
/etc files that need to be set up for each instance of LynxOS to run properly
according to its configuration are described below.

Table 3-1: /etc Directory Contents

File Description

fstab Contains a list of devices with file systems usually mounted while the system is
running. Each line contains five colon-separated fields (listed below) that display
information about devices and their mountpoints:

device : mountdir : type : freq : passno

The fstab file needs to be accessed by /bin/rc during mounting and file
system checks. See the fstab file format man pages; see man pages for the mount
and umount utilities for more information.

group Contains information listed in the four colon-separated fields below, where
group_name is the user group�s name; * is a vestigial artifact of previous
operating systems; GID is the user group�s identification number; and
users_names is the list of groups that have access to this group�s files:

group_name : * : GID : users_names

This file is used to add new user groups by inserting a line with the syntax shown
above.

motd Contains the messages of the day from the system administrator. These messages are
automatically displayed upon user login.
22 LynxOS User’s Guide

Understanding the /etc Directory Contents

mtab Contains information about currently mounted file systems. mtab is not readable or

editable by administrators; it is a system file maintained by the mount and umount
utilities.

The mtab file, if it does not already exist, is created by mount during the initial
file system mounting. The file contains a record of mounted devices, but its existence
is not critical for proper system operation.

See the mtab man page for more information.

nodetab Contains a list of standard nodes automatically created with the mknod -a command.
Each line displays the information about nodes in the colon-separated fields listed
below:

name : type : major : minor : perm

For more information, see the nodetab and the mknod man pages.

passwd Contains information describing each user known to the system. Each user is identified
by an individual user ID that the passwd file maps to the user name. Each line
displays information in the seven colon-separated fields listed below:

name : passwd : uid : gid : info : dir : shell

For more information, see the passwd man page in Section 5 of the man pages.

The passwd file must exist. It is used by several system programs to relate items of
information about a user to each other. It is also consulted by the login program to
verify a user name.

printcap Contains information about the various printers available on the system. Users can set
up either local or remote printers. The lpr and lpd commands use this file whenever
a print job is queued. For more information on this file, see the printcap man
page.

starttab Contains information read by init at system boot time. The starttab file gives
the default umask value; the program to use for the single-user shell at boot time; the
name of the system initialization file (usually /bin/rc); and the default data, stack,
and core limits for all processes.

For more information, see the starttab man page.

The init process is the only system process that reads the starttab file. If the
starttab file does not exist, init uses its default values.

Table 3-1: /etc Directory Contents (Continued)

File Description
LynxOS User’s Guide 23

Chapter 3 - LynxOS System Administration
Creating Device Nodes

Under LynxOS, all peripheral devices are accessed through device nodes. Each
device must have an associated device node file.

The standard LynxOS image comes with all required device nodes pre-installed on
the file system, ready to use. However, if new devices are added to a system, or if a
new file system is created on another disk or diskette as the root file system, it
becomes necessary to create new device nodes. The mknod program creates device

tconfig Contains descriptions of serial port configurations; It serves the same purpose as
/etc/gettytab on BSD-based systems. The tconfig file is referenced by
stty, tset, and other programs to prepare a terminal for some special use. Each
entry consists of one or more lines that assign values to various parameters.

For more information, see the tconfig man page.

The tconfig file is very important. Various utility programs (tset in particular)
do not operate if the file cannot be found.

termcap Contains descriptions of software features for various specific terminal devices. Each
entry consists of one or more lines that assign values to various parameters. Terminal
descriptions are read by the vi text editor, the shell, and other programs that must
manipulate the terminal using software command sequences.

The termcap file should exist, and should contain descriptions of all terminals
likely to be used with the system.

ttys Contains a list of serial ports to be recognized by init as valid for login. Each line
displays information about its respective serial port or ATC virtual terminal in the five
colon-separated fields listed below:

device : flag : config : terminal : login

For more information on the ttys file, see the ttys man page. The ttys file
must exist for init to control multi-user operations.

utmp Contains entries describing active login sessions. The file consists of records (not
accessible for reading) containing the user name, host of origin, and login time for each
active session. Each record corresponds to an entry in ttys.

The utmp file must exist for the who utility to function. The file is created, if
possible, by the login program if it has been removed.

Table 3-1: /etc Directory Contents (Continued)

File Description
24 LynxOS User’s Guide

Creating Device Nodes

nodes for any character or block device, or named pipe (FIFO). The syntax for
making a single character or block device node in the nodetab file is as follows:

mknod name mode major minor

The italicized items are replaced by the following values:

� name is a LynxOS path name for the new device node. Device nodes can
be created in any directory, but they are usually placed in /dev.

� mode represents the transfer interface mode with either the letter c for a
character device, or the letter b for a block device.

� major and minor represent the major and minor numbers for the
device (for detailed information see �Major and Minor Numbers� on
page 36). Major and minor numbers are dependent upon the
configuration of the operating system, as well as any devices and drivers
that have been dynamically installed.

For example, to create a node for the second floppy disk that has a major number of
0 and a minor number of 16, use the following command syntax:

mknod /dev/fd1 b 0 16

Whenever a root file system is created, device nodes need to be created within the
root file system for various utilities to function properly.

To simplify the process of creating device nodes on a new root file system, it is
advisable to save the /etc/nodetab file associated with the kernel files that are
to be booted with this file system.

Device nodes are listed one per line using the syntax below:

name : type : major : minor : perm

The mknod program reads this file and creates all the device nodes described in it
when invoked, as follows:

mknod -a filename

With the optional filename following the -a switch, the given nodetab file
is read instead of /etc/nodetab.

NOTE: The nodetab file is created in /sys/bsp* and copied to the /etc
directory. In effect, there is no difference between the �nodetab� and the
/etc/nodetab files.
LynxOS User’s Guide 25

Chapter 3 - LynxOS System Administration

LynxOS Device Node Naming Conventions

Like UNIX, LynxOS uses device nodes to access drivers for such devices as floppy
disks, hard disks, RAM disks, CD-ROMs and tapes. By LynxOS convention, an
individual device node for each device must reside in the /dev directory.

Additionally, LynuxWorks has designed a standardized naming convention for
device nodes stored in /dev. Adherence to these conventions is required for
proper identification by mkboot and kernel booting by preboot to take place.

This section describes the LynxOS device node naming conventions.

Floppy Device Naming Convention
LynxOS supports standard floppy disk drives for x86 and PowerPC.

LynxOS also supports TEAC SCSI floppy disk drives for PowerPC only.

A LynxOS device node name is a character string made up of several fields
corresponding to data about the given device.

A device node name beginning with the letter r indicates that the associated device
is handled by LynxOS through a character (�raw�) interface.

Conversely, a LynxOS device node name not beginning with the letter r indicates
that the associated device is handled by LynxOS through a block interface.

NOTE: While reading through this section, the following device support factors
need to be considered:

LynxOS supports the following devices on the following platforms:

� IDE devices on x86, PowerPC, except as noted below

� SCSI devices on x86 and PowerPC only, except as noted below

LynxOS does not support the following devices on the following platforms:

� IDE tape drives on any platform

NOTE: To correctly follow the LynxOS floppy device naming conventions, it is
necessary to identify each floppy device type (standard or SCSI), and its data
capacity in bytes.
26 LynxOS User’s Guide

Floppy Device Naming Convention
Standard Floppy Device Naming Convention
LynxOS supports standard floppy devices on all x86 and PowerPC systems.

The figure below shows the fields that make up the LynxOS standard floppy disk
device name. The device node name must be a contiguous character string.

fd indicates that the floppy drive associated with the device node is a standard
floppy drive. This is followed by a numeric_string indicating the floppy
device�s capacity in bytes (value supplied by user). This is followed by a period (.)
and a single numeral from 0 - 3 indicating the user-selected floppy drive ID:

Figure 3-1: LynxOS Standard Floppy Device Naming Convention

On systems with only one standard floppy drive designated as the boot disk drive,
the drive number must be 0.

On systems with more than one standard floppy drive, one of which is designated
as the boot disk drive, any drive number from 0 - 3 can be used for any of the
floppy drives.

NOTE: There are two exceptions to the r and no-r device node naming convention
stated above:

� RAM disk device node names have an rd prefix; the associated devices
are handled by LynxOS through a block interface.

� No-rewind tape device names have an nrst (no-rewind SCSI tape drive)
prefix; the associated devices are handled by LynxOS through a character
(�raw�) interface.

For more information on devices, see Writing Device Drivers for LynxOS.

Floppy drive

indicator

Device capacity

(in bytes)
period Floppy drive ID

fd numeric_string . 0-3
LynxOS User’s Guide 27

Chapter 3 - LynxOS System Administration

On systems with more than one standard floppy drive, none of which has been
designated as the boot disk drive, any drive number from 0 - 3 can be used for
any of the floppy drives.

Using the conventions illustrated above, the device node associated with a block,
3.5 inch, high-density (1.44 MB) standard floppy disk drive designated as drive 0,
is fd1440.0.

Similarly, the LynxOS node associated with the character interface for a 3.5 inch
high-density (1.44 MB) standard floppy disk drive designated as drive 0,
is rfd1440.0.

SCSI Floppy Device Naming Convention
LynxOS supports TEAC SCSI floppy devices for PowerPC systems only.

The figure below shows the fields that make up the LynxOS SCSI floppy device
name. The device node must be a contiguous character string when entered by
users.

fdscsi indicates that the floppy disk associated with the device node is a SCSI
disk. This is followed by a numeric_string indicating the floppy device�s
capacity in bytes (value to be supplied by the user). This is followed by a period (.)
and a single numeral from 0 - 3 indicating the user-selected floppy drive ID
number:

Figure 3-2: LynxOS SCSI Floppy Device Naming Convention

On systems with only one SCSI floppy drive designated as the boot disk drive, the
drive number must be 0.

On systems with more than one SCSI floppy disk drive, one of which has been
designated as the boot disk drive, any drive number from 0 - 3 can be used for
any of the floppy drives.

NOTE: For MS-DOS, drive number 0 corresponds to drive A: and drive number
1 to drive B:.

SCSI floppy

drive indicator

Media capacity

(in bytes)
period Floppy drive ID

fdscsi numeric_string . 0-3
28 LynxOS User’s Guide

Hard Disk Device Naming Convention

On systems with more than one SCSI floppy drive, none of which has been
designated as the boot disk drive, any drive number from 0 - 3 can be used for
any of the floppy drives.

Using the conventions illustrated in the figure above, the LynxOS device node
associated with the block interface to a 3.5 inch, high-density (1.44 MB) SCSI floppy
drive designated as drive 0, is fdscsi1440.0.

Similarly, the LynxOS node associated with the character (�raw�) interface to a 3.5
inch, high-density (1.44 MB) SCSI floppy drive designated as drive 0,
is rfdscsi1440.0.

Hard Disk Device Naming Convention
LynxOS supports IDE hard disk devices for x86 and PowerPC.

LynxOS also supports SCSI hard disk devices for x86 and PowerPC only.

IDE Hard Disk Device Naming Convention
LynxOS supports IDE hard disk devices for x86 and PowerPC.

A LynxOS device name is a contiguous character string made up of several fields
that correspond to relevant data about the associated device.

The following figure details the fields that make up the LynxOS IDE hard disk
device name.

The prefix ide indicates that the hard disk associated with the device node is an
IDE device. A period follows the IDE hard disk indicator.

LynxOS supports up to two IDE channels on a single system, with two device
positions on each of these channels, for a total of four IDE drives.

The hard drive ID follows the period. For the x86 architecture, the four IDE hard
disk drives have the following IDs:

� 0--primary master

� 1--primary slave

� 2--secondary master

� 3--secondary slave

NOTE: To correctly follow the LynxOS hard disk device naming convention, it is
necessary to identify the hard disk type (IDE or SCSI).
LynxOS User’s Guide 29

Chapter 3 - LynxOS System Administration

The partition ID number follows the hard disk ID. LynxOS supports up to 15
partitions per IDE disk, with each partition assigned an ID of a - o.

The figure below details the LynxOS IDE hard disk device naming convention:

Figure 3-3: LynxOS IDE Hard Disk Drive Naming Convention

On systems with only one IDE hard disk that has been designated as the boot disk
drive, the drive number must be 0.

On systems with more than one IDE hard disk, one of which has been designated as
the boot disk drive, any number from 0 - 3 can be used for any IDE disk.

On systems with more than one IDE hard disk, none of which has been designated
as the boot disk drive, any number from 0 - 3 can be used for any IDE disk.

Using the conventions above, the LynxOS device node associated with the block
interface to a primary master IDE device is ide.0.

Similarly, the LynxOS device node associated with the character interface to a
primary master IDE device is ride.0.

The device node associated with the block interface to a partition a on a primary
master block IDE device is ide.0a.

The device node associated with the character interface to partition a on a primary
master IDE device is ride.0a.

SCSI Hard Disk Device Naming Convention

LynxOS supports SCSI hard disk devices for x86 and PowerPC only.

A LynxOS device node is a contiguous character string made up of several fields
that correspond to relevant data about the associated device.

The following figure details the various fields that make up the LynxOS SCSI disk
name.

NOTE: On systems with partitioned hard disks, LynxOS treats each partition as a
separate device. Each partition requires a separate device node with a partition ID
and a hard disk ID.

IDE disk identifier Period Hard disk ID Partition ID

ide . 0-3 a-o
30 LynxOS User’s Guide

Hard Disk Device Naming Convention

In the LynxOS SCSI device naming conventions, the prefix sd indicates that the
device node is associated with a SCSI device. The SCSI controller ID follows the
sd prefix, which is then followed by a period (.).

LynxOS supports up to a total of 16 SCSI devices: 4 devices per each of 2 channels
on narrow SCSI architecture; 8 devices per each of 2 channels on wide SCSI
architecture. A device ID of 0 - 7 for narrow, or 0 - 15 for wide SCSI
architecture needs to be assigned by the user. The device ID follows the period.

LynxOS supports up to 15 partitions per hard disk; a partition ID of a - o
identifies a partition on the SCSI disk.

The figure below details the LynxOS SCSI drive naming conventions:

Figure 3-4: LynxOS SCSI Hard Disk Device Naming Convention

Using the conventions above, for the block interface to a SCSI hard disk connected
to an Adaptec 1542 controller, designated as drive number 0, the LynxOS device
node is sd1542.0.

For the character interface to a SCSI hard disk, connected to an Adaptec 1542
controller, designated as drive number 0, the LynxOS device node is rsd1542.0.

For the block interface to partition a on a SCSI hard disk, connected to an Adaptec
1542 controller designated as drive number 0, the LynxOS device node is
sd1542.0a.

For the character interface to a partition a on a SCSI hard disk, connected to an
Adaptec 1542 controller, designated as drive number 0, the LynxOS device node
is rsd1542.0a.

NOTE: LynxOS treats each partition as a separate device. Each partitions requires a
separate special device file with a partition ID and a controller ID.

SCSI disk

identifier
controller ID period Device ID Partition ID

sd alpha_num_string . 0-7
0-15

a-o

NOTE: For x86 systems, if the SCSI hard disk is the only drive (no CD-ROM, tape,
RAM disk), or the SCSI disk is designated as the boot disk drive, then the hard disk
BIOS configuration must be set to Not Installed.
LynxOS User’s Guide 31

Chapter 3 - LynxOS System Administration

Examples of LynxOS Hard Disk and Partition Device Nodes
The following table below shows examples of LynxOS hard disk and partition
device nodes:

Hard Disk Device Node Naming Exceptions
Iomega Jaz and Zip drives have a unique electronic copy protection mechanism.
The iomega utility is used to manipulate the privileges on these devices. Other
than the privilege modification tool, Zip and Jaz drives behave as direct-access
SCSI devices; see the iomega man page for more information.

CD-ROM Device Naming Convention
LynxOS supports IDE CD-ROM devices for x86 and PowerPC.

LynxOS also supports SCSI CD-ROM devices for x86 and PowerPC only.

Table 3-2: Hard Disk and Hard Disk Partition Device Node Names

Hard

Disk

Type

Character

(“raw”) or

Block

Controller

Name

Hard

Disk ID
Partition ID

Hard Disk or

Partition

Device Node

IDE Block N/A 0 a ide.0a

IDE Character
(�raw�)

N/A 0 a ride.0a

SCSI Block Adaptec 1542 0 None sd1542.0

SCSI Character
(�raw�)

Adaptec 1542 0 None rsd1542.0

SCSI Block Adaptec 2940 1 c sd2940.1c

SCSI Character
(�raw�)

Adaptec 2940 1 c rsd2940.1c

SCSI Block NCR 6 a sdncr.6a

SCSI Character
(�raw�)

NCR 6 a rsdncr.6a

NOTE: To correctly follow the LynxOS CD-ROM device node naming convention,
it is necessary to identify the CD-ROM type (IDE or SCSI).
32 LynxOS User’s Guide

CD-ROM Device Naming Convention

The subsections that follow detail the LynxOS device node naming conventions for
IDE and SCSI CD-ROM devices.

IDE CD-ROM Drive Device Node Naming Conventions
LynxOS supports IDE CD-ROM devices for x86 and PowerPC.

A LynxOS device name is a contiguous character string made up of several fields
that correspond to relevant data about the associated device.

The following figure details the various fields that make up the LynxOS IDE CD-
ROM device name.

The prefix ide indicates that the hard disk drive associated with the device node is
an IDE device. A period follows the CD-ROM indicator.

The CD-ROM ID follows the period. LynxOS supports up to two IDE channels on
a single system, with two device positions on each channel, for a total of four IDE
CD-ROM drives per system, requiring a CD-ROM ID of 0 - 3.

Figure 3-5: LynxOS IDE CD-ROM Device Naming Convention

On systems with only one IDE CD-ROM drive that has been designated as the boot
drive, the drive number must be 0.

On systems with more than one IDE CD-ROM drive, one of which has been
designated as the boot drive, any drive number from 0 - 3 can be used for any of
the IDE CD-ROM drives.

On systems with more than one IDE CD-ROM drive, none of which has been
designated as the boot drive, any drive number from 0 - 3 can be used for any of
the IDE CD-ROM drives.

Using the conventions above, the device node associated with the block interface
to an IDE CD-ROM designated as drive number 0 is ide.0.

The device node name associated with the character interface to an IDE CD-ROM
designated as drive number 0 is ride.0.

SCSI CD-ROM Device Naming Convention
LynxOS supports SCSI CD-ROM drive devices for x86 and PowerPC only.

IDE CD-ROM indicator period CD-ROM ID

ide . 0-3
LynxOS User’s Guide 33

Chapter 3 - LynxOS System Administration

A LynxOS device node is a contiguous character string made up of several fields
that correspond to relevant data about the associated device.

The following figure details the various fields that make up the LynxOS SCSI CD-
ROM device node.

The prefix sd indicates that the CD-ROM drive with which the device node is
associated is a SCSI device. This is followed by the CD-ROM controller ID,
followed in turn by a period.

The CD-ROM device ID follows the period. LynxOS supports up to a total of 16
SCSI CD-ROM devices: 4 devices per each of 2 channels on narrow SCSI
architecture; 8 devices per each of 2 channels on wide SCSI architecture. A device
ID of 0 - 7 for narrow, or 0 - 15 for wide SCSI architecture needs to be
assigned by the user.

Figure 3-6: LynxOS SCSI CD-ROM Device Node Naming Convention

Using the conventions above, for a block SCSI CD-ROM drive connected to an
Adaptec 1542 controller designated as drive 0, the device node is sd1542.0.

For a character SCSI CD-ROM drive connected to an Adaptec 1542 controller
designated as drive 0, the device node is rsd1542.0.

Examples of LynxOS CD-ROM Device Nodes
The table below shows example CD-ROM device nodes:

SCSI CD-ROM

indicator
Controller ID period Device ID

sd alpha_num_string . 0-7
0-15

Table 3-3: Examples of CD-ROM Drive Device Node Names

CD-ROM

Drive Type

Character

(“raw”) or Block

Controller

Name

CD-ROM

Drive ID

CD-ROM

Device Node

IDE Block n/a 0 ide.0

IDE Character (�raw�) n/a 0 ride.0

SCSI Block Adaptec 1542 0 sd1542.0

SCSI Character (�raw�) Adaptec 1542 0 rsd1542.0
34 LynxOS User’s Guide

Tape Device Naming Conventions
Tape Device Naming Conventions
LynxOS supports SCSI tape devices for x86 and PowerPC only.

LynxOS does not support IDE tape devices.

A LynxOS device node is a contiguous character string made up of several fields
that correspond to relevant data about the associated device.

Tape drives can be either �rewind-on-open� or �no-rewind-on-open.� Accordingly,
device nodes begin with either of the following identifier prefixes:

� rst--rewind SCSI tape drive

� nrst--no-rewind SCSI tape drive

A tape drive controller ID follows the rst or nrst prefix, followed by a period.

A SCSI tape drive ID follows the period. LynxOS supports up to a total of 16 SCSI
tape devices: 4 devices per each of 2 channels on narrow SCSI architecture; 8
devices per each of 2 channels on wide SCSI architecture. A device ID of 0 - 7
for narrow, or 0 - 15 for wide SCSI architecture must be assigned by the user.

The following figure details the various fields that make up the LynxOS SCSI tape
device name:

Figure 3-7: LynxOS SCSI Tape Drive Naming Convention

SCSI Block Adaptec 2940 1 sd2940.1

SCSI Character (�raw�) Adaptec 2940 1 rsd2940.1

SCSI Block NCR 6 sdncr.6

SCSI Character (�raw�) NCR 6 rsdncr.6

no/rewind SCSI

tape drive
Controller ID period Device ID

nrst
rst

alpha_num_string . 0-7
0-15

Table 3-3: Examples of CD-ROM Drive Device Node Names (Continued)

CD-ROM

Drive Type

Character

(“raw”) or Block

Controller

Name

CD-ROM

Drive ID

CD-ROM

Device Node
LynxOS User’s Guide 35

Chapter 3 - LynxOS System Administration

Using the conventions above, the device node associated with a rewind-on-open
SCSI tape drive connected to an Adaptec 1542 SCSI controller is rst1542.0.

The device node associated with a no-rewind-on-open tape drive connected to an
Adaptec 1542 SCSI controller is nrst1542.0.

RAM Disk Naming Convention
LynxOS supports RAM disk virtual disk drives.

A RAM disk is space in memory that simulates a disk drive, i.e., creates a �virtual�
disk drive.

The prefix rd indicates that the device with which the device node is associated is
a RAM disk. The prefix is followed by a period.

LynxOS supports up to 16 RAM disks, each capable of containing up to 4
partitions. To accommodate this number, the following scheme is used:

� After the period, a single character numeric ID from 0 - 15

� After the numeric ID, a single character alphabetic ID from a - d

The figure below details the LynxOS RAM disk naming convention:

Figure 3-8: LynxOS RAM Disk Device Node Naming Convention

Using the conventions above, the device node associated with the block interface
to a RAM disk with numeric and alphabetic designations of 0 and a, respectively,
is rd.0a.

The device node associated with the character interface to a RAM disk with
numeric and alphabetic designations of 0 and a, respectively, is rrd.0a.

Major and Minor Numbers

Although users and applications use a device name to refer to a device, internally,
LynxOS uses a unique numeric identifier for each device that it supports. This
identification consists of a major and a minor number. Major and minor numbers
are used by the kernel to identify a device. Major numbers represent a general

RAM disk type

indicator
Period Numeric ID Alphabetic ID

rd . 0-15 a-d
36 LynxOS User’s Guide

Managing Terminals

device type. Minor numbers represent a specific class or subset of a device. The
major and minor numbers of devices on any given system depend on how LynxOS
is configured. To view the major and minor numbers of the devices on any system,
use the command ls -l /dev. A listing of the /dev directory shows the major
and minor numbers of each device node. These are located in column three below
as two numbers separated by a comma (,).

$ ls -l /dev

brw-rw-rw- 1 root 2,13 Apr 7 17:15 fd1440.1
brw------- 1 root 1,0 Apr 7 17:15 ide.0
brw------- 1 root 0,32 Apr 7 17:15 sd0b
brw------- 1 root 3,0 Apr 7 17:15 sd1542.0
brw------- 1 root 3,16 Apr 7 17:15 sd1542.0a

In the example above, /dev/fd1440.1�s major number is 2 and its minor
number is 13.

For additional information on major and minor numbers, see the Chapter �Booting
LynxOS� in the LynxOS Installation Guide.

Managing Terminals

When using a LynxOS computer for software development, terminals are an
important resource. The LynxOS utilities provide several methods to simplify and
organize the job of installing new or different terminals, or adding extra serial
communication lines.

Most of the work necessary to manage the terminals on a system involves updating
the files in the /etc directory.

Enabling Ports for Login

Serial ports on a LynxOS system can be set up to be used by terminals and other
RS-232 devices, such as printers or modems. Only some of the serial ports should
be recognized by init as being available for interactive use. On these ports, init
maintains an active process, usually login. Serial ports can be listed in the
/etc/ttys file. Each line of this file describes a single port as follows:

device : flag : config : terminal : login

The device field names a node for a serial port. The port is enabled for login
(actually, enabled for consideration by init) if the flag is non-zero. The
LynxOS User’s Guide 37

Chapter 3 - LynxOS System Administration

config and terminal fields select a configuration and terminal type from the
files /etc/tconfig and /etc/termcap.

For each port enabled in /etc/ttys, init starts a program named by the
login field of the description line for the port. The standard input, standard
output, and standard error file descriptors (0, 1, and 2) are connected to the port.
For interactive software development, the login program is /bin/login,
although any program can be substituted (for example, a simpler version of login
that ignores passwords).

init monitors the activity of all the child processes it creates.When any of these
child processes terminates, init creates another child process to take its place.
Pseudo-tty devices used by network and window-management software are also
listed in the /etc/ttys file. They are always disabled. The entries in the file are
used to bypass login and provide terminal type information when login is
started by a network daemon.

Describing Terminals

Before using a text editor or running utilities, Users must understand the actual
terminal device being used before editing files or running utilities. LynxOS stores
terminal characteristics and capabilities in the /etc/termcap database file.

Each different make or model of terminal used on a system should be included in
the database. The details of a terminal description are rather involved; therefore, a
list of only common terminal capabilities is associated with corresponding strings
and numeric values. For more information on terminal descriptions, see the
termcap file format reference pages.

The terminal type can be specified in a relatively static manner as the terminal
field in the /etc/ttys description of the port. If the terminal type for the port
varies, as it could on a modem port, the terminal field should be dialup or
unknown.

The value of this field is placed in the environment by login as the value of the
TERM environment variable. The TERM variable can be examined and possibly
changed by the shell initialization scripts. It is ultimately used by the editor or other
programs to determine the terminal type.

NOTE: It is convenient to include all serial ports in this file, even those unlikely to
ever be connected to an interactive terminal. As long as the flag field for these
ports is 0, they are not used by init.
38 LynxOS User’s Guide

Serial Port Configurations

Serial Port Configurations

The serial port driver, called the tty driver, controls the details of input and
output through a serial port. The following characteristics can be controlled:

� Baud rate

� Input character echoing

� Character mapping of certain characters to driver-supported editing and
process management functions

All communication with the driver (as with all drivers) is through the ioctl
system call. Because there are so many tty driver features, a program might have
to call ioctl several times to configure the serial port for its needs. The LynxOS
library routine ttyconfig simplifies this process by allowing the details of the
configuration to be kept in the /etc/tconfig file.

Using ttyconfig, a program simply requests a configuration by name, and the
ioctl calls are performed automatically. At least one entry, called default,
should be in the /etc/tconfig file. Others may be added, or the file can be
forever ignored. However, because login, stty, and tset use the information,
the file should exist. For more information on creating configuration entries, see
the ttyconfig man page.

User Accounts

Typically, each user on a LynxOS system has a unique account. At a minimum,
each user account needs the following information set up:

� An entry in the /etc/passwd file

� A directory controlled by the user

The user directory is called the home directory of that user. LynuxWorks
recommends that system administrators establish file protections such that only the
superuser can perform the work of creating accounts (See �File Permissions� on
page 42.).

There are two unique attributes of a user:

� User name

� User ID number
LynxOS User’s Guide 39

Chapter 3 - LynxOS System Administration

Generally, the user name is some adaptation of a person�s name. The user ID
number is an arbitrarily chosen integer between 0 and 65534; it is rarely
manipulated or even seen. However, because file ownership is recorded in terms of
user ID, different users must have distinct user ID numbers

Root and Setup Accounts

The LynxOS setup system administration utility enables the creation of root
(superuser) and setup accounts. To invoke this utility, log in to the LynxOS system
as setup.

System administrators can create setup and root accounts for the LynxOS
machine with the setup utility. Typically, setup and root accounts are
reserved for special usage (for example, to manipulate all other user accounts and
data), and require superuser privilege.

LynuxWorks recommends that the setup and root accounts have their own
separate passwords. To give the setup account a password, enter yes at the
following prompt:

Do you want to give the setup account a password?

When ready, enter the password; the characters are not echoed on the screen. This
is to ensure that passwords remain secret. The system asks that the password be
reentered for integrity.

If the password entered is too short, the system prompts for a longer, less obvious
password. The password-length safety mechanism can be overridden, allowing
entry of a shorter password, by repeatedly entering the desired, shorter password;
after two such efforts, the system accepts the shorter password.

Using the adduser Utility

The system administrator can add user accounts to the system with the adduser
utility. This utility is automatically invoked by the setup utility. The adduser
utility creates the following information:

� An entry in the /etc/passwd file

� A home directory

To add a user to the system, enter yes at this prompt:

NOTE: User ID number 0 is reserved for the superuser.
40 LynxOS User’s Guide

Using the adduser Utility

Do you want to add a user to the system?

For each user added, supply the following information:

� User Name

� User ID Number (the default is the first available number)

� User�s Group ID Number (the default group ID is 2, the staff group ID)

The user can create a new group by modifying the /etc/group file.

� Comment

Typically, the full name of the user is entered in the Comment field.

� User�s Home Directory

This is the user�s initial working directory when logging in to the system;
it is owned by the user.

� User�s Login Shell

The login shell is the interface between the user and the LynxOS kernel.
LynxOS does not copy the login or shell configuration files to the
user�s home directory. The system administrator needs to copy these files.
The following lists the five LynxOS shells that can be chosen as default
login shells:

The following example shows the entry for a user named Bob Jones:

bob::17:3:Bob Jones:/usr/bob:/bin/bash

In the example, Bob�s user name is bob, his ID is 17, his group ID is 3, his home
directory is /usr/bob, his default shell is the bash shell. In this example, the
account password remains to be set in the second field, delimited by the two colons

Table 3-4: LynxOS Login Shells

Shell Definition

/bin/csh A hard link to /bin/tcsh

/bin/tcsh Enhanced Berkeley C shell

/bin/sh A hard link to /bin/bash

/bin/bash Free Software Foundation Korn-compatible shell

/bin/dlsh LynuxWorks proprietary shell
LynxOS User’s Guide 41

Chapter 3 - LynxOS System Administration

(::). If the password was set, the second field would contain an encrypted, but
printable, string.

Using the deluser Utility

System administrators can delete user accounts from the system with the deluser
utility. The setup utility automatically invokes deluser, used to delete the
following items:

� Specified user�s entry from the /etc/passwd file

� The user�s home directory and subdirectories, if specified

The first prompt displayed when deluser is run is as follows:

Do you want to delete a user from the system?

To remove a user, enter yes.

Understanding Security Issues

In order to protect data from unwanted removal or inadvertent tampering, LynxOS
provides a means to protect files and programs. Security on a LynxOS system is
based on access permissions, allowing a user to read, write, or execute a file.

File Permissions

LynxOS uses standard UNIX file permission commands and bit settings to protect
files. Every file or directory contains a set of permissions that define access
privileges to the file/directory owner, members of the owning group, and any
others. Each of these categories (owner, group, and other), contain permissions that
allow (or deny) read access, write access, or execution access. The owner & group
associated with a file are displayed with the ls -l command. Typically the Owner
is the creator of the file (or the last user to touch it.) The Group is the associated
group ID of the owner. Anyone who is a part of the group has the listed permission

NOTE: The first time setup is run, the prompt above does not appear.

Before removing the user�s home directory, make sure to back up all files that may
be needed in the future.
42 LynxOS User’s Guide

Changing Permissions with chmod

settings. Anyone who is not the owner, nor a member of the group falls into the
Other category.

To display the permissions of a file or directory, use the ls-l command. The
permissions are displayed in the leftmost columns:

The read (r), write (w), and execute (x) bits are displayed for the owner, group, and
other categories. Also, the file (or directory) owner and associated group is
displayed. The leading d or - character indicate whether it is a file (-) or a
directory (d). The following table provides the permissions breakdown from the
example above:

Users have access to the file or directory if a particular bit is set. For example, on
the cypher.c file, a user in the Other category would have read-only permission
because the write and execute bits are not set (r--).

Changing Permissions with chmod

The permissions of a file can be changed with the chmod command:

chmod mode file

bash$ ls -l

drwxrwxr-x 4 tim pubs 4096 Oct 29 11:55 my_project
-rwxr-xr-x 1 paul eng 11900 Nov 2 15:39 a.out
-rw-r--r-- 1 paul eng 215 Nov 1 17:28 cypher.c
Permissions Owner Group

Figure 3-9: Listing File Permissions

Table 3-5: File Permission Settings

Directory/

File

Owner

Permissions

Group

Permissions

Other

Permissions
Filename

d rwx rwx r-x my_project

- rwx r-x r-x a.out

- rw- r-- r-- cypher.c
LynxOS User’s Guide 43

Chapter 3 - LynxOS System Administration

Where mode are the octal values of the permission settings and file is the file to
change. For example,

chmod 760 cypher.c

To change the mode of the file, users must know the octal values of the permission
settings they want to use. In the above example, the mode 760 represents the
permission settings for the owner (7), group(6) and other(0). These octals are
calculated by adding the various permission settings together. The read, write and
execute bits are represented by the following values:

• r=4

• w=2

• x=1

• -=0

To determine the octal value of the permissions for a file, add the appropriate
values together:

To change the permissions of a file to rwxrw----, use the chmod command, the
appropriate octals for each user setting, and the filename:

chmod 760 cypher.c

The chmod man page contains additional descriptions and options.

Table 3-6: File Permission Octal Values

Permissions
Octal

Value
Calculation

--- 0 0+0+0

--x 1 0+0+1

-w- 2 0+2+0

-wx 3 0+2+1

r-- 4 4+0+0

r-x 5 4+0+1

rw- 6 4+2+0

rwx 7 4+2+1
44 LynxOS User’s Guide

Default Permissions

Default Permissions

When a file is created, the effective user ID number of the creating process is
assigned to the file. The group ID number is inherited from the directory where the
file is created.

The mode of the new file is derived by combining the current umask of the process
with the mode requested by the process when it is called open. The umask is a
number, when expressed in binary, tells which access bits of a requested mode are
to be disabled.

For example, if a process attempts to create a file with mode 0666 octal
(110110110 in binary) and the umask is currently 0022 octal, then the file is
given mode 0644, as shown below:

Changing Effective User ID

Sometimes, applications must access files that would normally be protected from
access by the user ID under which the application is running. For example, a
program that maintains a simple database might allow all users to add records to it,
even though the data files are protected against access with ordinary utility
programs.

In addition to the basic protection code bits, the mode of an executable file contains
flags that can be used to set the effective user and group ID numbers upon
execution. With this facility, a program can be configured so that while it is
running the effective user or group ID, which is used to determine access
privileges, is changed to that of the owner of any protected data.

Table 3-7: Example umask Requested Number Result

Requested 1 1 0 1 1 0 1 1 0

umask 0 0 0 0 1 0 0 1 0

Result 1 1 0 1 0 0 1 0 0
LynxOS User’s Guide 45

Chapter 3 - LynxOS System Administration

The set-user-ID and set-group-ID flags are referred to by the constants
S_ISUID and S_ISGID as defined in the include file sys/stat.h. To set or clear
these bits, enter the following commands:

chmod u+s file
chmod g+s file

Process Protection

Processes are also protected against interference from processes running under
different user ID numbers. Only the owner of a process and the superuser can send
signals to, or set the priority of that process.

When a process begins, it is assigned the user ID of the parent process. When a
program is loaded, the user ID of the process changes if the S_ISUID bit of the
program is set. Although a process is protected from direct interference by other
processes, it is possible, nevertheless, for a non-privileged process to set its priority
high enough to monopolize the processor.

In the context of a real-time application, this feature is expected of a real-time
operating system. However, in a development environment, one user could
monopolize system resources. The setpriority system call allows the root user
to set the maximum priority of all non-root users. Thus, users who do not have root
access cannot set their priority above that value.

NOTE: Programs owned by user ID 0, which have the set-user-ID flag
enabled, assume most superuser privileges while running. Such programs must be
carefully written to prevent unwanted side effects or security violations.
46 LynxOS User’s Guide

CHAPTER 4 Disk Space Management
This chapter describes managing disk space under LynxOS, and procedures for
backing up and restoring data with the tar (tape archive) utility.

Formatting Media

LynxOS supplies the following two utilities for low-level media formatting:

� fmtflop for floppy disks

� fmtscsi for SCSI disks

Usually, low-level formatting is needed for floppies only - it is almost never
needed for SCSI disks.

LynxOS does not provide any low-level formatting-specific utilities for IDE disks.
The mkfs utility, which creates a file system on a targeted medium, also formats
media by performing the following tasks:

� Destroying all data on the targeted medium

� Preparing the medium for read/write access

Low-level formatting of media is generally necessary only after read/write access
to it has failed. A typical test of read/write accessibility for a medium is to attempt
running mkfs.

NOTE: Many other systems combine media formatting with file system creation. In
LynxOS, however, the mkfs utility is required to create an empty file system on
LynxOS only after it has been formatted.
LynxOS User’s Guide 47

Chapter 4 - Disk Space Management

Formatting Floppy Disks

Formatting floppy disks with fmtflop overwrites all old data.

Additionally, the fmtflop command can be used to specify the interleave factor
and an initial filler value of a floppy using the following syntax:

fmtflop -v -f filler -i interleave device_name

The interleave factor dictates the physical spacing between each block.
Optimally, the interleave is 1. The filler value - any value in the range
0 - 255 - is written into every byte of each block. Default values for
interleave and filler are 1 and 0xf6.

The filler is a pattern that is used to catch various errors on the medium as it is
formatted. The filler occupies every byte of the medium as it is formatted. In the
verification phase of formatting, the medium is checked for the filler value. If it
does not match the filler value specified, an error is printed. Choosing different
fillers and formatting the floppy multiple times ensures integrity.

Usually, the interleave factor is not specified. Larger interleave factors are useful
on very slow machines, which take so much time to process each block read from
the floppy that they must wait a full rotational delay to read the next block. Placing
the next block further away from the current block gives a slow machine the time it
needs to process data and avoids the rotational delay penalty.

Typically, fmtflop operates silently. The -v (verbose) option instructs the
program to print each track number as it is formatted.

Formatting SCSI Disks

When the fmtscsi command is run on a SCSI disk, the SCSI disk might simply
ignore the command; if the command is ignored, fmtscsi immediately returns.
Nevertheless, LynxOS provides the fmtscsi command syntax:

fmtscsi -F -i interleave device_name

As with floppy disks, interleave should almost always be 1 (the default).
fmtscsi requires two confirmations before it actually issues the formatting
command to the driver.
48 LynxOS User’s Guide

Configuring Disk Space

Configuring Disk Space

Making File Systems

The mkfs (make file system) command creates a new file system on a disk or
diskette.

The syntax for mkfs is as follows:

mkfs -b number_bytes /dev/device_name/inodes

Setting Block Size
The -b option sets the block size of the new file system in number of bytes. The
default block size is 512 bytes. The block size is set by entering a value
representing the desired number of bytes (number_bytes above) as an argument
to the -b option. Accepted values are 512, 1024, 2048, 4096, 8192, 16384,
and 32768.

The installation utility installit uses -b 2048 when making a file system.

A large number of bytes per block may be appropriate when the majority of files
are large. Choose 512 or 1024 if the disk contains mostly small files. This
optimizes file storage on the disk. The values 2048 and 4096 are good general
purpose values.

For example, the following command creates a 2048 byte block size file system on
partition c of an Adaptec 2940 SCSI device 0, where device_name is
sd2940.0c:

mkfs -b 2048 /dev/sd2940.0c

Setting Inodes
The inodes argument allows the total number of inodes for a file system to be
specified. If inodes is not specified, mkfs creates one inode for every 16

CAUTION! The mkfs command destroys all existing device data on the specified
device upon execution.

For this reason, only superusers should be allowed to use this command.
LynxOS User’s Guide 49

Chapter 4 - Disk Space Management

512-byte block on the device. If the file system is expected to have many small
files, a larger value for inodes should be specified. For example, the following
command creates a file system with 8000 inodes on partition b of an Adaptec 2940
SCSI device 2, where device_name is sd2940:

mkfs /dev/sd2940 8000

For floppy disks, however, the space used for unnecessary inodes can be important;
it may be preferable to choose fewer inodes, as follows:

mkfs /dev/fd1440.0 4

After it has been created, the file system�s parameters can be examined with the df
command, for example, as follows:

df -i device_name

df shows the number of free blocks available for data after taking into account the
blocks used for the inode table and the super block. Once a file system has been
created, the device containing it can be mounted with the mount command.

Organizing Files

The primary means of organizing files in a LynxOS file system is through a
hierarchical directory structure. A directory is a file that records pairs of file names
and inode numbers. Additional directories can be included among the files
recorded in a directory.

Creating Directories
Upon initial LynxOS installation, the mkfs utility is used to establish a root
directory. Additional directories are then created below the root directory to
establish a working root file system.

The mkdir command creates directories with the following command syntax:

mkdir name

LynxOS creates each directory with the two special entries: dot (.) and dot dot
(..), which represent the inode of the directory itself and the inode of its parent
directory, respectively.

In addition to system operation, directories must also be created for software
development or applications. Typically, a directory is created for each individual
who has an account on the system, either directly beneath the root, or in some
subdirectory (/usr is commonly used for this purpose.).
50 LynxOS User’s Guide

Removing Directories

Additional directories owned by the superuser or by any other users can be added
as needed while the system is being used.

Removing Directories
Directories can be removed with the following commands:

� rmdir

� rm -r

These commands are available to all LynxOS users, not just the superuser. The
permissions on certain directories can be set to prevent regular users from
removing them.

The rmdir command removes a specified directory:

rmdir directory

To remove a directory and its contents - files and subdirectories - recursively, use
the rm -r command:

rm -r directory

The -r argument instructs rm to recursively remove the entire hierarchy beneath
directory, including directory itself.

Managing Disk Space Usage

Although LynxOS provides no disk space quota mechanism, administrators can
arbitrarily exercise tight control over resource consumption by periodically
checking each user�s space usage.

CAUTION! The effects of rm -r are irreversible. rm -r removes all existing
directory files and sub-directories associated with each of the arguments. It is
advisable to check what directory the command is being executed from before
executing it.

Setting up an alias for rm, such as rm -i in the .cshrc or .profile file so
the operating system issues a prompt before it recursively removes files or
directories is also advisable.
LynxOS User’s Guide 51

Chapter 4 - Disk Space Management

The du Command

The du command reports space consumed under a particular directory. Assuming
user accounts are all established with home directories in the /usr directory, the
following du command reports consumption per user:

du -s /usr/*

The values reported by du are in terms of kilobytes (KB). Note that du can be
applied to any portion of the directory hierarchy, not just user-owned directories.
The total amount of space available in a file system is stored in the super block.

Using df Command

The df command reads the super block and reports the free disk space, and,
optionally, the number of free inodes.

df reports free space for each file system listed recursively within a super block.
Specific file systems can also be specified on the command line.

Using the find Command to Determine File Usage

When disk space usage is over 90 percent, users should delete or back-up any
unused files in order to increase storage resources. To determine which files might
be eligible for deletion or back-up, use the find command to list files that have not
been accessed within a specified amount of time. The find command uses the
syntax below:

find / \(-atime +30 -o -mtime +30 \)

The expressions -atime +30 and -mtime +30 in the example above tell the
find command to report all files not read or modified in more than 30 days. The
-atime value can be set by the user to any number of days.

With a similar command, users can first print a list of files to screen, then remove
them using the find and rm commands as follows:

find / \tmp (-atime +30 -o -mtime +30\) \
-print -exec rm -f {} \;

NOTE: Please exercise caution and discretion when using this method; once files
are deleted, they are either lost or can only be recovered from a backup system.
52 LynxOS User’s Guide

Backing Up the System

Backing Up the System

Regardless of the physical reliability of hard disks, many opportunities exist for
data loss due to software errors. For example, executing the find command
could potentially globally delete critical files. Therefore, a backup system is highly
recommended. LynuxWorks recommends the standard UNIX tar (tape archive)
utility.

The tar Command

To back up data on the system, use the tar command. This command gathers
subtrees of the directory structure (or even the entire directory tree) into one file,
usually onto some removable device.

Creating the tar Backup File
Once a tar backup file has been created, users can examine the file and selectively
extract portions of the saved directory tree with tar.

For example, to copy the entire contents of the /usr/ directory subtree to a
system�s tape drive, the following command would be used:

tar -cv /usr

The -cv argument directs tar to create (c) a new output file, rather than skip to
the end of an existing file, and to display a verbose (v), file-by-file listing of files
copied.

As no output file is specified in this example, the /dev/tar.default file is
used; normally, a system is configured so that the file /dev/tar.default is
linked to the device name of the tape drive. If tar detects that it has run out of
space on the output device, it requests that another storage medium be inserted. For
tar to be able to detect the end of storage on a medium, the raw device interface
must be used.

In the example above, the /usr/ directory was referred to using an absolute path
name. The file names in the headers in the tar file reflect the absolute path names.
This implies that when files are later extracted, they are forced into the exact
position in the overall directory tree they originally had. If, on the other hand, the
original tar had been performed as shown below, by first changing the working
directory to /usr and then giving tar the path name .(period), the files are
written with a relative instead of absolute path name:
LynxOS User’s Guide 53

Chapter 4 - Disk Space Management

cd /usr
tar -cv .

The files can then be extracted from the backup file and placed anywhere in the
directory structure.

Restoring Backups
Once users have created a tar backup on a tape, another hard disk, or floppy disk,
they can restore the saved information in case of data loss using the following
command syntax:

tar -xv

The x option means �extract.� All files in the backup volume are copied to the
main file system based on the path names in the headers. As each file is extracted,
its name and other statistics are printed on screen. Individual files can be extracted
by listing the desired path names after the key, as in this example:

tar -xv /usr/m5/mainprog.c /usr/m5/files.c

Each file name header that matches any requested name is restored.

Creating Backup Policies and Procedures

All computer systems need the data on their disks to be backed up. However, the
frequency of backups depends on each specific system�s requirements. Before
installing a new version of LynxOS, create a backup on the system. Files can be
backed up to the following types of media:

� Floppy disk

� QIC 1/4-inch cartridge tape

� Helical Scan 8-mm tape

� DAT 4-mm tape

� Removable hard disks

Users can use the find and tar commands to locate files and write to backup
media. For example, all files that have been modified in the last week can be
backed up with the following commands:

find / -mtime -7 > /tmp/backup.list
tar -cvf /dev/device ‘cat /tmp/backup.list‘
54 LynxOS User’s Guide

Creating Backup Policies and Procedures

Where device is the device node for an IDE, SCSI or floppy device. See
�LynxOS Device Node Naming Conventions� on page 26.

LynuxWorks recommends that the following system configuration files be backed
up on a regular basis:

Table 4-1: Configuration Files Recommended for Backup

/.cshrc /.Xsession

/etc/rc.d/rc /.bashrc

/.dlshrc /.exrc

/.lesskey /.less

/.login /.logout

/.motifbind /.mwmrc

/.profile /.rhosts

/.subroutines /.twmrc

/.Xdefaults /.xdm-config

/.xinitrc /.Xresources

/.Xservers /etc/exports

/etc/fstab /etc/group

/etc/hosts /etc/hosts.equiv

/etc/magic /etc/passwd

/etc/printcap /etc/profile

/etc/starttab /etc/ttys

/etc/resolv.conf /etc/inetd.conf

/etc/ethers /etc/networks

/etc/nodetab /net/rc.network

/sys/lynx.os/CONFIG.TBL /sys/lynx.os/uparam.h

/sys/cfg

NOTE: The list in this table is by no means comprehensive. For any individual
system, some of the files listed above need not be saved; additionally, users may
also want to save other system configuration files not listed above.
LynxOS User’s Guide 55

Chapter 4 - Disk Space Management
56 LynxOS User’s Guide

CHAPTER 5 Shared Libraries
Users may have an application that relies on shared libraries. Or perhaps users are
considering using shared libraries for an embedded application.

This chapter describes shared libraries and explains whether they should be used,
how they are used, and how they are built.

Overview

A shared library is a collection of routines, organized so that code can be shared
among processes; its primary goal is to reduce system and disk memory usage.

LynxOS supports tools to create and use C and C++ dynamic ELF shared libraries
on all of its supported platforms.

Shared library development is supported by all native and cross development tools.

The term shared library is not entirely accurate when used with the ELF/SVR4
implementation. The correct term is shared object, because shared libraries are not
archive (ar) libraries. They have more in common with partially linked (ld -r)
object files. Shared objects can be identified by the .so suffix. This document,
however, uses the term shared library when referring to shared objects.

The main difference in the treatment of LynxOS shared libraries and those on other
systems at load-time, is that lazy linking is not supported for LynxOS shared
libraries. The use of lazy linking makes application startup faster, but causes
problems in real-time systems with deterministic behavior requirements.

Compatibility between different revisions of a library is easy to maintain, as long
as the libraries are functionally compatible; applications linked with the library do
not need to be relinked in order to use the newer version.
LynxOS User’s Guide 57

Chapter 5 - Shared Libraries

No source code changes are necessary when making a shared library. Object files
that are to be part of the shared library must be compiled as Position Independent
Code (PIC) using the -fPIC -mshared -shared compiler flags.

The LynxOS implementation also includes dlopen()/libdl.so support. This
library provides functions that allow users to open, close, and find symbols in an
arbitrary shared library, even if the application in use has not been linked with the
library. For more details, see the dlopen() man page.

Creating Shared Libraries by Default

Some ELF-based systems, such as Linux, create shared objects by default, and
make it necessary to provide a special option to the linker to produce statically
linked objects. LynxOS takes the reverse approach. In LynxOS 4.0, the linker
produces statically linked objects by default. To produce executables that link with
shared objects at run-time, you must link with the option -mshared.

Single/Multithreaded Applications and Shared Libraries

When an application links with a shared object, it is important to note if the
application uses single-threaded processes or mulithreaded processes. Processes
that create multiple threads (using the system call pthread_create) should only
call thread-safe functions. Thread-safe functions are coded in such a way that they
work correctly even when they are concurrently executed by more than one thread.

On the other hand, processes that never create new threads can call non-thread safe
functions without difficulty. Since non-thread safe functions may be faster than
their thread-safe equivalents, users may prefer to use non-thread safe functions
whenever possible. The usual practice is to keep thread-safe functions and non-
thread safe functions in different libraries. LynxOS follows this practice with the
libraries that it provides, and users should consider following this practice with
their own libraries.
58 LynxOS User’s Guide

Effects of Using Shared Libraries

The libraries provided by LynxOS are kept in directories that distinguish thread-
safe from non-thread safe libraries. The following table details the library types
and locations:

Effects of Using Shared Libraries

In essence, when users modify the contents of a shared library, they modify all the
programs that rely on it, unless they never deploy the new library, or only deploy it
selectively. Using a shared library instead of an ordinary non-shared archive library
may affect the following:

� System Memory Usage

� Disk Space Usage

� Code Maintenance

System Memory Usage

System memory usage is different because multiple processes can share the library
code. The amount of system memory saved (or lost) by using a shared library
depends on three factors:

� The contents of the shared library

� The set of programs that are typically run on the system

� The load on the system

(See �Determining the Use of Shared Libraries� on page 61 for additional details
and several examples).

The following relationships are true in general:

Table 5-1: LynxOS Library Types & Directories

Library Type Directory

Thread-safe shared libraries /lib/thread/shlib

Non-thread safe shared libraries /lib/shlib

Thread-safe static libraries /lib/thread

Non-thread safe static libraries /lib
LynxOS User’s Guide 59

Chapter 5 - Shared Libraries

� A shared library consisting of commonly used routines saves more

system memory than one that has many rarely used routines.

Routines and data items in the shared library that are rarely used waste
system memory simply by their lack of use as follows:

- A rarely used routine wastes memory because the entire shared library
resides in memory whenever it is used, regardless of which subset of
routines from the library are actually linked.

- A rarely used data item wastes system memory equal to its size
multiplied by the number of processes currently using the shared
library. This is because each process has its own copy of the data.

� A shared library that is used by a varied and numerous assortment of
programs saves more system memory than a shared library that is used by
only one or two programs.

Multiple concurrent executions of the same program use the same amount
of text memory as does a single execution. The operating system ensures
that the executing text segments of the same program are shared.

Disk Space Usage

Disk space usage is typically lower because a program linked with a shared library
is almost always smaller than the same program linked with an equivalent archive
library. The shared library itself is not a factor in disk space usage because it is
comparable in size to an equivalent archive library.

Consider this simple �hello world� program:
#include <stdio.h>
main()
{
 printf("Hello, world!\n");
}

The printf() function is included in the C library. If the program is linked to
the static C library, the resulting program executable file is close to 36 kilobytes:

gcc -o hellostatic hello.c
ls -l hellostatic
-rwxr-xr-x 1 root 36014 Jan 24 01:01 hellostatic*

If the same program is linked with the shared C library, then it is only about
5 kilobytes:
60 LynxOS User’s Guide

Code Maintenance

gcc -mshared -o hellodynamic hello.c
ls -l hellodynamic
-rwxr-xr-x 1 root 5133 Jan 24 01:02 hellodynamic*

In many cases, using shared libraries provides a considerable difference in size
compared to static libraries.

Code Maintenance

Maintaining programs that use a shared library is somewhat easier than
maintaining programs that use an archive library because if an error in the library is
fixed, only the shared library needs to be remade. The programs do not need to be
re-linked with the library because the operating system maps the shared library
code into their address spaces at run time. In effect, modifying the contents of a
shared library modifies all of the programs that use it.

Determining the Use of Shared Libraries

In order to decide whether or not to use shared libraries, users must take the
following factors into consideration:

� The number of different applications that are to run concurrently on the
target system

� The percentage of the library code that applications use

� The size of the library�s data and bss sections

� The amount of RAM available on the target system

� The amount of disk, flash, or ROM space available on the target system

� The ease of updating and fixing bugs on shared libraries

� The possibility of performance degradation if using shared libraries

If a target system is running a single application, multiple instances of a single
application, or multiple different applications (not concurrently), the using of

NOTE: The above statements hold true only when the change to the shared library
is backward compatible. Compatibility problems can be avoided as long as the
shared library can be built using the guidelines described later in this chapter. For
bug-fixes, compatibility is often automatic. For changes that are broader in scope,
adherence to the guidelines may become challenging or impractical.
LynxOS User’s Guide 61

Chapter 5 - Shared Libraries

shared libraries will probably increase memory and disk space usage. If, however,
the target system is running many different applications at the same time (and they
use large portions of the same shared libraries), there may be significant reductions
in memory and disk space usage.

For comparison purposes, the space requirements of three sets of applications are
explored in three pairs of tables that follow. All applications in a given set require a
common library.

In the tables �Space Requirements for a 1 MB Library (X) Used by 6
Applications,� �Space Requirements with a 1 MB Library (Y) Used by 6
Applications,� and �Space Requirements with a 1 MB Library (Z) that Includes
Data,� space requirements are shown when the associated library is implemented
as a non-shared library.

In the tables �Space Requirements for 1 MB Shared Library (X) Used by 6
Applications,� �Space Requirements with a 1 MB Shared Library Used by 6
Applications,� and �Space Requirements with a 1 MB Library (Z) that Includes
Data,� space requirements are shown when the associated library is implemented
as a shared library.

Example 1

Each of the applications shown in the next two tables uses half of a 1 MB library,
but uses a different mixture of the library�s routines. Where these applications do
not use a shared library, they require 3 MB of RAM and disk space. When they
employ a shared library, they require only 1 MB of RAM and disk space.
62 LynxOS User’s Guide

Example 1

Table 5-2: Space Requirements for a 1 MB Library (X) Used by 6 Applications

Library X Usage

� library text used by application
Space Requirements for

Library X on Target

text RAM Disk

Static Library X 0 0

Application A � � � � � .5 MB .5 MB

Application B � � � � � .5 MB .5 MB

Application C � � � � � .5 MB .5 MB

Application D � � � � � .5 MB .5 MB

Application E � � � � � .5 MB .5 MB

Application F � � � � � .5 MB .5 MB

TOTALS 3 MB 3 MB

Table 5-3: Space Requirements for 1 MB Shared Library (X) Used by 6

Applications

Library X Usage

� library X deploys element
+ library text used by application

Space Requirements for

Library X on Target

text RAM Disk

Shared Library X � � � � � � � � � � 1 MB 1 MB

Application A + + + + + 0 0

Application B + + + + + 0 0

Application C + + + + + 0 0

Application D + + + + + 0 0

Application E + + + + + 0 0

Application F + + + + + 0 0

TOTALS 1 MB 1 MB
LynxOS User’s Guide 63

Chapter 5 - Shared Libraries

Example 2

Each application shown in the next two tables uses 10% of a 1 MB shared library.
Each application uses a different portion of the library, all mutually disjoint. Where
these applications do not use a shared library, they require 0.6 MB of RAM and
disk space (with all six applications running). When using a shared library, they
require 1 MB of RAM and disk space.

This is a worst-case scenario; it is not possible to save any space by using a shared
library for this mix of applications. This example is for illustration purposes only. It
is unlikely that a group of applications would use completely disjoint sets of library
routines.

NOTE: If the unused routines were removed from the shared library, the memory
usage for both shared and non-shared libraries would be the same.

Table 5-4: Space Requirements with a 1 MB Library (Y) Used by 6

Applications

Library Y Usage

� library text used by application
Space Requirements for

Library Y on Target

text RAM Disk

Static Library Y 0 0

Application A � .1 MB .1 MB

Application B � .1 MB .1 MB

Application C � .1 MB .1 MB

Application D � .1 MB .1 MB

Application E � .1 MB .1 MB

Application F � .1 MB .1 MB

TOTALS .6 MB .6 MB
64 LynxOS User’s Guide

Example 3
The preceding examples assume that the library contains no data or bss
sections. While this is the best way to build a shared library, it is not always
possible to do so.

Due to the inability of applications to share data, the data and bss sections of a
shared library are not treated the same way as the text section: Every process
gets a full copy of the data and bss sections whether it uses all of it or not.

Example 3

In the applications shown in the next two tables, the issues surrounding bss and
data section utilization in a shared library are illustrated. Both shared and non-
shared versions of the same library contain 0.5 MB of text, 0.3 MB of data,
and 0.2 MB of bss. Each application uses forty percent of the text and forty
percent of the data and bss sections.

In the case of the non-shared library (the table below), memory usage is 2.4 MB
and disk usage is 1.9 MB. In the case of the shared library (the second table), the
memory usage has increased to 3.5 MB, while the disk usage has dropped to
0.8 MB.

Table 5-5: Space Requirements with a 1 MB Shared Library Used by 6

Applications

Library Y Usage

� library X deploys element
+ library text used by application

Space Requirements for

Library Y on Target

text RAM Disk

Shared Library Y � � � � � � � � � � 1 MB 1 MB

Application A + 0 0

Application B + 0 0

Application C + 0 0

Application D + 0 0

Application E + 0 0

Application F + 0 0

TOTALS 1 MB 1 MB
LynxOS User’s Guide 65

Chapter 5 - Shared Libraries

Table 5-6: Space Requirements with a 1 MB Library (Z) that Includes Data

Type

Library Z Usage

� library text/data/bss used by
application

Space Requirements for

Library Z on Target

text data bss RAM Disk

Static Library Z 0 0

Application A � � � � .4 MB .4 MB

Application B � � � � .4 MB .4 MB

Application C � � � � .4 MB .3 MB

Application D � � � � .4 MB .2 MB

Application E � � � � .4 MB .3 MB

Application F � � � � .4 MB .3 MB

TOTALS 2.4 MB 1.9 MB
66 LynxOS User’s Guide

Example 3
1. Shared library occupies disk space only.
2. Shared library bss does not occupy disk space.

As the preceding examples show, a well designed shared library may provide a
significant savings in the memory space needed. In an embedded system with tight
memory constraints, these savings could mean the following:

� A given application now fits in the space allowed on board.

� RAM can be decreased (cost savings).

� More space for new features

The preceding examples also show that a well designed shared library may provide
a significant savings in the disk, flash, or ROM space needed. In an embedded
system with tight memory constraints, these savings could mean the following:

� A given application now fits in the space allowed.

� The flash/ROM chip count can be decreased (cost savings).

� The flash/ROM chip size can be decreased (cost savings).

Table 5-7: Space Requirements with a 1 MB Library (Z) that Includes Data

Type

Library Z Usage

� library text/data/bss
+ library data/bss used by application
- library data/bss allocated but not used by
application
* library text used by application

Space

Requirements for

Library Z on Target

text data bss RAM Disk

Shared Library Z � � � � � � 1 � 1 � 1 � 2 � 2 .5 MB .8 MB

Application A * * + + - - - .5 MB 0

Application B * * - + + - - .5 MB 0

Application C * * - - + + - .5 MB 0

Application D * * - - - + + .5 MB 0

Application E * * + - - - + .5 MB 0

Application F * * - + - + - .5 MB 0

TOTALS 3.5 MB .8 MB
LynxOS User’s Guide 67

Chapter 5 - Shared Libraries

� A disk may not be needed (cost savings).

Choosing Shared Library Contents

Choosing the contents of a shared library involves more considerations than
choosing the contents of an ordinary non-shared archive library. It is perhaps the
most important factor determining whether or not the shared library decreases
system memory usage.

When choosing routines for the shared library, use the following guidelines:

� It is generally a good idea to include routines such as printf that are
used often by many different programs.

� It is generally a bad idea to include routines that are rarely used. Recall
that when a shared library is used, it is loaded into memory, regardless of
what routines have been linked.

� It is generally a bad idea to include routines that have large amounts of
data. Recall that the data of a shared library is not shared, so each process
that uses the library gets its own copy of the data. Even if a routine is
commonly used, it can still waste space, because any program that does
not happen to use it still gets a copy of its data.

How to Save Space
In order to minimize the space used by a shared library, global data should be
minimized. One technique for doing this is to use local (stack) variables instead of
global variables wherever possible. Another technique is to allocate buffers
dynamically (for example, with malloc()) instead of statically. These are
effectively identical methods of reducing the data section of the shared library.
This is important because each process using the shared library gets its own
separate copy of the data section.

The above space-saving techniques have the added benefit of making maintenance
of the shared library easier by reducing the number of external symbols in the
library. The number of external symbols can be further reduced by explicitly using
static variables wherever possible.

Updating Shared Libraries

The way that shared libraries are designed allows for an application to be updated
(by rebuilding and replacing the target shared library) without the need to relink the
68 LynxOS User’s Guide

Libraries Provided

application. This means that bug-fixes or other library changes can be made in the
field without replacing the entire application. This feature of shared libraries may
require extra work on the part of the library designer to ensure that a new library is
compatible with previous versions.

To support compatibility between newer and older versions of the library, shared
libraries use a global offset table to access function calls. This adds one or more
additional instructions to the normal function call process. These extra instructions
produce slightly longer execution times for library calls. In general, the
performance decrease is not measurable.

Libraries Provided

LynxOS provides the following system shared libraries. Single-threaded versions
are located in the /lib/shlib directory; multi-threaded versions are located in
the /lib/thread/shlib directory. The X and Motif shared libraries are located
in /usr/lib/shlib.

Table 5-8: Shared Libraries in the LynxOS Distribution

Library Description

Availability

Single-

threaded

Multi-

threaded

libc Standard C Library � �

libm Standard Math Library � �

libdl Dynamic Linker Library � �

libalias

Packet aliasing library for
network address translation and
masquerading.

� �

libcurses CRT Screen Handling Library � �

libbsd
Network Address Resolution
Library � �

libmsng LnyxOS Messenger Library � �

libgcc GNU C library � �

libstdc++ GNU C++ Support Library � �

libXt1 X Windows Support Library �
LynxOS User’s Guide 69

Chapter 5 - Shared Libraries
Creating Shared Libraries

Shared libraries are easy to create. The following example shows how to create a
shared library named myshared.so from the file myshared.c:

gcc –shared –mshared –fPIC –o myshared.so myshared.c

The options in this line are:

libX111 X Windows Toolkit Library �

libICE1 X Communications Library �

libSM1 X Sessions Management Library �

libXext1 X Extensions Library �

libPEX5

Phigs (Programmer's Hierarchical
Interactive Graphics System)
Extension to X

�

libXIE XIE server extension library �

libXaw X Athena widget library �

libXi X input extension �

libXmu X miscellaneous utilities �

libXp X print library �

libXpm X pixmap library �

libxtst X testing extension �

libXm1 Motif Library �

1. x86 and PowerPC only.

-shared The object file of this command will be a shared object.

-mshared Any references to other library functions will be to those found in
the LynxOS-provided shared libraries.

Table 5-8: Shared Libraries in the LynxOS Distribution (Continued)

Library Description

Availability

Single-

threaded

Multi-

threaded
70 LynxOS User’s Guide

Linking to a Shared Library
The option –shared is used to create a shared object.

The option –fPIC causes the compiler to produce position-independent code. In
other words, it produces text that does not contain pointers in its read-only area.
Instead, the text works with a jump table so that it can be dynamically linked to
functions in the shared libraries, whose locations in memory are not known until
run-time. At run-time, the addresses of those functions are determined and stored
in the jump table. When the function is called, the call address is fetched from the
jump table.

Linking to a Shared Library

In order to link with one of the shared libraries supplied by LynxOS, users must tell
the compiler/linker to look for libraries in one of the shared library directories.
There are two ways to do this: by specifying the -mshared flag; or by specifying
the directory to search using the -L directory flag.

The following commands are for single-threaded applications. Either command
can be used; both are equivalent:

$ gcc -o output_file source_files -mshared
$ gcc -o output_file source_files -L /lib/shlib

The -mshared option links the executable with the dynamic shared libraries in
/lib/shlib/.

The following commands are for multi-threaded applications (i.e., if the program
calls pthread_create). Either command can be used; both are equivalent. The
user needs to choose thread-safe binary functions. Use the option -mthreads to
the gcc command.

$ gcc -o output_file source_files -mthreads -mshared
$ gcc -o output_file source_files -mthreads -L \
/lib/thread/shlib

The use of -mshared and -mthreads together selects the dynamic shared
libraries that are thread-safe, found in /lib/thread/shlib.

-fPIC The text created will be position independent, i.e., it can be linked to
shared objects.

-o The following token, myshared.so, is the name of the created
shared library.
LynxOS User’s Guide 71

Chapter 5 - Shared Libraries
72 LynxOS User’s Guide

CHAPTER 6 X & Motif Development Package
This chapter provides an overview of the X & Motif Development Package
features, X libraries and utilities, and troubleshooting X issues.

Installing and Starting X

The X & Motif packages are not installed during the standard LynxOS installation.
X & Motif requires a separate installation procedure. Follow the instruction
provided in the LynxOS Installation Guide for detailed information.

Once X is installed, it can be configured with the configX utility. For detailed
instructions, see the LynxOS Installation Guide. Once the proper display device
settings are configured, start x with the startx command:

startx

X Server Features Overview

The following is a list of features of the X & Motif Development Package:

� VGA and SVGA support

� Multiple display resolutions and color depth (depending on graphics
adapter)

� Hot-key switching between display resolutions

NOTE: The X & Motif Development Package is not included in all LynxOS
packages. Only native development systems include X & Motif. For cross
development systems, X & Motif can be purchased separately. Contact your
LynuxWorks sales representative for more information.
LynxOS User’s Guide 73

Chapter 6 - X & Motif Development Package

� Support for ISA, PCI, and AGP bus graphics adapters

� Server extensions like the SHAPE, MIT-SHM, Multibuffering, DEC
XTRAP, XIdle, XInput Extension, and others

� Scalable fonts with font server

� Multiple display screen support

� Touch screen support for some ELO graphics, Carroll Touchscreen,
Lucas/Deeco and MicroTouch touchscreens

� Dual touchscreen support

� Standard X11 clients

� Support for various mice, both serial and PS/2-compatible, including the
Intellimouse

� Example files include: .xinitrc, .xsession, .Xdefaults, and
.mwmrc

X Server Technology from Metro-X

This release of the LynxOS X & Motif Development Package for x86 is based on
the Metro-X Enhanced Server Set technology. This server provides the ability to
dynamically load adapter modules via a loader, allowing for up-to-date support of
current graphics adapters. The adapter modules are in ELF format and are
operating system-independent libraries. Also, the loader architecture is easily
extensible to support other formats and even other processor architectures.

Networking and the X Server

The X11 graphics system uses a client-server model. The X server is configured to
the local system�s graphics adapter and controls the output to the local display.
The X server can also accept connections from other programs (clients). These X
clients instruct the X server on what to draw on the graphics display. The program
xterm (the terminal emulator) is a sample X client. These X clients can connect to
the server using networking protocols such as TCP/IP, or UNIX domain sockets
(on a local system).

TCP/IP is used for connections between remote client and server systems.The
UNIX domain connections, are used for connections between the client and server
from the same machine or system. The UNIX domain connection configured as a
local connection is faster than a TCP/IP connection.
74 LynxOS User’s Guide

X Server Hot Key Exit

When the X server starts, it creates a TCP/IP listening socket to accept connections
from X clients. It then makes a UNIX domain listening endpoint for local
connections. If both connection attempts fail, the server aborts. Both listening end
points can be active at the same time.

An X client connects to the X server via the local UNIX domain connection,
because typically, this connection is faster. If the UNIX domain connection fails,
the X client attempts to make a TCP/IP connection by calling the X server TCP/IP
listening on socket 6000.

X Server Hot Key Exit

The server in the X & Motif Development Package supports a Hot Key Exit, useful
for terminating the X server. The key combination is Ctrl-Alt-Backspace.

Hot Key Resolution Switching

When configuring the X & Motif Development Package, several screen resolutions
can be selected for most cards. Users can change between these resolutions on the
fly while running X by pressing these key combinations:

� Ctrl-Alt-+ (plus) (higher resolution)

� Ctrl-Alt-- (minus) (lower resolution)

Hardware Panning

The X & Motif Development Package supports hardware panning, which allows
for resolutions higher than the terminal�s physical resolution. Windows can extend
beyond the screen�s physical boundaries and can be viewed by scrolling into the
extended area.

Touchscreen Support

Touchscreen controllers are simple devices that transmit absolute x and y
coordinates to the serial driver when the screen is pressed. The X11 server reads
these coordinates and converts them into X11 events, and treats the touch screen as
a one-button mouse.
LynxOS User’s Guide 75

Chapter 6 - X & Motif Development Package

International Keyboard Support

Metro-X uses the X Keyboard extension to support various keyboards. The
keyboard description contains information about the physical layout of a keyboard,
the key codes of the keyboard, and the symbol information needed to map the
keycodes into keysyms. Metro-X provides many predefined configurations,
sorted by language and country. These configurations are selected through the
configX utility. For instructions on using configX, see the LynxOS Installation
Guide.

Multiheaded Servers

On x86 systems, the Matrox Productiva G100 Multi-Monitor server option
provides a multiheaded X server. A single keyboard and mouse can be used to
control up to sixteen screens on separate monitors. This provides the ability to run
many applications on a single window. This can be useful for image-processing
work.

In a multiple screen configuration there is one X process, one mouse, and one
keyboard, but several screens. The cursor can be moved between the different
screens. Clients connect to the different screens with the syntax
-display :0.X where X is the screen number.

X Libraries

The development system provides access to the standard X and Motif routines and
functions via a link library interface. This allows the developer to port existing X
and Motif code to LynxOS and to incorporate the X and Motif facilities into new or
existing applications.

The Development System

The X & Motif Development Package consists of a set of link libraries, header files
and utilities for the development of X and Motif applications.

Library Documentation

Information about the definition, use, and function of each library routine can be
found in the X Windows documentation set provided with the product distribution.
76 LynxOS User’s Guide

x86/PPC Libraries

An overview of libraries by platform is listed below.

x86/PPC Libraries

Table 6-1: x86 Libraries

File Description

libX11_s.a The shared-library version of libX11.a is called libX11_s.a.

libXt_s.a The shared-library version of libXt.a is called
libXt_s.a.

libSM.a This is an extension of the Xt library and support for Session
Management.

libSM_s.a The shared-library version of libSM.a.

libICE.a This is also an extension to the Xt library and provides
support for communications.

libICE_s.a The shared-library version of libICE.a.

libXext_s.a The shared-library version of libXext.a is called
libXext_s.a.

Table 6-2: x86/PPC Libraries

File Description

libX11.a The standard MIT X11R6 Xlib is libX11.a, and provides the
lowest level interface between the X application and server. It
includes routines like XOpenDisplay(), which the client uses to
connect to the server. Enhancements have been made to libX11.a
for increased reliability and faster local server/client connection
mechanisms.

libXau.a This is a simple Authorization Protocol for X11.

libXaw.a This is the Athena widget set, which provides building blocks used by
many X11R3 and X11R4 clients. It is rarely used by Motif
applications.

libXdmcp.a This is the XDMCP (display manager Authorization Protocol) library
used by the xdm (X display manager) client. The X server has
hooks to completely support this protocol.
LynxOS User’s Guide 77

Chapter 6 - X & Motif Development Package
Motif Libraries

libXext.a This library contains extensions to the X11 Protocol. It includes the
SHAPE extension, which makes the round windows used by
oclock and xeyes possible. The X server is compiled with the
SHAPE extension.

libXmu.a This library contains miscellaneous routines.

libXtrap.a This library is an input simulation library. The library provides
support for the simulation and testing of keyboards, mice, and other
types of input devices, and the redefinition of the operation of those
input devices as well.

libXt.a The X Toolkit, libXt.a, is a set of routines built on top of Xlib
that implements the object oriented widget concept. This toolkit is the
basis for both the Athena widget set and the Motif widget set. The use
of a widget set provides menus and other high-level functions that
allow developers to write applications more quickly.

Table 6-2: x86/PPC Libraries (Continued)

File Description

Table 6-3: Motif Libraries

File Platform Description

libXm_s.a x86 only The shared-library version of libXm.a.

libXm.a x86/PPC This is the main Motif library. It contains a collection of widgets that
implement the OSF/Motif look and feel. Also included are a set of
convenient functions to create and manipulate the widgets.

libMrm.a x86/PPC This is the Motif resource-manager library. It is used in conjunction
with the interface definition language and compiler.

libUil.a x86/PPC This library provides support for the User Interface Language
compiler.
78 LynxOS User’s Guide

Other Libraries

Other Libraries

X Utilities

imake

imake is a compiler-independent build facility that is provided for the portability
of X clients. It is recommended that users use the imake compiler utility when
compiling programs from another source (such as public domain clients). The
imake compiler should be run with the -I/usr/lib/X11/config flag as
indicated in the imake portion of the man pages.

The xmkmf utility provided, calls the imake utility with the appropriate flags and
can be used to generate Makefiles from Imakefiles.

uil

uil is a free-form user interface language provided as part of Motif for the
designing of screens and widgets.

Table 6-4: Other Libraries

File Description

libFS.a Font server library.

libXi.a Provides support for the client side Xinput.

libXtst.a This is the XTest library.

libxkbfile.a Provides support for the XKeyboard.

libXxf86dga.a This is provides Direct Graphics Interface support.

libXau.a Provides support for X authentication.

libXdmcp.a X Device Management Protocol support.
LynxOS User’s Guide 79

Chapter 6 - X & Motif Development Package

Troubleshooting X

Before Contacting LynuxWorks Technical Support

Before contacting LynuxWorks Technical Support for an X related problem,
execute the metro-x-pr script distributed with the X distribution and supply all
the information it requires. This generates a report file that contains important
system information. Provide this report file to LynuxWorks Technical Support (see
�Technical Support� on page xiii).

Similarly, for Motif-related issues, metro-motif-pr is provided with the Motif
distributions.

Modifying Disk Cache Blocks

The performance of an application using the disk subsystem can be greatly affected
by the size of the Disk Buffer Cache residing in kernel memory. The disk buffer
cache is used to increase the performance of the operating system. The default
value of the Disk Buffer Cache is configured for smaller embedded systems. X
windows files tend to be large and quickly consume the disk buffer cache. It is
recommended that the buffer cache be increased to at least 1024 blocks. Disk
caches with a size of 2048 to 4096 blocks are common on systems that heavily use
X and/or the file system. The default entry for the buffer cache is provided below.

/* number of cache memory blocks */
#define CACHEBLKS 1024

This entry from the kernel configuration file /sys/lynx.os/uparam.h must be
modified to an appropriate value for the specific system configuration. See the
LynxOS User�s Guide for more information.

Limited Colors

Some window managers auto allocate many colors by default. With a limited color
server, there may be fewer colors for applications. Reconfigure the window
manager to use fewer colors. Refer to your window manager man page for more
information.
80 LynxOS User’s Guide

Unsupported Programs

Unsupported Programs

The contrib directory of the X distribution provided by x.org is neither
supported nor supplied by LynuxWorks.

Some standard X clients are not supported on LynxOS because the underlying
kernel or utility support does not exist. Unsupported clients include xload and
xmh.

Xconsole and newconsole

The xconsole can be used to view console messages.

LynxOS also provides a facility similar to xconsole to change the console. See
the man page for newconsole(1). Run newconsole in an xterm window. Root
privileges are required to change the console.

Saving Errors

The X server creates an error file Xerrors, in the /usr/lib/X11/Metro
directory. In case of server problems, examine this file to help diagnose the
problem.

Window Manager

The X distribution ships with two window managers: mwm (if the Motif distribution
is installed), and twm. Only one window manager can run at any given time.

Real-Time Priorities and X

By default, the X server and initial clients run at the priority of the process that
started them. X servers and clients do not adjust priority. Raising the priority of the
server and window manager above that of other applications, shells, and X clients
can improve the interaction with the window system.

CAUTION! If a user changes the console to the pseudo-tty associated with an
xterm, that xterm and pseudo-tty must be kept active. Do not close the xterm
window. Otherwise, console messages may fill up the pty queue and cause the
system to lock up. To close the xterm or exit X, run newconsole to set the console
to another device, /dev/atc0, for example, before exiting.
LynxOS User’s Guide 81

Chapter 6 - X & Motif Development Package

If demand-paged virtual memory is active on the system, X programs should be
allowed to be swapped because they use so much memory. To do this, make sure
that vmstart (typically run from /bin/rc) is running at a higher priority than the
priorities chosen for the X programs to swap.

Serial Printer

If both the printer and mouse are configured to use COM1 (/dev/com1), there
may be abnormal behaviors if the printer is left configured. Disable the serial
printer port by editing the /etc/printcap file.

Diamond Viper 550 TNT video card (x86 only)

Some graphics adapters, for example, the Diamond Viper 550 TNT, require that the
SMEMS value in the LynxOS kernel be increased from the default 10 to 50 in the
/sys/lynx.os/uparam.h file.

If an error returned by the server resembles the following, change and rebuild the
kernel.

Fatal server error:
xf86MapVidMem: failed to smem_create
(Argument invalid/improper)

X Development Troubleshooting

SKDB (Simple Kernel Debugger) and X
While running X, SKDB (Simple Kernel Debugger) can only be run from COM2

and cannot be run from the console. Refer to the Total/db User�s Guide, provided
with LynxOS distribution, to configure SKDB on COM2.

X and Motif Libraries in /usr/lib
The X and Motif libraries are located in /usr/lib. Some LynxOS
compiler/linker combinations do not, by default, look in /usr/lib for libraries.
The Install.XM script creates symbolic links for some of these libraries into the
/lib directory during the X and Motif installation procedures.
82 LynxOS User’s Guide

X and Threads

In some cases, users must set the library search path for compilers and linkers (-L
for gcc, or setting LIBPATH, for example). Refer to the compiler and linker
documentation for detailed instructions.

X and Threads
X and Motif have been developed in a single-threaded environment and are not
considered �thread safe.� A multithreaded application may use X and Motif library
calls if all the calls are confined to a single thread or if all instances of the calls in
the application are protected by mutexes.

/lib/cpp (x86 and PPC)
Some X build utilities depend upon the existence of the file /lib/cpp as they
expect to be able to use the C Pre-Processor. LynxOS systems provide the GNU C
Pre-Processor, gcc-cpp. As a result, a script file called cpp must be created in the
directory /lib to provide the required bridge.

The file should contain the lines below with permissions of 755.

x86
i386-elf-lynxos/
usr/lib/gcc-lib/i386-elf-lynxos/2.95.3/cpp0 -traditional “$@”

PPC
/usr/lib/gcc-lib/ppc-elf-lynxos/2.95.3/cpp0 -traditional “$@”

The X install script Install.XM creates this file at the time of X installation.
LynxOS User’s Guide 83

Chapter 6 - X & Motif Development Package
84 LynxOS User’s Guide

w

CHAPTER 7 Customizing the Default LynxOS
Kernel Configuration
This chapter explains how to customize the default LynxOS kernel configuration
after initial installation.

Reasons for Kernel Customization

As users develop applications in the LynxOS environment, they may need to
customize the LynxOS kernel for the following reasons:

� To tune the performance of a LynxOS native development system

� To remove functionality - such as superfluous device drivers - to conserve
system resources

� To add functionality - such as networking support or a custom device
driver - to support a specific application

By default, the LynxOS kernel on the bootable installation media contains all
supported disk and terminal drivers for a given hardware architecture. This allows
a single bootable disk/CD-ROM to load LynxOS for initial installation on a wide
range of hardware configurations.

To enable LynxOS kernel customization for optimal performance, functionality,
and/or size on any given system, during its initial installation, users must make
some basic configuration choices. These include the device from which
distribution media are to be read, the disk/partition onto which data is loaded,
adding networking support, and so on.

To facilitate user�s customization decisions, all LynxOS kernel files are located in
the /sys directory. This centralized location of kernel files allows users to build
customized LynxOS kernels quickly and easily.
LynxOS User’s Guide 85

Chapter 7 - Customizing the Default LynxOS Kernel Configuration

Customizing for Performance

If LynxOS is being used as a primary development system, it is advantageous to
customize the kernel for improved performance.

The following are some of the common features that can be customized for
enhanced performance:

� Total number of simultaneously-mountable file systems

� Size of the disk cache

� Maximum number of available processes

Customizing for Size

A user�s application environment may have size and memory constraints that make
it critical to customize the LynxOS kernel. A kernel�s size can be reduced by
performing either or both of these tasks:

� Removing unused device drivers

� Tuning performance characteristics for a more minimal environment

For example, LynuxWorks creates a bootable LynxOS kernel image that fits onto a
high-density floppy for installation onto certain x86 systems. LynuxWorks
customizes the boot kernel so that the kernel image, certain installation utilities
(LynuxWorks installit application), and the RAM disk file system all fit within
1.44 MB.

Customizing for Functionality

The third common scenario involves customizing the functionality of the LynxOS
kernel. This includes adding or removing the following components:

� TCP/IP

� NFS

� Simple Kernel Debugger (SKDB)

Users may also need to add their own, custom device drivers for a particular
application.

This chapter describes the structure of the LynxOS kernel directory and the process
for adding custom drivers to the build environment. For detailed information on
developing custom device drivers, see Writing Device Drivers for LynxOS.
86 LynxOS User’s Guide

Overview of the /sys Directory

Overview of the /sys Directory

The LynxOS /sys directory contains all the scripts, library archives, and
platform-specific files that users need to customize and rebuild a LynxOS kernel.
The /sys directory has the following file structure:

CAUTION! Read this section before modifying any LynxOS kernel. It contains
important information about the /sys directory file system that is needed to
prevent kernel data corruption and/or loss.

Table 7-1: /sys Directory Contents

File/Directory Description

Makefile The top-level Makefile

OBJ_RULES Contains the Makefile rules

bsp.xxx Contains the default Board Support Package (BSP) for the main
hardware platforms currently supported by LynxOS. This directory
also contains the particular LynxOS kernel parts for any given target
board. The kernel image is also modified and linked here.

cfg Contains files that specify each device driver�s entry points.

drivers/bsptype Contains the BSP-specific device driver source files.

include Contains the kernel header files

lib Contains the kernel and driver library archives. (See Table 7-2
"sys/lib Kernel Library Files").

lynx.os This is a symbolic link to the bsp.xxx directory.

romkit Contains examples for building bootable kernel images.

Table 7-2: sys/lib Kernel Library Files

Library Name Description

libmisc.a Miscellaneous support routines

libnfs_server.a NFS server code
LynxOS User’s Guide 87

Chapter 7 - Customizing the Default LynxOS Kernel Configuration
Of all the directories in the /sys directory, users are most likely to modify files in
the /bsp.xxx directory, as accessed through the /sys/lynx.os symbolic link.
Users can, however, also modify files in the following /sys directories:

� cfg

� devices

� dheaders

� drivers

However, these files should only be modified when adding new drivers or when the
functionality of a specific driver needs to be changed.

Accessing and Modifying the Main Kernel Directory

The main directory for customizing and rebuilding a LynxOS kernel is accessed
through /sys/lynx.os. It is a symbolic link to the directory bsp.xxx, where
xxx represents the Board Support Package (BSP) that supports the targeted

libsyscalls.a System call interface

libdevices.a Common devices

libdevices.bsptype.a BSP-specific devices

libkernel.a Kernel routines

libnullnfs.a Null NFS driver

libtcpip.a TCP/IP code (IPv4 and extras)

libtcpip6.a TCP/IP code (IPv6 and IPSec)

libdrivers.a Common device drivers

libdrivers.bsptype.a BSP-specific device drivers

libnfs_client.a NFS Client code

NOTE: Debug versions of all kernel library files also exist in the /sys/lib
directory, indicated there by a *_d.a extension.

For information on the contents, functionality, and building a debug version of a
kernel library file, see �Creating a Kernel for Debugging� on page 98.

Table 7-2: sys/lib Kernel Library Files (Continued)

Library Name Description
88 LynxOS User’s Guide

Overview of /sys/lynx.os

hardware (that is, the configuration on which the custom application is to be
deployed).

The symbolic link from lynx.os to bsp.xxx provides the flexibility to add
support for target hardware variants, while maintaining a consistent build
environment and access to supporting scripts via the /sys/lynx.os path.

Overview of /sys/lynx.os
The /sys/lynx.os directory contains the following files and subdirectories:

Rebuilding a Kernel with the make Utility
To rebuild a kernel, change directory to the /sys/lynx.os directory, and run the
make utility with a specified Makefile rule (see Table 7-4 "/sys/lynx.os Makefile
Rules"), using the following syntax:

cd /sys/lynx.os
make rule

Table 7-3: /sys/lynx.os Directory Contents

File/Directory Description

CONFIG.TBL The control file used for adding/removing device drivers

CONFIG.h An automatically generated header file

Makefile The target-specific Makefile

Makefile.common The makefile that is used by all LynxOS targets; included in
Makefile.

*.o Files with this extension are the prebuilt object files.

info.c The device information table

conf.c The configuration file

uparam.h Contains the user-definable kernel parameters from the standard
/usr/include/param.h parameter set.

*.h Files with this extension are the supporting header files.

version.c Contains LynxOS version information.

scripts Shell functions that are used during a make install.xxx,
make uninstall.xxx, or make all.xxx
LynxOS User’s Guide 89

Chapter 7 - Customizing the Default LynxOS Kernel Configuration

The following Makefile rules are defined in /sys/lynx.os/Makefile:

Incorporating Changes Made in /sys/devices into the Kernel
To incorporate changes made in /sys/devices into the kernel, perform the
following steps:

1. Change to the /sys/devices directory.

cd /sys/devices

Table 7-4: /sys/lynx.os Makefile Rules

Rule Description

all Rebuilds a.out (LynxOS kernel) in the current directory.

a.out Same as make all

clean Removes a.out, CONFIG.h, sysdevices.h,
nodetab, and timestamp.o.

install Rebuilds a.out, copies /lynx.os to /lynx.os.old,
copies a.out to /lynx.os, and copies nodetab to
/etc/nodetab.

install.xxx Adds the xxx functionality (tcpip, nfs, skdb, or
all) to a.out, then installs it. For more information, see
the install man page.

uninstall.xxx Removes the xxx functionality (tcpip, tcpip6, nfs,
skdb, or all) from a.out then installs it.

all.xxx Adds the xxx functionality (tcpip, tcpip6, nfs,
skdb, or all) to a.out

SYS_DEBUG=true Can build a debug kernel with hardware watchpoint support and
code test.

NOTE: The implication of the install rule in the kernel Makefile is as follows:
The process of �installing� a kernel involves copying the kernel to the root
directory as /lynx.os and copying the device nodetab file to
/etc/nodetab. The �installed� kernel, /lynx.os, is usually the default
bootable kernel at system startup. Old kernel files are copied to *.old.
90 LynxOS User’s Guide

Functionality Scripts

2. Add or update the appropriate device file to the /sys/devices

directory.

3. Rebuild the kernel. For example:

make install

Functionality Scripts
Users can also use the scripts in /usr/bin to install or remove the following
major functional modules:

� TCP/IP, NFS, PPP, Samba, SNMP

� Simple Kernel Debugger (SKDB) support

For example, to add support for NFS, enter the following command:

/usr/bin/Install.nfs

To remove SKDB support from the kernel, enter the following command:

/usr/bin/Uninstall.skdb

To add support for TCPIP (IPv4 and extras), enter the following command:

/usr/bin/Install.tcpip

Please note that if Install.tcpip6 is entered in place of Install.tcpip,
you will add support for IPv6 and IPSec to the kernel.

Adding/Removing Device Drivers with CONFIG.TBL
The CONFIG.TBL file controls the device drivers that are inserted into the kernel
at build time. Each driver has a one line entry in this file. Inserting the comment
character (#) in front of the line deactivates the given device driver. For example,
the code fragment below shows two lines from /sys/lynx.os/CONFIG.TBL on
a LynxOS x86 system:

Secondary ide controller
I:ide.cfg

This fragment indicates that the LynxOS kernel built with this CONFIG.TBL
contains a device driver for the secondary IDE controller. To remove this device
driver, modify the lines in CONFIG.TBL as shown below:

Secondary ide controller
#I:ide.cfg
LynxOS User’s Guide 91

Chapter 7 - Customizing the Default LynxOS Kernel Configuration

Similarly to enable support for TCPIP6, the following lines from CONFIG.TBL

must be uncommented, as follows:

I:hbtcpip.cfg
n:hbtcpipv6:@hbtcpip0::

To reflect this change, the kernel must be rebuilt.

Whenever CONFIG.TBL is changed to build a new kernel, the device nodes for
the new kernel must also be rebuilt. Since the major and minor device numbers
may change when editing CONFIG.TBL, users may also have to modify the root
device settings to boot LynxOS.

Here are some guidelines for managing changes to CONFIG.TBL:

� When adding or removing a disk driver (usually specified at the
beginning of CONFIG.TBL), the user must determine the new major and
minor number of the root device to boot the new kernel; See �Removing
Unused Device Drivers� on page 101.

� Because functionality modules (similar to TCP/IP drivers) are specified
after the disk drivers, the major and minor number of the root device does
not need to be changed to boot the new kernel.

� When creating a custom device driver, users should add it to the bottom
of CONFIG.TBL so that the device node information for the preceding
devices stays the same.

Making a Personal Kernel Build Directory
When working on team projects, developers may need to maintain individual
kernel build environments. The /sys/lynx.os directory was designed with this
scenario in mind.

The lynx.os directory (bsp.xxx) is position-independent. That is, it can be
copied to any location on the file system and then used to build a local kernel
(a.out) from the copy.

The Makefile in the lynx.os directory uses the environment variable
$ENV_PREFIX to find the library archives and object rules, but it is otherwise

CAUTION! When building a new kernel after changing CONFIG.TBL, the device
nodes for the new kernel may not match the previous nodes. The device nodes
should be built after making the new kernel; for more information, see the mknod
man page.
92 LynxOS User’s Guide

Customizing from a Cross Development Host

ignorant of its location on the disk. $ENV_PREFIX defaults to the root directory
(/) on native development systems. On cross development systems, the shell script
SETUP.shell defines $ENV_PREFIX when executed: (See �Setting the Cross
Development Environment� on page 12 for more information).

cp -r /sys/lynx.os /tmp/my_lynx.os
cd /tmp/my_lynx.os
touch CONFIG.TBL
make a.out

In this way, multiple developers can have multiple kernel build directories on a
given system, each with its own unique CONFIG.TBL, nodetab, and uparam.h
files.

Customizing from a Cross Development Host

The LynxOS distribution for cross development environments provides users with
two shell scripts, which define several key environment variables such as PATH and
ENV_PREFIX. These shell scripts, SETUP.bash and SETUP.csh, are located in
/usr/lynx/xx/platform, where platform is x86 or ppc. One or the other
of these scripts, depending on the shell requirements of the developer, must always
be executed before developing applications with LynxOS tools.

The scripts are invoked using the following syntax (in the examples below, for
LynxOS Release xxx, loaded onto an x86 development host):

� For the .csh shell:

$ cd <install_dir>/usr/lynx/xxx/x86
$ source SETUP.csh

� For the bash shell:

$ cd <install_dir>/usr/lynx/xxx/x86
$. SETUP.bash

Where <install_dir> is the LynxOS installation directory.

CAUTION! When building native LynxOS kernels, do not invoke the
make install command. This option causes the resulting local kernel to
overwrite /lynx.os and for the new node table to overwrite /etc/nodetab.
LynxOS User’s Guide 93

Chapter 7 - Customizing the Default LynxOS Kernel Configuration

With the exception of having to first invoke a SETUP script on cross development
systems, there is no discernible difference in the development process of LynxOS
kernels from cross or native machines. LynxOS uses the same Makefiles and
directory structure on cross development systems as on native systems.

The design of the /sys directory and Makefile system provides this functionality.
The following example demonstrates the similarities in developing kernels on
cross development and native LynxOS systems.

Adding TCP/IP to a LynxOS Kernel

� On a Cross Development System

In the following commands, TCP/IP IPv4 is added to an x86 cross
development system:

$ cd /usr/lynx/x86
$. SETUP.bash

The following commands then set up the PATH variable that points to
the cross development tools, and sets $ENV_PREFIX to point to the
installed LynxOS directory tree:

$ cd $ENV_PREFIX/sys/lynx.os
$ make install.tcpip

In this example, the LynxOS kernel (a.out) and the devices nodetab
are copied to ENV_PREFIX.

Additionally, the /usr/bin/Install.tcpip script can be used to
install TCP/IP onto a system.

� On a Native Development System

In the following commands, TCP/IP is added to a native development
system:

$ cd /sys/lynx.os
$ make install.tcpip

In this example, the LynxOS kernel (a.out) and the devices nodetab
are copied to $ENV_PREFIX on a native LynxOS system.

Additionally, the /usr/bin/Install.tcpip script can be used to
install IPv4 onto a system.
94 LynxOS User’s Guide

Customizing a Kernel for Performance

install.tcpip6 will install IPv6, IPSec onto a system. Consult your
LynuxWorks sales representative if you would like IPv6/IPSec features.

Customizing a Kernel for Performance

The parameters defined in /sys/lynx.os/uparam.h tell the kernel how much
space (dynamic memory) to set aside for various data structures at run-time. Users
can modify this file to increase (or decrease) the default values.

Configurable Parameters in /sys/lynx.os/uparam.h

The table entitled �Default Values for /sys/lynx.os/uparam.h� on page 96 lists some
of the more important configurable parameters in the binary code written for a
standard development LynxOS system installation in the
/sys/lynx.os/uparam.h file. Other configurable parameters are also
contained in this file, and can be found by searching for the character string
#define.

The /sys/lynx.os/uparam.h file can be viewed using the more command or
in a text editor such as vi.

Modification to the values of these parameters not only influences system
performance, but also increases or decreases the dynamic size of the kernel.

NOTE: This procedure applies to IPv4 only.

NOTE: Before making any changes to /sys/lynx.os/uparam.h, users need to
read the comments in the files for any parameter that has been changed. Some
parameters depend on others. For example, the value of
/sys/lynx.os/uparam.h/NFILES must be greater than or equal to the sum of
all the file parameters, including message queue, shared memory, and semaphore
special files. Otherwise, there is no room for these files and the system does not
allow them to be created or stored.
LynxOS User’s Guide 95

Chapter 7 - Customizing the Default LynxOS Kernel Configuration

Parameter Default Values in /sys/lynx.os/uparam.h

The configurable parameters and their default values in the
/sys/lynx.os/uparam.h file are listed in the table below:

Table 7-5: Default Values for /sys/lynx.os/uparam.h

Parameter Name What the Parameter Defines
Default

Value

CACHEBLKS Disk cache blocks 1024

MAX_FAST_SEMS Fast semaphores 512

MAXSYMLINKS Symbolic links in a path 8

NBDEVS Dynamically-loaded block devices 10

NCDEVS Dynamically-loaded character devices 20

NDRIVS Dynamically-loaded drivers 15

NFILES Open files in system 256

NMOUNTS Mounted file systems 10

NINODES In-cache inodes 256

NPIPES Pipes 50

NPROC Processes 50

NRLOCKS File locks 140

NSHLIB Shared libraries 10

NSOCKETS Sockets 100

NSTASKS Kernel threads 20

NTHREADS User threads 50

NUMIOINTS Registrable interrupt vectors via iointset();
combined number of interrupt vectors derived by
combining number of hardware vectors with
software multiplexes

256

NVSEMS Number of SystemV headers 20

NVSHMS Number of SystemV-shared memory segments 20

QUANTUM Clock ticks until preemption 25

SMEMS LynxOS IPC named shared memory segments 10
96 LynxOS User’s Guide

Additional Configurable Parameters for Detecting Fatal Errors on an MCP750 Board
Additional Configurable Parameters for Detecting Fatal
Errors on an MCP750 Board
Users can enable fatal error detection for LynxOS systems installed in processors
mounted on an MCP750 board by adding the following line to the uparam.h file,
where xxx is the special device file for a flash memory driver:

#define CRASH_DEVNAME xxx

Increasing Maximum Processes

This example illustrates how to customize a LynxOS kernel to handle a greater
number of processes. It assumes that the default bootable kernel, /lynx.os, is
being modified in order to:

� Modify /sys/lynx.os/uparam.h

� Make a new kernel

� Reboot the system

Perform the following steps:

1. Make a backup copy of uparam.h (to revert to the kernel�s original
settings) using the following command:

$ cd /sys/lynx.os
$ cp uparam.h uparam.h.old

2. Use a text editor, such as vi, to edit uparam.h.

3. Find the parameter NPROC, and increase its number, as follows:

USEMS LynxOS IPC user semaphores 20

USR_NFDS Open files per process 40

USYNCH LynxOS IPC pages user synchronization objects 50

NOTE: Not setting CRASH_DEVNAME on MCP750 board systems automatically
sets this feature to disabled.

Table 7-5: Default Values for /sys/lynx.os/uparam.h (Continued)

Parameter Name What the Parameter Defines
Default

Value
LynxOS User’s Guide 97

Chapter 7 - Customizing the Default LynxOS Kernel Configuration

#define NPROC xxx /* max number of\ processes */

4. To activate the changes, rebuild the kernel and reboot the system using
the following commands:

$ make install
$ reboot -a

Creating a Kernel for Debugging

Users can create debug versions of the LynxOS kernel for use with SKDB and
GDB. The debug version of the LynxOS kernel includes support for:

� Hardware Watchpoints

� Code Test

For more information on these functions, see the Total/db User�s Guide.

To create a debug version of the LynxOS kernel, use the following when invoking
make:

make all SYS_DEBUG=true

Changing Kernel Size

Usually, users change the size of a kernel to decrease the amount of storage space it
needs and/or the amount of memory it needs for execution. This section shows the
components of the kernel that affect its size, both in terms of memory and storage.

There are four basic components that users can modify to change the size of the
LynxOS kernel:

� System parameters in /sys/lynx.os/uparam.h

NOTE: The NPROC parameter is being increased to increase the maximum number
of processes. Here, xxx represents the NPROC number.

NOTE: The debug version of the LynxOS kernel should not be used for
deployment. Rebuilding the kernel without the debug information results in
improved performance.
98 LynxOS User’s Guide

Determining the Kernel Size

� Functionality modules (TCP/IP, NFS, and so on)

� Device drivers

� Symbol table information

Of these, uparam.h is the only component that is dynamic - changes to
uparam.h affect the kernel size in memory. The other components mainly affect
the static size of the kernel - the amount of space it takes to store on a device.
However, if users reduce the static size of the kernel, they usually reduce some of
its dynamic size as well. The only exception is the symbol table information -
removing this only affects the static size of the kernel.

After determining the components to modify, users must make a new kernel to see
the size changes in effect. This process is similar to tuning a kernel for
performance.

Determining the Kernel Size

The following subsections detail how to experiment with changing a kernel and
determine its size.

Determining Kernel Disk Space Usage
An easy way to determine the how much total disk space the kernel is using, is
using the ls -l command, as shown below:

$ ls -l /lynx.os
-rwxr-xr-x 1 root 877060 Oct 29 12:01 /lynx.os

The kernel in this example uses 877060 bytes, or about 877 KB of space.

The size command allows users to look more closely at the sizes of the text,
data, and bss segments of the kernel, as illustrated by the command and output
below:

$ size /lynx.os

text data bss dec hex filename
688096 45056 142300 875452 d5bbc /a.out

This utility reports the size (in bytes) of each segment and the sum of the segments.
The total size of the file a.out, in this example, is 875452 bytes (or 0xd5bbc).

In addition to the text and data segments, the kernel contains header and
symbol table information that take up the additional 1608 bytes, as shown in the
command output above.
LynxOS User’s Guide 99

Chapter 7 - Customizing the Default LynxOS Kernel Configuration

Determining Kernel Memory Usage
Figuring out the memory usage of the kernel is more difficult than determining its
static size. Users can use the ps command to look at a currently running LynxOS
kernel.

The following example shows how to use ps to look at a currently running
LynxOS kernel. On a LynxOS system, enter the following command:

$ ps -axonT

This command displays all currently executing processes, including threads and
unattached processes, and reports the total free memory (both physical and virtual)
in kilobytes (KB) at the end of the listing:

To calculate the size of the kernel:

1. Add the amount of free physical memory (8352 KB) to the amount used
(2872 KB): 8352 + 2872 = 11224 KB.

2. Subtract this number from the total amount of memory (RAM) on the
LynxOS system.

The machine in this example has 16 MB of memory, which translates to
16384 KB: 16384 � 11224 = 5160 KB.

pid tid ppid pgrp pri text stk data time dev user S name
0 0 0 0 0 0 0 0 25:49 root R nullpr
1 7 1 1 16 20 8 12 2.44 root W /init
20 12 1 20 18 12 8 8 0.08 atc0 root W /bin/syncer
23 48 26 23 17 56 8 36 0.10 root R /net/rlogind
26 17 1 26 17 52 8 40 0.01 root W /net/inetd
28 18 1 28 17 40 8 52 0.00 root W /net/unfsio
31 19 1 31 17 44 12 32 0.03 root W /net/portmap
33 20 1 33 17 56 8 52 0.00 root W /net/mountd
35 21 1 35 17 44 8 40 0.00 root W /net/nfsd
37 22 1 37 17 64 8 44 0.00 root W /net/rpc.statd
39 23 1 39 17 60 8 60 0.00 root W /net/rpc.lockd.svc
41 24 1 41 17 60 8 68 0.02 root W /net/rpc.lockd.clnt
43 11 1 43 17 72 8 40 0.00 root W /bin/lpd
45 14 1 45 17 204 28 128 0.26 atc0 root W /bin/bash
46 27 1 46 17 204* 28 128 0.27 atc1 root W /bin/bash
47 30 1 47 17 204* 28 136 0.74 atc2 root W /bin/bash
48 33 1 48 17 204* 28 124 0.19 atc3 root W /bin/bash
63 45 46 63 17 340 8 72 0.02 atc1 root S /bin/vi
78 41 23 78 17 204* 28 124 0.08 ttyp0root W /bin/bash
119 54 45 119 17 40 8 36 0.08 atc0 root W /bin/rlogin
121 55 78 121 17 40 12 40 0.07 ttyp0root C /bin/ps
137 46 48 137 17 340* 12 72 0.04 atc3 root S /bin/vi
147 40 119 119 17 40* 8 36 0.06 atc0 root W /bin/rlogin
8352K/0K free physical/virtual, 2872K used (in this display)
100 LynxOS User’s Guide

Removing Unused Device Drivers

Removing Unused Device Drivers

One way to change to the size of a kernel is to remove unused device drivers, as
described in the example below:

This example is based on a LynxOS x86 system that has only one Adaptec 2940
SCSI adapter to control its disk and CD-ROM drives. It does not need device
entries (space used by the kernel) for other LynxOS supported SCSI device drivers.

Before Beginning
1. Back up the /sys/lynx.os files and directories to /tmp/test by

entering the following commands:

$ cp -r /sys/lynx.os /tmp/test

2. Change to the /tmp/test directory.

$ cd /tmp/test

3. Record the following information about the kernel:

� The /lynx.os file�s current size (to be used later in validating that
changes have taken effect)

� The root file system�s device name

� The root file system device�s major and minor numbers

- Use the ls -l or size command to determine the /lynx.os files�s
current size:

$ ls -l /lynx.os
-rwxr-xr-x 1 root 698924 Oct 29 12:01 /lynx.os

- Use the df command to determine the root file system�s device name.
In this example, the root file system device name is
/dev/sd2940.0a.

$ df /
/dev/sd2940.0a 2048 127992 36979 91013 28%

- Use the ls -l command to determine the root file system device�s
major and minor numbers. In this example, the major number is 4 and
the minor number is 16.

$ ls -l /dev/sd2940.0a
brw------- 1 root 4,16 Oct 29 02:33 /dev/sd2940.0a
LynxOS User’s Guide 101

Chapter 7 - Customizing the Default LynxOS Kernel Configuration

Modifying CONFIG.TBL
Use a text editor (such as vi) to modify /tmp/test/CONFIG.TBL as shown
below to comment out unnecessary drivers by adding a pound character (#) to the
beginning of the line:

Supported LynxOS Adaptec Scsi drivers
for SCSI Manager-based Adaptec 154x driver
#I:sim1542.cfg
NCR 810 SIM (SCSI Interface Module) driver.
#This SCSI driver uses SCSI Manager.
#I: simncr.cfg
for SCSI Manager-based Adaptec 294x driver
I:sim2940.cfg

#I:scsi810.cfg
for high-level-low-level based ncr 810 driver

Building the Newly Customized Kernel
Use the following procedure to build a new kernel:

1. Change the working directory to /tmp/test.

$ /tmp/test

2. Build and install a new LynxOS kernel by entering the following
command:

$ make install

After building the new kernel, the installation script generates the file
/tmp/test/a.out and copies it to /lynx.os. Additionally, the
install script first creates, then copies a new nodetab file from
/tmp/test/nodetab to /etc/nodetab, and then generates the file
/etc/nodetab.old.

3. Verify that the new kernel has been created by entering the following
command:

$ ls -l /lynx.os*

-rwxr-xr-x 1 root 661669 Oct 29 12:01 /lynx.os

NOTE: The older versions of generated files are automatically renamed with an
.old extension.
102 LynxOS User’s Guide

Making New Device Nodes

-rwxr-xr-x 1 root 698924 Oct 29 12:01 /lynx.os.old

In this example, the size of the new kernel is smaller than the previous
kernel by about 36 KB, verifying that the new kernel has accepted the
configuration changes made earlier.

Making New Device Nodes
Use the following procedure to create new device nodes.

1. Make a copy of the old devices directory:

$ mv /dev /dev.old

$ mkdir /dev

2. Build new device nodes that correspond with the new /etc/nodetab
file by entering the following commands:

$ cd /dev

$ mknod -a /etc/nodetab

Loading the New Kernel
Users must know the major and minor number of the new kernel�s root file system
before rebooting the machine (notice that the major number has changed to 2 in
the output below).

1. Enter the following command to get the new kernel number:

$ ls -l /dev/sd2940.0a
brw------- 1 root 2,16 Oct 29 02:33 /dev/sd2940.0a

2. Reboot the system by entering the following command:

$ reboot -a

3. At the preboot command prompt (the bootstrap kernel loader program),
specify the new major and minor number of the root device:

$ Command? R 2 16

CAUTION! If either a wrong major or minor number is specified as the root device,
the error message Main file system failed to install (no dev) may
be displayed, or the kernel may crash.
LynxOS User’s Guide 103

Chapter 7 - Customizing the Default LynxOS Kernel Configuration

$ Setting root device to 2 16

$ Command? b

See the preboot man page for a description of the commands available
on the given hardware platform.

Updating the Default Root Device
Now that the new kernel is up and running, users can update the default root device
with the makeboot command:

$ makeboot preboot

This command allows users to directly boot LynxOS without using the R command
in preboot.

Adding Functionality to a Kernel

Many LynxOS users need to develop device drivers that are specific to their target
hardware. LynxOS supports this development with the
/sys/lynx.os/Makefile file. In this Makefile, users can see several Makefile
environment variables that they can modify to explicitly specify custom device
drivers, patches, or other objects to include in the kernel.

Adding a Custom Device Driver

LynuxWorks recommends the following approach for adding a custom driver to a
LynxOS kernel. Substitute actual file and directory names where appropriate in the
example below.

1. Create a custom driver directory in /sys/drivers:

$ mkdir /sys/drivers/my_driver

2. Use an existing device driver Makefile as a template by entering the
following commands:

$ cp /sys/drivers/mem/Makefile

$ /sys/drivers/my_driver

3. Modify the Makefile so that during a kernel build, the driver is compiled
into a unique archive:
104 LynxOS User’s Guide

Configurable Tick Timer

$ FILES = file1.x file2.x file3.x

$ LIBRARY=my_driver

These lines instruct the Makefile to compile file*.c files, and to insert
the compiled .o files in /sys/lib/my_driver.a. Users can look at
the OBJ_RULES file in the /sys/ directory to determine the
substitutions that are appropriate for their compilation of the .c files.
For example, .x compiles an optimized ANSI .c file, while .u.x

does not optimize the .c file.

4. Modify the Makefile in /sys/lynx.os so that the archive for the
device driver is linked to the kernel.

$ CUSTOMER_DRIVERS=$(LIB)/my_driver.a

5. Add the configuration file my_driver.cfg for the driver in
/sys/cfg; see Writing Device Drivers for LynxOS for more information
about device configuration files.

6. Edit the /sys/lynx.os/CONFIG.TBL so that the new driver is
represented:

$ I:my_driver.cfg # for instance

7. Build the LynxOS kernel with the new device driver by entering the
following commands:

$ cd /sys/lynx.os

$ make install

Configurable Tick Timer

Users can configure the number of ticks per second for real-time clocks. The define
TICKSPERSEC in the /usr/include/conf.h file defaults to 100 ticks per
second.

NOTE: New drivers should always be added to the end of CONFIG.TBL so that the
major and minor numbers for existing device drivers remain the same:
LynxOS User’s Guide 105

Chapter 7 - Customizing the Default LynxOS Kernel Configuration

LynuxWorks recommends the following minimum and maximum ticks per second:

Configuring Core Files

LynxOS provides the ability to configure the information saved in core files. This
allows users to control the size of the core file. This feature can be useful in
systems with limited memory or disk resources by storing only the data essential
for debugging the application at hand.

Configurable Options

The following options can be set when installing the configurable core file support:

� Data section (global and static initialized data)

� BSS section (global and static uninitialized data)

� Program heap section (memory allocated by the program using the
malloc() or sbrk() interfaces)

� Shared memory (the memory segments inherited from the shared libraries
used by the program and the memory obtained using the shmget(2)
interface). The data and BSS sections of the shared libraries are
considered a part of shared memory.

Additionally, users can define the name and location of the core file.

� The POSIX standard defines the name of the core file as �core�. Users
can select an non-POSIX alternative file name. The core file name
appends the current seconds value of the core dump event, as well as the
PID of the dumping application. For example:

core.seconds.pid

Table 7-6: Recommended Ticks Per Second value of TICKSPERSEC

Minimum ticks per second Maximum ticks per second

20 (50ms between ticks) 500 (2ms between ticks)

NOTE: Turning off any of the options described above may affect the postmortem
debugging of the program with the LynxOS GDB debugger. For a detailed
description, see The Total/DB User�s Guide.
106 LynxOS User’s Guide

Installing Configurable Core File Capability

� The LynxOS kernel can be configured to save the core file in a specific

location, rather than in the application�s current directory. Both relative
and absolute paths are supported.

Installing Configurable Core File Capability

Install the configurable core file capability by running either of the following
commands:

� Run the Install.core script:

/usr/bin/Install.core

or

� Use make install.core to enable the configurable core file:

cd /sys/lynx.os
make install.core

Either option starts the same configuration script, allowing the user to update the
user defines in uparam.h.

The following figure details a sample configuration dialog session:

bash# cd /sys/lynx.os
bash# make install.core
/bin/make PARSE=Done COMPONENTS="core" install.all

Configuring the Core File Feature ...

Dump the data section [y,n] (y): Enter
Dump the bss section [y,n] (y): Enter
Dump the heap section [y,n] (y): Enter
Dump the shared memory section [y,n] (y): n
Enable Non-POSIX core file naming convention [y,n] (n): y
Please enter the location where the core should be placed [.]: /tmp/altcore

Figure 7-1: Sample Configuration Dialog
LynxOS User’s Guide 107

Chapter 7 - Customizing the Default LynxOS Kernel Configuration
Restoring the Defaults Settings
To restore the default core file settings, the user must run one of the following
commands:

� Run the Uninstall.core script located in the /usr/bin directory.

/usr/bin/Uninstall.core

or

� Issue the make uninstall.core command from the /sys/lynx.os
directory.

cd /sys/lynx.os
make uninstall.core

User Definitions in uparam.h

The configurable core file includes a number of user defines in the LynxOS
uparam.h header file. The following table includes the user definitions and
default values:

NOTE: The following combination of the core configuration settings is considered
illegal:

� Data section dump is on

� BSS section dump is off

� Heap section dump is on.

With these configuration settings, the data, BSS, and heap sections dumps cannot
be saved to the core file in one section as defined by the format of the core. If these
configurations are defined, the BSS section will be dumped into the core file.

Table 7-7: User Defines in uparam.h

User Defines Default Value

CORE_WRITE_DATA 1

CORE_WRITE_BSS 1

CORE_WRITE_HEAP 1
108 LynxOS User’s Guide

Default Configuration of the Core File
Default Configuration of the Core File
The default settings of the configurable core file in uparam.h are as follows:

� Program data section dump is on

� Program BSS section dump is on

� Program heap section dump is on

� Program shared memory dump is on

� Non-POSIX core file name is off

� Core file location is the current working directory

These default settings create a conventional core file, effectively disabling any
configuration options defined by the configurable core file. Core files created when
the default settings are defined in uparam.h are backward compatible with non-
configurable core files.

CORE_WRITE_SHARED 1

CORE_NONPOSIX_FILENAME 0

CORE_ALTERNATE_LOCATION NULL

Table 7-7: User Defines in uparam.h (Continued)

User Defines Default Value
LynxOS User’s Guide 109

Chapter 7 - Customizing the Default LynxOS Kernel Configuration
110 LynxOS User’s Guide

CHAPTER 8 Creating Kernel Downloadable

Images (KDIs)
LynxOS supports creating Kernel Downloadable Images (KDIs) with the
mkimage utility. KDIs combine the LynxOS kernel and its associated applications
into bootable images designed for easy downloading onto development targets.

Overview

Users can create application-ready embedded systems that include the LynxOS
kernel and customized application into bootable images, which can then be
implemented in one of the following ways:

� Burned into Flash

� Put onto distribution media (Floppy or CD-ROM)

� Booted over a network

� Maintained on hard drives

A LynxOS kernel image is a special boot file that always contains LynxOS, but
may also contain a RAM-based file system (called a RAM disk) with minimal files
for operating system functions and applications.

mkimage - the LynxOS KDI Creation Utility

The mkimage utility creates a single file - a bootable kernel downloadable image
(KDI) - with some or all of the following LynxOS components:

� The LynxOS kernel

� A memory image of a RAM disk with a specified initial set of files

� The text segments of applications loaded at initialization time
LynxOS User’s Guide 111

Chapter 8 - Creating Kernel Downloadable Images (KDIs)

The mkimage utility creates the image with attributes that users set in a
specification file. By defining the fields in the specification file, users can create
customized images for their specific development targets. For more information on
specification files, see �Creating a Specification File� on page 116.

The mkimage Syntax and Features

The syntax for mkimage is as follows:

mkimage spec_file output_file

� The mkimage utility lets users create bootable kernel downloadable
images in any directory, with any number of specification files.

� Provided that all of the specification files are accessible, users do not
need root privileges to run mkimage.

� The mkimage utility runs on both native LynxOS systems or cross
development hosts.

LynxOS Kernel

Users can specify that mkimage should use the current LynxOS kernel in
/lynx.os when building the KDI. However, users are most likely to create a
custom kernel for use in their specific image. For example, users may choose to
remove any unused device drivers from the kernel to reduce the size of the kernel,
and as a result, of the final image.

(See Chapter 7, �Customizing the Default LynxOS Kernel Configuration� for more
information on creating custom kernels.)

To save space, mkimage does not expand the bss section of the kernel in the
image. The bss section is expanded and initialized to zeros by kernel code. The
starting execution address is always 32 (0x20) bytes after the start of the image in
memory.

NOTE: See the mkimage.spec man page for an explanation of specification files.

NOTE: Additional options are available in the mkimage man page.
112 LynxOS User’s Guide

Embedded File Systems

Embedded File Systems

Embedded file system images can be one of two types:

� An image that may be used as the root file system contained in, or
referenced by, the kernel image.

� A stand-alone file system image that may be mounted as an additional
file system after LynxOS is up and running. The mkimage utility
prepares both standalone, and kernel root file systems.

Embedded Root File Systems

Embedded root file systems can be one of the following three types:

� RAM-Based File System

The mkimage utility may be used to create a memory-based root file
system. LynxOS accesses this file system using its RAM disk driver. The
memory-based file system may physically reside in RAM, ROM or flash
memory, depending on how the image is used and created for the target
machine. Depending on the set of utilities put into the image, the image
may function as a minimal application target or as a complete LynxOS
development system.

� Disk-Based File System

If the major and minor numbers of a disk drive attached to a target system
are specified, that drive may be used as the root file system for the kernel
downloadable image (KDI). A disk-based root file system behaves
identically to a kernel root file system booted from disk.

� No File System

For kernels appropriately generated, the image does not contain or
reference a file system.

Embedded Stand-Alone File System Images

An embedded standalone file system image is memory-based and may be accessed
through the LynxOS RAM disk driver. The file system image may reside in any
type of physical memory but is most likely to be in ROM or flash memory. No
provision for moving the embedded file system image to RAM is provided by the
LynxOS User’s Guide 113

Chapter 8 - Creating Kernel Downloadable Images (KDIs)

LynxOS kernel. Application text segments may or may not be resident as required
(see �Resident Text Segments� below).

Resident Text Segments

Applications may have resident (execute in place - XIP) text images in an
embedded memory-based file system. In a normal file system, the text segment of
an application is copied from the file system to RAM for execution. In a memory-
based file system, the text segment is copied from the memory-resident file system
to memory. Resident text applications do not require this copying process, which in
turn, reduces run-time RAM memory requirements. The considerations that should
be taken into account when deciding to use resident text are as follows:

� The type of memory the resident text is in

� Required execution speed

� RAM constraints

� Type of embedded file system

When the execution speed of the application is most important, the text of the
image should reside in RAM, because, in general, any type of ROM is slower than
RAM. There are several ways to accomplish this, depending on how the KDI or
File System Image (FSI) is specified, and the type of memory the image resides in.

When the application is in the root FSI, and the KDI is in RAM, resident text
should be used to ensure optimal execution speed and RAM conservation.

When the application is in the root FSI and the KDI is in some sort of ROM, the
text may or may not need to be resident. When the text is specified as resident and
text=ram is also specified, the resident text of the application (and all other
resident text applications) is copied to RAM by the kernel during kernel
initialization. When the text is not specified resident, the kernel loads the
applications text to RAM from the file system at execution, identically to the
application text residing on a disk drive. Since there is no provision to move
resident text segments to RAM in a standalone FSI, a non-resident text segment is

NOTE: Be aware that specifying text=ram for a root file system image that
normally resides in some type of ROM, copies all of the application�s resident text
in the image to RAM during kernel initialization.
114 LynxOS User’s Guide

Creating a KDI Image

the only way to have the application run out of RAM from a standalone FSI
residing in some sort of ROM.

When the root or standalone FSI resides in ROM and execution speed is a priority,
leaving the application text segments in the non-resident files system conserves the
greatest amount of memory. This causes the kernel to load the text segments on
demand into RAM from the FSI. Alternately, when the root FSI resides in RAM,
using resident text for applications conserves the greatest amount of memory.

Creating a KDI Image

Procedure Overview

The same basic steps are used to create images for the entire range of boot
applications, for network booting to ROM booting:

� Configure a LynxOS kernel with the desired functionality.

� Create a specification file for mkimage that defines the LynxOS kernel
to use and any applications to include.

� Run mkimage.

� Test the image.

� Put the image into the target environment.

For information on network booting the image, please read �Network Booting
Diskless Clients with LynxOS� in the LynxOS Networking Guide.

The following steps detail creating a Kernel Downloadable Image (KDI). These
steps are also explained in the subsections that follow:

1. Create a copy of /sys/lynx.os by entering the following commands:

$ cp -r /sys/lynx.os /tmp/test.os

$ cd /tmp/test.os

2. Enable the RAM disk driver in CONFIG.TBL.

3. Make any other modifications to files such as uparam.h and
Makefile.

4. Create a new kernel with make a.out.

5. Create a specification file with desired attributes.
LynxOS User’s Guide 115

Chapter 8 - Creating Kernel Downloadable Images (KDIs)

6. Run mkimage.

For information on creating a remotely bootable kernel (including sample scripts),
see �Network Booting Diskless Clients with LynxOS� in the LynxOS Networking
Guide.

Enabling the RAM Disk Driver

To enable the RAM disk driver, users must uncomment (by removing the # sign)
the line I:ramdisk.cfg in the CONFIG.TBL file.

Modifying Kernel Parameters

One way to reduce the size of a kernel is to remove all superfluous drivers; see
Chapter 7, �Customizing the Default LynxOS Kernel Configuration� for examples.

Creating a Specification File

The example specification file in the mkimage.spec man page can be used as a
template for creating a specification file.

Some important attributes of mkimage.spec are as follows:

NOTE: When developing application on a LynxOS cross development host, it is
necessary to use $ENV_PREFIX/pathname where absolute paths are shown in
this chapter.

Table 8-1: mkimage.spec Attributes

Attribute Description

target=target=[x86|ppc] The target system

osstrip=[local|all|none] Causes local symbol definitions to be stripped from the
kernel text file.

ostext=[ram|rom] Designates where the kernel resides in the running system.

kernel=path The path of the LynxOS kernel to be used in the image;
This can be /lynx.os, but most likely is a customized
kernel that the user has built elsewhere on the system.

nodetab=path The device node table corresponding to the kernel
116 LynxOS User’s Guide

Testing Kernel Images
Testing Kernel Images

Users can use the LynxOS preboot utility to directly test the kernel images made
with mkimage (see the preboot man page for the specific commands used on
different platforms). For example, to test the kernel image
/tmp/test/images/image1 created on a LynxOS x86 machine, perform the
following steps:

1. Reboot the machine by entering the following command:

$ reboot -a

2. At the preboot prompt (Command?), enter the following command:

flags= Designates the boot flags.

free= Designates the number of free blocks.

inodes= Designates the number of free inodes.

root=[ram|rom] Specifies that the root file system is either resident in RAM,
ROM, mounted from the device, or that there is no file
system.

strip=[true|false] Designates whether or not the application files are to have
symbols stripped.

text=[ram|rom] Designates that the resident application programs will be in
ROM, or moved to RAM.

resident=[true|false] Designates whether or not the application programs are to
be resident in memory.

directory= A directory on the target file system

file= A file on the target file system

source= Designates a fully qualified path name to a source file to be
copied into the target file system as the file specified in the
file=.

owner= Designates the numeric owner ID of the target file.

group= Designates the numeric group ID of the target file.

mode= Designates the file mode for the target filesymlink.

symlink Designates a symbolic link of pathname1 to pathname2.

Table 8-1: mkimage.spec Attributes (Continued)

Attribute Description
LynxOS User’s Guide 117

Chapter 8 - Creating Kernel Downloadable Images (KDIs)

Command? b /tmp/test/images/image1

Booting KDIs

The following sections provide details on:

� Booting images over the network (remote booting)

� Booting from ROM

Booting Images over a Network

To network boot LynxOS (also called to netboot), the image file is stored on a
remote server and copied over the network into the RAM of a remote node by the
firmware-resident TFTP boot code. Generally, the node is diskless.

Because everything is in RAM, the boot code gives control to the loaded operating
system, which in turn, configures the attached RAM disk as its root file system. In
this case, because all the executables are in RAM, it is useful if they are executed
directly without being copied again into RAM. Thus, the TEXT segments of the
executables are loaded as part of system initialization at boot time, rather than on
demand from the root file system.

In the remote boot configuration, the RAM memory map is sequential, as shown in
the figure below:

Figure 8-1: Example RAM Memory Map

INT Vectors

OS TEXT Segment

OS DATA Segment

OS bss Segment

OS Symbols

RAM Disk File System

Application TEXT Segments
118 LynxOS User’s Guide

Booting Images from ROM

Booting Images from ROM

The firmware-resident ROM boot code always passes control to the ROM-based
kernels. At this point, depending on the options defined in the specification file, all
or portions of the image are moved to RAM. LynxOS always moves the DATA and
bss sections to RAM.

LynxOS sets up the memory map such that some portions are mapped into ROM
and other portions are mapped into RAM. This is required in order to fully utilize
the contents of ROM, without copying them into RAM. The previous figure shows
an example of this mapping scheme. The LynxOS kernel text segments, root file
system, and resident text segments are all in ROM, as shown in the figure below.

Figure 8-2: Example Memory Map Configuration

As shown in the figure above, the first pages, containing the interrupt and
exception vectors, are mapped into RAM. The next few pages are mapped into
ROM for the OS TEXT section. The following few pages are mapped into RAM
for the OS DATA section (copied from ROM), for the OS bss section (initialized

INT Vectors

OS DATA
Segment

OS BSS
Segment

OS Symbols

INT Vectors

OS DATA
Segment

OS BSS
Segment

OS Symbols

OS TEXT
Segment

ROM Disk

Application TEXT
Segment

OS DATA
Segment

OS Symbols

OS TEXT
Segment

ROM Disk

Application TEXT
Segment
LynxOS User’s Guide 119

Chapter 8 - Creating Kernel Downloadable Images (KDIs)

in RAM), and for OS symbols (copied from ROM). The root file system and
resident TEXT segments are mapped to ROM.

If the root file system is read-only and the application needs a writable file system,
the image must contain a script to create a writable RAM disk. The script should
invoke the mkramdisk utility to create the writable RAM disk after the system is
up and running.

See also the section �Creating Bootable Installation Media� on page 132.

KDI Build Templates

To simplify the KDI development process, LynuxWorks provides a KDI build
template directory, and a tar file (xx.kdi.tar.gz) of the KDI build template, on
the ODE CD-ROM. The build template and the tar.gz files are located in the
kdi and tar_images directories, respectively.

The kdi directory allows users to easily build their own KDIs for execution on
target hardware. A KDI build template essentially consists of all the binary and
source files required to develop a custom application for the user�s target system
using LynxOS.

The /demo/demo.bsp_name and tar_images/xx.demo_bsp_name.tar.gz
directories have prebuilt versions of these KDIs, which can be loaded onto a user�s
system for evaluation and demonstration.

The sections that follow demonstrate how to set up a KDI project area, build a
KDI, and download and execute it on a target. Because the project scripts are
written in Bourne Shell, these build steps can be followed on any cross
development or native development system.

Template Conceptual Overview

LynuxWorks provides KDI directories to give users a set of templates from which
they can jump-start their own development of KDIs. The scripts automate the
process of creating a project directory, copying a kernel build directory, installing

NOTE: The KDI build templates and the tar.gz files are not automatically
installed as a part of the default installation; for information on installing KDI
build templates and the tar.gz files, see the LynxOS Installation Guide.
120 LynxOS User’s Guide

Included KDI Build Templates

the appropriate device drivers, building the kernel, selecting the appropriate files
from the LynxOS distribution, and generating a KDI.

Included KDI Build Templates

The following table describes the KDIs that are provided with LynxOS.

Build Template Summary

developer Contains development and networking utilities that provide a minimal configuration
for development. Includes the following utilities:

� disk--Disk formatting and partitioning utilities
� gnutar--gnutar and gnuzip utilities
� shell--Minimal shell configuration
� vm--Virtual memory
� skdb--Simple kernel debugger
� totaldb--TotalDB kernel debugger
� dhcp--DHCP protocol support (not enabled by default)
� rcp--RCP (remote copy) utility
� ftp--FTP (file transfer protocol) utility
� tcpdump--Displays TCP information
� tview--TotalView
� apache--Apache web server
� nfsmount--NFS mount utility

The developer demo can be used with host system IDEs VisualLynux and
CodeWarrior. The Developer KDI is documented in the section �Example--
Building, Booting, and Using the developer KDI� on page 127.

hello Simple configuration demonstrating a full kernel, RAM/ROM file system and a
small hello_world.cpp application

Since this is a minimal KDI, users must power down the system to end the demo.
LynxOS User’s Guide 121

Chapter 8 - Creating Kernel Downloadable Images (KDIs)

install This KDI contains basic networking and disk utilities that can be loaded onto a

target board with FTP.

install.kdi performs these steps:

1. Determines what disk you have
2. Partitions the disk using mkpart.
3. Prepares a file system on the disk (if needed) and mounts it. Starts disk swapping

(if needed).
4. Uses FTP to retrieve tar images.
5. Extracts tar images.
5. Makes device nodes and sets up networking.

rlogin This KDI creates a simple TCP/IP configuration, demonstrating the use of
rlogin.

On the target board, boot the KDI and log in as root. Use rlogin to log into a
system on the network. Use either the hostname (if available in /etc/hosts) or
IP address:

rlogin <hostname | ip_address>

From another system, rlogin to the target.

rootfs This KDI provides a basic root file system for a target board. This KDI does not
contain a RAM disk file system, but boots directly from the hard disk instead. The
KDI defaults to mount /dev/ide.2a. If the file system requires a different
device, the KDI must be rebuilt to use that device.

Build Template Summary
122 LynxOS User’s Guide

kdi Directory Structure
kdi Directory Structure

The kdi directory includes the following files and directories:

tkwish This KDI demonstrates the use of the WISH shell to create an X Windows-based
user interface to the target board. A simple interactive window is displayed to let the
user browse several files on the file system.

Use the following instructions to set up tkwish:
1. On the target board, set the DISPLAY variable to point to the X server. If there is
an entry in the /etc/hosts file for the X server machine, use the hostname of
the system. Otherwise, use the IP address:

DISPLAY=<hostname | ip_address>:0.0
export DISPLAY

2. On the X server, enable remote clients:
xhost +

3. On the target board system, type demo.tkwish.
4. On the X server use the mouse to point and click.

tutorial This KDI provides an interactive demonstration of processes and threads for
LynxOS. Type q to quit the demo.

Build Template Summary

Table 8-2: KDI Directory Structure

KDI Directory/File Description

[0-9]* These are KDI build directories.

Makefile This is the top-level Makefile.

PROJECT.sh This Bourne Shell script sets up a custom KDI build
environment.

README This file describes contents of the kdi directory.

common This directory contains shared source code, binaries and
scripts.

bsp This directory contains single port files for target
hardware boards.
LynxOS User’s Guide 123

Chapter 8 - Creating Kernel Downloadable Images (KDIs)

KDI Build Directories
Additionally, there is a distinct ordering of the KDI build subdirectories.
LynuxWorks uses the naming scheme xy.name, according to functionality and
complexity. x, y, and name are defined as follows:

Restrictions

This demonstration harness assumes that a single user is building the KDI. It also
assumes that the building of demo KDIs is done one at a time, since all demo KDIs
share the same BSP directory where kernels are built; therefore, two KDI
directories cannot be built in parallel.

Getting Started

A shell script, PROJECT.sh, is provided to automate the setup process. Before
running this script, users must have already installed LynxOS from the distribution
CD-ROMs onto the system�s hard disk, or have mounted it from a CD-ROM; and
have sourced the SETUP.bash or SETUP.csh scripts provided.

These scripts set up the PATH environment variable, and also set ENV_PREFIX to
point to the distribution directory. ENV_PREFIX must be set correctly for
PROJECT.sh to work.

To set up ENV_PREFIX, source the SETUP.bash or SETUP.csh scripts
provided in the LynxOS release directory. To verify that ENV_PREFIX is set
correctly, enter the following command, which lists the LynxOS distribution:

Table 8-3: KDI Naming Convention

Convention Description

x =0 KDIs that assist in installing LynxOS on the target

x =1 Simple KDIs that do not require networking (TCP/IP)

x =2 KDIs requiring TCP/IP

x =3 KDIs that use NFS, PPP, SNMP or other networking
protocols

x =4-9 Special purpose KDIs

y =0-9, a-z, A-Z Range of 62 possible unique identifiers

name Any string summarizing the capability of the KDI
124 LynxOS User’s Guide

Building KDIs

$ ls $ENV_PREFIX

If ENV_PREFIX is set correctly, then execute the PROJECT.sh script by entering
the following command:

$ ENV_PREFIX/kdi/PROJECT.sh

The following screen output is displayed:
===
| Project set up script |
| |
| This script will create a customized directory for |
| building and experimenting with Kernel Downloadable |
| Images (KDIs.) |
===
Note: 10MB of available disk space is needed for minimal project
directory. 30MB is recommended.
Project directory location? [/tmp/newproj]

Enter a location on disk where the user has write permission (/tmp/newproj is
the default) with at least 10 MB of free space available (30 MB is recommended).
The following output is displayed:

The following BSPs are supported:
PPC [pc_drm,pp_drm,cpci_drm,

 vmpc,mpc860t_fads,mpc8260_vads,pmc860]
x86 [x86_at,x86_drm,cpci_x86]

Which BSP should we use?[xxx]
Note: The default selection displayed is $ENV_PREFIX/sys.
Enter target network name and IP address now? [y]

If a machine name and an IP address for the target board has been selected, enter y.
The PROJECT.sh script goes through the process of modifying the rc.network
file for the specified target. If n is entered, then the rc.network file that gets
configured into the system�s KDIs interactively prompts the user for the machine
name and IP address at boot-time as follows:

What is the network name of the target board? [lynxdemo]
Enter the target machine name:
What is IP address name of the target board? [1.1.1.1]
Enter your target IP address.

Once all questions have been answered, PROJECT.sh proceeds to set up the
customized KDI build environment, copying the appropriate files.

Building KDIs

To begin building KDI demos, change the working directory to
/tmp/newproj/11.hello, and issue a make all command; the following steps
are executed:

#########
Step 1a. Modify CONFIG.TBL
LynxOS User’s Guide 125

Chapter 8 - Creating Kernel Downloadable Images (KDIs)

#########

This step creates a local copy of CONFIG.TBL, which is used by the kernel
Makefile to configure device drivers as either in or out. This CONFIG.TBL file is
copied to the local Board Support Package (BSP) directory (where the kernel is
linked) each time the user issues a make command in this
/tmp/newproj/ll.hello directory.

#########
Step 1b. Modify uparam.h
#########

This step creates a local copy of the uparam.h header file. This file is used to
specify the size of user-modifiable kernel data structures and resources.

Like CONFIG.TBL, the uparam.h file is copied to the local BSP build directory
each time a make command is issued in the /tmp/newproj/ll.hello
directory.

#########
Step 2: Perform any local build actions defined in desc.bsp_name.sh
#########

This is a hook that allows a KDI build directory to do any special local processing.
Look at the desc.* file for details.

#########
Step 3: Make kernel
#########

This step changes directory to the ./bsp.* directory, and makes the kernel,
using the CONFIG.TBL and uparam.h files from the KDI build directory.

#########
Step 4: Build KDI
#########

This step is run from within the KDI build directory. The mkimage tool is invoked
using the KDI mkimage specification file to pull together the appropriate kernel
components and applications.

#########
Step 5: Build Complete
#########

Look at hello.kdi in /tmp/newproj. An output similar to the following is
displayed:

-rwxr-xr-x 1 int 774144 May 11 19:38 /tmp/newproj/hello.kdi

The KDI can now be downloaded and executed on the target. For more information
on demo KDIs and loading KDI images onto the target, see the appropriate LynxOS
Board Support Guide.
126 LynxOS User’s Guide

Example--Building, Booting, and Using the developer KDI

Example--Building, Booting, and Using the developer KDI

The Developer KDI includes development and networking components that
provide a development environment on a target board. This section describes how
to create, boot, and user the Developer KDI. This example uses the following
configurations:

Configuring the Developer KDI

The default configuration of the Developer KDI contains many utilities that
provides a wide range of functionality for a variety of development tasks. The
default configuration of the Developer KDI can change by editing the
developer.spec file to add or remove functionality in the KDI.

Removing Unnecessary Components
The size of the Developer KDI demo may be too large for some systems. The
default configuration is close to 10 MB. Unnecessary components can be removed
from the default KDI image by commenting out the lines in developer.spec and
rebuilding the kernel.

Enabling Required Components
Several components are not included in the default KDI. To enable the following
components, uncomment the required lines in the developer.spec file:

� Linux ABI Compatibility Layer (multiple files)

� SpyKer Kernel Event Trace Analyzer (spyker target file)

Table 8-4:

Parameter Host Target

Platform Red Hat Linux 7.2
LynxOS 4.0 Cross Development
pc_680

Force PowerCore 680

Hostname linuxcdk fpc1

IP Address 192.1.1.1 192.1.1.2

Ethernet Address Not needed. 08:00:3E:23:8C:BD
LynxOS User’s Guide 127

Chapter 8 - Creating Kernel Downloadable Images (KDIs)

� Total View

� VisualLynux

� CodeWarrior

Check the developer.spec file and uncomment any files that are required by these
utilities to enable them in the Developer KDI.

Rebuilding the KDI
After editing the developer.spec file, rebuild the kernel.

make all

Configuring the Linux Cross Development Host

TFTP is required by the target to load the developer.kdi. Use the following
instructions to enable tftp on the host system:

1. Edit /etc/ethers to include the Ethernet address of the Target board:

vi /etc/ethers

2. Edit the /etc/hosts file to include the hostname and IP address of the
target board:

vi /etc/hosts

3. Create the tftpboot directory:

mkdir /tftpboot

4. Enable TFTP by editing the tftp file

cd /etc/xinetd.d/

vi tftp

08:00:3E:23:8C:BD fpc1

Figure 8-3: /etc/ethers File

192.168.1.2 fpc1

Figure 8-4: /etc/hosts File
128 LynxOS User’s Guide

Booting the KDI

5. In the disable field, type �no� to enable tftp.

6. In the server_args field type �/tftpboot�. The following provides a
sample tftp file.

7. Restart the xinetd services:

cd /etc/rc.d/init.d

./xinetd restart

Booting the KDI

At the PowerBoot> prompt, type in the following command to netboot the KDI:

PowerBoot> netload developer.kdi 400000 <hostIP>
<targetIP>

For this example, type the following:

PowerBoot> netload developer.kdi 400000 192.168.1.1
192.168.1.2

default: off
description: The tftp server serves files using the trivial file transfer \
protocol. The tftp protocol is often used to boot diskless \
workstations, download configuration files to network-aware printers, \
and to start the installation process for some operating systems.
service tftp
{
socket_type = dgram
protocol = udp
wait = yes
user = root
server = /usr/sbin/in.tftpd
server_args = /tftpboot
disable = no
}

Figure 8-5: Sample TFTP Configuration File

NOTE: Note that if the Developer KDI will not load, it may be too large to boot.
Removing components in the Developer KDI demo will allow it to boot.
LynxOS User’s Guide 129

Chapter 8 - Creating Kernel Downloadable Images (KDIs)

Using the KDI

The Developer KDI can be used in a variety of ways. With the Apache component
enabled in the developer KDI, a browser can open an http connection to the
target. For example:

Figure 8-6: Apache Web Server Running on Target

This HTTP demonstration provides an example of the different types of
development that can be done on the target.

Default Usernames and Passwords
The Developer KDI includes user accounts used to access the target board.
LynuxWorks IDEs VisualLynux and CodeWarrior can connect to the target board
130 LynxOS User’s Guide

ROMing Issues

and perform various development tasks. The following table provides the user
name and passwords for these utilities:

ROMing Issues

The tools and steps used to burn an image into a PROM are specific to the target
hardware. Depending on the PROM burner and target hardware, users may be able
to burn the image file as is (with no conversion to an intermediary file format) into
a PROM. Refer to the specific hardware documentation for more information.

The GNU objcopy utility may be used to convert the image to the file format
required by the user; see the objcopy man page for further information.

Generating PROM Images on x86 Systems

Building the Jump Code
BIOS limitations on the x86 architecture require that a small object module,
rkjump, be used to boot up and load a LynxOS kernel from ROM. It must be
available within the address range 640 KB to 1 MB at system power up. On most
BIOS types, rkjump must reside in the address range 0xC0000 to 0xDFD00 on
a 0x200 byte boundary.

After taking control from the system BIOS, the rkjump module initializes the
Segment Descriptor Registers, sets the CPU to protected mode, and transfers
control to the ROM segment containing the LynxOS image.

rkjump is very specific to the memory architecture and must be tuned to the
specific target�s needs. The sources and build environment for rkjump are in
/src/bin/rkjump386. Before building the rkjump module, users must define

Table 8-5: Default Username and Passwords in the Developer KDI

Component Username Password

FTP ftp ftp_user

VisualLynux vl vl_user

CodeWarrior cw cw_user

TotalView tv tv_user
LynxOS User’s Guide 131

Chapter 8 - Creating Kernel Downloadable Images (KDIs)

the kernel image ROM address in the rkconfig.h file in the
/src/bin/rkjump386 directory.

For example, if the kernel image has been created with a load address of
0x00100000, users must specify an address of + 0x20 in
/src/bin/rkjump/rkconfig.h. The rkjump module then needs to be rebuilt
by entering the following commands:

$ cd /src/bin/rkjump386

$ vi rkconfig.h

Change the value of RKJUMP_ADDRESS as follows:

define RKJUMP_ADDRESS 0x00100020

Exit the vi text editor, and enter the following commands:

$ touch rkjump.c

$ make all

Converting the Jump Code
After building the customized rkjump for the image being created, use the GNU
objcopy utility to prepare the file for transfer to ROM.

Converting the Kernel Image
Convert the kernel image created with mkimage into hex format using the GNU
objcopy utility.

Creating Bootable Installation Media

LynxOS facilitates creating bootable installation floppy disks for x86 platforms,
and bootable CD-ROMs for x86 and PowerPC platforms; �Creating a Bootable
x86 Floppy� and �Creating a Bootable x86 or PowerPC CD-ROM� below detail
this, respectively.
132 LynxOS User’s Guide

Creating a Bootable x86 Floppy

Creating a Bootable x86 Floppy

LynxOS users can create bootable LynxOS installation floppies for x86 systems on
formatted 1.44 MB disks (for more information on formatting floppies, see
�Formatting Floppy Disks� on page 48 and the fmtflop man page).

To create a bootable LynxOS installation floppy disk, perform the following steps:

1. Place a formatted 1.44 MB floppy disk in the x86 system�s floppy drive.

2. Run the build script by entering the following command line:

$ /sys/romkit/installation/Build

3. Follow the on-screen instructions.

The /sys/romkit/installation/Build script assumes that no file
systems are mounted on the /mnt directory. Users need be sure that
/mnt is available for use before using the script. If a file system is
mounted on /mnt, the following command unmounts it:

$ umount /mnt

For more information on mounted file systems, see the mount man page.

Creating a Bootable x86 or PowerPC CD-ROM

LynxOS users can create a bootable LynxOS installation CD-ROM for either x86
or PowerPC systems.

To create a LynxOS installation CD-ROM for either x86 or PowerPC platforms,
perform the following steps as root:

Creating CD-ROM Image on Host
1. Create a directory on a file system partition that has enough free disk

space to unload all of the desired tar.gz image files by entering the
following command:

$ mkdir -r /media/tar_images

where media is the desired name for the bootable CD-ROM.

2. Change directory to the newly created directory:

$ cd /media/tar_images
LynxOS User’s Guide 133

Chapter 8 - Creating Kernel Downloadable Images (KDIs)

3. Locate the desired tar.gz image files (originally in the /tar_images

directory on the ODE CD-ROM). The following are the required
tar.gz image files:

xxxxx.devos.tar.gz
xxxxx.bsp_bsp_name.tar.gz

bsp_name is the type of Board Support Package (BSP) and xxxxx is
the LynuxWorks naming scheme for the KDI build subdirectories. (See
�KDI Build Directories� on page 124.)

4. Copy the desired tar.gz image files into the /media/tar_images
directory:

$ cp xxxxx.devos.tar.gz
xxxxx.bsp_bsp_name.tar.gz /media/tar_images

5. Extract the tar.gz image files into the /media directory by entering
the following tar commands:

$ tar zxpf tar_images/xxxxx.devos.tar.gz
$ tar zxpf tar_images/xxxxx.bsp_bsp_name.tar.gz

In the /media/sys directory, create a symbolic link from

bsp.bsp_name to lynx.os:

$ cd /media/sys
$ ln -s bsp.bsp_name lynx.os

6. Copy the nodetab file from /media/sys/lynx.os to
/media/etc:

$ cp lynx.os/nodetab ../etc

7. Change the working directory to /media/dev and create device nodes
in /media/dev with the following command:

$ cd /media/dev
$ mknod -a ../etc/nodetab

8. Change the working directory back to /media and copy the kernel file
located in /media/sys/lynx.os/a.out to /media/lynxos:

$ cd /media
$ cp sys/lynx.os/a.out lynx.os
134 LynxOS User’s Guide

Creating the CD-ROM

Creating the CD-ROM

1. Ensure that the CD-ROM is read as bootable by entering the following
command (where platform is one of either x86 or ppc):

$ touch tar_images/
.this_is_a_bootable_platform_CD

2. Create the ISO formatted image using the mkisofs command (see the
mkisofs man page for further information):

$ mkisofs -R -b preboot ../iso_image .

3. Change the working directory up one level:

$ cd ..

4. Use the makeboot utility to configure the iso_image file:

$ makeboot -r major,minor -b device
-flag autoboot_CD -timeout secs iso_image

5. Use the cdwrite utility to write the bootable iso_image to a
recordable CD-ROM (see the cdwrite man page for further
information) by entering the following command:

$ cdwrite -i iso_image -r -v -s speed cdr_device

NOTE: makeboot must be run on the platform from which iso_image is to be
booted (see the makeboot man page for more information).

NOTE: The command -s speed sets the speed factor used for writing the
CD-ROM.The default speed is 1. This means a data transfer rate of 150 KB per
second. It takes 74 minutes to fill a 650 MB CD-ROM at speed factor 1.

The approximate times to write lead-in and lead-out tracks are as follows:

� -s 1 4 minutes

� -s 2 2 minutes

� -s 4 1 minute
LynxOS User’s Guide 135

Chapter 8 - Creating Kernel Downloadable Images (KDIs)
136 LynxOS User’s Guide

CHAPTER 9 Linux ABI Compatibility
The Linux ABI (Application Binary Interface) compatibility feature of LynxOS
allows Linux binary applications to run under LynxOS. This chapter provides a
detailed overview of the Linux ABI feature.

Overview

LynxOS supports executing dynamically-linked Linux binary applications on
LynxOS systems as if they were native LynxOS applications. There is no need to
rebuild Linux applications with LynxOS tools, or even access the source code.
Linux application binaries can be installed and executed on a LynxOS machine in
the same manner as they are installed and executed on a Linux system. The Linux
ABI feature adds a new level of flexibility by allowing users to use both Linux and
LynxOS binaries in parallel on a single LynxOS system.

Linux ABI compatibility is made possible by adding a Linux ABI Layer that
includes Linux libraries. �Native� LynxOS applications (applications built for
LynxOS) are unaffected by the addition of the Linux ABI Layer.
LynxOS User’s Guide 137

 Chapter 9 - Linux ABI Compatibility
Installing the Linux ABI Layer

The Linux ABI Layer is installed from the Additional Components CD-ROM.
Refer to the LynxOS Installation Guide for installation instructions.

In addition to the basic set of standard Linux shared libraries
(linuxabi.tar.gz), LynuxWorks provides a more comprehensive set of
standard Linux shared libraries (linuxabi_advanced.tar.gz) for users who
require libraries that may not be included in the basic set. Note that this file is See
the LynxOS Installation Guide for more details on installing these libraries.

Linux ABI Layer

This section provides a brief overview of the Linux ABI software layer. The
following diagram shows how a Linux binary runs on LynxOS under the Linux
ABI Layer:

Figure 9-1: Linux ABI Software Layer

LynxOS
dynamically-linked
applications

Linux
dynamically-linked
applications

ld.so
dynamic
linker

libc ...libc ...

Linux ABI
libraries

LynxOS �native�
libraries

dynamic
links

dynamic
links

run-time
system calls

run-time
system calls

LynxOS kernel

user space

kernel space

link and
execute

exec()
system
call
138 LynxOS User’s Guide

 Interoperability with LynxOS Native Applications
A dynamically-linked application (built for either LynxOS or Linux), relies on the
ld.so dynamic linker and loader to complete the process of linking all necessary
references to shareable objects before the application is executed.

Linux application binaries are linked by ld.so into the shared libraries that
compose the Linux ABI Layer. This Linux ABI layer translates Linux application
shared object interface calls into calls that are binary-compatible with LynxOS
kernel interfaces. Typically, implementation of standard interfaces are similar
enough between Linux and LynxOS that only a simple translation (or none at all) is
required before a call from a Linux application can go into the LynxOS kernel.

Interoperability with LynxOS Native Applications

The Linux ABI Layer relies on the LynxOS ld.so dynamic linker to resolve
Linux application calls into shared objects using an appropriate set of Linux shared
libraries. Native LynxOS applications are not affected by the Linux ABI feature in
any way. LynxOS native applications continue to be linked into the LynxOS native
shared libraries, and function as before.
LynxOS User’s Guide 139

 Chapter 9 - Linux ABI Compatibility
Linux ABI Shared Libraries

The following table shows the shared libraries included in the Linux ABI Layer.
The libraries are located in the same directories as they are on Linux (specified in
the DT_RPATH field of the application ELF header). This allows the LynxOS
ld.so dynamic linker and loader to link the Linux binary into the Linux ABI
shared libraries.

Table 9-1: Linux ABI Shared Libraries

x86 Shared Libraries PowerPC Shared Libraries

lib/
lib/libc.so.6
lib/libcrypt.so.1 -> libcrypt-2.2.2.so
lib/liblynxpthread.so
lib/libm.so.6 -> libm-2.2.2.so
lib/libnsl.so.1 -> libnsl-2.2.2.so
lib/libpthread.so.0
lib/librt.so.1
lib/libtermcap.so.2 -> libtermcap.so.2.0.8
lib/libutil.so.1 -> libutil-2.2.2.so
lib/ld-linux.so.2 -> ../usr/lib/ld.so.1
lib/libresolv.so.2 -> libresolv-2.2.2.so
lib/libcrypt-2.2.2.so
lib/libnsl-2.2.2.so
lib/libtermcap.so.2.0.8
lib/libutil-2.2.2.so
lib/libresolv-2.2.2.so
lib/libdl.so.2 -> shlib/libdl.so

lib/libm-2.2.2.so

lib/
lib/libc.so.6
lib/libcrypt.so.1 -> libcrypt-2.2.1.so
lib/liblynxpthread.so
lib/libm.so.6 -> libm-2.2.1.so
lib/libnsl.so.1 -> libnsl-2.2.1.so
lib/libpthread.so.0
lib/librt.so.1
lib/libtermcap.so.2 -> libtermcap.so.2.0.8
lib/libutil.so.1 -> libutil-2.2.1.so
lib/ld.so.1 -> ../usr/lib/ld.so.1
lib/libdl.so.2 -> shlib/libdl.so
lib/libncurses.so.4
lib/libcrypt-2.2.1.so
lib/libm-2.2.1.so
lib/libnsl-2.2.1.so
lib/libutil-2.2.1.so
lib/libtermcap.so.2.0.8
lib/libresolv-2.2.1.so
lib/libresolv.so.2 -> libresolv-2.2.1.sousr/

usr/X11R6/
usr/X11R6/lib/
usr/X11R6/lib/libICE.so.6 -> libICE.so.6.3
usr/X11R6/lib/libSM.so.6 -> libSM.so.6.0
usr/X11R6/lib/libX11.so.6 -> libX11.so.6.2
usr/X11R6/lib/libXext.so.6 -> libXext.so.6.4
usr/X11R6/lib/libXmu.so.6 -> libXmu.so.6.2
usr/X11R6/lib/libXt.so.6 -> libXt.so.6.0
usr/X11R6/lib/libXaw.so.7 -> libXaw.so.7.0
usr/X11R6/lib/libXft.so.1 -> libXft.so.1.0
usr/X11R6/lib/libXpm.so.4 -> libXpm.so.4.11
usr/X11R6/lib/libXrender.so.1 ->

libXrender.so.1.0
usr/X11R6/lib/libICE.so.6.3
usr/X11R6/lib/libSM.so.6.0
usr/X11R6/lib/libX11.so.6.2
usr/X11R6/lib/libXext.so.6.4
usr/X11R6/lib/libXmu.so.6.2
usr/X11R6/lib/libXt.so.6.0
usr/X11R6/lib/libXaw.so.7.0
usr/X11R6/lib/libXft.so.1.0
usr/X11R6/lib/libXpm.so.4.11
usr/X11R6/lib/libXrender.so.1.0
usr/X11R6/lib/libXi.so.6 -> libXi.so.6.0

usr/X11R6/lib/libXi.so.6.0

usr/X11R6/
usr/X11R6/lib/
usr/X11R6/lib/libICE.so.6 -> libICE.so.6.3
usr/X11R6/lib/libSM.so.6 -> libSM.so.6.0
usr/X11R6/lib/libX11.so.6 -> libX11.so.6.2
usr/X11R6/lib/libXext.so.6 -> libXext.so.6.4
usr/X11R6/lib/libXmu.so.6 -> libXmu.so.6.2
usr/X11R6/lib/libXt.so.6 -> libXt.so.6.0
usr/X11R6/lib/libXaw.so.6 -> libXaw.so.6.1
usr/X11R6/lib/libX11.so.6.2
usr/X11R6/lib/libXaw.so.6.1
usr/X11R6/lib/libXaw.so.7 -> libXaw.so.7.0
usr/X11R6/lib/libXaw.so.7.0
usr/X11R6/lib/libXext.so.6.4
usr/X11R6/lib/libXmu.so.6.2usr/X11R6/lib/

libXt.so.6.0
usr/X11R6/lib/libICE.so.6.3
usr/X11R6/lib/libSM.so.6.0
usr/X11R6/lib/libXft.so.1.0
usr/X11R6/lib/libXft.so.1 -> libXft.so.1.0
usr/X11R6/lib/libXrender.so.1.0
usr/X11R6/lib/libXrender.so.1 ->

libXrender.so.1.0
140 LynxOS User’s Guide

 Adding Linux Shared Libraries to LynxOS
Adding Linux Shared Libraries to LynxOS

Additional shared libraries not included in the LynxOS Linux ABI distribution
may be required in order to run certain Linux applications. For instance, the PERL
library extensions are needed to run the Linux-built perl binary on LynxOS.
Such additional libraries must be copied by the user from a Linux system and
installed in the appropriate directory on LynxOS. The Linux shared libraries do not
need to be rebuilt.

usr/lib/libstdc++-libc6.1-1.so.2 ->
libstdc++-2-libc6.1-1-2.9.0.so

usr/lib/libutempter.so.0 ->
libutempter.so.0.5.2

usr/lib/libbz2.so.1 -> libbz2.so.1.0.0
usr/lib/libfreetype.so.6 ->

libfreetype.so.6.0.1
usr/lib/libreadline.so.4.1
usr/lib/libstdc++-libc6.2-2.so.3 ->

libstdc++-3-libc6.2-2-2.10.0.so
usr/lib/libstdc++-2-libc6.1-1-2.9.0.so
usr/lib/libutempter.so.0.5.2
usr/lib/libbz2.so.1.0.0
usr/lib/libfreetype.so.6.0.1
usr/lib/qt-2.3.0/
usr/lib/qt-2.3.0/lib/
usr/lib/qt-2.3.0/lib/libqt.so.2 ->

libqt.so.2.3.0
usr/lib/qt-2.3.0/lib/libqt.so.2.3.0
usr/lib/libjpeg.so.62 -> libjpeg.so.62.0.0
usr/lib/libpng.so.2 -> libpng.so.2.1.0.9
usr/lib/libz.so.1 -> libz.so.1.1.3
usr/lib/libGLU.so.1 ->

libGLU.so.1.1.030401
usr/lib/libGL.so.1 -> libGL.so.1.2.030401
usr/lib/libncurses.so.5 ->

libncurses.so.5.2
usr/lib/libncurses.so.5.2
usr/lib/libmng.so.1.0.0
usr/lib/libmng.so.1 -> libmng.so.1.0.0
usr/lib/libGL.so.1.2.030401
usr/lib/libGLU.so.1.1.030401
usr/lib/libz.so.1.1.3
usr/lib/libz.so -> libz.so.1.1.3
usr/lib/libpng.so.2.1.0.9
usr/lib/libjpeg.so.62.0.0
usr/lib/libreadline.so.4 ->

libreadline.so.4.1
usr/lib/libstdc++-3-libc6.2-2-2.10.0.so

usr/lib/libstdc++-libc6.1-1.so.2
usr/lib/libutempter.so.0 ->

libutempter.so.0.5.2
usr/lib/libstdc++-libc6.1-2.so.3 ->

libstdc++-3-libc6.1-2-2.10.0.so
usr/lib/libncurses.so.5 ->

libncurses.so.5.2
usr/lib/libncurses.so.5.2
usr/lib/libreadline.so.4 ->

libreadline.so.4.1
usr/lib/libreadline.so.4.1
usr/lib/libstdc++-2-libc6.1-1.1-2.9.0.so
usr/lib/libstdc++-libc6.1-1.1.so.2 ->

libstdc++-2-libc6.1-1.1-2.9.0.so
usr/lib/libutempter.so.0.5.2
usr/lib/libreadline.so.3.0
usr/lib/libstdc++-3-libc6.1-2-2.10.0.so
usr/lib/libbz2.so.1 -> libbz2.so.1.0.0
usr/lib/libbz2.so.1.0.0
usr/lib/libjpeg.so.62
usr/lib/libpng.so.2.1.0.9
usr/lib/libpng.so.2 -> libpng.so.2.1.0.9
usr/lib/qt-2.3.1/
usr/lib/qt-2.3.1/lib/
usr/lib/qt-2.3.1/lib/libqt.so.2.3.1
usr/lib/qt-2.3.1/lib/libqt.so.2 ->

libqt.so.2.3.1
usr/lib/libz.so.1 -> libz.so.1.1.3
usr/lib/libz.so.1.1.3
usr/lib/libmng.so.0.0.9
usr/lib/libmng.so.0 -> libmng.so.0.0.9
usr/lib/libstdc++-3-libc6.2-2-2.10.0.so
usr/lib/libstdc++-libc6.2-2.so.3 ->

libstdc++-3-libc6.2-2-2.10.0.so
usr/lib/libfreetype.so.6.0.1

usr/lib/libfreetype.so.6 ->

libfreetype.so.6.0.1

Table 9-1: Linux ABI Shared Libraries

x86 Shared Libraries PowerPC Shared Libraries
LynxOS User’s Guide 141

 Chapter 9 - Linux ABI Compatibility
Determining Linux Application Library Dependencies
The shared libraries required by a particular Linux application can be viewed with
the ldd command on a Linux system. For example, the Linux ls command
requires the following libraries:

ldd -d /bin/ls

libtermcap.so.2 => /lib/libtermcap.so.2 (0x4002d000)
libc.so.6 => /lib/i686/libc.so.6 (0x40031000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

ls -l /lib/libtermcap.so.2

lrwxrwxrwx 1 root root 19 Jan 26 2002
/lib/libtermcap.so.2 -> libtermcap.so.2.0.8

Updating Linux ABI Layer Libraries
Linux shared libraries can easily be updated to accommodate the needs of
particular Linux applications. New libraries can easily be added to the system
simply by copying them from Linux to the appropriate directories on a LynxOS
system. Updated versions of shared libraries can also be added to the system by
copying over the current shared library.

However, it is important to note that users should copy over the actual reference
file, and not symbolic links to the reference file. For example, users should not
copy over the file libncurses.so.5.2 and rename it libncurses.so.5. The
Linux convention is to create a symbolic link linbncurses.so.5 to the updated
library libncurses.so.5.2. This allows any application that calls
libncurses.so.5 to access the updated shared libraries.

cp <path>libncurses.so.5.2 /usr/lib

cd /usr/lib

ln -s libncurses.so.5.2 libncurses.so.5

ls -l /usr/lib/libncurses.so.5*
total 509

lrwxrwxrwx 1 root 17 Feb 22 20:00 libncurses.so.5@ ->
libncurses.so.5.2

-rwxr-xr-x 1 root 257524 Feb 19 18:05 libncurses.so.5.2*
142 LynxOS User’s Guide

 Linux ABI Shared Libraries that Should Not Be Overwritten
Linux ABI Shared Libraries that Should Not Be Overwritten

User should not overwrite the following shared libraries installed from the Linux
ABI distribution:

� /lib/libpthread.so.*

� /lib/librt.so.*

� /lib/libc.so.*

� /lib/ld.*

These are LynxOS-specific shared libraries that have the same names as Linux
shared libraries. These LynxOS files are vital for the Linux ABI feature to
function. If these LynxOS files are accidentally replaced by the Linux-based shared
libraries, the Linux ABI environment will not function.

Specifying Linux ABI Shared Library Paths

The LD_LIBRARY_PATH environment variable specifies a search path for ELF
shared libraries used by the ld.so dynamic linker. To ensure that ld.so locates
all Linux ABI libraries required for a particular Linux application,
LD_LIBRARY_PATH must include the path names to all the locations (directories)
where respective Linux ABI libraries are located. LD_LIBRARY_PATH must be set
up and exported before a Linux application can be executed.

NOTE: If the LynxOS X & Motif package is installed Before running a Linux GUI
application, it is important to specify the LD_LIBRARY_PATH search paths in the
correct order. Note that the LynxOS X11 shared libraries symbolic links are located
in /usr/lib/, whereas Linux X11 libraries are located in /usr/XllR6/lib,
Before running any Linux GUI application, it is necessary to define
LD_LIBRARY_PATH in the order that path /usr/X11R6/lib precedes the path
/usr/lib, so that the Linux GUI application started up with the Linux X shared
libraries. Otherwise, the Linux GUI application will crash if it starts with the
LynxOS X shared libraries .

When setting the LD_LIBRARY_PATH, be sure to specify the Linux library paths in
correct order.
LynxOS User’s Guide 143

 Chapter 9 - Linux ABI Compatibility
The following example shows how to set up LD_LIBRARY_PATH for the Linux
telnet binary (assuming that the Linux telnet binary is installed in
/linux/bin):

� the Linux telnet utility:

$ export LD_LIBRARY_PATH=/usr/lib:$LD_LIBRARY_PATH

$ /linux/bin/telnet

� the x86 Linux Opera utility:

$ export LD_LIBRARY_PATH=/lib:/usr/X11R6/lib: \
/usr/lib/qt-2.3.0:/usr/lib

$ /usr/bin/opera

Running Linux Applications

This section discusses additional features and functions of the Linux ABI
Compatibility Layer.

Linux Reference Distribution

The term �Linux Reference Distribution� is used to identify a particular version of
Linux that is compatible with the Linux ABI Layer on LynxOS. The Linux
Reference Distribution is composed of specific versions of these components:

� Linux kernel

� Linux glibc library

The Linux Reference Distribution is used to validate and test Linux ABI
Compatibility. Applications built on a supported version of the Linux Reference

NOTE: As defined by the ELF specification, if an application has the S_ISUID or
S_ISGID bits set in its protection mode, the ld.so dynamic linker ignores the
LD_LIBRARY_PATH environment variable. To run such applications, the S-bits
must be removed from the protection mode and the application must be run from a
root (superuser) login.
144 LynxOS User’s Guide

 Support for Dynamically Linked Applications
Distribution are supported. As of this printing, Linux applications built on the
following Linux Reference Distribution are supported:

� Linux Kernel 2.4.x

� Linux glibc library 2.2.2

Refer to the LynxOS Release Notes for updates or changes to the supported Linux
Reference Distribution.

Support for Dynamically Linked Applications

The Linux ABI implementation relies on the dynamic linker (ld.so) to resolve
calls made by Linux binaries into the shared libraries that comprise the Linux ABI
library. Such resolution is performed at run-time, when an application is loaded and
linked by ld.so.

Support for Versioned Symbols
Linux binaries built on earlier releases of a supported Linux distribution should
function when run on LynxOS. For example, if Red Hat 7.1 is the supported Linux
reference distribution, applications built on Red Hat 6.x will run on LynxOS. This
is because the LynxOS ld.so dynamic linker supports resolution of versioned
symbols in a shared library.

The Linux ABI libraries (such as the libc library) contain multiple, versioned
definitions of an interface entry point. These multiple definitions provide backward
binary compatibility for earlier releases of Linux. A defined version of an interface
corresponds to a particular version of the library, and thus to a particular release of
Linux. When ld.so resolves links into a library, the version information is
available with each unresolved symbol. This allows ld.so to determine the
version of a symbol that the application requires. By linking into an appropriate
version of symbols, ld.so ensures that there are no version-dependent
discrepancies between the definition of the interfaces and the shared libraries.

NOTE: Execution of statically linked Linux binaries is not supported by LynxOS.
This, however, is a minor limitation, because most Linux binaries are dynamically
linked. Unless explicitly specified via a special option to ld during compilation, all
Linux binaries require further linking at run time by ld.so.
LynxOS User’s Guide 145

 Chapter 9 - Linux ABI Compatibility
Exceptions and Limitations

Certain Linux binaries are not supported by the Linux ABI Layer. The following
table provides a list of features that are not supported with the Linux ABI Layer.

Extracting RPMs with rpm2cpio

Linux binaries are sometimes distributed as RPM files. Because LynxOS does not
support RPM, users must manually extract the contents of the RPM file on the
Linux system. The Linux utility rpm2cpio extracts the contents of the RPM file,
which can then be piped to cpio:

rpm2cpio <rpm_filename> | cpio -ivd

For more information on using rpm2cpio and cpio, see the respective man pages.

Table 9-2: Exceptions and Limitations

Exception Comments

Statically linked applications Linux ABI Layer supports execution of dynamically
linked Linux binaries only.

Applications built in a Linux
context later than the Linux
reference context

Linux ABI libraries contain only version of symbols
for the current reference context, and previous versions
of the reference context.

Applications that make direct
calls into the kernel

Linux ABI Layer relies on the ABI libraries to translate
calls between Linux applications and the LynxOS
kernel.

Applications that uses a feature
of the Linux kernel not available
in the LynxOS kernel

An example of this type of an exception is an
application that uses the /proc file system.

NOTE: Note that because rpm2cpio is a statically-linked binary, it cannot run on
the LynxOS Linux ABI Layer.
146 LynxOS User’s Guide

 Example -- Running Opera
Example -- Running Opera

The following example provides instructions for running the Opera Web Browser
on a LynxOS x86 system with the Linux ABI Layer.

Installing Linux ABI Layer

1. On the LynxOS system, mount the Additional Components CD-ROM to
an available mount point. For example,

mount /dev/<cdrom> /mnt

Where <cdrom> is the device node of the CD-ROM drive, for example:
ide.1.

2. Install the Linux ABI Layer:

cd /

tar xvfz /mnt/tar_images/<num>linuxabi.tar.gz

Downloading Opera

1. On the Linux system, download Opera from http://www.opera.com.
Download the following version of the Opera Web browser:

- Operating system: Linux (x86)

- Language: English (United States)

- Version: 5.0

- Option: Qt dynamically linked

- Package: RPM for RedHat 7.1

2. Download the Opera RPM file to a user�s home directory: <user_dir>.

NOTE: Users must download the Opera web browser built for Red Hat 7.1. Other
versions of Opera built for other Linux distributions may not work correctly.

Also, be sure to download the dynamically-linked version. The statically-linked
binary version of Opera will not work with the Linux ABI Layer.
LynxOS User’s Guide 147

 Chapter 9 - Linux ABI Compatibility
3. Make a directory for Opera and copy the RPM to that directory.

cd <user_dir>

mkdir opera_demo

cd opera_demo

4. Use the rpm2cpio command to extract the contents of the RPM file:

rpm2cpio ../opera-dynamic-rh71-5.0-3.i386.rpm | cpio -ivd

Refer to the rpm2cpio and cpio man pages for additional information
on these commands.

The Opera binary and support files are extracted to the current directory.

5. Create a tar archive of the extracted Opera files to transfer to the LynxOS
system:

tar cvf opera_demo.tar ./usr*

ls -l opera_demo.tar

-rw-r--r-- 1 root root 4454400 Feb 28 10:41 opera_demo.tar

6. Transfer the opera_demo.tar file to the LynxOS system via FTP or
RCP.

7. On the LynxOS system, extract the opera_demo.tar file:

cd <user_dir>

mkdir opera_demo

cd opera_demo

tar xvf ../opera_demo.tar

The Opera Linux Binary and support files are extracted to the current
directory.

Configuring the Linux ABI Layer

1. Set the LD_LIBRARY_PATH to include the library paths required by
Opera:

- For x86,

export LD_LIBRARY_PATH=/lib:/usr/X11R6/lib: \
/usr/lib/qt- 2.3.0/lib:/usr/lib
148 LynxOS User’s Guide

 Configuring the Linux ABI Layer
- For PowerPC,

export LD_LIBRARY_PATH=/lib:/usr/X11R6/lib: \
/usr/lib/qt- 2.3.1/lib:/usr/lib

2. Set the DISPLAY variable to display to a local X server (if X and Motif
are installed), or display to a remote X server:

A)For a Local X server:

export DISPLAY=0.0

B)For a Remote X server:

export DISPLAY=<Xserver_IP_address>:0.0

Where <Xserver_IP_address> is the IP address of the X server.
On the remote X server, enable remote X access with the xhost
command:

xhost +<LynxOS_IP_address>

Where <LynxOS_IP_address> is the IP address of the LynxOS
system.

3. On the LynxOS system, start opera:

<user_dir>/opera_demo/usr/bin/opera

NOTE: It is important to specify the LD_LIBRARY_PATHS search paths in the
correct order. Because LynxOS X11 libraries are located in /usr/lib/X11, and
Linux X11 libraries are located in /usr/XllR6, specifying the incorrect path first
can result in the Linux binary crashing. Setting the /usr/lib directory before
/usr/X11R6/lib causes the LynxOS X11 libraries to be used instead of Linux
libraries.

When setting the LD_LIBRARY_PATH, be sure to specify the Linux library paths
correctly.
LynxOS User’s Guide 149

 Chapter 9 - Linux ABI Compatibility
Figure 9-2: Opera Web Browser Running on LynxOS
150 LynxOS User’s Guide

CHAPTER 10 Event Logging
The Event Logging System

Event Logging provides the ability to log specific kernel and user application
events. With the LynuxWorks Event Logging System, users can maintain system
performance, predict and eliminate problems, and reduce system downtime.

Events can be monitored from several system facilities (mail, kernel, or file
system, for example) with a variety of severities (warning, emergency, or critical,
for example). Process threads can be set up to log specific events, monitor facility
conditions and receive notifications on specific events.

Event Logging Components

The LynuxWorks Event Logging System is comprised of several components that
interact to provide a fully-featured means of logging system events. The following
table describes the components of the Event Logging System.

Table 10-1: Event Logging System Components

Component Description

User Libraries User libraries include the function calls that interact with the Event Logging
System. For function prototypes and descriptions, see �The Event Logging
Daemon� on page 157.

System Log Files System Log Files include the Active System Log and Archived System Log.
At any given time, the Event Logging System writes to an open file, known as
the Active System Log. This log file is written to until it reaches maximum
capacity. When the Active System Log file is full, it is archived and a new
Active System Log is created.
LynxOS 4 User’s Guide 151

Chapter 10 - Event Logging
Process Flow

The following sections describe the various flows used by the reading, writing, and
opening functions.

Write Flow

A user thread initiates log_write(), which calls the write interface of the Event
Log Driver. The Event Log Driver fills the Event Record and Event Data with the
parameters provided in log_write(). If the Log System Buffer is full, an error is
returned. If successful, the Log Daemon reads the contents of the System Log
Buffer and writes the event to the Active System Log. The Event Log Driver clears
out the buffer for future use.

After the event is processed in the Active System Log, the Log Daemon searches
the notification list to determine if any processes must access the event. If so, the
process is sent a notification signal.

Event Log Driver The Event Log Driver contains the read and write interfaces used by the Log
Daemon to read and write to memory. The Event Log Driver can be installed
statically or dynamically.

System Log Buffer The System Log Buffer is a buffer of rows. Each row contains two elements:
an Event Record and the Event Data. The Event Record is used to identify the
contents of the User Data. The Event Data is the raw data of the event. For
more information on Event Record Identifier types, see �Event Record
Identifier (log_event_t)� on page 161.

Log Daemon The Log Daemon is a user space application that maintains event
notifications, and the Active System Log.

Table 10-1: Event Logging System Components (Continued)

Component Description
152 LynxOS 4 User’s Guide

Read Flow
Figure 10-1: Write Flow

Read Flow

A user thread initiates a log_read() function, which reads the log entry of the
file handle provided by log_read(). The function checks if the event record
matches the current query requirements. If it matches, the event record data and
event data are returned to the calling thread. If not, the event is skipped and the
next event is checked.

Log
Daemon

log_write()

Active
System

Log
User Threads

Notification
Signal

User
Space

Event Log Driver

Log System Buffer

Event Record Event Data

Kernel
Space
LynxOS 4 User’s Guide 153

Chapter 10 - Event Logging
Figure 10-2: Read Flow

Open Flow

A user thread initiates the log_open() function, which opens a log file.

If the path parameter of log_open() is NULL, it retrieves the Active System Log
file name from memory. Otherwise, the path parameter is used to open an
Archived System Log.

Figure 10-3: Open Flow

log_read()

Active
System

Log

User Threads

Archived
System

Log

log_open()

Active
System

Log

User Threads

Archived
System

Log
154 LynxOS 4 User’s Guide

Notify Flow

Notify Flow

A user thread initiates the log_notify() function, which sends process and
signal information to the Log Daemon. If the Log Daemon finds a matching event,
a signal is sent to the calling thread.

Figure 10-4: Notification Flow

Installing the Event Logging System

Installing on a Native LynxOS System

Use the following commands to install the Event Logging driver on a native
LynxOS system:

cd /sys/lynx.os

make install.evlog

Removing from a Native System
Use the following commands to remove the Event Logging driver from a Native
LynxOS system:

cd /sys/lynx.os

make uninstall.evlog

Installing On a Cross Development System

Use the following commands to install the Event Logging driver on a cross
development system:

Log
Daemon

User
Threads

log_notify()

Signal
sig_num
LynxOS 4 User’s Guide 155

Chapter 10 - Event Logging

cd /usr/lynx/4.0.0/<cpu>

where <cpu> is the platform of the system, x86 or ppc.

source SETUP.bash

cd $ENV_PREFIX/sys/lynx.os

make install.evlog

Removing From a Cross Development System
Use the following commands to remove the Event Logging driver from a cross
development system.

cd /usr/lynx/4.0.0/<cpu>

where <cpu> is the platform of the system, x86 or ppc.

source SETUP.bash

cd $ENV_PREFIX/sys/lynx.os

make uninstall.evlog

Configuring the Event Logging System

Event Logging Parameters

The following sections provide the configurable parameters available to the Event
Logging System. Depending on the installation type, these options are set in the
evloginfo.h header file.

Configurable Parameters

Buffer Length
The default buffer length for the Event Logging System is 80. The maximum,
defined as LOG_ENTRY_MAXLEN is 250.
156 LynxOS 4 User’s Guide

Buffer Size

Buffer Size
The buffer size represents the number of rows the Log System Buffer contains. The
default value is 100.

High Watermark Level
The High Watermark Level is the percentage of how full a Log System Buffer is
before a high watermark message is written. The default High Watermark Level
is 90%. After the Log System Buffer reaches the High Watermark Level, a High
Watermark Level record is written to the buffer stating that this level has been
reached. This system message has a facility LOG_EVLOG and severity
LOG_WARNING.

The High Watermark Level can be disabled by setting it to 100.

When one entry remains in the Log System Buffer, a message is written to the last
buffer stating that the Log System Buffer is full. Additional events cannot be
written to the buffer. log_write() fails when the System Buffer is full.

Low Watermark Level
The Low Watermark Level is the percentage of how empty a Log System Buffer is
before a low watermark message is written. The default Low Watermark Level
is 0%. When the Log System Buffer meets the Low Watermark Level, a log entry
is written to the buffer stating the Low Watermark Level is reached. This system
message has a facility of LOG_EVLOG and a severity of LOG_WARNING.

The Event Logging Daemon

The Event Logging Daemon, evlogd must be running to use the Event Logging
System. To start the Event Logging Daemon, type evlogd:

evlogd

evlogd can also be added to the /bin/rc file to start the Event Logging
Daemon when the system starts.

NOTE: The Event Logging driver must be installed before the Event Logging
Daemon can run. See �Installing on a Native LynxOS System� on page 155.
LynxOS 4 User’s Guide 157

Chapter 10 - Event Logging

evlogd has the following command line options:

Function Prototypes and Descriptions

typedefs in eventlog.h

Log File Descriptor (logd_t)
The logd_t type represents a log file stream opened for reading. The logd_t
type is defined as an unsigned short.

System Identifier (log_facility_t)
The log_facility_t type identifies the subsystem that generated the event.
The following table lists the types, memory addresses and descriptions of the
available facilities.

Table 10-2: Event Log Daemon Options

Command Option Description

-l <number_of_entries> The -l option specifies the number of log entries
written to the Active System Log before creating a
new log file. The default value is 10000. This value
can be changed from a minimum of 10 and a
maximum of 999999.

-d <path> The -d option specifies a path to the log files on a
system. The default path is /sys/log. The
directory name cannot exceed 80 characters.

Table 10-3: log_facility_t Values

Name
Bit

Address
Description

LOG_AUTH 0x00000001 Authorization & authentication events

LOG_CRON 0x00000002 cron daemon
158 LynxOS 4 User’s Guide

System Identifier (log_facility_t)
Additionally, the log_facility_set_t type is used during query operations.
The log_facility_set_t type is defined as an unsigned int.

LOG_DAEMON 0x00000004 Background services

LOG_LPR 0x00000008 lpr subsystem

LOG_MAIL 0x00000010 Mail delivery system

LOG_NEWS 0x00000020 News system

LOG_KERN 0x00000040 General Kernel events

LOG_KERN_FS 0x00000080 File system events

LOG_KERN_NET 0x00000100 Networking events

LOG_LOG 0x00000200 Logging system events

LOG_LOCAL0 0x00001000 Reserved

LOG_LOCAL1 0x00002000 Reserved

LOG_LOCAL2 0x00004000 Reserved

LOG_LOCAL3 0x00008000 Reserved

LOG_LOCAL4 0x00010000 Reserved

LOG_LOCAL5 0x00020000 Reserved

LOG_LOCAL6 0x00040000 Reserved

LOG_LOCAL7 0x00080000 Reserved

Table 10-3: log_facility_t Values (Continued)

Name
Bit

Address
Description
LynxOS 4 User’s Guide 159

Chapter 10 - Event Logging

Severity Type (log_serverity_t)
The log_severity_t type defines the severity of the event. The
log_severity_t type is defined as an unsigned int.

Log Record Identifier (log_recid_t)
The log_recid_t type is used to identify specific records to any log-reading
code. Defined as an unsigned int.

Table 10-4: log_severity_t Values

Name
Bit

Address
Description

LOG_EMERG 0x00000001 Emergency condition

LOG_ALERT 0x00000002 Condition requiring immediate correction

LOG_CRIT 0x00000004 Critical condition

LOG_ERR 0x00000008 Error

LOG_WARNING 0x00000010 Warning message

LOG_NOTICE 0x00000020 Condition requiring special handling

LOG_INFO 0x00000040 Informational message

LOG_DEBUG 0x00000080 Debugging message

LOG_POSIX_SEV1

1. Default POSIX behavior can be added by including LOG_POSIX_SEV in a function
with the and or or expression. The Default POSIX behavior is to include the
highest severity level found, and every severity level beneath.

0x80000000 Sets POSIX standard rather than default error
handling
160 LynxOS 4 User’s Guide

Event Record Identifier (log_event_t)

Event Record Identifier (log_event_t)
log_event_t indicates the format of the Event Data portion of the event data.
Defined as an unsigned int.

Log Record (log_entry)
The log_entry struct reads the back of the constant part of a log record.
log_entry contains the following members.

Table 10-5: log_event_t Values

Name
Bit

Address
Description

LOG_STRING Event Data is a NULL-terminated string.

LOG_BYTE Event Data is a series of bytes.

LOG_SHORT 2 bytes each Event Data is a series of shorts.

LOG_INT 4 bytes each Event Data is a series of ints.

LOG_USERBASE 10,000 Minimum user defined type

LOG_USERMAX INT_MAX Maximum user defined type

Table 10-6: log_entry Members

Member Type Description

log_status byte Status of the record:
� bit 0: Available=0, Used=1
� bit 1: Endian of this entry. 1=big, 0=little
� bits 2-7: reserved

log_recid log_recid_t System assigned ID of the log record; starts at 1,
and increases to a maximum of 65535.
0 represents the header or a daemon error.

log_size size_t Size of the log record�s variable data portion

log_event_id log_event_t Log record identification code; provides the
format of the data.

log_facility log_facility_t Log record facility code

log_severity log_severity_t Log record severity code
LynxOS 4 User’s Guide 161

Chapter 10 - Event Logging
Log Query (log_query_t)
The log_query_t type is used to filter events in a log.

Writing Log Entries

The log_write() function is used to write information to the System Log. For
more information on the process flow, see �Write Flow� on page 152.

log_write()
#include <eventlog.h>

int log_write(log_facility_t facility,
int event_id, log_severity_t severity,
const void *buf, size_t len);

Description
The log_write() function creates the facility, severity, and data for an event
log. After filling the structure, log_write() passes the data to the Event
Logging Driver. If the Event Logging Driver is not running, the log_write()
function fails.

log_uid uid_t Effective User ID associated with event

log_gid gid_t Effective Group ID associated with event

log_pid pid_t Process ID associated with event

log_pgrp pid_t Process group associated with event

log_tid tid_t Thread ID associated with event

log_time struct timespace System time when event was logged

Table 10-6: log_entry Members (Continued)

Member Type Description

Table 10-7: log_query_t

Member Type Description

q_facility_set log_facility_set_t Stores facilities for query.

q_severity log_severity_t Stores severity for query.
162 LynxOS 4 User’s Guide

Processing Log Entries
In addition to the facility set, severity, and size arguments listed in the prototype,
log_write() also adds arguments defined in the table �log_entry Members� on
page 161.

This function is available as both a kernel space and user library function.

Returns
The log_write() function returns 0 after a successful completion. If an error
occurred, log_write() returns an error number.

Processing Log Entries

The functions log_open(), log_read(), log_notify(), log_close(),
log_seek(), log_severity_compare(), log_facility*(), and
log_query() are implemented according to POSIX 1003.1h specifications.
These log processing functions are provided only as user library functions.

log_open()
#include <eventlog.h>

NOTE: Success of this function indicates that the event is buffered to memory, not
written to the Active System Log file.

Table 10-8: log_write() Error Returns

Error Description

EINVAL The severity argument is invalid.
buf is invalid.

ENOSPC There are no free buffers in the Log System Buffer.

EMSGSIZE The len argument exceeds LOG_ENTRY_MAXLEN.

EPERM The caller does not have appropriate privileges.

EIO An I/O error occurred when writing to the System Buffer.

ENODEV The Event Log Driver is not running.
LynxOS 4 User’s Guide 163

Chapter 10 - Event Logging

int log_open(logd_t *logdes, const char *path,
const log_query_t *query);

Description
The log_open() function establishes a connection between a log file and a log
descriptor. If the path parameter is NULL, the current Active System Log is used.
Otherwise, the log_open() function searches the Archived System Log pointed
to by path. After successful completion, log_open() returns a log file handle
(in the logdes parameter) to the calling process.

Returns

If successful, log_open() returns the value 0. If an error occurs, log_open()
returns an error number.

NOTE: The log file handle returned by log_open() can only be used by the
Event Logging System.

Table 10-9: log_open() Error Returns

Error Description

EACCES Search or read permission is denied on a component of the path
prefix.

EINVAL The query argument is not NULL or does not point to a valid
log_query_t.

EINVAL The path argument is not a valid Event Log file.

EMFILE The calling process has too many log descriptors open
(LOG_OPEN_MAX).

EXDEV No Active System Log

ENAMETOOLONG The length of the path argument exceeds PATH_MAX
(80 characters).

EMFILE Too many files are open in the system.

ENOENT The file specified by path does not exist.

ENOTDIR A component of the path prefix is not a directory.

ENOEXEC Read of header file or Log file failed.

EBADMSG Incompatible log file version
164 LynxOS 4 User’s Guide

log_read()

log_read()

#include <eventlog.h>

int log_read(logd_t logdes,
struct log_entry *entry,void *log_buf,
size_t log_len);

Description
The log_read() function reads from the file associated with logdes file
descriptor and matches the current query with an event record from an Active or
Archived System Log.

If an event record that matches the log file query is found, it returns the event
record and event data to the calling process. If the end of file is reached on the
Active System Log before a match is found, an EAGAIN error is returned.
EAGAIN errors are returned on Active System Log files only. When an end of file
is reached on an Archived System Log, an EOF error is returned.

If the Active System Log is full and there is no match, an EOF error is returned.
This error occurs only when a user thread is accessing an event log that was closed
by the Event Logging Daemon. Use the log_close() function to close this file
handle. Use log_open() with a path of NULL to open the new Active System
Log.

This is a blocking call and does not wait for a log entry to be written, but rather
returns immediately with the result.

Return

If successful, log_read() returns the value 0. If an error occurs, log_read()
returns an error number.

Table 10-10: log_read() Error Returns

Error Description

EBADF The logdes argument is not a valid file descriptor.

EAGAIN No data is available: There are no unread matching events
remaining and the maximum file size is not reached.

EINTR A signal has interrupted the call.

EIO An I/O error has occurred while reading the file.

EOF End of file is reached without finding a matching event.
LynxOS 4 User’s Guide 165

Chapter 10 - Event Logging
log_notify()
#include <eventlog.h>

int log_notify(logd_t logdes,
const struct sigevent *notification);

Description
The function log_notify() allows a calling process to be notified of specific
event records. The Event Logging Daemon returns an event record log that
matches the logdes file descriptor.

If notification is NULL, no notification is performed. If the calling process
has already registered a notification with the same logdes, the new notification
replaces the existing one.

The sig_num member of the notification struct must be a real-time signal.

The notification request is not removed when logdes closes. Though this differs
from the POSIX specification, it allows notification to continue after the Active
System Log is rolled.

If the Event Logging Daemon cannot add the notification to the notification table,
the Daemon returns a siginfo_t signal to the calling thread. The si_value of
siginfo_t is -1 to signal the thread that an error occurred.

To notify a thread of a match with query, the siginfo_t signal is sent to the
thread with a si_value of 0.

EINVAL log_buf and/or entry are NULL.

EMSGSIZE Event record data is larger than log_len.

NOTE: Although open file handles are inherited by child processes, notifications
are not.

Table 10-10: log_read() Error Returns (Continued)

Error Description
166 LynxOS 4 User’s Guide

log_close()

Return
On successful completion, log_notify() returns 0. If an error occurs, the error
number is returned.

log_close()
#include <eventlog.h>

int log_close(logd_t logdes);

Description
The log_close() function deallocates the open file descriptor associated with
logdes. This function also performs a close() on the file handle.

Return

On successful completion, log_close() returns 0. If an error occurs, the error
number is returned.

Table 10-11: log_notify() Error Returns

Error Description

EBADF The logdes argument is not a valid file descriptor.

EINVAL The notification argument is invalid.

EPERM The process requested notification on a log that is not written to.

EBADF The Log Daemon message queue does not exist.

EBUSY The notification table in the Log Daemon is full.

EXDEV Cannot access Daemon

EAGAIN Daemon busy

Table 10-12: log_close() Error Returns

Error Description

EBADF The logdes argument is not a valid file descriptor.
LynxOS 4 User’s Guide 167

Chapter 10 - Event Logging

log_seek()

#include <eventlog.h>
int log_seek(logd_t logdes,
log_recid_t log_recid);

Description
The log_seek() function sets the file offset of the open log associated with
logdes to the event record that matches log_recid. Two values other than a
record ID can be passed. LOG_SEEK_START (defined as 0) and LOG_SEEK_END
(defined as -1) reposition the start or end of the current log file, respectively.

Return
On successful completion, log_seek() returns 0. If an error occurs, the error
number is returned.

log_severity_compare()
#include <eventlog.h>
int log_severity_compare(int *order,
log_severity_t s1, log_severity_t s2);

Description

The log_severity_compare() function compares the severity levels of s1
and s2. If s1 is more severe than s2, order is set to 1. If s2 is more severe,
order is set to -1. If s1 equals s2, order is set to 0.

Table 10-13: log_seek() Error Returns

Error Description

EBADF The logdes argument is not a valid file descriptor.

ENOENT No log record exists in the specified log file with a record ID
matching log_recid.
168 LynxOS 4 User’s Guide

Setting Log Facilities

Return
On successful completion, log_severity_compare() returns 0. If an error
occurs, the error number is returned.

Setting Log Facilities

log_facilityemptyset()
#include <eventlog.h>

int log_facilityemptyset(
log_facility_set_t *set);

Description
The log_facilityemptyset() function excludes all facilities in the facility
set pointed to by set.

Return
On successful completion, log_facilityemptyset() returns 0. If an error
occurs, the error number is returned.

log_facilityfillset()
#include <eventlog.h>

int log_facilityfillset(
log_facility_set_t *set);

Table 10-14: log_severity_compare() Error Returns

Error Description

EINVAL s1, s2, or both, are invalid severities.

Table 10-15: log_facilityemptyset() Error Returns

Error Description

EINVAL set points to NULL.
LynxOS 4 User’s Guide 169

Chapter 10 - Event Logging

Description
The log_facilityfillset() function includes all facilities in the facility set
pointed to by set.

Return
On successful completion, log_facilityfillset() returns 0. If an error
occurs, the error number is returned.

log_facilityaddset()
#include <eventlog.h>

int log_facilityaddset(log_facility_set_t *set,
log_facility_t facilityno);

Description
The log_facilityaddset() function adds the facility facilityno to the
facility set to pointed to by set.

Return

On successful completion, log_facilityaddset() returns 0. If an error
occurs, the error number is returned.

log_facilitydelset()
#include <eventlog.h>

int log_facilitydelset(log_facility_set_t *set,
log_facility_t facilityno);

Table 10-16: log_facilityfillset() Error Returns

Error Description

EINVAL set points to NULL.

Table 10-17: log_facilityaddset() Error Returns

Error Description

EINVAL set points to NULL.
170 LynxOS 4 User’s Guide

log_facilityismember()

Description
The log_facilitydelset() function removes the facility facilityno from
the facility set pointed to by set.

Return
On successful completion, log_facilitydelset() returns 0. If an error
occurs, the error number is returned.

log_facilityismember()
#include <eventlog.h>

int log_facilityismember(
log_facility_set_t *set,
log_facility_t facilityno, int *member);

Description
The log_facilityismember() function checks if facilityno is included
in the facility set pointed to by set.

Return
On successful completion, log_facilityismember() returns 0. If an error
occurs, the error number is returned.

Table 10-18: log_facilitydelset() Error Returns

Error Description

EINVAL set points to NULL.

Table 10-19: log_facilityismember() Error Returns

Error Description

EINVAL set points to NULL.

EINVAL member is NULL.
LynxOS 4 User’s Guide 171

Chapter 10 - Event Logging

Querying Log Entries

log_query_init()
#include <eventlog.h>

int log_query_init(lot_query_t *query);

Description
The log_query_init() function initializes the log_query_t struct query.
The default value for query is an empty facility set and an empty severity. The
log_query_init() function does not allocate memory for query.

Return
On successful completion, log_query_init() returns 0. If an error occurs, the
error number is returned.

log_query_destroy()
#include <eventlog.h>

int log_query_destroy(lot_query_t *query);

Description
The log_query_destroy() function is included as a part of the POSIX
specification. Because the log_query_init() function does not allocate
memory for query, there is no need to destroy it.

Return
log_query_destroy() always returns 0.

Table 10-20: log_query_init() Error Returns

Error Description

EINVAL query points to NULL.
172 LynxOS 4 User’s Guide

log_query_getfacilities()

log_query_getfacilities()

#include <eventlog.h>
int log_query_getfacilities(log_query_t *query,
log_facility_set_t *facility);

Description
The log_query_getfacilities() function returns the facility for the current
query.

Return
On successful completion, log_query_getfacilities() returns 0. If an error
occurs, the error number is returned.

log_query_setfacilities()
#include <eventlog.h>
int log_query_setfacilities(log_query_t *query,
log_facility_set_t *facility);

Description
The log_query_setfacilities() function sets the current facility set for
query to the facility set pointed to by facility.

Return

On successful completion, log_query_setfacilities() returns 0. If an error
occurs, the error number is returned.

Table 10-21: log_query_getfacilities() Error Returns

Error Description

EINVAL query points to NULL.

Table 10-22: log_query_setfacilities() Error Returns

Error Description

EINVAL query points to NULL.
LynxOS 4 User’s Guide 173

Chapter 10 - Event Logging

log_query_getseverity()

#include <eventlog.h>
int log_query_getseverity(log_query_t *query,
log_severity_t *severity);

Description
The log_query_getseverity() function returns the severities for query.
The severities are placed into the severity set pointed to by severity. The
log_query_getseverity() function sets the value of severity equal to the
severity member of query.

Return
On successful completion, log_query_getseverity() returns 0. If an error
occurs, the error number is returned.

log_query_setseverity()
#include <eventlog.h>
int log_query_setseverity(log_query_t *query,
log_severity_t *severity);

Description
The log_query_setseverity() function sets the current severities in query.

Table 10-23: log_query_getseverity() Error Returns

Error Description

EINVAL query points to NULL.

EINVAL severity points to NULL.
174 LynxOS 4 User’s Guide

Sample Driver Code

Return
On successful completion, log_query_setseverity() returns 0. If an error
occurs, the error number is returned.

Sample Driver Code

The following section provides sample code used with the Event Logging System.

Kernel Code Example

#include <eventlog.h>
...
int rval;
...
rval = log_write(LOG_KERN, LOG_STRING, LOG_CRIT,
"Kernel error", 12);
...

User Code Example

#include <sys/types.h>
#include <stdio.h>
#include <signal.h>
#include <ctype.h>
#include <eventlog.h>
logd_t logfd;
int sig_handler(int sig, siginfo_t *extra, void *v)
{log_entry_t e;
char buff[500];
int rc;

if ((rc = log_read(logfd, &e, buff, 500)) != LOG_OK)
{

printf("\nError reading log. rc = %u",rc);
}
else
{

printf("\nEvent Read: fac %u sev %u data %s",
e.log_facility, e.log_severity, buff);

fflush(stdout);
}

Table 10-24: log_query_setseverity() Error Returns

Error Description

EINVAL query points to NULL.

EINVAL severity is an invalid severity.
LynxOS 4 User’s Guide 175

Chapter 10 - Event Logging

}

/***
* MAIN
***/
int main(int argc, char **argv)
{
struct sigaction sa;
int rc;log_query_t q;

struct sigevent not;

/* set up signal handler for notify */
sa.sa_handler = (void(*)(_MATCH_ALL))sig_handler;
sigemptyset(&sa.sa_mask);/* clear signal mask */
sa.sa_flags = 0;
if (sigaction(SIGRTMIN, &sa, NULL))
{

printf("\nError setting up signal handler.");
exit(1);

}

/* setup the query */
q.q_facility_set = LOG_EVLOG;
q.q_severity = LOG_WARNING;

/* open the active system log */
if ((rc = log_open(&logfd, NULL, &q)) != LOG_OK)
{

printf("\nError opening active system log.");
exit(1);

}

/* set up a notify*/
not.sigev_signo = SIGRTMIN;

/* attempt to do a notify on archive...it should fail */
if ((rc = log_notify(logfd, ¬)) != LOG_OK)
{

printf("\nError setting up notify.");
exit(1);

}

while(1)
sleep(1);

exit(0);
176 LynxOS 4 User’s Guide

APPENDIX A Glossary
API - Application Programming Interface - A language interface used by programs
to access the operating system and/or applications.

Assembler - A program that converts assembly language into machine-executable
code.

Assembly language - A human-readable version of machine code or instructions
executed by a computer or microprocessor - A compiler produces assembly
language, and an assembler converts it into machine code for execution.

ATM - Asynchronous Transfer Mode - A family of communications protocols.

Binary semaphore - A type of semaphore that only has two states, also called a
Mutex - Also see Counting semaphore.

Board Support Package - See BSP.

Boot - The sequence of events, from system power up to starting an operating
system and/or application on a system - In order to boot, a boot loader must
retrieve a bootable image (OS or application executable) from disk, EPROM, or
over a network.

Breakpoint - Used when debugging code, breakpoints halt execution of a program
at a certain point, allowing programmers to trace through their application.

BSP - Board Support Package - A collection of programs and device drivers that
allow an operating system or other piece of software to execute on a particular
hardware platform.

CDK - See Cross development kit.

Compiler - A program or collection of programs that converts source code into
either assembly language or executable machine code.

Context switch - The process of suspending a currently running thread, task, or
process, and beginning or resuming the execution of another thread - In LynxOS
there are at least three kinds of context switches: User threads within a virtual
LynxOS User’s Guide 177

Appendix A - Glossary

address space (process), User threads across virtual address spaces (inter-process),
and LynxOS kernel threads.

Counting semaphore - A semaphore with several states that can be increased or
decrease - Also see Binary semaphore.

Critical section - A section of code that must be executed without interruption - If
two critical sections run at the same time, it is called a race condition.

Cross development - The process of developing an application or kernel on a host
system configuration (Linux or Windows, for example) that is different from the
target system configuration where the application is to be deployed.

Cross development environment - The cross development environment includes
LynxOS-specific compilers, linkers, libraries, and other development tools. For
example, GDB - the LynuxWorks version of the GNU debugger, is provided with
LynxOS. The LynxOS cross development environment allows for creating LynxOS
applications and kernels from a variety of platforms.

Cross development kit - A suite of LynxOS cross development tools specific to a
particular host system configuration - Supported cross development kit platforms
include Windows, Linux, and Sun/Solaris.

Device driver - Software that facilitates the interfacing of applications or programs
with system hardware.

Debugger - A tool for debugging - Specifically, one that facilitates the controlled
execution of a program and the inspection of program data.

Determinism - The attribute of a system displaying known and measurable
performance characteristics - The kinds of determinism of interest to real-time
developers include maximum blocking times, interrupt latencies, and context
switch times.

DMA - Direct Memory Access - Protocol allowing for data transfers between two
peripherals (memory or I/O devices) without passing it through the processor.

DRM - Device Resource Manager - LynxOS module that manages buses and
devices on a system - The DRM provides a standard set of services and calls used
to access buses and devices.

EEPROM - Electrically Erasable Programmable Read-Only Memory -
Non-volatile ROM that the user can program, erase and reprogram as needed -
EEPROM memory is erased with a small electrical charge.

EPROM - Erasable Programmable Read-Only Memory - Non-volatile ROM that
the user can program, erase and reprogram as needed - EPROM memory is erased
with exposure to ultraviolet light.
178 LynxOS User’s Guide

Embedded system - A combination of hardware and software designed to perform
a specific function.

Fault tolerance - The characteristic of a system enabling it to recover from
hardware and software faults, usually through the use of redundant hardware.

Firmware - Software that has been written to ROM.

Flash memory - EPROM that can be erased and rewritten by software.

Hard real-time - A hard real-time system must always meet specific deadlines. In
a soft real-time system, deadlines can be missed. A hard real-time system is used to
denote a critical environment where deadlines cannot be missed. See also Real-
time operating system.

High availability - The utilization of distributed computer resources to maximize
system uptime and provide failsafe mechanisms for hardware or software failures

Host - A computer or operating system that communicates with a target system via
a serial port or network connection - In cross development environments, the host
system is where applications are developed. Also see Target.

Hot swap - The act of inserting and extracting hardware boards to/from a system
chassis without having to cycle system power.

In-circuit emulator - A hardware device that either substitutes or augments the
functioning of a microprocessor - Emulation enables the controlled execution of
software programs and the exercising of system hardware. In-circuit emulation is
useful when porting LynxOS to new hardware, or creating a BSP.

Inter-process communication - The act and the mechanisms for communication
and synchronization among threads, tasks, or processes - IPCs include control
variables, mutexes, queues, and semaphores.

Interrupt - A hardware event, such as the arrival of data on an I/O port, that causes
a specific asynchronous software response, that is, the program stops its current
activity to service the interrupt. The LynxOS model of interrupt processing is to
field the interrupt in the device driver, but to perform actual processing in LynxOS
kernel threads.

KDI - Kernel Downloadable Image - KDIs combine a LynxOS kernel and
associated applications into bootable images designed for easy downloading to
target systems.

Kernel - The core of the operating system that handles thread or task creation,
scheduling, and synchronization.
LynxOS User’s Guide 179

Appendix A - Glossary

Kernel threads - In LynxOS, kernel threads provide processing service to device
drivers.

Linker - A utility program that combines the object code output of a compiler or
an assembler to create an executable program.

Microcontroller - Similar to microprocessors, microcontrollers are designed
specifically for use in embedded systems.

Microkernel - A type of kernel architecture that breaks kernel functionality and
services into modules - Users can select only the required kernel modules, reducing
the kernel footprint size, and removing unneeded services.

Microprocessor - A silicon chip that contains a general-purpose CPU

MMU - Memory Management Unit - The circuitry present in a microprocessor or
sometimes in a separate device to allow for the protection of regions of system
memory and for the mapping & translation of logical (program) addresses into
physical memory address to implement virtual addressing.

Mutex - A multitasking-aware flag used to protect critical sections from
interruptions - Mutexes are also called Binary semaphores. Also see Critical
sections.

Mutual exclusion - Achieved through use of semaphores or mutexes, mutual
exclusion allows for exclusive access to a shared resource.

Native development - The process of developing applications on the same
platform and environment that the application is to be deployed on - Also see Cross
development.

Netboot - Booting an application or kernel image across a network instead of from
ROM or a disk.

ODE - Open Development Environment - The native LynxOS development
environment - An ODE consists of LynxOS native versions of GNU compilers, the
LynxOS/GNU linker, libraries, ROMing tools, utilities, and other utilities. Also see
Cross development kit.

Policy - A set of user-defined behaviors in a system - In real-time, policy usually
refers to the rules for scheduling threads of like priority. LynxOS supports three
scheduling policies: Round-robin (time-slice), Quantum (N time-slices), and FIFO
(run to completion). In high availability systems, policy can also mean the specific
responses to failure conditions.

POSIX - Portable Operating System Interface - A family of standards based on
UNIX system V and Berkeley UNIX that defines the interface between
180 LynxOS User’s Guide

applications and an operating system for maximum compatibility and portability
across implementations.

Preemption - The interruption of thread execution by the operating system for the
purpose of rescheduling - Preemption occurs when a program�s time-slice or
quantum has expired, or when a higher-priority thread becomes ready to run. In
LynxOS, the operating system itself is preemptible.

Priority - The relative importance of a thread of execution - Priorities are
represented in numerical values. LynxOS offers 256 unique priorities. In a hard
real-time system, the thread with the highest priority that is ready to run always
runs.

Process - An executing program - In LynxOS, processes are virtually addressed
containers for globally structured threads.

PROM - Programmable Read-Only Memory.

Real-time operating system - An operating system that responds to events and
input immediately - General operating systems, such as DOS or UNIX, are not
real-time.

RAM - Random Access Memory - Volatile memory type that allows data to be
written to and erased to/from it

ROM - Read Only Memory - Non-volatile memory type that only allows
read-access.

RTOS - See Real-time operating system.

Scheduling - The process of determining which thread or task is allowed to run on
a system - Hard real-time scheduling is based on priority. If two threads exist at the
same priority, scheduling is then based on policy.

Semaphore - A hardware or software flag that indicates the status of a resource

Target - The system on which an application is deployed - Typically, the target
system is synonymous with embedded system. Also see Host.

Task - The basic schedulable entity in most operating systems, especially real-time
operating systems - Usually synonymous with process.

Thread - Part or parts of a program that can be executed independent of the parent
process.

Virtual addressing - The use of an MMU to provide applications the illusion of a
logical address space - Each virtual address space is isolated from other
applications and their virtual address spaces, except as requested by memory
sharing inter-process communications. Virtual addressing translates the program-
LynxOS User’s Guide 181

Appendix A - Glossary

local logical addresses into physical addresses, and maps blocks of physical
memory into logical address spaces only as needed.

Virtual memory - The extension of physical memory (RAM) onto long-term
storage, typically a disk drive, through the use of virtual addressing and swapping.

Volatile - Memory that loses its contents after system power is cycled - The
contents of non-volatile memory do not change after system power is cycled.

X Windows - A graphical user interface and windowing environment for UNIX
systems.
182 LynxOS User’s Guide

Index
Symbols

/etc directory 22
/sys directory 85, 87

/devices directory 90
/lib kernel library files 87
modifiable directories 88
overview 87
symbolic link to BSP directory 88

/sys/lynx.os directory 88
overview 89

/sys/lynx.os/uparam.h file 95, 96
additional parameters for error

detection 97
configurable parameters for dynamic

memory 95, 96

A

a.out file 18, 90, 92
Active System Log 151
Adding

device drivers with CONFIG.TBL 91
functionality to a kernel 104
new user groups 22

Additional Components CD-ROM 5, 6
Administration Utilities

adduser 40
deluser 42
setup utility 21

Apache web server 121
application development process 14
archival contents

extracting 11, 54

listing 11
Archived System Log 151
Authorization Protocol for X11 77

B

backups
making 11, 53
media 54
policies and procedures 54

block size, setting 49
Board Support Package (BSP)

location 87, 92
symbolic link to 88

boot media, creating 132
Bootable images, creating 111
booting LynxOS

booting KDIs 118
from x86 ROM 131
root device 92

updating 104

C

CD-ROM
creating as boot medium 133
example device nodes 34
IDE device naming convention 33
naming convention 32
SCSI device naming convention 33
types supported by LynxOS 32

CD-ROMs, LynxOS 5
chmod utility 43
colors on X Windows 80
LynxOS User’s Guide 183

Index

commands

GDB 19
LynxOS 7
vi 17

Compiling
source code 18
using gcc 18

CONFIG.TBL, adding/removing drivers 91
Configuring core files 106
configuring serial ports 39
configX utility 73, 76
contacting LynuxWorks xiii
Creating KDIs with mkimage 111�135
Cross Development Environment

about 12
setting 12
setup scripts 93
Unix hosts 13

bash shell 13
C shell 13

Windows hosts 14
bash shell 14
C shell 14

customizing
/sys directory 87
kernel 85, 88

Customizing the Default LynxOS Kernel
Configuration 85�109

D

Debuggers
GDB 18
SKDB 121
TotalView 18

debugging
setting breakpoints 19
source code 18

deluser utility 42
demand-paging 82
demos, KDI 125
developing applications, about 14
development tools

directory 13
location 13, 94

device drivers
adding 104
adding or removing 91

CONFIG.TBL file 89, 91
managing changes to 92
modifying 102

removing unused 101
Device Node Naming Conventions 26�37
device nodes

creating 24
examples for CD-ROMs 34
examples for hard disks and partitions 32
list of 23
location 25
major and minor numbers 36
naming 26

CD-ROM 32
exceptions for hard disks 32
floppy disk 26
hard disk 29
IDE CD-ROM 33
IDE hard disk 29
RAM disk 36
SCSI CD-ROM 33
SCSI floppy device 28
SCSI hard disk 30
standard floppy device 27
tape drives 35

rebuilding 92, 103
devices supported on target platforms 26
Directories

creating 50
cross development tools 13
kdi 123
personal kernel build 92
removing 51
removing recursively 51

Disk Buffer Cache 80
modifying 80

disk space
configuring 49
determining usage 99
managing 47, 51

df Command 52
du Command 52
find Command 52

Disk Space Management 47�56
dlopen() 58
documents 2

LynxOS xi
LynxOS Installation Guide 12, 120
LynxOS Networking Guide 115
online xii
184 LynxOS User’s Guide

reference 2

general software 3
Linux 2
POSIX 3
programming 2
UNIX titles 2

Writing Device Drivers for LynxOS 27,
86, 105

X Libraries 76
dynamic kernel size, modifying 95, 99
dynamic memory, modifying 95

E

emacs 15
embedded root file system, KDIs 113
embedded standalone file system image,

KDIs 113
ENV_PREFIX, setting up for cross

development 13
environment variables

$ENV_PREFIX 13, 92, 93
LD_LIBRARY_PATH 143
Makefile 104
PATH 13, 93

environment, setting for cross development 12
error detection, MCP750 board 97
Error file, X server 81
Event Log Driver 152
Event Logging 151�176

Components 151
Installing 155
Parameters 156
Process Flow 152
sample driver code 175
severity levels 151, 160
system facilities 151
User Libraries 151

Event Logging Daemon 157
evlogd 157

options 158
evloginfo.h header file 156
extracting tar archives 11, 54

F

File Permissions 42
file system

creating 49
setting block size 49
setting inodes 49

creating on floppy disk 10
for KDIs 113

Files
backing up 53
backup media 54
determining usage 52
extracting 54
organizing 50
protecting 42
setting permissions 42

chmod utility 43
target support 87, 92

floppy disk
creating file system on 10
for installation on x86 systems 133
formatting 48
naming convention 26
SCSI device naming convention 28
standard device naming convention 27
types supported by LynxOS 26

Formatting
floppy disks 48

filler value 48
interleave factor 48

how to 47
SCSI disks 48

fstab file, description 22

G

GDB 18
commands 19

Generating, PROM Images on x86 131
Glossary 177
GNU C compiler 18
GNU C Pre-Processor 83
GNU Zebra Routing Package 5, 6
graphics adapters, loading 74
LynxOS User’s Guide 185

Index

H

hard disk
example device nodes 32
IDE device naming convention 29
Iomega and Jaz naming convention 32
naming convention 29
SCSI device naming convention 30
types supported by LynxOS 29

hex format, kernel image 132
host, customizing kernel from 93
hot key exit, X Server 75
Hot Key Resolution Switching 75

I

images, making 20
imake 79
Inodes, setting 49
installation media 5, 85
installit utility 49, 86
IPSec 88, 95
IPv6 88, 95
ISO images, creating 135

J

jump code, for kernel images on x86
PROM 131, 132

K

KDI
boot media 132

CD-ROM 133
x86 floppy 133

booting 118
from ROM 119
over network 118
RAM memory map 118

build templates 120
getting started 124

building demos 125

components 111
creating an image 115

burning on target ROM 131
burning on x86 PROM 131
converting into hex format 132
converting jump code 132
creating jump code 131
creating spec file 116
enabling RAM disk driver 116
modifying kernel parameters 116
testing 117

creation procedure overview 115
file system component 113

embedded rfs 113
embedded standalone fs image 113

kernel component 112
mkimage utility 111
network booting 115
ordering of build directories 124
Overview 111
prebuilt images 120
text segment component 114

kernel
adding functionality 104
adding TCP/IP

on a cross development system 94
on a native development system 94

changes made to /sys/devices 90
changing static size 99
converting into hex format 132
customization, main directory 88
customizing for functionality 86
customizing for maximum processes 97
customizing for performance 86, 95
customizing for size 86, 98

components 98
symbol table information 99

customizing from a Cross Development
Host 93

determining disk space usage 99
determining memory usage 100
determining size 99
Library Files, location 87
loading 103
modifying dynamic size 95, 99
personal build directory 92
reasons to customize 85
rebuilding with make utility 89
removing major functional modules 91

Kernel Build Directories, creating individual 92
186 LynxOS User’s Guide

Kernel Downloadable Images (KDIs) 111
keyboard support, international 76

L

lazy linking 57
ld.so 139, 140, 143
licenses, run-time 20
link library interface, X server 76
linking, source code 18
Linux ABI Compatibility 137�150
Linux ABI Compatibility Layer 5, 6, 138

adding Linux libraries to LynxOS 141
dynamically linked applications 145
extracting RPMs 146
installing 138
installing and running Opera 147
ld.so dynamic linker 139
libraries included 140
limitations 146
Linux Reference Distribution 144
versioned symbols 145

Linux ABI Libraries
adding to LynxOS 141
specifying paths 143
updating 142

Linux binary applications 137
determining Linux libraries needed 142
running on LynxOS 138
shared object interface calls 139

Location
BSP 87, 92
development tools 13, 94
device nodes 25
kernel library files 87
LynxOS kernel files 85, 87
setup scripts 93
X and Motif Libraries 82

Log Buffer
Event Data 152
Event Record 152, 161
high watermark level 157
low watermark level 157

Log Daemon 152, 157
login shell types supported by LynxOS 41
LynuxWorks, contacting xiii, 80
LynxOS

basic commands 7

creating boot media 132
Customizing default kernel 85, 88
description 1
documents xi
installation media 5, 85
kernel image components 112
kernel images 111, 115
loading kernel images from ROM 119
loading kernel images over a network 118
login shells 41
mkimage utility 111
reference manuals xii
shared libraries provided 69
shared libraries supported 57
specifying the embedded file system 113
specifying the kernel image 112
specifying the resident text segments 114
starting and stopping 6
steps for building kernel images 115
testing kernel images 117

LynxOS applications, native 137, 139
LynxOS Installation Guide 12, 73, 120
LynxOS kernel files, location 85, 87
LynxOS Networking Guide 115
LynxOS System Administration 21�46

M

Major and Minor numbers 36
make utility 89
Makefile

environment variables 104
rules 90
target-specific 89

man pages xii, 9
memory usage, kernel 100
mkfs command 49
mkimage utility 20, 111

Disk-Based File System 113
kernel image components 112
RAM-Based File System 113
specification file 112, 116
specifying embedded file system 113
specifying kernel image 112
specifying resident text segments 114
syntax and features 112
testing images made 117

modules
LynxOS User’s Guide 187

Index

removing 91
rkjump 131

Motif Libraries 78
mounted devices, list of 22
-mshared option 58, 70
Multi-monitor support 76
multiple kernel build directories 93

N

native development system, adding TCP/IP to 94
Networking and the X Server 74
newconsole 81
nodetab file

description 23
line syntax 25

O

ODE CD-ROM
KDI template tar files 120

online help xii
OpenSSL Encryption Package 5, 6
Opera 147
Overview

of /sys 87
of /sys/lynx.os 89
shared libraries 57

P

partitions
examples for hard disk 32

passwd file 39
PATH, setting up for cross development 13
Permissions, files 42
PIC 58
POSIX

about 3
benefits 4
Standards 4

PosixWorks Desk 7
PPC, X Libraries 77
printers available on the system 23
processes, increasing on LynxOS 97

PROJECT.sh, for demo KDIs 124
PROM Images, generating on x86 131

R

RAM disk driver, enabling 116
RAM disk naming convention 36
RAM memory map, netbooting KDIs 118
Reference manuals xii
renaming compiled source code 18
resident text segments, for KDIs 114
resident text, use of 114
resolution switching 75
rkjump module 131
root account 40
root file system

creating device nodes in 25
RPMs, extracting with rpm2cpio 146
Run-Time licenses 20

S

screens, designing 79
security issues

changing User ID 45
file protection 42
Process protection 46

serial port configurations, description 24
serial ports

/etc/ttys file line syntax 37
configuring 39
enabling for login 37
recognized by init for login 24

setup account 40
setup scripts, location 93
setup utility 21, 40, 42
SETUP.bash 6, 12, 93
SETUP.csh 6, 12, 93
Shared Libraries 57�71

and single/multithreaded applications 58
Choosing Contents 68
Code Maintenance 61
Creating 70
Determining use of 61
Disk Space Usage 60, 68
effects 59
188 LynxOS User’s Guide

factors in memory usage 59
kinds supported 57
linking to 71
Linux ABI Libraries 140
multi-threaded 69
object files included 58
overview 57
program maintenance 69
provided in LynxOS 69
Single-threaded 69
System Memory Usage 59
Types & Directories 59
Updating 68
X and Motif 69

shells supported by LynxOS 41
size, kernel 99
SKDB 82, 86, 121

removing support for 91
source code

compiling and linking 18
creating 15
debugging 18

Starting LynxOS 6
starttab file 23
static kernel size, changing 99
Stopping LynxOS 6
superuser 51

definition 22
system administration

/etc directory 22
adding new user groups 22
maintaining user IDs 23
managing user privileges 22
setup utility tasks 21
tasks 21

system downtime 151
System Log File 151

querying entries 172
writing to 162

T

tape drive
naming convention 35
types supported by LynxOS 35

tar archive utility 11, 53
targets

burning images on x86 PROM 131

burning kernel images into PROM 131
devices supported on 26
files, location 87, 92
target-specific Makefile 89

tconfig file 24
TCP/IP

adding to cross development system 94
adding to native development system 94

Technical Support xiii, 80
termcap file 24, 38
terminal emulator 81
terminals

describing in /etc/termcap file 38
enabling ports for login 37
managing 37
termcap file 24

Testing kernel images 117
Total/db User�s Guide 82
TotalDB kernel debugger 121
TotalView 18, 121
TotalView Supplement for LynxOS Users 18
TotalView User�s Guide 18
touchscreen support 74, 75
ttys file 24, 38
Typographical Conventions xii

U

uil 79
user accounts

/etc/passwd file 39
adduser utility 40
changing User ID 45
creating user name 41
deluser utility 42
establishing Group ID 41
establishing User ID 41
home directory 41
managing 39
root account 40
setting login shell 41
setup account 40
unique attributes 39

User ID
changing 45
establishing 41
passwd file 23
root user 22
LynxOS User’s Guide 189

Index

rules for maintaining 40

User Privileges 22

V

vi text editor
commands 17
introduction 15

virtual memory 82

W

widgets, designing 79
Window managers 81

raising priorities 81
Writing Device Drivers for LynxOS 27, 86, 105

X

X & Motif Development Package 73�83
X and Motif Libraries, location 82
X and Motif shared libraries 69
X and Threads 83
X application and server interface 77
X build utilities 83
X clients unsupported by LynxOS 81
X configuration and SKDB 82
X Display Manager library 77
X install script 83
X Libraries 76

documentation 76
link library interface 76
Motif libraries 78
Other Libraries 79
x86 and PPC 77

X Server
client-server connections 74
default priorities 81
Error file 81
features 73
hardware planning for high resolutions 75
Hot Key Exit 75
international keyboard support 76
Metro-X Enhanced Server Set

technology 74

Multiheaded server support 76
networking support 74
resolution switching 75
touchscreen support 75
X clients 74

X Utilities 79
imake 79
uil 79

X Windows
limiting colors used 80
starting and stopping 7, 73
Window Manager 81

X11 Protocol, extensions 78
X11, authorization protocol 77
x86, X Libraries 77
Xconsole 81
XIP text segments 114

Z

Zebra 5, 6
190 LynxOS User’s Guide

	LynxOS User’s Guide
	Contents
	Preface
	For More Information
	Typographical Conventions
	Special Notes
	Technical Support
	LynuxWorks U.S. Headquarters
	LynuxWorks Europe
	World Wide Web

	Chapter 1 Introduction
	About LynxOS
	LynxOS Features
	LynxOS Documentation
	Additional Documentation Resources

	About POSIX
	LynxOS and POSIX Standards
	Benefits of POSIX

	Chapter 2 Getting Started
	LynxOS Packages
	Starting and Stopping LynxOS
	Starting and Stopping X Windows
	Using PosixWorks Desk

	Basic LynxOS Commands
	LynxOS Man Pages

	Creating File Systems and Making Backups
	Making Backups

	LynxOS Cross Development Environment
	Setting the Cross Development Environment
	Setting up Cross Development on UNIX Hosts
	Setting up Cross Development on Windows Hosts

	The Application Development Process
	Creating Source Code with vi Text Editor
	Basic vi Commands

	Example vi C Program
	Compiling and Linking Source Code
	Debugging Source Code

	Creating Custom Kernels
	Making Final Images
	Identifying LynxOS Facilities for Run-Time

	Chapter 3 LynxOS System Administration
	System Administration Tasks
	Using the setup Utility
	Managing User Privileges
	Understanding the /etc Directory Contents

	Creating Device Nodes
	LynxOS Device Node Naming Conventions
	Floppy Device Naming Convention
	Hard Disk Device Naming Convention
	CD-ROM Device Naming Convention
	Tape Device Naming Conventions
	RAM Disk Naming Convention

	Major and Minor Numbers

	Managing Terminals
	Enabling Ports for Login
	Describing Terminals
	Serial Port Configurations

	User Accounts
	Root and Setup Accounts
	Using the adduser Utility
	Using the deluser Utility

	Understanding Security Issues
	File Permissions
	Changing Permissions with chmod
	Default Permissions
	Changing Effective User ID
	Process Protection

	Chapter 4 Disk Space Management
	Formatting Media
	Formatting Floppy Disks
	Formatting SCSI Disks

	Configuring Disk Space
	Making File Systems
	Setting Block Size
	Setting Inodes

	Organizing Files
	Creating Directories
	Removing Directories

	Managing Disk Space Usage
	The du Command
	Using df Command
	Using the find Command to Determine File Usage

	Backing Up the System
	The tar Command
	Creating the tar Backup File
	Restoring Backups

	Creating Backup Policies and Procedures

	Chapter 5 Shared Libraries
	Overview
	Creating Shared Libraries by Default
	Single/Multithreaded Applications and Shared Libraries

	Effects of Using Shared Libraries
	System Memory Usage
	Disk Space Usage
	Code Maintenance

	Determining the Use of Shared Libraries
	Example 1
	Example 2
	Example 3
	Choosing Shared Library Contents
	How to Save Space

	Updating Shared Libraries

	Libraries Provided
	Creating Shared Libraries
	Linking to a Shared Library

	Chapter 6 X & Motif Development Package
	Installing and Starting X
	X Server Features Overview
	X Server Technology from Metro-X
	Networking and the X Server
	X Server Hot Key Exit
	Hot Key Resolution Switching
	Hardware Panning
	Touchscreen Support
	International Keyboard Support
	Multiheaded Servers

	X Libraries
	The Development System
	Library Documentation
	x86/PPC Libraries
	Motif Libraries
	Other Libraries

	X Utilities
	imake
	uil

	Troubleshooting X
	Before Contacting LynuxWorks Technical Support
	Modifying Disk Cache Blocks
	Limited Colors
	Unsupported Programs
	Xconsole and newconsole
	Saving Errors
	Window Manager
	Real-Time Priorities and X
	Serial Printer
	Diamond Viper 550 TNT video card (x86 only)
	X Development Troubleshooting
	SKDB (Simple Kernel Debugger) and X
	X and Motif Libraries in /usr/lib
	X and Threads
	/lib/cpp (x86 and PPC)

	Chapter 7 Customizing the Default LynxOS Kernel Configuration
	Reasons for Kernel Customization
	Customizing for Performance
	Customizing for Size
	Customizing for Functionality

	Overview of the /sys Directory
	Accessing and Modifying the Main Kernel Directory
	Overview of /sys/lynx.os
	Rebuilding a Kernel with the make Utility
	Incorporating Changes Made in /sys/devices into the Kernel
	Functionality Scripts
	Adding/Removing Device Drivers with CONFIG.TBL
	Making a Personal Kernel Build Directory

	Customizing from a Cross Development Host
	Adding TCP/IP to a LynxOS Kernel

	Customizing a Kernel for Performance
	Configurable Parameters in /sys/lynx.os/uparam.h
	Parameter Default Values in /sys/lynx.os/uparam.h
	Additional Configurable Parameters for Detecting Fatal Errors on an MCP750 Board

	Increasing Maximum Processes

	Creating a Kernel for Debugging
	Changing Kernel Size
	Determining the Kernel Size
	Determining Kernel Disk Space Usage
	Determining Kernel Memory Usage

	Removing Unused Device Drivers
	Before Beginning
	Modifying CONFIG.TBL
	Building the Newly Customized Kernel
	Making New Device Nodes
	Loading the New Kernel
	Updating the Default Root Device

	Adding Functionality to a Kernel
	Adding a Custom Device Driver

	Configurable Tick Timer
	Configuring Core Files
	Configurable Options
	Installing Configurable Core File Capability
	Restoring the Defaults Settings

	User Definitions in uparam.h
	Default Configuration of the Core File

	Chapter 8 Creating Kernel Downloadable Images (KDIs)
	Overview
	mkimage - the LynxOS KDI Creation Utility
	The mkimage Syntax and Features

	LynxOS Kernel
	Embedded File Systems
	Embedded Root File Systems
	Embedded Stand-Alone File System Images

	Resident Text Segments
	Creating a KDI Image
	Procedure Overview
	Enabling the RAM Disk Driver
	Modifying Kernel Parameters
	Creating a Specification File
	Testing Kernel Images

	Booting KDIs
	Booting Images over a Network
	Booting Images from ROM

	KDI Build Templates
	Template Conceptual Overview
	Included KDI Build Templates
	kdi Directory Structure
	KDI Build Directories

	Restrictions
	Getting Started
	Building KDIs

	Example--Building, Booting, and Using the developer KDI
	Configuring the Developer KDI
	Removing Unnecessary Components
	Enabling Required Components
	Rebuilding the KDI

	Configuring the Linux Cross Development Host
	Booting the KDI
	Using the KDI
	Default Usernames and Passwords

	ROMing Issues
	Generating PROM Images on x86 Systems
	Building the Jump Code
	Converting the Jump Code
	Converting the Kernel Image

	Creating Bootable Installation Media
	Creating a Bootable x86 Floppy
	Creating a Bootable x86 or PowerPC CD-ROM
	Creating CD-ROM Image on Host
	Creating the CD-ROM

	Chapter 9 Linux ABI Compatibility
	Overview
	Installing the Linux ABI Layer
	Linux ABI Layer
	Interoperability with LynxOS Native Applications
	Linux ABI Shared Libraries

	Adding Linux Shared Libraries to LynxOS
	Determining Linux Application Library Dependencies
	Updating Linux ABI Layer Libraries
	Linux ABI Shared Libraries that Should Not Be Overwritten

	Specifying Linux ABI Shared Library Paths
	Running Linux Applications
	Linux Reference Distribution
	Support for Dynamically Linked Applications
	Support for Versioned Symbols

	Exceptions and Limitations
	Extracting RPMs with rpm2cpio

	Example -- Running Opera
	Installing Linux ABI Layer
	Downloading Opera
	Configuring the Linux ABI Layer

	Chapter 10 Event Logging
	The Event Logging System
	Event Logging Components

	Process Flow
	Write Flow
	Read Flow
	Open Flow
	Notify Flow

	Installing the Event Logging System
	Installing on a Native LynxOS System
	Removing from a Native System

	Installing On a Cross Development System
	Removing From a Cross Development System

	Configuring the Event Logging System
	Event Logging Parameters
	Configurable Parameters
	Buffer Length
	Buffer Size
	High Watermark Level
	Low Watermark Level

	The Event Logging Daemon
	Function Prototypes and Descriptions
	typedefs in eventlog.h
	Log File Descriptor (logd_t)
	System Identifier (log_facility_t)
	Severity Type (log_serverity_t)
	Log Record Identifier (log_recid_t)
	Event Record Identifier (log_event_t)
	Log Record (log_entry)
	Log Query (log_query_t)

	Writing Log Entries
	log_write()

	Processing Log Entries
	log_open()
	log_read()
	log_notify()
	log_close()
	log_seek()
	log_severity_compare()

	Setting Log Facilities
	log_facilityemptyset()
	log_facilityfillset()
	log_facilityaddset()
	log_facilitydelset()
	log_facilityismember()

	Querying Log Entries
	log_query_init()
	log_query_destroy()
	log_query_getfacilities()
	log_query_setfacilities()
	log_query_getseverity()
	log_query_setseverity()

	Sample Driver Code
	Kernel Code Example
	User Code Example

	Appendix A Glossary
	Index

