
3

LynxInsure++ User’s Guide

LynxInsure++ Release 4.0

DOC-0512-00

Product names mentioned in LynxInsure++ User’s Guide are trademarks of their respective manufacturers and are used
here only for identification purposes.

Copyright © 1993 - 2002 by ParaSoft Corporation. All rights reserved.
Copyright © 1987 - 2002, LynuxWorks, Inc. All rights reserved.

Printed in the United States of America.

All rights reserved. No part of LynxInsure++ User’s Guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise, without the
prior written permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; all such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for any
indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in all cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

Table of Contents
Table of Contents

LynxInsure++ User’s Guide

Introduction .1
Conventions used in this manual, 2
If you get stuck, 3

Insight .5
Memory corruption, 5
Pointer abuse, 8
Memory leaks, 10
Should memory leaks be fixed?, 13
Finding all memory leaks, 14
Dynamic memory manipulation, 15
Strings, 17
Uninitialized memory, 17
Uninitialized memory detection options, 19
Unused variables, 19
Data representation problems, 20
Incompatible variable declarations, 21
I/O statements, 21
Mismatched arguments, 23
C++ compile time warnings, 25
Invalid parameters in system calls, 26
Unexpected errors in system calls, 26
Achieving Total Quality Software, 27
i

Table of Contents
Insight Reports . 29
Default behavior, 29
The report file, 30
Customizing the output format, 32
Displaying process information, 33
Displaying the time at which the error occurred, 33
Displaying repeated errors, 34
Limiting the number of errors, 35
Changing stack traces, 35
Searching for source code, 36
Suppressing error messages, 37
Suppressing error messages by context, 38
Suppressing C++ warning messages, 40
Suppressing other warning messages, 40
Enabling error messages, 40
Opaque pointers, 41
“Stretchy” arrays, 41
Report summaries, 43
The “bugs” summary, 44
The “leak” summaries, 46
Sorting “leak” summaries with LeakTool, 48
The “coverage” summary, 51
ii

Table of Contents
Selective Checking . 53

Insra. 55
The Insra display, 56
Sending messages to Insra, 60
Viewing and navigating, 62
Deleting messages, 62
Rebuild/Kill process, 64
Viewing source files, 64
Selecting an editor, 64
Saving/loading messages to a file, 65
Help, 65
Troubleshooting, 66

Interacting with Debuggers 69
Available functions, 69
Sample debugging session, 70

Tracing . 77
Turning tracing on, 77
Directing tracing output to a file, 78
Example, 79

Signals . 81
Signal handling actions, 81
Interrupting long-running jobs, 82
Which signals are trapped?, 82
iii

Table of Contents
Code Insertions . 85
Debugging the hard way, 85
An easier solution, 86
An example, 86
Using the interface, 88
Conclusions, 89

Interfaces . 91
What are interfaces for?, 91
A C example, 92
A C++ example, 94
The basic principles of interfaces, 96
Interface creation strategy, 96
Trivial interfaces - function prototypes, 98
Using iiwhich to find an interface, 98
Writing simple interfaces, 100
Using interfaces, 101
Ordering of interfaces, 102
Working on multiple platforms or with multiple compilers, 103
Common interface functions, 104
Checking for errors in system calls, 105
Using Insight in production code, 106
Advanced interfaces: complex data types, 107
Interface esoterica, 109
Callbacks, 110
Using iic_callback, 112
Using iic_body, 113
Which to use: iic_callback or iic_body?, 114
Conclusions, 115
iv

Table of Contents
LynxInsure++
Reference Guide

Configuration Files . 119
Format, 120
Working on multiple platforms or with multiple compilers, 120
Option values, 121
Filenames, 122
Options at runtime and compile time, 124
Using -Zop and -Zoi, 125
Compiled-in options, 125
Options used by Insight, 126
Options used by Insra, 153

Memory Overflow . 155
Overflow diagrams, 155

Error Codes . 157

Programming Insight . 355
Control routines, 356
Memory block description routines, 356
v

Table of Contents
Interface Functions . 359

Manual Pages . 365

Index . 405
vi

List of Figures
List of Figures
Figure 1. “Hello world” with bug. 6
Figure 2. Insight’s messages from the “Hello world” program 7
Figure 3. “Hello world” with dynamic memory allocation 9
Figure 4. Pointer assignments before the memory leak 11
Figure 5. Pointer assignments after the memory leak 11
Figure 6. Sample “bugs” report summary 45
Figure 7. Sample “leaks” report summary 47
Figure 8. Sample “leaks” report summary before LeakTool 49
Figure 9. Sample “leaks” report summary after LeakTool 50
Figure 1. Initial Insra display 55
Figure 2. Sample Insra display with messages 58
Figure 3. Sample Insra display with summary report selected 61
Figure 4. Sample Insra display with editor window 63
Figure 5. Strategy for creating interfaces 97
Figure 6. Insight interfaces for malloc and memcpy 99
Figure 7. Sample output from a WRITE_OVERFLOW error 155
vii

List of Figures
viii

Part I

LynxInsure++
User’s Guide

Introduction

Introduction
Introduction
LynxInsure++ is version 4 of the popular and powerful runtime debugging tool
formerly known as Insight. There are some major changes and powerful new
features which we will describe in this LynxInsure++ User’s Guide, but the ease
of use you have come to expect from Insight remains in version 4.

A useful new tool has been created that builds on improvements introduced in
version 4 of LynxInsure++. LeakTool sorts and filters memory leak summary
reports, which makes detecting and fixing memory leaks after merely relinking
your program with Insight much easier. This processing can be done on summary
reports saved from Insra or generated directly by Insight. Of course, you will still
get much more comprehensive checking by compiling as much of your code as
possible with Insight, but this new ability allows better quick checks for new leaks
without a complete rebuild after new code has been added to your project.
LeakTool can also convert report files between the text format used by Insight
and the binary format used by Insra. Another change is automatic detection of
“stretchy” arrays. As always, the new version is faster and detects more errors than
the last. No other tool can check your code as thoroughly as Insight.

If you haven’t already read the Getting Started manual, we suggest starting there.
If you are interested in a specific subject, you may want to consult the index
located at the end of this volume.
1

Introduction

In
tr

od
uc

tio
n

C
TCA
Conventions used in this manual
Different typefaces and other symbols will be used in this text to denote various
types of information.

Text which appears in this typeface is used to
denote source code or the names of functions,
subroutines or variables. It is also used to show
commands that you should type at the keyboard.

Offset paragraphs which carry the “dangerous
bend” sign are particularly important and should be
understood before continuing further.

This symbol in the margin indicates a section specific to C++ users.

This symbol in the margin indicates a section specific to TCA users.
2

Introduction

Introduction
If you get stuck
If you have problems using LynxInsure++, please consult the comprehensive
FAQ shipped with your distribution (FAQ.txt) first. If your problem is not
discussed in this document, please follow the procedure below in contacting
technical support.

• Check the manual.

• Attempt to isolate a suspected bug to a trivial example. A
good method is to remove half of the code and try
compiling again, repeating the process until the problem is
isolated to ten or twenty lines. Often this procedure can
suggest a fix or work-around.

• If the problem is not urgent, report it by e-mail or fax to
LynuxWorks Technical Support.In the United States,
direct e-mail to support@lnxw.com or fax to (408)
979-3945. In Europe, direct e-mail to
tech_europe@lnxw.com or fax to (+33) 1 30 85 06 06.

• If the problem is urgent, call LynuxWorks Technical
Support Monday–Friday (holidays excluded). In the
United States, call (408) 979-3940 between 8:00 AM and
5:00 PM Pacific Time. In Europe, call (+33) 1 30 85 06 00
between 9:00 AM and 6:00 PM Central European Time.

• Before calling LynuxWorks Technical Support, know your
LynxInsure++ version. You can easily find it by typing
insight with no arguments.

• If you call, please use a phone near your computer. The
support technician may need you to try things while you are
on the phone.

• Be prepared to recreate your problem.

• Please be patient.

Thank you for selecting LynxInsure++. Good luck on your journey towards Total
Quality Software.
3

Introduction

In
tr

od
uc

tio
n

4

Insight

LynxInsure++
Insight
As shown in the Getting Started manual, using Insight is essentially trivial. You
simply recompile your program using the special insight command instead of
your normal compiler. Running the program normally will then generate a report
whenever an error is detected that usually contains enough detail to track down
and correct the problem.

What does this give you?

Obviously, the most important advantage of Insight is the fact that it
automatically detects errors that might otherwise go unnoticed in normal testing.
Subtle memory corruption errors and dynamic memory problems often don’t
crash the program or cause it to give incorrect answers until the program is
shipped to customers and they run it on their test cases. Then the problems start.

Even if Insight doesn’t find any problems in your programs, running it gives you
the confidence and “peace of mind” that your program doesn’t contain any errors.

Of course, Insight can’t possibly check everything that your program does.
However, its checking is extensive and covers every class of programming error.
The following sections discuss the types of errors that Insight will detect.

Memory corruption
This is one of the most unpleasant errors that can occur, especially if it is well
disguised. As an example of what can happen, consider the program shown in
Figure 1, which concatenates the arguments given on the command line and prints
the resulting string.

If you compile and run this program with your normal compiler, you’ll probably
see nothing interesting, e.g.,

$ gcc -o hello hello.c
$ hello
You entered: hello
5

Insight

Ly
nx

In
su

re
++
$ hello world
You entered: hello world
$ hello cruel world
You entered: hello cruel world

If this were the extent of your test procedures, you would probably conclude that
this program works correctly, despite the fact that it has a very serious memory
corruption bug.

If you compile with Insight, the command “hello cruel world” generates
the errors shown in Figure 2, because the string that is being concatenated
becomes longer than the 16 characters allocated in the declaration at line 11.

insight -g -o hello hello.c
hello cruel world

Figure 1. “Hello world” with bug

/*
* File: hello.c
*/
#include <string.h>

main(argc, argv)
int argc;
char *argv[];

{
int i;
char str[16];

str[0] = ‘\0’;
for(i=0; i<argc; i++) {
strcat(str, argv[i]);
if(i < (argc-1)) strcat(str, “ “);
}
printf(“You entered: %s\n”, str);
return (0);

}

6

Insight

LynxInsure++
Insight finds all problems related to overwriting memory or reading past the legal
bounds of an object, regardless of whether it is allocated statically (i.e., a global
variable), locally on the stack, dynamically (with malloc), or even as a shared
memory block.

Figure 2. Insight’s messages from the “Hello world” program

[hello.c:15] **WRITE_OVERFLOW**
>> strcat(str, argv[i]);

Writing overflows memory: <argument 1>

bbbbbbbbbbbbbbbbbbbbbbbbbb
| 16 | 2 |
wwwwwwwwwwwwwwwwwwwwwwwwwwwwww

Writing (w) : 0x7ffffd90 thru 0x7ffffda1
(18 bytes)

To block (b) : 0x7ffffd90 thru 0x7ffffd9f
(16 bytes)

str, declared at hello.c, 11
Stack trace where the error occurred:

main() hello.c, 15

Memory corrupted. Program may crash!!

[hello.c:18] **READ_OVERFLOW**
>> printf(“You entered: %s\n”, str);

String is not null terminated within range: str
Reading : 0x7ffffd90
From block: 0x7ffffd90 thru 0x7ffffd9f (16 bytes)

str, declared at hello.c, 11
Stack trace where the error occurred:

main() hello.c, 18
7

Insight

Ly
nx

In
su

re
++
It also detects the case in which a pointer crosses from one block of memory into
another and starts to overwrite memory there, even if the memory blocks are
adjacent.

Pointer abuse
Problems with pointers are among the most difficult encountered by C
programmers. Insight detects pointer related problems in the following categories

• Operations on NULL pointers.

• Operations on uninitialized pointers.

• Operations on pointers that don’t actually point to valid
data.

• Operations which try to compare or otherwise relate
pointers that don’t point at the same data object.

• Function calls through function pointers that don’t actually
point to functions.

Figure 3 shows the code for a second attempt at the “Hello world” program that
uses dynamic memory allocation.

The basic idea of this program is that we keep track of the current string size in the
variable length. As each new argument is processed, we add its length to the
length variable and allocate a block of memory of the new size. Notice that the
code is careful to include the final NULL character when computing the string
length (line 17) and also the space between strings (line 27). Both of these would
be easy mistakes to make. It’s an interesting exercise to see how quickly Insight
would find such an error.

The code in lines 22-27 either copies the argument to the buffer or appends it
depending on whether or not this is the first pass round the loop. Finally in line 27
we point at the new, longer string by assigning the pointer string to the variable
string_so_far.
8

Insight

LynxInsure++
If you compile and run this program under Insight, you’ll see an “uninitialized
pointer” error at line 22 and 23 because the first time through the argument loop
the variable string_so_far hasn’t been set to anything!

Figure 3. “Hello world” with dynamic memory allocation

1: /*
2: * File: hello2.c
3: */
4: #include <stdlib.h>
5: #include <string.h>
6:
7: main(argc, argv)
8: int argc;
9: char *argv[];
10: {
11: char *string, *string_so_far;
12: int i, length;
13:
14: length = 0; /* Include last NULL */
15:
16: for(i=0; i<argc; i++) {
17: length += strlen(argv[i])+2;
18: string = malloc(length);
19: /*
20: * Copy the string built so far.
21: */
22: if(string_so_far != (char *)0)
23: strcpy(string, string_so_far);
24: else *string = ‘\0’;
25:
26: strcat(string, argv[i]);
27: if(i < argc-1) strcat(string, “ “);
28: string_so_far = string;
29: }
30: printf(“You entered: %s\n”, string);
31: return (0);
32: }
33:
9

Insight

Ly
nx

In
su

re
++
Memory leaks
A “memory leak” occurs when a piece of dynamically allocated memory cannot
be freed because the program no longer contains any pointers that point to the
block. A simple example of this behavior can be seen by running the (corrected)
“Hello world” program with the arguments

hello3 this is a test

Note that the source code for the hello3.c program is located in
/usr/tools/lynxinsure++/examples/c/hello3.c.

If we examine the state of the program at line 28, just before executing the call to
malloc for the second time, we observe:

• The variable string_so_far points to the string
“hello” which it was assigned as a result of the previous
loop iteration.

• The variable string points to the extended string
“hello this” which was assigned on this loop iteration.

These assignments are shown schematically in Figure 4 - both variables point to
blocks of dynamically allocated memory.

The next statement

string_so_far = string;
10

Insight

LynxInsure++
will make both variables point to the longer memory block as shown in Figure 4

Figure 4. Pointer assignments before the memory leak

h e l l o t h i s \0

h e l l o \0

string

string_so_far

Figure 5. Pointer assignments after the memory leak

h e l l o t h i s \0

h e l l o \0

string

string_so_far
11

Insight

Ly
nx

In
su

re
++
Once this has happened, however, there is no remaining pointer that points to the
shorter block. Even if you wanted to, there is no way that the memory that was
previously pointed to by string_so_far can be reclaimed - it is permanently
allocated. This is known as a “memory leak”, and is diagnosed by Insight as
follows.

This example is called LEAK_ASSIGN by Insight since it is caused when a
pointer is re-assigned. Other types that Insight detects include:

LEAK_FREE Occurs when you free a block of memory that contains
pointers to other memory blocks. If there are no other
pointers that point to these secondary blocks then they
are permanently lost and will be reported by Insight.

LEAK_RETURN Occurs when a function returns a pointer to an
allocated block of memory, but the returned value is
ignored in the calling routine.

LEAK_SCOPE Occurs when a function contains a local variable that
points to a block of memory, but the function returns
without saving the pointer in a global variable or
passing it back to its caller.

Notice that Insight indicates the exact source line on which the problem occurs,
which is a key issue in finding and fixing memory leaks. This is an extremely
important feature, because it’s easy to introduce subtle memory leaks into your
applications, but very hard to find them all. Using Insight, you can instantly
pinpoint the line of source code which caused the leak.

[hello3.c:28] **LEAK_ASSIGN**
>> string_so_far = string;

Memory leaked due to pointer reassignment: <return>

Lost block : 0x0044dfd8 thru 0x0044dfe1 (10 bytes)
block allocated at:

main() hello3.c, 18

Stack trace where the error occurred:
main() hello3.c, 28
12

Insight

LynxInsure++
Should memory leaks be fixed?
Whether or not this is a serious problem depends on your application. To get more
information on the seriousness of the problem, make a file called .insight in
your current directory and add to it the line1

summarize leaks

Now when you run the program again, you will see the same output as before,
followed by a summary of all the memory leaks in your code.

This shows that even this short program lost five different chunks of memory. The
total of 69 bytes isn’t very large and you might well ignore it in a program this
size. If, however, this was a routine in a larger program, it would be a serious
problem, because every time the routine is called it allocates blocks of memory
and loses some. As a result the program gradually consumes more and more

1. If you already have a file called .insight in your directory, simply add
this line to it.

MEMORY LEAK SUMMARY
===================

4 outstanding memory references for 69 bytes.

Leaks detected during execution

10 bytes allocated at hello3.c, -1
main() hello3.c, 18

Leaks detected at exit

59 bytes allocated at hello3.c, -1
main() hello3.c, 18
13

Insight

Ly
nx

In
su

re
++
memory and will finally crash when the memory space on the host machine is
exhausted.

This type of bug can be extremely hard to detect, because it might take literally
days to show up. It is exactly the type of bug that survives all your in-house testing
and only shows up when you ship a product to a customer who needs to use it for
some enormous processing task!

You may be wondering why Insight only prints one
error message although the summary indicates
that 5 memory leaks occurred. This is because
Insight normally shows only the first error of any
given type at each particular source line. If you
wish, you can change this behavior as described in
“Insight Reports” on page 29.

You can obtain additional information about each
individual memory leak with the .insight option
“summarize detailed_leaks”.

Finding all memory leaks
For an even higher level of checking, we suggest the following algorithm for
removing all memory leaks from your code. This process is unique - no other tool
can do this. If you complete the following steps, we guarantee there will not be
any memory leaks left in your code.

1. Compile your program normally, but link with insight
-Zuse and run the program with Inuse (see “Using Inuse”
in the Inuse manual). If you see an increase in the heap size
as you run the program, you are leaking memory.

2. Compile all source code, but not libraries, with Insight. Clean
all leaks that are detected by Insight.

3. Compile everything that makes up your application with
Insight - source code and libraries. Clean any leaks
14

Insight

LynxInsure++
detected by Insight. If you do not have source for any of the
libraries, skip this step and proceed to Step 4.

4. Repeat Step 1. If memory is increasing, add summarize
detailed_leaks to your .insight file and run your
Insighted program again. Any outstanding memory
reference shown is a potential leak.

5. You must now examine each outstanding memory reference
to determine whether or not it is a leak. If the pointer is
passed into a library function, it may be saved. If this is the
case, it is not a leak. Once every outstanding memory
reference is understood, and those that are leaks are
cleared, the program is free of memory leaks.

Dynamic memory manipulation
Using dynamically allocated memory properly is another tricky issue. In many
cases programs continue running well after a programming error causes serious
memory corruption - sometimes they don’t crash at all.

One common mistake is to try to reuse a pointer after it has already been freed.

As an example we could modify the “Hello world” program to de-allocate
memory blocks before allocating the larger ones. Consider the following piece of
code which does just that:

22: if(string_so_far != (char *)0) {
23: free(string_so_far);
24: strcpy(string, string_so_far);
25: }
26: else *string = '\0';

If you run this code through Insight, you’ll get another error message about a
“dangling pointer” at line 24. The term “dangling pointer” is used to mean a
pointer that doesn’t point at a valid memory block anymore. In this case the block
15

Insight

Ly
nx

In
su

re
++
is freed at line 23 and then used in the following line! The final example of this
program (hello5.c) fixes this problem by moving the free to after the strcpy.

This is another common problem that often goes unnoticed, because many
machines and compilers allow this particular behavior.

In addition to this error Insight, also detects the following

• Reading from or writing to “dangling pointers”.

• Passing “dangling pointers” as arguments to functions or
returning them from functions.

• Freeing the same memory block multiple Times New
Roman.

• Attempting to free statically allocated memory.

• Freeing stack memory (local variables).

• Passing a pointer to free that doesn’t point to the
beginning of a memory block.

• Calls to free with NULL or uninitialized pointers.

• Passing non-sensical arguments or arguments of the wrong
data type to malloc, calloc, realloc or free.

Another way that Insight can help you track down dynamic memory problems is
through the RETURN_FAILURE error code. Normally, Insight will not issue an
error if malloc, for example, returns a NULL pointer because it is out of memory.
This behavior is the default, because it is assumed that the user program is already
checking for, and handling, this case.

If your program appears to be failing due to an unchecked return code, you can
enable the RETURN_FAILURE error message class (See page 300). Insight will
then print a message whenever any system call fails.
16

Insight

LynxInsure++
Strings
The standard C library string handling functions are a rich source of potential
errors, since they do very little checking on the bounds of the objects being
manipulated.

Insight detects problems such as overwriting the end of a buffer as described in
“Memory corruption” on page 5. Another common problem is caused by trying to
work with strings that are not null-terminated, as in the following example.

1: main()
2: {
3: char b[10], *a = "This is a test";
4:
5: strncpy(b, a, sizeof(b));
6: printf("%s\n", b);
7: }

This program attempts to copy the string “This is a test” into a buffer
which is only 10 characters long. Although it uses strncpy to avoid overwriting
its buffer, the resulting copy doesn’t have a NULL on the end. Insight detects this
problem in line 6 when the call to printf tries to print the string.

Uninitialized memory
A particularly unpleasant problem to track down occurs when your program
makes use of an uninitialized variable. These problems are often intermittent and
can be particularly difficult to find using conventional means, since any alteration
in the operation of the program may result in different behavior. It is not unusual
for this type of bug to show up and then immediately disappear whenever you do
something to try to trace it.

Insight performs checking for uninitialized data in two sub-categories

copy Normally, Insight doesn’t complain when you assign a variable
using an uninitialized value, since many applications do this
17

Insight

Ly
nx

In
su

re
++
without error. In many cases the value is changed to something
correct before being used, or may never be used at all.

read Insight generates an error report whenever you use an
uninitialized variable in a context which cannot be correct, such
as an expression evaluation.

To clarify the difference between these categories consider the following code

1: main()
2: {
3: int *a;
4: struct {
5: int val1, val2;
6: } s;
7:
8: a = (int *)malloc(10*sizeof(int));
9: s.val1 = 123;
10: s.val2 = a[0];
11: printf("Product is %d\n",
12: s.val1*s.val2);
13: }

At line 10 the value of a[0] is assigned to one of the structure elements. This is
an error of type READ_UNINIT_MEM(copy), because the program is actually
not in error if the value of s.val2 is never used.1 Since this category is
suppressed by default, you will not get an error message at this line.

However, in lines 11-12, the value of s.val2 is used to print a value which is
most definitely invalid, since its value was never assigned. Insight detects this
error in the READ_UNINIT_MEM(read)category. This category is enabled by
default, so a message will be displayed.

The detection of uninitialized memory is, therefore, a two stage process. Insight
usually displays the “read” sub-category errors, which you can either correct by

1. Of course, you might want to remove the statement altogether if it’s never
used!
18

Insight

LynxInsure++
inspection of the code or track further by enabling the “copy” sub-category and
tracking back through the assignments.

Uninitialized memory detection
options

Insight normally tracks only uninitialized pointers, as this is somewhat quicker
than checking all uninitialized memory. If you wish to track all uninitialized
memory accesses, you can set the following .insight option

checking_uninit on

When you enable full checking, Insight detects uninitialized memory references
using a full flow-analysis of your application’s source code (and can often detect
problems at compile time). This is the most comprehensive form of error
detection, but obviously involves some overhead during compilation.

Ignoring this option does not, however, completely disable uninitialized variable
checking. No errors will be reported in the READ_UNINIT_MEM class, but
Insight will still check for uninitialized pointer variables and report these errors
in the READ_UNINIT_PTR error category.

If checking_uninit is enabled, uninitialized
pointer errors will be reported in the
READ_UNINIT_MEM category, not
READ_UNINIT_PTR.

Unused variables
Insight can also detect variables which have no effect on the behavior of your
application, either because they are never used, or because they are assigned
19

Insight

Ly
nx

In
su

re
++
values which are never used. In most cases these are not serious errors, since the
offending statements can simply be removed, and so they are suppressed by
default.

 Occasionally, however, an unused variable may be a symptom of a logical
program error, so you may wish to enable this checking periodically. See “Unused
variables” on page 305 for more details.

Data representation problems
A lot of programs make either explicit or implicit assumptions about the various
data types on which they operate. A common assumption made on workstations is
that pointers and integers have the same number of bytes. While some of these
problems can be detected during compilation, some codes go to great lengths to
hide operations with typecasts such as

char *p;
int ip;

ip = (int)p;

On many systems this type of operation would be valid and would cause no
problems. When such code is ported to alternative architectures, however,
problems can arise. The code shown above would fail, for example, when
executed on a PC (16-bit integer, 32-bit pointer) or a 64-bit architecture such as
the DEC Alpha (32-bit integer, 64-bit pointer).

In cases where such an operation loses information, Insight will report an error.
On machines for which the data types have the same number of bits (or more), no
error is reported.
20

Insight

LynxInsure++
Incompatible variable declarations
Insight detects inconsistent declarations of variables between source files.

A common problem is caused when an object is declared as an array in one file,
e.g.,

int myblock[128];

but as a pointer in another

extern int *myblock;

Insight also reports differences in size, so that an array declared as one size in one
file and another in a second will be detected.

I/O statements
The printf and scanf family of functions are easy places to make mistakes
which show up either as bugs or portability problems.

Consider, for example, the code

foo()
{

double f;

scanf("%f", &f);
}

This code will not crash, but the value read into the variable f will not be correct,
since its data type (double) doesn’t match the format specified in the call to
scanf (float). As a result, incorrect data will be transferred to the program.
21

Insight

Ly
nx

In
su

re
++
In a similar way

foo()
{

float f;

scanf("%lf", &f);
}

corrupts memory, since too much data will be written over the supplied variable.
This error can be very difficult to detect.

Insight detects both of these bugs.

A more subtle issue arises when data types used in I/O statements match
“accidentally”. The code

foo()
{

long l = 123;
printf("l = %d\n", l);

}

functions correctly on machines where types int and long have the same
number of bits, but fails otherwise. Insight detects this error, but classifies it
differently from the previous cases. You can choose to ignore this type of problem
while still seeing the previous bugs. (See “BAD_FORMAT” on page 173 for
details.)

In addition to checking printf and scanf arguments, Insight also detects
errors in other I/O statements. The code

foo(line)
char line[80];

{
gets(line);

}

22

Insight

LynxInsure++
works as long as the input supplied by the user is shorter than 80 characters, but
fails on longer input. Insight checks for this case and reports an error if necessary.

This case is somewhat tricky, since Insight can
only check for an overflow after the data has been
read. In extreme cases the act of reading the data
will crash the program before Insight gets the
chance to report it.

Mismatched arguments
Calling functions with incorrect arguments is a common problem in many
programs, and can often go unnoticed.

Insight detects the error in the following program

double foo(dd)
double dd;

{
return dd + 1.0;

}

main()
{

printf("Result = %f\n", foo(1));
}

in which the argument passed to the function foo in main is an integer rather
than a floating point number.

Converting this program to ANSI style (e.g., with a
function prototype for foo) makes it correct since
the argument passed in main will be automatically
converted to double. Insight doesn’t report an
error in this case.
23

Insight

Ly
nx

In
su

re
++
Insight detects several different categories of errors, which you can enable or
suppress separately depending on which types of bugs you consider important.

Sign errors Arguments agree in type but one is signed and the
other unsigned, e.g., int vs. unsigned int.

Compatible types The arguments are different data types which happen
to occupy the same amount of memory on the current
machine, e.g. int vs. long if both are thirty-two bits.
While this error may not cause problems on your
current machine, it is a portability problem.

Incompatible types Similar to the example above - data types are
fundamentally different or require different amounts
of memory. int vs. long would appear in this
category on machines where they require different
numbers of bits.

Alias errors If you use typedef to define new names for data
types, Insight generates an error when you use them
inconsistently. Consider, for example, the following
function which computes the area of a region based on
its width and depth.

typedef float WIDTH;
typedef float DEPTH;
typedef float AREA;

AREA compute_width(width, depth)
WIDTH width;
DEPTH depth;

{
return (AREA)(width*depth);

}

If you invoke this function and pass it arguments of
type float rather than the typedef types, Insight
will generate a special type of error. This can be useful
if you wish to enforce strict coding practices on
variable types.
24

Insight

LynxInsure++

C

By default, the “alias” and “signed” and “compatible” error classes are disabled
and you will not see error messages relating to them. You can specifically enable
them as described on “Mismatch in argument type” on page 183.

C++ compile time warnings
During compilation, Insight’s parser detects a number of C++-specific problems
and prints warning messages. These messages are coded by the chapter, section,
and paragraphs pertaining to that warning in the draft ANSI standard. Therefore,
if you are uncertain what a particular warning message means or would like
additional information, you can consult the standard for an explanation.

As an example, the following code,

void foo(char *str) { }
void func()
{

void *iptr = (char *) 0;
foo(iptr);

}

when processed by Insight, will produce the following warning:

insight -c foo.cc
[foo.cc:5] Warning:13-2: wrong arguments passed
to function ’foo’
>> foo(iptr);
| declared at: [foo.cc:1]
| expected args: (char *)
| passed args: (void *)
25

Insight

Ly
nx

In
su

re
++
Invalid parameters in system calls
Interfacing to library software is often tricky, because passing an incorrect
argument to a routine may cause it to fail in an unpredictable manner.Debugging
such problems is much harder than correcting your own code, since you typically
have much less information about how the library routine should work.

Insight has built-in knowledge of a large number of system calls and checks the
arguments you pass to ensure correct data type and, if appropriate, correct range.

For example, the code

myrewind(fp)
FILE *fp;

{
fseek(fp, (long)0, 3);

}

would generate an error since the last argument passed to the fseek function is
outside the legal range.

Unexpected errors in system calls
Checking the return codes from system calls and dealing correctly with all the
error cases that can arise is a very difficult task. It is a very rare program that deals
with all possible cases correctly.

An unfortunate consequence of this is that programs can fail unexpectedly after
they have been shipped to customers because some system call fails in a way that
had not been anticipated. The consequences of this can range from a nasty “core
dump” to a system that performs erratically at the customer location.

Insight has a special error class, RETURN_FAILURE, that can be used to detect
these problems. All the system calls known to Insight contain special error
checking code that detects failures. Normally these errors are suppressed, since it
26

Insight

LynxInsure++
is assumed that the application is handling them itself, but they can be enabled at
runtime by adding the line

unsuppress RETURN_FAILURE

to a .insight file. Any system call that returns an error code will then print a
message indicating the name of the routine, the arguments supplied, and the
reason for the error.

This capability detects any error in any system call. Among the potential benefits
are automatic detection of errors in the following situations

• malloc runs out of memory.

• Files that don’t exist.

• Incorrectly set permission flags.

• Incorrect use of I/O routines.

• Exceeding the limit on open files.

• Inter-process communication and shared memory errors.

• Unexpected “interrupted system call” errors.

and many others.

Achieving Total Quality Software
The previous sections described the various types of problems detected by
Insight. As you can see, a very large number of problems can be detected as
simply as recompiling your program and running it under Insight. Hopefully, this
will eliminate many bugs that you might otherwise ship to your customers.

It would be naive, however, to expect that Insight will remove all of the bugs in
your code. Some will still make it through all the testing steps. Luckily, Insight
can still help even after you’ve shipped your product.
27

Insight

Ly
nx

In
su

re
++
An important way that Insight can help you reach the Total Quality Software
goal is to ship two versions of your product to your customers:

• The normal version, compiled without Insight

• A version built with Insight

This second version can be used at the customer site to help track down problems.
This will dramatically improve the efficiency of your support staff at finding bugs
in the released software.
28

Insight Reports

LynxInsure++
Insight Reports
The error reports that have already been shown indicate that Insight provides a
great deal of information about the problems encountered in your programs. It also
provides many ways of customizing the presentation of this information to suit
your needs.

Default behavior
By default, Insight adopts the following error reporting strategy:

• Error messages are “coded” by a single word shown in
uppercase, such as HEAP_CORRUPT, READ_OVERFLOW,
LEAK_SCOPE, etc.

• Messages about error conditions are displayed unless they
have been suppressed by default or in a site specific
configuration file. (See “Error Codes” on page 157 for a
list.)

• Only the first occurrence of a particular (unsuppressed)
error at any given source line is shown. (See “Report
summaries” on page 43 for ways to change this behavior.)

• Error messages are displayed on output stream stderr
(To change this, see “The report file” on page 30).

• Each error shows a stack trace of the previous routines,
displayed all the way back to your main program.
29

Insight Reports

Ly
nx

In
su

re
++
The report file
Normally, error reports are displayed on the UNIX stderr I/O stream. Users
interested in sending output to Insra should consult the Insra section of this
manual, which begins on page 55. If you wish to capture both your program’s
output and the Insight reports to a file, you can use the normal shell redirection
method. An alternative is to have Insight redirect only its output directly by
adding an option similar to

insure++.report_file bugs.dat

to your .psrc file. This tells Insight to write its reports to the file bugs.dat,
while allowing your program’s output to display as it normally would. Whenever
this option is in effect you will see a “report banner” similar to

** Insight messages will be written to bugs.dat **

on your terminal when your program starts to remind you that error messages are
being redirected. To suppress the display of this banner add the option

insure++.report_banner off

to your .psrc file.

Normally the report file is overwritten each time your program executes, but you
can force messages to be appended to an existing file with the command

insure++.report_overwrite off

If you wish to keep track of the reports from multiple runs of your code, an
alternative is to have Insight automatically generate filenames for you based on a
template that you provide. This takes the form of a string of characters with tokens
such as “%d”, “%p”, or “%V” embedded in it. Each of these is expanded to indicate
a certain property of your program as indicated in the table on page 122.
30

Insight Reports

LynxInsure++
Thus, for example, the option

insure++.report_file %v-errs.%D

when executed with a program called foo at 10:30 a.m. on the 21st of
March 1997, might generate a report file with the name

foo-errs.970321103032

(The last two digits are the seconds after 10:30 on which execution began.)

Note that programs which fork will automatically
have a “-%n” added to their format strings unless
a %n or %p token is explicitly added to the format
string by the user. This ensures that output from
different processes will always end up in different
report files.

You can also include environment variables in these filenames so that

$HOME/reports/%v-errs.%D

generates the same filename as the previous example, but also ensures that the
output is placed in the reports sub-directory of the user’s HOME.

This method is very useful for keeping track of program runs during development
to see how things are progressing as time goes on.
31

Insight Reports

Ly
nx

In
su

re
++
Customizing the output format
By default, Insight displays a particular banner for each error report, which
contains the filename and line number containing the error, and the error category
found, e.g.,

[foo.c:10] **READ_UNINIT_MEM(copy)**

If you wish, you can modify this format to suit either your aesthetic tastes or for
some other purpose, such as enabling the editor in your integrated environment to
search for the correct file and line number for each error.

Customization of this output is achieved by setting the error_format option
in your .psrc file to a string of characters containing embedded tokens which
represent the various pieces of information that you might wish to see. (A
complete list is shown on page 133.)

For example, the command

insure++.error_format "\"%f\", line %l: %c"

would generate errors in the format

"foo.c", line 8: READ_UNINIT_MEM(copy)

which is a form recognized by editors such as GNU emacs.

Notice how the embedded double quote
characters required backslashes to prevent them
being interpreted as the end of the format string.

A multi-line format can also be generated with a command such as

insure++.error_format "%f, line %l\n\t%c"
32

Insight Reports

LynxInsure++
which might generate

foo.c, line 8
READ_UNINIT_MEM(copy)

Displaying process information
When using Insight with programs that run on remote machines (e.g., in
client-server mode) or which fork into multiple processes, you might wish to
display additional process-related information in your error reports.

For example, adding the option

insure++.error_format \
"%f, line %l: \n\tprocess %p@%h: %c"

to your .psrc file would generate errors in the form

foo.c, line 8:
process 1184@gobi: READ_UNINIT_MEM(copy)

which contains the name of the machine on which the process is running and its
process ID.

Displaying the time at which the error
occurred

Especially when using Insight with applications that run for a long period, it is
often convenient to know exactly when various errors occurred. You can extend
the error reports generated by Insight in this fashion by adding the ‘%d’ and/or
33

Insight Reports

Ly
nx

In
su

re
++
‘%t’ characters to the error report format as specified in your .psrc file. For
example, the format

insure++.error_format "%f:%l, %d %t <%c>"

generates error reports in the form

foo.c:8, 9-Jan-97 14:24:03 <READ_NULL>

Displaying repeated errors
The default configuration suppresses all but the first error of any given kind at a
source line. You can display more errors by modifying the parameter
report_limit in the .psrc file in either your working or HOME directory.

For example, adding the line

insure++.report_limit 5

to your .psrc file will show the first five errors of each type at each source line.

Setting the value to zero suppresses any messages except those shown in
summaries. (See “Report summaries” on page 43.)

Setting the report_limit value to -1 shows all errors as they occur.

Note that not all information is lost by showing only the first (or first few) errors
at any source line. If you enable the report summary (See page 44) you will see
the total number of each error at each source line.
34

Insight Reports

LynxInsure++
Limiting the number of errors
If your program is generating too many errors for convenient analysis, you can
arrange for it to exit (with a non-zero exit code) after displaying a certain number
of errors by adding the line

insure++.exit_on_error number

to your .psrc file and re-running the program. After the indicated number of
errors, the program will exit. If number is less than or equal to zero, all errors are
displayed.

Changing stack traces
There are two potential modifications you can make to alter the appearance of the
stack tracing information presented by Insight to indicate the location of an error.

By default, Insight will read your program’s symbol table at start-up time to get
enough information to generate stack traces. To get file and line information, you
will need to compile your programs with debugging information turned on
(typically via the -g switch). If this is a problem, Insight can generate its own
stack traces for files compiled with Insight. You can select this mode by adding
the options

insure++.symbol_table off
insure++.stack_internal on

to your .psrc file. The stack_internal option will take effect after you
recompile your program (see page 139), while the symbol_table option can
be toggled at runtime (see page 150). In this case, the stack trace will display

** routines not compiled with insight **
35

Insight Reports

Ly
nx

In
su

re
++
in place of the stack trace for routines which were not compiled with Insight. This
will also make your program run faster, particularly at start-up, since the symbol
table will not be read.

If your program has routines which are deeply nested, you may see very long stack
traces. You can reduce the amount of stack tracing information made available by
adding an option like

insure++.stack_limit 4

to your .psrc file. If you run your program again, you will see at most1 the last
four levels of the stack trace with each error.

The value “0” is valid and effectively disables tracing.

The value “-1” is the default and indicates that the full stack trace should be
displayed, regardless of length.

Stack traces are also presented to show the function calling sequence when blocks
of dynamically allocated memory were allocated and freed. In a manner similar to
the stack_limit option, the malloc_trace and free_trace options
control how extensive these stack traces are.

Searching for source code
Normally, Insight remembers the directory in which each source file was
compiled and looks there when trying to display lines of source code in error
messages. Occasionally your source code will no longer exist in this directory,
possibly because of some sophisticated “build” or “make” process.

1. It is “at most” because some of the lower levels of the trace may be hidden
internally by Insight and not displayed by default. These levels are still
counted for the report_limit option.
36

Insight Reports

LynxInsure++
You can give Insight an alternative list of directories to search for source code by
adding a line such as

insure++.source_path .:$HOME/src:/usr/local/src

to the .psrc file in your current working or HOME directories.

The list may contain any number of directories separated by either spaces or
colons (:).

Insight’s error messages normally indicate the line
of source code responsible for a problem on the
second line of an error report, after the “>>” mark.
If this line is missing from the report, it means that
the source code could not be found at runtime.

Suppressing error messages
The previous sections discussed issues which can affect the appearance of
particular error messages. Another alternative is to completely suppress error
messages of a given type which you either cannot, or have no wish to, correct.

The simplest way of achieving this is to add lines similar to

insure++.suppress EXPR_NULL, PARM_DANGLING

to your .psrc file and re-run the program. No suppressed error messages will be
displayed, although they will still be counted and displayed in the report summary.
(See page 44.)

In this context, certain wild-cards can be applied so that, for instance, you can
suppress all memory leak messages with the command

insure++.suppress LEAK_*
37

Insight Reports

Ly
nx

In
su

re
++
You can suppress all errors with the command

insure++.suppress *

which has the effect of only creating an error summary. If the error code has
sub-categories, you can disable them explicitly by listing the sub-category codes
in parentheses after the name, e.g.,

insure++.suppress BAD_FORMAT(sign, compatible)

Alternatively,

insure++.suppress BAD_FORMAT

suppresses all sub-categories of the specified error class.

Suppressing error messages by
context

The commands described in the previous section either suppress or enable errors
in a given category regardless of where in your program the error occurs. This
syntax can be extended to specifying particular routines which must appear in the
function call stack at the time of the error for it to be enabled or suppressed.

For example, the command

insure++.suppress READ_NULL { sub* * }

suppresses messages of the given category which occur in any routine whose
name begins with the characters “sub”.
38

Insight Reports

LynxInsure++
The interpretation of this syntax is as follows:

• The stack context is enclosed by a pair of braces.

• Routine names can either appear in full or can contain the
‘*’ or ‘?’ wildcard characters. The former matches any
string, while the latter matches any single character.

• An entry consisting of a single ‘*’ character matches any
number of functions, with any names.

• Entries in the stack context are read from left to right with
the leftmost entries appearing lowest (or most recently) in
the call stack.

With these rules in mind, the previous entry is read as

• The lowest function in the stack trace (i.e., the function
generating the error message) must have a name that begins
with “sub” followed by any number of other characters.

• Any number of functions of any name may appear higher
in the function call stack

A rather drastic, but common, action is to suppress any errors generated from
within calls to the X Window System libraries. If we assume that these functions
have names which begin with either “X” or “_X”, we could achieve this goal with
the statements

insure++.suppress all { * X* * }
insure++.suppress all { * _X* * }

which suppresses errors in any function (or its descendents) which begins with
either of the two sequences.

As a final example, consider a case in which we are only interested in errors
generated from the routine foobar or its descendents. In this case, we can
combine suppress and unsuppress commands as follows

insure++.suppress all
insure++.unsuppress all { * foobar * }
39

Insight Reports

Ly
nx

In
su

re
++

C

Suppressing C++ warning messages
The warning messages that Insight displays during parsing of C++ code
(see page 40) can easily be suppressed if the user does not wish to correct the code
immediately. For example, to suppress the warning from that section, simply add

insure++.suppress_warning 13-2

to your .psrc file and recompile. The warning messages will no longer be
displayed.

Suppressing other warning messages
For other compile time warning messages which do not have a number associated,
there is another suppress option available. The suppress_output option takes
a string as an argument and will suppress any message that includes text which
matches the string. For example, the option

insure++.suppress_output wrong arguments passed

would suppress the warning from the previous section, as well as any others that
included this text string.

Enabling error messages
Normally, you will be most interested in suppressing error messages about which
you can or wish to do nothing. Occasionally, however, you will want to enable one
of the options that is currently suppressed, either by system default (See “Error
40

Insight Reports

LynxInsure++
Codes” on page 157) or in one of your own .psrc files. This is achieved by
adding a line similar to the following to your .psrc file.

insure++.unsuppress RETURN_FAILURE

Opaque pointers
You can prohibit Insight from checking a pointer by declaring it “opaque”. You
can do this for a function return value by using the assert_ok .psrc option
(see page 142) or, more generally, by using an iic_opaque function in an
interface. When you do this, Insight will not check this pointer or any pointers
which are derived from it. This is normally done only for a third-party function
which returns a pointer to a memory block allocated in a way that will not be seen
by Insight. This option tells Insight to ignore such a pointer.

“Stretchy” arrays
Another problem that comes up infrequently but causes problems is “stretchy”
arrays. Many programmers build structures in which the last element is an array
whose size is only determined at runtime. Consider the following code

1: /*
2: * File: stretch1.c
3: */
4: #include <stdlib.h>
5:
6: struct stretchy {
7: int nvals;
8: int data[1];
9: };
10:
11: struct stretchy *create(nvals)
41

Insight Reports

Ly
nx

In
su

re
++
12: int nvals;
13: {
14: int size;
15:
16: size = sizeof(struct stretchy) +
17: (nvals-1)*sizeof(int);
18: return (struct stretchy *)malloc(size);
19: }
20:
21: main()
22: {
23: struct stretchy *s;
24: int i;
25:
26: s = create(10);
27: for(i=0; i<10; i++) s->data[i] = 0;
28: return (0);
29: }

Because the memory allocation in line 18 takes into account the extra memory
required for the ten elements in the array, the loop in line 27 is actually valid.
Previous versions of LynxInsure++ complained about this line, because Insight
saw an array definition in line 8 that indicated that the structure element data is
an array with only a single element. Insight automatically detects possible
stretchy arrays and treats them accordingly. For details on controlling this new
capability, see the auto_expand option on page 126.

If you turn auto_expand to off, Insight will work just as it did in earlier
versions. In this situation, the simplest way to deal with the above case is to add
the option

insure++.expand struct stretchy.data

to your .psrc file. This line indicates that the element data of all structures
with tag stretchy should be allowed to expand at runtime to match the amount
of memory allocated. This allows Insight to compute the actual number of
elements in the “stretchy” array correctly. Multi-dimensional stretchy arrays must
be handled in the above manner, because they cannot be automatically detected.
42

Insight Reports

LynxInsure++
An interesting exercise is to change the loop in line 27 of the above code to

for(i=0; i<=10; i++) s->data[i] = 0;

Insight catches this!

The above change is provided to you as example stretch2.c.

 Elements of anonymous unions and structures
(i.e. unions and structures without a tag) cannot be
marked as stretchy, as there is no way to identify
them to Insight. If you have a stretchy array in
such a union or structure, you will need to edit your
source code to insert a tag if you want to declare
the array stretchy.

Report summaries
Normally, you will see error messages for individual errors as your program
proceeds. Using the other options described so far, you can enable or disable these
errors or control the exact number seen at each source line.

This technique is most often used to systematically track down each problem, one
by one.

It is often useful, however, to obtain a summary of the problems remaining in a
piece of code in order to track its progress.

Insight supports the following types of summary reports

• A “bug” summary which lists all outstanding bugs
according to their error codes.

• A “leak” summary which lists all memory leaks - i.e.,
places where memory is being permanently lost.

• An “outstanding” summary which lists all outstanding
memory blocks - i.e., places where memory is not being
43

Insight Reports

Ly
nx

In
su

re
++

TCA
freed, but is not leaked because a valid pointer to the block
still exists.

• A “coverage” summary which indicates how much of the
application’s code has been executed.

None of these is displayed by default.

The “bugs” summary
This report summary is enabled by adding the option

insure++.summarize bugs

to your .psrc file and re-running your program.

In addition to the normal error reports, you will then also see a summary such as
the one shown in Figure 6.

The first section is a header which indicates the following information about the
program being executed

• The name of the program.

• Its command line arguments, if available.

• The directory from which the program was run.

• The time it was compiled.

• The time it was executed.

• The length of time to execute.

This information is provided so that test runs can be compared accurately as to the
arguments and directory of test. The time and date information is supplied to
correlate with bug tracking software.

The second section gives a summary of problems detected according to the error
code and frequency. The first numeric column indicates the number of errors
44

Insight Reports

LynxInsure++
Figure 6. Sample “bugs” report summary

********************* INSIGHT SUMMARY ************* v4.0 **
Program : gs
Arguments : golfer.ps
Directory : /usr/home/trf/gsb
Compiled on : Jan 5, 1996 15:40:37
Run on : Jan 5, 1996 15:44:29
Elapsed time : 00:01:06

PROBLEM SUMMARY - by type
===============

Problem Detected Suppressed
--
EXPR_BAD_RANGE 7 0
READ_UNINIT_MEM 23 0
BAD_DECL 1 0
--
TOTAL 31 0
--

PROBLEM SUMMARY - by location
===============

EXPR_BAD_RANGE: Expression exceeded range, 7 occurrences
5 at ialloc.c, 170
1 at ialloc.c, 176
1 at ialloc.c, 182

READ_UNINIT_MEM: Reading uninitialized memory, 23 occurrences
7 at gxcpath.c, 137
7 at gxcpath.c, 241
1 at gdevx.c, 424
1 at gdevxini.c, 213
2 at gdevxini.c, 221
1 at gdevxini.c, 358
1 at gdevxini.c, 359
1 at gdevxini.c, 422
1 at gdevxini.c, 454
1 at gdevxini.c, 514

BAD_DECL: Global declarations are inconsistent, 1 occurrence
1 at gdevx.c, 93
45

Insight Reports

Ly
nx

In
su

re
++
detected but not suppressed. This is the total number of errors, which may differ
from the number reported, since, by default, only the first error of any particular
type is reported at each source line. The second column indicates the number of
bugs which were not displayed at all due to “suppress” commands.

The third section gives details of the information presented in the second section,
broken down into source files and line numbers.

The “leak” summaries
The simplest memory leak summary is enabled by adding the line

insure++.summarize leaks outstanding

to your .psrc file and re-running your program.

The output indicates the memory (mis)use of the program, as shown in Figure 7.

The first section summarizes the “memory leaks” which were detected during
program execution, while the second lists leaked blocks that were detected at
program exit. These are potentially serious errors, in that they typically represent
continuously increasing use of system resources. If the program is “leaking”
memory, it is likely to eventually exhaust the system resources and will probably
crash. The first number displayed is the total amount of memory lost at the
indicated source line, and the second is the number of chunks of memory lost.
Note that multiple chunks of different sizes may be lost at the same source line -
depending on which options you are using. To customize the report, there are three
.psrc options available: leak_combine, leak_sort, and leak_trace.

The leak_combine option controls how Insight merges information about
multiple blocks. The default behavior is to combine all information about leaks
which were allocated from locations with identical stack traces (leak_combine
trace). It may be that you would rather combine all leaks based only on the file
and line they were allocated, independent of the stack trace leading to that
allocation. In that case, you would use leak_combine location. Or, you
may simply want one entry for each leak (leak_combine none).
46

Insight Reports

LynxInsure++
The leak_sort option controls how the leaks are sorted, after having been
combined. The options are none, location, trace, size, and frequency
(size is the default). Sorting by size lets you look at the biggest sources of
leaks, sorting by frequency lets you look at the most often occurring source of
leaks, and sorting by location provides an easy way to examine all your leaks.

The leak_trace option causes a full stack trace of each allocation to be printed,
in addition to the actual file and line where the allocation occurred (this replaces
the detailed modifier from earlier versions of Insight.) This option will not
work if the malloc_trace option is non-zero (see page 147).

The third section shows the blocks which are allocated to the program at its
termination and which have valid pointers to them. Since the pointers allow the
blocks to still be freed by the program (even though they are not), these blocks are

Figure 7. Sample “leaks” report summary

********************* INSIGHT SUMMARY ************** v4.0 **
Program : leak
Arguments :
Directory : /usr/home/whicken/test
Compiled on : Jan 5, 1996 15:09:05
Run on : Jan 5, 1996 15:09:31
Elapsed time : 00:00:02

**
MEMORY LEAK SUMMARY
===================

4 outstanding memory references for 45 bytes.

Leaks detected during execution

10 bytes 1 chunk allocated at leak.c, 6

Leaks detected at exit

10 bytes 2 chunk allocated at leak.c, 7

Outstanding allocated memory

15 bytes 1 chunk allocated at leak.c, 8
47

Insight Reports

Ly
nx

In
su

re
++
not actually leaked. This section is only displayed if the outstanding keyword
is used. Normally, these blocks do not cause problems, since the operating system
will reclaim them when the program terminates. However, if your program is
intended to run for extended periods, these blocks are potentially more serious.

Sorting “leak” summaries with
LeakTool

The leak summary reports described in the previous section can get very large and
complicated for very large, complicated programs. To help the programmer locate
the particular leaks in which she is interested, LynxInsure++ provides LeakTool.
Let’s begin our look at LeakTool with a sample leak summary report generated
using the option

insure++.summarize leaks

as described in the previous section.

In a large program containing many leaks, it is convenient to have a sorted leak
summary. With a sorted summary report, severe leaks which should be fixed
immediately, e.g. the leak at red.c, line 16, are easily separated from small leaks
which you might not want to fix right away, e.g. the leak at red.c, line 11.
LeakTool is provided to generate these sorted summaries.

Figure 8 shows the leak summary report from Figure 8 after processing by
LeakTool.

In addition to processing the leak summary as shown above, LeakTool also
processes the individual runtime error messages generated by Insight as your
48

Insight Reports

LynxInsure++
program executes. Error messages for leaks such as LEAK_ASSIGN and
LEAK_SCOPE are moved to the beginning of LeakTool’s output.

If you customize the format of Insight’s error
messages using the error_format option
(see page 133), LeakTool may not be able to
process the resulting error messages.

There are several different ways in which the programmer can use LeakTool to
process Insight error output.

Figure 8. Sample “leaks” report summary before LeakTool

********************* INSIGHT SUMMARY ************** v4.0 **
Program : leak
Arguments :
Directory : /usr/home/whicken/test
Compiled on : Jan 5, 1996 15:09:05
Run on : Jan 5, 1996 15:09:31
Elapsed time : 00:00:02

**
MEMORY LEAK SUMMARY
===================

12 outstanding memory references for 7,137,102 bytes (6,969K).

Leaks detected during execution

400 bytes 2 chunks allocated at blue.c, 6
50 bytes 1 chunk allocated at blue.c, 11

6000 bytes 1 chunk allocated at blue.c, 16
200 bytes 2 chunks allocated at red.c, 6

2 bytes 1 chunk allocated at red.c, 11
5083380 bytes 1 chunk allocated at red.c, 16

84 bytes 2 chunks allocated at white.c, 6
2002424 bytes 1 chunk allocated at white.c, 11
44562 bytes 1 chunk allocated at white.c, 16
49

Insight Reports

Ly
nx

In
su

re
++
The most direct is to pipe the program’s output through LeakTool, e.g.

hello |& leaktool -

You can also use the report_file option (see page 139) to redirect Insight’s
output to a file, and then use LeakTool to process the output after your program
has completed its execution. For example, if you used the option

insure++.report_file foo-errors

Figure 9. Sample “leaks” report summary after LeakTool

********************* INSIGHT SUMMARY ************** v4.0 **
Program : leak
Arguments :
Directory : /usr/home/whicken/test
Compiled on : Jan 5, 1996 15:09:05
Run on : Jan 5, 1996 15:09:31
Elapsed time : 00:00:02

**
MEMORY LEAK SUMMARY
===================

12 outstanding memory references for 7,137,102 bytes (6,969K).

Leaks detected during execution

5083380 bytes 1 chunk allocated at red.c, 16
2002424 bytes 1 chunk allocated at white.c, 11

44562 bytes 1 chunk allocated at white.c, 16
6000 bytes 1 chunk allocated at blue.c, 16
400 bytes 2 chunks allocated at blue.c, 6
200 bytes 2 chunks allocated at red.c, 6
84 bytes 2 chunks allocated at white.c, 6
50 bytes 1 chunk allocated at blue.c, 11
2 bytes 1 chunk allocated at red.c, 11
50

Insight Reports

LynxInsure++TCA
in your .psrc file to write Insight’s output to the file foo-errors, you could
process the messages with LeakTool with the command

leaktool foo-errors

For information on using LeakTool in conjunction with Insra, see the Insra
section of this manual.

The “coverage” summary
The coverage summary is enabled by adding the line

insure++.summarize coverage

to your .psrc file and re-running your program.

In addition to the normal error reports, you will see a summary indicating how
much of the application’s source code has been tested. The exact form of the
output is controlled by the .psrc file option coverage_switches, which
specifies the command line switches passed to the tca command to create the
output.

If this variable is not set, it defaults to

insure++.coverage_switches -dS

which displays an application level summary of the test coverage such as

COVERAGE SUMMARY
================

11 blocks untested
42 blocks tested
51

Insight Reports

Ly
nx

In
su

re
++
78% covered

For details on the formatting of this output using the coverage_switches
option, consult the manual page for the tca command. (See the on-line man pages
with the command “man tca”)
52

Selective Checking

LynxInsure++
Selective Checking
By default, Insight will check for bugs for the entire duration of your program. If
you are only interested in a portion of your code, you can make some simple,
unobtrusive changes to the original source to achieve this.

When you compile with insight, the pre-processor symbol __INSIGHT__ is
automatically defined. This allows you to conditionally insert calls to enable and
disable runtime checks.

Suppose, for example, that you are not interested in events occurring during the
execution of a hypothetical function grind_away. To disable checking during
this function, you can modify the code as shown below

grind_away() {
#ifdef __INSIGHT__

_Insight_set_option("runtime", "off");
#endif

... code ...
#ifdef __INSIGHT__

_Insight_set_option("runtime", "on");
#endif
}

Now when you compile and run your program, it will not check for bugs between
the calls to _Insight_set_option.

Alternatively, if you do not want to modify the code for the grind_away
function itself, you can add calls to _Insight_set_option around the calls
to grind_away.
53

Selective Checking

Ly
nx

In
su

re
++
54

Insra

Insra
Insra
Insra, the INSure++ Report Analyzer, is a graphical user interface for displaying
error messages generated by LynxInsure++ and CodeWizard. The messages are
summarized in a convenient display, which allows the developer to quickly
navigate through the list of bug reports and violation messages, suppress
messages, invoke an editor for immediate corrections to the source code, and
delete messages as bugs are fixed.

Figure 1. Initial Insra display

Status
Bar

Message
Body

Message
Header

Tool Bar

Menu Bar
55

Insra

In
sr

a

The Insra display

Status Bar
During compilation/run time, LynxInsure++ or CodeWizard makes a
connection to Insra each time an error is detected. The status bar will report the
number of error messages currently being displayed and the number of active
connections. An active connection is denoted by a yellow star to the left of the
session header. A connection will remain active as long as the program is still
compiling/running. Insra will not allow you to delete a session header as long as
its connection remains active, and you may not exit Insra until all connections
have been closed.

Tool Bar
The tool bar allows the user to scroll up and down through messages, delete
selected messages as bugs are fixed, and even suppress errors detected by
LynxInsure++ and CodeWizard.

Message Header Area
The message header area presents information to the user in the form of message
headers, which are grouped by session headers. To see an example of Insra
displaying LynxInsure++ and CodeWizard error messages, please refer to
Figure 2.
56

Insra

Insra
Session Header

When the first error or violation is detected for a particular compilation or
execution, a session header is sent to Insra. The session header includes the
following information:

• Compilation/execution

• Source file/program

• Host on which the process is running

• Process ID

The session header will distinguish whether the client belongs to LynxInsure++
or CodeWizard. This is the first item to appear in the session header.

Message Header

There are several types of message headers. Messages generated by
LynxInsure++ will consist of:

• Error category, e.g. LEAK_SCOPE

• File name

• Line number

Messages generated by CodeWizard include:

• Class (if appropriate)

• Item

• Severity level, e.g. (SV)

• File name

• Line number

Message headers will also appear for various LynxInsure++ summary reports.
These reports are generated using the summarize option. Clicking on a message
header displays the body of the error message or summary report in the message
body area.
57

Insra

In
sr

a

Message Body Area
The information displayed in the message body area varies according to the type
of message header currently selected.

Figure 2. Sample Insra display with messages

Message
Body

Session
Header

Message
Header

(selected)
58

Insra

Insra
Error Message

The message body for a selected LynxInsure++ error message includes:

• Line of source code where the error occurred

• Explanation of the error detected

• Stack traces for quick reference to the original source code

The message body for a selected CodeWizard message includes:

• Severity level of item detected, e.g. Severe violation

• Item number detected

• Short description of item detected

The stack traces are “live” and can be double-clicked to launch an editor to view
and correct the indicated line of code. See “Viewing source files” on page 64.

All messages sent to Insra are marked with a special icon. Please refer to the
following table for a brief description of each icon.

Icon Explanation

Insight error message

CodeWizard violation message
59

Insra

In
sr

a

Summary Report

For details on enabling LynxInsure++ summary reports, please refer to “Insight
Reports” on page 29. See Figure 3 for an example of the Insra display with a
summary report selected.

Sending messages to Insra
By default, all Insight and CodeWizard output is sent to stderr. Messages that
are generated by these tools can be redirected to Insra by simply adding the
appropriate option to your .psrc file

insure++.report_file insra

or

codewizard.report_file insra

Insight summary report

Memory leak

Trapped signal

Icon Explanation
60

Insra

Insra
The above option will redirect all LynxInsure++ or CodeWizard messages to
Insra. The option

insure++.runtime.report_file insra

will send only LynxInsure++ runtime messages to Insra. LynxInsure++
compile-time messages will continue to be sent to stderr.

Figure 3. Sample Insra display with summary report selected
61

Insra

In
sr

a

The option

insure++.compile.report_file insra

will send only LynxInsure++ compile-time messages to Insra. LynxInsure++
runtime messages will continue to be sent to stderr.

When you have one of the above options set in your .psrc file, each time an error
is detected, Insight or CodeWizard attempts to establish a connection to Insra.
If Insra is not yet running, it will be automatically started. Once the connection is
established, a session header and all corresponding message headers will be
reported in the order they were detected. Each new compilation or execution, with
its own session header and messages, will be displayed in the order in which it
connected to Insra.

Viewing and navigating
Individual messages sent to Insra are denoted by a specific icon (See “The Insra
display” on page 56.) The body of the currently selected message is displayed in
the message body area. The message header area and the message body area are
both resizable, and scroll bars are also available to access text that is not visible.

Currently active messages become inactive when they are deleted or suppressed.

Deleting messages
Once error messages have been read and analyzed, the user may wish to clear
them from the window. The Delete option of Insra allows you to eliminate error
messages as errors are corrected. A message or an entire session may be removed
by selecting the corresponding entry in the message header area and subsequently
clicking the Delete button on the tool bar. A message can also be deleted by
selecting Messages/Delete from the menu bar.
62

Insra

Insra
Figure 4. Sample Insra display with editor window
63

Insra

In
sr

a

Rebuild/Kill process
This button presents different options depending upon the currently selected
message header. When an active connection is selected, the Kill button can be
used to stop the selected compilation or execution. When an inactive
CodeWizard message or session header is selected, the Rebuild button allows
you to re-execute the same command line that generated the selected message
header. This allows the user to recheck the code immediately after correcting an
error. The Rebuild button is not available for LynxInsure++ messages.

Viewing source files
You can view the corresponding source file and line number for a particular error
message by double clicking on the message header or any line of the stack trace
in the message body area. In most cases, the file and line number associated with
a given message have been transmitted to Insra. If Insra is unable to locate the
source file, a dialog box will appear requesting that you indicate the correct file.

Selecting an editor
In addition to the location of the source file, Insra must also know the name of
your editor, and the command line syntax, in order to display the correct file and
line from the original source code.

Insra retrieves information about how to launch your editor from the .psrc
option insra.visual (see page 154 for information on using this option). If
this option is not set, Insra uses the vi editor by default. If the option is set, Insra
will execute the given command to load the file into your editor.
64

Insra

Insra
Saving/loading messages to a file
All current messages can be saved to a file by selecting File/Save or File/Save As
from the menu bar. A dialog box allows you to select the destination directory and
name of the report file. Report files have the default extension rpt. After a report
file name has been selected, subsequent File/Save selections save all current
messages into the report file without prompting for a new filename. A previously
saved report file can be loaded by selecting File/Load from the menu bar. A
dialog box then allows you to select which report file to load.

Help
On-line help can be obtained by choosing Help from the menu bar. This will
provide a list of topics on the use of Insra. In addition to providing help on the
various functional pieces of Insra, the FAQ text is available for browsing.

Context-sensitive help is accessible by simply clicking the Help button on the
toolbar. When selected, the mouse cursor changes to the question mark arrow
combination; clicking on any visual element of Insra will bring up a help window
with a description of that item.
65

Insra

In
sr

a

Troubleshooting

Insra does not start automatically
Symptom:

While compiling or running, your program seems to hang when error output is
directed to Insra and Insra is not yet running.

Solution:

Run Insra by hand.Type

insra &

at the prompt, wait for the Insra window to appear and then run or compile your
program again. Output should now be sent to Insra.

Multiple users of Insra on one machine
Symptom:

When more than one user is attempting to send message reports to Insra,
messages are lost.

Solution:

Each invocation of Insra requires a unique port number. By default, Insra uses
port 3255. If collisions are experienced, e.g. multiple users are on one machine,
set the .psrc option insra.port to a different port above 1024. Ports less
than 1024 are officially reserved by the operating system and should not be used
with Insra.
66

Insra

Insra
Source browsing is not working
Symptom:

***Error while attempting to spawn browser
execvp failed!

Solution:

Insra attempted to launch your editor to view the selected source file, but could
not locate either xterm or your editor on your path. Please make sure that both of
these applications are in directories that are on your path or that you call them with
their complete pathnames.
67

Insra

In
sr

a

68

Interacting with Debuggers

LynxInsure++
Interacting with
Debuggers

While it is our intent that the error messages generated by Insight will be
sufficient to identify most programming problems, it will someTimes New Roman
be useful to have direct access to the information known to Insight. This can be
useful in the following situations

• You are running your program from a debugger and would
like to cause a breakpoint whenever Insight discovers a
problem.

• You are tracing an error using the debugger and would like
to monitor what Insight knows about your code.

• You wish to add calls to your program to periodically
check the status of some data.

Available functions
Whenever Insight detects an error, it prints a diagnostic message and then calls
the routine _Insight_trap_error. This is a good place to insert a
breakpoint if you are working with a debugger.

The following functions show the current status of memory and can be called
either from your program or the debugger. Remember to add prototypes for the
functions you use, particularly if you are calling these C functions from C++ code.

int _Insight_mem_info(void *pmem);
Displays information that is known about the block of memory
at address pmem. (Returns zero.)

int _Insight_ptr_info(void **pptr);
Displays information about the pointer at the indicated address.
(Returns zero.)
69

Interacting with Debuggers

Ly
nx

In
su

re
++
The following function lists all currently allocated memory blocks, including the
line number at which they were allocated. It can be called directly from your
program or from the debugger.

long _Insight_list_allocated_memory(void);
Lists all allocated memory blocks, including the source line at
which they were allocated. Returns the amount of allocated
memory in bytes.

Sample debugging session
The use of these functions is best illustrated by example.

Consider the following program

1: /*
2: * File: bugsfunc.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char *p, *q;
9:
10: p = (char *)malloc(100);
11:
12: q = "testing";
13: while(*q) *p++ = *q++;
14:
15: free(p);
16: return (0);
17: }
70

Interacting with Debuggers

LynxInsure++
Compile this code under Insight in the normal manner (with the -g option), and
start the debugger in the normal manner.

The instructions shown here assume that the
debugger you are using is similar to gdb. If you are
using another debugger, similar commands
should be available.

$ gdb bugsfunc
Reading symbolic information...
Read 4650 symbols
(gdb)

If the debugger has trouble recognizing and
reading the source file, you may need to use the
rename_files on .psrc option. See page 138
for more information about this option.

It is generally useful to put a breakpoint in _Insight_trap_error so that
you can get control of the program whenever an error occurs. In this case, we run
the program to the error location with the following result

(gdb) break _Insight_trap_error
Breakpoint 1 at 0x2a7e0: file trap.c, line 129

The above may not work if you have linked against
the shared Insight libraries. If you cannot set a
breakpoint as shown above, it is because the
shared libraries are not loaded by the debugger
until the program begins to run. You can avoid this
problem by linking against the static Insight
libraries (see the static_linking on option on
page 139) or by setting a breakpoint in main and
starting the program before setting the breakpoint
on _Insight_trap_error.
71

Interacting with Debuggers

Ly
nx

In
su

re
++
(gdb) run
Starting program: /tmp/bugsfunc
Kernel supports MTD ptrace requests.
[bugsfunc.c:15] **FREE_BODY**
>> free(p);

Freeing memory block from body: p

Pointer : 0x44a42f
Stack trace where the error occurred:

main() bugsfunc.c, 15

Memory corrupted. Program may crash!!
Breakpoint: _Insight_trap_error() at trap.c: 129
trap.c:129: File or directory doesn’t exist.
(gdb)

The program is attempting to free a block of memory by passing a pointer that
doesn’t indicate the start of an allocated block. The error message shown by
Insight identifies the location at which the block was allocated and also shows us
that the variable p has been changed to point into the middle of the block, but it
doesn’t tell us where the value of p changed.

We can use the Insight functions from the debugger to help track this down.

Since the program is already in the debugger, we can simply add a breakpoint back
in main and restart it

(gdb) bt
#0 _Insight_trap_error() at trap.c:129
#1 0x1f093 in _insight_notify()
#2 0x18da1 in _insight_unassigna()
#3 0x18e71 in _Insight_unassigna()
#4 0x4fd in main (_Insight_argc=1,
_Insight_argv=0x7ffffff8) at bugsfunc.c:15
#5 0x3bc97 in runmainthread()
(gdb) frame 4
#4 0x4fd in main (_Insight_argc=1,
_Insight_argv=0x7ffffff8) at bugsfunc.c:15
72

Interacting with Debuggers

LynxInsure++
(gdb) break 10
Breakpoint 2 at 0x2c8: file bugsfunc.c, line 10.
(gdb) run
The program being debugged has been started
already. Start it from the beginning? (y or n) y

Starting program: /tmp/bugsfunc
Kernel supports MTD ptrace requests.

Breakpoint 2, main (_Insight_argc=1,
_Insight_argv=0x7ffffff8) at bugsfunc.c:10
(gdb)

To see what is currently known about the pointers p and q, we can use the
_Insight_ptr_info function

Note that the _Insight_ptr_info function
expects to be passed the address of the pointer,
not the pointer itself. To see the contents of the
memory indicated by the pointers, use the
_Insight_mem_info function.

(gdb) print _Insight_ptr_info(&p)
Pointer: 0x7ffffff0 (stack)
Unknown
$1=0

(gdb) print _Insight_ptr_info(&q)
Pointer: 0x00000003
Unknown
$2=0

Both pointers are currently uninitialized, as would be expected.
73

Interacting with Debuggers

Ly
nx

In
su

re
++
To see something more interesting, we can continue to line 13 and repeat the
previous steps.

(gdb) break 13
Breakpoint at 0x37a: file bugsfunc.c, line 13.
(gdb) continuing
Breakpoint 3, main (_Insight_argc=1,
_Insight_argv=0x7ffffff8) at bugsfunc.c:13

(gdb) print _Insight_ptr_info(&p)
Pointer : 0x0044a428 (heap)
Offset : 0 bytes
In Block : 0x0044a428 thru 0x0044a48b

(100 bytes)
allocated

$3=0

The variable p now points to a block of allocated memory. You can check on all
allocated memory by calling _Insight_list_allocated_memory.

(gdb) print _Insight_list_allocated_memory()
1 allocated memory block, occupying 100 bytes.
[bugsfunc.c:10] 0x0044a428 - 0x0044a48b

100 bytes.
$4 = 100

Finally, we check on the second pointer, q.

(gdb) print _Insight_ptr_info(&q)
Pointer : 0x00000218 (global)
Offset : 0 bytes
In Block : 0x00000218 thru 0x0000021f

(8 bytes)
"q", declared at bugsfunc.c,12

$5 = 0
74

Interacting with Debuggers

LynxInsure++
Everything seems O.K. at this point, so we can continue to the point at which the
memory is freed and check again.

(gdb) next 2
15 free(p);

(gdb) print _Insight_ptr_info(&p)
Pointer : 0x0044a42f (heap)
Offset : 7 bytes
In Block : 0x0044a42f thru 0x0044a48b

(100 bytes)
allocated

$6 = 0

The critical information here is that the pointer now points to an offset 7 bytes
from the beginning of the allocated block. Executing the next statement,
free(p), will now cause the previously shown error, since the pointer doesn’t
point to the beginning of the allocated block anymore.

Since everything was correct at line 12 and is now broken at line 15, it is simple
to find the problem in line 13 in which the pointer p is incremented while looping
over q.
75

Interacting with Debuggers

Ly
nx

In
su

re
++
76

Tracing

LynxInsure++

C

Tracing
Tracing is a very useful enhancement of Insight for C++ programmers. Because
C++ is such a complicated language, programmers may never know which
functions are being called or in which order. Some functions are called during
initialization before the main program begins execution. Tracing provides the
programmer with the ability to see how functions, constructors, destructors, and
more are called as the program runs.

Insight prints a message at the entry to every function which includes the function
name, filename, and line number of the command that called it.

A typical line of output from tracing looks like:

function_name filename, line_number

By default, the output is indented to show the proper depth of the trace.

Turning tracing on
By default, tracing is turned off. The easiest way to turn tracing on is to use the
trace on option in your .psrc file. This turns on tracing for the entire
program. See page 150 for more information about this option.

You may not want to do this always, though, because your program will slow
down while every function call prints information.

This problem can be minimized by selectively turning on tracing during the
execution of your program only in those sections of the code where you need it
most. This can be done using the special Insight command

To get a full trace, you must use the -g compiler
switch on your insight compile line. To get file
names and line numbers in the trace output, you
must use the stack_internal on option
when compiling your program. (see page 139)
77

Tracing

Ly
nx

In
su

re
++
void _Insight_trace_enable(int flag)

flag = 0 turns tracing off
flag = 1 turns tracing on

There is one more special Insight function that works with tracing. This function
may be used to add your own messages to the trace.

void _Insight_trace_annotate(int indent,
char *format, ...)

indent = 0 means string is placed in column zero
indent = 1 means string will be indented at proper level
format should be a normal printf-style format string

Directing tracing output to a file
The default output for tracing data, like all other Insight output, is stderr. You
can direct the output to a file using the trace_file filename option in your
.psrc file. See page 150 for more information about this option.

When you use this option, Insight prints a
message reminding you where the tracing data
is being written. If you would like to eliminate
these reminders, you can use the
trace_banner off option in your .psrc file.
See page 150 for more information.
78

Tracing

LynxInsure++
Example
Consider the following code, which will illustrate how tracing works.

1: /*
2: * File: trace.C
3: */
4: int twice(int j) {
5: return j*2;
6: }
7: class Object {
8: public:
9: int i;
10: Object() {
11: i = 0;
12: }
13: Object(int j) {
14: i = j;
15: }
16: operator int() { return twice(i); }
17: };
18: int main() {
19: Object o;
20: int i;
21:
22: i = o;
23: return i;
24: }

If you compile and link trace.C with the -g option and the
stack_internal on option (see page 139), and then run the executable with
the trace on option in your .psrc file, you will see the following output in
stderr.

main
Object::Object trace.C, 19
Object::operator int trace.C, 22
twice trace.C, 16
79

Tracing

Ly
nx

In
su

re
++
sedsd
80

Signals

LynxInsure++
Signals
In addition to its other error checks, Insight also traps certain signals. It does this
by installing handlers when your program starts up. These do not interfere with
your program’s own use of signals - any code which manipulates signals will
simply override the functions installed by Insight.

Signal handling actions
When a signal is detected, Insight does the following

• Prints an informative error.

• Logs the signal in the Insight report file, if one is being
used.

• Calls the function _Insight_trap_error.

• Takes the appropriate action for the signal.

If this last step will result in the program terminating, Insight attempts to close any
open files properly. In particular, the Insight report file will be closed. Note that
this can only work if the program hasn’t crashed the I/O system. If, for example,
the program has generated a “bus” or similar error, it might not be possible to close
the open files. In the worst of all possible scenarios you will simply generate
another (fatal) signal when Insight attempts to clean up.

The third step is useful if you are working with a debugger, as described in
“Interacting with Debuggers” on page 69. In this case, you can insert a breakpoint
at _Insight_trap_error and have the program stop whenever it is
generating one of the trapped signals.
81

Signals

Ly
nx

In
su

re
++
Interrupting long-running jobs
Insight installs a handler for the keyboard interrupt command (often CTRL-C, or
the delete key). If your program does not override this handler with one of its own,
you can abort a long-running program and still get Insight’s output. If your
program has its own handler for this sequence, you can achieve the same effect by
adding the following lines to your handler

#ifdef __INSIGHT__
_Insight_cleanup();

#endif

Which signals are trapped?
By default, Insight traps the following signals

SIGABRT
SIGBUS
SIGEMT
SIGFPE
SIGILL
SIGINT
SIGIOT
SIGQUIT
SIGSEGV
SIGSYS
SIGTERM
SIGTRAP

You can add to or subtract from this list, by adding lines to one of your .psrc
files and re-running the program.
82

Signals

LynxInsure++
Signals are added to the list with options such as

insure++.signal_catch SIGSTOP SIGCLD SIGIO

and removed with

insure++.signal_ignore SIGINT SIGQUIT SIGTERM

You can omit the “SIG” prefix if you wish.
83

Signals

Ly
nx

In
su

re
++
fdjklsa
84

Code Insertions

LynxInsure++
Code Insertions
Most programmers write code that makes assumptions about various things that
can happen. These assumptions can vary from the very simple, such as “I’m never
going to pass a NULL pointer to this routine”, to more subtle, such as “a and b are
going to be positive”.

Whether this is done consciously or not, the problems that occur when these
assumptions are violated are often the most difficult to track down. In many cases,
the program will run to completion with no indication of error, except that the final
answer is incorrect.

Debugging the hard way
The simple case just described, the NULL pointer, will probably be tracked down
pretty easily, since Insight will pinpoint the error immediately. A few minutes of
work should eliminate this problem.

The second case is much harder.

One option is to add large chunks of debugging code to your application to check
for the various cases that you don’t expect to show up. Of course, you normally
have an idea of where the problem is, so you start by putting checks there. You
then run the code and sort through the mass of output, trying to see where things
started to go awry. If you guessed wrong, you insert more checks in other places
of the code and repeat the entire process.

If you are lucky, the code you insert to catch the problem won’t add bugs of its
own.

Once you’ve found the problem, you can either remove the debugging code
(introducing the possibility of deleting the wrong things and bringing in new bugs)
or comment it out for use next time (cluttering the source code).
85

Code Insertions

Ly
nx

In
su

re
++
An easier solution
A second option is to have Insight add the checking code to your application
automatically and invisibly.

The basic idea is that you tell Insight what you’d like to check by providing an
“Insight interface module”. This can be kept separate from your main application
and added and removed at compile time. Furthermore, Insight automatically
inserts it in every place that you use a particular piece of code so you only have to
go through this process once. Finally, errors that are detected are diagnosed in the
same way as all other Insight errors. You get a complete report of the source file,
line number, and function call stack together with any other information that you
think is useful.

An example
Assume that you have a routine in your program called cruncher which takes
three double precision arguments and returns one. For some reason, possibly
connected with the details of your application, you expect the following rules to
be true when calls are made to this routine

• The sum of the three parameters is less than 10.

• The first parameter is always greater than zero.

• The return value is never zero.

To enforce these rules with Insight, you create a file containing the following
“code”.

1: /*
2: * crun_iic.c
3: */
4: double cruncher(a, b, c)
5: double a, b, c;
6: {
7: double ret;
8:
9: if(a+b+c >= 10.) {
86

Code Insertions

LynxInsure++
10: iic_error(USER_ERROR,
11: "Sum exceeds 10: %f+%f+%f\n",
12: a, b, c);
13: }
14: if(a <= 0) {
15: iic_error(USER_ERROR,
16: "a is negative: %f\n", a);
17: }
18: ret = cruncher(a, b, c);
19: if(ret == 0) {
20: iic_error(USER_ERROR,
21: "Return zero: %f,%f,%f => %f\n",
22: a, b, c, ret);
23: }
24: return ret;
25: }

Note that this looks just like normal C code with the rather strange exception that
the routine cruncher calls itself at line 18!

This is not normal C code - it’s an Insight interface description, and it behaves
rather like a complicated macro insertion. Wherever your original source code
contains calls to the function cruncher, they will be replaced by this set of error
checks, and the indicated call to the routine cruncher.

The net effect will be as though you had added all this complex error checking and
printing code manually, except that Insight does it automatically for you. Another
advantage is the use of the iic_error routine rather than a conventional call to
printf or fprintf. The iic_error routine performs the same task -
printing data and strings, but also includes in its output information about the
source file and line number at which the call is being made and a full stack trace.
87

Code Insertions

Ly
nx

In
su

re
++
Using the interface
Once you’ve written this interface description, using it is trivial. First, you
compile it with the special Insight interface compiler, iic. If you put the code in
a file called crun_iic.c, for example, you would type the command

iic crun_iic.c

This creates a file called crun_iic.tqs, which is an “Insight interface
module”.

You can use this module in one of two ways.

If you plan to use this interface check on a regular basis during the development
of your project, you should insert the line

insure++.interface_library crun_iic.tqs

in the .psrc file in either your current working or $HOME directory. All future
invocations of insight will then insert this interface check.

If you wish to use the interface check intermittently on some of your compiles,
you can add the name of the interface module to the insight command line
when you compile and link your source code. For example the command

insight -c myfile1.c

would become

insight crun_iic.tqs -c myfile1.c

Note that you can specify more than one interface in any interface file or include
multiple interface modules on the interface_library line in your .psrc
file or on the insight command line.
88

Code Insertions

LynxInsure++
Conclusions
This section has shown how you can add your own error checking either to extend
or replace that done automatically by Insight by defining “interface modules”.
These are actually a very powerful way of extending the capabilities of Insight,
and are described more fully in “Interfaces” on page 91. The current discussion,
however, has shown their simplest use.
89

Code Insertions

Ly
nx

In
su

re
++
90

Interfaces

LynxInsure++
Interfaces
The section “Code Insertions” on page 85, described a way of using Insight
interface descriptions to add user level checking to function calls. This usage is
only one of the things that interfaces can do to extend the capabilities of Insight.
This section describes the purpose of these interfaces in more detail and also
shows you how to write your own.

What are interfaces for?
Interface descriptions provide an extremely powerful facility which allows you to
perform extensive checking on functions in system or third party libraries before
problems cause them to crash.

Most problems encountered in libraries are due to their being called incorrectly
from the user application. Insight interfaces are designed to trap and diagnose
errors where your code makes calls to these functions. This provides the most
useful information for correcting the error.

Essentially, an interface is a means of enforcing rules on the way that a function
can be called and the side-effects it has on memory. Typically, interfaces check
that all parameters are of the correct type, that pointers point to memory blocks of
the appropriate size, and that parameter values are in correct ranges. Whenever a
function is expected to create or delete a block of dynamic memory, they also
make calls that allow Insight’s runtime library to update its internal records.

Writing interfaces for your libraries is a fairly simple task once the basic principles
are understood. To help in relating the purpose of an interface to its
implementation, the following sections describe two simple examples, one in C
and one in C++.
91

Interfaces

Ly
nx

In
su

re
++
A C example
Consider the following code, which makes a call to a hypothetical library function
mymalloc. See the file mymal.c below for a definition of mymalloc.

1: /*
2: * File: mymaluse.c
3: */
4: main()
5: {
6: char *p, *mymalloc();
7:
8: p = mymalloc(10);
9: *p = 0;
10: return (0);
11: }

In order to get the best from Insight, you need to summarize the expected behavior
of the mymalloc function. For this example, let us assume that we want to
enforce the following rules:

• The single argument is an integer which must be positive.

• The return value is a pointer to a block of memory which is
allocated by the routine.

• The size of the allocated block is equal to the supplied
argument.

To do so, we create a file with the following interface

1: /*
2: * File: mymal_i.c
3: */
4: char *mymalloc(int n)
5: {
6: char *retp;
7: if(n <= 0)
8: iic_error(USER_ERROR,
9: "Negative argument: %d\n",n);
10: retp = mymalloc(n);
92

Interfaces

LynxInsure++
11: if(retp) iic_alloc(retp, n);
12: return retp;
13: }

The key features of this code are as follows

Line 4 A standard ANSI function declaration for the function to be
described, including its return type and arguments. (Old-style
function declarations can also be used.)

Line 7 A check that the argument supplied is positive, as required by
the rules that we are trying to enforce. If the condition fails, we
use the special iic_error function to print an Insight-style
error message, using standard printf notation.

Line 10 This (apparently recursive) call to the mymalloc function is
where the actual call to the function will be made when this
interface is expanded. It appears just as in the function
declaration.

Line 11 If the return value from the function call is not zero, we use the
iic_alloc function to indicate that a block of uninitialized
memory of the given size has been allocated and is pointed to
by the pointer retp.

Line 12 The interface description ends by returning the same value
returned from the call to the actual function in Line 10.

If you compile and link this interface description into your program (using the
techniques described in “Using interfaces” on page 101), Insight will
automatically check for all the requirements whenever you call the function.

1: /*
2: * File: mymal.c
3: */
4: #include <stdlib.h>
5:
6: char *mymalloc(n)
7: int n;
8: {
9: return (char *)malloc(n);
10: }
93

Interfaces

Ly
nx

In
su

re
++

C

A C++ example

1: /*
2: * File: bag.h
3: */
4: class Bag {
5: struct store {
6: void *ptr;
7: store *next;
8: };
9: store *top;
10: public:
11: Bag() : top(0) { }
12: void insert(void *ptr);
13: };

1: /*
2: * File: bag.C
3: */
4: #include “bag.h”
5:
6: int main(void) {
7: Bag bag;
8:
9: for (int i = 0; i < 10; i++) {
10: int *f = new int;
11: bag.insert(f);
12: }
13: return 0;
14: }

1: /*
2: * File: bagi.C
3: */
4: #include “bag.h”
5:
94

Interfaces

LynxInsure++
6: void Bag::insert(void *ptr) {
7: store *s = new store;
8: s->next = top;
9: top = s;
10: s->ptr = ptr;
11: return;
12: }

Let’s assume that bagi.C is a part of a class library which was not compiled
with Insight, e.g. a third-party library. We can simulate this situation by
compiling the files with the following commands:

insight -g -c bag.C
g++ -c bagi.C
insight -g -o bag bag.o bagi.o

An interface for the insert class function might look like this:

1: /*
2: * File: bag_i.C
3: */
4: #include “bag.h”
5:
6: void Bag::insert(void *ptr) {
7: iic_save(ptr);
8: insert(ptr);
9: return;
10: }

We can then compile the interface file with the iic compiler as follows:

iic bag_i.C

To get Insight to use the new interface description, we need to use the following
compilation commands in place of the earlier commands:

g++ -c bagi.C
insight -g -o bag bag.C bagi.o bag_i.tqs
95

Interfaces

Ly
nx

In
su

re
++
The basic principles of interfaces
As shown in the previous examples, interface descriptions have the following
elements:

• The declaration of the interface description looks just like
a piece of C code for the described function. It declares the
arguments and return type of the function. Either ANSI or
Kernighan & Ritchie style declarations may be used, but
ANSI style is preferred, since K&R style declarations have
implicit type promotions.

• The body of the interface description uses calls to functions
whose names start with iic_ to describe the behavior of
the routine.

• The interface function appears to call itself at some point.

These concepts are common to all interface descriptions.

Interface creation strategy
There are several possible strategies for creating interfaces for your software
depending on what resources you have available and how much time you wish to
expend on the project.

Normally, we recommend the following steps

• Create a file containing ANSI-style prototypes for the
functions for which you want to make interfaces.

• Extend these prototypes by adding additional error checks
with the built-in iic_ functions.

Getting to the first stage will allow you to perform strong type-checking on all the
functions in your application. Going to the second stage provides full support for
all of Insight’s error checking capabilities.
96

Interfaces

LynxInsure++
Various aids are provided to help you implement these two stages, as briefly
summarized in the flowchart in Figure 5, which includes page references for the
most important steps.

Figure 5. Strategy for creating interfaces

Selectively add “iic_”
error checking calls and
“recursive” function call

Do you want to
customize the error

checking?

Extract prototypes
“by hand”

Yes

No

Compile interfaces
with iic command

Add interfaces to
insight commands

page 100

page 101
97

Interfaces

Ly
nx

In
su

re
++
Trivial interfaces - function prototypes
The interfaces described so far have been “complete” in the sense that they contain
error checking calls and also the “fake” recursive call typical of an interface
function. There is actually one level of interface which is even simpler than this -
an ANSI-style function prototype.

If you make a file containing ANSI-style prototypes for all of your functions,
compile it with the iic program, and then add it to your insight command (as
described on page 101), you will get strong type-checking for all of your
functions. You can then incrementally add to this file the extended interface
descriptions with better memory checking and the “fake” recursive call.

Using iiwhich to find an interface
The simplest way to generate an interface is to copy one from a routine that does
something similar. In the two examples which started this section, we used
interfaces to functions that behaved roughly the same way that malloc and
memcpy operate. Furthermore, these two system functions are ones that Insight
knows about automatically, because interfaces to all system calls are shipped with
Insight.

 To see how their interfaces are defined, we use the command iiwhich as
follows

iiwhich malloc memcpy

The output from this command is shown in Figure 6.

Note that on LynxOS, these may be linkable
interfaces. If this is the case, you will need to find
the source code to these interfaces in the
src.$ARCH/$COMPILER directory).
98

Interfaces

LynxInsure++
1: malloc: Interface in /usr/local/insure/standard.tqs
2: [./lib.c:450]
3:
4: char *malloc(size_t size) {
5: char *a;
6:
7: a = malloc(size);
8: if (a)
9: iic_alloc(a, size);
10: else
11: iic_error(RETURN_FAILURE,
12: "malloc(%u) returned null", size);
13: return a;
14: }
15:
16: memcpy: Interface in /usr/local/insure/standard.tqs
17: [./lib.c:204]
18:
19: char *memcpy(void *d, void *s, int len) {
20: if (len < 0) {
21: iic_error(USER_ERROR,
22: "Negative length passed to memcpy: %d",
23: len);
24: }
25: else {
26: if (((char *) s < (char *) d &&
27: (char *) d < (char *) s + len) ||
28: ((char *) d < (char *) s &&
29: (char *) s < (char *) d + len))
30: iic_error(USER_ERROR,
31: "Memory blocks passed to memcpy overlap.");
32: iic_copy(d, s, len);
33: }
33: return memcpy(d, s, len);
34: }

Figure 6. Insight interfaces for malloc and memcpy
99

Interfaces

Ly
nx

In
su

re
++
The first block of “code” is the interface which defines the behavior of the
malloc function, and the second describes memcpy. Note that they both follow
the principles described above: they look more or less like C code with one strange
exception - each function appears to call itself!

This is not recursive behavior, because this is not real C code. What really happens
is that calls to the functions shown are replaced by the interface code.
Nonetheless, it can be thought of as C code when you write your own interfaces.

A second slightly tricky feature concerns the behavior of function calls made
within an interface definition. These are of two types:

• Calls to Insight interface functions, whose names begin
with iic_, are detected by the iic command and turned
into sequences of error checking calls. They are not real
function calls in themselves.

• Calls to other functions are made exactly as requested, with
no additional error checking. This can be a problem if you
end up passing a bad pointer to an unchecked library call,
which may cause the program to fail before Insight can
print an error message.

Note that the iiwhich command is also useful if you want to see what properties
of a function are being checked by Insight, or if Insight knows anything about it.
The command

iiwhich foo

shows you the interface for the function foo, if it exists. If no interface exists, no
checking will be done on calls to this function unless you write an interface
yourself.

Writing simple interfaces
Using iiwhich can save you a lot of time. Before starting to write your own
interface files, particularly for system functions, you should check that one hasn’t
100

Interfaces

LynxInsure++
already been defined. Then, if you can think of a common function that operates
in a similar way to the function you’re trying to interface, start by copying its
definition and modifying it. In either case, you must understand the way that the
interfaces work, and to do this, you must first understand their goal.

The malloc function returns blocks of memory, and we need to tell Insight
about the size and location of such blocks. This is the reason for the call to
iic_alloc at line 9 in Figure 6. This is the interface function that tells Insight
to record the fact that a block of uninitialized memory of the given size has been
allocated. From then on, references to this block of memory will be understood
properly by Insight.

Similarly, the purpose of memcpy is to take a number of bytes from one particular
location and copy them to another. This activity is indicated by the call to the
interface function iic_copy at line 32 of Figure 6. Insight uses this call to
understand that two memory regions of the indicated size will be read and written,
respectively.

The other code shown in the interface descriptions is used to check that parameters
lie in legal ranges and is used to provide additional error checking.

Using interfaces
To use an interface, we first compile it with the Insight interface compiler, iic.
If, for example, we put the interface for the lib_gimme function, shown on page
92, in a file called gimme_i.c, we would use the command

iic gimme_i.c

This results in the file gimme_i.tqs, which can be passed to Insight on the
command line as follows:

insight -c gimme_i.tqs wilduse.c
insight -o wild wilduse.o mylib.a
101

Interfaces

Ly
nx

In
su

re
++
in which we assume that the library containing the actual code for the
lib_gimme routine is called mylib.a.

An additional example of how to use an interface can be found earlier in this
section on page 95.

The basics for using an interface, therefore, are to:

• Compile the interface with iic.

• Recompile your program.

Note that you don’t have to limit yourself to a single interface per source file. If
you are preparing an interface module for an entire library, or a source file with
multiple functions, you can put them all into the same interface description file.

Similarly, you don’t have to pass all the names of your compiled interface
modules on the insight command line every time. You can add lines to your
.psrc files that list interface modules as follows

insure++.interface_library /usr/trf/mylib.tqs
insure++.interface_library /usr/local/ourlib.tqs

Ordering of interfaces
Files containing compiled interface definitions can be placed in any directory.
Insight can be told to use such files in various ways, and processes them according
to the following rules:

• If a standard library interface exists it is processed first.

• Interfaces specified in interface_library
statements in configuration (.psrc) files are processed
next, potentially overriding standard library definitions.

• Interface modules (i.e., files with the suffix .tqs or
.tqi) specified on the insight command line override
any other definitions.
102

Interfaces

LynxInsure++
Later definitions supercede earlier ones, so you can make a local definition of a
library function and it will override the standard one in the library.

To see which interface files will be processed, and in which order, you can execute
the command

iiwhich -l

which lists all the standard library files for your system, and then any indicated by
interface_library commands in configuration files.

To find a function in an interface library, you can use the iiwhich command as
already described. To list the contents of a particular TQS file, use the iiinfo
command.

Working on multiple platforms or with
multiple compilers

Many projects involve porting applications to several different platforms or the
use of more than one compiler. Insight deals with this by using two built-in
variables, which denote the machine architecture on which you are running and
the name of the compiler you are using. You can use these values to switch
between various combinations, each specific to a particular machine or compiler.

For example, environment variables, ‘~’s (for HOME directories) and the ‘%’
notation described on page 122, are expanded when processing filenames, so the
command

interface_library $HOME/insight/%a/%c/foo.tqs

loads an interface file with a name such as

/usr/me/insight/lynx_x86/gcc/foo.tqs
103

Interfaces

Ly
nx

In
su

re
++
in which the environment variable HOME has been replaced by its value and the
‘%a’ and ‘%c’ macros have been expanded to indicate the architecture and
compiler name in use. This allows you to load the appropriate TQS files for the
architecture and compiler that you are using.

One problem to watch out for occurs when you
switch to a compiler for which Insight supplies no
interface modules. In this case, you will see an
error message during compilation. Several
work-arounds are possible as described in the
FAQ (FAQ.txt).

Common interface functions
Most definitions need only a handful of interface functions of which we’ve
already introduced the most common:

void iic_alloc(void *ptr, unsigned long size);
Declares a block of dynamically allocated, uninitialized,
memory.

void iic_source(void *ptr, unsigned long size);
Declares that a block of memory is read.

void iic_sourcei(void *ptr, unsigned long size);
Declares that a block of memory is read and also checks that it
is completely initialized.

void iic_dest(void *ptr, unsigned long size);
Declares that a block of memory is modified.

void iic_copy(void *to, void *from,
unsigned long size);

Declares that the indicated block of memory is copied.

void iic_error(int code, char *format, ...);
Causes an error to be generated with the indicated error code.
104

Interfaces

LynxInsure++
Subsequent arguments are treated as though they were part of
the printf statement.

Other commonly occurring functions are listed below together with examples of
system calls that use them. You can use the iiwhich command on the listed
functions to see examples of their use.

int iic_string(char *ptr, unsigned long size);
Declares that the argument should be a NULL terminated
character string. This is used in most of the string handling
routines such as strcpy, strcat, etc. The second argument
is optional, and can be used to limit the check to at most size
characters.

void iic_alloci(void *ptr, unsigned long size);
Declares a block of dynamically allocated, initialized memory
such as might be returned by calloc.

void iic_allocs(void *ptr, unsigned long size);
Declares a pointer to a block of statically allocated memory.
Used by functions that return pointers into static strings. ctime
and getenv are examples of system calls that do this.

void iic_unalloc(void *ptr);
Declares that the indicated pointer is de-allocated with the
system call free.

A complete list of available functions is given in “Interface Functions” on
page 359.

Checking for errors in system calls
We can make interfaces even more user-friendly by adding checks for common
problems, similar to the user level checks that were discussed in “Code Insertions”
on page 85.

For example, malloc can fail. This is the reason for the second branch of the
code in line 11 of Figure 6. If the actual call to malloc fails, instead of telling
Insight about a block of allocated memory with iic_alloc, we cause an
105

Interfaces

Ly
nx

In
su

re
++
Insight error with code RETURN_FAILURE and the error message shown. This,
in turn, will cause a message to be printed (at runtime) whenever malloc fails
and the RETURN_FAILURE error code has been unsuppressed. (See “Enabling
error messages” on page 40.)

Similarly, memcpy can cause undefined behavior when given perfectly valid
buffers that happen to overlap. We check for this case in the code at line 20, and
again, cause an Insight error if a problem is detected.

This method provides a very powerful debugging technique, which is used
extensively in the interface files supplied with Insight. Since the
RETURN_FAILURE error code is suppressed by default, you will normally not be
bothered by messages when system calls fail. The assumption is that the user
application is going to deal with the problem. In fact, it may require certain system
calls to fail in order to work properly. However, when particularly nasty bugs
appear, it is often useful to enable the RETURN_FAILURE error category to look
for cases where system calls fail “unexpectedly” and are not being handled
correctly by the application. Errors such as missing files (causing fopen to fail)
or insufficient memory (malloc fails) can then be diagnosed trivially.

Using Insight in production code
A particularly powerful application of the technique described in the previous
section is to make two different versions of your application.

• One with full error checking.

• One without Insight at all.

The first of these is used during application development to find the most serious
bugs. The second is the one that will be used in production and shipped to
customers.

When you or your customer support team is faced with a problem, they can run
this code with the RETURN_FAILURE error class enabled and look for
“unexpected” failures such as missing files, incorrectly set permissions,
insufficient memory, etc.
106

Interfaces

LynxInsure++
Advanced interfaces: complex data
types

The interfaces that have been considered so far are simple in the sense that their
behavior is determined by their arguments in a straightforward manner.

To show a more complex example, consider the following data structure

struct mybuf {
int len;
char *data;

};

This data type could be used to handle variable length buffers. The first element
shows the buffer length and the second points to a dynamically allocated buffer.

The code which allocates such an object might look as follows:

#include <stdlib.h>

struct mybuf *mybuf_creat(n)
int n;

{
struct mybuf *b;

b = (struct mybuf *)malloc(sizeof(*b));
if(b) {

b->data = (char *)malloc(n);
if(b->data) b->len = n;
else b->len = 0;

}
return b;

}

Similarly, we might define operations on a struct mybuf that work in quite
complex ways on its data.
107

Interfaces

Ly
nx

In
su

re
++
To build an interface description of the mybuf_create function which detailed
all its behavior would require the following code

struct mybuf *mybuf_creat(n)
int n;

{
struct mybuf *b;

b = mybuf_creat(n);
if(b) {

iic_alloci(b, sizeof(*b));
if(b->data)

iic_alloc(b->data, b->len);
}
return b;

}

Note how the structure of the interface description follows that of the original
source.

This matching would be seen in the interface descriptions of all the other functions
that operate on the struct mybuf data type, too. In fact, the interface
description would probably end up looking quite a lot like the source code!

There are basically three approaches to dealing with this problem:

• Forget the interface entirely and actually process the real
source code with insight and link it in the normal
manner.

• “Go deep” and define an interface that mimics all of the
details of the interface, including all the operations on the
internal structure elements.

• “Go opaque” and build an interface that defines some
levels of the functions without necessarily going into
details of their action.

Each of these is a good approach in a different situation.
108

Interfaces

LynxInsure++
The first approach, process the actual source code, is the best in terms of accuracy
and reliability. Given the original source code, Insight will have complete
knowledge of the workings of the code and will be able to check every detail itself.

The second approach is best when the source code is unavailable but you still want
to check every detail of your program’s interaction with the affected routines. It
can be implemented only if you have intimate knowledge of how the routines
work, since you will have to use the interface functions to mimic the actions of the
functions on the individual elements of the struct mybuf.

The third approach is appropriate when you are sure that the functions themselves
work correctly. Perhaps, for example, you’ve been running Insight on their source
code at some earlier date and you know that they are internally consistent and
robust. In this case, you may want to increase the performance of the rest of your
program by checking the high level interface to the routines, but not their internal
details.

Another reason for adopting this last approach might be that you actually don’t
know the details of the functions involved and might not be able to duplicate their
exact behavior. A good example would be building an interface to a third party
library. You have clear definitions of the upper level behavior of the routines, but
may not know how they work internally.

The first and second approaches have already been discussed. The third approach
is easily achieved by doing nothing - Insight will recognize that the data type has
not been declared in detail and should therefore not be checked in detail. You can
choose for yourself which fields to declare in detail and which to ignore.

Interface esoterica
Since it is possible to express a wide range of actions in C, interface files must
have correspondingly sophisticated capabilities in order to define their actions and
check their validity.

One of these features was seen in the previous section: the iic_startup
function. This function can be defined in any interface file and contains calls to
interface functions that will be made before calling any of the other functions
109

Interfaces

Ly
nx

In
su

re
++
defined in the interface file. Typically, you will place definitions and
initializations of known global or external variables in this function.

Note that each interface file may have its own iic_startup.

Variable argument lists are dealt with by using the pre-defined variable
__dots__. For example, the interface specification for the standard system call
printf is

int printf(char *format, ...)
{

iic_string(format);
iic_output_format(format);
return(printf(format, __dots__));

}

The variable __dots__ in the function call matches the variable arguments
declared with “...” in the definition.

Checking of printf and scanf style format strings is done with the
iic_output_format and iic_input_format routines. These check that
arguments match their corresponding format characters. iic_strlenf returns
the length of a string after its format characters have been expanded and can be
used to check that buffers are large enough to hold formatted strings.

A complete list of interface functions can be found in “Interface Functions” on
page 359.

Callbacks
In many programming styles, such as programming in the X Window System or
when using signal handlers, functions are registered and are then “called-back” by
the system. Often the user program contains no explicit calls to these functions.

If the callback functions use only variables that are defined in the user program,
nothing unusual will happen, since Insight will understand where all this data
came from and will keep track of it properly. In many cases, however, the library
110

Interfaces

LynxInsure++
function making the callback will pass additional data to the called function that
was allocated internally, which Insight never saw.

For example:

• UNIX functions such as qsort and scandir take
function pointer arguments which are called-back from
within the system function.

• Signal handling functions often pass to their handlers a data
structure containing hardware registers and status
information.

• The X Window System library often passes information
about the display, screen, and/or event type to its callback
functions.

In these cases, Insight will attempt to lookup information about these data
structures without finding any, which limits its ability to perform strong error
checking.

This is not a serious limitation - it merely means
that the unknown variables will not be checked as
thoroughly as those whose allocation was
processed by Insight.

If you wish to improve the checking performed by Insight in these cases, you can
use the interface technology in two different ways:

• You can make interfaces to the functions which install or
register the callbacks (with iic_callback) indicating
how to process their arguments when the callbacks are
invoked.

• You can make interface definitions for your callback
functions themselves, adding the keyword iic_body to
their definition.

These two options are discussed in the next sections.
111

Interfaces

Ly
nx

In
su

re
++
Using iic_callback
The first of these approaches is more general, since it allows you to define, in a
single interface specification, the behavior of any callback which is installed by
the function specified. To see how this works, consider the standard utility sorting
function, qsort. One of the arguments to this routine is a function pointer that is
used to compare pairs of elements during sorting.

The following interface to this function checks that the qsort function does no
more than N2 comparisons, where N is the number of elements (this may or may
not be a sensible check, but serves the purpose of explaining callback interfaces):

1: #include <sys/stdtypes.h>
2: #include <math.h>
3:
4: static int _qsort_num_comparisons;
5:
6: static int _qsort_cb(void *e1, void *e2)
7: {
8: _qsort_num_comparisons += 1;
9: return _qsort_cb(e1, e2);
10: }
11:
12: void qsort(void *base, size_t nelem,
13: size_t width,
14: int (*func)(void *, void *))
15: {
16: iic_dest(base, nelem*width);
17: iic_func(func);
18: iic_callback(func, _qsort_cb);
19: _qsort_num_comparisons = 0;
20: qsort(base, nelem, width, func);
21: if (_qsort_num_comparisons >
22: nelem * nelem)
23: iic_error(USER_ERROR,
24: ”Qsort took %d compares.”,
25: _qsort_num_comparisons);
26: }
112

Interfaces

LynxInsure++
The main body of the interface is in lines 16-25.

Line 16 checks that the pointer supplied by the user indicates a large enough
region to hold all the data to be sorted, while line 17 checks that the function
pointer actually points to a valid function. Line 20 contains the call to the normal
qsort function.

The interesting part of the interface is the call to iic_callback in line 18. The
two arguments connect a function pointer and a “template”, which in interface
terms is the name of a previously declared static function; in this case
_qsort_cb, declared in lines 6-10. The template tells Insight what to do
whenever the system invokes the called-back, user-supplied function. In this
particular case, the interface merely increments a counter so we can see how many
Times New Roman the callback gets called (note that we set the counter to 0 on
line 19 of the qsort interface). In general, you can make any other interesting
checks here before or after invoking the callback function.

Notice that once this interface is in use, it automatically processes any function
that gets passed to the qsort function.

Using iic_body
The second callback option is to define interfaces for each individual function that
will be used as a callback.

Consider, for example, the X Window System function XtAddCallback,
which specifies a function to be called in response to a particular user interaction
with a user interface object. It is quite common for code to contain many calls to
this function, for example

XtAddCallback(widget, ..., myfunc1, ...);
XtAddCallback(widget, ..., myfunc2, ...);
XtAddCallback(widget, ..., myfunc3, ...).

One solution for this routine would be to provide an iic_callback style
interface for the XtAddCallback function as described in the previous section.
113

Interfaces

Ly
nx

In
su

re
++
The second method is to specify interfaces to the called-back functions
themselves, with the additional iic_body keyword. An interface for the routine
myfunc1 might be written as follows:

/*
* Interface definition for callback function
* uses the iic_body keyword.
*/

void iic_body myfunc1(Widget w,
XtPointer client_data,
XtPointer call_data)

{
if (!call_data)

iic_error(USER_ERROR,
“myfunc1 passed NULL call_data”);

myfunc1(w, client_data, call_data);
return;

}

This interface checks that myfunc1 is never passed NULL client_data.

Note that in this scenario you would have to specify three separate interfaces; one
each for myfunc1, myfunc2 and myfunc3. (And, indeed, any other functions
used as callbacks.)

Which to use: iic_callback or
iic_body?

From the previous discussion it might seem that iic_callback should always
be preferred over iic_body, since it is more general and less code must be
written. Unfortunately, the general iic_callback method has a severe
limitation: the code generated by Insight when you use iic_callback is good
for “immediate use only”.
114

Interfaces

LynxInsure++
To understand what this means, consider the difference between the two cases
already discussed.

• In the qsort example, the iic_callback function
made the association between function pointer and
template, which was then immediately used by the qsort
function. By the time the interface code returns to its caller,
the connection between function and template is no longer
required.

• In the X Window System example, the callbacks registered
by the XtAddCallback function are expected to survive
for the remainder of the application (or until cancelled by
another X Window System call). Similarly, the connection
between function pointer and template is expected to
survive as long.

As a consequence, the iic_callback method is only applicable to a small
number of circumstances, and in general you must either:

• Use the iic_body method

• Do nothing, and allow Insight to skip checks on unknown
arguments to callback functions.

Conclusions
Interfaces play an important, but optional, role in the workings of Insight.

If you wish, you can always eliminate error messages about library calls by adding
suppress options to your .psrc files and running your program again. This
approach has the advantage of being very quick and easy to implement, but
discards a lot of information about your program that could potentially help you
find errors.

To capture all the problems in your program, you need to use interfaces. Insight
is supplied with interfaces for all the common functions and quite a few
uncommon ones. These are provided in source code form in the directory
115

Interfaces

Ly
nx

In
su

re
++
src.$ARCH/$COMPILER so that you can look at them and modify them for
your particular needs.

The iiwhich command can help you find existing definitions which can then be
used as building blocks in making your own interfaces.

If you build an interface to a library that you’d like to share with other users of
Insight, please send it to us (support@lnxw.com) and we’ll make it available.
116

Part II

LynxInsure++
Reference Guide

Configuration Files

.psrc files
Configuration Files
LynxInsure++ programs read options from files called .psrc, which may exist
at various locations in the file system. These options control the behavior of
Insight and programs compiled with Insight. The files are processed in the order
specified below.

Earlier versions of LynxInsure++ used configuration files called .insight.
These files are still supported by this version, but will not be in the next. Any of
the options on the following pages can also be used in .insight files, but
without the “insure++.” prefix. However, we recommend that users move to
the newer .psrc files as soon as they can.

• The file .psrc in the appropriate lib and compiler
subdirectories of the main LynxInsure++ installation
directory, e.g.

/usr/tools/lynxinsure++/lib.lynx_x86/gcc/.psrc

or

/usr/tools/lynxinsure++/lib.lynx_ppc/gcc/.psrc

• The file .psrc in the main installation directory.

• A file .psrc in your $HOME directory, if it exists.

• A file .psrc in the current working directory, if it exists.

• Files specified with the -Zop switch and individual
options specified with the -Zoi switch to the insight
command in the order present on the command line.

In each case, options found in later files override those seen earlier. All files
mentioned above will be processed and the options set before any source files are
119

Configuration Files

.p
sr

c
fil

es
processed. You can also override these options at runtime by using the
_Insight_set_option function.

Typically, compiler-dependent options are stored in the first location,
site-dependent options are stored in the second location, user-dependent options
are stored in the third location, and project-dependent options are stored in the
fourth location. -Zop is commonly used for file-dependent options, and -Zoi is
commonly used for temporary options.

Format
LynxInsure++ configuration files are simple ASCII files created and modified
with a normal text editor.

Entries which begin with the character ‘#’ are treated as comments and ignored,
as are blank lines.

All keywords can be specified in either upper or lower case, and embedded
underbar characters (‘_’) are ignored. Arguments can normally be entered in
either case, except where this has specific meaning, such as in directory or file
names.

If a line is too long, or would look better on multiple lines, you can use the ‘\’
character as a continuation line.

Working on multiple platforms or with
multiple compilers

Many projects involve porting applications to several different platforms or the
use of more than one compiler. LynxInsure++ deals with this by using two
built-in variables, which denote the machine architecture on which you are
running and the name of the compiler you are using. Anywhere that you would
normally specify a pathname or filename, you can then use these values to switch
between various options, each specific to a particular machine or compiler.
120

Configuration Files

.psrc files
For example, environment variables, ‘~’s (for HOME directories) and the ‘%’
notation described on page 122 are expanded when processing filenames, so the
command

interface_library $HOME/insure/%a/%c/foo.tqs

loads an interface file with a name such as

/usr/me/insure/lynx_x86/gcc/foo.tqs

in which the environment variable HOME has been replaced by its value and the
‘%a’ and ‘%c’ macros have been expanded to indicate the architecture and
compiler name in use.

There is one additional comment that must be made here. In the compiler-default
.psrc files, there are several interface_library options of the form

Insure++.InterfaceLibrary
$PARASOFT/lib.%a/%c/builtin.tqi \
$PARASOFT/lib.%a/libtqsiic%c.a

Despite appearances, the PARASOFT used above is not a true environment
variable. If the PARASOFT environment variable is not set by the user, it will be
expanded automatically by Insight itself.

Option values
The following sections describe the interpretation of the various parameters. They
are divided into two classes: compile time and runtime. Modifying one of the
former options requires that files be recompiled before it can take effect. The latter
class merely requires that the program be executed again.
121

Configuration Files

.p
sr

c
fil

es
Some options have default values, which are printed in the following section in
boldface.

Filenames
A number of the LynxInsure++ options can specify filenames for various
configuration and/or output files. You may either enter a simple filename or give
a template which takes the form of a string of characters with tokens such as “%d”,
“%p”, or “%V” embedded in it. Each of these is expanded to indicate a certain
property of your program as indicated in the following tables. The first table lists
the options that can be used at both compile and runtime.

Key Meaning

%a
Machine architecture on which you are running, e.g.,
lynx_x86, lynx_ppc etc.

%c Abbreviated name of the compiler you are using, e.g. gcc.

%r LynxInsure++ version number, e.g. 4.0

%R
LynxInsure++ version number without ‘.’ characters, e.g.,
version 4.0 becomes 40

%t .tqs file format version number, e.g., 3.2.0

%T Similar to ‘%t’ but with ‘.’ characters removed
122

Configuration Files

.psrc files
This second table lists the tokens available only at runtime.

Thus, the name template

insure++.report_file %v-errs.%D

when executed with a program called foo at 10:30 a.m. on the 21st of
March 1993, might generate a report file with the name

foo-errs.930321103032

(The last two digits are the seconds after 10:30 on which execution began.)

You can also include environment variables in these filenames so that

$HOME/reports/%v-errs.%D

generates the same filename as the previous example, but also ensures that the
output is placed in the reports sub-directory of the user’s HOME.

Key Meaning

%d Time of program compilation in format: YYMMDDHHMMSS

%D Time of program execution in format: YYMMDDHHMMSS

%n Integer sufficient to make filename unique, starting at 0

%p Process I.D.

%v Name of executable

%V Directory containing executable
123

Configuration Files

.p
sr

c
fil

es
Options at runtime and compile time
Several of the LynxInsure++ options have effects during both compilation and
program execution. When the option is active is controlled by an extra qualifier
keyword as shown in the examples below.

insure++.runtime.suppress READ_NULL

suppresses errors in the READ_NULL class during program execution. An error in
this class detected during compilation would still be reported.

Similarly,

insure++.compile.unsuppress BAD_PARM(sign)

enables the display of this error category during compilation, but not during
program execution. Compile time options also apply at link time.

If you wish to apply the same option to both compilation and execution, simply
omit the qualifier.

insure++.suppress EXPR_NULL
124

Configuration Files

.psrc files
Using -Zop and -Zoi
On the command line, the -Zop and -Zoi options are processed from left to
right, after all other .psrc files, and before processing any source code.
Therefore, the following command line would tell Insight to compile all the files
with the cc compiler.

insight -Zoi “compiler gcc” -o foo foo.c
-Zop foo.def foo2.c -Zoi “compiler g++”
foo3.c -Zoi “compiler cc”

foo.def:
compiler CC

Compiled-in options
Insight now encodes certain options at compile-time into the actual binary that is
built. Basically, Insight uses the information available at compile time, e.g.
compiler name or executable name, and encodes a .psrc option into the binary
itself. This option can be overridden in a .psrc file using the ! character. For
example, if you build your executable with one name and run it in another
directory or with a different name, you could use an option like

!exename /home/user/tmp/bar

to override the option inside the binary.
125

Configuration Files

.p
sr

c
fil

es

C

Options used by Insight
Compiling/linking

insure++.auto_expand [all|off|on]
Specifies how Insight should treat suspected “stretchy” arrays.
See ”“Stretchy” arrays” on page 41 for a discussion of stretchy
arrays, and the table below for explanations of the allowed
keywords for this option. Multi-dimensional arrays are never
automatically expanded. To tell Insight that a specific array is
stretchy, use the expand option (see page 134).

insure++.c_as_cpp [on|off]
Specifies whether files with the .c extension should be treated
as C++ source code. With this option off, Insight will treat
files with the .c extension as C code only. If you use C++ code
in .c files, you should turn this option on.

Keyword Meaning

all
All arrays at the end of structs, classes, and unions
are treated as stretchy, regardless of size

off No automatic detection of stretchy arrays

on

If the last field of a struct, class, or union is an array
and has no size, size 0, or size 1, it is treated as
stretchy. Note that only some compilers allow 0 or
empty sizes, but size 1 is very common for stretchy
arrays
126

Configuration Files

.psrc files
insure++.checking_uninit [on|off]
Specifies that the code to perform flow-analysis and checking
for uninitialized variables should not be inserted. Runtime
uninitialized variable checking is then limited to uninitialized
pointer variables (See page 19). See page 142 for the runtime
effects of this option.

insure++.compiler compiler_name
Specifies the name of an alternative compiler, such as gcc. If
your new compiler is not recognized by Insight, you may have
to set the compiler_acronym option. This option overrides
all other compiler_* options: compiler_acronym,
compiler_c, compiler_cpp, and
compiler_default. The indicated compiler will be called
every time insight is called.

insure++.compiler_acronym abbreviation
Specifies the colloquial name of an alternative compiler, such as
gcc. This name is used to locate the appropriate .psrc files
and TQS library modules. It does not indicate which compiler
will actually be called to compile source files (see the other
compiler_* options). This option overrides the
compiler_c, compiler_cpp, and
compiler_default options. In addition, this option must
be placed after the active compiler option. The order must be

compiler c89
compiler_acronym cc

and not vice versa.

insure++.compiler_c C_compiler_name
Specifies the name of the default C compiler, such as gcc. This
compiler will be called for any .c files. The default is cc. This
option is overridden by the compiler and
compiler_acronym options.
127

Configuration Files

.p
sr

c
fil

es

C

C

C

insure++.compiler_cpp C++_compiler_name
Specifies the name of the default C++ compiler, such as g++.
This compiler will be called for any .cc, .cpp, .cxx, and .C
files. The default is platform dependent: g++ for LynxOS. This
option is overridden by the compiler and
compiler_acronym options.

insure++.compiler_default [c|cpp]
Specifies whether the default C or C++ compiler should be
called to link when there are no source files on the link line. This
option is overridden by the compiler and
compiler_acronym options.

insure++.compiler_deficient
[all|address|cast|enum|member_pointer|
scope_resolution|static_temps|
struct_offset|types|no_address|no_cast|
no_enum|no_member_pointer|
no_scope_resolution|no_static_temps|
no_struct_offset|no_types|none]
Specifies which features are not supported by your compiler.
The default is compiler-dependent.

Keyword Meaning

all Includes all positive keywords

address/no_address

cast/no_cast

enum/no_enum

member_pointer/no_member_pointer

scope_resolution/no_scope_resolution

static_temps/no_static_temps
128

Configuration Files

.psrc files
Different compilers require different levels of this option as
indicated in the compiler-specific README files and in
($INSIGHT)/lib.($ARCH)/$compiler.

insure++.compiler_fault_recovery [off|on]
This option controls how Insight recovers from errors during
compilation and linking. With fault recovery on, if there is an
error during compilation, Insight will simply compile with the
compiler only and will not process that file. If there is an error
during linking, Insight will attempt to take corrective action by
using the -Zsl and -Zlh options. If this option is turned off,
Insight will make only one attempt at each compile and link.

insure++.compiler_fault_recovery_banner [off|on]
With this option on, Insight will print a banner when the fault
recovery system is invoked while processing a source file (see
compiler_fault_recovery).

insure++.compiler_flags flags
Insight will add the flags whenever you compile your program
(but they will not be passed to the preprocessor).

insure++.compiler_keyword
[*|const|inline|signed|volatile] keyword
Specifies a new compiler keyword (by using the *) or a
different name for a standard keyword. For example, if your
compiler uses __const as a keyword, use the option

compiler_keyword const __const

struct_offset/no_struct_offset

types/no_types

none Compiler handles all cases

Keyword Meaning
129

Configuration Files

.p
sr

c
fil

es
insure++.compiler_lib_flags flags
Insight will add the flags whenever you link your program (but
they will not be passed to the preprocessor).

insure++.compiler_options keyword value
Specifies various capabilities of the compiler in use, as
described in the following table.

Keyword Value Meaning

ansi None Assumes compiler supports ANSI C
(default)

bfunc <type>
Function

name

Specifies that the given function is a
“built-in” that is treated specially by
the compiler. The optional type
keyword specifies that the built-in has
a return type other than int.
Currently, only long, double,
char *, and void * types are
supported.

btype Type name
Specifies that the given type is a
“built-in” that is treated specially by
the compiler

bvar <type>
Variable

name

Specifies that the given variable is a
“built-in” that is treated specially by
the compiler. The optional type
keyword specifies that the built-in has
a return type other than int.
Currently, only long, double,
char *, and void * types are
supported.
130

Configuration Files

.psrc files
esc_x Integer

Specifies how the compiler treats the
‘\x’ escape sequence. Possible values
are

0 treat ‘\x’ as the single
character ‘x’ (Kernighan &
Ritchie style)

-1 treat as a hex constant.
Consume as many hex
digits as possible

>0 treat as a hex constant.
Consume at most the given
number of hex digits

for_scope

nested
notneste

d
optional

Specifies how for(int i; ...;
...) is scoped. Possible values are

nested New ANSI standard,
always treat as nested.

notnested Old standard, never
treat as nested.

optional New standard by
default, but old-style
code is detected and
treated properly (and
silently)

knr None Assumes compiler uses Kernighan and
Ritchie (old-style) C

loose None Enables non-ANSI extensions
(default)

namespaces None Specifies that namespace is a
keyword (default)

Keyword Value Meaning
131

Configuration Files

.p
sr

c
fil

es
insure++.compiler_skipflags flags
Normally, Insight adds its checks to your code and then invokes
the normal compiler to compile the modified code. If any of the
flags on this list is seen on the insight command line, the
first step is skipped and the file is passed directly to the compiler
without modification.

insure++.directive_ignore string
Some preprocessors print “#ident” directives which they are
then unable to process themselves. If this is the case, this option
can be used to tell Insight to strip out the directive before
passing the file back to the compiler. Currently, the only
supported string is indent (note that the # character is not
given as part of the argument to directive_ignore).

nonamespaces None Specifies that namespace is not a
keyword

promote_long None
Specifies that integral data types are
promoted to long in expressions,
rather than int

sizet d, ld, u, lu

Specifies the data type returned by the
sizeof operator, as follows: d=int,
ld=long, u=unsigned int,
lu=unsigned long.

strict None Disables non-ANSI extensions
(compiler dependent)

xfunctype
Function

name

Indicates that the named function takes
an argument which is a data type
rather than a variable (e.g., alignof)

Keyword Value Meaning
132

Configuration Files

.psrc files
insure++.dynamic_linking [on|off]
By default, Insight links its libraries dynamically or statically
according to the current link options. Setting this option to off
tells Insight not to allow its libraries to be linked dynamically,
even though user and/or system libraries may still be linked
dynamically. Some (Linux, SCO, SGI, Solaris 2.X) platforms
require that the <install_dir>/lib.$ARCH directory be
added to their LD_LIBRARY_PATH environment variable for
dynamic linking to be used. A warning that static linking will be
used will be printed at link time if this is not done.
This option is the opposite of static_linking.
(See page 139)

insure++.error_format string
Specifies the format for error message banners generated by
Insight. The string argument will be displayed as entered with
the macro substitutions taking place as shown in the following
table. The string may also contain standard C formatting
characters, such as ‘\n’. (For examples, see page 32)

Key Expands to

%c Error category (and sub-category if required)

%d Date on which the error occurs (DD-MON-YY)

%f Filename containing the error

%F Full pathname of the file containing the error

%h Name of the host on which the application is running

%l Line number containing the error

%p Process ID of the process incurring the error

%t Time at which the error occurred (HH:MM:SS)
133

Configuration Files

.p
sr

c
fil

es
insure++.expand subtypename
Specifies that the named structure element is “stretchy”. See
”“Stretchy” arrays” on page 41 for a discussion of stretchy
arrays. See also the auto_expand option on page 126 for
details on automatic detection and handling of stretchy arrays.

insure++.file_ignore string
Specifies that any file which matches the string will not be
processed by Insight, but will be passed straight through to the
compiler. The string should be a glob-style regular expression.
This option allows you to avoid processing files that you know
are correct. This can significantly speed up execution and shrink
your code.

insure++.function_ignore file::function_name
This option tells Insight not to instrument the given function
(the file qualifier is optional). This is equivalent to turning off
the checking for that routine. If the function in question is a
bottle-neck, this may dramatically increase the runtime
performance of the code processed with Insight.
function_name can now (version 3.1 and higher) accept the
* wildcard. For example, the option

insure++.function_ignore foo*

turns off instrumentation for the functions foo, foobar, etc.

insure++.header_ignore string
Specifies that any function in the filename specified by the
string will not be instrumented by Insight. The string should be
a glob-style regular expression and should include the full path.
This option allows you to avoid doing runtime checking in
header files that you know are correct. This can significantly
speed up execution and shrink your code. Please note, however,
that the file must still be parsed by Insight, so this option will
not eliminate compile-time warnings and errors, only runtime
checking.
134

Configuration Files

.psrc filesC
insure++.init_extension [c|cc|C|cpp|cxx|c++]
This option tells Insight to use the given extension and
language for the Insight initialization code source file. The
extension can be any one of the Insight-supported extensions:
c (for C code) or cc, C, cpp, cxx, or c++ (for C++ code). This
option need only be used to override the default, which is the
extension used by any source files on the insight command
line. If there are no source files on the command line, e.g. a
separate link command, Insight will use a c extension by
default.

insure++.interface_defaults [all|*|alloc|new|
delete|::alloc|::new|::delete|
off|none]

Specifies for which functions to use standard interfaces. The
standard interfaces assume that new and delete behave like the
global new and delete in allocating a block of memory. If your
functions adhere to those guidelines, you can specify use of the
standard interfaces with this option.

Keyword Meaning

all/* Includes alloc and ::alloc

alloc Includes new and delete

new Assume all member news are “standard”

delete Assume all member deletes are “standard”

::alloc Includes ::new and ::delete

::new Assume global new is “standard”

::delete Assume global delete is “standard”

off/none Assume nothing about new and delete
135

Configuration Files

.p
sr

c
fil

es
insure++.interface_disable key
This option tells Insight not to use the interfaces specified by
the key. The interfaces will then not be inserted during
instrumentation at compile-time. The key can be obtained by
looking in the compiler default .psrc file (see page 119) for
the interface_library option specifying the interfaces
you wish to disable and removing the lib prefix and the .tqi
file extension. For example, to turn off the C library interfaces,
use the option

interface_disable c

insure++.interface_enable key
This option tells Insight to use the interfaces specified by the
key. The interfaces will then be inserted during
instrumentation at compile-time. The key can be obtained by
looking in the compiler default .psrc file (see page 119) for
the interface_library option specifying the interfaces
you wish to enable and removing the lib prefix and the .tqi
file extension. For example, to turn on the C library interfaces,
use the option

interface_enable c

insure++.interface_ignore function_name
This option tells Insight not to use its interface for
function_name.

insure++.interface_library file1, file2, file3, …
Specifies Insight interface modules to be used on each compile.
Equivalent to specifying the list on the insight command
line. Filenames may include environment variables and Insight
macros to help cross-platform development as described on
page 120.

insure++.interface_reset
Turns off all interfaces up to this point in the .psrc file.
Additional interface_library options can be used after
this line to add back certain interfaces.
136

Configuration Files

.psrc files
insure++.interface_statics [on|off]
This option controls interface checking on static functions. If
you want to have static functions with the same names as
functions for which there are interfaces (e.g. write), you can
turn off interface checking for these static functions by setting
this option to off.

insure++.linker linker_name
Specifies the name of an alternative linker. This only applies if
you are using the ins_ld command.

insure++.linker_dynlib_flag flag
This option is for internal use only.

insure++.linker_source source_code
This option tells Insight to add the given code to its
initialization file. This can help eliminate unresolved symbols
caused by linker bugs.

insure++.linker_stub symbol_name
This option tells Insight to create and link in a dummy function
for the given symbol_name. This can help eliminate
unresolved symbols caused by linker bugs.

insure++.malloc_replace [on|off]
If on, Insight links its own version of the dynamic memory
allocation libraries. This gives Insight additional error
detection abilities, but may have different properties than the
native library (for example, it will probably use more memory
per block allocated). Setting this option to off links the
standard library and removes the “high water mark” entry from
the report summary.

insure++.object_ignore string
Any object whose name matches the string will not be
processed by Insight. The string should be a glob-style regular
expression.

insure++.password arg1 arg2 arg3
Used for internal maintenance. This option should not be added
or modified by hand. Licenses should be managed with pslic.
137

Configuration Files

.p
sr

c
fil

es
insure++.post_compile_command command_string
This option is for internal use only.

insure++.pragma_ignore string
Any pragma which matches the string will be deleted by
Insight. The string should be a glob-style regular expression.

insure++.pre_compile_command command_string
This option is for internal use only.

insure++.preprocessor command_string
This option is for internal use only.

insure++.preprocessor_flag flag
Specifies a flag or flags that can safely be passed to the
preprocessor. Any flags on insight command lines that are
not listed in a preprocessor_flag statement will be
stripped from the command before invoking the preprocessor.
The list of pre-processor flags is usually maintained in the file

<install_dir>/lib.$ARCH/$COMPILER/.psrc

Flags specified by this option will be passed to the preprocessor
only, unless they are also specified in a
preprocessor_propagate_flag option.

insure++.preprocessor_propagate_flag flag
Specifies a flag or flags that should be passed to both the
preprocessor and the compiler. If the flag is not listed in a
preprocessor_flag option, this option will be ignored.

registertool Insure++ version
Used for internal maintenance. This option should not be
modified.

insure++.rename_files [on|off]
Normally, Insight creates an intermediate file which is passed
to the compiler. In some cases, this may confuse debuggers. If
this is the case, you can set this option Insight will then rename
the files during compilation so that they are the same. In this
case, an original source file called foo.c would be renamed
foo.c.ins_orig for the duration of the call to Insight.
138

Configuration Files

.psrc files
insure++.report_banner [on|off]
Controls whether or not a message is displayed on your
terminal, reminding you that error messages have been
redirected to a file. (See page 30)

insure++.report_file [filename|insra|stderr]
Specifies the name of the report file. Environment variables and
various pattern generation keys may appear in filename.
(See page 123) Use of the special filename insra tells Insight
to send its output to Insra.

insure++.sizeof type value
This option allows you specify data type sizes which differ from
the host machine, which is often necessary for cross
compilation. value should be the number sizeof(type)
would return on the target machine. Allowed type arguments
are char, double, float, int, long, long double,
long long, short, and void *.

insure++.split_compile_link [on|off]
This option is for internal use only.

insure++.stack_internal [on|off]
If you are using the symbol_table off runtime option (see
page 150), you can set this option to on and recompile your
program to get filenames and line numbers in stack traces
without using the symbol table reader.

insure++.static_linking [on|off]
By default, Insight links its libraries dynamically or statically
according to the current link options. Setting this option to on
forces Insight’s libraries to be linked statically, even though
user and/or system libraries may still be linked dynamically.
This option is the opposite of dynamic_linking.
(See page 133)

insure++.stdlib_replace [on|off]
Links with an extra Insight library that checks common
function calls without requiring recompilation. This is useful
for finding bugs in third-party libraries or for quickly checking
your program without fully recompiling with Insight.
139

Configuration Files

.p
sr

c
fil

es
insure++.suppress code
Suppresses compile time messages matching the indicated error
code. Context sensitive suppression does not apply at compile
time (see page 37, et seq).

insure++.suppress_output string
Suppresses compile time messages including the indicated error
string (see page 40). For example, to suppress the warning:

[foo.c:5] Warning: bad conversion in
assignment: char * = int *
 >> ptr = iptr;

add the following line to your .psrc file.

suppress_output bad conversion in
assignment

insure++.suppress_warning code
Suppresses C++-specific compile time messages matching the
indicated warning code (see page 40). code should match the
numerical code Insight prints along with the warning message
you would like to suppress. The codes correspond to the
chapter, section, and paragraph(s) of the draft ANSI standard on
which the warning is based. For example, to suppress the
warning:

Warning:12.3.2-5: return type may not be
specified for conversion functions

add the following line to your .psrc file.

suppress_warning 12.3.2-5

insure++.temp_directory path
Specifies the directory where Insight will write its temporary
files, e.g. /tmp. The default is the current directory. Setting
path to a directory local to your machine can dramatically
improve compile-time performance if you are compiling on a
remotely mounted file system.
140

Configuration Files

.psrc files

C

insure++.threaded_runtime [on|off]
Specifies which Insight runtime library will be used at link
time. This option should be turned on before linking threaded
programs with Insight.

insure++.uninit_flow [1|2|3|...|100|...|1000]
When Insight is checking for uninitialized memory, a lot of the
checks can be deduced as either correct or incorrect at compile
time. This value specifies how hard Insight should try to
analyze this at compile time. A high number will make Insight
run slower at compile time, but will produce a faster executable.
Values over 1000 are not significant except for very
complicated functions.

insure++.unsuppress code
Enables compile time messages matching the indicated error
code. Context sensitive suppression is not supported at compile
time (see page 40, et seq).

insure++.unused_global_inline [keep|check|delete]
This option tells Insight what to do with unused global in-line
functions.

insure++.unused_member_inline [keep|check|delete]
This option tells Insight what to do with unused member in-line
functions. See above table for explanations of the options.

Keyword Meaning

check keep function and check

delete delete function from code

keep keep function, don’t check
141

Configuration Files

.p
sr

c
fil

es

C

insure++.virtual_checking [on|off]

Specifies whether VIRTUAL_BAD error messages will be
generated. See page 310 for more information about this error
message.

Running
insure++.assert_ok filename::function

Specifies that the return value of the given function (the file
qualifier is optional) should be treated as an opaque object and
not checked for errors (see page 41). This is primarily useful for
eliminating errors reported in third-party libraries.

insure++.checking_uninit [on|off]
If set to off, this option specifies that the code to perform
flow-analysis and checking for uninitialized variables should
not be executed, if present. See page 127 for the compile time
effects of this option. Runtime uninitialized variable checking is
then limited to uninitialized pointer variables (see page 19).

insure++.checking_uninit_min_size [1|2|3|...]
Specifies the minimum size in bytes of data types on which
Insight should perform full uninitialized memory checking.
The default is 2, which means that chars will not be checked
by default. Setting this option to 1 will check chars, but may
result in false errors being reported. These can be eliminated by
using the checking_uninit_pattern option to change
the pattern used (see below).

insure++.checking_uninit_pattern pattern
Specifies the pattern to be used by the uninitialized memory
checking algorithm. The default is deadbeef. pattern
must be a valid, 8-digit hexadecimal value.

insure++.checking_uninit_stack_scribble [on|off]
Specifies extra uninitialized memory checking on the stack.
This checking is not compatible with all compilers. If you get
unusual core dumps after turning this option on, it is not
compatible with your compiler and should be turned off.
142

Configuration Files

.psrc files

C

C

insure++.demangle [off|on|types|full_types]
Specifies the level of function name demangling in reports
generated by Insight. If you have a function

void func(const int)

you will get the following results:

!insure++.demangle_method [filter <filtname>|CC|gcc]
Specifies compiler-specific algorithm for demangling function
names. Currently supported compiler algorithms are CC and
gcc. If you are using a different compiler, Insight understands
most other demangling formats as well. The filter
<filtname> option allows the use of the external demangler
filtname. The default is compiler-dependent. See the
compiler level .psrc file, which is in the directory
lib.$ARCH/$COMPILER.
This option is a compiled-in option, so you will need to prepend
a ! to the option in a .psrc file to change the setting at
runtime. See page 125 for more details.

insure++.error_format string
Specifies the format for error message banners generated by
Insight. The string argument will be displayed as entered with
the macro substitutions taking place as shown in the table on
page 133. The string may also contain standard C formatting
characters, such as ‘\n’. (For examples, see page 32.)

Keyword Result

off func__FCi

on func

types func(int)

full_types func(const int)
143

Configuration Files

.p
sr

c
fil

es
!insure++.exename [<short_name>] filename
Specifies the name of the executable, possibly with the path.
This may be necessary to read the symbol table if Insight
cannot find the executable. You will need to use the ! character
with this option to override the compiled-in exename option
built into the binary at compile-time. (see page 125) There are
two ways to use this option. The simplest is to omit the
short_name argument and just specify the executable name
with the path of the executable. For example, if you have
compiled a file called foo.c into an executable named foo in
the /usr/local directory, the correct exename option
would look like:

!insure++.exename /usr/local/foo

Using the second option, you can specify the location of more
than one executable. The short_name must be the name of
executable when it was linked. The filename must be the full
path and current name of the executable. For example, if you
have built foo as above and also a program called bar (which
was moved to your home directory and changed to foobar),
you might use exename options like:

!insure++.exename foo /usr/local/foo
!insure++.exename bar ~/foobar

insure++.exit_hook [on|off]
Normally, Insight uses the appropriate atexit, onexit, or
on_exit function call to perform special handling at exit. If
for some reason, this is a problem on your system, you can
disable this functionality via the exit_hook option.

insure++.exit_on_error [0|1|2|3|...]
Causes the user program to quit (with non-zero exit status) after
reporting the given number of errors. The default is 0, which
means that all errors will be reported and the program will
terminate normally.
144

Configuration Files

.psrc files
insure++.exit_on_error_banner [on|off]
Normally, when Insight causes your program to quit due to the
exit_on_error option, it will print a brief message like the
following:

** User selected maximum error count
reached: 10. Program exiting. **

Setting this option to off will disable this message.

insure++.free_delay [0|1|2|3|...|119|...]
This option controls how long the LynxInsure++ runtime holds
onto “free’d” blocks before allowing them to be reused. This
is not necessary for error detection, but can be useful in
modifying the behavior of your program for stress-testing. The
number represents how many free’d blocks are held back at a
time - large numbers limit memory reuse, and 0 maximizes
memory reuse. Please note that this option is only active if
malloc_replace was on during linking.

insure++.free_pattern pattern
Specifies a pattern that will be written on top of memory
whenever it is freed. This pattern will be repeated for each byte
in the freed region (this option is available only if
malloc_replace was on at compile time). The default is 0,
which means no pattern will be written.

On some systems whose libraries assume freed
memory is still valid, this may cause your program
to crash.

insure++.free_trace [-1|0|1|2|3|...|10|...]
Specifies the maximum number of levels to track the stack
whenever a block of dynamic memory is freed. Setting this
option to a non-zero value tells Insight to include a description
of the function call stack to at most the given depth whenever
an error associated with the block is reported. Setting the value
to 0 suppresses deallocation stack tracing, while the value -1
traces the stack back to the main routine.
145

Configuration Files

.p
sr

c
fil

es
insure++.ignore_wild [on|off]
Specifies whether Insight will do checking for wild pointers.
Turning this option on turns off wild pointer checking.

insure++.leak_combine [none|trace|location]
Specifies how to combine leaks for the memory leak summary
report. Combining by trace means all blocks allocated with
identical stack traces will be combined into a single entry.
Combining by location means all allocations from the same
file and line (independent of the rest of the stack trace) will be
combined. none means each allocation will be listed
separately.

insure++.leak_ignore arguments
This option is for internal use only.

insure++.leak_search [on|off]
Specifies additional leak checking at runtime before a leak is
reported. Requires that the symbol table reader be turned on.

insure++.leak_sort [none|frequency|location|size]
Specifies by what criterion the memory leak summary report is
sorted. Setting this to none may provide better performance at
exit if you have many leaks.

insure++.leak_sweep [on|off]
Specifies additional leak checking at the termination of the
program. Requires that the symbol table reader be turned on.
Leaks detected will be reported using the summarize
(detailed) leaks option (see page 149).

insure++.leak_trace [on|off]
This option determines whether or not full stack traces will be
shown in the memory leak summary report.

insure++.malloc_pattern pattern
Specifies a pattern that will be written on top of memory
whenever it is allocated. This pattern will be repeated for each
byte in the allocated region (this option is available only if
malloc_replace was selected at compile time). The default
is 0, which means that no pattern will be written.
146

Configuration Files

.psrc files

C

insure++.malloc_trace [-1|0|1|2|3|...|10|...]
Specifies the maximum number of levels to track the stack
whenever a block of dynamic memory is allocated. Setting this
option to a non-zero value tells Insight to include a description
of the function call stack to at most the given depth whenever
an error associated with the block is reported. Setting the value
to 0 suppresses allocation stack tracing, while the value -1
traces the stack back to the main routine.

insure++.new_overhead [0|2|4|6|8|...]
Specifies the number of bytes allocated as overhead each time
new[] is called. The default is compiler-dependent, but is
typically 0, 4, or 8.

insure++.pointer_slack [0|1|2]
This controls a heuristic in Insight. When a pointer does not
point to a valid block, but does point to an area 1 byte past the
end of a valid block, does the pointer really point to that block?
The value of this argument controls Insight’s answer. The

default should be changed only if Insight is not working
correctly on your program.

Value Meaning

0 Never assume the pointer points to the previous
block

1 Assume the pointer points to the previous block
if that block was dynamically allocated

2

Always assume the pointer points to the previ-
ous block. This tends to be incorrect for stack
and global variables, since they are usually
adjacent in memory
147

Configuration Files

.p
sr

c
fil

es
insure++.realloc_stress [on|off]
If enabled, all calls to realloc will cause the block in
question to move. This can be useful in triggering certain kinds
of bugs where the possibility of realloc changing addresses
was not considered.

insure++.report_banner [on|off]
Controls whether or not a message is displayed on your
terminal, reminding you that error messages have been
redirected to a file. (See page 30)

insure++.report_file [filename|insra|stderr]
Specifies the name of the report file. Environment variables and
various pattern generation keys may appear in filename.
(See page 123) Use of the special filename insra tells Insight
to send its output to Insra.

insure++.report_limit [-1|0|1|2|3|...]
Displays only the first given number of errors of each type at
any particular source line. Setting this option to -1 will show
all errors. Setting it to 0 will only show errors in summary
reports, and not at runtime. (See page 34)

insure++.report_overwrite [on|off]
If set to off, error messages are appended to the report file
rather than overwriting it on each run.

insure++.runtime [on|off]
If set to off, no runtime checking or profiling is performed.
The program then runs much faster. This can be used to check
to see if a particular fix has cured a problem, without
recompiling the application without Insight.

insure++.signal_catch [all|sig1 sig2 …]
Specifies a list of UNIX signals which Insight will trap. When
these signals are detected, Insight displays a function call stack.
Signals may be specified by number or by their symbolic
names, with or without the SIG prefix. See page 81 for more
details.
148

Configuration Files

.psrc files
insure++.signal_ignore [all|sig1 sig2 …]
Specifies a list of UNIX signals which Insight will ignore.
Insight makes no attempt to trap these signals. Signals may be
specified by number or by their symbolic names, with or
without the SIG prefix. (See page 81)

You will want to use this if your program is expecting any of the
signals that Insight catches by default.

insure++.source_path dir1 dir2 dir3
This option takes a list of directories in which to search for
source files. (See page 36) This will only be necessary if your
source code has moved since it was compiled, as Insight
remembers where all your source files are located.

insure++.stack_limit [-1|0|1|2|3|...]
Truncates runtime stack traces after displaying at most the
given number of levels. Setting the option to -1 displays all
levels. Setting the option to 0 disables stack tracing.
(See page 35)

insure++.summarize [bugs] [coverage]
[leaks] [outstanding]
Generates a summary report of errors (see page 44), memory
leaks (see page 46), outstanding allocated memory blocks, or
coverage analysis (see page 51). In the latter case, the
coverage_switches option (see the TCA manual) is
consulted to decide how to present coverage data. The leaks
and outstanding reports are affected by the
leak_combine, leak_sort, and leak_trace options.
With no arguments, this option will summarize the bugs and
leaks summaries. This option has changed slightly in versions
3.1 and higher. The old leak defaults are equivalent to
leak_combine location, leak_sort location,
leak_trace off. The old detailed option is replaced by
leak_trace on.
149

Configuration Files

.p
sr

c
fil

es
insure++.summarize_on_error [0|1|2|3|...]
Specifies how many errors must be generated before a summary
(if requested) is printed. The default is 0, which means that
summaries are always printed on demand. If the number is 1 or
higher, summaries are only printed if at least the given number
of bugs (or leaks) occurred. Suppressed errors do not count
towards this number. If no argument is given with this option, a
value of 1 is assumed.

insure++.suppress code [{context}]
Suppress error messages matching the given error code and
occurring in the (optionally) specified context. (See page 37, et
seq.)

insure++.symbol_banner [on|off]
If set, Insight displays a message indicating that the program’s
symbol table is being processed whenever an application starts.

insure++.symbol_table [on|off]
If set to on, Insight will read the executable symbol table at
startup. This enables Insight to generate full stack traces for
third party libraries as well as for code compiled with Insight.
If this option is turned off, the stack traces will show only
functions compiled with Insight, but the application will use
less dynamic memory and be faster on startup. To get filenames
and line numbers in stack traces with this option off, you must
compile your program with the stack_internal on
option. (See page 139)

insure++.trace [on|off]
Turns program tracing on and off. In order to get file names and
line numbers in the trace output, you must have the
stack_internal on option set when compiling the
program. See the Tracing section on page 77 of this manual for
more information about program tracing.

insure++.trace_banner [on|off]
Specifies whether to print message at runtime showing file to
which the trace output will be written.

insure++.trace_file [filename|stderr]
150

Configuration Files

.psrc files
Specifies filename to which the trace output will be written.
filename may use the same special tokens shown on
page 122.

insure++.uninit_globals [0|1|2]
After calling a function not compiled with Insight, take the
indicated action with respect to global variables.

insure++.uninit_heap [0|1|2]
After calling a function not compiled with Insight, take the
indicated action with respect to dynamically allocated variables
(i.e. variables on the heap).

Value Meaning

0 Do nothing

1 Initialize all variables which were uninitialized dur-
ing the course of the function call

2 Initialize all global variables

Value Meaning

0 Do nothing

1 Initialize all variables which were uninitialized dur-
ing the course of the function call

2 Initialize all heap variables
151

Configuration Files

.p
sr

c
fil

es
insure++.uninit_reference [on|off]
If this option is turned on, blocks which are passed by reference
to functions not compiled with Insight are assumed to have
been initialized by that function call.

insure++.uninit_stack_frame [-1|0|1|2|3|...]
After calling a function not compiled with Insight, all variables
local to the last given number of functions are assumed to be
initialized. By default, this is 0, meaning that nothing is
assumed. -1 indicates that all variables on the stack should be
presumed initialized.

insure++.unsuppress code [{context}]
Enables error messages matching the given error codes and
occurring in the (optionally) specified context. (See page 40, et
seq.)
152

Configuration Files

.psrc files
Options used by Insra
Running insra

insra.body_background_color [White|color]
Specifies the color Insra will use for the message body area
background.

insra.body_font [Fixed|font]
Specifies the font Insra will use for the message body text. On
some systems, e.g. SGI, the Fixed font is much too large. This
option can be used to select a smaller font.

insra.body_height [0|1|2|...|8|...]
Specifies the starting height of the Insra message body area in
number of rows of visible text. This may be modified while
Insra is running using the standard Motif controls.

insra.body_text_color [Black|color]
Specifies the color Insra will use for the message body text.

insra.body_width [0|1|2|...|80|...]
Specifies the starting width of the Insra message body area in
number of columns of visible text. This may be modified while
Insra is running using the standard Motif controls. If this option
is set to a different value than header_width, the larger
value will be used.

insra.header_background_color [White|color]
Specifies the color Insra will use for the message header area
background.

insra.header_font [Fixed|font]
Specifies the font Insra will use for the message header text. On
some systems, e.g. SGI, the Fixed font is much too large. This
option can be used to select a smaller font.

insra.header_height [0|1|2|...|8|...]
Specifies the starting height of the Insra message header area in
number of rows of visible text. This may be modified while
Insra is running using the standard Motif controls.
153

Configuration Files

.p
sr

c
fil

es
insra.header_highlight_color
[LightSteelBlue2|color]
Specifies the color Insra will use to indicate the currently
selected message or session header in the message header area.

insra.header_highlight_text_color [Black|color]
Specifies the color Insra will use for the text of the currently
selected message or session header in the message header area.

insra.header_session_color [Gray80|color]
Specifies the color Insra will use to indicate a session header.

insra.header_session_text_color [Black|color]
Specifies the color Insra will use for session header text.

insra.header_text_color [Black|color]
Specifies the color Insra will use for message header text.

insra.header_width [0|1|2|...|80|...]
Specifies the starting width of the Insra message header area in
number of columns of visible text. This may be modified while
Insra is running using the standard Motif controls. If this option
is set to a different value than body_width, the larger value
will be used.

insra.port [3255|port_number]
Specifies which port Insra should use to communicate with
Insight and Insight-compiled programs.

insra.toolbar [on|off]
Specifies whether Insra‘s toolbar is displayed. All toolbar
commands can also be chosen from the menu bar.

insra.visual [xterm -e vi +%l %f|emacs +%l %f|
other_editor_command]
Specifies how Insra should call an editor to display the line of
source code causing the error. Insra will expand the %l token
to the line number and the %f token to the file name before
executing the given command. It is important to include the full
path of any binary that lives in a location not on your path.
Setting this option with no command string disables source
browsing from Insra.
154

M
em

ory O
verflow

Memory Overflow
Memory Overflow
One of the common errors that Insight detects occurs when a program reads or
writes beyond the bounds of a valid memory area. This type of problem normally
generates a READ_OVERFLOW or WRITE_OVERFLOW error which describes the
memory regions being accessed with their addresses and sizes as shown below.

Overflow diagrams
The textual information in Figure 7 describes the memory blocks involved in the
overflow operation using their memory addresses and sizes.

Figure 7. Sample output from a WRITE_OVERFLOW error

[hello.c:15] **WRITE_OVERFLOW**
>> strcat(str, argv[i]);

Writing overflows memory: <argument 1>

bbbbbbbbbbbbbbbbbbbbbbbbbb
| 16 | 2 |
wwwwwwwwwwwwwwwwwwwwwwwwwwwwww

Writing (w) : 0x7ffffd90 thru 0x7ffffda1 (18 bytes)
To block (b) : 0x7ffffd90 thru 0x7ffffd9f (16 bytes)

str, declared at hello.c, 11

Stack trace where the error occurred:
main() hello.c, 15

Memory corrupted. Program may crash!!
155

M
em

or
y

O
ve

rf
lo

w
Memory Overflow
To gain a more intuitive understanding of the nature of the problem, a text-based
“overflow diagram” is also shown. This pattern attempts to demonstrate the nature
and extent of the problem by representing the memory blocks involved pictorially.

bbbbbbbbbbbbbbbbbbbbbbbbbbbb
| 16 | 2 |
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

In this case, the row of b characters represents the available memory block, while
the row of w’s shows the range of memory addresses being written. The block
being written is longer than the actual memory block, which causes the error.

The numbers shown indicate the size, in bytes, of the various regions and match
those of the textual error message.

The relative length and alignment of the rows of characters is intended to indicate
the size and relative positioning of the memory blocks which cause the error. The
above case shows both blocks beginning at the same position with the written
block extending beyond the end of the memory region. If the region being written
extended both before and after the available block, a diagram such as the
following would have been displayed.

bbbbbbbbbbbbbbbbbbbbbbbbbbbb
| 5 | 16 | 2 |
www

Completely disjoint memory blocks are indicated by a diagram of the form

bbbbbbbbbbbbbbbbbb
| 4 | 40 | 16 |
wwwwwww

Similar diagrams appear for both READ_OVERFLOW and WRITE_OVERFLOW
errors. In the former case, the block being read is represented by a row of r
characters instead of w’s. Similarly, the memory regions involved in parameter
size mismatch errors are indicated using a row of p characters for the parameter
block. (See PARM_BAD_RANGE)
156

Error Codes

Error C
odes
Error Codes
This section is intended to provide a reference for the various error messages
generated by Insight.

This appendix consists of two parts.

The first lists each error code alphabetically together with its interpretation and an
indication of whether or not it is suppressed by default.

The second gives a detailed description of each error including:

• A brief explanation of what problem has been detected.

• An example program that generates a similar error.

• Output that would be generated by running the example,
with annotations indicating what the various pieces of the
diagnostic mean and how they should be interpreted in
identifying your own problems.

Note that the exact appearance of the error message may
depend heavily on how Insight is currently configured.

• A brief description of ways in which the problem might be
eliminated.

Note that someTimes New Roman you will see values identified as
“<argument #>” or “<return>” instead of names from your program. In this
case, <argument n> refers to the nth argument passed to the current function
(i.e. the one where the error was detected), and <return> refers to a value
returned from the function indicated.
157

Error Codes

Er
ro

r C
od

es

C

Code Meaning Enabled?

ALLOC_CONFLICT Mixing malloc/free with
new/delete

(badfree) Free called on block allocated
with new ✓

(baddelete) Delete called on block allocated
with malloc ✓

BAD_CAST Cast of pointer loses precision ✓

BAD_DECL Incompatible global declarations ✓

BAD_FORMAT Mismatch in format specification

(sign) int vs. unsigned int

(compatible) int vs. long, both same size

(incompatible) int vs. double ✓

(other) Wrong number of arguments ✓

BAD_INTERFACE Declaration of function in
interface conflicts with
declaration in program

✓

BAD_PARM Mismatch in argument type

(alias) Different type tags, same type

(sign) int vs. unsigned int

(compatible) int vs. long, both same size

(incompatible) int vs. double ✓

(pointer) All pointers are equivalent ✓
158

Error Codes

Error C
odes

C

(union) Require exact match on unions ✓

(other) Wrong number of arguments ✓

COPY_BAD_RANGE Attempt to copy out-of-range
pointer

COPY_DANGLING Attempt to copy dangling pointer

COPY_UNINIT_PTR Attempt to copy uninitialized
pointer

COPY_WILD Attempt to copy wild pointer

DEAD_CODE

(emptyloopbody) Loop body is empty

(emptystmt) Statement is empty

(noeffect) Code has no effect

(notevaluated) Code is not evaluated

DELETE_MISMATCH Mismatch between new/new[] and
delete/delete[]

(bracket) new, delete[] ✓

(nobracket) new[], delete ✓

EXPR_BAD_RANGE Expression exceeded range

EXPR_DANGLING Expression uses dangling pointer

EXPR_NULL Expression uses NULL pointer ✓

Code Meaning Enabled?
159

Error Codes

Er
ro

r C
od

es
EXPR_UNINIT_PTR Expression uses uninitialized
pointer ✓

EXPR_UNRELATED_PTRCMP Expression compares unrelated
pointers ✓

EXPR_UNRELATED_PTRDIFF Expression subtracts unrelated
pointers ✓

EXPR_WILD Expression uses wild pointer

FREE_BODY Freeing memory block from body ✓

FREE_DANGLING Freeing dangling pointer ✓

FREE_GLOBAL Freeing global memory ✓

FREE_LOCAL Freeing local memory ✓

FREE_NULL Freeing NULL pointer ✓

FREE_UNINIT_PTR Freeing uninitialized pointer ✓

FREE_WILD Freeing wild pointer ✓

FUNC_BAD Function pointer is not a function ✓

FUNC_NULL Function pointer is NULL ✓

FUNC_UNINIT_PTR Function pointer is uninitialized ✓

FUNC_WILD Function pointer is wild ✓

HEAP_CORRUPT The heap is corrupt
(this is only active if
malloc_replace is on)

✓

INSIGHT_ERROR Internal error ✓

INSIGHT_WARNING Output from iic_warning

Code Meaning Enabled?
160

Error Codes

Error C
odes
LEAK_ASSIGN Memory leaked due to pointer
reassignment ✓

LEAK_FREE Memory leaked freeing block ✓

LEAK_RETURN Memory leaked by ignoring return
value ✓

LEAK_SCOPE Memory leaked leaving scope ✓

PARM_BAD_RANGE Array parameter exceeded range ✓

PARM_DANGLING Array parameter is dangling
pointer ✓

PARM_NULL Array parameter is NULL ✓

PARM_UNINIT_PTR Array parameter is uninitialized
pointer ✓

PARM_WILD Array parameter is wild ✓

READ_BAD_INDEX Reading array out of range ✓

READ_DANGLING Reading from a dangling pointer ✓

READ_NULL Reading NULL pointer ✓

READ_OVERFLOW

(normal) Reading overflows memory ✓

(nonull) String is not NULL-terminated
within range ✓

(string) Alleged string does not begin
within legal range ✓

(struct) Structure reference out of range ✓

Code Meaning Enabled?
161

Error Codes

Er
ro

r C
od

es
(maybe) Dereferencing structure of
improper size (may be o.k.)

READ_UNINIT_MEM Reading uninitialized memory

(copy) Copy from uninitialized region

(read) Use of uninitialized value ✓

READ_UNINIT_PTR Reading from uninitialized pointer ✓

READ_WILD Reading wild pointer ✓

RETURN_DANGLING Returning pointer to local variable ✓

RETURN_FAILURE Function call returned an error

RETURN_INCONSISTENT Function returns inconsistent
value

(level 1) No declaration, returns nothing

(level 2) Declared int returns nothing ✓

(level 3) Declared non-int, returns
nothing ✓

(level 4) Returns different types at different
statements ✓

UNUSED_VAR Unused variables

(assigned) Assigned but never used

(unused) Never used

USER_ERROR User generated error message ✓

Code Meaning Enabled?
162

Error Codes

Error C
odes

C
VIRTUAL_BAD Error in runtime initialization of
virtual functions ✓

WRITE_BAD_INDEX Writing array out of range ✓

WRITE_DANGLING Writing to a dangling pointer ✓

WRITE_NULL Writing to a NULL pointer ✓

WRITE_OVERFLOW

(normal) Writing overflows memory ✓

(struct) Structure reference out of range ✓

(maybe) Dereferencing structure of
improper size (may be o.k.)

WRITE_UNINIT_PTR Writing to an uninitialized pointer ✓

WRITE_WILD Writing to a wild pointer ✓

Code Meaning Enabled?
163

Error Codes

Er
ro

r C
od

es
164

Error C
odes
ALLOC_CONFLICT

Memory allocation conflict

Porting code between differing machine architectures can be difficult for many
reasons. A particularly tricky problem occurs when the sizes of data objects,
particularly pointers, differ from that for which the software was created. This
error occurs when a pointer is cast to a type with fewer bits, causing information
to be lost, and is designed to help in porting codes to architectures where, for
example, pointers and integers are of different lengths.

Note that compilers will often catch this problem unless the user has “carefully”
added the appropriate typecast to make the conversion “safe”.

Problem
The following code shows a pointer being copied to a variable too small to hold
all its bits.

1: /*
2: * File: badcast.c
3: */
4: main()
5: {
6: char q, *p;
7:
8: p = "Testing";
9: q = (char)p;
10: }
165

Er
ro

r C
od

es
Diagnosis (during compilation)

Repair
This error normally indicates a significant portability problem that should be
corrected by using a different type to save the pointer expression. In ANSI C the
type void * will always be large enough to hold a pointer value.

[badcast.c:9] **BAD_CAST**
Cast of pointer loses precision: (char) p

>> q = (char) p;

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.
166

Error C
odes
BAD_CAST

Cast of pointer loses precision

Porting code between differing machine architectures can be difficult for many
reasons. A particularly tricky problem occurs when the sizes of data objects,
particularly pointers, differ from that for which the software was created. This
error occurs when a pointer is cast to a type with fewer bits, causing information
to be lost, and is designed to help in porting codes to architectures where, for
example, pointers and integers are of different lengths.

Note that compilers will often catch this problem unless the user has “carefully”
added the appropriate typecast to make the conversion “safe”.

Problem
The following code shows a pointer being copied to a variable too small to hold
all its bits.

1: /*
2: * File: badcast.c
3: */
4: main()
5: {
6: char q, *p;
7:
8: p = "Testing";
9: q = (char)p;
10: return 0;
11: }
167

Er
ro

r C
od

es
Diagnosis (during compilation)

Repair
This error normally indicates a significant portability problem that should be
corrected by using a different type to save the pointer expression. In ANSI C the
type void * will always be large enough to hold a pointer value.

[badcast.c:9] **BAD_CAST**
Cast of pointer loses precision: (char) p

>> q = (char) p;

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.
168

Error C
odes
BAD_DECL

Global declarations are
inconsistent

This error is generated whenever Insight detects that a variable has been declared
as two different types in distinct source files. This can happen when there are two
conflicting definitions of an object or when an extern reference to an object
uses a different type than its definition.

In any case, Insight proceeds as though the variable definition is correct,
overriding the extern reference.
169

Er
ro

r C
od

es
Problem
In the following example, the file baddecl1.c declares the variable a to be a
pointer, while the file baddecl2.c declares it to be an array type.

1: /*
2: * File: baddecl1.c
3: */
4: int *a;

1: /*
2: * File: baddecl2.c
3: */
4: extern int a[];
5:
6: main()
7: {
8: a[0] = 10;
9: return (0);
10: }
170

Error C
odes
Diagnosis (at runtime)

Repair
The lines on which the conflicting declarations are made are both shown in the
diagnostic report. They should be examined and the conflict resolved.

In the case shown here, for example, a suitable correction would be to change the
declaration file to declare an array with a fixed size, e.g.,

baddecl1.c, 4: int a[10];

[baddecl2.c:4] **BAD_DECL**
>> extern int a[];

Incompatible global declarations: a

Array and non-array declarations are not equivalent.
Actual declaration:

non-array (4 bytes),declared at baddecl1.c, 4
Conflicting declaration:

array of unspecified size,
declared at baddecl2.c, 4

• Source line at which the problem was detected.

• Description of the problem and the object whose
declarations conflict.

• Brief description of the conflict.

• Information about the conflicting definitions, including the
sizes of the declared objects and the locations of their
declarations.
171

Er
ro

r C
od

es
An alternative correction would be to change the definition in baddecl2.c to
indicate a pointer variable, e.g.,

baddecl2.c, 4: extern int *a;

Note that this change on its own will not fix the problem. In fact, if you ran the
program modified this way, you would get another error, EXPR_NULL, because
the pointer, a, doesn’t actually point to anything and is NULL by virtue of being a
global variable, initialized to zero.

To make this version of the code correct, you would need to include something to
allocate memory and store the pointer in a, e.g.,

1: /*
2: * File: baddecl2.c (modified)
3: */
4: #include <stdlib.h>
5: extern int *a;
6:
7: main()
8: {
9: a = (char *)malloc(10*sizeof(int));
10: a[0] = 10;
11: }

Some applications may genuinely need to declare objects with different sizes, in
which case you can suppress error messages by inserting the line

insure++.suppress BAD_DECL

into your .psrc file.
172

Error C
odes
BAD_FORMAT

Mismatch in format specification

This error is generated when a call to one of the printf or scanf routines
contains a mismatch between a parameter type and the corresponding format
specifier or the format string is nonsensical.

Insight distinguishes several types of mismatch which have different levels of
severity as follows:

sign Types differ only by sign, e.g., int vs. unsigned
int.

compatible Fundamental types are different but they happen to
have the same representation on the particular
hardware in use, e.g., int vs. long on machines
where both are 32-bits, or int * vs. long where
both are 32-bits.

incompatible Fundamental types are different, e.g. int vs.
double.

other A problem other than an argument type mismatch is
detected, such as passing the wrong number of
arguments.

Error messages are classified according to this scheme and can be selectively
enabled or disabled as described in the “Repair” section on page 179.
173

Er
ro

r C
od

es
Problem #1
An example of format type mismatch occurs when the format specifiers passed to
one of the printf routines do not correspond to the data, as shown below.

This type of mismatch is detected during compilation.

1: /*
2: * File: badform1.c
3: */
4: main()
5: {
6: double f = 1.23;
7: int i = 99;
8:
9: printf("%d %f\n”, f, i);
10: }
174

Error C
odes
Diagnosis (during compilation)

Problem #2
A more dangerous problem occurs when the types passed as arguments to one of
the scanf functions are incorrect. In the following code, for example, the call to

[badform1.c:9] **BAD_FORMAT(incompatible)**
Wrong type passed to printf (argument 2).
Expected int, found double.

>> printf("%d %f\n", f, i);

[badform1.c:9] **BAD_FORMAT(incompatible)**
Wrong type passed to printf (argument 3).
Expected double, found int.

>> printf("%d %f\n", f, i);

• Source lines at which problems were detected.

• Description of the problem and the arguments that are
incorrect.
175

Er
ro

r C
od

es
scanf tries to read a double precision value, indicated by the “%lf” format, into
a single precision value. This will overwrite memory.

This problem is again diagnosed at compile time (along with the
WRITE_OVERFLOW, which is not shown below).

Diagnosis (during compilation)

1: /*
2: * File: badform2.c
3: */
4: main()
5: {
6: int a;
7: float f;
8:
9: scanf("%lf”, &f);
10: }

[badform2.c:9] **BAD_FORMAT(incompatible)**
Wrong type passed to scanf (argument 2).
Expected double *, found float *.

>> scanf("%lf\n", &f);

• Source lines at which problems were detected.

• Description of the problem and the arguments that are
incorrect.
176

Error C
odes
Problem #3
A third type of problem is caused when the format string being used is a variable
rather than an explicit string. The following code contains an error handler that
attempts to print out a message containing a filename and line number. In line 18

of the calling routine, however, the arguments are reversed.

1: /*
2: * File: badform3.c
3: */
4: char *file;
5: int line;
6:
7: error(format)
8: char *format;
9: {
10: printf(format, file, line);
11: }
12:
13: main()
14: {
15: file = "foo.c";
16: line = 3;
17:
18: error("Line %d, file %s\n");
19: }
177

Er
ro

r C
od

es
Diagnosis (at runtime)

The error diagnosed in this message is in the “incompatible” category,
because any attempt to print a string by passing an integer variable will result in
garbage. Note that with some compilers, this program may cause a core dump
because of this error, while others will merely produce incorrect output.

There is, however, a second potential error in this code in the same line.

Because the arguments are in the wrong order in line 7, an attempt will be made
to print a pointer variable as an integer. This error is in the “compatible” class,
since a pointer and an integer are both the same size in memory. Since
“compatible” BAD_FORMAT errors are suppressed by default, you will not see
it. (These errors are suppressed because they will cause unexpected rather than
incorrect behavior.)

[badform3.c:10] **BAD_FORMAT(incompatible)**
>> printf(format, file, line);

Format string is inconsistent:
Wrong type passed to printf (argument 3).

Expected pointer, found int.
Format string: "Line %d, file %s\n"

Stack trace where the error occurred:
error() badform3.c, 10
main() badform3.c, 18

• Source line at which the problem was detected.

• Description of the problem and the argument that is in
error.

• Explanation of the error and the format string that caused it.

• Stack trace showing the function call sequence leading to
the error.
178

Error C
odes
If you enabled these errors, you would see a second problem report from this code.

If you run Insight on an architecture where pointers
and integers are not the same length, then this
second error would also be in the
“incompatible” class and would be displayed
by default.

Repair
Most of these problems are simple to correct based on the information given.
Normally, the correction is one or more of the following

• Change the format specifier used in the format string.

• Change the type of the variable involved.

• Add a suitable typecast.

For example, problem #1 can be corrected by simply changing the incorrect line
of code as follows

badform1.c, line 9:printf("%d %f\n", i, f);

The other problems can be similarly corrected.

If your application generates error messages that you wish to ignore, you can add
the option

insure++.suppress BAD_FORMAT

to your .psrc file.

This directive suppresses all BAD_FORMAT messages. If you wish to be more
selective and suppress only a certain type of error, you can use the syntax

insure++.suppress BAD_FORMAT(class1, class2, …)
179

Er
ro

r C
od

es
where the arguments are one or more of the identifiers for the various categories
of error described on page 173.

Similarly, you can enable suppressed types with an unsuppress command. The
problem with the pointer and integer that was not shown in the current example
could be displayed by adding the option

insure++.unsuppress BAD_FORMAT(compatible)

to your .psrc file. For an example of this option, as well as the remaining
subcategories of BAD_FORMAT, see the example badform4.c.
180

Error C
odes
BAD_INTERFACE

Actual declaration of xxx conflicts
with interface, or
Ignoring interface for xxx: conflicts
with static or in-line declaration

This error will be generated any time there is a significant discrepancy between
the source code being processed and an interface to one of the functions in the
code. Common sources of this problem are redeclarations of standard system
functions in your code.

Problem
The following code shows a redeclaration of the function printf which will
conflict with the version of the function expected by the interface.

1: /*
2: * File: badint.c
3: */
4: #include <stdio.h>
5:
6: static void printf(i)
7: int i;
8: {
9: fprintf(stdout, “%d\n”, i);
10: }
181

Er
ro

r C
od

es
Diagnosis (during compilation)

Repair
There are several ways to approach solving this problem. The correct solution for
your situation depends upon why the function was redefined in your code. If this
is a version of the function that is used with all of your code, a permanent solution
would be to write a new interface corresponding to your version of the function.
(See the LynxInsure++ User’s Guide for more information on writing interfaces.)
A quicker, more temporary solution, appropriate if you only use this version of the
function occasionally, would be to temporarily disable the checking of this
interface using the interface_ignore option in your .psrc file. This
option can be turned on and off on a per file basis as you work with different code
which uses different versions of the function in question.

[badint.c:6] **BAD_INTERFACE**
Ignoring interface for printf: conflicts with static

or inline declaration.
>> static void printf(i)

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.
182

Error C
odes
BAD_PARM

Mismatch in argument type

This error is generated when an argument to a function or subroutine does not
match the type specified in an earlier declaration or an interface file.

Insight distinguishes several types of mismatch which have different levels of
severity as follows:

alias Types have different names by virtue of a typedef
construct but still refer to the same basic type.

sign Types differ only by sign, e.g., int vs. unsigned
int.

compatible Fundamental types are different but they happen to
have the same representation on the particular
hardware in use, e.g., int vs. long on machines
where both are 32-bits.

incompatible Fundamental types are different, e.g. int vs. float.

union Forces a declared union argument to match only a
similar union as an actual argument. If this is
suppressed, you may pass any of the individual union
elements to the routine, rather than the union type, or
pass a union to a routine which expects one of the
union-elements as an argument.

other An error was detected that is not simply a mismatched
argument type, such as passing the wrong number of
arguments to a function.

pointer This is not an error class, but a keyword used to
suppress messages about mismatched pointer types,
such as int * vs. char *. See page 192.

Error messages are classified according to this scheme and can be selectively
enabled or disabled as described in the “Repair” section on page 192.
183

Er
ro

r C
od

es
Problem #1
The following shows an error in which an incorrect argument is passed to the
function foo.

This type of mismatch is detected during compilation.

1: /*
2: * File: badparm1.c
3: */
4: void foo(str)
5: char *str;
6: {
7: return;
8: }
9:
10: main()
11: {
12: int *iptr;
13:
14: foo(iptr);
15: return (0);
16: }
184

Error C
odes
Diagnosis (during compilation)
[badparm1.c:14] **BAD_PARM(incompatible)**

Wrong type passed to foo (argument 1: str)
Expected char *, found int *.

>> foo(iptr)

• Source lines at which problems were detected.

• Description of the problem and the arguments that are
incorrect.
185

Er
ro

r C
od

es
Problem #2
Another simple problem occurs when arguments are passed to functions in the
wrong order, as in the following example.

1: /*
2: * File: badparm2.c
3: */
4: long foo(f, l)
5: double f;
6: long l;
7: {
8: return f+l;
9: }
10:
11: main()
12: {
13: long ret = foo(32L, 32.0);
14:
15: printf("%ld\n", ret);
16: return 0;
17: }
186

Error C
odes
Diagnosis (during compilation)

Problem #3
A slightly less harmful case that you might be interested in detecting involves the
use of the typedef construct, which allows you to create new data types. In
some cases, you may wish to enforce certain rules in your software, such as only
allowing parameters of a certain type to be passed to routines. The following

[badparm2.c:13] **BAD_PARM(incompatible)**
Wrong type passed to foo (argument 1: f)
Expected double, found long.

>> long ret = foo(32L, 32.0);

[badparm2.c:13] **BAD_PARM(incompatible)**
Wrong type passed to foo (argument 2: l).
Expected long, found double.

>> long ret = foo(32L, 32.0);

• Source lines at which problems were detected.

• Description of the problem and the arguments that are
incorrect.
187

Er
ro

r C
od

es
example defines a type called amount and a routine tax that computes a
modified value based on a percentage tax rate.

By default, this type of error checking is suppressed, but if you add the option

insure++.unsuppress BAD_PARM(alias)

to your .psrc file, you will see the following message during compilation.

1: /*
2: * File: badparm3.c
3: */
4: typedef double Amount;
5:
6: Amount tax(price, rate)
7: Amount price;
8: double rate;
9: {
10: return price*(1.0+rate);
11: }
12:
13: main()
14: {
15: Amount a;
16:
17: a = tax(100.0, 0.06);
18: return 0;
19: }
188

Error C
odes
Diagnosis (during compilation)

Problem #4
The following example illustrates the BAD_PARM(union) error category. The
functions func1 and func2 expect to be passed a union and a pointer to an
integer, respectively. The code in the main routine then invokes the two functions
both properly and by passing the incorrect types.

Note that this code will probably work on most systems due to the internal
alignment of the various data types. Relying on this behavior is, however,
non-portable.

[badparm3.c:17] **BAD_PARM(alias)**
Wrong type passed to tax (argument 1: price)
Expected Amount, found double

>> a = tax(100.0, 0.06);

• Source lines at which problems were detected.

• Description of the problem and the arguments that are
incorrect.
189

Er
ro

r C
od

es
1: /*
2: * File: badparm4.c
3: */
4: union data {
5: int i;
6: double d;
7: };
8:
9: void func1(ptr)
10: union data *ptr;
11: {
12: ptr->i = 1;
13: }
14:
15: void func2(p)
16: int *p;
17: {
18: *p = 1;
19: }
20:
21: main()
22: {
23: int t;
24: union data u;
25:
26: func1(&u);
27: func1(&t); /* BAD_PARM */
28: func2(&u); /* BAD_PARM */
29: func2(&t);
30: }
190

Error C
odes
Diagnosis (during compilation)

Repair
Most of these problems are simple to correct based on the information given.

For example, problem #1 can be corrected by simply changing the incorrect line
of code as follows

badparm1.c, line 6:if(strchr("testing", 's'))

The other problems can be similarly corrected.

If your application generates error messages that you wish to ignore, you can add
the option

insure++.suppress BAD_PARM

to your .psrc file.

[badparm4.c:27] **BAD_PARM(union)**
Wrong type passed to func1 (argument 1: ptr)
Expected union data *, found int *.

>> func1(&t); /* BAD_PARM */
[badparm4.c:28] **BAD_PARM(union)**

Wrong type passed to func2 (argument 1: p)
Expected int *, found union data *.

>> func2(&u); /* BAD_PARM */

• Source lines at which problems were detected.

• Description of the problem and the arguments that are
incorrect.
191

Er
ro

r C
od

es
This directive suppresses all BAD_PARM messages. If you wish to be more
selective and suppress only a certain type of error, you can use the syntax

insure++.suppress BAD_PARM(class1, class2, …)

where the arguments are one or more of the identifiers for the various categories
of error described on page 183. Similarly, you can enable suppressed error
messages with the unsuppress option.

Thus, you could enable warnings about conflicts between types int and long
(on systems where they are the same number of bytes) using the option

insure++.unsuppress BAD_PARM(compatible)

(see badparm5.c for an example) and the type of error discussed in connection
with problem #3 with the option

insure++.unsuppress BAD_PARM(alias)

In addition to the keywords described on page 183, you can also use the type
pointer to suppress all messages about different pointer types.

For example, many programs declare functions with the argument type char *,
which are then called with pointers to various other data types. The ANSI standard
recommends that you use type void * in such circumstances, since this is
allowed to match any pointer type. If, for some reason, you cannot do this, you can
suppress messages from Insight about incompatible pointer types with the option

insure++.suppress BAD_PARM(pointer)
192

Error C
odes
COPY_WILD

Copying wild pointer

This problem occurs when an attempt is made to copy a pointer whose value is
invalid or which Insight did not see allocated.

This can come about in several ways:

• Errors in user code that result in pointers that don’t point at
any known memory block.

• Compiling only some of the files that make up an
application. This can result in Insight not knowing enough
about memory usage to distinguish correct and erroneous
behavior.

This discussion centers on the first type of problem
described here. A detailed discussion of the
second topic, including samples of its generation
and repair can be found in “Interfaces” on page 91.
193

Er
ro

r C
od

es
Problem
The following code attempts to use the address of a variable but contains an error
at line 9 - the address operator (&) has been omitted.

1: /*
2: * File: copywild.c
3: */
4:
5: main()
6: {
7: int a = 123, *b;
8:
9: b = a;
10: return (0);
11: }
194

Error C
odes
Diagnosis (at runtime)

Note that most compilers will generate warning messages for this error since the
assignment uses incompatible types.

[copywild.c:9] **COPY_WILD**
>> b = a;

Copying wild pointer: a

Pointer : 0x0000007b

Stack trace where the error occurred:
main() copywild.c, 9

• Source line at which the problem was detected.

• Description of the problem and the name of the parameter
that is in error.

• Value of the bad pointer.

• Stack trace showing the function call sequence leading to
the error.
195

Er
ro

r C
od

es
DEAD_CODE

Memory allocation conflict

DC_NOTEVALUATED, DC_NOEFFECT, DC_UNREACHABLE

Code is not evaluated, Code has no effect, (unreachable seems not to be
generated?).

Porting code between differing machine architectures can be difficult for many
reasons. A particularly tricky problem occurs when the sizes of data objects,
particularly pointers, differ from that for which the software was created. This
error occurs when a pointer is cast to a type with fewer bits, causing information
to be lost, and is designed to help in porting codes to architectures where, for
example, pointers and integers are of different lengths.

Note that compilers will often catch this problem unless the user has “carefully”
added the appropriate typecast to make the conversion “safe”.
196

Error C
odes
Problem
The following code shows a pointer being copied to a variable too small to hold
all its bits.

1: /*
2: * File: badcast.c
3: */
4: main()
5: {
6: char q, *p;
7:
8: p = "Testing";
9: q = (char)p;
10: }
197

Er
ro

r C
od

es
Diagnosis (during compilation)

Repair
This error normally indicates a significant portability problem that should be
corrected by using a different type to save the pointer expression. In ANSI C the
type void * will always be large enough to hold a pointer value.

[badcast.c:9] **BAD_CAST**
Cast of pointer loses precision: (char) p

>> q = (char) p;

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.
198

Error C
odes
DELETE_MISMATCH

Inconsistent usage of delete
operator

Porting code between differing machine architectures can be difficult for many
reasons. A particularly tricky problem occurs when the sizes of data objects,
particularly pointers, differ from that for which the software was created. This
error occurs when a pointer is cast to a type with fewer bits, causing information
to be lost, and is designed to help in porting codes to architectures where, for
example, pointers and integers are of different lengths.

Note that compilers will often catch this problem unless the user has “carefully”
added the appropriate typecast to make the conversion “safe”.
199

Er
ro

r C
od

es
Problem
The following code shows a pointer being copied to a variable too small to hold
all its bits.

1: /*
2: * File: badcast.c
3: */
4: main()
5: {
6: char q, *p;
7:
8: p = "Testing";
9: q = (char)p;
10: }
200

Error C
odes
Diagnosis (during compilation)

Repair
This error normally indicates a significant portability problem that should be
corrected by using a different type to save the pointer expression. In ANSI C the
type void * will always be large enough to hold a pointer value.

[badcast.c:9] **BAD_CAST**
Cast of pointer loses precision: (char) p

>> q = (char) p;

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.
201

Er
ro

r C
od

es
EXPR_BAD_RANGE

Expression exceeded range

This error is generated whenever an expression uses a pointer that is outside its
legal range. In many circumstances, these pointers are then turned into legal
values before use (e.g., code generated by automated programming tools such as
lex and yacc), so this error category is suppressed by default. If used with their
illegal values, other Insight errors will be displayed which can be tracked to their
source by re-enabling this error class.

Problem
In this code, the pointer a initially points to a character string. It is subsequently
incremented beyond the end of the string. When the resulting pointer is used to
make an array reference, a range error is generated.

1: /*
2: * File: exprange.c
3: */
4: main()
5: {
6: char *a = "test";
7: char *b;
8:
9: a += 6;
10: b = &a[1];
11: return (0);
12: }
202

Error C
odes
Diagnosis (at runtime)

Repair
In most cases, this error is caused by incorrect logic in the code immediately prior
to that at which the message is generated. Probably the simplest method of
solution is to run the program under a debugger with a breakpoint at the indicated
location.

If you cannot find the error by examining the values of other variables at this
location, the program should be run again, stopped somewhere shortly before the
indicated line, and single-stepped until the problem occurs.

[exprange.c:10] **EXPR_BAD_RANGE**
>> b = &a[1];

Expression exceeded range: a[1]

Index used: 1
Pointer : 0x0000e226
In block : 0x0000e220 thru 0x0000e224 (5 bytes)

a, declared at exprange.c, 6

Stack trace where the error occurred:
main() exprange.c, 10

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Description of the memory block to which the out of range
pointer used to point, including the location at which it is
declared.

• Stack trace showing the function call sequence leading to
the error.
203

Er
ro

r C
od

es
EXPR_DANGLING

Expression uses dangling pointer

This error is generated whenever an expression operates on a dangling pointer -
i.e., one which points to either

• A block of dynamically allocated memory that has already
been freed.

• A block of memory which was allocated on the stack in
some routine that has subsequently returned.

Problem
The following code fragment shows a block of memory being allocated and then
freed. After the memory is de-allocated, the pointer to it is used again, even though
204

Error C
odes
it no longer points to valid memory.

1: /*
2: * File: expdangl.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char *a = (char *)malloc(10);
9: char b[10];
10:
11: free(a);
12: if(a > b)
13: a = b;
14: return (0);
15: }
205

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
A good first check is to see if the pointer used in the expression at the indicated
line is actually the one intended.

If it appears to be the correct pointer, check the line of code where the block was
freed (as shown in the error message) to see if it was freed incorrectly.

[expdangl.c:12] **EXPR_DANGLING**
>> if(a > b)

Expression uses dangling pointer: a > b

Pointer : 0x00013868
In block : 0x00013868 thru 0x00013871 (10 bytes)

block allocated at:
malloc() (interface)

main() expdangl.c, 8

stack trace where memory was freed:
main() expdangl.c, 11

Stack trace where the error occurred:
main() expdangl.c, 12

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Description of the memory block to which the pointer used
to point, including the location at which it was allocated
and subsequently freed.

• Stack trace showing the function call sequence leading to
the error.
206

Error C
odes
EXPR_NULL

Expression uses NULL pointer

This error is generated whenever an expression operates on the NULL pointer.

Problem
The following code fragment declares a pointer, a, which is initialized to zero by
virtue of being a global variable. It then manipulates this pointer, generating the
EXPR_NULL error.

1: /*
2: * File: expnull.c
3: */
4: char *a;
5:
6: main()
7: {
8: char *b;
9:
10: b = &a[1];
11: return (0);
12: }
207

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
One potential cause of this error is shown in this example. The pointer a is a global
variable that will be initialized to zero by the compiler. Since this variable is never
modified to point to anything else, it is still NULL when first used.

One way the given code can be corrected is by adding an assignment as follows

/*
* File: expnull.c (modified)
*/

char *a;
main()
{

char *b, c[10];
a = c;
b = &a[1];
return (0);

}

[expnull.c:10] **EXPR_NULL**
>> b = &a[1];

Expression uses null pointer: a[1]

Stack trace where the error occurred:
main() expnull.c, 10

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Stack trace showing the function call sequence leading to
the error.
208

Error C
odes
It could also be corrected by allocating a block of memory.

A second possibility is that the pointer was set to zero by the program at some
point before its subsequent use and not re-initialized. This is common in programs
which make heavy use of dynamically allocated memory and which mark freed
blocks by resetting their pointers to NULL.

A final common problem is caused when one of the dynamic memory allocation
routines, malloc, calloc, or realloc, fails and returns a NULL pointer. This
can happen either because your program passes bad arguments or simply because
it asks for too much memory. A simple way of finding this problem with Insight
is to enable the RETURN_FAILURE error code (see page 300) via your .psrc
file and run the program again. It will then issue diagnostic messages every time
a system call fails, including the memory allocation routines.
209

Er
ro

r C
od

es
EXPR_UNINIT_PTR

Expression uses uninitialized
pointer

This error is generated whenever an expression operates on an uninitialized
pointer.

Problem
The following code uses an uninitialized pointer.

1: /*
2: * File: expuptr.c
3: */
4: main()
5: {
6: char *a, b[10], c[10];
7:
8: if (a > b)
9: a = b;
10: return (0);
11: }
210

Error C
odes
Diagnosis (at runtime)

Repair
This error is normally caused by omitting an assignment statement for the
uninitialized variable. The example code can be corrected as follows:

1: /*
2: * File: expuptr.c (modified)
3: */
4: main()
5: {
6: char *a, b[10], c[10];
7:
8: a = c;
9: if (a > b)
10: a = b;
11: return (0);
12: }

[expuptr.c:8] **EXPR_UNINIT_PTR**
>> if (a > b)

Expression uses uninitialized pointer: a > b

Stack trace where the error occurred:
main() expuptr.c, 8

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Stack trace showing the function call sequence leading to
the error.
211

Er
ro

r C
od

es
EXPR_UNRELATED_PTRCMP

Expression compares unrelated
pointers

This error is generated whenever an expression tries to compare pointers that do
not point into the same memory block. This only applies to the operators >, >=,
<, and <=. The operators == and != are exempt from this case.

The ANSI C-language specification declares this construct undefined except in
the special case where a pointer points to an object one past the end of a block.
212

Error C
odes
Problem
The following code illustrates the problem by comparing pointers to two data
objects.

Note that the error in this code is not that the two objects a and b are of different
data types (array vs. dynamic memory block), but that the comparison in line 12
attempts to compare pointers which do not point into the same memory block.
According to the ANSI specification, this is an undefined operation.

1: /*
2: * File: expucmp.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char a[10], *b;
9:
10: b = (char *)malloc(10);
11:
12: if(a > b) a[0] = 'x';
13: else a[0] = 'y';
14: return (0);
15: }
213

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
While this construct is technically undefined according to the ANSI C
specification, it is supported on many machines and its use is fairly common

[expucmp.c:12] **EXPR_UNRELATED_PTRCMP**
>> if(a > b) a[0] = 'x';

Expression compares unrelated pointers: a > b

Left hand side : 0xf7fffb8c
In block : 0xf7fffb8c thru 0xf7fffb95 (10 bytes)

a, declared at expucmp.c, 8

Right hand side: 0x00013870
In block : 0x00013870 thru 0x00013879 (10 bytes)

block allocated at:
malloc() (interface)

main() expucmp.c, 10

Stack trace where the error occurred:
main() expucmp.c, 12

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Description of the two pointers involved in the comparison.
For each pointer, the associated block of memory is shown
together with its size and the line number at which it was
declared or allocated.

• Stack trace showing the function call sequence leading to
the error.
214

Error C
odes
practice. If your application genuinely needs to use this construct, you can
suppress error messages by adding the option

insure++.suppress EXPR_UNRELATED_PTRCMP

to your .psrc file.
215

Er
ro

r C
od

es
EXPR_UNRELATED_PTRDIFF

Expression subtracts unrelated
pointers

This error is generated whenever an expression tries to compute the difference
between pointers that do not point into the same memory block.

The ANSI C language specification declares this construct undefined except in the
special case where a pointer points to an object one past the end of a block.

Problem
The following code illustrates the problem by subtracting two pointers to different
data objects.

1: /*
2: * File: expudiff.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char a[10], *b;
9: int d;
10:
11: b = (char *)malloc(10);
12: d = b - a;
13: return (0);
14: }
216

Error C
odes
Diagnosis (at runtime)

Repair
While this construct is undefined according to the ANSI C language specification,
it is supported on many machines and its use is fairly common practice. If your

[expudiff.c:12] **EXPR_UNRELATED_PTRDIFF**
>> d = b - a;

Expression subtracts unrelated pointers: b - a

Left hand side : 0x00013878
In block : 0x00013878 thru 0x00013881 (10 bytes)

b, allocated at:
malloc() (interface)
main() expudiff.c, 11

Right hand side: 0xf7fffb8c
In block : 0xf7fffb8c thru 0xf7fffb95 (10 bytes)

a, declared at expudiff.c, 8

Stack trace where the error occurred:
main() expudiff.c, 12

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Description of the two pointers involved in the expression.
For each pointer the associated block of memory is shown
together with its size and the line number at which it was
declared or allocated.

• Stack trace showing the function call sequence leading to
the error.
217

Er
ro

r C
od

es
application genuinely needs to use this construct, you can suppress error messages
by adding the option

insure++.suppress EXPR_UNRELATED_PTRDIFF

to your .psrc file.
218

Error C
odes
FREE_BODY

Freeing memory block from body

This error is generated when an attempt is made to de-allocate memory by using
a pointer which currently points into the middle of a block, rather than to its
beginning.

Problem
The following code attempts to free a memory region using an invalid pointer.

1: /*
2: * File: freebody.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char *a = (char *)malloc(10);
9: free(a+1);
10: }
219

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
This is normally a serious error. In most cases, the line number indicated in the
diagnostics will have a simple error that can be corrected.

[freebody.c:9] **FREE_BODY**
>> free(a+1);

Freeing memory block from body: a + 1

Pointer : 0x000173e9
Stack trace where the error occurred:

main() freebody.c, 9

Memory corrupted. Program may crash!!

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Value of the pointer that is being deallocated.

• Stack trace showing the function call sequence leading to
the error.

• Informational message indicating that a serious error has
occurred which may cause the program to crash.
220

Error C
odes
FREE_DANGLING

Freeing dangling pointer

This error is generated when a memory block is freed multiple Times New
Roman.

Problem
The following code frees the same pointer twice.

1: /*
2: * File: freedngl.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char *a = (char *)malloc(10);
9: free(a);
10: free(a);
11: return (0);
12: }
221

Er
ro

r C
od

es
Diagnosis (at runtime)
[freedngl.c:10] **FREE_DANGLING**
>> free(a);

Freeing dangling pointer: a

Pointer : 0x000173e0
In block : 0x000173e0 thru 0x000173e9 (10 bytes)

block allocated at:
malloc() (interface)

main() freedngl.c, 8

stack trace where memory was freed:
main() freedngl.c, 9

Stack trace where the error occurred:
main() freedngl.c, 10

Memory corrupted. Program may crash!!

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Value of the pointer that is being deallocated.

• Information about the block of memory addressed by this
pointer, including information about where this block was
allocated.

• Stack trace showing where this block was freed.

• Stack trace showing the function call sequence leading to
the error.

• Informational message indicating that a serious error has
occurred which may cause the program to crash.
222

Error C
odes
Repair
Some systems allow memory blocks to be freed multiple Times New Roman.
However, this is not portable and is not a recommended practice.

The information supplied in the diagnostics will allow you to see the line of code
which previously de-allocated this block of memory. You should attempt to
remove one of the two calls.

If your application is unable to prevent multiple calls to deallocate the same block,
you can suppress error messages by adding the option

insure++.suppress FREE_DANGLING

to your .psrc file.
223

Er
ro

r C
od

es
FREE_GLOBAL

Freeing global memory

This error is generated if the address of a global variable is passed to a routine that
de-allocates memory.

Problem
The following code attempts to deallocate a global variable that was not
dynamically allocated.

1: /*
2: * File: freeglob.c
3: */
4: char a[10];
5:
6: main()
7: {
8: free(a);
9: return (0);
10: }
224

Error C
odes
Diagnosis (at runtime)

Repair
Some systems allow this operation, since they keep track of which blocks of
memory are actually dynamically allocated, but this is not portable programming
practice and is not recommended.

[freeglob.c:8] **FREE_GLOBAL**
>> free(a);

Freeing global memory: a

Pointer : 0x00012210
In block : 0x00012210 thru 0x00012217 (8 bytes)

a,declared at freeglob.c, 4

Stack trace where the error occurred:
main() freeglob.c, 8

Memory corrupted. Program may crash!!

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Value of the pointer that is being deallocated.

• Information about the block of memory addressed by this
pointer, including information about where this block was
declared.

• Stack trace showing the function call sequence leading to
the error.

• Informational message indicating that a serious error has
occurred which may cause the program to crash.
225

Er
ro

r C
od

es
In some cases, this error will result from a simple coding mistake at the indicated
source line which can be quickly corrected.

A more complex problem may arise when a program uses both statically and
dynamically allocated blocks in the same way. A common example is a linked list
in which the head of the list is static, while the other entries are allocated
dynamically. In this case, you must take care not to free the static list head when
removing entries.

If your application is unable to distinguish between global and dynamically
allocated memory blocks, you can suppress error messages by adding the option

insure++.suppress FREE_GLOBAL

to your .psrc file.
226

Error C
odes
FREE_LOCAL

Freeing local memory

This error is generated if the address of a local variable is passed to free.

Problem
The following code attempts to free a local variable that was not dynamically
allocated.

1: /*
2: * File: freelocl.c
3: */
4: main()
5: {
6: char b, *a;
7:
8: a = &b;
9: free(a);
10: return (0);
11: }
227

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
Some systems allow this operation since they keep track of which blocks of
memory are actually dynamically allocated, but this is not portable programming
practice and is not recommended.

[freelocl.c:9] **FREE_LOCAL**
>> free(a);

Freeing local memory: a

Pointer : 0xf7fffb0f
In block : 0xf7fffb0f thru 0xf7fffb0f (1 byte)

b,declared at freelocl.c, 6

Stack trace where the error occurred:
main() freelocl.c, 9

Memory corrupted. Program may crash!!

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Value of the pointer that is being deallocated.

• Information about the block of memory addressed by this
pointer, including information about where this block was
declared.

• Stack trace showing the function call sequence leading to
the error.

• Informational message indicating that a serious error has
occurred which may cause the program to crash.
228

Error C
odes
In most cases, this error will result from a simple coding mistake at the indicated
source line which can be quickly corrected.

If your application is unable to distinguish between local variables and
dynamically allocated memory blocks, you can suppress error messages by adding
the option

insure++.suppress FREE_LOCAL

to your .psrc file.
229

Er
ro

r C
od

es
FREE_NULL

Freeing NULL pointer

This error is generated whenever an attempt is made to de-allocate memory using
the NULL pointer.

Problem
This code attempts to free the pointer a, which has never been assigned. Since this
is a global variable, it is initialized to zero by default. This results in the code
attempting to free a NULL pointer.

1: /*
2: * File: freenull.c
3: */
4: char *a;
5:
6: main()
7: {
8: free(a);
9: return (0);
10: }
230

Error C
odes
Diagnosis (at runtime)

Repair
Some systems allow this operation, but this is not portable programming practice
and is not recommended.

A potential cause of this error is the one shown in the example - a pointer that
never got explicitly initialized before being used. The given example can be
corrected by adding an allocation as follows

/*
* File: freenull.c (modified)
*/

#include <stdlib.h>
char *a;

[freenull.c:8] **FREE_NULL**
>> free(a);

Freeing null pointer: a

Stack trace where the error occurred:
main() freenull.c, 8

Memory corrupted. Program may crash!!

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Stack trace showing the function call sequence leading to
the error.

• Informational message indicating that a serious error has
occurred which may cause the program to crash.
231

Er
ro

r C
od

es
main()
{

a = (char *)malloc(100);
free(a);
return (0);

}

A second fairly common possibility is that a block of dynamically allocated
memory associated with the pointer has already been freed, and its pointer reset to
NULL. In this case, the error could mean that a second attempt is being made to
free the same memory block.

A final common problem is caused when one of the dynamic memory allocation
routines, malloc, calloc, or realloc, fails and returns a NULL pointer. This
can happen either because your program passes bad arguments, or simply because
it asks for too much memory. A simple way of finding this problem with Insight
is to enable the RETURN_FAILURE error code (see page 300) via your
.insight file and run the program again. It will then issue diagnostic messages
every time a system call fails, including the memory allocation routines.

If your application needs to free NULL pointers, you can suppress these error
messages by adding the option

insure++.suppress FREE_NULL

to your .psrc file.
232

Error C
odes
FREE_UNINIT_PTR

Freeing uninitialized pointer

This error is generated whenever an attempt is made to de-allocate memory by
means of an uninitialized pointer.

Problem
This code attempts to free a pointer which has not been initialized.

1: /*
2: * File: freeuptr.c
3: */
4: main()
5 {
6: char *a;
7: free(a);
8: return (0);
9: }
233

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
Some systems appear to allow this operation, since they will refuse to free
memory that was not dynamically allocated. Relying on this behavior is very
dangerous, however, since an uninitialized pointer may “accidentally” point to a
block of memory that was dynamically allocated, but should not be freed.

[freeuptr.c:7] **FREE_UNINIT_PTR**
>> free(a);

Freeing uninitialized pointer: a

Stack trace where the error occurred:
main() freeuptr.c, 7

Memory corrupted. Program may crash!!

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Stack trace showing the function call sequence leading to
the error.

• Informational message indicating that a serious error has
occurred which may cause the program to crash.
234

Error C
odes
FUNC_BAD

Function pointer is not a function

This error is generated when an attempt is made to call a function through an
invalid function pointer.

Problem
One simple way to generate this error is through the use of the union data type.
If the union contains a function pointer which is invoked after initializing some
other union member, this error can occur.

1: /*
2: * File: funcbad.c
3: */
4: union {
5: int *iptr;
6: int (*fptr)();
7: } u;
8:
9: main()
10: {
11: int i;
12:
13: u.iptr = &i;
14: u.fptr();
15: return (0);
16: }
235

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
The description of the memory block to which the pointer points should enable
you to identify the statement which was used to assign the function pointer
incorrectly.

[funcbad.c:14] **FUNC_BAD**
>> u.fptr();

Function pointer is not a function: u.fptr

Pointer : 0xf7fff8cc
In block : 0xf7fff8cc thru 0xf7fff8cf

(4 bytes,1 element)
i, declared at funcbad.c, 11

Stack trace where the error occurred:
main() funcbad.c, 14

Memory corrupted. Program may crash!!

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• The value of the pointer through which the call is being
attempted.

• Description of the memory block to which this pointer
actually points, including its size and the source line of its
declaration.

• Stack trace showing the function call sequence leading to
the error.

• Informational message indicating that a serious error has
occurred which may cause the program to crash.
236

Error C
odes
FUNC_NULL

Function pointer is NULL

This error is generated when a function call is made via a NULL function pointer.

Problem
This code attempts to call a function through a pointer that has never been
explicitly initialized. Since the pointer is a global variable, it is initialized to zero
by default, resulting in the attempt to call a NULL pointer.

1: /*
2: * File: funcnull.c
3: */
4: void (*a)();
5:
6: main()
7: {
8: a();
9: return (0);
10: }
237

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
The most common way to generate this problem is the one shown here, in which
the pointer never got explicitly initialized and is set to zero. This case normally
requires the addition of an assignment statement prior to the call as shown below

/*
* File: funcnull.c (modified)
*/

void (*a)();
extern void myfunc();

main()

[funcnull.c:8] **FUNC_NULL**
>> a();

Function pointer is null: a

Stack trace where the error occurred:
main() funcnull.c, 8

Memory corrupted. Program may crash!!

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Stack trace showing the function call sequence leading to
the error.

• Informational message indicating that a serious error has
occurred which may cause the program to crash.
238

Error C
odes
{
a = myfunc;
a();
return (0);

}

A second fairly common programming practice is to terminate arrays of function
pointers with NULL entries. Code that scans a list looking for a particular function
may end up calling the NULL pointer if its search criterion fails. This normally
indicates that protective programming logic should be added to prevent against
this case.
239

Er
ro

r C
od

es
FUNC_UNINIT_PTR

Function pointer is uninitialized

This error is generated when a call is made through an uninitialized function
pointer.

Problem
This code attempts to call a function through a pointer that has not been set.

1: /*
2: * File: funcuptr.c
3: */
4: main()
5: {
6: void (*a)();
7:
8: a();
9: return (0);
10: }
240

Error C
odes
Diagnosis (at runtime)

Repair
This problem normally occurs because some assignment statement has been
omitted from the code. The current example can be fixed as follows

extern void myfunc();

main()
{

void (*a)();
a = myfunc;
a();

}

[funcuptr.c:8] **FUNC_UNINIT_PTR**
>> a();

Function pointer is uninitialized: a

Stack trace where the error occurred:
main() funcuptr.c, 8

Memory corrupted. Program may crash!!

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Stack trace showing the function call sequence leading to
the error.

• Informational message indicating that a serious error has
occurred which may cause the program to crash.
241

Er
ro

r C
od

es
HEAP_CORRUPT

The heap is corrupt

This error is generated when Insight detects that the heap has been corrupted.
These messages can only be generated if the malloc_replace option is on.

Typically, Insight will identify a serious problem before it corrupts the heap. If
the corruption occurs in code which was not compiled with Insight, however, it
may not be found for a while. Hopefully, you will discover that the problem is in
a file for which you have source code. If this is the case, you can recompile that
file with Insight and continue debugging.

Problem
One simple way to generate this error is to corrupt memory in a routine not
compiled with Insight.

Compile the program with your normal compiler and link it with Insight, e.g.

gcc -g -c heapbad.c
insight -g -o heapbad heapbad.o
242

Error C
odes
./heapbad

1: /*
2: * heapbad.c
3: */
4: #include <malloc.h>
5:
6: main() {
7: int i;
8: char *c = (char *) malloc(10);
9:
10: for (i = 10; i < 20; i++)
11: c[i] = ’a’;
12: free(c);
13: }
243

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
Since the above message seemed to occur in the file heapbad.c, which was not

[malloc.c:1151] **HEAP_CORRUPT**

Pointers between this and adjoining blocks are invalid.

Corrupt block : 0x00049928 thru 0x00049ab8 (401 bytes)

The chain was last validated at the following stack trace:
malloc() malloc.c, 532

_Insight_alloc_stack()
_Insight_assignb()

_Insight_direct_malloc()
malloc() malloc.c, 670
main() heapbad.c, 8

Bus error (core dumped)

• Source line at which the problem was detected.

• Description of the problem - this may or may not be
particularly useful.

• A description of the block at which the error was detected.
This block may or may not be the cause of the error.

• Stack trace showing the last time the heap was checked and
found to be okay.

• Core dumps typically follow these messages, as any usage
of the dynamic memory functions will be unable to cope.
244

Error C
odes
processed with Insight, the simplest thing to do is process this file with Insight.

insight -g -o heapbad heapbad.c

 In this case, the bug is quickly identified as a WRITE_BAD_INDEX, and can be
repaired accordingly.
245

Er
ro

r C
od

es
INSIGHT_ERROR

Internal errors (various)

This error code is reserved for fatal errors that Insight is unable to deal with
adequately such as running out of memory, or failing to open a required file.

Unrecognized options in .psrc files can also generate this error.
246

Error C
odes
INSIGHT_WARNING

Errors from iic_warning calls

This error code is generated when Insight encounters a call to the iic_warning
interface function.

Example
The following code contains a call to a function called archaic_function
whose use is to be discouraged.

1: /*
2: * File: warn.c
3: */
4: #include <stdio.h>
5:
6: main()
7: {
8: archaic_function();
9: exit(0);
10: }
247

Er
ro

r C
od

es
In order to use the iic_warning capability, we can make an interface to the
archaic_function as follows.

Diagnosis (during compilation)

1: /*
2: * File: warn_i.c
3: */
4: void archaic_function(void)
5: {
6: iic_warning(
7: "This function is obsolete");
8: archaic_function();
9: }

[warn.c:8] **INSIGHT_WARNING**
Use of archaic_function is deprecated.

>> archaic_function();

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.
248

Error C
odes
Repair
This error category is suppressed by default, so you must add the option

insure++.unsuppress INSIGHT_WARNING

to your .psrc file before compiling code which uses it.

There are many uses for iic_warning and the INSIGHT_WARNING error, so
no specific suggestions for error correction are appropriate. Hopefully, the
messages displayed by the system will provide sufficient assistance.
249

Er
ro

r C
od

es
LEAK_ASSIGN

Memory leaked due to pointer
reassignment

This error is generated whenever a pointer assignment occurs which will prevent
a block of dynamically allocated memory from ever being freed. Normally this
happens because the pointer being changed is the only one that still points to the
dynamically allocated block.

Problem
This code allocates a block of memory, but then reassigns the pointer to the block
to a static memory block. As a result, the dynamically allocated block can no
longer be freed.

1: /*
2: * File: leakasgn.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char *b, a[10];
9:
10: b = (char *)malloc(10);
11: b = a;
12: return (0);
13: }
250

Error C
odes
Diagnosis (at runtime)

Repair
In many cases, this problem is caused by simply forgetting to free a previously
allocated block of memory when a pointer is reassigned. For example, the leak in
the example code can be corrected as follows

10: b = (char *)malloc(10);
11: free(b);
12: b = a;

[leakasgn.c:11] **LEAK_ASSIGN**
>> b = a;

Memory leaked due to pointer reassignment: <return>

Lost block: 0x000173e8 thru 0x000173f1 (10 bytes)
block allocated at:
malloc() (interface)
main() leakasgn.c, 10

Stack trace where the error occurred:
main() leakasgn.c, 11

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Description of the block of memory that is about to be lost,
including its size and the line number at which it was
allocated.

• Stack trace showing the function call sequence leading to
the error.
251

Er
ro

r C
od

es
Some applications may be unable to free memory blocks and may not need to
worry about their permanent loss. To suppress these error messages, add the
option

insure++.suppress LEAK_ASSIGN

to your .psrc file.
252

Error C
odes
LEAK_FREE

Memory leaked freeing block

This problem can occur when a block of memory contains a pointer to another
dynamically allocated block, as indicated in the following figure.

If the main memory block is freed its memory becomes invalid, which means that
the included pointer can no longer be used to free the second block. This causes a
permanent memory leak.

Parent block

Parent block
253

Er
ro

r C
od

es
Problem
This code defines PB to be a data structure that contains a pointer to another block
of memory.

We first create a single PB and then allocate a block of memory for it to point to.
The call to free on the PB then causes a permanent memory leak, since it frees
the memory containing the only pointer to the second allocated block. This latter
block can no longer be freed.

1: /*
2: * File: leakfree.c
3: */
4: #include <stdlib.h>
5:
6: typedef struct ptrblock {
7: char *ptr;
8: } PB;
9:
10: main()
11: {
12: PB *p;
13:
14: p = (PB *)malloc(sizeof(*p));
15: p->ptr = malloc(10);
16:
17: free(p);
18: return (0);
19: }
254

Error C
odes
Diagnosis (at runtime)

Repair
In many cases, this problem is caused by forgetting to free the enclosed blocks
when freeing their container. This can be corrected by adding a suitable call to free
the memory before freeing the parent block.

[leakfree.c:17] **LEAK_FREE**
>> free(p);

Memory leaked freeing block: <return>

Lost block: 0x00013888 thru 0x00013891 (10 bytes)
block allocated at:
malloc() (interface)
main() leakfree.c, 15

Stack trace where the error occurred:
main() leakfree.c, 17

• Source line at which the problem was detected.

• Description of the problem and the value that is about to be
lost.

• Description of the block of memory that is about to be lost,
including its size and the line number at which it was
allocated.

• Stack trace showing the function call sequence leading to
the error.
255

Er
ro

r C
od

es
Caution must be used when doing this, however, to ensure that the memory blocks
are freed in the correct order. Changing the example in the following manner, for
example, would still generate the same error:

free(p);
free(p->ptr);

because the blocks are freed in the wrong order. The contained blocks must be
freed before their parents, because the memory becomes invalid as soon as it is
freed. Thus, the second call to free in the above code fragment might fail,
because the value p->ptr is no longer valid. It is quite legal, for example, for the
first call to free to have set to zero or otherwise destroyed the contents of its
memory block.1

Some applications may be unable to free memory blocks and may not need to
worry about their permanent loss. To suppress these error messages in this case
add the option

insure++.suppress LEAK_FREE

to your .psrc file.

1. Many systems allow the out of order behavior, although it is becoming less
portable as more and more systems move to dynamically re-allocated
(moveable) memory blocks.
256

Error C
odes
LEAK_RETURN

Memory leaked by ignoring
returned value

This error is generated whenever a function returns a pointer to a block of memory
which is then ignored by the calling routine. In this case, the allocated memory
block is permanently lost and can never be freed.

Problem
This code calls the function gimme, which returns a memory block that is
subsequently ignored by the main routine.

1: /*
2: * File: leakret.c
3: */
4: #include <stdlib.h>
5:
6: char *gimme()
7: {
8: return malloc(10);
9: }
10:
11: main()
12: {
13: gimme();
14: return (0);
15: }
257

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
This problem usually results from an oversight on the part of the programmer, or
a misunderstanding of the nature of the pointer returned by a routine. In particular,
it is someTimes New Roman unclear whether the value returned points to a static
block of memory, which will not need to be freed, or a dynamically allocated one,
which should be.

[leakret.c:8] **LEAK_RETURN**
>> gimme();

Memory leaked ignoring return value: <return>

Lost block: 0x000173e8 thru 0x000173f1 (10 bytes)
block allocated at:
malloc() (interface)
gimme() leakret.c, 8
main() leakret.c, 13

Stack trace where the error occurred:
main() leakret.c, 13

• Source line at which the problem was detected.

• Description of the problem and the block that is to be lost.

• Description of the block of memory that is about to be lost,
including its size and the line number at which it was
allocated.
258

Error C
odes
Some applications may be unable to free memory blocks and may not need to
worry about their permanent loss. To suppress these error messages in this case
add the option

insure++.suppress LEAK_RETURN

to your .psrc file.
259

Er
ro

r C
od

es
LEAK_SCOPE

Memory leaked leaving scope

This error is generated whenever a function allocates memory for its own use and
then returns without freeing it or saving a pointer to the block in an external
variable. The allocated block can never be freed.

Problem
This code calls the function gimme, which allocates a memory block that is never
freed.

1: /*
2: * File: leakscop.c
3: */
4: #include <stdlib.h>
5:
6: void gimme()
7: {
8: char *p;
9: p = malloc(10);
10: return;
11: }
12:
13: main()
14: {
15: gimme();
16: return (0);
17: }
260

Error C
odes
Diagnosis (at runtime)

Repair
This problem usually results from an oversight on the part of the programmer and
is cured by simply freeing a block before returning from a routine. In the current
example, a call to free(p) before line 10 would cure the problem.

A particularly easy way to generate this error is to return from the middle of a
routine, possibly due to an error condition arising, without freeing previously
allocated data. This bug is easy to introduce when modifying existing code.

[leakscop.c:10] **LEAK_SCOPE**
>> return;

Memory leaked leaving scope: <return>

Lost block: 0x0003870 thru 0x00013879 (10 bytes)
block allocated at:
malloc() (interface)
gimme() leakscop.c, 9
main() leakscop.c, 15

Stack trace where the error occurred:
gimme() leakscop.c, 10
main() leakscop.c, 15

• Source line at which the problem was detected.

• Description of the problem and the block that is to be lost.

• Description of the block of memory that is about to be lost,
including its size and the line number at which it was
allocated.

• Stack trace showing the function call sequence leading to
the error.
261

Er
ro

r C
od

es
Some applications may be unable to free memory blocks and may not need to
worry about their permanent loss. To suppress these error messages in this case
add the option

insure++.suppress LEAK_SCOPE

to your .psrc file.
262

Error C
odes
PARM_BAD_RANGE

Array parameter exceeded range

This error is generated whenever a function parameter is declared as an array, but
has more elements than the actual argument which was passed.

Problem
The following code fragment shows an array declared with one size in the main
routine and then used with another in a function.

1: /*
2: * File: parmrnge.c
3: */
4: int foo(a)
5: int a[10];
6: {
7: return a[5];
8: }
9:
10: int b[5];
11:
12: main()
13: {
14: int a;
15: a = foo(b);
16: return (0);
17: }
263

Er
ro

r C
od

es
Diagnosis (at runtime)
[parmrnge.c:6] **PARM_BAD_RANGE**
>> {

Array parameter exceeded range: a

bbbbbb
| 20 | 20 |
ppppppppppp

Parameter (p) 0xf7fffb04 thru 0xf7fffb2b (40 bytes)
Actual block (b) 0xf7fffb04 thru 0xf7fffb17

(20 bytes, 5 elements)
b, declared at parmrnge.c, 10

Stack trace where the error occurred:
foo() parmrnge.c, 6
main() parmrnge.c, 15

• Source line at which the problem was detected.

• Description of the problem and the name of the parameter
that is in error.

• Schematic showing the relative layout of the memory block
which was actually passed as the argument (b) and
expected parameter (p). (See “Overflow diagrams” on
page 155.)

• Description of the memory range occupied by the
parameter, including its length.

• Description of the actual block of data corresponding to the
argument, including its address range and size. Also
includes the name of the real variable which matches the
argument and the line number at which it was declared.

• Stack trace showing the function call sequence leading to
the error.
264

Error C
odes
Repair
This error is normally straightforward to correct based on the information
presented in the diagnostic output.

The simplest solution is to change the definition of the array in the called routine
to indicate an array of unknown size, i.e., replace line 5 with

parmrnge.c, 5 int a[];

This declaration will match any array argument and is the recommended approach
whenever the called routine will accept arrays of variable size.

An alternative is to change the declaration of the array in the calling routine to
match that expected. In this case, line 10 could be changed to

parmrnge.c, 10 int b[10];

which now matches the argument declaration.
265

Er
ro

r C
od

es
PARM_DANGLING

Array parameter is dangling
pointer

This error is generated whenever a parameter declared as an array is actually
passed a pointer to a block of memory that has been freed.

Problem
The following code frees its memory block before passing it to foo.

1: /*
2: * File: parmdngl.c
3: */
4: #include <stdlib.h>
5:
6: char foo(a)
7: char a[10];
8: {
9: return a[0];
10: }
11:
12: main()
13: {
14: char *a;
15: a = malloc(10);
16: free(a);
17: foo(a);
18: return (0);
19: }
266

Error C
odes
Diagnosis (at runtime)

Repair
This error is normally caused by freeing a piece of memory too soon.

[parmdngl.c:8] **PARM_DANGLING**
>> {

Array parameter is dangling pointer: a

Pointer : 0x0001adb0
In block : 0x0001adb0 thru 0x0001adb9 (10 bytes)

block allocated at:
malloc() (interface)
main() parmdngl.c, 15

stack trace where memory was freed:
main() parmdngl.c, 16

Stack trace where the error occurred:
foo() parmdngl.c, 8
main() freedngl.c,17

• Source line at which the problem was detected.

• Description of the problem and the parameter that is in
error.

• Value of the pointer that was passed and has been
deallocated.

• Information about the block of memory addressed by this
pointer, including information about where this block was
allocated.

• Indication of the line at which this block was freed.

• Stack trace showing the function call sequence leading to
the error.
267

Er
ro

r C
od

es
A good strategy is to examine the line of code indicated by the diagnostic message
which shows where the memory block was freed and check that it should indeed
have been de-allocated.

A second check is to verify that the correct parameter was passed to the
subroutine.

A third strategy which is someTimes New Roman useful is to NULL pointers that
have been freed and then check in the called subroutine for this case. Code similar
to the following is often useful

#include <stdlib.h>

char foo(a)
char *a;

{
if(a) return a[0];
return '!';

}

main()
{

char *a;
a = (char *)malloc(10);
free(a);
a = NULL;
foo(a);
return (0);

}

The combination of resetting the pointer to NULL after freeing it and the check in
the called subroutine prevents misuse of dangling pointers.
268

Error C
odes
PARM_NULL

Array parameter is NULL

This error is generated whenever a parameter declared as an array is actually
passed a NULL pointer.

Problem
The following code fragment shows a function which is declared as having an
array parameter, but which is invoked with a NULL pointer. The value of array
is NULL because it is a global variable, initialized to zero by default.

1: /*
2: * File: parmnull.c
3: */
4: int foo(a)
5: int a[];
6: {
7: return 12;
8: }
9:
10: int *array;
11:
12: main()
13: {
14: foo(array);
15: return (0);
16: }
269

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
A common cause of this error is the one given in this example, a global pointer
which is initialized to zero by the compiler and then never reassigned. The
correction for this case is to include code to initialize the pointer, possibly by
allocating dynamic memory or by assigning it to some other array object.

For example, we could change the main routine of the example to

main()
{

int local[10];

array = local;
foo(array);

}

[parmnull:6] **PARM_NULL**
>> {

Array parameter is null: a

Stack trace where the error occurred:
foo() parmnull.c, 6
main() parmnull.c, 14

• Source line at which the problem was detected.

• Description of the problem and the name of the parameter
that is in error.

• Stack trace showing the function call sequence leading to
the error.
270

Error C
odes
This problem can also occur when a pointer is set to NULL by the code (perhaps
to indicate a freed block of memory) and then passed to a routine that expects an
array as an argument.

In this case, Insight distinguishes between functions whose arguments are
declared as arrays

int foo(a)
int a[];

{

and those with pointer arguments

int foo(a)
int *a;

{

The latter type will not generate an error if passed a NULL argument, while the
former will.

A final common problem is caused when one of the dynamic memory allocation
routines, malloc, calloc, or realloc, fails and returns a NULL pointer. This
can happen either because your program passes bad arguments or simply because
it asks for too much memory. A simple way of finding this problem with Insight
is to enable the RETURN_FAILURE error code (see page 300) via your
.insight file and run the program again. It will then issue diagnostic messages
every time a system call fails, including the memory allocation routines.

If your application cannot avoid passing a NULL pointer to a routine, you should
either change the declaration of its argument to the second style or suppress these
error messages by adding the option

insure++.suppress PARM_NULL

to your .psrc file.
271

Er
ro

r C
od

es
PARM_UNINIT_PTR

Array parameter is uninitialized
pointer

This error is generated whenever an uninitialized pointer is passed as an argument
to a function which expects an array parameter.

Problem
This code passes the uninitialized pointer a to routine foo.

1: /*
2: * File: parmuptr.c
3: */
4: char foo(a)
5: char a[10];
6: {
7: return a[0];
8: }
9:
10: main()
11: {
12: char *a;
13:
14: foo(a);
15: return (0);
16: }
272

Error C
odes
Diagnosis (at runtime)

Repair
This problem is usually caused by omitting an assignment or allocation statement
that would initialize a pointer. The code given, for example, could be corrected by
including an assignment as shown below.

/*
* File: parmuptr.c (Modified)
*/

...
main()
{

char *a, b[10];
a = b;
foo(a);

}

[parmuptr.c:6] **PARM_UNINIT_PTR**
>> {

Array parameter is uninitialized pointer: a

Stack trace where the error occurred:
foo() parmuptr.c, 6
main() parmuptr.c, 14

• Source line at which the problem was detected.

• Description of the problem and the argument that is in
error.

• Stack trace showing the function call sequence leading to
the error
273

Er
ro

r C
od

es
READ_BAD_INDEX

Reading array out of range

This error is generated whenever an illegal value will be used to index an array. It
is a particularly common error that can be very difficult to detect, especially if the
out-of-range elements happen to have zero values.

If this error can be detected during compilation, an error will be issued instead of
the normal runtime error.

Problem
This code attempts to access an illegal array element due to an incorrect loop
range.

1: /*
2: * File: readindx.c
3: */
4: int a[10];
5: int junk;
6: main()
7: {
8: int i, tot=0;
9:
10: for(i=1; i<=10; i++)
11: tot += a[i];
12: return (0);
13: }
274

Error C
odes
Diagnosis (at runtime)

Repair
One common source of this error is using “stretchy” arrays without telling Insight
about them. A “stretchy” array is an array whose size is only determined at
runtime. For an example as well as an explanation of how to use Insight with
“stretchy” arrays, see page 41.

[readindx.c:11] **READ_BAD_INDEX**
>> tot += a[i];

Reading array out of range: a[i]

Index used: 10

Valid range: 0 thru 9 (inclusive)

Stack trace where the error occurred:
main() readindx.c, 11

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Illegal index value used.

• Valid index range for this array.

• Stack trace showing the function call sequence leading to
the error.
275

Er
ro

r C
od

es
Other typical sources of this error include loops with incorrect initial or terminal
conditions, as in this example, for which the corrected code is:

main()
{

int i, tot=0, a[10];

for(i=0; i<sizeof(a)/sizeof(a[0]); i++)
tot += a[i];

return (0);
}

276

Error C
odes
READ_DANGLING

Reading from a dangling pointer

This problem occurs when an attempt is made to dereference a pointer that points
to a block of memory that has been freed.

Problem
This code attempts to use a piece of dynamically allocated memory after it has
already been freed.

1: /*
2: * File: readdngl.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char b;
9: char *a = (char *)malloc(10);
10:
11: free(a);
12: b = *a;
13: return (0);
14: }
277

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
Check that the de-allocation that occurs at the indicated location should, indeed,
have taken place. Also check that the pointer you are using should really be
pointing to a block allocated at the indicated place.

[readdngl.c:12] **READ_DANGLING**
>> b = *a;

Reading from a dangling pointer: a

Pointer: 0x000173e8
In block: 0x000173e8 thru 0x000173f1 (10 bytes)

block allocated at:
malloc() (interface)
main() readdngl.c, 9

stack trace where memory was freed:
main() readdngl.c, 11

Stack trace where the error occurred:
main() readdngl.c, 12

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Value of the dangling pointer variable.

• Description of the block to which this pointer used to point,
including its size, name and the line at which it was
allocated.

• Stack trace showing where this block was freed.

• Stack trace showing the function call sequence leading to
the error.
278

Error C
odes
READ_NULL

Reading NULL pointer

This error is generated whenever an attempt is made to dereference a NULL
pointer.

Problem
This code attempts to use a pointer which has not been explicitly initialized. Since
the variable a is global, it is initialized to zero by default, which results in
dereferencing a NULL pointer in line 10.

1: /*
2: * File: readnull.c
3: */
4: int *a;
5:
6: main()
7: {
8: int b, c;
9:
10: b = *a;
11: }
279

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
A common cause of this problem is the one shown in the example - use of a pointer
that has not been assigned and which is initialized to zero. This is usually due to
the omission of an assignment or allocation statement which would give the
pointer a reasonable value.

The example code might, for example, be corrected as follows

1: /*
2: * File: readnull.c (modified)
3: */
4: int *a;

[readnull.c:10] **READ_NULL**
>> b = *a;

Reading null pointer: a

Stack trace where the error occurred:
main() readnull.c, 10

Memory corrupted. Program may crash!!

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Stack trace showing the function call sequence leading to
the error.

• Informational message indicating that a serious error has
occurred which may cause the program to crash.
280

Error C
odes
5:
6: main()
7: {
8: int b, c;
9:
10: a = &c;
11: b = *a;
12: }

A second common source of this error is code which dynamically allocates
memory, but then zeroes pointers as blocks are freed. In this case, the error would
indicate reuse of a freed block.

A final common problem is caused when one of the dynamic memory allocation
routines, malloc, calloc, or realloc, fails and returns a NULL pointer. This
can happen either because your program passes bad arguments or simply because
it asks for too much memory. A simple way of finding this problem with Insight
is to enable the RETURN_FAILURE error code (see page 300) via your .psrc
file and run the program again. It will then issue diagnostic messages every time
a system call fails, including the memory allocation routines.
281

Er
ro

r C
od

es
READ_OVERFLOW

Reading overflows memory

This error is generated whenever a read operation would access a piece of memory
beyond the valid range for a block.

Problem #1
This code attempts to copy a string into the array b. Note that although the array
is large enough, the memcpy operation will fail, since it attempts to read past the
end of the string a.

1: /*
2: * File: readovr1.c
3: */
4: main()
5: {
6: char *a = "TEST";
7: char b[20];
8:
9: memcpy(b, a, sizeof(b));
10: return (0);
11: }
282

Error C
odes
Diagnosis (at runtime)

Problem #2
A second fairly common case arises when strings are not terminated properly. The
code shown below copies a string using the strncpy routine, which leaves it

[readovr1.c:9] **READ_OVERFLOW**
>> memcpy(b, a, sizeof(b));

Reading overflows memory: <argument 2>

bbbbb
| 5 | 15 |
rrrrrrrrrrrrrrrr

Reading (r): 0x00012218 thru 0x0001222b (20 bytes)
From block(b): 0x00012218 thru 0x0001221c (5 bytes)

a, declared at readovr1.c, 6

Stack trace where the error occurred:
memcpy() (interface)
main() readovr1.c, 9

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Schematic showing the relative layout of the actual
memory block (b) and region being read (r). (See
“Overflow diagrams” on page 155.)

• Range of memory being read and description of the block
from which the read is taking place, including its size and
the location of its declaration.

• Stack trace showing the function call sequence leading to
the error.
283

Er
ro

r C
od

es
non-terminated since the buffer is too short. When we attempt to print this
message, an error results.

1: /*
2: * File: readovr2.c
3: */
4: main()
5: {
6: char junk;
7: char b[8];
8: strncpy(b, "This is a test",
9: sizeof(b));
10: printf("%s\n", b);
11: return (0);
12: }
284

Error C
odes
Diagnosis (at runtime)

A slight variation on this misuse of strings occurs when the pointer, passed as a
string, lies completely outside the range of its buffer. In this case, the diagnostics
will appear as above except that the description line will contain the message

Alleged string does not begin within legal range

[readovr2.c:10] **READ_OVERFLOW**
>> printf("%s\n", b);

String is not null terminated within range: b

Reading : 0xf7fffb50
From block: 0xf7fffb50 thru 0xf7fffb57 (8 bytes)

b, declared at readovr2.c, 7

Stack trace where the error occurred:
main() readovr2.c, 10

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Pointer being used as a string.

• Block from which the read is taking place, including its size
and the location of its declaration.

• Stack trace showing the function call sequence leading to
the error.
285

Er
ro

r C
od

es
Problem #3
This code attempts to read past the end of the allocated memory block by reading
the second element of the union.

1: /*
2: * File: readovr3.c
3: */
4: #include <stdlib.h>
5:
6: struct small {
7: int x;
8: };
9:
10: struct big {
11: double y;
12: };
13:
14: union two
15: {
16: struct small a;
17: struct big b;
18: };
19:
20: int main()
21: {
22: struct small *var1;
23: union two *ptr;
24: double d;
25:
26: var1 = (struct small *)

malloc (sizeof(struct small));
27: ptr = (union two *) var1;
28: d = ptr->b.y;
29: return (0);
30: }
286

Error C
odes
Diagnosis (at runtime)
[readovr3.c:28] **READ_OVERFLOW**
>> d = ptr->b.y;

Structure reference out of range: ptr

bbbbb
| 4 | 4 |
rrrrrrrrr

Reading (r): 0x0001fce0 thru 0x0001fce7 (8 bytes)
From block(b): 0x0001fce0 thru 0x0001fce3 (4 bytes)

block allocated at:
malloc() (interface)
main() readovr3.c, 26

Stack trace where the error occurred:
main() readovr3.c, 28

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Schematic showing the relative layout of the actual
memory block (b) and region being read (r). (See
“Overflow diagrams” on page 155.)

• Range of memory being read and description of the block
from which the read is taking place, including its size and
the location of its declaration.

• Stack trace showing the function call sequence leading to
the error.
287

Er
ro

r C
od

es

C

Problem #4
This code shows a C++ example that can occur when using inheritance and casting
pointers incorrectly.

1: /*
2: * File: readover.C
3: */
4: #include <stdlib.h>
5:
6: class small
7: {
8: public:
9: int x;
10: };
11:
12: class big : public small
13: {
14: public:
15: double y;
16: };
17:
18: int main()
19: {
20: small *var1;
21: big *var2;
22: double d;
23:
24: var1 = new small;
25: var2 = (big *) var1;
26: d = var2->y;
27: return (0);
28: }
288

Error C
odes
Diagnosis (at runtime)
[readover.C:26] **READ_OVERFLOW**
>> d = var2->y;

Structure reference out of range: var2

bbbbb
| 4 | 4 | 8 |

rrrrrrr

Reading (r): 0x0001fce0 thru 0x0001fce7 (8 bytes)
From block(b): 0x0001fce0 thru 0x0001fce3 (4 bytes)

var1, allocated at:
operator new()

main() readover.C, 24

Stack trace where the error occurred:
main() readover.C, 26

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Schematic showing the relative layout of the actual
memory block (b) and region being read (r). (See
“Overflow diagrams” on page 155.)

• Range of memory being read and description of the block
from which the read is taking place, including its size and
the location of its declaration.

• Stack trace showing the function call sequence leading to
the error.
289

Er
ro

r C
od

es
Repair
These errors often occur when reading past the end of a string or using the
sizeof operator incorrectly. In most cases, the indicated source line contains a
simple error.

The code for problem #1 could, for example, be corrected by changing line 9 to

memcpy(b, a, strlen(a)+1);
290

Error C
odes
READ_UNINIT_MEM

Reading uninitialized memory

The use of uninitialized memory is a difficult problem to isolate, since the effects
of the problem may not show up till much later. This problem is complicated by
the fact that quite a lot of references to uninitialized memory are harmless.

To deal with these issues, Insight distinguishes two sub-categories of the
READ_UNINIT_MEM error class

copy This error code is generated whenever an application assigns a
variable using an uninitialized value. In itself, this may not be a
problem, since the value may be reassigned to a valid value
before use or may never be used. This error category is
suppressed by default.

read This code is generated whenever an uninitialized value is used
in an expression or some other context where it must be
incorrect. This error category is enabled by default, but is
detected only if the checking_uninit option is on.
(see page 127)

The difference between these two categories is illustrated in the following
examples.

Versions of Insight earlier than 3.0 had full
uninitialized memory checking disabled by default,
due to significant performance penalties at
compile time. This problem has been solved, and
full checking is now on by default. It may still be
disabled by setting the .psrc option
“checking_uninit off” (see page 127). If full
uninitialized memory checking is disabled,
uninitialized pointers will still be detected, but will
be reported in the READ_UNINIT_PTR category.
(see page 296)
291

Er
ro

r C
od

es
Problem #1
This code attempts to use a structure element which has never been initialized.

1: /*
2: * File: readuni1.c
3: */
4: #include <stdio.h>
5:
6: main()
7: {
8: struct rectangle {
9: int width;
10: int height;
11: };
12:
13: struct rectangle box;
14: int area;
15:
16: box.width = 5;
17: area = box.width*box.height;
18: printf("area = %d\n", area);
19: return (0);
20: }
292

Error C
odes
Diagnosis (at runtime)
[readuni1.c:17] **READ_UNINIT_MEM(read)**
>> area = box.width * box.height;

Reading uninitialized memory: box.height

Stack trace where the error occurred:
main() readuni1.c, 17

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Stack trace showing the function call sequence leading to
the error.
293

Er
ro

r C
od

es
Problem #2
This code assigns the value b using memory returned by the malloc system call,
which is uninitialized.

The code in line 11 of this example falls into the copy error sub-category, since
the uninitialized value is merely used to assign another variable. If b were later
used in an expression, it would then generate a READ_UNINIT_MEM(read)
error.

If the ints in lines 8 and 9 of the above example
were replaced by chars, the error would not be
detected by default. To see the error in the new
example, you would need to set the .psrc option
“checking_uninit_min_size 1”. For more
information about this option, see page 127.

1: /*
2: * File: readuni2.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: int *a = (int *)malloc(5);
9: int b;
10:
11: b = *a;
12: return (0);
13: }
294

Error C
odes
Diagnosis (at runtime)

Repair
As mentioned earlier, the READ_UNINIT_MEM(copy) error category is
suppressed by default, so you will normally only see errors in the read category.
In many cases, these will be errors that can be simply corrected by initializing the
appropriate variables. In other cases, these values will have been assigned from
other uninitialized variables, which can be detected by unsuppressing the copy
sub-category and running again.

[readuni2.c:11] **READ_UNINIT_MEM(copy)**
>> b = *a;

Reading uninitialized memory: *a

In block: 0x00062058 thru 0x0006205c (5 bytes)
block allocated at:

malloc() (interface)
main() readuni2.c, 8

Stack trace where the error occurred:
main() readuni2.c, 11

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Stack trace showing the function call sequence leading to
the error.
295

Er
ro

r C
od

es
READ_UNINIT_PTR

Reading from uninitialized pointer

This error is generated whenever an uninitialized pointer is dereferenced.

This error category will be disabled if full
uninitialized memory checking is in effect
(the default). In this case, errors are detected in
the READ_UNINIT_MEM category instead.
(see page 291)

Problem
This code attempts to use the value of the pointer a, even though it has never been
initialized.

1: /*
2: * File: readuptr.c
3: */
4: main()
5: {
6: int b, *a;
7:
8: b = *a;
9: return (0);
10: }
296

Error C
odes
Diagnosis (at runtime)

Repair
This problem is usually caused by omitting an assignment or allocation statement
that would initialize a pointer. The code given, for example, could be corrected by
including an assignment as shown below.

/*
* File: readuptr.c (Modified)
*/

main()
{

int b, *a, c;

a = &c;
b = *a;
return (0);

}

[readuptr.c:8] **READ_UNINIT_PTR**
>> b = *a;

Reading from uninitialized pointer: a

Stack trace where the error occurred:
main() readuptr.c, 8

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Stack trace showing the function call sequence leading to
the error.
297

Er
ro

r C
od

es
RETURN_DANGLING

Returning pointer to local variable

This error is generated whenever a function returns a pointer to a (non-static) local
variable. Since the stack frame of this routine will disappear when the function
returns, this pointer is never valid.

Problem
The following code shows the routine foo returning a pointer to a local variable.

1: /*
2: * File: retdngl.c
3: */
4: char *foo()
5: {
6: char b[10];
7: return b;
8: }
9:
10: main()
11: {
12: char *a = foo();
13: return 0;
14: }
298

Error C
odes
Diagnosis (during compilation)

Repair
The pointer returned in this manner can be made legal in one of several ways.

• Declaring the memory block static in the called routine,
i.e., line 6 would become

static char b[10];

• Allocating a block dynamically instead of on the stack and
returning a pointer to it, e.g.

char *foo()
{

return malloc(10);
}

• Making the memory block into a global variable rather than
a local one.

Occasionally, the value returned from the function is never used in which case it
is safest to change the declaration of the routine to indicate that no value is
returned.

[retdngl.c:7] **RETURN_DANGLING**
Returning pointer to local variable: b.

>> return b;

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.
299

Er
ro

r C
od

es
RETURN_FAILURE

Function call returned an error

A particularly difficult problem to track with conventional methods is that of
incorrect return code from system functions. Insight is equipped with interface
definitions for system libraries that enable it to check for errors when functions are
called. Normally, these messages are suppressed, since applications often include
their own handling for system calls that return errors. In some cases, however, it
may be useful to enable these messages to track down totally unexpected
behavior.

Problem
A particularly common problem occurs when applications run out of memory as
in the following code.

1: /*
2: * File: retfail.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char *p;
9:
10: p = malloc(1024*1024*1024);
11: return (0);
12: }
300

Error C
odes
Diagnosis
Normally, this code will run without displaying any messages. If
RETURN_FAILURE messages are enabled, however, the following display will
result.

Repair
These messages are normally suppressed, but can be enabled by adding the option

insure++.unsuppress RETURN_FAILURE

to your .psrc file.

[retfail.c:10] **RETURN_FAILURE**
>> p = malloc(1024*1024*1024);

Function returned an error:
malloc(1073741824) failed: no more memory

Stack trace where the error occurred:
malloc() (interface)
main() retfail.c, 10

• Source line at which the problem was detected.

• Description of the error and the parameters used.

• Stack trace showing the function call sequence leading to
the error.
301

Er
ro

r C
od

es
RETURN_INCONSISTENT

Function has inconsistent return
type

Insight checks that each function returns a result consistent with its declared data
type, and that a function with a declared return type actually returns an appropriate
value.

Because there are several different ways in which functions and return values can
be declared, Insight divides up this error category into four levels or subcategories
as follows:

Level 1 Function has no explicitly declared return type (and so defaults
to int) and returns no value. (This error level is normally
suppressed.)

Level 2 Function is explicitly declared to return type int but returns
nothing.

Level 3 Function explicitly declared to return a data type other than int
but returns no value.

Level 4 The function returns a value of one type at one statement and
another data type at another statement.

In many applications, errors at levels 1 and 2 need to be suppressed, since older
codes often include these constructs.
302

Error C
odes
Problem
The following code demonstrates the four different error levels.

1: /*
2: * File: retinc.c
3: */
4: func1() {
5: return;
6: }
7:
8: int func2() {
9: return;
10: }
11:
12: double func3() {
13: return;
14: }
15:
16: int func4(a)
17: int a;
18: {
19: if (a < 3) return a;
20: return;
21: }
303

Er
ro

r C
od

es
Diagnosis (During compilation).

Repair
As already suggested, older codes often generate errors at levels 1 and 2 which are
not particularly serious. You can either correct these problems by adding suitable
declarations or suppress them by adding the option

insure++.suppress RETURN_INCONSISTENT(1, 2)

to your .psrc file.

Errors at levels 3 and 4 should probably be investigated and corrected.

[retinc.c:4] **RETURN_INCONSISTENT(1)**
Function func1 has an inconsistent return type.
Declared return type implcitly "int",

but returns no value.
>> func1() {
[retinc.c:8] **RETURN_INCONSISTENT(2)**

Function func2 has an inconsistent return type.
Declared return type "int", but returns no value.

>> int func2() {
[retinc.c:12] **RETURN_INCONSISTENT(3)**

Function func2 has an inconsistent return type.
Declared return type "double", but returns no value.

>> double func3() {
[retinc.c:20] **RETURN_INCONSISTENT(4)**

Function func4 has an inconsistent return type.
Returns value in one location, and not in another.

>> return;

• Source line at which the problem was detected.

• Description of the error and the parameters used.
304

Error C
odes
UNUSED_VAR

Unused variables

Insight has the ability to detect unused variables in your code. Since these are not
normally errors, but informative messages, this category is disabled by default.

Two different sub-categories are distinguished

assigned The variable is assigned a value but never used.

unused The variable is never used.

Problem #1
The following code assigns a value to the variable max but never uses it.

1: /*
2: * File: unuasign.c
3: */
4: main()
5: {
6: int i, a[10];
7: int max;
8:
9: a[0] = 1;
10: a[1] = 1;
11: for(i=2; i<10; i++)
12: a[i] = a[i-1]+a[i-2];
13: max = a[9];
14: }
305

Er
ro

r C
od

es
Diagnosis (during compilation)
Normally this code will run without displaying any messages. If UNUSED_VAR
messages are enabled, however, the following display will result.

Problem #2
The following code never uses the variable max.

[unuasign.c:7] **UNUSED_VAR(assigned)**
Variable assigned but never used: max

>> int max;

• Source line at which the problem was detected.

• Description of the error and the parameters used.

1: /*
2: * File: unuvar.c
3: */
4: main()
5: {
6: int i, a[10];
7: int max;
8:
9: a[0] = 1;
10: a[1] = 1;
11: for(i=2; i<10; i++)
12: a[i] = a[i-1]+a[i-2];
13: }
306

Error C
odes
Diagnosis (during compilation)
If UNUSED_VAR messages are enabled, however, the following display will
result.

Repair
These messages are normally suppressed but can be enabled by adding the option

insure++.unsuppress UNUSED_VAR

to your .psrc file.

You can also enable each sub-category independently with an option such as

insure++.unsuppress UNUSED_VAR(assigned)

In most cases, the corrective action to be taken is to remove the offending
statement, since it is not affecting the behavior of the application. In certain
circumstances, these errors may denote logical program errors in which a variable
should have been used but wasn’t.

[unuvar.c:7] **UNUSED_VAR(unused)**
Variable declared but never used: max

>> int max;

• Source line at which the problem was detected.

• Description of the error and the parameters used.
307

Er
ro

r C
od

es
USER_ERROR

User generated error message

This error is generated when a program violates a rule specified in an interface
module. These normally check that parameters passed to system level or user
functions fall within legal ranges or are otherwise valid. This behavior is different
from the RETURN_FAILURE error code, which normally indicates that the call
to the function was made with valid data, but that it still returned an error for some,
possibly anticipated, reason.

Problem
These problems fall into many different categories. A particularly simple example
is shown in the following code, which calls the sqrt function and passes it a
negative argument.

1: /*
2: * File: usererr.c
3: */
4: #include <math.h>
5:
6: main()
7: {
8: double q;
9:
10: q = sqrt(-2.0);
11: return (0);
12: }
308

Error C
odes
Diagnosis (at runtime)

Repair
Each message in this category is caused by a different problem, which should be
evident from the printed diagnostic. Usually, these checks revolve around the
legality of various arguments to functions.

These messages can be suppressed by adding the option

insure++.suppress USER_ERROR

to your .psrc file.

[usererr.c:10] **USER_ERROR**
>> q = sqrt(-2.0);

Negative number -2.000000 passed to sqrt:

Stack trace where the error occured:
main() usererr.c, 10

• Source line at which the problem was detected.

• Description of the error and the parameters used.

• Stack trace showing the function call sequence leading to
the error.
309

Er
ro

r C
od

es
VIRTUAL_BAD

Error in runtime initialization of
virtual functions

This error is caused when a virtual function has not been initialized prior to being
used by another function.

Problem
The following pieces of code illustrate this error. The virtual function func is
declared in virtbad1.C in the goo class. A static variable of this class, barney,
is also declared in that file. The function crash calls func through barney in line
23. In file virtbad2.C, a static variable of class foo, fred, is declared. Class foo
calls crash, which then in turn ends up calling the virtual function func. A
virtual function’s address is not established until the program is initialized at
runtime, and static functions are also initialized at runtime. This means that
depending on the order of initialization, fred could be trying to find func,
which does not yet have an address. The VIRTUAL_BAD error message is
generated when this code is compiled with Insight.

C

310

Error C
odes
1: /*
2: * File: virtbad1.C
3: */
4: #include <iostream.h>
5:
6: class goo {
7: public:
8: int i;
9: goo::goo() {
10: cerr << “goo is initialized.”

<< endl; }
11: virtual int func();
12: virtual int func2();
13: };
14: static goo barney;
15: int crash() {
16: int ret;
17: cerr << “Sizeof(goo) = ” <<

sizeof(goo) << endl;
18: cerr << “Sizeof(i) = “ <<

sizeof(int) << endl;
19: char *cptr = (char *) &barney;
20: cptr += 4;
21: long *lptr = (long *) cptr;
22: cerr << “vp = “ << *lptr << endl;
23: ret = barney.func();
24: cerr << “crash” << endl;
25: return ret;
26: }
27: int goo::func() {
28: cerr << “goo.func” << endl;
29: func2();
30: return i;
31: }
32: int goo::func2() {
33: cerr << “goo.func2” << endl;
34: return 2;
35: }
311

Er
ro

r C
od

es
1: /*
2: * File: virtbad3.C
3: */
4: #include <iostream.h>
5:
6: int main() {
7: cerr << “main” << endl;
8: return 0;
9: }
312

Error C
odes
1: /*
2: * File: virtbad2.C
3: */
4: #include <iostream.h>
5:
6: extern int crash();
7:
8: class foo {
9: public:
10: foo::foo() {
11: cerr << “foo” << endl;
12: cerr << “Got “ <<

crash() << endl;
13: }
14: };
15:
16: static foo fred;
313

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
The error in the sample code could be eliminated by not making fred static. In
that case, the address for func would be generated during the initialization before
any requests for it existed, and there would be no problems.

[virtbad1.C:29] **VIRTUAL_BAD**
>> func2();

Virtual function table is invalid: func2()

Stack trace where the error occurred:
goo::func() virtbad1.C, 29

crash() virtbad1.C, 23
foo::foo() virtbad2.C, 12

__mod_I__fred0virtbad21001_cc_000()
_main()
main() virtbad3.C, 6

Memory corrupted. Program may crash!!
Abort (core dumped)

• Source line at which the problem was detected.

• Description of the problem and which virtual function
caused the error.

• Stack trace showing the function call sequence leading to
the error.

• Core dumps typically follow these messages, as any usage
of the dynamic memory functions will be unable to cope.
314

Error C
odes
EXPR_WILD

Expression uses wild pointer

This error is generated whenever a program operates on a memory region that is
unknown to Insight. This can come about in two ways:

• Errors in user code that result in pointers that don’t point at
any known memory block.

• Compiling only some of the files that make up an
application. This can result in Insight not knowing enough
about memory usage to distinguish correct and erroneous
behavior.

This discussion centers on the first type of problem
described here. A detailed discussion of the
second topic, including samples of its generation
and repair can be found in “Interfaces” on page 91.
315

Er
ro

r C
od

es
Problem #1
The following code attempts to use the address of a local variable but contains an
error at line 8 - the address operator (&) has been omitted.

1: /*
2: * File: expwld1.c
3: */
4: main()
5: {
6: int i = 123, j=345, *a;
7:
8: a = i;
9: if(a > &i)
10: a = &j;
11: }
316

Error C
odes
Diagnosis

Note that most compilers will generate warning messages for this error since the
assignment in line 8 uses incompatible types.

EXPR_WILD [expwld1.c:9]
>> if(a > &i)

Express uses wild pointer: a > &i

Pointer : 0x0000007b

main() expwld1.c, 9

• Source line at which the problem was detected.

• Description of the problem and the name of the parameter
that is in error.

• Value of the wild pointer.

• Stack trace showing the function call sequence leading to
the error.
317

Er
ro

r C
od

es
Problem #2
A more insidious version of the same problem can occur when using union
types. The following code first assigns the pointer element of a union but then
overwrites it with another element before finally attempting to use it.

Note that this code will not generate compile time errors.

1: /*
2: * File: expwld2.c
3: */
4: union {
5: int *ptr;
6: int ival;
7: } u;
8:
9: main()
10: {
11: int i = 123, j=345;
12:
13: u.ptr = &i;
14: u.ival = i;
15: if(u.ptr > &j)
16: u.ptr = &j;
17: }
318

Error C
odes
Diagnosis

Repair
The simpler types of problem are most conveniently tracked in a debugger by
stopping the program at the indicated source line. You should then examine the
illegal value and attempt to see where it was generated. Alternatively you can stop
the program at some point prior to the error and single-step it through the code
leading up to the error.

“Wild pointers” can also be generated when Insight has only partial information
about your program’s structure. This issue is discussed extensively in “Interfaces”
on page 91.

.

EXPR_WILD [expwld2.c:15]
>> if(u.ptr > &j)

Expression uses wild pointer: u.ptr > &j

Pointer : 0x0000007b

main() expwld2.c, 15

• Source line at which the problem was detected.

• Description of the problem and the name of the parameter
that is in error.

• Value of the bad pointer.

• Stack trace showing the function call sequence leading to
the error.
319

Er
ro

r C
od

es
FREE_WILD

Freeing wild pointer

This error is generated when memory is de-allocated that is unknown to Insight.

This can come about in two ways:

• Errors in user code that result in pointers that don’t point at
any known memory block.

• Compiling only some of the files that make up an
application. This can result in Insight not knowing enough
about memory usage to distinguish correct and erroneous
behavior.

This discussion centers on the first type of problem
described here. A detailed discussion of the
second topic, including samples of its generation
and repair can be found in “Interfaces” on page 91.
320

Error C
odes
Problem
A particularly unpleasant problem can occur when using union types. The
following code first assigns the pointer element of a union but then overwrites it
with another element before finally attempting to free the initial memory block.

1: /*
2: * File: freewild.c
3: */
4: #include <stdlib.h>
5:
6: union {
7: int *ptr;
8: int ival;
9: } u;
10:
11: main()
12: {
13: char *a = (char *)malloc(100);
14:
15: u.ptr = a;
16: u.ival = 123;
17: free(u.ptr);
18: }
321

Er
ro

r C
od

es
Diagnosis

Repair
This problem is most conveniently tracked in a debugger by stopping the program
at the indicated source line. You should then examine the illegal value and attempt
to see where it was generated. Alternatively you can stop the program at some
point prior to the error and single-step through the code leading up to the problem.

“Wild pointers” can also be generated when Insight has only partial information
about your program’s structure. This issue is discussed extensively in “Interfaces”
on page 91.

FREE_WILD [freewild.c:17]
>> free(u.ptr);

Freeing wild pointer: u.ptr

Pointer : 0x0000007b

main() freewild.c, 17

• Source line at which the problem was detected.

• Description of the problem and the name of the parameter
that is in error.

• Value of the bad pointer.

• Stack trace showing the function call sequence leading to
the error.
322

Error C
odes
FUNC_WILD

Function pointer is wild

This error is generated when a call is made via a function pointer that is unknown
to Insight.

This can come about in two ways:

• Errors in user code that result in pointers that don’t point at
any known function.

• Compiling only some of the files that make up an
application. This can result in Insight not knowing enough
about memory usage to distinguish correct and erroneous
behavior.

This discussion centers on the first type of problem
described here. A detailed discussion of the
second topic, including samples of its generation
and repair can be found in “Interfaces” on page 91.
323

Er
ro

r C
od

es
Problem
A particularly unpleasant problem can occur when using union types. The
following code first assigns the pointer element of a union but then overwrites it
with another element before finally attempting the function call at line 18.

1: /*
2: * File: funcwild.c
3: */
4: union {
5: int (*func)();
6: int ival;
7: } u;
8:
9: int myfunc()
10: {
11: return 123;
12: }
13:
14: main()
15: {
16: u.func = myfunc;
17: u.ival = 123;
18: u.func();
19: }
324

Error C
odes
Diagnosis

Repair
This problem is most conveniently tracked in a debugger by stopping the program
at the indicated source line. You should then examine the illegal value and attempt
to see where it was generated. Alternatively you can stop the program at some
point prior to the error and single-step through the code leading up to the problem.

Note that wild pointers can also be generated when Insight has only partial
information about your program’s structure. This issue is discussed extensively in
“Interfaces” on page 91.

FUNC_WILD [funcwild.c:18]
>> u.func();

Function pointer is wild: u.func

Pointer : 0x0000007b

main() funcwild.c, 18

• Source line at which the problem was detected.

• Description of the problem and the name of the parameter
that is in error.

• Value of the bad pointer.

• Stack trace showing the function call sequence leading to
the error.
325

Er
ro

r C
od

es
PARM_WILD

Array parameter is wild

This error is generated whenever a parameter is declared as an array but the actual
value passed when the function is called points to no known memory block.

This can come about in several ways:

• Errors in user code that result in pointers that don’t point at
any known memory block.

• Compiling only some of the files that make up an
application. This can result in Insight not knowing enough
about memory usage to distinguish correct and erroneous
behavior.

This discussion centers on the first type of problem
described here. A detailed discussion of the
second topic, including samples of its generation
and repair can be found in “Interfaces” on page 91.
326

Error C
odes
Problem #1
The following code attempts to pass the address of a local variable to the routine
foo but contains an error at line 14 - the address operator (&) has been omitted.

1: /*
2: * File: parmwld1.c
3: */
4: void foo(a)
5: int a[];
6: {
7: return;
8: }
9:
10: main()
11: {
12: int i = 123, *a;
13:
14: a = i;
15: foo(a);
16: }
327

Er
ro

r C
od

es
Diagnosis

Note that most compilers will generate warning messages for this error since the
assignment uses incompatible types.

PARM_WILD [parmwld1.c:6]
>> {

Array parameter is wild: a

Pointer : 0x0000007b

foo() parmwld1.c, 6
main() parmwld1.c, 15

• Source line at which the problem was detected.

• Description of the problem and the name of the parameter
that is in error.

• Value of the bad pointer.

• Stack trace showing the function call sequence leading to
the error.
328

Error C
odes
Problem #2
A more insidious version of the same problem can occur when using union
types. The following code first assigns the pointer element of a union but then
overwrites it with another element before finally passing it to a function.

Note that this code will not generate compile time errors.

1: /*
2: * File: parmwld2.c
3: */
4: union {
5: int *ptr;
6: int ival;
7: } u;
8:
9: void foo(a)
10: int a[];
11: {
12: return;
13: }
14:
15: main()
16: {
17: int i = 123;
18:
19: u.ptr = &i;
20: u.ival = i;
21: foo(u.ptr);
22: }
329

Er
ro

r C
od

es
Diagnosis

Repair
This problem is most conveniently tracked in a debugger by stopping the program
at the indicated source line. You should then examine the illegal value and attempt
to see where it was generated. Alternatively you can stop the program at some
point prior to the error and single-step through the code leading up to the problem

Note that wild pointers can also be generated when Insight has only partial
information about your program’s structure. This issue is discussed extensively in
“Interfaces” on page 91.

PARM_WILD [parmwld2.c:11]
>> {

Array parameter is wild: a

Pointer : 0x0000007b

foo() parmwld2.c, 11
main() parmwld2.c, 21

• Source line at which the problem was detected.

• Description of the problem and the name of the parameter
that is in error.

• Value of the bad pointer.

• Stack trace showing the function call sequence leading to
the error.
330

Error C
odes
READ_WILD

Reading wild pointer

This problem occurs when an attempt is made to dereference a pointer whose
value is invalid or which Insight did not see allocated.

This can come about in several ways:

• Errors in user code that result in pointers that don’t point at
any known memory block.

• Compiling only some of the files that make up an
application. This can result in Insight not knowing enough
about memory usage to distinguish correct and erroneous
behavior.

This discussion centers on the first type of problem
described here. A detailed discussion of the
second topic, including samples of its generation
and repair can be found in “Interfaces” on page 91.
331

Er
ro

r C
od

es
Problem #1
The following code attempts to use the address of a variable but contains an error
at line 8 - the address operator (&) has been omitted.

1: /*
2: * File: readwld1.c
3: */
4: main()
5: {
6: int i = 123, *a, b;
7:
8: a = i;
9: b = *a;
10: }
332

Error C
odes
Diagnosis

Note that most compilers will generate warning messages for this error since the
assignment uses incompatible types.

READ_WILD [readwld1.c:9]
>> b = *a;

Reading wild pointer: a

Pointer : 0x0000007b

main() readwld1.c, 9

• Source line at which the problem was detected.

• Description of the problem and the name of the parameter
that is in error.

• Value of the bad pointer.

• Stack trace showing the function call sequence leading to
the error.
333

Er
ro

r C
od

es
Problem #2
A more insidious version of the same problem can occur when using union
types. The following code first assigns the pointer element of a union but then
overwrites it with another element before using it.

Note that this code will not generate compile time errors.

1: /*
2: * File: readwld2.c
3: */
4: union {
5: int *ptr;
6: int ival;
7: } u;
8:
9: main()
10: {
11: int b, i = 123;
12:
13: u.ptr = &i;
14: u.ival = i;
15: b = *u.ptr;
16: }
334

Error C
odes
Diagnosis

Repair
The simpler types of problem are most conveniently tracked in a debugger by
stopping the program at the indicated source line. You should then examine the
illegal value and attempt to see where it was generated. Alternatively you can stop
the program at some point shortly before the error and single-step through the
code leading up to the problem.

Note that wild pointers can also be generated when Insight has only partial
information about your program’s structure. This issue is discussed extensively in
“Interfaces” on page 91.

READ_WILD [readwld2.c:15]
>> b = *u.ptr;

Reading wild pointer: u.ptr

Pointer : 0x0000007b

main() readwld2.c, 15

• Source line at which the problem was detected.

• Description of the problem and the name of the parameter
that is in error.

• Value of the bad pointer.

• Stack trace showing the function call sequence leading to
the error.
335

Er
ro

r C
od

es
WRITE_WILD

Writing to a wild pointer

This problem occurs when an attempt is made to dereference a pointer whose
value is invalid or which Insight did not see allocated.

This can come about in several ways:

• Errors in user code that result in pointers that don’t point at
any known memory block.

• Compiling only some of the files that make up an
application. This can result in Insight not knowing enough
about memory usage to distinguish correct and erroneous
behavior.

This discussion centers on the first type of problem
described here. A detailed discussion of the
second topic, including samples of its generation
and repair can be found in “Interfaces” on page 91.
336

Error C
odes
Problem #1
The following code attempts to use the address of a variable but contains an error
at line 8 - the address operator (&) has been omitted.

1: /*
2: * File: writwld1.c
3: */
4: main()
5: {
6: int i = 123, *a;
7:
8: a = i;
9: *a = 99;
10: }
337

Er
ro

r C
od

es
Diagnosis

Note that most compilers will generate warning messages for this error since the
assignment in line 8 uses incompatible types.

WRITE_WILD [writwld1.c:9]
>> *a = 99;

Writing wild pointer: a

Pointer : 0x0000007b

main() writwld1.c, 9

• Source line at which the problem was detected.

• Description of the problem and the name of the parameter
that is in error.

• Value of the bad pointer.

• Stack trace showing the function call sequence leading to
the error.
338

Error C
odes
Problem #2
A more insidious version of the same problem can occur when using union
types. The following code first assigns the pointer element of a union but then
overwrites it with another element before using it.

Note that this code will not generate compile time errors.

1: /*
2: * File: writwld2.c
3: */
4: union {
5: int *ptr;
6: int ival;
7: } u;
8:
9: main()
10: {
11: int i = 123;
12:
13: u.ptr = &i;
14: u.ival = i;
15: *u.ptr = 99;
16: }
339

Er
ro

r C
od

es
Diagnosis

Repair
The simpler types of problem are most conveniently tracked in a debugger by
stopping the program at the indicated source line. You should then examine the
illegal value and attempt to see where it was generated. Alternatively you can stop
the program at some point shortly before the error and single-step through the
code leading up to the problem.

Note that wild pointers can also be generated when Insight has only partial
information about your program’s structure. This issue is discussed extensively in
“Interfaces” on page 91.

WRITE_WILD [writwld2.c:15]
>> *u.ptr = 99;

Writing wild pointer: u.ptr

Pointer : 0x0000007b

main() writwld2.c, 15

• Source line at which the problem was detected.

• Description of the problem and the name of the parameter
that is in error.

• Value of the bad pointer.

• Stack trace showing the function call sequence leading to
the error.
340

Error C
odes
WRITE_BAD_INDEX

Writing array out of range

This error is generated whenever an illegal value will be used to index an array
which is being written.

If this error can be detected during compilation, a compilation error will be issued
instead of the normal runtime error.

Problem
This code attempts to access an illegal array element due to an incorrect loop
range.

1: /*
2: * File: writindx.c
3: */
4: main()
5: {
6: int i, a[10];
7:
8: for(i=1; i<=10; i++)
9: a[i] = 0;
10: return (0);
11: }
341

Er
ro

r C
od

es
Diagnosis (at runtime)
[writindx.c:9] **WRITE_BAD_INDEX**
>> a[i] = 0;

Writing array out of range: a[i]

Index used: 10

Valid range: 0 thru 9 (inclusive)

Stack trace where the error occured:
main() writindx.c, 9

Memory corrupted. Program may crash!!

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Illegal index value used.

• Valid index range for this array.

• Stack trace showing the function call sequence leading to
the error.

• Informational message indicating that a serious error has
occurred which may cause the program to crash.
342

Error C
odes
Repair
This is normally a fatal error and is often introduced algorithmically.

One common source of this error is using “stretchy” arrays without telling Insight
about them. A “stretchy” array is an array whose size is only determined at
runtime. For an example as well as an explanation of how to use Insight with
“stretchy” arrays, see page 41.

Other typical sources include loops with incorrect initial or terminal conditions, as
in this example, for which the corrected code is:

main()
{

int i, a[10];

for(i=; i<sizeof(a)/sizeof(a[0]); i++)
a[i] = 0;

return (0);
}

343

Er
ro

r C
od

es
WRITE_DANGLING

Writing to a dangling pointer

This problem occurs when an attempt is made to dereference a pointer that points
to a block of memory that has been freed.

Problem
This code attempts to use a piece of dynamically allocated memory after it has
already been freed.

1: /*
2: * File: writdngl.c
3: */
4: #include <stdlib.h>
5:
6: main()
7: {
8: char *a = (char *)malloc(10);
9:
10: free(a);
11: *a = 'x';
12: return (0);
13: }
344

Error C
odes
Diagnosis (at runtime)

Repair
Check that the de-allocation that occurs at the indicated location should, indeed,
have taken place. Also check that the pointer you are using should really be
pointing to a block allocated at the indicated place.

[writdngl.c:11] **WRITE_DANGLING**
>> *a = 'x';

Writing to a dangling pointer: a

Pointer: 0x000173e8
In block: 0x000173e8 thru 0x000173f1 (10 bytes)

block allocated at:
malloc() (interface)
main() writdngl.c, 8

stack trace where memory was freed:
main() writdngl.c, 10

Stack trace where the error occurred:
main() writdngl.c, 11

Memory corrupted. Program may crash!!

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Value of the dangling pointer variable

• Description of the block to which this pointer used to point,
including its size, name, and the line at which it was
allocated.

• Indication of the line at which this block was freed.

• Stack trace showing the function call sequence leading to
the error.
345

Er
ro

r C
od

es
WRITE_NULL

Writing to a NULL pointer

This error is generated whenever an attempt is made to dereference a NULL
pointer.

Problem
This code attempts to use a pointer which has not been explicitly assigned. Since
the variable a is global, it is initialized to zero by default, which results in
dereferencing a NULL pointer in line 8.

1: /*
2: * File: writnull.c
3: */
4: int *a;
5:
6: main()
7: {
8: *a = 123;
9: return (0);
10: }
346

Error C
odes
Diagnosis (at runtime)
[writnull.c:8] **WRITE_NULL**
>> *a = 123;

Writing to a null pointer: a

Stack trace where the error occured:
main() writnull.c, 8

Memory corrupted. Program may crash!!

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Stack trace showing the function call sequence leading to
the error.

• Informational message indicating that a serious error has
occurred which may cause the program to crash.
347

Er
ro

r C
od

es
Repair
A common cause of this problem is the one shown in the example - use of a pointer
that has not been explicitly assigned and which is initialized to zero. This is
usually due to the omission of an assignment or allocation statement which would
give the pointer a reasonable value.

The example code might, for example, be corrected as follows

1: /*
2: * File: writnull.c (Modified)
3: */
4: int *a;
5:
6: main()
7: {
8: int b;
9:
10: a = &b;
11: *a = 123;
12: return (0);
13: }

A second common source of this error is code which dynamically allocates
memory but then zeroes pointers as blocks are freed. In this case, the error would
indicate reuse of a freed block.

A final common problem is caused when one of the dynamic memory allocation
routines, malloc, calloc, or realloc, fails and returns a NULL pointer. This
can happen either because your program passes bad arguments or simply because
it asks for too much memory. A simple way of finding this problem with Insight
is to enable the RETURN_FAILURE error code (see page 300) via your .psrc
file and run the program again. It will then issue diagnostic messages every time
a system call fails, including the memory allocation routines.
348

Error C
odes
WRITE_OVERFLOW

Writing overflows memory

This error is generated whenever a block of memory indicated by a pointer will be
written outside its valid range.

Problem
This code attempts to copy a string into the array a, which is not large enough.

1: /*
2: * File: writover.c
3: */
4: main()
5: {
6: int junk;
7: char a[10];
8:
9: strcpy(a, "A simple test");
10: return (0);
11: }
349

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
This error often occurs when working with strings.

In most cases, a simple fix is to increase the size of the destination object.

[writover.c:9] **WRITE_OVERFLOW**
>> strcpy(a, "A simple test");

Writing overflows memory: a

bbbbbbbbbb
| 10 | 4 |
wwwwwwwwwwwwwwww

Writing (w): 0xf7fffafc thru 0xf7fffb09 (14 bytes)
To block(b): 0xf7fffafc thru 0xf7fffb05 (10 bytes)

a, declared at writover.c, 7

Stack trace where the error occured:
strcpy () (interface)

main() writover.c, 9

• Source line at which the problem was detected.

• Description of the problem and the incorrect expression.

• Schematic showing the relative layout of the actual
memory block (b) and region being written (w). (See
“Overflow diagrams” on page 155.)

• Range of memory being written and description of the
block to which write is taking place, including its size and
the location of its declaration.

• Stack trace showing the call sequence leading to the error.
350

Error C
odes
WRITE_UNINIT_PTR

Writing to an uninitialized pointer

This error is generated whenever an uninitialized pointer is dereferenced.

Problem
This code attempts to use the value of the pointer a, even though it has not been
initialized.

1: /*
2: * File: writuptr.c
3: */
4: main()
5: {
6: int *a;
7:
8: *a = 123;
9: return (0);
10: }
351

Er
ro

r C
od

es
Diagnosis (at runtime)

Repair
This problem is usually caused by omitting an assignment or allocation statement
that would initialize a pointer. The code given, for example, could be corrected by
including an assignment as shown below.

/*
* File: writuptr.c (Modified)
*/

main()
{

int *a, b;

a = &b;
*a = 123;

}

[writuptr.c:8] **WRITE_UNINIT_PTR**
>> *a = 123;

Writing to an uninitialized pointer: a

Stack trace where the error occurred:
main() writuptr.c, 8

Memory corrupted. Program may crash!!

• Source line at which the problem was detected.

• Description of the problem and the expression that is in
error.

• Stack trace showing the function call sequence leading to
the error.

• Informational message indicating that a serious error has
occurred which may cause the program to crash.
352

Error C
odes
jklfdjsaklfdsafdsa
353

354

Error Codes

jklfdsa

Programming Insight

Program
m

ing
Programming Insight
This section lists the Insight functions that can be called from either an application
program or a high level debugger.

If you are inserting these routines into your source code, you may want to use the
pre-processor symbol __INSIGHT__ so that they will only be called when
compiling with the appropriate tools, e.g.,

/*
* Code being checked with Insight
*/

...
/*
* Disable runtime memory checking
*/

#ifdef __INSIGHT__
_Insight_set_option("runtime", "off");

#endif
...

/*
* Block of code without runtime checking...
*/

...
/*
* Re-enable runtime checking
*/

#ifdef __INSIGHT__
_Insight_set_option("runtime", "on");

#endif

In this way you can use the same source code when compiling with or without
Insight.

You will also need to add prototypes for these functions to your code, particularly
if you are calling these C functions from C++ code.
355

Programming Insight

Pr
og

ra
m

m
in

g

Control routines
These routines affect the behavior of Insight and are normally called from within
your source code.

• void _Insight_cleanup(void);
Causes the Insight runtime to close any open files properly.

• void _Insight_printf(char *fmt,[,arg...]);
Causes Insight to add the given character string to its output.

• void _Insight_set_option(char *option, char
*value);
Used to override at runtime options which are set in .psrc
files. The first argument is the option name and the second is the
option argument that might be found in the .psrc file, e.g.

_Insight_set_option("summarize", "bugs");

Memory block description routines
These functions can be called either from a program or from the debugger as
described in “Interacting with Debuggers” on page 69.

• long _Insight_list_allocated_memory(void);
Prints a list of all allocated memory blocks and their sizes.
Returns the total number of bytes allocated.
356

Programming Insight

Program
m

ing
• void _Insight_mem_info(void *ptr);
Displays all information known about the memory block whose
address is ptr. For example, the following code

#include <stdlib.h>

main()
{

char *p, buf[128];

p = malloc(100);
#ifdef __INSIGHT__

_Insight_mem_info(buf);
_Insight_mem_info(p);

#endif
...

might generate the following output

Pointer: 0xf7fff74c (stack)
Offset: 0 bytes
In block: 0xf7fff74c thru 0xf7fff7cb (128 bytes)

buf, declared at foo.4, 4
Pointer: 0x00024b98 (heap)
Offset: 0 bytes
In block: 0x00024b98 thru 0x00024bfb (100 bytes)

p, allocated at foo.c, 6
357

Programming Insight

Pr
og

ra
m

m
in

g

• void _Insight_ptr_info(void **ptr);
Displays all information about the pointer whose address is
passed. For example, the code

#include <stdlib.h>

main()
{

char *p, buf[128];

p = malloc(100);
#ifdef __INSIGHT__

_Insight_ptr_info(&p);
#endif

...

might generate the following output

Pointer: 0x00024b98 (heap)
Offset: 0 bytes
In block: 0x00024b98 thru 0x00024bfb (100 bytes)

p, allocated at foo.c, 6
358

Interface Functions

iic
Interface Functions
This section lists the Insight specific functions that can be called from Insight
interface files. The use of these functions is described in the section “Interfaces”
on page 91. This description gives only a brief summary of the purpose and
arguments of the various functions. Probably the best way to see their purpose is
to look at the source code for the interfaces shipped with LynxInsure++, which
can be found in subdirectories of the main LynxInsure++ installation directory
with names such as src.lynx_x86/gcc, src.lynx_ppc/gcc, etc.

Note that these functions, despite appearances,
are not C functions that you can insert into your C
code. They can only be used in Insight interface
files to be compiled with iic.

Memory Block Declaration Routines
These functions are used to indicate the usage of memory blocks. They do not
actually allocate or free memory.

• void iic_alloc(void *ptr, unsigned long size);
Declares a block of uninitialized heap memory of the given size.
(See page 100.)

• void iic_alloca(void *ptr, unsigned long size);
Declares a block of data on the stack.

• void iic_alloci(void *ptr, unsigned long size);
Declares a block of initialized heap memory of the given
size.(Without the second argument, declares a block the length
of the first argument treated as a character string, including the
terminating NULL.) (See page 104.)

• void iic_allocs(void *ptr, unsigned long size);
Declares a pointer to a block of static memory. (Without the
second argument, declares a block the length of the first
359

Interface Functions

iic
argument treated as a character string, including the terminating
NULL.) (See page 104.)

• void iic_realloc(void *old, void *new,
unsigned long new_size);

Indicates that the indicated block has been re-allocated and that
the contents of the old block should be copied to the new one.

• void iic_save(void *ptr);
Specifies that the indicated block should never be reported to
have “leaked”. Normally, this is used when the system will keep
track of a memory block, even after all user pointers have gone.

• void iic_unalloc(void *ptr);
Deallocates a block of memory. (See page 104.)

• void iic_unallocs(void *ptr);
Undoes the effect of an iic_allocs. No error checking is
performed on the pointer - the block is simply forgotten.

Memory Checking Routines
These functions report the appropriate Insight error message if the check fails.

• void iic_copy(void *to, void *from,
unsigned long size);

Checks for write and read access to the given number of bytes
and indicates that the from block will be copied onto the to
block. (See page 100.)

• void iic_copyattr(void *to, void *from)
Copies the attribute properties (e.g., opaque, uninitialized, etc.)
from one pointer to another.

• void iic_dest(void *ptr, unsigned long size);
Checks for write access to the ptr for size number of bytes.
(See page 104.)

• void iic_freeable(void *ptr);
Checks that the indicated pointer indicates a dynamically
allocated block of memory that could be freed.

• void iic_justcopy(void *to, void *from,
unsigned long size);
360

Interface Functions

iic
Indicates that the from block will be copied onto the to block
without performing the other iic_copy checks.

• void iic_pointer(void *ptr);
Checks that the indicated pointer is valid, without checking
anything about the size of the block it points to.

• void iic_resize(void *ptr, unsigned long newsize);
Indicates that the block of memory has changed size.

• void iic_source(void *ptr, unsigned long size);
Checks for read access to ptr for size bytes. (See page 104.)
Does no checks for initialization of the block.

• void iic_sourcei(void *ptr, unsigned long size);
Checks for read access to ptr for size bytes, and also that the
memory is initialized. (See page 104.)

• int iic_string(char *ptr, unsigned long size);
Checks that the pointer indicates a NULL terminated string. (See
page 104.) If the optional second argument is supplied, the
check terminates after at most that number of characters. In
either case, the string length is returned, or -1 if some error
prevented the string length from being computed.

Function Pointer Checks
• void iic_declfunc(void (*f)());

Declares that the indicated pointer is a function regardless of
appearance or other information.

• void iic_func(void (*f)());
Checks that the indicated pointer is actually a function.
361

Interface Functions

iic
Opaque Types
• void iic_opaque(void *ptr);

Declares that the pointer should never be checked.

• void iic_opaque_type(<typename>);
Declares that the indicated structure or union type is opaque and
should not be checked. (See page 41.)

• void iic_opaque_subtype(<typename>, <typetag>);
Declares that the indicated element of a structure or union type
is opaque and should not be checked. (See page 41.)

Printf/scanf Checking
• void iic_input_format(char *format_string);

Indicates that the indicated string and the arguments following
it should be checked as though they were a scanf style format
string. This function should be called from the interface before
activating the function being checked.

• void iic_output_format(char *format_string);
Indicates that the indicated string and the arguments following
it should be checked as though they were a printf style
format string.

• void iic_post_input_format(int ntokens);
This function can be called after an iic_input_format
check and a call to an input function to check that the indicated
number of tokens did not corrupt memory when read. If the
argument is omitted, all the tokens from the
iic_input_format string are checked.

• int iic_strlenf(char *format_string, ...);
Returns the length of the string after substitution of the
subsequent arguments, which are interpreted as a printf style
format string.

• int iic_vstrlenf(char *format_string, va_list ap);
Returns the length of the string after substitution of the
argument, which must be the standard type for a variable
362

Interface Functions

iic
argument list. The format_string argument is interpreted
in the normal printf style.

Utility Functions
• char *iic_c_string(char *string);

Converts a string to a format consistent with the C language
conventions. Useful for printing error messages.

• void iic_error(int code, char *format,
...);

Generates a message with the indicated error code (either
USER_ERROR or RETURN_FAILURE). (See page 105.)

• void iic_expand_subtype(<typename>, <typetag>);
Indicates that the structure or union named typename
contains an element name typetag whose size varies at
runtime. Normally used for “stretchy” arrays. (See page 41.)
For example, if you have the following code, and a is a stretchy
array,

struct test {
char a[1];

};

then the appropriate function call would be:

iic_expand_subtype(struct test, a);

• int iic_numargs(void);
Returns the number of arguments actually passed to the
function.

• void iic_warning(char *string);
Prints the indicated string at compile-time.

Callbacks
• iic_body

Keyword used in function declarations to indicate that the
363

Interface Functions

iic
function for which the interface is being specified will be used
as a callback. (See “Using iic_body” on page 113.)

• void iic_callback(void (*f)(),void (*template)());
Specifies that the function f will be used as a callback, and that
whenever it is called its invocation is to be processed as
indicated by the previously declared (static) function
template. (See “Using iic_callback” on page 112.)

• void iic_opaque_callback(void (*f)());
Specifies that the function f will be used as a callback, and that
all of its arguments should be treated as opaque whenever it is
invoked. (See “Which to use: iic_callback or
iic_body?” on page 114.)

Variable Arguments
• __dots__

Placeholder for variable arguments (“...”) in an argument list.
(See page 109.)

Initialization
• void iic_startup(void)

Function that can be declared in any interface file and which
contains calls to be made before any function in the interface is
executed. (See page 109.)

Termination
• void iic_exit(void)

Indicates that the function specified by the interface is going to
exit. This allows Insight to close its files and perform any
necessary cleanup activity before the program terminates.
364

M
anual Pages
Manual Pages
The following pages contain UNIX-style manual pages for LynxInsure++.

They are divided into two sections, as is conventional

• Commands which are invoked from the shell.

• System calls that are called from source code.
365

M
an

ua
l P

ag
es
NAME
iic - Insight interface compiler

SYNOPSIS
iic [-compiler name] [-Dsymbol[=value]]

[-Idirectory] [-p] [-t] [-v] files

DESCRIPTION
This command is used to compile Insight interface files. Each source file
is compiled into a similarly named file with the suffix .tqs that can be
passed to the insight command. These files indicate the runtime
behavior of routines whose source code was not processed by Insight,
and can also provide additional user level parameter checks.

OPTIONS
-compiler name

Indicates that the named compiler will be used to
process the source code when insight is run,
overriding the default or any value found in a .psrc
file. This switch can affect the default directories
searched for header files and pre-defined preprocessor
symbols.

-Dsymbol=value Defines preprocessor symbols in the conventional C
manner.

-Idirectory Add a directory to the path searched for header files.

-p If a prototype for a function exists (possibly in a header
file), use its definition to override type mismatches in
a function declaration.

-t Process the file as usual and generate (on stdout) a
table summarizing the behavior of the routines
defined.

-v Enable verbose mode. iic prints commands as it
executes them.
366

M
anual Pages
EXAMPLES

iic mylib.c

Compiles the interface code in mylib.c and generates mylib.tqs.

iic -compiler gcc my_gnu_lib.c

Compiles the interface code in my_gnu_lib.c using the GNU C
compiler gcc.

SEE ALSO
iiinfo, iiwhich, insight
367

M
an

ua
l P

ag
es
NAME
iiinfo - Display information about an Insight interface file

SYNOPSIS
iiinfo [-e|m] [-s] [-v] tqsfile1 tqsfile2

…

DESCRIPTION
This command reads the specified Insight interface file and displays
information about the contents. With no switches, iiinfo displays the
names of the objects described in the interface file in the format

KeyLetter Name

where KeyLetter describes the type of object being named and is one
of

F Function

f Function with linkable interface

T Data type

V Variable

OPTIONS
-e Demangle C++ function names with extended

attributes.

-m Leave C++ function names mangled.

-s Gives a summary of the contents of the named file.
Indicates the amount of space given to each type of
object.

-v Adds the size of each object to its description.

tqsfile1 All other arguments name Insight interface files to be
processed.
368

M
anual Pages
EXAMPLES

iiinfo foo.tqs

Displays the list of contents of the interface file foo.tqs.

SEE ALSO
iic, iiwhich
369

M
an

ua
l P

ag
es
NAME
iiusers - Display all LynxInsure++ licenses currently in use

SYNOPSIS
iiusers

DESCRIPTION
This command is used to display the LynxInsure++ licenses that are
currently in use. The information displayed includes the total number of
licenses available, the total number of licenses in use, the userids of all
users with licenses, and the time when each user’s license will expire and
become available for another user.

OPTIONS
none

EXAMPLES

iiusers

Display the current licenses in use. The output will look something like
this:

Licenses In Use (1 of 1)
===============
insrel - expires in 15 minutes

This example shows that user insrel currently has the single available
license, which will become available for another user in 15 minutes.

SEE ALSO
psrcdump, pslic
370

M
anual Pages
NAME
iiwhich - Search for and display an Insight interface description

SYNOPSIS
iiwhich [-compiler <compiler_name>] [-l]

[-v] [library_files] funcname

DESCRIPTION
This command searches a set of Insight interface files for definitions of
the named routines. For each routine, the corresponding definition is
displayed. If the interface is a linkable one, iiwhich will not be able to
display the actions taken by the interface, but it will indicate the
prototype for the function.

If any of the names on the command line have the suffix “.tqs” or
“.tqi”, they are taken to be Insight interface modules and added to the
list from which to search.

OPTIONS
-compiler name Use compiler name for option lookup.

-l Displays the list of .tqs/.tqi files in the order that
they will be processed. Useful for resolving conflicts
between multiple interface specifications.

-v Displays each .psrc file name as it is traversed,
preceded by a # character.

library_files Any files whose names end in the suffix “.tqs” or
“.tqi” are taken to be Insight interface files and are
added to the default list of interface modules in which
names will be searched.

funcname All other arguments are treated as function names and
are searched for in the standard interface modules (and
any others given as command line arguments or in
.psrc files). If a matching definition is found, its
source file and definition are displayed.
371

M
an

ua
l P

ag
es
EXAMPLES

iiwhich malloc

Searches for the definition of the C library function malloc.

iiwhich mylib.tqs myfunc1 myfunc2

Searches for definitions of functions myfunc1 and myfunc2 in both
the standard library interface modules and also the interface file
mylib.tqs.

SEE ALSO
iic, insight, psrcdump
372

M
anual Pages
NAME
imangle - Display LynxInsure++’s mangled C++ function names for

a given file

SYNOPSIS
imangle function_name filename

DESCRIPTION
This command searches the given file (and any headers and
#includes) for functions matching function_name. For each
match, the LynxInsure++ mangled name will be displayed along with a
filename and line number.

The mangled name is often useful to get LynxInsure++ to distinguish
between different versions of an overloaded function.

This can be used in conjunction with the function_ignore .psrc
option (see the “Configuration Files” section of the LynxInsure++
User’s Guide for more details about this option) to do no checking on
certain functions.

EXAMPLE

imangle func file.C

Displays the mangled name of function func in file file.C.

SEE ALSO
insight
373

M
an

ua
l P

ag
es
NAME
ins_ld - Link programs with Insight

SYNOPSIS
ins_ld [-Zlh] [-Zoi “option”]

[-Zop option_file] [-Zsl] [-Zvm]
[library_files] <linker_arguments>

DESCRIPTION
This command takes the place of your normal link command if you are
using Insight (typically the linker is called ld). This should only be used
if you are linking your program explicitly. If you are using the compiler
command to link your program, you should use the insight command.

OPTIONS
-Zlh Specify where on the command line the additional

Insight libraries should be placed - the -Zlh flag
(“link here”) is replaced with the names of the Insight
libraries. This is only necessary if the default location
is incorrect.

-Zoi “option” Treat option as a .psrc option. Multiple -Zop
files and -Zoi options will be processed in order from
left to right before any source files are processed.

-Zop option_file
Process the named file as though it were an additional
.psrc file. This allows options to be supplied on the
command line that override those of the other .psrc
files. Multiple -Zop files and -Zoi options will be
processed in order from left to right before any source
files are processed.

-Zsl Perform a “safe link”. Normally, Insight forces every
object file and library to be linked into the executable,
without exception. This can occasionally cause
conflicts if symbols are defined multiple Times New
Roman in different libraries. This option performs a
374

M
anual Pages
slower link that avoids such problems by only linking
files that are actually required. This option is tried
automatically if fault recovery is turned on (the
default).

-Zvm Enable verbose mode. Displays each command as it is
executed.

library_files Any files whose names end in the suffix .tqs are
taken to be Insight interface files and are processed in
conjunction with the source files on the command line.

<linker_arguments>
All other arguments are passed directly to your normal
linker (or the one specified in a .psrc file using a
linker directive).

EXAMPLES

insight -c hello.c
ins_ld -e start -o hello \

/usr/lib/crt0.o hello.o -lc

Compile and link the C source file hello.c.

SEE ALSO
insight, .psrc (lists configuration options)
375

M
an

ua
l P

ag
es
NAME
insight - Compile and link programs with Insight

SYNOPSIS
insight [-Zlh] [-Zoi “option”]

[-Zop option_file] [-Zsl] [-Zvm]
[library_files] <compiler_arguments>

DESCRIPTION
This command takes the place of your normal compiler. In addition to
compiling and linking your program, insight will insert code to
monitor memory accesses and check for runtime bugs.

If errors can be detected at compile time, an appropriate message will be
printed. Otherwise, all checks are done at runtime.

The pre-processor symbol __INSIGHT__ is automatically defined
whenever you are using insight, so you may use this to conditionally
include or exclude program fragments.

OPTIONS
-Zlh Specify where on the command line the additional

Insight libraries should be placed - the -Zlh flag
(“link here”) is replaced with the names of the Insight
libraries. This is only necessary if the default location
is incorrect.

-Zoi “option” Treat option as a .psrc option. Multiple -Zop
files and -Zoi options will be processed in order from
left to right before any source files are processed.

-Zop option_file
Process the named file as though it were an additional
.psrc file. This allows options to be supplied on the
command line that override those of the other .psrc
files. Multiple -Zop files and -Zoi options will be
processed in order from left to right before any source
files are processed.
376

M
anual Pages
-Zsl Perform a “safe link”. Normally, Insight forces every
object file and library to be linked into the executable,
without exception. This can occasionally cause
conflicts if symbols are defined multiple Times New
Roman in different libraries. This option performs a
slower link that avoids such problems by only linking
files that are actually required. This option is tried
automatically if fault recovery is turned on (the
default).

-Zvm Enable verbose mode. Displays each command as it is
executed.

library_files Any files whose names end in the suffix .tqs are
taken to be Insight interface files and are processed in
conjunction with the source files on the command line.

<compiler_arguments>
All other arguments are passed directly to your normal
compiler (or the one specified in a .psrc file using a
compiler directive).

EXAMPLES

insight -o hello hello.c

Compile and link the C source file hello.c.

insight mylib.tqs -c file1.c
insight mylib.tqs -c file2.c
insight -o myprog file1.o file2.o

These commands compile the files file1.c and file2.c, including
checks from the Insight interface file mylib.tqs. The resulting object
files are linked together into a program called myprog.

insight -Zoi “compiler gcc” -o foo foo.c
insight -o foo foo.c -Zoi “compiler gcc”
377

M
an

ua
l P

ag
es
These commands are completely equivalent and build the program foo
with the compiler gcc.

SEE ALSO
iic, ins_ld, .psrc (lists configuration options).
378

M
anual Pages
NAME
leaktool - Sort and filter Insight memory leak messages and reports

Also convert Insra output files from Insra-format
to and from text

SYNOPSIS
leaktool [-f filter_file] [-o output_file]

input_file

DESCRIPTION
LeakTool is a filter for Insight’s leak messages and summary reports.
LeakTool sorts leak messages (LEAK_SCOPE, LEAK_ASSIGN, etc.) in
descending order according to the size of the lost memory blocks. The
sorted leak messages are placed ahead of all other messages, which are
passed through unchanged. LeakTool also sorts the memory leak
summary, if present.

LeakTool sorts a leak summary not by the size of individual memory
blocks, but instead by the total amount of memory allocated on each
source line. This allows the quick identification of the most severe leaks
in a program, even in a large program containing many leaks.

LeakTool reads from the file specified by input_file. It can read
either the text output generated directly by Insight or the binary report
files created by Insra, which have the default extension rpt. If
input_file is ‘-’, LeakTool reads text from the standard input.

By default, LeakTool writes text to the standard output. If the -o option
is used, LeakTool instead creates a new Insra report file containing the
processed messages. This means that LeakTool can also be used to
convert Insra files to and from text (see the examples below).

OPTIONS
-f filter_file Filter any leak messages which resulted, either directly

or indirectly, from calling the functions listed in
filter_file. The given file must consist of a
whitespace-delimited list of function names.
379

M
an

ua
l P

ag
es
-o output_file Send the processed output to a new Insra report file,
instead of the standard output. If output_file
already exists, it is completely overwritten.

EXAMPLES

foo >& foo.txt
leaktool foo.txt

Processes the previously captured output file foo.txt.

foo |& leaktool -

Pipes data directly to LeakTool. The above two commands would result
in the same output from LeakTool.

leaktool -o sorted.rpt foo.rpt

Processes an Insra report file, placing the result in a new, sorted Insra
report file.

echo “red white blue” > filter.txt
foo >& leaktool -f filter.txt -

In the above example, any message which contains any of the function
names “red”, “white”, or “blue” in its stack trace would be filtered from
LeakTool’s output.

leaktool -o foo.rpt foo.txt

Converts a text Insight output file to an Insra report file.

leaktool foo.rpt > foo.txt
380

M
anual Pages
Converts an Insra report file to text.

WARNING
Insight output customized using the error_format .psrc option
may not be recognized by LeakTool.

NOTES
When processing an Insra report file, LeakTool separates messages
from different programs, but merges messages from different runs of the
same program.

SEE ALSO
.psrc (lists configuration options)

These commands are completely equivalent and build the program foo
with the compiler gcc.

SEE ALSO
iic, ins_ld, .psrc (lists configuration options)
381

M
an

ua
l P

ag
es
NAME
pslic - LynxInsure++ license manager

SYNOPSIS
pslic

DESCRIPTION
This command is used to add or delete licenses for all LynxInsure++
tools. You will need to have write permission for the .psrc file in the
main LynxInsure++ installation directory before running this program.
If you need to call LynxInsure++ for a password, you should be
prepared to run this command on the machine which will be running the
software.

OPTIONS
none

EXAMPLES

pslic

Modify the current licenses. The output will look something like this:

ParaSoft License Manager Version 1.0 (1/8/96)
Copyright (C) 1996 by ParaSoft Corporation

This program enables you to examine or alter the
licenses for your ParaSoft tools.

Machine id: LYNX-72769549
Network id: LYNX-80c03756

You have the following tools installed:

Insure++ 4.0
382

M
anual Pages
Current licenses
================

1: Insure++ 4.0, Network LYNX-0x80000000,
expires Mar 29, 1996

Options:
(A)dd a license
(D)elete a license
(M)odify a license
(S)how machine and network id
(E)xit and save changes
(Q)uit without saving changes

Choose one:

Option (S) displays the LynxInsure++ host ids for the current machine
and network. The output should look something like the following:

Machine id: LYNX-23003555
Network id: LYNX-80c03756

SEE ALSO
psrcdump
383

M
an

ua
l P

ag
es
NAME
psrcdump - Search for and display all currently active .psrc options

SYNOPSIS
psrcdump [-a] [-t tool] [-v]

DESCRIPTION
This command can be used to print out all .psrc options that are active
in the current directory when running a LynxInsure++ or other related
tools.

OPTIONS
-a Displays all options from the various .psrc files.

-t tool Specifies which tool’s options you would like to
display.

-v Displays each .psrc file name and path as it is
traversed, preceded by a ‘#’ character.

EXAMPLES

psrcdump -t codewizard

Searches all .psrc files and prints all options which apply to
CodeWizard.

SEE ALSO
codewizard, insight
384

M
anual Pages
NAME
tqsmerge - Merge Insight interface descriptions

SYNOPSIS
tqsmerge [-d] tqsfile1 tqsfile2 …

[-o tqsout]

DESCRIPTION
This command merges a set of Insight interface files into a single output.

OPTIONS
-d Report any duplicate interfaces which are discarded as

a result of the merge (interfaces appearing in later files
will override those found earlier).

-o tqsout Names the output file.

tqsfile1 … Names of individual Insight interface files that will be
combined.

EXAMPLES

tqsmerge foo.tqs bar.tqs -o mylib.tqs

Combines the two files foo.tqs and bar.tqs into the single file
mylib.tqs.

SEE ALSO
iic, iiinfo
385

M
an

ua
l P

ag
es
NAME
iic_body, iic_callback, iic_opaque_callback

 - Insight interface routines to specify callback
functions.

SYNOPSIS
<type> iic_body <name>(<arguments>) { ... }

void iic_callback(void (*f)(),
void (*template)());

void iic_opaque_callback(void (*f)());

WARNING
These functions may only be called from Insight interface modules
which are compiled with the special iic compiler. They may not be
inserted into regular code.

DESCRIPTION
These functions provide two ways of telling Insight that a function will
be used as a callback - being invoked from within some code which is not
compiled with Insight. Typical examples include code invoked from
utility functions such as qsort and scandir, signal handlers, and
callback functions in the X Window System and other graphical user
interfaces.

It is important to note that Insight does not require that you specify the
behavior of callback functions. These routines are provided only to
enhance the error checking performed at callback invocations by adding
user-level checks.

The two methods described on this manual page are mutually exclusive
for each callback - you should either use the iic_body method or the
iic_callback method, but not both.

The iic_body keyword may be inserted in the definition of any
function to indicate that it will be used in a callback role. Note that you
must provide interface specifications with the iic_body specifier,
even if the source code for the indicated function will be compiled with
386

M
anual Pages
Insight, and that you must provide interfaces for every function that will
be used as a callback.

iic_callback is used when specifying interfaces to functions which
install callbacks. It connects the user-supplied callback function pointer
with a “template” which is a statically declared interface function that
indicates the type and number of arguments expected by the callback,
and also any appropriate error checking that should be performed on
these arguments before invoking the callback.

In the simple (and common) case, in which you wish to simply make the
arguments to the called function opaque before invoking the callback, the
simpler interface iic_opaque_callback is provided.

In this case, you need to specify the callback behavior only for the
functions which register the callbacks - you need take no action for the
functions which will actually be invoked as callback.

EXAMPLES
Assume that the function myfunc1 is to be used as a callback function.
It has two arguments, both strings, and returns an integer result.

A suitable callback interface would be

int iic_body myfunc1(char *p1, char *p2)
{

iic_opaque(p1);
iic_opaque(p2);
return myfunc1(p1, p2);

}

Note that the interface makes both pointers opaque before invoking the
callback. This prevents Insight from generating spurious messages in the
case that the runtime system passes pointers to the callback which are not
known to Insight.

Note that this method requires that you make a separate interface for
every function in your application which will be used as a callback.

The alternative to this approach is to make an interface to the routine
387

M
an

ua
l P

ag
es
which registers the callback, using the iic_callback routine.
Assuming that the function install_callback is responsible for
this process we could, instead, make the following interfaces.

static int callback_template(char *p1, char *p2)
{

iic_opaque(p1);
iic_opaque(p2);
return callback_template(p1, p2);

}

int install_callback(void (*func)())
{

iic_func(func);
iic_callback(func, callback_template);
return install_callback(func);

}

This interface first declares a (static) template which shows how the
callback function will be invoked and also indicates the checks and/or
actions that should be performed on its arguments before its invocation.
It then uses the iic_callback function to connect the user-supplied
function pointer argument and the callback template.

Since the template merely renders the arguments opaque before making
the callback call, this interface could be re-coded more simply as

int install_callback(void (*func)())
{

iic_func(func);
iic_opaque_callback(func);
return install_callback(func);

}

This approach requires that you make interfaces only for those functions
which register callback procedures.
388

M
anual Pages
WARNING
The iic_callback function can only be used when the connection
between the function pointer and the callback template will be used
“immediately” and then dropped. For an explanation of what constitutes
immediate use, consult the section “Which to use: iic_callback or
iic_body?” on page 114 of the LynxInsure++ User’s Guide.

The iic_opaque_callback routine and iic_body keywords do
not suffer from the same problems and can always be used.

SEE ALSO
iic
389

M
an

ua
l P

ag
es
NAME
iic_exit - Specify that a Insight interface routine will not

return.

SYNOPSIS
void iic_exit(void);

WARNING
This function may only be called from Insight interface modules which
are compiled with the special iic compiler. It may not be inserted into
regular code.

DESCRIPTION
Calling this function from an Insight interface function description
indicates to the system that the function will terminate. This allows
Insight to take any necessary precautions, such as closing open files and
making summaries.

EXAMPLES
Execute the command iiwhich exit to see an example of the use of
this function.

SEE ALSO
iic
390

M
anual Pages
NAME
iic_declfunc, iic_func - Insight interface routines to

manipulate function pointers

SYNOPSIS
void iic_declfunc(void (*func)());

void iic_func(void (*func)());

WARNING
These functions may only be called from Insight interface modules
which are compiled with the special iic compiler. They may not be
inserted into regular code.

DESCRIPTION
iic_declfunc is used to tell Insight that the argument is a pointer to
a function.

iic_func is used in interface modules to check that the supplied
argument is a pointer to a function.

EXAMPLES
Both of these functions are used in the interface to the UNIX signal
function. Initially, iic_func is used to check that the user-supplied
argument is a function pointer. The value returned by signal is then
declared to be a function pointer with the iic_declfunc routine.

This is done so that when the user overrides the system’s default signal
handler with a custom one, the value returned will henceforth be
recognized to be a function pointer by Insight, even if its source code
was not compiled with the insight command.

SEE ALSO
iic
391

M
an

ua
l P

ag
es
NAME
iic_copy, iic_copyattr, iic_dest, iic_freeable,

iic_justcopy, iic_source,
iic_sourcei, iic_pointer,
iic_resize, iic_string - Insight interface
routines to check data blocks

SYNOPSIS
void iic_copy(void *to, void *from,

unsigned long nbytes);

void iic_copyattr(void *to, void *from);

void iic_dest(void *to,
unsigned long nbytes);

void iic_freeable(void *ptr);

void iic_justcopy(void *to, void *from,
unsigned long nbytes);

void iic_source(void *from,
unsigned long nbytes);

void iic_sourcei(void *from,
unsigned long nbytes);

void iic_pointer(void *ptr);

void iic_resize(void *ptr,
unsigned long newsize);

int iic_string(char *str);

int iic_string(char *str, int nbytes);

WARNING
These functions may only be called from Insight interface modules
which are compiled with the special iic compiler. They may not be
inserted into regular code.
392

M
anual Pages
DESCRIPTION
These routines are used to check that memory blocks are large enough to
perform various operations.

iic_source and iic_dest simply check that the indicated block of
memory is large enough to read or write the indicated number of bytes,
respectively. iic_sourcei is equivalent to iic_source, but
performs an additional check that the block of memory is completely
initialized.

iic_justcopy indicates to the system that the indicated number of
bytes will be copied between the two buffers. No checking is performed
on the two memory regions. This routine is mostly used to tell Invision
about the copy so that it can update its internal record of data values.

iic_copy essentially combines the actions of iic_source,
iic_dest, and iic_justcopy to move data from one buffer to
another, checking both.

iic_copyattr copies the attribute properties (e.g., opaque,
uninitialized, out of range) from one pointer to another. It is used to
ensure that a return value from a function has the same properties as
another pointer. For an example, see the interface to strcpy.

iic_resize is used to indicate to Insight that the memory block
indicated by the first argument has changed size.

The iic_string routine exists in two forms. With only one argument,
it checks to see that the supplied pointer points to a valid, NULL
terminated string. With a second argument, it checks at most that number
of characters before giving up. In either case, the number of characters in
the string is returned, or -1 if some error prevents the string from being
checked successfully.

iic_pointer simply checks that the argument is a valid pointer.

iic_freeable checks that the pointer argument indicates a block of
dynamically allocated memory that could be freed. No other properties
of the block are checked.
393

M
an

ua
l P

ag
es
EXAMPLES
These functions form the basis for most of the library checking
performed by Insight and can be found in many of the interface modules.

The use of the iic_string functions is most clearly demonstrated in
the interfaces for functions such as strcpy, strncpy and strlen.

SEE ALSO
iic
394

M
anual Pages
NAME
iic_alloc, iic_alloca, iic_alloci, iic_allocs,

iic_realloc, iic_save, iic_unalloc,
iic_unallocs
- Insight interface routines to allocate and free
memory blocks

SYNOPSIS
void iic_alloc(void *ptr,

unsigned long size);

void iic_alloca(void *ptr,
unsigned long size);

void iic_alloci(void *ptr,
unsigned long size);

void iic_allocs(void *ptr,
unsigned long size);

void iic_realloc(void *old, void *new,
unsigned long size);

void iic_save(void *ptr);

void iic_unalloc(void *ptr);

void iic_unallocs(void *ptr);

WARNING
These functions may only be called from Insight interface modules
which are compiled with the special iic compiler. They may not be
inserted into regular code.

DESCRIPTION
These routines are used to indicate that routines allocate and/or free areas
of memory. The first four routines each indicate that their first argument
395

M
an

ua
l P

ag
es
is a pointer to size bytes of memory of various types, as follows:

iic_alloc Uninitialized heap memory, such as that returned from
the standard malloc routine.

iic_alloca Stack memory, such as that allocated with alloca.

iic_alloci Initialized heap memory, such as that obtained from
the calloc function, or which has been initialized by
the called routine itself.

iic_allocs Static memory. The pointer points to a region of
statically allocated (probably global) memory.

iic_realloc is used to indicate that a block has changed size and
(possibly) location.

iic_save is used to prevent Insight from diagnosing memory leaks on
a block of memory. In certain situations (for example, the callbacks to
functions in windowing systems) a pointer is passed to a library routine
which memorizes it internally. This is indicated with the iic_save
call.

iic_unalloc indicates that the associated block has been freed.

iic_unallocs undoes the effect of a call to iic_allocs. No
checking is performed on the indicated block - it simply disappears.

EXAMPLES
The interfaces to standard routines such as malloc, calloc, and
free use these routines.

SEE ALSO
iic
396

M
anual Pages
NAME
iic_opaque, iic_opaque_type, iic_opaque_subtype -

Insight interface routines to inhibit checking on
data types

SYNOPSIS
void iic_opaque(void *ptr);

void iic_opaque_type(<typename>);

void iic_opaque_subtype(<typename>,
<typetag>);

WARNING
These functions may only be called from Insight interface modules
which are compiled with the special iic compiler. They may not be
inserted into regular code.

DESCRIPTION
iic_opaque can be used in any interface function to indicate that the
pointer should never be checked for errors.

iic_opaque_type and iic_opaque_subtype may be called
from the iic_startup routine in an interface file to indicate that the
indicated structure type or subtype should never be checked.

SEE ALSO
iic
397

M
an

ua
l P

ag
es
NAME
iic_input_format, iic_output_format, iic_strlenf,

iic_vstrlenf - Insight interface routines to
handle formatted I/O

SYNOPSIS
void iic_input_format(char *format);

void iic_output_format(char *format);

void iic_post_input_format(int ntokens);

int iic_strlenf(char *format, ...);

int iic_vstrlenf(char *format, va_list v);

WARNING
These functions may only be called from Insight interface modules
which are compiled with the special iic compiler. They may not be
inserted into regular code.

DESCRIPTION
iic_input_format checks that the indicated string and the
arguments following it can be used as in a call to scanf. It should be
called before invoking the actual routine being checked to determine if
the argument types are valid. After calling the function, the routine
iic_post_input_format can be called to check that none of the
arguments corrupted memory. Only ntokens arguments will be
checked, unless no argument is passed to
iic_post_input_format, in which case all arguments are checked

iic_output_format checks that the indicated string and the
arguments following it can be used as in a call to printf.

iic_strlenf and iic_vstrlenf return the length of a string after
398

M
anual Pages
substitution of arguments according to the printf conventions.

EXAMPLES
iic_input_format is used in the interface to scanf.

iic_output_format is used in the interface to printf.

iic_strlenf is used in the interface to sprintf.

iic_vstrlenf is used in the interface to vsprintf.

SEE ALSO
iic
399

M
an

ua
l P

ag
es
NAME
iic_startup - Initialization module for Insight interfaces

SYNOPSIS
void iic_startup(void);

DESCRIPTION
A function with this name may be placed in any Insight interface file. It
contains calls which initialize important properties of the functions and
data structures in that module. Any calls in this function will be executed
prior to any interface code.

EXAMPLES
Executing the command

iiwhich iic_startup

lists all the interface files which contain iic_startup routines, and
their contents.

SEE ALSO
iic

NAME
iic_c_string, iic_error, iic_expand_subtype,

iic_numargs, iic_warning - Insight
interface utility routines

SYNOPSIS
char *iic_c_string(char *string);

void iic_error(int code, char *fmt, ...);

void iic_expand_subtype(<typename>,
400

M
anual Pages
<typetag>);

void iic_numargs(void);

void iic_warning(char *string);

WARNING
These functions may only be called from Insight interface modules
which are compiled with the special iic compiler. They may not be
inserted into regular code.

DESCRIPTION
iic_c_string converts a string into a format consistent with the C
language quoting conventions. It is useful for formatting error messages.

iic_error generates a standard format Insight error message with the
indicated error code (either USER_ERROR or RETURN_FAILURE).

iic_expand_subtype is used to implement “stretchy arrays”. The
two arguments specify a structure tag and subtype and tell Insight that
the indicated structure element can change at runtime.

iic_numargs returns the number of arguments with which a function
has been called.

Calling iic_warning from an interface causes the indicated string to
be displayed every time the function is called. This string appears during
compilation with the interface, not at runtime. It can be used to print
messages informing the user that some feature is not fully checked.

EXAMPLES
iic_c_string and iic_error are used in many of the supplied
interface functions. For one example, see the interface to fopen.

iic_numargs is used in the interface to scanf.

iic_warning is used in the interface to the UNIX ioctl function to
indicate that the second and third arguments (which have widely varying
401

M
an

ua
l P

ag
es
data types) will not be checked.

SEE ALSO
iic
402

M
anual Pages
NAME
__dots__ - Placeholder for a variable argument list in

interface files.

SYNOPSIS
__dots__

WARNING
This value may only be used in Insight interface modules which are
compiled with the special iic compiler. It may not be inserted into
regular code.

DESCRIPTION
This pseudo-variable is used to indicate where in a function argument list
the variable arguments indicated by the “...” notation should be
inserted.

EXAMPLES
Execute the command iiwhich printf to see an example of the use
of this function.

SEE ALSO
iic
403

M
an

ua
l P

ag
es
jklfdjsla;fdsa
404

Index
Index

Index

Index
character 120
%a, filename macro 122
%c, error category macro 133
%c, filename macro 122
%d, date macro 133
%D, filename macro 123
%d, filename macro 123
%f, filename macro 133
%F, full pathname macro 133
%h, hostname macro 133
%l, line number macro 133
%n, filename macro 123
%p, filename macro 123
%p, process ID macro 133
%R, filename macro 122
%r, filename macro 122
%T, filename macro 122
%t, filename macro 122
%t, time macro 133
%V, filename macro 123
%v, filename macro 123
.ins_orig file extension 138
.insight files 119
.insight options

checking_uninit 19
summarize 13

.psrc options
assert_ok 41
auto_expand 42
compile and runtime 124
compile qualifier 124
compile time 126–142
compiled-in 125

demangle_method 143
exename 144

coverage_switches 51, 52, 149
error_format 32, 33, 34, 49

exit_on_error 35
expand 42
free_trace 36
Insra 153–154

port 66
visual 64

interface_library 88, 102
leak_sort 47
leak_trace 47
malloc_trace 36, 47
no qualifier 124
rename_files 71
report_banner 30
report_file 30, 31, 50, 60, 61,

62
report_limit 34
report_overwrite 30
runtime 142–152
runtime qualifier 124
signal_catch 83
signal_ignore 83
source_path 37
stack_internal 35, 77, 79
stack_limit 36
summarize 44, 46, 48, 51, 57
suppress 37, 38, 39, 115
suppress_output 40
suppress_warning 40
symbol_table 35
trace 77, 79
trace_banner 78
trace_file 78
unsuppress 39, 40, 41, 249

.tqi file extension 371

.tqs file extension 88, 101, 366, 371

.tqs version (%T), in filenames 122

.tqs version (%t), in filenames 122
405

Index

In
de

x

<argument #> 157
<return> 157
\x escape sequence 131
__dots__ 110
__INSIGHT__ pre-processor macro 53,

82
_Insight_cleanup 82
_Insight_list_allocated_memo

ry 70, 74
_Insight_mem_info 69, 73
_Insight_ptr_info 69, 73
_Insight_set_option 120
_Insight_trap_error 71, 81
16-bit machines 20
32-bit machines 20
64-bit machines 20

A
%a, filename macro 122
adjacent memory blocks 8
alias (error sub-category) 24, 183
Alpha, DEC 20
anonymous structures/unions 43
ANSI compilers 23
API

_Insight_cleanup 82
_Insight_list_allocated_m

emory 70, 74
_Insight_mem_info 69, 73
_Insight_ptr_info 69, 73
_Insight_trap_error 71

appending to report file 30
architecture (%a), in filenames 122
architectures 103, 120
<argument #> 157
arguments

checking ranges 26
type checking 23–26

arrays
expandable 41, 126

assert_ok, .psrc option 41
auto_expand 42

B
badcast.c 165, 167, 197, 200
baddecl1.c 170
baddecl2.c 170
badform1.c 174
badform2.c 176
badform3.c 177
badform4.c 180
badint.c 181
badparm1.c 184
badparm2.c 186
badparm3.c 188
badparm4.c 190
badparm5.c 192
bag.C 94
bag.h 94
bag_i.C 95
bagi.C 94
bbbbbbbbb 156
big-endian 20
bounds overflow 7, 155
breakpoints 81
bugsfunc.c 70
building interfaces 96
built-in

functions 130
types 130
variables 130

Bus error 81
byte swapping 20

C
%c, error category macro 133
%c, filename macro 122
call stack

memory allocation context 147
calloc 16, 105
case sensitivity 120
CC 143
checking_uninit, .insight

option 19
chunks, memory 46
client-server programming 31, 33
406

Index

Index
command line switches
iic 366
iiinfo 368
iiwhich 371
ins_ld 374
insight 376
leaktool 379
psrcdump 384
tqsmerge 385

comments, in configuration files 120
compatible (error sub-category) 24,

173, 183
compilation time (%d), in filenames 123
compile qualifier, .psrc options 124
compile time warnings

C++ 25
compiler 127, 128, 367

using multiple 103
compiler (%c), in filenames 122
compiler built-in

functions 130
types 130
variables 130

compiler switches, insight 376
compilers

using multiple 120
complex data types 107
configuration files

insight 29
old (.insight) 119

contacting Technical Support 3
context based error suppression 38
contributing interface modules 116
control-C 82
conventions 2
copy, READ_UNINIT_MEM

sub-category 17
copywild.c 194
Courier font 2
coverage_switches 51, 52, 149
cross compiling 139
ctime 105
CTRL-C 82
customer sites 28
customer support 3, 106

D
%d, date macro 133
%D, filename macro 123
%d, filename macro 123
dangerous bend icon 2
dangling pointers 15–16, 204
data representations 20
date (%d), in error report banners 133
date and time, on error reports 33
debuggers

using Insight with 69
DEC Alpha 20
defaults

report style 29
diagrams, memory overflow 155
directories

names 120
searching for source code 36

disabling runtime checks 148
distributed programs 33
__dots__ 110
dynamic memory

common bugs 15
pointers to blocks 10
using Insight’s library 137

E
EINTR 27
emacs, customizing error reports for 32
enabling error codes 40
endian-ness 20
environment variables

in filenames 103, 121, 123
error category (%c), in error report

banners 133
error codes 157–340

disabled 25, 158
enabled 158
enabling 40
first occurrence 34
sub-categories 38
suppressing messages 37
suppressing messages by context 38
407

Index

In
de

x

error report format
date (%d macro) 133
error category (%c macro) 133
filename (%f macro) 133
hostname (%h macro)f 133
line number (%l macro) 133
pathname (%F macro)f 133
process ID (%p macro) 133
time (%t macro) 133

error summaries 43
error_format 32, 33, 34, 49
errors

exiting after 35
in system calls 26
suppressing by context 38

examples
badcast.c 165, 167, 197, 200
baddecl1.c 170
baddecl2.c 170
badform1.c 174
badform2.c 176
badform3.c 177
badform4.c 180
badint.c 181
badparm1.c 184
badparm2.c 186
badparm3.c 188
badparm4.c 190
badparm5.c 192
bag.C 94
“bugs” summary 45
bugsfunc.c 70
copywild.c 194
“coverage” summary 51
expdangl.c 205
expnull.c 207
exprange.c 202
expucmp.c 213
expudiff.c 216
expuptr.c 210
expwld1.c 316
expwld2.c 318
freebody.c 219
freedngl.c 221
freeglob.c 224
freelocl.c 227

freenull.c 230
freeuptr.c 233
freewild.c 321
funcbad.c 235
funcnull.c 237
funcuptr.c 240
funcwild.c 324
heapbad.c 243
hello.c 5
hello2.c 8
hello3.c 10
hello4.c 15
interfaces

C 92
C++ 94

leakasgn.c 250
leakfree.c 254
leakret.c 257
“leaks” summary 47
leakscop.c 260
LeakTool 49
mymal.c 93
mymal_i.c 92
mymaluse.c 92
parmdngl.c 266
parmnull.c 269
parmrnge.c 263
parmuptr.c 272
parmwld1.c 327
parmwld2.c 329
readdngl.c 277
readindx.c 274
readnull.c 279
readover.C 288
readovr1.c 282
readovr2.c 284
readovr3.c 286
readuni1.c 292
readuni2.c 294
readuptr.c 296
readwld1.c 332
readwld2.c 334
retdngl.c 298
retfail.c 300
retinc.c 303
stretch2.c 43
408

Index

Index
trace.C 79
unuasign.c 305
unuvar.c 306
usererr.c 308
virtbad1.C 311
virtbad2.C 313
virtbad3.C 312
warn.c 247, 248
writdngl.c 344
writindx.c 341
writnull.c 346
writover.c 349
writuptr.c 351
writwld1.c 337
writwld2.c 339

exception handlers 81, 110
executable directory (%V), in

filenames 123
executable name (%v), in filenames 123
execution time (%D), in filenames 123
exit, after errors 35
exit_on_error 35
expand 42
expandable arrays 41, 126
expdangl.c 205
expnull.c 207
EXPR_NULL 172
exprange.c 202
expucmp.c 213
expudiff.c 216
expuptr.c 210
expwld1.c 316
expwld2.c 318
extensions, see file extensions

F
%F, full pathname macro 133
%f, filename macro 133
file extensions

.ins_orig 138

.tqi 371

.tqs 88, 101, 366, 371
file permissions 27
filename (%f), in error report banners 133

filenames 120
.tqs version (%T macro) 122
.tqs version (%t macro) 122
architecture (%a macro) 122
compilation time (%d macro) 123
compiled with (%c macro) 122
executable directory (%V macro) 123
executable name (%v macro) 123
execution time (%D macro) 123
expanding macros in 103, 121
Insure++ version (%R macro) 122
Insure++ version (%r macro) 122
process ID (%p macro) 123
reports 30
unique numeric extension (%n

macro) 123
using environment variables 123

files
limit on open 27
non-existent 27

first error 34
flexible arrays 41, 126, 134
fonts (in manual) 2
fork 31, 33
fprintf, see printf
free 16, 75, 105
free_trace 36
freebody.c 219
freedngl.c 221
freeglob.c 224
freeing memory 15
freeing memory twice 15
freeing static memory 16
freelocl.c 227
freenull.c 230
freeuptr.c 233
freewild.c 321
fscanf, see scanf
fseek 26
funcbad.c 235
funcnull.c 237
function

prototypes 23
function call stack

memory allocation context 147
function prototypes, used as interfaces 98
409

Index

In
de

x

functions
mismatched arguments 23–26
pointers to 8
return types, inconsistent 302
suppressing errors in individual 38

funcuptr.c 240
funcwild.c 324

G
g++ 128
gcc 127, 143, 367
getenv 105
gets checking 22
global variables 7
GNU emacs, customizing error reports

for 32

H
%h, hostname macro 133
handlers, signal 81
heapbad.c 243
hello.c 5
hello2.c 8
hello3.c 10
hello4.c 15
help 3
hostname 33
hostname (%h), in error report banners 133

I
I/O 21, 27, 81
ignoring return value 12
iic 88, 101, 359

-compiler switch 366
-t switch 366
-v switch 366

iic_alloc 101, 104
iic_alloci 105
iic_allocs 105
iic_copy 101, 104

iic_dest 104
iic_error 87, 104
iic_input_format 110
iic_output_format 110
iic_source 104
iic_sourcei 104
iic_startup 109
iic_string 105
iic_strlenf 110
iic_unalloc 105
iic_warning 247
iiinfo 103
iiwhich 98–101, 103, 105
incompatible (error sub-category) 24,

173, 183
incompatible declarations 21
inconsistent return types 302
.ins_orig file extension 138
__INSIGHT__ pre-processor macro 82,

53
insight

at customer sites 28
number of error messages 14
report file 30
runtime functions 69
using interface files 88
-Zoi switch 119, 125, 374, 376
-Zop switch 119, 125

.insight files 119

.insight options
checking_uninit 19
summarize 13

_Insight_cleanup 82
_Insight_list_allocated_memo

ry 70, 74
_Insight_mem_info 69, 73
_Insight_ptr_info 69, 73
_Insight_set_option 120
_Insight_trap_error 71
Insra 30, 51, 139, 148

.psrc options 153–154
port 66
visual 64

insra 139, 148
insra 139, 148
Insure++ version (%R), in filenames 122
410

Index

Index
Insure++ version (%r), in filenames 122
int vs. long 132
interface_library 88, 102

for multiple platforms 103, 121
PARASOFT variable 121

interfaces 91–116
contributing 116
examples

C 92
C++ 94

getting started with iiproto 98
getting started with iiwhich 100
interface functions 359–364
linkable 371
strategy for creating 96
writing 100

intermittent errors 17
interrupted system calls 27
interrupts 82

K
keyboard interrupt 82
keywords, in configuration files 120

L
%l, line number macro 133
LEAK_ASSIGN 12
leak_combine 46
LEAK_FREE 12
LEAK_RETURN 12
LEAK_SCOPE 12
leak_sort 47
leak_trace 47
leakasgn.c 250
leakfree.c 254
leakret.c 257
leaks, memory 10–14
leaks, summarize keyword 46, 48
leakscop.c 260
LeakTool 48
leaktool 50, 51
libraries

checking arguments to 26
licenses 370, 382
line number (%l), in error report

banners 133
linkable interfaces 371
linker switches, ins_ld 374
linking with Insight 374, 377
little-endian 20
local variables 7
location

suppression errors at a specific 38
long vs. int 132
LynuxWorks, contacting 3

M
machine id 383
machine name 33
macros, pre-defined 53
malloc 7, 10, 16, 27, 105

using Insight’s 137
malloc_trace 36, 47
manual

conventions 2
memcpy 282
memory

adjacent blocks 8
allocation 15
blocks containing pointers 12
chunks 46
corruption 5, 155
dynamically allocated 10
leaks 10–14
leaks, summary of 46
overflow 23, 155
running out of 14
shared 27
usage summary 46
using uninitialized 17

merging report files 30
mismatched arguments 23–26
multiple return types 302
multiprocessing 33
mymal.c 93
mymal_i.c 92
411

Index

In
de

x

mymaluse.c 92

N
%n, filename macro 123
network id 383
no qualifier, .psrc options 124
non-existent files 27
number of error messages 14

O
opaque data types 142
opaque pointers 41
open file limit 27
orphaned memory 10–14
other (error sub-category) 173, 183
out of memory 14
outstanding, summarize

keyword 46, 47, 48
overflow

bounds of object 7
diagrams 155
memory 23, 155

overwriting memory 7

P
%p, filename macro 123
%p, process ID macro 133
parallel processing 31, 33
PARM_BAD_RANGE

overflow diagrams 156
parmdngl.c 266
parmnull.c 269
parmrnge.c 263
parmuptr.c 272
parmwld1.c 327
parmwld2.c 329
passwords 370, 382
pathname (%F), in error report banners 133
PC 20
performance 148

permissions, file 27
personal computers 20
pointer (error sub-category) 183, 192
pointer reassignment 10
pointers 8

dangling 15–16, 204
function 8
not equivalent to integers 20
NULL 8
reusing free’d blocks 15
uninitialized 8
unrelated 8
wild 320

port, Insra .psrc option 66
portability 165, 167, 196, 199
porting 103, 120
character 120
ppppppppp 156
pre-defined macros

__INSIGHT__ 53, 82
pre-processor symbols 53
printf 87, 105, 110, 173–180, 362
printf checking 21
process ID 33
process ID (%p), in error report

banners 133
process ID (%p), in filenames 123
production code 106
prototypes 23
prototypes, function, used as interfaces 98
.psrc options

assert_ok 41
auto_expand 42
compile and runtime 124
compile qualifier 124
compile time 126–142
compiled-in 125

demangle_method 143
exename 144

coverage_switches 51, 52, 149
error_format 32, 33, 34, 49
exit_on_error 35
expand 42
free_trace 36
Insra 153–154

port 66
412

Index

Index
visual 64
interface_library 88, 102
leak_sort 47
leak_trace 47
malloc_trace 36, 47
no qualifier 124
rename_files 71
report_banner 30
report_file 30, 31, 50, 60, 61,

62
report_limit 34
report_overwrite 30
runtime 142–152
runtime qualifier 124
signal_catch 83
signal_ignore 83
source_path 37
stack_internal 35, 77, 79
stack_limit 36
summarize 44, 46, 48, 51, 57
suppress 37, 38, 39, 115
suppress_output 40
suppress_warning 40
symbol_table 35
trace 77, 79
trace_banner 78
trace_file 78
unsuppress 39, 40, 41, 249

Q
qsort 111

R
%R, filename macro 122
%r, filename macro 122
read, READ_UNINIT_MEM

sub-category 18
READ_OVERFLOW

overflow diagrams 155
READ_UNINIT_MEM

comparison with
READ_UNINIT_PTR 19

copy sub-category 17
read sub-category 18

READ_UNINIT_PTR
comparison with

READ_UNINIT_MEM 19
readdngl.c 277
readindx.c 274
readnull.c 279
readover.C 288
readovr1.c 282
readovr2.c 284
readovr3.c 286
readuni1.c 292
readuni2.c 294
readuptr.c 296
readwld1.c 332
readwld2.c 334
realloc 16
rename_files 71
repeated errors 34
replacing malloc 137
report summaries 43
report_banner 30
report_file 30, 31, 50, 60, 61, 62
report_limit 34
report_overwrite 30
reports

appending to file 30
default behavior 29
directing to a file 30
filename generation 30

retdngl.c 298
retfail.c 300
retinc.c 303
<return> 157
return values

checking automatically 26
ignoring 12

RETURN_FAILURE 16, 26–27, 106, 209,
232, 271, 363

rrrrrrrrr 156
running out of memory 14
runtime checking 148
runtime qualifier, .psrc options 124
413

Index

In
de

x

S
safe link 374, 377
scandir 111
scanf 173–180, 362
scanf checking 21
search for source code 36
shared memory 7, 27
sign (error sub-category) 24, 173, 183
signal 110
signal handlers 81, 110
signal_catch 83
signal_ignore 83
Signals 81–??
16-bit machines 20
64-bit machines 20
sizeof operator 132
sorting leak summaries 48
source directories 36
source_path 37
speed 148
sprintf, see printf
sqrt 308
sscanf, see scanf
stack backtrace

memory allocation context 147
stack trace 29, 35
stack_internal 35, 77, 79
stack_limit 36
static variables 7
stderr 29, 30
stretch2.c 43
stretchy arrays 41, 126, 134
strings

declaring in interfaces 359
errors using 17, 285

strncpy 17, 283
structure, variable length 41, 126
structures, anonymous 43
sub-categories 38
suffixes, see file extensions
summaries 43

sorting 48
summarize 57

bugs 44

coverage 51
leaks 13, 46, 48

support 3
suppress 37, 38, 39, 115
suppress_output 40
suppress_warning 40
suppressing

C++ warnings 40
error messages 37
warnings 40

suppressing error messages
by context 38

switches
iic 366
iiinfo 368
iiwhich 371
ins_ld 374
insight 376
leaktool 379
psrcdump 384
tqsmerge 385

symbol_table 35
system calls 26, 27
system name 33

T
%T, filename macro 122
%t, filename macro 122
%t, time macro 133
technical support 3
termination on errors 35
32-bit machines 20
time (%t), in error report banners 133
time and date, on error reports 33
Total Quality Software 27
.tqi file extension 371
.tqs file extension 366, 371, 88, 101
trace 77, 79
trace.C 79
trace_banner 78
trace_file 78
tracing 77–??

output to a file 78
turning on 77
414

Index

Index
typical output 77
type promotion 132
type-checking, via interfaces 98
typedef checking 24, 183, 187
typefaces 2
typewriter font 2

U
uninitialized memory 17

options in detection of 19
unintialized

pointers 19
union (error sub-category) 183
unions, anonymous 43
unrepeatable errors 17
unsuppress 39, 40, 41, 249
unuasign.c 305
unused variables 19
unuvar.c 306
USER_ERROR 363
usererr.c 308
using interfaces 86

V
%V, filename macro 123
%v, filename macro 123
variable arguments 110, 363, 364
variable declarations

incompatible 21
variable length structures 41, 126
variables

uninitialized 17
unused 19

verbose 375, 377
vfprintf 363
virtbad1.C 311
virtbad2.C 313
virtbad3.C 312
visual, Insra .psrc option 64

W
warn.c 247, 248
warnings

compile time 25
suppressing 40

wild pointers 320
wild-cards 37
writdngl.c 344
WRITE_OVERFLOW

overflow diagrams 155
writindx.c 341
writing interfaces 96
writnull.c 346
writover.c 349
writuptr.c 351
writwld1.c 337
writwld2.c 339
wwwwwwwww 156

X
\x escape sequence 131
X Window System 110, 111
XtAddCallback 113

Z
-Zlh, ins_ld switch 374
-Zlh, insight switch 376
-Zoi, ins_ld switch 374
-Zoi, insight switch 119, 125, 376
-Zop, ins_ld switch 374
-Zop, insight switch 119, 125, 376
-Zsl, ins_ld switch 374
-Zsl, insight switch 377
-Zvm, ins_ld switch 375
-Zvm, insight switch 377
415

Index

In
de

x

416

	LynxInsure++ User’s Guide
	Table of Contents
	List of Figures
	Part I
	LynxInsure++ User’s�Guide
	Introduction
	Conventions used in this manual
	If you get stuck

	Insight
	Memory corruption
	Pointer abuse
	Memory leaks
	Should memory leaks be fixed?
	Finding all memory leaks
	Dynamic memory manipulation
	Strings
	Uninitialized memory
	Uninitialized memory detection options
	Unused variables
	Data representation problems
	Incompatible variable declarations
	I/O statements
	Mismatched arguments
	C++ compile time warnings
	Invalid parameters in system calls
	Unexpected errors in system calls
	Achieving Total Quality Software

	Insight Reports
	Default behavior
	The report file
	Customizing the output format
	Displaying process information
	Displaying the time at which the error occurred
	Displaying repeated errors
	Limiting the number of errors
	Changing stack traces
	Searching for source code
	Suppressing error messages
	Suppressing error messages by context
	Suppressing C++ warning messages
	Suppressing other warning messages
	Enabling error messages
	Opaque pointers
	“Stretchy” arrays
	Report summaries
	The “bugs” summary
	The “leak” summaries
	Sorting “leak” summaries with LeakTool
	The “coverage” summary

	Selective Checking
	Insra
	The Insra display
	Sending messages to Insra
	Viewing and navigating
	Deleting messages
	Rebuild/Kill process
	Viewing source files
	Selecting an editor
	Saving/loading messages to a file
	Help
	Troubleshooting

	Interacting with Debuggers
	Available functions
	Sample debugging session

	Tracing
	Turning tracing on
	Directing tracing output to a file
	Example

	Signals
	Signal handling actions
	Interrupting long-running jobs
	Which signals are trapped?

	Code Insertions
	Debugging the hard way
	An easier solution
	An example
	Using the interface
	Conclusions

	Interfaces
	What are interfaces for?
	A C example
	A C++ example
	The basic principles of interfaces
	Interface creation strategy
	Trivial interfaces - function prototypes
	Using iiwhich to find an interface
	Writing simple interfaces
	Using interfaces
	Ordering of interfaces
	Working on multiple platforms or with multiple compilers
	Common interface functions
	Checking for errors in system calls
	Using Insight in production code
	Advanced interfaces: complex data types
	Interface esoterica
	Callbacks
	Using iic_callback
	Using iic_body
	Which to use: iic_callback or iic_body?
	Conclusions

	Part II
	LynxInsure++ Reference Guide
	Configuration Files
	Format
	Working on multiple platforms or with multiple compilers
	Option values
	Filenames
	Options at runtime and compile time
	Using -Zop and -Zoi
	Compiled-in options
	Options used by Insight
	Options used by Insra

	Memory Overflow
	Overflow diagrams

	Error Codes
	Programming Insight
	Control routines
	Memory block description routines

	Interface Functions
	Manual Pages
	Index

