LynxInsure++ User’s Guide

Lynxinsure++ Release 4.0

DOC-0512-00

Product names mentioned in Lynxlnsure++ User’s Guide are trademarks of their respective manufacturers and are used
here only for identification purposes.

Copyright © 1993 - 2002 by ParaSoft Corporation. All rights reserved.
Copyright © 1987 - 2002, LynuxWorks, Inc. All rights reserved.

Printed in the United States of America.

All rights reserved. No part of Lynxlnsure++ User’s Guide may be reproduced, stored in aretrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise, without the
prior written permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; al such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for any
indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in al cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

Table of Contents

Table of Contents

Lynxinsure++ User’s Guide

Introduction 1

Conventions used in this manual, 2
If you get stuck, 3

Insight 5

Memory corruption, 5

Pointer abuse, 8

Memory leaks, 10

Should memory leaks be fixed?, 13
Finding all memory leaks, 14
Dynamic memory manipulation, 15
Strings, 17

Uninitialized memory, 17
Uninitialized memory detection options, 19
Unused variables, 19

Data representation problems, 20
Incompatible variable declarations, 21
I/O statements, 21

Mismatched arguments, 23

C++ compile time warnings, 25
Invalid parametersin system calls, 26
Unexpected errorsin system calls, 26
Achieving Total Quality Software, 27

Table of Contents

Insight Reports

Default behavior, 29

The report file, 30

Customizing the output format, 32
Displaying process information, 33
Displaying the time at which the error occurred, 33
Displaying repeated errors, 34

Limiting the number of errors, 35
Changing stack traces, 35

Searching for source code, 36

Suppressing error messages, 37
Suppressing error messages by context, 38
Suppressing C++ warning messages, 40
Suppressing other warning messages, 40
Enabling error messages, 40

Opaque pointers, 41

“Stretchy” arrays, 41

Report summaries, 43

The“bugs’ summary, 44

The “leak” summaries, 46

Sorting “leak” summaries with LeakTool, 48
The “coverage” summary, 51

Table of Contents

The Insra display, 56

Sending messages to Insra, 60
Viewing and navigating, 62

Deleting messages, 62

Rebuild/Kill process, 64

Viewing source files, 64

Selecting an editor, 64
Saving/loading messagesto afile, 65
Help, 65

Troubleshooting, 66

Interactingwith Debuggers. 69

Available functions, 69
Sample debugging session, 70

Tracing e e 77

Turning tracing on, 77
Directing tracing output to afile, 78
Example, 79

Signals 81

Signal handling actions, 81
Interrupting long-running jobs, 82
Which signals are trapped?, 82

Table of Contents

Codelnsertions

Debugging the hard way, 85
An easier solution, 86

An example, 86

Using the interface, 88
Conclusions, 89

Interfaces

What are interfacesfor?, 91

A C example, 92

A C++ example, 94

The basic principles of interfaces, 96
Interface creation strategy, 96

Trivial interfaces - function prototypes, 98
Usingi i whi ch tofind an interface, 98
Writing simple interfaces, 100

Using interfaces, 101

Ordering of interfaces, 102

Working on multiple platforms or with multiple compilers, 103
Common interface functions, 104

Checking for errorsin system calls, 105
Using Insight in production code, 106
Advanced interfaces: complex datatypes, 107
Interface esoterica, 109

Callbacks, 110

Usingi i c_cal | back, 112

Usingi i c_body, 113
Whichtouse:iic_call back oriic_body? 114
Conclusions, 115

Table of Contents

Lynxinsure++
Reference Guide

ConfigurationFiles 119
Format, 120
Working on multiple platforms or with multiple compilers, 120
Option values, 121
Filenames, 122
Options at runtime and compile time, 124
Using - Zop and - Zoi , 125
Compiled-in options, 125
Options used by Insight, 126
Options used by Insra, 153

Memory Overflow 155
Overflow diagrams, 155

Error Codes 157

ProgramminglInsight 355

Control routines, 356
Memory block description routines, 356

Table of Contents

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

List of Figures

“Hello world” with bug.

Insight’s messages from the “Hello World” program .

“Hello world” with dynamic memory allocation .
Pointer assignments before the memory leak .
Pointer assignments after the memory leak .
Sample “bugs’ report summary

Sample “leaks’ report summary
Sample “leaks’ report summary before LeakTooI
Sample “leaks’ report summary after LeakTool .
Initial Insra display . . .

Sample Insra display with messages .

Sample Insra display with summary report selected .

Sample Insra display with editor window . .
Strategy for creating interfaces. . .
Insight interfaces for mal | oc and nentpy .
Sample output from aWRI TE_ OVERFL OWerror

List of Figures

© N O

11
11

47
49
50
55
58
61
63
97
. 99
. 155

Vii

List of Figures

Viii

Part |

LynxIinsure++
User’'s Guide

Introduction

| ntroduction

LynxInsure++ is version 4 of the popular and powerful runtime debugging tool
formerly known as Insight. There are some major changes and powerful new
features which we will describein this Lynxinsure++ User’s Guide, but the ease
of use you have come to expect from Insight remainsin version 4.

A useful new tool has been created that builds on improvements introduced in
version 4 of LynxInsure++. LeakTool sorts and filters memory leak summary
reports, which makes detecting and fixing memory leaks after merely relinking
your program with Insight much easier. This processing can be done on summary
reports saved from Insra or generated directly by Insight. Of course, you will till
get much more comprehensive checking by compiling as much of your code as
possiblewith Insight, but thisnew ability allows better quick checksfor new leaks
without a complete rebuild after new code has been added to your project.
LeakTool can also convert report files between the text format used by Insight
and the binary format used by Insra. Another change is automatic detection of
“stretchy” arrays. Asaways, the new versionisfaster and detectsmore errorsthan
the last. No other tool can check your code as thoroughly as Insight.

If you haven't already read the Getting Started manual, we suggest starting there.
If you areinterested in a specific subject, you may want to consult the index
located at the end of this volume.

=1
—+
-
o
Q
c
O
=
o
5

c
@)
-
(&)
>
©
o
—
)
=

Introduction

Conventions used in this manual

Different typefaces and other symbols will be used in thistext to denote various
types of information.

Text which appears in this typeface is used to
denote source code or the nanes of functions,
subroutines or variables. It is al so used to show
conmmands that you should type at the keyboard.

Offset paragraphs which carry the “dangerous
bend” sign are particularly important and should be
understood before continuing further.

This symbol in the margin indicates a section specific to C++ users.

This symbol in the margin indicates a section specific to TCA users.

TCA

Introduction

If you get stuck

If you have problems using LynxInsure++, please consult the comprehensive
FAQ shipped with your distribution (FAQ. t xt) first. If your problem is not
discussed in this document, please follow the procedure below in contacting
technical support.

e Check the manual.

=1
—+
—_
o
Q
c
o
=
o
S

« Attempt to isolate a suspected bug to atrivial example. A
good method isto remove half of the code and try
compiling again, repeating the process until the problemis
isolated to ten or twenty lines. Often this procedure can
suggest afix or work-around.

e |f the problemis not urgent, report it by e-mail or fax to
LynuxWorks Technical Support.In the United States,
direct e-mail to support @ nxw. comor fax to (408)
979-3945. In Europe, direct e-mail to
tech_eur ope@ nxw. comor fax to (+33) 1 30 85 06 06.

e |f the problemisurgent, cal LynuxWorks Technical
Support Monday—Friday (holidays excluded). In the
United States, call (408) 979-3940 between 8:00 AM and
5:00 PM Pacific Time. In Europe, call (+33) 1 30 85 06 00
between 9:00 AM and 6:00 PM Central European Time.

« Beforecalling LynuxWorks Technical Support, know your
LynxInsure++ version. You can easily find it by typing
i nsi ght with no arguments.

« Ifyoucadl, please use aphone near your computer. The
support technician may need you totry thingswhileyou are
on the phone.

e Beprepared to recreate your problem.
e Please be patient.

Thank you for selecting LynxInsure++. Good luck on your journey towards Total
Quality Software.

Introduction

c
@)
-
(&)
>
©
o
—
)
=

Insight

Insight

As shown in the Getting Started manual, using Insight is essentialy trivial. You
simply recompile your program using the special i nsi ght command instead of
your normal compiler. Running the program normally will then generate a report
whenever an error is detected that usually contains enough detail to track down
and correct the problem.

What does this give you?

Obviously, the most important advantage of Insight isthe fact that it
automatically detects errors that might otherwise go unnoticed in normal testing.
Subtle memory corruption errors and dynamic memory problems often don’t
crash the program or cause it to give incorrect answers until the program is
shipped to customers and they run it on their test cases. Then the problems start.

Even if Insight doesn't find any problemsin your programs, running it gives you
the confidence and “ peace of mind” that your program doesn’t contain any errors.

Of course, Insight can't possibly check everything that your program does.
However, its checking is extensive and covers every class of programming error.
The following sections discuss the types of errors that Insight will detect.

Memory corruption

Thisis one of the most unpleasant errors that can occur, especialy if itiswell
disguised. As an example of what can happen, consider the program shown in
Figure 1, which concatenates the arguments given on the command line and prints
the resulting string.

If you compile and run this program with your normal compiler, you'll probably
see nothing interesting, e.g.,

$ gcc -0 hello hello.c
$ hello
You entered: hello

—

<
-
X
>
2
c
=
@D
+
+

Insight

/*

* File: hello.c
*/

#i nclude <string. h>

mai n(argc, argv)
int argc;
char *argv[];

int i;
char str[16];

str[0] = ‘\0";

for(i=0; i<argc; i++) {
strcat(str, argv[i]);

if(i < (argc-1)) strcat(str, “ “);
}

printf(“You entered: %\n", str);
return (0);

+
+
(]
—
-}
0
c
X
c
>

-

Figurel. “Helloworld” with bug

$ hello world

You entered: hello world

$ hello cruel world

You entered: hello cruel world

If this were the extent of your test procedures, you would probably conclude that

this program works correctly, despite the fact that it has a very serious memory
corruption bug.

If you compilewith Insight, thecommand “hel | o cruel worl d” generates
the errors shown in Figure 2, because the string that is being concatenated
becomes longer than the 16 characters allocated in the declaration at line 11.

insight -g -o hello hello.c
hell o cruel world

Insight

[hello.c:15] **WR TE_OVERFLOW *
>> strcat(str, argv[il);

Witing overflows nmenory: <argunent 1>

bbbbbbbbbbbbbbbbbbbbbbbbbb
I 16 | 2]

str, declared at hello.c, 11
Stack trace where the error occurred:
main() hello.c, 15

—
VAWWWWAMAAWWAMAVWMAAWWAMMAVWAAAY <

>

Witing (w : Ox7ffffdo0 thru Ox7ffffdal g
(18 bytes) 0

To block (b) : Ox7ffffd90 thru Ox7ffffdof c
(16 bytes) o
+

+

Menory corrupted. Program may crash!!

[hello.c: 18] **READ OVERFLOWM *
>> printf(“You entered: %\n”, str);

String is not null termnated within range: str
Readi ng ;o Ox7ffffdoo
From bl ock: Ox7ffffd90 thru Ox7ffffdof (16 bytes)
str, declared at hello.c, 11
Stack trace where the error occurred:
main() hello.c, 18

Figure 2. Insight’s messages from the “Hello world” program

Insight finds all problems related to overwriting memory or reading past thelegal
bounds of an object, regardless of whether it is allocated statically (i.e., aglobal

variable), locally on the stack, dynamically (with mal | oc), or even as a shared

memory block.

+
+
(]
—
-}
0
c
X
c
>

-

Insight

It also detects the case in which a pointer crosses from one block of memory into
another and starts to overwrite memory there, even if the memory blocks are
adjacent.

Pointer abuse

Problems with pointers are among the most difficult encountered by C
programmers. Insight detects pointer related problemsin the following categories

e Operations on NULL pointers.
e Operations on uninitialized pointers.

e Operations on pointers that don’'t actually point to valid
data

e Operations which try to compare or otherwise relate
pointers that don’t point at the same data object.

e Function callsthrough function pointersthat don’t actually
point to functions.

Figure 3 shows the code for a second attempt at the “Hello world” program that
uses dynamic memory allocation.

The basic ideaof this program isthat we keep track of the current string sizeinthe
variable| engt h. As each new argument is processed, we add its length to the

| engt h variable and allocate a block of memory of the new size. Notice that the
code is careful to include the final NULL character when computing the string
length (line 17) and also the space between strings (line 27). Both of these would
be easy mistakesto make. It’s an interesting exercise to see how quickly Insight
would find such an error.

The code in lines 22-27 either copies the argument to the buffer or appends it
depending on whether or not thisisthe first passround theloop. Finally inline 27
we point at the new, longer string by assigning the pointer st r i ng tothevariable
string_so_far.

Insight

1. /*

2. * File: hello2.c

3

4: #include <stdlib. h>

5: #include <string. h>

6:

7: main(argc, argv)

8: int argc; E
9: char *argv[]; -
10: { X
11: char *string, *string_so_far; >
12: int i, length; g
13: =
14: length = 0; /* Include last NULL */ (_?_
15: +
16: for(i=0; i<argc; i++) {

17: length += strlen(argv[i]) +2;

18: string = mall oc(length);

19: /*

20: * Copy the string built so far.

21: ¥/

22: if(string_so_far !'= (char *)0)

23: strcpy(string, string_so_far);

24: el se *string = ‘\0’;

25:

26: strcat(string, argv[i]);

27: if(i < argc-1) strcat(string, “ “);

28: string_so_far = string;

29: }

30: printf(“You entered: %\n", string);

31: return (0);

32: }

33:

Figure 3. “Heloworld” with dynamic memory allocation

If you compile and run this program under Insight, you' Il see an “uninitialized
pointer” error at line 22 and 23 because the first time through the argument |oop
thevariablest ri ng_so_f ar hasn't been set to anything!

+
+
(]
—
-}
0
c
X
c
>

-

Insight

Memory leaks

A “memory leak” occurs when a piece of dynamically allocated memory cannot
be freed because the program no longer contains any pointers that point to the
block. A simple example of this behavior can be seen by running the (corrected)
“Hello world” program with the arguments

hello3 this is a test

Note that the source code for the hel | 03. ¢ programislocated in
/usr/tool s/l ynxinsure++/ exanpl es/ c/ hel | 03. c.

If we examine the state of the program at line 28, just before executing the call to
mal | oc for the second time, we observe:

e Thevariablestri ng_so_f ar pointsto the string
“hel | 0” whichit was assigned as aresult of the previous
loop iteration.

e Thevariablest ri ng pointsto the extended string
“hel | o t hi s” whichwasassigned on thisloop iteration.

These assignments are shown schematically in Figure 4 - both variables point to
blocks of dynamically allocated memory.

The next statement

string_so_far = string;

10

Insight

hiell |l |o| |t]|h

string‘—4

hie|l|]]o]\0

string_so_far ‘—4

Figure4. Pointer assignments before the memory leak

will make both variables point to the longer memory block as shown in Figure 4

hife|l|l]o] |t]|h

string .—4

string_so_far @—

Figureb5. Pointer assignments after the memory leak

11

—

<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Insight

Once this has happened, however, there is no remaining pointer that points to the
shorter block. Even if you wanted to, there is no way that the memory that was
previously pointedto by st ri ng_so_f ar canbereclaimed - it is permanently
allocated. Thisis known as a“memory leak”, and is diagnosed by Insight as
follows.

[hel | 03.c: 28] **LEAK_ASSI G**
>> string_so_far = string;

Menory | eaked due to pointer reassignnent: <return>
Lost block : 0x0044dfd8 thru 0x0044dfel (10 bytes)

bl ock allocated at:
mai n() hello3.c, 18

Stack trace where the error occurred:
main() hello3.c, 28

Thisexampleis called LEAK _ASSI GN by Insight sinceit is caused when a
pointer isre-assigned. Other types that Insight detects include:

LEAK FREE Occurswhen you free ablock of memory that contains
pointers to other memory blocks. If there are no other
pointersthat point to these secondary blocks then they
are permanently lost and will be reported by Insight.

LEAK RETURN Occurs when afunction returns a pointer to an
allocated block of memory, but the returned valueis
ignored in the calling routine.

LEAK SCOPE Occurs when afunction contains alocal variable that
points to ablock of memory, but the function returns
without saving the pointer in aglobal variable or
passing it back toits caller.

Notice that Insight indicates the exact source line on which the problem occurs,
which isakey issuein finding and fixing memory leaks. Thisis an extremely
important feature, because it’s easy to introduce subtle memory leaks into your
applications, but very hard to find them all. Using Insight, you can instantly
pinpoint the line of source code which caused the leak.

12

Insight

Should memory leaks be fixed?

Whether or not thisis a serious problem depends on your application. To get more
information on the seriousness of the problem, make afilecalled . i nsi ght in
your current directory and add to it the line*

sumari ze | eaks
Now when you run the program again, you will see the same output as before,

followed by a summary of all the memory leaks in your code.

MEMORY LEAK SUMVARY

—
<
-
X
>
2
c
=
@D
+
+

4 outstandi ng menory references for 69 bytes.

Leaks detected during execution

10 bytes allocated at hello3.c, -1
mai n() hello3.c, 18

Leaks detected at exit

59 bytes allocated at hello3.c, -1
main() hello3.c, 18

This showsthat even this short program lost five different chunks of memory. The
total of 69 bytesisn't very large and you might well ignoreit in a program this
size. If, however, thiswas aroutine in alarger program, it would be a serious
problem, because every time the routine is called it alocates blocks of memory
and loses some. As aresult the program gradually consumes more and more

1. If youaready haveafilecaled. i nsi ght inyour directory, simply add
thislinetoiit.

13

+
+
(]
—
-}
0
c
X
c
>

-

Insight

memory and will finally crash when the memory space on the host machine is
exhausted.

This type of bug can be extremely hard to detect, because it might take literally
daysto show up. It isexactly thetype of bug that survivesall your in-housetesting
and only shows up when you ship a product to a customer who needsto useit for
Some enormous processing task!

You may be wondering why Insight only prints one
error message although the summary indicates
that 5 memory leaks occurred. This is because
Insight normally shows only the first error of any
given type at each particular source line. If you
wish, you can change this behavior as described in
“Insight Reports” on page 29.

You can obtain additional information about each
ﬁ individual memory leak with the . i nsi ght option

“sunmari ze detail ed_| eaks”.

Finding all memory leaks

For an even higher level of checking, we suggest the following algorithm for
removing all memory leaks from your code. This processis unique - no other tool
can do this. If you complete the following steps, we guarantee there will not be
any memory leaks left in your code.

1. Compile your program normally, but link withi nsi ght
- Zuse and runthe programwith Inuse (see*Using Inuse”
inthelnuse manual). If you seeanincreaseintheheap size
as you run the program, you are leaking memory.

2. Compileall source code, but not libraries, with Insight. Clean
all leaks that are detected by Insight.

3. Compile everything that makes up your application with
Insight - source code and libraries. Clean any leaks

14

Insight

detected by Insight. If you do not have sourcefor any of the
libraries, skip this step and proceed to Step 4.

4. Repeat Step 1. If memory isincreasing, add sunmrar i ze
det ai | ed_| eaks toyour. i nsi ght fileand runyour
Insighted program again. Any outstanding memory
reference shown is a potential leak.

5. Y ou must now examine each outstanding memory reference
to determine whether or not it is aleak. If the pointer is
passed into alibrary function, it may be saved. If thisisthe
case, it is not aleak. Once every outstanding memory
reference is understood, and those that are leaks are
cleared, the program is free of memory leaks.

Dynamic memory manipulation

Using dynamically allocated memory properly is another tricky issue. In many
cases programs continue running well after a programming error causes serious
memory corruption - sometimes they don’t crash at al.

One common mistake isto try to reuse a pointer after it has already been freed.

As an example we could modify the “Hello world” program to de-allocate
memory blocks before allocating the larger ones. Consider the following piece of
code which does just that:

22: if(string so far !'= (char *)0) {
23: free(string_so far);

24 strcpy(string, string so far);
25; }

26: el se *string = "\0';

If you run this code through Insight, you'll get another error message about a
“dangling pointer” at line 24. The term “dangling pointer” is used to mean a
pointer that doesn't point at avalid memory block anymore. In this case the block

15

—

<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Insight

isfreed at line 23 and then used in the following line! The final example of this
program (hel | 05. c) fixesthisproblem by moving thefreeto after thest r cpy.

Thisis another common problem that often goes unnoticed, because many
machines and compilers allow this particular behavior.

In addition to this error Insight, also detects the following
» Reading from or writing to “dangling pointers’.

» Passing “dangling pointers’ as arguments to functions or
returning them from functions.

* Freeing the same memory block multiple Times New
Roman.

« Attempting to free statically allocated memory.
» Freeing stack memory (local variables).

» Passing apointer to f r ee that doesn't point to the
beginning of a memory block.

e Cdlstofree withNULL or uninitialized pointers.

» Passing non-sensical arguments or arguments of the wrong
datatypetomal | oc,cal | oc,real | oc orfree.

Another way that Insight can help you track down dynamic memory problemsis
through the RETURN_FAI LURE error code. Normally, Insight will not issue an
errorif mal | oc, for example, returnsaNULL pointer becauseit isout of memory.
Thisbehavior isthe default, becauseit isassumed that the user program is already
checking for, and handling, this case.

If your program appears to be failing due to an unchecked return code, you can
enable the RETURN_FAI LURE error message class (See page 300). Insight will
then print a message whenever any system call fails.

16

Insight

Strings

The standard C library string handling functions are arich source of potentia
errors, since they do very little checking on the bounds of the objects being
manipul ated.

Insight detects problems such as overwriting the end of a buffer as described in
“Memory corruption” on page 5. Another common problemiscaused by trying to
work with strings that are not null-terminated, as in the following example.

mai n()

{
char b[10], *a = "This is a test";

strncpy(b, a, sizeof(b));
printf("%\n", b);

NogkwNnE

This program attemptsto copy the string“Thi s is a test” intoabuffer
whichisonly 10 characterslong. Althoughit usesst r ncpy to avoid overwriting
its buffer, the resulting copy doesn’'t have aNULL on the end. Insight detectsthis
problemin line 6 whenthecall topri nt f triesto print the string.

Uninitialized memory

A particularly unpleasant problem to track down occurs when your program
makes use of an uninitialized variable. These problems are often intermittent and
can be particularly difficult to find using conventional means, since any alteration
in the operation of the program may result in different behavior. It is not unusual
for this type of bug to show up and then immediately disappear whenever you do
something to try to traceit.

Insight performs checking for uninitialized data in two sub-categories

copy Normally, Insight doesn’t complain when you assign avariable
using an uninitialized value, since many applications do this

17

—
<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Insight

without error. In many cases the value is changed to something
correct before being used, or may never be used at all.

read Insight generates an error report whenever you use an
uninitialized variable in a context which cannot be correct, such
as an expression evaluation.

To clarify the difference between these categories consider the following code

1: mai n()

2: {

3: int *a;

4. struct {

5: int vall, val2;

6: } s;

7.

8: a = (int *)malloc(10*sizeof(int));
9: s.vall = 123;

10: s.val 2 = a[0];

11: printf("Product is %\ n",

12: s.val 1*s. val 2);
13: }

At line 10 thevalue of a[0] isassigned to one of the structure elements. Thisis
an error of type READ_UNI NI T_MEM copy) , because the program is actually
not in error if the value of s. val 2 isnever used.! Since this category is
suppressed by default, you will not get an error message at thisline.

However, inlines 11-12, the value of s. val 2 isused to print avalue which is
most definitely invalid, since its value was never assigned. Insight detects this
error inthe READ_UNI NI T_MEM r ead) category. This category is enabled by
default, so amessage will be displayed.

The detection of uninitialized memory is, therefore, atwo stage process. Insight
usually displaysthe“r ead” sub-category errors, which you can either correct by

1. Of course, you might want to remove the statement altogether if it's never
used!

18

Insight

inspection of the code or track further by enabling the “copy” sub-category and
tracking back through the assignments.

Uninitialized memory detection
options

Insight normally tracks only uninitialized pointers, as thisis somewhat quicker
than checking all uninitialized memory. If you wish to track all uninitialized
memory accesses, you can set the following . i nsi ght option

checki ng_uninit on

When you enable full checking, Insight detects uninitialized memory references
using afull flow-analysis of your application’s source code (and can often detect
problems at compile time). Thisis the most comprehensive form of error
detection, but obviously involves some overhead during compilation.

Ignoring this option does not, however, completely disable uninitialized variable
checking. No errors will be reported in the READ_UNI NI T_MEMCclass, but
Insight will still check for uninitialized pointer variables and report these errors
inthe READ_UNI NI T_PTR error category.

If checki ng_uni ni t is enabled, uninitialized
pointer errors will be reported in the
READ_UNI NI T_MEMcategory, not
READ_UNI NI T_PTR.

Unused variables

Insight can also detect variables which have no effect on the behavior of your
application, either because they are never used, or because they are assigned

19

—

<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Insight

values which are never used. In most cases these are not serious errors, since the
offending statements can simply be removed, and so they are suppressed by
default.

Occasionally, however, an unused variable may be a symptom of alogical
program error, so you may wish to enable this checking periodically. See* Unused
variables” on page 305 for more details.

Data representation problems

A lot of programs make either explicit or implicit assumptions about the various
datatypes on which they operate. A common assumption made on workstationsis
that pointers and integers have the same number of bytes. While some of these
problems can be detected during compilation, some codes go to great lengths to
hide operations with typecasts such as

char *p;
int ip;
ip = (int)p;

On many systems this type of operation would be valid and would cause no
problems. When such code is ported to alternative architectures, however,
problems can arise. The code shown above would fail, for example, when
executed on a PC (16-bit integer, 32-bit pointer) or a 64-bit architecture such as
the DEC Alpha (32-bit integer, 64-bit pointer).

In cases where such an operation loses information, Insight will report an error.
On machines for which the data types have the same number of bits (or more), no
error is reported.

20

Insight

Incompatible variable declarations

Insight detects inconsistent declarations of variables between source files.

A common problem is caused when an object is declared as an array in onefile,
eg.,

i nt mybl ock[128];
but as a pointer in another

extern int *nybl ock;

—
<
-
X
>
2
c
=
@D
+
+

Insight also reports differencesin size, so that an array declared asone sizein one
file and another in a second will be detected.

/O statements

Theprintf andscanf family of functions are easy places to make mistakes
which show up either as bugs or portability problems.

Consider, for example, the code

foo()
{

doubl e f;

scanf ("% ", &f);
}

This code will not crash, but the value read into the variablef will not be correct,
sinceits datatype (doubl e) doesn’t match the format specified in the call to
scanf (f| oat). Asaresult, incorrect datawill be transferred to the program.

21

+
+
(]
—
-}
0
c
X
c
>

-

Insight

Inasimilar way

foo()
{

float f;

scanf ("9 f", &f);
}

corrupts memory, since too much datawill be written over the supplied variable.
This error can be very difficult to detect.

Insight detects both of these bugs.

A more subtle issue arises when data types used in I/O statements match
“accidentally”. The code

foo()
{
long | = 123;
printf("l = %\n", I);
}

functions correctly on machines wheretypesi nt and | ong have the same
number of bits, but fails otherwise. Insight detects this error, but classifies it
differently from the previous cases. Y ou can choose to ignore this type of problem

while still seeing the previous bugs. (See “BAD_FORMAT” on page 173 for
details.)

In addition to checking pri nt f and scanf arguments, Insight also detects
errorsin other I/O statements. The code

foo(line)

char 1ine[80];
{

gets(line);
}

22

Insight

works as long as the input supplied by the user is shorter than 80 characters, but
failson longer input. Insight checks for this case and reports an error if necessary.

This case is somewhat tricky, since Insight can
only check for an overflow after the data has been
read. In extreme cases the act of reading the data
will crash the program before Insight gets the
chance to report it.

Mismatched arguments

Calling functions with incorrect arguments is a common problem in many
programs, and can often go unnoticed.

—

<
-
X
>
2
c
=
@D
+
+

Insight detects the error in the following program

doubl e foo(dd)

doubl e dd;
{
return dd + 1.0;
}
mai n()
{
printf("Result = %\n", foo(1l));
}

in which the argument passed to the function f 0o in mai n isan integer rather
than a floating point number.

Converting this program to ANSI style (e.g., with a
function prototype for f 00) makes it correct since
the argument passed in mai n will be automatically
converted to doubl e. Insight doesn’t report an
error in this case.

23

+
+
(]
—
-}
0
c
X
c
>

-

Insight

Insight detects several different categories of errors, which you can enable or
suppress separately depending on which types of bugs you consider important.

24

Sign errors

Compatible types

Incompatible types

Alias errors

Arguments agree in type but one is signed and the
other unsigned, e.g., i nt vs. unsi gned i nt.

The arguments are different data types which happen
to occupy the same amount of memory on the current
machine, e.g.i nt vs.| ong if both arethirty-two bits.
While this error may not cause problems on your
current machine, it is a portability problem.

Similar to the example above - datatypes are
fundamentally different or require different amounts
of memory. i nt vs.| ong would appear in this
category on machines where they require different
numbers of bits.

If youuset ypedef to define new namesfor data
types, Insight generates an error when you use them
inconsistently. Consider, for example, the following
function which computes the area of aregion based on
its width and depth.

typedef float W DTH;
typedef fl oat DEPTH;
typedef float AREA,

AREA comput e_wi dt h(wi dt h, depth)

W DTH wi dt h;

DEPTH dept h;
{

return (AREA) (w dt h*depth);
}

If you invoke this function and pass it arguments of
typef | oat rather thanthet ypedef types, Insight
will generate aspecial type of error. This can be useful
if you wish to enforce strict coding practices on
variable types.

Insight

By default, the “alias’ and “signed” and “ compatible” error classes are disabled
and you will not see error messages relating to them. Y ou can specifically enable
them as described on “Mismatch in argument type’ on page 183.

C++ compile time warnings

During compilation, Insight’s parser detects a number of C++-specific problems
and prints warning messages. These messages are coded by the chapter, section,
and paragraphs pertaining to that warning in the draft ANSI standard. Therefore,
if you are uncertain what a particular warning message means or would like
additional information, you can consult the standard for an explanation.

As an example, the following code,

void foo(char *str) { }

voi d func()

{
void *iptr = (char *) O;
foo(iptr);

when processed by Insight, will produce the following warning:

i nsight -c foo.cc

[foo.cc:5] Warning: 13-2: wong argunents passed
to function ’'foo’

>> foo(iptr);

| declared at: [foo.cc:1]

| expected args: (char *)

| passed args: (void *)

25

—

<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Insight

Invalid parameters in system calls

Interfacing to library software is often tricky, because passing an incorrect
argument to aroutine may causeit to fail in an unpredictable manner.Debugging
such problems is much harder than correcting your own code, since you typically
have much less information about how the library routine should work.

Insight has built-in knowledge of alarge number of system calls and checks the
arguments you pass to ensure correct data type and, if appropriate, correct range.

For example, the code

myr ewi nd(f p)
FILE *fp;
{

}

fseek(fp, (long)0, 3);

would generate an error since the last argument passed to the f seek functionis
outside the legal range.

Unexpected errors in system calls

Checking the return codes from system calls and dealing correctly with all the
error casesthat can ariseisavery difficult task. It isavery rare program that deals
with all possible cases correctly.

An unfortunate consequence of thisisthat programs can fail unexpectedly after
they have been shipped to customers because some system call failsin away that
had not been anticipated. The conseguences of this can range from a nasty “core
dump” to asystem that performs erratically at the customer location.

Insight has a specia error class, RETURN_FAI LURE, that can be used to detect
these problems. All the system calls known to Insight contain special error
checking code that detects failures. Normally these errors are suppressed, since it

26

Insight

is assumed that the application is handling them itself, but they can be enabled at
runtime by adding the line

unsuppress RETURN_FAI LURE

toa. i nsi ght file. Any system call that returns an error code will then print a
message indicating the name of the routine, the arguments supplied, and the
reason for the error.

This capability detects any error in any system call. Among the potential benefits
are automatic detection of errorsin the following situations

* mal | oc runsout of memory.

* Filesthat don't exist.

* Incorrectly set permission flags.

* Incorrect use of 1/O routines.

» Exceeding the limit on open files.

* Inter-process communication and shared memory errors.
* Unexpected “interrupted system call” errors.

and many others.

Achieving Total Quality Software

The previous sections described the various types of problems detected by
Insight. Asyou can see, avery large number of problems can be detected as
simply asrecompiling your program and running it under Insight. Hopefully, this
will eliminate many bugs that you might otherwise ship to your customers.

It would be naive, however, to expect that Insight will remove all of the bugsin
your code. Some will still make it through all the testing steps. Luckily, Insight
can still help even after you' ve shipped your product.

27

—
<
-
X
>
2
c
=
@D
+
+

Insight

An important way that Insight can help you reach the Total Quality Software
goal isto ship two versions of your product to your customers:

e Thenormal version, compiled without Insight
e A version built with Insight

This second version can be used at the customer siteto help track down problems.

Thiswill dramatically improve the efficiency of your support staff at finding bugs
in the released software.

+
+
(]
—
-}
0
c
X
c
>

-

28

Insight Reports

Insight Reports

The error reports that have already been shown indicate that Insight provides a
great deal of information about the problems encountered in your programs. It also
provides many ways of customizing the presentation of this information to suit
your needs.

Default behavior

By default, Insight adopts the following error reporting strategy:

—
<
-
X
>
2
c
=
@D
+
+

» Error messages are “coded” by asingle word shown in
uppercase, such as HEAP_CORRUPT, READ_OVERFLOW
LEAK_SCOPE, etc.

» Messages about error conditions are displayed unless they
have been suppressed by default or in a site specific
configuration file. (See “Error Codes’ on page 157 for a
list.)

» Only thefirst occurrence of a particular (unsuppressed)
error at any given source line is shown. (See “ Report
summaries’ on page 43 for ways to change this behavior.)

» Error messages are displayed on output stream st der r
(To change this, see “ The report file” on page 30).

» Each error shows a stack trace of the previous routines,
displayed all the way back to your nmai n program.

29

+
+
(]
—
-}
0
c
X
c
>

-

Insight Reports

The report file

Normally, error reports are displayed on the UNIX st der r /O stream. Users
interested in sending output to Insra should consult the Insra section of this
manual, which begins on page 55. If you wish to capture both your program’s
output and the Insight reportsto afile, you can use the normal shell redirection
method. An aternative is to have Insight redirect only its output directly by
adding an option similar to

i nsure++.report_file bugs. dat

toyour . psr c file. Thistells Insight to write itsreportsto the file bugs. dat ,
while allowing your program’ s output to display asit normally would. Whenever
this option isin effect you will see a*“report banner” similar to

** | nsight nessages will be witten to bugs.dat **

on your terminal when your program starts to remind you that error messages are
being redirected. To suppress the display of this banner add the option

i nsure++. report_banner off

toyour . psrc file.

Normally the report file is overwritten each time your program executes, but you
can force messages to be appended to an existing file with the command

i nsure++.report_overwite off

If you wish to keep track of the reports from multiple runs of your code, an
alternativeisto have Insight automatically generate filenames for you based on a
templatethat you provide. Thistakestheform of astring of characterswith tokens
suchas“%d”, “%p", or “%/" embedded init. Each of theseisexpanded to indicate
a certain property of your program as indicated in the table on page 122.

30

Insight Reports

Thus, for example, the option
i nsure++.report _file %-errs. %

when executed with a program called f 0o at 10:30 am. on the 21st of
March 1997, might generate a report file with the name

foo-errs. 970321103032
(The last two digits are the seconds after 10:30 on which execution began.)

Note that programs which fork will automatically
have a “- %" added to their format strings unless
a % or % token is explicitly added to the format
string by the user. This ensures that output from
different processes will always end up in different
report files.

Y ou can also include environment variablesin these filenames so that
$HOVE/ reports/ %-errs. %O
generates the same filename as the previous example, but also ensures that the

output is placed in ther epor t s sub-directory of the user’s HOVE.

Thismethod isvery useful for keeping track of program runs during devel opment
to see how things are progressing as time goes on.

31

—

<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Insight Reports

Customizing the output format

By default, Insight displays a particular banner for each error report, which
contains the filename and line number containing the error, and the error category
found, e.g.,

[foo.c:10] **READ UNI NI T_MEM copy) **

If you wish, you can modify this format to suit either your aesthetic tastes or for
some other purpose, such as enabling the editor in your integrated environment to
search for the correct file and line number for each error.

Customization of this output is achieved by setting theer r or _f or nat option
inyour . psr ¢ fileto astring of characters containing embedded tokens which
represent the various pieces of information that you might wish to see. (A
complete list is shown on page 133.)
For example, the command
i nsure++. error_format "\"%\", line %: %"
would generate errorsin the format
"foo.c", line 8 READ UNI NI T_MEM copy)
which is aform recognized by editors such as GNU emacs.
Notice how the embedded double quote
characters required backslashes to prevent them
being interpreted as the end of the format string.

A multi-line format can also be generated with a command such as

i nsure++.error_format "%, line %\n\to%"

32

Insight Reports

which might generate

foo.c, line 8
READ _UNI NI T_MEM copy)

Displaying process information

When using Insight with programs that run on remote machines (e.g., in
client-server mode) or which fork into multiple processes, you might wish to
display additional process-related information in your error reports.

—

<
-
X
>
2
c
=
@D
+
+

For example, adding the option

i nsure++. error_format \
"o, line %: \n\tprocess Y%p@h: %"

toyour . psr c filewould generate errorsin the form

foo.c, line 8:
process 1184@obi: READ UNI NI T_MEM copy)

which contains the name of the machine on which the processis running and its
process ID.

Displaying the time at which the error
occurred

Especially when using Insight with applications that run for along period, it is
often convenient to know exactly when various errors occurred. Y ou can extend
the error reports generated by Insight in this fashion by adding the ‘%’ and/or

33

+
+
(]
—
-}
0
c
X
c
>

-

Insight Reports

‘0% ' charactersto the error report format as specified in your . psr ¢ file. For
example, the format

insure++.error_format "% :%, % % <%>"
generates error reportsin the form

foo.c:8, 9-Jan-97 14:24: 03 <READ NULL>

Displaying repeated errors

The default configuration suppresses al but the first error of any given kind at a
source line. Y ou can display more errors by modifying the parameter
report _|imt inthe. psrc filein either your working or HOVE directory.

For example, adding the line
i nsure++.report limt 5

toyour . psr c filewill show thefirst five errors of each type at each source line.

Setting the value to zero suppresses any messages except those shown in
summaries. (See “ Report summaries’ on page 43.)

Setting ther eport _|i m t valueto -1 showsall errors as they occur.

Note that not al information is lost by showing only the first (or first few) errors
at any source line. If you enable the report summary (See page 44) you will see
the total number of each error at each sourceline.

Insight Reports

Limiting the number of errors

If your program is generating too many errors for convenient analysis, you can
arrangefor it to exit (with anon-zero exit code) after displaying a certain number
of errors by adding the line

i nsure++, exit_on_error numnber

toyour . psr c fileand re-running the program. After the indicated number of
errors, the program will exit. If nunber islessthan or equal to zero, all errorsare

displayed.

Changing stack traces

There are two potential modifications you can make to alter the appearance of the
stack tracing information presented by Insight to indicate the location of an error.

By default, Insight will read your program’s symbol table at start-up time to get
enough information to generate stack traces. To get file and lineinformation, you
will need to compile your programs with debugging information turned on
(typicaly viathe - g switch). If thisis a problem, Insight can generate its own
stack traces for files compiled with Insight. Y ou can select this mode by adding
the options

i nsure++. synbol _tabl e of f
i nsure++. stack i nternal on

toyour . psrc file. Thest ack_i nt er nal option will take effect after you
recompile your program (see page 139), whilethe synbol _t abl e option can
be toggled at runtime (see page 150). In this case, the stack trace will display

** routines not conpiled with insight **

35

—
<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Insight Reports

in place of the stack trace for routineswhich were not compiled with Insight. This
will also make your program run faster, particularly at start-up, since the symbol
table will not be read.

If your program has routineswhich are deeply nested, you may seevery long stack
traces. Y ou can reduce the amount of stack tracing information made available by
adding an option like

i nsure++.stack linmt 4

toyour . psr c file. If you run your program again, you will see at most® the last
four levels of the stack trace with each error.

Thevalue“0” isvalid and effectively disables tracing.

Thevalue“- 1" isthe default and indicates that the full stack trace should be
displayed, regardless of length.

Stack traces are al so presented to show the function calling sequence when blocks
of dynamically allocated memory were allocated and freed. In amanner similar to
thestack_limit option,themal | oc_trace andfree_trace options
control how extensive these stack traces are.

Searching for source code

Normally, Insight remembers the directory in which each source file was
compiled and looks there when trying to display lines of source codein error
messages. Occasionally your source code will no longer exist in this directory,
possibly because of some sophisticated “build” or “nake” process.

1. Itis"at most” because some of the lower levels of the trace may be hidden
internally by Insight and not displayed by default. These levels are till
counted for ther eport _I'i mi t option.

36

Insight Reports

Y ou can give Insight an alternative list of directoriesto search for source code by
adding aline such as

i nsure++. source_path .:$HOWE/ src:/usr/local/src

tothe. psr c filein your current working or HOVE directories.

Thelist may contain any number of directories separated by either spaces or
colons (:).

Insight’s error messages normally indicate the line
of source code responsible for a problem on the
second line of an error report, after the “>>" mark.

If this line is missing from the report, it means that
the source code could not be found at runtime.

Suppressing error messages

The previous sections discussed issues which can affect the appearance of
particular error messages. Another alternative isto completely suppress error
messages of a given type which you either cannot, or have no wish to, correct.

The simplest way of achieving thisisto add lines similar to
i nsure++, suppress EXPR NULL, PARM DANGLI NG

toyour . psr c fileand re-run the program. No suppressed error messageswill be
displayed, although they will still be counted and displayedin thereport summary.
(See page 44.)

In this context, certain wild-cards can be applied so that, for instance, you can
suppress all memory leak messages with the command

i nsure++. suppress LEAK *

37

—
<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Insight Reports

Y ou can suppress all errors with the command
i nsur e++, suppress *

which has the effect of only creating an error summary. If the error code has
sub-categories, you can disable them explicitly by listing the sub-category codes
in parentheses after the name, e.g.,

i nsur e++. suppress BAD FORMAT(sign, conpatible)

Alternatively,
i nsur e++. suppress BAD FORMVAT

suppresses all sub-categories of the specified error class.

Suppressing error messages by
context

The commands described in the previous section either suppress or enable errors
in agiven category regardless of where in your program the error occurs. This
syntax can be extended to specifying particul ar routines which must appear in the
function call stack at the time of the error for it to be enabled or suppressed.

For example, the command

i nsure++, suppress READ NULL { sub* * }

suppresses messages of the given category which occur in any routine whose
name begins with the characters“sub”.

38

Insight Reports

Theinterpretation of this syntax is asfollows:
e The stack context is enclosed by a pair of braces.

» Routine names can either appear in full or can contain the
“** or*?" wildcard characters. The former matches any
string, while the latter matches any single character.

* Anentry consisting of asingle ‘*’ character matches any
number of functions, with any names.

» Entriesin the stack context are read from left to right with
the leftmost entries appearing lowest (or most recently) in
the call stack.

With these rules in mind, the previous entry isread as

» Thelowest function in the stack trace (i.e., the function
generating the error message) must have anamethat begins
with “sub” followed by any number of other characters.

* Any number of functions of any name may appear higher
in the function call stack

A rather drastic, but common, action is to suppress any errors generated from
within callsto the X Window System libraries. If we assume that these functions
have nameswhich begin with either “ X" or “_ X", we could achieve thisgoal with
the statements

i nsure++. suppress all { * X* * }
i nsure++. suppress all { * _X* * }

which suppresses errors in any function (or its descendents) which begins with
either of the two sequences.

Asafinal example, consider a case in which we are only interested in errors
generated from the routine f oobar or its descendents. In this case, we can
combine suppr ess and unsuppr ess commands as follows

i nsure++. suppress all
i nsure++. unsuppress all { * foobar * }

39

—

<
-
X
>
2
c
=
@D
+
+

Insight Reports

Suppressing C++ warning messages

The warning messages that Insight displays during parsing of C++ code

(see page 40) can easily be suppressed if the user does not wish to correct the code I I
immediately. For example, to suppress the warning from that section, simply add

i nsur e++, suppress_warni ng 13-2

toyour . psr c fileand recompile. The warning messages will no longer be
displayed.

+
+
(]
—
-}
0
c
X
c
>

-

Suppressing other warning messages

For other compile time warning messages which do not have anumber associated,
thereisanother suppressoption available. Thesuppr ess_out put optiontakes
astring as an argument and will suppress any message that includes text which
matches the string. For example, the option

i nsur e++. suppress_out put wrong argunents passed

would suppress the warning from the previous section, as well as any others that
included this text string.

Enabling error messages

Normally, you will be most interested in suppressing error messages about which
you can or wish to do nothing. Occasionally, however, you will want to enable one
of the options that is currently suppressed, either by system default (See “Error

Insight Reports

Codes’ on page 157) or in one of your own . psr c files. Thisisachieved by
adding aline similar to the following to your . psr c file.

i nsur e++. unsuppress RETURN FAI LURE

Opaque pointers

Y ou can prohibit Insight from checking a pointer by declaring it “opaque’. You
can do thisfor afunction return value by using theassert ok . psr ¢ option
(see page 142) or, more generaly, by usingani i ¢_opaque functionin an
interface. When you do this, Insight will not check this pointer or any pointers
which are derived from it. Thisis normally done only for athird-party function
which returns a pointer to amemory block allocated in away that will not be seen
by Insight. This option tells Insight to ignore such a pointer.

“Stretchy” arrays

Another problem that comes up infrequently but causes problemsis “ stretchy”
arrays. Many programmers build structures in which the last element is an array
whose size is only determined at runtime. Consider the following code

1. /*

2. * File: stretchl.c
3. */

4: #include <stdlib. h>
5:

6: struct stretchy {

7: int nval s;

8: int data[1];

9: };

10:

11: struct stretchy *create(nvals)

41

—

<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Insight Reports

12: int nvals;

13: {

14. int size;

15:

16: size = sizeof (struct stretchy) +

17: (nval s-1)*si zeof (int);
18: return (struct stretchy *)nmall oc(size);
19: }

20:

21: main()

22: {

23: struct stretchy *s

24 int i;

25:

26: s = create(10);

27: for(i=0; i<10; i++) s->data[i] = O;
28: return (0);

29: }

Because the memory allocation in line 18 takes into account the extra memory
required for the ten elementsin the array, the loop in line 27 is actually valid.
Previous versions of LynxInsure++ complained about this line, because Insight
saw an array definition in line 8 that indicated that the structure element dat a is
an array with only a single element. Insight automatically detects possible
stretchy arrays and treats them accordingly. For details on controlling this new
capability, seetheaut o_expand option on page 126.

If you turn aut o_expand to of f , Insight will work just asit did in earlier
versions. In this situation, the simplest way to deal with the above caseisto add
the option

i nsure++. expand struct stretchy. data

toyour . psr c file. Thisline indicates that the element dat a of all structures
withtag st r et chy should be allowed to expand at runtime to match the amount
of memory allocated. This allows Insight to compute the actual number of
elementsinthe“stretchy” array correctly. Multi-dimensional stretchy arrays must
be handled in the above manner, because they cannot be automatically detected.

42

Insight Reports

An interesting exercise isto change the loop in line 27 of the above code to
for(i=0; i<=10; i++) s->data[i] = O;

Insight catches this!

The above changeis provided to you as example st r et ch2. c.

Elements of anonymous unions and structures
(i.e. unions and structures without a tag) cannot be
marked as stretchy, as there is no way to identify
them to Insight. If you have a stretchy array in
such a union or structure, you will need to edit your
source code to insert a tag if you want to declare
the array stretchy.

Report summaries

Normally, you will see error messages for individual errors as your program
proceeds. Using the other optionsdescribed so far, you can enable or disable these
errors or control the exact number seen at each sourceline.

Thistechniqueismost often used to systematically track down each problem, one
by one.

It is often useful, however, to obtain a summary of the problemsremaining in a
piece of code in order to track its progress.

Insight supports the following types of summary reports

* A*“bug’ summary which lists all outstanding bugs
according to their error codes.

e A*“leak” summary which lists all memory leaks - i.e.,
places where memory is being permanently lost.

e An*“outstanding” summary which lists all outstanding
memory blocks - i.e., places where memory is not being

—

<
-
X
>
2
c
=
@D
+
+

Insight Reports

freed, but is not |eaked because avalid pointer to the block
still exists.

e A*“coverage’” summary which indicates how much of the
application’s code has been executed. TCA

None of these is displayed by default.

The “bugs” summary

This report summary is enabled by adding the option

+
+
(]
—
-}
0
c
X
c
>

-

i nsure++. sunmari ze bugs

toyour . psr c fileand re-running your program.

In addition to the normal error reports, you will then also see a summary such as
the one shown in Figure 6.

The first section is a header which indicates the following information about the
program being executed

e The name of the program.

e Itscommand line arguments, if available.

e Thedirectory from which the program was run.
e Thetimeit was compiled.

* Thetimeit was executed.

e Thelength of timeto execute.

Thisinformation isprovided so that test runs can be compared accurately asto the
arguments and directory of test. The time and date information is supplied to
correlate with bug tracking software.

The second section gives a summary of problems detected according to the error
code and frequency. The first numeric column indicates the number of errors

Insight Reports

KR KKKk Kk xKkkkkxxkkkx | NS| GHT SUMVARY *****xxxxkkkxx yq (**

Program © gs
Argunent s : golfer.ps
Directory . Jusr/hone/trf/gshb
Conpi | ed on . Jan 5, 1996 15:40: 37
Run on : Jan 5, 1996 15:44:29
El apsed tinme . 00:01:06
PR SRR EE SRS E SRR RS I_
<
PROBLEM SUMVARY - by type ;3
=
Probl em Det ect ed Suppr essed g
__ =
EXPR_BAD RANGE 7 0 ®
READ UNI NI T_MEM 23 0 i
BAD_DECL 1 0
TOTAL 31 0

PROBLEM SUMVARY - by | ocation

EXPR_BAD RANGE: Expressi on exceeded range, 7 occurrences
5 at ialloc.c, 170
1 at ialloc.c, 176
1 at ialloc.c, 182

READ UNI NI T_MEM Readi ng uninitialized nenory, 23 occurrences

7 at gxcpath.c, 137
7 at gxcpath.c, 241
1 at gdevx.c, 424

1 at gdevxini.c, 213
2 at gdevxini.c, 221
1 at gdevxini.c, 358
1 at gdevxini.c, 359
1 at gdevxini.c, 422
1 at gdevxini.c, 454
1 at gdevxini.c, 514

BAD DECL: d obal declarations are inconsistent, 1 occurrence
1 at gdevx.c, 93

Figure6. Sample“bugs’ report summary

45

+
+
(]
—
-}
0
c
X
c
>

-

Insight Reports

detected but not suppressed. This is the total number of errors, which may differ
from the number reported, since, by default, only the first error of any particular
type is reported at each source line. The second column indicates the number of
bugs which were not displayed at all dueto “suppress’ commands.

The third section gives details of the information presented in the second section,
broken down into source files and line numbers.

The “leak” summaries

The simplest memory leak summary is enabled by adding the line
i nsure++, summari ze | eaks out st andi ng

toyour . psr c fileand re-running your program.
The output indicates the memory (mis)use of the program, as shown in Figure 7.

The first section summarizes the “memory leaks” which were detected during
program execution, while the second lists |eaked blocks that were detected at
program exit. These are potentially serious errors, in that they typically represent
continuously increasing use of system resources. If the program is “leaking”
memory, it islikely to eventually exhaust the system resources and will probably
crash. The first number displayed is the total amount of memory lost at the
indicated source line, and the second is the number of chunks of memory lost.
Note that multiple chunks of different sizes may be lost at the same sourceline -
depending on which optionsyou are using. To customizethereport, therearethree
. psr c options available: | eak_conbi ne, | eak_sort,andl eak_trace.

Thel eak _conbi ne option controls how Insight merges information about
multiple blocks. The default behavior isto combine all information about leaks
whichwereallocated fromlocationswithidentical stack traces(l eak _conbi ne
t race). It may bethat you would rather combine all |eaks based only on thefile
and line they were allocated, independent of the stack trace leading to that
alocation. In that case, you would use | eak _conbi ne | ocati on. Or, you
may simply want one entry for each leak (I eak_conbi ne none).

46

Insight Reports

KKK KKKk kR Kk kkkxxkkkx | NS| GHT SUMMARY ****xxxkkkkxxx g4 () **

Program | eak

Argunent s :

Directory . [usr/hone/ whi cken/ t est
Conpi | ed on : Jan 5, 1996 15:09: 05
Run on : Jan 5, 1996 15:09: 31
El apsed tinme . 00:00: 02

LR R R R R R R R R R R R R EEEE R

MEMORY LEAK SUMVARY

4 out standi ng nmenory references for 45 bytes

Leaks detected during execution

10 bytes 1 chunk all ocated at |eak.c, 6

Leaks detected at exit

10 bytes 2 chunk al l ocated at leak.c, 7

Cut st andi ng al | ocat ed nmenory

15 bytes 1 chunk all ocated at |eak.c, 8

Figure7. Sample“leaks’ report summary

The leak_sort option controls how the leaks are sorted, after having been
combined. Theoptionsarenone, | ocati on,trace,si ze,andf r equency
(si ze isthe default). Sorting by si ze letsyou look at the biggest sources of
leaks, sorting by f r equency letsyou look at the most often occurring source of
leaks, and sorting by | ocat i on provides an easy way to examine all your leaks.

Thel eak_t r ace option causesafull stack trace of each allocation to be printed,
in addition to the actual file and line where the all ocation occurred (this replaces
thedet ai | ed modifier from earlier versions of Insight.) This option will not
work if themal | oc_t r ace option is non-zero (see page 147).

The third section shows the blocks which are allocated to the program at its
termination and which have valid pointers to them. Since the pointers allow the
blocksto still befreed by the program (even though they are not), these blocks are

47

—

<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Insight Reports

not actually leaked. Thissectionisonly displayedif theout st andi ng keyword
isused. Normally, these blocks do not cause problems, since the operating system
will reclaim them when the program terminates. However, if your program is
intended to run for extended periods, these blocks are potentially more serious.

Sorting “leak” summaries with
LeakTool

Theleak summary reports described in the previous section can get very large and
complicated for very large, complicated programs. To help the programmer |ocate
the particular leaksin which sheisinterested, LynxInsure++ providesLeakTool.
Let'sbegin our look at LeakTool with a sample leak summary report generated
using the option

i nsur e++. sumari ze | eaks

as described in the previous section.

In alarge program containing many leaks, it is convenient to have a sorted leak
summary. With a sorted summary report, severe leaks which should be fixed
immediately, e.g. theleak atr ed. c, line 16, are easily separated from small |eaks
which you might not want to fix right away, e.g. theleak at r ed. c, line 11.
LeakTool is provided to generate these sorted summaries.

Figure 8 shows the leak summary report from Figure 8 after processing by
LeakTool.

In addition to processing the leak summary as shown above, LeakTool also
processes the individual runtime error messages generated by Insight as your

Insight Reports

KKK KKKk kR Kk kkkxxkkkx | NS| GHT SUMMARY ****xxxkkkkxxx g4 () **

Program . leak
Argunent s :
Directory . [usr/hone/ whi cken/ t est
Conpi | ed on : Jan 5, 1996 15:09:05
Run on : Jan 5, 1996 15:09:31
El apsed tinme . 00:00: 02 I
LR R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR SRR <
MEMORY LEAK SUMVARY i
=)
12 outstanding nenory references for 7,137,102 bytes (6, 969K). g
Leaks detected during execution a
_______________________________ +
400 bytes 2 chunks allocated at blue.c, 6 +
50 bytes 1 chunk allocated at blue.c, 11
6000 bytes 1 chunk allocated at blue.c, 16
200 bytes 2 chunks allocated at red.c, 6
2 bytes 1 chunk allocated at red.c, 11
5083380 bytes 1 chunk allocated at red.c, 16
84 bytes 2 chunks allocated at white.c, 6
2002424 bytes 1 chunk allocated at white.c, 11
44562 bytes 1 chunk allocated at white.c, 16

Figure 8. Sample“leaks’ report summary before LeakTool

program executes. Error messages for leaks such as LEAK _ASSI GN and
LEAK SCOPE are moved to the beginning of LeakTool’ s output.

If you customize the format of Insight’s error
messages using the er r or _f or mat option
(see page 133), LeakTool may not be able to
process the resulting error messages.

There are severa different ways in which the programmer can use LeakTool to
process Insight error output.

49

Insight Reports

kkhkkhkkhkkhkkhkkhkhkhkhkhhkhhkkkkkkk*x INSIG_”' SUN’\/ARY *kkkkkkkkkkkkk* V4 O * %

Program . leak
Argunent s :
Directory : [usr/ hone/ whi cken/ t est
Conpi | ed on : Jan 5, 1996 15:09:05
Run on : Jan 5, 1996 15:09:31
+ El apsed tinme : 00:00: 02
+ R R O R R R
v MEMORY LEAK SUMVARY
-]
0
C 12 outstanding nenory references for 7,137,102 bytes (6, 969K).
é Leaks detected during execution
>~ U
- 5083380 bytes 1 chunk allocated at red.c, 16
2002424 bytes 1 chunk allocated at white.c, 11
44562 bytes 1 chunk allocated at white.c, 16
6000 bytes 1 chunk allocated at blue.c, 16
400 bytes 2 chunks allocated at blue.c, 6
200 bytes 2 chunks allocated at red.c, 6
84 bytes 2 chunks allocated at white.c, 6
50 bytes 1 chunk allocated at blue.c, 11
2 bytes 1 chunk allocated at red.c, 11

Figure9. Sample*“leaks’ report summary after LeakTool

The most direct is to pipe the program’ s output through LeakTool, e.g.
hello | & | eakt ool -

Youcanasousether eport _fil e option (see page 139) to redirect Insight’s
output to afile, and then use LeakTool to process the output after your program
has completed its execution. For example, if you used the option

i nsure++.report_file foo-errors

50

Insight Reports

inyour . psr c filetowrite Insight’s output to thefilef oo- er r or s, you could
process the messages with LeakTool with the command

| eakt ool foo-errors

For information on using LeakTool in conjunction with Insra, see the Insra
section of this manual.

The “coverage” summary
TCA The coverage summary is enabled by adding the line

—

<
-
X
>
2
c
=
@D
+
+

i nsure++, sunmari ze cover age

toyour . psr c fileand re-running your program.

In addition to the normal error reports, you will see a summary indicating how
much of the application’s source code has been tested. The exact form of the
output is controlled by the. psr ¢ fileoptioncover age_swi t ches, which
specifies the command line switches passed to thet ca command to create the
output.

If thisvariableis not set, it defaultsto

i nsure++, coverage_swi tches -dS

which displays an application level summary of the test coverage such as

COVERAGE SUMVARY

11 bl ocks untested
42 bl ocks tested

51

Insight Reports

78% cover ed

For details on the formatting of this output usingthecover age_swi t ches

option, consult the manual pagefor thet ca command. (Seethe on-line man pages
with the command “nman tca”)

+
+
(]
—
-}
0
c
X
c
>

-

52

Selective Checking

Selective Checking

By default, Insight will check for bugs for the entire duration of your program. If
you are only interested in a portion of your code, you can make some simple,
unobtrusive changes to the original source to achieve this.

When you compilewithi nsi ght , the pre-processor symbol | NSI GHT _is
automatically defined. This allows you to conditionally insert callsto enable and
disable runtime checks.

Suppose, for example, that you are not interested in events occurring during the
execution of ahypothetical function gri nd_away. To disable checking during
this function, you can modify the code as shown below

—

<
-
X
>
2
c
=
@D
+
+

grind_away() {
#ifdef _ INSIGHT _

_Insight _set _option("runtine", "off");
#endi f
... code ...
#ifdef __INSIGHT__
_Insight _set _option("runtine", "on");
#endi f
}

Now when you compile and run your program, it will not check for bugs between
thecalsto | nsi ght _set _opti on.

Alternatively, if you do not want to modify the code for thegr i nd_away
function itself, you can add callsto _| nsi ght _set _opti on around thecalls
togri nd_away.

53

Selective Checking

+
+
(]
—
-}
0
c
X
c
>

-

Insra

Insra

Insra, the INSure++ Report Analyzer, isagraphical user interface for displaying
error messages generated by LynxInsure++ and CodeWizard. The messages are
summarized in a convenient display, which allows the developer to quickly
navigate through the list of bug reports and violation messages, suppress
messages, invoke an editor for immediate corrections to the source code, and

del ete messages as bugs are fixed.

- Insra [5] JJJ
File Hessages Help < Menu Bar I
<
i < W X < Tool Bar
Sprrays) | Reheild Help Exit

Message

Header

<€— Message
Body
Status
Connectionz: None Meszages; Mone <— Bal’

Figurel. Initial Insra display

Insra

The Insra display

Status Bar

During compilation/run time, LynxInsure++ or CodeWizard makes a
connection to Insra each time an error is detected. The status bar will report the
number of error messages currently being displayed and the number of active
connections. An active connection is denoted by ayellow star to the left of the
session header. A connection will remain active as long as the program is still
compiling/running. Insra will not allow you to delete a session header aslong as
its connection remains active, and you may not exit Insra until all connections
have been closed.

Tool Bar

Thetool bar allows the user to scroll up and down through messages, delete
selected messages as bugs are fixed, and even suppress errors detected by
LynxInsure++ and CodeWizard.

Message Header Area

The message header area presents information to the user in the form of message
headers, which are grouped by session headers. To see an example of Insra
displaying LynxInsure++ and CodeWizard error messages, please refer to
Figure 2.

56

Insra

Session Header

When thefirst error or violation is detected for a particular compilation or
execution, a session header is sent to Insra. The session header includes the
following information:;

» Compilation/execution

» Sourcefile/program

* Host on which the process is running
* Process|D

The session header will distinguish whether the client belongs to LynxInsure++
or CodeWizard. Thisisthefirst item to appear in the session header.

M essage Header

There are several types of message headers. Messages generated by
LynxInsure++ will consist of:

e Error category, e.g. LEAK_SCOPE
* Filename
* Line number
Messages generated by CodeWizard include:
o Class(if appropriate)
* Item
* Severity level, e.g. (SV)
* Filename
* Line number

Message headers will also appear for various LynxInsure++ summary reports.
Thesereports are generated using thesummar i ze option. Clicking on amessage
header displays the body of the error message or summary report in the message
body area.

57

Insra

= Insra [E
File Hessages Help
Session 2 @ ¥ < B X
Head er * Delete Suppress | Rebuild Help Exit
Codelizard: Analyzed “squec.coc" on cougar, pid=29327
a Violation of item 3 {V} LR
& Base: violation of item B (PY} sque.ce ¢ 12
Message & Base: violation of item 7 (1) squc.oc | 33
Header Inzight: Instrumenting "/home/cougar/mgasdv/tmp/sanpler,cc” on cougar,
(selected) #® UNUSED_VAR{assigned? sanpler,cc 3 38
Runtime: Executing "sampler_alpha" on cougar, pid=30534
§ LEAK_SCOPE sanpler,cc 1 6

3 Inzight trapped signal: 2
n Memory leak summary

Codelizard; Analyzed "squc.cc" on cougar, pid=29327

Poszible wiolation -- Effective C++ item B,
Call delete on pointer members in destructors

Message
Body

Class Baze containz pointer members not obwiously deleted in destructor:
_string

Connectionz: Mone Meszages: 8

Figure 2. Sample Insra display with messages

Message Body Area

The information displayed in the message body area varies according to the type
of message header currently selected.

58

Insra

Error Message
The message body for a selected LynxInsure++ error message includes:
* Lineof source code where the error occurred
e Explanation of the error detected
» Stack tracesfor quick reference to the original source code
The message body for a selected CodeWizard message includes:
» Severity level of item detected, e.g. Severe violation
* Item number detected
e Short description of item detected

The stack traces are “live”’ and can be double-clicked to launch an editor to view
and correct the indicated line of code. See “Viewing source files’ on page 64.

All messages sent to Insra are marked with a special icon. Please refer to the
following table for a brief description of each icon.

Icon Explanation
* Insight error message
a CodeWizard violation message

59

Insra

Icon Explanation
8 Insight summary report
) Memory leak
.g Trapped signal
Summary Report

For details on enabling LynxInsure++ summary reports, please refer to “Insight
Reports’ on page 29. See Figure 3 for an example of the Insra display with a
summary report selected.

Sending messages to Insra

By default, al Insight and CodeWizard output issentto st der r . Messagesthat
are generated by these tools can be redirected to Insra by simply adding the
appropriate option to your . psr c file

i nsure++.report _file insra
or

codewi zard.report _file insra

60

Insra

= Insra []l

File Messages Help

*®X<_ B X

* Delete | Suppress Help Exit

Runtime: Executing "sampler_alpha" on cougar, pid=£345
LEAK_SCOPE zampler,cc : B
LEAE_RETURN zanpler,cc
Insight trapped signal: 2

Hemory leak summary

&
&
3
B8 Problen summary
=]
|

Coverage summary

Leaks detected during execution

b bytes allocated at new,cxx, 33
operator newil) new,cxx, 33
leak_szcopel} sampler.cc, 5
cov{} =zampler.cc
main{} =zampler.cc

Connections: Mone Messages: B

Figure 3. Sample Insra display with summary report selected

The above option will redirect al LynxInsure++ or CodeWizard messagesto
Insra. The option

i nsure++. runtime.report_file insra

will send only LynxInsure++ runtime messages to Insra. LynxInsure++
compile-time messages will continueto besenttost derr .

61

Insra

The option
i nsure++, conpile.report_file insra

will send only LynxInsure++ compile-time messagesto Insra. Lynxinsure++
runtime messages will continue to be sentto st derr .

When you have one of the above optionssetinyour . psr c file, eachtimeanerror
is detected, Insight or CodeWizard attempts to establish a connection to Insra.
If Insra isnot yet running, it will be automatically started. Once the connectionis
established, a session header and all corresponding message headers will be
reported in the order they were detected. Each new compilation or execution, with
its own session header and messages, will be displayed in the order in which it
connected to Insra.

Viewing and navigating

Individual messages sent to Insra are denoted by a specificicon (See“Thelnsra
display” on page 56.) The body of the currently selected message is displayed in
the message body area. The message header area and the message body area are
both resizable, and scroll bars are also available to access text that is not visible.

Currently active messages become inactive when they are deleted or suppressed.

Deleting messages

Once error messages have been read and analyzed, the user may wish to clear
them from the window. The Delete option of Insra alows you to eliminate error
messages as efrors are corrected. A message or an entire session may be removed
by selecting the corresponding entry in the message header area and subsequently
clicking the Delete button on the tool bar. A message can also be deleted by
selecting M essages/Del ete from the menu bar.

62

Insra

= Insra [l

File Meszages Help

char * a = new charli + 11z

5

E return i3

:, q| € B X
]

]

Suppress Rebuild Help Exit
int leak_assign{ int i }
{
1% gfr&;‘a = new char(i + 113 Analyzed “squc.cc” on cougar, pid=29327
13 3 return it of item 3 (W3 sqyc.co 17
15 ation of item 6 (PY} sque.co ¢ 12

16 char * lesk_return(int i
17 4 ation of item 7 {1} sqyc.co § 33

18 return new charli + 113

rumenting "/ homescougardmgaddudtmpisampler, cc” on cougar,

- UNUSED_WAR: az=igned? zampler.cc ¢ 38

Runtime; Executing "sampler_alpha" on cougar. pid=30534
& LEAK_SCOPE zampler,cc ¢ 6
54 Insight trapped signal: 2

B Memory leak summatry

Codelizard; Analyzed "squc.cc® on cougar, pid=29327

Pozzible winlation -- Effective C++ item B,
Call delete on pointer memberz in destructors

Clasz Baze containz pointer members not obviously deleted in destructors
_string

Connections: MNone Messages: 8

Figure 4. SampleInsra display with editor window

63

Insra

Rebuild/Kill process

This button presents different options depending upon the currently selected
message header. When an active connection is selected, the Kill button can be
used to stop the selected compilation or execution. When an inactive
CodeWizard message or session header is selected, the Rebuild button allows
you to re-execute the same command line that generated the sel ected message
header. This allows the user to recheck the code immediately after correcting an
error. The Rebuild button is not available for LynxInsure++ messages.

Viewing source files

Y ou can view the corresponding source file and line number for aparticular error
message by double clicking on the message header or any line of the stack trace
in the message body area. In most cases, the file and line number associated with
a given message have been transmitted to Insra. If Insra is unable to locate the

source file, adialog box will appear requesting that you indicate the correct file.

Selecting an editor

In addition to the location of the source file, Insra must aso know the name of
your editor, and the command line syntax, in order to display the correct file and
line from the original source code.

Insra retrieves information about how to launch your editor from the . psrc
optioni nsra. vi sual (seepage 154 for information on using this option). If
thisoptionisnot set, Insra usesthevi editor by default. If theoptionisset, Insra
will execute the given command to load the file into your editor.

Insra

Saving/loading messages to a file

All current messages can be saved to afile by selecting File/Save or File/Save As
from the menu bar. A dialog box alowsyou to select the destination directory and
name of the report file. Report files have the default extensionr pt . After areport
file name has been selected, subsequent File/Save selections save all current
messages into the report file without prompting for anew filename. A previously
saved report file can be loaded by selecting File/L oad from the menu bar. A
dialog box then allows you to select which report file to load.

Help

On-line help can be obtained by choosing Help from the menu bar. This will
provide alist of topics on the use of Insra. In addition to providing help on the
various functional pieces of Insra, the FAQtext isavailable for browsing.

Context-sensitive help is accessible by simply clicking the Help button on the
toolbar. When selected, the mouse cursor changes to the question mark arrow
combination; clicking on any visual element of Insra will bring up ahelp window
with a description of that item.

65

Insra

Troubleshooting

Insra does not start automatically
Symptom:

While compiling or running, your program seems to hang when error output is
directed to Insra and Insra is not yet running.

Solution:

Run Insra by hand. Type
insra &

at the prompt, wait for the Insra window to appear and then run or compile your
program again. Output should now be sent to Insra.

Multiple users of Insra on one machine
Symptom:

When more than one user is attempting to send message reportsto Insra,
messages are lost.

Solution:

Each invocation of Insra requires a unique port number. By default, Insra uses
port 3255. If collisions are experienced, e.g. multiple users are on one machine,
setthe. psrc optioni nsr a. port toadifferent port above 1024. Ports |less
than 1024 are officially reserved by the operating system and should not be used
with Insra.

66

Insra

Source browsing is not working
Symptom:

***Error while attenpting to spawn browser
execvp fail ed!

Solution:

Insra attempted to launch your editor to view the selected sourcefile, but could
not locate either xterm or your editor on your path. Please make sure that both of
these applicationsarein directoriesthat are on your path or that you call themwith
their complete pathnames.

67

Insra

68

Interacting with Debuggers

| nteracting with
Debuggers

Whileit is our intent that the error messages generated by Insight will be
sufficient to identify most programming problems, it will someTimesNew Roman
be useful to have direct access to the information known to Insight. This can be
useful in the following situations

e Youarerunning your program from adebugger and would
like to cause a breakpoint whenever Insight discovers a
problem.

e Youaretracing an error using the debugger and would like
to monitor what Insight knows about your code.

e Youwishto add callsto your program to periodically
check the status of some data.

Available functions

Whenever Insight detects an error, it prints a diaghostic message and then calls
theroutine _| nsi ght _trap_error. Thisisagood placeto insert a
breakpoint if you are working with a debugger.

The following functions show the current status of memory and can be called
either from your program or the debugger. Remember to add prototypes for the
functionsyou use, particularly if you are calling these C functions from C++ code.

int _Insight_nmeminfo(void *pnen;
Displays information that is known about the block of memory
at address prrem (Returns zero.)

int _Insight_ptr_info(void **pptr);
Displaysinformation about the pointer at the indicated address.
(Returns zero.)

69

—

<
-
X
>
2
c
=
@D
+
+

Interacting with Debuggers

Thefollowing function lists all currently allocated memory blocks, including the
line number at which they were allocated. It can be called directly from your
program or from the debugger.

long _Insight list_allocated nenory(void);
Lists all allocated memory blocks, including the source line at
which they were allocated. Returns the amount of allocated
memory in bytes.

Sample debugging session

The use of these functionsis best illustrated by example.

+
+
(]
—
-}
0
c
X
c
>

-

Consider the following program

1 /*

2: * File: bugsfunc.c

3: */

4: #i ncl ude <stdlib. h>

5:

6: mai n()

7: {

8: char *p, *q;

9:

10: p = (char *)nmall oc(100);
11:

12: q = "testing";

13: while(*q) *p++ = *q++
14

15: free(p);

16: return (0);

17: }

70

Interacting with Debuggers

Compile this code under Insight in the normal manner (with the - g option), and
start the debugger in the normal manner.

The instructions shown here assume that the
debugger you are using is similar to gdb. If you are
using another debugger, similar commands
should be available.

$ gdb bugsfunc
Readi ng synbolic information...
Read 4650 symnbol s

(gdb)

—

<
-
X
>
2
c
=
@D
+
+

If the debugger has trouble recognizing and
reading the source file, you may need to use the
rename_fil eson . psrc option. See page 138
for more information about this option.

Itisgenerally useful to put abreakpointin | nsi ght _trap_error sothat
you can get control of the program whenever an error occurs. In this case, werun
the program to the error location with the following result

(gdb) break _Insight trap_error
Breakpoint 1 at Ox2a7e0: file trap.c, line 129

The above may not work if you have linked against
the shared Insight libraries. If you cannot set a
breakpoint as shown above, it is because the
shared libraries are not loaded by the debugger
until the program begins to run. You can avoid this
problem by linking against the static Insight
libraries (seethe st ati c_I i nki ng on option on
page 139) or by setting a breakpoint in mai n and
starting the program before setting the breakpoint
on_lInsight _trap_error.

71

Interacting with Debuggers

(gdb) run

Starting program /tnp/bugsfunc
Kernel supports MID ptrace requests.
[bugsfunc. c: 15] **FREE BODY**

>> free(p);

Freei ng nenory bl ock from body: p

+

E]'-) Poi nter : 0x44a42f

5 Stack trace where the error occurred:

2 mai n() bugsfunc.c, 15

é **Menory corrupted. Program may crash!!**

> Breakpoint: _Insight _trap_error() at trap.c: 129

- trap.c:129: File or directory doesn’t exist.
(gdb)

The program is attempting to free ablock of memory by passing a pointer that
doesn’t indicate the start of an allocated block. The error message shown by
Insight identifies thelocation at which the block was allocated and also shows us
that the variable p has been changed to point into the middle of the block, but it
doesn’t tell us where the value of p changed.

We can use the Insight functions from the debugger to help track this down.

Sincethe programisalready inthe debugger, we can simply add a breakpoint back
inmai n and restart it

(gdb) bt

#0 _Insight _trap_error() at trap.c:129

#1 0x1f093 in _insight_notify()

#2 0x18dal in _insight_unassigna()

#3 0x18e71 in _Insight_unassigna()

#4 0x4fd in main (_Insight_argc=1,
_Insight_argv=0x7ffffff8) at bugsfunc.c: 15
#5 0x3bc97 in runmai nt hread()

(gdb) franme 4

#4 0x4fd in main (_Insight_argc=1,
_Insight_argv=0x7ffffff8) at bugsfunc.c: 15

72

Interacting with Debuggers

(gdb) break 10

Breakpoint 2 at 0x2c8: file bugsfunc.c, |ine 10.
(gdb) run

The program bei ng debugged has been started
already. Start it fromthe beginning? (y or n) y

Starting program /tnp/bugsfunc
Ker nel supports MID ptrace requests.

Breakpoint 2, main (_Insight_argc=1,
_Insight_argv=0x7ffffff8) at bugsfunc.c: 10
(gdb)

—

<
-
X
>
2
c
=
@D
+
+

To seewhat is currently known about the pointers p and g, we can use the
_I'nsight_ptr_info function

Note that the _I nsi ght _pt r _i nf o function
% expects to be passed the address of the pointer,

not the pointer itself. To see the contents of the
memory indicated by the pointers, use the
_I'nsi ght _mem_i nf o function.

(gdb) print _Insight_ptr_info(&p)
Pointer: Ox7ffffff0O (stack)
Unknown
$1=0

(gdb) print _Insight_ptr_info(&q)
Poi nter: 0x00000003

Unknown
$2=0

Both pointers are currently uninitialized, as would be expected.

73

+
+
(]
—
-}
0
c
X
c
>

-

Interacting with Debuggers

To see something more interesting, we can continue to line 13 and repeat the
previous steps.

(gdb) break 13

Br eakpoi nt at Ox37a: file bugsfunc.c, line 13.
(gdb) conti nui ng

Br eakpoint 3, main (_Insight_argc=1,
_Insight_argv=0x7ffffff8) at bugsfunc.c: 13

(gdb) print _Insight_ptr_info(&p)
Poi nter : 0x0044a428 (heap)
O f set : 0 bytes
In Block : 0x0044a428 thru 0x0044a48b
(100 bytes)
al | ocat ed
$3=0

The variable p now pointsto a block of allocated memory. Y ou can check on all
allocated memory by calling _I nsi ght _|i st_al | ocat ed_nenory.

(gdb) print _Insight_list_allocated_nenmory()
1 allocated nmenory bl ock, occupying 100 bytes.
[bugsfunc. c: 10] 0x0044a428 - 0x0044a48b
100 bytes.
$4 = 100

Finally, we check on the second pointer, g.

(gdb) print _Insight_ptr_info(&q)
Poi nter : 0x00000218 (gl obal)

O f set : 0 bytes
In Block : 0x00000218 thru 0x0000021f
(8 bytes)

q", declared at bugsfunc.c, 12
$5 =0

74

Interacting with Debuggers

Everything seems O.K. at this point, so we can continue to the point at which the
memory is freed and check again.

(gdb) next 2
15 free(p);
(gdb) print _Insight_ptr_info(&p)
Poi nter : 0x0044a42f (heap)
O f set : 7 bytes
In Block : 0x0044a42f thru 0x0044a48b
(100 bytes)
al | ocat ed
$6 = 0

—

<
-
X
>
2
c
=
@D
+
+

The critical information here is that the pointer now points to an offset 7 bytes
from the beginning of the allocated block. Executing the next statement,
free(p),will now cause the previously shown error, since the pointer doesn’'t
point to the beginning of the allocated block anymore.

Since everything was correct at line 12 and is now broken at line 15, it is simple
to find the problem in line 13 in which the pointer p isincremented whilelooping
over q.

75

Interacting with Debuggers

+
+
(]
—
-}
0
c
X
c
>

-

76

Tracing

Tracing

Tracing isavery useful enhancement of Insight for C++ programmers. Because
C++ is such a complicated language, programmers may never know which
functions are being called or in which order. Some functions are called during
initialization before the main program begins execution. Tracing provides the
programmer with the ability to see how functions, constructors, destructors, and
more are called as the program runs.

Insight printsamessage at the entry to every function which includesthe function
name, filename, and line number of the command that called it.

A typical line of output from tracing looks like:
function_nane filenanme, |ine_nunber

By default, the output is indented to show the proper depth of the trace.

Turning tracing on

By default, tracing is turned off. The easiest way to turn tracing on isto use the
trace onoptioninyour. psr c file. Thisturns on tracing for the entire
program. See page 150 for more information about this option.

To get a full trace, you must use the - g compiler
switch onyouri nsi ght compile line. To getfile
names and line numbers in the trace output, you
must use the st ack_i nt ernal on option
when compiling your program. (see page 139)

Y ou may not want to do this always, though, because your program will slow
down while every function call printsinformation.

This problem can be minimized by selectively turning on tracing during the
execution of your program only in those sections of the code where you need it
most. This can be done using the special Insight command

77

—

<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Tracing

void _Insight _trace_enable(int flag)

f I ag = 0 turns tracing off
fl ag =1 turnstracing on

Thereis one more special Insight function that works with tracing. This function
may be used to add your own messages to the trace.

void _Insight_trace_annotate(int indent,
char *format, ...)

i ndent =0 meansstring is placed in column zero
i ndent =1 meansstring will be indented at proper level
f or mat should be anormal printf-style format string

Directing tracing output to a file

The default output for tracing data, like al other Insight output, isst derr . You
candirect theoutputtoafileusingthet race _fil e fil enane optioninyour
. psr c file. See page 150 for more information about this option.

When you use this option, Insight prints a
message reminding you where the tracing data
is being written. If you would like to eliminate
these reminders, you can use the
trace_banner of f optioninyour. psr c file.
See page 150 for more information.

78

Tracing

Example

Consider the following code, which will illustrate how tracing works.
1 [*
2 * File: trace.C
3 */
4. int twice(int j) { (i
5: return j*2; §
6: } X
7: class nject { =
8: public: &
9: int i; =
10: bj ect () ®
11: i = 0; +
12: }
13: oject(int j) {
14: i =7;
15: }
16: operator int() { return twice(i); }
17: };
18: int main() {
19: hj ect o;
20: int i;
21:
22: i = o;
23: return i;
24; }

If you compileand link t r ace. Cwith the - g option and the

stack_i nternal on option (seepage 139), and then run the executable with
thetrace on optioninyour. psrc file, you will seethefollowing output in
stderr.

mai n
hj ect : : Cbj ect trace.C, 19

hj ect::operator int trace.C, 22
twice trace.C, 16

79

Tracing

++8INSU|XUAT

80

Sgnals

Signals

In addition to its other error checks, Insight also traps certain signals. It doesthis
by installing handlers when your program starts up. These do not interfere with
your program’s own use of signals - any code which manipulates signals will
simply override the functionsinstalled by Insight.

Signal handling actions

When asignal is detected, Insight does the following
* Printsan informative error.

* Logsthesigna inthe Insight report file, if oneis being
used.

e Cdlsthefunction I nsi ght _trap_error.
» Takesthe appropriate action for the signal.

If thislast step will result in the program terminating, Insight attemptsto close any
open files properly. In particular, the Insight report file will be closed. Note that
this can only work if the program hasn’t crashed the I/O system. If, for example,
the program has generated a“bus’ or similar error, it might not be possibleto close
the open files. In the worst of all possible scenarios you will smply generate
another (fatal) signal when Insight attemptsto clean up.

The third step is useful if you are working with a debugger, as described in
“Interacting with Debuggers’ on page 69. In this case, you can insert a breakpoint
a_|Insight_trap_error and havethe program stop whenever it is
generating one of the trapped signals.

81

—
<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Sgnals

Interrupting long-running jobs

Insight installs ahandler for the keyboard interrupt command (often CTRL-C, or
the delete key). If your program does not override this handler with one of itsown,
you can abort along-running program and still get Insight’s output. If your
program hasits own handler for this sequence, you can achieve the same effect by
adding the following lines to your handler

#ifdef __INSIGHT__
_I'nsi ght _cl eanup();
#endi f

Which signals are trapped?

By default, Insight traps the following signals

SI GABRT
SI GBUS
SI GEMT
SI GFPE
SIGLL
SI G NT
slaor
SIGQUI T
SI GSEGV
SI GSYS
SI GTERM
SI GTRAP

Y ou can add to or subtract from thislist, by adding linesto one of your . psr c
files and re-running the program.

82

Sgnals

Signals are added to the list with options such as

i nsure++. signal _catch SIGSTOP SIGCLD SIA O

and removed with

i nsure++. signal __ignore SIG NT SIGQU T SI GTERM

Y ou can omit the“SI G’ prefix if you wish.

83

—

<
-
X
>
2
c
=
@D
+
+

Sgnals

++9.nsuIxui]

Code Insertions

Code I nsertions

Most programmers write code that makes assumptions about various things that
can happen. These assumptions can vary fromthevery simple, such as“I’m never
going to passa NULL pointer to thisrouting”, to more subtle, suchas“a and b are
going to be positive”.

Whether this is done conscioudly or not, the problems that occur when these
assumptions are violated are often the most difficult to track down. In many cases,
the program will run to compl etion with no indication of error, except that thefinal
answer isincorrect.

Debugging the hard way

The simple case just described, the NULL pointer, will probably be tracked down
pretty easily, since Insight will pinpoint the error immediately. A few minutes of
work should eliminate this problem.

The second case is much harder.

One option isto add large chunks of debugging code to your application to check
for the various cases that you don’'t expect to show up. Of course, you normally
have an idea of where the problem is, so you start by putting checks there. You
then run the code and sort through the mass of output, trying to see where things
started to go awry. If you guessed wrong, you insert more checks in other places
of the code and repeat the entire process.

If you are lucky, the code you insert to catch the problem won't add bugs of its
own.

Once you' ve found the problem, you can either remove the debugging code
(introducing the possibility of deleting thewrong thingsand bringing in new bugs)
or comment it out for use next time (cluttering the source code).

85

—
<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Code Insertions

An easier solution

A second option isto have Insight add the checking code to your application
automatically and invisibly.

The basic ideais that you tell Insight what you' d like to check by providing an
“Insight interface modul€”. This can be kept separate from your main application
and added and removed at compile time. Furthermore, Insight automatically
insertsit in every placethat you use a particular piece of code so you only haveto
go through this process once. Finally, errorsthat are detected are diagnosed in the
sameway as al other Insight errors. Y ou get acomplete report of the sourcefile,
line number, and function call stack together with any other information that you
think is useful.

An example

Assume that you have aroutinein your program called cr uncher which takes
three double precision arguments and returns one. For some reason, possibly
connected with the details of your application, you expect the following rulesto
be true when calls are made to this routine

* The sum of the three parametersis|less than 10.
» Thefirst parameter is always greater than zero.
* Thereturn value is never zero.

To enforce these rules with Insight, you create a file containing the following
“ Code” .

/*

* crun_iic.c

*/

doubl e cruncher(a, b, c)
double a, b, c;

{

doubl e ret;

N R®NR

i f(atb+c >= 10.) {

86

Code Insertions

10: iic_error(USER_ERROR,

11: "Sum exceeds 10: 9% +9% +9% \ n",
12: a, b, c);

13: }

14: if(a<=0) {

15: iic_error(USER_ERROR,

16: "a is negative: %\n", a);
17: }

18: ret = cruncher(a, b, c);

19: if(ret == 0) {

20: iic_error(USER_ERROR,

21: "Return zero: % ,%,% => %\n",
22: a, b, c, ret);

23: }

24: return ret;

25: }

Note that thislooksjust like normal C code with the rather strange exception that
theroutinecr uncher calsitself at line 18!

Thisisnot normal C code - it's an Insight interface description, and it behaves
rather like a complicated macro insertion. Wherever your origina source code
containscallsto thefunctioncr uncher , they will bereplaced by this set of error
checks, and the indicated call to the routine cr uncher .

The net effect will be asthough you had added all thiscomplex error checking and
printing code manually, except that Insight doesit automatically for you. Another
advantageistheuseof thei i c_er r or routine rather than a conventional call to
printf orfprintf.Theiic_error routine performsthe sametask -
printing data and strings, but also includes in its output information about the
source file and line number at which the call is being made and a full stack trace.

87

—

<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Code Insertions

Using the interface

Once you' ve written this interface description, using it istrivial. First, you
compileit with the special Insight interface compiler, i i c. If you put the codein
afilecalledcrun_ii c. c, for example, you would type the command

iic crun_ic.c

Thiscreatesafilecalledcrun_ii c. t gs, whichisan “Insight interface
module”.
Y ou can use this module in one of two ways.

If you plan to use thisinterface check on aregular basis during the development
of your project, you should insert the line

i nsure++.interface library crun_iic.tqgs
inthe. psr c filein either your current working or SHOVE directory. All future

invocations of i nsi ght will theninsert this interface check.

If you wish to use the interface check intermittently on some of your compiles,
you can add the name of the interface module to thei nsi ght command line
when you compile and link your source code. For example the command

insight -c nyfilel.c
would become
insight crun_iic.tqgqs -c nyfilel.c

Note that you can specify more than one interface in any interface file or include
multiple interface modulesonthei nt erface_li brary lineinyour. psrc
fileor onthei nsi ght command line.

88

Code Insertions

Conclusions

This section has shown how you can add your own error checking either to extend
or replace that done automatically by Insight by defining “interface modules’.
These are actually avery powerful way of extending the capabilities of Insight,
and are described more fully in “Interfaces’ on page 91. The current discussion,
however, has shown their simplest use.

89

—

<
-
X
>
2
c
=
@D
+
+

Code Insertions

++0INSU|XUAT]

90

Interfaces

| nterfaces

The section “ Code Insertions’ on page 85, described away of using Insight
interface descriptionsto add user level checking to function calls. Thisusageis
only one of the things that interfaces can do to extend the capabilities of Insight.
This section describes the purpose of these interfaces in more detail and also
shows you how to write your own.

What are interfaces for?

Interface descriptions provide an extremely powerful facility which allowsyouto
perform extensive checking on functions in system or third party libraries before
problems cause them to crash.

Most problems encountered in libraries are due to their being called incorrectly
from the user application. Insight interfaces are designed to trap and diagnose
errors where your code makes calls to these functions. This provides the most
useful information for correcting the error.

Essentially, an interface is a means of enforcing rules on the way that a function
can be called and the side-effects it has on memory. Typically, interfaces check
that all parameters are of the correct type, that pointers point to memory blocks of
the appropriate size, and that parameter values are in correct ranges. Whenever a
function is expected to create or delete a block of dynamic memory, they also
make calls that allow Insight’s runtime library to update its internal records.

Writing interfacesfor your librariesisafairly simpletask oncethe basic principles
are understood. To help in relating the purpose of an interfaceto its
implementation, the following sections describe two simple examples, onein C
and onein C++.

91

—

<
-
X
>
2
c
=
@D
+
+

Interfaces

A C example

Consider the following code, which makesacall to ahypothetical library function
nmymal | oc. Seethefilenymal . ¢ below for adefinition of nymal | oc.

1: /*

2: * File: nmymal use.c
+ 3: */
) 4: main()
5 5: {
N 6: char *p, *mymal | oc();
< 7:
é 8: p = nymal | oc(10);
= 9: *p = 0
- 10: return (0);

11: }

In order to get the best from Insight, you need to summari ze the expected behavior
of thermymal | oc function. For this example, |et us assume that we want to
enforce the following rules:

e Thesingle argument is an integer which must be positive.

e Thereturnvalueisapointer to ablock of memory whichis
allocated by the routine.

e Thesizeof the alocated block is equal to the supplied
argument.

To do so, we create afile with the following interface

/*
* File: nmymal i.c
*/
char *nynmal | oc(int n)
{
char *retp;
if(n <= 0)
iic_error(USER ERROR,
"Negative argunent: %\n",n);
0: retp = nymal | oc(n);

BooNogdRwhR

92

Interfaces

11: if(retp) iic_alloc(retp, n);
12: return retp;
13: }

The key features of this code are as follows

Line4 A standard ANSI function declaration for the function to be
described, including its return type and arguments. (Old-style
function declarations can also be used.)

Line7 A check that the argument supplied is positive, as required by
the rulesthat we are trying to enforce. If the condition fails, we
use the special i i c_er r or function to print an Insight-style
error message, using standard pri nt f notation.

—
<
-
X
>
2
c
=
@D
+
+

Line 10 This (apparently recursive) call to the mynmal | oc function is
where the actual call to the function will be made when this
interface is expanded. It appears just as in the function
declaration.

Line11 If the return value from the function call is not zero, we use the
i i c_all oc function to indicate that a block of uninitialized
memory of the given size has been allocated and is pointed to
by the pointer r et p.

Line12 The interface description ends by returning the same value
returned from the call to the actual functionin Line 10.

If you compile and link this interface description into your program (using the
techniques described in “Using interfaces’ on page 101), Insight will
automatically check for all the requirements whenever you call the function.

/*
* File: nymal.c
*/
#i ncl ude <stdlib. h>
char *nymal | oc(n)
int n;

{

0: }

return (char *)malloc(n);

BooNoORwWNE

93

+
+
(]
—
-}
0
c
X
c
>

-

Interfaces

A C++ example

1: /*

2: * File: bag.h

3: */

4. class Bag {

5: struct store {

6: void *ptr;

7: store *next;
8: }

9: store *top;

10: public:

11: Bag() : top(0) { }
12: void insert(void *ptr);
13: };

1 /*

2: * File: bag.C

3: */

4. #i ncl ude “bag. h”

5:

6: int main(void) {

7: Bag bag;

8:

9: for (int i =0; i < 10;
10: int *f = newint;
11: bag.insert(f);
12: }

13: return O,

14: }

1 /*

2: * File: bagi.C

3: */

4. #i ncl ude “bag. h”

5:

94

i++) {

Interfaces

6 void Bag::insert(void *ptr) {
7: store *s = new store,

8: s->next = top;

9: top = s;

10: s->ptr = ptr;

11: return,

12: }

Let'sassumethat bagi . Cisapart of aclass library which was not compiled
with Insight, e.g. athird-party library. We can simulate this situation by
compiling the files with the following commands:

insight -g -c bag.C
g++ -c bagi.C
insight -g -o bag bag.o bagi.o

—
<
-
X
>
2
c
=
@D
+
+

Aninterface for thei nsert classfunction might look like this:

/*

* File: bag_i.C
*/
#i ncl ude “bag. h”

void Bag::insert(void *ptr) {
iic_save(ptr);
i nsert(ptr);
return;

BooNoORhwWNE

We can then compile the interface file with thei i ¢ compiler asfollows:
iic bag_i.C

To get Insight to use the new interface description, we need to use the following
compilation commands in place of the earlier commands:

g++ -c bagi.C
insight -g -o bag bag.C bagi.o bag_i.tqgs

95

Interfaces

The basic principles of interfaces

As shown in the previous examples, interface descriptions have the following
elements:

» Thedeclaration of the interface description looks just like
apiece of C code for the described function. It declaresthe
arguments and return type of the function. Either ANSI or
Kernighan & Ritchie style declarations may be used, but
ANSI styleispreferred, since K& R style declarations have
implicit type promotions.

e Thebody of theinterface description usescallsto functions
whose names start withi i ¢_ to describe the behavior of
theroutine.

+
+
(]
—
-}
0
c
X
c
>

-

e Theinterface function appearsto call itself at some point.

These concepts are common to all interface descriptions.

Interface creation strategy

There are several possible strategies for creating interfaces for your software
depending on what resources you have available and how much time you wish to
expend on the project.

Normally, we recommend the following steps

» Create afile containing ANSI-style prototypes for the
functions for which you want to make interfaces.

» Extend these prototypes by adding additional error checks
with the built-ini i ¢_ functions.

Getting to thefirst stage will allow you to perform strong type-checking on all the
functionsin your application. Going to the second stage provides full support for
all of Insight’s error checking capabilities.

96

Interfaces

Various aids are provided to help you implement these two stages, as briefly
summarized in the flowchart in Figure 5, which includes page references for the
most important steps.

Extract prototypes
“by hand”

Do you want to
customize the error
checking?

Selectively add “i i c_”
L g | error checking callsand
“recursive” function call

No

page 100

Compile interfaces
withi i ¢ command

page 101

Add interfaces to
i nsi ght commands

Figureb5. Strategy for creating interfaces

97

—

<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Interfaces

Trivial interfaces - function prototypes

Theinterfaces described so far have been* complete” inthe sensethat they contain
error checking calls and also the “fake” recursive cal typical of an interface
function. Thereisactually onelevel of interface which iseven simpler than this -
an ANSI-style function prototype.

If you make afile containing ANSI-style prototypes for all of your functions,
compileitwiththei i ¢ program, and then add itto youri nsi ght command (as
described on page 101), you will get strong type-checking for all of your
functions. Y ou can then incrementally add to this file the extended interface
descriptions with better memory checking and the “fake” recursive call.

Using i i whi ch to find an interface

The simplest way to generate an interface is to copy one from aroutine that does
something similar. In the two examples which started this section, we used
interfaces to functions that behaved roughly the same way that mal | oc and
nmentpy operate. Furthermore, these two system functions are ones that Insight
knows about automatically, becauseinterfacesto all system callsare shipped with
Insight.

To see how their interfaces are defined, we use the command i i whi ch as
follows
iiwhich malloc nmencpy
The output from this command is shown in Figure 6.
Note that on LynxOS, these may be linkable
% interfaces. If this is the case, you will need to find

the source code to these interfaces in the
src. $ARCH $COWPI LER directory).

98

N R®NR

Interfaces

mal | oc: Interface in /usr/local/insure/standard.tqgs

[./1ib.c:450]

char *mal |l oc(size_t size) {

S}

char *a;

a = mall oc(size);
if (a)
iic_alloc(a, size);
el se
iic_error(RETURN_FAI LURE,
"mal l oc(%) returned null", size);
return a;

. mentpy: Interface in /usr/local/insure/standard.tqgs

[./1ib.c:204]

: char *mencpy(void *d, void *s, int len) {

if (len <0) {
iic_error(USER_ERROR,
"Negative |l ength passed to nmencpy: %",
I en);
}
el se {
if (((char *) s < (char *) d &&
(char *) d < (char *) s + len) ||
((char *) d < (char *) s &&
(char *) s < (char *) d + len))
iic_error(USER_ERROR,
"Menory bl ocks passed to nmencpy overlap.");
iic_copy(d, s, len);
}

return nencpy(d, s, len);

Figure6. Insight interfacesfor mal | oc and nentpy

99

—
<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Interfaces

Thefirst block of “code” is the interface which defines the behavior of the

mal | oc function, and the second describes ment py. Note that they both follow
the principles described above: they look moreor lesslike C code with one strange
exception - each function appearsto call itself!

Thisisnot recursive behavior, becausethisisnot real C code. What really happens
isthat calls to the functions shown are replaced by the interface code.
Nonetheless, it can be thought of as C code when you write your own interfaces.

A second dlightly tricky feature concerns the behavior of function calls made
within an interface definition. These are of two types:

» Cdlsto Insight interface functions, whose names begin
withi i c_, are detected by thei i ¢ command and turned
into sequences of error checking calls. They are not real
function calls in themselves.

» Cdlstoother functionsare made exactly asrequested, with
no additional error checking. Thiscan beaproblemif you
end up passing a bad pointer to an unchecked library call,
which may cause the program to fail before Insight can
print an error message.

Notethat thei i whi ch commandisalso useful if you want to seewhat properties

of afunction are being checked by Insight, or if Insight knows anything about it.
The command

iiwhich foo

showsyou theinterface for the function f 0o, if it exists. If no interface exists, no
checking will be done on callsto this function unless you write an interface
yourself.

Writing simple interfaces

Usingi i whi ch can save you alot of time. Before starting to write your own
interfacefiles, particularly for system functions, you should check that one hasn't

100

Interfaces

already been defined. Then, if you can think of a common function that operates
in asimilar way to the function you're trying to interface, start by copying its
definition and modifying it. In either case, you must understand the way that the
interfaces work, and to do this, you must first understand their goal.

Themal | oc function returns blocks of memory, and we need to tell Insight
about the size and location of such blocks. Thisisthe reason for the call to
iic_allocatline9inFigure®6. Thisistheinterfacefunction that tells Insight
to record the fact that a block of uninitialized memory of the given size has been
allocated. From then on, references to this block of memory will be understood
properly by Insight.

Similarly, the purpose of ment py isto take anumber of bytesfrom one particular
location and copy them to another. This activity isindicated by the call to the
interface functioni i c_copy at line 32 of Figure 6. Insight uses this call to
understand that two memory regions of theindicated sizewill beread and written,
respectively.

Theother code shown in theinterface descriptionsisused to check that parameters
liein legal ranges and is used to provide additional error checking.

Using interfaces

To use an interface, we first compile it with the Insight interface compiler, i i c.
If, for example, we put theinterfacefor thel i b_gi mme function, shown on page
92, inafilecalled gi nme_i . ¢, we would use the command

iic gimme_i.c

Thisresultsinthefilegi mme_i . t gs, which can be passed to Insight on the
command line as follows:

insight -c ginme_i.tqgs wilduse.c
insight -o wild wilduse.o nylib.a

101

—
<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Interfaces

in which we assume that the library containing the actual code for the
i b_gi me routineiscalednyl i b. a.

An additional example of how to use an interface can be found earlier in this
section on page 95.

The basics for using an interface, therefore, are to:
» Compiletheinterface withi i c.
* Recompile your program.

Note that you don’t have to limit yourself to a single interface per sourcefile. If
you are preparing an interface module for an entire library, or a source file with
multiple functions, you can put them all into the same interface description file.

Similarly, you don’t have to pass all the names of your compiled interface
modules onthei nsi ght command line every time. Y ou can add lines to your
. psr c filesthat list interface modules as follows

insure++.interface_library /usr/trf/nylib.tqgs
i nsure++.interface_library /usr/local/ourlib.tqgs

Ordering of interfaces

Files containing compiled interface definitions can be placed in any directory.
Insight can betoldto use suchfilesin variousways, and processesthem according
to the following rules:

e |f astandard library interface exists it is processed first.

» Interfaces specifiedini nterface_library
statementsin configuration (. psr ¢) files are processed
next, potentially overriding standard library definitions.

» Interface modules (i.e., files with the suffix . t qs or
. 1 qi) specified onthei nsi ght command line override
any other definitions.

102

Interfaces

Later definitions supercede earlier ones, so you can make alocal definition of a
library function and it will override the standard one in the library.

Toseewhichinterfacefileswill be processed, and in which order, you can execute
the command

iiwhich -1
which listsall the standard library filesfor your system, and then any indicated by

i nterface_I|ibrary commandsin configuration files.

Tofind afunction in an interface library, you can usethei i whi ch command as
already described. To list the contents of a particular TQS file, usethei i i nf o
command.

Working on multiple platforms or with
multiple compilers

Many projectsinvolve porting applications to several different platforms or the
use of more than one compiler. Insight deals with this by using two built-in
variables, which denote the machine architecture on which you are running and
the name of the compiler you are using. Y ou can use these values to switch
between various combinations, each specific to a particular machine or compiler.

For example, environment variables, ‘~'s (for HOVE directories) and the ‘%
notation described on page 122, are expanded when processing filenames, so the
command

interface_library $HOVE/ i nsi ght/ %/ %/ fo0o0.tqs
loads an interface file with a name such as

/usr/melinsight/lynx x86/gcc/foo.tqgs

103

—
<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Interfaces

in which the environment variable HOVE has been replaced by its value and the
‘o%’ and ‘%’ macros have been expanded to indicate the architecture and
compiler name in use. This allows you to load the appropriate TQS files for the
architecture and compiler that you are using.

One problem to watch out for occurs when you
switch to a compiler for which Insight supplies no
interface modules. In this case, you will see an
error message during compilation. Several

work-arounds are possible as described in the
FAQ (FAQ t xt).

Common interface functions

Most definitions need only a handful of interface functions of which we've
already introduced the most common;

void iic_alloc(void *ptr,unsigned |ong size);
Declares a block of dynamically allocated, uninitialized,
memory.

void iic_source(void *ptr, unsigned |long size);
Declares that a block of memory isread.

void iic_sourcei(void *ptr, unsigned |ong size);
Declares that a block of memory isread and also checks that it
iscompletely initialized.

void iic_dest(void *ptr, unsigned |long size);
Declares that a block of memory is modified.
void iic_copy(void *to, void *from
unsi gned | ong si ze);
Declares that the indicated block of memory is copied.

void iic_error(int code, char *format, ...);
Causes an error to be generated with the indicated error code.

104

Interfaces

Subsequent arguments are treated as though they were part of
thepri nt f statement.

Other commonly occurring functions are listed below together with examples of
system callsthat use them. You can usethei i whi ch command on the listed
functions to see examples of their use.

int iic_string(char *ptr, unsigned |ong size);
Declares that the argument should be a NULL terminated
character string. This is used in most of the string handling
routines such asst r cpy, st r cat, etc. The second argument
isoptional, and can be used to limit the check to at most si ze
characters.

void iic_alloci(void *ptr, unsigned |ong size);
Declares a block of dynamically allocated, initialized memory
such as might be returned by cal | oc.

void iic_allocs(void *ptr, unsigned |long size);
Declares a pointer to a block of statically allocated memory.
Used by functionsthat return pointersinto static strings. ct i me
and get env are examples of system calls that do this.

void iic_unalloc(void *ptr);
Declares that the indicated pointer is de-allocated with the
systemcall fr ee.

A complete list of available functionsis given in “Interface Functions’ on
page 359.

Checking for errors in system calls

We can make interfaces even more user-friendly by adding checks for common
problems, similar to the user level checksthat werediscussed in“Code Insertions”
on page 85.

For example, mal | oc canfail. Thisisthe reason for the second branch of the
codeinline 11 of Figure 6. If the actual call to mal | oc fails, instead of telling
Insight about a block of allocated memory withi i ¢_al | oc, we cause an

105

—
<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Interfaces

Insight error with code RETURN_FAI LURE and the error message shown. This,
in turn, will cause a message to be printed (at runtime) whenever nal | oc fails
and the RETURN_FAI LURE error code has been unsuppressed. (See “Enabling
error messages’ on page 40.)

Similarly, mentpy can cause undefined behavior when given perfectly valid
buffers that happen to overlap. We check for this casein the code at line 20, and
again, cause an Insight error if aproblem is detected.

This method provides avery powerful debugging technique, which is used
extensively in the interface files supplied with Insight. Since the

RETURN_FAI LURE error codeis suppressed by default, you will normally not be
bothered by messages when system calls fail. The assumption is that the user
applicationisgoing to deal with the problem. Infact, it may require certain system
callsto fail in order to work properly. However, when particularly nasty bugs
appear, it is often useful to enablethe RETURN_FAI LURE error category to look
for cases where system calls fail “unexpectedly” and are not being handled
correctly by the application. Errors such as missing files (causing f open to fail)
or insufficient memory (mal | oc fails) can then be diagnosed trivialy.

Using Insight in production code

A particularly powerful application of the technique described in the previous
section isto make two different versions of your application.

e Onewith full error checking.
e Onewithout Insight at all.

Thefirst of theseis used during application development to find the most serious
bugs. The second is the one that will be used in production and shipped to
customers.

When you or your customer support team is faced with a problem, they can run
this code with the RETURN_FAI LURE error class enabled and look for
“unexpected” failures such as missing files, incorrectly set permissions,
insufficient memory, etc.

106

Interfaces

Advanced interfaces: complex data
types

The interfaces that have been considered so far are simplein the sense that their
behavior is determined by their arguments in a straightforward manner.

To show a more complex example, consider the following data structure

struct nybuf {
int |en;
char *dat a;

s

This data type could be used to handle variable length buffers. The first element
shows the buffer length and the second points to a dynamically allocated buffer.

The code which allocates such an object might look as follows:

#i ncl ude <stdlib. h>

struct nybuf *nybuf_creat(n)

int n;
{
struct nybuf *b;
b = (struct nybuf *)mall oc(sizeof(*b));
if(b) {
b->data = (char *)nall oc(n);
i f(b->data) b->len = n;
el se b->len = 0;
}
return b;
}

Similarly, we might define operationsonast ruct mybuf that work in quite
complex ways on its data.

107

—

<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Interfaces

To build aninterface description of themybuf _cr eat e function which detailed
all its behavior would require the following code

struct nybuf *nmybuf_creat(n)

int n;
{
struct nybuf *b;
b = nybuf_creat(n);
if(b) {
iic_alloci(b, sizeof(*b));
i f(b->data)
iic_alloc(b->data, b->len);
}
return b;
}

Note how the structure of the interface description follows that of the original
source.

This matching would be seenin theinterface descriptions of all the other functions
that operateonthest ruct nybuf datatype, too. In fact, the interface
description would probably end up looking quite alot like the source code!

There are basically three approaches to dealing with this problem:

» Forget the interface entirely and actually process the real
source code with i nsi ght and link it in the normal
manner.

* “Godeep” and define an interface that mimics all of the
details of the interface, including all the operations on the
internal structure elements.

* “Goopaque’ and build an interface that defines some
levels of the functions without necessarily going into
details of their action.

Each of theseis agood approach in a different situation.

108

Interfaces

Thefirst approach, process the actual source code, isthe best in terms of accuracy
and reliability. Given the original source code, Insight will have complete
knowledge of theworkings of the code and will be ableto check every detail itself.

The second approach is best when the source codeis unavailabl e but you still want
to check every detail of your program’s interaction with the affected routines. It
can be implemented only if you have intimate knowledge of how the routines
work, sinceyou will haveto usetheinterface functionsto mimic the actions of the
functions on the individual elements of thest r uct nybuf .

Thethird approach is appropriate when you are sure that the functions themselves
work correctly. Perhaps, for example, you’ ve been running Insight on their source
code at some earlier date and you know that they are internally consistent and
robust. In this case, you may want to increase the performance of the rest of your
program by checking the high level interface to the routines, but not their internal
details.

Another reason for adopting this last approach might be that you actually don't
know the detail s of the functionsinvolved and might not be able to duplicate their
exact behavior. A good example would be building an interface to a third party
library. Y ou have clear definitions of the upper level behavior of the routines, but
may not know how they work internally.

Thefirst and second approaches have already been discussed. Thethird approach
is easily achieved by doing nothing - Insight will recognize that the data type has
not been declared in detail and should therefore not be checked in detail. Y ou can
choose for yourself which fieldsto declare in detail and which to ignore.

Interface esoterica

Sinceit is possible to express awide range of actionsin C, interface files must
have correspondingly sophisticated capabilitiesin order to definetheir actionsand
check their validity.

One of these features was seen in the previous section: thei i ¢_start up
function. This function can be defined in any interface file and contains calls to
interface functions that will be made before calling any of the other functions

109

—
<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Interfaces

defined in the interface file. Typically, you will place definitions and
initializations of known global or external variables in this function.

Note that each interface file may haveitsowni i ¢_start up.

Variable argument lists are dealt with by using the pre-defined variable

__dot s__. For example, the interface specification for the standard system call
printf is

int printf(char *format, ...)

{
iic_string(format);
iic_output_format(format);
return(printf(format, _ dots_));

}

Thevariable__dot s___ inthe function call matches the variable arguments
declared with “. . . " in the definition.

Checking of pri nt f and scanf styleformat strings is done with the
iic_output_format andiic_i nput _f ormat routines. These check that
arguments match their corresponding format characters.i i c_st r| enf returns
the length of a string after its format characters have been expanded and can be
used to check that buffers are large enough to hold formatted strings.

A complete list of interface functions can be found in “Interface Functions’ on
page 359.

Callbacks

In many programming styles, such as programming in the X Window System or
when using signal handlers, functions are registered and are then “ called-back” by
the system. Often the user program contains no explicit calls to these functions.

If the callback functions use only variables that are defined in the user program,
nothing unusual will happen, since Insight will understand where al this data
came from and will keep track of it properly. In many cases, however, the library

110

Interfaces

function making the callback will pass additional datato the called function that
was allocated internally, which Insight never saw.

For example:

e UNIX functionssuchasqsort andscandi r take
function pointer arguments which are called-back from
within the system function.

» Signal handling functionsoften passto their handlersadata
structure containing hardware registers and status
information.

e The X Window System library often passesinformation
about the display, screen, and/or event typeto its callback
functions.

—
<
-
X
>
2
c
=
@D
+
+

In these cases, Insight will attempt to lookup information about these data
structures without finding any, which limits its ability to perform strong error
checking.

This is not a serious limitation - it merely means
that the unknown variables will not be checked as
thoroughly as those whose allocation was
processed by Insight.
If you wish to improve the checking performed by Insight in these cases, you can
use the interface technology in two different ways:

* You can make interfaces to the functions which install or
register the callbacks (withi i ¢c_cal | back) indicating
how to process their arguments when the callbacks are
invoked.

* You can make interface definitions for your callback
functions themselves, adding the keywordi i ¢_body to
their definition.

These two options are discussed in the next sections.

111

+
+
(]
—
-}
0
c
X
c
>

-

Interfaces

Using iic_call back

Thefirst of these approaches is more general, since it allows you to define, in a
single interface specification, the behavior of any callback which isinstalled by
thefunction specified. To see how thisworks, consider the standard utility sorting
function, gsor t . One of the argumentsto thisroutine isafunction pointer that is
used to compare pairs of elements during sorting.

The following interface to this function checks that the gsort function does no

more than N2 comparisons, where N is the number of elements (this may or may
not be a sensible check, but serves the purpose of explaining callback interfaces):

1 #i ncl ude <sys/stdtypes. h>

2: #i ncl ude <mat h. h>

3:

4. static int _gsort_num conparisons;

5:

6: static int _gsort_cb(void *el, void *e2)
7: {

8: _gsort_num conparisons += 1;

9: return _gsort_cb(el, e2);

10: }

11:

12: void gsort(void *base, size t nelem
13: size t wdth,

14: int (*func)(void *, void *))

15: {

16: iic_dest(base, nel entw dth);

17: iic_func(func);

18: iic_callback(func, _qgsort_ch);

19: _gsort_num conpari sons = 0;

20: gsort (base, nelem width, func);
21: if (_gsort_num conparisons >

22: nel em* nel em
23: iic_error(USER_ERROR,

24 "sort took % conpares.”,
25: _gsort_num conpari sons);
26: }

112

Interfaces

The main body of theinterfaceisin lines 16-25.

Line 16 checks that the pointer supplied by the user indicates a large enough
region to hold all the data to be sorted, while line 17 checks that the function
pointer actually pointsto avalid function. Line 20 contains the call to the normal
gsort function.

Theinteresting part of theinterfaceisthecall toi i ¢c_cal | back inline 18. The
two arguments connect a function pointer and a“template”, which in interface
terms is the name of a previously declared static function; in this case

_gsort _cb, declared in lines 6-10. The template tells Insight what to do
whenever the system invokes the called-back, user-supplied function. In this
particular case, theinterface merely increments acounter so we can see how many
Times New Roman the callback gets called (note that we set the counter to 0 on
line 19 of thegsor t interface). In general, you can make any other interesting
checks here before or after invoking the callback function.

Notice that once thisinterfaceisin use, it automatically processes any function
that gets passed to the gsor t function.

Using ii c_body

The second callback optionisto defineinterfacesfor each individual function that
will be used as a callback.

Consider, for example, the X Window System function Xt AddCal | back,
which specifies afunction to be called in response to a particular user interaction
with a user interface object. It is quite common for code to contain many callsto
this function, for example

Xt AddCal | back(wi dget, ..., myfuncl, ...);
Xt AddCal | back(wi dget, ..., myfunc2, ...);
Xt AddCal | back(wi dget, ..., myfunc3, ...).

One solution for thisroutine would be to provideani i ¢c_cal | back style
interfacefor the Xt AddCal | back function as described in the previous section.

113

—
<
-
X
>
2
c
=
@D
+
+

+
+
(]
—
-}
0
c
X
c
>

-

Interfaces

The second method is to specify interfaces to the called-back functions
themselves, with theadditional i i ¢_body keyword. Aninterfacefor theroutine
nmyf unc1 might be written as follows:

/*
* Interface definition for callback function
* uses the iic_body keyword.
*/
void iic_body nyfuncl(Wdget w,
Xt Poi nter client _data,
Xt Poi nter call _data)

{
if (!call_data)
iic_error(USER_ERROR,

“nyfuncl passed NULL call _data”);
myfuncl(w, client_data, call_data);
return;

}

Thisinterface checksthat myf unc1 isnever passed NULL cl i ent _dat a.

Notethat in this scenario you would have to specify three separate interfaces; one

each for nyf uncl, myf unc2 and myf unc3. (And, indeed, any other functions
used as callbacks.)

Which touse: i1 c_cal |l back or
I 1 c_body?

From the previousdiscussion it might seemthati i c_cal | back should aways
be preferred over i i ¢_body, sinceit is more general and less code must be
written. Unfortunately, thegeneral i i ¢_cal | back method has a severe
limitation: the code generated by Insight whenyouusei i ¢_cal | back isgood
for “immediate use only”.

114

Interfaces

To understand what this means, consider the difference between the two cases
already discussed.

 Intheqgsort example theii c_cal | back function
made the association between function pointer and
template, which wasthen immediately used by theqgsor t
function. By thetimetheinterface codereturnstoitscaller,
the connection between function and templateis no longer
required.

* Inthe X Window System example, the callbacks registered
by the Xt AddCal | back function are expected to survive
for the remainder of the application (or until cancelled by
another X Window System call). Similarly, the connection
between function pointer and template is expected to
survive as long.

Asaconsequence, thei i c_cal | back method is only applicable to a small
number of circumstances, and in general you must either:

* Usetheii c_body method

» Do nothing, and allow Insight to skip checks on unknown
arguments to callback functions.

Conclusions

Interfaces play an important, but optional, role in the workings of Insight.

If youwish, you can aways eliminate error messages about library callsby adding
suppr ess optionsto your . psr ¢ filesand running your program again. This
approach has the advantage of being very quick and easy to implement, but
discards alot of information about your program that could potentially help you
find errors.

To capture al the problems in your program, you need to use interfaces. Insight
is supplied with interfaces for all the common functions and quite afew
uncommon ones. These are provided in source code form in the directory

115

—

<
-
X
>
2
c
=
@D
+
+

Interfaces

src. $ARCH $COVPI LER so that you can look at them and modify them for
your particular needs.

Thei i whi ch command can help you find existing definitions which can then be
used as building blocks in making your own interfaces.

If you build an interface to alibrary that you' d like to share with other users of
Insight, please send it to us (suppor t @ nxw. com) and we' [l makeit available.

+
+
(]
—
-}
0
c
X
c
>

-

116

Part ||

LynxIinsure++
Reference Guide

Configuration Files

Configuration Files

LynxInsure++ programs read options from filescalled . psr ¢, which may exist
at various locationsin the file system. These options control the behavior of
Insight and programs compiled with Insight. Thefiles are processed in the order
specified below.

Earlier versions of LynxInsure++ used configuration filescalled . i nsi ght .
Thesefiles are still supported by this version, but will not be in the next. Any of
the options on the following pages can also beused in . i nsi ght files, but
without the “i nsur e++. " prefix. However, we recommend that users move to
the newer . psr ¢ files as soon asthey can.

e Thefile. psr c inthe appropriatel i b and compiler
subdirectories of the main LynxInsure++ installation
directory, e.g.

/usr/tool s/lynxinsure++/lib.lynx_ x86/gcc/.psrc

or

/usr/tool s/lynxinsure++/lib.lynx_ppc/gcc/.psrc

e Thefile. psr c inthe maininstallation directory.
+ Afile. psrc inyour $HOVE directory, if it exists.
e Afile. psrc inthecurrent working directory, if it exists.

» Files specified with the - Zop switch and individual
options specified with the - Zoi switchtothei nsi ght
command in the order present on the command line.

In each case, options found in later files override those seen earlier. All files
mentioned above will be processed and the options set before any sourcefilesare

119

=
2
=
o
=
@
2

0
Q
=
O
S
»
=

Configuration Files

processed. You can also override these options at runtime by using the
_Insight_set opti on function.

Typically, compiler-dependent options are stored in the first location,
site-dependent options are stored in the second location, user-dependent options
are stored in the third location, and project-dependent options are stored in the
fourth location. - Zop is commonly used for file-dependent options, and - Zoi is
commonly used for temporary options.

Format

LynxInsure++ configuration files are simple ASCI| files created and modified
with anormal text editor.

Entries which begin with the character ‘#’ are treated as comments and ignored,
asareblank lines.

All keywords can be specified in either upper or lower case, and embedded
underbar characters (*_") are ignored. Arguments can normally be entered in
either case, except where this has specific meaning, such asin directory or file
names.

If alineistoo long, or would look better on multiple lines, you can use the ‘\'’
character as a continuation line.

Working on multiple platforms or with
multiple compilers

Many projects involve porting applications to several different platforms or the
use of more than one compiler. Lynxinsure++ deals with this by using two
built-in variables, which denote the machine architecture on which you are
running and the name of the compiler you are using. Anywhere that you would
normally specify a pathname or filename, you can then use these valuesto switch
between various options, each specific to a particular machine or compiler.

120

Configuration Files

For example, environment variables, ‘~'s (for HOVE directories) and the ‘%
notation described on page 122 are expanded when processing filenames, so the
command

interface_library $HOVE/ i nsure/ %/ %/ foo.tqQs
loads an interface file with a name such as
/fusr/ me/insurel/lynx_x86/gcc/foo.tqgs

in which the environment variable HOVE has been replaced by its value and the
‘%’ and ‘%’ macros have been expanded to indicate the architecture and
compiler name in use.

Thereis one additional comment that must be made here. In the compiler-default
. psrc files, thereare severa i nt er f ace_I i br ary options of the form

I nsure++. I nterfaceli brary
$PARASOFT/ li b. %/ %/ builtin.tqgi \
$PARASOFT/ i b. %/ libtqgsiicy. a

Despite appearances, the PARASOFT used above is not atrue environment
variable. If the PARASOFT environment variable is not set by the user, it will be
expanded automatically by Insight itself.

Option values

Thefollowing sections describe theinterpretation of the various parameters. They
are divided into two classes. compile time and runtime. Modifying one of the
former optionsrequiresthat filesbe recompiled before it can take effect. Thelatter
class merely requires that the program be executed again.

121

=
2
=
o
=
@
2

Configuration Files

Some options have default values, which are printed in the following section in
boldface.

Filenames

A number of the LynxInsure++ options can specify filenamesfor various
configuration and/or output files. Y ou may either enter asimple filename or give
atemplate which takesthe form of astring of characterswith tokenssuch as“%d”,
“Op”, or “%/" embedded in it. Each of these is expanded to indicate a certain
property of your program asindicated in the following tables. The first table lists
the options that can be used at both compile and runtime.

0
Q
=
O
S
»
=

Key Meaning

o Machine architecture on which you are running, e.g.,

a
| ynx_x86,1 ynx_ppc etc.

% Abbreviated name of the compiler you are using, e.g. gcc.

% LynxInsure++ version number, e.g. 4. 0

YR LynxInsure++ version number without ‘. ' characters, e.g.,
version 4.0 becomes 40

% . t gs fileformat version number, eg.,3. 2. 0

o Similar to ‘% ’ but with ‘. ’ characters removed

122

Configuration Files

This second table lists the tokens available only at runtime.

Key Meaning

%l Time of program compilationin format: YYMVDDHHMVES

%D Time of program execution in format: YYMVDDHHMVES

% Integer sufficient to make filename unique, starting at O =
7))

% Process|.D. =
O

Yy Name of executable =
D

W/ Directory containing executable n

Thus, the name template
i nsure++.report_file %-errs. %O

when executed with a program called f 0o at 10:30 am. on the 21st of
March 1993, might generate a report file with the name

foo-errs. 930321103032

(The last two digits are the seconds after 10:30 on which execution began.)

Y ou can also include environment variables in these filenames so that
$HOVE/ reports/ %-errs. %O

generates the same filename as the previous example, but also ensures that the
output is placed in ther epor t s sub-directory of the user’s HOVE.

123

0
Q
=
O
S
»
=

Configuration Files

Options at runtime and compile time

Several of the LynxInsure++ options have effects during both compilation and
program execution. When the option is activeis controlled by an extra qualifier
keyword as shown in the examples below.

i nsure++, runti me. suppress READ NULL
suppresses errorsinthe READ_NULL class during program execution. An error in
this class detected during compilation would still be reported.
Similarly,

i nsure++, conpi | e. unsuppress BAD PARM si gn)
enables the display of this error category during compilation, but not during
program execution. Compile time options also apply at link time.
If you wish to apply the same option to both compilation and execution, simply

omit the qualifier.

i nsure++, suppress EXPR _NULL

124

Configuration Files

Using - Zop and - Zoi

On the command line, the - Zop and - Zoi options are processed from left to
right, after all other . psr c files, and before processing any source code.
Therefore, the following command line would tell Insight to compile all thefiles
with thecc compiler.

i nsight -Zoi “conpiler gcc” -o foo foo.c

-Zop foo.def foo2.c -Zoi “conpiler g++" 8
foo3.c -Zoi “conpiler cc” S
f 0o. def: =t
conpi ler CC %

Compiled-in options

Insight now encodes certain options at compile-time into the actual binary that is
built. Basically, Insight uses the information available at compile time, e.g.
compiler name or executable name, and encodesa. psr ¢ option into the binary
itself. This option can be overriddenina. psr c fileusing the! character. For
example, if you build your executable with one name and run it in another
directory or with a different name, you could use an option like

I exenane /home/ user/t np/ bar

to override the option inside the binary.

125

Configuration Files

Options used by Insight
Compiling/linking

i nsure++, auto_expand [al | | of f| on]
Specifies how Insight should treat suspected “ stretchy” arrays.
See """ Stretchy” arrays’ on page 41 for adiscussion of stretchy
arrays, and the table below for explanations of the allowed
keywords for this option. Multi-dimensional arrays are never
automatically expanded. To tell Insight that a specific array is
stretchy, use the expand option (see page 134).

0
Q
=
O
S
»
=

Keyword Meaning

All arrays at the end of structs, classes, and unions

all are treated as stretchy, regardless of size

of f No automatic detection of stretchy arrays

If thelast field of astruct, class, or unionisan array
and has no size, size O, or size 1, it istreated as

on stretchy. Note that only some compilers allow 0 or
empty sizes, but size 1 isvery common for stretchy
arrays

i nsure++.c_as_cpp [on]of f]
Specifieswhether fileswith the. ¢ extension should be treated II
as C++ source code. With this option of f , Insight will treat
fileswiththe. ¢ extension as C code only. If you use C++ code
in. c files, you should turn this option on.

126

Configuration Files

i nsure++, checking_uninit [on|off]
Specifies that the code to perform flow-analysis and checking
for uninitialized variables should not be inserted. Runtime
uninitialized variable checking is then limited to uninitialized
pointer variables (See page 19). See page 142 for the runtime
effects of this option.

i nsure++. conpi |l er conpil er _nane
Specifies the name of an alternative compiler, such asgcc. If
your new compiler is not recognized by Insight, you may have
tosettheconpi | er _acr onymoption. Thisoption overrides
all other conpi | er _* options: conpi | er _acr onym
conpi l er _c,conpil er_cpp,and
conpi | er _def aul t. Theindicated compiler will be called
every timei nsi ght iscalled.

=
2
=
o
=
@
2

i nsure++. conpi | er _acronym abbrevi ati on
Specifiesthe colloquial nameof an alternative compiler, suchas
gcc. Thisnameisused to locate the appropriate . psr ¢ files
and TQS library modules. It does not indicate which compiler
will actually be called to compile source files (see the other
conpi | er _* options). This option overrides the
conpi l er _c,conpil er_cpp,and
conpi | er _def aul t options. In addition, this option must
be placed after the activeconpi | er option. The order must be

conpil er c89
conpi |l er _acronym cc

and not vice versa.

i nsure++. conmpil er_c C _conpil er _name
Specifiesthe name of the default C compiler, suchasgcc. This
compiler will becalled for any . ¢ files. Thedefaultiscc. This
option is overridden by the conpi | er and
conpi | er _acr onymoptions.

127

0
Q
=
O
S
»
=

Configuration Files

i nsure++. conpi l er_cpp C++_conpil er _nane

Specifies the name of the default C++ compiler, such as g++. II
Thiscompiler will becalledforany . cc,. cpp,. cxx,and. C
files. The default is platform dependent: g++ for LynxOS. This

option is overridden by the conpi | er and
conpi | er _acr onymoptions.

i nsure++. conpi l er _default [c|cpp]

Specifies whether the default C or C++ compiler should be I I
calledtolink whenthereare no sourcefilesonthelink line. This

option is overridden by the conpi | er and

conpi | er _acr onymoptions.

i nsure++. conpi | er _defi ci ent

128

[al | | addr ess| cast | enuni menber _poi nter| II
scope_resol ution|static_tenps|

struct _of fset|types| no_address|no_cast|

no_enurmnl no_menber _poi nt er |

no_scope_resol ution| no_static_tenps|

no_struct _offset| no_types| none]

Specifies which features are not supported by your compiler.

The default is compiler-dependent.

Keyword Meaning

al | Includes all positive keywords

addr ess/ no_addr ess

cast/ no_cast

enum no_enum

nmenber _poi nt er/ no_nenber _poi nter

scope_resol uti on/ no_scope_resol ution

static_tenps/no_static_tenps

Configuration Files

Keyword Meaning

struct_offset/no_struct_of fset

types/ no_types

none Compiler handles all cases

i nsur e++.

i nsur e++.

i nsur e++.

i nsur e++.

Different compilers require different levels of this option as
indicated in the compiler-specific READVE filesand in
($INSIGHT) /1i b. ($ARCH) / $conpi | er.

conpil er_fault_recovery [off]|on]
This option controls how Insight recovers from errors during
compilation and linking. With fault recovery on, if thereisan
error during compilation, Insight will simply compile with the
compiler only and will not process that file. If thereis an error
during linking, Insight will attempt to take corrective action by
usingthe- Zsl and - ZI h options. If thisoptionisturned of f ,
Insight will make only one attempt at each compile and link.

conpil er _fault_recovery_banner [off]|on]
With this option on, Insight will print a banner when the fault
recovery system isinvoked while processing a source file (see
conpil er _fault_recovery).

conpi l er_flags flags
Insight will add the flags whenever you compile your program
(but they will not be passed to the preprocessor).

conpi | er _keyword
[*| const]|inline|signed|volatile] keyword
Specifies anew compiler keyword (by using the*) or a
different name for a standard keyword. For example, if your
compiler uses __const asakeyword, use the option

conpi |l er _keyword const __ const

129

=
2
=
o
=
@
2

Configuration Files

i nsure++, conpiler_lib flags flags
Insight will add the flags whenever you link your program (but
they will not be passed to the preprocessor).

i nsure++. conpi |l er_options keyword val ue
Specifies various capabilities of the compiler in use, as
described in the following table.

Keyword Value Meaning

Assumes compiler supports ANSI C

ansi None (default)

0
Q
=
O
S
»
=

Specifies that the given function isa
“built-in” that is treated specially by
the compiler. The optional t ype
Function keyword specifies that the built-in has

name areturn type other thani nt .
Currently, only | ong, doubl e,
char *,andvoid * typesare
supported.

bf unc <type>

Specifiesthat the given typeisa
bt ype Typename | “built-in” that is treated specially by
the compiler

Specifies that the given variable isa
“built-in” that is treated specially by
the compiler. The optional t ype
Variable keyword specifies that the built-in has

name areturn type other thani nt .
Currently, only | ong, doubl e,
char *,andvoid * typesare
supported.

bvar <type>

130

Configuration Files

Keyword Value Meaning

Specifies how the compiler treats the
‘\ X" escape sequence. Possible values
are

0 treat ‘\ X’ asthesingle
character ‘x’ (Kernighan &
Ritchie style)

esc_x Integer

-1 treat as a hex constant.

Consume as many hex
digits as possible

=
2
=
o
=
@
2

>0 treat asahex constant.
Consume at most the given
number of hex digits

Specifieshow for (int i; ...;
...) isscoped. Possible values are

nested New ANSI standard,

always treat as nested.
nest ed
not nest e notnested Old standard, never

d treat as nested.

opti onal optional New standard by
default, but old-style
code is detected and
treated properly (and
silently)

for_scope

Assumes compiler uses K ernighan and

knr None | pitchie (old-style) C

Enables non-ANSI| extensions

| oose None (default)

Specifiesthat namespace isa

namespaces None keyword (default)

131

Configuration Files

Keyword Value Meaning
Specifiesthat namespace isnot a
nonamespaces None
keyword
Specifiesthat integral datatypesare
pronot e_| ong None promoted to | ong in expressions,
rather thani nt
7}
g Specifies the data type returned by the
= . si zeof operator, asfollows. d=i nt ,
) si zet d,ld,u,lu B B . .
bt | d=I ong, u=unsi gned i nt,
n o
o | u=unsi gned | ong.
. Disables non-ANSI extensions
strict None .
(compiler dependent)
. Indicatesthat the named function takes
Function L
xfunct ype name an argument which is a datatype
rather than avariable (e.g., al i gnof)

i nsure++, conpi |l er _ski pflags fl ags
Normally, Insight addsits checksto your code and theninvokes
the normal compiler to compile the modified code. If any of the
flagson thislist isseen on thei nsi ght command line, the
first step isskipped and thefileis passed directly to the compiler
without modification.

i nsure++.directive_ignore string
Some preprocessors print “#i dent ” directiveswhich they are
then unableto processthemselves. If thisisthe case, thisoption
can be used to tell Insight to strip out the directive before
passing the file back to the compiler. Currently, the only
supported string isi ndent (note that the # character is not
given as part of the argument todi r ecti ve_i gnore).

132

Configuration Files

i nsure++. dynani c_linking [on]| of f]

By default, Insight linksiits libraries dynamically or statically
according to the current link options. Setting thisoption to of f
tells Insight not to alow itslibraries to be linked dynamically,
even though user and/or system libraries may still be linked
dynamically. Some (Linux, SCO, SGlI, Solaris 2.X) platforms
requirethat the<i nstal | _di r>/1i b. $ARCHdirectory be
added to their LD_LI BRARY_PATH environment variable for
dynamic linking to beused. A warning that static linking will be
used will be printed at link time if thisis not done.

This option isthe opposite of st ati ¢c_I i nki ng.

(See page 139)

i nsure++. error_format string

Specifies the format for error message banners generated by
Insight. The string argument will be displayed as entered with
the macro substitutions taking place as shown in the following
table. The string may a so contain standard C formatting
characters, such as‘\ n’. (For examples, see page 32)

Key Expands to

% Error category (and sub-category if required)

%l Date on which the error occurs (DD- MON- YY)

% Filename containing the error

% Full pathname of the file containing the error

% Name of the host on which the application is running
% Line number containing the error

%p Process ID of the process incurring the error

% Time at which the error occurred (HH: MVt SS)

133

=
2
=
o
=
@
2

0
Q
=
O
S
»
=

Configuration Files

i nsur e++, expand subt ypenane

Specifies that the named structure element is “stretchy”. See
"“Stretchy” arrays’ on page 41 for a discussion of stretchy
arrays. See also theaut o_expand option on page 126 for
details on automatic detection and handling of stretchy arrays.

i nsure++.file_ignore string

Specifies that any file which matches the string will not be
processed by Insight, but will be passed straight through to the
compiler. The string should be a glob-style regular expression.
This option allows you to avoid processing files that you know
arecorrect. Thiscan significantly speed up execution and shrink
your code.

i nsure++. function_ignore file::function_nane

This option tells Insight not to instrument the given function
(the file qualifier is optional). Thisis equivalent to turning off
the checking for that routine. If the function in questionis a
bottle-neck, this may dramatically increase the runtime
performance of the code processed with Insight.

functi on_nane cannow (version 3.1 and higher) accept the
* wildcard. For example, the option

i nsure++. function_i gnore foo*

turns off instrumentation for the functionsf oo, f oobar , etc.

i nsur e++. header _i gnore string

134

Specifies that any function in the filename specified by the
string will not be instrumented by Insight. The string should be
aglob-styleregular expression and should include the full path.
This option alows you to avoid doing runtime checking in
header filesthat you know are correct. This can significantly
speed up execution and shrink your code. Please note, however,
that the file must still be parsed by Insight, so this option will
not eliminate compile-time warnings and errors, only runtime
checking.

Configuration Files

i nsure++.init_extension [c|cc|C cpp|cxx|c++]
This option tells Insight to use the given extension and
language for the Insight initialization code sourcefile. The
extension can be any one of the Insight-supported extensions:
¢ (forCcode) orcc, C, cpp, cxx,or c++ (for C++ code). This
option need only be used to override the default, which isthe
extension used by any source fileson thei nsi ght command
line. If there are no source files on the command line, e.g. a
separate link command, Insight will use ac extension by
default.

i nsure++.interface_defaults [all]|*]|all oc| newy

II delete|::alloc|::new::delete|
of f | none]

Specifies for which functions to use standard interfaces. The
standard interfaces assume that new and delete behave like the
global new and deletein allocating a block of memory. If your
functions adhere to those guidelines, you can specify use of the
standard interfaces with this option.

=
2
=
o
=
@
2

Keyword Meaning

all/* Includesal | oc and: : al | oc

al | oc Includesnewand del et e

new Assume all member news are “ standard”

del ete Assume al member del et esare“standard”
:ralloc Includes : : newand: : del ete

Il new Assume global newis “standard”
c:delete Assume global del et e is*“standard”
of f/ none Assume nothing about newand del et e

135

Configuration Files

i nsure++.interface_di sabl e key
This option tells Insight not to use the interfaces specified by
thekey. Theinterfaces will then not be inserted during
instrumentation at compile-time. The key can be obtained by
looking in the compiler default . psr ¢ file (see page 119) for
thei nterface_| i brary option specifying the interfaces
you wishto disableand removing thel i b prefix andthe. t qi
file extension. For example, to turn off the C library interfaces,
use the option

interface _disable c

i nsure++.interface_enabl e key
This option tells Insight to use the interfaces specified by the
key. Theinterfaces will then be inserted during
instrumentation at compile-time. The key can be obtained by
looking in the compiler default . psr ¢ file (see page 119) for
thei nt erface_I i brary option specifying the interfaces
you wish to enable and removing thel i b prefix andthe. t qi
file extension. For example, to turn on the C library interfaces,
use the option

0
Q
=
O
S
»
=

interface _enable ¢

i nsure++.interface_ignore function_name
This option tells Insight not to use its interface for
functi on_nane.

insure++.interface_library filel, file2, file3,
SpecifiesInsight interface modulesto be used on each compile.
Equivalent to specifying thelist onthei nsi ght command
line. Filenames may include environment variablesand Insight
macros to help cross-platform development as described on
page 120.

i nsure++.interface_reset
Turns off al interfaces up to this point inthe . psr c file.
Additional i nt er f ace_| i br ary options can be used after
thisline to add back certain interfaces.

136

nsur e++

nsur e++

nsur e++

nsur e++

nsur e++

nsur e++

nsur e++

nsur e++

Configuration Files

.interface_statics [on]|off]
This option controls interface checking on static functions. If
you want to have static functions with the same names as
functions for which there are interfaces (e.g. wr i t €), you can
turn off interface checking for these static functions by setting
this option to of f .

.linker Iinker_nane
Specifies the name of an alternative linker. This only appliesif
you are using thei ns_| d command.

.linker_dynlib_flag fl ag
Thisoption isfor internal use only.

.linker_source source_code
This option tells Insight to add the given codeto its
initialization file. This can help eliminate unresolved symbols
caused by linker bugs.

.linker_stub synbol name
Thisoption tells Insight to create and link in adummy function
for the given synmbol _nane. This can help eliminate
unresolved symbols caused by linker bugs.

.mal l oc_replace [on]of f]
If on, Insight links its own version of the dynamic memory
alocation libraries. This gives Insight additional error
detection ahilities, but may have different properties than the
native library (for example, it will probably use more memory
per block allocated). Setting this option to of f linksthe
standard library and removes the “ high water mark” entry from
the report summary.

. 0bj ect _ignore string
Any object whose name matches the string will not be
processed by Insight. The string should be a glob-style regular
expression.

. password argl arg2 arg3
Used for internal maintenance. This option should not be added
or modified by hand. Licenses should be managed withpsl i c.

137

=
2
=
o
=
@
2

Configuration Files

i nsure++. post _conpi |l e_conmmand conmand_stri ng
Thisoption isfor internal use only.

i nsure++, pragna_i gnore string
Any pragma which matches the string will be deleted by
Insight. The string should be a glob-style regular expression.

i nsure++. pre_conpi | e_conmmand command_stri ng
Thisoption isfor internal use only.

i nsur e++. preprocessor comrand_string
Thisoption isfor internal use only.

i nsure++. preprocessor_flag fl ag
Specifies aflag or flags that can safely be passed to the
preprocessor. Any flagsoni nsi ght command linesthat are
not listed inapr epr ocessor _f | ag statement will be
stripped from the command before invoking the preprocessor.
Thelist of pre-processor flagsis usually maintained in thefile

0
Q
=
O
S
»
=

<install _dir>/lib. $ARCH $COWPI LER/ . psrc

Flags specified by this option will be passed to the preprocessor
only, unless they are also specifiedin a
pr eprocessor_propagat e_fl ag option.

i nsure++. preprocessor_propagate_flag flag
Specifies aflag or flags that should be passed to both the
preprocessor and the compiler. If the flag isnot listed in a
preprocessor _fl ag option, this option will beignored.

regi stertool Insure++ version
Used for internal maintenance. This option should not be
modified.

i nsure++.renane_files [on| off]
Normally, Insight creates an intermediate file which is passed
to the compiler. In some cases, this may confuse debuggers. If
thisisthe case, you can set this option Insight will then rename
the files during compilation so that they are the same. In this
case, an original sourcefile called f 0o. ¢ would be renamed
f0o. c. i ns_ori g for the duration of the call to Insight.

138

nsur e++

nsur e++

nsur e++.

nsur e++.

nsur e++.

nsur e++.

nsur e++.

Configuration Files

.report_banner [on|off]
Controls whether or not a message is displayed on your
terminal, reminding you that error messages have been
redirected to afile. (See page 30)

.report _file [filenanme|insralstderr]
Specifiesthe name of thereport file. Environment variablesand
various pattern generation keys may appear inf i | enane.
(Seepage 123) Use of the special filenamei nsr a tellsInsight
to send its output to Insra.

si zeof type val ue
Thisoption allowsyou specify datatype sizeswhich differ from
the host machine, which is often necessary for cross
compilation. val ue should be the number si zeof (t ype)
would return on the target machine. Allowed t ype arguments
arechar,doubl e,fl oat,int,l ong,l ong doubl e,
| ong I ong,short,andvoid *.

split_compile_link [on]|off]
Thisoption isfor internal use only.

stack_internal [on|off]
If youareusingthesymbol _t abl e of f runtimeoption (see
page 150), you can set this option to on and recompile your
program to get filenames and line numbers in stack traces
without using the symbol table reader.

static_linking [on]|off]
By default, Insight linksits libraries dynamically or statically
according to the current link options. Setting this optionto on
forces Insight’ slibraries to be linked statically, even though
user and/or system libraries may still be linked dynamically.
This option isthe opposite of dynani c_1 i nki ng.
(See page 133)

stdlib_replace [on|off]
Links with an extra Insight library that checks common
function calls without requiring recompilation. Thisis useful
for finding bugsin third-party libraries or for quickly checking
your program without fully recompiling with Insight.

139

=
2
=
o
=
@
2

Configuration Files

i nsur e++, suppress code
Suppresses compiletime messages matching theindicated error
code. Context sensitive suppression does not apply at compile
time (see page 37, et seq).

i nsur e++. suppress_out put string
Suppresses compiletime messagesincluding theindicated error
string (see page 40). For example, to suppress the warning:

n

@ [foo.c:5] Warning: bad conversion in
e assignnent: char * = int *

8 >> ptr = 1ptr;

0

Qo

add the following lineto your . psr c file.

suppress_out put bad conversion in
assi gnment

i nsur e++. suppress_war ni ng code
Suppresses C++-specific compile time messages matching the
indicated warning code (see page 40). code should match the
numerical code Insight prints along with the warning message
you would like to suppress. The codes correspond to the
chapter, section, and paragraph(s) of thedraft ANSI standard on
which the warning is based. For example, to suppress the
warning:

Warni ng: 12. 3. 2-5: return type nay not be
specified for conversion functions

add the following line to your . psr c file.

suppress_warni ng 12.3.2-5

i nsure++.tenp_directory path
Specifies the directory where Insight will write its temporary
files, e.g. / t np. The default is the current directory. Setting
pat h to adirectory local to your machine can dramatically
improve compile-time performance if you are compiling on a
remotely mounted file system.

140

i nsur e++

i nsur e++

i nsur e++

i nsur e++

Configuration Files

.threaded runtinme [on|of f]
Specifies which Insight runtime library will be used at link
time. This option should be turned on before linking threaded
programs with Insight.

.uninit_flow [1]2]3]...]2100]...]1000]
When Insight is checking for uninitialized memory, alot of the
checks can be deduced as either correct or incorrect at compile
time. This value specifies how hard Insight should try to
analyze this at compiletime. A high number will make Insight
run slower at compiletime, but will produce afaster executable.
Values over 1000 are not significant except for very
complicated functions.

. unsuppress code
Enables compile time messages matching the indicated error
code. Context sensitive suppression is not supported at compile
time (see page 40, et seq).

.unused_gl obal _inline [keep| check]| del et e]
This option tells Insight what to do with unused global in-line
functions.

Keyword Meaning

check keep function and check

del ete delete function from code
keep keep function, don’t check

i nsur e++

.unused_nenber _i nline [keep| check]| del ete]
Thisoption tellsinsight what to do with unused member in-line
functions. See above table for explanations of the options.

141

=
2
=
o
=
@
2

0
Q
—
O
S
»
=

Configuration Files

i nsur e++.

Running

142

i nsur e++.

i nsur e++.

i nsur e++.

i nsur e++.

i nsur e++.

vi rtual checking [on] of f]
Specifies whether VIRTUAL_BAD error messages will be
generated. See page 310 for more information about this error

message.

assert_ok filenane::function
Specifies that the return value of the given function (the file
qualifier is optional) should be treated as an opaque object and
not checked for errors (see page 41). Thisisprimarily useful for
eliminating errors reported in third-party libraries.

checki ng_uninit [on|off]
If set to of f , this option specifies that the code to perform
flow-analysis and checking for uninitialized variables should
not be executed, if present. See page 127 for the compile time
effectsof thisoption. Runtime uninitialized variable checkingis
then limited to uninitialized pointer variables (see page 19).

checking uninit_mn_size [1]2]3]...]
Specifies the minimum size in bytes of data types on which
Insight should perform full uninitialized memory checking.
The default is 2, which means that char swill not be checked
by default. Setting this option to 1 will check char s, but may
result in false errors being reported. These can be eliminated by
usingthechecki ng_uni ni t _patt er n option to change
the pattern used (see below).

checking_uninit_pattern pattern
Specifies the pattern to be used by the uninitialized memory
checking algorithm. The default isdeadbeef . pattern
must be avalid, 8-digit hexadecimal value.

checki ng_uninit_stack_scribble [on]|off]
Specifies extra uninitialized memory checking on the stack.
This checking is not compatible with all compilers. If you get
unusual core dumps after turning this option on, it is not
compatible with your compiler and should be turned off.

Configuration Files

i nsure++. demangl e [of f|on|types|full _types]
I I Specifies the level of function name demangling in reports
generated by Insight. If you have afunction
voi d func(const int)

you will get the following results:

2
Keyword Result a
—
of f func_ FC =
M
)
on func
types func(int)
full _types func(const int)

linsure++. demangl e_nethod [filter <filtname>| CCl gcc]

I I Specifies compiler-specific agorithm for demangling function

names. Currently supported compiler algorithms are CC and

gcc. If you are using a different compiler, Insight understands

most other demangling formatsaswell. Thefil t er

<fi | t nane> option alows the use of the external demangler

filtnane. Thedefault is compiler-dependent. See the

compiler level . psr c file, which isin the directory

['i b. $ARCH $COWPI LER.

Thisoption isacompiled-in option, so you will need to prepend

al totheoptionina. psr c fileto change the setting at

runtime. See page 125 for more details.

i nsure++. error_format string
Specifies the format for error message banners generated by
Insight. The string argument will be displayed as entered with
the macro substitutions taking place as shown in the table on
page 133. The string may also contain standard C formatting
characters, such as‘\ n’. (For examples, see page 32.)

143

Configuration Files

l'i nsure++. exenanme [<short nane>] fil enane
Specifies the name of the executable, possibly with the path.
This may be necessary to read the symbol table if Insight
cannot find the executable. Y ou will need to usethe! character
with this option to override the compiled-in exenane option
built into the binary at compile-time. (see page 125) There are
two ways to use this option. The simplest is to omit the
short _name argument and just specify the executable name
with the path of the executable. For example, if you have
compiled afilecalled f 0o. ¢ into an executable namedf oo in
the/ usr /1 ocal directory, the correct exenane option
would look like:

0

Q

—
O
S
»
=

i nsure++. exenane /usr/| ocal/foo

Using the second option, you can specify the location of more
than one executable. Theshort _nane must be the name of
executablewhen it waslinked. Thef i | enanme must bethefull
path and current name of the executable. For example, if you
have built f 0o asabove and also aprogram called bar (which
was moved to your home directory and changed to f oobar),
you might use exenarre options like:

l'i nsure++. exenane foo /usr/| ocal/foo
i nsur e++. exenane bar ~/foobar

i nsure++. exit _hook [on| of f]
Normally, Insight uses the appropriate at exi t , onexi t, or
on_exi t function call to perform special handling at exit. If
for some reason, thisis a problem on your system, you can
disable this functionality viatheexi t _hook option.

i nsure++.exit_on_error [0]1]2]3]...]
Causesthe user program to quit (with non-zero exit status) after
reporting the given number of errors. The default is 0, which
means that all errors will be reported and the program will
terminate normally.

144

Configuration Files

i nsure++. exit_on_error_banner [on|off]
Normally, when Insight causes your program to quit dueto the
exi t_on_error option,itwill print abrief message likethe
following:

** User selected naxi mum error count
reached: 10. Programexiting. **

Setting this option to of f will disable this message.

i nsure++.free_delay [0]1]2]3]|...]119|...]
Thisoption controlshow long the LynxInsure++ runtime holds
onto “f r ee’d” blocks before allowing them to be reused. This
is ot necessary for error detection, but can be useful in
modifying the behavior of your program for stress-testing. The
number represents how many f r ee’d blocks are held back at a
time - large numbers limit memory reuse, and 0 maximizes
memory reuse. Please note that this option is only active if
mal | oc_r epl ace wason during linking.

=
2
=
o
=
@
2

i nsure++.free_pattern pattern
Specifies a pattern that will be written on top of memory
whenever itisfreed. This pattern will be repeated for each byte
in the freed region (this option is available only if
mal | oc_r epl ace wason at compiletime). The defaultisO,
which means no pattern will be written.

On some systems whose libraries assume freed

% memory is still valid, this may cause your program

to crash.

i nsure++.free_ trace [-1]/0|1]2]|3|...]10]...]
Specifies the maximum number of levelsto track the stack
whenever ablock of dynamic memory isfreed. Setting this
option to anon-zero value tells Insight to include a description
of the function call stack to at most the given depth whenever
an error associated with the block is reported. Setting the value
to O suppresses deallocation stack tracing, while the value - 1
traces the stack back to the mai n routine.

145

0
Q
=
O
S
»
=

Configuration Files

146

nsur e++

nsur e++

nsur e++

nsur e++

nsur e++

nsur e++

nsur e++

nsur e++

.ignore wild [on]off]
Specifies whether Insight will do checking for wild pointers.
Turning this option on turns off wild pointer checking.

.| eak_conbi ne [none|trace|l ocati on]
Specifies how to combine leaks for the memory leak summary
report. Combining by t r ace means all blocks allocated with
identical stack traces will be combined into a single entry.
Combiningby | ocat i on meansall allocationsfrom the same
file and line (independent of the rest of the stack trace) will be
combined. none means each allocation will be listed

Separately.

.l eak_i gnore argunents
Thisoption isfor internal use only.

.1 eak_search [on| of f]
Specifies additional leak checking at runtime before aleak is
reported. Requires that the symbol table reader be turned on.

.l eak_sort [none|frequency|l ocation|size]
Specifies by what criterion the memory leak summary report is
sorted. Setting thisto none may provide better performance at
exit if you have many leaks.

.1 eak_sweep [on| of f]
Specifies additional leak checking at the termination of the
program. Requires that the symbol table reader be turned on.
L eaks detected will be reported using the sunmmari ze
(det ai | ed) | eaks option (see page 149).

.l eak_trace [on| of f]
This option determines whether or not full stack traces will be
shown in the memory leak summary report.

.mall oc_pattern pattern
Specifies a pattern that will be written on top of memory
whenever it isallocated. This pattern will be repeated for each
byte in the allocated region (this option is available only if
mal | oc_r epl ace wasselected at compiletime). The default
is 0, which means that no pattern will be written.

Configuration Files

i nsure++. malloc_trace [-1]/0]1]2]|3|...]10]...]
Specifies the maximum number of levelsto track the stack
whenever ablock of dynamic memory isallocated. Setting this
option to anon-zero value tells Insight to include a description
of the function call stack to at most the given depth whenever
an error associated with the block is reported. Setting the value
to O suppresses allocation stack tracing, whilethe value - 1
traces the stack back to the mai n routine.

i nsure++. new _overhead [0]| 2| 4| 6]|8]...]
I I Specifies the number of bytes allocated as overhead each time
newf] iscalled. The default is compiler-dependent, but is

typically O, 4, or 8.

i nsure++. poi nter_slack [0]| 1] 2]
This controls a heuristic in Insight. When a pointer does not
point to avalid block, but does point to an area 1 byte past the
end of avalid block, does the pointer really point to that block?
The value of this argument controls Insight’s answer. The

Value Meaning
0 Never assume the pointer pointsto the previous
block
1 Assume the pointer pointsto the previous block
if that block was dynamically allocated
Always assume the pointer points to the previ-
5 ous block. This tends to be incorrect for stack

and global variables, sincethey are usually
adjacent in memory

default should be changed only if Insight is not working
correctly on your program.

147

=
2
=
o
=
@
2

0
Q
=
O
S
»
=

Configuration Files

148

nsur e++

nsur e++

nsur e++

nsur e++

nsur e++

nsur e++

nsur e++

.realloc_stress [on]off]
If enabled, al callstor eal | oc will causetheblock in
guestion to move. This can be useful intriggering certain kinds
of bugs where the possibility of r eal | oc changing addresses
was not considered.

.report_banner [on|off]
Controls whether or not a message is displayed on your
terminal, reminding you that error messages have been
redirected to afile. (See page 30)

.report_file [fil ename|insralstderr]
Specifiesthe name of thereport file. Environment variablesand
various pattern generation keys may appear inf i | enane.
(Seepage 123) Use of the special filenamei nsr a tellsInsight
to send its output to Insra.

.report _limt [-1]0]1]2]3]...]
Displays only the first given number of errors of each type at
any particular source line. Setting this option to - 1 will show
all errors. Setting it to O will only show errorsin summary
reports, and not at runtime. (See page 34)

.report_overwite [on]|off]
If set to of f , error messages are appended to the report file
rather than overwriting it on each run.

.runtime [on]off]
If set to of f , no runtime checking or profiling is performed.
The program then runs much faster. This can be used to check
to seeif a particular fix has cured a problem, without
recompiling the application without Insight.

.signal _catch [all|sigl sig2 .]
Specifiesalist of UNIX signals which Insight will trap. When
these signalsare detected, Insight displaysafunction call stack.
Signals may be specified by number or by their symbolic
names, with or without the SI Gprefix. See page 81 for more
details.

i nsur e++.

i nsur e++.

i nsur e++.

i nsur e++.

Configuration Files

signal _ignore [all]|sigl sig2 .]
Specifiesalist of UNIX signals which Insight will ignore.
Insight makes no attempt to trap these signals. Signals may be
specified by number or by their symbolic names, with or
without the SI G prefix. (See page 81)

Y ouwill want to usethisif your program is expecting any of the
signals that Insight catches by default.

source_path dirl dir2 dir3
This option takes alist of directoriesin which to search for
source files. (See page 36) Thiswill only be necessary if your
source code has moved since it was compiled, as Insight
remembers where all your source files are located.

stack_limt [-1]0]1]2]3]...]
Truncates runtime stack traces after displaying at most the
given number of levels. Setting the option to - 1 displays all
levels. Setting the option to 0 disables stack tracing.
(See page 35)

summari ze [bugs] [coverage]
[1 eaks] [outstanding]
Generates a summary report of errors (see page 44), memory
leaks (see page 46), outstanding allocated memory blocks, or
coverage analysis (see page 51). In the latter case, the
cover age_sw t ches option (seethe TCA manual) is
consulted to decide how to present coverage data. Thel eaks
and out st andi ng reports are affected by the
| eak_conbi ne,l eak_sort,andl eak_trace options.
With no arguments, this option will summarize the bugs and
| eaks summaries. Thisoption haschanged slightly inversions
3.1 and higher. The old leak defaults are equivalent to
| eak_conbine | ocation, |l eak _sort |ocation,
| eak_trace of f.Theolddet ai | ed optionisreplaced by
| eak_trace on.

149

=
2
=
o
=
@
2

0
Q
=
O
S
»
=

Configuration Files

i nsur e++.

i nsur e++.

i nsur e++.

i nsur e++.

i nsur e++.

i nsur e++.

i nsur e++.

150

sunmarize _on_error [0]1]2]3]|...]

Specifieshow many errorsmust be generated before asummary
(if requested) is printed. The default is 0, which means that
summaries are always printed on demand. If the number is1 or
higher, summaries are only printed if at least the given number
of bugs (or leaks) occurred. Suppressed errors do not count
towards this number. If no argument is given with thisoption, a
value of 1 isassumed.

suppress code [{context}]
Suppress error messages matching the given error code and
occurring in the (optionally) specified context. (See page 37, et

seq.)

symbol _banner [on]of f]
If set, Insight displays a message indicating that the program’s
symbol table is being processed whenever an application starts.

symbol _table [on| of f]
If set to on, Insight will read the executable symbol table at
startup. This enables Insight to generate full stack traces for
third party libraries as well as for code compiled with Insight.
If this option is turned off, the stack traces will show only
functions compiled with Insight, but the application will use
less dynamic memory and be faster on startup. To get filenames
and line numbersin stack traces with this option off, you must
compile your program withthest ack_i nt ernal on
option. (See page 139)

trace [on]of f]
Turns program tracing on and off. In order to get file names and
line numbersin the trace output, you must have the
stack_i nt er nal on option set when compiling the
program. See the Tracing section on page 77 of this manual for
more information about program tracing.

trace_banner [on|off]
Specifies whether to print message at runtime showing file to
which the trace output will be written.

trace file [fil enanme|stderr]

Configuration Files

Specifies filename to which the trace output will be written.
fi | enane may use the same special tokens shown on
page 122.

i nsure++, uni nit_gl obals [0] 1] 2]
After calling a function not compiled with Insight, take the
indicated action with respect to global variables.

Value Meaning

=
2
=
o
=
@
2

0 Do nothing

Initialize all variables which were uninitialized dur-
ing the course of the function call

2 Initialize all global variables

i nsure++. uni nit_heap [0] 1| 2]
After calling afunction not compiled with Insight, take the
indicated action with respect to dynamically allocated variables
(i.e. variables on the heap).

Value Meaning
0 Do nothing
1 _Initializeall variabl%whiph were uninitialized dur-
ing the course of the function call
2 Initialize all heap variables

151

0
Q
=
O
S
»
=

Configuration Files

i nsure++.uninit_reference [on|off]
If thisoptionisturned on, blockswhich are passed by reference
to functions not compiled with Insight are assumed to have
been initialized by that function call.

i nsure++. uninit_stack frame [-1]/0|1|2]|3]...]
After calling afunction not compiled with Insight, all variables
local to the last given number of functions are assumed to be
initialized. By default, thisis 0, meaning that nothing is
assumed. - 1 indicates that all variables on the stack should be
presumed initialized.

i nsur e++. unsuppress code [{context}]
Enables error messages matching the given error codes and
occurring in the (optionally) specified context. (See page 40, et

seq.)

152

Configuration Files

Options used by Insra

Runningi nsr a

i nsra. body_background_col or [Wite|color]

nsr a.

nsr a.

nsr a.

nsr a.

nsr a.

nsr a.

nsr a.

Specifies the color Insra will use for the message body area
background.

body_font [Fi xed|font]
Specifiesthe font Insra will use for the message body text. On
some systems, e.g. SGI, theFi xed fontismuchtoolarge. This
option can be used to select a smaller font.

body_height [0]1]2]...]8]...]
Specifies the starting height of the Insra message body areain
number of rows of visible text. This may be modified while
Insra isrunning using the standard Motif controls.

body_t ext col or [Bl ack]| col or]
Specifiesthe color Insra will use for the message body text.

body_width [0]1]2]...]|80]...]
Specifies the starting width of the Insra message body areain
number of columns of visible text. This may be modified while
Insra isrunning using the standard Motif controls. If thisoption
is set to adifferent value than header _wi dt h, the larger
value will be used.

header _background_col or [VWhite]|col or]
Specifiesthe color Insra will use for the message header area
background.

header _font [Fixed|font]
Specifiesthefont Insra will usefor the message header text. On
some systems, e.g. SGI, theFi xed fontismuchtoolarge. This
option can be used to select a smaller font.

header _height [0]1]2|...]8]...]
Specifiesthe starting height of the Insra message header areain

number of rows of visible text. This may be modified while
Insra isrunning using the standard Motif controls.

153

=
2
=
o
=
@
2

0
Q
=
O
S
»
=

Configuration Files

154

nsra.

nsra.

nsr a.

nsr a.

nsr a.

nsr a.

nsr a.

nsr a.

nsr a.

header _hi ghli ght _col or
[Li ght St eel Bl ue2| col or]
Specifies the color Insra will use to indicate the currently
selected message or session header in the message header area.

header _hi ghli ght _text _col or [Bl ack| col or]
Specifiesthe color Insra will use for the text of the currently
selected message or session header in the message header area.

header _sessi on_col or [Gray80| col or]
Specifies the color Insra will use to indicate a session header.

header _sessi on_text _col or [Bl ack]| col or]
Specifies the color Insra will use for session header text.

header _text _col or [Bl ack]| col or]
Specifies the color Insra will use for message header text.

header _width [0]1]2]...]|80]...]
Specifiesthe starting width of the Insra message header areain
number of columns of visible text. This may be modified while
Insra isrunning using the standard Motif controls. If thisoption
is set to adifferent value than body_wi dt h, the larger value
will be used.

port [3255| port_nunber]
Specifies which port Insra should use to communicate with
Insight and Insight-compiled programs.

t ool bar [on| of f]
Specifies whether Insra‘ stoolbar is displayed. All toolbar
commands can also be chosen from the menu bar.

visual [xterm-e vi +% % |emacs +% 9% |
ot her _edi t or _conmand]
Specifies how Insra should call an editor to display the line of
source code causing the error. Insra will expand the % token
to the line number and the 9% token to the file name before
executing the given command. It isimportant to includethe full
path of any binary that livesin alocation not on your path.
Setting this option with no command string disables source
browsing from Insra.

Memory Overflow

Memory Overflow

One of the common errors that Insight detects occurs when a program reads or
writes beyond the bounds of avalid memory area. Thistype of problem normally
generatesa READ OVERFLOWor VWRI TE_ OVERFL OWerror which describesthe
memory regions being accessed with their addresses and sizes as shown below.

[hello.c:15] **WR TE_OVERFLOW *
>> strcat(str, argv[i]);

Witing overflows nmenory: <argunent 1>

<
@
3
o
<
O
3
@
5]
=

bbbbbbbbbbbbbbbbbbbbbbbbbb
| 16 | 2|
VAAWWWWWWAAMAVWWWWAWWAAMAWWWY

Witing (w : Ox7ffffd90 thru Ox7ffffdal (18 bytes)
To block (b) : Ox7ffffd90 thru Ox7ffffdof (16 bytes)
str, declared at hello.c, 11

Stack trace where the error occurred:
main() hello.c, 15

Menory corrupted. Programmay crash!!

Figure 7. Sample output from a WRI TE_OVERFLOWerror

Overflow diagrams

The textual information in Figure 7 describes the memory blocks involved in the
overflow operation using their memory addresses and sizes.

155

=
o
)
>
O
>
o
=
)
=

Memory Overflow

To gain amore intuitive understanding of the nature of the problem, a text-based
“overflow diagram” isalso shown. This pattern attemptsto demonstrate the nature
and extent of the problem by representing the memory blocksinvolved pictorially.

bbbbbbbbbbbbbbbbbbbbbbbbbbbb
| 16 2 |
VAWMV

Inthis case, the row of b characters represents the available memory block, while
the row of w' s shows the range of memory addresses being written. The block
being written is longer than the actual memory block, which causes the error.

The numbers shown indicate the size, in bytes, of the various regions and match
those of the textual error message.

Therelative length and alignment of the rows of charactersisintended to indicate
the size and relative positioning of the memory blocks which causethe error. The
above case shows both blocks beginning at the same position with the written
block extending beyond the end of the memory region. If the region being written
extended both before and after the available block, a diagram such asthe
following would have been displayed.

bbbbbbbbbbbbbbbbbbbbbbbbbbbb
| 5 | 16 [2 |
WwWWwWWWWAWWWWWWWWWWWWWWAWWAAWWMAWAWVWWMY

Completely disjoint memory blocks are indicated by a diagram of the form

bbbbbbbbbbbbbbbbbb
| 4 | 40 | 16 |

Similar diagrams appear for both READ OVERFLOWand WRI TE_ OVERFLOW
errors. In the former case, the block being read is represented by arow of r
charactersinstead of w's. Similarly, the memory regions involved in parameter
size mismatch errors are indicated using arow of p characters for the parameter
block. (See PARM_BAD_RANCE)

156

Error Codes

Error Codes

This section isintended to provide areference for the various error messages
generated by Insight.

This appendix consists of two parts.

Thefirst lists each error code alphabetically together with itsinterpretation and an
indication of whether or not it is suppressed by default.

The second gives a detailed description of each error including:
e A brief explanation of what problem has been detected.
e Anexample program that generates asimilar error.

e Output that would be generated by running the example,
with annotations indicating what the various pieces of the
diagnostic mean and how they should be interpreted in
identifying your own problems.

Note that the exact appearance of the error message may
depend heavily on how Insight is currently configured.

e A brief description of waysin which the problem might be
eliminated.

Note that someTimes New Roman you will see values identified as

“<ar gunent #>" or“<r et ur n>" instead of namesfrom your program. Inthis
case, <ar gunent n> refersto the nth argument passed to the current function
(i.e. the one where the error was detected), and <r et ur n> refersto avalue

returned from the function indicated.

157

m
=
=
o
-
0O
o
Q.
D
2

n
[}
©
o
O
-
o
=
—
L

Error Codes

Code Meaning Enabled?
ALLOC_CONFLI CT Mixing malloc/free with
new/delete
(badfree) Fr_ee called on block allocated u
with new
(baddel et e) Dglete called on block allocated u
with malloc
BAD_CAST Cast of pointer loses precision []
BAD_DECL Incompatible global declarations []
BAD_FORMAT Mismatch in format specification
(sign) i nt vs.unsi gned i nt
(conpati bl e) i nt vs.| ong, both same size
(i nconpati bl e) i nt vs.doubl e []
(ot her) Wrong number of arguments []
BAD | NTERFACE Declaration of function in
interface conflicts with l
declaration in program
BAD_PARM Mismatch in argument type
(alias) Different type tags, same type
(sign) i nt vs.unsi gned i nt
(conpati bl e) i nt vs.| ong, both same size
(inconpati bl e) i nt vs.doubl e []
(pointer) All pointers are equivalent []

158

Error Codes

Code Meaning Enabled?
(uni on) Require exact match on uni ons []
(ot her) Wrong number of arguments []
COPY_BAD_RANGE Attempt to copy out-of-range
pointer
COPY_DANGLI NG Attempt to copy dangling pointer
COPY_UNI NI T_PTR Attempt to copy uninitialized
pointer
COPY_W LD Attempt to copy wild pointer
DEAD_CCDE
(enpt yl oopbody) Loop body is empty
(enptystnt) Statement is empty
(noef fect) Code has no effect
(not eval uat ed) Codeis not evaluated
DELETE_M SMATCH Mismatch between new/new[] and
delete/del ete]]
(bracket) new, deletel] []
(nobr acket) new[], delete []
EXPR_BAD_RANGE Expression exceeded range
EXPR_DANGLI NG Expression uses dangling pointer
EXPR_NULL Expression uses NULL pointer]

159

m
-
-
o
-
0O
o
Q.
D
2

&

n
[}
©
o
O
-
o
=
—
L

Error Codes

Code Meaning Enabled?
EXPR_UNINI T_PTR Ex-pressi on uses uninitialized u
pointer
EXPR_UNRELATED_PTRCVP Ex_pr on compares unrel ated]
pointers
EXPR_UNRELATED_PTRDI FF Ex-pr on subtracts unrelated]
pointers
EXPR_W LD Expression uses wild pointer
FREE_BODY Freeing memory block from body [
FREE_DANGLI NG Freeing dangling pointer 0
FREE_GLOBAL Freeing global memory l
FREE_LOCAL Freeing local memory l
FREE_NULL Freeing NULL pointer 0
FREE_UNI NI T_PTR Freeing uninitialized pointer 0
FREE_W LD Freeing wild pointer l
FUNC BAD Function pointer is not afunction]
FUNC_NULL Function pointer is NULL l
FUNC UNI NI T_PTR Function pointer is uninitialized]
FUNC W LD Function pointer is wild]
HEAP_CORRUPT The heap is corrupt
(thisisonly activeif 0
mal | oc_r epl ace ison)
I NSI GHT_ERRCR Internal error]

I NSI GHT_WARNI NG

Output fromi i ¢_war ni ng

160

Error Codes

Code Meaning Enabled?
LEAK _ASSI GN Memory |eaked due to pointer]
reassignment
LEAK_FREE Memory |leaked freeing block
LEAK_RETURN Memory leaked by ignoring return]
value
LEAK_SCOPE Memory |leaked leaving scope l
PARM BAD_RANGE Array parameter exceeded range [
PARM _DANGLI NG Array parameter is dangling]
pointer
PARM NULL Array parameter is NULL [
PARM_UNI NI T_PTR Array parameter is uninitialized]
pointer
PARM W LD Array parameter iswild 0
READ_BAD_| NDEX Reading array out of range [
READ_DANGLI NG Reading from a dangling pointer l
READ_NULL Reading NULL pointer 0
READ_OVERFLOW
(nornal) Reading overflows memory []
(nonul I') String is not NULL-terminated]
within range
(string) Alleged string does not begin u
within legal range
(struct) Structure reference out of range []

161

m
-
-
o
-
0O
o
Q.
D
2

n
[}
©
o
O
-
o
=
—
L

Error Codes

Code Meaning Enabled?
(maybe) Dereferencing structure of
improper size (may be o.k.)
READ _UNI NI T_MEM Reading uninitialized memory
(copy) Copy from uninitialized region
(read) Use of uninitialized value []
READ_UNI NI T_PTR Reading from uninitialized pointer l
READ W LD Reading wild pointer 0
RETURN_DANGLI NG Returning pointer to local variable [
RETURN_FAI LURE Function call returned an error
RETURN_| NCONSI STENT Function returns inconsistent
value
(level 1) No declaration, returns nothing
(level 2) Declared i nt returns nothing []
(level 3) Declared non-i nt , returns]
nothing
(level 4) Returnsdifferent types at different H
statements
UNUSED VAR Unused variables
(assi gned) Assigned but never used
(unused) Never used
USER_ERROR User generated error message 0

162

Error Codes

Code Meaning Enabled?
VI RTUAL_BAD Error in runtime initialization of u
virtual functions
VR TE_BAD_| NDEX Writing array out of range l
VIRl TE_DANGLI NG Writing to a dangling pointer 0
VIRl TE_NULL Writing to a NULL pointer [
VRl TE_OVERFLOW
(normal) Writing overflows memory []
(struct) Structure reference out of range []
(maybe) Dereferencing structure of
improper size (may be o.k.)
VWRI TE_UNI NI T_PTR Writing to an uninitialized pointer]
VRI TE_W LD Writing to awild pointer l

163

m
-
S
o
=
O
o)
Q
D)
n

Error Codes

Sapo) 10113

164

ALLOC CONFLI CT
Memory allocation conflict

Porting code between differing machine architectures can be difficult for many
reasons. A particularly tricky problem occurs when the sizes of data objects,
particularly pointers, differ from that for which the software was created. This
error occurs when a pointer is cast to atype with fewer bits, causing information
to belogt, and is designed to help in porting codes to architectures where, for
example, pointers and integers are of different lengths.

Note that compilers will often catch this problem unless the user has “ carefully”
added the appropriate typecast to make the conversion “safe”.

m
-
-
Problem o
. : . . . 0O
The following code shows a pointer being copied to a variable too small to hold o
al its hits. Q.
M
)
(IR (@)
o, o
O o

o) o

o 1: /* (@]

o 2: * File: badcast.c (@]

o 3 */ o

O 4: mai n() O

O b5 { O

O 6: char q, *p; (@)

(G2 I (@]

O 8: p = "Testing"; O

a&g—» o 9 g = (char)p; o}

o 10: } o}

O O

0
0

)

0
%

165

n
[}
©
o
O
-
o
=
—
L

Diagnosis (during compilation)

[badcast. c: 9] **BAD_CAST** -
p Cast of pointer |oses precision: (char) p
>> q = (char) p;

e Source line at which the problem was detected.

e Description of the problem and the expression that isin
error.

Repair
This error normally indicates a significant portability problem that should be

corrected by using a different type to save the pointer expression. In ANS| C the
typevoi d * will always be large enough to hold a pointer value.

166

BAD CAST
Cast of pointer loses precision

Porting code between differing machine architectures can be difficult for many
reasons. A particularly tricky problem occurs when the sizes of data objects,
particularly pointers, differ from that for which the software was created. This
error occurs when a pointer is cast to atype with fewer bits, causing information
to belogt, and is designed to help in porting codes to architectures where, for
example, pointers and integers are of different lengths.

Note that compilers will often catch this problem unless the user has “ carefully”
added the appropriate typecast to make the conversion “safe”.

m
-
-
Problem <)
. O
The following code shows a pointer being copied to a variable too small to hold o
al itsbits. Q
M
wn
(GRS (@)
o o
S o

o 1 /* (@)

o 2 * File: badcast.c (@]

o 3 */ O

O 4 mai n() @]

O i b: { O

O i 6: char q, *p; O

o T O

O 8: p = "Testing"; (@)

agg—» o o g = (char)p; o)

o 10: return O @)

o 11: } 0]

O O

0
0

)

0
%

167

n
[}
©
o
O
-
o
=
—
L

Diagnosis (during compilation)

[badcast. c: 9] **BAD_CAST** -
p Cast of pointer |oses precision: (char) p
>> q = (char) p;

e Source line at which the problem was detected.

e Description of the problem and the expression that isin
error.

Repair
This error normally indicates a significant portability problem that should be

corrected by using a different type to save the pointer expression. In ANS| C the
typevoi d * will always be large enough to hold a pointer value.

168

BAD DECL

Global declarations are
Inconsistent

Thiserror isgenerated whenever Insight detectsthat avariable has been declared
astwo different typesin distinct source files. This can happen when there are two
conflicting definitions of an object or when an ext er n reference to an object
uses a different type than its definition.

In any case, Insight proceeds as though the variable definition is correct,
overriding the ext er n reference.

m
=
=
o
-
0O
o
Q.
D
2

169

Problem

In the following example, the filebaddecl 1. ¢ declaresthe variable a to be a
pointer, while the file baddecl 2. ¢ declaresit to be an array type.

o™, O
O O
o1 /* O
o2 * File: baddecll.c @)
O 3 */ @)
:fég—» O i 4 int *a; O

O O
O O
O O
O O
O O

) Oo Oo

o} ~ =

o

O

—_ O o

() o™ o

= o, =

L o 1 /* o
o 2 * File: baddecl 2.c @)
O 3: */ O

36\?4» O 4: extern int a[]; @)

O 5 O
O i 6: mai n() (@)
o T { @)
O :8: a[0] = 10; @)
O 9 return (0); ©)
O 10: } O
@] O

0
0 -
0
0

170

Diagnosis (at runtime)

[baddecl 2. c: 4] **BAD_DECL**
>> extern int a[]; -

p | ncompatible global declarations: a

— Array and non-array declarations are not equivalent.
Actual decl aration:
non-array (4 bytes), declared at baddecll.c, 4
Conflicting declaration: -
array of unspecified size,
decl ared at baddecl 2.c, 4

e Source line at which the problem was detected. —

e Description of the problem and the object whose
declarations conflict.

L« Brief description of the conflict.

m
=
=
o
-
0O
o
Q.
D
2

« Information about the conflicting definitions, includingthe —
sizes of the declared objects and the locations of their
declarations.

Repair

The lines on which the conflicting declarations are made are both shown in the
diagnostic report. They should be examined and the conflict resolved.

In the case shown here, for example, a suitable correction would be to change the
declaration file to declare an array with afixed size, e.g.,

baddecl 1.c, 4: int a[10];

171

n
[}
©
o
O
-
o
=
—
L

An alternative correction would be to change the definitionin baddecl! 2. ¢ to
indicate a pointer variable, e.g.,

baddecl 2. c, 4: extern int *a;

Note that this change on its own will not fix the problem. In fact, if you ran the
program modified this way, you would get another error, EXPR_NULL, because
the pointer, a, doesn’t actually point to anything and is NULL by virtue of being a
global variable, initialized to zero.

To make thisversion of the code correct, you would need to include something to
allocate memory and store the pointer in a, e.g.,

1: /*

2: * File: baddecl 2.c (nodified)
3: */

4: #i ncl ude <stdlib. h>

5: extern int *a;

6:

7: mai n()

8: {

9: a = (char *)mall oc(10*si zeof (int));
10: a[0] = 10;

11: }

Some applications may genuinely need to declare objects with different sizes, in
which case you can suppress error messages by inserting the line

i nsure++. suppress BAD DECL

into your . psr c file.

172

BAD FORVAT
Mismatch in format specification

This error is generated when acall to one of the pri nt f or scanf routines
contains a mismatch between a parameter type and the corresponding format
specifier or the format string is nonsensical.

Insight distinguishes several types of mismatch which have different levels of
severity as follows:

sign Types differ only by sign, eg., i nt vs.unsi gned
int.
conpati bl e Fundamental types are different but they happen to

have the same representation on the particular
hardwarein use, e.g., i nt vs.| ong on machines
where both are 32-bits, or i nt * vs.| ong where
both are 32-hits.

i nconpati bl e Fundamental types are different, e.g.i nt vs.
doubl e.

ot her A problem other than an argument type mismatch is
detected, such as passing the wrong number of
arguments.

Error messages are classified according to this scheme and can be selectively
enabled or disabled as described in the “Repair” section on page 179.

173

m
=
=
o
-
0O
o
Q.
D
2

Problem #1

An example of format type mismatch occurs when the format specifiers passed to
oneof thepri nt f routines do not correspond to the data, as shown below.

O O
o 1 /* O
o 2 * File: badforml.c @)
o 3 */ (@)
O i 4: mai n() (@)
O i5: { @)
O i 6: double f = 1.23; O
O iT: int i = 99; O
o 8: (@)
afg—» o o printf("od %\n", f, i): o
o i10: } e)
O O

0
0]
A0
-0

n
[}
©
o
O
-
o
=
—
L

This type of mismatch is detected during compilation.

174

Diagnosis (during compilation)

—p | [badf ornil. c: 9] **BAD_FORMAT(i nconpati bl e) **
Wong type passed to printf (argument 2).
Expected int, found doubl e.

>> printf("% %\n", f, i);

[badf orml. c: 9] **BAD_FORMAT(i nconpati bl e) **
Wong type passed to printf (argunent 3).
Expect ed doubl e, found int.

printf("% %\n", f, i);

e Source lines at which problems were detected.

e Description of the problem and the arguments that are
incorrect.

Problem #2

A more dangerous problem occurs when the types passed as arguments to one of
thescanf functionsareincorrect. In the following code, for example, the call to

m
=
=
o
-
0O
o
Q.
D
2

175

scanf triestoread adouble precision value, indicated by the“ 9 f ” format, into
asingle precision value. This will overwrite memory.

o 1: /| * O
O 2: * File: badforng.c o
o 3 * | o
O 4 mai n() o
O 6 int a;)
o7 float f; O
O 8: O
?@\f—» O o scanf ("% f”, &f); @)
o 10: } o
O O

O..
0

)

0

This problem is again diagnosed at compile time (along with the
V\RI TE_OVERFLOW which is hot shown below).

n
[}
©
o
O
-
o
=
—
L

Diagnosis (during compilation)

[badf ornR2.c: 9] **BAD_FORMAT(i nconpati bl e) **
Wong type passed to scanf (argunent 2).
Expected double *, found float *.

>> scanf ("% f\n", &f);

e Sourcelines at which problems were detected.

e Description of the problem and the arguments that are
incorrect.

176

Problem #3

A third type of problem is caused when the format string being used is avariable
rather than an explicit string. The following code contains an error handler that
attemptsto print out a message containing afilename and line number. In line 18

o™, Ke)

@] O

o il /* @)

o 2: * File: badfornB.c @)

O i3 */ (@)

O 4 char *file; (@)

O | 5: int |line; O

O i 6: @) D:I

o7 error(format) @) 8

O 8: char *format; O =

o 9 { o @)
Q/&—»o 10: printf(format, file, line); e} 8_

o 12: e} 0]

O 13: main() le)

o 14 { o)

o 15: file = "foo.c"; o)

o | 16: line = 3; 0]

o 17: e}

o 18: error("Line %, file %\n"); o

o 19: } o)

O O

0

of the calling routine, however, the arguments are reversed.

177

n
[}
©
o
O
-
o
=
—
L

Diagnosis (at runtime)

>>

-
|

[badf ornB. c: 10] **BAD_FORMAT(i nconpati bl e) **

printf(format, file, line); -

Format string is inconsistent:

Wong type passed to printf (argument 3).
Expected pointer, found int.
Format string: "Line %, file %\n"

Stack trace where the error occurred:
p error() badfornB.c, 10

mai n() badfornB.c, 18

* Source line at which the problem was detected.

» Description of the problem and the argument that isin
error.

» Explanation of the error and the format string that caused it.

» Stack trace showing the function call sequence leading to
theerror.

The error diagnosed in thismessage isinthe“i nconpat i bl e” category,
because any attempt to print a string by passing an integer variable will result in
garbage. Note that with some compilers, this program may cause a core dump
because of this error, while others will merely produce incorrect output.

Thereis, however, a second potentia error in this code in the same line.

Because the arguments are in the wrong order in line 7, an attempt will be made
to print apointer variable asaninteger. Thiserrorisinthe“conpat i bl e” class,
since a pointer and an integer are both the same size in memory. Since

“conpat i bl e” BAD_FORMAT errorsare suppressed by default, youwill not see
it. (These errors are suppressed because they will cause unexpected rather than
incorrect behavior.)

178

If you enabled these errors, you would see a second problem report from this code.

second error would also be in the
“i nconpat i bl e” class and would be displayed

by default.

If you run Insight on an architecture where pointers
% and integers are not the same length, then this

Repair
Most of these problems are simple to correct based on the information given.
Normally, the correction is one or more of the following

e Change the format specifier used in the format string.

e Change the type of the variable involved.

e Add asuitable typecast.

For example, problem #1 can be corrected by simply changing the incorrect line
of code asfollows

badforml.c, line 9:printf("%l %\n", i, f);

The other problems can be similarly corrected.

If your application generates error messages that you wish to ignore, you can add
the option

i nsur e++, suppress BAD FORVAT
toyour . psrc file.
This directive suppresses all BAD FORMAT messages. |f you wish to be more

selective and suppress only a certain type of error, you can use the syntax

i nsure++, suppress BAD FORMAT(cl assl, class2, .)

179

m
=
=
o
-
0O
o
Q.
D
2

n
[}
©
o
O
-
o
=
—
L

where the arguments are one or more of the identifiers for the various categories
of error described on page 173.

Similarly, you can enabl e suppressed typeswith anunsuppr ess command. The
problem with the pointer and integer that was not shown in the current example
could be displayed by adding the option

i nsur e++. unsuppr ess BAD FORMAT(conpati bl e)

toyour . psr c file. For an example of this option, aswell as the remaining
subcategories of BAD_FORMAT, see the example badf or ma. c.

180

BAD | NTERFACE

Actual declaration of xxx conflicts
with interface, or

Ignoring interface for xxx: conflicts
with static or in-line declaration

This error will be generated any time there is a significant discrepancy between
the source code being processed and an interface to one of the functionsin the
code. Common sources of this problem are redeclarations of standard system
functionsin your code.

m
-
o
Problem =~
0O
The following code shows a redeclaration of the function pri nt f which will 8_
conflict with the version of the function expected by the interface. 8
O QO
. A
o 1. ©
o 2 * File: badint.c o
o 3 */ o
O 4: #include <stdio.h> ©
O 5: O
a&g—» O 6: static void printf(i) o
o7 int i; @)
O 8 { O
OF -} fprintf(stdout, “%a\n”, i); o
O 10 } o
o o}

0
0

0
0

181

n
[}
©
o
O
-
o
=
—
L

Diagnosis (during compilation)

[badint.c: 6] **BAD | NTERFACE**

Ignoring interface for printf: conflicts with static
or inline declaration.

static void printf(i)

e Source line at which the problem was detected.

e Description of the problem and the expression that isin
error.

Repair

There are several waysto approach solving this problem. The correct solution for
your situation depends upon why the function was redefined in your code. If this
isaversion of the function that isused with all of your code, a permanent solution
would be to write a new interface corresponding to your version of the function.
(Seethe LynxInsure++ User’ sGuidefor moreinformation onwriting interfaces.)
A quicker, more temporary solution, appropriateif you only usethisversion of the
function occasionally, would be to temporarily disable the checking of this
interface usingthei nt er f ace_i gnor e optioninyour . psr c file. This
option can be turned on and off on a per file basis as you work with different code
which uses different versions of the function in question.

182

BAD PARM
Mismatch in argument type

This error is generated when an argument to a function or subroutine does not
match the type specified in an earlier declaration or an interface file.

Insight distinguishes several types of mismatch which have different levels of
severity as follows:

ali as Types have different names by virtue of at ypedef
construct but still refer to the same basic type.

sign Types differ only by sign, eg., i nt vs.unsi gned
int. D:'
conpati bl e Fundamental types are different but they happen to 8
have the same representation on the particular =
hardwarein use, e.g., i nt vs.| ong on machines @)
where both are 32-hits. 8
i nconpati bl e Fundamental types are different, e.g.i nt vs.f | oat . 8
uni on Forces adeclared union argument to match only a

similar union as an actual argument. If thisis
suppressed, you may pass any of the individual union
elements to the routine, rather than the union type, or
pass a union to a routine which expects one of the
union-elements as an argument.

ot her An error was detected that is not simply amismatched
argument type, such as passing the wrong number of
arguments to a function.

poi nt er Thisisnot an error class, but a keyword used to
suppress messages about mismatched pointer types,
suchasi nt * vs.char *.Seepage 192.

Error messages are classified according to this scheme and can be selectively
enabled or disabled as described in the “Repair” section on page 192.

183

Problem #1

The following shows an error in which an incorrect argument is passed to the
function f 0o.

(. (@]
o™, Ke)
O . . O
© ;: /* File: badparml.c ©
8 3: */ g
o 4: voi d foo(str) o
5: char *str;
o o)
o & { o
o ; } return; o
2 o -
o) o 10: main() o
o o 11: o
@) o 12 int *iptr; o
— o 13: o
8 ;;@\: » 14: foo(iptr);
= © 15 return (0): ©
w SR Ipe) ’ o)
O ' O
O O

0
0

This type of mismatch is detected during compilation.

184

Diagnosis (during compilation)

[badpar ml. c: 14] **BAD_PARM i nconpati bl e) **
Wong type passed to foo (argunent 1: str)
Expected char *, found int *.

foo(iptr)

e Source lines at which problems were detected.

e Description of the problem and the arguments that are
incorrect.

m
=
=
o
-
0O
o
Q.
D
2

185

Problem #2

Another simple problem occurs when arguments are passed to functionsin the
wrong order, asin the following example.

O o
O ™, o
O™, Re)
O 1. [+ O
© 2: * File: bad m ©
o 3: y ile: badparng.c o
@]) O
o 4: Il ong foo(f, 1) o
5: doubl e f;
© 6: I l; ©
o : ong |; o
7. {
@] @]
8: return f+l;
o o)
0 O) } O
b o 10: o)
© 11: main()
(@) @) : O
O o 12: { o
= 2@3—» o 18 long ret = foo(32L, 32.0); 5
@) o 14: o
= 5 15: printf("%d\n", ret); 5
LL 16: return O;
° 17 o)
O ' O

0
0

186

Diagnosis (during compilation)

[badparn2. c: 13] **BAD_PARM i nconpati bl e) **
Wong type passed to foo (argument 1: f)
Expect ed doubl e, found | ong.

>> long ret = foo(32L, 32.0);

[badparn2. c: 13] **BAD_PARM i nconpati bl e) **
Wong type passed to foo (argunment 2: |).
Expected | ong, found doubl e.

long ret = foo(32L, 32.0);

» Sourcelines at which problems were detected.

» Description of the problem and the arguments that are
incorrect.

Problem #3

A dlightly less harmful case that you might be interested in detecting involvesthe
use of thet ypedef construct, which allows you to create new data types. In
some cases, you may wish to enforce certain rules in your software, such as only
allowing parameters of a certain type to be passed to routines. The following

187

m
=
=
o
-
0O
o
Q.
D
2

n
[}
©
o
O
-
o
=
—
L

example defines atype called anobunt and aroutinet ax that computes a
modified value based on a percentage tax rate.

(SN)
o™, O
o, O
g 1: /* 8
2: * File: badparnB.c
O 3 %] O
© 4: typedef doubl e Anount; o
O 5 O
g 6: Anobunt tax(price, rate) ©
7: Amount pri ce; ©
© 8: doubl e rate; ©
O . O
9: {
© 1o return price*(1.0+rate); ©
O . O
11: }
© 12 ©
O 13: i n() o
O 14 ©
O 15 Amount a; O
O 16: O
2&?4» O 17 a = tax(100.0, 0.06); o
O 18: return O; o
O 19: o
O O

0
0

By default, this type of error checking is suppressed, but if you add the option

i nsur e++. unsuppress BAD PARM al i as)

toyour . psr c file, you will see the following message during compilation.

188

Diagnosis (during compilation)

[badparnB.c:17] **BAD _PARM al i as) **
Wong type passed to tax (argunent 1: price)
Expect ed Anount, found double

a = tax(100.0, 0.06);

» Sourcelines at which problems were detected.

» Description of the problem and the arguments that are
incorrect.

Problem #4

The following example illustrates the BAD_PARM uni on) error category. The
functionsf unc1 and f unc2 expect to be passed a union and a pointer to an
integer, respectively. Thecodeinthemai n routinethen invokesthetwo functions
both properly and by passing the incorrect types.

Note that this code will probably work on most systems due to the internal
alignment of the various data types. Relying on this behavior is, however,
non-portable.

m
=
=
o
-
0O
o
Q.
D
2

189

n
[}
©
o
O
-
o
=
—
L

O @]
O 1 / * O
O 2 * File: badparmi.c o
O 3: * @]
O 4: union data { o
O s int i; o
O 6 doubl e d; O
o7 }: O
O g: @]
O 9. wvoid funcl(ptr) o
O 10: uni on data *ptr; o
O 11: { o
o 12 ptr->i = 1; o
o 13: } o
O |14 o
O 15: void func2(p) o
O | 16: int *p; o
O 17 {)
O 18: *p = 1; o
Oi19: } o
O 20: @]
O 1 21: min() O
o 22: { (@)
O | 23: int t; O
O | 24: uni on data u; o
O | 25: @]
O | 26: funcl(&u); (@]
O — w|lo 27 funcl(&t); /* BAD_PARM */ o
%EH O | 28: func2(&u); /* BAD_PARM */ (@)
O | 29: func2(&t); (@]
o 30: } o
O O
o ™

190

Diagnosis (during compilation)

[badpar md. c: 27] **BAD_PARM uni on) **
Wong type passed to funcl (argunment 1: ptr)
Expected union data *, found int *.

>> funcl(&); /* BAD_PARM */

[badpar md. c: 28] **BAD_PARM uni on) **
Wong type passed to func2 (argument 1: p)
Expected int *, found union data *.

>> func2(&u); /* BAD_PARM */

* Sourcelines at which problems were detected.

» Description of the problem and the arguments that are
incorrect.

Repailr
Most of these problems are simple to correct based on the information given.

For example, problem #1 can be corrected by simply changing the incorrect line
of code asfollows

badparml.c, line 6:if(strchr("testing"”, 's'))
The other problems can be similarly corrected.
If your application generates error messages that you wish to ignore, you can add

the option

i nsur e++, suppress BAD PARM

toyour . psrc file.

191

m
=
=
o
-
0O
o
Q.
D
2

n
[}
©
o
O
-
o
=
—
L

This directive suppresses all BAD _PARMmessages. If you wish to be more
selective and suppress only a certain type of error, you can use the syntax

i nsure++. suppress BAD PARM cl ass1, class2, .)

where the arguments are one or more of the identifiers for the various categories
of error described on page 183. Similarly, you can enable suppressed error
messages with theunsuppr ess option.

Thus, you could enable warnings about conflicts between typesi nt and| ong
(on systems where they are the same number of bytes) using the option

i nsur e++. unsuppr ess BAD_PARM conpat i bl e)

(seebadpar nb. c for an example) and the type of error discussed in connection
with problem #3 with the option

i nsur e++. unsuppress BAD PARM al i as)

In addition to the keywords described on page 183, you can also use the type
poi nt er to suppress all messages about different pointer types.

For example, many programs declare functions with the argument typechar *,
which are then called with pointersto various other datatypes. The ANSI standard
recommends that you use typevoi d * insuch circumstances, since thisis
allowed to match any pointer type. If, for somereason, you cannot do this, you can
suppress messages from Insight about incompatible pointer types with the option

i nsur e++. suppress BAD_PARM poi nt er)

192

COPY W LD
Copying wild pointer

This problem occurs when an attempt is made to copy a pointer whose valueis

invalid or which Insight did not see allocated.

This can come about in severa ways:

e Errorsin user code that result in pointersthat don’t point at
any known memory block.

» Compiling only some of the files that make up an
application. This can result in Insight not knowing enough
about memory usage to distinguish correct and erroneous

behavior.

This discussion centers on the first type of problem
described here. A detailed discussion of the
second topic, including samples of its generation

and repair can be found in “Interfaces” on page 91.

193

m
=
=
o
-
0O
o
Q.
D
2

Problem

The following code attempts to use the address of a variable but contains an error
at line 9 - the address operator (&) has been omitted.

O (@)
O ™ o
S o
Oi1: /* o
o 2 * File: copywild.c o
O 3 * [@]
O 4: O
O 5 mai n() o
o] 6: { O
o 7 int a = 123, *b; o
O 8: O
%g—» O o9: b = a; @)
O 10: return (0); o
O 11 } o
@] @]

0
0
P
0

)

n
[}
©
o
O
-
o
=
—
L

194

Diagnosis (at runtime)

[copywi |l d.c:9] **COPY_W LD*

>> b = a;

p» Copying wild pointer: a

0x0000007b

> Poi nter

Stack trace where the error occurred:
9

e Source line at which the problem was detected.

e Description of the problem and the name of the parameter
that isin error.

e Value of the bad pointer.

L— « Stack trace showing the function call sequence leading to
the error.

Note that most compilers will generate warning messages for this error since t
assignment uses incompatibl e types.

p main() copywld.c,

he

195

m
=
=
o
-
0O
o
Q.
D
2

n
[}
©
o
O
-
o
=
—
L

DEAD CODE
Memory allocation conflict

DC_NOTEVALUATED, DC_NOEFFECT, DC_UNREACHABLE

Code is not evaluated, Code has no effect, (unreachable seems not to be
generated?).

Porting code between differing machine architectures can be difficult for many
reasons. A particularly tricky problem occurs when the sizes of data objects,
particularly pointers, differ from that for which the software was created. This
error occurs when a pointer is cast to atype with fewer bits, causing information
to belost, and is designed to help in porting codes to architectures where, for
example, pointers and integers are of different lengths.

Note that compilers will often catch this problem unless the user has “ carefully”
added the appropriate typecast to make the conversion “safe”.

196

Problem

The following code shows a pointer being copied to a variable too small to hold
all its bits.

© (@)
o™, o

o™, o

O O

o 1 /* @)

o 2: * File: badcast.c O

O 3: */ @)

O 4: mai n() O

O b5 { O

O i 6: char q, *p; O

o T O

O 8: p = "Testing"; o

agg—» o 9 g = (char)p; (@)

o 10: } (@]

@] (@)

0

)

0
0

m
=
=
o
-
0O
o
Q.
D
2

197

n
[}
©
o
O
-
o
=
—
L

Diagnosis (during compilation)

[badcast. c: 9] **BAD_CAST** -
p Cast of pointer |oses precision: (char) p
>> q = (char) p;

e Source line at which the problem was detected.

e Description of the problem and the expression that isin
error.

Repair
This error normally indicates a significant portability problem that should be

corrected by using a different type to save the pointer expression. In ANS| C the
typevoi d * will always be large enough to hold a pointer value.

198

DELETE M SNVATCH

Inconsistent usage of delete
operator

Porting code between differing machine architectures can be difficult for many
reasons. A particularly tricky problem occurs when the sizes of data objects,
particularly pointers, differ from that for which the software was created. This
error occurs when a pointer is cast to atype with fewer bits, causing information
to belost, and is designed to help in porting codes to architectures where, for
example, pointers and integers are of different lengths.

Note that compilers will often catch this problem unless the user has “ carefully”
added the appropriate typecast to make the conversion “safe”.

m
=
=
o
-
0O
o
Q.
D
2

199

Problem

The following code shows a pointer being copied to a variable too small to hold

al its hits.
© o
o™, o

o™, Ke)
O O
o 1 /* @)
o 2: * File: badcast.c O
O 3: */ @)
O 4: mai n() O
O b5 { O
O i 6: char q, *p; O
o T O
O 8: p = "Testing"; o

agg—» o 9 g = (char)p; (@)
o 10: } (@]
@] (@)

0

)

0
0

n
[}
©
o
O
-
o
=
—
L

200

Diagnosis (during compilation)

[badcast. c: 9] **BAD_CAST** -
p» Cast of pointer |oses precision: (char) p
>> q = (char) p;

e Source line at which the problem was detected.

e Description of the problem and the expression that isin
error.

Repair

This error normally indicates a significant portability problem that should be
corrected by using a different type to save the pointer expression. In ANSI C the
typevoi d * will always be large enough to hold a pointer value.

201

m
=
=
o
-
0O
o
Q.
D
2

EXPR_BAD RANGE
Expression exceeded range

This error is generated whenever an expression uses a pointer that is outside its
legal range. In many circumstances, these pointers are then turned into legal
values before use (e.g., code generated by automated programming tools such as
| ex andyacc), sothiserror category is suppressed by default. If used with their
illegal values, other Insight errorswill be displayed which can be tracked to their
source by re-enabling this error class.

" Problem
m
© In this code, the pointer a initially pointsto a character string. It is subsequently
8 incremented beyond the end of the string. When the resulting pointer is used to
o make an array reference, arange error is generated.
8 1: /* g
2: * File: exprange.c
o I %) o)
o o)
4: mai n()
@) 5 { @)
o 6: char *a = "test" ©
o 7 char *b; ©
o g o)
O o a += 6; ©
;@g — =] 9 10 b = &a[1]: O
O 11 return (0); O
O 12 } O
o) e)

0
0

202

Diagnosis (at runtime)

[exprange. c: 10] **EXPR_BAD RANGE**
>> b = &[1]; o

p» Expression exceeded range: a[l]

| ndex used: 1

Poi nt er : 0x0000e226

In block : 0x0000e220 thru 0x0000e224 (5 bytes)
a, declared at exprange.c, 6

Stack trace where the error occurred: -
mai n() exprange.c, 10

» Source line at which the problem was detected. —

L » Description of the problem and the expression that isin
error.

— » Description of the memory block to which the out of range
pointer used to point, including the location at whichiitis
declared.

m
=
=
o
-
0O
o
Q.
D
2

» Stack trace showing the function call sequence leadingto |
theerror.

Repair

In most cases, thiserror is caused by incorrect logic in the codeimmediately prior
to that at which the message is generated. Probably the simplest method of
solution isto run the program under a debugger with abreakpoint at theindicated
location.

If you cannot find the error by examining the values of other variables at this
location, the program should be run again, stopped somewhere shortly before the
indicated line, and single-stepped until the problem occurs.

203

EXPR_DANGLI NG
Expression uses dangling pointer

This error is generated whenever an expression operates on a dangling pointer -
i.e., one which pointsto either

» A block of dynamically allocated memory that has already
been freed.

* A block of memory which was allocated on the stack in
some routine that has subsequently returned.

Problem

The following code fragment shows a block of memory being allocated and then
freed. After thememory isde-allocated, the pointer toit isused again, even though

n
[}
©
o
O
-
o
=
—
L

204

it no longer pointsto valid memory.

O 1: /* e}
O 2: * File: expdangl.c o
(OF IRCH */ (@]
O 4: #i ncl ude <stdlib. h> o
O 5 (@]
O 6: mai n() o
o T { (@]
O 8: char *a = (char *)nmalloc(10); @O
o9 char b[10]; (@]
O 10: (@]
o i 11: free(a); (@]
2&—» o 12: if(a > b) o
o i 13: a = b; e}
o i 14: return (0); (@]
o 156: } o
O ¢}

0
0

m
-
S
o
=
O
o)
Q
D)
n

205

Diagnosis (at runtime)

[expdangl . c: 12] **EXPR_DANGLI NG+ *
>> if(a > D) -

p Expression uses dangling pointer: a > b

Poi nt er : 0x00013868
In block : 0x00013868 thru 0x00013871 (10 bytes)
bl ock all ocated at:
mal l oc() (interface)
mai n() expdangl.c, 8

stack trace where nenory was freed:
mai n() expdangl.c, 11

-

Stack trace where the error occurred:
mai n() expdangl.c, 12

* Sourceline at which the problem was detected.

— » Description of the problem and the expression that isin
error.

n
[}
©
o
O
-
o
=
—
L

» Description of the memory block to which the pointer used
to point, including the location at which it was alocated
and subsequently freed.

» Stack trace showing the function call sequence leading to
the error.

Repair

A good first check isto seeif the pointer used in the expression at the indicated
lineis actually the one intended.

If it appearsto be the correct pointer, check the line of code where the block was
freed (as shown in the error message) to seeif it was freed incorrectly.

206

EXPR_NULL
Expression uses NULL pointer

This error is generated whenever an expression operates on the NULL pointer.

Problem

The following code fragment declares apointer, a, which isinitialized to zero by
virtue of being aglobal variable. It then manipulates this pointer, generating the
EXPR_NULL error.

O S m
o™, 9 o
o .. R o} -
o L "~ , o O
o 2: * File: expnull.c o (@)
o 3: */ o %
. * .
o ;1: char *a; o v
o .))
6: mai n()
o .)
o 7: { o
o 8: char *b; o
) o)
?f@\?—» 5 10 b = &[1]; o
o 11: return (0); o
12: }
@) O

0
0

207

Diagnosis (at runtime)

[expnul | .c:10] **EXPR_NULL**
>> b = &[1];

A

—» Expression uses null pointer: a[1]

Stack trace where the error occurred: -———
mai n() expnull.c, 10

e Source line at which the problem was detected. —

e Description of the problem and the expression that isin
error.

e Stack trace showing the function call sequence leadingto ——
theerror.

Repair

One potential cause of thiserror isshown inthisexample. The pointer a isaglobal
variablethat will beinitialized to zero by the compiler. Sincethisvariableisnever
modified to point to anything else, it is still NULL when first used.

n
[}
©
o
O
-
o
=
—
L

One way the given code can be corrected is by adding an assignment as follows

/*

* File: expnull.c (nodified)

*/

char *a;

mai n()

{
char *b, c[10];
a = c;
b = &a[1];
return (0);

}

208

It could also be corrected by allocating a block of memory.

A second possibility isthat the pointer was set to zero by the program at some
point beforeits subsequent use and not re-initialized. Thisiscommonin programs
which make heavy use of dynamically allocated memory and which mark freed
blocks by resetting their pointersto NULL.

A final common problem is caused when one of the dynamic memory alocation
routines, mal | oc,cal | oc,orreal | oc, failsand returnsaNULL pointer. This
can happen either because your program passes bad arguments or simply because
it asks for too much memory. A simple way of finding this problem with Insight
isto enable the RETURN_FAI LURE error code (see page 300) viayour . psr ¢
file and run the program again. It will then issue diagnostic messages every time
asystem call fails, including the memory allocation routines.

m
=
=
o
-
0O
o
Q.
D
2

209

n
[}
©
o
O
-
o
=
—
L

EXPR UNINI T_PTR

Expression uses uninitialized
pointer

This error is generated whenever an expression operates on an uninitialized
pointer.

Problem

The following code uses an uninitialized pointer.

0
0

/*
* File: expuptr.c
*/
mai n()
{
char *a, b[10], c[10];

if (a>Db)
a = b;
return (0);

RBo®NoO bR

e e

ocooooooo0oo000 O

000000000000

0
0.
0

210

Diagnosis (at runtime)

[expuptr.c:8] **EXPR_UNINIT_PTR** _
>> if (a>Db) ‘

p Expression uses uninitialized pointer: a > b

Stack trace where the error occurred: -
mai n() expuptr.c, 8

e Source line at which the problem was detected. —

L e Description of the problem and the expression that isin
error.

e Stack trace showing the function call sequence leadingto —
the error.

Repair

This error is normally caused by omitting an assignment statement for the
uninitialized variable. The example code can be corrected as follows:

m
=
=
o
-
0O
o
Q.
D
2

1 /*

2: * File: expuptr.c (nodified)
3: */

4. mai n()

5: {

6: char *a, b[10], c[10];
7:

8: a = c;

9: if (a>Dbh)

10: a = b;

11: return (0);

12: }

211

n
[}
©
o
O
-
o
=
—
L

EXPR_UNRELATED_ PTRCMP

Expression compares unrelated
pointers

This error is generated whenever an expression tries to compare pointers that do
not point into the same memory block. This only applies to the operators >, >=,
<, and <=. The operators == and ! = are exempt from this case.

The ANSI C-language specification declares this construct undefined except in
the special case where a pointer pointsto an object one past the end of a block.

212

Problem

The following code illustrates the problem by comparing pointers to two data
objects.

() ()
o o
o . O
© 1: [* ©
O . O
2: * File: expucnp.c
O O
o 3: */ o
4: #i ncl ude <stdlib. h>
o .)
O . . O
6: mai n()
O . O
o 7: { o
o S char a[10], *b; o
O ‘ O
10: b = * ;
o : (char *)mal | oc(10); o m
11: =
ﬁ—» O 12 if(a>b) a[0] = 'X'; © o
© 13 else a[0] = 'y'; © -
O 14 return (0); o @)
O . @) @)
5 15 } 5 o
D
n

O,,
0

Note that the error in this code is not that the two objectsa and b are of different
datatypes (array vs. dynamic memory block), but that the comparison in line 12
attempts to compare pointers which do not point into the same memory block.
According to the ANSI specification, thisis an undefined operation.

213

n
[}
©
o
O
-
o
=
—
L

Diagnosis (at runtime)

[expucnp. c: 12] **EXPR_UNRELATED PTRCMP**
>> if(a>h) a[0] =" 'x';

p» Expression conpares unrel ated pointers: a > b

— « Description of the problem and the expression that isin

Left hand side : Oxf7fffb8c
—» | n bl ock © Oxf7fffb8c thru Oxf7fffb95 (10 bytes)
a, declared at expucnp.c, 8

Ri ght hand si de: 0x00013870
I n bl ock : 0x00013870 thru 0x00013879 (10 bytes)
bl ock allocated at:
mal l oc() (interface)
mai n() expucnp.c, 10

Stack trace where the error occurred: -
mai n() expucnp.c, 12

e Source line at which the problem was detected. —

error.

—— « Description of thetwo pointersinvolved in the comparison.
For each pointer, the associated block of memory is shown
together with its size and the line number at which it was
declared or allocated.

e Stack trace showing the function call sequence leadingto —
the error.

Repair

While this construct is technically undefined according to the ANSI C
specification, it is supported on many machines and its use is fairly common

214

practice. If your application genuinely needs to use this construct, you can
suppress error messages by adding the option

i nsure++. suppress EXPR_UNRELATED PTRCMP

toyour . psr c file.

m
=
=
o
-
0O
o
Q.
D
2

215

n
[}
©
o
O
-
o
=
—
L

EXPR_UNRELATED PTRDI FF

Expression subtracts unrelated
pointers

This error is generated whenever an expression tries to compute the difference
between pointers that do not point into the same memory block.

The ANSI C language specification declaresthis construct undefined except inthe
special case where a pointer pointsto an object one past the end of a block.

Problem
Thefollowing codeillustrates the problem by subtracting two pointersto different
data objects.
O o O

g 1: [* g

o 2: * File: expudiff.c o

o 3: */ o
4: #i ncl ude <stdlib. h>

o g o)

o . 0
6: mai n()

le) le)

o 7: { o
8: char a[10], *b;

0 . 0
9: int d;

o) , 0

o) 1o: o)
11: b = (char *)mall oc(10);

o . _ . o

%QH o 1 d=b- a o

13: return (0);

ol Y } 0

0 ' 0

0

216

Diagnosis (at runtime)

[expudiff.c:12] **EXPR_UNRELATED_PTRDI FF**_
>> d=">b- a o

p Expression subtracts unrelated pointers: b - a

Left hand side : 0x00013878
™ In block : 0x00013878 thru 0x00013881 (10 bytes)
b, allocated at:
mal loc() (interface)
mai n() expudiff.c, 11

Ri ght hand side: Oxf7fffb8c
In bl ock : Oxf7fffb8c thru Oxf7fffb95 (10 bytes)
a, declared at expudiff.c, 8

Stack trace where the error occurred: -
mai n() expudiff.c, 12

» Description of the problem and the expression that isin
error.

» Description of the two pointersinvolved in the expression.
For each pointer the associated block of memory is shown
together with its size and the line number at which it was
declared or allocated.

» Stack trace showing the function call sequence leadingto —
the error.

Repair

Whilethisconstruct is undefined according to the ANSI C language specification,
it is supported on many machines and its use is fairly common practice. If your

217

» Source line at which the problem was detected. —

m
=
=
o
-
0O
o
Q.
D
2

application genuinely needsto usethis construct, you can suppress error messages
by adding the option

i nsure++, suppress EXPR _UNRELATED PTRDI FF

toyour . psr c file.

n
[}
©
o
O
-
o
=
—
L

218

FREE BODY
Freeing memory block from body

This error is generated when an attempt is made to de-allocate memory by using
a pointer which currently pointsinto the middle of a block, rather than to its

beginning.

Problem
The following code attempts to free a memory region using an invalid pointer.
m
-
o
L)o A -
o™, o (@]
@) 0 8_
o 1 /* @) D
o 2 * File: freebody.c o} n
O i3 */ O
O 4 #i ncl ude <stdlib. h> O
O i5: O
O i6: mai n() O
o 7 A O
O i8: char *a = (char *)malloc(10); ' O
ﬁg—» O i9: free(a+l); e}
o i10: } e}
O O

0
0
0

219

n
[}
©
o
O
-
o
=
—
L

Diagnosis (at runtime)

[freebody. c: 9] **FREE_BCDY**
>> free(a+l); -

P Freeing nmenory block frombody: a + 1

» Pointer : 0x000173e9
Stack trace where the error occurred:
= mai n() freebody.c, 9

Menmory corrupted. Program nmay crash!!

* Sourceline at which the problem was detected.

» Description of the problem and the expression that isin
error.

* Value of the pointer that is being deall ocated.

L« Stack trace showing the function call sequence leading to
the error.

» Informational message indicating that a serious error has
occurred which may cause the program to crash.

Repair

Thisisnormally aserious error. In most cases, the line number indicated in the
diagnostics will have asimple error that can be corrected.

220

FREE DANGLI NG
Freeing dangling pointer

This error is generated when amemory block is freed multiple Times New
Roman.

Problem

The following code frees the same pointer twice.

m
=
o o o
o™, o
1 g © Q
: o
° 2 * File: freedngl.c O o
o g3 x O)
) n
© 4: #include <stdlib. h> ©
O 5 O
O 6 mai n() o
o 7. g o
o s char *a = (char *)mal |l oc(10); o
O o free(a); o
X%—» O 10 free(a); o
O 11: return (0); o
O 12 } o
@] O

0
0

221

n
[}
©
o
O
-
o
=
—
L

Diagnosis (at runtime)

[freedngl.c:10] **FREE_DANGLI NG**<
>> free(a);

p Freeing dangling pointer: a

p» Pointer : 0x000173e0
In block : 0x000173e0 thru 0x000173e9 (10 bytes)
bl ock allocated at:
> mal l oc() (interface)
mai n() freedngl.c, 8

——m stack trace where nenory was freed:
mai n() freedngl.c, 9

Stack trace where the error occurred: -
mai n() freedngl.c, 10

Menory corrupted. Program may crash!! ———

e Source line at which the problem was detected. —

e Description of the problem and the expression that isin
error.

» Value of the pointer that is being deall ocated.

L » Information about the block of memory addressed by this
pointer, including information about where this block was
allocated.

L e Stack trace showing where this block was freed.

» Stack trace showing the function call sequenceleadingto — !
theerror.

» Informational message indicating that a serious error has
occurred which may cause the program to crash. —

222

Repailr
Some systems allow memory blocks to be freed multiple Times New Roman.

However, thisis not portable and is not a recommended practice.

The information supplied in the diagnostics will allow you to see the line of code
which previously de-allocated this block of memory. Y ou should attempt to
remove one of thetwo calls.

If your application isunableto prevent multiple callsto deallocate the same bl ock,
yOu can suppress error messages by adding the option

i nsure++. suppress FREE DANGLI NG

toyour . psrc file.

m
=
=
o
-
0O
o
Q.
D
2

223

FREE GLOBAL
Freeing global memory

Thiserror isgenerated if the address of aglobal variable is passed to aroutine that
de-allocates memory.

Problem

The following code attempts to deallocate a global variable that was not
dynamically allocated.

n

)

©

O

O (&)

O O)

— O™ Ke)

o

= © 1 [* ©

L O 2 * File: freeglob.c O
O 3: */ O
O g4 char a[10]; O
O 5 o
O 6 min() o
o 7.)

2&—» O s free(a); o

O o return (0); o
O 10: } o
@))

0
0

0
0

)

224

Diagnosis (at runtime)

[freegl ob.c:8] **FREE_G.OBAL**
>> free(a);

p Freeing global nenory: a

p Pointer : 0x00012210
In block : 0x00012210 thru 0x00012217 (8 bytes)
e a,declared at freeglob.c, 4

Stack trace where the error occurred:
» nmain() freeglob.c, 8

Menmory corrupted. Program may crash!! 4——

e Source line at which the problem was detected. —

e Description of the problem and the expression that isin
error.

- e Value of the pointer that is being deallocated.

L » Information about the block of memory addressed by this
pointer, including information about where this block was
declared.

L— « Stack trace showing the function call sequence leading to
the error.

e Informational message indicating that a serious error has ~ —!
occurred which may cause the program to crash.

Repailr
Some systems allow this operation, since they keep track of which blocks of

memory are actually dynamically allocated, but thisis not portable programming
practice and is not recommended.

225

m
=
=
o
-
0O
o
Q.
D
2

n
[}
©
o
O
-
o
=
—
L

In some cases, this error will result from asimple coding mistake at the indicated
source line which can be quickly corrected.

A more complex problem may arise when a program uses both statically and
dynamically allocated blocksin the sasmeway. A common exampleisalinked list
in which the head of thelist is static, while the other entries are alocated
dynamically. In this case, you must take care not to free the static list head when
removing entries.

If your application is unable to distinguish between global and dynamically
allocated memory blocks, you can suppress error messages by adding the option
i nsure++. suppress FREE G.OBAL

toyour . psrc file.

226

FREE LOCAL
Freeing local memory

This error is generated if the address of alocal variableispassedtof r ee.

Problem

The following code attempts to free alocal variable that was not dynamically
allocated.

m
Qo (] :
O o @)
o™, o) =
o 1. /% o O
o 2 * File: freelocl.c O 8_
O 3 */ O oD
O 4 min() O n
O 5 { O
O | 6: char b, *a; @)
o T @)
o 8 a = &b; O
jf(qjgﬁ o9 free(a); O
O i 10: return (0); O
o 11 } O
O O

0
0
0

)

227

Diagnosis (at runtime)

[freelocl.c:9] **FREE_LOCAL**
>> free(a);

A

p Freeing local nenory: a

p Pointer ;o Oxf 7ff f bOf
I n bl ock : Oxf7fffbOf thru Oxf7fffbOf (1 byte)
e b, decl ared at freelocl.c, 6

St ack trace where the error occurred:
p» main() freelocl.c, 9

Mermory corrupted. Program nmay crash!!

e Sourceline at which the problem was detected. |

)

8 — e Description of the problem and the expression that isin

o error.

O

5 - * Value of the pointer that is being deallocated.

= L e Information about the block of memory addressed by this

Ll pointer, including information about where this block was
declared.

L« Stack trace showing the function call sequence leading to

the error.

¢ Informational message indicating that a serious error has ~ ——
occurred which may cause the program to crash.

Repair
Some systems allow this operation since they keep track of which blocks of

memory are actually dynamically allocated, but thisis not portable programming
practice and is not recommended.

228

In most cases, this error will result from asimple coding mistake at the indicated
source line which can be quickly corrected.

If your application is unable to distinguish between local variables and
dynamically allocated memory blocks, you can suppress error messages by adding

the option

i nsur e++. suppress FREE LOCAL

toyour . psrc file.

m
=
=
o
-
0O
o
Q.
D
2

229

FREE NULL
Freeing NULL pointer

Thiserror isgenerated whenever an attempt is made to de-allocate memory using
the NULL pointer.

Problem

This code attemptsto free the pointer a, which has never been assigned. Sincethis
isaglobal variable, it isinitialized to zero by default. Thisresultsin the code
attempting to free aNULL pointer.

(7]
(]
©
(@]
@)

= o, e

L o 1 /% o

o 2: * File: freenull.c @)

O 3 */ O

O 4 char *a; @)

O | 5 O

O i 6: mai n() e)

o T { o)

;&—» o8 free(a); ®)

o9 return (0); e)

o 10: '} o)

O O

0
0
0

)

230

Diagnosis (at runtime)

[freenull.c:8] **FREE_NULL**
>> free(a);

» Freeing null pointer: a

Stack trace where the error occurred:
p» main() freenull.c, 8

Menory corrupted. Program may crash!! <———

e Sourceline at which the problem was detected. —

e Description of the problem and the expression that isin
error.

L « Stack trace showing the function call sequence leading to
the error.

e Informational message indicating that a serious error has —
occurred which may cause the program to crash.

Repair

Some systems allow this operation, but thisis not portable programming practice
and is not recommended.

A potential cause of this error isthe one shown in the example - a pointer that
never got explicitly initialized before being used. The given example can be
corrected by adding an allocation as follows

/*

* File: freenull.c (nodified)
*/

#i ncl ude <stdlib. h>

char *a;

231

m
=
=
o
-
0O
o
Q.
D
2

n
[}
©
o
O
-
o
=
—
L

mai n()

{
a = (char *)malloc(100);
free(a);
return (0);

}

A second fairly common possihility isthat a block of dynamically allocated
memory associ ated with the pointer has already been freed, and its pointer reset to
NULL. In this case, the error could mean that a second attempt is being made to
free the same memory block.

A final common problem is caused when one of the dynamic memory alocation
routines, mal | oc,cal | oc,orreal | oc, failsand returnsaNULL pointer. This
can happen either because your program passes bad arguments, or simply because
it asks for too much memory. A simple way of finding this problem with Insight
isto enable the RETURN_FAI LURE error code (see page 300) via your

. i nsi ght fileand runthe program again. It will then issue diagnostic messages
every time a system call fails, including the memory allocation routines.

If your application needs to free NULL pointers, you can suppress these error
messages by adding the option
i nsure++. suppress FREE NULL

toyour . psrc file.

232

FREE UNI NI T_PTR
Freeing uninitialized pointer

This error is generated whenever an attempt is made to de-allocate memory by
means of an uninitialized pointer.

Problem

This code attempts to free a pointer which has not been initialized.

m
Uo 7o =
o™, e @)
o 1 /¥ o -
o2 * File: freeuptr.c O Q
O 3: */) o
O 4: mai n() O)
o5 { o «n
O 6: char *a; O
XEH o7 free(a); o
O 8: return (0); @]
o9 } O
O O

0
0

0
0

)

233

n
[}
©
o
O
-
o
=
—
L

Diagnosis (at runtime)

[freeuptr.c:7] **FREE_UNI NI T_PTR** -
>> free(a);

— « Description of the problem and the expression that isin

P Freeing uninitialized pointer: a

Stack trace where the error occurred:
p nmin() freeuptr.c, 7

Menory corrupted. Program may crash!! -

error.

L« Stack trace showing the function call sequence leading to
the error.

« Informational message indicating that a serious error has ~ —
occurred which may cause the program to crash.

Repair

Some systems appear to allow this operation, since they will refuse to free
memory that was not dynamically allocated. Relying on this behavior is very
dangerous, however, since an uninitialized pointer may “accidentally” point to a
block of memory that was dynamically allocated, but should not be freed.

234

* Sourceline at which the problem was detected. —

FUNC BAD
Function pointer is not a function

This error is generated when an attempt is made to call a function through an
invalid function pointer.

Problem

One simple way to generate this error is through the use of the uni on datatype.
If the union contains a function pointer which isinvoked after initializing some
other union member, this error can occur.

m
=
O (&) o
o . O -
5 o S
o 1: /* o D
o 2 * File: funcbad.c o} n
o 3 */ @)
o 4 uni on { o
O | 5: int *iptr; O
O 6: int (*fptr)(); @]
o i }ou; @)
O | 8: @)
o 9 mai n() O
o 10: { O
o 11: int i; o)
o i 12: ®)
o 13: u.iptr = & ; 0]
Xig—» o 14: u.fptr(); 0]
O i 15: return (0); e}
o 16 } o}

A
0.
0
0
)

235

Diagnosis (at runtime)

[funcbad. c: 14] **FUNC_BAD** -
>> u. fptr();

P Function pointer is not a function: u.fptr

» Poi nter ;. Oxf7fff8cc
In block : Oxf7fff8cc thru Oxf7fff8cf
—— (4 bytes,1 el enent)

i, declared at funcbad.c, 11

Stack trace where the error occurred:
» nmain() funcbad.c, 14

Menmory corrupted. Program nmay crash!!

e Source line at which the problem was detected. S

e Description of the problem and the expression that isin
error.

e Thevalue of the pointer through which the call is being
attempted.

n
[}
©
o
O
-
o
=
—
L

» Description of the memory block to which this pointer
actually points, including its size and the source line of its
declaration.

» Stack trace showing the function call sequence leading to
the error.

» Informational message indicating that a serious error has
occurred which may cause the program to crash.

Repailr
The description of the memory block to which the pointer points should enable

you to identify the statement which was used to assign the function pointer
incorrectly.

236

FUNC_NULL
Function pointer is NULL

Thiserror is generated when afunction call ismade viaaNULL function pointer.

Problem

This code attempts to call afunction through a pointer that has never been
explicitly initialized. Since the pointer isaglobal variable, itisinitialized to zero
by default, resulting in the attempt to call a NULL pointer.

m
-
-
O o @)
o, o -
@]
o 1: /* © o
© 2: * File: funcnull.c © 8
o 3 y o}
O . - O
4: d (* ;
o & veid a0 °
© 6 min() ©
O 7 { O
ﬁ—» © g a(); o
© g return (0); ©
© 100 } ©
O O

0
0

0
0

)

237

Diagnosis (at runtime)

[funcnull.c:8] **FUNC_NULL**
>> a();

P Function pointer is null: a

Stack trace where the error occurred:
p main() funcnull.c, 8

Menory corrupted. Program may crash!! —————

« Source line at which the problem was detected. —

L * Description of the problem and the expression that isin
error.

—— « Stack trace showing the function call sequence leading to
the error.

« Informational message indicating that aserious error has ~ —
occurred which may cause the program to crash.

n
[}
©
o
O
-
o
=
—
L

Repair

The most common way to generate this problem is the one shown here, in which
the pointer never got explicitly initialized and is set to zero. This case normally
requires the addition of an assignment statement prior to the call as shown below

/*

* File: funcnull.c (nodified)
*/

void (*a)();

extern void nyfunc();

mai n()

238

a = nyfunc;

a();

return (0);

A second fairly common programming practiceis to terminate arrays of function
pointerswith NULL entries. Code that scansalist looking for aparticular function
may end up calling the NULL pointer if its search criterion fails. This normally
indicates that protective programming logic should be added to prevent against
this case.

m
=
=
o
-
0O
o
Q.
D
2

239

FUNC UNI NI T_PTR
Function pointer is uninitialized

This error is generated when acall is made through an uninitialized function
pointer.

Problem

This code attempts to call afunction through a pointer that has not been set.

(7]

(]

-c (S ()

o™, o

B o) o)

: e} 1: /* e}

L o 2 * File: funcuptr.c o
e} 3: */ e}
o) 4. mai n() o)
o 5 { o
o 6 void (*a)(); o
o I o
o @ return (0); o
o 100 '} o

0
0

240

Diagnosis (at runtime)

[funcuptr.c:8] **FUNC_UNI N T_PTR**
>> a(); -

p Function pointer is uninitialized: a

Stack trace where the error occurred:
» nmain() funcuptr.c, 8

Menmory corrupted. Program may crash!! ————

* Source line at which the problem was detected. —

— « Description of the problem and the expression that isin
error.

—— « Stack trace showing the function call sequence leading to
the error.

« Informational message indicating that a serious error has ——
occurred which may cause the program to crash.

m
=
=
o
-
0O
o
Q.
D
2

Repair

This problem normally occurs because some assignment statement has been
omitted from the code. The current example can be fixed as follows

extern void nyfunc();

mai n()

{
void (*a)();
a = nyfunc;
a();

}

241

n
[}
©
o
O
-
o
=
—
L

HEAP CORRUPT
The heap is corrupt

This error is generated when Insight detects that the heap has been corrupted.
These messages can only be generated if themal | oc_r epl ace optionison.

Typically, Insight will identify a serious problem before it corrupts the heap. If
the corruption occurs in code which was not compiled with Insight, however, it
may not be found for awhile. Hopefully, you will discover that the problem isin
afilefor which you have source code. If thisis the case, you can recompile that
file with Insight and continue debugging.

Problem

One simple way to generate this error isto corrupt memory in aroutine not
compiled with Insight.

Compile the program with your normal compiler and link it with Insight, e.g.

gcc -g -c¢ heapbad.c
i nsight -g -o heapbad heapbad. o

242

. I heapbad

O™, .O
O O
o 1 /* @)
o 2 * heapbad. c @)
o 3: */ O
o 4 #i ncl ude <mal | oc. h> O
O 5 O
O 6: mai n() { @)
o T int i; O
o 8 char *c = (char *) malloc(10); O
O 9 @)
O 10: for (i =10; i < 20; i++) (@)
O 11: c[i] ="a; (@)
Q?E—» o 12: free(c); (@)
o 13 '} @)
O O

O,,
0

m
-
S
o
=
O
o)
Q
D)
n

243

n
[}
©
o
O
-
o
=
—
L

Diagnosis (at runtime)

[mal | oc.c: 1151] **HEAP_CORRUPT** g

—— Poi nters between this and adj oi ning bl ocks are invalid.

—+m= Corrupt block : 0x00049928 t hru 0x00049ab8 (401 byt es)

The chain was | ast validated at the follow ng stack trace:
mal | oc() mal | oc.c, 532
_Insight_alloc_stack()
_Insi ght _assi gnb()
_Insight _direct_mall oc()
mal l oc() malloc.c, 670
— mai n() heapbad.c, 8

Bus error (core dunped) -=

e Source line at which the problem was detected.

e Description of the problem - this may or may not be
particularly useful.

- e A description of the block at which the error was detected.
This block may or may not be the cause of the error.

» Stack trace showing the last time the heap was checked and
found to be okay.

e Coredumpstypically follow these messages, as any usage
of the dynamic memory functions will be unable to cope.

Repair

Since the above message seemed to occur inthefileheapbad. ¢, which was not

244

processed with Insight, the simplest thing to do is process this file with Insight.
i nsight -g -o heapbad heapbad. c

In this case, the bug is quickly identified asaVWRI TE_BAD _| NDEX, and can be
repaired accordingly.

m
=
=
o
-
0O
o
Q.
D
2

245

n
[}
©
o
O
-
o
=
—
L

| NSI GHT _ERROR
Internal errors (various)

This error code is reserved for fatal errors that Insight is unable to deal with
adequately such as running out of memory, or failing to open arequired file.

Unrecognized optionsin . psr ¢ files can also generate this error.

246

| NSI GHT_WARNI NG
Errors fromi i c_war ni ng calls

Thiserror codeisgenerated when Insight encountersacall tothei i ¢c_war ni ng
interface function.

Example

The following code contains a call to afunction called ar chai ¢_f uncti on
whose use is to be discouraged.

Uo“«% Uo m
o™, Ee) =
. ' o
©) @) -
O 1: /* o} @)
o2 * File: warn.c o o
o 3 */ 0 =
o 4 #i ncl ude <stdi o. h> O 7]
O | 5: o
O | 6: mai n() O
o7 { o
ﬁg—» O | 8: archai c_function(); O
O 9 exi t(0); o
o 10: } @]
O O

0
0

0
0

)

247

Inorder to usethei i ¢_war ni ng capability, we can make an interface to the
archai c_functi on asfollows.

o™, O
o " O
/ *
* File: warn_i.c
*/
voi d archai c_function(voi d)
{

iic_warning(
"This function is obsolete");
archai c_function();

}

(ONONONONONONONONONONE)
©O~NOOUNWNPR

00000000000

0
0.

0
0

0 ™ N
(D)
©
S
= Diagnosis (during compilation)
ﬂ] [warn.c: 8] **I NSI GHT_WARNI NG* * -
» Use of archaic_function is deprecated
>> archai c_function();

e Source line at which the problem was detected.

e Description of the problem and the expression that isin
error.

248

Repailr
This error category is suppressed by default, so you must add the option

i nsur e++. unsuppress | NSI GHT_WARNI NG

toyour . psr c file before compiling code which usesiit.

Thereare many usesfori i ¢_war ni ng andthel NSI GHT_WARNI NGerror, so
no specific suggestions for error correction are appropriate. Hopefully, the
messages displayed by the system will provide sufficient assistance.

m
=
=
o
-
0O
o
Q.
D
2

249

LEAK_ASSI GN

Memory leaked due to pointer
reassignment

This error is generated whenever a pointer assignment occurs which will prevent
ablock of dynamically allocated memory from ever being freed. Normally this
happens because the pointer being changed is the only one that still points to the
dynamically allocated block.

Problem

0
% This code allocates ablock of memory, but then reassigns the pointer to the block
o to a static memory block. As aresult, the dynamically allocated block can no
©) longer be freed.
S
— O ™, =, O

o) o

o L /* _ o

o 2 * File: |eakasgn.c o

o 3 f/ . o

o & #i ncl ude <stdlib. h> o

o ¥ , o

o & mai n() o

o o

o g: char *b, a[10]; o

g 10: b = (char *)malloc(10); 8

;@S—» o 1L b = a; o
o 12: return (0); o
o 13} o

0

250

Diagnosis (at runtime)

[l eakasgn. c: 11] **LEAK_ASSI G* *
>> b = a;

-

> Menory | eaked due to pointer reassignment: <return>

p» Lost bl ock: 0x000173e8 thru 0x000173f1 (10 bytes)

bl ock allocated at:
mal | oc() (interface)
mai n() | eakasgn.c, 10

Stack trace where the error occurred:
» main() |eakasgn.c, 11

e Source line at which the problem was detected.

e Description of the problem and the expression that isin
error.

e Description of the block of memory that isabout to belost,
including its size and the line number at which it was
allocated.

L« Stack trace showing the function call sequence leading to
the error.

Repair

In many cases, this problem is caused by simply forgetting to free a previously
allocated block of memory when a pointer isreassigned. For example, theleak in
the exampl e code can be corrected as follows

10: b = (char *)mall oc(10);
11: free(b);
12: b = a;

251

m
=
=
o
-
0O
o
Q.
D
2

Some applications may be unable to free memory blocks and may not need to
worry about their permanent loss. To suppress these error messages, add the
option

i nsure++. suppress LEAK ASSI GN

toyour . psr c file.

n
[}
©
o
O
-
o
=
—
L

252

LEAK FREE
Memory leaked freeing block

This problem can occur when a block of memory contains a pointer to another
dynamically allocated block, asindicated in the following figure.

=) Parent block

If the main memory block isfreed its memory becomesinvalid, which means that
the included pointer can no longer be used to free the second block. This causesa
permanent memory leak.

m
=
=
o
-
0O
o
Q.
D
2

Parent block

253

n
[}
©
o
O
-
o
=
—
L

Problem

This code defines PB to be adata structure that contains a pointer to another block
of memory.

© o
o™, o
o™, Ke)
O i1 /* O
O 2 * File: leakfree.c o
o 3 */ o
O | 4: #i ncl ude <stdlib. h> O
O | 5: O
O i 6: typedef struct ptrblock { o
o 7 char *ptr; O
O 8: } PB; O
o 9 @]
O 10: nmin() @]
O i 11: { O
O i12: PB *p; @]
o 13: O
o 14 p = (PB *)mal |l oc(sizeof (*p)); O
O | 15: p->ptr = mall oc(10); o
O i16: o}
ag\f—» O i 17: free(p); @]
O i18: return (0); @)
o119 } o}
O O

0
0

0
0

)

Wefirst create a single PB and then allocate a block of memory for it to point to.
Thecall tof r ee on the PB then causes a permanent memory leak, sinceit frees
the memory containing the only pointer to the second allocated block. This latter
block can no longer be freed.

254

Diagnosis (at runtime)

>>

-
Lol

[l eakfree.c:17] **LEAK FREE**

-
L gl

-

free(p);
Menory | eaked freeing block: <return>

Lost bl ock: 0x00013888 thru 0x00013891 (10 bytes)
bl ock allocated at:
mal l oc() (interface)
mai n() | eakfree.c, 15

Stack trace where the error occurred:
» min() leakfree.c, 17

» Sourceline at which the problem was detected.

» Description of the problem and the value that is about to be
lost.

» Description of the block of memory that is about to belost,
including its size and the line number at which it was
allocated.

» Stack trace showing the function call sequence leading to
theerror.

Repair

In many cases, this problem is caused by forgetting to free the enclosed blocks
when freeing their container. Thiscan be corrected by adding a suitable call to free
the memory before freeing the parent block.

255

m
-
S
o
=
O
o)
Q
D)
n

n
[}
©
o
O
-
o
=
—
L

Caution must be used when doing this, however, to ensure that the memory blocks
are freed in the correct order. Changing the example in the following manner, for
example, would still generate the same error:

free(p);
free(p->ptr);

because the blocks are freed in the wrong order. The contained blocks must be
freed before their parents, because the memory becomes invalid as soon asit is
freed. Thus, the second call to f r ee in the above code fragment might fail,
becausethevalue p- >pt r isnolonger valid. Itisquitelegal, for example, for the
first call tof r ee to have set to zero or otherwise destroyed the contents of its
memory bl ock.

Some applications may be unable to free memory blocks and may not need to
worry about their permanent loss. To suppress these error messages in this case
add the option

i nsure++. suppress LEAK FREE

toyour . psr c file.

1. Many systemsallow the out of order behavior, athoughit is becoming less
portable as more and more systems move to dynamically re-allocated
(moveable) memory blocks.

256

LEAK RETURN

Memory leaked by ignoring
returned value

Thiserror isgenerated whenever afunction returns apointer to ablock of memory
which is then ignored by the calling routine. In this case, the allocated memory
block is permanently lost and can never be freed.

Problem

This code calls the function gi e, which returns amemory block that is D:I
subsequently ignored by the mai n routine. 8
=
ot Lo O
o™, o) o
o
O 1. = o @

o 2 * File: |eakret.c o

o s *) o

O 4: #include <stdlib.h> o

O 5 @]

O 1 6: char *gi me() O

o 7 { O

O 8 return mal | oc(10); O

O i 10: o

O 11: main() o

O 12: ¢{ o)

XEQH O | 13: gi mre() ; o

O 14 return (0); o

O 15 } o

e} e}

0
0

257

n
[}
©
o
O
-
o
=
—
L

Diagnosis (at runtime)

[l eakret.c:8] **LEAK RETURN**

>> gi me() ; -

> Menory | eaked ignoring return val ue: <return>

p Lost bl ock: 0x000173e8 thru 0x000173f1 (10 bytes)
bl ock allocated at:
mal l oc() (interface)
gime() |eakret.c, 8
mai n() leakret.c, 13

Stack trace where the error occurred:
mai n() leakret.c, 13

e Source line at which the problem was detected.

e Description of the problem and the block that is to be lost.

L« Description of the block of memory that isabout to belost,

including its size and the line number at which it was
allocated.

Repair

This problem usually results from an oversight on the part of the programmer, or
amisunderstanding of the nature of the pointer returned by aroutine. In particul ar,
it issomeTimes New Roman unclear whether the value returned pointsto astatic
block of memory, which will not need to be freed, or adynamically allocated one,
which should be.

258

Some applications may be unable to free memory blocks and may not need to
worry about their permanent loss. To suppress these error messages in this case
add the option

i nsure++. suppress LEAK RETURN

toyour . psr c file.

m
=
=
o
-
0O
o
Q.
D
2

259

LEAK SCOPE
Memory leaked leaving scope

Thiserror is generated whenever afunction allocates memory for its own use and
then returns without freeing it or saving a pointer to the block in an external
variable. The allocated block can never be freed.

Problem
This code callsthefunction gi nmre, which allocates amemory block that is never
freed.
0
g © (@)
O (@) ©)
- 1: /*
o o 2 * File: |eakscop.c ©
- © 3: */ ©
L O 4 #include <stdlib.h> ©
O . o)
O 6 void gi me() o
o 5 { o)
O g char *p; O
O o p = malloc(10); ©
;&4» © 10: return; O
© 11) ©
O 12 o
O 13 mi n() o
O 14 { ©
O 15: gi ne() ; o
O 16: return (0); o
© 17} ©
(@) ©)

0
0

260

Diagnosis (at runtime)

[l eakscop. c: 10] **LEAK SCOPE**
>> return;

A

> Menory | eaked | eavi ng scope: <return>

p» Lost bl ock: 0x0003870 thru 0x00013879 (10 bytes)

bl ock allocated at:
mal l oc() (interface)
gime() |eakscop.c, 9
mai n() |eakscop.c, 15

Stack trace where the error occurred:
» gime() |eakscop.c, 10
mai n() | eakscop.c, 15

e Source line at which the problem was detected.
e Description of the problem and the block that is to be lost.

— » Description of the block of memory that is about to be lost,
including its size and the line number at which it was
allocated.

» Stack trace showing the function call sequence leading to
theerror.

Repair

This problem usually results from an oversight on the part of the programmer and
is cured by simply freeing a block before returning from aroutine. In the current
example, acal tof r ee(p) beforeline 10 would cure the problem.

A particularly easy way to generate this error is to return from the middle of a
routine, possibly due to an error condition arising, without freeing previously
allocated data. Thisbug is easy to introduce when modifying existing code.

261

m
=
=
o
-
0O
o
Q.
D
2

Some applications may be unable to free memory blocks and may not need to
worry about their permanent loss. To suppress these error messages in this case
add the option

i nsure++, suppress LEAK SCOPE

toyour . psr c file.

n
[}
©
o
O
-
o
=
—
L

262

PARM BAD RANGE
Array parameter exceeded range

Thiserror is generated whenever afunction parameter is declared asan array, but
has more elements than the actual argument which was passed.

Problem

The following code fragment shows an array declared with one sizein the mai n
routine and then used with another in afunction.

m
O () :
o o
o™, O 2
1: [*
© 2: * File: parnrnge.c © Q
o o)
o 3: */ o o
5 4: int foo(a) o 8
5: int a[10];
O . @)
Z e P 5
7: return a[5];
O 8 } ©)
4r °
o 10: int b[5]; o
11:
© 12: main() ©
© 13 { ~
o 14: int a; ©
O 1s: a = foo(b); ©
O 16: return (0); ©
© 17:) ©

0
0

263

Diagnosis (at runtime)

[parnrnge. c: 6] **PARM BAD RANGE** -

>> {

p Array paraneter exceeded range: a

> bbbbbb
| 20 | 20 |
PPPPPPPPPPP

— Paraneter (p) Oxf7fffb04 thru Oxf7fffb2b (40 bytes)
Actual block (b) Oxf7fffb04 thru Oxf7fffbl7
(20 bytes, 5 elenents)
—— > b, declared at parnrnge.c, 10

Stack trace where the error occurred:
foo() parnrnge.c, 6 -
mai n() parnrnge.c, 15

e Sourceline at which the problem was detected.

n
[}
©
o
O
-
o
=
—
L

— « Description of the problem and the name of the parameter
that isin error.

L e Schematic showingtherelativelayout of the memory block
which was actually passed as the argument (b) and
expected parameter (p). (See “ Overflow diagrams’ on

page 155.)

- « Description of the memory range occupied by the
parameter, including its length.

— e Description of the actual block of datacorresponding tothe
argument, including its address range and size. Also
includes the name of the real variable which matches the
argument and the line number at which it was declared.

e Stack trace showing the function call sequenceleadingto ——
the error.

264

Repair

This error isnormally straightforward to correct based on the information
presented in the diagnostic output.

The simplest solution is to change the definition of the array in the called routine
to indicate an array of unknown size, i.e., replace line 5 with

parntrnge.c, 5 int a[];
Thisdeclaration will match any array argument and isthe recommended approach
whenever the called routine will accept arrays of variable size.
An alternative is to change the declaration of the array in the calling routine to
match that expected. In this case, line 10 could be changed to

parnrnge.c, 10 int b[10];

which now matches the argument declaration.

265

m
=
=
o
-
0O
o
Q.
D
2

PARM_DANGLI NG

Array parameter is dangling
pointer

This error is generated whenever a parameter declared as an array is actually
passed a pointer to a block of memory that has been freed.

Problem
The following code frees its memory block before passing it to f 0o.
0 . .
@]
@) © 1 o
— O 2 * File: parndngl.c O
o O 3. y o)
' O 4: #include <stdlib.h> O
O . ©)
O 6: char foo(a) o
© .7 char a[10]; o
&—» O 8 { o
O o return a[0]; o
O 10: } o
O 11 o
O 12: main() o
O 13: { o
O 14: char *a; o
O i15: a = mal | oc(10); o
O 16: free(a); o
O 17 foo(a); o
O 18: return (0); o
O 19: 1} o
O O

0
0

266

Diagnosis (at runtime)

[par mdngl . c: 8] ** PARM DANGLI NG* * -
>> {

p» Array paraneter is dangling pointer: a

Poi nter : 0x0001adbO

p | n block : 0x0001adb0 thru 0x0001ladb9 (10 bytes)
bl ock all ocated at:
mal | oc() (interface)
mai n() parndngl.c, 15

stack trace where nmenory was freed:
p Min() parmdngl.c, 16

Stack trace where the error occurred:
foo() parndngl.c, 8
mai n() freedngl.c, 17

>

e Source line at which the problem was detected. —

e Description of the problem and the parameter that isin
error.

m
=
=
o
-
0O
o
Q.
D
2

— e Value of the pointer that was passed and has been
deallocated.

L e Information about the block of memory addressed by this
pointer, including information about where this block was
allocated.

L| « Indication of theline at which this block was freed.

L—« Stack trace showing the function call sequence leading to
the error.

Repair

This error isnormally caused by freeing a piece of memory too soon.

267

A good strategy isto examinethe line of codeindicated by the diagnostic message
which shows where the memory block was freed and check that it should indeed
have been de-allocated.

A second check isto verify that the correct parameter was passed to the
subroutine.

A third strategy which is someTimes New Roman useful isto NULL pointers that
have been freed and then check in the called subroutinefor this case. Code similar
to the following is often useful

#i ncl ude <stdlib. h>

char foo(a)

char *a;
{
if(a) return a[0];
return '!'
N }
o
3 mai n()
O {
- char *a;
o a = (char *)malloc(10);
— free(a);
L a = NULL;
foo(a);
return (0);
}

The combination of resetting the pointer to NULL after freeing it and the check in
the called subroutine prevents misuse of dangling pointers.

268

PARM NULL
Array parameter is NULL

This error is generated whenever a parameter declared as an array is actually
passed aNULL pointer.

Problem

The following code fragment shows a function which is declared as having an
array parameter, but whichisinvoked with aNULL pointer. Thevalue of ar r ay
isSNULL becauseitisaglobal variable, initialized to zero by default.

/*
* File: parmull.c
*/
int foo(a)
int a[];

m
=
=
o
-
0O
o
Q.
D
2

-

{
}

return 12;

O~NO OIS WN P

OO0OO0OO0OO0OO0ODODOOOOOOLOLOOO
OO0OO0OO0OO0O0OO0OOOLOOOOOLOOO

10: int *array;

12: main()

13: {

14: foo(array);
15: return (0);

4
0.
0
0
)

269

Diagnosis (at runtime)

[parmul | : 6] **PARM NULL** -
>> {
—® Array paraneter is null: a
Stack trace where the error occurred: -¢

foo() parmmull.c, 6
mai n() parmull.c, 14

« Description of the problem and the name of the parameter
that isin error.

e Stack trace showing the function call sequenceleadingto ——
the error.

n
[}
©
o
O
-
o
=
—
L

Repair

A common cause of this error isthe one given in this example, aglobal pointer
which isinitialized to zero by the compiler and then never reassigned. The
correction for this case is to include code to initialize the pointer, possibly by
allocating dynamic memory or by assigning it to some other array object.

For example, we could change the mai n routine of the example to

mai n()

{
int local[10];

array = local;
foo(array);

270

e Source line at which the problem was detected. —

This problem can also occur when a pointer is set to NULL by the code (perhaps
to indicate afreed block of memory) and then passed to a routine that expects an
array as an argument.

In this case, Insight distinguishes between functions whose arguments are
declared as arrays

int foo(a)
int a[];

{

and those with pointer arguments

int foo(a)
int *a;

{

The latter type will not generate an error if passed a NULL argument, while the
former will.

A final common problem is caused when one of the dynamic memory alocation
routines, mal | oc,cal | oc,orreal | oc, failsand returnsaNULL pointer. This
can happen either because your program passes bad arguments or simply because
it asks for too much memory. A simple way of finding this problem with Insight
isto enable the RETURN_FAI LURE error code (see page 300) via your

. i nsi ght fileand runthe program again. It will then issue diagnostic messages
every time a system call fails, including the memory all ocation routines.

m
-
S
o
=
O
o)
Q
D)
n

If your application cannot avoid passing a NULL pointer to a routine, you should
either change the declaration of its argument to the second style or suppressthese
error messages by adding the option

i nsure++. suppress PARM NULL

toyour . psrc file.

271

PARM UNI NI T_PTR

Array parameter is uninitialized
pointer

Thiserror isgenerated whenever an uninitialized pointer is passed as an argument
to a function which expects an array parameter.

Problem
This code passes the uninitialized pointer a to routine f 00.
Q o™, -, O
O
@) o o)
- (G2 I /* O
8 o2 * File: parmuptr.c o)
— O 3 */ @)
L O | 4: char foo(a) @)
O | 5: char a[10]; (@)
O | 6: { (@)
O 7: return a[0]; (@)
O 8 } (@)
O 9 @)
O {10: main() (@)
o 11: { 0]
o 12: char *a; O
o 13: @)
agg—» o 14: foo(a); O
o 15: return (0); o)
o 16: } o)

s
0.
0
0
)

272

Diagnosis (at runtime)

[parmuptr.c: 6] **PARM UNI NI T_PTR**
> -

B Array paraneter is uninitialized pointer: a

Stack trace where the error occurred:
p» foo() parmuptr.c, 6
mai n() parnuptr.c, 14

e Source line at which the problem was detected.
e Description of the problem and the argument that isin
error.

e Stack trace showing the function call sequence leading to
the error

Repair

This problemisusually caused by omitting an assignment or all ocation statement
that would initialize a pointer. The code given, for example, could be corrected by
including an assignment as shown below.

/*
* File: parmuptr.c (Modified)
*/
mai n()
{
char *a, b[10];
a = b;
foo(a);
}

273

m
=
=
o
-
0O
o
Q.
D
2

n
[}
©
o
O
-
o
=
—
L

READ BAD | NDEX
Reading array out of range

Thiserror isgenerated whenever anillegal value will be used to index an array. It
isaparticularly common error that can be very difficult to detect, especialy if the
out-of-range elements happen to have zero values.

If this error can be detected during compilation, an error will be issued instead of
the normal runtime error.

Problem

This code attempts to access an illegal array element due to an incorrect loop
range.

o", o
o™, e
o 1L /* o)
o2 * File: readindx.c e)
o 3 */ e}
o 4 int a[10]; o
o 5 int junk; e
o 6: mai n() e
o 7 A o
o 8 int i, tot=0; 0
o o
o 1lo: for(i=1; i<=10; i++) 0
'r;ag—» o 1L tot += a[i]; o
o 12 return (0); o

0
0

274

Diagnosis (at runtime)

[readi ndx. c:11] **READ BAD_ | NDEX* * g
>> tot += a[i];

» Reading array out of range: a[i]

p» | ndex used: 10

g Valid range: 0 thru 9 (inclusive)

Stack trace where the error occurred:
mai n() readindx.c, 11

« Source line at which the problem was detected. —

« Description of the problem and the expression that isin
error.

L e lllegal index value used.

- e Validindex range for this array.

e Stack trace showing the function call sequence leadingto —
the error.

m
=
=
o
-
0O
o
Q.
D
2

Repair

One common source of thiserror isusing “ stretchy” arrayswithout telling Insight
about them. A “stretchy” array is an array whose sizeis only determined at
runtime. For an example as well as an explanation of how to use Insight with
“stretchy” arrays, see page 41.

275

n
[}
©
o
O
-
o
=
—
L

Other typical sources of this error include loops with incorrect initial or terminal
conditions, as in this example, for which the corrected codeiis:

mai n()

{
int i, tot=0, a[10];

for(i=0; i<sizeof(a)/sizeof(a[0]); i++)

tot += a[i];
return (0);

276

READ DANGLI NG
Reading from a dangling pointer

This problem occurs when an attempt is made to dereference a pointer that points
to ablock of memory that has been freed.

Problem

This code attempts to use a piece of dynamically allocated memory after it has
already been freed.

m

-

-

° 1 /* © 8

o 2 * File: readdngl.c ©]

O 3: * | O n
© 4: #include <stdlib.h> ©
o . o
O 6 mai n() O
O 7: { O
O s: char b; o
O o char *a = (char *)nmall oc(10); o
@] . O

10:

O 11 free(a); o
;&—» O 12 b = *a; o
O 13 return (0); o
O 14 } O
@] O

0
0

277

n
[}
©
o
O
-
o
=
—
L

Diagnosis (at runtime)

[readdngl . c:12] **READ DANGLI NG *
>> b = *a; -

» Reading froma dangling pointer: a

p» Pointer: 0x000173e8

L e Value of the dangling pointer variable.

—p | n block: 0x000173e8 thru 0x000173f1 (10 bytes)
bl ock al | ocated at:
mal | oc() (interface)
mai n() readdngl.c, 9

—— » stack trace where nmenory was freed:
mai n() readdngl.c, 11

Stack trace where the error occurred:
mai n() readdngl.c, 12

e Sourceline at which the problem was detected.

« Description of the problem and the expression that isin
error.

L « Description of the block to which this pointer used to point,
including its size, name and the line at which it was
allocated.

L« Stack trace showing where this block was freed.

« Stack trace showing the function call sequence leading to
the error.

Repair
Check that the de-allocation that occurs at the indicated location should, indeed,

have taken place. Also check that the pointer you are using should really be
pointing to a block allocated at the indicated place.

278

READ NULL
Reading NULL pointer

This error is generated whenever an attempt is made to dereference a NULL
pointer.

Problem

This code attempts to use a pointer which has not been explicitly initialized. Since
thevariable a isglobal, it isinitialized to zero by default, which resultsin
dereferencing a NULL pointer in line 10.

m

-

-

o

-

O™, O (@)

o o

O . . o

o 1: / O wn
o 2 * File: readnull.c @)
o 3 */ (@)
o 4. int *a; (@)
O 5: @)
O 6 mai n() (@)
o7 { O
O 8: int b, c; @)
O 9 0)
:ﬁ@gg. o 10: b = *a 0
o 11 } o}
@] @]

O,,
0

)

0
5

279

n
[}
©
o
O
-
o
=
—
L

Diagnosis (at runtime)

[readnul | . c:10] **READ NULL**

>> b = *a; -

L * Description of the problem and the expression that isin

P Reading null pointer: a

Stack trace where the error occurred:
» nmain() readnull.c, 10

Menory corrupted. Program may crash!!

e Source line a which the problem was detected. —

error.

L « Stack trace showing the function call sequence leading to
the error.

¢ Informational message indicating that a serious error has ~ ——
occurred which may cause the program to crash.

Repair

A common cause of thisproblem isthe one shown inthe example- use of apointer
that has not been assigned and which isinitialized to zero. Thisis usually due to
the omission of an assignment or allocation statement which would give the
pointer areasonable value.

The example code might, for example, be corrected as follows

/*

* File: readnull.c (nodified)
*/

int *a;

RN kE

280

5.

6: mai n()

7: {

8: int b, c;
9:

10: a = &c;
11: b = *3a;
12: }

A second common source of this error is code which dynamically allocates
memory, but then zeroes pointers as blocks are freed. In this case, the error would
indicate reuse of afreed block.

A final common problem is caused when one of the dynamic memory alocation
routines, mal | oc,cal | oc,orreal | oc, failsand returnsaNULL pointer. This
can happen either because your program passes bad arguments or simply because
it asks for too much memory. A simple way of finding this problem with Insight
isto enable the RETURN_FAI LURE error code (see page 300) viayour . psr ¢
file and run the program again. It will then issue diagnostic messages every time
asystem call fails, including the memory allocation routines.

m
=
=
o
-
0O
o
Q.
D
2

281

READ OVERFLOW
Reading overflows memory

Thiserror isgenerated whenever aread operation woul d access a piece of memory
beyond the valid range for a block.

Problem #1

This code attempts to copy a string into the array b. Note that although the array
islarge enough, the ment py operation will fail, since it attemptsto read past the
end of the string a.

(7]
(]
5
O uo 7o
. o™, o
9 o 1: /* @]
I.Ij o 2 * File: readovrl.c o
o 3 */ @)
O 4 mai n() O
O 5 { o)
O 6: char *a = "TEST"; @)
o 7 char b[20]; le)
o 8 (@)
3&4» o9 nmencpy(b, a, sizeof(b)); e)
o | 10: return (0); 0]
oill: '} o)
@] (@)

0
0

0
0

)

282

Diagnosis (at runtime)

[readovr1.c:9] **READ OVERFLOW *
>> nmencpy(b, a, sizeof(b));

-

p» Readi ng overfl ows nenory: <argunent 2>

bbbbb
> | 5] 15 |

rrrrrrrrrrrrrrrr

Readi ng (r): 0x00012218 thru 0x0001222b (20 bytes)
From bl ock(b): 0x00012218 thru 0x0001221c (5 bytes)
a, declared at readovrl.c, 6

Stack trace where the error occurred: g
mencpy() (interface)
mai n() readovrl.c, 9

-

e Source line at which the problem was detected. S

« Description of the problem and the expression that isin
error.

e Schematic showing the relative layout of the actual
memory block (b) and region being read (r). (See
“Overflow diagrams’ on page 155.)

L * Range of memory being read and description of the block
from which the read istaking place, including its size and
the location of its declaration.

e Stack trace showing the function call sequence leadingto —
the error.

Problem #2

A second fairly common case ariseswhen strings are not terminated properly. The
code shown below copies astring using the st r ncpy routine, which leavesit

283

m
=
=
o
-
0O
o
Q.
D
2

non-terminated since the buffer is too short. When we attempt to print this
message, an error results.

n
[}
©
o
O
-
o
=
—
L

(@] (@]
o o
O™ o
O i1l [* O
O i2: * File: readovr2.c O
o 3 */ O
O 4 mai n() O
O 5 { o)
O i 6: char junk; e}
o iT: char b[8]; e)
O i8: strncpy(b, "This is a test", ®)
o9 si zeof (b)); e)
&—» o i10: printf("%\n", b); 0]
o i11: return (0); 0]
o 12: '} o
o

284

Diagnosis (at runtime)

readovr 2. c:
d 2 10] **READ_OVERFLOW *
>> printf("%\n", b);

p String is not null termnated within range: b

Readi ng : Oxf7fffb50

—» From bl ock: Oxf7fffb50 thru Oxf7fffb57 (8 bytes)
b, declared at readovr2.c, 7

Stack trace where the error occurred: 4—-—
mai n() readovr2.c, 10

e Sourceline at which the problem was detected. —

« Description of the problem and the expression that isin
error.

L e Pointer being used as a string.

¢ Block fromwhichthereadistaking place, includingitssize
and the location of its declaration.

e Stack trace showing the function call sequence leadingto ~ —
the error.

A dight variation on this misuse of strings occurs when the pointer, passed as a
string, lies completely outside the range of its buffer. In this case, the diagnostics
will appear as above except that the description line will contain the message

Al l eged string does not begin within | egal range

285

m
=
=
o
-
0O
o
Q.
D
2

Problem #3

This code attemptsto read past the end of the allocated memory block by reading
the second element of the union.

(G L Q
o, O
O @]
o L /* o
o 2 * File: readovr3.c 0
o 3 */ 0
o 4 #i ncl ude <stdlib. h> 0o
o = o
o | 6 struct small { 1o
o T int x; 0o
e} 8: }; e}
o 9 _ o
n o 100 struct big { 0o
Q o 11 doubl e vy; o
© . .
o o 12: }; o
O o 13 . 0
o o 141 ‘union two 0
o o 15 { o
- o 16: struct small a; o
Ll o 17: struct big b; o
o 18 1 o
o 19 o
o 20: int mai n() o
o 21: { o
o 22: struct small *varl; o
23: union two *ptr;
O ! O
o 24: doubl e d; o
o 25: o
o 26: varl = (struct small *) o
o mal | oc (sizeof (struct small)); o
o 27: ptr = (union two *) varl; o
;;&—» o 28 d = ptr->b.y: o
29: return (0);
o 30) o}
©)) ©)

0
P

286

Diagnosis (at runtime)

[readovr3.c: 28] **READ OVERFLOW *
>> d = ptr->b.y; -

» Structure reference out of range: ptr

bbbbb

| 41 4]
reeeereer

y

Readi ng (r): 0x0001fceO thru 0x0001fce7 (8 bytes)
From bl ock(b): 0x0001fceO thru 0x0001fce3 (4 bytes)
bl ock allocated at:
mal | oc() (interface)
mai n() readovr3.c, 26

Stack trace where the error occurred
mai n() readovr3.c, 28

» Source line at which the problem was detected. —

» Description of the problem and the expression that isin
error.

m
-
S
o
=
O
o)
Q
D)
n

L » Schematic showing the relative layout of the actual
memory block (b) and region being read (r). (See
“Overflow diagrams’ on page 155.)

» Range of memory being read and description of the block
from which the read is taking place, including its size and
the location of its declaration.

» Stack trace showing the function call sequence leading to —
the error.

287

Problem #4
This code shows a C++ exampl e that can occur when using inheritanceand casting

pointers incorrectly.

O O

. e
o™, . O
O ©)
@] 1: IE: @]
O 2 * File: readover.C o
@] 3: */ O
O 4. #include <stdlib.h> O
O 5 O
O . 6: class small o
O 7 { @)
O .8 public: o
Olo: int x; o
d o1 b 3
he) 11:
@) O 12: «class big : public small o
@) O 13 { o
5 O 14 public: o
= O | 15: doubl e v; o
L o 16: }; o
O i 17: o
O 18: int min() o
O i19: { o
O | 20: smal | *var1; o
O | 21: big *var2; @]
O 22: doubl e d; O
O 23 O
O 24: varl = new smal | ; O
O | 25: var2 = (big *) vari; o
a&g—» O | 26: d = var2->y; @]
O | 27: return (0); o
o 28 } @]
O ©)
@] @]
O O

O..
0

288

Diagnosis (at runtime)

[readover. C: 26] **READ OVERFLOW *
>> d = var2->y; -

p» Structure reference out of range: var2

bbbbb

| 41 41 8 |
reereerr

y

Readi ng (r): Ox0001fceO thru 0x0001fce7 (8 bytes)
From bl ock(b): 0x0001fceO thru 0x0001fce3 (4 bytes)
varl, allocated at:
operator new)
mai n() readover.C, 24

Stack trace where the error occurred:
mai n() readover.C, 26

» Source line at which the problem was detected. —

» Description of the problem and the expression that isin
error.

m
=
=
o
-
0O
o
Q.
D
2

L » Schematic showing the relative layout of the actual
memory block (b) and region being read (r). (See
“Overflow diagrams’ on page 155.)

» Range of memory being read and description of the block
from which the read is taking place, including its size and
the location of its declaration.

» Stack trace showing the function call sequence leading to —
the error.

289

Repair

These errors often occur when reading past the end of a string or using the
si zeof operator incorrectly. In most cases, the indicated source line contains a

simple error.

The code for problem #1 could, for example, be corrected by changing line 9 to

mencpy(b, a, strlen(a)+l);

n
[}
©
o
O
-
o
=
—
L

290

READ UNI NI T_NMEM
Reading uninitialized memory

The use of uninitialized memory isadifficult problem to isolate, since the effects
of the problem may not show up till much later. This problem is complicated by
the fact that quite alot of references to uninitialized memory are harmless.

To deal with these issues, Insight distinguishes two sub-categories of the
READ UNI NI T_MEMerror class

copy This error code is generated whenever an application assigns a

variable using an uninitialized value. In itself, this may not be a
problem, since the value may be reassigned to a valid value
before use or may never be used. This error category is
suppressed by default.

read This code is generated whenever an uninitialized value is used
in an expression or some other context where it must be
incorrect. This error category is enabled by default, but is
detected only if the checki ng_uninit option is on.
(see page 127)

m
=
=
o
-
0O
o
Q.
D
2

The difference between these two categoriesisillustrated in the following

examples.

.4

Versions of Insight earlier than 3.0 had full
uninitialized memory checking disabled by default,
due to significant performance penalties at
compile time. This problem has been solved, and
full checking is now on by default. It may still be
disabled by setting the . psr ¢ option

“checki ng_uni nit of f” (see page 127). If full
uninitialized memory checking is disabled,
uninitialized pointers will still be detected, but will
be reported in the READ_UNI NI T_PTR category.
(see page 296)

291

Problem #1

This code attempts to use a structure element which has never been initialized.

© (@)
o™, o
o™, Xe
o 1: /* O
o 2 * File: readunil.c o
O 3 */ ©)
O 4: #i ncl ude <stdi o. h> O
O 5 O
O 6 mai n() O
o7 { O
O 8: struct rectangle { O
O o9 int width; O
O | 10: i nt height; O
0 O i 11: }; O
(] O i12: O
= 0O |13 struct rectangl e box; o)
(@]]
&) O | 14: int area; ©)
- O | 15: @]
(@) O | 16: box.wi dth = 5; @)
b aq/g—» o 17: area = box.w dt h*box. hei ght; O
Ll O | 18: printf("area = %\n", area); O
O i 19: return (0); @]
O O
O O

0
0

292

Diagnosis (at runtime)

[readuni 1.c:17] **READ UNINI T_MEMread)**
>> area = box.wi dth * box. height;

» Reading uninitialized nmenory: box. hei ght

Stack trace where the error occurred:
» nmain() readunil.c, 17

* Source line at which the problem was detected.

* Description of the problem and the expression that isin
error.

« Stack trace showing the function call sequence leading to
the error.

293

m
=
=
o
-
0O
o
Q.
D
2

Problem #2

This code assignsthe value b using memory returned by thermal | oc systemcall,
which is uninitialized.

o™, -, O
o™, -, O
O 1: /* O
O 2: * File: readuni2.c O
O 3 */ ©]
O | 4: #i nclude <stdlib. h> o
O | 5: O
O 6 mai n() @]
o T { O
O 8: int *a = (int *)malloc(5); o
O :9: int b; O
O 10: O
%g—» O i 11: b = *a; O
o 12: return (0); @]
O 13: } @]
O O

0
0

n
[}
©
o
O
-
o
=
—
L

The codein line 11 of this example falsinto the copy error sub-category, since
the uninitialized value is merely used to assign another variable. If b were later
used in an expression, it would then generate aREAD_UNI NI T_MEM r ead)
error.

If the i nt s in lines 8 and 9 of the above example
were replaced by char s, the error would not be
detected by default. To see the error in the new
example, you would need to set the . psr ¢ option
“checki ng_uninit_mn_size 1". For more
information about this option, see page 127.

294

Diagnosis (at runtime)

[readuni 2.c:11] **READ_UNI NI T_MEM copy) **
>> b = *a;

-

P Reading uninitialized nenory: *a

I n bl ock: 0x00062058 thru 0x0006205c (5 bytes)
bl ock allocated at:
mal loc() (interface)
mai n() readuni2.c, 8

Stack trace where the error occurred:
p» nmin() readuni2.c, 11

» Source line at which the problem was detected.

L » Description of the problem and the expression that isin

error.

» Stack trace showing the function call sequence leading to
theerror.

Repair

As mentioned earlier, the READ_UNI NI T_MEM copy) error category is
suppressed by default, so you will normally only seeerrorsinther ead category.
In many cases, these will be errorsthat can be simply corrected by initializing the
appropriate variables. In other cases, these values will have been assigned from
other uninitialized variables, which can be detected by unsuppressing the copy
sub-category and running again.

295

m
=
=
o
-
0O
o
Q.
D
2

READ UNI NI T_PTR
Reading from uninitialized pointer

This error is generated whenever an uninitialized pointer is dereferenced.

This error category will be disabled if full
uninitialized memory checking is in effect

(the default). In this case, errors are detected in
the READ_UNI NI T_MEMcategory instead.

(see page 291)

d Problem

o

8 This code attemptsto use the val ue of the pointer a, even though it has never been

o initialized.

o

S

L O o

S o
o o
O i1 /* O
O i 2: * File: readuptr.c (@)
O 3 */ O
O i 4: mai n() @)
O ' b { O
O | 6: int b, *a O
o T (@)
%g—» O 8: b = *a; @)

O 9 return (0); @)
O 10: } @)
o) o)

0
50
P
0

)

296

Diagnosis (at runtime)

[readuptr.c:8] **READ _UNI NI T_PTR**
>> b = *a; -

P Reading fromuninitialized pointer: a

Stack trace where the error occurred:
p main() readuptr.c, 8

e Source line at which the problem was detected.

e Description of the problem and the expression that isin
error.

e Stack trace showing the function call sequence leading to
the error.

Repair

This problemisusually caused by omitting an assignment or all ocation statement
that would initialize a pointer. The code given, for example, could be corrected by
including an assignment as shown below.

/*
* File: readuptr.c (Modified)
*/
mai n()
{
int b, *a, c;
a = &c;
b = *a;
return (0);
}

297

m
=
=
o
-
0O
o
Q.
D
2

RETURN DANGLI NG
Returning pointer to local variable

Thiserror is generated whenever afunction returns apointer to a (non-static) local
variable. Since the stack frame of this routine will disappear when the function
returns, this pointer is never valid.

Problem
The following code shows the routine f 0o returning a pointer to alocal variable.

0

(O]

e) 8)

o o o

@) = o

o O 1. o

= O 2 * File: retdngl.c O

L O 3 */ o
O g4 char *foo() o
O 5 { O
O 6 char b[10]; O

&4» o 7 return b: o

O ig: } O
O io: O
O 110: main() o
O 11: { o
O 12 char *a = foo(); o
O i13: return O; o
O 14: o
o) 6]

0
0

298

Diagnosis (during compilation)

[retdngl.c: 7] **RETURN_DANGLI NG* -
» Returning pointer to |local variable: b.

>> return b;

e Sourceline at which the problem was detected.

e Description of the problem and the expression that isin
error.

Repair
The pointer returned in this manner can be made legal in one of several ways.

» Declaringthememory block st at i ¢ inthecalled routine,
i.e., line 6 would become

static char b[10];

» Allocating ablock dynamically instead of on the stack and
returning a pointer to it, e.g.

char *foo()

{
}

return malloc(10);

» Makingthememory block into aglobal variablerather than
alocal one.

Occasionaly, the value returned from the function is never used in which case it
is safest to change the declaration of the routine to indicate that no valueis

returned.

299

m
=
=
o
-
0O
o
Q.
D
2

n
[}
©
o
O
-
o
=
—
L

RETURN FAI LURE
Function call returned an error

A particularly difficult problem to track with conventional methodsis that of
incorrect return code from system functions. Insight is equipped with interface
definitionsfor system librariesthat enableit to check for errorswhen functionsare
called. Normally, these messages are suppressed, since applications often include
their own handling for system calls that return errors. In some cases, however, it
may be useful to enable these messages to track down totally unexpected
behavior.

Problem

A particularly common problem occurs when applications run out of memory as
in the following code.

O O
o O
8 1: /* 8
2: * File: retfail.c
O . * e
©) 3: ! ©)
4: #i ncl ude <stdlib. h>
©) 5- @)
© 6 mai n() ©
O 7 { O
O g char *p; o
©) 9: @)
aﬂg—» O 10 p = mall oc(1024*1024*1024); ©
O 11 return (0); O
O 12: 3} O
@) @)

0
0

300

Diagnosis

Normally, this code will run without displaying any messages. If
RETURN_FAI LURE messages are enabled, however, the following display will

result.

[retfail.c:10] **RETURN_FAI LURE**
>> p = mal | oc(1024*1024*1024) ;"

Function returned an error:
> mal | oc(1073741824) failed: no nore nenory

Stack trace where the error occurred:

mal | oc() (interface)
——) .
main() retfail.c, 10

e Source line at which the problem was detected.

— e Description of the error and the parameters used.

L— e« Stack trace showing the function call sequence leading to
theerror.

Repair

These messages are normally suppressed, but can be enabled by adding the option

i nsur e++. unsuppress RETURN_FAI LURE

toyour . psrc file.

301

m
=
=
o
-
0O
o
Q.
D
2

RETURN_| NCONSI STENT

Function has inconsistent return
type

Insight checks that each function returnsaresult consistent with its declared data
type, and that afunction with adeclared return type actually returnsan appropriate
value.

Because there are several different waysin which functions and return values can
bedeclared, Insight dividesup thiserror category into four levelsor subcategories

asfollows:
n Level 1 Function has no explicitly declared return type (and so defaults
4 to i nt) and returns no value. (This error level is normally
©
o suppressed.)
8 Level 2 Function is explicitly declared to return type i nt but returns
] nothing.
=
T} Level 3 Function explicitly declared to return adatatype other thani nt
but returns no value.
Level 4 The function returns a value of one type a one statement and

another data type at another statement.

In many applications, errors at levels 1 and 2 need to be suppressed, since older
codes often include these constructs.

302

Problem

The following code demonstrates the four different error levels.

<0

m
-
S
o
=
O
o)
Q
D)
n

O O
o 1 /* O
o 2 * File: retinc.c @)
O 3: *[O
O 4 funcl() { @)
O & return; O
O 6 } o
o 7: (@)
O 8: int func2() { O
O 9 return; (@]
o i10: } (@]
O i 11: (@)
O {12: double func3() { O
O 13: return; O
O i14: } O
O i 15: (@)
O i16: int func4(a) o
O i 17: int a; o
O :18: { (@]
O i 19: if (a < 3) return a; o
O | 20: return; O
O 21 } @)
@] (@)
O O

o™

)

303

n
[}
©
o
O
-
o
=
—
L

Diagnosis (During compilation).

[retinc.c:4] **RETURN_| NCONSI STENT(1)**

p Function funcl has an inconsistent return type.
Decl ared return type inplcitly "int",
but returns no val ue.
>> funcl() {
[retinc.c:8] **RETURN_I NCONSI STENT(2) **
Function func2 has an inconsistent return type.
Decl ared return type "int", but returns no val ue.
>> int func2() {
[retinc.c:12] **RETURN_I NCONSI STENT(3) **
Function func2 has an inconsistent return type.
Decl ared return type "double", but returns no val ue.
>> doubl e func3() {
[retinc.c:20] **RETURN_I NCONSI STENT(4) **
Function func4 has an inconsistent return type.
Returns value in one |ocation, and not in another.
>> return;

» Source line at which the problem was detected.

» Description of the error and the parameters used.

Repair

Asalready suggested, older codes often generateerrorsat levels 1 and 2 which are
not particularly serious. Y ou can either correct these problems by adding suitable
declarations or suppress them by adding the option

i nsure++. suppress RETURN | NCONSI STENT(1, 2)

toyour . psr c file.

Errors at levels 3 and 4 should probably be investigated and corrected.

304

UNUSED VAR
Unused variables

Insight hasthe ability to detect unused variablesin your code. Since these are not
normally errors, but informative messages, this category is disabled by default.

Two different sub-categories are distinguished

assi gned Thevariableisassigned avalue but never used.

unused Thevariableis never used.

Problem #1 m
=
The following code assigns a value to the variable max but never usesit. 2

O O
o1l /* O @

o2 * File: unuasign.c @]

o 3 */ ©)

o4 mai n() O

O 5 { O

O 6: int i, a[10]; (@]

o7 int max; e}

o 8 O

o9 a[0] = 1; @]

o i 10: a[1l] = 1; O

o 11: for(i=2; i<10; i++) 0]

o i12: a[i] = a[i-1]+a[i-2]; O

X%—» o i 13: max = a[9]; o)

o 14: } o}

©) ©)

0
0

305

Diagnosis (during compilation)

Normally this code will run without displaying any messages. If UNUSED VAR
messages are enabled, however, the following display will result.

[unuasi gn.c: 7] **UNUSED_VAR(assi gned) ** g
» Variabl e assigned but never used: nmax
>> int nmax;

e Source line at which the problem was detected.

S e Description of the error and the parameters used.

Problem #2
8 The following code never uses the variable nmax.
©
S
o O O
— O i1 [* @)
L O 2: * File: unuvar.c O
o i 3 */ O
O | 4 mai n() O
O i 5: { @)
O | 6: int i, a[10]; O
%\:—» O i T: int max; @)
O 8: O
o9 a[0] = 1, O
O 10: a[l] = 1; O
o 11: for(i=2; i<10; i++) @)
O i 12: a[i] = a[i-1]+a[i-2]; @)
o 13 } O
O O

0
0

306

Diagnosis (during compilation)

If UNUSED_VAR messages are enabled, however, the following display will
result.

[unuvar.c:7] **UNUSED _VAR(unused)** g
p Variabl e declared but never used: nax

>> int nmax;

e Source line at which the problem was detected.

e Description of the error and the parameters used.

Repailr
These messages are normally suppressed but can be enabled by adding the option

i nsur e++. unsuppress UNUSED VAR

toyour . psrc file.

m
=
=
o
-
0O
o
Q.
D
2

Y ou can a so enable each sub-category independently with an option such as

i nsur e++, unsuppress UNUSED VAR(assi gnhed)

In most cases, the corrective action to be taken is to remove the offending
statement, since it is not affecting the behavior of the application. In certain
circumstances, these errors may denotelogical program errorsinwhich avariable
should have been used but wasn't.

307

USER_ERROR
User generated error message

This error is generated when a program violates arule specified in an interface
module. These normally check that parameters passed to system level or user
functionsfall within legal ranges or are otherwise valid. Thisbehavior is different
from the RETURN_FAI LURE error code, which normally indicates that the call
to thefunction was made with valid data, but that it still returned an error for some,
possibly anticipated, reason.

" Problem

[}

© These problemsfall into many different categories. A particularly simple example

8 is shown in the following code, which callsthesqr t function and passesit a

o negative argument.

o

| -
o™, e
O 1: [* O
© 2 * File: usererr.c ©
O 3: * [O
O 4: #include <math. h> ©
O 5- ©)
O 6 mai n() o
o 7 o)
O g doubl e q; O
O g o)

:/(C}S—» O 10 q = sqrt(-2.0); o

O 11 return (0); o
© 12: o
o) o)

0
0

308

Diagnosis (at runtime)

[usererr.c:10] **USER _ERROR**
>> g = sqrt(-2.0);

-

» Negative nunber -2.000000 passed to sqrt:

Stack trace where the error occured:
p» main() usererr.c, 10

e Source line at which the problem was detected.

e Description of the error and the parameters used.

L« Stack trace showing the function call sequence leading to
the error.

Repair

Each message in this category is caused by a different problem, which should be
evident from the printed diagnostic. Usually, these checks revolve around the
legality of various arguments to functions.

m
=
=
o
-
0O
o
Q.
D
2

These messages can be suppressed by adding the option

i nsure++. suppress USER ERROR

toyour . psrc file.

309

n
[}
©
o
O
-
o
=
—
L

VI RTUAL_BAD

rror in runtime initialization of
virtual functions

Thiserror iscaused when avirtual function has not been initialized prior to being
used by another function.

Problem

The following pieces of code illustrate this error. The virtual function f unc is
declared in virtbadl.C in the goo class. A static variable of thisclass, bar ney,
isalsodeclaredinthat file. Thefunction crash callsf unc through bar ney inline
23.Infilevirtbad2.C, astatic variable of classf 0o, f r ed, isdeclared. Classf oo
calscr ash, which then in turn ends up calling the virtual functionf unc. A
virtual function’s address is not established until the program isinitialized at
runtime, and static functions are also initialized at runtime. This means that
depending on the order of initialization, f r ed could be trying to find f unc,
which does not yet have an address. The VIRTUAL_BAD error messageis
generated when this code is compiled with Insight.

310

OOy OTT R RTWRO T

0000000000000 000000000000D00000000000O0 009"

18:

19:
20:
21

22

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

/*

*

*/

File: virtbadl.C

#i ncl ude <i ostream h>

class goo {

s

public:
int i;
goo: : goo() {
cerr << “gooisinitialized.”

<< endl; }
virtual int func();
virtual int func2();

static goo barney;

i nt

crash() {
int ret;
cerr << “Sizeof(goo) =" <<
si zeof (goo) << endl
cerr << “Sizeof (i) =" <<

si zeof (int) << endl
char *cptr = (char *) &barney;

cptr += 4;
long *Iptr = (long *) cptr
cerr << “vp = << *|ptr << endl

ret = barney. func();
cerr << “crash” << endl;
return ret;

goo: : func() {

cerr << “goo.func” << endl
func2();

return i;

goo: : func2() {
cerr << “goo.func2” << endl;
return 2;

oNeoNoNeoNONONONONCHONCHONCHONCHONONONONONONONONONONONORONONONONONONONONONONG! 0

311

m
-
S
o
=
O
o)
Q
D)
n

n
[}
©
o
O
-
o
=
—
L

312

O O
o i1 /* @)
O i2: * File: virtbad3.C O
O i3 * [@)
O 4 #i ncl ude <i ostream h> (@)
O i 5: O
O i 6: int main() { (@)
o 7 cerr << “main” << endl; O
O 8: return O; O
O 9: } o)
@] @]

o

O O

O O
O i1: /* O
o 2: * File: virtbad2.C O
O 3: */ (@)
O 4 #i ncl ude <i ostream h> (@]
O |5 O
O i 6: extern int crash(); (@]
o 7 (@)
O :8: class foo { o
O 9 publi c: O
O i10: foo::foo() { o
o 11 cerr << “fo0” << endl; (@)
O i12: cerr << “Cot “ << (@)
o crash() << endl; O
O i13: } O
O i14: }; O
O i15: (@)
O 16: static foo fred; @]
O O
O O

o,)

313

m
-
S
o
=
O
o)
Q
D)
n

Diagnosis (at runtime)

[virtbadl. C:29] **VI RTUAL_BAD** =
>> func2();

|y Virtual function table is invalid: func2()

—m Stack trace where the error occurred:
goo: : func() virtbadl. C, 29
crash() virtbadl. C, 23
foo::foo() virtbad2.C, 12
__nmod_| __fredOvirtbad21001_cc_000()
_mai n()
mai n() virtbad3.C, 6

Menory corrupted. Program nay crash!!

Abort (core dunped) -

e Source line at which the problem was detected. —

L e Description of the problem and which virtual function
caused the error.

n
[}
©
o
O
-
o
=
—
L

» Stack trace showing the function call sequence leading to
theerror.

e Coredumpstypically follow these messages, as any usage
of the dynamic memory functions will be unable to cope.”

Repair
The error in the sample code could be eliminated by not making f r ed static. In

that case, the addressfor f unc would be generated during theinitialization before
any requests for it existed, and there would be no problems.

314

EXPR W LD
Expression uses wild pointer

This error is generated whenever a program operates on a memory region that is
unknown to Insight. This can come about in two ways:

» Errorsin user code that result in pointersthat don’t point at
any known memory block.

» Compiling only some of the files that make up an
application. This can result in Insight not knowing enough
about memory usage to distinguish correct and erroneous
behavior.

This discussion centers on the first type of problem
described here. A detailed discussion of the
second topic, including samples of its generation
and repair can be found in “Interfaces” on page 91.

m
=
=
o
-
0O
o
Q.
D
2

315

Problem #1

The following code attempts to use the address of alocal variable but contains an
error at line 8 - the address operator (&) has been omitted.

O™ o
O O
O i1 /* (@)
o2 * File: expwdl. c (@)
O3 */ (@)
O i 4 mai n() @)
O i 5: { @)
O | 6: int i = 123, j=345, *ga; 0]
i (@)
o 8 a=i; O
aﬁg—» o o if(a > &) o
o i 10: a=§&; e}
o 11 1} o}
O O

O -
0

)

0
0

n
[}
©
o
O
-
o
=
—
L

316

Diagnosis

>>

EXPR_ W LD [expw d1.c: 9] .

P Express uses wild pointer: a > &

—p Pointer : 0x0000007b

: mai n() expwdl.c, 9

if(a > &)

Source line at which the problem was detected.

Description of the problem and the name of the parameter
that isin error.

Value of the wild pointer.

Stack trace showing the function call sequence leading to
the error.

Note that most compilers will generate warning messages for this error since the
assignment in line 8 uses incompatible types.

317

m
=
=
o
-
0O
o
Q.
D
2

Problem #2

A moreinsidious version of the same problem can occur when using uni on
types. The following code first assigns the pointer element of a union but then
overwrites it with another element before finally attempting to useit.

o, o

o™, O

@) @)

O i1 [* O

O i 2: * File: expw d2.c o

O 3 */ @]

O i 4: uni on { o

O i5: int *ptr; O

O | 6: int ival;)

7o) o 7 }ou)
[} O 8 O
-8 O 19 mai n() O
O o 10: {)
o o 11: int i = 123, j=345;)
(@] O i12: e
= o 13: u.ptr = & ; o
Ll O i 14: u.ival =1i; o)
2&—» O i15: if(u ptr > &) @)

O i 16: u.ptr = &; O

o 17 '} o)

O O

0
0

Note that this code will not generate compile time errors.

318

Diagnosis

EXPR WLD [expw d2. c: 15]
>> if(u ptr > &)

-

P Expression uses wild pointer: u.ptr > &

—p Pointer : 0x0000007b

> mai n() expw d2.c, 15

* Sourceline at which the problem was detected.

» Description of the problem and the name of the parameter
that isin error.

— * Value of the bad pointer.

— '« Stack trace showing the function call sequence leading to
the error.

m
=
=
o
-
0O
o
Q.
D
2

Repair

The simpler types of problem are most conveniently tracked in a debugger by
stopping the program at the indicated source line. Y ou should then examine the
illegal value and attempt to seewhereit was generated. Alternatively you can stop
the program at some point prior to the error and single-step it through the code
leading up to the error.

“Wild pointers’ can aso be generated when Insight has only partial information
about your program'’ sstructure. Thisissueisdiscussed extensively in“Interfaces”
on page 91.

319

n
[}
©
o
O
-
o
=
—
L

FREE W LD
Freeing wild pointer

This error is generated when memory is de-allocated that is unknown to Insight.
This can come about in two ways:

» Errorsinuser code that result in pointersthat don’t point at
any known memory block.

» Compiling only some of the files that make up an
application. This can result in Insight not knowing enough
about memory usage to distinguish correct and erroneous
behavior.

This discussion centers on the first type of problem
described here. A detailed discussion of the
second topic, including samples of its generation
and repair can be found in “Interfaces” on page 91.

320

Problem

A particularly unpleasant problem can occur when using uni on types. The
following code first assigns the pointer element of a union but then overwrites it
with another element before finally attempting to free the initial memory block.

(SN

N Q

o™, o)
O O
O 1: | * O
o 2: * File: freewild.c O
O 3 */ O
O 4 #i nclude <stdlib. h> O
O | 5: O
O | 6: uni on { O
o 7 int *ptr; O
O 8: int ival; O
o 9 } O
O i 10: @]
O 11: min() O
o 12: | O
O 13: char *a = (char *)mall oc(100); O
o 14 O
O 15: u.ptr = a; O
O i 16: u.ival = 123; (@]

2&—» o 17 free(u.ptr); O
o i18: } (@]
@] @]

o

321

m
-
S
o
=
O
o)
Q
D)
n

Diagnosis

FREE WLD [freew | d.c:17]

>> free(u.ptr);

P Freeing wild pointer: u.ptr

—p Pointer : 0x0000007b

> main() freewild.c, 17

—

* Sourceline at which the problem was detected.

- » Description of the problem and the name of the parameter
that isin error.

L * Vaue of the bad pointer.

L« Stack trace showing the function call sequence leading to
the error.

n
[}
©
o
O
-
o
=
—
L

Repair

Thisproblem ismost conveniently tracked in adebugger by stopping the program
at theindicated sourceline. Y ou should then examinetheillegal value and attempt
to see where it was generated. Alternatively you can stop the program at some

point prior to the error and single-step through the code leading up to the problem.

“Wild pointers’ can aso be generated when Insight has only partial information
about your program’ sstructure. Thisissueisdiscussed extensively in“Interfaces”
on page 91.

322

FUNC W LD
Function pointer is wild

Thiserror isgenerated when acall ismade viaafunction pointer that is unknown

to Insight.
This can come about in two ways:

» Errorsinuser code that result in pointersthat don’t point at
any known function.

» Compiling only some of the files that make up an
application. This can result in Insight not knowing enough
about memory usage to distinguish correct and erroneous
behavior.

This discussion centers on the first type of problem
described here. A detailed discussion of the
second topic, including samples of its generation

and repair can be found in “Interfaces” on page 91.

323

m
=
=
o
-
0O
o
Q.
D
2

Problem

A particularly unpleasant problem can occur when using uni on types. The
following code first assigns the pointer element of a union but then overwrites it
with another element before finally attempting the function call at line 18.

Qo . Q
O O
o 1. /= o
o 2 * File: funcwild.c o
O 3: * [O
O 4: union { O
o s int (*func)(); o
O 6 int ival; o
0 B SO S U o
o s e}
$ o o int myfunc() 0
O : O

© 10:
o o 11: return 123; @)
O o 12 } o
B o 13 e}
= O 14: min() 0
w o 150 { o
O 16: u. func = myfunc; @)
o 17: u.ival = 123; @]
ﬁgﬂ o 18: u. func(); @)
O 19: } O
O O

0
0

324

Diagnosis

FUNC_W LD [funcwi |l d.c: 18]
>> u. func();

P Function pointer is wild: u.func

—p Pointer : 0x0000007b

> mai n() funcwild.c, 18

—

e Source line at which the problem was detected.

L « Description of the problem and the name of the parameter
that isin error.

e Value of the bad pointer.

L« Stack trace showing the function call sequence leading to
the error.

m
=
=
o
-
0O
o
Q.
D
2

Repair

Thisproblem is most conveniently tracked in adebugger by stopping the program
at theindicated sourceline. Y ou should then examinetheillegal value and attempt
to see where it was generated. Alternatively you can stop the program at some

point prior to the error and single-step through the code leading up to the problem.

Note that wild pointers can also be generated when Insight has only partial
information about your program’ sstructure. Thisissueisdiscussed extensively in

“Interfaces’” on page 91.

325

n
[}
©
o
O
-
o
=
—
L

PARM W LD
Array parameter is wild

Thiserror isgenerated whenever a parameter isdeclared as an array but the actual
value passed when the function is called points to no known memory block.

This can come about in severa ways:

e Errorsin user code that result in pointersthat don’t point at
any known memory block.

» Compiling only some of the files that make up an
application. This can result in Insight not knowing enough
about memory usage to distinguish correct and erroneous
behavior.

This discussion centers on the first type of problem
described here. A detailed discussion of the
second topic, including samples of its generation
and repair can be found in “Interfaces” on page 91.

326

Problem #1

The following code attempts to pass the address of alocal variable to the routine
f 0o but contains an error at line 14 - the address operator (&) has been omitted.

0
0

/*
* File: parmM dl.c
*/
voi d foo(a)
int a[];

{
}

10: main()
11: |
12: int i = 123, *a;

return;

O~NO OIS WNBE

O0000O0OO0OO0OO0OO0OOOOOOOOO:T
(Ol oNoNoNONONONONONONONONONONONONONG

14: a=i;
15: foo(a);

m
=
=
o
-
0O
o
Q.
D
2

0
0

327

Diagnosis

PARM W LD [par mi d1. c: 6]

>> {

P Array paraneter is wild: a

—p Pointer : 0x0000007b

foo() parmMdl.c, 6

——————
mai n() parmM dl.c, 15

e Sourceline at which the problem was detected.

L « Description of the problem and the name of the parameter
that isin error.

— e Value of the bad pointer.

L« Stack trace showing the function call sequence leading to
the error.

Note that most compilers will generate warning messages for this error since the
assignment uses incompatibl e types.

n
[}
©
o
O
-
o
=
—
L

328

Problem #2

A moreinsidious version of the same problem can occur when using uni on
types. The following code first assigns the pointer element of a union but then
overwrites it with another element before finally passing it to a function.

O ()
o o
S o
O @]
o 1 /* (@]
o 2 * File: parmw d2.c (@]
o 3 */ O
o 4 uni on { O
O b int *ptr; O
O | 6: int ival; (@)
o T }ou; e) DJ
o 8: e) —
o 9 void foo(a) o o
2&—» O | 10: int a[]; e} '®)
o 11 { 0 o
o i 12: return; e} o
o 13 } o o
o 14 e}
o i 15: main() o)
o 161 { 0
o 17: int i = 123; 0]
o @ 18: o)
o i 19: u.ptr = & ; o)
o i 20: u.ival =1i; e}
o i 2L foo(u.ptr); e}
o 22: } o)
O O
o RS

0

Note that this code will not generate compile time errors.

329

Diagnosis

PARM W LD [parmi d2. c: 11]

>> {

P Array paraneter is wild: a

—p Pointer : 0x0000007b

foo() parmdd2.c, 11

——————
mai n() parmM d2.c, 21

» Sourceline at which the problem was detected.

- » Description of the problem and the name of the parameter
that isin error.

— * Value of the bad pointer.

L« Stack trace showing the function call sequence leading to
the error.

n
[}
©
o
O
-
o
=
—
L

Repair

Thisproblem ismost conveniently tracked in adebugger by stopping the program
at theindicated sourceline. Y ou should then examinetheillegal value and attempt
to see where it was generated. Alternatively you can stop the program at some

point prior to the error and single-step through the code leading up to the problem

Note that wild pointers can also be generated when Insight has only partial
information about your program’ sstructure. Thisissueisdiscussed extensively in
“Interfaces’ on page 91.

330

READ W LD
Reading wild pointer

This problem occurs when an attempt is made to dereference a pointer whose
valueisinvalid or which Insight did not see allocated.

This can come about in severa ways:

» Errorsin user code that result in pointersthat don’t point at
any known memory block.

» Compiling only some of the files that make up an
application. This can result in Insight not knowing enough
about memory usage to distinguish correct and erroneous
behavior.

This discussion centers on the first type of problem
described here. A detailed discussion of the
second topic, including samples of its generation
and repair can be found in “Interfaces” on page 91.

m
=
=
o
-
0O
o
Q.
D
2

331

Problem #1

The following code attempts to use the address of a variable but contains an error
at line 8 - the address operator (&) has been omitted.

(S (@)
o™, o
@] O
o i 1: /* @)
O 2 * File: readw dl.c O
O 3 */ (@)
O i 4: mai n() @)
O i5: { @)
O 6: int i =123, *a, b @)
O 7 O

ﬁg—» O i8: a=i; O
O 9 b = *a; @)
o 10: } (@)
@] @]

0
0
0

n
[}
©
o
O
-
o
=
—
L

332

Diagnosis

>>

READ W LD [readw d1.c: 9]

P Reading wild pointer: a

—p Pointer : 0x0000007b

: mai n() readw dl.c, 9

b = *a;

Source line at which the problem was detected.

Description of the problem and the name of the parameter
that isin error.

Value of the bad pointer.

Stack trace showing the function call sequence leading to
the error.

Note that most compilers will generate warning messages for this error since the
assignment uses incompatibl e types.

333

m
=
=
o
-
0O
o
Q.
D
2

Problem #2

A moreinsidious version of the same problem can occur when using uni on
types. The following code first assigns the pointer element of a union but then
overwrites it with another element before using it.

o™, Ke)
@] @]
O 1 /* @]
o 2 * File: readw d2.c @]
O i3: * [O
O i4: uni on { o
O i5: int *ptr; O
O i6: int ival; @]
o 7 }ou; @]
3 o 8 o
o] O i9: mai n() o
(@] o i10: { @]
O o 11: int b, i = 123; o
5 o 12: 0]
= o i13: u.ptr = & ; O
(L Xig—» o 14: u.ival = i; o
o 15: b =*u.ptr; e}
o i16: } o}
@] @]

0
0

Note that this code will not generate compile time errors.

334

Diagnosis

READ W LD [readw d2. c: 15]
>> b = *u.ptr;

P Reading wild pointer: u.ptr
— = Pointer : 0x0000007b

> mai n() readw d2.c, 15

e Source line at which the problem was detected.

L e Description of the problem and the name of the parameter
that isin error.

L e Value of the bad pointer.

— « Stack trace showing the function call sequence leading to
theerror.

m
=
=
o
-
0O
o
Q.
D
2

Repair

The simpler types of problem are most conveniently tracked in a debugger by
stopping the program at the indicated source line. Y ou should then examine the
illegal value and attempt to seewhereit was generated. Alternatively you can stop
the program at some point shortly before the error and single-step through the
code leading up to the problem.

Note that wild pointers can also be generated when Insight has only partial
information about your program’ s structure. Thisissueisdiscussed extensively in

“Interfaces’ on page 91.

335

n
[}
©
o
O
-
o
=
—
L

VWRI TE W LD
Writing to a wild pointer

This problem occurs when an attempt is made to dereference a pointer whose
valueisinvalid or which Insight did not see allocated.

This can come about in severa ways:

» Errorsin user codethat result in pointersthat don’t point at
any known memory block.

» Compiling only some of the files that make up an
application. This can result in Insight not knowing enough
about memory usage to distinguish correct and erroneous
behavior.

This discussion centers on the first type of problem
described here. A detailed discussion of the
second topic, including samples of its generation
and repair can be found in “Interfaces” on page 91.

336

Problem #1

The following code attempts to use the address of a variable but contains an error
at line 8 - the address operator (&) has been omitted.

O O
o 1 /* @]
O i 2: * File: witwdl.c @)
O 3: */ @)
O |4 mai n() o
O ib5: { @]
O 6 int i =123, *a; @]
o T O
a\%\:—» o | 8 a=i: o)

o 9: *a = 99; O D:l

. -

o :10: } @))

@] O -

o ™., e @)

o ™. ..O o

~ TR Q.

M

wn

337

n
[}
©
o
O
-
o
=
—
L

Diagnosis

>>

\WRI TE_WLD [writw dl.c:9]

P Witing wild pointer: a

—p Pointer : 0x0000007b

*a = 99;

- main() witwdl.c, 9

_

Source line at which the problem was detected.

Description of the problem and the name of the parameter
that isin error.

Value of the bad pointer.

Stack trace showing the function call sequence leading to
the error.

Note that most compilers will generate warning messages for this error since the
assignment in line 8 uses incompatible types.

338

Problem #2

A moreinsidious version of the same problem can occur when using uni on
types. The following code first assigns the pointer element of a union but then
overwrites it with another element before using it.

0
0

* File: witwd2.c

*ptr;
int ival;

>
2

m
-
S
o
=
O
o)
Q
D)
n

OC0O0OO0OO0OO0O0OODODOOOOOOOOO
©
8
s -
OC0OO0OO0OO0O0O0OODODOOOOOOOOO

O,.
0

Note that this code will not generate compile time errors.

339

Diagnosis

WRI TEWLD [writw d2.c: 15]

>> *u.ptr = 99; -

P Witing wild pointer: u.ptr

—p Pointer : 0x0000007b

- main() witwd2.c, 15

e Sourceline at which the problem was detected.

L e Description of the problem and the name of the parameter
that isin error.

L e Value of the bad pointer.

— Stack trace showing the function call sequence leading to
the error.

n
[}
©
o
O
-
o
=
—
L

Repair

The simpler types of problem are most conveniently tracked in a debugger by
stopping the program at the indicated source line. Y ou should then examine the
illegal value and attempt to seewhereit was generated. Alternatively you can stop
the program at some point shortly before the error and single-step through the
code leading up to the problem.

Note that wild pointers can also be generated when Insight has only partial
information about your program’ s structure. Thisissueisdiscussed extensively in
“Interfaces’ on page 91.

340

VIRl TE_BAD | NDEX
Writing array out of range

This error is generated whenever anillegal value will be used to index an array
which is being written.

If thiserror can be detected during compilation, acompilation error will beissued
instead of the normal runtime error.

Problem

This code attempts to access an illegal array element due to an incorrect loop m
range. =
@)
-
o
Uo 7o Q.
O™, o M
n

° 1 /* O

© 2 * File: witindx.c ©

O 4. * o}

3: /

O 4. min() o

O & { o}

O 6: int i, a[10]; o

o 7 o}

O s for(i=1; i<=10; i++) o

=0 9 ali] = o0 ©

O 10 return (0); o

O 11: } o

o} o}

0
0
0

‘0

)

341

n
[}
©
o
O
-
o
=
—
L

Diagnosis (at runtime)

[writindx.c:9] **WRl TE_BAD | NDEX** -

>> al[i] = 0;

» Witing array out of range: a[il]

p | ndex used: 10

» Valid range: 0 thru 9 (inclusive)

main() witindx.c, 9

e Sourceline at which the problem was detected.

e Description of the problem and the expression that isin
error.

e lllegal index value used.

L e Validindex rangefor this array.

e Stack trace showing the function call sequence leading to
the error.

e Informational message indicating that a serious error has
occurred which may cause the program to crash.

342

Stack trace where the error occured: -

Menory corrupted. Program may crash!! -«

Repailr
Thisisnormally afatal error and is often introduced algorithmically.

One common source of thiserror isusing “ stretchy” arrayswithout telling Insight
about them. A “stretchy” array is an array whose sizeis only determined at
runtime. For an example as well as an explanation of how to use Insight with

“stretchy” arrays, see page 41.

Other typical sourcesincludeloopswithincorrect initial or terminal conditions, as
in this example, for which the corrected code is:

mai n()
{
int i, a[10];
for(i=; i<sizeof(a)/sizeof(a[0]); i++)
a[i] = 0;
return (0);
}

m
=
=
o
-
0O
o
Q.
D
2

343

V\RI TE_DANGLI NG
Writing to a dangling pointer

This problem occurs when an attempt is made to dereference a pointer that points
to ablock of memory that has been freed.

Problem
This code attempts to use a piece of dynamically allocated memory after it has
already been freed.
0
[}
=] .
o uo uo
S
o o 1: /* ©
— (@) . . @)
— 2: * File: witdngl.c
L © 3: */ ©
© 4 #include <stdlib.h> ©
ol I o}
(@) : . ©)
6: mai n()
O O
o 7 { o
8: char *a = (char *)mal |l oc(10);
o g o)
8 10: free(a); 8
2&—» o 11: *a = 'Xx'; o
o 12: return (0); o
13: }
O o

0
0

Diagnosis (at runtime)

[witdngl.c:11] **WRI TE_DANGLI NG**
>> *a = 'x';

A

» Witing to a dangling pointer: a

p» Pointer: 0x000173e8

— I n bl ock: 0x000173e8 thru 0x000173f1 (10 bytes)
bl ock allocated at:
mal l oc() (interface)
mai n() witdngl.c, 8
g stack trace where nenory was freed:
main() witdngl.c, 10

Stack trace where the error occurred: -
mai n() witdngl.c, 11

Menory corrupted. Program may crash!!

* Source line at which the problem was detected. —

* Description of the problem and the expression that isin
error.

m
=
=
o
-
0O
o
Q.
D
2

— « Value of the dangling pointer variable

« Description of the block to which thispointer used to point,
including its size, name, and the line at which it was
allocated.

L« [ndication of the line at which this block was freed.

« Stack trace showing the function call sequence leading to
the error.

Repair

Check that the de-all ocation that occurs at the indicated location should, indeed,
have taken place. Also check that the pointer you are using should really be
pointing to a block allocated at the indicated place.

345

n
[}
©
o
O
-
o
=
—
L

VRI TE _NULL
Writing to a NULL pointer

This error is generated whenever an attempt is made to dereference a NULL
pointer.

Problem

This code attempts to use a pointer which has not been explicitly assigned. Since
thevariable a isglobal, it isinitialized to zero by default, which resultsin
dereferencing a NULL pointer inline 8.

O ™., o
@) @)
o L /* o
o 2: * File: witnull.c o
3: * [
O : . .. O
o 4: int *a; o
o _ o
o 6: mai n() o
© ; { *a = 123; ©
;&4’ o © a= ; 0o
o 9: return (0); o
o 10: } o

0
0
20

‘0

346

Diagnosis (at runtime)

[witnull.c:8] **WR TE_NULL**
>> *a = 123;

A

L » Description of the problem and the expression that isin

» Witing to a null pointer: a

Stack trace where the error occured:
p nain() witnull.c, 8

Menory corrupted. Program may crash!!

» Source line at which the problem was detected. —

error.

L « Stack trace showing the function call sequence leading to
theerror.

* Informational message indicating that a serious error has —
occurred which may cause the program to crash.

m
=
=
o
-
0O
o
Q.
D
2

347

n
[}
©
o
O
-
o
=
—
L

Repair

A common cause of thisproblem isthe one shown in the example - use of apointer
that has not been explicitly assigned and which isinitialized to zero. Thisis
usually dueto the omission of an assignment or allocation statement which would
give the pointer areasonable value.

The example code might, for example, be corrected as follows

1 /*

2: * File: witnull.c (Mdified)
3: */

4. int *a;

5:

6: mai n()

7: {

8: int b;

9:

10: a = &b;

11: *a = 123;
12: return (0);
13: }

A second common source of this error is code which dynamically allocates
memory but then zeroes pointers as blocks are freed. In this case, the error would
indicate reuse of afreed block.

A final common problem is caused when one of the dynamic memory allocation
routines, mal | oc,cal | oc,orreal | oc, failsand returnsaNULL pointer. This
can happen either because your program passes bad arguments or simply because
it asks for too much memory. A simple way of finding this problem with Insight
isto enable the RETURN_FAI LURE error code (see page 300) viayour . psr c
file and run the program again. It will then issue diagnostic messages every time
asystem call fails, including the memory allocation routines.

348

VRl TE OVERFLOW
Writing overflows memory

Thiserror is generated whenever ablock of memory indicated by a pointer will be
written outside its valid range.

Problem

This code attempts to copy a string into the array a, which is not large enough.

QO QO

o 1 /¥ o o
o 2: * File: witover.c O '®)
O 3 */ O o
O i 4: mai n() O o
O i 5: { O 8
O i 6: int junk; @)
O T char a[10]; O
O i8: O

;@g—» o9 strcpy(a, "A sinple test"); o}
O i 10: return (0); O
o 11 } O

0
0
0

)

349

n
[}
©
o
O
-
o
=
—
L

Diagnosis (at runtime)

[witover.c:9] **WRl TE_OVERFLOW * .
>> strcpy(a, "A sinple test");

p Witing overflows nenory: a

bbbbbbbbbb
> [10 | 4 |
VWMMMAMMAMMAMMMMMMY

) Witing (w: Oxf7fffafc thru Oxf7fffb09 (14 bytes)
To bl ock(b): Oxf7fffafc thru Oxf7fffb05 (10 bytes)
a, declared at witover.c, 7

Stack trace where the error occured: -
strcpy () (interface)
main() witover.c, 9

* Source line at which the problem was detected. —

» Description of the problem and the incorrect expression.

L » Schematic showing the relative layout of the actual
memory block (b) and region being written (w). (See
“Overflow diagrams’ on page 155.)

L » Range of memory being written and description of the
block to which write istaking place, including its size and
the location of its declaration.

» Stack trace showing the call sequence leading to the error. —

Repair
This error often occurs when working with strings.

In most cases, asimple fix isto increase the size of the destination object.

350

VWRI TE UNINI T_PTR
Writing to an uninitialized pointer

This error is generated whenever an uninitialized pointer is dereferenced.

Problem

This code attempts to use the value of the pointer a, even though it has not been
initialized.

m
O o =
o™ o
S D o
o 1 | * O O
o 2 * File: wituptr.c o 8_
o 3 */ O M
O 4 min() o n
O 5: { O
O 6: int *a; O
o 7 O
ﬁg—» O i 8: *a = 123; ©)
O <} return (0); o
O 10: } O
@] O

0
0.

0
0

)

351

Diagnosis (at runtime)

[wituptr.c:8] **WRITE_UNI NI T_PTR** -

>> *a = 123;

p Witing to an uninitialized pointer: a

Stack trace where the error occurred:
» main() wituptr.c, 8

Menory corrupted. Program may crash!!

e Source line at which the problem was detected.

e Description of the problem and the expression that isin
error.

e Stack trace showing the function call sequence leading to
the error.

e Informational message indicating that a serious error has
occurred which may cause the program to crash. —

n
[}
©
o
O
-
o
=
—
L

Repair

This problemisusually caused by omitting an assignment or all ocation statement
that would initialize apointer. The code given, for example, could be corrected by
including an assignment as shown below.

/*
* File: wituptr.c (Modified)
*/
mai n()
{
int *a, b;
a = &b;
*a = 123;
}

352

Error Codes

353

51

Programming Insight

Programming Insight

Thissectionliststhe Insight functionsthat can be called from either an application
program or a high level debugger.

If you are inserting these routinesinto your source code, you may want to use the
pre-processor symbol | NSI GHT___ so that they will only be called when
compiling with the appropriate toals, e.g.,

/*
* Code bei ng checked with Insight
*/
/*
* Disable runtime nmenory checki ng
*/
#i fdef __INSIGHT__
_Insight _set _option("runtine", "off");
#endi f
/*
* Block of code without runtinme checking...
*/
o)
/* o
* Re-enabl e runti nme checking &3
* Q
#ifdef __INSIGHT__ 3
_Insight_set _option("runtine", "on"); 3
#endi f 5
(o]

In this way you can use the same source code when compiling with or without
Insight.

Y ou will also need to add prototypes for these functionsto your code, particularly
if you are calling these C functions from C++ code.

355

(@)
c
S
S
@©
—
(@)
o
—
o

Programming Insight

Control routines

These routines affect the behavior of Insight and are normally called from within
your source code.

 void _Insight_cleanup(void);
Causes the Insight runtime to close any open files properly.

e void _Insight _printf(char *fnt,[,arg...]);
Causes Insight to add the given character string to its output.

e void _Insight _set _option(char *option, char
*val ue);
Used to override at runtime optionswhich are setin. psrc
files. Thefirst argument isthe option name and the second isthe
option argument that might be found inthe . psr c file, e.g.

_Insight_set option("sumarize", "bugs");

Memory block description routines

These functions can be called either from a program or from the debugger as
described in “Interacting with Debuggers’ on page 69.

« long _Insight _list_allocated_nmenory(void);
Printsalist of al allocated memory blocks and their sizes.
Returns the total number of bytes allocated.

356

Programming Insight

e void _Insight _mem.info(void *ptr);
Displaysall information known about the memory block whose
addressispt r . For example, the following code

#i ncl ude <stdlib. h>

mai n()
{
char *p, buf[128];

p = mall oc(100);
#i fdef __INSIGHT__
_I'nsight _mem.i nfo(buf);
_I'nsight_mem.info(p);
#endi f

might generate the following output

Poi nt er: Oxf 7fff74c (stack)

O fset: 0 bytes

In block: Oxf7fff74c thru Oxf7fff7cb (128 bytes)
buf, declared at foo.4, 4

Poi nt er: 0x00024b98 (heap)

O fset: 0 bytes

In bl ock: 0x00024b98 thru 0x00024bfb (100 byt es)
p, allocated at foo.c, 6

-
S
o

Q
=
)
3
3,
5

Q

357

Programming Insight

e void _Insight _ptr_info(void **ptr);
Displays all information about the pointer whose addressis
passed. For example, the code

#i ncl ude <stdlib. h>

mai n()

{
char *p, buf[128];

p = mall oc(100);
#i fdef __INSIGHT__

_Insight_p?r_info(&p);
#endi f

might generate the following output

Poi nt er: 0x00024b98 (heap)

O fset: 0 bytes

In bl ock: 0x00024b98 thru 0x00024bfb (100 bytes)
p, allocated at foo.c, 6

(@)
c
S
S
@©
—
(@)
o
—
o

358

Interface Functions

| nterface Functions

This section lists the Insight specific functions that can be called from Insight
interface files. The use of these functionsis described in the section “Interfaces’
on page 91. This description gives only a brief summary of the purpose and
arguments of the various functions. Probably the best way to see their purposeis
to look at the source code for the interfaces shipped with LynxIinsure++, which
can be found in subdirectories of the main LynxInsure++ installation directory
with namessuchassrc. | ynx_x86/ gcc,src. | ynx_ppc/ gcc, etc.

Note that these functions, despite appearances,
are not C functions that you can insert into your C
code. They can only be used in Insight interface
files to be compiled with i i c.

Memory Block Declaration Routines

These functions are used to indicate the usage of memory blocks. They do not
actually allocate or free memory.

e voidiic_alloc(void *ptr, unsigned |ong size);
Declaresablock of uninitialized heap memory of thegivensize.
(See page 100.)

e voidiic_alloca(void *ptr, unsigned |ong size);
Declares a block of data on the stack.

e voidiic_alloci(void *ptr, unsigned |ong size);
Declares ablock of initialized heap memory of the given
size.(Without the second argument, declares a block the length
of the first argument treated as a character string, including the
terminating NULL .) (See page 104.)

e voidiic_allocs(void *ptr, unsigned |ong size);
Declares a pointer to ablock of static memory. (Without the
second argument, declares a block the length of the first

359

Interface Functions

argument treated asa character string, including the terminating
NULL.) (See page 104.)

e voidiic_realloc(void *old, void *new,
unsi gned | ong new si ze);

Indicatesthat the indicated block has been re-allocated and that

the contents of the old block should be copied to the new one.

e void iic_save(void *ptr);
Specifies that the indicated block should never be reported to
have“leaked”. Normally, thisisused when the system will keep
track of amemory block, even after all user pointers have gone.

e void iic_unalloc(void *ptr);
Deallocates a block of memory. (See page 104.)

e void iic_unallocs(void *ptr);
Undoes the effect of ani i c_al | ocs. No error checking is
performed on the pointer - the block is simply forgotten.

Memory Checking Routines

These functions report the appropriate Insight error message if the check fails.

e void iic_copy(void *to, void *from
unsi gned | ong size);
Checks for write and read access to the given number of bytes
and indicates that the f r omblock will be copied onto thet o
block. (See page 100.)

e void iic_copyattr(void *to, void *from
Copiesthe attribute properties (e.g., opaque, uninitialized, etc.)
from one pointer to another.

e void iic_dest(void *ptr, unsigned |ong size);
Checksfor write accessto the pt r for si ze number of bytes.
(See page 104.)

e void iic_freeable(void *ptr);
Checks that the indicated pointer indicates a dynamically
allocated block of memory that could be freed.

e void iic_justcopy(void *to, void *from
unsi gned | ong size);

360

Interface Functions

Indicatesthat the f r omblock will be copied onto thet o block
without performing the other i i ¢_copy checks.

e void iic_pointer(void *ptr);
Checks that the indicated pointer is valid, without checking
anything about the size of the block it points to.

e voidiic_resize(void *ptr, unsigned | ong newsi ze);
Indicates that the block of memory has changed size.

e void iic_source(void *ptr, unsigned |ong size);
Checksfor read accessto pt r for si ze bytes. (See page 104.)
Does no checks for initialization of the block.

e void iic_sourcei(void *ptr, unsigned |ong size);
Checksfor read accesstopt r forsi ze bytes, and also that the
memory isinitialized. (See page 104.)

e int iic_string(char *ptr, unsigned |ong size);
Checksthat the pointer indicatesaNUL L terminated string. (See
page 104.) If the optional second argument is supplied, the
check terminates after at most that number of characters. In
either case, the string length is returned, or -1 if some error

prevented the string length from being computed.

Function Pointer Checks

« void iic_declfunc(void (*f)());
Declares that the indicated pointer is afunction regardless of
appearance or other information.

e void iic_func(void (*f)());
Checks that the indicated pointer is actually afunction.

361

Interface Functions

Opaque Types

e void iic_opaque(void *ptr);
Declares that the pointer should never be checked.

e void iic_opaque_type(<typenane>);
Declaresthat theindicated structure or union typeisopague and
should not be checked. (See page 41.)

e void iic_opaque_subtype(<typenane>, <typetag>);
Declaresthat the indicated element of a structure or union type
is opaque and should not be checked. (See page 41.)

Printf/scanf Checking

e void iic_input_fornmat(char *fornmat_string);
Indicates that the indicated string and the arguments following
it should be checked asthough they wereascanf styleformat
string. This function should be called from the interface before
activating the function being checked.

e void iic_output _format(char *format_string);
Indicates that the indicated string and the arguments following
it should be checked as though they wereapri nt f style
format string.

e void iic_post_input_fornat(int ntokens);
Thisfunction can be called after ani i ¢_i nput _f or mat
check and acall to an input function to check that the indicated
number of tokens did not corrupt memory when read. If the
argument is omitted, all the tokens from the
iic_input_fornmat stringare checked.

e int iic_strlenf(char *format_string, ...);
Returns the length of the string after substitution of the
subsequent arguments, which areinterpretedasapr i nt f style
format string.

e int iic_vstrlenf(char *format_string, va_ list ap);
Returns the length of the string after substitution of the
argument, which must be the standard type for a variable

362

Interface Functions

argument list. Thef or mat _st ri ng argument isinterpreted
inthenormal pri nt f style.

Utility Functions

e char *iic_c_string(char *string);
Converts a string to aformat consistent with the C language
conventions. Useful for printing error messages.

e voidiic_error(int code, char *format,
cl)
Generates a message with the indicated error code (either
USER_ERROR or RETURN_FAI LURE). (See page 105.)

* void iic_expand_subtype(<typenanme>, <typetag>);
Indicates that the structure or union named t ypenarre
contains an element namet ypet ag whose size varies at
runtime. Normally used for “stretchy” arrays. (See page 41.)
For example, if you havethefollowing code, and a isastretchy

array,

struct test {
char a[1];
h

then the appropriate function call would be:

iic_expand_subtype(struct test, a);

e int iic_numargs(void);
Returns the number of arguments actually passed to the
function.

« void iic_warning(char *string);
Prints the indicated string at compile-time.

Callbacks

e iic_body
Keyword used in function declarations to indicate that the

363

Interface Functions

function for which the interface is being specified will be used
asacalback. (See“Usingi i c_body” on page 113.)

e voidiic_callback(void (*f)(),void (*tenplate)());
Specifiesthat the functionf will be used as acallback, and that
whenever it iscalled itsinvocation is to be processed as
indicated by the previously declared (static) function
tenpl ate.(See“Usingi i c_cal | back” on page 112.)

« void iic_opaque_callback(void (*f)());
Specifiesthat the functionf will be used asacallback, and that
all of its arguments should be treated as opagque whenever it is
invoked. (See“Whichtouse: i i c_cal | back or
i i c_body? onpagel114.)

Variable Arguments

e dots__
Placehol der for variablearguments(“. . . ") inanargument list.
(See page 109.)

I nitialization

e void iic_startup(void)
Function that can be declared in any interface file and which
contains callsto be made before any function in theinterfaceis
executed. (See page 109.)

Termination

e void iic_exit(void)
Indicates that the function specified by the interface is going to
exit. Thisallows Insight to close its files and perform any
necessary cleanup activity before the program terminates.

364

Manual Pages

The following pages contain UNIX-style manual pages for Lynxinsure++.

They are divided into two sections, asis conventional
e Commands which are invoked from the shell.

e System callsthat are called from source code.

365

<
Q
5
c
L
U
Q
Q
D
(9]

NAME

iic - Insight interface compiler

SYNOPSIS

iic [-compiler nane] [-Dsynbol[=val ue]]
[-Idirectory] [-p] [-t] [-v] files

DESCRIPTION

Thiscommand is used to compile Insight interfacefiles. Each sourcefile
is compiled into asimilarly named file with the suffix . t qs that can be
passed to the i nsi ght command. These files indicate the runtime
behavior of routines whose source code was not processed by Insight,
and can also provide additional user level parameter checks.

OPTIONS

-conpi | er nane
Indicates that the named compiler will be used to
process the source code when i nsi ght isrun,
overriding the default or any valuefoundina. psrc
file. This switch can affect the default directories
searched for header files and pre-defined preprocessor

0

d)

(@)
@
ol

©

>

c

©

=

symbols.
- Dsynbol =val ue Defines preprocessor symbolsin the conventional C
manner.
-ldirectory Add adirectory to the path searched for header files.
-p If aprototypefor afunction exists(possibly in aheader

file), useits definition to override type mismatchesin
afunction declaration.

-t Process the file as usual and generate (on st dout) a
table summarizing the behavior of the routines
defined.

-V Enable verbose mode. i i ¢ prints commands as it
executes them.

366

EXAMPLES

iic nylib.c

<
Q
5
c
L
U
Q
Q
D
(9]

Compilesthe interface codein nyl i b. ¢ and generatesmyl i b. t gs.
iic -conpiler gcc ny_gnu_lib.c

Compiles the interface code in my_gnu_Il i b. ¢ using the GNU C
compiler gcc.

SEE ALSO
iiinfo,iiwhich,insight

367

NAME

i i info - Display information about an Insight interfacefile

SYNOPSIS
iiinfo[-e|lnl [-s] [-v] tgsfilel tqgsfile2

(%3]
d)
(@)
@
ol
©
>
c
©
=

DESCRIPTION

This command reads the specified Insight interface file and displays
information about the contents. With no switches, i i i nf o displaysthe
names of the objects described in the interface file in the format

KeyLetter Nane

where KeyLet t er describesthe type of object being named and isone

of

F Function

f Function with linkable interface

T Datatype

Vv Variable

OPTIONS

-e Demangle C++ function names with extended
attributes.

-m Leave C++ function names mangl ed.

-S Gives asummary of the contents of the named file.
Indicates the amount of space given to each type of
object.

-V Adds the size of each object to its description.

tgsfilel All other arguments name Insight interface filesto be
processed.

368

EXAMPLES

iiinfo foo.tqgs

sobed [enuep

Displaysthe list of contents of the interfacefilef 0o. t gs.
SEE ALSO
iic,iiwhich

369

)
)
(@)
N NAME
c_g i i users - Display all Lynxinsure++ licenses currently in use
= SYNOPSIS
p= .
iiusers
DESCRIPTION

This command is used to display the LynxInsure++ licenses that are
currently in use. The information displayed includes the total number of
licenses available, the total number of licenses in use, the userids of all
userswith licenses, and the time when each user’ slicense will expireand
become available for another user.

OPTIONS

none

EXAMPLES
iiusers

Display the current licenses in use. The output will look something like
this:

Li censes In Use (1 of 1)

insrel - expires in 15 mnutes

This example shows that user insrel currently has the single available
license, which will become available for another user in 15 minutes.

SEE ALSO
psrcdunmp, pslic

370

NAME

i i whi ch - Search for and display an Insight interface description

SYNOPSIS

iiwhich [-conpiler <compiler_nanme>] [-1]
[-v] [library files] funcnane

DESCRIPTION

This command searches a set of Insight interface files for definitions of
the named routines. For each routine, the corresponding definition is
displayed. If theinterfaceisalinkable one, i i whi ch will not be ableto
display the actions taken by the interface, but it will indicate the
prototype for the function.

If any of the names on the command line have the suffix “. t qs” or
“.tqi ", they aretaken to be Insight interface modul es and added to the
list from which to search.

OPTIONS

-conpi | er nane Usecompiler nane for option lookup.

library files

f uncnanme

Displaysthelistof . t qs/ . t qi filesintheorder that
they will be processed. Useful for resolving conflicts
between multiple interface specifications.

Displayseach . psr c filenameasitistraversed,
preceded by a# character.

Any fileswhose names end in the suffix “. t qs” or
“. tqi " aretaken to be Insight interface filesand are
added to the default list of interface modulesin which
names will be searched.

All other arguments are treated as function names and
are searched for in the standard interface modul es (and
any others given as command line arguments or in

. psr c files). If amatching definition isfound, its
source file and definition are displayed.

371

sobed [enuep

EXAMPLES

i i which malloc

(%3]
d)
(@)
@
ol
©
>
c
©
=

Searches for the definition of the C library function mal | oc.
iiwhich mylib.tqs nyfuncl nyfunc2

Searches for definitions of functions myf unc1 and myf unc?2 in both
the standard library interface modules and aso the interface file

nmylib.tqgs.
SEE ALSO
iic,insight,psrcdunp

372

NAME
i mangl e - Display LynxInsure++’'s mangled C++ function namesfor
agivenfile
SYNOPSIS
i mangl e function_nane fil enane
DESCRIPTION

This command searches the given file (and any headers and
#i ncl udes) for functions matching functi on_nane. For each
match, the LynxInsure++ mangled name will be displayed along with a
filename and line number.

The mangled name is often useful to get Lynxinsure++ to distinguish
between different versions of an overloaded function.

This can be used in conjunction with the f uncti on_i gnore . psrc
option (see the “Configuration Files’ section of the LynxInsure++
User’s Guide for more details about this option) to do no checking on
certain functions.

EXAMPLE
i mngle func file.C

Displays the mangled name of functionf unc infilefil e. C.

SEE ALSO

i nsi ght

373

sobed [enuep

)

o

(@)

N NAME

c_g i ns_|d -Link programswith Insight

= SYNOPSIS

= ins Id[-2Zlh] [-Zoi “option”]
[-Zop option_file] [-Zsl] [-2vm
[library files] <linker_argunents>

DESCRIPTION

This command takes the place of your normal link command if you are
using Insight (typically thelinker iscalled | d). Thisshould only be used
if you are linking your program explicitly. If you are using the compiler
command to link your program, you should usethei nsi ght command.

OPTIONS

-Zlh Specify where on the command line the additional
Insight libraries should be placed - the - ZI h flag
(“link here") isreplaced with the names of the Insight
libraries. Thisisonly necessary if the default location
isincorrect.

-Zoi “option” Treat opt i on asa. psr c option. Multiple - Zop
filesand - Zoi optionswill be processed in order from
left to right before any source files are processed.

-Zop option_file
Process the named file as though it were an additional
. psr c file. Thisalows options to be supplied on the
command line that override those of the other . psrc
files. Multiple - Zop filesand - Zoi optionswill be
processed in order from left to right before any source
files are processed.

- Zsl Perform a“safelink”. Normally, Insight forces every
object fileand library to be linked into the executable,
without exception. This can occasionally cause
conflictsif symbols are defined multiple Times New
Roman in different libraries. This option performs a

374

slower link that avoids such problems by only linking
filesthat are actually required. Thisoptionistried
automatically if fault recovery isturned on (the
default).

-Zvm Enable verbose mode. Displays each command asit is
executed.

sobed [enuep

library files Anyfileswhose namesendinthe suffix .t qs are
taken to be Insight interface filesand are processed in
conjunction with the source files on the command line.

<l i nker _ar gunment s>
All other arguments are passed directly to your normal
linker (or the one specifiedina. psr c fileusing a
I i nker directive).

EXAMPLES

insight -c hello.c
ins Id -e start -0 hello \
fusr/lib/crt0.o0 hello.o -lc

Compile and link the C sourcefilehel | o. c.

SEE ALSO

i nsi ght,. psrc (lists configuration options)

375

NAME

i nsi ght - Compileand link programs with Insight

SYNOPSIS

insight [-ZIh] [-Zoi “option”]
[-Zop option_file] [-Zsl] [-2vm
[library files] <conpiler_argunents>

DESCRIPTION

This command takes the place of your normal compiler. In addition to
compiling and linking your program, i nsi ght will insert code to
monitor memory accesses and check for runtime bugs.

0
d)
(@)
@
ol
©
>
c
©
=

If errors can be detected at compile time, an appropriate message will be
printed. Otherwise, al checks are done at runtime.

The pre-processor symbol | NSI GHT __ is automatically defined
whenever you areusing i nsi ght , so you may use thisto conditionally
include or exclude program fragments.

OPTIONS

-Zlh Specify where on the command line the additional
Insight libraries should be placed - the - ZI h flag
(“link here") isreplaced with the names of the Insight
libraries. Thisisonly necessary if the default location
isincorrect.

-Zoi “option” Treat opti on asa. psr c option. Multiple - Zop
filesand - Zoi optionswill be processed in order from
left to right before any source files are processed.

-Zop option_file
Process the named file as though it were an additional
. psr c file. Thisalows options to be supplied on the
command line that override those of the other . psrc
files. Multiple - Zop filesand - Zoi optionswill be
processed in order from left to right before any source
files are processed.

376

- Zsl Perform a“safelink”. Normally, Insight forces every
object file and library to be linked into the executable,
without exception. This can occasionally cause
conflictsif symbols are defined multiple Times New
Roman in different libraries. This option performs a
slower link that avoids such problems by only linking
filesthat are actually required. This option istried
automatically if fault recovery isturned on (the
default).

-Zvm Enable verbose mode. Displays each command asit is
executed.

library files Anyfileswhose namesendinthe suffix .t qs are
taken to be Insight interface filesand are processed in
conjunction with the source files on the command line.

<conpi | er _argunment s>
All other arguments are passed directly to your normal
compiler (or the one specifiedina. psr c fileusing a
conpi | er directive).

EXAMPLES

insight -o hello hello.c

Compile and link the C sourcefilehel | o. c.

insight nylib.tgs -c filel.c
insight nylib.tgs -c file2.c
insight -o nyprog filel.o file2.0

These commands compilethefilesfil el. c andfi |l e2. c,including
checksfrom the Insight interfacefilenyl i b. t gs. Theresulting object
files are linked together into a program called mypr og.

i nsight -Zoi “conpiler gcc” -o foo foo.c
insight -o foo foo.c -Zoi “conpiler gcc”

377

sobed [enuep

These commands are compl etely equivalent and build the program f oo
with the compiler gcc.

SEE ALSO

iic, ins_ld, .psrc (listsconfiguration options).

(%3]
d)
(@)
@
ol
©
>
c
©
=

378

NAME

| eakt ool - Sortandfilter Insight memory leak messages and reports
Also convert Insra output filesfrom Insra-format
to and from text

SYNOPSIS

| eaktool [-f filter file] [-o0 output file]
i nput_file

DESCRIPTION

LeakTool is afilter for Insight’s leak messages and summary reports.
LeakTool sortsleak messages (LEAK _SCOPE, LEAK _ASSI GN, etc.) in
descending order according to the size of the lost memory blocks. The
sorted leak messages are placed ahead of all other messages, which are
passed through unchanged. LeakTool aso sorts the memory leak
summary, if present.

LeakTool sorts a leak summary not by the size of individua memory
blocks, but instead by the total amount of memory allocated on each
source line. This allows the quick identification of the most severe leaks
in aprogram, even in alarge program containing many |leaks.

LeakTool reads from the file specified by i nput _fil e. It can read
either the text output generated directly by Insight or the binary report
files created by Insra, which have the default extension rpt. If
i nput _fileis'-’, LeakTool readstext from the standard input.

By default, LeakTool writestext to the standard output. If the- o option
isused, LeakTool instead creates a new Insra report file containing the
processed messages. This means that LeakTool can also be used to
convert Insra files to and from text (see the examples below).

OPTIONS

-f filter_file Filteranyleak messageswhichresulted, either directly

or indirectly, from calling the functions listed in
filter_file.Thegivenfilemust consist of a
whitespace-delimited list of function names.

379

sobed [enuep

(%3]
d)
(@)
@
ol
©
>
c
©
=

-0 output_file Sendtheprocessed output to anew Insra report file,

instead of the standard output. If out put _file
already exists, it is completely overwritten.

EXAMPLES

380

foo >& foo.txt
| eakt ool foo.txt

Processes the previously captured output filef 0o. t xt .
foo | & | eaktool -

Pipes datadirectly to LeakTool. The above two commands would result
in the same output from LeakTool.

| eakt ool -0 sorted.rpt foo.rpt

Processes an Insra report file, placing the result in a new, sorted Insra
report file.

echo “red white blue” > filter.txt
foo >& | eaktool -f filter.txt -

In the above example, any message which contains any of the function
names “red”, “white”, or “blue” in its stack trace would be filtered from
LeakTool’s output.

| eakt ool -0 foo.rpt foo.txt
Converts atext Insight output file to an Insra report file.

| eakt ool foo.rpt > foo.txt

Converts an Insra report file to text.

WARNING

Insight output customized using the error _format . psrc option
may not be recognized by LeakTool.

NOTES

When processing an Insra report file, LeakTool separates messages
from different programs, but merges messages from different runs of the
same program.

SEE ALSO

. psr ¢ (lists configuration options)

sobed [enuep

These commands are completely equivalent and build the program f oo
with the compiler gcc.

SEE ALSO

iic,ins_Id, .psrc (listsconfiguration options)

381

)
)
(@)
N NAME
c_g psl i c - Lynxinsure++ license manager
= SYNOPSIS
p= :
pslic
DESCRIPTION

This command is used to add or delete licenses for all LynxInsure++
tools. You will need to have write permission for the . psr c filein the
main LynxInsure++ installation directory before running this program.
If you need to call LynxIinsure++ for a password, you should be
prepared to run this command on the machine which will be running the
software.

OPTIONS

none

EXAMPLES
pslic
Modify the current licenses. The output will look something like this:

ParaSoft License Manager Version 1.0 (1/8/96)
Copyright (C 1996 by ParaSoft Corporation

Thi s programenabl es you to exanine or alter the
licenses for your ParaSoft tools.

Machi ne id: LYNX-72769549
Net wor k id: LYNX-80c03756

You have the followi ng tools installed:

I nsure++ 4.0

382

Current |icenses

1: Insure++ 4.0, Network LYNX-0x80000000,
expires Mar 29, 1996

sobed [enuep

Options:
(A)dd a license
(D elete a license
(Modify a license
(S) how machi ne and network id
(E)xit and save changes
(Quit without saving changes

Choose one:

Option (S) displays the Lynxinsure++ host ids for the current machine
and network. The output should look something like the following:

Machi ne id: LYNX-23003555
Net wor k id: LYNX-80c03756

SEE ALSO
psrcdunp

383

(%3]
d)
(@)
@
ol
©
>
c
©
=

NAME
psrcdunp - Search for and display all currently active. psr ¢ options

SYNOPSIS
psrcdunp [-a] [-t tool] [-vV]
DESCRIPTION

This command can be used to print out al . psr ¢ optionsthat are active
in the current directory when running a Lynxinsure++ or other related

toals.
OPTIONS
-a Displays all options from the various . psr c files.
-t tool Specifies which tool’ s options you would like to
display.
-V Displayseach . psr c filenameand path asitis
traversed, preceded by a‘#’ character.
EXAMPLES

psrcdunmp -t codew zard

Searches al . psrc files and prints al options which apply to
CodeWizard.

SEE ALSO

codewi zard,i nsi ght

384

<
Q
S
NAME c
L
t gsner ge - Merge Insight interface descriptions .o
Q
SYNOPSIS ‘%
tgsnerge [-d] tgsfilel tqgsfile2 .. @
[-o0 tgsout]
DESCRIPTION

This command mergesaset of Insight interfacefilesinto asingle output.
OPTIONS

-d Report any duplicateinterfaceswhich are discarded as
aresult of themerge (interfacesappearing in later files
will override those found earlier).

-0 tqgsout Names the output file.
tgsfilel ... Names of individual Insight interfacefilesthat will be
combined.
EXAMPLES

tgsnerge foo.tqs bar.tqs -o nylib.tqgs

Combines the two files f 00. t gs and bar . t gs into the single file
nmylib.tqgs.
SEE ALSO

iic,iiinfo

385

(79}
o
g
A NAME
© iic_body,iic_callback,iic_opaque_call back
E’ - Insight interface routines to specify callback
© functions.
=
SYNOPSIS
<type> iic_body <name>(<argunents>) { ... }

void iic_callback(void (*f)(),
void (*tenplate)());

void iic_opaque_call back(void (*f)());
WARNING

These functions may only be called from Insight interface modules
which are compiled with the special i i ¢ compiler. They may not be
inserted into regular code.

DESCRIPTION

These functions provide two ways of telling Insight that a function will
be used as a callback - being invoked from within some code whichisnot
compiled with Insight. Typical examples include code invoked from
utility functions such as qsort and scandi r, signa handlers, and
callback functions in the X Window System and other graphical user
interfaces.

It is important to note that Insight does not require that you specify the
behavior of callback functions. These routines are provided only to
enhance the error checking performed at callback invocations by adding
user-level checks.

The two methods described on this manual page are mutually exclusive
for each callback - you should either usethei i ¢_body method or the
i i c_cal | back method, but not both.

The i i c_body keyword may be inserted in the definition of any
function to indicate that it will be used in a callback role. Note that you
must provide interface specifications with the i i ¢_body specifier,
even if the source code for the indicated function will be compiled with

386

Insight, and that you must provide interfaces for every function that will
be used as a callback.

i i c_cal | back isused when specifying interfaces to functions which
install callbacks. It connects the user-supplied callback function pointer
with a “template” which is a statically declared interface function that
indicates the type and number of arguments expected by the callback,
and also any appropriate error checking that should be performed on
these arguments before invoking the callback.

In the simple (and common) case, in which you wish to simply make the
argumentsto the called function opaque beforeinvoking the callback, the
simpler interfacei i c_opaque_cal | back isprovided.

In this case, you need to specify the callback behavior only for the
functions which register the callbacks - you need take no action for the
functions which will actually be invoked as callback.

EXAMPLES

Assume that the function nyf unc1 isto be used as a callback function.
It has two arguments, both strings, and returns an integer result.

A suitable callback interface would be

int iic_body nyfuncl(char *pl, char *p2)
{

i i c_opaque(pl);

i i c_opaque(p2);

return nyfuncl(pl, p2);

Note that the interface makes both pointers opaque before invoking the
callback. This prevents Insight from generating spurious messagesin the
case that the runtime system passes pointers to the callback which are not
known to Insight.

Note that this method requires that you make a separate interface for
every function in your application which will be used as a callback.

The aternative to this approach is to make an interface to the routine

387

sobed [enuep

0
d)
(@)
@
ol
©
>
c
©
=

388

which registers the callback, using the iic_cal | back routine.
Assuming that the function i nst al | _cal | back is responsible for
this process we could, instead, make the following interfaces.

static int callback tenplate(char *pl, char *p2)
{

i i c_opaque(pl);

i i c_opaque(p2);

return call back_tenpl ate(pl, p2);

}

int install_callback(void (*func)())

{
iic_func(func);
iic_callback(func, callback_tenplate);
return install _call back(func);

}

This interface first declares a (static) template which shows how the
callback function will be invoked and also indicates the checks and/or
actions that should be performed on its arguments before its invocation.
It then usesthei i c_cal | back function to connect the user-supplied
function pointer argument and the callback template.

Since the template merely renders the arguments opaque before making
the callback call, this interface could be re-coded more simply as

int install_callback(void (*func)())

{
iic_func(func);
i i c_opaque_cal |l back(func);
return install _call back(func);
}

This approach requires that you make interfaces only for those functions
which register callback procedures.

WARNING

Theiic_cal | back function can only be used when the connection
between the function pointer and the callback template will be used
“immediately” and then dropped. For an explanation of what congtitutes
immediate use, consult the section “Whichtouse: i i ¢c_cal | back or
i i c_body? on page 114 of the LynxInsure++ User’s Guide.

Theiic_opaque_cal | back routineandi i c_body keywords do
not suffer from the same problems and can always be used.

SEE ALSO

iic

389

sobed [enuep

(%3]
d)
(@)
@
ol
©
>
c
©
=

NAME
iic_exit - Specify that a Insight interface routine will not
return.
SYNOPSIS
void iic_exit(void);
WARNING

This function may only be called from Insight interface modules which
are compiled with the special i i ¢ compiler. It may not be inserted into
regular code.

DESCRIPTION

Calling this function from an Insight interface function description
indicates to the system that the function will terminate. This allows
Insight to take any necessary precautions, such as closing open files and
making summaries.

EXAMPLES

Execute the commandi i whi ch exi t to see an example of the use of
this function.

SEE ALSO

iic

390

NAME

iic_declfunc,iic_func -Insightinterfaceroutinesto
mani pulate function pointers

sobed [enuep

SYNOPSIS

void iic_declfunc(void (*func)());

void iic_func(void (*func)());
WARNING

These functions may only be called from Insight interface modules
which are compiled with the special i i ¢ compiler. They may not be
inserted into regular code.

DESCRIPTION

i i c_decl func isusedtotell Insight that the argument is a pointer to
afunction.

iic_func isused in interface modules to check that the supplied
argument is a pointer to a function.

EXAMPLES

Both of these functions are used in the interface to the UNIX si gnal
function. Initially, i i ¢_func is used to check that the user-supplied
argument is a function pointer. The value returned by si gnal isthen
declared to be a function pointer with thei i ¢_decl f unc routine.

This is done so that when the user overrides the system’s default signal
handler with a custom one, the value returned will henceforth be
recognized to be a function pointer by Insight, even if its source code
was not compiled with thei nsi ght command.

SEE ALSO

iic

391

(%3]
d)
(@)
@
ol
©
>
c
©
=

NAME

iic_copy,iic_copyattr,iic_dest, iic_freeable,

SYNOPSIS

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

voi d

WARNING

iic_justcopy,iic_source,
iic_sourcei,iic_pointer,
iic_resize,iic_string-Insightinterface
routines to check data blocks

iic_copy(void *to, void *from
unsi gned | ong nbytes);

ic_copyattr(void *to, void *from

iic_dest(void *to,
unsi gned | ong nbytes);

ic_freeable(void *ptr);

ic_justcopy(void *to, void *from
unsi gned | ong nbytes);

iic_source(void *from
unsi gned | ong nbytes);

iic_sourcei(void *from
unsi gned | ong nbytes);

ic_pointer(void *ptr);

iic_resize(void *ptr,
unsi gned | ong newsi ze);

iic_string(char *str);

iic_string(char *str, int nbytes);

These functions may only be called from Insight interface modules
which are compiled with the special i i ¢ compiler. They may not be
inserted into regular code.

392

DESCRIPTION

These routines are used to check that memory blocks are large enough to
perform various operations.

sobed [enuep

iic_sourceandiic_dest simply check that theindicated block of
memory is large enough to read or write the indicated number of bytes,
respectively. iic_sourcei is equivalent to iic_source, but
performs an additional check that the block of memory is completely
initialized.

i i c_j ustcopy indicates to the system that the indicated number of
bytes will be copied between the two buffers. No checking is performed
on the two memory regions. This routine is mostly used to tell Invision
about the copy so that it can update its internal record of data values.

iic_copy essentialy combines the actions of iic_source,
iic_dest,andiic_justcopy to move data from one buffer to
another, checking both.

iic_copyattr copies the attribute properties (e.g., opague,
uninitialized, out of range) from one pointer to another. It is used to
ensure that a return value from a function has the same properties as
another pointer. For an example, seethe interfaceto st r cpy.

iic_resize isused to indicate to Insight that the memory block
indicated by the first argument has changed size.

Thei i ¢_stri ng routineexistsintwo forms. With only one argument,
it checks to see that the supplied pointer points to a valid, NULL
terminated string. With asecond argument, it checks at most that number
of characters before giving up. In either case, the number of charactersin
the string is returned, or -1 if some error prevents the string from being
checked successfully.

i i c_poi nt er simply checksthat the argument is avalid pointer.

i i c_freeabl e checksthat the pointer argument indicates a block of
dynamically allocated memory that could be freed. No other properties
of the block are checked.

393

EXAMPLES

These functions form the basis for most of the library checking
performed by Insight and can be found in many of the interface modules.

(%3]
d)
(@)
@
ol
©
>
c
©
=

Theuseof thei i c_stri ng functionsis most clearly demonstrated in
the interfaces for functionssuch asst r cpy, strncpy andstrl en.

SEE ALSO

iic

394

NAME
iic_alloc,iic_alloca, iic_alloci,iic_allocs,
iic_realloc,iic_save,iic_unalloc,
iic_unallocs
- Insight interface routines to allocate and free
memory blocks
SYNOPSIS

void iic_alloc(void *ptr,
unsi gned | ong si ze);

void iic_alloca(void *ptr,

unsi gned | ong si ze);
void iic_alloci(void *ptr,

unsi gned | ong si ze);

void iic_allocs(void *ptr,
unsi gned | ong si ze);

void iic_realloc(void *old, void *new,

unsi gned | ong si ze);

void iic_save(void *ptr);

void iic_unalloc(void *ptr);
void iic_unallocs(void *ptr);
WARNING

These functions may only be called from Insight interface modules
which are compiled with the special i i ¢ compiler. They may not be
inserted into regular code.

DESCRIPTION

These routines are used to indicate that routines all ocate and/or free areas
of memory. Thefirst four routines each indicate that their first argument

395

sobed [enuep

isapointer to si ze bytes of memory of various types, as follows:

(%3]

d)

(@)
@
ol

©

>

c

©

=

iic_alloc Uninitialized heap memory, such asthat returned from
the standard mal | oc routine.

iic_alloca Stack memory, such as that allocated with al | oca.

iic_alloci Initialized heap memory, such as that obtained from

thecal | oc function, or which hasbeen initialized by
the called routine itself.

iic_allocs Static memory. The pointer points to aregion of
statically allocated (probably global) memory.

iic_reall oc isused to indicate that a block has changed size and
(possibly) location.

i i c_save isusedto prevent Insight from diagnosing memory leakson
a block of memory. In certain situations (for example, the callbacks to
functions in windowing systems) a pointer is passed to alibrary routine
which memorizes it internally. This is indicated with the i i c_save
cal.

i i c_unal | oc indicates that the associated block has been freed.

iic_unallocs undoes the effect of a call toiic_allocs. No
checking is performed on the indicated block - it smply disappears.

EXAMPLES

The interfaces to standard routines such as nal | oc, cal | oc, and
f r ee use these routines.

SEE ALSO

iic

396

NAME
iic_opaque,iic_opaque_type,iic_opaque_subtype-
Insight interface routines to inhibit checking on
datatypes
SYNOPSIS

void iic_opaque(void *ptr);
voi d iic_opaque_type(<typenane>);

voi d iic_opaque_subtype(<typenane>,
<typetag>);

WARNING

These functions may only be called from Insight interface modules
which are compiled with the special i i ¢ compiler. They may not be
inserted into regular code.

DESCRIPTION

i i c_opaque can be used in any interface function to indicate that the
pointer should never be checked for errors.

iic_opaque_type and ii c_opaque_subtype may be caled
fromthei i c_st art up routine in an interface file to indicate that the
indicated structure type or subtype should never be checked.

SEE ALSO

iic

397

sobed [enuep

0
d)
(@)
@
ol
©
>
c
©
=

NAME
iic_input_format,iic_output format,iic_strlenf,
iic_vstrlenf -Insightinterfaceroutinesto
handle formatted 1/0
SYNOPSIS

void iic_input_format(char *format);
void iic_output format(char *format);
void iic_post_input_format(int ntokens);
int iic_strlenf(char *format, ...);

int iic_vstrlenf(char *format, va list v);

WARNING

These functions may only be called from Insight interface modules
which are compiled with the special i i ¢ compiler. They may not be
inserted into regular code.

DESCRIPTION

398

iic_input_format checks that the indicated string and the
arguments following it can be used asin a call to scanf . It should be
called before invoking the actual routine being checked to determine if
the argument types are valid. After calling the function, the routine
iic_post_input format canbe caled to check that none of the
arguments corrupted memory. Only nt okens arguments will be
checked, unless no argument is passed to
iic_post_input_ format,inwhichcaseal argumentsare checked

iic_output format checks that the indicated string and the
arguments following it can beused asinacal topri nt f .

iic_strlenf andiic_vstrlenf returnthelength of astring after

substitution of arguments according to thepr i nt f conventions.

EXAMPLES
iic_input_fornmat isusedintheinterfacetoscanf .
iic_output_format isusedintheinterfacetopri ntf.
iic_strlenfisusedintheinterfacetosprintf.

iic_vstrlenf isusedintheinterfacetovspri ntf.

SEE ALSO

iic

399

<
Q
5
c
L
U
Q
Q
D
(9]

)
)
(@)
N NAME
c_g iic_startup - Initialization module for Insight interfaces
= SYNOPSIS
= void iic_startup(void);
DESCRIPTION

A function with this name may be placed in any Insight interface file. It
contains calls which initialize important properties of the functions and
data structuresin that module. Any callsin thisfunction will be executed
prior to any interface code.

EXAMPLES

Executing the command
iiwhich iic_startup

lists al the interface files which containi i ¢_st art up routines, and
their contents.

SEE ALSO
iic
NAME

iic_c_string,iic_error,iic_expand_subtype,
iic_numargs,iic_warning -Insight
interface utility routines

SYNOPSIS
char *iic_c_string(char *string);
void iic_error(int code, char *fnt, ...);

voi d iic_expand_subtype(<typenane>,

400

<typetag>);
void iic_numargs(void);

void iic_warning(char *string);

WARNING

These functions may only be called from Insight interface modules
which are compiled with the special i i ¢ compiler. They may not be
inserted into regular code.

DESCRIPTION

iic_c_string converts astring into a format consistent with the C
language quoting conventions. It isuseful for formatting error messages.

i i c_error generatesastandard format Insight error message with the
indicated error code (either USER_ERROR or RETURN_FAI LURE).

i i c_expand_subt ype isused to implement “stretchy arrays’. The
two arguments specify a structure tag and subtype and tell Insight that
the indicated structure element can change at runtime.

i i c_numar gs returns the number of arguments with which afunction
has been called.

Cdlling i i c_war ni ng from an interface causes the indicated string to
be displayed every timethe function is called. This string appears during
compilation with the interface, not at runtime. It can be used to print
messages informing the user that some feature is not fully checked.

EXAMPLES

iic_c_stringandiic_error areusedin many of the supplied
interface functions. For one example, seethe interfaceto f open.

i i c_numar gs isusedintheinterfaceto scanf .

i i c_war ni ngisusedintheinterfacetothe UNIX i oct | functionto
indicate that the second and third arguments (which have widely varying

401

sobed [enuep

data types) will not be checked.

SEE ALSO

iic

(%3]
d)
(@)
@
ol
©
>
c
©
=

402

NAME
__dots___ - Placeholder for a variable argument list in
interface files.
SYNOPSIS
__dots__
WARNING

This value may only be used in Insight interface modules which are
compiled with the special i i ¢ compiler. It may not be inserted into
regular code.

DESCRIPTION

This pseudo-variableis used to indicate where in afunction argument list
the variable arguments indicated by the “...” notation should be
inserted.

EXAMPLES

Executethe commandi i whi ch pri ntf toseean example of the use
of thisfunction.

SEE ALSO

iic

403

sobed [enuep

sabed jenuep

404

| ndex

character 120

%, filename macro 122

%, error category macro 133

9%, filename macro 122

%, date macro 133

9D, filename macro 123

%, filename macro 123

9% , filename macro 133

%, full pathname macro 133

9%, hostname macro 133

9% , line number macro 133

9%, filename macro 123

%p, filename macro 123

%p, process ID macro 133

IR, filename macro 122

9% , filename macro 122

o, filename macro 122

% , filename macro 122

% , time macro 133

%/, filename macro 123

%, filename macro 123

.ins_origfileextension 138

. i nsight files119

. i nsi ght options
checki ng_uninit 19
sumari ze 13

. psr c options
assert _ok 41
aut o_expand 42
compile and runtime 124
conpi | e qualifier 124
compile time 126-142
compiled-in 125

denmangl e_net hod 143
exenane 144

coverage_swi t ches 51, 52, 149
error_format 32,33, 34,49

.tqi fileextension 371

. t gs fileextension 88, 101, 366, 371
.1 gs version (%), in filenames 122
.t gs version (%), in filenames 122

Index

exit_on_error 35
expand 42
free_trace 36
Insra 153-154

port 66

vi sual 64
interface_library 88,102
| eak_sort 47
| eak_trace 47
mal | oc_t race 36, 47
no qualifier 124
renane_files 71
report _banner 30
report_file 30,31, 50, 60, 61,

62

report_limt 34
report_overwite 30
runtime 142-152
runti me qudifier 124
signal _catch 83
signal _i gnore 83
sour ce_pat h 37
stack_i nternal 35,77,79
stack_limt 36
sumari ze 44, 46, 48, 51, 57
suppr ess 37, 38, 39, 115
suppr ess_out put 40
suppr ess_war ni ng 40
synbol _t abl e 35
trace 77,79
trace_banner 78
trace file78
unsuppr ess 39, 40, 41, 249

405

Index

<argument #> 157

<r et ur n>157

\ X escape sequence 131

__dots__ 110

__I NSI GHT__ pre-processor macro 53,
82

_Insight_cl eanup 82

_Insight _list_allocated_neno
ry 70,74

_Insight_nmem.info69,73

_Insight_ptr_info®69,73

_Insight_set_option120

_Insight _trap_error 71,81

16-bit machines 20

32-bit machines 20

64-bit machines 20

A

%, filename macro 122
adjacent memory blocks 8
al i as (error sub-category) 24, 183
Alpha, DEC 20
anonymous structures/unions 43
ANSI compilers 23
API
_Insight_cl eanup 82
_Insight _list_allocated_m
enory 70, 74
_Insight_nmem.i nfo69,73
_Insight_ptr_info®69,73
_Insight_trap_error 71
appending to report file 30
architecture (%&), in filenames 122
architectures 103, 120
<argunment #> 157
arguments
checking ranges 26
type checking 23-26
arrays
expandable 41, 126
assert _ok,. psrc option4l
aut o_expand 42

406

B

badcast . ¢ 165, 167, 197, 200

baddecl 1. ¢ 170
baddecl 2. ¢ 170
badf orni. ¢ 174
badf or n2. c 176
badf ornB. c 177
badf orn¥. c 180
badi nt. c 181
badpar nil. c 184
badpar nR. c 186
badpar n8. c 188
badpar mi. ¢ 190
badpar nb. c 192
bag. C94
bag. h 94
bag i.C95
bagi . C94
bbbbbbbbb 156
big-endian 20
bounds overflow 7, 155
breakpoints 81
bugsfunc. c 70
building interfaces 96
built-in

functions 130

types 130

variables 130
Bus error 81
byte swapping 20

C

%, error category macro 133

%, filename macro 122
call stack

memory allocation context 147

cal | oc 16, 105
case sensitivity 120
CC 143

checking_uninit,.insight

option 19
chunks, memory 46

client-server programming 31, 33

command line switches

iic 366

iiinfo 368

i iwhich37l

ins_|d374

i nsi ght 376

| eakt ool 379

psrcdunp 384

t gsner ge 385
comments, in configuration files 120
conpat i bl e (error sub-category) 24,

173, 183

compilation time (%), in filenames 123
conpi | e qudlifier,. psr c options 124
compile time warnings

C++25
compiler 127, 128, 367

using multiple 103
compiler (%), in filenames 122
compiler built-in

functions 130

types 130

variables 130
compiler switches, i nsi ght 376
compilers

using multiple 120
complex data types 107
configuration files

i nsi ght 29

old (. i nsi ght) 119
contacting Technical Support 3
context based error suppression 38
contributing interface modules 116
control-C 82
conventions 2
copy, READ UNI NI T_MEM

sub-category 17

copyw | d. c 194
Couri er font2
coverage_swi t ches 51, 52, 149
cross compiling 139
ctime 105
CTRL-C 82
customer sites 28
customer support 3, 106

Index

D

%d, date macro 133
oD, filename macro 123
%l, filename macro 123
dangerous bend icon 2
dangling pointers 15-16, 204
data representations 20
date (%), in error report banners 133
date and time, on error reports 33
debuggers

using Insight with 69
DEC Alpha 20
defaults

report style 29
diagrams, memory overflow 155
directories

names 120

searching for source code 36
disabling runtime checks 148
distributed programs 33
__dots__ 110
dynamic memory

common bugs 15

pointers to blocks 10

using Insight’slibrary 137

E

El NTR 27
enmacs, customizing error reports for 32
enabling error codes 40
endian-ness 20
environment variables
in filenames 103, 121, 123
error category (%€), in error report
banners 133
error codes 157-340
disabled 25, 158
enabled 158
enabling 40
first occurrence 34
sub-categories 38
suppressing messages 37
suppressing messages by context 38

407

Index

error report format
date (%6l macro) 133
error category (%€ macro) 133
filename (% macro) 133
hostname (% macro)f 133
line number (%4 macro) 133
pathname (% macro)f 133
process ID (% macro) 133
time (% macro) 133
error summaries 43
error_format 32,33, 34,49
errors
exiting after 35
in system calls 26
suppressing by context 38
examples
badcast . c 165, 167, 197, 200
baddecl 1. ¢ 170
baddecl 2. ¢ 170
badf orml. ¢ 174
badf or n2. c 176
badf or n8. ¢ 177
badf or mt. c 180
badi nt. c 181
badparml. c 184
badpar m2. ¢ 186
badpar n8. ¢ 188
badpar mt. ¢ 190
badpar nb. ¢ 192
bag. CY4
“bugs’ summary 45
bugsfunc. c 70
copyw | d. c 194
“coverage” summary 51
expdangl . c 205
expnul | . ¢ 207
exprange. c 202
expucnp. ¢ 213
expudi ff.c 216
expuptr. c 210
expw d1. c 316
expw d2. c 318
freebody. c 219
freedngl.c 221
freegl ob. c 224
freel ocl.c 227

408

freenull.c 230
freeuptr.c 233
freewild.c321
f uncbad. c 235
funcnul | . ¢c 237
funcuptr.c 240
funcwi | d.c 324
heapbad. c 243
hello.c5
hell02.c 8
hel l 03.c 10
hel |l o4.c 15
interfaces

c92

C++94
| eakasgn. ¢ 250
| eakfree.c 254
| eakret.c 257
“leaks’ summary 47
| eakscop. c 260
LeakTool 49
mymal . ¢ 93
mymal _i.c 92
mymal use. ¢ 92
par ndngl . c 266
parmul | . ¢c 269
par nr nge. ¢ 263
parmuptr.c 272
parmM d1. ¢ 327
parmd d2. c 329
readdngl . c 277
r eadi ndx. ¢ 274
readnul | . c 279
r eadover . C288
readovr 1. c 282
readovr 2. ¢ 284
readovr 3. ¢ 286
readuni 1. ¢ 292
r eaduni 2. ¢ 294
readuptr. c 296
readw d1. c 332
readw d2. c 334
retdngl . c 298
retfail.c 300
retinc.c 303
stretch2.c 43

trace.C79
unuasi gn. ¢ 305
unuvar . c 306
usererr.c 308
vi rtbadl. C311
virtbad2. C313
virtbad3. C312
war n. ¢ 247, 248
writdngl.c 344
writindx.c 341
witnull.c 346
writover.c 349
writuptr.c 351
writw dl.c 337
witw d2.c 339
exception handlers 81, 110
executable directory (%), in
filenames 123
executable name (%), in filenames 123
execution time (%B), in filenames 123
exit, after errors 35
exit_on_error 35
expand 42
expandable arrays 41, 126
expdangl . ¢ 205
expnul | . ¢ 207
EXPR_NULL 172
expr ange. c 202
expucnp. ¢ 213
expudi ff. c 216
expuptr.c 210
expw dl1. c 316
expw d2. c 318
extensions, see file extensions

F

%, full pathname macro 133
9% , filename macro 133
file extensions
.ins_orig138
.tqgi 371
. tgs 88, 101, 366, 371
file permissions 27
filename (96), in error report banners 133

Index

filenames 120
.t gs version (% macro) 122
.t gs version (% macro) 122
architecture (%@ macro) 122
compilation time (%a macro) 123
compiled with (%€ macro) 122
executabl e directory (%/ macro) 123
executable name (% macro) 123
execution time (%D macro) 123
expanding macrosin 103, 121
Insure++ version (%R macro) 122
Insure++ version (% macro) 122
process ID (% macro) 123
reports 30
unique numeric extension (%

macro) 123

using environment variables 123

files
limit on open 27
non-existent 27

first error 34

flexible arrays 41, 126, 134

fonts (in manual) 2

fork 31,33

fprintf,seeprintf

free 16, 75,105

free_trace 36

freebody. c 219

freedngl.c 221

freegl ob. c 224

freeing memory 15

freeing memory twice 15

freeing static memory 16

freel ocl.c 227

freenull.c 230

freeuptr.c 233

freewi |l d.c 321

f scanf , seescanf

fseek 26

funcbad. c 235

funcnul | . c 237

function
prototypes 23

function call stack
memory allocation context 147

function prototypes, used as interfaces 98

409

Index

functions
mismatched arguments 23-26
pointersto 8
return types, inconsistent 302
suppressing errorsin individual 38
funcuptr.c 240
funcwi | d. c 324

G

g++ 128

gcce 127, 143, 367

get env 105

get s checking 22

global variables 7

GNU emacs, customizing error reports
for 32

H

%, hostname macro 133
handlers, signa 81
heapbad. ¢ 243

hello.c5
hell02.c 8
hel | 03.c 10
hel l 04.c 15
help 3
hostname 33

hostname (%), in error report banners 133

/021, 27,81
ignoring return value 12
iic 88,101, 359
- conpi | er switch 366
-t switch 366
- v switch 366
iic_alloc 101, 104
iic_alloci 105
iic_allocs 105
iic_copy 101, 104

410

i c_dest 104
ic_error 87,104
i c_input_fornmat 110
i c_out put _format 110
i c_source 104
i c_sourcei 104
ic_startup 109
i c_string 105
ic_strlenf 110
i c_unal | oc 105
i c_war ni ng 247
i i nfo 103
i whi ch 98-101, 103, 105
nconpat i bl e (error sub-category) 24,
173, 183
incompatible declarations 21
inconsistent return types 302
.ins_ori g fileextension 138
__INSI GHT___ pre-processor macro 82,
53
i nsi ght
at customer sites 28
number of error messages 14
report file 30
runtime functions 69
using interface files 88
- Zoi switch 119, 125, 374, 376
- Zop switch 119, 125
. i nsight files119
. i nsi ght options
checki ng_uninit 19
sunmari ze 13
_Insi ght _cl eanup 82
_Insight_list_allocated_neno
ry 70, 74
_I'nsight _mem_i nfo 69,73
_Insight_ptr_info69,73
_Insight_set_option120
_Insight_trap_error 71
Insra 30, 51, 139, 148
. psr c options 153-154
port 66
vi sual 64
i nsra 139, 148
i nsra 139, 148
Insure++ version (9R), in filenames 122

Insure++ version (%), in filenames 122
i nt vs.| ong 132
interface_library 88,102
for multiple platforms 103, 121
PARASOFT variable 121
interfaces 91-116
contributing 116
examples
c92
C++94
getting started withi i pr ot o0 98
getting started withi i whi ch 100
interface functions 359-364
linkable 371
strategy for creating 96
writing 100
intermittent errors 17
interrupted system calls 27
interrupts 82

K

keyboard interrupt 82
keywords, in configuration files 120

L

% , line number macro 133
LEAK_ASSI GN 12

| eak_conbi ne 46
LEAK_FREE 12
LEAK_RETURN 12
LEAK_SCOPE 12

| eak_sort 47

| eak_trace 47

| eakasgn. ¢ 250

| eakfree.c 254

| eakret.c 257

leaks, memory 10-14

| eaks, sunmari ze keyword 46, 48
| eakscop. ¢ 260
LeakTool 48

| eakt ool 50, 51
libraries

Index

checking argumentsto 26
licenses 370, 382
line number (%), in error report

banners 133

linkable interfaces 371
linker switches, i ns_| d 374
linking with Insight 374, 377
little-endian 20
local variables 7
location

suppression errors at a specific 38
I ongvs.int 132
LynuxWorks, contacting 3

M

machineid 383
machine name 33
macros, pre-defined 53
mal | oc 7, 10, 16, 27, 105
using Insight’s 137
mal | oc_t race 36, 47
manual
conventions 2
mencpy 282
memory
adjacent blocks 8
alocation 15
blocks containing pointers 12
chunks 46
corruption 5, 155
dynamically alocated 10
leaks 10-14
leaks, summary of 46
overflow 23, 155
running out of 14
shared 27
usage summary 46
using uninitialized 17
merging report files 30
mismatched arguments 23-26
multiple return types 302
multiprocessing 33
mymal . ¢ 93
mymal _i.c 92

411

Index

nymal use. ¢ 92

N

9%, filename macro 123
network id 383

no qualifier, . psr ¢ options 124
non-existent files 27

number of error messages 14

O

opague data types 142
opague pointers 41
open file limit 27
orphaned memory 10-14
ot her (error sub-category) 173, 183
out of memory 14
out st andi ng, sunmari ze
keyword 46, 47, 48
overflow
bounds of object 7
diagrams 155
memory 23, 155
overwriting memory 7

P

%p, filename macro 123

%p, process ID macro 133

parallel processing 31, 33

PARM BAD_RANGE
overflow diagrams 156

par mdngl . ¢ 266

parmul | . ¢c 269

par nr nge. c 263

par muptr. c 272

parmM d1. ¢ 327

parmM d2. ¢ 329

passwords 370, 382

pathname (%4-), in error report banners 133

PC 20

performance 148

412

permissions, file 27
personal computers 20
poi nt er (error sub-category) 183, 192
pointer reassignment 10
pointers 8
dangling 15-16, 204
function 8
not equivalent to integers 20
NULL 8
reusing free' d blocks 15
uninitialized 8
unrelated 8
wild 320
port,Insra. psrc option 66
portability 165, 167, 196, 199
porting 103, 120
character 120
PPPPPPPPP 156
pre-defined macros
__INSIGHT__ 53,82
pre-processor symbols 53
printf 87,105, 110, 173-180, 362
printf checking21
process ID 33
process ID (%), in error report
banners 133
process ID (%), in filenames 123
production code 106
prototypes 23
prototypes, function, used as interfaces 98
. psr c options
assert_ok 41
aut o_expand 42
compile and runtime 124
conpi | e qudifier 124
compile time 126-142
compiled-in 125
demangl e_net hod 143
exenane 144
coverage_sw t ches 51, 52, 149
error _format 32,33, 34,49
exit_on_error 35
expand 42
free_trace 36
Insra 153-154
port 66

vi sual 64

interface_library 88,102

| eak_sort 47

| eak_trace 47

mal | oc_trace 36,47
no qualifier 124
rename_files 71
report_banner 30

report_file 30,31, 50, 60, 61,

62
report _limt 34
report_overwrite 30
runtime 142-152
runti me qualifier 124
signal _catch 83
signal _i gnore 83
source_pat h 37
stack_i nternal 35,77,79
stack_limt 36
sunmmari ze 44, 46, 48, 51, 57
suppress 37, 38, 39, 115
suppress_out put 40
suppress_war ni ng 40
synbol _tabl e 35
trace 77,79
trace_banner 78
trace_file78
unsuppr ess 39, 40, 41, 249

gsort 111

R, filename macro 122
9% , filename macro 122
read, READ_UNI NI T_MEM

sub-category 18

READ_OVERFLOW

overflow diagrams 155

READ _UNI NI T_MEM

comparison with

READ _UNI NI T_PTR 19

Index

copy sub-category 17
r ead sub-category 18
READ_UNI NI T_PTR
comparison with
READ_UNI NI T_MEM19
readdngl . c 277
readi ndx. c 274
readnul I . ¢ 279
readover . C288
readovr 1. c 282
readovr 2. c 284
readovr 3. c 286
readuni 1. c 292
readuni 2. ¢ 294
readuptr. c 296
readw d1. c 332
readw d2. c 334
real |l oc 16
rename_files 71
repeated errors 34
replacing mal | oc 137
report summaries 43
report _banner 30
report_file 30,31, 50, 60, 61, 62
report_limt 34
report_overwite 30
reports
appending to file 30
default behavior 29
directing to afile 30
filename generation 30
retdngl . c 298
retfail.c 300
retinc.c 303
<r et ur n> 157
return values
checking automatically 26
ignoring 12
RETURN_FAI LURE 16, 2627, 106, 209,
232, 271, 363
rrrrrrrrr 156
running out of memory 14
runtime checking 148
runt i me qualifier,. psr c options 124

413

Index

S

safelink 374, 377
scandir 111
scanf 173-180, 362
scanf checking 21
search for source code 36
shared memory 7, 27
si gn (error sub-category) 24, 173, 183
si gnal 110
signal handlers 81, 110
signal _catch 83
signal _i gnore 83
Signals 81-7?
16-bit machines 20
64-bit machines 20
si zeof operator 132
sorting leak summaries 48
source directories 36
sour ce_pat h 37
speed 148
sprintf,seeprintf
sqgrt 308
sscanf, seescanf
stack backtrace
memory allocation context 147
stack trace 29, 35
stack_i nternal 35,77,79
stack_limt 36
static variables 7
stderr 29,30
stretch2.c 43
stretchy arrays 41, 126, 134
strings
declaring in interfaces 359
errorsusing 17, 285
strncpy 17, 283
structure, variable length 41, 126
structures, anonymous 43
sub-categories 38
suffixes, seefile extensions
summaries 43
sorting 48
sumari ze 57
bugs 44

414

cover age 51

| eaks 13, 46, 48
support 3
suppr ess 37, 38, 39, 115
suppr ess_out put 40
suppr ess_war ni ng 40
suppressing

C++ warnings 40

error messages 37

warnings 40
sSuppressing error messages

by context 38
switches

iic 366

iiinfo 368

i iwhich371

ins_|d374

i nsi ght 376

| eakt ool 379

psrcdunp 384

t gsmer ge 385
synbol _tabl e 35
system cdls 26, 27
system name 33

T

od, filename macro 122
% , filename macro 122
% , time macro 133
technical support 3
termination on errors 35
32-bit machines 20
time (%), in error report banners 133
time and date, on error reports 33
Total Quality Software 27
.tqi fileextension 371
. 1 gs file extension 366, 371, 88, 101
trace 77,79
trace.C79
trace_banner 78
trace file78
tracing 77-7?
output to afile 78
turning on 77

typica output 77
type promotion 132
type-checking, viainterfaces 98
t ypedef checking 24, 183, 187
typefaces 2
typewiter font2

U

uninitialized memory 17
optionsin detection of 19
unintialized
pointers 19
uni on (error sub-category) 183
unions, anonymous 43
unrepeatable errors 17
unsuppr ess 39, 40, 41, 249
unuasi gn. ¢ 305
unused variables 19
unuvar . c 306
USER_ERROR 363
usererr.c 308
using interfaces 86

V

%/, filename macro 123
%, filename macro 123
variable arguments 110, 363, 364
variable declarations
incompatible 21
variable length structures 41, 126
variables
uninitialized 17
unused 19
verbose 375, 377
vfprintf 363
virtbadl. C311
virtbad2. C313
vi rtbad3. C312
vi sual , Insra. psr c option 64

Index

W

war n. ¢ 247, 248
warnings
compiletime 25
suppressing 40
wild pointers 320
wild-cards 37
writdngl.c 344
WRI TE_OVERFLOW
overflow diagrams 155
writindx.c 341
writing interfaces 96
writnull.c 346
writover.c 349
writuptr.c 351
writw dil.c 337
writw d2.c 339
WMWY 156

X

\ X escape sequence 131
X Window System 110, 111
Xt AddCal | back 113

Z

-ZI h,i ns_|I d switch 374

-ZI h,i nsi ght switch 376

- Zoi ,i ns_| d switch 374

- Zoi , i nsi ght switch 119, 125, 376
- Zop, i ns_| d switch 374

- Zop, i nsi ght switch 119, 125, 376
-Zsl ,ins_|I d switch 374

- Zsl i nsi ght switch 377

-Zvmi ns_| d switch 375

-Zvmi nsi ght switch 377

415

Index

416

	LynxInsure++ User’s Guide
	Table of Contents
	List of Figures
	Part I
	LynxInsure++ User’s�Guide
	Introduction
	Conventions used in this manual
	If you get stuck

	Insight
	Memory corruption
	Pointer abuse
	Memory leaks
	Should memory leaks be fixed?
	Finding all memory leaks
	Dynamic memory manipulation
	Strings
	Uninitialized memory
	Uninitialized memory detection options
	Unused variables
	Data representation problems
	Incompatible variable declarations
	I/O statements
	Mismatched arguments
	C++ compile time warnings
	Invalid parameters in system calls
	Unexpected errors in system calls
	Achieving Total Quality Software

	Insight Reports
	Default behavior
	The report file
	Customizing the output format
	Displaying process information
	Displaying the time at which the error occurred
	Displaying repeated errors
	Limiting the number of errors
	Changing stack traces
	Searching for source code
	Suppressing error messages
	Suppressing error messages by context
	Suppressing C++ warning messages
	Suppressing other warning messages
	Enabling error messages
	Opaque pointers
	“Stretchy” arrays
	Report summaries
	The “bugs” summary
	The “leak” summaries
	Sorting “leak” summaries with LeakTool
	The “coverage” summary

	Selective Checking
	Insra
	The Insra display
	Sending messages to Insra
	Viewing and navigating
	Deleting messages
	Rebuild/Kill process
	Viewing source files
	Selecting an editor
	Saving/loading messages to a file
	Help
	Troubleshooting

	Interacting with Debuggers
	Available functions
	Sample debugging session

	Tracing
	Turning tracing on
	Directing tracing output to a file
	Example

	Signals
	Signal handling actions
	Interrupting long-running jobs
	Which signals are trapped?

	Code Insertions
	Debugging the hard way
	An easier solution
	An example
	Using the interface
	Conclusions

	Interfaces
	What are interfaces for?
	A C example
	A C++ example
	The basic principles of interfaces
	Interface creation strategy
	Trivial interfaces - function prototypes
	Using iiwhich to find an interface
	Writing simple interfaces
	Using interfaces
	Ordering of interfaces
	Working on multiple platforms or with multiple compilers
	Common interface functions
	Checking for errors in system calls
	Using Insight in production code
	Advanced interfaces: complex data types
	Interface esoterica
	Callbacks
	Using iic_callback
	Using iic_body
	Which to use: iic_callback or iic_body?
	Conclusions

	Part II
	LynxInsure++ Reference Guide
	Configuration Files
	Format
	Working on multiple platforms or with multiple compilers
	Option values
	Filenames
	Options at runtime and compile time
	Using -Zop and -Zoi
	Compiled-in options
	Options used by Insight
	Options used by Insra

	Memory Overflow
	Overflow diagrams

	Error Codes
	Programming Insight
	Control routines
	Memory block description routines

	Interface Functions
	Manual Pages
	Index

