
3

TotalView User�s Guide
TotalView Version 4.0

DOC-0516-00

Product names mentioned in TotalView User�s Guide are trademarks of their respective manufacturers and are used
here only for identification purposes.

TotalView, TimeScan and Gist are trademarks of Dolphin Interconnect Solutions, Inc.

FLEXlm is a registered trademark of Globetrotter Software, Inc.

Copyright © 1996 - 1998 by Dolphin Interconnect Solutions, Inc. All rights reserved.
Copyright © 1996 by BBN Systems and Technologies, a division of BBN Corporation.
Copyright © 1987 - 2002, LynuxWorks, Inc. All rights reserved.

Printed in the United States of America.

All rights reserved. No part of TotalView User�s Guide may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise, without the prior written
permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; all such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for
any indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in all cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

Contents
CHAPTER 1:
Introduction 11
TotalView�s Advantages 12
TotalView�s Windows 14
Examining Source and Machine Code 16
Controlling Processes and Threads 16
Using Action Points 17
Examining and Manipulating Data 18
Distributed Debugging 19
Multiprocess Programs 20
Multithreaded Programs 22
Context-Sensitive Help 23

CHAPTER 2:
TotalView Basics 25
Starting TotalView 26
Using the Primary Windows 26
Using the Mouse Buttons and Menus 33
Scrolling Windows and Fields 34
Getting Help 37
Diving into Objects 37
Editing Text 38
Searching for Text 41
Using the Spelling Corrector 42
Saving the Contents of Windows 42
TotalView User�s Guide 3

Exiting from the TotalView Debugger 43

CHAPTER 3:
Setting Up a Debugging Session 45
Loading Executables 48
Attaching to Processes 50
Debugging Remote Processes 53
Detaching from Processes 55
Examining a Core File 56
Starting the Debugger Server for Remote Debugging 57
Determining the Status of Processes and Threads 68
Setting Search Paths 75
Setting Command Arguments 77
Specifying Environment Variables 78
Setting Input and Output Files 80
Monitoring TotalView Sessions 80

CHAPTER 4:
Debugging Programs 83
Finding the Source Code for Functions 86
Editing Source Text 87
Changing the Editor Launch String 88
Interpreting Status and Control Registers 89
Controlling Program Execution 90
Starting Processes and Threads 91
Examining Process Groups 92
Setting a Breakpoint 97
Continuing with a Specific Signal 102
Setting the Program Counter 103
Stopping Processes and Threads 105
Deleting Processes 106
Restarting Processes 106

CHAPTER 5:
Examining and Changing Data 107
Changing the Values of Variables 115
4 TotalView User�s Guide

Changing the Data Type of Variables 116
Displaying Array Slices 125
Changing Type Strings to Display Machine Instructions 130

CHAPTER 6:
Setting Action Points 133
Defining Evaluation Points and Conditional Breakpoints 140
Controlling Action Points 145
Saving Action Points in a File 150
Evaluating Expressions 150
Writing Code Fragments 152

CHAPTER 7:
Troubleshooting 159

CHAPTER 8:
X Resources 163

CHAPTER 9:
TotalView Command Syntax 175

CHAPTER 10:
TotalView Debugger Server Command Syntax 181
TotalView User�s Guide 5

6 TotalView User�s Guide

About This Guide
This guide describes how to use the TotalView Multiprocess Debugger,
a source-level and machine-level debugger with an easy-to-use
interface (based on the X Window System) and support for debugging
multiprocess and multithreaded programs. The guide assumes that you
are familiar with the C programming language, UNIX operating
systems, the X Window System, and the processor architecture of the
platform on which you�re running TotalView.

This guide covers the general use of TotalView on any platform. Most
of the examples and illustrations in this guide show TotalView running
on in a generic UNIX environment. To learn about the specifics of
running TotalView on your LynxOS platform, refer to the TotalView
Supplement for LynxOS Users.

Getting Started
To get started quickly with TotalView:

� Install the TotalView software as described in �Installing
TotalView� on page 1.

� Read �Introduction� on page 11 for an overview of TotalView.

� Learn the basics by reading �TotalView Basics� on page 25 and
�Compiling Programs� on page 46.
TotalView User�s Guide 7

Typographical Conventions
This guide uses the following conventions to present information:

bold An exact filename, command, or user
input.

italic A variable or a value that you supply.

typewriter Computer output; C and Fortran
programs.

Control-Z Press the keys simultaneously; for
example, hold down the Control key
and press the Z key.

Esc Z Press the first key and then the second;
for example, press the Escape key and
then press the Z key.

^Z Shorthand for Control-Z.

M-I Shorthand for Meta-I. (The Meta key
varies with your platform; usually it is
the Alt key.)

menu ? submenu Shorthand for a popup menu name and
submenu name.

[] Optional items in command syntax
descriptions.

. . . Repetition of the previous command
or input.
8 TotalView User�s Guide

Reporting Problems
If you experience any problems with TotalView, please contact
LynuxWorks Technical Support Monday�Friday (holidays excluded)
between 8:00 AM and 5:00 PM Pacific Time (LynuxWorks U.S.
Headquarters) or between 9:00 AM and 6:00 PM Central European
Time (LynuxWorks Europe).

LynuxWorks U.S. Headquarters
Internet: support@lnxw.com
Phone: 408-879-3940
Fax: 408-879-3945

LynuxWorks Europe
Internet: tech_europe@lnxw.com
Phone: (+33) 1 30 85 06 00
Fax: (+33) 1 30 85 06 06

World Wide Web
http://www.lynuxworks.com
TotalView User�s Guide 9

10 TotalView User�s Guide

0

CHAPTER 1:
Introduction
The TotalView debugger is part of a suite of software development
tools for debugging, analyzing, and tuning the performance of
programs, including multiprocess multithreaded programs. This
chapter highlights the features of TotalView and includes the following
sections:

� TotalView�s advantages

� TotalView�s windows

� Examining source and machine code

� Controlling processes and threads

� Using action points

� Examining and manipulating data

� Distributed debugging

� Multiprocess programs

� Multithreaded programs

� Context-sensitive help
TotalView User�s Guide 11

TotalView�s Advantages
TotalView provides many advantages over conventional UNIX
debuggers (such as dbx, gdb, and adb):

� You can learn TotalView quickly and be more productive because
of its graphical interface (based on the X Window System).
TotalView�s interface provides windows, pop-up menus, and a
context-sensitive help system. You can enter most commands
with the mouse. Further, with TotalView�s interface, you can
already see a lot of useful information without entering any
commands.

� You can debug multiprocess multithreaded programs because
TotalView can manage multiple processes, and multiple threads
within a process. TotalView displays each process in its own
window, showing the source code, stack trace, and stack frame
for one or more threads in the process. You can display all process
windows simultaneously and perform all debugging tasks across
processes.

Figure 1. You can debug remote programs over the network because
of TotalView�s distributed architecture, as shown in Figure 1. Remote
programs are programs that run on a different machine from
TotalView, while native programs are programs that run on the same
machine as TotalView.

Figure 1. Debugging a Remote Program

TotalView

Native executable Remote executable

Machine 2

Remote debugging

Native debugging

Network
12 TotalView User�s Guide

� You can debug distributed programs over the network because
TotalView can manage multiple remote programs and
multiprocess multithreaded programs simultaneously, as shown
in Figure 2. Distributed programs are programs that run on a
group of different machines.

� You can also cross debug programs using TotalView. Cross
debugging is similar to remote debugging and distributed
debugging, except that with cross debugging the host machine
and target machines are not of the same type. For example, a cross
debugging session might consist of a Solaris host machine and
several Intel x86 target machines.

� You can write source code fragments within TotalView and insert
them temporarily into the program you�re debugging. On some
platforms, you can write machine code fragments as well. This
feature can save you time in testing bug fixes.

� You can debug code that was not compiled with the �g switch or
for which you don�t have access to the source file because
TotalView provides machine-level debugging features.

� You can attach to running processes.

Figure 2. Debugging a Distributed Program

TotalView

Native executable

Machine 1

Distributed debugging

Network

Distributed executable

Machine 2

Distributed executable

Machine 3

Distributed executable

Machine 4
TotalView User�s Guide 13

TotalView�s Windows
TotalView displays extensive information in its windows, as shown in
Figure 3. Several commands may be required to display this with other
debuggers.

Figure 3. Sample TotalView Session

Root window

Process windows Variable window

Process groups window
14 TotalView User�s Guide

Figure 3 shows a sample TotalView session containing the following
windows:

Root Lists the name, location (if remote
process), process ID, status, and optionally
the list of threads for each process you are
debugging. Lists the thread ID, status, and
current routine executing for each thread.

Process Displays information about the process and
a thread within that process. Displays the
stack trace, stack frame, and source code
for the selected thread in a series of separate
panes. Optionally displays disassembled
machine code or interleaved source code
and disassembled machine code.

Process groups Displays the process groups for all of the
multiprocess programs you are debugging.

Variable Displays the address, data type, and value
of a local variable, register, or global
variable. Also displays the values (and
optionally, the machine-level instructions)
stored in a block of memory.

The process window provides very detailed information about a
process, including:

� The name, location (if remote process), process ID, and status of
the process

� The name, location (if remote thread), thread ID, and status of
the selected thread within the process

� The stack trace for the thread, with the selected routine
highlighted

� The stack frame for the selected routine

� The source code for the selected frame (providing the routine was
compiled with source line information) or disassembled machine
code
TotalView User�s Guide 15

� The current Program Counter (PC) for the selected stack frame,
which is represented by an arrow on the line number of source
code

� The breakpoints, evaluation points, and event points that are set
in the source or machine code, as shown in the source pane

� The list of threads that exist within the process

� The list of breakpoints, evaluation points, and event points that
are set in the process

Examining Source and Machine
Code
TotalView provides the following features for examining your code:

� �Dive� on functions

When you dive (press the right mouse button) on a function, its
source code is displayed in the source code pane of the process
window.

� Search for functions

You can search for functions using a dialog in the process
window.

Controlling Processes and Threads
For controlling processes and threads, the TotalView debugger offers
a full range of functions from the process window.

� Start and stop processes and threads

You can start, stop, resume, delete, and restart.
16 TotalView User�s Guide

� Attach to existing processes

TotalView provides a window for examining processes that are
not running under the debugger�s control. Attaching to one of
these processes is as easy as diving on it.

� Examine core files

When you start TotalView, you can load a core file and examine
it in the same way as any executable. Or, you can load a core file
any time during a TotalView debugging session.

� Change the way TotalView handles signals

TotalView provides a dialog for tailoring how signals are
handled. TotalView can stop the process and place it in the
stopped state, stop the process and place it in the error state, send
the signal on to the process, or discard the signal.

� Single step

You can single step through your program or step over function
calls. You can also continue execution to a selected source line
or instruction and continue execution until a function completes
execution.

� Reload the executable file

After editing and recompiling a program, you can reload the
executable file.

� Change the Program Counter (PC)

You can change the value of the PC to resume execution at a
different point in the program.

Using Action Points
TotalView provides a broad range of action points: points in a program
where you stop execution, evaluate an expression, or record an event.
TotalView User�s Guide 17

� Action points

You can set, delete, enable, disable, suppress, and unsuppress the
following kinds of action points at both the source level and
machine level.

� Breakpoints

� Conditional breakpoints, which are breakpoints that occur
only if a code fragment (expression) is satisfied

� Evaluation points, which are points where a code fragment
is evaluated

� Event points, which are points where an event is recorded
in an event log

� Expressions and code fragments

With the expression evaluation window and evaluation points,
you can write and evaluate fragments of code, including function
calls used by the current process. Depending on the platform, you
can write fragments in C, Fortran, or Assembler. On most
platforms, TotalView interprets code fragments, but on some
platforms, TotalView compiles the fragments.

Examining and Manipulating Data
The TotalView debugger also offers a number of useful functions for
examining and manipulating data in your program:

� Diving

You can examine data by �diving� (clicking the right mouse
button) into the variable or by issuing a command. You can
examine local variables, registers, global variables, machine-
level instructions, and areas of memory. In all cases, the debugger
displays the information about the variable, register, or memory
region in a separate variable window.
18 TotalView User�s Guide

� Changing values

You can edit the value of a variable or a memory location to
change it for the current running process.

� Changing types

You can edit the type strings of variables to display the data in
different formats.

Distributed Debugging
TotalView provides a distributed architecture that suits many different
operating environments, including:

� Remote programs running on a separate machine from TotalView

� Distributed programs running on a set of machines

� Multiprocess programs running on a multiprocessor machine

� Multiprocess programs running on a cluster of separate
homogeneous machines

� Client-server programs with the server running on one machine
type and the clients running on another machine type

The machine on which TotalView is running is known as the host
machine, while the machine on which the process being debugged is
running is known as the target machine. When the host and target
machines are the same, you can use TotalView as a native debugger.
When the host and target machines are different, you can use TotalView
as a distributed debugger. When you use TotalView as a distributed
debugger, it starts a process on each remote target machine. This process
is called the TotalView Debugger Server (tvdsvr), and TotalView
communicates with it using standard TCP/IP protocols (see Figure 4).

Note: Distributed debugging currently requires that all machines
have the same machine architecture and operating system.
TotalView User�s Guide 19

There are no differences in debugging distributed programs; TotalView
offers the same set of rich features as with native programs and
multiprocess programs.

For more information on distributed debugging, refer to:

� �Debug remote processes� on page 45

� �Start the debugger server for remote debugging� on page 45

� �TotalView Debugger Server Command Syntax� on page 181

Multiprocess Programs
The TotalView debugger has some special features for debugging
multiprocess programs. Note that all of the user interface and
debugging features that were discussed earlier in this chapter are also
available for multiprocess programs.

� Separate windows for each process

Each process has its own process window displaying information
for that particular process. You can monitor the status, thread list,
breakpoint list and source code, for each process in a multiprocess

Figure 4. The TotalView Debugger Server

TotalView

Native executable
TotalView Debugger Server

Remote executable

Target machine

Host machine

Network
20 TotalView User�s Guide

program. You don�t have to display all the process windows in a
multiprocess program; you can choose which process windows
to open and close.

� Sharing of breakpoints among processes

By setting options on the breakpoint in a parent process, you can
control whether or not the breakpoint is shared among the child
processes. You can also control whether or not all processes in
the group stop when any process in the group reaches the
breakpoint.

� Process groups

The TotalView debugger treats multiprocess programs as process
groups. If you debug several multiprocess programs at once, you
can view information about all process groups. You also can view
information about a particular multiprocess program by
requesting information about its process group. You can start and
stop an individual process group.

� Single event log containing information for all processes

The TotalView debugger logs significant events about each
process you are debugging. Thus, you can view the history of
your entire debugging session by scrolling through the event log
window.

� Automatically attach to child processes

If a program calls fork() or execve(), TotalView automatically
attaches to the child processes and includes them in the process
group.

� Multiple symbol tables

If you are debugging more than one executable at a time, TotalView
automatically handles the symbol table for each executable.
TotalView User�s Guide 21

Multithreaded Programs
Most modern operating systems support running programs with
multiple threads of execution. The implementation of threads varies
among operating systems, but most thread implementations share the
following characteristics:

� Shared address space

The threads share an address space (memory) with other threads.
They can read and write the same variables and can execute the
same code.

� Private execution context

Each thread has its own set of general-purpose registers and
floating-point registers (if applicable to the processor).

� Private execution stack

Each thread has a region of address space reserved for its
execution stack. This is typically a range of addresses in the
address space reserved for the thread�s stack. However, one
thread�s stack can be read and written by other threads sharing
the address space.

� Thread private data

Some operating systems (not all) allow a program to �declare�
thread private data. A program variable that is declared thread
private provides each thread its own copy of the variable. Changes
to the variable by one thread are not seen by the others. This
facility usually requires compiler and linker support, in addition
to operating system support.

TotalView supports debugging threaded applications on a variety of
operating systems. In most versions of UNIX-style operating systems
that support threads, a process consists of an address space and a list
of one or more threads. Other non-UNIX-style operating systems that
TotalView supports implement tasks or threads running in the memory
space of a computer, and have no facilities for multiple processes or
address spaces on a single machine.
22 TotalView User�s Guide

To handle this diversity, TotalView implements a general model of
address spaces and execution contexts. For conciseness, we use the
term thread to mean a thread or task with an execution context, and
process to mean an address space or computer memory that is capable
of running one or more threads.

Context-Sensitive Help
You can request help from every window in the TotalView debugger.
The help command displays context-sensitive information about the
window you are currently working in or the debugging operation you
are currently using. The debugger displays the information in a separate
help window, so you can scroll through the information as you debug
your program. As you make successive help requests, the debugger
displays the new information in the help window.
TotalView User�s Guide 23

24 TotalView User�s Guide

1

CHAPTER 2:
TotalView Basics
This chapter introduces you to the TotalView interface. You�ll learn
how to:

� Compile your program

� Start TotalView

� Use the primary windows

� Use the mouse buttons and menus

� Scroll windows and fields

� Get online help

� Dive into objects

� Edit text

� Search for text strings

� Use the spelling corrector

� Save the contents of windows

� Exit TotalView
TotalView User�s Guide 25

Compiling Programs
Before you start TotalView, you need to compile your program with
the �g compiler switch, which generates debugging information in the
symbol table. For example:

% gcc �g program �o executable

For more information on compiling your program for TotalView, see
�Compiling Programs� on page 46.

If necessary, you can debug programs that have not been compiled with
the �g compiler switch or programs for which you do not have the
source code. For more information, refer to �Examining Source and
Assembler Code� on page 84.

Starting TotalView
To start TotalView, use the totalview command with the name of your
program (filename):

% totalview filename

For more information on starting TotalView, see �Starting the
TotalView Debugger� on page 47.

Using the Primary Windows
When you start the TotalView debugger, two windows appear:

� The root window displays a list of all the processes that you are
debugging, and optionally a list of threads for each process (see
Figure 5). Until you start a process, the root window lists only
the name of the program with which you started TotalView.
26 TotalView User�s Guide

� The process window displays the thread list, action point list and
the selected thread of a particular process that you are debugging
(see Figure 6). The process window also displays the source code,
stack frame, and stack trace of the selected thread in that process.
Until you start the process, the process window displays only the
source code for the program.

To run your program:

1. Move your cursor to the process window.

2. In your source code, select a boxed line number with the left
mouse button to set a breakpoint on that line.

3. Type g.

The process starts running and then stops at the breakpoint you set.

Figure 5. Root Window

Collapse toggle Program name

Expand toggle

Thread list

Process location

Thread ID
Thread status

Process ID
Process status

Current routine
TotalView User�s Guide 27

L

When you are debugging a remote process, the abbreviated hostname
on which the process is running appears in square brackets in the root
window, and the full hostname appears in square brackets in the title
bar of the process window. For example, in Figure 5, the process
running txsignal is on the machine nikki.bbn.com, which is
abbreviated to [nikki.bb*] in the root window. In the process window,
the full hostname of the process [nikki.bbn.com] is displayed.

Figure 6. Process Window

Process status

Action points pane

Thread list pane

Tag field area

Current PC

Selected thread

Selected frame

Stack frame pane

Source code pane

Thread status
Stack trace pane

anguage of routine

Navigation controls
28 TotalView User�s Guide

As you examine the process window, notice the following:

� The thread list pane shows the list of threads that currently exist
in the process. The number in the thread list pane title is the count
of the number of threads that currently exist in the process. When
you select a different thread in the thread list, TotalView updates
the stack trace pane, stack frame pane, and source code pane to
show you the information for that thread. When you dive on a
different thread in the thread list, TotalView finds or opens a new
window displaying information for that thread. Holding down the
Shift key when you dive will force TotalView to open a new
process window focused on that thread.

� The stack trace pane shows the call stack of routines that are
executed by the selected thread. You can move up and down the
call stack by selecting the desired routine (stack frame). When
you select a different stack frame in the call stack, TotalView
updates the stack frame pane and source code pane to show the
information about the selected routine.

� The stack frame pane displays all the function parameters, local
variables, and registers for the selected stack frame.

� The information displayed in the stack trace and stack frame
panes reflects the state of the process when it was last stopped.
Therefore, the stack trace and stack frame panes are not current
while the thread is running.

� In the left margin of the source code pane, the tag field area
contains line numbers opposite all lines of source code. You can
place a breakpoint at any line of source code that generated object
code, which is indicated by a boxed line number. The arrow (➞)
in the tag field indicates the current location of the Program
Counter (PC).

� In a multiprocess or multithreaded program, each thread has its
own point of execution, so the right arrow (➞) points to a unique
PC in each process window for a particular thread. Therefore,
when you stop a multiprocess or multithreaded program, the
routine selected in the stack trace pane for a particular thread
depends on the PC for the thread. At the time you stop the
program, some threads might be executing in one routine, while
others might be executing in other routines.
TotalView User�s Guide 29

� The action point list pane shows the list of breakpoints, eval
points, and event points for the process.

� The navigation control buttons in the upper right-hand corner of
the process window allow you to easily navigate through the
processes and threads you are debugging.

You can resize the panes in the process window. If you do not want to
see a particular pane, you can resize the pane to a zero size. To do so:

1. Move the mouse cursor over the edge of the window pane until
the cursor with crossed arrows appears, as shown in Figure 7:

2. Hold down the left mouse button and drag the edge until the pane
is the desired size.

Navigating in
the Process
Window

The navigation control buttons in the upper right-hand corner of the
process window allow you to easily navigate through the processes and
threads you are debugging. Using these buttons you can:

� Move up and down the list of processes you are debugging.

� Move up and down the list of threads in a particular process.

� Go back to the previous contents of the process window.

Figure 7. The Sizing Cursor
30 TotalView User�s Guide

Figure 8 shows the navigation controls available in the process
window.

Navigating in
the Root
Window

You can also navigate through the processes and threads you are
debugging from the root window. In general, selecting a process or
thread with the left mouse button will not open a new window.
Selecting tries to minimize the number of open process windows.
However, diving (pressing the right mouse button) on a process or
thread will open a new process window if an exactly matching
process/thread combination could not be found. Finally, holding down
the Shift key when you dive will always open a new window.

� When you select a process in the root window, TotalView will
find or open a process window for that process. If a matching
window can�t be found, it will replace the contents of an existing
process window and show you the selected process.

� When you dive on a process in the root window, TotalView will
find or open a process window for that process. Holding down
the Shift key when you dive will force TotalView to open a new
process window focused on that process.

� When you select a thread in the root window, TotalView will find
or open a process window for that process and show you the
selected thread. If a matching window can�t be found, it will
replace the contents of an existing process window and show you
the selected thread.

Figure 8. Process Window Navigation Controls

Go back button
Previous process button
Next process button

Next thread button

Previous thread button
TotalView User�s Guide 31

� When you dive on a thread in the root window, TotalView will
find or open a process window for that process and thread
combination. Holding down the Shift key when you dive will
force TotalView to open a new process window focused on that
thread.

The Process
Window Stack

Whenever the process and/or thread is replaced in the process window,
the previous contents of the window are pushed onto a stack. The go
back button pops the stack and shows you the previous contents of the
process window. The process window stack is pushed in the following
cases:

� Select or dive in the thread list pane in the process window.

� Select or dive on any of the four process/thread previous/next
buttons in the process window.

� A select operation in the root window on a process or thread that
causes the contents of a process window to be replaced with the
selected process or thread.
32 TotalView User�s Guide

Using the Mouse Buttons and Menus
 The TotalView debugger uses a three-button mouse, as outlined in
Table 1.

The select button has a special function in the tag field area of the source
code pane. Selecting a line number for an executable line of code sets
a breakpoint at that line. TotalView displays a STOP sign in the tag
field. If a breakpoint has already been set, selecting the STOP sign
clears (deletes) the breakpoint. If an evaluation or event point has
already been set (indicated by an EVAL or GIST sign), selecting the
sign disables it. For more information on breakpoints, evaluation
points, and event points, refer to �Setting Action Points� on page 133.

Table 1. Mouse Button Functions

Button
Default
Position Purpose How to Use It

Select Left Select or edit object;
scroll windows and
panes

Move the pointer over the object
and click the button.

Menu Middle Display pop-up menu Move the pointer into the window
and hold down the button.

Select command from
menu

Move pointer down the menu
until the desired command is
highlighted, and release the
button.

Leave menu without
selecting command

Move the pointer off the menu and
release the button.

Dive Right Dive into object to
display information
about it

Move the pointer over the object
and click the button.
TotalView User�s Guide 33

Each TotalView window displays information and provides a pop-up
menu of commands for examining and manipulating the information.
Many commands have keyboard equivalents, which are displayed to
the right of the command on the pop-up menu. This manual displays
the keyboard equivalent for a command in parentheses: Go Group (G).
Some menus have submenus, which we indicate in the manual with
the ☛ symbol: Go/Halt/Step/Next ☛ Go Group(G).

The following commands are only available from the keyboard:

Control-L Repaints the current window.

Control-Q Exits from the debugger after you confirm.

Control-R Raises the root window.

Shift-Return Ends a field editor session. See �Editing
Text� on page 38.

Control-C Cancels the single-step operation and other
time-consuming operations, such as
searching for a string.

Scrolling Windows and Fields

Scrolling
Windows

You can use the scroll bars to scroll through the information in
TotalView windows and panes, as shown in Figure 9.

� To scroll one line at a time, click the Select mouse button (the
left mouse button) on the up or down arrows (at the top and bottom
of the scroll bar).

� To scroll one page at a time, click the Select mouse button above
or below the elevator box inside the scroll bar.

� To scroll an arbitrary amount, hold down the Select mouse button
and drag the elevator box inside the scroll bar.
34 TotalView User�s Guide

To scroll continuously by line or by page, you can hold down the Select
mouse button instead of clicking it. If TotalView scrolls too fast or too
slow, you can adjust the scrolling speed using X resources. Refer to
�totalview*scrollLineSpeed: n� on page 170 for further information.

You can also scroll windows using the keys on your keyboard�s
numeric keypad:

↑ Scrolls up one line.

Meta-↑ Scrolls up one page.

↓ Scrolls down one line.

Meta-↓ Scrolls down one page.

Page up Scrolls up one page.

Page down Scrolls down one page.

On some platforms, you may need to adjust your X Window System
keyboard mapping to use certain keys on the numeric keypad. Refer
to your platform-specific supplement, such as the TotalView
Supplement for LynxOS Users, for details.

Figure 9. Scroll Bar

Up arrow

Page-up region

Elevator box

Page-down region

Down arrow
TotalView User�s Guide 35

Scrolling
Multiline
Fields

You can scroll multiline fields in dialog boxes, allowing you to create
more lines than are visible. The bottom left corner of the multiline field
indicates your location in the field with the following symbols:

� All � All of the lines in the field are visible.

� Top � The top line of the field is visible, but there are more lines
below the bottom of the field that are not visible.

� Bot � The bottom line of the field is visible, but there are more
lines above the top of the field that are not visible.

� nn% � The percentage of the lines above the top of the field that
are not visible.

Figure 10 shows an example of a scrollable multiline field.

You can use the ↑ key or Control-P to move up a line in a multiline
field. You can also use the ↓ key or Control-N to move down a line
in a multiline field. When you move off the top or bottom of the field
and there are more lines above or below, the field scrolls automatically
by one line.

Figure 10. Scrollable Multiline Field
36 TotalView User�s Guide

You can scroll a multi-line field by more than one line at a time by
combining Control-U with any of the other commands for moving up
or down a line. When you precede an editing command with Control-
U, it repeats the command four Times New Roman. For example, if
you enter Control-U Control-P, the cursor moves up four lines.

Getting Help
You can request help from any TotalView window or dialog box by
selecting the Help command from the pop-up menu or by pressing
Control-?. When you request help, a separate help window appears.
To close the help window, select the Close Window (q) command
from the menu.

Diving into Objects
To display more detail about an object (such as a variable), you dive
into it by clicking the Dive mouse button. You can dive into any object
that has a block of data associated with it, such as a pointer, structure,
or subroutine. TotalView displays the information about the object in
the current window or in a separate window, as outlined in Table 2.

Table 2. Uses for Diving

Object Information Displayed by Diving

Process or thread A process window appears focused
on a thread. See �Using the
Primary Windows� on page 26.

Routine in the stack trace
pane

The stack frame and source code
for the routine appear in the
process window.
TotalView User�s Guide 37

For more information about diving, refer to �Diving in Variable
Windows� on page 114.

Editing Text
To edit the text in TotalView windows and dialogs, you use the field
editor, which is a basic text editor. To do so:

1. Select the text.

Pointer The referenced memory area
appears in a separate variable
window.

Variable The contents of the variable
appears in a separate variable
window.

Array element, structure
element, or referenced
memory area

The contents of the element or
memory area replace the contents
that were in the variable window.
This is known as a nested dive.

Subroutine1 The source code for the subroutine
appears in the process window.

1. A subroutine must be compiled with source line information
(usually, with the �g switch) for you to dive into it and see source
code. If the subroutine was not compiled with source line
information, the debugger displays the Assembler code for the
routine.

Table 2. Uses for Diving (Continued)

Object Information Displayed by Diving
38 TotalView User�s Guide

If you can edit the selected text, it is enclosed in a rectangle, and
the editing cursor (a black rectangle) appears, as shown in
Figure 11.

Figure 11. Editing Cursor

2. Edit the text and press Return (for single-line fields) or Shift-
Return (for multiline fields).

You can copy and paste text within TotalView windows, between
TotalView windows, or between TotalView windows and other X
Window System windows.

To copy text from a TotalView window into an X Window System
copy buffer:

1. Select the text or text field from which the text is to be copied by
clicking the Select mouse button.

2. Move the editing cursor to the beginning of the text to be copied.

3. Move the mouse pointer (not the editing cursor) to the end of the
text to be copied.

4. Hold down Control and click the Dive mouse button. Although
you do not see anything happen on the screen, the text between
the editing cursor and the mouse pointer is copied to an X Window
System copy buffer.

To paste text from an X Window System copy buffer into a TotalView
window:

1. Select the text or text field in which the text is to be pasted.

2. Move the editing cursor to the location where you want to paste
the text.

3. Move the mouse pointer (not the editing cursor) anywhere in the
text field.

Editing cursor

Selection box
0xf7fff764

Function “main”:
argc:
argv:

Local variables:
net_port:

Stack Frame

0x00000001 (1)

0x00000002 (2)

)

TotalView User�s Guide 39

4. Hold down Control and click the Menu mouse button. The text
is pasted into the field at the location of the editing cursor.

The field editor supports some of the same commands as GNU Emacs,
as outlined in Table 3.

Note: The preceding steps apply to copy and paste operations for
TotalView windows only, not to other X Window System
clients.

Table 3. Field Editor Commands

Keystrokes Action

Control-A Move the cursor to the beginning of the line.

Control-B Move the cursor backward one character.

Control-C Abort the field editor, and discard all changes.

Control-D Delete the character under the cursor.

Control-E Move the cursor to the end of the line.

Control-F Move the cursor forward one character.

Control-H, Backspace,
or Delete

Delete the previous character.

Control-K Delete all text to the end of the line, or delete a newline character.

Control-N Move the cursor to the next line (in fields with multiple lines only).

Control-O Insert a newline (in fields with multiple lines only).

Control-P Move the cursor to the previous line (in fields with multiple lines
only).

Control-U [n] Multiply the number of times the command is executed by n. n is
optional; the default is 4. Issue this command in combination with
another command. For example, to move the cursor forward 50
characters, you enter: Control-U 50 Control-F.
40 TotalView User�s Guide

Searching for Text
You can search for text strings in most TotalView windows. You can
use the following commands:

Search for String... (/) Searches forward in the window
for a text string. The debugger
prompts you for the string. The
search starts from the first line of
text that is visible in the window.

Search Backward for String (\) Searches backward in the window
for a text string. The search starts
from the last line of text that is
visible in the window.

Reexecute Last Search (.) Repeats the last forward or
backward search without
prompting for a string. The search
starts from the point where the last
search left off and continues in the
same direction.

Tab Space over to the next tab stop. (Tab stops are located every four
characters.)

Return For single-line fields, stop the field editor and deselect the field. In
dialog boxes, confirm the dialog box as if the OK, Continue or Yes
button was selected.
For multi-line fields, insert a newline.

Shift-Return For both single-line and multi-line fields, stop the field editor and
deselect the field. In dialog boxes, confirm the dialog box as if the
OK, Continue or Yes button was selected.

↑ , ↓ , ←, → Move up, down, backward, and forward one character.

Table 3. Field Editor Commands (Continued)

Keystrokes Action
TotalView User�s Guide 41

Using the Spelling Corrector
TotalView checks the spelling of text entries for certain commands. If
TotalView does not find the name you entered, it displays a dialog box
with the closest match, as shown in Figure 12.

You can edit the closest match, and then select OK to use it, Original
to get back the original text, or Abort to cancel.

To customize the behavior of the spelling corrector with X Window
System resources, refer to �totalview*spellCorrection: {verbose | brief
| none}� on page 173.

Saving the Contents of Windows
You can save the contents of most window panes as ASCII text. You
can save the contents in the following ways:

� Write it to a file. When you specify filename, TotalView creates
the file (if it does not exist) and overwrites its contents with the
text.

� Append it to a file. When you specify +filename, TotalView
creates the file (if it does not exist) and appends the text to the
end of it.

Figure 12. Dialog Box for Spelling Corrector
42 TotalView User�s Guide

� Pipe it to UNIX shell commands. When you specify |command...,
TotalView pipes the commands to /bin/sh for execution. You can
use a series of complex shell commands if desired. For example,
to ignore the top five lines of output, compare the current ASCII
text to an existing file, and write the differences to another file,
you specify:

|tail +5 | diff � filename > filename.diff

To save the contents of the current window pane:

1. Move the mouse pointer into the desired pane.

2. Select the Save Window to File... command.

3. Enter filename, +filename, or |command... in the dialog box.

4. Press Return.

To save a series of panes in a window, you can use the Reexecute Last
Save Window command. This command repeats the last Save
Window to File... command (including the information entered in the
dialog box) but for the current window pane.

Exiting from the TotalView
Debugger
You can exit from the debugger in two different ways:

� Press Control-Q in any window.

� Select the Quit Debugger (q) command in the root window.

In the dialog box, select yes or type y to confirm. To cancel the exit,
select no or type n.
TotalView User�s Guide 43

44 TotalView User�s Guide

2

CHAPTER 3:
Setting Up a Debugging
Session
This chapter explains how to set up TotalView sessions to suit your
needs. For example, you may need to examine a core file instead of a
process or pass arguments to your program. You�ll learn how to:

� Compile programs

� Start TotalView

� Load executables

� Attach to processes

� Debug remote processes

� Detach from processes

� Examine core files

� Start the debugger server for remote debugging

� Debug over a serial line

� Determine the status of processes and threads

� Handle signals

� Set search paths

� Set command arguments

� Specify environment variables

� Set input and output files

� Monitor your TotalView session
TotalView User�s Guide 45

Compiling Programs
Before you start to debug a program with the TotalView debugger, you
must compile the program with the appropriate switches and libraries
for your situation. Table 4 discusses some general considerations, but
you must check your TotalView platform-specific supplement (such
as the TotalView Supplement for LynxOS Users) to determine the exact
syntax and any other considerations for your platform.

Table 4. Compiler Considerations

Compiler Switch or
Library What It Does When to Use It

Debugging symbols switch
(usually �g)

Generates debugging
information in the symbol
table

Before debugging any
program with TotalView

Optimization switch (usually
�O)

Moves code around to
optimize execution of
program1

After you finish debugging
your program with
TotalView

Multiprocess programming
library (usually dbfork)

Uses special versions of the
fork() and execve() system
calls

Before debugging a
multiprocess program that
explicitly calls fork() or
execve()2

1. Some compilers don�t permit you to use the �O switch simultaneously with the �g switch. Even
if your compiler does permit this, we recommend against it. Although you can do some debugging
with the �O option on, your debugging session may produce strange results.

2. Refer to �Processes That Call fork()� on page 138 and �Processes That Call execve()� on
page 138.
46 TotalView User�s Guide

Starting the TotalView Debugger
The complete command syntax for starting the TotalView debugger is
as follows:

% totalview [filename [corefile]] [options]

where filename specifies the name of the object file to be debugged
and corefile specifies the name of the core file to be debugged.

Here are some of the most common ways of starting the debugger:

totalview Starts the debugger without
loading a program or core file.
Once in TotalView, you can load
a program by issuing the New
Program Window (n) command
from the root window.

totalview filename Starts the debugger and loads the
program specified by filename.

totalview filename corefile Starts the debugger and loads the
program specified by filename
and the core file specified by
corefile.

totalview filename �a args Starts the debugger and passes all
subsequent arguments (specified
by args) to the program specified
by filename. The �a option must
be the last option on the command
line.

totalview filename �grab Starts the debugger and grabs the
keyboard whenever it displays a
dialog box. You should use this
option whenever you start
TotalView with a window
manager that uses a �click-to-
type� model.
TotalView User�s Guide 47

totalview filename �remote hostname[:portnumber]
Starts the debugger on this host
and the TotalView debugger
server (tvdsvr) on the remote
host. Loads the program specified
by filename on the remote host
hostname for remote debugging.
You can specify a hostname or
TCP/IP address for hostname, and
optionally, a TCP/IP port number
for portnumber.

For more information on the totalview command, refer to �TotalView
Debugger Server Command Syntax� on page 181. For more
information on remote debugging, refer to �Debugging Remote
Processes� on page 53, �Starting the Debugger Server for Remote
Debugging� on page 57, and �TotalView Debugger Server Command
Syntax� on page 181.

Loading Executables

Loading a New
Executable

If you did not load an executable when starting TotalView, you can
load one at any time using the New Program Window command. To
do so, do the following:
48 TotalView User�s Guide

1. From the root window, select the New Program Window (n)
command. A dialog box appears, as shown in Figure 13.

2. Enter the name of the executable in the top section of the dialog
box. The name can be a full or relative pathname.

If you supply a simple filename, TotalView searches for it in the
list of directories specified with the Set Search Directory
command and specified by your PATH environment variable.

3. (Optional) If you prefer to create a brand new process instead of
reusing an existing one (the default), select the Create a new
process radio button.When you select this option, TotalView
creates a new entry in the root window for the process.

4. Press Return.

Figure 13. New Program Window Dialog Box

Note: If you use the New Program Window command to load the
same executable again, TotalView does not reread the
executable, and it reuses the existing symbol table. To have
TotalView reread the executable, you need to use the Reload
Executable File command, as described in the next section.
TotalView User�s Guide 49

Reloading a
Recompiled
Executable

If you have edited and recompiled your program during a debugging
session, you can reload your updated program without exiting from the
debugger. To do so:

1. Confirm that the current process has exited. If it has not, display
the Arguments/Create/Signal submenu and select the Delete
Process (^Z) command from the process window.

2. Confirm that duplicate copies of the process do not exist by
issuing the ps command in a shell. If duplicate processes exist,
delete them with the kill command.

3. Recompile your program.

4. In the process window, display the Arguments/Create/Signal
submenu and select the Reload Executable File command. The
debugger updates the process window with the new source file
and loads a new executable file. The next time you start the
process, the debugger uses the new executable file.

Attaching to Processes
If a program you are testing is hung or looping (or misbehaving in some
other way), you can attach to it with TotalView. You can attach to
single processes, multiprocess programs, and remote processes.

To attach to a process, you can either use the Show All Unattached
Processes or New Program Window commands.

Note: If the process or any of its children has called the execve()
routine, you may need to attach to it by creating a new program
window. The reason for this is that on some platforms
TotalView uses the ps command to obtain the name of the
executable file for the process. Since ps can give incorrect
names, TotalView might not be able to find the executable
for the process.
50 TotalView User�s Guide

To attach to a process using the Show All Unattached Processes
command, go to the root window and complete the following steps:

1. Select the Show All Unattached Processes (N) command.

The unattached processes window appears, as shown in
Figure 14. This window lists the process ID, status, and name of
each process that is not attached to the debugger and is associated
with your username.

If you are debugging a remote process in this session, the
unattached processes window also shows processes running
under your username on each remote hostname. You can attach
to any remote process listed. For more information on remote
debugging, refer to �Starting the Debugger Server for Remote
Debugging� on page 57 and �TotalView Debugger Server
Command Syntax� on page 181.

2. Dive into the process you wish to debug.

A process window appears. The right arrow points to the current
PC (where the program is executing or hung).

To attach to a process with the New Program Window (n) command,
follow these steps:

1. Get the process ID (PID) of the process by using the ps command
in a shell.

Figure 14. Unattached Processes Window

Remote
processes
TotalView User�s Guide 51

2. Issue the New Program Window (n) command from the root
window. A dialog box appears, as shown in Figure 15.

3. Enter the name of the executable in the top section of the dialog
box. The name can be a full or relative pathname. If you supply
a simple filename, TotalView searches for it in the list of
directories specified with the Set Search Directory command
and specified by your PATH environment variable.

4. Enter the process ID (PID) of the unattached process in the middle
section of the dialog box.

5. Press Return.

If the executable is a multiprocess program, the debugger asks
you if you want to attach to all relatives of the process. If you
want to examine all processes, select Yes.

If the process has children that called execve(), the debugger tries
to determine the correct executable for each of them. If the
debugger cannot determine the executables for the children, you
need to delete (kill) the parent process and start it again using
TotalView.

Figure 15. New Program Window Dialog Box
52 TotalView User�s Guide

Finally, a process window appears. The right arrow points to the
current PC (where the program is executing or is hung).

Debugging Remote Processes
You can begin debugging remote processes by either loading a remote
executable, or attaching to a remote process. Note that you cannot
examine remote core files.

Loading a
Remote
Executable

To load a remote program into TotalView, do the following:

1. Complete steps 1 to 3 in �Loading a New Executable� on page 48.

2. Enter the hostname or TCP/IP address of the machine on which
the executable should be running in the bottom section of the
dialog box, as shown in Figure 16.

Figure 16. New Program Window Dialog Box
TotalView User�s Guide 53

3. Press Return.

Attaching to a
Remote
Process

To attach to a remote process, complete the following steps:

1. Complete steps 1 to 4 on page 51 and page 52.

2. Enter the hostname or TCP/IP address of the machine on which
the executable should be running in the bottom section of the
dialog box.

Note: On some multiprocessor platforms, there will be additional
radio buttons in the lower section of the dialog box. You can
use these buttons for debugging programs that are running on
groups or clusters of processors. For information about these
radio buttons, refer to your platform-specific supplement,
such as the TotalView Supplement for LynxOS Users.

Note: If this method does not work, you might need to disable the
auto-launch feature for this connection and start the debugger
server manually. In step 2, as an alternative, you can specify
hostname:portnumber, where portnumber is the TCP/IP port
number on which the debugger server (tvdsvr) is
communicating with TotalView. For more information on this
alternative, refer to �Starting the Debugger Server for Remote
Debugging� on page 57.

Note: On some multiprocessor platforms, there will be additional
radio buttons in the lower section of the dialog box. You can
use these buttons for debugging programs that are running on
groups or clusters of processors. For information about these
radio buttons, refer to your platform-specific supplement,
such as theTotalView Supplement for LynxOS Users.
54 TotalView User�s Guide

3. Press Return.

Detaching from Processes
You can detach from any processes to which you have attached (that
is, processes that TotalView did not create) when you finish debugging
them. When you detach from a process, TotalView removes all
breakpoints that you set in that process.

To detach from a process:

1. If you want to send the process a signal, select the Set
Continuation Signal command. Choose the signal that
TotalView should send to the process when it detaches from it.
For example, to detach from a process and leave it stopped, set
the continuation signal to SIGSTOP.

2. Display the Arguments/Create/Signal submenu and select the
Detach from Process command.

Note: If this method does not work, you might need to disable the
auto-launch feature for this connection and start the debugger
server manually. In step 2, as an alternative, you can specify
hostname:portnumber, where portnumber is the TCP/IP port
number on which the debugger server (tvdsvr) is
communicating with TotalView. For more information on this
alternative, refer to �Starting the Debugger Server for Remote
Debugging� on page 57.
TotalView User�s Guide 55

Examining a Core File
If a process encounters a serious error and dumps a core file, you can
examine it from the debugger. TotalView provides two different
methods for examining a core file:

� You can start the TotalView debugger with the following
command:

% totalview filename corefile [options]

where corefile is the name of the core file.

� You can issue the New Program Window (n) command from
the root window. In the dialog box (shown in Figure 13 on
page 49), enter the name of the core file in the middle section of
the dialog, select the Core file radio button, and press Return.

The process window displays the core file, with the stack trace, stack
frame, and source code panes showing the state of the process when it
dumped core. The title bar of the process window specifies the signal
that caused the core dump. The right arrow (?) in the tag field of the
source code pane indicates the value of the PC when the process
encountered the error.

You can examine all of the variables to see their state at the time the
process found the error. For more information on examining variables,
refer to �Examining and Changing Data� on page 107.

If you start a process while you are examining a core file, the debugger
stops using the core file and starts a fresh process with the executable.

Note: You can debug only local core files. TotalView does not
support remote debugging of core files.
56 TotalView User�s Guide

Starting the Debugger Server for
Remote Debugging
Debugging a remote process with TotalView is identical to debugging
a native process except for the following:

� The performance of your session depends on the performance of
the network between the native and remote machines. If the
network is overloaded, debugging can be slow. In general, we�ve
designed remote debugging to work with the speeds encountered
on a LAN.

� TotalView works with another process running on the remote
machine, called the TotalView Debugger Server (tvdsvr), to
debug the remote process.

The rest of this section discusses the different ways you can start the
TotalView debugger server.

The
Auto-Launch
Feature

By default, TotalView automatically launches tvdsvr for you, which
is known as the auto-launch feature. The advantage of auto-launch is
that it makes it easy to start debugging remote processes�you don�t
need to take any action to start the debugger server.

If you want to know more about auto-launch, here is the sequence of
actions carried out by you, TotalView, and tvdsvr when auto-launch
is enabled:

1. With the New Program Window command, you specify the
hostname of the machine on which you want to debug a remote
process, as described in �Debugging Remote Processes� on
page 53.

2. TotalView begins listening for incoming connections.

Note: Remote debugging support is an option that you must
purchase separately.
TotalView User�s Guide 57

3. TotalView launches the tvdsvr process with the server launch
command. �The Server Launch Command� on page 58 describes
the command in detail.

4. The tvdsvr process starts on the remote machine.

5. The tvdsvr process establishes a connection with TotalView.

Figure 17 summarizes the actions carried out by the auto-launch
feature.

Auto-Launch
Options

If the auto-launch feature doesn�t work on your system, you can tailor
it as needed. Specifically, you can tailor the following items:

� The command used by TotalView to launch tvdsvr

� The arguments passed to the launch command or to tvdsvr

� The length of time TotalView waits (that is, the timeout) to
receive a connection from tvdsvr

� Whether or not the auto-launch feature is enabled

The only constraint in tailoring auto-launch is that tvdsvr must be
started on the remote machine with the �callback and �set_pw
arguments.

The Server
Launch
Command

By default, TotalView uses the following command string when it
automatically launches the debugger server:

rsh %R –n "cd %D && tvdsvr –callback %L –set_pw
%P"

Figure 17. Auto-Launch Feature

2. Listens

3. Invokes

4. tvdsvr starts5. Makes
connection

TotalView

tvdsvr

Remote executable

Target machine

Host machine

command
58 TotalView User�s Guide

With this command string, the rsh command invokes a shell on the
hostname specified by %R and invokes the commands enclosed in
quotation marks, where:

%R Expands to the hostname of the remote
machine that you specified in the New
Program Window command.

�n Causes the remote shell to read standard
input from /dev/null.

When the remote shell is started by rsh, it first changes to the %D
directory with the cd command:

%D Expands to the full pathname of the
directory to which TotalView is connected.

Note that the �cd %D� portion of the command assumes that the host
machine and the target machine mount identical filesystems. That is,
the pathname of the directory to which TotalView is connected must
be identical on both the host and target machines.

Next, the remote shell starts the TotalView Debugger Server with the
tvdsvr command and the following arguments:

�callback Establishes a connection from tvdsvr to
TotalView using the specified hostname
and port number.

%L Expands to the hostname and TCP/IP port
number (hostname:port) on which
TotalView is listening for connections
from tvdsvr.

�set_pw Sets a 64-bit password for security.
TotalView must supply this password
when tvdsvr establishes the connection
with it.

%P Expands to the password that TotalView
automatically generated.

To change the server launch command each time you start TotalView,
you can set an X resource. See �totalview*serverLaunchString:
command_string� on page 171 for more information.
TotalView User�s Guide 59

For the complete syntax of the tvdsvr command, refer to �TotalView
Debugger Server Command Syntax� on page 181.

Changing the rsh
Command

If desired, you can substitute a different command for rsh, but the
command must invoke the tvdsvr process with the arguments shown
(-callback and -set_pw).

For example, although the rsh command provides reasonable security,
your site may prefer to invoke remote processes with a more secure
command. As another example, you could even use a combination of
the echo and telnet commands:

echo %D %L %P; telnet %R

Once telnet establishes the connection to the remote host, you could
use the cd and tvdsvr commands directly, using the values of %D,
%L, and %P that were displayed by the echo command:

% cd directory

% tvdsvr �callback hostname:portnumber �set_pw
password

If you have no command for invoking a remote process, you cannot
use the auto-launch feature and should disable it.

For information on the rsh command, refer to the manual page supplied
with your operating system.

Note: If you�re not sure whether rsh works at your site, try the rsh
hostname command from an xterm, where hostname is the
name of the host on which you want to invoke the remote
process. If this command prompts you for a password, you
must add the hostname of the host machine to your .rhosts
file on the target machine for TotalView to invoke tvdsvr
properly.
60 TotalView User�s Guide

Changing the
Arguments

You can also change the command-line arguments passed to rsh (or
whatever command you select to invoke the remote process).

For example, if the host machine does not mount the same filesystems
as your target machine, it may need to use a different path to access
the executable to be debugged. If this is the case, you could change
%D to an appropriate directory on the target machine.

If your remote executable reads from standard input, you cannot use
the �n option with rsh because this causes the remote executable to
receive an EOF immediately on standard input. If you omit �n, the
remote executable reads standard input from the xterm in which you
started TotalView. Therefore, if your remote program reads from
standard input, you should invoke tvdsvr from an xterm window. Use
the following command string to launch the debugger server:

rsh %R –n "cd %D && xterm –display hostname:0 –e
tvdsvr –callback %L –set_pw %P"

Now, each time TotalView launches tvdsvr, a new xterm appears on
your screen to handle standard input and output for the remote program.

The Connection
Timeout

When TotalView automatically launches tvdsvr, it waits for 30
seconds to receive a successful connection from tvdsvr. If TotalView
receives nothing, it times out. If desired, you can specify a timeout of
anywhere between 1 and 3600 seconds (1 hour).

To change the timeout for every TotalView session, you can set an X
resource. See �totalview*serverLaunchTimeout: n� on page 171 for
more information.

Note: If you notice that TotalView fails to launch tvdsvr (as shown
in the xterm window from which you started TotalView)
before the timeout expires, you can press Control-C in any
TotalView window to have TotalView terminate the launch.
Otherwise, TotalView terminates the launch when the timeout
occurs.
TotalView User�s Guide 61

Disabling
Auto-Launch

If changing the auto-launch options will not make the auto-launch
feature useful for you, you can disable the auto-launch feature and start
tvdsvr manually. You can disable the auto-launch feature in several
different ways:

� When you change the auto-launch options, as described in
�Changing the Options� on page 62, deselect the TotalView
Debugger Server Auto Launch Enabled checkbox at the top of
the dialog box. This disables auto-launch for your current
TotalView session.

� Set an X resource that disables auto-launch, as described in
�totalview*serverLaunchEnabled: {true | false}� on page 170.
This disables auto-launch for every TotalView session.

Changing the
Options

To actually change the server launch command or the connection
timeout used by TotalView to launch tvdsvr, or to actually disable the
auto-launch feature entirely, you use the Server Launch Window
command. To do so:

1. From the root window, select the Server Launch Window menu
command. A dialog box appears, as shown in Figure 18.

2. Change the desired options.

Note: If you disable the auto-launch feature, you must start tvdsvr
before you load a remote executable or attach to a remote
process.

Figure 18. Dialog Box for Launching Debugger Server
62 TotalView User�s Guide

3. Press Return.

Starting the
Debugger
Server
Manually

If you cannot tailor the auto-launch feature to work on your system,
you can start the debugger server manually if needed. The disadvantage
of this method is that it is less secure: other users could connect to your
instance of tvdsvr and begin using your UNIX UID.

To start tvdsvr manually:

1. From the root window, select the Server Launch Window
command. A dialog box appears, as shown in Figure 18.

2. Deselect the TotalView Debugger Server Auto Launch
Enabled checkbox to disable the auto-launch feature.

3. Press Return.

4. Log in to the remote machine and start tvdsvr:

% tvdsvr �server

The tvdsvr command prints out the port number used and the
password assigned and then begins listening for connections. Be
sure to make note of the password; you�ll need to enter it later in
step 9.

If the default port number (4142) is not suitable, you need to use
the
�port or �search_port options with the tvdsvr command. For
details, refer to �TotalView Debugger Server Command Syntax�
on page 181.

5. From the process window in TotalView, select the New Program
Window command. A dialog box appears, as shown in Figure 13
on page 49.

Note: If you make a mistake or decide you want to revert to the
default option settings in the dialog, select the Defaults
button. You can revert to the default settings even if you used
an X resource to change the settings. Then, to apply the
original option settings, you need to select the OK button.
TotalView User�s Guide 63

6. Enter the name of the executable in the top of the dialog.

7. Enter the hostname:portnumber in the bottom of the dialog.

8. Press Return.

TotalView now attempts to establish a connection to tvdsvr.

9. When TotalView prompts you for the password, enter the
password that tvdsvr displayed in step 4.

Figure 19 summarizes the steps used when you start tvdsvr manually.

Figure 19. Manual Launching of Debugger Server

4. Listens

9. Makes
connectionTotalView

tvdsvr

Remote executable

Target machine

Host machine
64 TotalView User�s Guide

Debugging Over a Serial Line
In addition to debugging over a TCP/IP socket connection, TotalView
allows you to debug over a serial line. However, in cases where a
network connection exists, you will probably want to use TCP/IP
sockets remote debugging for better performance.

You will need to have two connections to the target machine. One
connection will be for the console and the other dedicated for use by
TotalView. Do not try to use one serial line; TotalView cannot share
a serial line with the console.

Figure 20 shows an example TotalView debugging session over a serial
line. In this example, TotalView is running on a host machine and
communicating over a dedicated serial line with the TotalView
Debugger Server running on the target host. A VT100 terminal is
connected to the target host�s console line, allowing you to type
commands on the target host.

Figure 20. TotalView Debugging Session over a Serial Line

TotalView

TotalView Debugger Server

Remote executable

Host machine
Console
Line

Serial
Line

Target machine

VT100
TotalView User�s Guide 65

Start the
TotalView
Debugger
Server

To start a TotalView debugging session over a serial line from the
command line, you must first start the TotalView debugger Server.

Through the console connected to the target machine, issue the
command to start the TotalView Debugger Server (tvdsvr) and specify
the name of the serial port device on the target machine. The syntax of
the TotalView Debugger Server command is:

% tvdsvr �serial device[:options]

where device is the name of the serial line device and options are
options to control the serial line on the target machine. The TotalView
Debugger Server will wait for TotalView to establish a connection.

For example:

% tvdsvr �serial /dev/com1:baud=38400

TotalView Debugger Server 4.0 (ICCDP protocol level 17,
rev 15)
Copyright 1998-2002 by LynuxWorks, Inc. ALL RIGHTS
RESERVED.
Copyright 1996-1998 by Dolphin Interconnect Solutions, Inc.
ALL RIGHTS RESERVED.
Copyright 1989-1996 by BBN Inc.

Currently the only option you are allowed to specify is the baud rate,
which defaults to 38400.

Starting
TotalView on a
Serial Line

Start TotalView on the host machine and include the name of the serial
line device. The syntax of the TotalView command is:

% totalview �serial device[:options] filename

where device is the name of the serial line device on the host machine,
options are options to control the serial line on the host machine and
filename is the name of the executable file. TotalView will connect to
the TotalView Debugger Server.

For example:
66 TotalView User�s Guide

% totalview �serial /dev/term/a test_pthreads

Currently the only option you are allowed to specify is the baud rate,
which defaults to 38400.

New Program
Window

To start a TotalView debugging session over a serial line when you are
already in TotalView, do the following:

1. Start the TotalView Debugger Server. See �Start the TotalView
Debugger Server� on page 66.

2. Issue the New Program Window (n) command from the root
window to display the New Program Window dialog box, shown
in Figure 21.

3. Enter the name of the executable file in the Executable file name
field.

4. Enter the name of the serial line device in the Program location
field, and select the Serial line radio button.
TotalView User�s Guide 67

5. Press Return or select OK.

Determining the Status of Processes
and Threads
Process and thread states are displayed in:

� The root window, for processes and threads

� The unattached processes window, for processes

� The process and thread status bars of the process window, for
processes and threads

� The thread list pane of the process window, for threads

Figure 21. New Program Window Dialog Box
68 TotalView User�s Guide

Process Status The root window displays a single character to identify the state of a
process. The process status in the root window takes the following
form:

[L] N S process_name

where [L] is the process location (present only for remote processes),
N is the process ID, S is the single-character representation of the
process state, and process_name is TotalView�s name for the process.

The unattached processes window lists all running processes that are
not attached to the debugger but are associated with your username.
The format of the information in the unattached process window is
similar to the format of processes in the root window. Process states
are specified with a single character.

The process status bar of the process window displays information in
the following format:

Process [L] N: process_name (state)

where [L] is the process location (present only for remote processes),
N is the process ID, process_name is TotalView�s name for the process,
and state is the state name of the process based on the state of its threads.

Thread Status The root window displays a single character to identify the state of a
thread. The thread status in the root window takes the following form:

T S in routine_name

where T is the TotalView assigned thread ID, S is the single-character
representation of the thread state, and routine_name is the name of the
routine in which the thread was executing when last stopped by
TotalView.

The thread list pane in the process window uses the same thread status
format as the root window.
TotalView User�s Guide 69

The thread status bar of the process window displays information in
the following format:

Thread N.T: process_name (state) <reason>

where N is the process ID, T is the TotalView assigned thread ID,
process_name is TotalView�s name for the process, state is the state
name of the thread, and <reason> is the reason the thread stopped.

Unattached
Process States

The state information for a process displayed in the unattached
processes window is derived from the system. The state characters
TotalView uses to summarize the state of an unattached process do not
necessarily match those used by the system.

Table 5 summarizes the possible states in the unattached processes
window.

Attached
Process States

The state of processes and threads that TotalView is attached to is
displayed in various windows.

Table 5. Summary of Unattached Process States

State
State
Character Meaning for a process

Running R Process is running or can run.

Stopped T Process is stopped.

Idle I Process has been idle or sleeping for more than 20
seconds.

Sleeping S Process has been idle or sleeping for less than 20 seconds.

Zombie Z Process is a �zombie,� a child process that has terminated
and is waiting for its parent process to gather its status.
70 TotalView User�s Guide

Table 6 summarizes the possible states for an attached process or
thread, and how the states are displayed.

The Error state usually indicates that your program received a fatal
signal from the operating system. Some signals, such as SIGSEGV,
SIGBUS, and SIGFPE may indicate an error in your program. You can
control how TotalView handles signals your program receives.

For more information on signals, refer to �Handling Signals� on
page 72.

Table 6. Summary of Attached Process and Thread States

State Name
State
Character Meaning for a thread and process

Exited or never
created

Blank Process only: does not exist.

Running R Thread: is running or can run.
Process: all threads in the process are running or can
run.

Mixed M Process only: some threads in the process are running
and some are not running, or the process is expecting
some of its threads to stop.

Error <reason> E Thread: is stopped because of error reason.
Process: one or more threads are in the Error state.

At Breakpoint B Thread: stopped at a breakpoint.
Process: one or more threads are stopped at a
breakpoint, but none are in the Error state.

Stopped <reason> T Thread: stopped because of reason, but not at a
breakpoint and not because of an error.
Process: one or more threads are stopped, but none
are in the At Breakpoint state and none are in the
Error state.
TotalView User�s Guide 71

Handling Signals
If your program contains a signal handler routine, you might need to
adjust the way the debugger handles signals. You can change the way
in which TotalView handles signals by using a dialog box (described
in this section), an X resource (see �totalview*signalHandlingMode:
action_list� on page 171), or a command-line option to the totalview
command (refer to �TotalView Command Syntax� on page 175).

By default, TotalView handles UNIX signals as outlined in Table 7.

Table 7. Default Signal Handling Behavior

Signals that are Passed Back
to Your Program

Signals that Stop Your
Program or Cause an Error

SIGHUP
SIGINT
SIGQUIT
SIGKILL
SIGALRM
SIGURG
SIGCONT
SIGCHLD
SIGIO
SIGVTALRM
SIGPROF
SIGWINCH
SIGLOST
SIGUSR1
SIGUSR2

SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGTERM
SIGTSTP
SIGTTIN
SIGTTOU
SIGXCPU
SIGXFSZ

Note: The SIGTRAP and SIGSTOP signals are used internally by
the TotalView debugger. If the process encounters any of
these signals, TotalView neither stops the process with an
error nor passes the signal back to your program. Further, you
cannot alter the way the debugger uses these signals.
72 TotalView User�s Guide

Some hardware registers can affect how signals are handled on your
platform, such as the SIGFPE signal and others. For more information,
refer to �Interpreting Status and Control Registers� on page 89 and
your platform-specific supplement, such as the TotalView Supplement
for LynxOS Users.

If the TotalView debugger�s defaults are not satisfactory, you can
change the signal handling mode. To do so, go to the process window
and complete the following steps:

1. Display the Arguments/Create/Signal submenu and select the
Set Signal Handling Mode... command. A dialog box appears,
as shown in Figure 22.

Figure 22. Dialog Box for Set Signal Handling Mode Command

Note: The set of signal names and numbers shown in the dialog box
are platform-specific. The dialog box displayed on your
platform may have additional signals and different signal
numbers.
TotalView User�s Guide 73

2. By default, when your program encounters an error signal,
TotalView stops all related processes and opens or raises the
process window. If you do not want this behavior, deselect the
appropriate checkboxes at the top of the dialog box.

3. Scroll the signal list to the desired signal.

4. For each signal listed in the dialog box, choose one of the
following signal handing modes by selecting its radio button:

Error Stops the process, places it in the error state,
and displays an error in the title bar of the
process window. If the Stop related
processes on error checkbox is selected,
the debugger also stops all related
processes. You should select this signal
handling mode for severe error conditions,
such as SIGSEGV and SIGBUS signals.

Stop Stops the process and places it in the
stopped state. Select this signal handling
mode if you want the signal to be handled
like the SIGSTOP signal.

Resend Sends the signal to the process. If your
program contains a signal handling routine,
you should use this mode for all the signals
that it handles. By default, the common
signals for terminating a process (SIGKILL
and SIGHUP) use this mode.

Note: If the processes in a multiprocess program encounter an error,
the debugger automatically opens a process window for only
the first process that encounters an error. Thus, if your
program has many processes, this feature prevents the screen
from filling up with process windows.
74 TotalView User�s Guide

Discard Discards the signal and restarts the process
without a signal.

5. Select OK to confirm your changes, Abort to cancel the changes,
or Defaults to return to the default mode settings.

Setting Search Paths
If your source code, executable or object files reside in a number of
different directories, you can set search paths in the debugger for these
directories with the Set Search Directory command. By default, the
debugger searches the following directories (in order) for source code:

1. The current working directory (.).

2. The directories you specify with the Set Search Directory
command, in the exact order you enter them in the dialog box.

3. If you specified a full pathname for the executable when you
started TotalView, it searches the directory specified.

4. The directories specified in your PATH environment variable.

These search paths apply to all processes that you are debugging, and
to all directory search situations in TotalView.

To use the Set Search Directory command, go to the process window
and complete these steps:

1. Display the Display/Directory/Edit submenu and select the Set
Search Directory... (d) command.

Note: Don�t use Discard mode for fatal signals, such as SIGSEGV
and SIGBUS. If you do, the debugger can get caught in a
signal/resignal loop with your program, with the signal
immediately recurring because of repeated reexecution of the
failing instruction.
TotalView User�s Guide 75

A dialog box appears, as shown in Figure 23.

2. Enter the directories in the order you want them searched,
separating each directory with a space. You can use multiple lines
if needed.

The current working directory (.) is the first directory listed in the
window. You can move the current working directory further
down the list, but if you remove it, TotalView inserts it at the top
of the list again.

You can specify relative pathnames, which are interpreted with
respect to the current working directory.

3. Select OK (or press Shift-Return).

Once you change the list of directories with the Set Search Directory
command, the debugger automatically searches again for the source
file that is currently displayed in the process window.

Figure 23. Dialog Box for Set Search Directory Command

Note: You can specify search directories that apply across
TotalView sessions with an X Window System resource.
Refer to �totalview*searchPath: dir1[,dir2,...]� on page 170.
76 TotalView User�s Guide

Setting Command Arguments
When the debugger creates a process, it passes one argument to the
program by default: the name of the file containing the executable code
for the process. If your program requires any arguments from the
command line, you must set these arguments before you start the
process. To do so, go to the process window and complete the following
steps:

1. Display the Arguments/Create/Signal submenu and select the
Set Command Arguments... (a) command. A dialog box
appears, as shown in Figure 24.

2. Enter the arguments to be passed to the program. Separate each
argument with a space, or place each argument on a separate line.
If an argument has spaces in it, enclose the whole argument in
double quotes.

3. Select OK (or press Shift-Return).

You can also set command-line arguments with the �a option of the
totalview command, as discussed in �Starting the TotalView
Debugger� on page 47.

Figure 24. Dialog Box for Set Command Arguments Command
TotalView User�s Guide 77

Specifying Environment Variables
You can set and edit the environment variables that TotalView passes
to a process when it creates the process. When TotalView creates a
new process, it passes a list of environment variables to the process.
By default, a new process inherits TotalView�s environment variables,
and a remote process inherits tvdsvr�s environment variables.

If the environment variable dialog is empty, the process inherits its
environment variables from TotalView or tvdsvr. If you add
environment variables to the dialog, the process no longer inherits its
environment variables from TotalView or tvdsvr, it only receives the
variables specified in the dialog box. Therefore, if you want to add to
the variables inherited from TotalView or tvdsvr, you must enter all
of the variables inherited into the dialog and then make your additions
in the dialog.

An environment variable is specified by: name=value. For example,
DISPLAY=unix:0.0 specifies an environment variable named
DISPLAY with the value unix:0.0.
78 TotalView User�s Guide

To add, delete, or modify the environment variables, go to the process
window and complete the following steps:

1. Display the Arguments/Create/Signal submenu and select the
Set Environment Variables command. Figure 25 shows the
dialog box.

In the dialog box, you must place each environment variable on
a separate line. TotalView ignores blank lines.

2. To change the name or value of an environment variable, edit the
line.

3. To add a new environment variable, insert a new line and specify
the name and value.

4. To delete an environment variable, delete the line. Deleting all
the lines causes the process to inherit TotalView�s or tvdsvr�s
environment.

5. Select OK (or press Shift-Return).

Figure 25. Environment Variables Dialog Box
TotalView User�s Guide 79

Setting Input and Output Files
Before beginning execution of the program you�re debugging,
TotalView determines how to handle standard input (stdin) and
standard output (stdout). By default, TotalView creates the program
so that it reads stdin from and writes stdout to the shell window from
which you started TotalView.

If desired, you can redirect stdin or stdout to a file. To do so, complete
these steps from the process window before you start executing your
program:

1. Display the Arguments/Create/Signal submenu and select
either Input from File... (<) or Output to File... (>). A dialog
box appears. Figure 26 shows the dialog for Input from File.

2. Enter the name of the file, relative to your current working
directory.

3. Select OK (or press Shift-Return).

Monitoring TotalView Sessions
The TotalView debugger logs all significant events occurring for all
processes you are debugging. To view the event log, go to the root
window and select the Show Event Log Window command. The event
log window displays a sequential list of events that you can scroll.

Figure 26. Dialog Box for Input from File Command
80 TotalView User�s Guide

Figure 27 shows the event log window.

Figure 27. Event Log Window
TotalView User�s Guide 81

82 TotalView User�s Guide

3

CHAPTER 4:
Debugging Programs
This chapter explains how to debug programs with TotalView. You�ll
learn how to:

� Examine source and assembler code

� Find the source code for functions

� Edit source text

� Change the editor launch string

� Interpret status and control registers

� Control program execution

� Start processes and threads

� Examine process groups

� Set a breakpoint

� Single step

� Step over functions

� Execute to a selected line

� Execute to the completion of a function

� Continue with a specific signal

� Set the program counter

� Stop processes and threads

� Delete processes

� Restart processes
TotalView User�s Guide 83

Examining Source and Assembler
Code
In the source code pane of the process window, you can display your
program in several different ways, as shown at the top of Table 8. If
you display Assembler in the source code pane, you can also display
addresses in two different ways, as shown at the bottom of Table 8.

Figure 28 on page 85 illustrates the effect of displaying Assembler
code in different ways in the source code pane. You can also display
Assembler instructions in a variable window. For more information,
see �Displaying Machine Instructions� on page 113.

Table 8. Ways to Display Source and Assembler Code

To Display This in the
Source Code Pane...

Select This from the
Display/Directory/Edit
Submenu...

Source code only (Default) Source Display Mode (Meta-s)

Assembler code only Assembler Display Mode
(Meta-a)

Source code interleaved with
Assembler code1

Interleave Display Mode
(Meta-i)

Absolute addresses for all
locations and references
(Default)2

Display Assembler by Address

Symbolic addresses (function
names and offsets) for all
locations and references2

Display Assembler
Symbolically

1. Source statements are treated like comments. You can set breakpoints, evaluation
points, or event points only at the machine level, not at the source level. Setting an
action point at the first instruction after a source statement, however, is equivalent to
setting a point at that source statement.

2. If an address matches the address of a function, TotalView displays the function
name.
84 TotalView User�s Guide

I
S
(

A
(

A
(

Figure 28. Different Ways to Display Assembler Code

References by function and offsetLocation by function and offset

Gridget (dotted grid)
indicates action point
can be set on instruction

nterleaved
ource/Assembler
absolute addresses)

ssembler Only
absolute addresses)

ssembler Only
symbolic addresses)

References by absolute addressLocation by absolute address
Source line

References by absolute addressLocation by absolute address
TotalView User�s Guide 85

Finding the Source Code for
Functions
You can search for the source code for a function called by your
program in two ways, providing the function was linked to your
program at compile time:

� Dive into the function in the source code pane.

� Display the Function/File/Variable submenu and select the
Function or File... (f) command. When prompted, enter the
function name in the dialog box.

If the TotalView debugger finds the source code, it displays it in the
source code pane. If the function was not compiled with �g, the
debugger displays the disassembled machine code for the function
instead of the source code. TotalView maps filename extensions to
source languages as shown in Table 9.

When you want to return to the original contents of the source code
pane, dive into the undive icon in the upper right corner of the pane.

Table 9. Source Language Mapping

File Extension Source Language

.cxx, .cc, .C C++

.F, .f Fortran

All others C

Note: By default, TotalView discards source line information from
header files. You can use the Edit Source Text command (see
�Editing Source Text� on page 87) or your favorite X Window
System client (such as xmore, vi, emacs) to display these files
while debugging. As an alternative, you can start TotalView
with the �nii (�no_ignore_includes) command-line option
to have it retain source line information from include files.
86 TotalView User�s Guide

Except for the file types shown in Table 10, TotalView discards source
line information from preprocessor files that generate #line directives
during preprocessing. To retain source line information from an include
file type or preprocessor file type not shown in Table 10, start
TotalView with the �ext extension command-line option. For example,
if your executable contains a preprocessed yacc file with a nonstandard
filename extension named input.xyz, you can specify that source line
information be retained for the .xyz extension as follows:

% totalview �ext .xyz

Editing Source Text
You can use the Edit Source Text (M-e) command on the
Display/Directory/Edit submenu to edit source files while you are
debugging. TotalView starts your editor on the source file being
displayed in the source pane of the process window.

TotalView uses the editor launch string to determine how to start your
editor. To change the value of the editor launch string, see �Changing
the Editor Launch String� on page 88.

Table 10. Built-In Preprocessor Extensions for which Source Line
Information Is Retained

File Extension Meaning

.C, .cpp, .cc, .cxx C++

.F Fortran preprocessed with /lib/cpp

.l, .lex lex

.y yacc
TotalView User�s Guide 87

Changing the Editor Launch String
You can change the editor launch string to control the way the debugger
starts your editor when you use the Edit Source Text command.

The editor launch string is processed by TotalView and expanded into
a command string that is then executed by the shell sh. This allows you
to configure exactly how the editor is started.

TotalView recognizes certain items in the launch string that are
expanded before the debugger starts your editor. The expanded items
are as follows:

%E Expands to the value of the EDITOR
environment variable, or to vi if EDITOR
if not set.

%N Expands to the line number in the middle
of the source pane. Use this option if your
editor allows you to specify an initial line
number at which to position the cursor.

%S Expands to the source file name displayed
in the source pane.

%F Expands to the font name with which you
started TotalView.

The default editor launch string is:

xterm -e %E +%N %S

which creates an xterm window in which to run the editor. If you use
an editor that creates its own X window, such as emacs or xedit, you
do not need to create the xterm window, and you should change the
editor launch string.

You can change the editor launch string by using one of the following
methods:
88 TotalView User�s Guide

� Using an X resource

Refer to �totalview*editorLaunchString: command_string� on
page 165 for more information.

� Using the Editor Launch String... command on the
Display/Directory/Edit
submenu of the process window.

Interpreting Status and Control
Registers
The stack frame pane in the process window lists the contents of CPU
registers for the selected frame (you may need to scroll down to see
them). To learn about the meaning of these registers, you need to
consult the user�s guide for your CPU and your platform-specific
supplement (such as the TotalView Supplement for LynxOS Users).

For your convenience, TotalView interprets the bit settings of certain
CPU registers, such as the registers that control the rounding and
exception enable modes. You can edit the values of these registers and
continue execution of your program. For example, you might do this
to examine the behavior of your program with a different rounding
mode.

Since the registers that are interpreted vary from platform to platform,
see your platform-specific supplement for information on the registers
supported for your CPU. For general information on editing the value
of variables (including registers), refer to �Displaying Areas of
Memory� on page 112.
TotalView User�s Guide 89

Controlling Program Execution
TotalView tries to give you as much control over your program�s
execution as possible. However, depending on the mix of capabilities
available in the target operating system and the characteristics of the
target operating system, some of TotalView�s commands are disabled
or behave differently.

Capabilities
and
Characteristics

Capabilities and characteristics for controlling threads and processes
vary among operating systems. The precise set of capabilities and
characteristics for a given system determines how TotalView behaves
when debugging a program on that system.

The following paragraphs summarize some of the capabilities and
characteristics that TotalView handles across all platforms. See the
platform-specific supplement, such as the TotalView Supplement for
LynxOS Users, for a description of the capabilities and characteristics
of your platform.

� Synchronous vs. Asynchronous Stop

Some operating systems implement a synchronous stop model
and others implement an asynchronous stop model. With the
synchronous stop model, when one thread in the process stops
for any reason, they all stop. With the asynchronous stop model,
only the thread that encounters the stop condition stops, and does
not affect the running state of the other threads.

� Allows Asynchronous Stop

Operating systems that allow asynchronous stop enable the
debugger to stop one thread without stopping all the threads in
the process. Without the asynchronous stop capability, the
debugger must stop all the threads in the process even if it only
wanted to stop one thread.

� Synchronous vs. Asynchronous Run

Some operating systems implement a synchronous run model and
others implement an asynchronous run model. With the
synchronous run model, when one thread in the process wants to
90 TotalView User�s Guide

run for any reason, they must all run. With the asynchronous run
model, only the thread that wants to run must be run.

� Allows Atomic Run

Some operating systems allow the debugger to atomically
continue a set of threads in a single operation. Without this
capability, the threads must be continued individually.

� Allows Read While Running

Some operating systems allow the debugger to read from (and
possibly write to) the process while one or more threads are
running. With this capability, TotalView can read (and possibly
write) the memory of the process regardless of the state of the
threads. Without this capability, TotalView must first stop all the
threads before attempting a read or write operation to the process.

� Allows Multithreaded Signal Delivery

Some operating systems allow the debugger to continue all the
threads in a process with their own signal values. With this
capability, you can set a continuation signal for each individual
thread, then continue the process. Without this capability, you
can specify only one thread in the process to receive a
continuation signal when the process is continued.

Starting Processes and Threads
To start a process, go to the process window and select one of the
following commands from the Go/Halt/Step/Next submenu.

Go Process (g) Creates and starts this process. If
the process already exists and is
stopped or at a breakpoint, this
command resumes execution.
Starting a process causes all
threads in the process to resume
execution.
TotalView User�s Guide 91

Go Group (G) Creates and starts this process and
all other processes in the
multiprocess program (program
group). If the process already
exists and is stopped or at a
breakpoint, this command
resumes its execution and the
execution of all processes in the
program group.

Note that issuing Go Group on a
process that�s already running
starts the other members of the
program group.

Go Thread (^G) Starts this thread. Disabled if
asynchronous run is not available
(see �Synchronous vs.
Asynchronous Run� on page 90).

For a single-process program, Go Process and Go Group are
equivalent. For a single-threaded process, Go Thread and Go Process
are equivalent.

If you want to change global variables after a process is created, but
before it runs, you can use one of the following commands from the
process window:

Arguments/Create/Signal * Create Process (without starting it) (C)
Creates the process image, but
does not start the process.

Go/Halt/Step/Next * Step (source line) (s)
Creates the process and runs it to
the first line of the main() routine.

Examining Process Groups
When you debug multiprocess programs, TotalView places processes
in process groups for convenience. TotalView�s process groups are not
related to UNIX process groups or PVM groups in any way.
92 TotalView User�s Guide

Types of
Process
Groups

When you start a multiprocess program, the debugger adds each
process to a process group as the process starts. The debugger groups
the processes depending on the type of system call (fork() or execve())
that created or changed the processes. There are two different types of
process groups:

Program Group Includes the parent process and all related
processes. A program group includes
children that were forked (processes that
share the same source code as the parent)
and children that were forked but with a
subsequent call to execve() (processes that
do not share the same source code as the
parent).

Share Group Includes only the related processes that
share the same source code.

In general, if you are debugging a multiprocess program, the program
group and share group differ only if the program has some children
that are forked with a subsequent call to execve().

Commands that contain the term group (such as Go Group) refer to
all members of the program group. The term relatives generally refers
to the program group as well.

The debugger names the processes in program groups and share groups
according to the name of the source program. The parent process is
named after the source program. Child processes that were forked have
the same name as the parent, but with a numerical suffix (.n). Child
processes that call execve() after they were forked have the parent�s
name, the name of the new executable (in angle brackets), and a
numerical suffix.
TotalView User�s Guide 93

For example, if the generate process forks no children and the filter
process forks a child process, which makes a subsequent call to
execve() to execute the expr program, the debugger names and groups
the processes as shown in Figure 29.

Displaying
Process
Groups

The root window displays the names of individual processes in
multiprocess programs, but not the process groups. To display a list of
process groups, select the Show All Process Groups command from
the root window. The process groups window appears, as shown in
Figure 30.

Process Groups Process Names Relationship

filter
filter.1

filter<expr>.1.
1

generate

parent process #1
child process #1

grandchild process #1

parent process #2

Figure 29. Example of Program Groups and Share Groups

Share Group 1Program
Group 1

Share Group 2

Program
Group 2

Share Group 3

Figure 30. Process Groups Window

Type of process group Dive into process
group to display single
process group window

Group numberName of executable
94 TotalView User�s Guide

If you dive into any process group listed in the window, a single process
group window appears, as shown in Figure 31. By diving into any
process listed in the window, you display the process window for the
process. (You can also dive into the process listed in the root window
to display its process window.)

Changing
Program
Groups

In most situations, TotalView places a process in the correct program
group, so you do not normally need to change the program group of a
process.

If necessary, however, you can move processes into different program
groups. When you move a process into a different program group,
TotalView automatically places it in the correct share group. The
advantage of moving a process into a different program group is that
members of the same program group can start and stop on a breakpoint
at the same time. Furthermore, members of the same share group share
the same set of action points.

To move a process into a different program group:

Figure 31. Single Process Group Window

State
Process name

Process ID Dive into process
to display
process window

Note: TotalView uses the name of the executable to determine the
share group to which the program belongs. TotalView does
not examine the program in any way to see if it is identical to
another program with the same name: TotalView assumes the
programs are identical based on their names being identical.
Also, TotalView does not expand a program�s full pathname,
so if one instance of a program is named with the full
pathname (./foo), and another is named with the leaf name
(foo), the programs will be placed into different share groups.
TotalView User�s Guide 95

1. From the root window, select Show All Process Groups. The
process groups window appears.

2. Make note of the group ID number for the program group into
which you�re moving the process. This number is displayed in
parentheses.

3. From the process window for the process to be moved, display
the Arguments/Create/Signal submenu, and select Set Process
Program Group. A dialog box appears, as shown in Figure 32.

4. Enter the group ID number into the dialog box and press Return.

Finding Active
Processes

Although a well-balanced multiprocess program distributes work
evenly among processes, this situation does not always occur in
practice. In some multiprocess programs, most of the active processes
may be waiting for work. In this situation, it�s tedious to look through
the entire group to find the processes that are doing work. Instead, you
can use the Find Interesting Relative command to find them quickly.

When you display the Current/Update/Relatives submenu and select
the Find Interesting Relative command from the process window:

� A process group window appears, listing the processes in
decreasing order of interest.

� A process window appears for the most interesting process in the
group (if it does not already have a process window open).

To see additional process windows for processes in decreasing order
of interest, select the Find Interesting Relative command again, or
dive into the processes listed in the process group window.

Figure 32. Dialog Box for Changing Process Groups
96 TotalView User�s Guide

TotalView uses the following criteria to determine the order of interest:

� Running processes are more interesting than stopped processes.

� Processes with threads at breakpoints are more interesting than
those that are stopped at arbitrary locations.

� Processes with threads with deep (larger) stacks are more
interesting than processes with shallow (smaller) stacks.

� Processes with threads with unusual PCs are more interesting than
processes with threads with identical PCs. (The debugger
examines all the threads and produces a histogram of their PCs
to determine this.)

Setting a Breakpoint
You can set breakpoints in your program by selecting the boxed line
numbers in the source code pane of the process window. A boxed line
number indicates that the line generates executable code. A STOP icon
over the line number indicates that a breakpoint is set on that line. To
clear a breakpoint, select the STOP icon.

When your program reaches a breakpoint during execution, it stops.
You can then resume execution in a number of different ways:

� Single step

� Step over a function

� Run to a selected line

� Run to the completion of the current function

� Continue with a specific signal

These techniques are described in the sections that follow.

TotalView provides additional features for working with breakpoints
and also provides evaluation points (conditional breakpoints) and event
points. For more information, refer to �Setting Action Points� on
page 133.
TotalView User�s Guide 97

Single Stepping
TotalView implements a variety of single stepping commands. The
debugger allows you to:

� Single step at the source line level or the machine instruction level

� Single step over or into function calls

� Run to a selected line, which is a temporary breakpoint facility

� Run until a function call returns

These commands are TotalView�s high-level single stepping
commands.

Whenever possible, TotalView tries to single step a single thread, but
depending on the capabilities of the target operating system, the single
stepping command will behave differently (see �Synchronous vs.
Asynchronous Run� on page 90).

� On asynchronous run systems

On target operating systems that support starting and stopping a
single thread in a multithreaded program, the TotalView single
stepping commands will single step a single thread.

� On synchronous run systems

On target operating systems that do not support starting and
stopping a single thread in a multithreaded program, TotalView
must implement single stepping commands by running the entire
process, which may lead to surprising results.

Since thread scheduling is performed by the operating system,
threads other than the one you are trying to single step will run,
and possibly encounter a breakpoint, signal or exception before

Note: Because the debugger implements the high-level single
stepping commands by using temporary breakpoints. It is
possible that a running thread other than the one being single
stepped will hit the temporary breakpoint causing it to stop.
98 TotalView User�s Guide

the thread you are trying to single step executes any instructions.
When this happens, TotalView will switch focus to the thread
that encountered the condition.

Stepping Into
Functions
Calls

To execute a single statement or instruction, and possibly step into a
function call, go to the process window and select one of the following
commands from the Go/Halt/Step/Next submenu:

Step (source line) (s) Executes a single source
statement. If the thread is
executing in a function that has no
source line information,
TotalView performs a Step
(instruction) instead.

Step (instruction) (i) Executes a single machine
instruction.

If your program reaches a breakpoint while executing a single step,
TotalView cancels the single step and your program stops at the
breakpoint.

Stepping Over
Function Calls

If you single step through a statement that contains a function call, you
step into the function, providing there is debugging information
available for it. If desired, you can single step over a function call.
When you step over a function, TotalView stops execution when the
thread returns from the function and reaches the source line or
instruction after the function call. To do this, go to the process window
and select one of the following commands from the
Go/Halt/Step/Next submenu.

Note: To cancel a single step in progress, position the mouse pointer
in the process window and press CTRL-C.

Note: You cannot debug inside template functions. When you step
into a template function, TotalView usually displays
Assembler code, although in some cases, it may display
source code.
TotalView User�s Guide 99

Next (source line) (n) Executes a single source
statement and steps over any
function calls. If the thread is
executing in a function that has no
source line information,
TotalView performs a Next
(instruction) instead.

Next (instruction) (x) Executes a single machine
instruction and steps over
function calls.

If your program reaches a breakpoint while stepping over a function,
TotalView cancels the operation and your program stops at the
breakpoint.

Executing to a
Selected Line

You don�t have to set a breakpoint to stop execution on a specific line.
TotalView provides a convenient way for you to execute a thread to a
selected line. To do so, complete these steps from the process window:

1. In the source code pane, select the source line or instruction on
which you want the program to stop execution.

2. Display the Go/Halt/Step/Next submenu and select the Run to
Selection (r) command.

TotalView executes the thread and stops when it reaches the
selected line within the current function.

You can also run to a selected line in a nested stack frame. To do so:

1. Select a nested frame in the stack trace pane.

2. Select a source line or instruction within the function.

3. Issue the Run to Selection (r) command.

TotalView executes the thread until it reaches the selected line in
the selected stack frame.

Note: To cancel a single step in progress, position the mouse pointer
in the process window and press CTRL-C.
100 TotalView User�s Guide

If your program calls recursive functions, you can select a nested stack
frame in the stack trace pane to tailor execution even more. In this
situation, TotalView uses the frame pointer (FP) of the selected stack
frame and the selected source line or instruction to determine when to
stop execution. When your program reaches the selected line during
execution, TotalView compares the value of the selected FP to the value
of the current FP in the following way:

� If the value of the current FP is deeper (more deeply nested) than
the value of the selected FP, TotalView automatically continues
your program.

� If the value of the current FP is equal or shallower (less deeply
nested) than the value of the selected FP, TotalView stops your
program.

If your program reaches a breakpoint while executing to a selected line,
TotalView cancels the operation and your program stops at the
breakpoint.

Executing to
the Completion
of a Function

To finish executing the current function in a thread, go to the process
window, display the Go/Halt/Step/Next submenu, and select the
Return (out of function) (o) command. TotalView executes the
thread, completes execution of the current function, and returns to the
instruction after the one that called the function.

You can also return out of several functions at once. To do so, select
a nested stack frame in the stack trace pane, and select the Return (out
of function) (o) command. TotalView executes the thread until it
returns to that function.

If your program calls recursive functions or mutually recursive
functions, you can select a nested stack frame in the stack trace pane
to tailor completion of the function even more. In this situation,
TotalView uses the frame pointer (FP) of the selected stack frame and

Note: To cancel a run to selection that is in progress, position the
mouse pointer in the process window and press CTRL-C.
TotalView User�s Guide 101

the selected source line or instruction to determine when to stop
execution. When your program reaches the selected line, TotalView
compares the value of the selected FP with the value of the current FP
in the following way:

� If the value of the current FP is deeper (more deeply nested) than
the value of the selected FP, TotalView automatically continues
your program.

� If the value of the current FP is equal or shallower (less deeply
nested) than the value of the selected FP, TotalView stops your
program.

If your program reaches a breakpoint while executing to the completion
of a function, TotalView cancels the operation and your program stops
at the breakpoint.

Continuing with a Specific Signal
Continuing execution of your program with a specific signal can be
useful if your program contains a signal handler. To do so, complete
these steps from the process window:

1. Display the Go/Halt/Step/Next submenu and select the Set
Continuation Signal command.

2. In the dialog box, enter the name (such as SIGINT) or number
(such as 2) of the signal to be sent to the thread.

Note: To cancel a return that is in progress, position the mouse
pointer in the process window and press CTRL-C.
102 TotalView User�s Guide

3. Select OK.

4. Continue execution of your program with the Go, Step, Next, or
Detach from Process command.

TotalView continues the thread(s) with the specified signal(s).

Setting the Program Counter
You might find it useful to resume the execution of a thread at some
statement other than the one where it stopped. To do this, you reset the
value of the Program Counter (PC). For example, you might want to
skip over some code, execute some code again after changing certain
variables, or restart a thread that�s in an error state.

Setting the program counter can be crucial when you want to restart a
thread that�s in an error state. Although the PC icon (?) in the tag field
points to the source statement that caused the error, the PC actually
points to the failed machine instruction within the source statement.
You need to explicitly reset the PC to the beginning of the source
statement. (You can verify the actual location of the PC before and
after resetting it by displaying it in the stack frame pane or displaying
interleaved source and Assembler code in the source code pane.)

In TotalView, you can set the PC of a stopped thread to a selected
source line, a selected instruction, or an absolute value (in
hexadecimal). When you set the PC to a selected line, the PC points to
the memory location where the statement begins. For most situations,
setting the PC to a selected line of source code is sufficient.

Note: The continuation signal is set for the thread you are focused
on in the process window. If the target operating system
supports the multithreaded signal delivery capability (see
�Allows Multithreaded Signal Delivery� on page 91), you
may set a separate continuation signal for each thread. If this
capability is not supported, then this command will clear any
continuation signal you specified for other threads in the
process.
TotalView User�s Guide 103

To set the PC to a selected line:

1. If you need to set the PC to a location somewhere within a line
of source code, display the Assembler code. To do so, display the
Display/Directory/Edit submenu and select the Interleave
Display Mode (M-i) command.

2. Select the source line or instruction in the source code pane.
TotalView highlights the line in reverse video.

3. Display the Go/Halt/Step/Next submenu and select the Set PC
to Selection... (p) command. TotalView asks for confirmation,
resets the PC, and moves the PC icon (?) to the selected line.

When you select a line and ask the debugger to set the PC to that line,
TotalView attempts to force the thread to continue execution at that
statement in the currently selected stack frame. If the currently selected
stack frame is not the top stack frame, the debugger asks your
permission to unwind the stack:

This frame is buried. Should we attempt to
unwind the stack?

If you select Yes, the debugger discards all deeper stack frames (that
is, all stack frames that are more deeply nested than the selected stack
frame) and resets the machine registers to the proper value for the
selected frame. If you select No, the debugger sets the PC to the selected
line, but it leaves the stack and registers in their current state. Since
you cannot assume that the stack and registers have correct values,
selecting No can cause problems. We recommend that you select Yes.

In general, we only recommend setting the PC to an absolute address
for very advanced users. If you need to do this, make sure you have
the correct address; no verification is done by TotalView.

To set the PC to an absolute address:

1. Display the Go/Halt/Step/Next submenu and select the Set PC
to Absolute Value... command. A dialog box prompts you for a
hexadecimal address.

2. Enter the hexadecimal address into the dialog box.

3. Select OK. The debugger resets the PC and moves the PC icon
(?) to the line containing the absolute address.
104 TotalView User�s Guide

Stopping Processes and Threads
To stop a process or a thread, go to the process window and select one
of the following commands from the Go/Halt/Step/Next submenu:

Halt Process (h) Stops the process.

Halt Group (H) Stops the process and all related
processes.

Note that issuing Halt Group on
a process that�s already stopped
stops the other members of the
program group.

Halt Thread (^H) Stops the thread.

Note that this command is
disabled if asynchronous stop is
not available (see �Synchronous
vs. Asynchronous Stop� on
page 90).

When the TotalView debugger stops a process, it updates the process
window and all related windows. When you start the process again,
execution continues from the point where you stopped the process.

Note: You can force the process window to update the process
information using the Update Process Info (u) command
from the Current/Update/Relatives submenu without
stopping the process. TotalView will flush its internal process
data cache and temporarily stop the process and reread the
thread registers and memory. This allows you to quickly
refresh your view of a process.
TotalView User�s Guide 105

Deleting Processes
To delete a process, display the Arguments/Create/Signal submenu
and select the Delete Process (^Z) command. If the process is part of
a multiprocess program, the debugger deletes all related processes as
well. The next time you start the process, the debugger creates and
starts a fresh process.

Restarting Processes
If you need to restart a process from scratch and the process has stopped
but has not exited:

1. Display the Arguments/Create/Signal submenu and select the
Delete Process (^Z) command. See �Deleting Processes� on
page 106.

2. Start the process. See �Starting Processes and Threads� on
page 91.
106 TotalView User�s Guide

4

CHAPTER 5:
Examining and Changing
Data
This chapter explains how to examine and change data as you debug
your program. You�ll learn how to:

� Display variable windows

� Dive into variables

� Change the values of variables

� Change the data type of variables

� Display array slices

� Change the address of variables

� Display machine instructions

� Display the cache status of variables
TotalView User�s Guide 107

Displaying Variable Windows
You can display variable windows for local variables, registers, global
variables, areas of memory, and machine instructions.

Displaying
Local
Variables and
Registers

In the stack frame pane of the process window, you can dive into any
parameter, local variable, or register to display a variable window. You
can also dive into parameters and local variables in the source code
pane. The variable window lists the name, address, data type, and value
for the object, as shown in Figure 33.

If you keep the variable windows open while you continue running the
process or thread, the debugger updates the information in the windows
when the process or thread stops for any reason. Keep in mind,
however, that the variable window tracks addresses, not variable
names. For example, suppose you display a variable window for a local
variable and keep the window open until the current routine finishes

Figure 33. Diving into Local Variables and Registers

Local variable

Register
108 TotalView User�s Guide

executing. If your program executes the routine again, the local variable
may be located at a different address. For local variables and
parameters, TotalView recomputes the address based on the value of
the new frame pointer (FP).

Displaying a
Global
Variable

You can display a global variable in two different ways:

� Diving into the variable in the source code pane.

� Displaying the Function/File/Variable submenu and selecting
the Variable... (v) command. When prompted, enter the name of
the variable in the dialog box.

A variable window appears for the global variable, as shown in
Figure 34.

Figure 34. Variable Window for a Global Variable

Note: If your program has more than one static variable in scope
with the same name, TotalView sees each name as a separate
entity. If you request to display one of these variables,
TotalView picks one at random. To discriminate among these
variables, you must display the global variables window and
dive into the desired variable. For more information, refer to
�Displaying All Global Variables� on page 111.
TotalView User�s Guide 109

Displaying
Fortran
Common
Blocks

TotalView handles Fortran common blocks in a manner consistent with
the semantics of Fortran. The names of common block members have
function scope, not global scope.

For each common block that is defined within the scope of a subroutine
or function, TotalView creates an entry in that function�s common
block list. The stack frame pane in the process window displays the
name of each common block for a function, as shown in Figure 35.

TotalView gives the common block a structure data type in which each
of the common block members are fields in the structure. If you dive
on a common block name in the stack frame pane, TotalView displays
the entire common block in a variable window, as shown in Figure 36.

Figure 35. Common Block List in Stack Frame Pane

Figure 36. Variable Window for Elements of a Common Block
110 TotalView User�s Guide

If you dive on a common block member name, TotalView searches all
the common blocks for a matching member name and displays the
member in a variable window.

Displaying All
Global
Variables

For convenience, you can display all global variables used by the
current process. To do so, display the Function/File/Variable
submenu and select the Global Variables Window (V) command. A
global variables window appears listing the name and value of every
global variable used by the process, as shown in Figure 37.

If desired, you can display a variable window for any global variable
listed in the global variables window. To do so, either:

� Dive into the variable in the global variables window.

� Select the Variable... (v) command from the global variables
window, and enter the name of the variable in the dialog box.

Figure 37. Global Variables Window
TotalView User�s Guide 111

Displaying
Areas of
Memory

You can display areas of memory in hexadecimal and decimal. To do
so, display the Function/File/Variable submenu and select the
Variable... (v) command. When prompted, enter one of the following
in the dialog box:

� A hexadecimal address

When you enter a single address, the debugger displays the word
of data stored at that address.

� A range of hexadecimal addresses

When you enter a range of addresses, the debugger displays the
data (in word increments) between the first and last address. To
enter a range of addresses, enter the first address, a comma (,),
and the last address.

The variable window for an area of memory, shown in Figure 38,
displays the address and contents of each word increment.

Displaying
Large Arrays

TotalView can quickly display very large arrays in variable windows.
If an array overlaps nonexistent memory, the initial portion of the array
is correctly formatted. The array elements that fall within nonexistent
memory, have �Bad Address� displayed in the subscript.

Note: All hexadecimal addresses must have the �0x� prefix.

Figure 38. Variable Window for Area of Memory

Starting location
of memory area

Hexadecimal
value

Decimal
equivalent
112 TotalView User�s Guide

Displaying
Machine
Instructions

You can display the machine instructions for entire routines in the
following ways:

� Dive into the address of an Assembler instruction in the source
code pane (such as main+0x10 or 0x60). A variable window
displays the instructions for the entire function and highlights the
instruction that you dived into.

� Dive into the PC in the stack frame pane. A variable window lists
the instructions for the entire function containing the PC, and
highlights the instruction to which the PC points, as shown in
Figure 39.

� Cast a variable to type <code>, as described in �Changing Type
Strings to Display Machine Instructions� on page 130.

Closing
Variable
Windows

When you are finished analyzing the information in a variable window,
you can issue the Close Window (q) command (to close the window)
or the Close All Similar Windows (Q) command (to close all variable
windows).

Figure 39. Variable Window with Machine Instructions

Address

Value
Disassembly

Offset+Label
TotalView User�s Guide 113

Diving in Variable Windows
If the variable you display in a variable window is a pointer, structure,
or array, you can dive into the contents listed in the variable window.
This additional dive is called a nested dive. When you perform a nested
dive, the variable window replaces the original information with
information about the current variable. With nested dives, the original
variable window is known as the base window.

Figure 40 shows the results of diving into a variable in the stack frame
pane of main() in the process window. In this example, we dove into
a variable named node with a type of node_t*, which is a pointer. The
first variable window (base window) in the figure displays the value
of node.

Figure 40. Nested Dives

First dive
(on the variable
node_t*, a pointer)

Second dive
(on the value of
node_t*)

Undive
icon

Base window

Nested window
114 TotalView User�s Guide

Then, we dove on the value shown in the base window, and a nested
dive window replaced it. The nested dive window is shown at the
bottom of the figure; it shows the structure referenced by the node_t*
pointer.

Also, notice that the number of right angle brackets (>) in the upper
left hand corner indicates the number of nested dives that were
performed in the window. TotalView maintains each dive as part of a
dive stack.

You can manipulate variable windows and nested dive windows in the
following ways:

� To �undive� from a nested dive, you click the Dive mouse button
on the undive icon, and the previous contents of the variable
window appears.

� If you have performed several nested dives and want to create a
new base window, select the New Base Window command from
the variable window.

� If you dive into a variable that already has a variable window
open, the variable window pops to the surface. If you want a
duplicate variable window open, hold down the Shift key when
you dive on the variable.

� If you select the Duplicate Window command from the variable
window, a new variable window appears that is a duplicate of the
current variable window except that it has an empty dive stack.

Changing the Values of Variables
You can change the value of any variable or the contents of any memory
location by completing these steps in the variable window:

1. Select the value and use the field editor to change the value as
desired.

You can type an expression as the value, including logical
operators, if desired. For example, you can enter 1024*1024.
TotalView User�s Guide 115

2. Press Return to confirm your changes.

You can also edit the value of variables directly from the stack frame
pane by selecting them.

Changing the Data Type of Variables
The data type that you declared for the variable determines its format
and size (amount of memory) in the variable window. For example, in
C, if you declare an int variable, the debugger displays the variable as
an integer.

You can change the way data is displayed in the variable window by
editing the data type. TotalView assigns type strings to all data types,
and in most cases, they are identical to their programming language
counterparts.

� When displaying a C variable, TotalView type strings are
identical to C type representations, except for pointers to arrays.
By default, TotalView uses a simpler syntax for pointers to arrays.

� When displaying a Fortran variable, TotalView type strings are
identical to Fortran type representations for most data types,
including INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, and CHARACTER.

To change a type string in a variable window:

Note: You cannot change the value of bit fields directly; however,
you can use the expression window to assign a value to a bit
field. See �Evaluating Expressions� on page 150.
116 TotalView User�s Guide

Using the field editor, edit the type string in the type field for the
window. If the window contains a structure with a list of fields,
you can edit the type strings of the fields listed in the window.

How
TotalView
Displays C
Data Types

TotalView�s syntax is identical to C cast syntax for all data types except
pointers to arrays. Thus, you use C cast syntax for int, unsigned, short,
float, double, union, and all named struct types.

You read TotalView type strings from right to left. For example,
<string>*[20]* is a pointer to an array of 20 pointers to <string>.

Table 11 shows some common type strings.

The following sections comment on some of the more complex type
strings.

Pointers to
Arrays

Suppose you declared a variable vbl as a pointer to an array of 23
pointers to an array of 12 objects of type mytype_t. To declare the
variable in your C program, you use the syntax:

Note: When you edit a type string, the TotalView debugger changes
how it displays the variable in the current variable window,
but other windows listing the variable remain the same.

Table 11. Common Type Strings

Type String Meaning

int Integer

int* Pointer to integer

int[10] Array of 10 integers

<string> Null-terminated character string

<string>** Pointer to a pointer to a null-terminated
character string.

<string>*[20]* Pointer to an array of 20 pointers to null-
terminated strings.
TotalView User�s Guide 117

mytype_t (*(*vbl)[23]) [12];

To cast vbl to the same type in your C program:

(mytype_t (*(*)[23])[12])vbl

TotalView�s type string syntax for vbl would be:

mytype_t[12]*[23]*

Arrays Array type names can include a lower and upper bound separated by
a colon.

By default, the lower bound for a C or C++ array is 0, and the lower
bound for a Fortran array is 1. In the following example, an array of
integers is declared in C and then in Fortran:

int a[10]

integer a(10)

In the C example, the elements of the array range from a[0] to a[9],
while in the Fortran example, the elements of the array range from a(1)
to a(10).

When the lower bound for an array dimension is the default for the
language, TotalView displays only the extent (that is, the number of
elements) of the dimension. Consider the following array declaration
in Fortran:

integer a(1:7,1:8)

Since both dimensions of the array use the default lower bound for
Fortran (1), TotalView displays the data type of the array using only
the extent of each dimension, as follows:

integer(7,8)
118 TotalView User�s Guide

In the case where an array declaration does not use the default lower
bound, TotalView displays both the lower bound and upper bound for
each dimension of the array. For example, in Fortran, an array of
integers with the first dimension ranging from �1 to 5 and the second
dimension ranging from 2 to 10 is declared as follows:

integer a(–1:5,2:10)

TotalView displays the following data type for this Fortran array:

integer(–1:5,2:10)

When you edit a dimension of an array in TotalView, you can enter
just the extent (if using the default lower bound) or both the lower and
upper bounds separated by a colon.

If desired, you can display a subsection of an array. Refer to
�Displaying Array Slices� on page 125 for further information.

If You Prefer C
Cast Syntax

If desired, you can always enter C cast syntax verbatim in the type field
for any type, and the debugger will understand it. In addition, the
debugger can display C cast syntax permanently if you set an X
Window Resource. See �totalview*cTypeStrings: {true | false}� on
page 165 for further information.

Typedefs The debugger recognizes the names defined with typedef, but displays
the definition of such a type (that is, the base data type), rather than the
name. For example, if you declared the following:

typedef double *dptr_t;
dptr_t p_vbl;

The debugger displays the type string for p_vbl as double*, not as
dptr_t.

Structures For structures, the debugger treats the string struct as a keyword. You
can type struct in as part of the type string, but it is optional. If you
have a structure and another data type with the same name, you must
include struct with the name of the structure so the debugger can
distinguish between the two data types.
TotalView User�s Guide 119

If you name a structure using typedef, the debugger uses the typedef
name as the type string. Otherwise, the debugger uses the structure tag
for the struct.

For example, consider the structure definition:

typedef struct mystruc_struct {
int field_1;
int field_2;

} mystruc_type;

The debugger displays mystruc_type as the type string for struct
mystruc_struct.

The debugger does not understand actual structure definitions in the
type string. For example, the debugger does not understand the type
string struct {int a; int b;}.

Unions The debugger displays a union as it does a structure. Even though the
fields of a union are overlaid in storage, the debugger displays them
on separate lines in the variable window.

Note: When the TotalView debugger displays some complex arrays
and structures, it displays the (Compound Object) or (Array)
type strings in the variable window. Editing the (Compound
Object) or (Array) type strings might yield undesirable
results. We do not recommend editing these type strings.
120 TotalView User�s Guide

Built-In Type
Strings

TotalView provides a number of predefined types. These types are
enclosed in angle brackets to avoid conflict with types already defined
in the language. You can use these built-in types anywhere a user-
defined type can be used, such as in an expression. These types are also
useful when debugging executables with no debugging symbol table
information. Table 12 lists the built-in types.

Table 12. Built-In Type Strings

Type String Language Size Meaning

<string> C char Array of characters

<void> C long Area of memory

<code> C parcel1 Machine instructions

<address> C void* Void pointer (address)

<char> C char Character

<short> C short Short integer

<int> C int Integer

<long> C long Long integer

<float> C float Single-precision floating-point
number

<double> C double Double-precision floating-point
number

<extended> C long double Extended-precision floating-point
number2

<character> F77 character Character
TotalView User�s Guide 121

<integer> F77 integer Integer

<integer*1> F77 integer*1 One-byte integer

<integer*2> F77 integer*2 Two-byte integer

<integer*4> F77 integer*4 Four-byte integer

<logical> F77 logical Logical

<logical*1> F77 logical*1 One-byte logical

<logical*2> F77 logical*2 Two-byte logical

<logical*4> F77 logical*4 Four-byte logical

<real> F77 real Single-precision floating-point
number

<real*4> F77 real*4 Four-byte floating-point number

<real*8> F77 real*8 Eight-byte floating-point number

<double precision> F77 double
precision

Double-precision floating-point
number

<complex> F77 complex Single-precision floating-point
complex number3

<complex*8> F77 complex*8 real*4-precision floating-point
complex number4

<complex*16> F77 complex*16 real*8-precision floating-point
complex number5

1. A parcel is defined to be the number of bytes required to hold the shortest instruction for the target architecture.

2. Extended-precision numbers need to be supported by target architecture.

3. complex types contain a Real_Part and an Imaginary_Part, which are both of type real.
4. complex*8 types contain a Real_Part and an Imaginary_Part, which are both of type real*4.

5. complex*16 types contain a Real_Part and an Imaginary_Part, which are both of type real*8.

Table 12. Built-In Type Strings (Continued)

Type String Language Size Meaning
122 TotalView User�s Guide

The following sections give more detail about several of the built-in
types.

Character arrays
(<string> data
type)

If you declare a character array as char vbl[n], the debugger
automatically changes the type to <string>[n], a null-terminated,
quoted string with a maximum length of n. Thus, by default, the array
is displayed as a quoted string of n characters, terminated by a null
character. Similarly, the debugger changes char* declarations to
<string>* (a pointer to a null-terminated string).

Since many character arrays in C are indeed strings, the debugger�s
<string> type string can be very convenient. If, however, you intended
the char data type to be a pointer to a single character or an array of
characters, you can edit the <string> back to a char (or char[n]) to
display the variable as you declared it.

Areas of memory
(<void> data
type)

The debugger uses the <void> type string for data of an unknown type,
such as the data contained in registers or in an arbitrary block of
memory. The <void> type string is similar to the int in the C language.

If you dive into registers or display an area of memory, the debugger
lists the contents as a <void> data type. Further, if you display an array
of <void> variables, the index for each object in the array is the address,
not an integer. This address can be useful when you display large areas
of memory.

If desired, you can change a <void> type string to any other legal type.
Likewise, you can change any legal type into a <void> to see the
variable in hexadecimal.

Instructions
(<code> data
type)

The debugger uses the <code> data type to display the contents of a
location as machine instructions. Thus, to look at disassembled code
that is stored at any location, dive on the location and change the type
string to <code>. To specify a block of locations, use <code>[n], where
n is the number of locations to be displayed.
TotalView User�s Guide 123

Opaque Type
Definitions

An opaque type is a data type that is not fully specified. For example
the following C declaration defines p with a type of pointer to opaque
struct foo:

struct foo;
struct foo *p;

When TotalView encounters type information that indicates a type is
opaque, it enters the type into the type table with <opaque> appended
to the type name. With the previous example, TotalView enters the
following type name in the type table:

struct foo <opaque>

If the type is opaque and another module defines the type fully, then
you can delete <opaque> from the data type to have TotalView find
the real definition for the type. On the platforms where TotalView uses
lazy reading of the symbol table, you must force TotalView to read the
symbols from the module containing the full type definition of the
opaque type. Use the Function or File command to force TotalView to
read the symbols, as described in �Finding the Source Code for
Functions� on page 86.

Example:
Displaying the
argv Array

Typically, you declare argv, the second argument passed to your
main() routine, as either a char **argv or char *argv[]. Since these
declarations are equivalent (a pointer to one or more pointers to
characters), the debugger converts both to the type <string>** (a
pointer to one or more pointers to null-terminated strings).

Suppose argv points to an array of 20 pointers to character strings. To
edit the type string (<string>**) so that the debugger displays the array
of 20 pointers:

1. Select the type string for argv.

2. Edit the type string using the field editor commands. Change it to:

<string>*[20]*

3. To display the array, dive into the value field for argv.
124 TotalView User�s Guide

Example:
Displaying
Declared
Arrays

You can display declared arrays in the same way you display local and
global variables. In the stack frame or source code pane, dive into the
declared array. A variable window displays the elements of the array.

Example:
Displaying
Allocated
Arrays

C code uses pointers for dynamically allocated arrays. For example,
consider the following:

int *p = malloc(sizeof(int) * 20);

In this example, TotalView doesn�t know that p actually points to an
array of integers. To display the array:

1. Dive on the variable of type int*.

2. Change its type to int[20]*.

3. Dive on the value of the pointer to display the array of 20 integers.

Displaying Array Slices
TotalView can display subsections of arrays, which are called slices.
Every TotalView variable window that displays an array contains an
additional Slice field. You can edit this field to view subsections of
your array. Initially, the field contains either [:] for C arrays or (:) for
Fortran arrays, which displays the entire array.

Slice
Descriptions

A slice description consists of the following:

lower_bound:upper_bound:stride

This description specifies that TotalView should display every stride
element of the array, starting at the lower_bound and continuing
through the upper_bound, inclusive.
TotalView User�s Guide 125

For example, if you specified a slice of [0:9:9] for a 10-element C
array, TotalView displays the first element and last element (the 9th
element beyond the lower bound).

In the case where the stride of a slice is 1, you can specify the slice
with just two numbers separated by colons: the lower and upper bounds.
For example, to display a slice of [0:9:1], you can specify the following:

[0:9]

The slice [0:9] displays array elements 0 through 9, whereas the slice
[4:6] displays array elements 4 through 6.

If the stride is 1 and the lower and upper bound are the same number,
you can specify the slice with just a single number, which indicates
both the lower and upper bound. For example, to display a slice of
[9:9:1], you can specify the following:

[9]

The slice [9] displays element 9.

For multidimensional arrays, you can specify a slice for each dimension
using the following syntax:

C and C++ [slice][slice]�

Fortran (slice,slice,�)

Strides You can use the stride of a slice to either skip elements of an array or
to invert the order in which elements of an array are displayed.

For example, if you specify a slice of [::2] for a C or C++ array (with
a default lower bound of 0), TotalView displays only the even elements
of the array: 0, 2, 4, and so on. However, if you specify this same slice
for a Fortran array (with a default lower bound of 1), TotalView

Note: The lower_bound, upper_bound, and stride portions of a slice
description must be constant values. Expressions are not
supported yet.
126 TotalView User�s Guide

displays only the odd elements of the array: 1, 3, 5, and so on. As an
example of skipping elements in a multidimensional array, you can
specify a slice of (::9,::9) to display the four corners of a 10-element
by 10-element Fortran array, as shown in Figure 41.

To invert the order in which elements are displayed, you can specify a
negative number as the stride of a slice. If you specify a slice of (::�
1), TotalView begins with the upper bound of the array and displays
the array in inverted order. For example, if you specified this slice of
(::�1) with a Fortran array of integer(10), TotalView displays the
following elements:

(10)
(9)
(8)
...

You can use a stride to combine inverse order with skipping elements.
For example, if you specify a slice of (::�2), TotalView begins with
the upper bound of the array and displays every other element until it
reaches the lower bound of the array. For example, if you specify this
slice of (::�2) with a Fortran array of integer(10), TotalView displays
the following elements:

(10)
(8)

Figure 41. Slice Displaying the Four Corners of an Array
TotalView User�s Guide 127

(6)
...

You can also combine inverse order and a limited extent to display a
small section of a large array. For example, if you specified a slice of
(2:3,7::�1) with a Fortran array of real*4(�1:5,2:10), Figure 42 shows
the elements that are displayed by TotalView:

As you can see in the figure, TotalView only shows in rows 2 and 3 of
the array, beginning with column 10 and concluding with column 7.

Using Slices in
the Variable
Command

When you use the Variable command to display a variable window,
you can include a slice expression as part of the variable name.
Specifically, if you include an array name followed by a set of slice
descriptions in the variable dialog box, TotalView initializes the slice
field in the variable window to the slice descriptions that you specified.

If you include an array name followed by a list of subscripts in the
variable dialog box, TotalView interprets the subscripts as a slice
description rather than as a request to display an individual value of
the array. As a result, you can display different values of the array by
changing the slice expression.

Figure 42. Fortran Array with Inverse Order and Limited Extent
128 TotalView User�s Guide

For example, suppose that you have a 10-element by 10-element
Fortran array named table2, and you want to display element (5,5).
Using the Variable command, you specify table2(5,5) in the dialog
box, which sets the initial slice to (5:5,5:5), as shown in Figure 43.

If desired, you can force TotalView to display a single value in a
variable window by enclosing the array name and list of subscripts
(that is, the information normally included in a slice expression) inside
parentheses, such as (table2(5,5)). In this case, the variable window
just displays the type and value of the element and does not show its
array index.

Figure 43. Variable Window for table2(5,5)
TotalView User�s Guide 129

Changing the Address of Variables
You can edit the address of a variable in a variable window. When you
edit the address, the variable window shows the contents of the new
location.

You can also enter an address expression, such as 0x10b8�0x80.

Changing Type Strings to Display
Machine Instructions
You can display machine instructions in any variable window. To do
so:

1. Select the type string at the top of the variable window.

2. Change the type string to be an array of <code> data types, where
the number of elements, n, indicates the number of instructions
to be displayed:

<code>[n]

The debugger displays the contents of the current variable,
register, or area of memory, as machine-level instructions.

The variable window (shown in Figure 39 on page 113) lists the
following information about each machine instruction:

Address The machine address of the instruction.

Value The hexadecimal value stored in the
location.

Disassembly The instruction and operands stored in the
location.

Offset+Label The symbolic address of the location as a
hexadecimal offset from a routine name.
130 TotalView User�s Guide

You can also edit the value listed in the value field for each machine
instruction.
TotalView User�s Guide 131

Caching of Variables
If your processor provides caching and TotalView supports the display
of cache status for your platform, you may see a character in brackets
next to the address of the variable, as shown in Figure 44. This character
indicates the cache status, such as whether the variable is shared or
uncached. For complete information, refer to your platform-specific
supplement.

Figure 44. Cache Status of a Variable

Cache
status
132 TotalView User�s Guide

5

CHAPTER 6:
Setting Action Points
This chapter explains how to use action points. You can set three
different kinds of action points: breakpoints, evaluation points, and
event points. When the debugger reaches an action point, it either stops
execution (if it is a breakpoint) or executes a code fragment (if it is an
evaluation point).

You�ll learn how to:

� Set breakpoints

� Set evaluation points

� Set conditional breakpoints

� Patch programs

� Control action points

� Save action points to a file

� Evaluate expressions

� Write code fragments
TotalView User�s Guide 133

Setting Breakpoints
The TotalView debugger offers several options for setting breakpoints.
You can set source-level breakpoints, machine-level breakpoints, and
breakpoints that are shared among all processes in multiprocess programs.
You can also control whether or not TotalView stops all processes in a
process group when a single member reaches a breakpoint.

Source-Level
and Machine-
Level
Breakpoints

Typically, you set and clear breakpoints before you start a process;
however you can set a breakpoint while a process is running. If you set
the breakpoint while the process is running, TotalView stops the process
temporarily to insert the breakpoint and then continues running it. To set
a source-level breakpoint, select a boxed line number in the tag field of
the process window. A boxed line number indicates that the line generates
executable code. A STOP sign appears, as shown in Figure 45. The STOP
sign indicates that the breakpoint occurs before the source statement is
executed.

Figure 45. Breakpoint Symbol

To set a machine-level breakpoint, you must first display Assembler code
or source interleaved with Assembler. (Refer to �Examining Source and
Assembler Code� on page 84 for information.)

Note: Breakpoints apply to the entire process, not just to a single thread.
Any thread executing in the process could hit the breakpoint,
thus causing it to stop. If the operating system uses the
synchronous stop model (see �Synchronous vs. Asynchronous
Stop� on page 90), all threads in the process will stop.

35

37

STOP

STOP

Breakpoint

Boxed Number
Gridget
134 TotalView User�s Guide

Then you select the tag field that is opposite the appropriate instruction.
The tag field must contain a gridget, indicating that the line is the
beginning of a machine instruction. Since the instruction sets on some
platforms support variable-length instructions, you may see multiple
lines associated with a single gridget. The stop sign appears, indicating
that the breakpoint occurs before the instruction is executed.

After you set all desired breakpoints, you can start the process. When
a process reaches a breakpoint, TotalView does the following:

� Suspends the process

� Displays the PC symbol (➞) over the stop sign to indicate the PC
currently points to the breakpoint

� Displays �at breakpoint� in the title bar of the process window
and other windows

� Updates the stack trace panes, stack frame panes, and variable
windows.

Note: When the source pane displays source interleaved with
Assembler, source statements are treated as comments. You
can set breakpoints on instructions, not source statements. If
you set a breakpoint on the first instruction after a source
statement, however, you create the equivalent of a source-
level breakpoint.

If you set machine-level breakpoints on one or more
instructions that are part of a single source line and then
display source code in the source pane, TotalView displays
an ASM sign on the line number. To see the specific
breakpoints, you must display Assembler or Assembler
interleaved with source code.
TotalView User�s Guide 135

Thread
Specific
Breakpoints

TotalView implements thread specific breakpoints through the
TotalView expression system. The expression system has several
intrinsic variables that allow a thread to retrieve its thread ID. For
example:

/* Stop when thread 3 evaluates this
expression. */
if ($tid == 3) $stop;

Breakpoints
for Multiple
Processes

In multiprocess programs, you can set breakpoints in the parent process
and child processes before you start the program and at any time during
its execution. To do this, you use the action point options dialog box,
as shown in Figure 46. This dialog box provides two checkboxes for
process groups:

� Stop All Related Processes when Breakpoint Hit

If selected, stops all members of the program group when the
breakpoint is reached. Otherwise, only the process that hits the
breakpoint stops.
136 TotalView User�s Guide

� Share Action Point in All Related Processes

If selected, enables and disables the breakpoint in all members of
the share group at the same time. Otherwise, you enable and
disable the breakpoint in each share group member individually.

You can control the default setting of these two checkboxes using X
Resources. Refer to �totalview*stopAll: {true | false}� on page 173
and �totalview*shareActionPointInAllRelatedProcesses: {true |
false}� on page 171.

Figure 46. Action Point Options Dialog Box

Stops members
of program
group

Sets breakpoint
in members of
share group
TotalView User�s Guide 137

In addition to the controls in the action point options dialog, you can
write an expression in the expression box to control the behavior of
program group members and share group members. Refer to �Writing
Code Fragments� on page 152 for more information.

Processes That
Call fork()

By default, breakpoints are shared by all processes in the share group,
and when any process reaches the breakpoint, TotalView stops all
processes in the program group.

To override these defaults:

1. Dive into the tag field to display the action point options dialog
box.

2. Deselect these checkboxes: Stop All Related Processes when
Breakpoint Hit and Share Action Point in All Related
Processes.

3. Select the OK button.

Processes That
Call execve()

Breakpoints that are shared by a parent and children with the same
executable do not apply to children with different executables. To set
the breakpoints for children that call execve():

1. Set the breakpoints and breakpoint options desired in the parent
and the children that do not call execve().

2. Start the multiprocess program by displaying the
Go/Halt/Step/Next submenu and selecting the Go Group (G)
command. When the first child calls execve(), a dialog box
appears with the following message:

Process name has called exec (name),
 Do you wish to stop it before it enters MAIN?

Note: You must link with the dbfork library to debug programs that
call fork() and execve(). See �Compiling Programs� on
page 26.
138 TotalView User�s Guide

3. Answer yes. TotalView opens a process window for the process.
(If you answer no, the program executes without allowing you to
set breakpoints.)

4. Set the breakpoints desired for the process. Once you set the
breakpoints for the first child that uses this executable, the
debugger does not prompt you when other children call execve()
to use this executable. Therefore, if you don�t want to share the
breakpoints among other children using the same executable, dive
into the breakpoints, and set the breakpoint options appropriately.

5. Select the Go Group (G) command to resume execution.

Multiprocess
Breakpoint
Example

The following example program illustrates the different points at which
you can set breakpoints in multiprocess programs:

1 pid = fork();
2 if (pid == –1)
3 error ("fork failed");
4 else if (pid == 0)
5 children_play();
6 else
7 parents_work();

Table 13 shows the results of setting a breakpoint on different lines of
the example.

Table 13. Setting Breakpoints in Multiprocess Programs

Line Number Result

1 Stops the parent process before it forks.

2 Stops both the parent and child processes (if
the child process was successfully created).

3 Stops the parent process if fork() failed.

5 Stops the child process.

7 Stops the parent process.
TotalView User�s Guide 139

Defining Evaluation Points and
Conditional Breakpoints
You can define evaluation points, points in your program where
TotalView evaluates a code fragment. The fragment can include special
commands to stop a process and its relatives. Thus, you can use
evaluation points to set conditional breakpoints of varying complexity.
You can also use evaluation points to test potential fixes for your
program.

You can define an evaluation point at any source line that generates
executable code (marked with boxed line number in the tag field). If
you display Assembler or source interleaved with Assembler in the
process window, you can also define evaluation points on machine-
level instructions.

As part of defining an evaluation point, you provide the code fragment
to be evaluated. You can write the code fragment in C, Fortran, or
Assembler.

At each evaluation point, the code fragment in the evaluation point is
executed before the code on that line. Typically, the program then
executes the program instruction at which the evaluation point is set.
But your code fragment can modify this behavior:

� It can include a branching instruction (such as GOTO in C or
Fortran). The instruction can transfer control to a different point
in the target program, enabling you to code and test program
patches.

Note: We recommend that you stop a process before setting an
evaluation point. This ensures that the evaluation point is set
in a stable context in the program.

Note: Not all platforms support the use of Assembler constructs; see
your platform-specific supplement for details.
140 TotalView User�s Guide

� It can contain a $stop, $stopall, $count, or $countall statement.
These special TotalView statements define breakpoints and
countdown breakpoints within the code fragment. By including
them within other statements that you code, you can define
conditional breakpoints. For more information on these
statements, refer to Table 16, �Built-In Statements That Can Be
Used in Expressions,� on page 154.

TotalView evaluates code fragments in the context of the target
program. This means that you can refer to program variables and pass
control to points in the target program.

Setting an
Evaluation
Point

To set an evaluation point:

1. Dive into the tag field for an instruction in the process window.
TotalView displays the action point options dialog box.

2. Select the EVAL (Evaluate Expression) button.

3. Select the button (if it�s not already selected) for the language in
which you will code the fragment.

4. Select the evaluation text box and enter the code fragment to be
evaluated. Use the field editor commands as required. For
information on supported C, Fortran, and Assembler language
constructs, refer to �Writing Code Fragments� on page 152.

Note: For complete information on what you can include in code
fragments, refer to �Writing Code Fragments� on page 152.

Evaluation points modify only the processes that you are
debugging. They do not permanently modify the source
program or create a permanent patch in the executable. If you
save the evaluation points for a program, however, TotalView
reapplies them whenever you start a debugging session for
that program. To save your evaluation points, refer to �Saving
Action Points in a File� on page 150.
TotalView User�s Guide 141

5. For multiprocess programs, decide whether to share the
evaluation point among all processes in the program�s share
group. By default, the Share Action Point in All Related
Processes is selected for multiprocess programs, but you can
override this by deselecting the checkbox.

6. Select the OK button to confirm your changes. If the code
fragment has an error, TotalView displays an error message.
Otherwise, TotalView processes the code, closes the dialog box,
and places an EVAL icon in the tag field.

Setting
Conditional
Breakpoints

To set a conditional breakpoint, complete steps 1 to 4 of �Setting an
Evaluation Point� on page 141. Here are some examples of conditional
breakpoints and the code fragments that you would need to supply in
step 4:

� To define a breakpoint that is reached whenever a variable i is
greater than 20 but less than 25:

if (i > 20 && i < 25)
$stop;

� To define a breakpoint that is reached every 10th time the $count
statement is executed:

$count 10

� To define a breakpoint with a more complex expression, consider
this one:

$count i * 2

When the variable i equals 4, the process stops the 8th time it
executes the $count statement. After the process stops, the
expression is reevaluated. If i now equals 5, the next stop occurs
after the process executes the $count statement 10 more Times
New Roman.

Then, complete steps 5 and 6 of �Setting an Evaluation Point� on
page 141.

For complete descriptions of the $stop and $count statements, refer to
�Built-In Statements� on page 154.
142 TotalView User�s Guide

Patching
Programs

You can use expressions in evaluation points to patch your code.
Specifically, you can use the goto (C) and GOTO (Fortran) statements
to jump to another point in your program�s execution.

You can patch programs in two different ways:

� You can patch out pieces of code so they are not executed by the
program.

� You can patch in new pieces of code to be executed by the
program.

In many cases, you correct an error in a program, so you need to use
both types of patching. You patch out the incorrect lines of code and
patch in the corrections.

Conditionally
Patching Out
Code

For example, suppose a section of your C program dereferences a null
pointer:

1 int check_for_error (int *error_ptr)
2 {
3 *error_ptr = global_error;
4 global_error = 0;
5 return (global_error != 0);
6 }

In this example, the caller of the check_for_error function assumes
that passing 0 as the value of error_ptr is allowed. The code should
allow null values of error_ptr, but line 3 dereferences a null pointer.

To correct this error, you can patch in code that checks for a null pointer.
To do so, you set an evaluation point on line 3 and specify the following
code fragment in the evaluation point:

if (error_ptr == 0) goto 4;

If the value of error_ptr is null, line 3 is not executed.
TotalView User�s Guide 143

Patching In a
Function Call

As an alternative, you can patch in a printf statement that displays the
value of global_error. To do so, you create an evaluation point on line
4 and specify the following code fragment:

printf ("global_error is %d\n",
global_error);

In this case, the code fragment is executed before the code on line 4,
that is, before global_error is set to 0.

Correcting Code In this final example, there is a coding error�the maximum value is
returned instead of the minimum value:

1 int minimum (int a, int b)
2 {
3 int result; /* Return the minimum
*/
4 if (a < b)
5 result = b;
6 else
7 result = a;
8 return (result);
9 }

To correct this error, you can set an evaluation point on line 4 and
specify the following code fragment to correct the program�s if
statement.

if (a < b) goto 7; else goto 5;

Interpreted
and Compiled
Expressions

On most platforms, TotalView interprets expressions, while on others,
TotalView compiles expressions. See your platform-specific
supplement to find out how TotalView handles expressions on your
platform.

With interpreted expressions:

� TotalView sets a breakpoint in your code and executes the
evaluation point. Since TotalView is executing the expression,
interpreted expressions run slower than compiled expressions.
With multiprocess programs, interpreted expressions can run
144 TotalView User�s Guide

more slowly because processes may be waiting serially for the
debugger to execute the expression. With remote debugging,
interpreted expressions can run more slowly because the
debugger, not the debugger server (tvdsvr), is executing the
expression.

� If the expression contains $stop or $count, TotalView terminates
the evaluation of the expression and stops the process. Thus, if
you use $stop or $count, they should be at the end of your
expression because TotalView stops evaluating the expression at
that point.

� If you define an evaluation point at the same location as the PC,
continuing execution does not execute the evaluation point.

With compiled expressions:

� TotalView compiles, links and patches the expression into the
target process. To do this, TotalView replaces an instruction with
a branch instruction, relocates the original instruction, and
appends the expression. Then the code is executed by the target
process, so conditional breakpoints can execute very fast.

� If the expression contains $stop or $count, TotalView stops the
execution of the process in the compiled expression, so you can
single step through it and continue executing the expression as
you would the rest of your code.

� If you define an evaluation point at the same location as the PC,
continuing execution executes the evaluation point.

Controlling Action Points
TotalView provides three methods of controlling action points: the
action points window, the action points pane in the process window
and the action point options dialog box.
TotalView User�s Guide 145

Displaying the
Action Points
Window

The action points window displays a summary of the action points that
are set in your program. To display this window, display the
STOP/EVAL/GIST submenu and select the Open Action Points
Window (b) command. The action points window appears, as shown
in Figure 47.

If you dive into an action point in the action point list, TotalView
displays the line of source code containing the action point in the source
code pane of the process window.

Figure 47. Action Points Window

Type of
action point

Line number

Routine name

Source file

Note: The list of action points displayed in the action points window
is the same as shown in the action points pane in the process
window.

Tip: Action points make it easier to navigate your source files. You
can define disabled breakpoints in your code and dive into the
breakpoint to quickly display the corresponding source code
in the process window. Thus, breakpoints can act like
bookmarks in your program.
146 TotalView User�s Guide

Displaying the
Action Point
Options Dialog

The action point options dialog box lets you set and control an action
point in your program. To display this dialog box, dive into the tag
field beside a source line or an instruction. TotalView displays the
dialog box, illustrated in Figure 48.

Controlling
Action Points

You can take the following actions to control the use of action points
in your program:

Delete Permanently removes the action point.

Disable Keeps the definition for the action point but
ignores it during execution.

Enable Makes the action point active during
execution.

Figure 48. Action Point Options Dialog Box

Applies changes

Cancels changes

Deletes action
point

Reverts to
default settings
TotalView User�s Guide 147

Suppress Keeps the definition for the action point,
ignores it during execution, and prevents
creation of additional action points.

Unsuppress Makes the action point active during
execution and allows creation of additional
action points.

Table 14 shows how to control action points with the process window,
action point options dialog, and the action points window.

Table 14. Clearing, Disabling, Enabling, Suppressing, and Unsuppressing Action Points

How to Accomplish it for Each Type of Action Point

Action Breakpoint Evaluation Point Event Point

Deleting Select the STOP sign
in tag field.
Or
Select the Delete
button in the action
point options dialog.

Select the Delete button
in the action point
options dialog.

Select the Delete
button in the action
point options dialog.

To clear all breakpoints and evaluation points, go
to the process window or action points window,
display the STOP/EVAL/GIST submenu, and
select the Clear All STOP and EVAL
command.

To clear all event
points, display the
STOP/EVAL/GIST
submenu and select
the Clear All GIST
command.

Disabling1 Deselect Action
Point Enabled in the
action point options
dialog.
Or
Select the STOP sign
in the action points
window.

Select the EVAL sign in
the tag field.
Or
Deselect Action Point
Enabled in the action
point options dialog.
Or
Select the EVAL sign in
the action points
window.

Select the GIST sign
in the tag field.
148 TotalView User�s Guide

Enabling Select the dimmed STOP, EVAL, or GIST sign in the process or action
points window.
Or
Select Action Point Enabled in the action point options dialog.

Suppressing2 To suppress all action points, display the STOP/EVAL/GIST submenu
and select the Suppress All Action Points (^D) command.

To suppress all event
points, display the
STOP/EVAL/GIST
submenu and select
the Suppress All
GIST command.

Unsuppressing To unsuppress all action points, display the STOP/EVAL/GIST submenu
and select the Unsuppress All Action Points (^E) command.

To unsuppress all
event points, display
the
STOP/EVAL/GIST
submenu and select
the Unsuppress All
GIST command.

1. Disabling an action point does not clear it. TotalView remembers that an action point exists for the line, but ignores it
as long as it is disabled. For evaluation points, TotalView keeps the definition in case you want to use it again later.

2. When you suppress action points, you disable them. In addition, you cannot update any existing action points or create
new ones.

Table 14. Clearing, Disabling, Enabling, Suppressing, and Unsuppressing Action

How to Accomplish it for Each Type of Action Point

Action Breakpoint Evaluation Point Event Point
TotalView User�s Guide 149

Saving Action Points in a File
You can save the action points for each program you debug in a file.
TotalView names the file program.TVD.breakpoints, where program
is the name of your program. To save your action points, display the
STOP/EVAL/GIST submenu and select the Save All Action Points
command from the process window. The debugger places the action
points file in the same directory as your program.

If you always want to save your action points before you exit from
TotalView, you can set an X Window System resource to do this. Refer
to �totalview*autoSaveBreakpoints: {true | false}� on page 164.
Alternatively, you can use the �sb option each time you start the
debugger, as described in �TotalView Command Syntax� on page 175.

Once you create an action points file, TotalView automatically loads
the file each time you invoke the debugger. TotalView uses the same
search paths as it does to locate source files. If you prefer to suppress
this behavior, you can set an X resource (see
�totalview*autoLoadBreakpoints: {true | false}� on page 164) or use
the �nlb option each time you start the debugger (see �TotalView
Command Syntax� on page 175).

Evaluating Expressions
In the TotalView debugger, you can open a window for evaluating
expressions in the context of a particular process and evaluate
expressions in C, Fortran, or Assembler.

To evaluate an expression:

1. Make sure that a process is created, running, or stopped in the
process window.

Note: Not all platforms support the use of Assembler constructs; see
your platform-specific supplement for details.
150 TotalView User�s Guide

2. Select the Open Expression Window (e) command from the
process window. An expression evaluation window appears.

3. Select the button (if it is not already selected) for the language in
which you will write the code.

4. Select the Expression box and enter the code fragments to be
evaluated using the field editor commands. For a description of
the supported language constructs, see �Writing Code
Fragments� on page 152.

The last statement in the code fragment can be a free-standing
expression; you don�t have to assign the expression�s return value
to a variable. Figure 49 shows a sample expression.

5. Select the Eval button. If TotalView finds an error, it positions
the cursor on the incorrect line and displays an error message.
Otherwise, it interprets (or on some platforms, compiles and
executes) the code, and displays the value of the last expression
in the Expression box in the Value field.

While the code is being executed, you can�t modify anything in
the window because it is suspended. If execution takes a long

Figure 49. Sample Expression Window
TotalView User�s Guide 151

time, notice that TotalView displays diagonal lines across the
window, indicating that the window is temporarily inaccessible.

Since code fragments are evaluated in the context of the target
process, the stack variables are evaluated according to the
currently selected stack frame. If the fragment reaches a
breakpoint (or stops for any other reason), the expression window
remains suspended. Assignment statements can affect the target
process because they can change the value of a variable in the
target process.

You can use the expression window in many different ways, but here
are two examples:

� Expressions can contain loops, so you could use a for loop to
search an array of structures for the entry containing a particular
field set to a certain value. In this case, you use the loop index at
which the value is found as the last expression in the expression
evaluation window.

� You can call subroutines from the expression window, so you
could test and debug a single routine in your program without
building a test program to call the routine.

Once you have selected and edited an expression in the window, you
cannot use a keyboard equivalent (q) to exit from the window because
the field editor is still active. To exit, display the menu and select the
Close Window command or press Shift-Return.

Writing Code Fragments
You can use code fragments in evaluation points and in the expression
evaluation window. This section describes the intrinsic variables, built-
in statements and language constructs supported by TotalView.
152 TotalView User�s Guide

Intrinsic
Variables

The TotalView expression system supports built-in variables that allow
you to access special thread and process values. All of the variables
are of type 32-bit integer, which is type <int> or <long> on most
platforms. The variables are not lvalues, so you cannot assign to them
or take their addresses. Table 15 lists the intrinsic variable names and
their meanings.

Intrinsic variables allow you to create thread specific breakpoints from
the expression system. For example, using the $tid intrinsic variable
and the $stop built-in operation, you can create a thread specific
breakpoint as follows:

if ($tid == 3)
$stop;

This would cause TotalView to stop the process only if thread 3
evaluated the expression. You can also create complex expressions
using intrinsic variables:

Table 15. Intrinsic Variables

Name Meaning

$tid Returns the TotalView-assigned thread ID.
When referenced from a process, generates
an error.

$systid Returns the system-assigned thread ID.
When referenced from a process, generates
an error. Currently not implemented.

$pid Returns the process ID.

$nid Returns the node ID.

$clid Returns the cluster ID.

$duid Returns the TotalView-assigned Debugger
Unique ID (DUID).

$processduid Returns the DUID of the process.
TotalView User�s Guide 153

if ($pid != 34 && $tid > 7)
printf (“Hello from %d.%d\n”, $pid,

$tid);

Built-In
Statements

TotalView provides a set of built-in statements that you can use when
writing code fragments. The statements are available in all languages,
and are shown in Table 16.

Table 16. Built-In Statements That Can Be Used in Expressions

Statement Use

$stopthread Sets a thread-level breakpoint. The thread that executes this
statement stops, but all other threads in the process continue to
execute. If the target system does not support asynchronous
stop, this executes as a $stopprocess.

$stopprocess Sets a process-level breakpoint. The process that executes this
statement stops, but other processes in the program group
continue to execute.

$stopall Sets a program-group-level breakpoint. All processes in the
program group stop when any thread or process in the group
executes this statement.

$stop Same as $stopprocess.

$countthread expression Sets a thread-level countdown breakpoint. When any thread in
a process executes this statement for the number of times
specified by expression1, it stops. The other threads in the
process continue to execute. If the target system does not
support asynchronous stop, this executes as a $countprocess.

$countprocess expression Sets a process-level countdown breakpoint. When any thread
in a process executes this statement for the number of times
specified by expression, the process stops. The other processes
in the program group continue to execute.

$countall expression Sets a program-group-level countdown breakpoint. All
processes in the program group stop when any process in the
group executes this statement for the number of times
specified by expression.
154 TotalView User�s Guide

C Constructs
Supported

When writing code fragments in C, keep these guidelines in mind.

Syntax � C-style as well as C++-style comments are permitted. For
example:

// This code fragment creates a temp patch
i = i + 2; /* Add two to i */

� Semicolons can be omitted when no ambiguity would result.

� Dollar signs ($) in identifiers are permitted.

Data Types and
Declarations

� Data types permitted: char, short, int, float, double, and pointers
to any primitive type or any named type in the target program.

� Only simple declarations are permitted. The struct, union, and
array declarations are not permitted.

� References to variables of any type in the target program are
permitted.

� Unmodified variable declarations are considered local.
References to them override references to similarly named global
variables and other variables in the target program.

� (Compiled evaluation points only) The global declaration makes
a variable available to other evaluation points and expression
windows in the target process.

� (Compiled evaluation points only) The extern declaration
references a global variable that was or will be defined elsewhere.

$count expression Same as $countprocess.

1. A thread evaluates expression when it executes the $count statement for the first time, and it must evaluate to a positive
integer. A thread reevaluates $count only when it results in a breakpoint. Then, the process� internal counter for the
breakpoint is reset to the value of expression. The internal counter is stored in the process and shared by all threads in that
process.

Table 16. Built-In Statements That Can Be Used in Expressions (Continued)

Statement Use
TotalView User�s Guide 155

If the global variable has not yet been defined, TotalView displays
a warning.

� Static variables are local and persist even after an evaluation point
has been evaluated.

� For static and global variables, expressions that initialize data as
part of the variable declaration are performed only the first time
the code fragment is evaluated. Local variables are initialized
each time the code fragment is evaluated.

Statements � Permitted statements: assignment, break, continue, if/else
structures, for, goto, and while.

� With the goto statement, you can define and branch to symbolic
labels. These labels are considered local to the window. As an
extension, you can also refer to a line number in the target
program. This line number refers to the tag field number of the
source code line. Here�s a goto statement that causes the program
to branch to source line number 432 of the target program:

goto 432;

� Function calls are permitted, but structures cannot be passed to a
function.

� Type casting is permitted.

� All operators are permitted, with these limitations:

� The conditional operator ?: is not supported.

� The sizeof operator can be used for variables, but not data
types.

� The (type) operator cannot cast to fixed-dimension arrays
using C cast syntax.

Fortran
Constructs
Supported

When writing code fragments in Fortran, keep these guidelines in mind.
156 TotalView User�s Guide

Syntax � Syntax is free-form. No column rules apply.

� One statement is allowed per line, and one line is allowed per
statement.

� The space character is significant and sometimes required. (Some
Fortran 77 compilers ignore all space characters, wherever they
are coded.) For example:

Valid Invalid

DO 100 I=1,10 DO100I=1,10
CALL RINGBELL CALL RING BELL
X .EQ. 1 X.EQ.1

GOTO, GO TO, ENDIF, and END IF are all allowed. But ELSEIF
is not; use ELSE IF.

� Comment lines can be defined in several formats. For example:

C I=I+1

/*
I=I+1
J=J+1
ARRAY1(I,J)= I * J
*/

Data Types and
Declarations

� Data types permitted: INTEGER (assumed to be long), REAL,
DOUBLE PRECISION, and COMPLEX.

� Implied data types are not permitted.

� Only simple declarations are permitted. The COMMON,
BLOCK DATA, EQUIVALENCE, STRUCTURE, RECORD,
UNION, and array declarations are not permitted.

� References to variables of any type in the target program are
permitted.

Statements � Permitted statements: assignment, CALL (to subroutines,
functions, and all intrinsic functions except CHARACTER
functions in the target program), CONTINUE, DO, GOTO, IF
(including block IF, ENDIF, ELSE, and ELSE IF), and RETURN
(but not alternate RETURN).
TotalView User�s Guide 157

� As an extension to the GOTO statement, you can refer to a line
number in the target program. This line number refers to the tag
field number of the source code line. For example, this GOTO
statement causes the program to branch to source line number
432 of the target program:

 GOTO $432;

The dollar sign is required before the line number to distinguish
the tag field number from a statement label.

� All expression operators are supported except CHARACTER
operators and the logical operators .EQV., .NEQV., and .XOR..

� Subroutine function and entry definitions are not permitted.

Assembler
Constructs
Supported

Refer to your platform-specific supplement, such as the TotalView
Supplement for LynxOS Users, for information on the Assembler
constructs supported. Some platforms do not support Assembler
constructs at all.
158 TotalView User�s Guide

6

CHAPTER 7:
Troubleshooting
This chapter describes how to solve common problems that you might
encounter while using TotalView. Refer to Table 17.

Table 17. Symptoms and Solutions

Symptom Possible Solutions

Windows don�t appear or operate
correctly

� Your DISPLAY environment variable is not set
correctly.

� The resource �totalview*useTransientFor: {on | off}�
on page 174 is not set correctly. Change it from on to
off, or from off to on.

� Start Totalview with the �grab command-line option.
� Use the xhost + command to allow all hosts to access

your display.

Pressing Control-C in an xterm
window causes TotalView to exit

� Start TotalView with the �ignore_control_c or �icc
command-line option.

Source code doesn�t appear in
source code pane

� Set the search path for directories with the Set Search
Directory (d) command in the process window.

� Start TotalView with the �nii command-line option.

License manager does not
operate correctly

� Set the LM_LICENSE_FILE environment variable
to the pathname of the TotalView license file. See
your platform-specific supplement for details.
TotalView User�s Guide 159

Fatal error: Checkout ... failed � Check the value of the LM_LICENSE_FILE
environment variable. Make sure the value ends with
the string license.dat.

� Make sure the TotalView license manager lmgrd is
running on the license manager host machine. The
name of this machine is listed in the SERVER line of
your license.dat file.

� Make sure that the lmgrd that is running matches the
one which came with your TotalView distribution.

Out of memory error � Increase the swap space on your machine. See your
platform-specific supplement for details.

� Increase the data and stack size limits in the C shell.
Use the C shell�s limit command, such as:

% limit datasize unlimited

% limit stacksize unlimited

Error creating new process � Increase the swap space on your machine. See your
platform-specific supplement for details.

� Increase the number of process slots in your system.
See your operating system documentation for details.

� Check the xterm window to see if the execve() call
failed, and if it did, set the PATH environment
variable.

� Make sure that the /proc filesystem is mounted on
your system. Refer to your platform-specific
supplement for details.

Error launching process or
Attempt to delete the target of an
unbound process

� Run your program at the UNIX command line prompt
to see if it will load and start executing. When it
passes this test, you can run TotalView on your
program to debug it.

� If the operating system can�t load your program and
start it, make sure your program is built for the
machine you are debugging on.

Table 17. Symptoms and Solutions (Continued)

Symptom Possible Solutions
160 TotalView User�s Guide

Program behaves differently
under TotalView�s control

� Make sure your program does not setuid or exec
another program which does, for example, rsh.
Normally, the operating system will not allow a
debugger to debug a setuid executable nor allow a
setuid system call while a program is being debugged.
Often these operations fail silently. To debug setuid
programs, login as the target UID before starting
TotalView.

� TotalView uses the SIGSTOP signal to stop
processes. On most UNIX systems, system calls can
fail with the errno set to EINTR when the process
receives a SIGSTOP signal. You need to change your
code so that it handles the EINTR failure. For
example:

do {
n = read(fd,buf,nbytes);

} while (n < 0 && errno == EINTR);

X resources are not recognized � Use the xrdb command (part of the X Window
System) to display the current X resources:

xrdb –query

� Use the xrdb command to load your X resources:
xrdb –load $HOME/.Xdefaults

� Read the xrdb manual page for more information.

Single stepping is slow or
TotalView is slow to respond to
breakpoints

� Close some of the variable windows that you have
open.

� The global variables window is open and has a large
number of variables. Close the global variables
window.

Other fatal error or
Internal error in TotalView

� Report this problem. See �Reporting Problems� on
page 9.

Table 17. Symptoms and Solutions (Continued)

Symptom Possible Solutions
TotalView User�s Guide 161

162 TotalView User�s Guide

7

CHAPTER 8:
X Resources
This chapter provides reference information about the X Window
System resources that you can use to customize TotalView. You can
use these resources in your X resources files (such as .Xdefaults on
UNIX systems or decw$sm_general.dat on VMS systems). For
information on X resources files, refer to the X Window System
documentation that came with your machine or the X Window System
User�s Guide, by O�Reilly & Associates (ISBN 1�56592�015�5).

On most UNIX systems, you load your X resources file using the xrdb
command (part of the X Window System executables). For example:

% xrdb �load $HOME/.Xdefaults

The default value for each resource in this chapter is shown in bold.
You can override some of the resources with command-line options
for the totalview command, as described in �TotalView Command
Syntax� on page 175.

Values for the location of windows are expressed as:

=widthxheight+x+y

where width is the width of the window in pixels, height is the height
of the window in pixels, x is the distance from the upper-left corner
of the window to the left screen edge in pixels, and y is the distance
from the upper-left corner of the window to the top screen edge in
pixels. A value of -1 for x or y indicates that the window should be
centered in the screen with respect to the x-axis or y-axis. If desired,
you can express x or y as negative numbers to indicate the distance
from the lower-right corner of the window to the bottom screen edge
TotalView User�s Guide 163

or right screen edge instead of the distance from the upper-left corner.
A value of zero (0) indicates that TotalView should use the default
value. Also, you can supply just the size (width and height), and
TotalView will use the default location (x and y) with it.

As an example, the expression =0x0-1+20 uses the default width and
height, centers the window horizontally, and places the window 20
pixels down from the top of the screen. The expression =330x120+20-
20 makes the window 330 pixels wide by 120 pixels high and places
the window 20 pixels from the left edge of the screen and 20 pixels up
from the bottom edge of the screen.

totalview*autoLoadBreakpoints: {true | false}
If true (default), automatically load action points from an action points
file, providing the file exists. If false, you use the STOP/EVAL/GIST
* Load All Action Points command in the process window to load
action points.

Override with: �lb option (overrides the false value)
�nlb option (overrides the true value)

totalview*autoRetraceAddresses: {on | off}
If on (default), TotalView will retrace the sequence of dive operations
performed in a variable window and recompute a new address for the
variable. If off, does not retrace addresses.

totalview*autoSaveBreakpoints: {true | false}
If false (default), do not automatically save action points to an action
points file when you exit. You use the STOP/EVAL/GIST * Save All
Action Points command in the process window to save action points.

Override with: �sb option (overrides the false value)
�nsb option (overrides the true value)

totalview*blindMouse: {on | off}
If on (default), allow �mouse ahead,� the queuing of mouse clicks
(similar to typing ahead in a shell). If off, successive mouse clicks are
ignored until TotalView responds to the first mouse click.
164 TotalView User�s Guide

totalview*breakpointWindLocation: =widthxheight+x+y
Specifies placement of the first action points window.

totalview*chaseMouse: {on | off}
If on (default), display dialog boxes at the location of the mouse cursor.
If off, display dialog boxes centered in the upper third of the screen.

Override with: �chase option (overrides the off value)
�nochase option (overrides the on value)

totalview*cTypeStrings: {true | false}
If false (default), use TotalView�s type string extensions when
displaying the type strings for arrays. If true, use C type string syntax
when displaying arrays.

totalview*dataWindLocation: =widthxheight+x+y
Specifies placement of the first variable window.

totalview*displayAssemblerSymbolically: {on | off}
If off (default), display Assembler locations as hexadecimal addresses.
If on, display Assembler locations as �label+offset.�

totalview*editorLaunchString: command_string
Sets the editor launch command string to the specified value. Refer to
�Changing the Editor Launch String� on page 88 for more information
on the format of command_string.

Default: xterm -e %E +%N %S

Default:
width height x y
columns(70) lines(12) 335 10

Default:
width height x y
columns(72) max(205, lines(15)) -80 320
TotalView User�s Guide 165

totalview*evalWindLocation: =widthxheight+x+y
Specifies placement of the first expression evaluation window.

totalview*eventLogWindLocation: =widthxheight+x+y
Specifies placement of the event log window.

totalview*font: fontname
Specifies the font used by the TotalView debugger. Use the X Windows
supplied application xlsfonts to list the names of available fonts.

Default: fixed

totalview*frameOffsetX: n
Sets the horizontal placement offset between windows of the same type
as TotalView places them on the screen. This value is added to the
default value used by TotalView. If you are using TotalView title bars,
use the default.

Default: 0

totalview*frameOffsetY: n
Sets the vertical placement offset between windows of the same type
as TotalView places them on the screen. This value is added to the
default value used by TotalView. If you are using TotalView title bars,
use the default.

Default: 0

Default:
width height x y
columns(83) lines(30) + 2 -1 10

Default:
width height x y
columns(75) lines(20) -75 -50
166 TotalView User�s Guide

totalview*globalsWindLocation: =widthxheight+x+y
Specifies placement of the global variables window.

totalview*grabMouse: {on | off}
If off (default), do not force keyboard input to dialog boxes. If you�re
running TotalView with a window manager that is operating in �click-
to-type� mode, you should set this resource to �on� or use the �grab
command-line option.

totalview*helpWindLocation: =widthxheight+x+y
Specifies placement of the help window.

totalview*ignoreIncludes: {true | false}
If true (default), ignore all source line number information in include
files.

Override with: �ii option (overrides the false value)
 �nii option (overrides the true value)

totalview*kernelLaunchString: command_string
Specifies the command string that TotalView uses to automatically
attach to a kernel through a serial line connection when you start kernel
debugging. By default, TotalView uses the following strings to start
the kernel debugging:.

For Solaris: tip %K
For Linux cross x86: kermit -l /dev/com2 -b 19200 -c
For Linux cross PowerPC: kermit -l /dev/com2 -b 9600 -c

Default:
width height x y
columns(62) max(205, lines(15)) -80 10

Default:
width height x y
min(screen_width - 10,
columns(84))

min(screen_height -
20, 606)

-1 -20
TotalView User�s Guide 167

totalview*mainHSplit: n
Same as totalview*mainHSplit1.

totalview*mainHSplit1: n
Controls the height of the stack trace, stack frame and source panes in
the process window. n specifies the pixel location of the top of the
source pane.

Default: (window_height/3)

totalview*mainHSplit2: n
Controls the height of the source pane, thread list and action point list
in the process window. n specifies the pixel location of the top of the
thread list and action point list panes.

Default: A function of window_height: Tries to give 5 lines in the
thread list and action point list panes, and the remainder, at least 20
lines, to the source pane. If it cannot give the source pane at least 20
lines, it shrinks the thread list and action point list panes to zero.

totalview*mainVSplit: n
Same as totalview*mainVSplit1.

totalview*mainVSplit1: n
Controls the location of the partition between the stack trace and stack
frame panes in the process window. A value of �1 centers the partition.

Default: (window_width/2) � 20

totalview*mainVSplit2: n
Controls the location of the partition between the thread list and action
point list panes in the process window. A value of �1 centers the
partition.

Default: (window_width/2) � 20
168 TotalView User�s Guide

totalview*mainWindLocation: =widthxheight+x+y
Specifies placement of the first main process window.

totalview*menuCache: {on | off}
If off (default), disables menu caching. Not all X servers support menu
caching. If your X server doesn�t and you have menu caching enabled
(on), TotalView menus appear blank the second and subsequent times
you display them.

totalview*overrideRedirect: {on | off}
If off (default), do not create TotalView windows using the
override_redirect attribute. If on, use the override_redirect attribute,
which does not give the X window manager a chance to intercept
requests.

totalview*ownTitles: {on | off}
If on (default), place title bars on TotalView windows. If your window
manager is a reparenting one (places its own title bars on windows),
turn off this resource.

totalview*pullRightMenus: {on | off}
If off (default), use walking menus. If on, use pull-right menus.

totalview*pvmDebugging: {true | false}
If false (default), disables support for debugging PVM applications. If
true, enables support for debugging PVM applications.

Override with: �pvm option (overrides the false value)
�nopvm option (overrides the true value)

Default:
width height x y
min(columns(94),
screen_width - 5)

max(456, lines(45)) 10 -150
TotalView User�s Guide 169

totalview*rootWindLocation: =widthxheight+x+y
Specifies placement of the root window.

totalview*scrollLineSpeed: n
Specifies the maximum number of lines per second that TotalView
scrolls when you click on arrows at the top and bottom of the scroll
bars. To have TotalView scroll as fast as possible, set n to 0.

Default: 40

totalview*scrollPageSpeed: n
Specifies the maximum number of pages per second that TotalView
scrolls when you click above or below the elevator box inside the scroll
bars. To have TotalView scroll as fast as possible, set n to 0.

Default: 5

totalview*searchCaseSensitive: {on | off}
If off (default), searching for strings is not case-sensitive. If on,
searches are case- sensitive.

totalview*searchPath: dir1[,dir2,...]
Specifies a list of directories for the debugger to search when looking
for source and object files. This resource serves the same purpose as
the Set Search Directory command in the process window (see
�Setting Search Paths� on page 75). If you use multiple lines, place a
backslash (\) at the end of each line, except for the last line.

totalview*serverLaunchEnabled: {true | false}
If true (default), TotalView automatically launches the TotalView
Debugger Server (tvdsvr) when you start to debug a remote process.

Default:
width height x y
min(screen_width - 10,
columns(60))

max(150, lines(12)) 10 10
170 TotalView User�s Guide

totalview*serverLaunchString: command_string
Specifies the command string that TotalView uses to automatically
launch the TotalView Debugger Server (tvdsvr) when you start to
debug a remote process. By default, TotalView uses the rsh command
to start the server, but you can use any other command that can invoke
tvdsvr on a remote host. If you have no command available for
invoking a remote process, you can�t automatically launch the server;
therefore, you should set totalview*serverLaunchEnabled to false.

Default: rsh %R �n "cd %D && tvdsvr �callback %L �set_pw %P"

totalview*serverLaunchTimeout: n
Specifies the number of seconds that TotalView waits to hear back
from the TotalView Debugger Server (tvdsvr) that it launched
successfully. The number of seconds must be between 1 and 3600 (1
hour).

Default: 30

totalview*shareActionPoint: {true | false}
Same as totalview*shareActionPointInAllRelatedProcesses.

totalview*shareActionPointInAllRelatedProcesses: {true | false}
If true (default), the default setting for action points will be to share
them in all related processes. If false, the default setting for action
points will be to not share them in all related processes. See
�Breakpoints for Multiple Processes� on page 136.

totalview*signalHandlingMode: action_list
Modifies the way in which TotalView handles signals. An action_list
consists of a list of signal_action descriptions, separated by spaces:

signal_action[signal_action] ...

A signal_action description consists of an action and a list of signals:

action=signal_list
TotalView User�s Guide 171

An action can be one of the following: Error, Stop, Resend, or
Discard. For more information on the meaning of each action, refer to
�Handling Signals� on page 72.

A signal_list is a list of signal specifiers, separated by commas:

signal_specifier[,signal_specifier] ...

A signal_specifier can be a signal name (such as SIGSEGV), a signal
number (such as 11), or a *, which specifies all signals.

The following rules apply when specifying an action_list:

� If you specify an action for a signal in an action_list, TotalView
changes the default action for that signal.

� If you do not specify a signal in the action_list, TotalView does
not change its default action for the signal.

� If you specify a signal that does not exist for the platform,
TotalView ignores it.

� If you specify an action for a signal twice, TotalView uses the
last action specified. In other words, TotalView applies the
actions from left to right.

If you need to revert the settings for signal handling to TotalView�s
built-in defaults, use the Defaults button in the Set Signal Handling
Mode dialog box.

For example, to set the default action for the SIGTERM signal to
Resend, you specify the following action list:

�Resend=SIGTERM�

Note: Since signal numbers vary from system to system, we
recommend using the signal name. For example, on BSD
UNIX systems, the SIGUSR1 signal is assigned the signal
number 30, but on System V UNIX systems, the SIGUSR1
signal is assigned the signal number 16.
172 TotalView User�s Guide

As another example, to set the action for SIGSEGV and SIGBUS to
Error, the action for SIGHUP and SIGTERM to Resend, and all
remaining signals to Stop, you specify the following action list:

�Stop=* Error=SIGSEGV,SIGBUS
Resend=SIGHUP,SIGTERM�

This action list shows how TotalView applies the actions from left to
right. The action list first sets the action for all signals to Stop. Then,
the action list changes the action for SIGSEGV and SIGBUS from
Stop to Error and the action for SIGHUP and SIGTERM from Stop
to Resend.

totalview*sourcePaneTabWidth: n
Sets the width of the tab character that is displayed in the source pane.
For example, if your source file uses a tab width of 4, set n to 4.

Default: 8

totalview*spellCorrection: {verbose | brief | none}
When you use the Function or File... or Variable... commands in the
process window or edit a type string in a variable window, the debugger
checks the spelling of your entries. By default (verbose), the debugger
displays a dialog box before it corrects spelling. You can set this
resource to brief to run the spelling corrector silently. (The debugger
makes the spelling correction without displaying it in a dialog box first.)
You can also set this resource to none to disable the spelling corrector.

totalview*splitStatics: {on | off}
If on (default), TotalView will enter multiple globally-scoped static
variables with the same name in your program into the symbol table.
If off, TotalView will enter only the first occurrence of a globally-
scoped static variable into the symbol table, and discard subsequent
occurrences with the same name.

totalview*stopAll: {true | false}
Same as totalview*stopAllRelatedProcessesWhenBreakpointHit.
TotalView User�s Guide 173

totalview*stopAllRelatedProcessesWhenBreakpointHit: {true | false}
If true (default), the default setting for breakpoints will stop all related
processes. If false, the default setting for breakpoints will not stop all
related processes. See �Breakpoints for Multiple Processes� on
page 136.

totalview*useTransientFor: {on | off}
If off, use �override redirect� windows, which don�t let you use the
window manager to perform operations, such as raise and lower, on
dialog boxes. If you use an advanced window manager, you can use
the on option (default) to specify that the debugger use �transient-for�
type windows, which allow you to use the window manager to perform
operations on dialog boxes. If you�re using an X11R4 or more recent
server and window manager, you should use the on option. If you�re
using the DECstation�s DEC window manager, you should use the off
option.
174 TotalView User�s Guide

8

CHAPTER 9:
TotalView Command
Syntax
This chapter summarizes the syntax of the totalview command. For
the full syntax, use the man totalview command to view the online
version.

Synopsis totalview [filename [corefile]] [options]

Description The TotalView debugger is a source-level debugger with a graphic
interface (based on the X Window System) and features for debugging
distributed programs, multiprocess programs, and multithreaded
programs. It is available on a number of different platforms.

filename Specifies the pathname of an executable to
be debugged. The executable must be
compiled with the �g compiler switch.

corefile Specifies the name of a core file.

Options If you specify mutually exclusive options (such as �ii and �nii) on the
same command line, the last option listed is used.

�a args Passes all subsequent arguments (specified
by args) to the program specified by
filename. This option must be the last one
on the command line.
TotalView User�s Guide 175

�chase (Default) Displays dialog boxes at the
mouse pointer. To display dialog boxes
centered in the upper third of the screen,
use �nochase.

�dbfork (Default) Catches the fork(), vfork(), and
execve() system calls if your executable is
linked with the dbfork library.

�debug_file consoleoutputfile
Redirects TotalView console output to a
file named consoleoutputfile.

Default: All TotalView console output is
written to stderr.

�demangler=compiler
Overrides the C++ demangler and mangler
TotalView uses by default. Table 18 lists
override options.

�dumpcore Allows TotalView to dump a core file when
it gets an internal error. Useful for
debugging TotalView itself.

�dynamic (Default) Loads symbols from shared
libraries. This option is available only on
platforms that support shared libraries.

Table 18. Demangling Style

Option Meaning

�demangler=cset IBM xlC C++

�demangler=dec Digital C++

�demangler=gnu GNU C++

�demangler=spro SunPro C++ 4.0 or greater

�demangler=sun Sun CFRONT C++

�demangler=usoft MicroSoft C++
176 TotalView User�s Guide

�ext extension Specifies that files with the suffix extension
are preprocessor input files. TotalView
already has built-in extensions for C++ (.C,
.cpp, .cc, .cxx), Fortran (.F), lex (.l, .lex),
and yacc (.y) files.

�font fontname Specifies the font to be used by TotalView.

Default: fixed

�grab Forces all keyboard input to go to an open
dialog box. Use this option if your window
manager uses �click-to-type� mode.

�icc Ignores Control-C and prevents you from
terminating the TotalView process from an
xterm window, which is useful when your
program catches the Control-C signal
(SIGINT).

�ii (Default) Ignores source line information
for filenames ending with an .h or .hxx
suffix. To disable this, use the �nii option.

�lb (Default) Loads action points
automatically from the
filename.TVD.breakpoints file, providing
the file exists. To override this, use �nlb.

�mc Turns on menu caching. Use this option if
your X server supports menu caching. If
menus appear blank the second and
subsequent times you display them, your X
server does not support menu caching.

�nicc (Default) Catches Control-C and
terminates your TotalView debugging
session.

�nii Does not ignore source line information for
filenames ending with an .h or .hxx suffix.

�nlb Does not load action points automatically
from an action points file.

�nmc (Default) Turns off menu caching.
TotalView User�s Guide 177

�nochase Displays dialog boxes centered in the upper
third of the screen.

�nodbfork Does not catch fork(), vfork(), and
execve() system calls even if your
executable is linked with the dbfork
library.

�nodumpcore (Default) Does not allow TotalView to
dump a core file when it gets an internal
error.

�nodynamic Does not load symbols from shared
libraries. Setting this option can cause the
dbfork library to fail because TotalView
might not find the fork(), vfork(), and
execve() system calls.

�nograb (Default) Does not force keyboard input to
an open dialog box. To override this, use �
grab.

�nopvm (Default) Disables support for debugging
PVM applications. To override this option,
use �pvm.

�npr (Default) Use walking menus instead of
pull-right menus. To override this, use �pr.

�nsb (Default) Does not save action points
automatically to an action points file when
you exit. To override this option, use �sb.

�pr Use pull-right menus.

�pvm Enables support for debugging PVM
applications.

�r[emote] hostname[:portnumber]
Debugs an executable that is not running
on the same machine as TotalView. For
hostname, you can specify a TCP/IP
hostname, such as oak.bbn.com, or a
TCP/IP address, such as 128.89.0.16.
Optionally, you can specify a TCP/IP port
number for portnumber, such as :4174.
178 TotalView User�s Guide

�sb Saves action points automatically to an
action points file when you exit TotalView.

�serial device[:options]
Debugs an executable that is not running
on the same machine as TotalView. For
device, specify the device name of a serial
line, such as /dev/com1. Currently the only
option you are allowed to specify is the
baud rate, which defaults to 38400. For
more information on debugging over a
serial line, see �Debugging Over a Serial
Line� on page 65.

�shm �action_list� Same as �signal_handling_mode.

�signal_handling_mode �action_list�
Modifies the way in which TotalView
handles signals. You must enclose the
action_list string in quotation marks to
protect it from the shell. Refer to
�totalview*signalHandlingMode:
action_list� on page 171 for a description
of the action_list argument.
TotalView User�s Guide 179

180 TotalView User�s Guide

9

CHAPTER 10:
TotalView Debugger
Server Command Syntax
This chapter summarizes the syntax of the TotalView Debugger Server
command, tvdsvr, which is used for remote debugging. For more
information on remote debugging, refer to �Starting the Debugger
Server for Remote Debugging� on page 57.

Synopsis tvdsvr {�server | �callback hostname:port | �serial device} [other
options]

Description The tvdsvr debugger server allows TotalView to control and debug a
program on a remote machine. To accomplish this, the tvdsvr program
must run on the remote machine, and it must have access to the
executables to be debugged. These executables must have the same
absolute pathname as the executable that TotalView is debugging, or
the PATH environment variable for tvdsvr must include the directories
containing the executables.

You must specify either the �server, �callback, or �serial option with
the tvdsvr command. By default, the TotalView debugger
automatically launches tvdsvr (known as the auto-launch feature) with
the �callback option, and the server establishes a connection with
TotalView.

Note: Remote debugging support is an option that you may have to
purchase separately. See your platform-specific supplement
for more information.
TotalView User�s Guide 181

If you prefer not to use the auto-launch feature, you can start tvdsvr
manually and specify the �server option. Be sure to make note of the
password that tvdsvr prints out with the message:

pw = hexnumhigh:hexnumlow

TotalView will prompt you for hexnumhigh:hexnumlow later. By
default, tvdsvr automatically generates a password that is used when
establishing connections. If desired, you can use the -set_pw option to
set a specific password.

To connect to the tvdsvr from TotalView, you use the New Program
Window and must specify the hostname and TCP/IP port number,
hostname:portnumber on which tvdsvr is running. Then, TotalView
prompts you for the password for tvdsvr.

Options The following options determine the port number and password
necessary for TotalView to connect with tvdsvr.

�callback hostname:port
(Auto-launch feature only) Immediately
establishes a connection with the
TotalView debugger that is running on
hostname and listening on port, where
hostname is either a hostname or TCP/IP
address. If tvdsvr cannot connect with
TotalView, it exits. If you specify the �
port, �search_port, and �server options
with this option, tvdsvr ignores them.

�debug_file consoleoutputfile
Redirects TotalView Debugger Server
console output to a file named
consoleoutputfile.

Default: All console output is written to
stderr.
182 TotalView User�s Guide

�port number Sets the TCP/IP port number on which
tvdsvr should communicate with
totalview. If this TCP/IP port number is
busy, tvdsvr does not select an alternate
port number (that is, it communicates with
nothing) unless you also specify �
search_port.

Default: 4142

�pvm Uses the Parallel Virtual Machine (PVM)
library process as its input channel and
registers itself as the PVM tasker.

Note: This option is not intended for users
launching tvdsvr manually. When you
enable PVM support within TotalView,
TotalView automatically uses this option
when it launches tvdsvr.

�search_port Searches for an available TCP/IP port
number, beginning with the default port
(4142) or the port set with the �port option
and continuing until one is found. When the
port number is set, tvdsvr displays the
chosen port number with the following
message:

port = number

�serial device[:options]
Waits for a serial line connection from
TotalView. For device, specify the device
name of a serial line, such as /dev/com1.
Currently the only option you are allowed
to specify is the baud rate, which defaults
to 38400. For more information on
debugging over a serial line, see
�Debugging Over a Serial Line� on
page 65.
TotalView User�s Guide 183

�server Listens for and accepts network
connections on port 4142 (default). To use
a different port, you must specify the �port
or �search_port options. To stop tvdsvr
from listening and accepting network
connections, you must terminate it by
pressing Control-C in the terminal window
from which it was started or by using the
kill command.

�set_pw hexnumhigh:hexnumlow
Sets the password to the 64-bit number
specified by the two 32-bit numbers
hexnumhigh and hexnumlow.When a
connection is established between tvdsvr
and TotalView, the 64-bit password passed
by TotalView must match the password set
with this option. When the password is set,
tvdsvr displays the selected number in the
following message:

pw = hexnumhigh:hexnumlow

We recommend using this option to avoid
connections by other users.

Note: If necessary, you can disable password checking by
specifying the �set_pw 0:0 option with the tvdsvr command.
Disabling password checking is dangerous: it allows anyone
to connect to your server and start programs, including shell
commands, using your UID. Therefore, we don�t recommend
disabling password checking.
184 TotalView User�s Guide

Glossary
action point A point in a program where a breakpoint, evaluation point, or event
point has been set during a TotalView session.

address space A region of memory that contains code and data from a program. One
or more threads can run in an address space. A process normally
contains an address space.

breakpoint A point in a program where execution can be conditionally suspended
to permit examination and manipulation of data.

child process A process created by another process (see parent process) when that
other process calls fork().

cluster debugging The action of debugging a program that is running on a cluster of hosts
in a network. Typically, the hosts are homogeneous.

core file A file containing the contents of memory and a list of thread registers.
The operating system dumps (creates) a core file whenever a program
exits because of a severe error (such as an attempt to store data into an
invalid address).

cross debugging A special case of remote debugging where the host platform and the
target platform are different types of machines.

dbfork library A library of special versions of the fork() and execve() calls used by
the TotalView debugger to debug multiprocess programs. Programs
that call one of the fork(), vfork(), or execve() routines must be linked
with the dbfork library.

debugger server See the glossary entry for tvdsvr process.
TotalView User�s Guide 185

distributed
debugging

The action of debugging a program that is running on more than one
host in a network. The hosts can be homogeneous or heterogeneous.
For example, programs written with message passing libraries such as
Parallel Virtual Machine (PVM) or Parallel Macros (PARMACS) run
on more than one host.

dive stack A series of nested dives that were performed in the same variable
window. The number of right angle brackets (>) in the upper left hand
corner of a variable window indicates the number of nested dives on
the dive stack. Each time that you undive, TotalView pops a dive from
the dive stack and decrements the number of right angle brackets shown
in the variable window.

diving The action of clicking the right mouse button to display more
information about an item. For example, if you dive into a variable in
the TotalView debugger, a window appears with more information
about the variable.

editing cursor A black rectangle that appears when a TotalView field is selected for
editing. You use field editor commands to move the editing cursor.

evaluation point A point in the program where TotalView evaluates a code fragment
without stopping the execution of the program.

event log A file containing a record of events for each process in a program.

event point A point in the program where TotalView writes an event to the event
log for later analysis using the TimeScan Performance Analyzer.

extent The number of elements in the dimension of an array. For example, a
Fortran array of integer(7,8) has an extent of 7 in one dimension (7
rows) and an extent of 8 in the other dimension (8 columns).

field editor A basic text editor that is part of TotalView�s interface. The field editor
supports a subset of GNU Emacs commands.

gridget A dotted grid in the tag field that indicates you can set an action point
on the instruction.

host machine The machine on which the TotalView debugger is running.
186 TotalView User�s Guide

lower bound The first element in the dimension of an array or the slice of an array.
By default, the lower bound of an array is 0 in C and 1 in Fortran, but
the lower bound can be any number, including negative numbers.

native debugging The action of debugging a program that is running on the same machine
as TotalView.

nested dive window A TotalView window that results from diving into an item in a variable
window. A nested dive window replaces the contents of the variable
window and has an undive symbol in its title bar. Diving on the undive
symbol returns the original contents of the variable window.

parcel The number of bytes required to hold the shortest instruction for the
target architecture.

parent process A process that calls fork() to spawn other processes (usually called
child processes).

PARMACS library A message passing library for creating distributed programs that was
developed by the German National Research Centre for Computer
Science.

process Consists of an address space and a list of one or more threads running
in that address space.

process group A group of processes associated with a multiprocess program. Includes
program groups and share groups.

process window The main TotalView window for a process, which consists of three
panes: the stack trace, the stack frame, and the source code for the
program.

program group A group of processes that includes the parent process and all related
processes. A program group includes children that were forked
(processes that share the same source code as the parent) and children
that were forked with a subsequent call to execve() (processes that do
not share the same source code as the parent). Contrast with share
group.

PVM library Parallel Virtual Machine library. A message passing library for creating
distributed programs that was developed by the Oak Ridge National
Laboratory and the University of Tennessee.
TotalView User�s Guide 187

remote debugging The action of debugging a program that is running on a different
machine than TotalView. The machine on which the program is
running can be located many miles away from the machine on which
TotalView is running.

root window A TotalView window displaying the process ID, status (e.g., at
breakpoint or stopped), name, and current routine executing for each
process being debugged.

serial line debugging A form of remote debugging where TotalView and the TotalView
Debugger Server communicate over a serial line.

share group A group of processes that includes the parent process and any related
processes that share the same source code as the parent. Contrast with
program group.

signals Messages informing processes of asynchronous events, such as serious
errors. The action the process takes in response to the signal depends
on the type of signal and whether or not the program includes a signal
handler routine, a routine that traps certain signals and determines
appropriate actions to be taken by the program.

single step The action of executing a single statement and stopping (as if at a
breakpoint).

slice A subsection of an array, which is expressed in terms of a lower bound,
upper bound, and stride. Displaying a slice of an array can be useful
when working with very large arrays, which is often the case in Fortran
programs.

stack A portion of computer memory and/or registers used to hold
information temporarily. The stack consists of a linked list of stack
frames that holds return locations for called routines, routine
arguments, local variables, and saved registers.

stack frame A section of the stack that contains the local variables, arguments,
contents of the registers used by an individual routine, a frame pointer
pointing to the previous stack frame, and the value of the Program
Counter (PC) at the time the routine was called.

stack trace A sequential list of each currently active routine called by a program
and the frame pointer pointing to its stack frame.
188 TotalView User�s Guide

stride The interval between array elements in a slice and the order in which
the elements are displayed. If the stride is 1, every element between
the lower bound and upper bound of the slice is displayed. If the stride
is 2, every other element is displayed. If the stride is �1, every element
between the upper bound and lower bound (reverse order) is displayed.

symbol table A table of symbolic names (such as variables or functions) used in a
program and their memory locations. The symbol table is part of the
executable object generated by the compiler (with the �g switch) and
is used by debuggers to analyze the program.

tag field The left margin in the source code pane of the TotalView process
window containing boxed line numbers marking the lines of source
code that actually generate executable code.

target machine The machine on which the process to be debugged is running.

thread An execution context that normally contains a set of private registers
and a region of memory reserved for an execution stack. A thread runs
in an address space.

tvdsvr process The TotalView Debugger Server process, which facilitates remote
debugging by running on the same machine as the executable and
communicating with TotalView over a TCP/IP port or serial line.

undiving The action of displaying the previous contents of a window, instead of
the contents displayed for the current dive. To undive, you dive on the
undive icon in the upper right-hand corner of the window.

upper bound The last element in the dimension of an array or the slice of an array.

variable window A TotalView window displaying the name, address, data type, and
value of a particular variable.
TotalView User�s Guide 189

190 TotalView User�s Guide

Index
Symbols
, (comma), in specifying a range of addresses 112

. (period)
in searches 41
in suffix of process names 93

/ (slash), in searching for strings 41

: (colon), in array type strings 118

> (right angle bracket), indicating nested dives 115

\ (backslash), in searching backward for strings 41

A
�a option 47, 175

action points
action points window 146, 165
definition 185
deleting 148
disabling 148
enabling 149
features available 17
loading automatically 177
machine level 84
saving 150, 178
slow performance 161
suppressing 149
unsuppressing 149

address space
definition 185

addresses

changing 130
of machine instructions 84, 130
retracing 164
specifying in variable window 112
tracking in variable window 108

allocated arrays, displaying 125

Allows Asynchronous Stop capability 90

Allows Atomic Run capability 91

Allows Multithreaded Signal Delivery capability
91

Allows Read While Running capability 91

angle brackets, in windows 115

areas of memory, data type 123

arguments
for totalview command 175
for tvdsvr command 182
in server launch command 58, 61
passing to program 47
setting 77

argv array, displaying 124

arrays
character 123
declared versus allocated 125
displaying 112
displaying argv 124
displaying slices 125
diving into 38
lower bound 118
type strings for 118
TotalView User�s Guide 191

Index
upper bound 118

ASM sign 134

Assembler
and �g compiler option 38
constructs 158
display symbolically 165
examining 84

Assembler Display Mode command 84

Asynchronous Run capability 90

Asynchronous Stop capability 90

at breakpoint state 71

attaching to processes 21, 50, 54

auto-launch feature
(figure) 58
changing options 58, 170
description 57
disabling 62

B
B state 71

base window, displaying a new 115

bit fields 116

bookmarks 146

boxes, in tag field 29

breakpoint state 71

breakpoints
action points window 146
clearing 33
conditional 140, 154
countdown 154
definition 185
loading automatically 164
machine level 84, 134
saving 150, 164
setting 33, 134, 136
sharing 21, 138
slow performance 161
thread specific 153

built-in

intrinsic variables
$clid 153
$duid 153
$nid 153
$pid 153
$processduid 153
$systid 153
$tid 153

statements
$count 155
$countall 154
$countprocess 154
$countthread 154
$stop 154
$stopall 154
$stopprocess 154
$stopthread 154

type strings 121

buttons
EVAL 151
go back 30, 32
mouse, using 33
next process 30, 32
next thread 30, 32
previous process 30, 32
previous thread 30, 32
undive 114

C
C

array bounds 118
file suffixes 86
in evaluation points 155
type strings

parameter in .Xdefaults file 165
supported 116

C++ template functions 99

caching variables 132

call stack 29

�callback option 58, 182

cancelling single step operations 34

capabilities
192 TotalView User�s Guide

Index
Allows Asynchronous Stop 90
Allows Atomic Run 91
Allows Multithreaded Signal Delivery 91
Allows Read While Running 91
Asynchronous Run 90
Asynchronous Stop 90
Synchronous Run 90
Synchronous Stop 90

case sensitive searches 170

casting, types of variable 116

changing
auto-launch options 58
program groups 95
variables 115

characters, arrays of 123

�chase option 176

checking spelling 42

child processes
definition 185
names 93

Clear All GIST command 148

Clear All STOP and EVAL command 148

clearing
breakpoints 33, 136
evaluation points 33
event points 33

$clid intrinsic variable 153

Close All Similar Windows command 113

Close Window command 113

closing windows 113

cluster debugging 54
definition 185

code constructs supported
Assembler 158
C 155
Fortran 156

<code> data type 123

<code> type string 130

commands

arguments 77
Assembler Display Mode 84
Clear All GIST 148
Clear All STOP and EVAL 148
Close All Similar Windows 113
Close Window 113
Create Process (without starting it) 92
Detach from Process 55
Display Assembler by Address 84
Display Assembler Symbolically 84
Duplicate Window 115
Edit Source Text 87
Editor Launch String 89
Find Interesting Relative 96
for launching tvdsvr 58, 171
Function or File 86
Global Variables Window 111
Go Group 92
Go Process 91
Go Thread 92
Halt Group 105
Halt Process 105
Halt Thread 105
Help 37
input and output files 80
Input from File 80
Interleave Display Mode 84, 104
issuing 33
New Base Window 115
New Program Window 49, 51, 56
Next (instruction) 100
Next (source line) 100
Open Action Points Window 146
Open Expression Window 151
Output to File 80
Quit Debugger 43
Reexecute Last Save Window 43
Reexecute Last Search 41
Reload Executable File 50
Return (out of function) 101
rsh 60
Run to Selection 100
Save All Action Points 150
Save Window to File 43
Search Backward 41
Search Backward for String 41
TotalView User�s Guide 193

Index
Search for String 41
Search Forward 41
Server Launch String 63
Set Command Arguments 77
Set Continuation Signal 55, 102
Set Environment Variables 79
Set PC to Absolute Value 104
Set PC to Selection 104
Set Process Program Group 96
Set Search Directory 75
Set Signal Handling Mode 73
Show All Process Groups 94
Show All Unattached Processes 51
Show Event Log Window 80
Single Step 98
Source Display Mode 84
Step (instruction) 99
Step (source line) 92, 99
Suppress All Action Points 149
Suppress All GIST 149
totalview, syntax and use 175
tvdsvr, syntax and use 181
Unsuppress All Action Points 149
Unsuppress All GIST 149
Update Process Info 105
Variable 109, 111, 128

common blocks, displaying 110

compiled expressions 144

compiling programs 26, 38, 46

conditional breakpoints 18, 140, 142, 154

continuing
with a signal 102

control registers, interpreting 89

copying text between windows 39

core files
definition 185
examining 56
in totalview command 47, 56

$count statement 155

$countall statement 154

countdown breakpoints 142, 154

$countprocess statement 154

$countthread statement 154

CPU registers 89

Create Process (without starting it) command 92

creating processes 49, 91, 160
using Step (source line) 92
without starting them 92

cross debugging
definition 13, 185

cursor, with arrows 30

customizing TotalView 163

D
dbfork library 46, 178, 185

�dbfork option 176

�debug_file option 176, 182

debugger server 19, 57, 171, 181

debugging
multiprocess programs 20, 46
programs that call execve 46
programs that call fork 46
remote processes 53

declared arrays, displaying 125

deleting
action points 148
processes 106

�demangler option 176

Detach from Process command 55

dialogs
action point options 137, 147
attach to process 52
behavior of 165, 177
change process group 96
debug remote process 53
environment variables 79
input from file 80
launch debugger server 62
load new program 49
location of 176
194 TotalView User�s Guide

Index
output to file 80
serial line debugging 68
set command arguments 77
set search directory 76
set signal handling mode 73
spelling corrector 42

directories, setting order of search 75

disabling
action points 148
auto-launch feature 62, 170
PVM support 169, 178

disassembly, in variable window 130

Display Assembler by Address command 84

Display Assembler Symbolically command 84

displaying
areas of memory 112
argv array 124
arrays 112, 125
common blocks 110
global variables 109
more detail about objects 37

distributed debugging 13, 19, 53, 57
definition 186

dive stack
definition 186

diving
definition 115, 186
into Fortran common blocks 111
into functions 86
into global variables 109
into local variables 109
into processes 31, 37, 94
into registers 108
into threads 32, 37
into variables 38
into windows 37

$duid intrinsic variable 153

�dumpcore option 176

Duplicate Window command 115

�dynamic option 176

E
E state 71

Edit Source Text command 87

editing
closing editor 34
cursor

(figure) 39
definition 39, 186

selecting field for 33
source text 87
text with field editor 38
type strings 116

editor launch string 88
default 88

Editor Launch String command 89

enabling
action points 149
PVM support 169, 178

environment variables 78

error state 71

errors 159

Eval button 151

EVAL sign, for evaluation points 33

evaluating expressions 150

evaluation points
Assembler constructs 158
C constructs 155
clearing 33
commands 154
defining 140
definition 186
examples 142
Fortran constructs 156
machine level 84, 140
setting 33, 141
slow performance 161

event log
definition 21, 186
window 80, 166

event points
TotalView User�s Guide 195

Index
clearing 33
definition 186
machine level 84
setting 33
slow performance 161

examining
core files 56
process groups 94
source and Assembler code 84
stack trace and stack frame 108
status and control registers 89

exception enable modes 89

executing
to a selected line 100
to the completion of a function 101

execve
debugging programs that call 46

execve call
attaching to processes 50
failure of 160
setting breakpoints with 138

exiting TotalView 34, 43

expression evaluation window
compiled and interpreted expressions 144
discussion 150
location 166

�ext option 177

extent
definition 186

F
field editor

definition 186
editing text with 38
ending session 34

Find Interesting Relative command 96

finding functions 86

�font option 177

fonts, in .Xdefaults file 166

fork

debugging programs that call 46

fork call, and setting breakpoints 138

Fortran
array bounds 118
common blocks 110
file suffixes 86
in evaluation points 156
type strings, supported by TotalView 116

Function or File command 86

functions, finding 86

G
�g compiler option 38, 46

generating a symbol table 46

GIST sign, for event points 33

global variables window
discussion 111
location 167

Global Variables Window command 111

global variables, diving into 109

go back button 30

Go Group command 92

Go Process command 91

Go Thread command 92

goto statements 140

�grab option 47, 177

gridget 84, 134

groups, definition 93

H
Halt Group command 105

Halt Process command 105

Halt Thread command 105

handling signals 72, 171, 179

Help command 37

help window
196 TotalView User�s Guide

Index
displaying 37
features available 23
location 167

hexadecimal address, specifying in variable
window 112

host machine, definition 19, 186

hostname
for tvdsvr 48, 53, 54, 182
in root and process windows 28, 69

I
I state 70

�icc option 177

idle state 70

ignoring include files 167

�ii option 177

inactive menu commands 33

include files, ignoring 167

input files, setting 80

instructions, displaying 113, 130

Interleave Display Mode command 84

interpreted expressions 144

intrinsic variables 153
$clid 153
$duid 153
$nid 153
$pid 153
$processduid 153
$systid 153
$tid 153

K
keyboard equivalents 34

L
labels, for machine instructions 130

launching tvdsvr 57, 170, 181

�lb option 177

left mouse button 33

lex utility, file suffixes 87

libraries
dbfork 46, 178, 185
shared 176

license manager 159

line numbers, in tag field 29

loading
action points 164, 177
new executables 48, 53

local variables, diving into 108

location
of processes 28, 69
of windows 170

lower bound, of array slices 125

M
M state 71

machine instructions
data type 123
displaying 113, 130
single stepping 99

�mc option 177

memory error 160

memory, displaying areas of 38, 112

menus
blank menus 177
caching 177
customizing behavior of 169
popping up 33

messages 159

middle mouse button 33

mixed state 71

mouse buttons, using 33

multiple variables, with same name 109

multiprocess programs
TotalView User�s Guide 197

Index
and distributed debugging 19
and signals 74
attaching to 52
compiling 46
features available 20, 22
finding active processes 96
loading new executables 54
PCs in 29
process groups 93
setting and clearing breakpoints 136

N
�n option, of rsh command 61

names, of processes in process groups 93

native debugging 19
definition 187

navigating
in the process window 30
in the root window 31

nested dive window 38, 115
definition 187

New Base Window command 115

New Program Window command 49, 51, 56

Next (instruction) command 100

Next (source line) command 100

-nicc option 177

$nid intrinsic variable 153

�nii option 86, 177

�nlb option 177

�nmc option 177

�nochase option 178

�nodbfork option 178

�nodumpcore option 178

�nodynamic option 178

�nograb option 178

�nopvm option 178

notes

bit fields 116
breakpoints apply to processes 134
changing global variables 92
copying text between windows 40
diving into subroutines 38
editing compound objects or arrays 120
editing type strings 117
how TotalView determines share group 95
interleave display mode 84
machine architecture and distributed debug-

ging 19
multiple variables with same name 109
prefix for hexadecimal addresses 112
specifying search directories 76
variable window, tracking addresses 108

�npr option 178

�nsb option 178

O
�O option 46

offsets, for machine instructions 130

opaque type definitions 124

Open Action Points Window command 146

Open Expression Window command 151

optimizations, compiling for 46

output files, setting 80

override-redirect windows 169

P
panes

location and size 168
resizing 30

parent processes, definition 187

passing arguments 47

password, generated by tvdsvr 182

pasting text between windows 39

patching programs 143

PATH environment variable 75
198 TotalView User�s Guide

Index
PC
See program counter (PC)

performance
action points 161
interpreted and compiled expressions 144
of remote debugging 57

$pid intrinsic variable 153

pointers
diving into 38
to arrays 117

popping up menus 33

port number, for tvdsvr 48, 53, 54, 182

�port option 63, 183

�pr option 178

preprocessors 87, 177

procedures
attaching to processes 50, 54
changing

auto-launch options 62
program groups 95
variables 115

compiling multiprocess programs 46
compiling programs 46
copying text between windows 39
creating processes 91
debugging setuid programs 161
deleting processes 106
disabling the auto-launch feature 62
displaying

argv 124
declared and allocated arrays 125
global variables 109
machine instructions 113, 130
memory 112

diving into objects 37
editing

addresses 130
source text 87
text 38
type strings 116

evaluating expressions 150
examining

core file 56
source and Assembler code 84
stack trace and stack frame 108

executing
out of function 101
to a selected line 100

exiting from TotalView 43
finding

interesting relatives 96
source code for functions 86

issuing commands 34
loading new executables 48, 53
patching programs 143
reloading executables 50
rereading symbol tables 50
resizing panes 30
restarting processes 106
saving action points 150
setting

breakpoints 134, 136
command arguments 77
evaluation points 141
input and output files 80
program counter (PC) 103, 104
search paths 75
signal handling mode 73
thread specific breakpoints 153

setting editor launch string 88
setting environment variables 79
single stepping 98

into function calls 99
over function call 99

starting processes 91
starting threads 91
starting tvdsvr 57, 63
stopping processes 105
stopping threads 105

process
definition 23

process groups window 15, 94

process window
(figure) 28
content of 29
definition 15, 187
TotalView User�s Guide 199

Index
location 169

process window navigation controls
(figure) 31

process window stack 32

$processduid intrinsic variable 153

processes
attaching to 50, 54
child, definition 185
creating 91
creating new 49
cross debugging 13
deleting 106
detaching from 55
distributed 13
diving into 31, 37
error creating 160
executing

out of function 101
features available for controlling 16
go back button 30
groups

changing 95
definition 21, 187
examining 94
understanding 92

loading new executables 48, 53
location of 28, 69
multithreaded 12
names 93
native 12
navigating in the process window 30
navigating in the root window 31
next process button 30
parent, definition 187
previous process button 30
refreshing process info 105
reloading 50
remote 12, 51
restarting 106
selecting 31
single stepping 98
starting 91
status of 68
stopping 105

stopping and deleting 140

processor number 69

program counter (PC) 29, 103, 145

program group
changing 95
definition 187
discussion 93

programs
compiling 46
cross debugging 13
distributed 13
multiprocess 12
multithreaded 12
native 12
remote 12
setuid, debugging 161

PVM applications
enabling support 169

�pvm option 178, 183

Q
queueing mouse clicks 164

quitting TotalView 34, 43

R
R state 70, 71

raising root window 34

Reexecute Last Save Window command 43

Reexecute Last Search command 41

registers
diving into 108
interpreting 89

relatives, definition 93

Reload Executable File command 50

remote debugging 57
(figure) 12, 58, 64
attaching to a process 54
definition 19, 188
launching tvdsvr 57
200 TotalView User�s Guide

Index
loading a new executable 53
process location 28, 69
tvdsvr command syntax 181

�remote option 48, 178

repainting windows 34

rereading symbol tables 50

resizing panes 30

resources, for .Xdefaults file 163

restarting processes 106

resuming
execution 91
processes with a signal 102

retracing addresses 164

Return (out of function) command 101

right mouse button 33

root window
(figure) 27
content of 27, 69
definition 15, 188
location 170
raising 34

rounding modes 89

rsh command 60

Run to Selection command 100

running state 71

S
S state 70

same name, multiple variables with 109

Save All Action Points command 150

Save Window to File command 43

saving
action points 150, 164, 178
contents of windows 42

�sb option 179

scroll bar
(figure) 35

scrollable multiline field
(figure) 36

scrolling
multiline fields 36
using the keyboard 35
windows 33, 170
windows and fields 34

Search Backward command 41

Search Backward for String command 41

Search for String command 41

Search Forward command 41

search paths
in .Xdefaults file 170
setting 75

�search_port option 63, 183

searching for strings 41, 170

searching for text strings 41

selecting
a line of source code 104
commands 33
Eval button 151
items 33

selecting processes 31

selecting threads 31

sending signals to program 74

serial line debugging
definition 188

�serial option 179, 183

server launch command 171

Server Launch String command 63

�server option 63, 184

Set Command Arguments command 77

Set Continuation Signal command 55, 102

Set Environment Variables command 79

Set PC to Absolute Value command 104

Set PC to Selection command 104

Set Process Program Group command 96
TotalView User�s Guide 201

Index
�set_pw option 58, 184

setting
breakpoints 33, 134, 136
command arguments 77
environment variables 78
evaluation points 33, 141
event points 33
input and output files 80
program counter (PC) 103
search path 75, 170

setuid programs 161

shaded box, in tag field 84

share group
definition 188
determining members of 95
discussion 93

shared libraries 176

sharing action points 21, 138

�shm option 179

Show All Process Groups command 94

Show All Unattached Processes command 51

Show Event Log Window command 80

showing areas of memory 112

�signal_handling_mode option 179

signals
continuing execution with 102
definition 188
handling in TotalView 72, 171, 179

single process group window 95

single stepping
cancelling 34
definition 188
high-level single stepping commands 98
into function calls 99
over function call 99
slow performance 161
to the next instruction 98

sizing cursor
(figure) 30

sleeping state 70

slices, of arrays 125

source code pane 29, 159, 168, 173

source code, examining 84

Source Display Mode command 84

speed when scrolling 170

spelling corrector 42, 173

stack
definition 188
frame

definition 188
examining 108
pane 29, 110

trace
definition 188
diving into 37
examining 108
pane 29

standard input, and launching tvdsvr 61

starting
processes 91
threads 91
TotalView 26, 47
tvdsvr 48, 57, 63

status registers, interpreting 89

status, of processes 68

status, of threads 68

Step (instruction) command 99

Step (source line) command 99

stepping 98
See also single stepping

STOP sign, for breakpoints 33, 134

$stop statement 154

$stopall statement 154

stopped state 70, 71

stopping processes 105, 140

stopping threads 105

$stopprocess statement 154
202 TotalView User�s Guide

Index
$stopthread statement 154

stride, in array slices 125

<string> data type 123

strings, searching for 41, 170

structures 38, 119

subroutines, diving into 38

suffixes
of preprocessor input files 87
of processes in process groups 93
of source files 86

Suppress All Action Points command 149

Suppress All GIST command 149

suspended windows 152

swap space 160

symbol table, definition 189

symbol tables
rereading 50

Synchronous Run capability 90

Synchronous Stop capability 90

$systid intrinsic variable 153

T
T state 70, 71

tab character 173

tag field 29, 189

target machine, definition 19, 189

template functions 99

text strings, searching for 41

thread
definition 23

thread list 26, 27, 29

thread specific breakpoints 153

threads
diving into 32, 37
executing

out of function 101

go back button 30
navigating in the process window 30
navigating in the root window 31
next thread button 30
previous thread button 30
selecting 31
single stepping 98
starting 91
status of 68
stopping 105

$tid intrinsic variable 153

timeout, for launching tvdsvr 61, 171

totalview command 26, 47, 175
environment variables 78

transient-for windows 174

troubleshooting 9, 159

tvdsvr command 19, 181, 189
auto-launch feature 57
enabling launch of 170
environment variables 78
starting 57, 171
use with PVM applications 183

type casting 116

type strings
built-in 121
editing 116
for opaque types 124
parameter in .Xdefaults file 165

typedef datatype 119

U
unattached processes window

content of 69
discussion 51

undive icon 114

undiving
definition 115, 189
from windows 115

unions 119

Unsuppress All Action Points command 149
TotalView User�s Guide 203

Index
Unsuppress All GIST command 149

unwinding the stack 104

Update Process Info command 105

upper bound, of array slices 125

using
mouse buttons 33

V
Value field 151

Variable command 109, 111, 128

variable window
definition 15, 189
discussion 108
displaying 108
duplicating 115
location 165
to display area of memory 112
tracking addresses 108

variables
caching 132
changing the value 115
diving into 37
features available 18
intrinsic 153
local, diving into 108

<void> data type 123

void data type 123

void type 123

W
windows

action points 146, 165
closing 113
diving into 37
evaluation 166

See also expression evaluation window
event log 80, 166
expression 151
global variables 111, 167
help 167

machine instructions in 113
offset between 166
override-redirect 169
problems with 159
process 15, 28, 169
process groups 15, 94
repainting 34
root 15, 27, 170
saving contents of 42
single process group 95
suspended 152
transient-for 174
unattached processes 51
variable 15, 108, 109, 112, 113, 165

X
X Window System 39

.Xdefaults file 163

xterm
launching tvdsvr from 61
problems with 159

Y
yacc utility, file suffixes 87

Z
Z state 70

zombie state 70
204 TotalView User�s Guide

	TotalView User’s Guide
	Contents
	About This Guide
	Getting Started
	Typographical Conventions
	Reporting Problems

	CHAPTER 1: Introduction
	TotalView’s Advantages
	TotalView’s Windows
	Examining Source and Machine Code
	Controlling Processes and Threads
	Using Action Points
	Examining and Manipulating Data
	Distributed Debugging
	Multiprocess Programs
	Multithreaded Programs
	Context-Sensitive Help

	CHAPTER 2: TotalView Basics
	Compiling Programs
	Starting TotalView
	Using the Primary Windows
	Navigating in the Process Window
	Navigating in the Root Window
	The Process Window Stack

	Using the Mouse Buttons and Menus
	Scrolling Windows and Fields
	Scrolling Windows
	Scrolling Multiline Fields

	Getting Help
	Diving into Objects
	Editing Text
	Searching for Text
	Using the Spelling Corrector
	Saving the Contents of Windows
	Exiting from the TotalView Debugger

	CHAPTER 3: Setting Up a Debugging Session
	Compiling Programs
	Starting the TotalView Debugger
	Loading Executables
	Loading a New Executable
	Reloading a Recompiled Executable

	Attaching to Processes
	Debugging Remote Processes
	Loading a Remote Executable
	Attaching to a Remote Process

	Detaching from Processes
	Examining a Core File
	Starting the Debugger Server for Remote Debugging
	The Auto�Launch Feature
	Auto-Launch Options
	Starting the Debugger Server Manually

	Debugging Over a Serial Line
	Start the TotalView Debugger Server
	Starting TotalView on a Serial Line
	New Program Window

	Determining the Status of Processes and Threads
	Process Status
	Thread Status
	Unattached Process States
	Attached Process States

	Handling Signals
	Setting Search Paths
	Setting Command Arguments
	Specifying Environment Variables
	Setting Input and Output Files
	Monitoring TotalView Sessions

	CHAPTER 4: Debugging Programs
	Examining Source and Assembler Code
	Finding the Source Code for Functions
	Editing Source Text
	Changing the Editor Launch String
	Interpreting Status and Control Registers
	Controlling Program Execution
	Capabilities and Characteristics

	Starting Processes and Threads
	Examining Process Groups
	Types of Process Groups
	Displaying Process Groups
	Changing Program Groups
	Finding Active Processes

	Setting a Breakpoint
	Single Stepping
	Stepping Into Functions Calls
	Stepping Over Function Calls
	Executing to a Selected Line
	Executing to the Completion of a Function

	Continuing with a Specific Signal
	Setting the Program Counter
	Stopping Processes and Threads
	Deleting Processes
	Restarting Processes

	CHAPTER 5: Examining and Changing Data
	Displaying Variable Windows
	Displaying Local Variables and Registers
	Displaying a Global Variable
	Displaying Fortran Common Blocks
	Displaying All Global Variables
	Displaying Areas of Memory
	Displaying Large Arrays
	Displaying Machine Instructions
	Closing Variable Windows

	Diving in Variable Windows
	Changing the Values of Variables
	Changing the Data Type of Variables
	How TotalView Displays C Data Types
	Built-In Type Strings
	Example: Displaying the argv Array
	Example: Displaying Declared Arrays
	Example: Displaying Allocated Arrays

	Displaying Array Slices
	Slice Descriptions
	Strides
	Using Slices in the Variable Command

	Changing the Address of Variables
	Changing Type Strings to Display Machine Instructions
	Caching of Variables

	CHAPTER 6: Setting Action Points
	Setting Breakpoints
	Source-Level and Machine- Level Breakpoints
	Thread Specific Breakpoints
	Breakpoints for Multiple Processes
	Multiprocess Breakpoint Example

	Defining Evaluation Points and Conditional Breakpoints
	Setting an Evaluation Point
	Setting Conditional Breakpoints
	Patching Programs
	Interpreted and Compiled Expressions

	Controlling Action Points
	Displaying the Action Points Window
	Displaying the Action Point Options Dialog
	Controlling Action Points

	Saving Action Points in a File
	Evaluating Expressions
	Writing Code Fragments
	Intrinsic Variables
	Built-In Statements
	C Constructs Supported
	Fortran Constructs Supported
	Assembler Constructs Supported

	CHAPTER 7: Troubleshooting
	CHAPTER 8: X Resources
	CHAPTER 9: TotalView Command Syntax
	CHAPTER 10: TotalView Debugger Server Command Syntax
	Glossary
	Index

