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1 Introduction

Solaris MINIX (smx) is a version of the MINIX operating system that runs as a user process
under Solaris 2.x (SunOS 5.x) on SPARC-based Suns. The set of user commands, library
functions and system calls is virtually identical to that of standard (PC) MINIX (which we
will refer to simply as “MINIX” in this document). Because smx runs as a user process,
multiple copies can run simultaneously on one Sun, quite independent of each other and of
any other workload present at the time. This flexibility means that smx can be used for
laboratory work in OS courses in situations where it would be infeasible to have students
modify a native operating system.

This document concentrates on the differences between MINIX and smx (those wanting
information on MINIX should see [3]). We begin with an overview, and follow that with
installation instructions. We then go on to describe smx from two viewpoints—the user
viewpoint and the internal viewpoint. We finish the main body of the report by describing
the interaction network monitor that has been added to smx. Three appendices contain:
manual pages for the small number programs that run under SunOS, advice for using smx
with a class, and an overview of the source code changes made in smx.

Those wanting more information about smx and about interaction network monitoring
(including information on the SunOS and Amoeba monitors) should follow the appropriate
links from:

http://www.cosc.canterbury.ac.nz/"paul

2 Overview

To the user, smx seems much the same as MINIX. Most of the MINIX commands are available.
The same library and system calls are available, although compilation is done under SunOS
rather than under smx. The reason that smx seems much the same is that it is much the
same. Nearly all source code in the memory manager, the file system, the internet server and
the user commands and the libraries is identical to the MINIX code. Most smx-specific code
is concentrated in two areas—the kernel and the bootstrap program, and even then the smx
kernel contains a substantial amount of code that is unchanged from the MINIX kernel.
The “hardware” that smx runs on is the virtual machine defined by a SunOS process. The
CPU time distributed by the smx scheduler consists of the CPU time given by the SunOS
scheduler to the SunOS process running smx. The memory managed by the smx memory
manager is part of the address space of the SunOS process running smx. The interrupts are



SunOS signals, with the alarm signal used to simulate the hardware clock. Each smx file
system is stored as a SunOS file, with the file formatted as a fixed length MINIX file system.
The smx console is the controlling terminal of the SunOS process running smx. One way to
think of smx is as a complex threads package for SunOS.

The minix program (which runs under SunOS) is used to bootstrap smx, by setting up
the smx devices, loading the operating system, and then jumping into smx proper to begin
the standard MINIX booting sequence. The standard booting messages appear and the user
can then login when prompted for a usercode. Additional terminal sessions can be attached
to a running instance of smx using the (SunOS) mlogin program. This means that smx is a
multi-user system, and that it is easy to experiment with having multiple users.

The only area in which smx suffers from a lack of realism is in its low-level device drivers.
Disk accesses are simulated by first calling the SunOS lseek system call to move to the
appropriate file position, and then making a read or write system call to transfer the data.
The system calls are synchronous, so there is no chance to run another smx process while
the transfer is taking place. Similarly terminal input and output is done via read and write
system calls. In the case of input, a SunOS signal is generated whenever input becomes
available.

This lack of reality is confined to a very small part of the system. The kernel must still
face up to asynchronous interrupts (from the clock, keyboard and ethernet), and the potential
for race conditions that results. The kernel code for CPU scheduling and message passing,
and all code for the memory manager, file system and internet server is virtually identical to
that of MINIX. Consequently, smx provides good support for a wide range of OS laboratories.

The standard set of MINIX manual entries are available from within smx. New entries
have been added for smx-specific commands, but otherwise the manual pages have not been
changed. Manual pages describing commands specific to the PC should be ignored. Manual
entries for the smx programs and scripts that run under SunOS can be found in Appendix A
in this document.

2.1 History and acknowledgements

Solaris MINIX has been chiefly developed in the Department of Computer Science at the
University of Canterbury, Christchurch, New Zealand. In the (southern hemisphere) summer
of 1991/92, Peter Smith (psmith@cs.ubc.ca, then a student at Canterbury) created the first
version of SunOS MINIX by porting Macintosh MINIX 1.5.10 to SunOS 4 running on SPARC-
based Sun systems. SunOS MINIX was developed further by Paul Ashton and released (as
a set of diffs to MINIX 1.5.10) in 1992. Bill Bynum (bynum@cs.wm.edu) contributed a Sun
3 version. Over the (southern hemisphere) summer of 1992/93, Peter Smith developed an
initial port of SunOS MINIX to Solaris 2. At that point, the SunOS MINIX distribution
contained SPARC/SunOS 4, SPARC/Solaris 2 and Sun 3 versions.

Late in 1995, Paul Ashton took the initial Solaris port of SunOS MINIX, and the (now
publicly available) MINIX 1.7.1 release, and from them produced Solaris MINIX. Considerable
further development has taken place since then, including integration of the changes in MINIX
1.7.2 to 2.0.

Finally, thanks to Kees Bot (kjb@cs.vu.nl) for considerable amounts of information on
MINIX 1.7.x and 2.x, and for his timely updates.



3 Installing smx

Smx is distributed (over the internet and on CD-ROM) as a compressed tar file. This section
tells you how to reach the point at which you can run smx. Note that this version of smx has
been developed under Solaris 2.5, and has also been tested under Solaris 2.4. Smx may run
on earlier versions of Solaris 2, but will not run on Solaris 1.

The steps involved in setting up smx are described in the following sub-sections.

3.1 Installing the SunOS programs

There are a number of SunOS binaries and scripts that you need in your search path before
going any further.

1. Check your search path for install and gcc using the commands:

which gcc
which install

If which fails to locate gcc then you will need to install gcc before proceeding. The
MINIX CD-ROM contains a gcc distribution in a single compressed tar file. gcc is
available for anonymous FTP from prep.ai.mit.edu in the /pub/gnu directory.

Smx installation relies on the SVR4 version of install, so if which reports that install
is picked up from /usr/ucb you must change your path so that the SVR4 version of
install (in /usr/sbin) is the one used.

2. Create a directory for smx. Change to that directory.

3. Type
m=‘pwd*

At this point the variable $m refers to the directory you are now in. If you are using
csh then you will have to type the following instead:

setenv m ‘pwd‘
4. Untar the smx tar file using the command line:
tar xvf TARFILENAME

where TARFILENAME is the name of the smx tar file.

5. Edit Makefile in $m/src/Solaris so that DESTDIR specifies the directory that you
want to install the SunOS binaries and scripts in. Create DESTDIR if it doesn’t already
exist.

6. Inside $m/src/Solaris, type:



3.2

make install

Ensure that the smx binary directory (DESTDIR from step 5) is on your search path.

For each of the following programs, use which to check that the the program picked up
from your search path is the program in the smx binary directory: combine, elf2smx,
make map_file, mcc, minix, mlogin, next_prog_addr, relay.

Completing the installation process

. Set the MX_INCL and MX_LIB environment variables.

The mcc script and some Makefiles rely on the correct setting of the MX_INCL and MX_LIB
environment variables. MX_INCL should be set to the full pathname of the $m/include
directory and MX_LIB to the full pathname of the directory into which the library files
will be installed. This might be the $m/src/1lib directory itself, so long as you are
happy having any library changes installed immediately.

If you would rather have a separate (“production”) library directory, then set MX_LIB to
a different pathname ($m/1ib perhaps). If you take this option, it will be up to you to
copy new libraries from $m/src/1ib to MX_LIB. This can be done by a make install
in $m/src/lib, or by entering the appropriate copy commands from the shell.

. Next, the libraries must be created. Change directory to $m/src/1ib. If $MX_LIB is

$m/src/1lib then do a make all; otherwise do a make install. The libraries will now
be present in the $MX_LIB directory.

. The smx load image consists of 5 programs—kernel, mm, fs, inet and init. All 5 can

be generated by doing a make image in $m/src/tools. This creates an OS boot image
in the file $m/src/tools/image.

Note that if networking is disabled (by setting the ENABLE NETWORKING constant to 0
in $m/include/minix/config.h), then the smx load image consists of 4 programs—all
of the above except for inet. In the remainder of the document, where the 5 programs
in the smx load image are discussed, remember that there are only 4 if networking is

disabled.

All of the smx command sources are under $m/src/commands. Simple, one source
file commands are in the simple directory, with more complex ones having their own
directories. If you do a make all in $m/src/commands then all of the program binaries
will be created. Smx comes with file systems that contain all of the standard program
binaries, so you needn’t do a make all for the commands as part of the installation
process. If you modify a standard program, the best way to load it onto an smx file
system is to use the sunload command from within smx.

4 Smx from the outside

Now that you have installed smx, here are instructions about how to run it. For details
on smx internals, see section 5. A laboratory exercise used to introduce students to smx is
available from the $m/doc directory.



4.1 Running smx
The major (SunOS) files and programs involved in running smx are:
e The bootstrap program minix. This program is linked to run under SunOS.

e The smx configuration file, that specifies (amongst other things) the locations of the
image file and of all of the smx filesystems.

e The image file, which is a concatenation of five smx executables: kernel, mm, fs, inet
and init.

e One or more smx filesystems, which are mounted to form a single hierarchy in the
standard Unix fashion.

When minix is executed, it begins by reading the configuration file. It loads the programs
from the image file into smx memory, and opens all of the smx filesystems specified in the
configuration file. The hdxO0 file system is taken to be the root filesystem. Any other filesys-
tems are either mounted by the smx /etc/rc script from within smx, or are left unmounted,
in which case the user can mount them using the smx mount command.

To run smx for the first time, change to the $m/src/tools directory and run smx using
the minix command (with no command line arguments). Standard MINIX boot messages
appear—ignore the error messages from the networking software as networking is not enabled
in the supplied configuration file. When you are prompted for a usercode log into smx as root.
Most of the standard MINIX commands are available. In addition, sunread and sunwrite
are available to transfer files between SunOS and smx, and uemacs (Microemacs) and tcsh
are also available. The command shutdown now shuts down smx in a controlled fashion,
ensuring that all file systems are sync’ed before smx terminates.

As no configuration file was specified on the command line above, smx reads configu-
ration information from ./.minix. The file $m/src/tools/.minix specifies the image file
to be ./image (this file was created during installation), and the three disks to be files in
../../disks. The default /etc/rc mounts /dev/hdx1 on /usr/bin, and /dev/hdx2 on
/usr/man.

At some point you may want to have a .minix file in your home directory that contains
full pathnames so that you can run smx without needing to change to $m/src/tools.

4.2 Compilation for smx

C programs can be compiled for smx using the mcc script as the C compiler and linker. mcc
provides most of the standard Unix C compiler options, as described in Appendix A.4. mcc
relies on the environment variables MX_INCL and MX_LIB to locate the smx include files and
libraries.

mcc uses gec to compile C code and 1d to link it. It also uses the smx program elf2smx
to translate the ELF executable produced by 1d into the smx a.out format. By default, mcc
deletes the ELF executable once the smx executable has been produced. Having compiled
and linked your program using mcc, you can transfer the executable to smx using sunread
make it executable using chmod, then run it!

At present, the two MINIX programs (bc and flex) that rely on yacc and lex are not
available under smx because the SunOS yacc and lex versions used to compile bc and flex
expect different library functions to those provided in MINIX.



4.3 Multi-user smx

To allow additional login sessions, you must specify a hostname in the smx configuration
file. If you select minix1 as the host name, then the following line should appear in the
configuration file:

host minixl

Once you have booted an instance of smx that uses the configuration file, additional logins
are performed using the command

mlogin minix1

executed on the same Sun that the target smx instance is running on. mlogin terminates
when the smx instance it is connected to is shutdown. It will also exit if the user types the
“Q"U"I"T sequence of four control characters.

Note that every instance of smx running on a single Sun must have a different host name.

4.4 Multiple instances of smx

Each smx instance needs its own root file system and configuration file (which specifies the
location of the root file system, amongst other things), but the image file and the /usr/bin
and /usr/man file systems can be shared. To allow sharing of /usr/bin and /usr/man, edit
/etc/rc under smx so that these file systems are mounted read-only (add a -r to the end of
the mount command lines). Sharing /usr/bin and usr/man read-only between all members
of a class can save a lot of disk space! If a student runs out of space on their root file system,
they can always create another file system and mount that somewhere.

To create a new root file system, just copy an existing one under SunOS. For details on
how to create a root file system of a different size, see section 5.5.1.

If you want to create files to support a second instance of smx (perhaps because you want
to network together two smx instances by following the instructions in section 4.5 below),
then you should:

1. Under smx, change /etc/rc so the /usr/bin and /usr/man are mounted read-only. Do
this by adding the -r option to the end of the appropriate mount command lines. Then
exit smx.

2. Create a second root filesystem by copying $m/disks/root to (say) $m/disks/root2.

3. Create a new minix configuration file by copying the file $m/src/tools/.minix to (say)
$m/src/tools/.minix2.

4. Change the new configuration file so that the value of the hdx0 option is the name of
the new root filesystem.

5. Start up your new smx instance by using the command line:
minix new-config-file

where new-config-file is the name of the new configuration file that you have just
created.



4.5

Networked smx

Once you have several smx instances, they can be connected using a simulated ethernet. This
involves doing the following:

1.

Choose a different internet number for each smx instance. Stick to using one class C
network number (that is, vary only the last component of the internet number).

. Edit the /etc/rc.net file on each smx instance, and change the internet number on

the first line to be the one selected for that smx instance.

. Decide on host names for all of your smx instances.

Edit the /etc/hosts files on all smx instances so that they all contain all of your
<internet number, host name> pairs.

. Shutdown all smx instances.

. Decide on the name of the “relay file” that will be used to inform each smx instance of

the UDP address of the packet relay program.

Add the line below to the configuration files of all smx instances.
relay_file FILENAME

where FILENAME is the name you selected in step 6 above.

. Start relay using the command line:

relay FILENAME

where FILENAME is the name you selected in step 6 above.

. Now you can start your smx instances, and they will be able to communicate via telnet,

ftp, and so on.

Note that the hostnames used in /etc/hosts are totally independent of the hostnames
used in conjunction with mlogin. If you don’t want to have network support compiled into
smx, set NETWORKING_ENABLED to 0 in $m/include/minix/config.h, and comment the make
inet line out of $m/src/tools/Makefile.

4.6

Security and smx

There are a number of security issues that arise when using smx. These include:

1.

The security provided within smx itself. A lot of effort has been put into making the
file protections in smx the same as those in MINIX. The issues here are basically the
same as in MINIX.



2. Other (SunOS) users logging in via mlogin. As explained further below, the connection
between smx and mlogin is made through SunOS FIFOs created in a directory under
/tmp. The permissions on those FIFOs will determine whether other users can use
mlogin to connect to a running smx. If another user does have access to the FIFOs,
then mlogin will connect them to your instance of smx. They will then have to go
through the standard MINIX login process (so it’s a good idea to have set passwords
for the root and bin accounts, which have no passwords by default!).

If another user can login to your running smx, then their actions within smx will be
governed by the standard MINIX security system. The fact that they can run sunread
and sunwrite means that they can read and write your SunOS files, because smx is
running as one of your processes. Also, they can load their own smx programs that
make SunOS system calls directly that may do things like delete SunOS files.

You could make sunread and sunwrite executable by root only, but the very deter-
mined cracker could still use a binary editor to create an executable that made SunOS
system calls. Also, given the relative lack of memory protection that exists by default,
data structures in the operating system could be corrupted.

In summary, you don’t want hostile users logging into your smx instances because once
logged in they can easily be disruptive. If you don’t specify the host option in the
configuration file, then mlogin is impossible. If the host option is specified, then the
permissions on the FIFOs, and the passwords on your smx usercodes are your two lines
of defence.

3. The smx ethernet emulation is another potential security problem. The relay program
your smx instance is communicating through may have been started by another user,
which means your ethernet traffic is under the control of another user. If you are using
your own relay, then there is nothing to stop other smx instances from connecting
to it (although if the SunOS file containing the UDP address of the relay program is
not world-readable a would-be cracker will have to find the port number by trial and
error). If a cracker does connect to your relay program, then they will be able to direct
arbitrary ethernet packets at your smx instances.

5 Smx from the inside

The preceeding sections described how to install smx, and how to use it. In this section we
look inside smx and see how MINIX has been changed to produce smx. We first discuss the
compilation and linking of smx programs, which is done outside smx. We then go on to discuss
the booting process, management of the address space (what goes where, and protection
issues), “interrupt” handling, emulation of devices, new smx programs, and debugging of
SImMX.

5.1 Compilation

We will break the discussion of compilation into two parts. The first deals with compilation
and linking of the small number of programs that run under SunOS. The second deals with

'Note that some of the internet remote login programs will not work for usercodes that do not have a
password.



compilation and linking of smx executables, and covers both the operating system and user
programs. Finally we give some guidelines on porting software to smx.

5.1.1 Compilation of SunOS executables

The new directory $m/src/Solaris contains scripts and programs for use under SunOS. The
purposes of the minix, mlogin and relay programs have already been described. The remain-
ing five programs and scripts, mcc, elf2smx, combine, make map_file and next_prog_addr,
support the creation of smx executables in some way, as described in the next sub-section.

The programs in $m/src/Solaris are compiled into standard SunOS 5.x executable pro-
grams (in ELF format) by gcc. The standard SunOS header files are used (for stdio.h,
etc). Where an smx header file is to be included, a relative pathname (to ../kernel or
../../include) is used. One ramification of this is that if students copy a program from
$m/src/Solaris to modify it, then ../kernel and ../../include must contain the appro-
priate header files (the easiest way to do this is to setup two symbolic links).

The installation procedure includes doing a make install in $m/src/Solaris to compile
and install the scripts and binaries in the desired directory.

5.1.2 Compilation of smx executables

With the execption of the programs in $m/src/Solaris, and a small number of programs that
are run to produce source files during creation of smx executables, all other smx programs
are compiled using the smx header files (in $MX_INCL) and library files (in $MX_LIB), and are
converted to smx executable format. The mcc script is used to compile all .c and .s files
to .o files, and to link all smx user programs (except init). mcc acts as a wrapper for gec,
as and 1d, ensuring that in each case appropriate options are supplied. mcc accepts most
“standard” Unix compilation options, passing them on to the programs it invokes as needed.

Every smx executable program file is created by elf2smx from a statically linked ELF
executable. Consider the following command line:

mcc -o blarg blarg.o

When mcc links the program, it puts the ELF executable produced by 1d into blarg.elf,
then converts blarg.elf to blarg using elf2smx. If the -N option has been specified to mcc
then blarg.elf will not be deleted, otherwise it will be deleted. One use of blarg.elf is
that it contains a symbol table, whereas smx executables do not.

The smx filesystems supplied with smx contain compiled versions of all smx user programs,
so the installation process does not involve compiling them. A make all in $m/src/commands
compiles all user programs (except init). Compilation of individual programs is also provided
for. New versions of standard smx executables can be loaded into smx using sunload.

The libraries and C startup files are created during installation by a make install in
$m/src/lib.

Executables of the programs in $m/src/test are found in /usr/test under smx. They
can be compiled with a make all in $m/src/test, and loaded into smx using the smx script
testload in /usr/test. Note that you will have to edit both sunload and testload so that
each sets sunosdir to the name of the appropriate SunOS directory (it is unlikely that your
path names will be the same as mine!).



The mcc script is used to compile all C and SPARC assembler files for the smx executables
loaded from the image file by minix (kernel, mm, fs, inet, init), and linking is performed
by 1d, with each of the five Makefiles containing a custom 1ld invocation. The custom
1d invoction is needed because the kernel has its own special entry point, and the other
programs use a non-standard C startup routine, which is found in $MX_LIB. The start-ups for
these five programs are non-standard because they are loaded from the image file, and not
exec’ed. In the case of the kernel, multiple stacks are needed (the layer 1 stack, and 1 stack
per layer 2 task). These are all found in the kernel data segment, so the MINIX “gap” is
0. For the other four programs, the stack size to use is specified in the Makefile, and this is
written to the gap field in the smx executable header by elf2smx. Smx allows for growth of
data and stack segments in user processes, so the gap field in the smx executable header is
ignored for these programs (although the old gap values are still set by most Makefiles).

If you want an ELF executable kept for one of the “image” programs, comment out the
rm command from the appropriate Makefile. Each of the five Makefiles runs the combine
script after re-linking the program. If all executables are present, combine concatenates them
to create a new image file as $m/src/tools/image.

5.1.3 Using 1d map files to assign virtual addresses

As will be dicussed below in 5.3, smx user programs (including init) are linked to run at
reasonably standard virtual addresses for SunOS processes. At present, 1d links each smx user
program to have its text segment at 0x10000, and its data segment aligned on an 0x2000
byte boundary. kernel, mm, fs and inet are linked to run in distinct address ranges at
much higher addresses. The kernel is linked to start executing at an address specified in
$m/src/kernel.map. mm must be linked to execute at the address that immediately follows
kernel, fs must be linked to follow mm, and inet must be linked to follow fs.

The mm, fs and inet Makefiles are set up to regenerate the respective map files (and re-
link the executable according to the new map file), whenever the executable of the preceding
program changes. The script make map_file is used to generate a new map file, and it uses
next_prog_addr to determine where the previous executable ends in virtual memory. If you
change kernel in a way that causes its size to grow and do a make in $m/src/kernel only,
then the resulting image file will contain a kernel and an mm that overlap in virtual memory.
The minix program detects such situations and aborts the boot if it discovers one. If you do
a make in $m/src/tools, then the five files necessary for the the image file are created in the
right order, and the address assignment will be correct. As well as specifiying the starting
addresses of the respective text segments, the kernel, mm, fs and inet map files specify that
the data segment is aligned on an 8Kb boundary.

The data segment is aligned on an 8Kb boundary by including A8192 as a data segment
attribute in the $m/src/1ib/smx userprog.map and $m/src/kernel/kernel .map files, and
the map files generated by make map file. I wanted the data segment to begin at the next
8Kb boundary after the end of the text segment. The A8192 attribute doesn’t actually do
this—it leaves an 8Kb gap in the address space (perhaps a little more so that the data
segment starts on a double-word boundary). This leaves more unused space than if you have
the data segment begin at the next 8Kb boundary. If you add in the R8192 data segment
attribute, then the data segment does begin at the next 8Kb boundary. Sadly, the Solaris 2.4
1d doesn’t support this attribute, so I had to remove it from the three places listed above. If
you’re running on Solaris 2.5, then you can add the R8192 back in (in addition to the A8192),
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and save an average of 4Kb per program (on disk and in memory).

5.1.4 Porting software to smx

Although most existing MINIX software can be ported to smx without alteration, there are
some areas where changes may be needed. The following list of observations should be used
as a guide when porting software to smx:

e In smx executables, read-only data (such as string constants) is stored in the text
segment, which is not writable. Changes have been needed to the small number of
MINIX programs discovered (so far) that write to a string constant.

e In the SPARC architecture, N byte primitive objects (integers and floating point vari-
ables of different sizes, and pointers) must be aligned on N byte boundaries. A few
pieces of MINIX software weren’t sufficiently careful when doing some non-portable
pointer casting and had to be modified to run under smx.

e In smx, dereferencing (following) a null pointer causes a segmentation violation. This
doesn’t happen in MINIX, and many pieces of MINIX software have had to be fixed to
remove null pointer dereferences.

e Any function that has a variable number of arguments might cause problems if it relies
on all arguments being on the stack. This is because on the SPARC the first 6 parame-
ters are passed in registers, rather than on the stack. Programs that use <stdarg.h>
correctly will be OK.

e In smx, int’s are 32 bits and shorts 16 bits. This difference in length has caused some
problems for MINIX code in the past.

¢ Any assembly language code must be rewritten.

5.2 The booting process

Smx booting proceeds in two phases. The minix program gets things to the point at which ex-
ecution inside smx is possible. Execution then switches inside the smx kernel, which executes
a somewhat modified version of the standard MINIX bootstrap code.

5.2.1 Booting—the minix phase

The first boostrap phase is carried out by the minix (SunOS) program. The minix program
gets most of its configuration information from a file. The debug flag and memory protection
can be specified on the command line, overriding any settings in the configuration file.

The main functions of the minix program are to:

1. Read the configuration file, and open various smx devices on well-known (to minix and
kernel) SunOS descriptors. Every smx filesystem listed in the config file is opened on its
own descriptor. Descriptors for the controlling terminal are opened. If the host option
appears in the configuration file, a sub-directory is created in /tmp containing FIFOs.
These FIFOs are opened on well known descriptors. If a network relay is specified then
a UDP/IP socket is opened on a well-known descriptor and connected to the relay
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program. The UDP address of the socket created is registered with the relay program
so that broadcasts are relayed to this smx instance. If a logfile is specified it is opened
for writing on a well known descriptor.

As well, various settings are read from the configuration file, including the name of the
image file, the smx memory size, the debug flag and the memory protection setting.

2. A child process is created that will run smx. The parent waits for the child to exit,
and then tidies up by restoring the settings of the controlling terminal, and deleting the
FIFO directory in /tmp (if one was created).

3. The child creates a temporary file that is the same size as smx “physical” memory, and
maps it into the child’s address space at the virtual address assigned to the beginning
of kernel’s text segment. This mapped area is the physical memory of smx. The five
programs in image are then read into this memory.

4. An smx bootinfo structure at the start of kernel data segment is filled in. It contains
the physical memory size of smx, the debug flag, the protection level, the ethernet
address (which is the UDP address of the socket created to send and receive ethernet
packets) and details of all the programs loaded (text and data segment sizes, text
and data segment virtual addresses, and entry point). $m/src/kernel/main.o must
be the first object file specified to 1d when kernel is linked so as to ensure that the
smx_bootinfo structure comes at the start of the kernel data segment.

5. Execution then switches to the kernel entry point.

5.2.2 Booting—the kernel phase

The kernel entry point is in a small piece of SPARC assembler code that sets the stack
pointer to point into the layer 1 stack, and then calls the C function main. The main pieces
of smx-specific code added to the standard boot sequence involve setting up the handling of
SunOS signals, and setting up of memory protection (both are described further below).

5.3 Management of the address space

As discussed above in 5.1.2, kernel, mm, fs and inet are linked to run in contiguous chunks
of address space starting well above address 0 (at present, kernel is linked to start 32Mb
into the address space). During the boot sequence, smx “physical” memory is mapped into
the smx SunOS process starting from the address at which kernel has been linked to begin
at, and kernel, mm, fs and inet are loaded into the addresses they were linked to run at.

User processes in smx occupy three areas of physical memory, which contain a text seg-
ment, a data segment and a stack segment. All user programs are linked to run at reasonably
standard SunOS virtual addresses, which are very near the bottom of the address space.
When kernel is about to switch execution to a user process, it maps the virtual address
ranges where the smx user program has been linked to run to the appropriate areas of the
mapped temporary file that contain the three chunks of “physical” memory allocated to that
particular smx process. The first smx user process to run wipes out the mappings to the text
and data segment of the minix program, but it has done its job and execution never returns
to it.
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In MINIX, one chunk of memory is allocated for the data/gap/stack area, with the space
left for growth of the data and stack segments specified in the header of the executable. In
smx, separate data and stack segments are supported (for user processes only—the MINIX
approach is used for kernel, mm, fs and inet), and they can grow as needed. Initially the
data segment of a user process is large enough to contain the data and bss, and the stack is
large enough to hold the initial stack. The stack of each user process is mapped so that it
immediately precedes the kernel text segment, which leaves a large gap in virtual memory
that both data and stack segments can expand into.

The SunOS mprotect system call gives us the ability to go some way towards protecting
the various smx address spaces from each other. There are three protection levels, as described
below. The protection level to use can be specified in the smx configuration file, and on the
minix command line. The levels are:

e none. All smx “physical” memory is rwx at all times; “virtual” memory mappings for
user processes are rwx.

e half (the default). kernel, mm, fs and inet have their text segments in physical memory
set to be r-x; the rest of “physical memory” is rwx at all times. Virtual memory
mappings are r-x for text; rwx for data and stack.

e full. When execution is in kernel, the kernel text segment is r-x and the data segment
is rwx. The rest of physical memory is ---, except for when kernel is copying data to
or from other address spaces during which the source memory is made readable and the
destination writable.

When execution is in a process outside the kernel, the virtual mapping for the process’
text segment is r-x and for the data and stack is rwx (the mappings in physical memory
remain at ---, except when mm or fs or inet is running when the protection on phys-
ical memory is changed because their virtual addresses are the same as their physical
addresses). Much of kernel is ---. Some code and data structures (sufficient to turn
kernel access on and off) are accessible, but not writable. The layer 1 stack is rwx,
but contains nothing of relevance while execution is outside kernel. The kernel cannot,
therefore, be corrupted.

Because of the amount of context switching done by smx, full protection is not the default
because it is slow. Full protection is useful in tracking down memory corruption problems,
however.

One final memory-related point. The click size in smx is 8Kb, as that is the largest page
size on current Suns.

5.4 Interrupt handling

In smx, execution is forced into layer 1 by SunOS signals rather than by hardware traps and
interrupts. The bulk of the signal handling code is in the files $m/src/kernel/mpx.c and
$m/src/kernel/sunsighandle.c. The latter file includes the standard SunOS <signal.h>
and contains functions that draw heavily on the information in that header file. To avoid
type clashes, many of the standard smx header files cannot be included by sunsighandle.c.

The SunOS signal mask used when execution is in layer 1 allows only “error” signals (such
as illegal instruction) to be delivered, so what MINIX calls “nested interrupts” cannot occur.
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A single signal handler (Sun0Ssig) is installed to handle all SunOS signals. Sun0Ssig
is responsible for enabling kernel access (if full protection is on), saving the context of the
interrupted smx process, calling the appropriate smx handler within layer 1, picking a process
to resume, and resuming that process (which enables delivery of all SunOS signals).

There are two SunOS signals that arise asynchronously in ordinary smx operation, and
one that arises synchronously. The alarm signal is delivered regularly (currently 20 times a
second) to simulate clock ticks. The IO signal is received whenever terminal or ethernet input
becomes available. The three smx system calls (send, receive and sendrec) force execution
into kernel by sending a USRI signal to the SunOS process running smx. The ALRM, 10
and USRI signals have their own smx handlers.

The exception handler is called for all other SunOS signals. If a segmentation violation
occurs in a user process, and the address being accessed might be on the stack (the address
being accessed lies between the data and stack segments) then a SIGSTKFLT is relayed to the
memory manager to have the stack extended. Otherwise, if the signal is an “error” signal and
arose in an smx user process, exception maps the SunOS signal number to a MINIX signal
number and has the memory manager deliver the signal to the offending smx user process. If
an “error” signal occurs in layer 1, 2 or 3 code then smx is aborted and various dumps are
produced to aid debugging. If the SunOS TERM signal is received then smx immediately
terminates. All other SunOS signals are quietly ignored.

In smx, the stackframe s type (used in MINIX to hold a process context) is defined
to be the same size as SunOS ucontext_t structure, which holds a SunOS context. Be-
cause of clashes between the smx and SunOS header files, we decided not to include the
SunOS <ucontext.h> file directly into smx kernel source files. Instead, the program
$m/src/kernel/make offset.c is used to create the uc_offset.h header file from <ucontext.h>.
The uc_offset.h file specifies the size of the SunOS ucontext_t and gwindows structures,
as well as the offsets of many fields within the ucontext_t structure. Smx kernel sources
include uc_offset.h without introducing conflicts with smx header files.

A gwindows structure is only part of the context of an smx process if, when a signal
occurs, it is not possible to flush the contents of the in-use SPARC register windows to the
stack. One way of handling such events would be to have a gwindows structure as part of
the saved context of every process. Because the gwindows structure is large (currently 2112
bytes, as against 448 for a ucontext_t) and seldom used (only needed while a user process
is having its stack extended) an alternative (though less elegant) approach was taken. There
is a single save area for a gwindows sturcture. When a SunOS signal arrives, and the saved
context contains a gwindows structure, the structure is saved and gwin_proc is set to point
to the relevant process. No user processes can run while gwin_proc is non-zero (as we only
have one save area). Soon after, mm gets to run. It expands the stack of gwin_proc which
then becomes runnable again. gwin_proc is the next user process to run. When execution
switches to gwin_proc, the registers in the saved gwindows structure are restored (removing
the restriction on scheduling user processes) and gwin _proc is set to zero.

Another issue in this area is delivery of smx signals to signal handlers in smx processes.
When an smx signal occurs that is being handled in the smx process the signal is destined
for, the smx kernel copies the saved context of the smx process onto the stack of the smx
process. A stack frame is then allocated for the signal handler, and the context of the smx
process saved in the kernel process table is adjusted so that:

e The program counter is set to the address of the library function __sigreturn in the
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SmMX Process.

e Register %00 is set to the smx signal number, register %ol is set to 0, and register %02
is set to point to the saved context on the stack. These are the three parameters for
the signal handler.

e Register %05 is set to the address of the signal handler.

When the kernel next switches to the smx process, execution resumes from the begin-
ning of __sigreturn. It saves a copy of the pointer to the context, then calls the handler
(whose address is in %05). When the handler returns, __sigreturn calls the standard MINIX
_sigreturn function, passing to it the address of the saved context. _sigreturn makes a
MINIX system call to MM to have the saved context restored so that the smx process re-
sumes at the point it was at when the signal occurred.

5.5 Devices

All smx devices are somehow emulated using SunOS system calls. Here we will discuss
emulation of disks, the ethernet interface, terminals, the hardware clock and the various
memory device files. Printing is not provided by smx; the smx printer device driver simply
replies with EINVAL to any messages sent to it.

5.5.1 Disks

Each smx file system is stored as a single SunOS file. Mappings between smx file systems and
SunOS files are recorded in the smx configuration file. Up to eight file systems, hdx0 to hdx7,
are currently provided for. In the configuration file, a mapping between a file system and a
SunOS file is specified by giving the file system name as the option name, and the SunOS file
name as its value. The hdx0 file system is the root file system, and this option must always
be specified. In the standard setup, hdx1 is mounted as /usr/bin and hdx2 is mounted as
/usr/man. These file systems are stored in files in $m/disks.

The minix program opens file system hdxN on SunOS file descriptor DISK FD + N. When
the disk device driver goes to access a disk with minor device number N, it uses SunOS file
descriptor DISK_FD + N. The MINIX floppy disk driver has been converted to the smx disk
driver, and the winchester driver has been omitted from smx.

It is easy to create new smx file systems. One way to create a new file system is to simply
take a copy of an existing file system of the appropriate size. This new file system can then be
mounted, and any existing files deleted, under smx. If this is not possible, a new file system
can be created by doing the following:

1. Decide on the device name to use. Let’s imagine that hdx3 is selected.

2. Add the following line to the smx configuration file:
hdx3 filename

where filename is the SunOS file name of the file that is to hold the new file system.

3. Create the SunOS file filename using touch(1) under SunOS.
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4. Enter smx. Create the file system using;:
mkfs -b fs_size /dev/hdx3

where fs_size is the number of 1Kb blocks in the file system.

5. Mount the new file system:
mount /dev/hdx3 mount_point

where mount _point is the name of the smx directory that you want to mount the new
file system on.

Creating a new root file system requires some care. If the new root file system is to be the
same size as an existing root file system, then the SunOS cp command can be used to create
the new root file system. Otherwise, the new root file system should be created as described
above, and initialised by doing the following (in all cases use the -p option of cp to preserve
file attributes).

1. Copy all dot files from / to the root directory of the new filesystem.

2. Copy the /bin and /etc directories to the new root. Use the -r option of cp (as well
as -p) to copy recursively, and preserve the hard link structure.

3. Create dev, mnt, root, tmp, usr, usr/bin, usr/man and usr/adm directories in the new
root, and make the permissions, owner and group of each new directory the same as the
corresponding directory in /.

4. Copy (-r -p) all sub-directories from /usr (except for /usr/bin, /usr/man and usr/adm)
into the usr on the new root.

5. Change to the dev directory in the new root, and use the command:
MAKEDEV sun

to create the new device files.

The new root filesystem is now ready for use. If you want a login record to be kept on it,
create an empty usr/adm/wtmp.

It is possible to mount an smx file system read-only (to facilitate this, the minix bootstrap
tries to open a file containing an smx filesystem read-only if the file cannot be opened read-
write).
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5.5.2 Ethernet emulation

The ethernet task uses the UDP/IP socket opened by minix on ETHER_FD (and connected
to an instance of the relay program) as an ethernet port. The ethernet task returns the
UDP/IP address bound to ETHER_FD as its ethernet address (consequently rarpd cannot be
used because ethernet addresses are not constant). It is very handy that ethernet addresses
and UDP addresses are both 6 bytes long.

Outgoing packets are written immediately to ETHER_FD, and a (MINIX) reply message is
sent back to inet to that effect. Whenever a packet arrives, a SunOS SIGIO is received by
smx. The incoming packet is read into a buffer if there is room, and is discarded if there is
no room.

One problem struck in compiling the MINIX networking software for smx was that the
inet process casts pointers into a packet buffer to be pointers to various sorts of struc-
tures. The fact that the ethernet header is 14 bytes was leading to alignment problems for
pointers to the various IP headers! For this reason, two bytes of padding have been added
to smx ethernet headers to make them 16 bytes. The header expansion involved changes to
$m/include/net/gen/ether.h, $m/include/net/gen/eth hdr.h and $m/src/inet/generic/arp.c.
Because the present implementation involves exchanging ethernet packets between smx in-
stances only over a simulated ethernet, this expansion in the ethernet packet header hasn’t
caused any problems.

It may seem strange that all packets go via the relay program, given that it would be
possible to send a (non-broadcast) ethernet packet direct to the smx instance it is destined
for (the UDP/IP address of the destination port is, after all, in the packet header). Smx
can make use of SunOS system calls only, and not SunOS library calls. It is easier to just
have the ETHER_FD socket connected by the bootstrap, and just to call write in the ethernet
driver, than it is to emulate the SunOS library calls needed to individually address each UDP
message from the ethernet driver. Also, having all ethernet messages go through one program
is somewhat similar to having all messages sent over a shared bus.

5.5.3 Terminals

When kernel and minix are compiled, the number of consoles supported (NR_CONS) is com-
piled into both programs. When smx is being booted, if the host option appears in the
configuration file then the directory /tmp/hostname is created. In this directory, the follow-
ing files are created:

e lock, which contains two integers in binary form: the number of consoles available
via mlogin (NR.CONS — 1 because the system console is not implemented through
mlogin), and a bit map recording which of the NR_.CONS — 1 “lines” is currently
available.

e For each line I (1 < T < NR.CONS — 1), a pair of FIFOs called in.I and out.I.
Smx reads input for terminal I from the FIFO in.I, and sends output to terminal I to
out.I.

For terminal line I, minix sets up descriptor TERMINAL FD + 27 for reading input from [
and TERMINAL FD + 2] + 1 for writing output to I. Line 0 is the console, so its descriptors
refer to the controlling terminal of the SunOS process that is running smx. For the other
lines, the descriptors refer to the FIFOs created in /tmp/hostname.
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For both the console and additional logins via mlogin, the controlling SunOS terminal is
set to do no input or output processing, leaving those functions to smx. The SunOS terminals
are setup to interrupt (with the IO signal) when new input is available. The terminal input
handling done by the smx terminal device driver is quite simple—if input does not fit into
the terminal’s input buffer then it is discarded.

At the user level, an entry for xterm has been added to /etc/termcap, and all terminal
type entries in /etc/ttytab have been set to xterm. The termcap entry for xterm specifies
24 lines; you can change it if your xterm windows are larger. If you use a different X terminal
emulator, then you will need to add an entry for it to /etc/termcap.

5.5.4 Memory

The MINIX memory device driver is responsible for four special files—/dev/null, /dev/mem
(physical memory), /dev/kmem (kernel virtual memory) and /dev/ram (the RAM disk). The
null device works just as in MINIX, and the RAM disk is not implemented in smx (there is
no need for it), so neither is discussed further.

As we saw in 5.3, the “physical” memory of smx is an area mapped into the address space
of the SunOS process well above address 0. The kernel, mm, fs and inet programs are all
linked to run at the addresses they are loaded into in this mapped area, while user processes
are mapped to run much lower in the address space.

For both the mem and kmem device special files, location 0 corresponds to address 0 in the
SunOS address space. In the case of kmem, the special file extends to the end of the kernel
data segment, and in the case of mem to the end of smx “physical” memory. At first glance,
this approach of having a large gap at the start of the mem and kmem special files may seem
strange. It has been done this way so that programs like ps that compute physical addresses
then retrieve data from those addresses can operate in the same way as in standard MINIX,
that is by doing an 1seek on the appropriate device to the physical address computed, followed
by a read.

5.5.5 Clock

The main change to clock handling introduced by smx is that in the clock task main loop
realtime is updated by finding the current SunOS time using gettimeofday, rather than
by having pending ticks added to it. This is done because the frequency of SunOS ALRM
signals is likely to be much less stable than that of the hardware clock available in native
MINIX versions.

5.6 New smx programs
A few smx programs have been added to the standard MINIX ones. Man pages are available
under smx.

5.6.1 sunread and sunwrite

This is actually one program with two hard links to it. A single command line argument
is expected, which specifies the pathname of a SunOS file. When invoked as sunread, the
program copies the SunOS file to stdout. When invoked as sunwrite, the program copies
stdin to the SunOS file.
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5.6.2 sunload

This shell script installs the standard binaries (plus any support files) into ./usr, ./usr/bin
and ./usr/lib. If you want to overwrite the current standard binaries, run sunload from /.
If you are creating a new set of binaries, run sunload from the appropriate directory.

sunload is needed because the smx programs are compiled and linked under SunOS, and
the Makefiles under SunOS cannot install software into smx file systems. See the manual
page under smx for more details.

5.6.3 tcsh and uemacs

These programs have been added to smx because I like using them! Be warned that the
support for shell script execution is built into sh and not into the memory manager, so shell
scripts cannot be executed from tcsh by just giving the script name as a command (though
of course you can still enter the command line sh scriptname).

5.7 Debugging

There is some debugging support provided in smx. This includes:

1. When starting minix, debugging output can be enabled via the -d command line op-
tion, or by specifying the debug option in the configuration file with a value of on.
When debugging is enabled, minix prints various pieces of debugging information, and
also passes on the debug flag to kernel, which causes some information to be printed
during system startup. At present, no debugging information is printed once booting
is completed. Within kernel the functions debug_int, debug_str and debug_char are
called to produce the debugging information. They produce output only if debugging
is enabled.

2. Calls to printf can be added to kernel, mm, fs and inet. Output appears on the
console.

3. If a SunOS error signal is received while execution is in kernel, or a kernel panic
occurs, then various dumps are printed containing information on the location of the
error, and on the state of smx at the time of the error. If the system locks up then
control-underscore can be typed at the console to induce a panic.

4. When a SunOS error signal is received while execution is in an smx user process then, in
addition to the appropriate smx signal being delivered, details of the signal are printed
on the console. I have found this a useful debugging aid. If it becomes annoying, just
comment out the printf statement in $m/src/kernel/sunexception.c.

5. The interaction network monitor (see section 6) records details of some aspects of system
operation, with particular emphasis on message passing. By default it records the events
that occur as a direct result of each user input. This means that no events are recorded
until the user starts entering a usercode during login. To have all events recorded,
remove the comments around the definition of LOG_ALL in $m/src/kernel/logging.c.

Be warned that log files grow very quickly!
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6. The full set of MINIX test programs are provided in $m/src/test under SunOS, and
/usr/test in smx. All of the binaries can be created with a make all in $m/src/test.
Under smx, running testload in the /usr/test directory loads all of the test files
(remember to modify the testload script to reflect the SunOS path of the $m/src/test
directory). To run the tests, execute the command ./run in /usr/test.

The test programs are best run by the bin usercode, as several tests abort if run by
root. On the other hand, some of the test programs perform additional tests when run
by root, so running the tests from bin and from root gives the best coverage.

The current version of smx passes all of the tests, although one or two race conditions
exist in the test suite that sometimes result in spurious errors being reported. None of
the test programs has been changed in a material way. The two test scripts have been
modified to remove references to commands that are not available under smx (such as
cc). While the test suite isn’t really a debugging tool, it will help to uncover bugs
introduced into the OS.

If an smx program falls over, then you will often be left with the address of the instruction
where the program crashed, and you will want to find the function that contains that address.
The kernel, mm, fs and inet text segments occupy unique address ranges (as reported by
minix with debugging enabled), so it is easy to determine whether a crash occurred in one
of them. Once you have determined which program has crashed, you can locate the function
that contains the address where the crash occurred by running the SunOS nm command on
the ELF version of the executable. You can disassemble the ELF executable to find out more
about what the program was doing at the point it crashed. By default the ELF executables
are deleted after the smx executable has been produced. See 5.1.2 for details on how to stop
the ELF version of an smx executable being deleted.

6 The interaction network monitor

Interaction network recording is a technique developed for monitoring distributed systems.
Substantial prototypes have been developed for SunOS 4.0 [2] and more recently for Amoeba
[1]. The third implementation of the monitor is for smx.

The idea behind the interaction network approach is that it should be possible to record,
for each user input, all events that result from the input. The interaction network approach
is aimed at providing improved understanding of interactive processing done by complex
systems, and in particular is aimed at providing performance information.

The smx kernel contains event recording probes and an event recorder. The minix
bootstrap program opens a SunOS log file if the logfile option appears in the configuration
file, and the event recorder in kernel writes event records relating to (by default) interactive
processing to the log file if monitoring is enabled. In the other IN monitors, monitoring can
be turned on and off during system operation. This is not yet possible in the smx version,
where monitoring can only be enabled or disabled for an entire smx session.

At the end of an smx session during which logging was enabled, you will be left with a file
(whose name was specified as the value for the logfile option) containing all of the event
records recorded during that session. Four programs are available in $m/src/Solaris/IN for
analysis of the interaction networks present in the session log file. The logdump program
gives a text dump of all event records in a specified log file. The insplit program takes
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a specified session log file and groups the event records into interaction networks; one per
user input. Each interaction network is written to a separate task log file. Each of the task
log files produced by insplit has a name that consists of 8 hex digits. The totcl program
takes a specified task log file and from it produces an input file (with a tcl_in extension)
for browser. The browser program takes the specified tcl_in file and uses it to produce a
graphical display of an interaction network.

Doing a make all in $m/src/Solaris/IN compiles and links logdump, insplit and
totcl. The browser program is written in TCL/Tk. You will have to change browser
so that the first line specifies the full path-name of the wish program on your system. See
$m/doc/tr-cosc.04.96 ps for examples of interaction networks recorded for smx 1.7.4 (all
of which should be the same as those recorded for smx 2.0).

The IN monitoring package is something of an “optional extra”, and so is not yet docu-
mented as well as the rest of smx.

Appendix A: Manual pages for SunOS commands

Smx involves use of eight SunOS programs. Three of the eight (combine, make map file and
next_prog_addr) exist only to support production of the image file in various ways. They are
invoked when needed by the relevant Makefiles. Because they are not invoked directly by
the user, and because they have been adequately explained in section 5.1.2, they will not be
discussed here. In this appendix we give information on use of three programs that support
execution of smx (minix, mlogin and relay), and two program that support compilation and
linking of smx executables (mcc and elf2smx).

Appendix A.1: minix

The syntax for the minix command is:
minix [-d] [-m (nonel|half|full)] [config-file]

This program opens smx devices, loads the smx kernel, memory manager, file system,
internet and init programs into memory and passes control to the smx kernel. A configuration
file is used to specify how the smx system is to be set up. If a config-file appears on the
command line, then that is the name of the configuration file. Otherwise, minix looks for the
configuration file in ./.minix, and if that file doesn’t exist then it looks for /.minix.

The configuration file is processed by minix in a line-oriented fashion. Blank lines are
ignored, and lines that start with a # are treated as comment lines. All other lines begin with
an option name which is followed by the option value. Currently, all options and option values
are a single word. Some options (debug and protect) can be specified on the command line.
The -d option is equivalent to debug on in the configuration file, and -m value is equivalent
to protect value. An option value on the command line takes precedence over a value in
the configuration file.

The options that can appear in the configuration file are:

e hdxI, where [ is in the range 0 to 7. The value is the pathname of a SunOS file that
contains an smx file system. The specified file system is made available as /dev/hdxI
under smx. The hdx0 option must appear in every smx configuration file, as it specifies
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the root file system. An attempt to access /dev/hdxI under smx where there was no
hdxI option in the configuration file will result in an “Unrecoverable disk error” being
reported.

e image. The option value is the name of a SunOS file that contains a “boot image”,
which consists of the smx kernel, mm, fs, inet and init programs. The image option
must appear in every configuration file.

e host. This option is needed to give your smx system a “host name” so that the mlogin
program can be used to provide additional logins. If the option value is (say) paulminix,
then the directory /tmp/paulminix is created. A file to control terminal allocation
(/tmp/paulminix/lock) is created, as well as FIFOs to provide data transfer between
mlogin instances and smx. The default is for there to be no host name, and no mlogin
capability.

e relay_file. Specifies the name of a file written by a running relay program. If this
option is specified then networking is enabled. The relay process (contacted at the
UDP address specified in the file whose name is the relay option value) relays packets
between smx instances, thereby emulating an ethernet segment.

e memory. Specifies the amount of memory to be allocated for smx. The units used
are kilobytes. Because the current five “system” programs require nearly 1.2Mb, the
memory specified must be at least 1536 (1.5Mb). The current maximum is 32768
(32MB), but this could easily be increased if needed. The default is 3072 (3Mb).

e protect. Specifies the level of memory protection between smx processes. Basically,
level none gives no protection, level half prevents writes to text segments, and level
full gives almost complete protection, by giving each smx process access only to its own
address space. The default is half, because the full option introduces considerable
overhead.

e debug. Either on or off can be specified as values. If debugging is enabled, additional
messages are printed by minix and kernel during the booting process. By default,
debugging is off.

e logfile. The value for this option is the name of a SunOS file to hold event records
produced by the interaction network monitor. Its presence enables monitoring. If the
logfile option is not specified, then no logging is performed.

To be able to run minix no matter what your current directory is, put a .minix file in
your home directory, and make sure that all SunOS pathnames in the file are full pathnames.

If smx locks up, and you are unable to terminate it using shutdown, and control-underscore
on the console won’t terminate smx, then you will have to use kill under SunOS to terminate
smx. Remember to kill the child process so that the parent process can tidy up.

Appendix A.2: mlogin

The syntax for the mlogin command is:

mlogin hostname
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where hostname is the name specified for the host option in the configuration file of an
instance of smx that is currently running on the Sun on which mlogin is invoked. If such
an smx instance exists, and a terminal line is available, and the user invoking mlogin has
write permission on the files in /tmp/hostname, then mlogin provides a terminal line to the
relevant smx instance. To exit from mlogin, hold down the control key and type quit.

Appendix A.3: relay
The syntax for the relay command is:
relay relayfile

relay opens a UDP socket, and writes the name of the host it is running on and the UDP
port number of its socket to relayfile. Instances of smx use this information in connecting
to a running relay program via the relay file option in the configuration file.

After writing relayfile, the relay program enters a packet processing loop. Packets
come in three flavours:

e packets whose destination “ethernet” address is the UDP address of the relay program.
Such a packet is sent by the minix bootstrap program to register with the relay program
the “ethernet” address of the sending smx instance (which is actually the UDP address
of a socket created by the smx instance). The “ethernet” address registered is the source
address in the ethernet header.

e broadcast packets. These are forwarded to all registered smx instances except the
sender.

e packets addressed to another smx instance. Such packets are forwarded to the appro-
priate smx instance, as per the destination UDP address in the ethernet destination
address of the ethernet packet header.

At the moment, no “de-registration” occurs when an smx instance is shut down. This will
leave the relay program forwarding broadcasts to smx instances that no longer exist. If this
turns out to be a problem in practice then we might have to add some sort of de-registration.

Appendix A.4: mcc

mcc is a shell script used for compilation of all smx source files (except the few that execute
directly under SunOS), and to link all smx user programs (except init). mcc uses gcc to
compile C programs, as to assemble SPARC assembler files, 1d to link ELF executables, and
elf2smx to convert ELF executables to smx executables. In general, mcc behaves much as a
standard Unix compiler, taking very similar options. There are three options that are special
to mcc:

e If the —v option is specified, then mcc simply echoes the commands that it would execute,
rather than executing them.

e If the -S stacksize option is specified, then stacksize is saved and supplied to
elf2smx (if -S is not specified, the stack size supplied to elf2smx is 16Kb). Note
that the stacksize is now ignored by the smx memory manager, as it can extend
dynamically the data and stack segments of user processes.
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e If the -N option is specified, then the ELF executable (if one is created) is not deleted
after elf2smx has produced the smx executable from it.

mcc deals with remaining options in the following way:

e The -c option prevents linking (that is, compile only).

The -o option specifies the smx executable to create if linking takes place, the object
file name if it doesn’t.

Any -1 options are collected to supply to 1d.

If -E is specified, it is added to the “compiler options”, and linking is suppressed.
e All other options are simply added to the “compiler options” to pass to gcc and as.

All other arguments on the command line should be names of .c, .s and object files.
Each of these arguments is considered in turn, and handled in the following way:

e Each .c file is compiled by gcc. Some standard options are supplied by mcc. Certain
options are supplied to all “compiles” (C and SPARC assembler). These consist of
options to make the $MX_INCL directory the only standard header file directory, and
defines to mimic the word size, long size and pointer size defines provided by the ack
C compiler. In addition, certain options are supplied to all gcc compiles. These are
-funsigned-char (some MINIX library functions assume that the char type is un-
signed), -fno-common (elf2smx can’t handle program sections produced from common
areas) and -02. Also passed to gcc are the list of “compiler options” present on the
mcc command line.

In the very rare circumstance that a standard SunOS header file is needed, the full
pathname must be specified in the source file as the standard SunOS header directories
are not searched.

e Each .s file is assembled by as. The standard options common to gcc and as (listed
above) are supplied to as, as are the “compiler options” specified on the command line.

Once all compilations and assemblies have occurred, linking is performed unless it is
inhibited by one of the command line options. The 1d command is supplied with the name
of the executable to create, the name of the .o file containing the standard smx C startup,
the names of all of the .o files produced by the compilations and assemblies, the names of
any other file names (usually .o and .a) from the command line, all -1 options from the
command line, and the name of the smx standard C library. Again, there are a standard set
of 1d options, including -dn to have the executable statically linked, an option specifying the
name of the entry point in the startup file, an option specifying the map file to use, and an
option specifying that $MX_LIB is the only default directory that should be searched when
looking for a library.

If the smx executable blarg is being produced, then the ELF executable is produced in
blarg.elf by 1d. The elf2smx program is used to convert blarg.elf to blarg. The stack
size is passed as an option. The file blarg.elf is then deleted unless -N was specified on
the mcc command line. Finally all objects produced by compiles and assemblies are deleted
unless the -c option was given.
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Appendix A.5: elf2smx

The syntax for the elf2smx command is:
elf2smx [-d] [-S stacksize] ELF-executable smx-executable

elf2smx creates an smx-format executable from an ELF-format executable. The smx
executable consists of an smx header, a text segment (containing text and read-only data)
and a data segment. The text segment is click-aligned, and a multiple of the click size in
length. If the -d option is specified then some debugging messages are printed.

If -8 is specified, then stacksize specifies the MINIX “gap” (the amount of space to
reserve for heap and stack when a program begins executing). The stacksize value is
no longer relevant for user processes, as their data and stack segments can be expanded
dynamically. The stacksize value is still relevant for kernel, mm, fs, inet and init. The
minix bootstrap uses the stacksize value in allocating stack space for the programs it loads
(in the case of init only, the stack space can be subsequently expanded).

Appendix B: Class use of smx

This document has mainly concentrated on installing smx for a single user. Where smx is to
be used by students, each student could be given a complete smx distribution. This requires
quite a lot of disk space, so it will usually be preferable to give them copies of only the parts
of the system that they need to change.

For a student to boot their own copy of smx, they will need their own configuration file,
and their own root file system (section 5.5.1 describes one way of setting up smx filesystems so
that each student has a root file system, and /usr/bin and /usr/man are provided as shared
file systems common to all students). Also, they must have the eight SunOS smx executables
(minix, mlogin, and so on) on their search path. With MX_INCL and MX_LIB set appropriately,
students can compile their own programs for smx, load them into their own smx file systems,
and run them.

Where students need to modify smx source code, parts of the smx src hierarchy can
be made available as needed. In the case of the kernel the students could be given the
entire $m/src/kernel directory. Because changes in the size of the kernel executable affect
the addresses at which mm, fs and inet are linked to run, students must be able to re-link
these programs. Students could have complete copies of these directories, or could have in
each case a directory that contains symbolic links to a single collection of .o files and the
Makefile. Each student would also need their own tools directory (containing copies of
init and Makefile, or symbolic links to them) where their own image file is created.

Nearly all smx commands can be copied as individual files (in the case of commands
in $m/src/commands/simple) or directories (for other commands). Source files for some
commands use relative pathnames to include header files from kernel and/or mm and/or fs.
These include the smx user commands de, df, fsck, fsckl, mkfs, ps and readfs, and the
smx commands elf2smx, minix, mlogin and next_prog-addr (this second group also uses
relative pathnames to include standard smx header files from $MX_INCL).

In summary, if disk space is an issue then smx filesystems, sources, object files and binaries
should be shared as much as possible. This can be done by copying only what students need
to change, and setting up symbolic links to related directories or individual files. In the past,
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where students have been asked to modify the kernel, I have given them a script to setup
symbolic links to all kernel files, and when a student wanted to modify a file they removed
the symbolic link and replaced it with a copy of the file to be modified.

Smx (in its various forms) has been used in several student projects since 1992. In one
course, students used smx without looking at its internals. This gave them the chance to play
at being sys admins of there very own Unix-like system. They also used de to investigate
the structure of smx filesystems. In a more advanced course, the older (MINIX 1.5.10-based)
SunOS MINIX has been used in four assignments:

e In 1992, students had to add memory protection to smx. The current smx memory
protection is a legacy of this assignment.

e In 1993, students had to carry out a “race condition audit” on the smx kernel. The
scope of the audit was to describe how smx dealt with race conditions, and to describe
any race conditions that still existed.

e In 1994, students were asked to document the smx kernel.

e In 1995, students were asked to use the interaction network monitor to record various
“interesting” message passing patterns, and to use displays of these interaction networks
as the basis for a report designed to explain various aspects of the operation of MINIX.
Technical report 04/96 was a direct result of this assignment.

In 1996, students were asked to modify smx to support separate, expandable data and
stack segments.
Finally, the smx lab exercises in $m/doc may be useful for introducing students to smx.

Appendix C: Overview of source code changes

The smx directory hierarchy that is installed under SunOS is a slightly modified version of the
standard MINIX hierarchy. Some directories have been added, and some new files added to
existing directories. Some things are not relevant to smx (such as PC-specific source files and
directories) and these have by and large been removed from the hierarchy. Some directories
contain MINIX files that while not currently used in smx, may well be added to smx in the
future.

For the most part, smx-specific code in existing C source files is conditionally compiled.
In a few files, however, changes have been sufficiently extensive that all code not related to
smx has been removed (examples include break.c, exec.c and forkexit.c in $m/src/mm).

Below is an overview of new files, and files that have been substantially modified. All
pathnames are relative to $m.

e disks. A new directory containing smx file systems.
e doc. A new directory for smx documentation.
e include/sun. A new directory for smx-specific include files.

e man/man0. New manual pages added for smx-specific commands: sunload, sunread,
sunwrite.
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src/Solaris. A new directory containg programs and scripts that run under SunOS.
The IN sub-directory contains the interaction network analysis programs.

src/commands/scripts/sunload.sh. An smx script for installing standard smx bina-
ries from SunOS.

src/commands/sun4. A new directory containing smx-specific commands (the sunread
command).

src/commands/tcsh. A new directory containing sources for tcsh.
src/commands/uemacs. A new directory containing sources for Microemacs.
src/etc. Files modified somewhat for smx.

src/kernel. Substantial changes. Many new source files; most of the remaining files
were changed in some way.

src/lib/math/add sun_libc_obs and src/lib/sun4/add_sun libc_obs. These scripts
extract some files from the SunOS C library, and include them in the smx C library.

src/lib/smx_userprog.map. Map file given to 1d to control virtual address allocation
when linking executables that are to become smx user programs.

src/1lib/sun4. SPARC assembler sources needed by the library (MINIX message pass-
ing functions, setjmp/longjmp, making system calls to SunOS), and the standard C
startup files for smx user executables and system servers.

src/lib/sunsyscall. SPARC assembler wrappers for all of the POSIX functions. Only
__sigreturn.s is anything more than a simple wrapper.

src/mm. Small changes to support separate data and stack segments that can be ex-
tended dynamically.

src/test/testload. Script to load the binaries from the src/test directory into smx.

src/tools/.minix. An smx configuration file.

In addition, all Makefiles have been changed to support compilation under SunOS.
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