
RadiSys. 118th Street
Des Moines, Iowa 50325

515-223-8000

Revision A • April 2003www.radisys.com

Using OS-9® Threads

Version 2.6

April 2003
Copyright ©2003 by RadiSys Corporation.

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 2.6 of Microware OS-9
Threads.
Reproduction of this document, in part or whole, by
any means, electrical, mechanical, magnetic, optical,
chemical, manual, or otherwise is prohibited, without
written permission from RadiSys Corporation.

Disclaimer

The information contained herein is believed to be
accurate as of the date of publication. However,
RadiSys Corporation will not be liable for any damages
including indirect or consequential, from use of the
OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation.
The information contained herein is subject to change
without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys Corpo-
ration expressly prohibits any reproduction of the soft-
ware on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system may
constitute copyright infringements and misappropria-
tion of trade secrets and confidential processes which
are the property of RadiSys Corporation and/or other
parties. Unauthorized distribution of software may
cause damages far in excess of the value of the copies
involved.

Using OS-9 Threads 3

Contents

: Contents.

Chapter 1: Threads Overview.

Thread Definition ... 8.

Thread Architecture .. 9.

Using Threads .. 9.

Benefits.. 9.

Limitations ... 11.

Ideal Applications ... 11.

Example Using Threads... 12.

The POSIX Threads Standard.. 16.

Additional Resources .. 17.

Chapter 2: Using OS-9 Threads.

Overview of OS-9 Threads... 20.

The OS-9 Implementation of POSIX Threads ... 21.

The OS-9 Kernel... 21.

Managing Processes and Threads .. 21.

Mutexes in OS-9 ... 22.

Thread Interruption... 22.

Signals ... 23.

POSIX Signals .. 23.

Thread Suspension ... 24.

Support .. 24.

Application Considerations... 24.

OS-9 Threads Guidelines and Issues .. 26.

Shared Global Data Structures... 26.

New Process Structure .. 27.

Functions to Access the Process Descriptor ... 28.

System State Code .. 28.

Static Return Values.. 28.

Deadlock ... 29.

Thread-safe Coding Techniques .. 30.

Threads and Subroutine Modules... 30.

Contents

4 Using OS-9 Threads

Shared Data Access Functions ... 32.

Example Thread-safe Conversion of a Library ... 33.

Miscellaneous Issues ... 41.

Chapter 3: OS-9 Threads Programming Reference.

POSIX Pthreads Library Functions ... 44.

POSIX Pthreads Library Definitions ... 46.

Pthreads Library Extension Functions... 47.

Pthreads Library Extension Definitions ... 49.

Function Descriptions ... 49.

pthread_attr_destroy() .. 52.

pthread_attr_getdetachstate() ... 53.

_pthread_attr_getinitfunction() .. 55.

_pthread_attr_getpriority() .. 57.

pthread_attr_getstackaddr() .. 59.

pthread_attr_getstacksize() ... 61.

pthread_attr_init() .. 63.

pthread_attr_setdetachstate() ... 65.

_pthread_attr_setinitfunction() .. 67.

_pthread_attr_setpriority() ... 70.

pthread_attr_setstackaddr() .. 72.

pthread_attr_setstacksize().. 75.

pthread_cancel() .. 77.

pthread_cleanup_pop() .. 79.

pthread_cleanup_push() ... 81.

pthread_cond_broadcast() .. 83.

pthread_cond_destroy() .. 85.

pthread_cond_init() .. 87.

pthread_cond_signal() .. 89.

pthread_cond_timedwait() .. 91.

pthread_cond_wait() .. 94.

pthread_condattr_destroy() ... 97.

pthread_condattr_getpshared() ... 98.

pthread_condattr_init() ... 100.

pthread_condattr_setpshared().. 102.

pthread_create() .. 104.

pthread_detach() ... 106.

pthread_equal() ... 108.

Contents

Using OS-9 Threads 5

pthread_exit() .. 109.

pthread_getspecific() .. 111.

_pthread_getstatus() .. 113.

_pthread_interrupt() ... 116.

_pthread_interrupt_clear() .. 118.

pthread_join() .. 120.

pthread_key_create() .. 122.

pthread_key_delete() .. 124.

pthread_kill() ... 126.

pthread_mutex_destroy() .. 128.

pthread_mutex_getprioceiling() ... 130.

pthread_mutex_init() .. 132.

pthread_mutex_lock() ... 134.

pthread_mutex_setprioceiling() ... 136.

pthread_mutex_trylock() ... 138.

pthread_mutex_unlock() ... 140.

pthread_mutexattr_destroy() ... 142.

pthread_mutexattr_getprioceiling() .. 143.

pthread_mutexattr_getprotocol() ... 145.

pthread_mutexattr_getpshared() ... 147.

pthread_mutexattr_init() ... 149.

pthread_mutexattr_setprioceiling() .. 151.

pthread_mutexattr_setprotocol().. 153.

pthread_mutexattr_setpshared() .. 155.

pthread_once() .. 157.

_pthread_resume() ... 159.

pthread_self() .. 161.

pthread_setcancelstate()... 162.

pthread_setcanceltype().. 164.

_pthread_setpr()... 166.

_pthread_setsignalrange() .. 168.

pthread_setspecific() .. 170.

_pthread_setsuspendable() ... 172.

_pthread_setunsuspendable().. 174.

_pthread_suspend().. 176.

pthread_testcancel()... 178.

Definition Descriptions.. 179.

Contents

6 Using OS-9 Threads

_POSIX_THREAD_ATTR_STACKADDR ... 181.

_POSIX_THREAD_ATTR_STACKSIZE ... 182.

_POSIX_THREAD_PRIO_INHERIT .. 183.

_POSIX_THREAD_PRIO_PROTECT .. 184.

_POSIX_THREAD_SAFE_FUNCTIONS .. 185.

_POSIX_THREADS .. 186.

_PT_BOOSTED.. 187.

_PT_CPENDING .. 188.

_PT_CSTATE ... 189.

_PT_CTYPE ... 190.

_PT_DETACHED.. 191.

_PT_EXIT .. 192.

_PT_IPENDING ... 193.

_PT_SFLAG ... 194.

_PT_SPENDING... 195.

_PT_SSTATE ... 196.

PTHREAD_CANCEL_ASYNCHRONOUS.. 197.

PTHREAD_CANCEL_DEFERRED... 198.

PTHREAD_CANCEL_DISABLE .. 199.

PTHREAD_CANCEL_ENABLE ... 200.

PTHREAD_CANCELED... 201.

PTHREAD_COND_INITIALIZER.. 202.

PTHREAD_CREATE_DETACHED .. 203.

PTHREAD_CREATE_JOINABLE... 204.

PTHREAD_DESTRUCTOR_ITERATIONS ... 205.

PTHREAD_KEYS_MAX... 206.

PTHREAD_MUTEX_INITIALIZER .. 207.

PTHREAD_ONCE_INIT .. 208.

PTHREAD_PROCESS_PRIVATE .. 209.

PTHREAD_PROCESS_SHARED... 210.

PTHREAD_STACK_MIN ... 211.

PTHREAD_THREADS_MAX.. 212.

Using OS-9 Threads 7

1 Threads Overview Chapter 1

This chapter provides a brief conceptual overview of threads. It includes
the following sections:

• Thread Definition
• Using Threads
• Example Using Threads
• The POSIX Threads Standard
• Additional Resources

Threads are not supported for OS-9 for 68K operating systems.

Chapter 1: Threads Overview

8 Using OS-9 Threads

Thread Definition
A thread is a single flow of control within a process that performs a
program task or a series of program tasks. Generally, threads are
composed of the following abstract elements:

• State Structure. The state structure includes items like a thread ID,
priority, age, signal mask, register context, and program counter.

• Stack. A thread has its own stack space for function calling.
• Private Storage Area. The private storage area is used for thread-

specific data.
• Attributes. Thread attributes can be defined to provide thread-

specific characteristics.

Threads share a single instance of the following abstract elements:

• Resource Structure. The resource structure includes items like a
table of open paths, allocated memory, and attached subroutine
modules.

• Global Storage Area. Global variables are shared among all threads
within a process.

In addition, where a process contains multiple threads, the threads
execute their instructions independently while sharing a common global
data area.

The private storage area resides in user state and is accessed via the
thread library calls. The thread registers (such as the stack pointer and
program counter) are part of the thread and each thread has its own
stack. The code that the thread executes, however, is not part of the
thread, but is global and can be executed by any thread. In many
cases, two threads of the same process will execute the same function.

All threads in a multi-threaded process share the resources of that
process. They share the same allocated memory, and access the same
functions and the same global data. If one thread alters a global
variable, all other threads will see the change when they next access it.
If one thread opens a file and reads it, all other threads can also read
from the file.

Chapter 1: Threads Overview

Using OS-9 Threads 9

Thread Architecture
Threads are fundamental elements of the OS-9 operating system. The
most basic process is simply a process with a single executing thread.
More complicated processes have multiple concurrent threads.

Each process has a single resource descriptor. The resource descriptor
contains information such as open paths, allocated memory, and
attached subroutine modules. Threads that allocate memory, open
paths, or attach subroutine modules all access this common resource
descriptor. This allows all threads to share these common resources.

Each process has one or more state descriptors. A state descriptor has
the information necessary to maintain the state of a thread of
execution: machine register image, signal related information, thread
ID, and scheduling information.

Each thread is independently scheduled by the operating system. A
process can have low priority threads and high priority threads. All
threads in the entire systems are scheduled relative to one another
regardless of the process that owns them.

Using Threads
The following sections detail the benefits and limitations of using
threads, and the ideal applications for which threads should be used.

Benefits
The overriding benefit of using threads occurs when a process contains
multiple threads. A multi-threaded process can perform multiple tasks
simultaneously (concurrently or in parallel) within the process. For
example, one thread in a process can perform I/O, another thread can
perform calculations, and a third thread can operate an user interface.

Some of the common benefits of using threads are indicated below:

• Provides Increased Throughput. Multiple threads enable a single
process to overlap computation when using one or more blocking
system calls. Threads provide this overlap even though each request
is coded synchronously. When a thread makes a request and waits,
another thread in the process is able to continue. Thus, a process
can have several blocking requests outstanding, which enables
asynchronous I/O, even though the code is written synchronously.

Chapter 1: Threads Overview

10 Using OS-9 Threads

• Increases Responsiveness. With multiple threads in a process, when
one part of the process is blocked, the whole process is not
necessarily blocked. In typical single-threaded applications, it’s
possible for the user to encounter a “wait” during a long task. In
multiple-threaded applications, the long task can be written as a
single thread, enabling the application to remain active in other
threads. This can also make the application appear more responsive
to the user.

• Simplifies Interprocess Communications. A typical multipurpose
application uses pipes and sockets for interprocess communications.
A multi-threaded application can be written to accomplish the same
tasks using the inherently shared memory of the process. The
threads in the process can maintain separate interprocess
communications connections while sharing data in the global
memory space.

• Uses System Resources More Efficiently. Multi-process programs
typically access common data through shared memory. However,
each of these processes must maintain both a state descriptor and a
resource descriptor. The cost, in both processing time and memory
space, of creating and maintaining these elements makes each
process more expensive than a thread. In addition, the inherent
separation between processes can require additional effort by the
programmer to communicate among the different processes or to
synchronize their actions.

• Simplifies Multi-Tasking Program Structure. Threads are inherently
concurrent, which often simplifies the process of coordinating
multiple tasks.

• Standardizes Source Code. The use of threads is standardized by
the POSIX threads standard. This enables a single source to be
recompiled for different platforms.

Chapter 1: Threads Overview

Using OS-9 Threads 11

Limitations
Although there are many benefits to multi-threaded programs, threads
have some limitations, including the following:

• Increased Overhead. This includes creating, scheduling, and
terminating threads within a process. You must determine if the
performance gain outweighs the increased overhead.

• Synchronization. Threads access global data, open files, and
various shared objects with a process. Generally, the access must be
synchronized in order to get predictable output from the program.
This also includes scheduling your threads. It is possible that one
thread in a process will complete prior to the completion of a
prerequisite thread, thus producing invalid program output.

Ideal Applications
Generally, applications can be improved by using threads when they
have one or both of the following characteristics:

• Multiple Independent Tasks. In this case, the application contains
more than one task. Each task can proceed to completion
independently, without relying on the completion of other tasks.

• Benefits from Concurrent Execution. In this case the application’s
multiple tasks execute faster concurrently than they do serially.
Generally, this is the case when a task issues many I/O requests and
must wait for the device to complete each request before preceding.

A example of a threaded application is a web server. In this case, a
single process must manage multiple simultaneous network
connections. This can be implemented using the boss/worker model.
The boss thread listens for connection attempts from the network and
creates a worker thread for each accepted connection to service the
connection. Using threads, the boss portion of the code would not be
hindered by slow network access trying to send a file to a client.

Java is another application for threads. The language itself directly
supports threads.

Chapter 1: Threads Overview

12 Using OS-9 Threads

Example Using Threads
The following example shows a sample “Hello World” program using
threads. It also demonstrates some of the advantages and pitfalls of
using threads.

The pthread_create function creates a new thread and takes the
following four arguments:

• the thread variable or holder for the thread
• a thread attribute
• the function for the thread to call when it starts execution
• an argument to the function

For example:

 pthread_t a_thread;
 pthread_attr_t a_thread_attribute;
 void *thread_function(void *argument);
 void *some_argument;

 pthread_create(&a_thread, &a_thread_attribute,
thread_function,

 some_argument);

A thread attribute specifies the minimum stack size to be used. Some
applications use the default attribute by passing NULL in the thread
attribute parameter position. Unlike processes created by the OS-9 fork
function, which begin execution at a pre-determined point, threads
begin execution at the function specified in pthread_create.

Following is an example of a multi-threaded application that prints the
"Hello World” message on stdout. This requires two thread variables
and a function for the new threads to call when they start execution. In
addition, there must be a way to specify that each thread should print a
different message. One approach is to partition the words into separate
character strings and to give each thread a different string as its
"startup" parameter.

Chapter 1: Threads Overview

Using OS-9 Threads 13

For example:

 void *print_message_function(void *ptr);

 main()
 {
 pthread_t thread1, thread2;

pthread_attr_t attr;
 char *message1 = "Hello";
 char *message2 = "World";

pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, 4096);

 pthread_create(&thread1, tattr, print_message,
(void*)message1);
 pthread_create(&thread2, tattr, print_message,
(void*)message2);
 exit(0);
 }

 void *print_message_function(void *ptr)
 {
 char *message;
 message = (char *) ptr;
 printf("%s ", message);
 return NULL;
 }

Note the function prototype for print_message_function and the
casts preceding the message arguments in the pthread_create call.
The program creates the first thread by calling pthread_create and
passing "Hello" as its startup argument; the second thread is created
with "World" as its argument. When the first thread begins execution it
starts at the print_message_function with its Hello argument. It
prints Hello and comes to the end of the function. A thread terminates
with the return value of its initial function if it leaves its initial function.
Therefore, the first thread terminates after printing Hello. When the
second thread executes it prints World and likewise terminates.

Chapter 1: Threads Overview

14 Using OS-9 Threads

While the above program appears reasonable, there are two major
flaws. First, the threads execute concurrently; there is no guarantee that
the first thread reaches the printf function prior to the second thread.
Therefore, its possible for the program to output "World Hello" rather
than “Hello World”.

Also, there is a more subtle point. Note the call to exit made by the
parent thread in the main block. If the parent thread executes the exit
call prior to either of the child threads executing printf, no output will
be generated. This happens because the exit function exits the entire
process, terminating all threads. Any thread, parent or child, who calls
exit can terminate all the other threads along with the process. Threads
wishing to terminate explicitly must use the pthread_exit function.

The result is that the Hello World program has two race conditions: the
race for the exit call and the race to see which child reaches the printf
call first.

Below is an example of how the race conditions can be remedied. Since
the objective is for each child thread to finish before the parent thread,
you could insert a delay in the parent to give the children time to reach
printf. You could also insert a delay prior to the pthread_create call
that creates the second thread, which would cause the first child thread
to reach the printf before the second thread. The resulting code is as
follows:

 void *print_message_function(void *ptr);

 main()
 {
 pthread_t thread1, thread2;
 char *message1 = "Hello";
 char *message2 = "World";

 pthread_create(&thread1, NULL,
 print_message_function, (void *)
message1);
 sleep(10);
 pthread_create(&thread2, NULL,
 print_message_function, (void *)
message2);

Chapter 1: Threads Overview

Using OS-9 Threads 15

 sleep(10);
 exit(0);
 }

 void *print_message_function(void *ptr)

 {
 char *message;
 message = (char *) ptr;
 printf("%s", message);
 return NULL;
 }

There are problems with this solution. It is never safe to rely on timing
delays to perform synchronization. The race condition here is identical
to a situation with a distributed application and a shared resource. The
resource is the standard output and the distributed computing elements
are the three threads. thread1 must use printf/stdout prior to
thread2 and both must complete before the parent thread calls exit.
Another obvious problem created with this solution is that the process
now takes 20 seconds to run; printf can take less than a second.

Below is a better version that uses pthread_join to wait for the
threads to terminate. pthread_join specifies a thread for which to
wait and a place to put the exit status of the target thread. The calling
thread blocks until the target thread terminates. The pthread_exit
status is then returned to the calling thread.

 void *print_message_function(void *ptr);

 main()
 {
 pthread_t thread1, thread2;
 char *message1 = "Hello";
 char *message2 = "World";
 void *status;

Chapter 1: Threads Overview

16 Using OS-9 Threads

 pthread_create(&thread1, NULL,
 print_message_function, (void *)
message1);

 pthread_join(thread1, &status);

 pthread_create(&thread2, NULL,
 print_message_function, (void *)
message2);

 pthread_join(thread2, &status);

 exit(0);
 }
 void *print_message_function(void *ptr)
 {
 char *message;
 message = (char *) ptr;
 printf("%s", message);
 return NULL;
 }

The POSIX Threads Standard
The IEEE Portable Operating System Interface (POSIX) standard helps
developers create source-code portable applications. POSIX 1003.1c
(also known as ISO/IEC 9945-1:1990c) is the portion of the overall
POSIX standard describing threads. Included are functions and APIs
that support multiple threads within a process.

Generally, POSIX threads (Pthreads) are a defined set of C language
programming types and calls with a set of implied semantics. Pthreads
implementations are usually distributed in the form of a header file (for
inclusion in a program) and a library, which is linked to a program.

Chapter 1: Threads Overview

Using OS-9 Threads 17

Pthreads is the basis for the OS-9 implementation of threads. The
POSIX specification defines an API that deals with threads
management, cancellation, thread-specific data, and synchronization.
It provides programmers with the following basic facilities:

• thread creation—the starting of threads
• thread cancellation—asking started threads to shut down in an

organized manner
• thread joining—waiting for a particular thread to terminate
• thread-specific data—storing information in a "thread local" area
• mutexes—synchronizing threads to protect critical sections (it is a

simple binary semaphore-type lock).
• condition variables—waiting upon notification of an event from

another thread (these are rather like simplified OS-9 events)
• threaded initialization—running an initialization function exactly

once, but not allowing threads past until it has completed

Additional Resources
The following are suggested readings and do not constitute a
Microware endorsement:

• IEEE Standard POSIX 1003.1c. Institute of Electrical and Electronics
Engineers.

• Pthreads Programming; Bradford Nichols, Dick Buttlar & Jaqueline
Proulx Farrell; O'Reilly & Associates, Inc; ISBN: 1-56592-115-1.

• POSIX.4; Bill O. Gallmeister; O'Reilly & Associates, Inc; ISBN: 1-
56592-074-0.

• Threadtime; Scott J. Norton & Mark D. Dipasquale; Prentice Hall;
ISBN: 0-13-190067-6.

Refer to the POSIX 1003.1c document for more information
about the Pthreads API.

Chapter 1: Threads Overview

18 Using OS-9 Threads

Using OS-9 Threads 19

2 Using OS-9 Threads Chapter 2

This chapter describes the OS-9 implementation of POSIX threads. It
includes the following sections:

• Overview of OS-9 Threads
• The OS-9 Implementation of POSIX Threads
• OS-9 Threads Guidelines and Issues

Chapter 2: Using OS-9 Threads

20 Using OS-9 Threads

Overview of OS-9 Threads
The OS-9 implementation of POSIX threads (Pthreads) defines a
thread as an execution context within an OS-9 process. This design
enables a process to multi-task within itself. This is beneficial when the
work to be done by a single process has aspects of parallelism. This is
especially true when I/O is some part of the parallelism.

OS-9 threads are implemented entirely as lightweight processes; each
thread acts as a process, but has a much lower overhead in terms of
system resources.

The OS-9 API contains support for the following basic facilities:

• Thread creation—the starting of threads
• Thread termination—terminating a thread and returning the status
• Thread operations—setting options for already created threads
• Thread joining—the ability to wait for a particular thread/process to

terminate

Refer to Chapter 3 for more information about the API.

Chapter 2: Using OS-9 Threads

Using OS-9 Threads 21

The OS-9 Implementation of POSIX Threads
The following sections detail information regarding implementation of
POSIX Threads for OS-9.

The OS-9 Kernel
In the OS-9 implementation, POSIX threads are lightweight processes.
Each thread behaves like a process, but has a much lower overhead in
terms of system resources. The kernel uses one resource descriptor for
each process and one state descriptor for each thread. The state
descriptors have only the information necessary to maintain and
schedule a thread of execution.

The kernel maintains one pointer to void field of data that is swapped at
context switch time. This allows multiple threads to look at an identical
place in memory and see different values there, depending on which
thread is looking at it. This feature is crucial for implementing thread-
specific data.

In OS-9, threads within a process are siblings, so there is no concept of
parenthood. There is, however, a primordial, or main thread. This is the
first thread in the process.

Managing Processes and Threads
The exit function (and _os_exit()) system call shuts down the entire
process, including all of its threads. To shut down just one thread, use
pthread_exit().

A process terminates under the following circumstances:

• if any thread in the process makes an exit system call
• if the thread running the main routine returns
• if a fatal signal is delivered
• if a thread causes an uncaught exception

A thread is started using pthread_create(). It needs to be passed an
attribute object (or NULL to get default attributes), a start routine
pointer, and a single argument (type pointer to void.) It returns an error
or a thread handle.

Chapter 2: Using OS-9 Threads

22 Using OS-9 Threads

A thread may exit with pthread_exit, or be terminated with
pthread_cancel or a signal.

• pthread_exit is the normal thread exiting mechanism; it signifies
that a thread is shutting itself down voluntarily. Signals can be
dangerous, and pthreads do nothing to protect against them.
However, thread cancellation is carefully managed. Threads can
open themselves for arbitrary cancellation or offer to be cancelled
when they call pthread_testcancel(), pthread_cond_wait(),
pthread_cond_timedwait, or pthread_join().

• If a thread exits via pthread_exit() or is cancelled, it will execute
its cleanup stack.

• Threads normally leave information for pthread_join(). This is
similar to the way OS-9 leaves process descriptors around for
_os_wait(). pthread_detach() tells the library that it doesn't
have to leave the descriptor around after the thread terminates. The
thread can also be started detached by setting that state in the
thread attribute object used to fork the thread.

Mutexes in OS-9
A mutex—abbreviated from mutual exclusion—is a simple binary
semaphore-type lock. OS-9’s mutexes can use priority inheritance or
priority ceiling emulation protocol. In OS-9, a Mutex is much like a
semaphore and condition variables are a form of OS-9 events. These
are supported in the libraries using pre-existing kernel functionality.

Thread Interruption
The OS-9 Pthread implementation supports the concept of interruption
as it relates to condition variables. Threads can issue interruption
requests to other threads. If the target thread is currently blocked in a
pthread_cond_wait() or pthread_cond_timedwait(), it will be
interrupted. The condition variable call will return EINTR to its caller. If
the target thread is not blocked in a condition variable wait function,
the interruption will be made pending. Furthermore, the next call to a
condition variable wait function by the target thread will result in EINTR
being returned. In any case, the mutex associated with the condition
variable during the wait will be reacquired, possibly causing the thread
to block.

Do not use Pthread services from within signal intercept routines.

Chapter 2: Using OS-9 Threads

Using OS-9 Threads 23

Signals
Thread interruption, cancellation, and suspensions are all implemented
using OS-9 signals. Thus, if any of these mechanisms are used, the
application must ensure that event waits, sleeps, semaphore
operations, process waits, and other blocking operations are aware that
"unexpected" signals can arrive. That is, if suspension is being used by
the application, the following code will not work correctly if the thread
gets suspended during the _os_sleep:

ticks = 1000;
_os_sleep(&ticks, &sig);
printf("awake\n");

If a suspension occurs after the thread has slept 100 ticks and
resumption occurs at 150 ticks, awake will print after 150 ticks. Correct
code would appear as follows:

ticks = 1000;
while (ticks)
 _os_sleep(&ticks, &sig);
printf("awake\n");

In addition, since these facilities are implemented with signals, it is
presumed that threads will not do their own _os_intercept() to
catch signals and will rely on the signal() and intercept() library
functions for signal handling.

See _pthread_setsignalrange() to specify the range of signals that
the Pthread layer uses. By default the Pthreads layers use signal values
between 40,000 and 49,999 inclusive.

POSIX Signals
The signal handling API supports the POSIX function
pthread_kill(), which directs a signal to a particular thread.

Do not use Pthread services from within signal intercept routines.

Chapter 2: Using OS-9 Threads

24 Using OS-9 Threads

Thread Suspension
The following sections discusses the concerns of thread suspension.

Support
Thread suspension in OS-9 is built around OS-9 signals. When a thread
is targeted for suspension it is sent a signal. The signal handler actually
contains the code to suspend the thread (an _os_sema_p() call) and it
is where the thread will block.

The suspender checks the suspendability of the target thread prior to
sending the signal. If the target thread is unsuspendable then the
suspender polls waiting for the target to be suspendable. Once
suspendable, the signal is sent. The suspender then waits for the target
thread to indicate it is suspended. If, during this wait for the target to
suspend, the target thread is found in any queue but the active one, it is
considered suspended. The presumption is that the thread is blocked in
I/O or some other queue that is not awakened by a signal, and that
once it reenters the active queue it will immediately suspend itself by
entering its signal intercept routine.

The following two counters are used to support suspension:

• Suspendability Counter. This counts the number of times a thread
has made itself unsuspendable. This supports the notion of nested
unsuspendability. For every call to
_pthread_setunsuspendable() there must be a call to
_pthread_setsuspendable() for a thread to return to the
suspendable state.

• Suspension Counter. This counts the number of times a thread has
been requested to suspend. This supports the notion of multiple
suspension calls on the same thread. Every call to
_pthread_suspend() with a given target thread must have a call
to _pthread_resume() before the target thread will continue to
execute.

Application Considerations
The following points discuss issues that are important for designers of
applications that use the suspension API. If the application has no need
for suspension, these issues do not apply.

Chapter 2: Using OS-9 Threads

Using OS-9 Threads 25

In order for the suspension mechanism to work correctly there are a few
ground rules that must be followed while a thread is unsuspendable:

• It cannot change the state of the signal mask from masked to
unmasked across a "primary" pthread_setunsuspendable() call.
That is, if signals were masked when the thread set itself
unsuspendable for the first time (a non-nested call to
_pthread_setunsuspendable()), they must remain masked for
the entire unsuspendable duration.

• It cannot leave the active queue. Leaving the active queue will be
interpreted by the suspender as being "as good as" suspended. The
_pthread_suspend() call will return to its caller reporting that the
target thread has been suspended.

Since thread suspension can happen asynchronously with respect to the
target thread's activities, it's possible that the suspended thread may be
holding a resource at the time it is suspended. For example, if a thread
has claimed a semaphore, but gets suspended before it can release it,
other threads that want that same semaphore may block for a very long
time waiting for it to be released.

It is for this reason that setting the thread to unsuspendable precedes
many lock acquisitions and releases of those same locks are followed by
calls to set the thread back to suspendable.

As mentioned previously, certain activities are not permitted while in the
unsuspendable state. Thus, the following C library services may not be
available (so they should be considered unavailable) if any thread that
may have been using them has been suspended:

• rename()

• stdio functions (all those functions that use FILE structures,
including those that use FILE structures implicitly, for example
printf and vprintf

• readv() and writev()

Chapter 2: Using OS-9 Threads

26 Using OS-9 Threads

Masking signals is the same as setting a thread unsuspendable since a
suspension request is implemented by sending a signal from the
suspender to the target thread. The suspender will poll waiting for the
target thread to receive the signal before it will consider it suspended.

OS-9 Threads Guidelines and Issues
This section provides developers with some background and guidelines
regarding the considerations and complications when working with
threads.

Shared Global Data Structures
If multiple threads need access to the same global data structure
simultaneously there must be some form of synchronization. This
synchronization is probably best accomplished with OS-9 semaphores
because they offer the best performance.

The synchronization of access to global data structures can be achieved
at a variety of levels (or granularities). For example, consider a linked list
accessed by multiple threads simultaneously. The semaphore could
simply be locked prior to any access and unlocked after the access. This
might be called coarse granularity. A more complicated locking
mechanism could be implemented that would provide locking based on
the desired operation (e.g. insert, delete, read, write) and/or on
individual elements of the linked list. This could be called fine
granularity.

The suspension mechanism implemented in the Pthread layer
was designed to be general purpose. That is, design decisions
were made that favored working for the maximum number of
applications. The results of these decisions are the limitations
listed above. More elegant or efficient means of thread
suspension could easily be designed for specific applications. If a
different approach is used, all the limitations and ground rules
listed above need not apply.

The information in this section was derived from the book
Pthreads Programming from O'Reilly & Associates. Refer to this
book for more information.

These guidelines do not fully address how to design thread
oriented code, they merely serve as pointers for writing thread-
safe library routines.

Chapter 2: Using OS-9 Threads

Using OS-9 Threads 27

An alternative to synchronizing simultaneous access to global variables
is to make a separate copy of the global data for each thread. Doing
this allows any number of threads to be simultaneously executing the
code, but with the additional overhead of numerous copies of the
global data area.

At the Pthreads layer, two locking mechanisms are available: mutexes
and condition variables. Mutexs are classic binary semaphores.
Condition variables offer a thread a way to wait for an event to occur
without polling for its occurrence.

It is the programmer's responsibility to ensure that proper locking is
done. Nothing in the compiler or operating system will alert the user if
the application is violating locking procedures.

Existing code that uses global variables needs to be analyzed to
determine whether or not multiple threads using the code will have a
problem. In most cases they will.

New Process Structure
The structure used to define a process has changed significantly from
the one used in previous versions of the operating system. In order to
accommodate lightweight processes (or threads), the information kept
in the pre-3.0 process descriptor has been split into two structures. One
structure holds information about the process' execution context
including the stack, signal and debug information (this structure is
pr_desc) while the second structure holds the process' resource
information, which includes allocated memory, linked modules, and a
reference to the process' I/O descriptor (this structure is pr_rsrc).

A process that is multi-threaded will have one pr_desc structure for
each of its threads but will have only one pr_rsrc structure.

These new structures are defined in the process.h header file, which
is located in /mwos/OS9000/SRC/DEFS. To maintain backward
compatibility, the definitions of these structures are conditional on the
definition of _USE_V3_0_PROCDESC. If this value is not defined, only
the pre-3.0 version definitions in process.h will be visible.

Chapter 2: Using OS-9 Threads

28 Using OS-9 Threads

Functions to Access the Process Descriptor
Two new functions have been added to allow user applications code to
acquire copies of the process descriptor structures. These are
_os_get_prdesc and _os_get_prsrc. These functions return copies
of the pr_desc and pr_rsrc structures respectively for the specified
process or thread.

The _os_gprdsc function supplied with previous versions of the
operating system will continue to return the pre-3.0 version process
descriptor structure. The contents of the two process descriptor
structures are marshalled by the kernel into the pre-3.0 structure. For
users developing code that will work on all OS-9 systems (non-68K), the
_os_gprdsc function is the preferred way to obtain process descriptor
information.

System State Code
For system state code backward compatibility, the process.h file
contains macros that define the old process descriptor field names so
that they map to the correct fields in the new structures. To make
system state code compatible with OS-9 v3.0 (non-68K) the user should
define _USE_V3_0_PROCDESC before including process.h in source
files and then recompile the code.

Static Return Values
Functions that return values from static variables do not work correctly
in a threaded environment. For example, this function may not work
correctly when simultaneously called by two threads:

char *upper_case(char *str)
{

static char retbuf[100];
int i = 0;
while (*str)

retbuf[i++] = toupper(*str++);
return retbuf;

}

If a thread gets time sliced before return retbuf; (or before the
calling thread uses the data) another thread would be able to call this
function and change the contents of the buffer.

Chapter 2: Using OS-9 Threads

Using OS-9 Threads 29

This problem is difficult to correct. Either the prototype must change so
that the caller passes in a buffer to hold the upper-case version, or the
return buffer must be dynamically allocated and the caller must be
aware that it has to free the buffer after using it. In both cases, the
caller's code will have to change to support threading.

This function could be documented as not being thread-safe, forcing
the user of the function to create a lock that spans from just prior to the
call to just after the final use of the return value. For example,

char *uc;
upper_case_lock();
uc = upper_case("Test String");
printf("Upper case version = '%x'\n", uc);
upper_case_unlock();

If all code in an application used this same basic technique,
upper_case() would no longer suffer from threading problems.

The optimal solution is to use the Pthreads key mechanisms to create
buffers on a per-thread basis for this function to use. This would allow
the API and usage to remain consistent for the client programmer.

Deadlock
Deadlock occurs when two different threads attempt to claim the same
mutexes, but in a different order. Consider the following two pseudo-
code sequences:

Thread #1

 mutex_lock(A);
 .
 .
 .
 mutex_lock(B);

Thread #2

 mutex_lock(B);
 .
 .
 .
 mutex_lock(A);

Chapter 2: Using OS-9 Threads

30 Using OS-9 Threads

The following sequence of events will result in a deadlock:

• Thread #1 gets mutex A
• Thread #1 gets time sliced by the operating system
• Thread #2 gets mutex B
• Thread #2 blocks trying to get semaphore A
• Thread #2 runs again and blocks trying to get semaphore B

At this point, both threads are permanently locked. The only way to
avoid this situation is to ensure that all threads in all cases attempt to
acquire common locks in the same order.

Thread-safe Coding Techniques
The following points describe thread-safe coding techniques:

• Always lock and unlock synchronization mechanisms as appropriate.
Failing to unlock a semaphore usually results in a deadlock. This
deadlock may happen to the thread that failed to unlock or it may
happen to another thread. Either way, it can be a long time or a long
distance away from where the original problem was caused. Use the
"best" locking strategy available in the time permitted. That is, a
correct non-optimal implementation is always better than a more
optimized implementation that pushes the schedule back in order to
achieve correctness.

• Do not write functions that return information from static (or global)
variables. Although it generally introduces some sort of memory
allocation into the system, it is the correct way to return a buffer of
information. If only the called function knows the size of the buffer,
then create a function that allocates the buffer and a destroy
function that frees it (or, specify that the user must free it).

• Avoid deadlock by acquiring locks in the same order all the time.

Threads and Subroutine Modules
This section describes porting an existing subroutine module for use by
both threaded and non-threaded applications.

For more information about general subroutine modules, see the
OS-9 Technical Manual. The Additional Resources section in
Chapter 1 provides a list of background material for threading
related issues.

Chapter 2: Using OS-9 Threads

Using OS-9 Threads 31

The following procedure describes one way to port an existing
subroutine module:

Step 1. Recompile the subroutine module for threading.

A non-threaded application functions much like a threaded application,
with only one active thread. Thus, once multi-threaded applications are
supported, non-threaded applications are also supported. The largest
difference between the two is the way some global data items are
handled (described below).

To recompile for threading, add the -mt option to the xcc command
line.

If it is not possible to recompile the subroutine module for threading, a
more complicated entry and exit mechanism can be written to
“serialize” access to the subroutine module. The mechanism must limit
to one, the number of threads that are allowed in the subroutine
module at any given time.

Step 2. Change the protocol in the initialization function.

Change the initialization function, in a backwards compatible way, such
that threaded applications pass the additional parameter _pthread.
_pthread is a global variable of size pointer to void. It is used as a
base address for accessing various thread related structures, including
such items as thread-specific versions of _procid and errno.

A common way to change the protocol in a backwards compatible
manner is to have threaded applications pass a distinct value for one of
the old parameters and then pass an additional parameter (_pthread).
The dispatcher can then recognize this distinct value and treat the caller
as threaded.

Step 3. Change the dispatcher to handle non-threaded callers.

Change the function dispatch and return to fill in a non-threaded
caller’s errno. It must copy the caller’s errno on entry and copy the
subroutine’s errno on exit.

For threaded users of the subroutine module, errno will be shared
automatically since _pthread is shared between the application and
the subroutine module.

Chapter 2: Using OS-9 Threads

32 Using OS-9 Threads

Step 4. Change the dispatcher to handle threaded callers.

Some subroutine modules are written with the assumption they will only
be called by one thread within an application. For example, if a
subroutine module stores the caller’s return program counter (PC) in a
global variable, it will fail if two or more threads call it at the same time.
This problem is normally solved by storing the return PC, for example,
in a thread-specific place.

Step 5. Examine the subroutine module functions for thread safety concerns.

Examine the subroutine module functions to ensure they will still
function correctly when called by multiple threads within the same
process. Add the appropriate locking or thread-specific data to ensure
thread safety. The following sections provide for more information.

Shared Data Access Functions
The following two C library functions can be helpful for porting an
existing subroutine module. They access two different kinds of data:
shared global data and thread-specific data. The shared global data is
automatically shared among all modules that have the same value of
_pthread (i.e. the application and the subroutine module). The
thread-specific data is unique to each thread and is visible to all
modules that have the same value of _pthread.

The functions described below must be used to access this data.

• _pthread_local_slot()
u_int32 *_pthread_local_slot(int32 slot)

This function is used when reading or writing thread-specific versions
of “core” C run-time variables. errno is a classic example of a local
slot. For threaded applications, there exists one errno per thread.
_pthread_local_slot() is used to get the address of the calling
thread’s version of errno.
The slot parameter is the slot number. Slot numbers are defined in
MWOS/SRC/DEFS/pthread.h. Once a slot number has been
assigned to a variable, it will not change in a subsequent release.
_pthread_local_slot() returns the address of the storage for a
specific slot number. This makes it equally easy to read or write the
variable.

Chapter 2: Using OS-9 Threads

Using OS-9 Threads 33

_pthread_local_slot() automatically saves and restores any
modified registers except the return value. This makes it easier to
call from assembly language.
This might be used in the dispatcher during function exit to copy the
version of errno generated by the code within a subroutine module
back to the application’s version of errno.
A module’s global data pointer and _pthread value must be valid
prior to calling _pthread_local_slot().

• _pthread_global_slot()
u_int32 *_pthread_global_slot(int32 slot)

This function is used when reading or writing global versions of
“core” C run-time variables. _mainid, the process ID of a thread’s
host process, is the only example of such a variable.
_pthread_global_slot() is used to get the address of the global
version of _mainid.
The slot parameter is the slot number. Slot numbers are defined in
MWOS/SRC/DEFS/pthread.h. Once a slot number has been
assigned to a variable, it will not change in a subsequent release.
_pthread_global_slot() returns the address of the storage for a
specific slot number. This makes it equally easy to read or write the
variable.
_pthread_global_slot() automatically saves and restores any
modified registers except the return value. This makes it easier to
call from assembly language.
A module’s global data pointer and _pthread value must be valid
prior to calling _pthread_global_slot().

Example Thread-safe Conversion of a Library
This section describes converting an existing library to a thread-safe
library. As shown in the following examples, it is possible to convert a
non-thread-safe function to a thread-safe function without changing
the API. That is, existing applications do not need source code changes
to use the new thread-safe version of the library.

Chapter 2: Using OS-9 Threads

34 Using OS-9 Threads

In the following example it is assumed the library contains the following
two functions:

#include <string.h>
#include <ctype.h>

char *upper_case(char *str)
{

static char retbuf[100];
int i = 0;

if (strlen(str) > 99)
return NULL;

while (*str)
retbuf[i++] = toupper(*str++);

retbuf[i] = ‘\0’;

return retbuf;
}

int rand_seed;

int random()
{

rand_seed = rand_seed * 1103515245 + 12345;
return (unsigned int)(rand_seed / 65536) % 32768;

}

These functions are not thread-safe. If two threads call upper_case()
at the same time, their data may become mixed up in the static return
buffer retbuf. If two threads call random() at the same time, the
value written to rand_seed may not be the same as it would have been
if the threads had called random() in sequence.

The make files for the library consist of a high-level make file that runs
a low-level make file. The high-level make file, makefile, is as follows:

-b

sh4 : .
$(MAKE) -f make.gen PROC=SH4 TARGET=-

tp=sh4,lc,ld,lcd,lb

Chapter 2: Using OS-9 Threads

Using OS-9 Threads 35

The low-level makefile, make.gen, is as follows:

RDIR = RELS.$(PROC)
ODIR = /mwos/OS9000/$(PROC)/LIB
LIB = randomlib.l
LGOPTS = -c

CFLAGS = -cw $(TARGET)

FILES = $(RDIR)/libsource.r

$(ODIR)/$(LIB) : $(FILES)
 libgen $(LGOPTS) $(FILES) -o=$@

Following is a series of steps that describe creating a threading and
non-threading version of the above library.

Step 1. Locate functions that are not thread-safe.

Functions that use global data are generally not thread-safe. The
rdump utility can be used to print the data requirements for a
relocatable object file (ROF). Running rdump on the ROF generated by
the source and make files above results in the following:

Module name: libsource.c
TyLa/RvAt: 0000/0000
Asm valid: Yes
Create date: Jan 29, 2001 15:20:32
Edition: 0
Threads: none
CPU/ROF type: SuperH(SH-4)/15
 Section Init Uninit
 Code: 00000070
 Data: 00000000 00000000
 Remote: 00000000 00000068
 Debug: 00000000
 Stack: 00000000
Entry point: 00000000
Excpt entry: ffffffff

Note the 0x68 (104) bytes of uninitialized remote data.

Chapter 2: Using OS-9 Threads

36 Using OS-9 Threads

Step 2. Determine how to make functions thread-safe.

There are a variety of ways to handle non thread-safe functions,
including the following:

• Document the attribute. If the non thread-safe functions will not be
used by multiple threads at the same time, the functions could
simply be documented as non thread-safe.

• Change the API. If backwards compatibility is not an issue this is
usually the best course of action. In the example, if you passed a
buffer to hold the upper-case conversion string then the function
would be thread-safe.

• Change the semantics. Again, if backwards compatibility is not a
concern, the semantics of a function could be changed. In the
example, a buffer to hold the conversion could be dynamically
allocated, but the caller would have to know to free the buffer after it
was done with it.

• Correct the problem using thread-safety techniques. Fix the function
to be thread-safe by adding synchronization or thread-specific data.

In the example, upper_case() is fixed by adding thread-specific data,
and random() is fixed by adding locking. This has the advantage that
neither function’s API is changed.

Step 3. Conditionalize source code with _OS9THREAD.

The automatically defined _OS9THREAD macro is used to conditionalize
the code to fix the threading issues. When threading is specified in the
compiler, _OS9THREAD is defined during preprocessing. The code is
conditionalized so that both a threaded and a non-threaded version of
the library can be built.

For upper_case() code is added to create a thread-specific data key
and initialize it with a 100 byte buffer for each calling thread. For
random(), a semaphore is added that ensures that only one thread is
using rand_seed at one time.

Chapter 2: Using OS-9 Threads

Using OS-9 Threads 37

Below is the new source code:

#include <string.h>
#include <ctype.h>
#ifdef _OS9THREAD
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <semaphore.h>

/* key for upper_case’s thread-specific data */
static pthread_key_t upper_case_key;

/* once block to control threads creating the key */
static pthread_once_t upper_case_once =
PTHREAD_ONCE_INIT;

/* prototype for destructor function */
static void upper_case_key_destroy(void *data);

static void upper_case_key_create(void)
{

int err;

err = pthread_key_create(&upper_case_key,
upper_case_key_destroy);

if (err != 0) {
fprintf(stderr,

"failed to create upper_case() key - %s\n",
strerror(err));

exit(err);
}

}

static void upper_case_key_destroy(void *data)
{

if (data)
free(data);

}

Chapter 2: Using OS-9 Threads

38 Using OS-9 Threads

#endif /* _OS9THREAD */

char *upper_case(char *str)
{

int i = 0;

#ifdef _OS9THREAD
char *retbuf;
int err;

/* ensure key for thread-specific data exists */
pthread_once(&upper_case_once,

upper_case_key_create);

/* get the value of the key for this thread */
retbuf = pthread_getspecific(upper_case_key);
if (retbuf == NULL) {

/* need to allocate it */
retbuf = (char *)malloc(100);
if (retbuf == NULL)

return NULL;

/* set it on the key for next time */
err = pthread_setspecific(upper_case_key, retbuf);
if (err != 0)

return NULL;
}

#else
static char retbuf[100];

#endif

if (strlen(str) > 99)
return NULL;

while (*str)
retbuf[i++] = toupper(*str++);

retbuf[i] = '\0';

return retbuf;
}

Chapter 2: Using OS-9 Threads

Using OS-9 Threads 39

int rand_seed;

#ifdef _OS9THREAD
static semaphore sem;
#endif

int random()
{

int ret;

#ifdef _OS9THREAD
/* ensure semaphore is initialized */
(void)_os_sema_init(&sem);

/* wait for lock */
while (_os_sema_p(&sem))

;
#endif

rand_seed = rand_seed * 1103515245 + 12345;
ret = (unsigned int)(rand_seed / 65536) % 32768;

#ifdef _OS9THREAD
/* release lock */
(void)_os_sema_v(&sem);

#endif

return ret;
}

Step 4. Change the make files to build the threaded version.

The make files should be changed to build two different versions of the
library: one for non-threaded applications and one for threaded
applications. The threaded version begins with the characters “mt_”.
This allows it to be automatically used if -mt is specified on the xcc
command line.

Chapter 2: Using OS-9 Threads

40 Using OS-9 Threads

makefile now appears as follows:

-b

sh4 : .
 $(MAKE) -f make.gen PROC=SH4 TARGET=-
tp=sh4,lc,ld,lcd,lb
 $(MAKE) -f make.gen PROC=SH4 "TARGET=-
tp=sh4,lc,ld,lcd,lb -mt" MT=mt_
make.gen looks like this:
MT =
RDIR = RELS.(MT)(PROC)
ODIR = /MWOS.DELME/OS9000/$(PROC)/LIB
LIB = $(MT)randomlib.l
LGOPTS = -c

CFLAGS = -cw $(TARGET)

FILES = $(RDIR)/libsource.r

$(ODIR)/$(LIB) : $(FILES)
 libgen $(LGOPTS) $(FILES) -o=$@

Step 5. Rebuild the library.

Running the high-level make file now results in both versions of the
library being built. Using the mt_ prefix for the threading version will
allow the command line “xcc test.c -tp=sh4 -l=randomlib.l”
to be used to build a non-threaded application and the command line
“xcc test.c -tp=sh4 -l=randomlib.l -mt” to be used to build a
threaded application.

Because mt_ was used as a prefix for the library name only, -mt had to
be added to the command line to compile the threaded version.

Chapter 2: Using OS-9 Threads

Using OS-9 Threads 41

Miscellaneous Issues
Following are some issues to consider related to thread support in your
OS-9 system:

• Thread-safe libraries are slower and larger than non-thread-safe
libraries. Global variable access has to be synchronized and this
synchronization takes time, code space, and data space. In general,
avoid using threading libraries unless the application is actually
threaded.

• Calling a thread-safe library call from a signal handler will likely
result in deadlock. If a thread has a lock from a thread-safe routine
and gets a signal that causes the signal handler to call the same
thread-safe routine then the thread will deadlock with itself.

• Asynchronous death (e.g. exception, kill signal) while holding a lock
will result in deadlock if the lock is system global. In addition, the
data structures being modified may be in an incorrect state.
Pthreads has some code to assist in the clean-up, but it is only useful
if the application is notified that it has been terminated.

Chapter 2: Using OS-9 Threads

42 Using OS-9 Threads

Using OS-9 Threads 43

3 OS-9 Threads Programming
Reference Chapter 3

This chapter describes the functions used in the OS-9 Threads
implementation. The following sections are included:

• POSIX Pthreads Library Functions
• POSIX Pthreads Library Definitions
• Pthreads Library Extension Functions
• Pthreads Library Extension Definitions
• Function Descriptions
• Definition Descriptions

Chapter 3: OS-9 Threads Programming Reference

44 Using OS-9 Threads

POSIX Pthreads Library Functions
The functions in this section are part of the POSIX standard—known as
Pthreads. They are compliant with the POSIX standard, and are useful
when porting to OS-9 from other operating systems that support the
POSIX standard.

Table 3-1 lists all the supported POSIX library functions in alphabetical
order. These functions are supported in the library mt_clib.l. The
descriptions are intended as a reference to show which sub-set of the
POSIX standard is supported in this product. If a function listed in the
POSIX standard is not described in this document, then it is not
currently supported.

The full POSIX standard is ISO/IEC 9945-1 (POSIX 1003.1c). Refer to
this standard for clarification of capabilities and function usage.

Table 3-1. POSIX Library Functions

Function Name Function Description
pthread_attr_destroy() pthread_attr_destroy()
pthread_attr_getdetachstate()Get Detach State Attribute
pthread_attr_getstackaddr() Get Stack Address Attribute
pthread_attr_getstacksize() Get Stack Size Attribute
pthread_attr_init() Allocate Thread Creation Attribute Object
pthread_attr_setdetachstate() Set Detached State Attribute
pthread_attr_setstackaddr() Set Stack Address Attribute
pthread_attr_setstacksize() Set Stack Size Attribute
pthread_cancel() Cancel Target Thread
pthread_cleanup_pop() Pop Cleanup Routine
pthread_cleanup_push() Push Cleanup Routine
pthread_cond_broadcast() Release Threads Waiting for Condition

Variable
pthread_cond_destroy() Free Condition Variable Object
pthread_cond_init() Allocate Condition Variable Object
pthread_cond_signal() Release Thread Waiting for Condition

Variable
pthread_cond_timedwait() Wait on Condition Variable for Specified

Interval
pthread_cond_wait() Wait on Condition Variable
pthread_condattr_destroy() Free Condition Variable Attributes Object
pthread_condattr_getpshared()Get Condition Variable Process-Shared

Attribute
pthread_condattr_init() Allocate Condition Variable Attributes

Object
pthread_condattr_setpshared() Set Condition Variable Process-Shared

Attribute
pthread_create() Create New Thread

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 45

Further descriptions of functionality and usage are available:

• Pthreads Programming; Bradford Nichols, Dick Buttlar & Jaqueline
Proulx Farrell; O'Reilly & Associates, Inc; ISBN: 1-56592-115-1

• POSIX.4; Bill O. Gallmeister; O'Reilly & Associates, Inc; ISBN:
1-56592-074-0

pthread_detach() Orphan Target Thread
pthread_equal() Compare Thread Identifiers
pthread_exit() Terminate Thread
pthread_getspecific() Get Thread-Specific Data Pointer
pthread_join() Wait for Target Thread to Terminate
pthread_key_create() Create Thread-Specific Data Key
pthread_key_delete() Delete Thread-Specific Data Key
pthread_kill() Send Signal to Target Thread
pthread_mutex_destroy() Free Mutex Object
pthread_mutex_getprioceiling(
)

Get Mutex Priority Ceiling

pthread_mutex_init() Allocate Mutex Object
pthread_mutex_lock() Lock Mutex Object
pthread_mutex_setprioceiling(
)

Set Mutex Priority Ceiling

pthread_mutex_trylock() Lock Mutex Object (Non-Blocking)
pthread_mutex_unlock() Unlock Mutex Object
pthread_mutexattr_destroy() Free Mutex Attributes Object
pthread_mutexattr_getprioceil
ing()

Get Priority Ceiling Attribute

pthread_mutexattr_getprotocol
()

Get Protocol Attribute

pthread_mutexattr_getpshared(
)

Get Mutex Process-Shared Attribute

pthread_mutexattr_init() Allocate Mutex Attributes Object
pthread_mutexattr_setprioceil
ing()

Set Priority Ceiling Attribute

pthread_mutexattr_setprotocol
()

Set Protocol Attribute

pthread_mutexattr_setpshared(
)

Set Mutex Process-Shared Attribute

pthread_once() Execute Routine Once per Process
pthread_self() Get Thread Identifier
pthread_setcancelstate() Set Cancel State
pthread_setcanceltype() Set Cancel Type
pthread_setspecific() Set Thread-Specific Data Pointer
pthread_testcancel() Test for Pending Cancel

Table 3-1. POSIX Library Functions (Continued)

Function Name Function Description

Chapter 3: OS-9 Threads Programming Reference

46 Using OS-9 Threads

• Threadtime; Scott J. Norton & Mark D. Dipasquale; Prentice Hall;
ISBN: 0-13-190067-6

The above list is not a RadiSys endorsement. The texts listed are
suggested readings only.

POSIX Pthreads Library Definitions
The functions and definitions in this section are unique to OS-9 and are
not part of the POSIX standard, or compatible with any other operating
system’s libraries. They provide extra functionality not required in the
POSIX specification.

Table 3-2 lists the POSIX definitions in alphabetical order. These
definitions are supported in the header file pthread.h. The
descriptions are intended as a reference to show which sub-set of the
POSIX standard is supported in this product. If a definition listed in the
POSIX standard is not described in this document, then it is not
currently supported.

The full POSIX standard is ISO/IEC 9945-1 (POSIX 1003.1c). Please
refer to this standard for clarification of capabilities and function usage.

Table 3-2. POSIX Library Definitions

Definition Definition Description
_POSIX_THREAD_ATTR_STACKADDR Stackaddr Implementation

Macro
_POSIX_THREAD_ATTR_STACKSIZE Stacksize Implementation

Macro
_POSIX_THREAD_PRIO_INHERIT Priority Inheritance

Implementation Macro
_POSIX_THREAD_PRIO_PROTECT Priority Ceiling Implementation

Macro
_POSIX_THREAD_SAFE_FUNCTIONS Thread-safe Function

Implementation Macro
_POSIX_THREADS Posix Threads Implementation

Macro
PTHREAD_CANCEL_ASYNCHRONOUS Asynchronous Cancel Type
PTHREAD_CANCEL_DEFERRED Deferred Cancel Type
PTHREAD_CANCEL_DISABLE Disabled Cancel State
PTHREAD_CANCEL_ENABLE Enabled Cancel State
PTHREAD_CANCELED Cancelled Thread Exit Status

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 47

Pthreads Library Extension Functions
The definitions in this section support the Pthreads library extensions.

Table 3-3 lists the OS-9 extensions to the POSIX Pthread library. These
functions provide extra functionality not available under POSIX or other
operating systems.

PTHREAD_COND_INITIALIZER Condition Variable Initializer
PTHREAD_CREATE_DETACHED Detached Thread Attribute
PTHREAD_CREATE_JOINABLE Joinable Thread Attribute
PTHREAD_DESTRUCTOR_ITERATIONS Number of Destruction

Attempts
PTHREAD_KEYS_MAX Maximum Number of Data

Keys
PTHREAD_MUTEX_INITIALIZER Mutex Initializer
PTHREAD_ONCE_INIT Once Control Initializer
PTHREAD_PROCESS_PRIVATE Process Private Attribute
PTHREAD_PROCESS_SHARED Process Shared Attribute
PTHREAD_STACK_MIN Minimum Thread Stack Size
PTHREAD_THREADS_MAX Maximum Number of Threads

per Process

Table 3-2. POSIX Library Definitions (Continued)

Definition Definition Description

Table 3-3. OS-9 Specific Threads Functions

Function Name Function Description
_pthread_attr_getinitfunction(
)

Get Initialization Function Attribute

_pthread_attr_getpriority() Get Priority Attribute
_pthread_attr_setinitfunction(
)

Set Initialization Function Attribute

_pthread_attr_setpriority() Set Priority Attribute
_pthread_getstatus() Get Thread Status Information
_pthread_interrupt() Interrupt Target Thread
_pthread_interrupt_clear() Clear Interrupt Request for Target

Thread
_pthread_resume() Decrement Suspension Counter
_pthread_setpr() Set Priority for Target Thread
_pthread_setsignalrange() Set Range of Signal Values
_pthread_setsuspendable() Decrement Suspendability Counter

Chapter 3: OS-9 Threads Programming Reference

48 Using OS-9 Threads

_pthread_setunsuspendable() Increment Suspendability Counter
_pthread_suspend() Increment Suspension Counter

Table 3-3. OS-9 Specific Threads Functions (Continued)

Function Name Function Description

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 49

Pthreads Library Extension Definitions
The definitions in this section support the POSIX library functions.

Table 3-4 lists the definitions for the OS-9 extensions to the POSIX
Pthread library. These definitions provide extra functionality not
available under POSIX or other operating systems. The definitions are
supported in the header file pthread.h.

Function Descriptions
This section lists all the functions and descriptions in alphabetical order
(without regard for numbers and underscores).

Table 3-5 lists all the functions and descriptions, in alphabetical order.
These functions are supported in the library mt_clib.l.

Table 3-4. OS-9 Specific Threads Definitions

Definition Definition Description
_PT_BOOSTED Priority Boosted Status Flag

_PT_CPENDING Cancel Pending Status Flag

_PT_CSTATE Cancel State Status Flag

_PT_CTYPE Cancel Type Status Flag

_PT_DETACHED Detached Thread Status Flag

_PT_EXIT Terminated Thread Status Flag

_PT_IPENDING Interruption Pending Status Flag

_PT_SFLAG Suspended Status Flag

_PT_SPENDING Suspension Pending Status Flag

_PT_SSTATE Suspension State Status Flag

Table 3-5. Complete List of Functions and Descriptions

Function Name Function Description
pthread_attr_destroy() pthread_attr_destroy()
pthread_attr_getdetachstate(
)

Get Detach State Attribute

_pthread_attr_getinitfunctio
n()

Get Initialization Function Attribute

_pthread_attr_getpriority() Get Priority Attribute
pthread_attr_getstackaddr() Get Stack Address Attribute
pthread_attr_getstacksize() Get Stack Size Attribute
pthread_attr_init() Allocate Thread Creation Attribute Object
pthread_attr_setdetachstate(
)

Set Detached State Attribute

Chapter 3: OS-9 Threads Programming Reference

50 Using OS-9 Threads

_pthread_attr_setinitfunctio
n()

Set Initialization Function Attribute

_pthread_attr_setpriority() Set Priority Attribute
pthread_attr_setstackaddr() Set Stack Address Attribute
pthread_attr_setstacksize() Set Stack Size Attribute
pthread_cancel() Cancel Target Thread
pthread_cleanup_pop() Pop Cleanup Routine
pthread_cleanup_push() Push Cleanup Routine
pthread_cond_broadcast() Release Threads Waiting for Condition

Variable
pthread_cond_destroy() Free Condition Variable Object
pthread_cond_init() Allocate Condition Variable Object
pthread_cond_signal() Release Thread Waiting for Condition

Variable
pthread_cond_timedwait() Wait on Condition Variable for Specified

Interval
pthread_cond_wait() Wait on Condition Variable
pthread_condattr_destroy() Free Condition Variable Attributes Object
pthread_condattr_getpshared(
)

Get Condition Variable Process-Shared
Attribute

pthread_condattr_init() Allocate Condition Variable Attributes
Object

pthread_condattr_setpshared(
)

Set Condition Variable Process-Shared
Attribute

pthread_create() Create New Thread
pthread_detach() Orphan Target Thread
pthread_equal() Compare Thread Identifiers
pthread_exit() Terminate Thread
pthread_getspecific() Get Thread-Specific Data Pointer
_pthread_getstatus() Get Thread Status Information
_pthread_interrupt() Interrupt Target Thread
_pthread_interrupt_clear() Clear Interrupt Request for Target Thread
pthread_join() Wait for Target Thread to Terminate
pthread_key_create() Create Thread-Specific Data Key
pthread_key_delete() Delete Thread-Specific Data Key
pthread_kill() Send Signal to Target Thread
pthread_mutex_destroy() Free Mutex Object
pthread_mutex_getprioceiling
()

Get Mutex Priority Ceiling

pthread_mutex_init() Allocate Mutex Object
pthread_mutex_lock() Lock Mutex Object
pthread_mutex_setprioceiling
()

Set Mutex Priority Ceiling

pthread_mutex_trylock() Lock Mutex Object (Non-Blocking)
pthread_mutex_unlock() Unlock Mutex Object

Table 3-5. Complete List of Functions and Descriptions (Continued)

Function Name Function Description

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 51

pthread_mutexattr_destroy() Free Mutex Attributes Object
pthread_mutexattr_getpriocei
ling()

Get Priority Ceiling Attribute

pthread_mutexattr_getprotoco
l()

Get Protocol Attribute

pthread_mutexattr_getpshared
()

Get Mutex Process-Shared Attribute

pthread_mutexattr_init() Allocate Mutex Attributes Object
pthread_mutexattr_setpriocei
ling()

Set Priority Ceiling Attribute

pthread_mutexattr_setprotoco
l()

Set Protocol Attribute

pthread_mutexattr_setpshared
()

Set Mutex Process-Shared Attribute

pthread_once() Execute Routine Once per Process
_pthread_resume() Decrement Suspension Counter
pthread_self() Get Thread Identifier
pthread_setcancelstate() Set Cancel State
pthread_setcanceltype() Set Cancel Type
_pthread_setpr() Set Priority for Target Thread
_pthread_setsignalrange() Set Range of Signal Values
pthread_setspecific() Set Thread-Specific Data Pointer
_pthread_setsuspendable() Decrement Suspendability Counter
_pthread_setunsuspendable() Increment Suspendability Counter
_pthread_suspend() Increment Suspension Counter
pthread_testcancel() Test for Pending Cancel

Table 3-5. Complete List of Functions and Descriptions (Continued)

Function Name Function Description

Chapter 3: OS-9 Threads Programming Reference

52 Using OS-9 Threads

pthread_attr_destroy()
Free Thread Attribute Object

Syntax
#include <pthread.h>
int pthread_attr_destroy(pthread_attr_t *attr);

Description
pthread_attr_destroy()tells the library that a pthread attribute
object will no longer be used. The attribute, in effect, becomes
uninitialized.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL an invalid pthread_attr_t pointer was

passed

See Also
pthread_attr_init()
pthread_create()

Example
err = pthread_attr_destroy(&attr);
if (err != 0)

fprintf(stderr, “error destroying attribute - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 53

pthread_attr_getdetachstate()
Get Detach State Attribute

Syntax
#include <pthread.h>
int pthread_attr_getdetachstate(
 const pthread_attr_t *attr,
 int *detachstate);

Description
pthread_attr_getdetachstate() gets the detach state attribute in
the attribute object. The integer pointed to by detachstate will be
written with PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL attr or detachstate is invalid or the object

pointed to by attr is not properly initialized.

See Also
pthread_attr_init()
pthread_attr_setdetachstate()
pthread_create()
pthread_detach()
pthread_join()

Chapter 3: OS-9 Threads Programming Reference

54 Using OS-9 Threads

Example
err = pthread_attr_getdetachstate(&attr, &state);
if (err != 0)

fprintf(stderr, “error getting detach state - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 55

_pthread_attr_getinitfunction()
Get Initialization Function Attribute

Syntax
#include <pthread.h>
int _pthread_attr_getinitfunction(
 const pthread_attr_t *attr,
 int (**initfunc)(void *),
 void **initfunc_arg,
 void **initfunc_gp,
 void **initfunc_cp);

Description
_pthread_attr_getinitfunction() returns the initialization
function pointer and initialization function argument fields from an
attribute objects. attr is a pointer to an initialized pthread attribute
object. initfunc points to a place to store the initialization function
pointer. initfunc_arg points to a place to store the initialization
function argument. initfunc_gp points to a place to store the
initialization function global pointer. initfunc_cp points to a place to
store the initialization function constant pointer.

Attributes
Operating System: OS-9

State: User

Library
mt_clib.l

Possible Errors
EINVAL attr does not refer to an initialized attributes

object. initfunc or initfunc_arg is
invalid.

Refer to _pthread_attr_setinitfunction() for more
information about these fields.

Chapter 3: OS-9 Threads Programming Reference

56 Using OS-9 Threads

See Also
pthread_attr_init()
_pthread_attr_setinitfunction()
pthread_create()

Example
err = _pthread_attr_getinitfunction(&attr, &initfunc,
&initfunc_arg, &gp, &cp);
if (err != 0)
 fprintf(stderr, "error getting initialization
function - %s\n",
 strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 57

_pthread_attr_getpriority()
Get Priority Attribute

Syntax
#include <pthread.h>
int _pthread_attr_getpriority(
 const pthread_attr_t *attr,
 u_int32 *priority);

Description
_pthread_attr_getpriority() sets the u_int32 pointed to by
priority with the current priority setting from the specified pthread
attribute object pointed to by attr. A value of 0 indicates that threads
created with the specified attribute object will adopt the priority of the
creating thread. A non-zero value indicates the desired priority for the
created thread.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Library
mt_clib.l

Possible Errors
EINVAL attr or priority is invalid or the object

pointed to by attr is not properly initialized.

See Also
pthread_attr_init()
_pthread_attr_setpriority()
pthread_create()

Chapter 3: OS-9 Threads Programming Reference

58 Using OS-9 Threads

Example
err = _pthread_attr_getpriority(&attr, &pr);
if (err != 0)

fprintf(stderr, "error getting priority - %s\n",
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 59

pthread_attr_getstackaddr()
Get Stack Address Attribute

Syntax
#include <pthread.h>
int pthread_attr_getstackaddr(
 const pthread_attr_t *attr,
 void **stackaddr);

Description
pthread_attr_getstackaddr() gets the thread stack address
attribute in the attribute object.

pthread_attr_getstackaddr() stores the thread stack address
attribute value in stackaddr if successful.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL attr or stackaddr is invalid or the object

pointed to by attr is not properly initialized.

See Also
pthread_attr_init()
pthread_attr_setstackaddr()
pthread_create()

Chapter 3: OS-9 Threads Programming Reference

60 Using OS-9 Threads

Example
err = pthread_attr_getstackaddr(&attr, &stack);
if (err != 0)

fprintf(stderr, “error getting stack address - %s\n”,
strerror(err));
printf(“Highest stack address is 0x%x\n”, stack);

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 61

pthread_attr_getstacksize()
Get Stack Size Attribute

Syntax
#include <pthread.h>
int pthread_attr_getstacksize(
 const pthread_attr_t *attr,
 size_t *stacksize);

Description
pthread_attr_getstacksize() gets the thread stack size attribute
in the attribute object.

pthread_attr_getstacksize() stores the thread stack size attribute
value in stacksize if successful.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL attr or stacksize is invalid or the object

pointed to by attr is not properly initialized.

See Also
pthread_attr_init()
pthread_attr_setstacksize()
pthread_create()

Chapter 3: OS-9 Threads Programming Reference

62 Using OS-9 Threads

Example
err = pthread_attr_getstacksize(&attr, &size);
if (err != 0)

fprintf(stderr, “error getting stack size - %s\n”,
strerror(err));
printf(“Stack size will be %u\n”, size);

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 63

pthread_attr_init()
Allocate Thread Creation Attribute Object

Syntax
#include <pthread.h>
int pthread_attr_init(pthread_attr_t *attr);

Description
pthread_attr_init() sets default values into the pthread creation
attribute object. The default values for a thread creation attribute object
are shown in Table 3-6:

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
ENOMEM Insufficient memory exists to initialize the

attribute.

EINVAL attr is invalid.

Table 3-6. Default values for thread creation attribute

Attribute Default Value
Stack Size PTHREAD_STACK_MIN

Stack Address NULL (system allocated stack)

Detach State PTHREAD_CREATE_JOINABLE

Priority 0 (priority of creator)

Initialization Function NULL (none)

Chapter 3: OS-9 Threads Programming Reference

64 Using OS-9 Threads

See Also
pthread_create()

Example
err = pthread_attr_init(&attr);
if (err != 0)

fprintf(stderr, “error initializing attribute -
%s\n”, strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 65

pthread_attr_setdetachstate()
Set Detached State Attribute

Syntax
#include <pthread.h>
int pthread_attr_setdetachstate(
 pthread_attr_t *attr,
 int detachstate);

Description
pthread_attr_setdetachstate() sets the detach state attribute of
the specified attribute object. Valid values for detachstate are
PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

Threads created as joinable retain information upon exit so that status
can be returned when pthread_join() is used, unless
pthread_detach() is used to detach the thread.

Threads created as detached automatically free all resources upon exit
and cannot be used with pthread_join(). These type of threads are
forked as “orphan” OS-9 threads.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL attr or detachstate is not valid or attr is

not properly initialized.

Chapter 3: OS-9 Threads Programming Reference

66 Using OS-9 Threads

See Also
pthread_attr_init()
pthread_attr_getdetachstate()
pthread_create()
pthread_detach()
pthread_join()

Example
err = pthread_attr_setdetachstate(&attr,
PTHREAD_CREATE_DETACHED);
if (err != 0)

fprintf(stderr, “error setting to detached state -
%s\n”, strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 67

_pthread_attr_setinitfunction()
Set Initialization Function Attribute

Syntax
#include <pthread.h>
int _pthread_attr_setinitfunction(
 const pthread_attr_t *attr,
 int (*initfunc)(void *),
 void *initfunc_arg,
 void *gp,
 void *cp);

Description
_pthread_attr_setinitfunction() sets the initialization function
address, argument, global data and constant pointer fields of an
attribute object. attr is a pointer to an initialized pthread attribute
object. initfunc points to the initialization function. initfunc_arg is
the argument to pass as the initialization functions sole argument. gp
specifies the global data pointer that should be in place when calling
initfunc. cp specifies the constant pointer that should be in place
when calling inifunc.

If a constant pointer is not applicable for a particular processor or the
code is compiled in such a way that a constant pointer is not needed,
the value of cp may be NULL. Passing NULL as the initfunc
parameter disables the calling of an initialization function. Passing
NULL as the initfunc_arg parameter simply specifies that the value
of the initialization function parameter should be NULL.

The initialization function has the following prototype:

int initfunc(void *initfunc_arg);

The value of the argument is the value of the initfunc_arg
parameter in the thread's creation attributes object. If the initialization
function returns a non-zero value, that value is converted to a pointer to
void and passed to pthread_exit(), thus terminating the created
thread without ever calling the intended start function.

Chapter 3: OS-9 Threads Programming Reference

68 Using OS-9 Threads

The initialization function is called in the context of the created thread
before the call to pthread_create() returns to its caller. The function
may perform application specific thread initialization as necessary. The
function could be useful in eliminating any race conditions that may
exist between the creating thread and created thread since it is known
that the initialization code will run in the created thread prior to the
return from pthread_create().

Although pthread_self() will function correctly, the value it returns
should not be communicated to any other threads. The created thread
has, technically, not finished its initialization, thus it is not ready to
handle all thread operations. The initialization function should not
interact with any other threads.

The initialization function runs at the priority of the creating thread,
instead of the priority specified for the created thread. That is, if a high
priority thread is creating a low priority thread with an initialization
function, the initialization function will execute at high priority in the
context of the low priority thread.

Attributes
Operating System: OS-9

State: User

Library
mt_clib.l

Possible Errors
EINVAL attr does not refer to an initialized attributes

object.

See Also
pthread_attr_init()
_pthread_attr_getinitfunction()
pthread_create()
pthread_exit()
get_static()
get_const()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 69

Example
err = _pthread_attr_setinitfunction(&attr,
thread_startup, &sema);
if (err != 0)
 fprintf(stderr, "error setting initialization
function - %s\n",
 strerror(err));

Chapter 3: OS-9 Threads Programming Reference

70 Using OS-9 Threads

_pthread_attr_setpriority()
Set Priority Attribute

Syntax
#include <pthread.h>
int _pthread_attr_setpriority(
 pthread_attr_t *attr,
 u_int32 priority);

Description
_pthread_attr_setpriority() sets the priority attribute of the
pthread attribute object pointed to by attr to priority. A priority of 0
indicates that created threads should adopt the priority of the creating
thread. A non-zero value specifies the desired priority for the created
thread.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Library
mt_clib.l

Possible Errors
EINVAL If attr is invalid or the object pointed to by

attr is not properly initialized or the value of
priority is out of range for a thread priority (0
to 65535).

See Also
pthread_attr_init()
_pthread_attr_getpriority()
pthread_create()
_pthread_setpr()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 71

Example
err = _pthread_attr_setpriority(&attr, 255);
if (err != 0)

fprintf(stderr, "error setting priority - %s\n",
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

72 Using OS-9 Threads

pthread_attr_setstackaddr()
Set Stack Address Attribute

Syntax
#include <pthread.h>
int pthread_attr_setstackaddr(
 pthread_attr_t *attr,
 void *stackaddr);

Description
pthread_attr_setstackaddr() allows a thread to specify a
particular pre-allocated thread stack. The address specified is the
desired stack pointer for the created thread. The specified stack must
be at least PTHREAD_STACK_MIN in size.

There is a matrix of possibilities for the two functions
pthread_attr_setstacksize() and
pthread_attr_setstackaddr(). Either one can be called
independent of the other one being called. The behavior depends upon
the following matrix, shown in Table 3-7.

The stackaddr parameter is rounded down to an eight-byte
boundary. To get the actual stack address used for created
threads with a given attribute object. Use
pthread_attr_getstackaddr() to get the actual address
passed to the next created thread.

Table 3-7. Function Behavior

Setstackaddr() Setstacksize() Resultant behavior
Not called Not called A system-allocated stack, of size

PTHREAD_STACK_MIN, will be
given to created threads.

Called Not called The specified stack address will be
passed to created threads. The size
will be assumed to be
PTHREAD_STACK_MIN.

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 73

Be aware of the following requirements when setting the stack address
explicitly:

• The address passed to this function will be passed directly to threads
created with this attribute object. Make sure that the top of the stack
is passed (the highest RAM address of the stack).

• Do not create more than one thread with a given stack address.
• The stack should be "pre-loaded" with a NULL link pointer to ensure

proper stack back-tracing.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL attr is invalid or attr is not properly

initialized.

See Also
pthread_attr_init()
pthread_attr_getstackaddr()
pthread_create()

Not called Called A system-allocated stack of the size
specified will be passed to created
threads.

Called Called The specified stack address will be
passed to created threads. The size
will be assumed to be the size set by
pthread_attr_setstacksize().

Table 3-7. Function Behavior (Continued)

Setstackaddr() Setstacksize() Resultant behavior

Chapter 3: OS-9 Threads Programming Reference

74 Using OS-9 Threads

Example
stack = malloc(PTHREAD_STACK_MIN);
if (stack == NULL)

fprintf(stderr, “error allocating stack - %s\n”,
strerror(errno));
memset(stack, 0, PTHREAD_STACK_MIN);
err = pthread_attr_setstackaddr(&attr, stack +
stacksize);
if (err != 0)

fprintf(stderr, “error setting stack address - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 75

pthread_attr_setstacksize()
Set Stack Size Attribute

Syntax
#include <pthread.h>
int pthread_attr_setstacksize(
 pthread_attr_t *attr,
 size_t stacksize);

Description
pthread_attr_setstacksize() sets the stack size that will be
allocated for threads that are created with the specified attribute object.

There is a matrix of possibilities for the two functions
pthread_attr_setstacksize() and
pthread_attr_setstackaddr(). Either one can be called
independent of the other one being called. The behavior depends upon
the following matrix, shown in Table 3-8.

The stacksize parameter is rounded down to an eight-byte
boundary. To get the actual stack size used for created threads
with a given attribute object. Use
pthread_attr_getstacksize() to get the actual stack size
attribute used to create threads.

Table 3-8. Function Behavior

Setstackaddr() Setstacksize() Resultant behavior
Not called Not called A system-allocated stack, of size

PTHREAD_STACK_MIN, will be
given to created threads.

Called Not called The specified stack address will be
passed to created threads. The size
will be assumed to be
PTHREAD_STACK_MIN.

Chapter 3: OS-9 Threads Programming Reference

76 Using OS-9 Threads

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL attr is invalid, attr is not properly initialized

or stacksize is less than
PTHREAD_STACK_MIN.

See Also
pthread_attr_init()
pthread_attr_getstacksize()
pthread_create()
PTHREAD_STACK_MIN

Example
err = pthread_attr_setstacksize(&attr, 4096);
if (err != 0)

fprintf(stderr, “error setting stack size - %s\n”,
strerror(err));

Not called Called A system-allocated stack of the size
specified will be passed to created
threads.

Called Called The specified stack address will be
passed to created threads. The size
will be assumed to be the size set by
pthread_attr_setstacksize().

Table 3-8. Function Behavior (Continued)

Setstackaddr() Setstacksize() Resultant behavior

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 77

pthread_cancel()
Cancel Target Thread

Syntax
#include <pthread.h>
int pthread_cancel(pthread_t thread);

Description
pthread_cancel() cancels the target thread unless it is not currently
cancelable. If the thread is not cancelable, the request is held pending
until it reaches a cancellation point. The call to pthread_cancel()
returns immediately regardless of the cancelability of the target thread.

If the specified thread has asynchronous cancels enabled it will
terminate immediately without doing any sort of cleanup.

When a thread processes a deferred cancel the cleanup routines are
called, thread specific data destructors are called, and the thread is
terminated with the exit status PTHREAD_CANCELED.

Cancelling an asynchronous cancel type thread is guaranteed to cause
a loss of resources. For example, the memory allocated to implement
thread safety for C library functions will be lost. Use deferred
cancellation whenever possible.
In addition, cancelling an asynchronous cancel type thread that is in a
queue waiting for a resource will most likely cause the process to exit
with an exception.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Chapter 3: OS-9 Threads Programming Reference

78 Using OS-9 Threads

Possible Errors
ESRCH No thread could be found corresponding to

that specified by the given thread ID.

See Also
pthread_cond_timedwait()
pthread_cond_wait()
pthread_exit()
pthread_join()
pthread_setcancelstate()
pthread_setcanceltype()

Example
err = pthread_cancel(worker);
if (err != 0)

fprintf(stderr, “error cancelling worker - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 79

pthread_cleanup_pop()
Pop Cleanup Routine

Syntax
#include <pthread.h>
void pthread_cleanup_pop(int execute);

Description
pthread_cleanup_pop() removes the routine at the top of the
cancellation cleanup stack of the calling thread and invokes the popped
thread if execute is nonzero.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
None

See Also
pthread_cancel()
pthread_cleanup_push()
pthread_setcancelstate()
pthread_setcanceltype()

pthread_cleanup_pop() and pthread_cleanup_push()
have to be in the same lexical scope.

Chapter 3: OS-9 Threads Programming Reference

80 Using OS-9 Threads

Example
pthread_cleanup_pop(1); /* pop and call top cleanup
function */

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 81

pthread_cleanup_push()
Push Cleanup Routine

Syntax
#include <pthread.h>
void pthread_cleanup_push(
 void (*routine)(void *),
 void *arg);

Description
pthread_cleanup_push() is similar to the ANSI atexit() function.
It allows a thread to push a series of routines that should be called if the
thread is terminated by pthread_testcancel() or
pthread_exit(). The routines are called in the reverse order that they
were pushed onto the cleanup stack. That is, the most recently pushed
routine is called first, followed by the next most recent, and so on.

Each pthread_cleanup_push() invocation must have an associated
pthread_cleanup_pop() invocation in the same lexical scope. This is
strictly enforced by having the pthread_cleanup_push() macro
begin with an open brace ({) and the pthread_cleanup_pop()
macro end with a close brace (}).

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
None

Chapter 3: OS-9 Threads Programming Reference

82 Using OS-9 Threads

See Also
pthread_cancel()
pthread_cleanup_pop()
pthread_setcancelstate()
pthread_setcanceltype()

Example
err = pthread_mutex_lock(mutx);
if (err != 0)

fprintf(stderr, “error locking mutex - %s\n”,
strerror(err));
pthread_cleanup_push(pthread_mutex_unlock, mutx);
err = pthread_cond_wait(condvar, mutx); /*
cancellation point */
if (err != 0)

fprintf(stderr, “error during cond_wait - %s\n”,
strerror(err));
pthread_cleanup_pop(1); /* unlock mutx */

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 83

pthread_cond_broadcast()
Release Threads Waiting for Condition Variable

Syntax
#include <pthread.h>
int pthread_cond_broadcast(pthread_cond_t *cond);

Description
pthread_cond_broadcast() releases every thread waiting on the
specified condition variable.

If more than one thread is blocked on a condition variable, the OS-9
scheduler determines the order in which threads are activated. When
each thread is unblocked it returns from its call to
pthread_cond_wait() or pthread_cond_timedwait(). The thread
owns the mutex with which it called pthread_cond_wait() or
pthread_cond_timedwait(). The thread(s) that are unblocked
contend for the mutex in the normal fashion, as if each had called
pthread_mutex_lock().

pthread_cond_broadcast() may be called by a thread whether or
not that thread currently owns the mutex that threads calling
pthread_cond_wait() or pthread_cond_timedwait() have
associated with the condition variable during their waits. However, if
predictable scheduling behavior is required, then that mutex should be
locked by the thread calling pthread_cond_broadcast().

pthread_cond_broadcast() has no effect if there are no threads
currently blocked on cond.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Chapter 3: OS-9 Threads Programming Reference

84 Using OS-9 Threads

Library
mt_clib.l

Possible Errors
EINVAL The value cond does not refer to an initialized

condition variable.

See Also
pthread_cond_init()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_cond_signal()

Example
err = pthread_cond_broadcast(cond);
if (err != 0)

fprintf(stderr, “failed to signal readers - %s\n”,
strerror(err));
err = pthread_mutex_unlock(data_lock);
if (err != 0)

fprintf(stderr, “failed to unlock data lock - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 85

pthread_cond_destroy()
Free Condition Variable Object

Syntax
#include <pthread.h>
int pthread_cond_destroy(pthread_cond_t *cond);

Description
The function pthread_cond_destroy() destroys the given condition
variable specified by cond; the object becomes, in effect, uninitialized.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EBUSY An attempt to destroy the object referenced by

cond while it is in use by another thread. For
example, while being used in a
pthread_cond_wait() or a
pthread_cond_timedwait().

EINVAL The value specified by cond is invalid.

See Also
pthread_cond_broadcast()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()

Chapter 3: OS-9 Threads Programming Reference

86 Using OS-9 Threads

Example
err = pthread_cond_destroy(&cond);
if (err != 0)

fprintf(stderr, “failed to destroy condvar - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 87

pthread_cond_init()
Allocate Condition Variable Object

Syntax
#include <pthread.h>
int pthread_cond_init(
 pthread_cond_t *cond,
 const pthread_condattr_t *attr);

Description
The function pthread_cond_init() initializes the condition variable
referenced by cond with attributes referenced by attr. If attr is NULL,
the default condition variable attributes are used; the effect is the same
as passing the address of a default condition variable attributes object.
Upon successful initialization, the state of the condition variable
becomes initialized.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Chapter 3: OS-9 Threads Programming Reference

88 Using OS-9 Threads

Possible Errors
EAGAIN The system lacked the necessary resources

(other than memory) to initialize another
condition variable.

ENOMEM Insufficient memory exists to initialize the
condition variable.

EBUSY An attempt to reinitialize the object referenced
by cond (a previously initialized, but not yet
destroyed, condition variable) has been
detected.

EINVAL The value specified by cond or attr is invalid.

See Also
pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_condattr_init()
PTHREAD_COND_INITIALIZER

Example
err = pthread_cond_init(&cond, NULL);
if (err != 0)

fprintf(stderr, “failed to initialize condvar -
%s\n”, strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 89

pthread_cond_signal()
Release Thread Waiting for Condition Variable

Syntax
#include <pthread.h>
int pthread_cond_signal(pthread_cond_t *cond);

Description
pthread_cond_signal() releases one thread waiting on the
specified condition variable.

When the thread is unblocked it returns from its call to
pthread_cond_wait() or pthread_cond_timedwait(). The thread
owns the mutex with which it called pthread_cond_wait() or
pthread_cond_timedwait(). The thread that is unblocked contends
for the mutex in the normal fashion, as if it had called
pthread_mutex_lock().

pthread_cond_signal() may be called by a thread whether or not
that thread currently owns the mutex that threads calling
pthread_cond_wait() or pthread_cond_timedwait() have
associated with the condition variable during their waits. However, if
predictable scheduling behavior is required, then that mutex should be
locked by the thread calling pthread_cond_signal().

pthread_cond_signal() has no effect if there are no threads
currently blocked on cond.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Chapter 3: OS-9 Threads Programming Reference

90 Using OS-9 Threads

Possible Errors
EINVAL The value cond does not refer to an initialized

condition variable.

See Also
pthread_cond_init()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_cond_broadcast()

Example
err = pthread_cond_signal(cond);
if (err != 0)

fprintf(stderr, “failed to signal worker - %s\n”,
strerror(err));
err = pthread_mutex_unlock(work_que_lock);
if (err != 0)

fprintf(stderr, “failed to unlock work queue - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 91

pthread_cond_timedwait()
Wait on Condition Variable for Specified Interval

Syntax
#include <pthread.h>
int pthread_cond_timedwait(
 pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

Description
pthread_cond_timedwait() is used to block on a condition variable
until an absolute time is reached. It must be called with mutex locked
by the calling thread or EINVAL will be returned.

This function releases the mutex and causes the calling thread to block
on the condition variable cond. If another thread is able to acquire the
mutex after the about-to-block thread has released it, then a
subsequent call to pthread_cond_signal() or
pthread_cond_broadcast() in that thread behaves as if it were
issued after the about-to-block thread has blocked.

Upon return, the mutex is locked and is owned by the calling thread.
When using condition variables, there is always a boolean predicate
involving shared variables associated with each condition wait that is
true if the thread should proceed. Spurious wakeups from the
pthread_cond_timedwait() may occur. Since the return from
pthread_cond_timedwait() does not imply anything about the
value of this predicate, the predicate should be re-evaluated upon each
return.

The effect of using more than one mutex for concurrent
pthread_cond_wait() or pthread_cond_timedwait() operations
on the same condition variable will result in EINVAL errors being
returned. That is, a condition variable becomes bound to a unique
mutex when a thread waits on the condition variable, and this dynamic
binding ends when the last concurrent wait returns.

Chapter 3: OS-9 Threads Programming Reference

92 Using OS-9 Threads

A condition wait is a cancellation point. When the cancelability enable
state of a thread is set to PTHREAD_CANCEL_DEFERRED, a side effect of
acting upon a cancellation request while in a condition wait is that the
mutex is re-acquired before calling the first cancellation cleanup
handler. The effect is as if the thread were unblocked, allowed to
execute up to the point of returning from the call to
pthread_cond_timedwait(), but at that point notices the
cancellation request and instead of returning to the caller of
pthread_cond_timedwait(), starts the thread cancellation activities,
which includes calling cancellation cleanup handlers.

A thread that has been unblocked because it has been canceled while
blocked in a call to pthread_cond_timedwait() does not consume
any condition signal that may be directed concurrently at the condition
variable if there are other threads blocked on the condition variable.

The timespec pointed to by abstime specifies an absolute time in
GMT that the call should return if the thread is not awakened by a
pthread_cond_signal() or pthread_cond_broadcast().

The Microware Pthread implementation supports the concept of
interruption as it relates to condition variable waits. If a thread has a
pending interruption or is interrupted while blocked,
pthread_cond_timedwait() will return EINTR. The mutex will be re-
acquired prior to return.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
ETIMEDOUT The time specified by abstime to

This function contains a cancel point.

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 93

pthread_cond_timedwait() has passed.

EINVAL The value specified by cond, mutex, or
abstime is invalid. Different mutexes are
supplied for concurrent
pthread_cond_wait() or
pthread_cond_timedwait() operations on
the same condition variable. The mutex is not
owned by the current thread at the time of the
call.

Additional Error
EINTR _pthread_interrupt() was called with this

thread as the target prior to or during this call.

See Also
pthread_cond_broadcast()
pthread_cond_signal()
pthread_cond_wait()

Example
err = _os_getime(&tspec->tv_sec, &ticks);
if (err != SUCCESS)

fprintf(stderr, “error getting GMT - %s\n”, strerror(err));
tspec->tv_sec += 5; /* give up after 5 seconds */
tspec->tv_nsec = 0;
err = pthread_cond_timedwait(cond, mutx, tspec);
switch (err) {
case EINTR:

fputs(“timed wait interrupted\n”, stderr);
break;

case ETIMEDOUT:
fputs(“timed wait timed out\n”, stderr);
break;

default:
fprintf(stderr, “error on timed wait - %s\n”, strerror(err));
break;

}

Chapter 3: OS-9 Threads Programming Reference

94 Using OS-9 Threads

pthread_cond_wait()
Wait on Condition Variable

Syntax
#include <pthread.h>
int pthread_cond_wait(
 pthread_cond_t *cond,
 pthread_mutex_t *mutex);

Description
pthread_cond_wait() is used to block on a condition variable. It
must be called with mutex locked by the calling thread or EINVAL will
be returned.

This function releases the mutex and causes the calling thread to block
on the condition variable cond. If another thread is able to acquire the
mutex after the about-to-block thread has released it, then a
subsequent call to pthread_cond_signal() or
pthread_cond_broadcast() in that thread behaves as if it were
issued after the about-to-block thread has blocked.

Upon return, the mutex is locked and is owned by the calling thread.
When using condition variables, there is always a boolean predicate
involving shared variables associated with each condition wait that is
true if the thread should proceed. Spurious wakeups from the
pthread_cond_wait() may occur. Since the return from
pthread_cond_wait() does not imply anything about the value of
this predicate, the predicate should be re-evaluated upon each return.

The effect of using more than one mutex for concurrent
pthread_cond_wait() or pthread_cond_timedwait() operations
on the same condition variable will result in EINVAL errors being
returned. That is, a condition variable becomes bound to a unique
mutex when a thread waits on the condition variable, and this dynamic
binding ends when the last concurrent wait returns.

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 95

A condition wait is a cancellation point. When the cancelability enable
state of a thread is set to PTHREAD_CANCEL_DEFERRED, a side effect of
acting upon a cancellation request while in a condition wait is that the
mutex is re-acquired before calling the first cancellation cleanup
handler. The effect is as if the thread were unblocked, allowed to
execute up to the point of returning from the call to
pthread_cond_wait(), but at that point notices the cancellation
request and instead of returning to the caller of
pthread_cond_wait(), starts the thread cancellation activities, which
includes calling cancellation cleanup handlers.

A thread that has been unblocked because it has been canceled while
blocked in a call to pthread_cond_wait() does not consume any
condition signal that may be directed concurrently at the condition
variable if there are other threads blocked on the condition variable.

The Microware Pthread implementation supports the concept of
interruption as it relates to condition variable waits. If a thread has a
pending interruption or is interrupted while blocked,
pthread_cond_wait() will return EINTR. The mutex will be re-
acquired prior to return.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

This function contains a cancel point.

Chapter 3: OS-9 Threads Programming Reference

96 Using OS-9 Threads

Possible Errors
EINVAL The value specified by cond or mutex is

invalid. Different mutexes are supplied for
concurrent pthread_cond_wait() or
pthread_cond_timedwait() operations on
the same condition variable. The mutex is not
owned by the current thread at the time of the
call.

Additional Error
EINTR _pthread_interrupt() was called with this

thread as the target prior to or during this call.

See Also
pthread_cond_broadcast()
pthread_cond_signal()
pthread_cond_timedwait()

Example
err = pthread_cond_wait(cond, mutx);
if (err != 0)

fprintf(stderr, “failed to wait on condvar\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 97

pthread_condattr_destroy()
Free Condition Variable Attributes Object

Syntax
#include <pthread.h>
int pthread_condattr_destroy(pthread_condattr_t *attr);

Description
pthread_condattr_destroy() destroys a condition variable
attributes object; the object becomes, in effect, uninitialized.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The value specified by attr is invalid.

See Also
pthread_cond_init()
pthread_condattr_init()

Example
err = pthread_condattr_destroy(attr);
if (err != 0)

fprintf(stderr, “failed to destory condattr - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

98 Using OS-9 Threads

pthread_condattr_getpshared()
Get Condition Variable Process-Shared Attribute

Syntax
#include <pthread.h>
int pthread_condattr_getpshared(
 const pthread_condattr_t *attr,
 int *pshared);

Description
pthread_condattr_getpshared() obtains the value of the process-
shared attribute from the attributes object referenced by attr.

If successful, returns 0 and stores the value of the process-shared
attribute of attr into the object referenced by the pshared parameter.
Otherwise, an error number is returned.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The value specified by attr is invalid.

See Also
pthread_condattr_init()
pthread_condattr_setpshared()

This facility is not currently supported in Microware’s Pthreads
implementation. The process-shared attribute can be changed,
but both values behave like PTHREAD_PROCESS_PRIVATE.
_POSIX_THREAD_PROCESS_SHARED is not currently defined.

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 99

Example
err = pthread_condattr_getpshared(attr, &pshare);
if (err != 0)

fprintf(stderr, “failed to get pshared attribute -
%s\n”, strerror(err));

Chapter 3: OS-9 Threads Programming Reference

100 Using OS-9 Threads

pthread_condattr_init()
Allocate Condition Variable Attributes Object

Syntax
#include <pthread.h>
int pthread_condattr_init(pthread_condattr_t *attr);

Description
pthread_condattr_init() initializes a condition variable attributes
object attr with the default value for all of the attributes. These are
shown in Table 3-9.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
ENOMEM Insufficient memory exists to initialize the

condition variable attributes object.

EINVAL attr is an invalid value.

See Also
pthread_cond_init()
pthread_condattr_destroy()

Table 3-9. Default Attribute Values

Attribute Default Value
Process-shared PTHREAD_PROCESS_PRIVATE

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 101

Example
err = pthread_condattr_init(&condattr);
if (err != 0)

fprintf(stderr, “failed to init condattr - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

102 Using OS-9 Threads

pthread_condattr_setpshared()
Set Condition Variable Process-Shared Attribute

Syntax
#include <pthread.h>
int pthread_condattr_setpshared(
 pthread_condattr_t *attr,
 int pshared);

Description
pthread_condattr_setpshared() sets the process-shared attribute
in an initialized attributes object referenced by attr. Valid values for
pshared are PTHREAD_PROCESS_SHARED or
PTHREAD_PROCESS_PRIVATE.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The value specified by attr is invalid. The

new value specified for the attribute is outside
the range of legal values for that attribute.

This facility is not currently supported in the Microware Pthreads
implementation. The process-shared attribute can be changed,
but PTHREAD_PROCESS_SHARED behaves exactly like
PTHREAD_PROCESS_PRIVATE.
_POSIX_THREAD_PROCESS_SHARED is not currently defined.

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 103

See Also
pthread_condattr_init()
pthread_condattr_getpshared()

Example
err = pthread_condattr_setpshared(&condattr,
PTHREAD_PROCESS_PRIVATE);
if (err != 0)

fprintf(stderr, “failed to set to private - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

104 Using OS-9 Threads

pthread_create()
Create New Thread

Syntax
#include <pthread.h>
int pthread_create(
 pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine) (void *),
 void *arg);

Description
pthread_create() is used to create a new thread, with attributes
specified by attr, within a process. If attr is NULL, the default
attributes are used. If the attributes specified by attr are modified
later, the attributes of the thread are not affected. Upon successful
completion, pthread_create() stores the ID of the created thread in
the location referenced by thread.

The thread starts by executing start_routine with arg as its sole
argument. If the start_routine returns, the effect is as if there was
an implicit call to pthread_exit() using the return value of
start_routine as the exit status.

The thread in which main() was originally invoked differs from this.
When this thread returns from main(), the effect is as if there was an
implicit call to exit() using the return value of main() as the exit
status.

If pthread_create() fails, no new thread is created, and the contents
of the location referenced by thread are undefined.

The pthread attr structure is used when threads are created.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 105

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EAGAIN The system lacked the necessary resources to

create another thread, or the system-imposed
limit on the total number of threads in a
process PTHREAD_THREADS_MAX would be
exceeded.

EINVAL The value specified by attr is invalid.

See Also
_os_thfork()
pthread_exit()
pthread_join()
pthread_detach()

Example
err = pthread_create(&tid, &worker_attr, worker_loop,
NULL);
if (err != 0)

fprintf(stderr, “error creating worker - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

106 Using OS-9 Threads

pthread_detach()
Orphan Target Thread

Syntax
#include <pthread.h>
int pthread_detach(pthread_t thread);

Description
pthread_detach() orphans the designated thread. Any thread within
the caller's process can be detached unless it is already in detached
state.

The pthread_detach() function is used to indicate that storage for
the thread can be reclaimed when that thread terminates. If thread has
not terminated, pthread_detach() does not cause it to terminate.
Multiple pthread_detach() calls on the same target thread result in
EINVAL being returned.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The value specified by thread does not refer

to a thread that can be joined.

ESRCH No thread could be found corresponding to
that specified by the given thread ID.

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 107

See Also
pthread_join()

Example
err = pthread_detach(io_thread);
if (err != 0)

fprintf(stderr, “error detaching I/O thread - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

108 Using OS-9 Threads

pthread_equal()
Compare Thread Identifiers

Syntax
#include <pthread.h>
int pthread_equal(pthread_t t1, pthread_t t2);

Description
pthread_equal() tests whether two thread IDs are the same.

pthread_equal() returns a nonzero value if the two thread IDs are
equal; otherwise 0 is returned.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
None

See Also
pthread_self()

Example
if (pthread_equal(worker[0], dead))

fputs(“worker #0 died”, stderr);

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 109

pthread_exit()
Terminate Thread

Syntax
#include <pthread.h>
void pthread_exit(void *value_ptr);

Description
pthread_exit() terminates the calling thread. If any thread is waiting
on a join on this thread, they are released and passed value_ptr as
the exit status.

pthread_exit() terminates the calling thread and makes the value
value_ptr available to any successful join with the terminating thread.
Any cancellation cleanup handlers that have been pushed and not yet
popped, shall be popped in the reverse order that they were pushed and
then executed. After all cancellation cleanup handlers have been
executed, if the thread has any thread-specific data, appropriate
destructor functions are called in an unspecified order. Thread
termination does not release any application visible process resources
(e.g. allocated memory, open paths, etc.). Nor does it perform any
process level cleanup actions like calling any atexit() routines that
may exist.

An implicit call to pthread_exit() is made when a thread other than
the thread in which main() was first invoked returns from the start
routine that was used to create it. The return value of the function
serves as the exit status of the thread.

pthread_exit() returns immediately without doing anything if called
from a cancellation cleanup handler or destructor function that was
invoked as a result of either an implicit or explicit call to
pthread_exit().

After a thread has terminated, the result of access to local (auto)
variables of the thread is undefined. Thus, references to local variables
of the exiting thread should not be used for the pthread_exit()
value_ptr parameter value.

Chapter 3: OS-9 Threads Programming Reference

110 Using OS-9 Threads

The process exits with an exit status of 0 after the last thread has been
terminated. The behavior is as if the implementation called exit()
with a zero argument at the time of thread termination.

Calling pthread_exit from the thread in which main was first invoked
does not necessarily cause the process to exit. The process will continue
to run until all threads have terminated or an exit call is made.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
None

See Also
exit()
pthread_create()
pthread_join()
pthread_detach()
PTHREAD_DESTRUCTOR_ITERATIONS

Example
pthread_exit((void *)SUCCESS);

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 111

pthread_getspecific()
Get Thread-Specific Data Pointer

Syntax
#include <pthread.h>
void *pthread_getspecific(pthread_key_t key);

Description
pthread_getspecific() returns the value currently bound to the
specified key on behalf of the calling thread.

pthread_getspecific() returns the thread-specific data value
associated with the given key. If no thread-specific data value is
currently associated with key, then the value NULL is returned.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
None

See Also
pthread_key_create()
pthread_setspecific()

Chapter 3: OS-9 Threads Programming Reference

112 Using OS-9 Threads

Example
thread_data = pthread_getspecific(thread_data_key);
if (thread_data == NULL) {

thread_data = malloc(sizeof(thread_data_t));
if (thread_data == NULL)

fprintf(stderr, “memory allocation error - %s\n”,
strerror(errno));

pthread_setspecific(thread_data_key, thread_data);
}

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 113

_pthread_getstatus()
Get Thread Status Information

Syntax
#include <pthread.h>
int _pthread_getstatus(
 pthread_t thread,
 _pthread_status_t *status);

Description
_pthread_getstatus() returns various pieces of information related
to the target thread in the structure pointed to by status. The
following table describes the fields of the _pthread_status_t
structure:

Table 3-10. _pthread_status_t Structure Fields

Type Name Description
u_int32 (bit masks follow) status Bits for various

boolean information:
 _PT_DETACHED
 0 = joinable thread
 1 = detached thread
 _PT_EXIT
 0 = thread has terminated
 1 = thread has not yet terminated
 _PT_CSTATE
 0 = cancels enabled
 1 = cancels disabled
 _PT_CTYPE
 0 = deferred cancels
 1 = asynchronous cancels
 _PT_CPENDING
 0 = no cancel request pending
 1 = cancel request pending
 _PT_SSTATE

Chapter 3: OS-9 Threads Programming Reference

114 Using OS-9 Threads

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

 0 = suspendable
 1 = unsuspendable

 _PT_SPENDING
 0 = no suspend request pending
 1 = suspend request pending
 _PT_SFLAG
 0 = not suspended
 1 = suspended
 _PT_BOOSTED
 0 = not priority boosted
 1 = priority boosted
 _PT_IPENDING
 0 = no interruption pending
 1 = interruption pending
thread_t tid OS-9 thread

identifier of thread
thread_t creator OS-9 thread

identifier of thread's
creator

void * stack stack base
(highest address)

size_t stack_size Stack size in bytes
u_int16 priority thread’s priority
u_int16 bpriority thread’s boosted

priority
u_int32 [2] resv reserved space for

future additional
status information

Table 3-10. _pthread_status_t Structure Fields (Continued)

Type Name Description

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 115

Library
mt_clib.l

Possible Errors
EINVAL The passed thread or status pointer is NULL.

ESRCH The specified target thread is not valid.

Example
err = _pthread_getstatus(child, &stats);
if (err != 0)

fprintf(stderr, "failed to get status for child -
%s", strerror(err));
printf("child's OS-9 thread ID is %u\n", stats.tid);

Chapter 3: OS-9 Threads Programming Reference

116 Using OS-9 Threads

_pthread_interrupt()
Interrupt Target Thread

Syntax
#include <pthread.h>
int _pthread_interrupt(pthread_t thread);

Description
_pthread_interrupt() interrupts any pthread_cond_wait() or
pthread_cond_timedwait() being done by the specified thread. If
the thread is not currently blocked in pthread_cond_wait() or
pthread_cond_timedwait(), _pthread_interrupt() makes the
interruption pending.

_pthread_interrupt() is implemented as if the target thread can
atomically check for a pending interrupt and then block in
pthread_cond_timedwait() or pthread_cond_wait() if none is
pending. That is, there is no window between when a thread checks for
a pending interrupt and when the thread actually blocks where an
interruption request could be missed.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Library
mt_clib.l

Possible Errors
EINVAL thread is invalid.

ESRCH thread is not a valid thread.

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 117

See Also
pthread_cond_timedwait()
pthread_cond_wait()
_pthread_getstatus()
_pthread_interrupt_clear()

Example
err = _pthread_interrupt(wait_thread);
if (err != 0)

fprintf(stderr, “failed to interrupt waiter - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

118 Using OS-9 Threads

_pthread_interrupt_clear()
Clear Interrupt Request for Target Thread

Syntax
#include <pthread.h>
int _pthread_interrupt_clear(

pthread_t thread,
int *old_status);

Description
_pthread_interrupt_clear() clears any pending interrupt for the
specified thread. This function might be useful if other interruptible
operations are defined for a particular application. Refer to
_pthread_getstatus() for more information on determining if a
particular thread has an interruption pending.

The value of the interruption status for the target thread is returned at
the integer pointed to by old_status. If the old status is not required,
NULL may be passed for old_status.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Library
mt_clib.l

Possible Errors
EINVAL thread is invalid.

ESRCH thread is not a valid thread.

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 119

See Also
pthread_cond_timedwait()
pthread_cond_wait()
_pthread_interrupt()
_pthread_getstatus()

Example
err = _pthread_interrupt_clear(pthread_self());
if (err != 0)

fprintf(stderr, “failed to clear interruption -
%s\n”, strerror(err));

Chapter 3: OS-9 Threads Programming Reference

120 Using OS-9 Threads

pthread_join()
Wait for Target Thread to Terminate

Syntax
#include <pthread.h>
int pthread_join(pthread_t thread, void **value_ptr);

Description
The pthread_join() function suspends execution of the calling
thread until the target thread terminates, unless the target thread has
already terminated. On return from a successful pthread_join() call
with a non-NULL value_ptr argument, the value passed to
pthread_exit() by the terminating thread is stored in the location
referenced by value_ptr.

When a pthread_join() returns successfully, the target thread has
been terminated. Multiple simultaneous calls to pthread_join()
specifying the same target thread results in one thread successfully
getting the exit status and the remainder getting EOS_NOCHLD as the
result of pthread_join().

Exited but remaining unjoined threads count against the maximum
number of threads a process may have, PTHREAD_THREADS_MAX.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

This function contains a cancel point.

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 121

Possible Errors
EINVAL The value specified by thread does not refer

to a thread that can be joined.

ESRCH No thread could be found corresponding to
that specified by the given thread ID.

EDEADLK A deadlock was detected, or the value of
thread specifies the calling thread.

See Also
pthread_create()
pthread_detach()
pthread_exit()

Example
err = pthread_join(child, &status);
if (err != 0)

fprintf(stderr, “error waiting for child - %s\n”,
strerror(err));
printf(“Child’s exit status was %u\n”, status);

Chapter 3: OS-9 Threads Programming Reference

122 Using OS-9 Threads

pthread_key_create()
Create Thread-Specific Data Key

Syntax
#include <pthread.h>
int pthread_key_create(
 pthread_key_t *key,
 void (*destructor) (void *));

Description
pthread_key_create() creates a thread-specific data key visible to
all threads in the process. Key values provided by
pthread_key_create() are opaque objects used to locate thread-
specific data. Although the same key value may be used by different
threads, the values bound to the key by pthread_setspecific() are
maintained on a per-thread basis and persist for the life of the calling
thread.

If successful, pthread_key_create() stores the newly created key
value at *key and returns 0. Otherwise, an error number is returned.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 123

Possible Errors
EAGAIN The system lacked the necessary resources to

create another thread-specific data key, or the
limit on the total number of keys per process,
PTHREAD_KEYS_MAX, has been exceeded.

EINVAL The key value is invalid.

ENOMEM Insufficient memory exists to create the key.

See Also
pthread_getspecific()
pthread_key_delete()
pthread_setspecific()
PTHREAD_KEYS_MAX

Example
err = pthread_key_create(&thread_data_key,
free_thread_data);
if (err != 0)

fprintf(stderr, “failed to create key - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

124 Using OS-9 Threads

pthread_key_delete()
Delete Thread-Specific Data Key

Syntax
#include <pthread.h>
int pthread_key_delete(pthread_key_t key);

Description
pthread_key_delete() deletes a thread-specific data key previously
returned by pthread_key_create(). The thread-specific data values
associated with key need not be NULL at the time
pthread_key_delete() is called. It is the responsibility of the
application to free any application storage or perform any cleanup
actions for data structures related to the deleted key or associated
thread-specific data in any threads; this cleanup can be done either
before or after pthread_key_delete() is called.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The key value is invalid.

See Also
pthread_key_create()
pthread_getspecific()
pthread_setspecific()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 125

Example
err = pthread_key_delete(thread_data_key);
if (err != 0)

fprintf(stderr, “error deleting key - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

126 Using OS-9 Threads

pthread_kill()
Send Signal to Target Thread

Syntax
#include <signal.h>
int pthread_kill(pthread_t thread, int sig);

Description
pthread_kill() sends the specified signal to the designated thread.

pthread_kill() works much like kill() or _os_send() except
pthread_kill() takes a pthread_t instead of a process_id.
Unlike kill() and _os_send(), pthread_kill() can not be used to
send signals to other processors.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL thread is an invalid pthread_t value.

ESRCH thread is not a valid thread ID.

See Also
signal()
_os_sigmask()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 127

Example
err = pthread_kill(worker, SYNC_SIG);
if (err != 0)

fprintf(stderr, “error signaling worker - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

128 Using OS-9 Threads

pthread_mutex_destroy()
Free Mutex Object

Syntax
#include <pthread.h>
int pthread_mutex_destroy(pthread_mutex_t *mutex);

Description
pthread_mutex_destroy() destroys the mutex object referenced by
mutex; the mutex object becomes, in effect, uninitialized.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EBUSY Attempt to destroy the object referenced by

mutex while it is locked or referenced. For
example, while being used in a
pthread_cond_wait() or
pthread_cond_timedwait() by another
thread.

EINVAL The value specified by mutex is invalid.

See Also
pthread_mutex_init()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 129

Example
err = pthread_mutex_destroy(mutx);
if (err != 0)

fprintf(stderr, “error destroying mutex - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

130 Using OS-9 Threads

pthread_mutex_getprioceiling()

Get Mutex Priority Ceiling

Syntax
#include <pthread.h>
int pthread_mutex_getprioceiling(
 const pthread_mutex_t *mutex,
 int *prioceiling);

Description
pthread_mutex_getprioceiling() obtains the value of the priority
ceiling value from the mutex object referenced by mutex.

The value stored at prioceiling will be the current value of the
priority ceiling for the mutex. Valid priority ceilings are in the range 0 to
65535 (0xffff).

If successful, returns 0 and stores the value of the priority ceiling of
mutex into the integer referenced by the prioceiling parameter.
Otherwise, returns an error number.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The value specified by mutex is invalid.

See Also
pthread_mutexattr_init()
pthread_mutex_setprioceiling()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 131

Example
err = pthread_mutex_getprioceiling(mutex, &pc);
if (err != 0)

fprintf(stderr, “error getting priority ceiling -
%s\n”, strerror(err));

Chapter 3: OS-9 Threads Programming Reference

132 Using OS-9 Threads

pthread_mutex_init()
Allocate Mutex Object

Syntax
#include <pthread.h>
int pthread_mutex_init(
 pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);

Description
The pthread_mutex_init() function initializes the mutex referenced
by mutex with attributes specified by attr.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EAGAIN The system lacked the necessary resources

(other than memory) to initialize another
mutex.

EBUSY An attempt to reinitialize the object referenced
by mutex (a previously initialized, but not yet
destroyed, mutex).

EINVAL The value specified by attr or mutex is
invalid.

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 133

See Also
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_mutex_destroy()
PTHREAD_MUTEX_INITIALIZER

Example
err = pthread_mutex_init(&glob_mutex, NULL);
if (err != 0)

fprintf(stderr, “error initializing mutex - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

134 Using OS-9 Threads

pthread_mutex_lock()
Lock Mutex Object

Syntax
#include <pthread.h>
int pthread_mutex_lock(pthread_mutex_t *mutex);

Description
The mutex object referenced by mutex is locked by calling
pthread_mutex_lock(). If the mutex is already locked, the calling
thread blocks until the mutex becomes available. This operation returns
with the mutex object referenced by mutex in the locked state with the
calling thread as its owner. An attempt by the current owner of a mutex
to relock the mutex results in an EDEADLK error.

If a signal is delivered to a thread waiting for a mutex, upon return from
the signal handler the thread resumes waiting for the mutex as if it was
not interrupted.

If priority inheritance is enabled for the specified mutex and a thread
with a lower priority already owns the mutex then the owning thread’s
priority will be raised to the level of calling thread.

After the lock is acquired, if priority protection is enabled for the
specified mutex and the specified ceiling priority is greater than the
thread’s current priority the thread’s priority will be raised.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 135

Possible Errors
EINVAL The value specified by mutex does not refer to

an initialized mutex object.

EDEADLK The current thread already owns the mutex.

See Also
pthread_mutex_trylock()
pthread_mutex_unlock()

Example
err = pthread_mutex_lock(&glob_mutex);
if (err != 0)

fprintf(stderr, “error locking mutex - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

136 Using OS-9 Threads

pthread_mutex_setprioceiling()
Set Mutex Priority Ceiling

Syntax
#include <pthread.h>
int pthread_mutex_setprioceiling(
 pthread_mutex_t *attr,
 int ceiling);

Description
pthread_mutex_setprioceiling() is used to set the priority ceiling
value in an initialized mutex object referenced by mutex.

ceiling must be a valid OS-9 priority value; it must be in the range 0
to 65535 (0xffff).

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The value specified by mutex is invalid. The

new value specified for the attribute is outside
the range of legal values for that attribute.

See Also
pthread_mutexattr_init()
pthread_mutex_getprioceiling()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 137

Example
err = pthread_mutex_setprioceiling(mutex, 255);
if (err != 0)

fprintf(stderr, “error setting priority ceiling -
%s\n”, strerror(err));

Chapter 3: OS-9 Threads Programming Reference

138 Using OS-9 Threads

pthread_mutex_trylock()
Lock Mutex Object (Non-Blocking)

Syntax
#include <pthread.h>
int pthread_mutex_trylock(pthread_mutex_t *mutex);

Description
pthread_mutex_trylock() is a non-blocking mutex lock operation.
If mutex is currently unowned, the calling thread is made the owner. If
mutex is currently owned (by any thread, including the calling thread),
EBUSY is returned.

Returns 0 if a lock on the mutex object referenced by mutex is
acquired; otherwise, returns an error number.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EBUSY The mutex could not be acquired because it

was already locked.

EINVAL The value specified by mutex does not refer to
an initialized mutex object.

See Also
pthread_mutex_lock()
pthread_mutex_unlock()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 139

Example
err = pthread_mutex_trylock(&glob_mutex);
if (err != 0 && err != EBUSY)

fprintf(stderr, “error trying to lock glob_mutex -
%s\n”, strerror(err));

Chapter 3: OS-9 Threads Programming Reference

140 Using OS-9 Threads

pthread_mutex_unlock()
Unlock Mutex Object

Syntax
#include <pthread.h>
int pthread_mutex_unlock(pthread_mutex_t *mutex);

Description
pthread_mutex_unlock() is called by the owner of the mutex object
referenced by mutex to release it. A pthread_mutex_unlock() call
by a thread that is not the owner of the mutex results in an EPERM error.
Calling pthread_mutex_unlock() when the mutex object is unlocked
also results in an EPERM error.

If there are threads blocked on the mutex object referenced by mutex
when pthread_mutex_unlock() is called, the mutex becomes
available, and is given to the next waiting thread.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The value specified by mutex does not refer to

an initialized mutex object.

EPERM The current thread does not own the mutex.

See Also
pthread_mutex_lock()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 141

pthread_mutex_trylock()

Example
err = pthread_mutex_unlock(&glob_mutex);
if (err != 0)

fprintf(stderr, “error unlocking glob_mutex - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

142 Using OS-9 Threads

pthread_mutexattr_destroy()
Free Mutex Attributes Object

Syntax
#include <pthread.h>
int pthread_mutexattr_destroy(pthread_mutexattr_t
*attr);

Description
pthread_mutexattr_destroy() destroys a mutex attributes object;
the object becomes, in effect, uninitialized.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The value specified by attr is invalid.

See Also
pthread_mutex_init()
pthread_mutexattr_init()

Example
err = pthread_mutexattr_destroy(mutex_attr);
if (err != 0)

fprintf(stderr, “error destroying attr - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 143

pthread_mutexattr_getprioceiling()
Get Priority Ceiling Attribute

Syntax
#include <pthread.h>
int pthread_mutexattr_getprioceiling(
 const pthread_mutexattr_t *attr,
 int *prioceiling);

Description
pthread_mutexattr_getprioceiling() obtains the value of the
priority ceiling attribute from the mutex attributes object referenced by
attr.

The value stored at prioceiling will be the current value of the
priority ceiling attribute. Valid priority ceilings are in the range 0 to
65535 (0xffff).

If successful, returns 0 and stores the value of the priority ceiling
attribute of attr into the integer referenced by the prioceiling
parameter. Otherwise, returns an error number.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The value specified by attr is invalid.

See Also
pthread_mutexattr_init()
pthread_mutexattr_setprioceiling()

Chapter 3: OS-9 Threads Programming Reference

144 Using OS-9 Threads

Example
err = pthread_mutexattr_getprioceiling(mutex_attr,
&pc);
if (err != 0)

fprintf(stderr, “error getting priority ceiling -
%s\n”, strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 145

pthread_mutexattr_getprotocol()
Get Protocol Attribute

Syntax
#include <pthread.h>
int pthread_mutexattr_getprotocol(
 const pthread_mutexattr_t *attr,
 int *protocol);

Description
pthread_mutexattr_getprotocol() obtains the value of the
protocol attribute from the mutex attributes object referenced by attr.

The value stored at protocol will be one of PTHREAD_PRIO_NONE,
PTHREAD_PRIO_INHERIT, or PTHREAD_PRIO_PROTECT.

If successful, returns 0 and stores the value of the protocol attribute of
attr into the integer referenced by the protocol parameter.
Otherwise, returns an error number.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The value specified by attr is invalid.

See Also
pthread_mutexattr_init()
pthread_mutexattr_setprotocol()

Chapter 3: OS-9 Threads Programming Reference

146 Using OS-9 Threads

Example
err = pthread_mutexattr_getprotocol(mutex_attr, &prot);
if (err != 0)

fprintf(stderr, “error getting protocol - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 147

pthread_mutexattr_getpshared()
Get Mutex Process-Shared Attribute

Syntax
#include <pthread.h>
int pthread_mutexattr_getpshared(
 const pthread_mutexattr_t *attr,
 int *pshared);

Description
pthread_mutexattr_getpshared() obtains the value of the
process-shared attribute from the attributes object referenced by attr.

The value stored at pshared will be either PTHREAD_PROCESS_SHARED
or PTHREAD_PROCESS_PRIVATE.

If successful, returns 0 and stores the value of the process-shared
attribute of attr into the object referenced by the pshared parameter.
Otherwise, returns an error number.

This facility is not currently supported in Microware’s Pthreads
implementation. The process-shared attribute can be changed, but
both values behave like PTHREAD_PROCESS_PRIVATE.
_POSIX_THREAD_PROCESS_SHARED is not currently defined.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The value specified by attr is invalid.

Chapter 3: OS-9 Threads Programming Reference

148 Using OS-9 Threads

See Also
pthread_mutexattr_init()
pthread_mutexattr_setpshared()

Example
err = pthread_mutexattr_getpshared(mutex_attr,
&pshared);
if (err != 0)

fprintf(stderr, “error getting pshared - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 149

pthread_mutexattr_init()
Allocate Mutex Attributes Object

Syntax
#include <pthread.h>
int pthread_mutexattr_init(pthread_mutexattr_t *attr);

Description
pthread_mutexattr_init() initializes a mutex attributes object
attr with a default value for all of the attributes.

The default values for the attributes are shown in <Bold><links>Table
3-11.

Returns 0 if successful or an error code if unsuccessful.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The key value is invalid.

ENOMEM Insufficient memory exists to initialize the
mutex attributes object.

Table 3-11. Default attribute values for mutex attribute object

Attribute Default Value
Process-shared PTHREAD_PROCESS_PRIVATE

Protocol PTHREAD_PRIO_NONE

Priority Ceiling <none>

Chapter 3: OS-9 Threads Programming Reference

150 Using OS-9 Threads

See Also
pthread_mutex_init()
pthread_mutexattr_destroy()

Example
err = pthread_mutexattr_init(mutex_attr);
if (err != 0)

fprintf(stderr, “error initializing attr - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 151

pthread_mutexattr_setprioceiling()
Set Priority Ceiling Attribute

Syntax
#include <pthread.h>
int pthread_mutexattr_setprioceiling(
 pthread_mutexattr_t *attr,
 int ceiling);

Description
pthread_mutexattr_setprioceiling() is used to set the priority
ceiling attribute in an initialized attributes object referenced by attr.

ceiling must be a valid OS-9 priority value; it must be in the range 0
to 65535 (0xffff).

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The value specified by attr is invalid. The

new value specified for the attribute is outside
the range of legal values for that attribute.

See Also
pthread_mutexattr_init()
pthread_mutexattr_getprioceiling()

Chapter 3: OS-9 Threads Programming Reference

152 Using OS-9 Threads

Example
err = pthread_mutexattr_setprioceiling(mutex_attr,
255);
if (err != 0)

fprintf(stderr, “error setting priority ceiling -
%s\n”, strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 153

pthread_mutexattr_setprotocol()
Set Protocol Attribute

Syntax
#include <pthread.h>
int pthread_mutexattr_setprotocol(
 pthread_mutexattr_t *attr,
 int protocol);

Description
pthread_mutexattr_setprotocol() is used to set the protocol
attribute in an initialized attributes object referenced by attr.

protocol must be either PTHREAD_PRIO_NONE,
PTHREAD_PRIO_INHERIT, or PTHREAD_PRIO_PROTECT,.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The value specified by attr is invalid. The

new value specified for the attribute is outside
the range of legal values for that attribute.

See Also
pthread_mutexattr_init()
pthread_mutexattr_getprotocol()

Chapter 3: OS-9 Threads Programming Reference

154 Using OS-9 Threads

Example
err = pthread_mutexattr_setprotocol(mutex_attr, param);
if (err != 0)

fprintf(stderr, “error setting protocol attr - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 155

pthread_mutexattr_setpshared()
Set Mutex Process-Shared Attribute

Syntax
#include <pthread.h>
int pthread_mutexattr_setpshared(
 pthread_mutexattr_t *attr,
 int pshared);

Description
pthread_mutexattr_setpshared() is used to set the process-
shared attribute in an initialized attributes object referenced by attr.

pshared must be either PTHREAD_PROCESS_SHARED or
PTHREAD_PROCESS_PRIVATE.

If successful, returns a value of 0; otherwise, returns an error.

This facility is not currently supported in Microware’s Pthreads
implementation. The process-shared attribute can be changed, but
both values behave like PTHREAD_PROCESS_PRIVATE.
_POSIX_THREAD_PROCESS_SHARED is not currently defined.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL The value specified by attr is invalid. The

new value specified for the attribute is outside
the range of legal values for that attribute.

Chapter 3: OS-9 Threads Programming Reference

156 Using OS-9 Threads

See Also
pthread_mutexattr_init()
pthread_mutexattr_getpshared()

Example
err = pthread_mutexattr_setpshared(mutex_attr,
PTHREAD_PROCESS_PRIVATE);
if (err != 0)

fprintf(stderr, “error setting pshared attr - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 157

pthread_once()
Execute Routine Once per Process

Syntax
#include <pthread.h>
int pthread_once(
 pthread_once_t *once_control,
 void (*init_routine) (void));

Description
The first call to pthread_once() by any thread in a process with a
given once_control calls the init_routine() with no arguments.
Subsequent calls of pthread_once() with the same once_control
will not call the init_routine(). On return from pthread_once()
by any thread, it is guaranteed that init_routine() has completed.
The once_control parameter is used to determine whether the
associated initialization routine has been called.

pthread_once() is not a cancellation point. However, if
init_routine() is a cancellation point and is canceled, the effect on
once_control is as if pthread_once() was never called.

The behavior of pthread_once() is undefined if once_control has
automatic storage duration or is not initialized by PTHREAD_ONCE_INIT.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Chapter 3: OS-9 Threads Programming Reference

158 Using OS-9 Threads

Possible Errors
EINVAL once is an invalid pointer to a

pthread_once_t object. once does not
point to an initialized object. init_routine
is an invalid address.

See Also
PTHREAD_ONCE_INIT

Example
err = pthread_once(get_key_once, create_data_key);
if (err != 0)

fprintf(stderr, “error creating data key - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 159

_pthread_resume()
Decrement Suspension Counter

Syntax
#include <LIB/pthread.h>
int _pthread_resume(pthread_t thread, int *status);

Description
_pthread_resume() decrements the suspension counter for the
specified target thread. The suspension status of the target thread is
returned at the int pointed to by status. The int is as follows:

• 0 if the target thread was not suspended
• 1 if the target thread went from suspended to not suspended
• > 1 if the target thread remained suspended

A suspension counter is used to support multiple suspension requests
with the same target thread. An equal number of resume requests must
be made for the thread to continue execution.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Library
mt_clib.l

Possible Errors
EINVAL thread or status is NULL.

ESRCH thread is not a valid thread.

Chapter 3: OS-9 Threads Programming Reference

160 Using OS-9 Threads

See Also
_pthread_setsuspendable()
_pthread_setunsuspendable()
_pthread_suspend()

Example
err = _pthread_resume(worker, &level);
if (err != 0)

fprintf(stderr, “error resuming worker - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 161

pthread_self()
Get Thread Identifier

Syntax
#include <pthread.h>
pthread_t pthread_self(void);

Description
pthread_self() returns the calling thread's thread ID.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
None

See Also
pthread_equal()

Example
if (pthread_self() == worker[0])

fputs(“thread is worker #0\n”, stdout);

Chapter 3: OS-9 Threads Programming Reference

162 Using OS-9 Threads

pthread_setcancelstate()
Set Cancel State

Syntax
#include <pthread.h>
int pthread_setcancelstate(int state, int *oldstate);

Description
pthread_setcancelstate() sets a thread’s cancel state. state can
be either PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE.
The previous value of the thread’s cancel state is returned at
oldstate.

Any cancel requests made against a thread while its state is
PTHREAD_CANCEL_DISABLE will be held pending until the state is
changed to PTHREAD_CANCEL_ENABLE.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
EINVAL state is neither PTHREAD_CANCEL_ENABLE

nor PTHREAD_CANCEL_DISABLE. oldstate
is an invalid address.

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 163

See Also
pthread_setcanceltype()
pthread_cancel()
pthread_cleanup_push()
pthread_cleanup_pop()
pthread_testcancel()

Example
err = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,
&oldstate);
if (err != 0)

fprintf(stderr, “error setting cancel state - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

164 Using OS-9 Threads

pthread_setcanceltype()
Set Cancel Type

Syntax
#include <pthread.h>
int pthread_setcanceltype(int type, int *oldtype);

Description
pthread_setcanceltype() sets a thread’s cancel type. type can be
either PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUS. The previous value of the thread’s
cancel type is returned at oldtype.

When a thread’s cancel type is PTHREAD_CANCEL_DEFERRED cancel
requests against it wait to take effect until the next call to
pthread_testcancel().

When a thread’s cancel type is PTHREAD_CANCEL_ASYNCHRONOUS
cancel requests are acted upon when they are made. That is, when a
thread calls pthread_cancel() with a target thread that has
cancellation enabled and asynchronous, the target thread will
immediately cancel.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Cancelling an asynchronous cancel type thread causes a loss of
resources. For example, the memory allocated to implement
thread safety for C library functions will be lost. Use deferred
cancellation whenever possible.

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 165

Possible Errors
EINVAL type is neither PTHREAD_CANCEL_DEFERRED

nor PTHREAD_CANCEL_ASYNCHRONOUS.

See Also
pthread_setcancelstate()
pthread_cancel()
pthread_cleanup_push()
pthread_cleanup_pop()
pthread_testcancel()

Example
err = pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED,
&oldtype);
if (err != 0)

fprintf(stderr, “error setting cancel type - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

166 Using OS-9 Threads

_pthread_setpr()
Set Priority for Target Thread

Syntax
#include <pthread.h>
int _pthread_setpr(pthread_t thread, u_int32 priority);

Description
_pthread_setpr() sets the OS-9 priority of thread to priority.
This call must be used by threaded applications instead of
_os_setpr() to ensure that priority inversion avoidance is properly
supported for mutexes. Calling _os_setpr() directly results in
undefined behavior as it relates to priority inversion.

Use _pthread_getstatus() to determine the priority of a thread.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Library
mt_clib.l

Possible Errors
EINVAL thread is invalid. priority is out of range.

Valid range of priority is 0-65538.

ESRCH thread is an invalid thread ID.

See Also
_pthread_getstatus()
pthread_mutex_destroy()
pthread_mutex_destroy()
_pthread_attr_setpriority()
_pthread_attr_getpriority()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 167

Example
err = _pthread_setpr(reactor_shutdown, HIGH_PRIORITY);
if (err != 0)

fprintf(stderr, "failed to set priority - %s",
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

168 Using OS-9 Threads

_pthread_setsignalrange()
Set Range of Signal Values

Syntax
#include <pthread.h>
int _pthread_setsignalrange(
 signal_code low,
 signal_code high);

Description
_pthread_setsignalrange() is used to specify the set of signal
values that the Pthread library uses internally. Using this function will
cause the Pthread library to use signals in the range low to (high -
1).

Use this function if your application uses the same set of signal values
as the Pthread library. By default, the Pthread library will use signals in
the range 40,000 to 49,999 inclusive.

A minimum of 1000 signal values must be specified. The Pthreads
library uses about 5 signals per thread as well as 1 per timed condition
variable wait.

The new set of signals may not overlap the current set of signal values.
This is to ensure integrity of any already allocated signal numbers.

_pthread_setsignalrange() returns 0 if successful or an error code
if not.

Attributes
Operating System: OS-9

State: User

Library
mt_clib.l

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 169

Possible Errors
EINVAL If less than 1000 signal values are in the range

or high is less than low or the specified range
overlaps with the signal range currently in use.

Example
err = _pthread_setsignalrange(2000, 3500);
if (err != SUCCESS)

fprintf(stderr, "error setting signal range - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

170 Using OS-9 Threads

pthread_setspecific()
Set Thread-Specific Data Pointer

Syntax
#include <pthread.h>
int pthread_setspecific(pthread_key_t key, const void
*value);

Description
pthread_setspecific() function associates a thread-specific value
with a key obtained via a previous call to pthread_key_create().
Different threads may bind different values to the same key. These
values are typically pointers to blocks of dynamically allocated memory
that have been reserved for use by the calling thread.

If successful, returns a value of 0; otherwise, returns an error.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

Possible Errors
ENOMEM Insufficient memory exists to associate the

value with the key.

EINVAL The key value is invalid.

See Also
pthread_key_create()
pthread_getspecific()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 171

Example
err = pthread_setspecific(thread_data_key,
thread_data);
if (err != 0)

fprintf(stderr, “error setting thread data - %s\n”,
strerror(err));

Chapter 3: OS-9 Threads Programming Reference

172 Using OS-9 Threads

_pthread_setsuspendable()
Decrement Suspendability Counter

Syntax
#include <pthread.h>
int _pthread_setsuspendable(void);

Description
_pthread_setsuspendable() decrements the suspendability counter
for the calling thread. When this counter is at 0, the thread is
suspendable.

This call would be used by applications that contain thread suspension
and resource locking. Before taking a common lock a thread would set
itself unsuspendable. This prevents the thread from holding a common
lock while it is in the suspended state. Holding a common lock while
suspended could cause deadlock for the remaining unsuspended
threads. After unlocking the common lock the thread would call this
function to return itself to the suspendable state.

Calling this function from a suspendable thread yields no change in
state.

Attributes
Operating System: OS-9

State: User

Library
mt_clib.l

Possible Errors
None

See Also
_pthread_resume()
_pthread_setunsuspendable()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 173

_pthread_suspend()

Example
The following example illustrates how to execute a semaphore
protected critical section. Using the mechanisms shown below, a thread
calling _pthread_suspend() can be assured that glob_lock will not
be claimed by the suspended thread.

_pthread_setunsuspendable();

ec = _os_sema_p(&glob_lock);
if (ec != SUCCESS) {

fprintf(stderr, "failed to get semaphore\n");
pthread_exit((void *)ec);

}

/* critical section code */

ec = _os_sema_v(&glob_lock);
if (ec != SUCCESS) {

fprintf(stderr, "failed to release semaphore\n");
pthread_exit((void *)ec);

}

_pthread_setsuspendable();

Chapter 3: OS-9 Threads Programming Reference

174 Using OS-9 Threads

_pthread_setunsuspendable()
Increment Suspendability Counter

Syntax
#include <pthread.h>
int _pthread_setunsuspendable(void);

Description
_pthread_setunsuspendable() increments the suspendability
counter for the calling thread. When this counter is greater than 0, the
thread is unsuspendable. This call does not return until the
unsuspendable state is achieved.

This call is used by applications that contain thread suspension and
resource locking. Before taking a common lock a thread would use this
call to set itself unsuspendable. This prevents the thread from holding a
common lock while it is in the suspended state. After unlocking the
common lock the thread would call _pthread_setsuspendable() to
return itself to the normal suspendable state.

Calling this function from a unsuspendable thread simply increases the
suspendability counter. It is expected that each
_pthread_setunsuspendable() call has a matching
_pthread_setsuspendable() call.

Calling this function more than 0xffffffff times without any
intervening _pthread_setsuspendable() calls results in undefined
behavior. Fewer _pthread_setsuspendable() calls than
_pthread_setunsuspendable() calls will be required to return to the
normal suspendable state.

Attributes
Operating System: OS-9

State: User

Library
mt_clib.l

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 175

Possible Errors
Errors from memory allocation and getting a process descriptor if called
when signals are masked.

See Also
_pthread_resume()
_pthread_setsuspendable()
_pthread_suspend()

Example
Refer to the example provided for _pthread_setunsuspendable().

Chapter 3: OS-9 Threads Programming Reference

176 Using OS-9 Threads

_pthread_suspend()
Increment Suspension Counter

Syntax
#include <pthread.h>
int _pthread_suspend(pthread_t thread, unsigned int
*count);

Description
_pthread_suspend() increments the suspension counter for the
target thread specified by thread. The target thread's suspension
counter prior to the suspension request is returned at the unsigned
integer pointed to by count. A counter is used to support multiple
suspension requests on the same target thread. An equal number of
resume requests must be made before the target thread will resume
execution.

This call does not return until the target thread has been successfully
suspended. That is, if the target thread has set itself unsuspendable
then this call will poll until the target sets itself back to suspendable.

Refer to the section on Thread Suspension for more information on
what services are guaranteed while threads are suspended.

Returns 0 if the thread's suspension counter was successfully
incremented or an error number if not.

Attributes
Operating System: OS-9

State: User

Library
mt_clib.l

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 177

Possible Errors
EINVAL The specified thread or count pointer is NULL.

ESRCH The specified thread is invalid or has
terminated.

EDEADLK The specified thread is the calling thread and
there is only one thread in the process.

See Also
_pthread_resume()
_pthread_setsuspendable()
_pthread_setunsuspendable()

Example
err = _pthread_suspend(child, &count);
if (err != 0) {

fprintf(stderr, "failed to suspend child\n");
pthread_exit((void *)err);

}

/* do some activity with child suspended */

err = _pthread_resume(child, &status);
if (err != 0) {

fprintf(stderr, "failed to resume child\n");
pthread_exit((void *)err);

}

Chapter 3: OS-9 Threads Programming Reference

178 Using OS-9 Threads

pthread_testcancel()
Test for Pending Cancel

Syntax
#include <pthread.h>
void pthread_testcancel(void);

Description
pthread_testcancel() checks for a pending, deferred cancel
request. If there is one, cancellation cleanup handlers are called in the
reverse order in which they were pushed, thread specific data
destructors are called in an unspecified order, and the thread is
terminated with PTHREAD_CANCELED as its status.

If the cancel state of the thread is PTHREAD_CANCEL_DISABLE, this call
has no effect.

pthread_testcancel() does not return if a cancel is pending.

Attributes
Operating System: OS-9

State: User

Compatibility: POSIX

Library
mt_clib.l

See Also
pthread_cancel()
pthread_setcancelstate()
pthread_setcanceltype()
PTHREAD_CANCELED

Example
pthread_testcancel();

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 179

Definition Descriptions
This section lists all the definitions and descriptions in alphabetical
order (without regard for numbers and underscores).

Table 3-12 lists all the definitions and descriptions, in alphabetical
order. These definitions appear in the header file pthread.h.

Table 3-12. Definition Descriptions

Function Name Function Description
_POSIX_THREAD_ATTR_STACKADDR Stackaddr Implementation

Macro
_POSIX_THREAD_ATTR_STACKSIZE Stacksize Implementation

Macro
_POSIX_THREAD_PRIO_INHERIT Priority Inheritance

Implementation Macro
_POSIX_THREAD_PRIO_PROTECT Priority Ceiling Implementation

Macro
_POSIX_THREAD_SAFE_FUNCTIONS Thread-safe Function

Implementation Macro
_POSIX_THREADS Posix Threads Implementation

Macro
_PT_BOOSTED Priority Boosted Status Flag
_PT_CPENDING Cancel Pending Status Flag
_PT_CSTATE Cancel State Status Flag
_PT_CTYPE Cancel Type Status Flag
_PT_DETACHED Detached Thread Status Flag
_PT_EXIT Terminated Thread Status Flag
_PT_IPENDING Interruption Pending Status

Flag
_PT_SFLAG Suspended Status Flag
_PT_SPENDING Suspension Pending Status

Flag
_PT_SSTATE Suspension State Status Flag
PTHREAD_CANCEL_ASYNCHRONOUS Asynchronous Cancel Type
PTHREAD_CANCEL_DEFERRED Deferred Cancel Type
PTHREAD_CANCEL_DISABLE Disabled Cancel State
PTHREAD_CANCEL_ENABLE Enabled Cancel State
PTHREAD_CANCELED Cancelled Thread Exit Status
PTHREAD_COND_INITIALIZER Condition Variable Initializer

Chapter 3: OS-9 Threads Programming Reference

180 Using OS-9 Threads

PTHREAD_CREATE_DETACHED Detached Thread Attribute
PTHREAD_CREATE_JOINABLE Joinable Thread Attribute
PTHREAD_DESTRUCTOR_ITERATIONS Number of Destruction

Attempts
PTHREAD_KEYS_MAX Maximum Number of Data

Keys
PTHREAD_MUTEX_INITIALIZER Mutex Initializer
PTHREAD_ONCE_INIT Once Control Initializer
PTHREAD_PROCESS_PRIVATE Process Private Attribute
PTHREAD_PROCESS_SHARED Process Shared Attribute
PTHREAD_STACK_MIN Minimum Thread Stack Size
PTHREAD_THREADS_MAX Maximum Number of Threads

per Process

Table 3-12. Definition Descriptions (Continued)

Function Name Function Description

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 181

_POSIX_THREAD_ATTR_STACKADDR
Stackaddr Implementation Macro

Syntax
#include <pthread.h>
_POSIX_THREAD_ATTR_STACKADDR

Description
The presence of the macro _POSIX_THREAD_ATTR_STACKADDR
indicates that the OS-9 implementation of Pthreads supports
pthread_attr_getstackaddr() and
pthread_attr_setstackaddr().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_attr_getstackaddr()
pthread_attr_setstackaddr()

Chapter 3: OS-9 Threads Programming Reference

182 Using OS-9 Threads

_POSIX_THREAD_ATTR_STACKSIZE
Stacksize Implementation Macro

Syntax
#include <pthread.h>
_POSIX_THREAD_ATTR_STACKSIZE

Description
The presence of the macro _POSIX_THREAD_ATTR_STACKSIZE
indicates that the OS-9 implementation of Pthreads supports
pthread_attr_getstacksize() and
pthread_attr_setstacksize().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_attr_getstacksize()
pthread_attr_setstacksize()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 183

_POSIX_THREAD_PRIO_INHERIT
Priority Inheritance Implementation Macro

Syntax
#include <pthread.h>
_POSIX_THREAD_PRIO_INHERIT

Description
The presence of the macro _POSIX_THREAD_PRIO_INHERIT indicates
that the OS-9 implementation of Pthreads has the priority inheritance
mechanism to avoid priority inversion.

Attributes
Operating System: OS-9

Compatibility: POSIX

Chapter 3: OS-9 Threads Programming Reference

184 Using OS-9 Threads

_POSIX_THREAD_PRIO_PROTECT
Priority Ceiling Implementation Macro

Syntax
#include <pthread.h>
_POSIX_THREAD_PRIO_PROTECT

Description
The presence of the macro _POSIX_THREAD_PRIO_PROTECT indicates
that the OS-9 implementation of Pthreads has the priority ceiling
emulation protocol mechanism to avoid priority inversion.

Attributes
Operating System: OS-9

Compatibility: POSIX

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 185

_POSIX_THREAD_SAFE_FUNCTIONS
Thread-safe Function Implementation Macro

Syntax
#include <pthread.h>
_POSIX_THREAD_SAFE_FUNCTIONS

Description
The presence of the macro _POSIX_THREAD_SAFE_FUNCTIONS
indicates that the OS-9 implementation of Pthreads implements thread-
safe functions.

Attributes
Operating System: OS-9

Compatibility: POSIX

Chapter 3: OS-9 Threads Programming Reference

186 Using OS-9 Threads

_POSIX_THREADS
Posix Threads Implementation Macro

Syntax
#include <pthread.h>
_POSIX_THREADS

Description
The presence of the macro _POSIX_THREADS indicates that the OS-9
implementation of Pthreads supports the POSIX threads API.

Attributes
Operating System: OS-9

Compatibility: POSIX

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 187

_PT_BOOSTED
Priority Boosted Status Flag

Syntax
#include <pthread.h>
_PT_BOOSTED

Description
_PT_BOOSTED is a bit mask for the status field of the
_pthread_status_t structure. If clear, the thread is running at its
default priority. If set, the thread is running at a higher priority due to
priority inheritance or priority ceiling emulation protocol.

Attributes
Operating System: OS-9

See Also
_pthread_getstatus()
pthread_mutexattr_setprotocol()
pthread_mutexattr_setprioceiling()

Chapter 3: OS-9 Threads Programming Reference

188 Using OS-9 Threads

_PT_CPENDING
Cancel Pending Status Flag

Syntax
#include <pthread.h>
_PT_CPENDING

Description
_PT_CPENDING is a bit mask for the status field of the
_pthread_status_t structure. If clear, the thread has no cancel
pending. If set, the thread has a cancel pending.

Attributes
Operating System: OS-9

See Also
_pthread_getstatus()
pthread_cancel()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 189

_PT_CSTATE
Cancel State Status Flag

Syntax
#include <pthread.h>
_PT_CSTATE

Description
_PT_CSTATE is a bit mask for the status field of the
_pthread_status_t structure. If clear, the thread has cancelling
enabled. If set, the thread has a cancelling disabled.

Attributes
Operating System: OS-9

See Also
_pthread_getstatus()
pthread_setcancelstate()

Chapter 3: OS-9 Threads Programming Reference

190 Using OS-9 Threads

_PT_CTYPE
Cancel Type Status Flag

Syntax
#include <pthread.h>
_PT_CTYPE

Description
_PT_CTYPE is a bit mask for the status field of the
_pthread_status_t structure. If clear, the thread has cancels marked
as deferred. If set, the thread has cancels marked as asynchronous.

Attributes
Operating System: OS-9

See Also
_pthread_getstatus()
pthread_setcanceltype()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 191

_PT_DETACHED
Detached Thread Status Flag

Syntax
#include <pthread.h>
_PT_DETACHED

Description
_PT_DETACHED is a bit mask for the status field of the
_pthread_status_t structure. If clear, the thread is joinable. If set,
the thread is detached.

Attributes
Operating System: OS-9

See Also
_pthread_getstatus()
pthread_create()
pthread_detach()
pthread_attr_setdetachstate()
pthread_join()

Chapter 3: OS-9 Threads Programming Reference

192 Using OS-9 Threads

_PT_EXIT
Terminated Thread Status Flag

Syntax
#include <pthread.h>
_PT_EXIT

Description
_PT_EXIT is a bit mask for the status field of the
_pthread_status_t structure. If clear, the thread has not yet
terminated. If set, the thread has terminated and is available for
joining, if not detached.

Attributes
Operating System: OS-9

See Also
_pthread_getstatus()
pthread_exit()
pthread_cancel()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 193

_PT_IPENDING
Interruption Pending Status Flag

Syntax
#include <pthread.h>
_PT_IPENDING

Description
_PT_IPENDING is a bit mask for the status field of the
_pthread_status_t structure. If clear, the thread has no interrupt
pending. If set, the thread has an interrupt pending.

Attributes
Operating System: OS-9

See Also
_pthread_getstatus()
_pthread_interrupt()
_pthread_interrupt_clear()
pthread_cond_wait()
pthread_cond_timedwait()

Chapter 3: OS-9 Threads Programming Reference

194 Using OS-9 Threads

_PT_SFLAG
Suspended Status Flag

Syntax
#include <pthread.h>
_PT_SFLAG

Description
_PT_SFLAG is a bit mask for the status field of the
_pthread_status_t structure. If clear, the thread is not suspended. If
set, the thread is suspended.

Attributes
Operating System: OS-9

See Also
_pthread_getstatus()
_pthread_suspend()
_pthread_resume()
_pthread_setunsuspendable()
_pthread_setsuspendable()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 195

_PT_SPENDING
Suspension Pending Status Flag

Syntax
#include <pthread.h>
_PT_SPENDING

Description
_PT_SPENDING is a bit mask for the status field of the
_pthread_status_t structure. If clear, the thread has no suspend
pending. If set, the thread has a suspend pending.

Attributes
Operating System: OS-9

See Also
_pthread_getstatus()
_pthread_suspend()
_pthread_resume()
_pthread_setunsuspendable()
_pthread_setsuspendable()

Chapter 3: OS-9 Threads Programming Reference

196 Using OS-9 Threads

_PT_SSTATE
Suspension State Status Flag

Syntax
#include <pthread.h>
_PT_SSTATE

Description
_PT_SSTATE is a bit mask for the status field of the
_pthread_status_t structure. If clear, the thread has suspension
enabled. If set, the thread has suspension disabled.

Attributes
Operating System: OS-9

See Also
_pthread_getstatus()
_pthread_setunsuspendable()
_pthread_setsuspendable()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 197

PTHREAD_CANCEL_ASYNCHRONOUS
Asynchronous Cancel Type

Syntax
#include <pthread.h>
PTHREAD_CANCEL_ASYNCHRONOUS

Description
PTHREAD_CANCEL_ASYNCHRONOUS is used to specify the asynchronous
cancel type to pthread_setcanceltype().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_setcanceltype()
pthread_setcancelstate()
pthread_cancel()

Chapter 3: OS-9 Threads Programming Reference

198 Using OS-9 Threads

PTHREAD_CANCEL_DEFERRED
Deferred Cancel Type

Syntax
#include <pthread.h>
PTHREAD_CANCEL_DEFERRED

Description
PTHREAD_CANCEL_DEFERRED is used to specify the deferred cancel
type to pthread_setcanceltype().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_setcanceltype()
pthread_setcancelstate()
pthread_cancel()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 199

PTHREAD_CANCEL_DISABLE
Disabled Cancel State

Syntax
#include <pthread.h>
PTHREAD_CANCEL_DISABLE

Description
PTHREAD_CANCEL_DISABLE is used to specify that cancels are disabled
to pthread_setcancelstate().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_setcanceltype()
pthread_setcancelstate()
pthread_cancel()

Chapter 3: OS-9 Threads Programming Reference

200 Using OS-9 Threads

PTHREAD_CANCEL_ENABLE
Enabled Cancel State

Syntax
#include <pthread.h>
PTHREAD_CANCEL_ENABLE

Description
PTHREAD_CANCEL_ENABLE is used to specify that cancels are enabled
to pthread_setcancelstate().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_setcanceltype()
pthread_setcancelstate()
pthread_cancel()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 201

PTHREAD_CANCELED
Cancelled Thread Exit Status

Syntax
#include <pthread.h>
PTHREAD_CANCELED

Description
PTHREAD_CANCELED is the exit status of a thread that has been
canceled and recognized the cancellation.

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_cancel()
pthread_exit()

Chapter 3: OS-9 Threads Programming Reference

202 Using OS-9 Threads

PTHREAD_COND_INITIALIZER
Condition Variable Initializer

Syntax
#include <pthread.h>
PTHREAD_COND_INITIALIZER

Description
PTHREAD_COND_INITIALIZER is used to initialize a variable of type
pthread_cond_t. Using this macro is an alternative to calling
pthread_cond_init().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_cond_init()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 203

PTHREAD_CREATE_DETACHED
Detached Thread Attribute

Syntax
#include <pthread.h>
PTHREAD_CREATE_DETACHED

Description
PTHREAD_CREATE_DETACHED specifies that threads created with the
attribute be detached. It is passed to
pthread_attr_setdetachstate().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_create()
pthread_attr_setdetachstate()

Chapter 3: OS-9 Threads Programming Reference

204 Using OS-9 Threads

PTHREAD_CREATE_JOINABLE
Joinable Thread Attribute

Syntax
#include <pthread.h>
PTHREAD_CREATE_JOINABLE

Description
PTHREAD_CREATE_JOINABLE specifies that threads created with the
attribute be joinable. It is passed to
pthread_attr_setdetachstate().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_create()
pthread_attr_setdetachstate()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 205

PTHREAD_DESTRUCTOR_ITERATIONS
Number of Destruction Attempts

Syntax
#include <pthread.h>
PTHREAD_DESTRUCTOR_ITERATIONS

Description
PTHREAD_DESTRUCTOR_ITERATIONS is the number of times the
Pthread library will call the set of destructors for non-NULL thread-
specific data keys when a thread exits. After this many iterations, non-
NULL thread-specific data key values will be ignored.

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_exit()
pthread_key_create()
pthread_setspecific()

Chapter 3: OS-9 Threads Programming Reference

206 Using OS-9 Threads

PTHREAD_KEYS_MAX
Maximum Number of Data Keys

Syntax
#include <pthread.h>
PTHREAD_KEYS_MAX

Description
PTHREAD_KEYS_MAX is the maximum number of thread-specific data
keys a process may have. Attempts to create more keys will result in
EAGAIN being returned from pthread_key_create().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_key_create()
pthread_key_delete()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 207

PTHREAD_MUTEX_INITIALIZER
Mutex Initializer

Syntax
#include <pthread.h>
PTHREAD_MUTEX_INITIALIZER

Description
PTHREAD_MUTEX_INITIALIZER is used to initialize a variable of type
pthread_mutex_t. Using this macro is an alternative to calling
pthread_mutex_init().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_mutex_init()

Chapter 3: OS-9 Threads Programming Reference

208 Using OS-9 Threads

PTHREAD_ONCE_INIT
Once Control Initializer

Syntax
#include <pthread.h>
PTHREAD_ONCE_INIT

Description
PTHREAD_ONCE_INIT must be used to initialize a global or file static
pthread_once_t variable. Failure to do so will result in EINVAL being
returned from pthread_once().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_once()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 209

PTHREAD_PROCESS_PRIVATE
Process Private Attribute

Syntax
#include <pthread.h>
PTHREAD_PROCESS_PRIVATE

Description
PTHREAD_PROCESS_PRIVATE is used to specify that mutexes or
condition variables created with the attribute be private to the creating
process. It can be passed to pthread_mutexattr_setpshared()
and pthread_condattr_setpshared().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_condattr_init()
pthread_condattr_setpshared()
pthread_mutexattr_init()

Chapter 3: OS-9 Threads Programming Reference

210 Using OS-9 Threads

PTHREAD_PROCESS_SHARED
Process Shared Attribute

Syntax
#include <pthread.h>
PTHREAD_PROCESS_SHARED

Description
PTHREAD_PROCESS_SHARED is used to specify that mutexes or
condition variables created with the attribute be shared among
processes. It can be passed to pthread_mutexattr_setpshared()
and pthread_condattr_setpshared().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_condattr_init()
pthread_condattr_setpshared()
pthread_mutexattr_init()

Chapter 3: OS-9 Threads Programming Reference

Using OS-9 Threads 211

PTHREAD_STACK_MIN
Minimum Thread Stack Size

Syntax
#include <pthread.h>
PTHREAD_STACK_MIN

Description
PTHREAD_STACK_MIN is the minimum amount of stack a thread is
allowed to be created with. The value is minimal. If a threads is to have
many nested function calls or a large amount of automatic storage,
additional stack should be allocated with
pthread_attr_setstacksize().

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_attr_init()
pthread_attr_setstacksize()
pthread_create()

Chapter 3: OS-9 Threads Programming Reference

212 Using OS-9 Threads

PTHREAD_THREADS_MAX
Maximum Number of Threads per Process

Syntax
#include <pthread.h>
PTHREAD_THREADS_MAX

Description
PTHREAD_THREADS_MAX is the maximum number of threads a process
can have. OS-9 places no artificial limit on this number. System
resources will run out before this maximum is reached.

Attributes
Operating System: OS-9

Compatibility: POSIX

See Also
pthread_create()
pthread_exit()

	HOME
	Using OS-9® Threads
	Contents
	Threads Overview
	Thread Definition
	Thread Architecture

	Using Threads
	Benefits
	Limitations
	Ideal Applications

	Example Using Threads
	The POSIX Threads Standard
	Additional Resources

	Using OS-9 Threads
	Overview of OS-9 Threads
	The OS-9 Implementation of POSIX Threads
	The OS-9 Kernel
	Managing Processes and Threads

	Mutexes in OS-9
	Thread Interruption
	Signals
	POSIX Signals
	Thread Suspension
	Support
	Application Considerations

	OS-9 Threads Guidelines and Issues
	Shared Global Data Structures
	New Process Structure
	Functions to Access the Process Descriptor
	System State Code

	Static Return Values
	Deadlock
	Thread-safe Coding Techniques
	Threads and Subroutine Modules
	Shared Data Access Functions

	Example Thread-safe Conversion of a Library
	Miscellaneous Issues

	OS-9 Threads Programming Reference
	POSIX Pthreads Library Functions
	POSIX Pthreads Library Definitions
	Pthreads Library Extension Functions
	Pthreads Library Extension Definitions
	Function Descriptions
	pthread_attr_destroy()
	pthread_attr_getdetachstate()
	_pthread_attr_getinitfunction()
	_pthread_attr_getpriority()
	pthread_attr_getstackaddr()
	pthread_attr_getstacksize()
	pthread_attr_init()
	pthread_attr_setdetachstate()
	_pthread_attr_setinitfunction()
	_pthread_attr_setpriority()
	pthread_attr_setstackaddr()
	pthread_attr_setstacksize()
	pthread_cancel()
	pthread_cleanup_pop()
	pthread_cleanup_push()
	pthread_cond_broadcast()
	pthread_cond_destroy()
	pthread_cond_init()
	pthread_cond_signal()
	pthread_cond_timedwait()
	pthread_cond_wait()
	pthread_condattr_destroy()
	pthread_condattr_getpshared()
	pthread_condattr_init()
	pthread_condattr_setpshared()
	pthread_create()
	pthread_detach()
	pthread_equal()
	pthread_exit()
	pthread_getspecific()
	_pthread_getstatus()
	_pthread_interrupt()
	_pthread_interrupt_clear()
	pthread_join()
	pthread_key_create()
	pthread_key_delete()
	pthread_kill()
	pthread_mutex_destroy()
	pthread_mutex_getprioceiling()
	pthread_mutex_init()
	pthread_mutex_lock()
	pthread_mutex_setprioceiling()
	pthread_mutex_trylock()
	pthread_mutex_unlock()
	pthread_mutexattr_destroy()
	pthread_mutexattr_getprioceiling()
	pthread_mutexattr_getprotocol()
	pthread_mutexattr_getpshared()
	pthread_mutexattr_init()
	pthread_mutexattr_setprioceiling()
	pthread_mutexattr_setprotocol()
	pthread_mutexattr_setpshared()
	pthread_once()
	_pthread_resume()
	pthread_self()
	pthread_setcancelstate()
	pthread_setcanceltype()
	_pthread_setpr()
	_pthread_setsignalrange()
	pthread_setspecific()
	_pthread_setsuspendable()
	_pthread_setunsuspendable()
	_pthread_suspend()
	pthread_testcancel()
	Definition Descriptions
	_POSIX_THREAD_ATTR_STACKADDR
	_POSIX_THREAD_ATTR_STACKSIZE
	_POSIX_THREAD_PRIO_INHERIT
	_POSIX_THREAD_PRIO_PROTECT
	_POSIX_THREAD_SAFE_FUNCTIONS
	_POSIX_THREADS
	_PT_BOOSTED
	_PT_CPENDING
	_PT_CSTATE
	_PT_CTYPE
	_PT_DETACHED
	_PT_EXIT
	_PT_IPENDING
	_PT_SFLAG
	_PT_SPENDING
	_PT_SSTATE
	PTHREAD_CANCEL_ASYNCHRONOUS
	PTHREAD_CANCEL_DEFERRED
	PTHREAD_CANCEL_DISABLE
	PTHREAD_CANCEL_ENABLE
	PTHREAD_CANCELED
	PTHREAD_COND_INITIALIZER
	PTHREAD_CREATE_DETACHED
	PTHREAD_CREATE_JOINABLE
	PTHREAD_DESTRUCTOR_ITERATIONS
	PTHREAD_KEYS_MAX
	PTHREAD_MUTEX_INITIALIZER
	PTHREAD_ONCE_INIT
	PTHREAD_PROCESS_PRIVATE
	PTHREAD_PROCESS_SHARED
	PTHREAD_STACK_MIN
	PTHREAD_THREADS_MAX

