
RadiSys. 118th Street
Des Moines, Iowa 50325

515-223-8000

Revision A • October 2002www.radisys.com

Ultra C/C++
Processor Guide

Version 2.6

October 2002
Copyright ©2003 by RadiSys Corporation.

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 2.6 of Ultra C/C++.
Reproduction of this document, in part or whole, by
any means, electrical, mechanical, magnetic, optical,
chemical, manual, or otherwise is prohibited, without
written permission from RadiSys Corporation.

Disclaimer

The information contained herein is believed to be
accurate as of the date of publication. However,
RadiSys Corporation will not be liable for any damages
including indirect or consequential, from use of the
OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation.
The information contained herein is subject to change
without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys Corpo-
ration expressly prohibits any reproduction of the soft-
ware on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system may
constitute copyright infringements and misappropria-
tion of trade secrets and confidential processes which
are the property of RadiSys Corporation and/or other
parties. Unauthorized distribution of software may
cause damages far in excess of the value of the copies
involved.

Table of Contents

Chapter 1: 68K 9

10 Executive and Phase Information
10 Executive -tp Option
14 Predefined Macro Names for the Preprocessor
17 68K-Unique Phase Option Functionality
24 C/C++ Application Binary Interface Information
24 Register Usage
25 Passing Arguments to Functions
25 C Language Features
32 _asm() Register Pseudo Functions
33 Span Dependent Optimizations
33 Methods for Reducing Compiled Code Size
35 fopen() Append Bit
37 Using Math
38 Assembler/ Linker
38 ROF Edition Number
38 External References
39 Symbol Biasing
40 Assembly Language Mnemonics
40 Registers
41 Addressing Mode Syntax Definitions
42 Symbols
43 Instruction Conventions
44 Mnemonics Table
51 Additional Information for 68020, 68030, 68040, 68060, and

CPU32 Processors
51 Floating Point Numbers
51 Assembly Language Mnemonics
Ultra C/C++ Processor Guide 3

59 68881/68882/68040/68060 Floating Point Mnemonics
60 Floating Point Examples
61 Dyadic Instructions
63 Monadic Instructions
65 Data Movement Instructions
67 Program Control Instructions
68 System Control Operations
69 Floating Point Condition Predicates used for <cc>
72 Constant ROM Table

Chapter 2: ARM 77

78 Executive and Phase Information
78 Executive -tp Option
79 Predefined Macro Names for the Preprocessor
82 ARM-Unique Phase Option Functionality
87 C/C++ Application Binary Interface Information
87 Register Usage
90 Passing Arguments to Functions
93 C Language Features
99 ARM Processor-Specific Optimizations
104 _asm() Register Pseudo Functions
105 Assembler/ Linker
105 ROF Edition Number
105 External References
105 Symbol Biasing
106 Assembler Syntax Extensions and Limitations
109 Working with Immediate Data
111 Stack Checking

Chapter 3: SH-5 113

114 Executive and Phase Information
114 Executive -tp Option
4 Ultra C/C++ Processor Guide

115 Predefined Macro Names for the Preprocessor
117 SH-5m-Unique Phase Option Functionality
120 C/C++ Application Binary Interface Information
120 Register Usage
123 Pointer and non-64-bit Integer Representation
124 Passing Arguments to Functions
128 C Language Features
135 _asm() Register Pseudo Functions
136 SH-5 Processor-Specific Optimizations
136 Special Common Sub-Expressions
137 Assembler/ Linker
137 ROF Edition Number
137 External References
137 Symbol Biasing
138 Code Symbol Values
138 Assembler Syntax Extensions and Limitations
145 Stack Checking

Chapter 4: MIPS 147

148 Executive and Phase Information
148 Executive -tp Option
150 Predefined Macro Names for the Preprocessor
152 MIPS-Unique Phase Option Functionality
159 C/C++ Application Binary Interface Information
159 Register Usage
163 Passing Arguments to Functions
165 C Language Features
172 _asm() Register Pseudo Functions
175 MIPS Processor-Specific Optimizations
175 Special Common Sub-Expressions
176 Delay Slot Filling
176 Copy Propagation
177 Register Renaming
Ultra C/C++ Processor Guide 5

178 Instruction Scheduling
179 Assembler/ Linker
179 ROF Edition Number
179 External References
179 Symbol Biasing
180 Assembler Syntax Extensions and Limitations
182 Stack Checking

Chapter 5: Pentium and 80x86 183

184 Executive and Phase Information
184 Executive -tp Option
185 Predefined Macro Names for the Preprocessor
186 80x86-Unique Phase Option Functionality
189 C/C++ Application Binary Interface Information
189 Register Usage
190 Passing Arguments to Functions
190 C Language Features
196 _asm() Register Pseudo Functions
198 Span Dependent Optimizations
199 Assembler/ Linker
199 ROF Edition #9
199 External References
200 Symbol Biasing
201 Assembly Language Mnemonics

Chapter 6: PowerPC 219

220 Executive and Phase Information
220 Executive -tp Option
222 Predefined Macro Names for the Preprocessor
226 PowerPC-Unique Phase Option Functionality
231 C/C++ Application Binary Interface Information
231 Register Usage
6 Ultra C/C++ Processor Guide

235 Passing Arguments to Functions
237 Callee Saved Registers
238 C Language Features
245 _asm() Register Pseudo Functions
246 PowerPC Processor-Specific Optimizations
246 Special Common Sub-Expressions
247 Copy Propagation
247 Target-Driven Instruction Scheduling
248 Register Renaming
249 Assembler/ Linker
249 ROF Edition Number
249 External References
250 Symbol Biasing
250 Assembler Syntax Extensions and Limitations
252 Special Purpose Registers
272 Time Based Registers
273 Device Control Registers
278 Assembly Language Mnemonics
278 Suffixes
279 Symbols
283 Mnemonics Table
297 Extended Mnemonics
297 Subtract Immediate
297 Subtract
298 Word Compare
298 Extract, Insert, Rotate, Shift, and Clear
300 Move to/from Special Purpose Registers
301 Move to/from Time Base Registers
302 Conditional Branch
303 Branch Mnemonics Incorporating Conditions
305 Branch Prediction Suffixes
306 Traps
308 Miscellaneous
309 Power Mnemonics Supported by PowerPC 601
Ultra C/C++ Processor Guide 7

311 PowerPC 403-Specific Mnemonics
312 PowerPC 603-Specific Mnemonics
313 PowerPC 602-Specific Mnemonics
314 Stack Checking

Chapter 7: SuperH 315

316 Executive and Phase Information
316 Executive -tp Option
318 Predefined Macro Names for the Preprocessor
320 SuperH-Unique Phase Option Functionality
325 C/C++ Application Binary Interface Information
325 Register Usage
328 Passing Arguments to Functions
335 C Language Features
341 Assembly Language with SH-4 Target
342 SuperH Processor-Specific Optimizations
342 Special Common Sub-Expressions
342 Delay Slot Filling
343 Long/Medium Branch Simplification
344 Code Area Data Pooling and Consolidation
345 Copy Propagation
347 _asm() Register Pseudo Functions
348 Assembler/ Linker
348 ROF Edition Number
348 External References
348 Symbol Biasing
349 Assembler Syntax Extensions and Limitations
349 Global Data Accessing
351 Code Accessing
351 Calling Functions
353 Working with PC-Relative Data
354 Stack Checking
8 Ultra C/C++ Processor Guide

Chapter 1: 68K

This chapter contains information specific to the 68K family of
processors. The following sections are included:

• Executive and Phase Information
• C/C++ Application Binary Interface Information
• Span Dependent Optimizations
• fopen() Append Bit
• Using Math
• Assembler/ Linker
• Assembly Language Mnemonics
• Additional Information for 68020, 68030, 68040, 68060, and

CPU32 Processors
• 68881/68882/68040/68060 Floating Point Mnemonics
• Floating Point Condition Predicates used for <cc>
• Constant ROM Table
9

1 68K
Executive and Phase Information

The Executive -tp option, predefined macro names for the
preprocessor, and 68K-unique phase option functionality is described in
this section.

Executive -tp Option

Executive -tp enables options dependent upon executive mode. The
options for each mode are identified following.

ucc and c89 Option Mode
-tp[=]<target>[<suboptions>]

Specify Target Processor and Target Processor Sub-Options.

Table 1-1 ucc Target Processors

Target Target Processor

68000 or 68K 68000

68010 or 010 68010

68070 or 070 68070

68301 68301

68302 68302

68303 68303

68306 68306
10 Ultra C/C++ Processor Guide

168K
68307 68307

68322 68322

68328 68328

CPU32 CPU32

CPU32+ CPU32+

68330 68330

68331 68331

68332 68332

68f333 68F333

68334 68334

68340 68340

68341 68341

68349 68349

68360 68360

68020 or 020 68020

68030 or 030 680030

68ec030 or ec030 68EC030

Table 1-1 ucc Target Processors (continued)

Target Target Processor
Ultra C/C++ Processor Guide 11

1 68K
Sub-options are identified in the following table.

68040 or 040 68040

68ec040 or ec040 68EC040

68lc040 or lc040 68LC040

68ec060 or ec060 68EC060

68lc060 or oc060 68LC060

68060 or 060 68060

Table 1-2 Mode -tp Sub-Options

Suboptions Description

sc Use 16-bit code references (use
jumptable if necessary)

lc Use 32-bit code references (default)

sd Use 16-bit data references (default)

ld Use 32-bit data references

Table 1-1 ucc Target Processors (continued)

Target Target Processor
12 Ultra C/C++ Processor Guide

168K
compat Option Mode
Options identified in Table 1-3 for tp_opts are valid for the
-tp[=]<target>[<suboptions>] option when <target> is 68K,
68020, or 020.

For example:

cc -tp=020i
-k[=]<num>[w|l][cw|cl][f]

Specify Target Processor

<num> is the target machine:

0 = 68000 (default)

2 = 68020

w causes generation of 16-bit data offsets (default 68000).

l causes generation of 32-bit data offsets (default 68020).

Table 1-3 compat Mode -tp Sub-Options

Suboptions Description

cl Long word code access (default when
<target> is 68020 or 020)

cw Word code access (default when <target>
is 68K)

dl Long word data access (default when
<target> is 68020 or 020)

dw Word data access (default when <target>
is 68K)

i Do not emit 68881 instructions

j Prevent linker from creating jumptable
Ultra C/C++ Processor Guide 13

1 68K
cw causes generation of 16-bit code references (default 68000).

cl causes generation of 32-bit code references (default 68020).

f causes generation of 68881 instructions for float/double types.

-tp[=]<target>[<suboptions>]

Specify the target processor sub-options to use. Table 1-4
identifies target processors.

Predefined Macro Names for the Preprocessor

The macro names in Table 1-5 are predefined in the preprocessor for
target systems.

Table 1-4 compat Target Processor Options

Target Target Processor

68K MC68000/08/10/12/70

68020 MC68020/30/40/60

020 MC68020/30/40/60

CPU32 CPU32-family

Table 1-5 Macros

Macro Target Processor

_MPF68K All supported 68000 family

_MPF68010 68010

_MPF68070 68070
14 Ultra C/C++ Processor Guide

168K
_MPF68301 68301

_MPF68302 68302

_MPF68303 68303

_MPF68306 68306

_MPF68307 68307

_MPF68322 68322

_MPF68328 68328

_MPFCPU32 CPU32 family

_MPFCPU32PLUS CPU32+ family

_MPF68330 68330

_MPF68331 68331

_MPF68332 68332

_MPF68F333 68f333

_MPF68334 68334

_MPF68340 68340

_MPF68341 68341

_MPF68349 68349

Table 1-5 Macros (continued)

Macro Target Processor
Ultra C/C++ Processor Guide 15

1 68K
Target names specify the compiler to use when writing machine- and
operating system-independent programs.

The executive defines the _MPF macro for the target processor as well
as any processors that are generally considered subsets of the target
processor. Table 1-6 provides a few examples of this behavior.

For more information on which macros are defined for 68K target
processors, run the executive in verbose and dry run modes stopping
after the front end. For example, type the following line to check the
defines for the 68349 target (source file not required):

cc -b -h -efe -tp=68349 t.c

_MPF68360 68360

_MPF68020 68020

_MPF68030 68030

_MPF68EC030 68EC030

_MPF68040 68040

_MPF68EC040 68EC040

_MPF68LC040 68LC040

_MPF68EC060 68EC060

_MPF68LC060 68LC060

_MPF68060 68060

Table 1-5 Macros (continued)

Macro Target Processor
16 Ultra C/C++ Processor Guide

168K
This causes the executive to print a line similar to the following:
"cpfe -t=0 -x -v=/dd/MWOS/SRC/DEFS -v=/dd/MWOS/OS9/SRC/DEFS -n -d_UCC
 -d_SPACE_FACTOR=1 -d_TIME_FACTOR=1 -d_OSK -d_MPF68349 -d_MPFCPU32PLUS
 -d_MPF68K -d_FPF881 -d_BIG_END -o=t.i t.c"

NoteNote
_MPF68349, _MPFCPU32PLUS, and _MPF68K macros are defined.

The _MPF68K macro indicates that a source file is being compiled for a
Motorola 68000 family target.

68K-Unique Phase Option Functionality

Phases having unique phase option functionality on the 68K processor
are:

• Back End Options
• Assembly Optimizer Options
• Assembler Options
• Linker Options

Table 1-6 _MPFxxx Macro Behavior

Target Microprocessor Family Macros Defined

68000 _MPF68K

CPU32 _MPF68K, _MPFCPU32

68020/030 _MPF68K, MPF68020

68040 _MPF68K, _MPF68020, _MPF68040

68060 _MPF68K, _MPF68020, _MPF68040,
_MPF68060
Ultra C/C++ Processor Guide 17

1 68K
Back End Options
The back end orders the data area based static analysis of the data
area objects and sorts the data based on use and size. This means that
the most heavily used objects reside in the non-remote area. To do this,
the back end requires information about how the object linker lays out
the data area for the entire program. Table 1-7 identifies options
enabling information to be identified to the back end.

Table 1-7 Information Options

Option Description

-m=<non remote
memory left>

Specify that other files in the program
have used some amount of the 64K data
area

-pa Notify the back end about using a
jumptable

-pl Cause references to external data to be
long

-ps Do not emit stack checking code

-p68000 Emit code for the 68000

-p68020 Emit code for the 68020

-pcpu32 Emit code for the CPU32

-p68040 Emit code for the 68040

-p68060 Emit code for the 68060
18 Ultra C/C++ Processor Guide

168K
Assembly Optimizer Options
-s<method>

Set the peephole scheduling method

-t[=]<num>

Specify Target Processor Family

Table 1-8 Peephole Scheduling Methods

Method Description

s Spread dependent instructions

c Compress floating point instructions

n No reordering of instructions

Table 1-9 Assembly Optimizer Processor Numbers

Number Assembly Optimizer Target

1 MC68000/08/10/12/70

2 CPU32-family

3 MC68020/30

4 MC68040

5 MC68060
Ultra C/C++ Processor Guide 19

1 68K
Assembler Options
-b Optimize Branch Sizing

Optimize sizes for span-dependent instructions. Span-dependent
instructions are branches and instructions with an operand
containing a PC-relative displacement.

When using this option, span-dependent instructions with branch
targets or PC-relative displacements of the form internal_label
± <constant> cause the code produced for the instructions to be
as small as possible.

Span-dependent instructions using internal labels that do not fit the
above form are sized normally, according to the instruction
extension. Span-dependent instructions using external labels are
also sized according to the instruction extension.

NoteNote
-b changes the default size of the base displacement in extended
addressing modes from long to word.

-bt Optimize Branch Sizing Making Branches to Externals Long

Use the largest size possible for branch or PC-relative
displacements with external labels. This option assures the ability to
reach the location independent of code size.

NoteNote
-bt changes the default size of the base displacement in extended
addressing modes from long to word.
20 Ultra C/C++ Processor Guide

168K
-j Long Branches and PC-Relative References

Causes long branches and PC-relative references to access a
jumptable when -m0. This option implies -b.

-m<num> Specify Machine Assembler to Use

Specify machine assembler to use:

-r Require Use of Register Designator

Require register names to be distinguished from variable names by
placing a percent sign (%) before each register name. If this option is
on, a register designator (%) is necessary before a register name.
The default is off.

-y Make all branches long.

Table 1-10 Machine Assemblers

Number Machine Assembler

0 68000 (default)

1 68010

2 68020

3 68030

4 68040

6 68060
Ultra C/C++ Processor Guide 21

1 68K
Linker Options
The following options are available for the linker.

-a Convert Out-of-Range bsrs and PC-Relative leas to
Jumptable References

bsrs that address labels more than 32K distant are automatically
converted to jsrs using a jumptable (in the initialized data area)
that contains the desired destination address. leas are changed to
move instructions that move the destination from a jump instruction
in the jumptable. The linker automatically builds the required
jumptables and includes them in the output file. This allows large
programs to overcome the ±32K offset limit of bsr instructions
without violating the operating system requirement for position
independent code.

-i Allow Initialized Static Storage to be Included in a System
Type Module

The module header used in this case is the program type module
header but the type/language field reflects a type of system.

NoteNote
Using this option does not imply that the 68K kernel initializes the static
storage area for this module, only that the data structures are set in the
module such that the 68K kernel or some other code could initialize the
static storage area.

-j Print Jumptable Calculation Map

Refer to the description in -a.
22 Ultra C/C++ Processor Guide

168K
-t=<target>Specify Target Module Type

Table 1-11 Target Module Type

Target Module Type

os9_68K 68K
Ultra C/C++ Processor Guide 23

1 68K
C/C++ Application Binary Interface
Information

Register usage, passing arguments to functions, and language features
are described in this section.

Register Usage

The compiler uses registers as identified in Table 1-12.

The compiler uses all other registers for temporaries and register
variables.

Table 1-12 Register Use

Register Description

d0/d1 Parameter passing/return

a5 Frame/local pointer

a6 Static storage pointer

a7 Stack pointer
24 Ultra C/C++ Processor Guide

168K
Passing Arguments to Functions

When an argument is passed to a called function, the argument is in
one of two places: in a register or on the stack. The called function
determines the location of the argument by argument type and the order
specified in the argument list. For this discussion:

• An integral argument is an argument of type int, a pointer, or a
char or short converted to an int.

• A double argument is an argument of type double or a float
converted to a double.

The first integral argument is passed in d0, and the second integral
argument, if any, is passed in d1. A single double argument is passed in
d0 and d1, with the most significant half in d0 and the least significant
half in d1. Any remaining arguments are pushed on the stack. If the first
argument is integral and the second is double, the integral argument is
passed in d0 and the double is passed entirely on the stack.

Parameters to functions taking variable arguments are passed
differently. All variable arguments are passed on the stack.

Any struct arguments are copied to the next location on the stack.

The parameters are pushed on the stack in the reverse order that they
appeared in the function call.

If a function is to return a value, the integral (or float) value is returned in
d0. A double value is returned in d0 and d1. If the returned value is a
struct, then the address of the return area is passed as an argument
to the callee in a0; the called function copies the returned struct to
this location.

C Language Features

In conformance with the ANSI/ISO C specification, the
implementation-defined areas are listed in this section. Each bulleted
item contains one implementation-defined issue. The number in
parentheses included with each bulleted item indicates the location in
the ANSI/ISO specification where further information is provided.
Ultra C/C++ Processor Guide 25

1 68K
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Other implementation-defined areas are included in Language
Features chapter of the Using Ultra C/C++ manual and the Overview
chapter of the Ultra C Library Reference manual. Refer to an
ANSI/ISO specification for more information.

Characters
• The number of bits in a character in the execution character set

(5.2.4.2.1).

There are 8 bits in a character in the execution character set.

Integers
• The representations and sets of values of the various integer types

(6.1.2.5).

Table 1-13 Integer Type/Range

Type Representation
Minimum /
Maximum

char, signed char 8-bit 2’s complement -128 /
127

unsigned char 8-bit binary 0 /
255

short int 16-bit 2’s complement -32768 /
32767
26 Ultra C/C++ Processor Guide

168K
• The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented (6.2.1.2).

When converting a longer integer to a shorter signed integer, the least significant
<n> bits of the longer integer are moved to the integer of <n> bits. The resulting
value in the smaller integer is dictated by the representation. For example, if the
conversion is from int to short, then the least significant 16 bits are moved
from the int to the short. This value is then considered a 2’s complement 16-bit
integer.

When conversion from unsigned to signed occurs with equally sized integers, the
most significant bit becomes the sign bit. Therefore, if the unsigned integer is less
than 0x80000000, the conversion has no effect. Otherwise, a negative number
results.

unsigned short int 16-bit binary 0 /
65535

int 32-bit 2’s complement -2147483648 /
2147483647

unsigned int 32-bit binary 0 /
4294967295

long int 32-bit 2’s complement -2147483648 /
2147483647

unsigned long int 32-bit binary 0 /
4294967295

Table 1-13 Integer Type/Range (continued)

Type Representation
Minimum /
Maximum
Ultra C/C++ Processor Guide 27

1 68K
• The sign of the remainder on integer division (6.3.5).

The result of an inexact division of one negative and one positive integer is the
smallest integer greater than or equal to the algebraic quotient.

The sign of the remainder on integer division is the same as that of the dividend.

Floating Point
• The representations and sets of values of the various types of

floating-point numbers (6.1.2.5).

Refer to the float.h header file for other limits and values.

Arrays and Pointers
• The type of integer required to hold the maximum size of an array.

Such as the type of the size of operator, size_t (6.3.3.4, 7.1.1).

An unsigned long int is required to hold the maximum size of an array.
unsigned long int is defined as size_t in ansi_c.h.

Table 1-14 Floating Point Number Characteristics

Type Format
Minimum /
Maximum

float 32 bit IEEE 754 1.17549435e-38f /
3.40282347e38f

double 64 bit IEEE 754 2.2250738585072016e-308
/
1.7976931348623157e308

long double 64 bit IEEE 754 2.2250738585072016e-308
/
1.7976931348623157e308
28 Ultra C/C++ Processor Guide

168K
• The result of casting a pointer to an integer or vice versa (6.3.4).

Since pointers are treated much like unsigned long integers, the integer is
promoted using the usual promotion rules to an unsigned long. The sign bit
propagates out to the full 32-bit width.

• The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdiff_t (6.3.6, 7.1.1).

A signed long int is required to hold the difference between two pointers to
elements of the same array. long int is defined as ptrdiff_t in ansi_c.h.

Registers
• The extent to which objects can actually be placed in registers by

use of the register storage-class specifier (6.5.1).

The compiler automatically makes decisions regarding which objects are placed in
registers, giving no special storage consideration to the register storage-class.

Structures, Unions, Enumerations, and Bit-Fields
• The padding and alignment of members of structures (6.5.2.1). This

should present no problem unless binary data written by one
implementation are read by another.

Table 1-15 shows the alignment of the various objects within a
structure. Required padding is supplied if the next available space is
not at the correct alignment for the object. For example, a structure
declared as:

 struct {
 char mem1;
 long mem2;

 };

would be a four-byte structure (32-bit), including one byte for mem1,
two bytes for mem2, and one byte of padding to complete the
structure.

Non-character structure members and sub-structures containing
non-character members are aligned on an even byte boundary.
Character structure members do not have alignment restrictions.
Ultra C/C++ Processor Guide 29

1 68K
• Whether “plain” int bit field is treated as a signed int or as an
unsigned int bit field (6.5.2.1).

A plain int bit field is treated as a signed int bit field.

• The order of allocation of bit fields within a unit (6.5.2.1).

The bit fields are allocated from most significant bit to least significant bit.

• Whether a bit field can straddle a storage-unit boundary (6.5.2.1).

Bit fields may straddle a storage unit. Bit fields are allocated end-to-end until a
non-bit field member is allocated or 32-bit size is executed.

• The integer type chosen to represent the values of an enumeration
type (6.5.2.2).

Enum values are represented in 32-bit two’s complement integers.

Table 1-15 Alignment Table

Type Alignment Requirement

char 1

short 1

int 2

long 2

float 2

double 2
30 Ultra C/C++ Processor Guide

168K
Preprocessing Directives
• Whether the value of a single-character, character constant in a

constant expression that controls inclusion matches the value of the
same character constant in the execution character set. Whether
such a character constant may have a negative value (6.8.1).

The value of a single-character, character constant in a constant expression that
controls inclusion matches the value of the same character constant in the
execution character set. This character constant may be a negative value.

• The method for locating includable source files (6.8.2).

This method is described in the Using Ultra C/C++ manual in the Using the
Executive chapter.

• The support of quoted names for includable source files (6.8.2).

Quoted names are supported for #include preprocessing directives.

• The mapping of source file character sequences (6.8.2).

The mapping of source file character sequences is one-to-one. The
case-sensitivity of file names depends on the file system being used.
Ultra C/C++ Processor Guide 31

1 68K
_asm() Register Pseudo Functions

_asm() uses register pseudo functions as identified in Table 1-16.

The address registers a5, a6, and a7 are defined by the compiler to be
the frame pointer, static storage pointer, and stack pointer respectively.
Their pseudo functions cannot have parameters and the user of
_asm() must be responsible for any attempts to modify these registers.

Table 1-16 _asm() Register Pseudo Functions

Register Description

__reg_data Any data register

__reg_addr Any non-dedicated address register

__reg_gen Any data registers or non-dedicated address
register

__reg_float Any floating point register

__reg_d[0-7] Individual data registers as indicated by
name

__reg_a[0-7] Individual address registers as indicated by
name
32 Ultra C/C++ Processor Guide

168K
Span Dependent Optimizations

The compiler performs branch shortening and PC-relative
addressing mode shortening.
• Branch shortening reduces the instruction size on branch

instructions when the distance to the destination is known to be
within certain limits.

• PC-relative addressing mode shortening reduces the instruction
size for the PC-relative addressing mode when the label is within
certain limits.

Methods for Reducing Compiled Code Size

Methods of reducing compiled code size include overriding compiler
size defaults, I-code linking, and use of provided, small library functions.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For information on reducing compiled code size via I-code linking and
use of provided small library functions, refer to the chapter describing
compiling in the Using Ultra C/C++ manual.

Overriding Compiler Size Defaults
When compiling a small model program with code references spanning
references of less than 32K, the sc specification of the target processor
option (-tp) directs the compiler to impose short external references to
generate more efficient code. When compiling a program module (as
opposed to a driver or system module) the assembler or linker may
patch the code and create a jump table in the data area to enable
Ultra C/C++ Processor Guide 33

1 68K
references spanning more than 32K. This is a reasonable way to use
the compiler when compiling during development. Compile each source
file to an ROF and link at the end with the object linker.

User Program Modules
An example of compiling a source file to an ROF (using ucc as the
executive option mode) and linking user program modules follows.
Cc file1.c -tp=68K,sc -eas=RELS **compile file #1 with short externs**
cc file2.c -tp=68K,sc -eas=RELS **compile file #2 with short externs**
cc file3.c -tp=68K,sc -eas=RELS **compile file #3 with short externs**
** link in default libraries with long externals
 and create a jumptable if necessary **

cc -tp=68K,sc -f=test RELS/file1.r RELS/file2.r RELS/file3.r

System and Non-program Modules
Producing smaller code for system or non-program modules differs from
the procedure used for user program modules. System and
non-program module types disallow initialized data, therefore the object
linker jumptable is disallowed. When compiling a program with
references spanning less than 32K, the sc specification of the target
processor option (-tp) directs the compiler to impose short external
references to generate more efficient code. Use the sc specifier on
each file in the module until the linker generates an out of range error
on a file, then remove the sc specifier for this file.
34 Ultra C/C++ Processor Guide

168K
fopen() Append Bit

The implementation of the append mode for fopen() requires that the
device descriptor for the device that the program runs to have the
append bit set. Most descriptors do not have this bit set.

The append bit is set in the device mode capabilities byte of an RBF
descriptor. The append bit is bit number 4 (0x10).

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on using moded, refer to the moded utility
description in the user manual for your operating system.

moded can be used to set this bit. The following example illustrates
setting the append bit:

$ moded h0

 OS-9/68000 Module Editor
 Copyright 1987 Microware Systems Corp.
 Type ? for editing help message
moded: e
 descriptor name : h0 =
 file manager name : RBF =
 device driver name : rbvccs =
 port address : $fff47000 =
 irq vector : 101 =
 irq level : 2 =
 irq priority : 5 =
 device mode capabilities : $a7 = $b7
 device class : $01 = .
moded: w
moded: q
Ultra C/C++ Processor Guide 35

1 68K
Once the capabilities byte is properly set, integrate the new descriptor
into the boot procedure in place of the old descriptor by making a new
bootfile. Refer to the os9gen utility in the Utilities Reference manual
or, use moded directly on the 68K boot file:

moded h0 -f=/h0/os9boot
36 Ultra C/C++ Processor Guide

168K
Using Math

Ultra C/C++ generates one model of floating point code. If the floating
point coprocessor is absent in the system, a floating point emulation
software module makes it appear as if it exists.

In K&R source mode, existing ROFs or libraries compiled to use the
software math must link with the old math.l library when making
applications that use them. Not linking with the old math.l library
requires recompilation of any ROFs or libraries that used math.l,
math881.l, or the math trap handler, math and math881.

To use the floating point math functions on a processor that does not
have a math coprocessor, perform the following steps:

Step 1. Add the floating point module name to the bootfile as identified in Table
1-17.

Step 2. Add the floating point module name to the extension module list in the
Init module and remake the extension module list.

Step 3. Remake the bootfile and reboot the system.

Table 1-17 Floating Point Module

Target 68K Version Floating Point Module

68000/20/30 2.4 or greater fpu

68040 2.4 fpu040

68040 3.0 or greater fpsp040

68060 3.0 or greater fpsp060
Ultra C/C++ Processor Guide 37

1 68K
Assembler/ Linker

The assembler uses standard Motorola instruction syntax as modified in
the Assembly Language Mnemonics section in this chapter.

ROF Edition Number

The r68 assembler supports ROF Edition #15.

External References

ROF Edition #15 is only capable of representing limited expressions
involving external references. These expressions can consist only of
simple addition and subtraction operations involving two operands at
most. The following expression forms involving external references are
supported. All other forms are illegal.

External + Absolute
External - Absolute
External - External

The linker performs subtraction by negating one operand and adding it
to the other operand. This method can cause problems on signed
values of either word or byte length as the linker may report
over/underflow errors. Therefore, expressions involving external names
should not be too complex.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the ROF Edition Number 9 Format section in the Assembler
and Object Code Linker Overview chapter of the Using Ultra C/C++
manual.
38 Ultra C/C++ Processor Guide

168K
Symbol Biasing

The linker does not bias code symbols for the 68000 target. Data
symbols are biased only for program and trap handler type modules.
The bias value applied to data symbols is -32768 (-0x8000).
Neither code nor data symbols are biased for 68000 raw code.
Ultra C/C++ Processor Guide 39

1 68K
Assembly Language Mnemonics

The Mnemonics table in this section lists the mnemonic names used on
the 68K processors with their meanings. Many of the mnemonics
include one or more optional symbols indicating conditions. Symbols,
when present, modify the meaning of the mnemonic instructions.
Additionally, instruction conventions are used in the mnemonics table.
The following tables identify and define reserved registers and
addressing modes, symbols, and instruction conventions used in the
syntax of the mnemonics table.

Registers

Register notation n represents 0 through 7.

Table 1-18 Reserved Register Names

Register Name Description

An Address register n

Dn Data register n

pc or pcr Program counter

sr Status register

ccr Condition codes

ssp Supervisor stack pointer

usp User stack pointer
40 Ultra C/C++ Processor Guide

168K
Addressing Mode Syntax Definitions

Table 1-19 Addressing Mode Syntax

Addressing Mode Description

Dn Data register direct

An Address register direct

Rn Data or address register direct

Xn.s Index register n (either address or data)

.s indicates the index register size. It is either

.w (word) or .l (long, default)

(An) Address register indirect

(An)+ Address register indirect with postincrement

-(An) Address register indirect with predecrement

d(An) Address register indirect with offset

d(An,Xn.s) Address register indirect with index

(xxx).w Absolute short

(xxx).l Absolute long

d(pc) Program counter indirect with offset

d(pc,Xn.s) Program counter indirect with index

#xxx Immediate data
Ultra C/C++ Processor Guide 41

1 68K
Symbols

The symbol <cc> indicates condition codes as identified in the following
table.

Table 1-20 Condition Codes Used with Assembler
Instructions

Mnemonic Condition Description

cc !C Carry clear

cs C Carry set

eq Z Equal

ge N.V+!N.!V Greater than or equal

gt N.V.Z+!N.!V.!Z Greater than

hi !C.!Z Higher

hs !C Higher or the same

le Z+N.!V+!N.V Less than or equal

lo C Lower

ls C+Z Lower or the same

lt N.!V+!N.V Less than

mi N Minus

ne !Z Not equal
42 Ultra C/C++ Processor Guide

168K
N = negative
Z = zero
V = overflow
C = carry

Instruction Conventions

Instruction mnemonics shown in the following table are used in the
Mnemonics table.

pl !N Plus

vc !V Overflow clear

vs V Overflow set

Table 1-20 Condition Codes Used with Assembler
Instructions (continued)

Mnemonic Condition Description

Table 1-21 Instruction Mnemonics

Mnemonic Description

<cc> Condition code

<data> Immediate data of appropriate size

.s Indicates .w, .l, or .b. The default is .w, if the size is
not explicitly given.

<ea> Any legal addressing mode for the instruction

<d> Shift direction may be l for left or r right
Ultra C/C++ Processor Guide 43

1 68K
Mnemonics Table

Table 1-22 Mnemonic Summary

Mnemonic Description

abcd Dy,Dx Add decimal with extend register

abcd -(Ay),-(Ax) Add decimal with extend memory

add.s <ea>,Dn Add binary register

add.s Dn,<ea> Add binary memory

adda.s <ea>,An Add address (.w or .l only)

addi.s #<data>,<ea> Add immediate

addq.s #<data>,<ea> Add quick

addx.s Dy,Dx Add extended register

addx.s -(Ay),-(Ax) Add extended memory

and.s <ea>,Dn AND logical register

and.s Dn,<ea> AND logical memory

andi.s #<data>,<ea> AND immediate

andi #<data>,ccr AND immediate to condition code

andi #<data>,sr AND immediate to status register

as<d>.s Dx,Dy Arithmetic shift register
44 Ultra C/C++ Processor Guide

168K
as<d>.s #<data>,Dy Arithmetic shift immediate register

as<d> w <ea> Arithmetic shift memory

bcc <label> Conditional branch word displacement.
cc represents the branch condition
code.

bcc.s <label> Conditional branch byte displacement.
cc represents the branch condition
code.

bchg.s Dn,<ea> Test bit and change register (.b or .l)

bchg.s #<data>,<ea> Test bit and change immediate (.b or
.l)

bclr.s Dn,<ea> Test bit and clear register (.b or .l)

bclr.s #<data>,<ea> Test bit and clear immediate (.b or .l)

bra <label> Branch word displacement

bra.s <label> Branch byte displacement

bset.s Dn,<ea> Test bit and set register (.b or .l)

bset.s #<data>,<ea> Test bit and set immediate (.b or .l)

bsr <label> Branch subroutine word displacement

bsr.s <label> Branch subroutine byte displacement

btst.s Dn,<ea> Test bit register (.b or .l)

Table 1-22 Mnemonic Summary (continued)

Mnemonic Description
Ultra C/C++ Processor Guide 45

1 68K
btst.s #<data>,<ea> Test bit immediate (.b or .l)

chk <ea>,Dn Check register against bounds

clr.s <ea> Clear operand

cmp.s <ea>,Dn Compare data register

cmpa.s <ea>,An Compare address register

cmpi.s #<data>,<ea> Compare immediate

cmpm.s (Ay)+,(Ax)+ Compare memory

dbcc dn,<label> Test condition, decrement and branch

divs <ea>,Dn Signed divide

divu <ea>,Dn Unsigned divide

eor.s Dn,<ea> Exclusive OR

eori.s #<data>,<ea> Exclusive OR immediate

eori #<date>,ccr Exclusive OR condition code

eori #<data>,sr Exclusive OR status register

exg Rx,Ry Exchange registers

ext.s Dn Sign extend (.w or .l)

jmp <ea> Jump

Table 1-22 Mnemonic Summary (continued)

Mnemonic Description
46 Ultra C/C++ Processor Guide

168K
jsr <ea> Jump to subroutine

lea <ea>,An Load effective address

link An,
#<displacement>

Link and allocate

ls<d>.s Dx,Dy Logical shift data

ls<d>.s #<data>,Dy Logical shift immediate

ls<d> <ea> Logical shift memory

move.s <ea>,<ea> Move from source to destination

move ccr,<ea> Move from condition codes

move <ea>,ccr Move to condition codes

move <ea>,sr Move to status register

move sr,<ea> Move from status register. This is
privileged. Avoid this instruction in
programs that are to execute in
user-state.

move usp,An Move from user stack pointer

move An,usp Move to user stack pointer

movea.s <ea>,An Move address (.w or .l)

Table 1-22 Mnemonic Summary (continued)

Mnemonic Description
Ultra C/C++ Processor Guide 47

1 68K
movem.s <ea>,
<reg list>

Move multiple

<reg list>: CrnRegisterrx-ry

Consecutive registers/Register
delimiter #<expr> Register list mask

Examples:

d0 d0 only
d0/d4/a5 d0,d4,a5
d0-d7/a0-a5 d0 through d7,

a0 through a5

movep.s dx,d(Ay) Move peripheral data (.w or .l) from
register to memory

movep.s d(Ay),dx Move peripheral data (.w or .l) from
memory to register

moveq.l #<data>,dn Move quick

muls <ea>,Dn Signed multiply

mulu <ea>,Dn Unsigned multiply

nbcd <ea> Negate decimal with extend

neg.s <ea> Negate

negx.s <ea> Negate with extend

nop No operation

not.s <ea> Logical complement

Table 1-22 Mnemonic Summary (continued)

Mnemonic Description
48 Ultra C/C++ Processor Guide

168K
or.s <ea>,Dn Inclusive OR register

or.d Dn,<ea> Inclusive OR memory

ori.s #<data>,<ea> Inclusive OR immediate

ori #<data>,ccr Inclusive OR condition codes

ori #<data>,sr Inclusive OR status register

pea <ea> Push effective address

reset Reset external devices

ro<d>.s Dx,Dy Rotate without extend register

ro<d>.s #<data>,dy Rotate without extend immediate

ro<d> <ea> Rotate without extend memory

rox<d>.s Dx,Dy Rotate with extend register

rox<d>.s #<data>,dy Rotate with extend immediate

rox<d> <ea> Rotate with extend memory

rte Return from exception

rtr Return and restore condition codes

rts Return from subroutine

sbcd Dy,Dx Subtract decimal with extended register

Table 1-22 Mnemonic Summary (continued)

Mnemonic Description
Ultra C/C++ Processor Guide 49

1 68K
sbcd -(Ay),-(Ax) Subtract decimal with extended
memory

s<cc> <ea> Set according to conditional registers.
cc represents the branch condition
code.

stop #<data> Load and stop

sub.s <ea>,Dn Subtract binary register

sub.s Dn,<ea> Subtract binary memory

suba.s <ea>,An Subtract address (.w or .l)

subi.s #<data>,<ea> Subtract immediate

subq.s #<data>,<ea> Subtract quick

subx.s Dy,Dx Subtract with extend register

swap Dn Swap register halves

tas <ea> Test and set operand

trap #<vector> Trap

trapv Trap on overflow

tst.s <ea> Test operand

unlk An Unlink

Table 1-22 Mnemonic Summary (continued)

Mnemonic Description
50 Ultra C/C++ Processor Guide

168K
Additional Information for 68020, 68030,
68040, 68060, and CPU32 Processors

The assembler can process all 680x0 instructions and syntax. However,
there is a superset of 68020, 68030, 68040, 68060, and CPU32
instructions. The information presented in this section is in addition to
the information in the preceding sections.

Floating Point Numbers

Specify floating point numbers in the following format (the exponent
may be specified with either an uppercase or lowercase e):

[-]digits[.digits[e[±][digits]

The range for floating point numbers is ±2.2*10^-308 to
±1.8*10^308. For example:

-1. 10.5 1e5

-1.36E-124 106352.671e4 123456789

Assembly Language Mnemonics

Table 1-23 Reserved Register Names

Register Name Description

sfc Source function code

dfc Destination function

cacr Cache control register
Ultra C/C++ Processor Guide 51

1 68K
vbr Vector base register

caar Cache address register

msp Master stack pointer

isp Interrupt stack pointer

tc MMU translation control register

itt0 Instruction transparent translation register 0

itt1 Instruction transparent translation register 1

dtt0 Data transparent translation register 0

dtt1 Data transparent translation register 1

mmusr MMU status register

urp User root pointer

srp Supervisor root pointer

iacr0 Instruction access control register 0

iacr1 Instruction access control register 1

dacr0 Data access control register 0

dacr1 Data access control register 1

Table 1-23 Reserved Register Names (continued)

Register Name Description
52 Ultra C/C++ Processor Guide

168K
vbr Vector base register

caar Cache address register

msp Master stack pointer

isp Interrupt stack pointer

tc MMU translation control register

itt0 Instruction transparent translation register 0

itt1 Instruction transparent translation register 1

dtt0 Data transparent translation register 0

dtt1 Data transparent translation register 1

mmusr MMU status register

urp User root pointer

srp Supervisor root pointer

iacr0 Instruction access control register 0

iacr1 Instruction access control register 1

dacr0 Data access control register 0

dacr1 Data access control register 1

Table 1-23 Reserved Register Names (continued)

Register Name Description
Ultra C/C++ Processor Guide 53

1 68K
In the following definitions, (disp) is an expression. If disp is a
symbol ending with .w or .l, the parentheses are required to
distinguish the symbol name from the size extension. *S is an optional
scale factor. If *S is used, it must be *1, *2, *4, or *8.

For the memory indirect addressing modes, all four parameters are
optional. The assembler encodes the proper modes to indicate the
suppression of the missing parameters. The assembler accepts the
68000 addressing modes d(An) and d(An,Xn.s). In this case, the
68020 brief format extension format is generated. If the operand begins
with a left parenthesis ((), the 68020 full format extension format is
always generated.

buscr Bus control register

pcr Data access control register 1

Table 1-24 Addressing Mode Syntax

Addressing Mode Description

((disp).w,An) Address register indirect with offset

((disp).s,An,Xn.s*S) Address register indirect with index
(base displacement)

([(disp).s,An],Xn.s*S,(disp).
s)

Memory indirect post-indexed

([(disp).s,An,Xn.s*S],(disp).
s)

Memory indirect pre-indexed

Table 1-23 Reserved Register Names (continued)

Register Name Description
54 Ultra C/C++ Processor Guide

168K
Table 1-25 Mnemonic Summary

Mnemonic Description

b<cc>.b <label> Conditional branch byte displacement

b<cc>.w <label> Conditional branch word displacement

b<cc>.l <label> Conditional branch long displacement

bfchg <ea>{offset:width} Test bit field and change

bfclr <ea>{offset:width} Test bit field and clear

bfexts <ea>{offset:width},Dn Extract bit field signed

bfextu <ea>{offset:width},Dn Extract bit field unsigned

bfffo <ea>{offset:width},Dn Find first one in bit field

bfins Dn,<ea>{offset:width} Insert bit field

bfset <ea>{offset:width} Set bit field

bftst <ea>{offset:width} Test bit field

bgnd Enter background mode

bkpt #<data> Breakpoint

bra.b <label> Branch byte displacement

bra.w <label> Branch word displacement

bra.l <label> Branch long displacement

bsr.b <label> Branch subroutine byte displacement
Ultra C/C++ Processor Guide 55

1 68K
bsr.w <label> Branch subroutine word displacement

bsr.l <label> Branch subroutine long displacement

callm #<data>,<ea> Call module

cas Dc,Du,<ea> Compare and swap with operand

cas2
Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)

Compare and swap with operand

chk.l <ea> Check register against bounds

chk2.s <ea>,Rn Check register against bounds (.b, .w,
or .l)

cinv Invalidate cache lines

cmp2.s <ea>,Rn Compare register against bounds (.b,
.w, or .l)

cpush Push and invalidate cache lines

divs.w <ea>,Dn Signed divide - 32/16→16r:16q

divs.l <ea>,Dq Signed divide - 32/32→32q

divs.l <ea>,Dr:Dq Signed divide - 64/32→32r:32q

divsl.l <ea>,Dr:Dq Signed divide - 32/32→32r:32q

divu.w <ea>,Dn Unsigned divide - 32/16→16r:16q

divu.l <ea>,Dq Unsigned divide - 32/32→32q

divu.l <ea>,Dr:Dq Unsigned divide - 64/32→32r:32q

Table 1-25 Mnemonic Summary (continued)

Mnemonic Description
56 Ultra C/C++ Processor Guide

168K
divul.l <ea>,Dr:Dq Unsigned divide - 32/32→32r:32q

extb.l Dn Extend byte to longword

link.l An, #<displacement> Link and allocate (long displacement)

lpstop Low-power stop

movec Rc,Rn Move from control register †

movec Rn,Rc Move to control register †

moves.s Rn,<ea> Move to address space

moves.s <ea>,Rn Move from address space

move16 Move 16 byte block

muls.w <ea>,Dn Signed multiply 16 x 16→32

muls.l <ea>,Dn Signed multiply 32 x 32→32

muls.l <ea>,Dh:Dl Signed multiply 32 x 32→64

mulu.w <ea>,Dn Unsigned multiply 16 x 16→32

mulu.l <ea>,Dn Unsigned multiply 32 x 32→32

mulu.l <ea>,Dh:Dl Unsigned multiply 32 x 32→64

pack -(Ax),-(Ay),#<adjust> Pack BCD

pack Dx,Dy,#<adjust> Pack BCD

pflush Flush entry in the ATC

pload Load an entry into the ATC

Table 1-25 Mnemonic Summary (continued)

Mnemonic Description
Ultra C/C++ Processor Guide 57

1 68K
† Valid registers for Rc: sfc, dfc, cacr, usp, vbr, caar, msp,
isp, tc, itt0, itt1, dtt0, dtt1, mmusr, urp, buscr, pcr,
srp, iacr0, iacr1, dacr0, and dacr1.

plpar (An) Load physical address (read)

plpaw (An) Load physical address (write)

ptest Test a logical address

rtd #<displacement> Return and deallocate

rtm Rn Return from module

trap <cc> Trap on condition

trap <cc>.w #<data> Trap on condition

trap <cc>.l #<data> Trap on condition

unpk -(Ax),-(Ay),#<adjust> Unpack BCD

unpk Dx,Dy,#<adjust> Unpack BCD

Table 1-25 Mnemonic Summary (continued)

Mnemonic Description
58 Ultra C/C++ Processor Guide

168K
68881/68882/68040/68060 Floating Point
Mnemonics

The assembler recognizes instructions and addressing modes
referencing the 68881 floating point coprocessor.

The following register names are reserved for referencing the 68881.
They may not be redefined or used out of context, unless you use the
assembler -r option:

FPnFloating point register (0-7)

FPcrFloating point control register

FPsrFloating point status register

FPiarFloating point instruction address register

The assembler recognizes the following floating operand data format
extensions:

B Byte integer

W Word integer

L Longword integer

S Single-precision real

D Double-precision real

X Extended precision real

The P (packed decimal real) data format is not supported.

Floating point constants may be specified when a floating point
instruction indicates immediate addressing. Floating point constants
can be given in decimal format or left-justified hexadecimal format. The
size of the immediate data value is determined from the data format
extension given on the floating point instruction. Single-precision values
are stored internally as double-precision and converted to
single-precision before storing into the instruction. Extended precision
constants can be given only as hexadecimal values.
Ultra C/C++ Processor Guide 59

1 68K
Floating Point Examples

Floating point expressions are not supported.

The 68881 instruction mnemonic summary uses the notation:

<data>Immediate data of appropriate size

<ea>Any legal addressing mode for the instruction

Table 1-26 Floating Point Examples

Example Description

fadd.l #10,fp0 Long integer value of 10 is converted
to extended and added to fp0

fadd.l #0x10,fp0 Same as above

fadd.s #5,fp0 Single-precision value of 5 is converted
to extended and added to fp0

fadd.s #0x40A0,fp0 Same as above

fadd.d #1.3e4,fp0 Double-precision value of 130000 is
converted to extended precision and
added to fp0.

fadd.d #0x40C964,fp0 Same as above

fadd.x #0x3ff,fp0 Extended value of 3FF000000000000
is added to fp0
60 Ultra C/C++ Processor Guide

168K
In the 68881 instruction mnemonic summary, the following format
describes the instructions:

Mnemonic Format Syntax Description
<inst> b,w,l,s,d or x <syntax> <description of

 instruction>

For example:
fadd b,w,l,s,d,x <ea>,FPn Add

x FPm,FPn

The preceding example describes the fadd instruction. It shows that
the add instruction may take the form fadd.b, fadd.w, or fadd.l and
use the syntax <ea>,FPn. However, fadd.x may use the syntax
FPm,FPn. For example:

fadd.x fp0,fp1
fadd.x #5,fp0

Dyadic Instructions

Dyadic floating point instructions require two source operands.

• The first source operand can be any effective address or a floating
point register

• The second source operand must be a floating point register

The results of the operation are stored in this same register. The
general format of the dyadic instructions is as follows:

Mnemonic Format Syntax
<dyadic inst> b,w,l,s,d,x <ea>,FPn

x FPm,FPn
Ultra C/C++ Processor Guide 61

1 68K
The following 68881 floating point instructions use the above dyadic
syntax:

Table 1-27 Dyadic 68881 Floating Point Instructions

Mnemonic Description

fadd Add

fcmp Compare

fdiv Divide

fmod Module remainder

fmul Multiply

frem IEEE remainder

fscale Scale exponent

fsgldiv Single precision divide

fsglmul Single precision multiply

fsub Subtract
62 Ultra C/C++ Processor Guide

168K
Monadic Instructions

Monadic floating point instructions require only one source operand.
These instructions can specify a source and destination operand. The
source operand can be any effective address or a floating point register.
The operation is performed on the source operand and the result is
placed in the destination operand, which is always a floating point
register. If the source operand is

• An effective address, any operand format can be given.

• A floating point register, only the x format is allowed.

If no destination floating point register is given, the operation is
performed on the given register and the resulting value is stored in the
same register.

The general format of the monadic instructions is as follows:

Mnemonic Format Syntax
<monadic inst> b,w,l,s,d,x <ea>,FPn

x FPm,FPn
x FPn

The following 68881 floating point instructions use this monadic syntax:

Table 1-28 Monadic 68881 Floating Point Instructions

Mnemonic Description

fabs Absolute value

facos Arc cosine

fasin Arc sine

fatan Arc tangent

fatanh Hyperbolic arc tangent

fcos Cosine
Ultra C/C++ Processor Guide 63

1 68K
fcosh Hyperbolic cosine

fetox ex

fetoxm1 e(x-1)

fgetexp Get exponent

fgetman Get mantissa

fint Integer part

fintrz Integer part; round to zero

flog10 Log10

flog2 Log2

flogn Loge

flognp1 Loge-1

fneg Negate

fsin Sine

fsinh Hyperbolic sine

fsqrt Square root

ftan Tangent

ftanh Hyperbolic tangent

Table 1-28 Monadic 68881 Floating Point Instructions (continued)

Mnemonic Description
64 Ultra C/C++ Processor Guide

168K
Data Movement Instructions

ftentox 10x

ftwotox 2x

Table 1-28 Monadic 68881 Floating Point Instructions (continued)

Mnemonic Description

Table 1-29 Data Movement Instructions

Mnemoni
c Format Syntax Description

fmove x FPm,FPn Floating move

b,w,l,s,d,
x

<ea>,FPn

b,w,l,s,d,
x

FPm,<ea>

l <ea>,FPcr

l FPcr,<ea>
Ultra C/C++ Processor Guide 65

1 68K
fmovecr #ccc,FPn Move from constant
ROM

fmovem l,x

l,x

x

x

<flist>,<ea
>

<ea>,<flist
>

Dn,<ea>

<ea>,Dn

Move multiple floating
registers. <flist> is
a sequence of floating
registers. A slash (/)
separates each
register in the list.
Consecutive registers
may be grouped by
using a hyphen (-)
between the beginning
and ending registers.
If l format is given,
only FPCR, FPSR, or
FPIAR are allowed. If
x is given, only
FP0-FP7 are allowed.

Table 1-29 Data Movement Instructions (continued)

Mnemoni
c Format Syntax Description
66 Ultra C/C++ Processor Guide

168K
Program Control Instructions

† This instruction uses floating point condition predicates for <cc>.

Table 1-30 Program Control Instructions

Mnemonic Syntax Description

fb<cc> <label> Branch on floating condition †

fdb<cc> Dn,<label
>

Decrement and branch on floating
condition †

fnop No operation

fs<cc> <ea> Set on floating condition †

ftst <ea> Test floating operand
Ultra C/C++ Processor Guide 67

1 68K
System Control Operations

† This instruction uses floating point condition predicates for <cc>.

The fsincos instruction is a special dual monadic instruction.
Consequently, two operands are given:

Mnemonic Format Syntax Description
fsincos b,w,l,s,d,x <ea>,FPc:FPs Simultaneous sine

 and cosine.
x FPm,FPc:FPs FPc is the resulting

cosine value,
FPs is the resulting
sine value.

Table 1-31 System Control Operations

Mnemonic Syntax Description

frestore <ea> Restore internal state

fsave <ea> Save internal state

ftrap<cc> #<data> Trap on floating condition †
68 Ultra C/C++ Processor Guide

168K
Floating Point Condition Predicates used for
<cc>

Table 1-32 Floating Point Condition Predicates Used
for <cc>

Mnemonic Description

eq Equal

f False

ge Greater than or equal

gl Greater or less than

gle Greater or less than or equal

gt Greater than

le Less than or equal

lt Less than

ne Not equal

nge Not greater than or equal

ngl Not greater or less than

ngle Not greater or less than or equal

ngt Not greater than
Ultra C/C++ Processor Guide 69

1 68K
nle Not less than or equal

nlt Not less than

oge Ordered greater than or equal

ogl Ordered greater or less than

ogt Ordered greater than

ole Ordered less than or equal

olt Ordered less than

or Ordered

seq Signaling equal

sf Signaling false

sne Signaling not equal

st Signaling true

t True

ueq Unordered or equal

uge Unordered or greater than or equal

ugt Unordered or greater than

ule Unordered or less than or equal

Table 1-32 Floating Point Condition Predicates Used
for <cc> (continued)

Mnemonic Description
70 Ultra C/C++ Processor Guide

168K
ult Unordered or less than

un Unordered

Table 1-32 Floating Point Condition Predicates Used
for <cc> (continued)

Mnemonic Description
Ultra C/C++ Processor Guide 71

1 68K
Constant ROM Table

The following are offsets into the 68881 constant ROM that contain
useful values:

Table 1-33 Constant ROM Table

Offset Constant

$00 PI

$0B Log10
(2)

$0C e

$0D Log2
(e)

$0E Log10
(e)

$0F 0.0

$30 ln2

$31 ln10

$32 100

$33 101

$34 102

$35 104

$36 108
72 Ultra C/C++ Processor Guide

168K
If stack checking is inappropriate for the module being created, define
the following:

• 32-bit global called _stklimit (initialized to a large positive value if
possible)

• Function called _stkhandler that just returns to its caller

A function called _stkoverflow is called when the stack appears to
overflow. If a non-static function called _stkoverflow resides in an
ROF that is linked to make the object module, that function is called
instead of the default function. The default function writes a message to
the standard error path and causes the program to exit with a status of
one. _stkoverflow neither accepts parameters nor returns a value.

$37 1016

$38 1032

$39 1064

$3A 10128

$3B 10256

$3C 10512

$3D 101024

$3E 102048

$3F 104096

Table 1-33 Constant ROM Table (continued)

Offset Constant
Ultra C/C++ Processor Guide 73

1 68K
NoteNote
If _stkoverflow is inappropriate for your application, consider writing
a function to handle stack overflow.

The function that checks for stack overflow, _stkhandler, may be
revised. This may be necessary if stack checking is inapplicable to the
module that calls the library functions. _stkhandler() neither
accepts parameters nor returns a value.

The following source files (Default Stack Handler Function and Default
Stack Overflow Message and Exit) contain the code for the stack
checking and error exiting routines for 68K.

NoteNote
Stack handler code must be compiled with stack checking turned off
(-r in ucc mode).

Default Stack Handler Function

/* typedef to the 1 byte unit so pointer arithmetic is easy */
typedef unsigned char byte;

static byte *__asm_get_stack(); /* get current stack pointer */
static void __asm_put_stack(byte *);/* set current stack pointer */

/*
_stkhandler()
Checks for stack overflow. _stklimit will be set with the negative
value of the number of bytes that the function needs. This function
does not take too much advantage of old information in the globals
because old stack checking code does not update it.

*/
void _stkhandler()
{

byte *sp; /* stack pointer */
74 Ultra C/C++ Processor Guide

168K
/*
Figure out what stack limit should really be.
This is necessary because we may have gotten here after an
arbitrary number of calls to the old stack checking code which
only modifies _stbot.

*/
if ((_stklimit = (sp = __asm_get_stack())) - (byte *)_stbot) < 0) {

_stbot = sp;
_stklimit = 0;

if (sp <= (byte *)_mtop) { /* overflow? */
__asm_put_stack(sp - 256);
_stklimit = 256;
_stkoverflow();

}

_maxstack = (byte *)_sttop - sp;/* reset maximum so far */
}

}

static byte *__asm_get_stack(void)
{

register byte *stack_ptr;

_asm(“ move.l %0,%1", __reg_a7(),
 __reg_gen(__obj_assign(stack_ptr)));

return stack_ptr;
}

static void __asm_put_stack(new_sp)
byte *new_sp;
{

_asm(“ move.l %1,%0", __reg_a7(), __reg_gen(new_sp));
}

Ultra C/C++ Processor Guide 75

1 68K
Default Stack Overflow Message and Exit
static const char ovf[] = "**** Stack Overflow ****\n";

/*
_stkoverflow()
print a message and exit

*/
void _stkoverflow()
{

/* write message above to stderr and exit */
u_int32 size = sizeof(ovf);

if (stderr->_flag & _WRITE)
 _os_writeln(_fileno(stderr), (void *)ovf, &size);
_os_exit(EOS_STKOVF);

}

76 Ultra C/C++ Processor Guide

Chapter 2: ARM

This chapter contains information specific to the ARM family of
processors. The following sections are included:

• Executive and Phase Information
• C/C++ Application Binary Interface Information
• _asm() Register Pseudo Functions
• Assembler/ Linker
• Stack Checking
77

2 ARM
Executive and Phase Information

Executive -tp enables specific options dependent upon executive
mode. Processors and sub-options for ucc and c89 option modes are
identified in this section.

Executive -tp Option

-tp[=]<target>{[,]<suboptions>}Specify Target Processor
and Target Processor Options

Specify the target processor <target> and target processor
sub-options. Target processors are identified in Table 2-1 and
-tp sub-options are identified in Table 2-2.

Table 2-1 Target Processor

Target Target Processor

ARM Generic ARM

ARMV3 ARM Version 3

ARM710A ARM 710A Version 3

ARMV4 ARM Version 4

ARM7TDMI ARM 7TDMI

ARMV4BE ARM Version 4 big-endian

ARMV5 ARM Version 5 (big-endian)

XScale Intel XScale Architecture (big-endian)
78 Ultra C/C++ Processor Guide

2ARM
Predefined Macro Names for the Preprocessor

The macro names in Table 2-3 are predefined in the preprocessor for
target systems.

Table 2-2 Mode -tp Sub-Options

Suboptions Description

sd Use 12-bit data references

ld Use 20-bit data references (default)

fp Use static link library for floating-point
support

vld Use 28-bit data references

scd Use 12-bit const data references

lcd Use 20-bit const data references
(default)

vlcd Use 28-bit const data references

Table 2-3 Macros

Macro Description

_MPFARM Generic ARM processor

_MPFARMBE Generic ARM processor (big-endian)

_MPFARMV3 ARM Version 3 processor

_MPFARM710A ARM 710A processor
Ultra C/C++ Processor Guide 79

2 ARM
Target names specify the compiler to use when writing machine- and
operating system-independent programs.

The executive defines the _MPF macro for the target processor as well
as any processors that are generally considered subsets of the target
processor. Table 2-4 provides a few examples of this behavior.

For more information on exactly which macros are defined for the ARM
processors, run the executive in verbose and dry run modes stopping
after the front end. For example, to check the defines for the
ARM7TDMI target (source file not required):

cc -b -h -efe -tp=ARM7TDMI t.c

This causes the executive to print a line similar to:

“cpfe -m --target=10 -I/dd/MWOS/SRC/DEFS -I/dd/MWOS/OS9000/SRC/DEFS
-I/dd/MWOS/OS9000/ARMV4/DEFS -D_UCC -D_SPACE_FACTOR=1 -D_TIME_FACTOR=1
-D_OS9000 -D_MPFARM7TDMI -D_MPFARMV4 -D_MPFARM -D_FPFARM -D_LIL_END
-w --Extended_ANSI --gen_c_file_name=t.i t.c"

_MPFARMV4 ARM Version 4 processor

_MPFARM7TDMI ARM 7TDMI processor

_MPFARMV4BE ARM Version 4 processor, big-endian

_MPFARMV5 ARM Version 5 processor, big-endian

_MPFXSCALE Intel XScale processor, big-endian

_FPFARM ARM floating point processor

_FPFARMBE ARM floating point processor,
big-endian

Table 2-3 Macros (continued)

Macro Description
80 Ultra C/C++ Processor Guide

2ARM
NoteNote
Note that _MPFARM7TDMI, MPFARMV4, and _MPFARM macros are
defined.

The _MPFARM macro indicates that a source file is being compiled for
an ARM little-endian family target. The _MPFARMBE macro indicates
that a source file is being compiled for an ARM big-endian family target.

Table 2-4 identifies the relationship between the target processor and
the preprocessor macros. Note that specific targets also define the
subset macros (example: when targeting the ARM7TDMI,
_MPFARM7TDMI, ARMV4, and _MPFARM are defined).

Table 2-4 _MPFxxx Macro Behavior

Target Microprocessor Family Macros Defined

Generic ARM _MPFARM _MPFARMV3

ARM Version 3 _MPFARM _MPFARMV3

710A _MPFARM _MPFARMV3 _MPFARM710A

ARM Version 4 _MPFARM _MPFARMV4

7TDMI _MPFARM _MPFARMV4 _MPFARM7TDMI

ARM Version 4,
big-endian

_MPFARMBE _MPFARMV4BE
Ultra C/C++ Processor Guide 81

2 ARM
ARM-Unique Phase Option Functionality

Phases having unique phase option functionality on the ARM processor
are:

• Back End Options
• Assembly Optimizer Options

• Linker Options

Back End Options
-m=<non remote memory left>

Informs the back end that other files in
the program have used some amount of
the 4K data area.

The back end orders the data area based on static analysis of the data
area objects and sorts the data based on usage and size. This means
that the most heavily used objects end up in the non-remote area. To do
this, the back end needs information about how the object linker lays out
the data area for the entire program.

ARM Version 5,
big-endian

_MPFARMBE _MPFARMV5

Intel XScale
processor,
big-endian

_MPFARMBE _MPFARMV5 _MPFXSCALE

Table 2-4 _MPFxxx Macro Behavior (continued)

Target Microprocessor Family Macros Defined
82 Ultra C/C++ Processor Guide

2ARM
Code generation options provide specifications for code generated by
the back end.

Target architecture code generation options provide specifications
unique to a target architecture for code generated by the back end.

Table 2-5 Code Generation Options

Option Description

-px Make references to external data extra long (28/32 bits)

-pxc Make some references to code symbols extra long (28/32
bits)

-pl Make references to external data long (20/24 bits)

-plc Make some references to code symbols long (20/24 bits)

-ps Disable stack checking code

-pg Enable the back end to generate code to derive r12 rather
than relying on a globally set r12 for each function that
needs it. This option might be used for non-program
modules that have multiple entry points.
Ultra C/C++ Processor Guide 83

2 ARM
-p<target architecture> Identifies the target architecture for
which to generate code. Availability of
halfword and signed byte load and store
instructions differ based upon target
architecture.

NoteNote
ARM Version 3 code executes correctly on ARM Version 4 architecture,
however, there is a degradation in performance on signed byte and
halfword data.

Because the ARM Version 3 lacks instructions to load and store
halfwords as a unit, it is impossible to generate strictly correct code for
manipulating objects of type volatile short, volatile signed short, and
volatile unsigned short. This affects those writing code such as device
drivers, since a two-byte memory-mapped I/O port cannot be properly
accessed on an ARM Version 3.

Table 2-6 <target architecture> Code Generation Options

Option Description

-parmv3 Generate code which does not use halfword or
signed byte load and store instructions. (Not
available in little-endian code generator)

-parmv4 Generate code which uses halfword and signed
byte load and store instructions.

-parmv5 Generate code identical to -parmv4. (Not available
in little-endian code generator)
84 Ultra C/C++ Processor Guide

2ARM
Assembly Optimizer Options
-t[=]<num> Specify target processor family

-p=<X> Selectively skip processor-specific
optimizations

-s<method> Set the peephole scheduling method

Table 2-7 Assembly Optimizer Processor Numbers

<num> Assembly Optimizer Target

1 ARM (default)

Table 2-8 Assembly Optimizer Processor-Specific Optimizations

<X> Processor-Specific Optimization

l Location tracking

c Conditionalized execution

p Pooling of PC-relative data

r Copy/shift propagation

Table 2-9 Peephole Scheduling Methods

<method> Description

s Spread dependent instructions

c Compress floating point instructions
Ultra C/C++ Processor Guide 85

2 ARM
Linker Options
-t=<target> Linker, specify target module type

n No reordering of instructions

b Both spread and compress

Table 2-10 Target Module Type

Target Module Type

os9k_arm OS-9 for ARM

os9k_armbe OS-9 for ARM, big-endian

Table 2-9 Peephole Scheduling Methods

<method> Description
86 Ultra C/C++ Processor Guide

2ARM
C/C++ Application Binary Interface
Information

Register usage, passing arguments to functions, and language features
are described in this section.

Register Usage

General purpose, floating point, and other registers are identified in this
section.

Table 2-11 Register Classes

Register Class Names Used

General Purpose Registers r0 - r15, gp, cp, sp,
lr, pc

Floating Point Registers f0 - f7

Coprocessor Registers c0 - c15

Program Status Registers cpsr, spsr
Ultra C/C++ Processor Guide 87

2 ARM
General Purpose Registers.

* If register is not in use as described in the table, it can be used for integral
user register variables and compiler temporaries.

† Used to access const qualified data in the code area of the module. This
is accomplished by using the register as a pointer to the code area data.
The register is automatically initialized by the kernel for program modules.
Non-program modules must either set the register up themselves or use
the back end option -pg to generate the code to set up the register for each
function that needs it.

Table 2-12 General Purpose Register Use for 32-bit Arguments

Register
Alternate
Name Description

r0-r5 Callee-saved register (for locals and temporaries).

r6 gp Static storage pointer.

r7 1st integral argument passed; integral return value.
For functions returning aggregates (e.g., structures)
this points to the returned aggregate.*

r8 2nd integral argument passed. *

r9 3rd integral argument passed. *

r10 4th integral argument passed. *

r11 Caller-saved register (for locals and temporaries).

r12 cp Constant storage pointer. †

r13 sp Stack pointer.

r14 lr Subroutine link register.

r15 pc Program counter.
88 Ultra C/C++ Processor Guide

2ARM
The values in r7 through r11 need not be preserved across a function
call. That is, a function is safe to use these registers without saving and
restoring their values.

The compiler uses the remainder of the integral registers (r0 through
r5) for integral user register variables and compiler temporaries.

ARMV4 only: Table 2-13 shows how registers r7-r10 are used for
64-bit long long integer arguments. Any consecutive registers from the
set of R7-R10 can be used to hold a long long integer argument. The
lower numbered register holds the least significant 32 bits of the
argument and the higher numbered register holds the most significant
32 bits of the argument.

An interesting situation can occur when a function has both long long
and other integral arguments. If three of the registers hold long
arguments and the next argument is a long long, then the long long will
be saved on the stack. Long long arguments will continue to be stored
on the stack until a 32-bit integer argument is encountered and stored in
R10. Therefore the argument in register R10 can not be assumed to be
the argument that logically follows the argument in R9.

* If register is not in use as described in the table, it can be used for integral
user register variables and compiler temporaries.

Table 2-13 General Purpose Register Use for 64-bit Arguments

Register
Alternate
Name Description

r7 32-bit segment of integral return value. For
functions returning aggregates (e.g., structures) this
points to the returned aggregate.*

r8 32-bit segment of integral argument passed. *

r9 32-bit segment of integral argument passed. *

r10 32-bit segment of integral argument passed. *
Ultra C/C++ Processor Guide 89

2 ARM
Floating Point Registers

When not in use, any of registers f0 through f3 can be used as
temporary register variables.

Functions can use the values in registers f0 through f3 (caller saved
registers) without saving/restoring them for the functions’ callers. A
calling function must save them if they expect to keep their values
across the call to a function.

The compiler uses the remainder of the floating point registers (f4
through f7) for floating point user register variables and compiler
temporaries.

Passing Arguments to Functions

When an argument is passed to a called function, the argument is in
one of two places, in a register or in the Output Parameter Area (OPA)
of the calling function.

The called function determines the location of the argument by
argument type and the order specified in the argument list.

For this discussion:

Table 2-14 Floating Point Registers

Register Description

f0 1st floating point argument passed, floating point return
value

f1 2nd floating point argument passed

f2 3rd floating point argument passed

f3 4th floating point argument passed
90 Ultra C/C++ Processor Guide

2ARM
• An integral argument is an argument of type int, a pointer, or a
char or short converted to an int.

• A floating point argument is an argument of type double or a
float converted to a double.

There are four integral registers used for parameter passing: r7 through
r10 inclusive. Four floating point registers are available for floating point
parameter passing: f0 through f3 inclusive.

The OPA is also used to pass arguments (when the registers have been
exhausted). Figure 2-1 illustrates a stack frame for a function.

Figure 2-1 Stack Frame for a Function

Caller's Stack Frame

Return Address
(4 bytes)

Register Save Area

Locals and Compiler
Temporaries Area

Output Parameter Area

Old Stack Pointer
(4 bytes)

Higher Addresses

Stack Pointer
Lower Addresses

Function
Stack
Frame
Ultra C/C++ Processor Guide 91

2 ARM
The basic algorithm the compiler uses to pass arguments is as follows:
if function returns a struct

put address of struct return area into first integral passing register
while still more arguments

if parameter is part of variable arguments
put argument into next position in OPA

else if argument is a struct
copy struct into next position in OPA

else
if argument is integral

if argument is 64-bit integer type
if pair of integral passing registers are available

put argument into register pair
else

put argument into next two 32-bit words of OPA
else

if an integral passing register is available
put argument into integral register

else
put argument into next position in OPA

else if argument is floating-point
if a floating-point passing register is available

put argument into floating-point register
else

put argument into next position in OPA
advance to next argument

The OPA is filled from lowest address to highest address.

Struct arguments and parameters that comprise the variable
argument to a variable argument function are always passed on the
OPA. If a function is to return a value, an integral return value is
returned in r7 or a floating point return value is returned in f0. If a
function is to return a struct, the address of a return area is passed
as the first integral argument, in r7.
92 Ultra C/C++ Processor Guide

2ARM
C Language Features

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Other implementation-defined areas are identified in the Language
Features chapter of the Using Ultra C/C++ manual and the Overview
chapter of the Ultra C Library Reference manual. Refer to an
ANSI/ISO specification for more information.

In conformance with the ANSI/ISO C specification, the
implementation-defined areas of the compiler are listed in this section.
Each bulleted item contains one implementation- defined issue. The
number in parentheses included with each bulleted item indicates the
location in the ANSI/ISO specification where further information is
provided.

Characters
• The number of bits in a character in the execution character set

(5.2.4.2.1).

There are eight bits in a character in the execution character set.
Ultra C/C++ Processor Guide 93

2 ARM
Integers
• The representations and sets of values of the various integer types

(6.1.2.5).

Table 2-15 Integer Type/Range

Type Representation
Minimum /
Maximum

char, signed char 8 bit 2’s complement -128 /
127

unsigned char 8 bit binary 0 /
255

short int * 16 bit 2’s complement -32768 /
32767

unsigned short
int *

16 bit binary 0 /
65535

int 32 bit 2’s complement -2147483648 /
2147483647

unsigned int 32 bit binary 0 /
4294967295

long int 32 bit 2’s complement -2147483648 /
2147483647

unsigned long int 32 bit binary 0 /
4294967295
94 Ultra C/C++ Processor Guide

2ARM
* On ARM V3 architecture, it is not possible to access 16-bit values with a
single instruction. Use of volatile on this integer type generates a warning.

• The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented (6.2.1.2).

When converting a longer integer to a shorter signed integer, the
least significant <n> bits of the longer integer are moved to the
integer of <n> bits. The resulting value in the smaller integer is
dictated by the representation. For example, if the conversion is from
int to short, then the least significant 16 bits are moved from the
int to the short. This value is then considered a 2’s complement
16-bit integer.

When conversion from unsigned to signed occurs with equally sized
integers, the most significant bit becomes the sign bit. Therefore, if
the unsigned integer is less than 0x80000000, the conversion has
no affect. Otherwise, a negative number results.

• The sign of the remainder on integer division (6.3.5).

The result of an inexact division of one negative and one positive
integer is the smallest integer greater than or equal to the algebraic
quotient.

The sign of the remainder on integer division is the same as that of
the dividend.

long long 64-bit 2’s complement -263 /

263 -1

unsigned long
long

64-bit binary 0 /

264 -1

Table 2-15 Integer Type/Range

Type Representation
Minimum /
Maximum
Ultra C/C++ Processor Guide 95

2 ARM
Floating Point
• The representations and sets of values of the various types of

floating-point numbers (6.1.2.5).

Refer to the float.h header file for other limits and values.

Arrays and Pointers
• The type of integer required to hold the maximum size of an array.

That is, the type of the size of operator, size_t (6.3.3.4, 7.1.1).

An unsigned long int is required to hold the maximum size of
an array. unsigned long int is defined as to size_t in
ansi_c.h.

• The result of casting a pointer to an integer or vice versa (6.3.4).

Since pointers are treated much like unsigned long integers, the
integer is promoted using the usual promotion rules to an unsigned
long. That is, the sign bit propagates out to the full 32-bit width.

• The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdiff_t (6.3.6, 7.1.1).

Table 2-16 Floating Point Number Characteristics

Type Format
Minimum /
Maximum

float 32-bit
IEEE 754

1.17549435e-38f /
3.40282347e38f

double 64-bit
IEEE 754

2.2250738585072016e-308 /
1.7976931348623157e308

long double 64-bit
IEEE 754

2.2250738585072016e-308 /
1.7976931348623157e308
96 Ultra C/C++ Processor Guide

2ARM
A signed long int is required to hold the difference between two
pointers to elements of the same array. long int is defined as
ptrdiff_t in ansi_c.h.

Registers
• The extent to which objects can actually be placed in registers by

use of the register storage-class specifier (6.5.1).

The compiler automatically makes decisions about what objects are
placed in registers, thus giving no special storage considerations for
the register storage-class.

Structures, Unions, Enumerations, and Bit-Fields
• The padding and alignment of members of structures (6.5.2.1). This

should present no problem unless binary data written by one
implementation are read by another.

Table 2-17 shows the alignment of the various objects within a
structure. Required padding is supplied if the next available space is
not at the correct alignment for the object. For example, a structure
declared as:

 struct {
 char mem1;
 long mem2;

 };

would be an eight-byte structure (64-bit), one byte for mem1, four
bytes for mem2, and three bytes of padding to complete the
structure.
Ultra C/C++ Processor Guide 97

2 ARM
• Whether “plain” int bit-field is treated as a signed int or as an
unsigned int bit-field (6.5.2.1).

A “plain” int bit-field is treated as a signed int bit-field.

• The order of allocation of bit fields within a unit (6.5.2.1).

Bit fields are allocated from most significant bit to least significant bit.

• Whether a bit-field can straddle a storage-unit boundary (6.5.2.1).

Bit fields are allocated end-to-end until a non-bit field member is allocated or until
that positioning would cross an addressable boundary such that no object of an
integral type could both contain the bit field and be correctly aligned.

Table 2-17 Alignment Table

Type Alignment Requirement

char 1

short 2

int 4

long 4

long long 4

pointers 4

float 4

double 4

long double 4
98 Ultra C/C++ Processor Guide

2ARM
• The integer type chosen to represent the values of an enumeration
type (6.5.2.2).

Enum values are represented in 32-bit two’s complement integers.

Processing Directives
• Whether the value of a single-character, character constant in a

constant expression that controls inclusion matches the value of the
same character constant in the execution character set. Whether
such a character constant may have a negative value (6.8.1).

The value of a single-character character constant in a constant expression that
controls inclusion matches the value of the same character constant in the
execution character set. This character constant may have a negative value.

• The method for locating includable source files (6.8.2).

This method is described in the Using the Executive chapter of the Using Ultra
C/C++ manual.

• The support of quoted names for includable source files (6.8.2).

Quoted names are supported for #include preprocessing directives.

• The mapping of source file character sequences (6.8.2).

The mapping of source file character sequences is one-to-one. The
case-sensitivity of file names depends on the file system being used.

ARM Processor-Specific Optimizations

The Ultra C/C++ ARM assembly optimizer (optarm), in addition to
providing the standard generic assembly optimizations, provides
processor-specific optimizations. These are:

• Special Common Sub-Expressions
• Code Area Data Pooling and Consolidation
• Conditionalizing of Instructions
• Copy Propagation
Ultra C/C++ Processor Guide 99

2 ARM
Special Common Sub-Expressions
On the ARM architecture, certain constants are more expensive to work
with than others. To account for this, the common sub-expression
elimination optimization is performed on expressions involving
potentially expensive constants. These include the following:

• The computation of global variable addresses.

• The computation of integer constants that require several arithmetic
instructions or one pc-relative load to compute. For example, the
constant 0xaabbccdd. The constant 0xff00 would not be considered.

• The computation of all floating point constants, with the exception of
0.0, 1.0, 2.0, 3.0, 4,0, 5.0, 10.0, and 0.5.

Code Area Data Pooling and Consolidation
The ARM instruction set limits the size of immediate values to 8 bits
rotated by 2n. Often times data can be built up using immediates
exclusively. For example:

=x equ 0x333
 mov R7,0xff&=x
 add R7,0xff00&=x

At other times it is more appropriate to load the value from memory.
This data can be stored in the code area and loaded into registers using
PC-relative loads. The assembly optimizer attempts to pool this code
area data together behind naturally occurring divisions (such as a return
from subroutine) to limit the number of extra branches in code. For
example, given the following C code:

 extern int x, y;
 func(&x, &y);
 func2(&x);

The backend might generate:

 ldr R7,=_$L1
 b =_$L2 **skip
=_$L1
100 Ultra C/C++ Processor Guide

2ARM
 dc.l =x
=_$L2
 add R7,R6,R7
 ldr R8,=_$L3
 b =_$L4 **skip
=_$L3
 dc.l =y
=_$L4
 add R8,R6,R8
 bl =func
 ldr R7,=_$L5
 b =_$L6 **skip
=_$L5
 dc.l =x
=_$L6
 add R7,R6,R7
 bl =func2
 ...
 ldmfd R13!,{PC}

The assembly optimizer could change this to:

 ldr r7,=_$L1
=_$L2
 add r7,r6,r7
 ldr r8,=_$L3
=_$L4
 add r8,r6,r8
 bl =func
 ldr r7,=_$L5
=_$L6
 add r7,r6,r7
 bl =func2
 ...
 ldmfd r13!,{PC}
=_$L5
=_$L1 dc.l =x
=_$L3 dc.l =y
Ultra C/C++ Processor Guide 101

2 ARM
Conditionalizing of Instructions
In the ARM architecture, conditional execution is not limited to
conditional branches. Every instruction can be conditionalized. The
Ultra C/C++ ARM assembly optimizer attempts to take advantage of this
capability to reduce code size and improve performance.

For example, given the following C code:

 b = x && y && c;

The backend might generate:

 cmp R7,0
 beq =_$l4e1
 cmp R8,0
 beq =_$l4e1
 cmp R9,0
 beq =_$l4e1
 mov R7,1
 b =_$l4e5
=_$l4e3
 mov R7,0
=_$l4e5

The assembly optimizer could then change this to:

 cmp r7,0
 cmpne r8,0
 cmpne r9,0
 movne r7,1
 bne =_$l4e5
=_$l4e3
 mov R7,0
=_$l4e5

This optimization pays close attention to the desired time/space ratio
such that the number of instructions that are conditionalized depends
on how important space is compared to time.
102 Ultra C/C++ Processor Guide

2ARM
Copy Propagation
The assembly code optimizer tries to eliminate needless copies
between register temporaries; resulting in smaller, more efficient code.
For example:

 ldr r7,[gp,x]
 mov r8,lsl(r7,2)
 add r8,r7,r8

This may be changed to the following:

 ldr r7,[r6,x]
 add r8,r7,lsl(r7,2)

As another example:

 mov r8,lsl(r7,2)
 and r8,r8,r7

This may be changed to the following:

 and r8,r7,lsl(r7,2)
Ultra C/C++ Processor Guide 103

2 ARM
_asm() Register Pseudo Functions

_asm() uses registers pseudo functions as identified in Table 2-18.

Table 2-18 _asm() Register Pseudo Functions

Register Description

__reg_gen Any non-dedicated integer register

__reg_float Any floating point register

__reg_r<n> The integer register specified by
n (0 <= n < 16)

__reg_f<n> The floating point register specified by
n (0 <= n < 8)
104 Ultra C/C++ Processor Guide

2ARM
Assembler/ Linker

The assembler allows use of standard ARM assembly language
mnemonics and syntax, modified as described in this section. For more
specific information about individual instructions, consult the following
documentation:

• ARM Architecture Reference

• ARM FPA10 Data Sheet

ROF Edition Number

The ARM assembler emits ROF Edition #15.

External References

The ARM assembler allows the use of external references with any
operators within any expression fields not defined to be constant
expression fields.

Symbol Biasing

There is no biasing of either code (r12) or static (r6) pointers for the
ARM processor.
Ultra C/C++ Processor Guide 105

2 ARM
Assembler Syntax Extensions and Limitations

The Ultra C/C++ Compiler’s adaptation of the ARM instruction syntax
has a few notable differences from what is defined by the ARM
Architecture Reference manuals.

• The assembler uses the space character as the comment delimiter.
As a result, the operand stream must not include any spaces.

• Because of the above restriction, the shifted register operand
value syntax was altered.

An example of ARM syntax and its equivalent Ultra C/C++ syntax are
shown in Table 2-19.

These equivalencies are due to restrictions in the Ultra C/C++
assembler and for ease in reading and understanding the syntax. To
see other uses of Ultra C/C++ assembly, it is possible to stop the
compilation process after the back end has finished (using the -ebe
option) and view the resulting assembly file.

Table 2-19 Equivalent ARM Instruction Syntax

Instruction ARM Syntax Ultra C/C++ Syntax

mov r2, r0, LSL #2 r2,lsl(r0,2)

add r9, r5, r5, ASR #3 r9,r5,asr(r5,3)

rsb r9, r5, r5, LSL #3 r9,r5,lsl(r5,3)

sub r10, r9, r8, LSR #4 r10,r9,lsr(r8,4)

mov r12, r4, ROR r3 r12,ror(r4,r3)

mvn r1, r4, RRX r1,rrx(r4)
106 Ultra C/C++ Processor Guide

2ARM
• The Ultra C/C++ ARM assembler does not require the # designator
in front of immediate values. The value is known to be an immediate
based on its context. In cases where the context is ambiguous
(example: a value has been equated to the name r3 (not
recommended)), the assembler assumes the register is intended
for use.

• The Ultra C/C++ assembler provides an nop instruction to do
nothing. This is equivalent to:

andeq r0,r0,r0

• The # character is used in place of the ^ character for load and store
multiple instructions. For example, the first line is original ARM
assembly syntax, the second line is the equivalent Ultra C/C++ ARM
assembly syntax:

stmfd sp!,{r7-r14}^
stmfd sp!,{r7-r14}#

• The syntax accepted by the Ultra C/C++ ARM assembler for the
move from general purpose register to SR instruction may be slightly
different than that specified in ARM architecture manuals. The
following syntax is accepted:

 msr{<cond>} <psr>_flg,<immediate>
 msr{<cond>} <psr>_flg,<rn>
 msr{<cond>} <psr>_all,<rn>
 msr{<cond>} <psr>,<rn>
 msr{<cond>} <psr>_f,<immediate>
 msr{<cond>} <psr>_[fsxc],<rn>

Table 2-20 Variables

Variable Description

{ } Optional Entry

[] Enter one character only shown within the brackets
Ultra C/C++ Processor Guide 107

2 ARM
• Coprocessor registers (as referred to by the coprocessor
instructions cdp, ldc, stc, mrc, and mcr) are designated by their
register number and prefixed by the letter c.

• The mnemonic extensions specifying conditional execution
accepted by the assembler are identified in Table 2-21.

<cond> ARM conditional execution code

<per> One of cpsr or spsr

<immediate> ARM 8-bit rotated immediate

<rn> A general purpose register

Table 2-21 Integer Type/Range

Mnemonic Description

eq Equal

ne Not equal

cs/hs Carry set / unsigned higher or same

cc/lo Carry clear / unsigned lower

mi Negative

pl Positive or zero

vs Overflow

vc No overflow

Table 2-20 Variables (continued)

Variable Description
108 Ultra C/C++ Processor Guide

2ARM
* Use of the nv conditional extension is not recommended as its effect is
unpredictable. Acceptance of the nv conditional extension by the
assembler is not assurance that it will work as expected.

Working with Immediate Data

The ARM instruction set limits the size of immediate data to 8 bits for
data processing instructions. The ARM assembler does not implement
constant explosion, leaving this responsibility to the assembly
language programmer. Bitwise operations are useful for this purpose;
specifically the bitwise and (&). The following code illustrates the
addition of a 16-bit unsigned immediate to a register.

uimm16 set 0xf0f0
 add r7,r7,0xff&uimm16
 add r7,r7,0xff00&uimm16

hi Unsigned higher

ls Unsigned lower or same

ge Signed greater than or equal

lt Signed less than

gt Signed greater than

le Signed less than or equal

al Always (equivalent to no extension)

nv Never*

Table 2-21 Integer Type/Range (continued)

Mnemonic Description
Ultra C/C++ Processor Guide 109

2 ARM
Similarly, the ARM instruction set limits the size of immediate data to 12
bits for general load-store instructions. Again, the assembly language
programmer must allow for this. The following code illustrates
non-remote data access from the static data area.

 vsect
stuff ds.l 1
 ends
 add r7,gp,0xfffff000&stuff
 ldr r7,[r7,0xfff&stuff]

Note that the bitwise and operation in the addition statement masks
only the lower twelve bits, leaving the upper twenty bits. This allows the
object code linker to detect an error that would otherwise be difficult to
track (such as a value being out of range). If, for instance, the linker
symbol stuff evaluated to 0x00115004, the linker would display the
following message:

The value $115000 cannot be encoded into a field
8-bits rotated by 2n bits.

Therefore, an additional add instruction would be necessary.
110 Ultra C/C++ Processor Guide

2ARM
Stack Checking

This section provides ARM-specific information about stack checking.
Refer to Using Ultra C/C++ for more general information on stack
checking.

If stack checking is inappropriate for the module being created, you will
need to define the following items:

• a global pointer called _stbot (initialized to ULONG_MAX if possible)

• a function called _stkhandler (it returns to its caller)

A function called _stkoverflow is called when the stack appears to
overflow. If a non-static function called _stkoverflow resides in an
ROF that is linked to make the object module, that function is called
instead of the default function. The default function writes a message to
the standard error path and causes the program to exit with a status of
one. _stkoverflow neither accepts parameters nor returns a value.

NoteNote
If _stkoverflow is inappropriate for your application, consider writing
a function to handle stack overflow.

_stkhandler, the function that checks for stack overflow, can be
revised. Revision may be necessary if stack checking is inapplicable to
the module that calls the library functions. _stkhandler() is passed
the desired stack pointer in r3 and does not return a value.

NoteNote
Stack handler code must be compiled with stack checking turned off
(-r in ucc mode).
Ultra C/C++ Processor Guide 111

2 ARM
112 Ultra C/C++ Processor Guide

Chapter 3: SH-5

This chapter contains information specific to the SH-5 family of
processors. The following sections are included:

• Executive and Phase Information
• C/C++ Application Binary Interface Information
• _asm() Register Pseudo Functions
• SH-5 Processor-Specific Optimizations
• Assembler/ Linker
• Stack Checking
113

3 SH-5
Executive and Phase Information

Executive -tp enables specific options that are dependent upon
executive mode. Processors and sub-options for ucc and c89 option
modes are identified in this section.

Executive -tp Option

-tp[=]<target>{[,]<suboptions>}

Use this option when you want to specify
the target processor <target> and
target processor sub-options. Target
processors are identified in Table 3-1
and -tp sub-options are identified in
Table 3-2.

Table 3-1 Target Processor

Target Target Processor

SH5m Generic SH-5 in media mode

SH8000 SH8000 family

Table 3-2 Mode -tp Sub-Options

Suboptions Description

sd Use 16-bit data references (default).

ld Use 32-bit data references.
114 Ultra C/C++ Processor Guide

3SH-5
Predefined Macro Names for the Preprocessor

The macro names in Table 3-3 are predefined in the preprocessor for
target systems.

scd Use 16-bit code area data references (default).

lcd Use 32-bit code area data references.

sc Use 16-bit code function references (default).

lc Use 32-bit code function references.

sb Use 18-bit function-internal branches (default).

lb Use 32-bit function-internal branches.

Table 3-2 Mode -tp Sub-Options (continued)

Suboptions Description

Table 3-3 Macros

Macro Description

_MPFSH5 Generic SH-5 processor (media or compact)

_MPFSH5M Generic SH-5media processor

_MPFSH8000 SH8000 series processor

_FPFSH5M SH-5media floating-point processor
Ultra C/C++ Processor Guide 115

3 SH-5
Target macros are used to place conditions on code so that machine-
and operating system-independent programs can be created. Each
target macro name specifies a particular compiler.

The executive defines the _MPF macro for the target processor as well
as any processors that are generally considered subsets of the target
processor. Table 3-4 contains the complete list of macro combinations.

For more information on exactly which macros are defined for the SH-5
processors, run the executive in verbose and dry run modes stopping
after the front end. For example, to check the defines for the SH-5media
target (source file not required), enter the following on the command
line:

xcc -b -h -efe -tp=sh5m t.c

This causes the executive to print something similar to the code below:
Include file paths:
 \mwos\SRC\DEFS
 \mwos\OS9000\SRC\DEFS
 \mwos\OS9000\SH5M\DEFS
"cpfe -m --target=8 -I\mwos\SRC\DEFS -I\mwos\OS9000\SRC\DEFS
-I\mwos\OS9000\SH5M\DEFS -D_UCC -D_MAJOR_REV=2 -D_MINOR_REV=4 -D_SPACE_FACTOR=1
-D_TIME_FACTOR=1 -D_OS9000 -D_MPFSH5M -D_MPFSH5 -D_FPFSH5M -D_BIG_END -w
--Extended_ANSI --gen_c_file_name=t.i t.c"

NoteNote
Both _MPFSH5 and _MPFSH5M are defined.

The _MPFSH5 macro indicates that a source file is being compiled for a
SH-5 family target.
116 Ultra C/C++ Processor Guide

3SH-5
Table 3-4 identifies the relationship between the target processor and
the preprocessor macros. Note that specific targets also define the
subset macros. (For example, when targeting the SH-8000, the
_MPFSH5 and _MPFSH5M macros are defined.)

SH-5m-Unique Phase Option Functionality

The following phases have unique phase option functionality on the
SH-5m processor:

• Back end

• Assembly optimizer

• Linker

Back End Options
-m=<non remote memory left>

This option informs the back end that other files in the program have
used some amount of the 64K data area.

The back end gives orders to the data area based on static analysis of
the data area objects, and sorts the data based on usage and size. This
means that the most heavily used objects end up in the non-remote
area. To accomplish this, the back end needs information concerning
how the object linker will lay out the data area for the entire program.

Table 3-4 _MPFxxx Macro Behavior

Target Microprocessor Family Macros Defined

SH5M _MPFSH5 _MPFSH5M

SH8000 _MPFSH5 _MPFSH5M _MPFSH8000
Ultra C/C++ Processor Guide 117

3 SH-5
Code generation options provide specifications for code generated by
the back end.

Table 3-5 Code Generation Options

Option Description

-pg Generate code to derive cp (r13) rather than relying on
a globally set cp for each function that needs it. This
option might be used for non-program modules that
have multiple entry points.

-pl Cause references to external data objects to be long.

-pla Cause all non-function branches to be long.

-plc Cause references to constant data objects to be long.

-plf Cause references to functions to be long.

-ps No stack checking code.
118 Ultra C/C++ Processor Guide

3SH-5
Target architecture code generation options provide specifications that
are unique to target architecture (for code generated by the back end).

-p<target architecture>

Use this option to identify the target
architecture for which to generate code.
Implementation of multiply and divide
instructions differs based on target
architecture.

Linker Options
-t=<target> This is a linker option to specify target

module type.

Table 3-6 <target architecture> Code Generation Options

Option Description

-pSH5m Generate code for the generic SH-5 processor
in media mode.

Table 3-7 Target Module Type

Target Module Type

os9k_sh5m OS-9 for SH-5media
Ultra C/C++ Processor Guide 119

3 SH-5
C/C++ Application Binary Interface
Information

The following information is described in this section:

• Register Usage
• Arguments Passed to Functions

• Callee Saved Registers

• Language Features

Register Usage

General purpose, floating-point, and other registers are defined in this
section. The register classes are listed and explained below.

• General Purpose Registers (GPRs)

• Floating-Point Registers (FPRs)

Table 3-8 General Purpose Registers

Register Names Description

r0, r1 Caller save

r2 Integer or pointer return register; caller save

r2 - r9 Incoming integer and pointer arguments; caller
save

r10 / lr Linkage register; caller save

r11 / at Reserved for long reference computation in
assembler; caller save
120 Ultra C/C++ Processor Guide

3SH-5
* If the register is not used as stated above, it may be used for integral user
register variables and compiler temporaries.

† cp (r13) is used to access const-qualified data in the code area of the
module. This is accomplished by using the register cp as a biased (by
32K-16 [0x7ff0] bytes) pointer to the code area data. cp is automatically
initialized by the kernel for program modules. Non-program modules must
either set up cp themselves or use the back end option -pg to generate the
code necessary to set up cp for each function that needs it.

The values in r0 through r9, r11, r16 - r19, and r24 - r31 do not
need to be preserved across a function call; a function is safe to use
these registers without saving and restoring the registers’ values.

The compiler uses the remainder of the integral registers for integral
user register variables and compiler temporaries.

r12 / fp Local frame pointer; callee save

r13 / cp Global constant data pointer; callee save

r14 / gp Global data pointer; callee save

r15 / sp Stack pointer; callee save

r16 - r19 Caller save

r20 - r23 Callee save

r24 - r31 Caller save

r32 - r62 Callee save

r63 / zero Hard-coded 0 value register

Table 3-8 General Purpose Registers (continued)

Register Names Description
Ultra C/C++ Processor Guide 121

3 SH-5
floating-point Registers

When not in use for argument passing, any registers from fr0 through
fr11 can be used as temporary register variables.

Functions can use values fr0 through fr11 and fr16 through fr35
without saving or restoring them for the functions' callers. However, a
function must save them if they are expected to maintain their values
across a call to a function.

Target Address Registers

Table 3-9 Floating-point Registers

Floating-point
Register Description

fr0, fr1 Floating-point return value; caller save

fr0 - fr11 Floating-point function arguments

fr12 - fr15 Callee save

fr16 - fr35 Caller save

fr36 - fr63 Callee save

Table 3-10 Target Address Register Usage

Registers Description

tr0 - tr4 Caller save

tr5 - tr7 Callee save
122 Ultra C/C++ Processor Guide

3SH-5
Pointer and non-64-bit Integer Representation

Pointers and non-64-bit integers (including char) are held in registers
in a 32-bit signed format. That is, the upper 32 bits of the 64-bit register
contain a sign extension of the lower 32 bits regardless of the
signedness of the 32-bit value. This results in a correct 64-bit
representation of all types of integers except 32-bit unsigned values.
Take this fact into consideration when writing assembly language that
calls C functions. Do not assume that the result of a function returning a
32-bit unsigned value will always be positive when treated as a 64-bit
value.

Be sure to use 32-bit instructions (commonly the .l extension) when
writing assembly language that manipulates pointers or 32-bit or
smaller integers. The use of 32-bit instructions is beneficial for pointers
because it ensures that only valid addresses are generated by pointer
arithmetic. The use of 32-bit instructions is also beneficial for integers
because it keeps registers in the correct format for calling C functions.
Ultra C/C++ Processor Guide 123

3 SH-5
Passing Arguments to Functions

When an argument is passed to a called function, the argument is in
one of two places: in a register or in the Output Parameter Area (OPA)
of the calling function.

The called function determines the location of the argument by
argument type and the order specified in the argument list.

For the purposes of this discussion, the following statements are true:

• An integral argument is an argument of integer or pointer type.

• A floating-point argument is an argument of type double or
float.

There are eight integral registers used for parameter passing: r2
through r9. There are also twelve 32-bit registers available for
floating-point argument passing: fr0 through fr11. (This allows for up
to six 64-bit floating-point arguments.)
124 Ultra C/C++ Processor Guide

3SH-5
The OPA is also used to pass arguments when the registers have been
exhausted. Figure 3-1 illustrates a stack frame for a function.

Figure 3-1 Stack Frame for a Function

It is possible for a function to have a zero-length stack frame.
Furthermore, any or all of the areas of a stack frame can be omitted. For
example, suppose local variables are omitted. Because no local
variables have been allocated, the caller’s fp register will not be saved
and no new fp register value will be created.

Arguments are passed to functions as though the code generator
performed the following steps at each call site:

1. If the called function returns a structure, the pointer to the location at
which to return the structure is placed in the first parameter register
(r2). r2 is then no longer a candidate for further use.

Caller’s OPA

Local Variables

Saved Registers

OPA

FP
Caller’s FP

Stack Frame

SP

Return PC

Higher Address

Lower Address8 Bytes
Ultra C/C++ Processor Guide 125

3 SH-5
2. For each argument, consider its type:

Integral: Place the argument into the next available integral
parameter register (r2 through r9). If there are no available integral
argument registers, the next position in the OPA is used.

double: Place the argument in the next available pair of 32-bit
floating-point parameter registers so that the first member of the pair
is an even-numbered 32-bit floating-point register. This can leave a
“hole” in the floating-point parameter registers (if the previous
parameter was float and placed in an even-numbered register). If
their are no more pairs of floating-point parameter registers, the next
position of the OPA is used.

float: Place the argument into the next available 32-bit
floating-point parameter register. If a 32-bit floating-point parameter
register had to be skipped because a double parameter needed an
even-numbered floating-point register, the skipped one is used. If
there are no more floating-point parameter registers, the next
position of the OPA is used.

Structure or Union: Copy the argument into the next position of the
OPA.

3. For each variable argument, place the argument in the next available
position in the OPA.

The OPA is filled from lowest address to highest address. Padding is
added for arguments whose alignment requirements are not met by
prior arguments. The following example demonstrate the above
concepts:

void func(int p1, int p2)
r2 = p1
r3 = p2

void func(float p1, float p2)
fr0 = p1
fr1 = p2
126 Ultra C/C++ Processor Guide

3SH-5
void func(double p1, double p2)
dr0 (fr0, fr1) = p1
dr2 (fr2, fr3) = p2

void func(int p1, float p2, double p3, float p4)
r2 = p1
fr0 = p2
dr2 (fr2, fr3) = p3
fr1 = p4

void func(int p1, struct { int x, y; } p2, int p3)
r2 = p1
OPA + 0 = p2.x
OPA + 4 = p2.y
r3 = p3

struct { int x, y; } func(int p1, int p2)
r2 = <return struct address>
r3 = p1
r4 = p2

void func(char *p1, ...);

func(p1, int p2, double p3, float p4, long long p5)
r2 = p1
OPA + 0 = p2
OPA + 4 = <4 bytes padding>
OPA + 8 = p3
OPA + 16 = p4
OPA + 20 = <4 bytes padding>
OPA + 24 = p5
Ultra C/C++ Processor Guide 127

3 SH-5
C Language Features

In conformance with the ANSI/ISO C specification, the
implementation-defined areas of the compiler are listed in this section.
Each bulleted item contains one implementation-defined issue. The
number in parentheses included with each bulleted item indicates the
location in the ANSI/ISO specification where more information is
provided.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Other implementation-defined areas are included in the Using Ultra
C/C++ manual and the Ultra C Library Reference manual. Refer to an
ANSI/ISO specification for more information.

Characters
• The number of bits in a character in the execution character set

(5.2.4.2.1)

There are eight bits in a character in the execution character set.
128 Ultra C/C++ Processor Guide

3SH-5
Integers
• The representations and sets of values of the various integer types

(6.1.2.5)

Table 3-11 Integer Type/Range

Type Representation
Minimum /
Maximum

char, signed
char

8-bit 2’s complement -128 /

127

unsigned
char

8-bit binary 0 /

255

short int 16-bit 2’s complement -32768 /

32767

unsigned
short int

16-bit binary 0 /

65535

int 32-bit 2’s complement -2147483648 /

2147483647

unsigned
int

32-bit binary 0 /

4294967295

long int 32-bit 2’s complement -2147483648 /

2147483647

unsigned
long int

32-bit binary 0 /

4294967295
Ultra C/C++ Processor Guide 129

3 SH-5
* long long is not a part of the current ANSI standard.

• The result of converting an integer to a shorter signed integer or the
result of converting an unsigned integer to a signed integer of equal
length (if the value cannot be represented) (6.2.1.2)

When converting a longer integer to a shorter signed integer, the
least significant <n> bits of the longer integer are moved to the
integer of <n> bits. The resulting value in the smaller integer is
dictated by the representation. For example, if the conversion is from
int to short, the least significant 16 bits are moved from the int
to the short. This value is then considered a 2’s complement 16-bit
integer.

When conversion from unsigned to signed occurs with equally sized
integers, the most significant bit becomes the sign bit. Therefore, if
the unsigned integer is less than 0x80000000, the conversion has
no affect. Otherwise, a negative number results.

• The sign of the remainder on integer division (6.3.5)

The result of an inexact division of one negative and one positive
integer is the smallest integer greater than or equal to the algebraic
quotient.

The sign of the remainder on integer division is the same as that of
the dividend.

long long * 64-bit 2’s complement -263 /

263 -1

unsigned
long long *

64-bit binary 0 /

264 -1

Table 3-11 Integer Type/Range (continued)

Type Representation
Minimum /
Maximum
130 Ultra C/C++ Processor Guide

3SH-5
floating-point
• The representations and sets of values of the various types of

floating-point numbers (6.1.2.5)

Refer to the float.h header file for other limits and values.

Arrays and Pointers
• The type of integer required to hold the maximum size of an array

(the type of the size of operator, size_t) (6.3.3.4, 7.1.1)

An unsigned long int is required to hold the maximum size of
an array. unsigned long int is defined as size_t in
ansi_c.h.

• The result of casting a pointer to an integer or vice versa (6.3.4)

Since pointers are treated much like unsigned long integers, the
integer will be promoted using the usual promotion rules to an
unsigned long. That is, the sign bit propagates out to the full 32-bit
width.

Table 3-12 floating-point Number Characteristics

Type Format
Minimum /
Maximum

float 32 bit IEEE 754 1.17549435e-38f /
3.40282347e38f

double 64 bit IEEE 754 2.2250738585072016e-308 /
1.7976931348623157e308

long double 64 bit IEEE 754 2.2250738585072016e-308 /
1.7976931348623157e308
Ultra C/C++ Processor Guide 131

3 SH-5
• The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdiff_t (6.3.6, 7.1.1)

A signed long int is required to hold the difference between two
pointers to elements of the same array. long int is defined as
ptrdiff_t in ansi_c.h.

Registers
• The extent to which objects can actually be placed in registers by

use of the register storage-class specifier (6.5.1)

The compiler automatically makes decisions about what objects are
placed in registers, giving no special storage considerations for the
register storage-class.

Structures, Unions, Enumerations, and Bit-Fields
• The padding and alignment of members of structures (6.5.2.1)

This should present no problem unless binary data written by one
implementation are read by another.

Table 3-13 shows the alignment of the various objects within a
structure. Required padding is supplied if the next available space is not
at the correct alignment for the object. For example, a structure
declared as:

 struct {
 char mem1;
 long mem2;
 };
132 Ultra C/C++ Processor Guide

3SH-5
would be an eight byte structure, including one byte for mem1, three
bytes of padding to get mem2 to four byte alignment, and four bytes for
mem2.

• Whether “plain” int bit field is treated as a signed int or as an
unsigned int bit field (6.5.2.1)

A “plain” int bit field is treated as a signed int bit-field.

• The order of allocation of bit fields within a unit (6.5.2.1)

Bit fields are allocated from most significant bit to least significant
bit.

Table 3-13 Alignment Table

Type Alignment Requirement

char 1

short 2

int 4

long 4

long long 8

pointers 4

float 4

double 8

long double 8
Ultra C/C++ Processor Guide 133

3 SH-5
• Whether or not a bit field can straddle a storage-unit boundary
(6.5.2.1)

Bit fields are allocated end-to-end until a non-bit field member is
allocated or until that positioning would cross an addressable
boundary such that no object of an integral type could both contain
the bit field and be correctly aligned.

• The integer type chosen to represent the values of an enumeration
type (6.5.2.2)

Enum values are represented in 32-bit two’s complement integers.

Preprocessing Directives
• Whether or not the value of a single-character character constant, in

a constant expression that controls inclusion, matches the value of
the same character constant in the execution character set

Whether or not such a character constant may have a negative
value (6.8.1)

The value of a single-character character constant, in a constant
expression that controls inclusion, matches the value of the same
character constant in the execution character set. This character
constant may have a negative value.

• The method for locating includable source files (6.8.2)

This method is described in the Using the Executive chapter of the
Using Ultra C/C++ manual.

• The support of quoted names for includable source files (6.8.2)

Quoted names are supported for #include preprocessing directives.

• The mapping of source file character sequences (6.8.2)

The mapping of source file character sequences is one-to-one. The
case-sensitivity of file names depends on the file system being used.
134 Ultra C/C++ Processor Guide

3SH-5
_asm() Register Pseudo Functions

_asm() uses registers pseudo functions as identified in Table 3-14.

Table 3-14 _asm() Register Pseudo Functions

Register Description

__reg_gen Any non-dedicated integer register

__reg_float Any 32-bit floating-point register

__reg_double Any even-numbered 64-bit floating-point register
pair

__reg_r<n> The integer register specified by r<n>, <n> is 0 to 63

__reg_fr<n> The 32-bit floating-point register specified by fr<n>,
<n> is 0 to 63

__reg_dr<n> The 64-bit floating-point register specified by dr<n>,
<n> is an even number from 0 to 62

__reg_zero Constant zero register, same as __reg_r63

__reg_gp Global pointer register, same as __reg_r14

__reg_sp Stack pointer register, same as __reg_r15

__reg_fp Frame pointer register, same as __reg_r12

__reg_lr Link register, same as __reg_r10. Request this
register if you call functions via lr from within
embedded assembly.

__reg_cp Constant pointer register; same as __reg_r13

__reg_at Assembler temporary register, same as __reg_r11
Ultra C/C++ Processor Guide 135

3 SH-5
SH-5 Processor-Specific Optimizations

In addition to providing the standard generic assembly optimizations,
the Ultra C/C++ SH-5media assembly optimizer (optsh5m), provides
processor-specific optimizations. They are discussed in this section.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The Using Ultra C/C++ manual contains additional information on
assembly level optimizations.

Special Common Sub-Expressions

On the SH-5m architecture, certain constants are more expensive to
work with than others. To account for this, the common sub-expression
elimination optimization is performed on expressions involving
potentially expensive constants.

• The computation of all floating-point constants as none of the
floating-point instructions allow for floating-point immediates

• The computation of integer constants that require two or more
instructions

An example of an integer constant included in this category is
0xffeeffee. An example of a constant not included is
0xffffffee.
136 Ultra C/C++ Processor Guide

3SH-5
Assembler/ Linker

The SH-5m assembler allows use of standard SH-5m assembly
language mnemonics and syntax, modified as described in this section.
For more specific information about individual instructions, consult the
following books:

• SuperH TM (SH) 64-Bit RISC Series SH-5 CPU Core Volume 2:
Shmedia

ROF Edition Number

The SH-5m assembler emits ROF Edition #15.

External References

The SH-5m assembler allows the use of external references with any
operators within expression fields not defined as constant expression
fields.

Symbol Biasing

The linker biases both code and data symbols by -32752 (-0x7ff0).
Initialization routines for raw code should ensure that the static storage
pointer (r14) and constant storage pointer (r13) are initialized with the
proper base addresses (adjusted to account for this biasing).

The linker does not bias any symbols for system, file manager, device
driver, device descriptor, or data modules.
Ultra C/C++ Processor Guide 137

3 SH-5
Code Symbol Values

The SH-5media assembler (ash5m) creates ROF files such that all
symbols that refer to the code area are off by one. This relieves most of
the burden related to the SH-5’s dual-mode architecture from the
programmer. This requires that labels referring to code area data items
be decremented by one. That is, the following code will compute the
address of a constant string into r0 (assuming cp is already set
correctly):

 movi string-1,r0
 add.l cp,r0,r0

Map, debug (.dbg), and symbol table (.stb) files reflect the addition of
one to code area symbols.

Assembler Syntax Extensions and Limitations

The Ultra C/C++ Compiler's adaptation of the SH-5media instruction
syntax has a few notable differences from what is defined in SH-5media
architecture manuals.

• All Microware assemblers use white space characters as comment
delimiters. As a result, the arguments to mnemonics may not include
any spaces.

• The SH-5media instruction set limits immediates to 16-bit signed
values. To allow for manipulation of 32-bit immediate data, the
following operators are available in the SH-5media assembler:
hi(x) = x >> 16 /* upper 16 bits */
lo(x) = x & 0xffff /* lower 16 bits */

The following code moves the 32-bit value represented by Symbol
into GPR r0:

movi hi(Symbol),r0

shori lo(Symbol),r0
138 Ultra C/C++ Processor Guide

3SH-5
If Symbol is a 32-bit offset from GPR gp, then the following code
moves the 32-bit address of Symbol int r0:

movi hi(Symbol),r0

shori lo(Symbol),r0

add.l r0,gp,r0

Alternatively, the value of 32-bit integer data symbol Symbol can be
loaded into r1 as follows:

movi hi(Symbol),r0

shori lo(Symbol),r0

ldx.l r0,gp,r1

• The /l and /u modifiers in standard SH-5media assembly
language are replaced with _l and _u in Microware’s SH-5media
assembler.

• The “$” character used to express the current program counter is
replaced by the “*” character in Microware’s SH-5media assembler.
This assures some level of source-code compatibility with other
Microware assemblers. $ is used to prefix hexadecimal constants.
“0x” is also a valid hexadecimal constant prefix.

• In addition to the SH-5media instruction set, the Microware Ultra
C/C++ SH-5media assembler also accepts the synthetic instructions
specified in Table 3-15.

Table 3-15 SH-5m Assembler Synthetic Instructions

Synthetic Instruction SH-5media Instruction Sequence

move rS,rD add rS,zero,rD

jump label pta label,tr0

 blink tr0,zero

jump.l label movi hi(label-pt),at

 shori lo(label-pt+1),at

pt ptrel at,tr0

 blink tr0,zero
Ultra C/C++ Processor Guide 139

3 SH-5
jump label,trD pta label,trD

 blink trD,zero

jump.l label,trD movi hi(label-pt),at

 shori lo(label-pt+1),at

pt ptrel at,trD

 blink trD,zero

jlink label,rD pta label,tr0

 blink tr0,rD

jlink.l label,rD movi hi(label-pt),at

 shori lo(label-pt+1),at

pt ptrel at,tr0

 blink tr0,rD

jlink label,rD,trD pta label,trD

 blink trD,rD

jlink.l label,rD,trD movi hi(label-pt),at

 shori lo(label-pt+1),at

pt ptrel at,trD

 blink trD,rD

jabs[_l|_u] rS,rD ptabs rS,tr0

 blink tr0,rD

jabs[_l|_u]
rS,rD,trD

 ptabs rS,trD

 blink trD,rD

Table 3-15 SH-5m Assembler Synthetic Instructions (continued)

Synthetic Instruction SH-5media Instruction Sequence
140 Ultra C/C++ Processor Guide

3SH-5
j<cc>[_l|_u]
 rM,rN,label

where <cc> is:

 eq : ==

 ne : !=

 gt : >

 ge : >=

 gtu : > unsigned

 geu : >= unsigned

 pta[_l|_u] label,tr0

 b<cc>[_l|_u] rM,rN,tr0

j<cc>[_l|_u].l
 rM,rN,label

 movi hi(label-pt),at

 shori lo(label-pt+1),at

pt ptrel[_l|_u] at,tr0

 b<cc>[_l|_u] rM,rN,tr0

j<cc>[_l|_u]
 rM,rN,label,trD

 pta label,trD

 b<cc>[_l|_u] rM,rN,trD

j<cc>[_l|_u].l
 rM,rN,label,trD

 movi hi(label-pt),at

 shori lo(label-pt+1),at

pt ptrel[_l|_u] at,trD

 b<cc>[_l|_u] rM,rN,trD

j<cci>[_l|_u]
 rM,imm,label

where <cci> is:

 eqi : ==

 nei : !=

 pta[_l|_u] label,tr0

 b<cci>[_l|_u] rM,imm,tr0

Table 3-15 SH-5m Assembler Synthetic Instructions (continued)

Synthetic Instruction SH-5media Instruction Sequence
Ultra C/C++ Processor Guide 141

3 SH-5
• When instructions call for a register specification, the assembler will
accept two different names for the same register. These are called
register aliases and are specified in Table 3-16.

j<cci>[_l|_u].l
 rM,imm,label

 movi hi(label-pt),at

 shori lo(label-pt+1),at

pt ptrel[_l|_u] at,tr0

 b<cci>[_l|_u] rM,imm,tr0

j<cci>[_l|_u]
 rM,imm,label,trD

 pta label,trD

 b<cci>[_l|_u] rM,imm,trD

j<cci>[_l|_u].l
 rM,imm,label,trD

 movi hi(label-pt),at

 shori lo(label-pt+1),at

pt ptrel[_l|_u] at,trD

 b<cci>[_l|_u] rM,imm,trD

tcall trap,func movi trap,at

 trapa at

 dc.w trap

 dc.w func

Table 3-16 SH-5m Assembler Register Aliases

Alias Name Real Name Description

lr r10 Link register

at r11 Assembler/linker temporary

fp r12 Frame pointer

Table 3-15 SH-5m Assembler Synthetic Instructions (continued)

Synthetic Instruction SH-5media Instruction Sequence
142 Ultra C/C++ Processor Guide

3SH-5
cp r13 Constant data pointer

gp r14 Global data pointer

sp r15 Stack pointer

sr cr0 Status register

ssr cr1 Saved status register

pssr cr2 Panic-saved status register

intevt cr4 Interrupt event

expevt cr5 Exception event

pexpevt cr6 Panic-saved exception event

tra cr7 Trap an exception

spc cr8 Saved program counter

pspc cr9 Panic-saved program counter

resvec cr10 Reset vector

vbr cr11 Vector base register

tea cr13 Faulting effective address

dcr cr16 Debug control

kcr0 cr17 Kernel register 0

Table 3-16 SH-5m Assembler Register Aliases (continued)

Alias Name Real Name Description
Ultra C/C++ Processor Guide 143

3 SH-5
kcr1 cr18 Kernel register 1

ctc cr62 Clock tick counter

usr cr63 User-state status register

Table 3-16 SH-5m Assembler Register Aliases (continued)

Alias Name Real Name Description
144 Ultra C/C++ Processor Guide

3SH-5
Stack Checking

This section provides SH5-specific information about stack checking.
Refer to Using Ultra C/C++ for more general information on stack
checking.

If stack checking is inappropriate for the module being created, you will
need to define the following items:

• a global pointer called _stbot (initialized to ULONG_MAX if possible)

• a function called _stkhandler (it returns to its caller)

A function called _stkoverflow is called when the stack appears to
overflow. If a non-static function called _stkoverflow resides in an
ROF that is linked to make the object module, that function is called
instead of the default function. The default function writes a message to
the standard error path and causes the program to exit with a status of
one. _stkoverflow neither accepts parameters nor returns a value.

NoteNote
If _stkoverflow is inappropriate for your application, consider writing
a function to handle stack overflow.

_stkhandler, the function that checks for stack overflow, can be
revised. Revision may be necessary if stack checking is inapplicable to
the module that calls the library functions. _stkhandler() is passed
the desired stack pointer in r3 and does not return a value.

NoteNote
Stack handler code must be compiled with stack checking turned off
(-r in ucc mode).
Ultra C/C++ Processor Guide 145

3 SH-5
146 Ultra C/C++ Processor Guide

Chapter 4: MIPS

This chapter contains information specific to the MIPS family of
processors. The following sections are included:

• Executive and Phase Information
• C/C++ Application Binary Interface Information
• _asm() Register Pseudo Functions
• MIPS Processor-Specific Optimizations
• Assembler/ Linker
• Assembler Syntax Extensions and Limitations
• Stack Checking
147

4 MIPS
Executive and Phase Information

Executive -tp enables specific options dependent upon executive
mode. Processors and sub-options for ucc and c89 option modes are
identified in this section.

Executive -tp Option

-tp[=]<target>{[,]<suboptions>}
Specify Target Processor and Target
Processor Options

Specify the target processor <target> and target processor
sub-options. Target processors are identified in Table 4-1 and -tp
sub-options are identified in Table 4-2.

Table 4-1 Target Processor

Target Target Processor

MIPS Generic MIPS

MIPS3000 MIPS 3000

MIPS32 Generic MIPS32

IDT3081 IDT MIPS 3081

TX3900 Toshiba MIPS 3900

MIPS64 Generic MIPS64

MIPS64PFP Generic MIPS64PFP (with paired FPU registers)

IDT4650 IDT MIPS 4650
148 Ultra C/C++ Processor Guide

4MIPS
MIPS64DFP Generic MIPS64DFP (with 64-bit FPU registers)

IDT4700 IDT MIPS 4700

Table 4-2 Mode -tp Sub-Options

Suboptions Description

sd Use 16-bit data references (default)

ld Use 32-bit data references

scd Use 16-bit code area data references (default)

lcd Use 32-bit code area data references

fp Use static link library for floating-point support

sc Use 16-bit code (functions only) references (default)

lc Use 32-bit code (functions only) references

sb Use 16-bit branches (default)

lb Use 32-bit branches

Table 4-1 Target Processor (continued)

Target Target Processor
Ultra C/C++ Processor Guide 149

4 MIPS
Predefined Macro Names for the Preprocessor

The macro names in Table 4-3 are predefined in the preprocessor for
target systems.

Target names specify the compiler to use when writing
machine-independent and operating system-independent programs.

The executive defines the _MPF macro for the target processor as well
as any processors that are generally considered subsets of the target
processor. Table 4-4 provides a few examples of this behavior.

Table 4-3 Macros

Macro Description

_MPFMIPS Generic MIPS processor

_MPFMIPS3000 MIPS 3000 processor

_MPFMIPS32 MIPS32 processor

_MPFMIPS64 MIPS64 processor

_MPFMIPS64PFP MIPS64PFP processor

_MPFMIPS64DFP MIPS64DFP processor

_MPFIDT3081 IDT 3081 processor

_MPFIDT4650 IDT 4650 processor

_MPFIDT4700 IDT 4700 processor

_MPFTX3900 Toshiba 3900 processor

_FPFMIPS MIPS floating point processor
150 Ultra C/C++ Processor Guide

4MIPS
For more information on exactly which macros are defined for the MIPS
processors, run the executive in verbose and dry run modes stopping
after the front end. For example, to check the defines for the MIPS3000
target (source file not required):

xcc -b -h -efe -tp=MIPS3000 t.c

This causes the executive to print a line similar to:
"cpfe -m --target=9 -Id:\MWOS\SRC\DEFS
-Id:\MWOS\OS9000\SRC\DEFS
-Id:\MWOS\OS9000\MIPS3000\DEFS
-Id:\MWOS\OS9000\MIPS\DEFS
-D_UCC -D_MAJOR_REV=2 -D_MINOR_REV=3 -D_SPACE_FACTOR=1 -D_TIME_FACTOR=1
-D_OS9000 -D_MPFMIPS3000 -D_MPFMIPS -D_FPFMIPS -D_BIG_END -w
--Extended_ANSI --gen_c_file_name=t.i t.c"

NoteNote
Note that both _MPFMIPS and _MPFMIPS3000 are defined.

The _MPFMIPS macro indicates that a source file is being compiled for
a MIPS family target.

Table 4-4 identifies the relationship between the target processor and
the preprocessor macros. Note that specific targets also define the
subset macros (For example, when targeting the MIPS3000, the
_MPFMIPS and _MPFMIPS3000 are defined).

Table 4-4 _MPFxxx Macro Behavior

Target Microprocessor Family Macros Defined

Generic MIPS _MFPMIPS

MIPS 3000 _MPFMIPS _MPFMIPS3000

MIPS32 _MPFMIPS _MPFMIPS32

MIPS64 _MPFMIPS _MPFMIPS64
Ultra C/C++ Processor Guide 151

4 MIPS
MIPS-Unique Phase Option Functionality

Phases having unique phase option functionality on the MIPS
processor are:

• Back end

• Assembly optimizer

• Linker

Back End Options
-m=<non remote memory left>

Informs the back end that other files in the program have used some
amount of the 64K data area.

MIPS64PFP _MPFMIPS _MPFMIPS64 _MPFMIPS64PFP

MIPS64DFP _MPFMIPS _MPFMIPS64 _MPFMIPS64DFP

IDT 3081 _MPFMIPS _MPFMIPS3000 _MPFIDT3081

IDT 4650 _MPFMIPS _MPFMIPS64 _MPFMIPS64PFP
_MPFIDT4650

IDT 4700 _MPFMIPS _MPFMIPS64 _MPFMIPS64DFP
_MPFIDT4700

Toshiba 3900 _MPFMIPS _MPFMIPS3000 _MPFTX3900

Table 4-4 _MPFxxx Macro Behavior (continued)

Target Microprocessor Family Macros Defined
152 Ultra C/C++ Processor Guide

4MIPS
The back end orders the data area based on static analysis of the data
area objects and sorts the data based on usage and size. This means
that the most heavily used objects end up in the non-remote area. To do
this, the back end needs information about how the object linker will lay
out the data area for the entire program.

Code generation options provide specifications for code generated by
the back end.

Table 4-5 Code Generation Options

Option Description

-pg Generate code to derive cp ($30) rather than relying on
a globally set cp for each function that needs it. This
option might be used for non-program modules that
have multiple entry points.

-pl Cause references to data objects to be long

-plc Cause references to constant data objects to be long

-plb Cause references to functions to be long

-pla Cause all branches to be long

-pm=<n> Average memory latency for loads, in cycles (default 7)

-pnbs Don’t perform bit shift elimination optimizations.

-pnf Do not emit FP (cop1) operations

-pnfm Do not use FP registers to copy data

If this option is not selected, the back end looks for
opportunities to copy data from one location to another
using FP registers.
Ultra C/C++ Processor Guide 153

4 MIPS
Target architecture code generation options provide specifications
unique to a target architecture for code generated by the back end.

-p<target architecture>

-pnp Do not store previous sp in prologue (hinders
debugging)

-pnr Do not add register liveness information as comments
(for assembly optimizer)

-ps No stack checking code

-pu Use unordered (non-signalling) fp compares

-pv Do not use trunc, round, floor, or ceil
instructions.

Table 4-5 Code Generation Options (continued)

Option Description
154 Ultra C/C++ Processor Guide

4MIPS
Identifies the target architecture for which to generate code.
Implementation of multiply and divide instructions differs based upon
target architecture.

Table 4-6 <target architecture> Code Generation Options

Option Description

-pmips Generate code for the generic MIPS target
(default). This code should run on any processor
(although fpu emulation may be necessary).
Only MIPS-I instructions are generated with the
exception of some floating point instructions
(double load/store, trunc, and round)
which provide for smaller code and allow for
paired or 64-bit fpu registers. Nop's fill delay
slots (e.g., loads and branches).

The back end does not choose instructions
specific to a processor; if MIPS 3000-specific
instructions appear in assembly language
escapes, the compiled code does not port to
other MIPS family processors.

-pmips3000 Generate code identical to that for the generic
MIPS target except that only MIPS-I instructions
are used.

-pmips32 Generate code for MIPS32 processors.

-pmips64 Generate code for MIPS64 processors. MIPS-III
64-bit integer instructions support the C long
long data type.
Ultra C/C++ Processor Guide 155

4 MIPS
Assembly Optimizer Options
-p=<X> Selectively skip processor-specific

optimizations

-pmips64pfp Generate code identical to MIPS64 except that
paired floating point registers are assumed.

-pmips64dfp Generate code identical to MIPS64 except 64-bit
floating point registers are assumed, so
odd-numbered registers may be used.

Table 4-7 Processor-Specific Assembly Optimizations

<X> Processor-Specific Optimization

d Delay slot filling

l Location tracking

n Register renaming

r Copy propagation

Table 4-6 <target architecture> Code Generation Options (continued)

Option Description
156 Ultra C/C++ Processor Guide

4MIPS
-s<method> Set the peephole scheduling method

-t[=]<num> Specify target processor family

Table 4-8 Peephole Scheduling Methods

Method Description

s Spread dependent instructions

c Compress floating point instructions

b Both spread and compress (default except for
4700)

n No reordering of instructions (not
recommended)

Table 4-9 Assembly Optimizer Processor Numbers

Number Assembly Optimizer Target

1 Generic MIPS Processor (default)

2 MIPS3000

3 MIPS64

4 IDT4650

5 IDT4700

6 TX3900
Ultra C/C++ Processor Guide 157

4 MIPS
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See MIPS Processor-Specific Optimizations on page 175. for more
information.

Linker Options
-t=<target> Linker, specify target module type

Table 4-10 Target Module Type

Target Module Type

os9k_mips OS-9 for MIPS
158 Ultra C/C++ Processor Guide

4MIPS
C/C++ Application Binary Interface
Information

Register usage, passing arguments to functions, callee saved registers,
and language features are described in this section.

Register Usage

General purpose, floating point, and other registers are defined in this
section. The register classes are listed and explained below.

• General Purpose Registers (GPRs)

• Floating Point Registers (FPRs)

• Multiply/Divide HI Register

• Multiply/Divide LO Register

Table 4-11 General Purpose Registers

Register Name Description $ Syntax

zero Constant zero $0

AT Compiler temporary $1

v0, v1 Function return (allows for
64-bit)

$2, $3

a0 - a3 Incoming args $4 - $7

t0 - t7 Temporaries $8 - $15

s0 - s7 Saved temporaries $16 - $23
Ultra C/C++ Processor Guide 159

4 MIPS
* If register is not in use for above-stated use, may be used for integral user
register variables and compiler temporaries.

† $30 is used to access const qualified data in the code area of the module.
This is accomplished by using the register $30 as a biased (by 32K-16
[0x7ff0] bytes) pointer to the code area data. $30 is automatically
initialized by the kernel for program modules. Non-program modules must
either set $30 up themselves or use the back end option -pg to generate
the code to set $30 up for each function that needs it.

The values in v0, v1, a0 through a3, t0 through t9, v0, and v1
need not be preserved across a function call. That is, a function is safe
to use these registers without saving and restoring their values.

The compiler does not use at, k0, or k1.

The compiler uses the remainder of the integral registers for integral
user register variables and compiler temporaries.

t8, t9 Register variables and
compiler temporaries

$24, $25

k0, k1 Exception handling $26, $27

gp Global data pointer $28

sp Stack pointer $29

cp Constant Data Pointer $30

ra Return Address $31

Table 4-11 General Purpose Registers (continued)

Register Name Description $ Syntax
160 Ultra C/C++ Processor Guide

4MIPS
Floating Point Registers

Table 4-12 Floating Point Registers

MIPS/MIPS32/
4PFP Register

MIPS64/4DFP
Register Description

f0/f1 f0 Floating point return value

f2/f3-f10/f11 f2-f11 Floating point register
variables and temporaries

f12/f13 f12 1st floating point argument
passed

f14/f15 f14 2nd floating point
argument passed

f1 Floating point register
variable and temporary

f13 Floating point register
variable and temporary

f15 Floating point register
variable and temporary

f16/f17-f18/f19 f16-f19 Floating point register
variables and temporaries

f20/f21-f30/f31 f20-f31 Floating point register
variable
Ultra C/C++ Processor Guide 161

4 MIPS
Only the even-numbered registers are used for argument passing (f12
and f14) and function return (f0). For targets that have 64-bit floating
point registers, the following odd-numbered register is used as a
temporary.

When not in use for argument passing, any of f12 through f15 may be
used as temporary register variables.

Functions may use the values in f0 through f19 without
saving/restoring them for the functions' callers; a function must save
them if they are expected to maintain their values across a call to a
function.

NoteNote
If you are compiling a driver, file manager, ticker, or other system
component that uses floating-point and you get unresolved references
to the symbols below you can resolve the references by adding the
following floating-point values to your module.

const double __zero[] = {0.0, 0.0};

const float __float_pos_1 = 1.0;

const float __float_neg_1 = -1.0;

const float __float_2_pow_31 = ((float)0x8000) * 0x10000;

const float __float_2_pow_32 = ((float)0x10000) * 0x10000;

const float __float_2_pow_63 = ((float)0x8000) * 0x10000 * 0x10000 *
0x10000;

const float __float_2_pow_64 = ((float)0x10000) * 0x10000 * 0x10000 *
0x10000;

const double __double_pos_1 = 1.0;

const double __double_neg_1 = -1.0;

const double __double_2_pow_31 = ((double)0x8000) * 0x10000;

const double __double_2_pow_32 = ((double)0x10000) * 0x10000;

const double __double_2_pow_63 = ((double)0x8000) * 0x10000 * 0x10000
* 0x10000;

const double __double_2_pow_64 = ((double)0x10000) * 0x10000 * 0x10000
* 0x10000;
162 Ultra C/C++ Processor Guide

4MIPS
These values should be compiled to a ROF (.r) file. This ROF file
should be included on the link line directly after the root psect (e.g.
fmstart.r, drvstart.r, etc.). Because these values are accessed with
16-bit offsets, they must appear early in the link statement to be easily
accessible from the CP.

Special Purpose Registers
The multiply/divide HI and LO registers are used by the compiler when
performing multiplication, division, and modulus operations.

Any co-processor registers are available for hand-written assembly
language use, although values may need to be saved and restored.

Passing Arguments to Functions

When an argument is passed to a called function, the argument is in
one of two places, in a register or in the Output Parameter Area (OPA)
of the calling function.

The called function determines the location of the argument by
argument type and the order specified in the argument list.

For this discussion:

• An integral argument is an argument of type int, a pointer, or a
char or short converted to an int.

• A floating point argument is an argument of type double or a
float converted to a double.

There are four integral registers used for parameter passing: $4 through
$7, inclusive. Two registers are available for floating point argument
passing: f12 and f14 (and their paired registers on appropriate
processors).

The OPA is also used to pass arguments (when the registers have been
exhausted). Figure 4-1 illustrates a stack frame for a function.
Ultra C/C++ Processor Guide 163

4 MIPS
The link area is allocated by the caller as a location where the function
can store its link register and current stack pointer (before additional
allocation occurs).

Figure 4-1 Stack Frame for a Function

The basic algorithm the compiler uses to pass arguments is as follows:

if function returns a struct

put address of struct return area into first integral passing register
while still more arguments

if parameter is part of variable arguments
put argument into next position in OPA

else if parameter is a struct
copy struct into next position in OPA

else
if argument is integral

if an integral passing register is available
put argument into integral register

else
put argument into next position in OPA

else if argument is floating-point
if a floating-point passing register is available

put argument into floating-point register
else

put argument into next position in OPA
advance to next argument

Function Stack
Frame

Higher Addresses

Lower Addresses

Stack Pointer

Caller's Stack Frame
Link area (8 bytes)
Allocated by Caller
Register Save Area

Output Parameter Area

Automatics Not in Registers

Link Area (8 bytes)
for Child Function
164 Ultra C/C++ Processor Guide

4MIPS
The OPA is filled from lowest address to highest address.

Struct arguments and parameters that comprise the variable arguments
to a variable argument function are always passed on the OPA. If a
function is to return a value, an integral return value is returned in $2 or
a floating point return value is returned in f0. If a function is to return a
struct, the address of a return area is passed as the first integral
argument, in $4.

C Language Features

In conformance with the ANSI/ISO C specification, the
implementation-defined areas of the compiler are listed in this section.
Each bulleted item contains one implementation-defined issue. The
number in parentheses included with each bulleted item indicates the
location in the ANSI/ISO specification where further information is
provided.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Other implementation-defined areas are included in the Using Ultra
C/C++ manual and the Ultra C Library Reference manual. Refer to an
ANSI/ISO specification for more information.

Characters
• The number of bits in a character in the execution character set

(5.2.4.2.1).

There are eight bits in a character in the execution character set.
Ultra C/C++ Processor Guide 165

4 MIPS
Integers
• The representations and sets of values of the various integer types

(6.1.2.5).

Table 4-13 Integer Type/Range

Type Representation
Minimum /
Maximum

char, signed
char

8-bit 2’s complement -128 /

127

unsigned
char

8-bit binary 0 /

255

short int 16-bit 2’s complement -32768 /

32767

unsigned
short int

16-bit binary 0 /

65535

int 32-bit 2’s complement -2147483648 /

2147483647

unsigned
int

32-bit binary 0 /

4294967295

long int 32-bit 2’s complement -2147483648 /

2147483647

unsigned
long int

32-bit binary 0 /

4294967295
166 Ultra C/C++ Processor Guide

4MIPS
* MIPS64 targets only (MIPS-III ISA required). long long is not a part of the
current ANSI standard.

• The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented (6.2.1.2).

When converting a longer integer to a shorter signed integer, the
least significant <n> bits of the longer integer are moved to the
integer of <n> bits. The resulting value in the smaller integer is
dictated by the representation. For example, if the conversion is from
int to short, then the least significant 16 bits are moved from the
int to the short. This value is then considered a 2’s complement
16-bit integer.

When conversion from unsigned to signed occurs with equally sized
integers, the most significant bit becomes the sign bit. Therefore, if
the unsigned integer is less than 0x80000000, the conversion has
no affect. Otherwise, a negative number results.

• The sign of the remainder on integer division (6.3.5).

The result of an inexact division of one negative and one positive
integer is the smallest integer greater than or equal to the algebraic
quotient.

The sign of the remainder on integer division is the same as that of
the dividend.

long long * 64-bit 2’s complement -263 /

263 -1

unsigned
long long *

64-bit binary 0 /

264 -1

Table 4-13 Integer Type/Range (continued)

Type Representation
Minimum /
Maximum
Ultra C/C++ Processor Guide 167

4 MIPS
Floating Point
• The representations and sets of values of the various types of

floating-point numbers (6.1.2.5).

Refer to the float.h header file for other limits and values.

Arrays and Pointers
• The type of integer required to hold the maximum size of an array.

That is, the type of the size of operator, size_t (6.3.3.4, 7.1.1).

An unsigned long int is required to hold the maximum size of
an array. unsigned long int is defined as size_t in
ansi_c.h.

• The result of casting a pointer to an integer or vice versa (6.3.4).

Since pointers are treated much like unsigned long integers, the
integer will be promoted using the usual promotion rules to an
unsigned long. That is, the sign bit propagates out to the full 32-bit
width.

• The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdiff_t (6.3.6, 7.1.1).

Table 4-14 Floating Point Number Characteristics

Type Format
Minimum /
Maximum

float 32 bit IEEE 754 1.17549435e-38f /
3.40282347e38f

double 64 bit IEEE 754 2.2250738585072016e-308 /
1.7976931348623157e308

long double 64 bit IEEE 754 2.2250738585072016e-308 /
1.7976931348623157e308
168 Ultra C/C++ Processor Guide

4MIPS
A signed long int is required to hold the difference between two
pointers to elements of the same array. long int is defined as
ptrdiff_t in ansi_c.h.

Registers
• The extent to which objects can actually be placed in registers by

use of the register storage-class specifier (6.5.1).

The compiler automatically makes decisions about what objects are
placed in registers, thus giving no special storage considerations for
the register storage-class.

Structures, Unions, Enumerations, and Bit-Fields
• The padding and alignment of members of structures (6.5.2.1). This

should present no problem unless binary data written by one
implementation are read by another.
Ultra C/C++ Processor Guide 169

4 MIPS
Table 4-15 shows the alignment of the various objects within a
structure. Required padding is supplied if the next available space is
not at the correct alignment for the object. For example, a structure
declared as:

 struct {
 char mem1;
 long mem2;
 };

would be an eight byte structure, one byte for mem1, three bytes of
padding to get mem2 to four byte alignment, and four bytes for
mem2.

Table 4-15 Alignment Table

Type Alignment Requirement

char 1

short 2

int 4

long 4

long long 8

pointers 4

float 4

double 8

long double 8
170 Ultra C/C++ Processor Guide

4MIPS
• Whether “plain” int bit field is treated as a signed int or as an
unsigned int bit field (6.5.2.1).

A “plain” int bit field is treated as a signed int bit-field.

• The order of allocation of bit fields within a unit (6.5.2.1).

Bit fields are allocated from most significant bit to least significant
bit.

• Whether a bit field can straddle a storage-unit boundary (6.5.2.1).

Bit fields are allocated end-to-end until a non-bit field member is
allocated or until that positioning would cross an addressable
boundary such that no object of an integral type could both contain
the bit field and be correctly aligned.

• The integer type chosen to represent the values of an enumeration
type (6.5.2.2).

Enum values are represented in 32-bit two’s complement integers.

Preprocessing Directives
• Whether the value of a single-character character constant in a

constant expression that controls inclusion matches the value of the
same character constant in the execution character set. Whether
such a character constant may have a negative value (6.8.1).

The value of a single-character character constant in a constant
expression that controls inclusion matches the value of the same
character constant in the execution character set. This character
constant may have a negative value.

• The method for locating includable source files (6.8.2).

This method is described in the Using the Executive chapter of the
Using Ultra C/C++ manual.

• The support of quoted names for includable source files (6.8.2).

Quoted names are supported for #include preprocessing directives.

• The mapping of source file character sequences (6.8.2).

The mapping of source file character sequences is one-to-one. The
case-sensitivity of file names depends on the file system being used.
Ultra C/C++ Processor Guide 171

4 MIPS
_asm() Register Pseudo Functions

_asm() uses registers pseudo functions as identified in Table 4-16.

Table 4-16 _asm() Register Pseudo Functions

Register Description

__reg_gen Any non-dedicated integer register

__reg_float Any non-dedicated floating point register (single or
pair)

__reg_<n> The register specified by $<n>, <n> is 1 to 31

__reg_zero Constant zero register; equivalent to __reg_0

__reg_at Compiler temporary register; equivalent to __reg_1

__reg_v<n> The register specified by v<n>, <n> is 0 or 1;
equivalent to
__reg_<N> where <N> is 2 or 3

__reg_a<n> The register specified by a<n>, <n> is 0 to 3;
equivalent to
__reg_<N> when N is 4 to 7

__reg_t<n> The register specified by t<n>, <n> is 0 to 9;
equivalent to
__reg_<N> where N is 8 to 15, 24, or 25

__reg_s<n> The register specified by s<n>, <n> is 0 to 7;
equivalent to
__reg_<N> where N is 16 to 23

__reg_k<n> The register specified by k<n>, <n> is 0 or 1;
equivalent to
__reg_<N> where N is 26 or 27
172 Ultra C/C++ Processor Guide

4MIPS
The __reg_recall, __reg_hi, and __reg_lo pseudo-functions
are used in a different manner than the other pseudo-functions.

The user may recall a previous _asm argument whose value is a
register using the __reg_recall() pseudo-function, in conjunction
with one of __reg_gen() or __reg_float(). __reg_recall()
takes one integer argument, the ordinal number of the argument it is to
duplicate; it should be specified as the argument to __reg_gen() if it
is to return an integer register or __reg_float() if it is to return a
floating point register. See the next item for an example of its usage.

__reg_gp Global pointer register; equivalent to __reg_28

__reg_sp Stack pointer register; equivalent to __reg_29

__reg_cp Constant pointer register; equivalent to __reg_30

__reg_ra Return address register; equivalent to __reg_31

__reg_recall Retrieves the register object specified by a previous
pseudo-function.

__reg_hi The register containing the most-significant bits of a
register pair (odd register); used in conjunction with
__reg_recall and __reg_float

__reg_lo The register containing the least-significant bits of a
register pair (even register); used in conjunction with
__reg_recall and __reg_float

__call Used to inform the compiler of the intention to call a
subroutine from within an _asm();
example: "__reg_ra(__call())"

__reg_callee_save[d] Any callee-saved general purpose register

__reg_caller_save[d] Any caller-saved general purpose register

Table 4-16 _asm() Register Pseudo Functions

Register Description
Ultra C/C++ Processor Guide 173

4 MIPS
__reg_hi() or __reg_lo() may be used to extract either the most
significant half or the least significant half, respectively, of a paired
floating point register. The user normally calls __reg_float() to
reserve the register in question, then uses __reg_hi() or
__reg_lo() in conjunction with __reg_recall() to reference either
half. The following example uses __reg_float() to allocate a register
pair and __reg_hi() and __reg_lo() to access the individual
registers.

_asm("
 swc1 %1,0(%3)
 swc1 %2,4(%3)
",
 __reg_float(a),
 __reg_hi(__reg_float(__reg_recall(0))),
 __reg_lo(__reg_float(__reg_recall(0))),
 __reg_gen(&b));
174 Ultra C/C++ Processor Guide

4MIPS
MIPS Processor-Specific Optimizations

In addition to providing the standard generic assembly optimizations,
the Ultra C/C++ MIPS assembly optimizer (optmips), provides
processor-specific optimizations. These are:

• Special Common Sub-Expressions
• Delay Slot Filling
• Copy Propagation
• Register Renaming
• Instruction Scheduling

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The Using Ultra C/C++ manual contains additional information on
assembly level optimizations.

Special Common Sub-Expressions

On the MIPS architecture, certain constants are more expensive to
work with than others. To account for this, the common sub-expression
elimination optimization is performed on expressions involving
potentially expensive constants. These include the following:

• The computation of all floating point constants as none of the
floating point instructions allow for floating point immediates.

• The computation of integer constants that require two or more
instructions. For example the constant 0xffeeffee. The constant
0xffffffee would not be considered.
Ultra C/C++ Processor Guide 175

4 MIPS
Delay Slot Filling

The assembly optimizer attempts to fill the delay slots of those
instructions that have them with useful instructions (in an attempt to
reduce code size and/or increase code efficiency). To do this, it looks for
a movable instruction in the series of preceding instructions or, in some
cases, the following or destination instructions. If the delay slot cannot
be filled with a useful instruction, it is either left alone or, in the case of
unconditional branches, the delay slot is removed altogether.

Copy Propagation

The assembly code optimizer tries to eliminate needless copies
between register temporaries; resulting in smaller, more efficient code.
For example:

lw $4,=x($28)
nop
move $8,$4
addiu $8,$8,-1
bne $8,$0,=$L1
nop

This may be changed to the following:

lw $8,=x($28)
nop
addiu $8,$8,-1
bne $8,$0,=$L1
nop
176 Ultra C/C++ Processor Guide

4MIPS
Register Renaming

In an effort to conserve registers, the back end often generates code
using the same temporary register in sequential instructions, much to
the dismay of the instruction scheduler. The assembly optimizer uses
different registers when possible to help itself schedule better. For
example:

* compute w += x + y + z
lw $8,=x+0($28)
nop
lw $9,=y+0($28)
nop
addu $8,$8,$9
lw $9,=z+0($28)
nop
addu $8,$9,$8
lw $9,=w+0($28)
nop
addu $9,$9,$8
sw $9,=w+0($28)

This may be changed to the following:

lw $8,=x+0($28)
lw $3,=y+0($28)
lw $1,=z+0($28)
lw $9,=w+0($28)
addu $8,$8,$3
addu $8,$1,$8
addu $9,$9,$8
sw $9,=w+0($28)

The use of different registers allows for more freedom in instruction
scheduling.
Ultra C/C++ Processor Guide 177

4 MIPS
Instruction Scheduling

Instruction scheduling is usually performed in an effort to increase
generated code speed. This involves spreading dependent instructions
to eliminate any latencies between them. For the MIPS, instruction
scheduling is also important to ensure proper execution. Some MIPS
targets contain pipeline hazards which are not guarded by hardware
interlocks. For example, on many MIPS3000 architectures there is a
one-cycle delay on the availability of the destination register for a load.
The backend inserts nop instructions into these delay slots. The
assembly optimizer attempts to fill these delay slots with useful
instructions when possible.

Other recognized hazards may include: multiply/divide instructions and
those that access the HI and LO registers, floating point comparisons,
integer/floating point moves, and integer/control register moves.
178 Ultra C/C++ Processor Guide

4MIPS
Assembler/ Linker

The assembler allows use of standard MIPS assembly language
mnemonics and syntax, modified as described in this section. For more
specific information about individual instructions, consult the following
books:

• IDT R30xx Family Software Reference Manual
• IDT79R4640 and IDT79R4650 RISC Processor Hardware User's

Manual
• IDT79R4600 and IDT79R4700 RISC Processor Hardware User's

Manual

ROF Edition Number

The MIPS assembler emits ROF Edition #15.

External References

The MIPS assembler allows the use of external references with any
operators within any expression fields not defined to be constant
expression fields.

Symbol Biasing

The linker does not bias code or data symbols for system, file
managers, device drivers, device descriptors, or data modules. For all
other types of modules, or for raw code, the linker biases both code and
data symbols by -32752 (-0x7ff0). Initialization routines for raw
code should ensure that the static storage pointer ($28) and constant
storage pointer ($30) are initialized with the proper base addresses,
adjusted to account for this biasing.
Ultra C/C++ Processor Guide 179

4 MIPS
Assembler Syntax Extensions and Limitations

The Ultra C Compiler's adaptation of the MIPS instruction syntax has a
few notable differences from what is defined in MIPS architecture
manuals.

• All Microware assemblers use the space character as the comment
delimiter. As a result, the operand stream must not include any
spaces.

• The MIPS instruction set limits immediates to 16-bit signed and
unsigned values. To allow for manipulation of 32-bit immediate data,
the following operators are available in the MIPS assembler:

hi(x) = x >> 16 /* upper 16 bits */
high(x) = (x >> 16) + ((x >> 15) & 1) /* upper 16 bits + sign bit of lower 16 */
lo(x) = x & 0x0000ffff /* lower 16 bits */

• The following code moves the 32-bit value represented by Symbol
into GPR a0:

lui a0,hi(=Symbol)

ori a0,a0,lo(=Symbol)

• If Symbol represents the offset of x from GPR gp, then the following
code moves the 32-bit address of x int a0:

lui a0,high(=Symbol)

addu a0,a0,gp

add a0,a0,lo(=Symbol)

Alternatively, the value of x can be loaded into a0 as follows:

lui a0,high(=Symbol)

addu a0,a0,gp

lw a0,lo(=Symbol)(a0)

• In addition to the MIPS instruction set, the Microware Ultra C/C++
MIPS assembler also accepts the synthetic instructions specified in
Table 4-17.
180 Ultra C/C++ Processor Guide

4MIPS
Table 4-17 MIPS Assembler Synthetic Instructions

Synthetic Instruction MIPS Instruction

move regd,reg1 or regd,reg1,zero

b label beq zero,zero,label

bal label bgezal zero,label
Ultra C/C++ Processor Guide 181

4 MIPS
Stack Checking

This section provides MIPS-specific information about stack checking.
Refer to Using Ultra C/C++ for more general information on stack
checking.

If stack checking is inappropriate for the module being created, you will
need to define the following items:

• a global pointer called _stbot (initialized to ULONG_MAX if possible)

• a function called _stkhandler (it returns to its caller)

A function called _stkoverflow is called when the stack appears to
overflow. If a non-static function called _stkoverflow resides in an
ROF that is linked to make the object module, that function is called
instead of the default function. The default function writes a message to
the standard error path and causes the program to exit with a status of
one. _stkoverflow neither accepts parameters nor returns a value.

NoteNote
If _stkoverflow is inappropriate for your application, consider writing
a function to handle stack overflow.

_stkhandler, the function that checks for stack overflow, can be
revised. Revision may be necessary if stack checking is inapplicable to
the module that calls the library functions. _stkhandler() is passed
the desired stack pointer in r3 and does not return a value.

NoteNote
Stack handler code must be compiled with stack checking turned off
(-r in ucc mode).
182 Ultra C/C++ Processor Guide

Chapter 5: Pentium and 80x86

This chapter provides information specific to the Pentium processor and
the 80x86 family of processors. The following sections are included:

• Executive and Phase Information
• C/C++ Application Binary Interface Information
• _asm() Register Pseudo Functions
• Span Dependent Optimizations
• Assembler/ Linker
• Assembly Language Mnemonics
183

5 Pentium and 80x86
Executive and Phase Information

This section describes the Executive -tp option, predefined macro
names for the preprocessor, and Pentium- and 80x86-unique phase
option functionality.

Executive -tp Option

-tp[=]<target> Specify the target processor.

Table 5-1 Target Processors

<target> Target Processor

80386 I80386

386 I80386

80486 I80486

486 I80486

p5 Pentium

Table 5-2 -tp Sub-Options

<suboptions> Description

sd Use 8 bit data references

ld Use 32 bit data references (default)
184 Ultra C/C++ Processor Guide

5Pentium and 80x86
Predefined Macro Names for the Preprocessor

The macro names in Table 5-3 are predefined in the preprocessor for
target systems.

Target names specify the compiler to use when writing machine- and
operating system-independent programs.

The executive defines the _MPF macro for the target processor as well
as any processors that are generally considered subsets of the target
processor. Table 5-4 provides a few examples of this behavior.

For more information on which macros are defined for Pentium and
80x86 target processors, run the executive in verbose and dry run
modes, stopping after the front end. For example, to check the defines
for the p5 (Pentium) target (source file not required):

 cc -b -h -efe -tp=p5 t.c

This causes the executive to print a line similar to:

"cpfe -m --target=1 -I\mwos\SRC\DEFS
-I\mwos\OS9000\SRC\DEFS -I\mwos\OS9000\80386\DEFS
--translate_names_2 -D_UCC -D_MAJOR_REV=2
-D_MINOR_REV=5 -D_SPACE_FACTOR=1 -D_TIME_FACTOR=1
-D_OS9000 -D_MPFP5 -D_MPF486 -D_MPF386 -D_FPF387
-D_LIL_END -D__LONGLONG_BIT=64 -w --Extended_ANSI
--gen_c_file_name=t.i t.c"

Table 5-3 Macros

Macro Description

_FPF387 80387 floating point target coprocessor family

_MPF386 80386 target processor

_MPF486 80486 target processor

_MPFP5 Pentium target processor
Ultra C/C++ Processor Guide 185

5 Pentium and 80x86
NoteNote
Note that _MPFP5, _MPF486, and _MPF386 macros are defined.

The _MPF386 macro indicates that a source file is being compiled for
an Intel 80x86 family target.

Table 5-4 identifies the relationship between the target processor and
the preprocessor macros.

80x86-Unique Phase Option Functionality

Phases having unique phase option functionality on the 80x86
processor are:

• Back End Options
• Assembly Optimizer Options
• Assembler Options
• Linker Options

Table 5-4 _MPFxxx Macro Behavior

Target Microprocessor Macros Defined

80386 _MPF386

80486 _MPF486, _MPF386

Pentium _MPFP5, _MPF386
186 Ultra C/C++ Processor Guide

5Pentium and 80x86
Back End Options
Options identified in the following table are available for the back end.

Assembly Optimizer Options
-t[=]<num> Specify Target Processor Family

Table 5-5 Information Options

Option Description

-pd Clear the direction flag at function entry

-pg Do not use data area to calculate code area addresses

-ps Do not emit stack checking code

-p5 Emit code for Pentium processor

Table 5-6 Assembly Optimizer Processor Numbers

Number Assembly Optimizer Target

1 80386

2 486

3 Pentium
Ultra C/C++ Processor Guide 187

5 Pentium and 80x86
-s<method> Set the peephole scheduling method

Assembler Options
-b Optimize Branch Sizing

-m<num> Specify Microprocessor

Linker Options
-t=<target> Specify target module type

Table 5-7 Peephole Scheduling Methods

Method Description

s Spread dependent instructions

c Compress floating point instructions

n No reordering of instructions

Table 5-8 Microprocessor

Number Description

80386 80386 processor (default)

8086 8086 processor

Table 5-9 Target Module Type

Target Module Type

os9k_386 OS-9 for x86
188 Ultra C/C++ Processor Guide

5Pentium and 80x86
C/C++ Application Binary Interface
Information

This section describes the register usage, passing arguments to
functions, and language features.

Register Usage

The compiler uses registers identified in Table 5-10.

Table 5-10 Register Usage

Register Description

eax Function argument/return register, temporaries,
and register variables

ebp Frame pointer

ebx Global static storage pointer

ecx Temporaries and register variables

edi Temporaries and register variables

edx Temporaries and register variables

esi Temporaries and register variables

esp Stack pointer

st0 80387 stack top; float/double return register
Ultra C/C++ Processor Guide 189

5 Pentium and 80x86
Passing Arguments to Functions

When arguments are passed to a called function, the argument resides
in one of two places, in a register or on the stack.

The called function determines the location of the argument by the
following argument type and the order specified in the argument list.

For this section, the following statements are assumed:

• An integral argument is an argument of type int or pointer or
char, or short converted to an int.

• A double argument is an argument of type double or float
converted to double.

The first integral argument is passed in eax, and the second integral
argument, if any, is pushed on the stack. A single double argument is
pushed on the stack as are remaining arguments. If the first argument is
integral and the second is double, the integral argument is passed in
eax and the double is pushed on the stack.

Any struct or long long arguments are copied to the next location
on the stack. A long long is pushed such that the most signifcant 32
bits appear at a higher address than the least significant 32 bits.

If a function returns a value, the integral value is returned in eax. A
double (or float) value is returned in st0. If the returned value is a
struct, then the address of the return area is passed as an argument
to the callee in edi; the called function copies the returned struct to
this location. If the return value is a long long, the least significant 32
bits are returned in eax and the most significant 32 bits are returned in
edx.

C Language Features

In conformance with the ANSI/ISO C specification, the
implementation-defined areas of Ultra C/C++ are listed in this section.
Each bulleted item contains one implementation-defined issue. The
190 Ultra C/C++ Processor Guide

5Pentium and 80x86
number in parentheses included with each bulleted item indicates the
location in the ANSI/ISO specification where further information is
provided.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Other implementation- defined areas are defined in the Language
Features chapter of the Using Ultra C/C++ manual and the Overview
chapter of the Ultra C Library Reference manual. Refer to an
ANSI/ISO specification for more information.

Characters
• The number of bits in a character in the execution character set

(5.2.4.2.1).

There are eight bits in a character in the execution character set.

Integers
• The representations and sets of values of the various integer types

(6.1.2.5).

Table 5-11 Integers

Type Representation
Minimum /
Maximum

char, signed char 8-bit 2’s
complement

-128 /
127

unsigned char 8-bit binary 0 /
255
Ultra C/C++ Processor Guide 191

5 Pentium and 80x86
• The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented (6.2.1.2).

When converting a longer integer to a shorter signed integer, the least significant
<n> bits of the longer integer are moved to the integer of <n> bits. The resulting
value in the smaller integer is dictated by the representation. For example, if the
conversion is from int to short, the least significant 16 bits are moved from the
int to the short. This value is then considered a 2’s complement 16-bit integer.

short int 16-bit 2’s
complement

-32768 /
32767

unsigned short int 16-bit binary 0 /
65535

int 32-bit 2’s
complement

-2147483648 /
2147483647

unsigned int 32-bit binary 0 /
4294967295

long int 32-bit 2’s
complement

-2147483648 /
2147483647

unsigned long int 32-bit binary 0 /
4294967295

long long 64-bit 2’s
complement

-263 /

263 -1

unsigned long long 64-bit binary 0 /

264 -1

Table 5-11 Integers

Type Representation
Minimum /
Maximum
192 Ultra C/C++ Processor Guide

5Pentium and 80x86
When conversion from unsigned to signed occurs with equally sized integers, the
most significant bit becomes the sign bit. Therefore, if the unsigned integer is less
than 0x80000000, the conversion has no effect. Otherwise, a negative number
results.

The Sign of the Remainder on Integer Division (6.3.5)
• The result of an inexact division of one negative and one positive

integer is the smallest integer greater than or equal to the algebraic
quotient.

The sign of the remainder on integer division is the same as that of the dividend.

Floating Point
• The representations and sets of values of the various types of

floating-point numbers (6.1.2.5).

Refer to the float.h header file for other limits and values.

Arrays and Pointers
• The type of integer required to hold the maximum size of an array.

That is, the type of the sizeof operator, size_t (6.3.3.4, 7.1.1).

Table 5-12 Floating Point Number Characteristics

Type Format
Minimum /
Maximum

float 32 bit IEEE 754 1.17549435e-38f /
3.40282347e38f

double 64 bit IEEE 754 2.2250738585072016e-308 /
1.7976931348623157e308

long double 64 bit IEEE 754 2.2250738585072016e-308 /
1.7976931348623157e308
Ultra C/C++ Processor Guide 193

5 Pentium and 80x86
An unsigned long int is required to hold the maximum size of an array.
unsigned long int is defined as size_t in ansi_c.h.

• The result of casting a pointer to an integer or vice versa (6.3.4).

Since pointers are treated much like unsigned long integers, the integer is
promoted using the usual promotion rules to an unsigned long. That is, the
sign bit propagates out to the full 32-bit width.

• The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdiff_t (6.3.6, 7.1.1).

A signed long int is required to hold the difference between two pointers to
elements of the same array. long int is defined as ptrdiff_t in ansi_c.h.

Registers
• The extent to which objects can actually be placed in registers by

use of the register storage-class specifier (6.5.1).

The compiler automatically makes decisions about which objects are placed in
registers, giving no special storage considerations for the register storage-class.

Structures, Unions, Enumerations, and Bit-Fields
• The padding and alignment of members of structures (6.5.2.1). This

should present no problem unless binary data written by one
implementation are read by another.

Non-character structure members and sub-structures containing non-character
members are aligned on an even byte boundary. Character structure members
have no alignment restrictions.

• Whether “plain” int bit field is treated as a signed int or as an
unsigned int bit field (6.5.2.1).

A plain int bit field is treated as a signed int bit field.

• The order of allocation of bit fields within a unit (6.5.2.1).

The bit fields are allocated from least significant bit to most significant bit.

• Whether a bit field can straddle a storage-unit boundary (6.5.2.1).

Bit fields can straddle a storage unit. That is, bit fields are allocated end-to-end
until a non-bit-field member is allocated or 32-bit size is executed.
194 Ultra C/C++ Processor Guide

5Pentium and 80x86
• The integer type chosen to represent the values of an enumeration
type (6.5.2.2).

Enum values are represented in 32-bit two’s complement integers.

Preprocessing Directives
• Whether the value of a single-character, character constant in a

constant expression that controls inclusion matches the value of the
same character constant in the execution character set. Whether
such a character constant may have a negative value (6.8.1).

The value of a single-character character constant in a constant expression that
controls inclusion matches the value of the same character constant in the
execution character set. This character constant may have a negative value.

• The method for locating includable source files (6.8.2).

This method is described in the Using the Executive chapter of the Using
Ultra C/C++ manual.

• The support of quoted names for includable source files (6.8.2).

Quoted names are supported for #include preprocessing directives.

• The mapping of source file character sequences (6.8.2).

The mapping of source file character sequences is one-to-one. The
case-sensitivity of file names depends on the file system being used.
Ultra C/C++ Processor Guide 195

5 Pentium and 80x86
_asm() Register Pseudo Functions

_asm() uses registers pseudo functions as identified in Table 5-13.

Table 5-13 _asm() Register Pseudo Functions

Register Description

__reg_gen Any non-dedicated 32 bit integer register

__reg_bit16 Any 16-bit integer register with an accessible 8
bit

__reg_bit8 Any 8-bit integer register not part of a dedicated
32-bit register

__reg_eax Individual 32-bit register

__reg_ebx Individual 32-bit integer register

__reg_ecx Individual 32-bit register

__reg_edx Individual 32-bit register

__reg_esi Individual 32-bit register

__reg_edi Individual 32-bit register

__reg_ebp Individual 32-bit register

__reg_esp Individual 32-bit register

__reg_ax Individual 16-bit integer registers

__reg_cx Individual 16-bit integer registers

__reg_dx Individual 16-bit integer registers
196 Ultra C/C++ Processor Guide

5Pentium and 80x86
__reg_al AL

__reg_cl CL

Table 5-13 _asm() Register Pseudo Functions (continued)

Register Description
Ultra C/C++ Processor Guide 197

5 Pentium and 80x86
Span Dependent Optimizations

The compiler performs branch shortening. Branch shortening reduces
the instruction size on branch instructions when the distance to the
destination is known to be within certain limits.
198 Ultra C/C++ Processor Guide

5Pentium and 80x86
Assembler/ Linker

The assembler allows use of standard Intel assembly language.
However, the order of operands accepted by the assembler is:

<instruction> <source>,<destination>

For more specific information about individual instructions, refer to the
appropriate hardware manuals.

ROF Edition #9

The Pentium and 80x86 assembler supports ROF Edition #9.2.

NoteNote
The 386 linker will not accept ROFs/libraries created with pre-UltraC2.4
assembler/libgen.

External References

ROF Edition Number 9.2 is only capable of representing limited
expressions involving external references. These expressions can
consist only of simple addition and subtraction operations involving two
operands at most. The following expression forms involving external
references are supported. All other forms are illegal.

External + Absolute
External - Absolute
External - External
Ultra C/C++ Processor Guide 199

5 Pentium and 80x86
The linker performs subtraction by negating one operand and adding it
to the other operand. This method can cause problems on signed
values of either word or byte length as the linker may report
over/underflow errors. Therefore, expressions involving external names
should not be too complex.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the ROF Edition Number 9 Format section in the Assembler
and Object Code Linker Overview chapter of the Using Ultra C/C++
manual.

Symbol Biasing

The linker does not bias code symbols for the 80x86/Pentium targets.
Data symbols are biased only for system, file manager, device driver,
device descriptor, and data modules. For all other module types, the
linker biases data symbols by -128 (-0x80) bytes. When generating raw
code for these processors, the linker biases data symbols by -128 bytes
as well. Initialization routines for such code should be sure to add 128 to
the base address loaded into the global static storage pointer (ebp) to
accommodate this biasing.
200 Ultra C/C++ Processor Guide

5Pentium and 80x86
Assembly Language Mnemonics

Table 5-14 Assembly Language Mnemonics

Mnemonic Description

aaa ASCII adjust after addition

aad ASCII adjust before division

aam ASCII adjust after multiplication

aas ASCII adjust after subtraction

adc Add with carry

add Add integers

and Logical AND

arpl Adjust requested privilege level

bound Check array index against register and then bounds in
memory

bsf Bit scan forward

bsr Bit scan reverse

bt Bit test

btc Bit test and complement

btr Bit test and reset
Ultra C/C++ Processor Guide 201

5 Pentium and 80x86
bts Bit test and set

call Call a procedure

cbw Convert byte to word

cdq Convert dword to qword

clc Clear the carry flag

cld Clear the direction flag

cli Clear the interrupt flag

clts Clear the task-switched flag

cmc Complement the carry flag

cmp Compare. The first operand must be a register or
immediate. The second operand must be a register or
memory.

cmps Compare string

cwd Convert word to dword

cwde Convert word to dword

daa Decimal adjust after addition

das Decimal adjust after subtraction

dec Decrement

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description
202 Ultra C/C++ Processor Guide

5Pentium and 80x86
div Unsigned divide

enter Create stack frame

hlt Halt

idiv Signed divide

imul Signed multiplication

in Input from a port

inc Increment

ins Input string

int Call to interrupt procedure

into Interrupt on overflow

iret Return from interrupt

ja Jump if above

jae Jump if above or equal

jb Jump if below

jbe Jump if below or equal

jc Jump if carry

jcxz Jump if CS == 0

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description
Ultra C/C++ Processor Guide 203

5 Pentium and 80x86
je Jump if equal

jecxz Jump if ECX == 0

jg Jump if greater than

jge Jump if greater than or equal

jl Jump if less than

jle Jump if less than or equal

jmp Jump

jna Jump if not above

jnae Jump if not above or equal

jnb Jump if not below

jnbe Jump if not below or equal

jnc Jump if not carry

jne Jump if not equal

jng Jump if not greater than

jnge Jump if not greater or equal

jnl Jump if not less than

jnle Jump if not less than or equal

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description
204 Ultra C/C++ Processor Guide

5Pentium and 80x86
jno Jump if no overflow

jnp Jump if not parity

jns Jump if not sign

jnz Jump if not zero

jo Jump if overflow

jp Jump if parity

jpe Jump if parity even

jpo Jump if parity odd

js Jump if sign

jz Jump if zero

lahf Load flags into AH register

lar Load access rights

lds Load DS segment register

lea Load effective address

leave Procedure exit

les Load ES segment register

lfs Load FS segment register

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description
Ultra C/C++ Processor Guide 205

5 Pentium and 80x86
lgdt Load global descriptor table

lgs Load GS segment register

lidt Load interrupt descriptor table

lldt Load local descriptor table

lmsw Load machine status word

lock Bus lock

lods Load string

loop Loop control while ECX counter not zero

loope Loop while equal

loopne Loop while not equal

loopnz Loop while not zero

loopz Loop while zero

lsl Load segment limit

lss Load SS segment register

ltr Load task register

mov Move data

movs Move string

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description
206 Ultra C/C++ Processor Guide

5Pentium and 80x86
movsx Move with sign extension

movzx Move with zero extension

mul Unsigned multiplication

neg Negate (two’s complement)

nop No operation

not Negate (one’s complement)

or Logical inclusive OR

out Write to port

outs Output string

pop Pop a word from the stack

popa Pop all registers off stack

popf Pop from stack into flags

push Push onto the stack

pusha Push all onto stack

pushf Push flags onto stack

rcl Rotate left through carry

rcr Rotate right through carry

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description
Ultra C/C++ Processor Guide 207

5 Pentium and 80x86
rep Repeat

repe Repeat while equal

repne Repeat while not equal

repnz Repeat while not zero

repz Repeat while zero

ret Return

rol Rotate left

ror Rotate right

sahf Store AH register into flags

sal Shift arithmetic left

sar Shift arithmetic right

sbb Subtract with borrow

scas Scan string

seta Set byte above

setae Set byte above or equal

setb Set byte below

setbe Set byte below or equal

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description
208 Ultra C/C++ Processor Guide

5Pentium and 80x86
sete Set byte equal

setg Set byte greater than

setge Set byte greater than or equal

setl Set byte less

setle Set byte less than or equal

setz Set byte zero

setna Set byte not above

setnae Set byte not above or equal

setnb Set byte not below

setnbe Set byte not below or equal

setne Set byte not equal

setng Set byte not greater than

setnge Set byte not greater than or equal

setnl Set byte not less than

setnle Set byte not less than or equal

setno Set byte no overflow

setnp Set byte not parity

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description
Ultra C/C++ Processor Guide 209

5 Pentium and 80x86
setns Set byte not sign

setnz Set byte not zero

seto Set byte overflow

setp Set byte parity

setpe Set byte parity even

setpo Set byte parity odd

sets Set byte sign

sgdt Store global descriptor table

shl Shift logical left

shld Double precision shift left

shr Shift logical right

shrd Double precision shift right

sidt Store interrupt descriptor table

sldt Store local descriptor table

smsw Store machine status word

stc Set carry flag

std Set direction flag

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description
210 Ultra C/C++ Processor Guide

5Pentium and 80x86
sti Set interrupt flag

stos Store string

str Store task register

sub Subtract

test Logical compare

verr Verify a segment for reading

verw Verify a segment for writing

wait Wait for coprocessor

xchg Exchange

xlat Table look-up translation

xor Logical exclusive OR

Table 5-15 Floating Point Mnemonics

Mnemonic Description

fabs Absolute value

fadd Addition

faddp Addition

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description
Ultra C/C++ Processor Guide 211

5 Pentium and 80x86
fbld BCD load

fbstp BCD store and pop

fchs Change sign

fcom Compare

fcomp Compare

fcompp Compare

fcos Cosine

fdecstp Decrement stack pointer

fdiv Division

fdivp Division

fdivr Division reverse

fdivrp Division reverse

ffree Free register

fincstp Increment stack pointer

fld Real load

fld1 Load 1

fldc Load control word

Table 5-15 Floating Point Mnemonics (continued)

Mnemonic Description
212 Ultra C/C++ Processor Guide

5Pentium and 80x86
fldenv Load environment

fldl2e Load log2e

fldl2t Load log210

fldlg2 Load log102

fldln2 Load loge2

fldpi Load π

fldz Load zero

fmul Multiply

fmulp Multiply

fnclex Clear exceptions

fninit Initialize processor

fnop No operation

fnsave Save state

fnstc Store control word

fnstenv Store environment

fnsts Store status word

fpatan Partial arctangent

Table 5-15 Floating Point Mnemonics (continued)

Mnemonic Description
Ultra C/C++ Processor Guide 213

5 Pentium and 80x86
fprem Partial remainder

fprem1 Partial remainder (IEEE)

fptan Partial tangent

frndint Round to integer

frstor Restore state

fscale Power of two scaling

fsin Sine

fsincos Sine and cosine

fsqrt Square root

fst Real store

fstp Real store and pop

fsub Subtraction

fsubp Subtraction

fsubr Subtraction reverse

ftst Test

fucom Unordered compare

fucomp Unordered compare

Table 5-15 Floating Point Mnemonics (continued)

Mnemonic Description
214 Ultra C/C++ Processor Guide

5Pentium and 80x86
If stack checking is inappropriate for the module being created, define
the following:

• 32-bit global called _stklimit (initialized to a large positive value if
possible)

• Function called _stkhandler that just returns to its caller

A function called _stkoverflow is called when the stack appears to
overflow. If a non-static function called _stkoverflow resides in an
ROF that is linked to make the object module, that function is called
instead of the default function. The default function writes a message to
the standard error path and causes the program to exit with a status of
one. _stkoverflow neither accepts parameters nor returns a value.

NoteNote
If _stkoverflow is inappropriate for your application, consider writing
a function to handle stack overflow.

fucompp Unordered compare

fxam Examine

fxch Exchange registers

fxtract Extract exponent and significand

fyl2x y * log2x

fyl2xp1 y * log2(x + 1)

f2xm1 2x - 1

Table 5-15 Floating Point Mnemonics (continued)

Mnemonic Description
Ultra C/C++ Processor Guide 215

5 Pentium and 80x86
The function that checks for stack overflow, _stkhandler, may be
revised. This may be necessary if stack checking is inapplicable to the
module that calls the library functions. _stkhandler() neither
accepts parameters nor returns a value.

The following source files (Default Stack Handler Function and Default
Stack Overflow Message and Exit) contain the code for the stack
checking and error exiting routines for 80x86.

NoteNote
Stack handler code must be compiled with stack checking turned off
(-r in ucc mode).

Default Stack Handler Function
/* typedef to the 1 byte unit so pointer arithmetic is easy */
typedef unsigned char byte;

static byte *__asm_get_stack(); /* get current stack pointer */
static void __asm_put_stack(byte *);/* set current stack pointer */

/*
_stkhandler()
Checks for stack overflow. _stklimit will be set with the negative
value of the number of bytes that the function needs. This function
does not take too much advantage of old information in the globals
because old stack checking code does not update it.

*/
void _stkhandler()
{

byte *sp; /* stack pointer */

/*
Figure out what stack limit should really be.
This is necessary because we may have gotten here after an
arbitrary number of calls to the old stack checking code which
only modifies _stbot.

*/
if ((_stklimit = (sp = __asm_get_stack())) - (byte *)_stbot) < 0) {

_stbot = sp;
_stklimit = 0;
216 Ultra C/C++ Processor Guide

5Pentium and 80x86
if (sp <= (byte *)_mtop) { /* overflow? */
__asm_put_stack(sp - 256);
_stklimit = 256;
_stkoverflow();

}

_maxstack = (byte *)_sttop - sp;/* reset maximum so far */
}

}

static byte *__asm_get_stack(void)
{

register byte *stack_ptr;

_asm(" mov.l %0,%1", __reg_esp(),
 __reg_gen(__obj_assign(stack_ptr)));

return stack_ptr;
}

static void __asm_put_stack(new_sp)
byte *new_sp;
{

_asm(" mov.l %1,%0", __reg_esp(), __reg_gen(new_sp));
}

Ultra C/C++ Processor Guide 217

5 Pentium and 80x86
Default Stack Overflow Message and Exit
static const char ovf[] = "**** Stack Overflow ****\n";

/*
_stkoverflow()
print a message and exit

*/
void _stkoverflow()
{

/* write message above to stderr and exit */
u_int32 size = sizeof(ovf);

if (stderr->_flag & _WRITE)
 _os_writeln(_fileno(stderr), (void *)ovf, &size);
_os_exit(EOS_STKOVF);

}

218 Ultra C/C++ Processor Guide

Chapter 6: PowerPC

This chapter contains information specific to the PowerPC family of
processors. The following sections are included:

• Executive and Phase Information
• C/C++ Application Binary Interface Information
• _asm() Register Pseudo Functions
• PowerPC Processor-Specific Optimizations
• Assembler/ Linker
• Assembly Language Mnemonics
• Extended Mnemonics
• Power Mnemonics Supported by PowerPC 601
• PowerPC 403-Specific Mnemonics
• PowerPC 603-Specific Mnemonics
• PowerPC 602-Specific Mnemonics
• Stack Checking
219

6 PowerPC
Executive and Phase Information

Executive -tp enables specific options dependent upon executive
mode. Processors and sub-options for ucc and c89 option modes are
identified in this section.

Executive -tp Option

-tp[=]<target>{[,]<suboptions>}Specify Target Processor
and Target Processor Options

Specify the target processor <target> and target processor
sub-options. Target processors are identified in Table 6-1 and -tp
sub-options are identified in Table 6-2.

Table 6-1 Target Processor

Target Target Processor

PPC Generic PPC

403 PPC403

405 PPC405

505 MPC505

555 MPC555

601 MPC601

602 MPC602

603 MPC603

604 MPC604
220 Ultra C/C++ Processor Guide

6PowerPC
750 MPC750

821 MPC821

860 MPC860

8240 MPC8240

8260 MPC8260

Table 6-2 Mode -tp Sub-Options

Suboptions Description

sd Use 16-bit data references (default)

ld Use 32-bit data references

scd Use 16-bit const data references (default)

lcd Use 32-bit const data references

fp Use static link library for floating-point support

Table 6-1 Target Processor (continued)

Target Target Processor
Ultra C/C++ Processor Guide 221

6 PowerPC
Predefined Macro Names for the Preprocessor

The macro names in Table 6-3 are predefined in the preprocessor for
target systems.

Table 6-3 Macros

Macro Description

_MPFPOWERPC Generic PowerPC processor

_MPFPPC403 PowerPC 403 processor

_MPFPPC405 PowerPC 405 processor

_MPFPPC505 PowerPC 505 processor

_MPFPPC555 PowerPC 555 processor

_MPFPPC601 PowerPC 601 processor

_MPFPPC602 PowerPC 602 processor

_MPFPPC603 PowerPC 603 processor

_MPFPPC604 PowerPC 604 processor

_MPFPPC750 PowerPC 750 processor

_MPFPPC821 PowerPC 821 processor

_MPFPPC860 PowerPC 860 processor

_MPFPPC8240 PowerPC 8240 processor
222 Ultra C/C++ Processor Guide

6PowerPC
Target names specify the compiler to use when writing machine- and
operating system-independent programs.

The executive defines the _MPF macro for the target processor as well
as any processors that are generally considered subsets of the target
processor. Table 6-4 provides a few examples of this behavior.

For more information on exactly which macros are defined for the
PowerPC processors, run the executive in verbose and dry run modes
stopping after the front end. For example, to check the defines for the
601 target (source file not required):

cc -b -h -efe -tp=601 t.c

_MPFPPC8260 PowerPC 8260 processor

_FPFPOWERPC PowerPC floating point processing

Table 6-3 Macros (continued)

Macro Description
Ultra C/C++ Processor Guide 223

6 PowerPC
This causes the executive to print a line similar to:

"cpfe -t=4 -x -v=/dd/MWOS/SRC/DEFS
 -v=/dd/MWOS/OS9000/SRC/DEFS
 -v=/dd/MWOS/OS9000/PPC/DEFS -d_UCC -d_SPACE_FACTOR=1
 -d_TIME_FACTOR=1 -d_OS9000 -d_MPFPPC601 -d_MPFPOWERPC
 -d_FPFPOWERPC -d_BIG_END -o=t.i t.c"

NoteNote
Note that both _MPFPPC601 and _MPFPOWERPC macros are defined.

The _MPFPOWERPC macro indicates that a source file is being compiled
for a PowerPC family target.

Table 6-4 identifies the relationship between the target processor and
the preprocessor macros. Note that specific targets also define the
subset macros (e.g., when targeting the 601, both _MPF601 and
_MPFPOWERPC are defined).

Table 6-4 _MPFxxx Macro Behavior

Target Microprocessor Family Macros Defined

Generic PowerPC _MPFPOWERPC

403 _MPFPOWERPC _MPFPPC403

405 _MPFPOWERPC _MPFPPC405

505 _MPFPOWERPC _MPFPPC505

555 _MPFPOWERPC _MPFPPC555

601 _MPFPOWERPC _MPFPPC601

602 _MPFPOWERPC _MPFPPC602
224 Ultra C/C++ Processor Guide

6PowerPC
603 _MPFPOWERPC _MPFPPC603

604 _MPFPOWERPC _MPFPPC604

750 _MPFPOWERPC _MPFPPC750

821 _MPFPOWERPC _MPFPPC821

860 _MPFPOWERPC _MPFPPC860

8240 _MPFPOWERPC _MPFPPC8240

8260 _MPFPOWERPC _MPFPPC8260

Table 6-4 _MPFxxx Macro Behavior

Target Microprocessor Family Macros Defined
Ultra C/C++ Processor Guide 225

6 PowerPC
PowerPC-Unique Phase Option Functionality

Phases having unique phase option functionality on the PowerPC
processor are:

• Back End Options
• Assembly Optimizer Options
• Linker Options

Back End Options
-m=<non remote memory left>

Informs the back end that other files in the program have used some
amount of the 64K data area.

The back end orders the data area based on static analysis of the data
area objects and sorts the data based on usage and size. This means
that the most heavily used objects end up in the non-remote area. To do
this, the back end needs information about how the object linker will lay
out the data area for the entire program.

Code generation options provide specifications for code generated by
the back end.

Table 6-5 Code Generation Options

Option Description

-pl Cause references to external data to be long

-plc Causes some references to code symbols to be
long

-ps No stack checking code

-pnd Use non-destructive stack checking, not for use with
-ps nor -pc
226 Ultra C/C++ Processor Guide

6PowerPC
Target architecture code generation options provide specifications
unique to a target architecture for code generated by the back end.

-p<target architecture>

Identifies the target architecture for which to generate code.
Implementation of string instructions in hardware and alignment of
memory accesses for load and store instructions differs based upon
target architecture.

-pnr Do not emit register liveness information for the
assembly language optimizer.

-pc Force all registers to be callee-saved

-pg Causes the back end to generate code to derive
r13 rather than relying on a globally set r13 for
each function that needs it. This option might be
used for non-program modules that have multiple
entry points.

Table 6-6 <target architecture> Code Generation Options

Option Description

-p403,p405 Generate code specifically for PowerPC
architectures that implement string instructions in
hardware but require memory references to be
aligned.

Table 6-5 Code Generation Options (continued)

Option Description
Ultra C/C++ Processor Guide 227

6 PowerPC
NoteNote
The executive instructs the back end to emit the most appropriate code
for the target named in the executive -tp option. In the default case
(-tp=PPC), a target architecture option is not sent to the back end. This
implies code generation for an architecture which does not implement
string instructions in hardware and that requires alignment of memory
accesses for load and store instructions.

-p601 Generate code specifically for PowerPC
architectures that implement string instructions in
hardware and allow misaligned accesses for load
and store instructions.

-p602 Generate code specifically for PowerPC
architectures that do not implement string
instructions in hardware but allow misaligned
accesses for load and store instructions.

Table 6-6 <target architecture> Code Generation Options (continued)

Option Description
228 Ultra C/C++ Processor Guide

6PowerPC
Assembly Optimizer Options
-s<method> Set the peephole scheduling method

-t[=]<num> Specify target processor family

Table 6-7 Peephole Scheduling Methods

Method Description

s Spread dependent instructions

c Compress floating point instructions

t Target-driven scheduling

w Target-driven scheduling, with
compression of floating point
instructions

n No reordering of instructions

Table 6-8 Assembly Optimizer Processor Numbers

Number Assembly Optimizer Target

1 Generic PowerPC

2 PPC403

3 MPC505

4 MPC601

5 MPC603

6 PPC602
Ultra C/C++ Processor Guide 229

6 PowerPC
-p=<X> Selectively skip processor-specific
optimizations

Linker Options
-t=<target> Linker, specify target module type

7 MPC604

8 MPC821

9 MPC860

10 MPC750

11 MPC8260

Table 6-9 Assembly Optimizer Processor-Specific Optimizations

<X> Processor-Specific Optimization

l Location Tracking

r Copy propagation

n Register naming

Table 6-10 Target Module Type

Target Module Type

os9k_ppc OS-9 for PowerPC

Table 6-8 Assembly Optimizer Processor Numbers (continued)

Number Assembly Optimizer Target
230 Ultra C/C++ Processor Guide

6PowerPC
C/C++ Application Binary Interface
Information

Register usage, passing arguments to functions, callee saved registers,
and language features are described in this section.

Register Usage

General purpose, floating point, and other registers are defined in this
section.

Table 6-11 Register Classes

Register Class Names Used

General Purpose Registers (GPRs) r0 - r31

Floating Point Registers (FPRs) f0 - f31

Condition Register Fields (CRFs) cr0 - cr7

Special Purpose Registers (SPRs) Refer to Table 6-19

Time Base Registers (TBRs) Refer to Table 6-21

Device Control Registers (DCRs) Refer to Table 6-22
Ultra C/C++ Processor Guide 231

6 PowerPC
General Purpose Registers

* If register is not in use for above stated use, may be used for integral user
register variables and compiler temporaries.

† r13 is used to access const qualified data in the code area of the module.
This is accomplished by using the register r13 as a biased (by 32K-4
bytes) pointer to the code area data. r13 is automatically initialized by the
kernel for program modules. Non-program modules must either set r13 up
themselves or use the back end option -pg to generate the code to set r13
up for each function that needs it.

Table 6-12 General Purpose Registers

Register Description

r0 Function prologue/epilog, compiler temporary *

r1 Stack pointer

r2 Static storage pointer

r3 1st integral argument passed, integral return value*

r4 2nd integral argument passed *

r5 3rd integral argument passed *

r6 4th integral argument passed *

r7 5th integral argument passed *

r8 6th integral argument passed *

r9 7th integral argument passed *

r10 8th integral argument passed *

r13 Constant storage pointer †
232 Ultra C/C++ Processor Guide

6PowerPC
The values in r0 and r3 through r12 need not be preserved across a
function call. That is, a function is safe to use these registers without
saving and restoring their values.

The compiler uses the remainder of the integral registers for integral
user register variables and compiler temporaries.

Floating Point Registers

Table 6-13 Floating Point Registers

Register Description

f1 1st floating point argument passed, floating point
return value

f2 2nd floating point argument passed

f3 3rd floating point argument passed

f4 4th floating point argument passed

f5 5th floating point argument passed

f6 6th floating point argument passed

f7 7th floating point argument passed

f8 8th floating point argument passed

f9 9th floating point argument passed

f10 10th floating point argument passed

f11 11th floating point argument passed
Ultra C/C++ Processor Guide 233

6 PowerPC
When not in use, any of registers f1 through f13 may be used as
temporary register variables.

Functions may use the values in f1 through f13 without
saving/restoring them for the functions’ callers, a function must save
them if they expect to keep their values across a call to a function.

The compiler uses the remainder of the floating point registers for
floating point user register variables and compiler temporaries.

Condition Registers
Registers cr0 through cr7, ctr, xer, fpscr, and lr are available for
hand-written assembly language use although the value must be saved
and restored.

WARNING!
The compiler currently uses some of the above named registers and
may, in future versions, use any or all of the above named registers.

f12 12th floating point argument passed

f13 13th floating point argument passed

Table 6-13 Floating Point Registers (continued)

Register Description
234 Ultra C/C++ Processor Guide

6PowerPC
Following are descriptions of how the compiler uses four of the registers
listed above.

Passing Arguments to Functions

When an argument is passed to a called function, the argument is in
one of two places, in a register or in the Output Parameter Area (OPA)
of the calling function.

The called function determines the location of the argument by
argument type and the order specified in the argument list.

For this discussion:

• An integral argument is an argument of type int, a pointer, or a
char or short converted to an int.

• A floating point argument is an argument of type double or a float
converted to a double.

There are eight integral registers used for parameter passing: r3
through r10 inclusive. Thirteen floating point registers are available for
floating point parameter passing: f1 through f13 inclusive.

Table 6-14 Other Registers

Register Description

ctr Compiler temporary used for structure
assignments

cr0 Used by the compiler for all integer and
comparisons assignments

cr1 Used by the compiler for all floating point
assignments

lr Used by the compiler to store caller return value
Ultra C/C++ Processor Guide 235

6 PowerPC
The OPA is also used to pass arguments (when the registers have been
exhausted). Figure 6-1 illustrates a stack frame for a function.

Figure 6-1 Stack Frame for a Function

The basic algorithm the compiler uses to pass arguments is as follows:
if function returns a struct

put address of struct return area into first integral passing register
while still more arguments

if argument is part of variable arguments
put argument into next position in OPA

else if argument is a struct
copy struct into next position in OPA

else
if argument is integral

if argument is 64-bit integer type
if pair of integral passing registers are available

put argument into register pair
else

put argument into next two 32-bit words of OPA
else

if an integral passing register is available
put argument into integral register

else
put argument into next position in OPA

Caller’s Stack Frame

Register Save Area

Output Parameter Area

Link Area (8 bytes)

Higher Addresses

Lower Addresses

Stack Pointer

Function
 Stack
 Frame
236 Ultra C/C++ Processor Guide

6PowerPC
else if argument is floating-point
if a floating-point passing register is available

put argument into floating-point register
else

put argument into next position in OPA
advance to next argument

The OPA is filled from lowest address to highest address.

Struct arguments and arguments that comprise the variable arguments
to a variable argument function are always passed on the OPA. If a
function is to return a value, an integral return value is returned in r3 or
a floating point return value is returned in f1. If a function is to return a
struct, the address of a return area is passed as the first integral
argument, in r3.

Callee Saved Registers

The back end for PowerPC is capable of supporting two calling
conventions:

• Caller saved registers — Registers r0 through r10 and f0 through
f13 are volatile and do not require saving by a function if they are
modified. This is the default code generation model.

• Callee saved registers — All registers modified by a function must
be saved upon entry and restored prior to returning to the caller.
This model can be used by using the back end -pc option.

The callee saved registers convention is implemented by saving all
modified registers at the beginning of the function and restoring the
modified registers before returning to the caller. If function calls appear
inside a function compiled with callee saved registers, it is assumed that
the called functions use the callee saved registers convention also.
Caller saved register functions may call callee saved register functions
without adverse effects.

The compiler libraries are not compiled with callee saved register
conventions. Therefore, functions compiled with callee saved registers
may not call compiler library functions without the extra overhead of
saving all the volatile registers before the call and restoring them after
the call returns.
Ultra C/C++ Processor Guide 237

6 PowerPC
C Language Features

In conformance with the ANSI/ISO C specification, the
implementation-defined areas of the compiler are listed in this section.
Each bulleted item contains one implementation- defined issue. The
number in parentheses included with each bulleted item indicates the
location in the ANSI/ISO specification where further information is
provided.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Other implementation-defined areas are included in the Language
Features chapter of the Using Ultra C/C++ manual and the Overview
chapter of the Ultra C Library Reference manual. Refer to an
ANSI/ISO specification for more information.

Characters
• The number of bits in a character in the execution character set

(5.2.4.2.1).

There are eight bits in a character in the execution character set.
238 Ultra C/C++ Processor Guide

6PowerPC
Integers
• The representations and sets of values of the various integer types

(6.1.2.5).

Table 6-15 Integer Type/Range

Type Representation
Minimum /
Maximum

char, signed char 8-bit 2’s complement -128 /
127

unsigned char 8-bit binary 0 /
255

short int 16-bit 2’s complement -32768 /
32767

unsigned short int 16-bit binary 0 /
65535

int 32-bit 2’s complement -2147483648 /
2147483647

unsigned int 32-bit binary 0 /
4294967295

long int 32-bit 2’s complement -2147483648 /
2147483647

unsigned long int 32-bit binary 0 /
4294967295
Ultra C/C++ Processor Guide 239

6 PowerPC
• The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented (6.2.1.2).

When converting a longer integer to a shorter signed integer, the least significant
<n> bits of the longer integer are moved to the integer of <n> bits. The resulting
value in the smaller integer is dictated by the representation. For example, if the
conversion is from int to short, then the least significant 16 bits are moved from
the int to the short. This value is then considered a 2’s complement 16-bit
integer.

When conversion from unsigned to signed occurs with equally sized integers, the
most significant bit becomes the sign bit. Therefore, if the unsigned integer is less
than 0x80000000, the conversion has no affect. Otherwise, a negative number
results.

• The sign of the remainder on integer division (6.3.5).

The result of an inexact division of one negative and one positive integer is the
smallest integer greater than or equal to the algebraic quotient.

The sign of the remainder on integer division is the same as that of the dividend.

long long 64-bit 2’s complement -263 /

263 -1

unsigned long long 64-bit binary 0 /

264 -1

Table 6-15 Integer Type/Range

Type Representation
Minimum /
Maximum
240 Ultra C/C++ Processor Guide

6PowerPC
Floating Point
• The representations and sets of values of the various types of

floating-point numbers (6.1.2.5).

Refer to the float.h header file for other limits and values.

Arrays and Pointers
• The type of integer required to hold the maximum size of an array.

That is, the type of the size of operator, size_t (6.3.3.4, 7.1.1).

An unsigned long int is required to hold the maximum size of an array.
unsigned long int is defined as size_t in ansi_c.h.

• The result of casting a pointer to an integer or vice versa (6.3.4).

Since pointers are treated much like unsigned long integers, the integer is
promoted using the usual promotion rules to an unsigned long. That is, the
sign bit propagates out to the full 32-bit width.

• The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdiff_t (6.3.6, 7.1.1).

A signed long int is required to hold the difference between two pointers to
elements of the same array. long int is defined as ptrdiff_t in ansi_c.h.

Table 6-16 Floating Point Number Characteristics

Type Format
Minimum /
Maximum

float 32 bit IEEE 754 1.17549435e-38f /
3.40282347e38f

double 64 bit IEEE 754 2.2250738585072016e-308 /
1.7976931348623157e308

long double 64 bit IEEE 754 2.2250738585072016e-308 /
1.7976931348623157e308
Ultra C/C++ Processor Guide 241

6 PowerPC
Registers
• The extent to which objects can actually be placed in registers by

use of the register storage-class specifier (6.5.1).

The compiler automatically makes decisions about what objects are placed in
registers, thus giving no special storage considerations for the register
storage-class.

Structures, Unions, Enumerations, and Bit-Fields
• The padding and alignment of members of structures (6.5.2.1). This

should present no problem unless binary data written by one
implementation are read by another.

Table 6-17 shows the alignment of the various objects within a structure.
Required padding is supplied if the next available space is not at the correct
alignment for the object. For example, a structure declared as:

 struct {
 char mem1;
 long mem2;
 };

would be an 8-byte structure, one byte for mem1, three bytes of padding to get
mem2 to 4-byte alignment, and four bytes for mem2.

Table 6-17 Alignment Table

Type Alignment Requirement

char 1

short 2

int 4

long 4

long long 4
242 Ultra C/C++ Processor Guide

6PowerPC
• Whether “plain” int bit-field is treated as a signed int or as an
unsigned int bit-field (6.5.2.1).

A “plain” int bit-field is treated as a signed int bit-field.

• The order of allocation of bitfields within a unit (6.5.2.1).

Bit fields are allocated from most significant bit to least significant bit.

• Whether a bit-field can straddle a storage-unit boundary (6.5.2.1).

Bit fields are allocated end-to-end until a non-bit field member is allocated or until
that positioning would cross an addressable boundary such that no object of an
integral type could both contain the bit field and be correctly aligned.

pointers 4

float 4

double 8

long double 8

Table 6-17 Alignment Table (continued)

Type Alignment Requirement
Ultra C/C++ Processor Guide 243

6 PowerPC
• The integer type chosen to represent the values of an enumeration
type (6.5.2.2).

Enum values are represented in 32-bit two’s complement integers.

Preprocessing Directives
• Whether the value of a single-character, character constant in a

constant expression that controls inclusion matches the value of the
same character constant in the execution character set. Whether
such a character constant may have a negative value (6.8.1).

The value of a single-character character constant in a constant expression that
controls inclusion matches the value of the same character constant in the
execution character set. This character constant may have a negative value.

• The method for locating includable source files (6.8.2).

This method is described in the Using the Executive chapter of the Using Ultra
C/C++ manual.

• The support of quoted names for includable source files (6.8.2).

Quoted names are supported for #include preprocessing directives.

• The mapping of source file character sequences (6.8.2).

The mapping of source file character sequences is one-to-one. The
case-sensitivity of file names depends on the file system being used.
244 Ultra C/C++ Processor Guide

6PowerPC
_asm() Register Pseudo Functions

_asm() uses registers pseudo functions as identified in Table 6-18.

Table 6-18 _asm() Register Pseudo Functions

Register Description

__reg_gen Any non-dedicated integer register

__reg_base Any (non-dedicated) integer register except r0

__reg_float Any floating point register

__reg_r<n> The integer register specified by
n (0 <= n < 32)

__reg_f<n> The floating point register specified by
n (0 <= n < 32)
Ultra C/C++ Processor Guide 245

6 PowerPC
PowerPC Processor-Specific Optimizations

In addition to providing the standard generic assembly optimizations,
the Ultra C/C++ PowerPC assembly optimizer (optppc) provides the
following processor-specific optimizations:

• Special Common Sub-Expressions
• Copy Propagation
• Target-Driven Instruction Scheduling
• Register Renaming

Special Common Sub-Expressions

On the PowerPC architecture, certain constants are more expensive to
work with than others. To account for this, the common sub-expression
elimination optimization is performed on expressions involving
potentially expensive constants. These include the following:

• The computation of all floating point constants as none of the
floating point instructions allow for floating point immediates.

• The computation of integer constants that require two or more
instructions. For example the constant 0xffeeffee. The constant
0xffffffee would not be considered.
246 Ultra C/C++ Processor Guide

6PowerPC
Copy Propagation

The assembly code optimizer tries to eliminate needless copies
between register temporaries, resulting in smaller, more efficient code.
For example:

lwz r4,=x(r2)
mr r5,r4
addi r4,r5,1

This may be changed to the following:

lwz r5,=x(r2)
addi r4,r5,1

Target-Driven Instruction Scheduling

Using target-driven instruction scheduling, the assembly optimizer can
factor in what it knows about the target architecture when scheduling
instructions. Following are variables that can be taken into account:

• Number and types of instruction units

• Number of instructions that can be executed at a time

• Time required for an instruction to produce its results

• Time it takes an instruction to keep an instruction unit from executing
other instructions

Another important variable is whether a target processor has hardware
floating point or not. If it does, then floating point instructions should be
scheduled just like any other instructions; mixed in with other
instructions to improve throughput. However, if the target processor
does not have hardware floating point support and the instructions must
be emulated, it is best to compress the floating point instructions. When
compressed, the instructions can be emulated much faster.
Ultra C/C++ Processor Guide 247

6 PowerPC
Register Renaming

It is possible to use the same temporary register in sequential
instructions. However, this can confuse the instruction scheduler. The
assembly optimizer uses different registers when possible to help itself
perform schedule instructions. For example:

* compute sum = a + b + c + d
 lwz r3,a(r2)
 lwz r4,b(r2)
 add r3,r3,r4
 lwz r4,c(r2)
 add r3,r3,r4
 lwz r4,d(r2)
 add r3,r3,r4
 stw r3,sum(r2)

This may be changed to the following:

 lwz r3,a(r2)
 lwz r5,b(r2)
 lwz r1,c(r2)
 add r3,r3,r5
 lwz r4,d(r2)
 add r3,r3,r1
 add r3,r3,r4
 stw r3,sum(r2)

The use of different registers allowed the spreading of register loads
from their subsequent uses.
248 Ultra C/C++ Processor Guide

6PowerPC
Assembler/ Linker

The assembler allows use of standard PowerPC assembly language
mnemonics and syntax, modified as described in this section. For more
specific information about individual instructions, consult the following
books:

PowerPC Microprocessor Family: The Programming Environments

IBM PowerPC 403GA User’s Manual

Technical Summary — PowerPC MPC505 RISC Microcontroller
Motorola Semiconductor Technical Data

PowerPC 601 RISC Microprocessor User’s Manual
Motorola/IBM, Revision 1

PowerPC 602 RISC Microprocessor User’s Manual

PowerPC 603 Microprocessor User’s Manual

PowerPC 604 — RISC Microprocessor User’s Manual

MPC821 — Functional Design Specification Rev. 0.4

ROF Edition Number

The PowerPC assembler emits ROF Edition #15.

External References

The PowerPC assembler allows the use of external references with any
operators within any expression fields not defined to be constant
expression fields.
Ultra C/C++ Processor Guide 249

6 PowerPC
Symbol Biasing

The linker does not bias code or data symbols for system, file
managers, device drivers, device descriptors, or data modules. For all
other types of modules, or for raw code, the linker biases both code and
data symbols by -32764 (-0x7ffc). Initialization routines for raw
code should ensure that the static storage pointer (r2) and constant
storage pointer (r13) are initialized with the proper base addresses,
adjusted to account for this biasing.

Assembler Syntax Extensions and Limitations

The PowerPC instruction set limits the size of immediate data to 16 bits.
To allow for the manipulation of 32-bit immediate data, the following
operators are available in the PowerPC assembler:

high(x)= ((x >> 16) & 0xffff) + ((x & 0x8000) >> 15)
hi(x)= x >> 16
lo(x)= x & 0xffff

The following code moves the 32-bit value represented by Symbol into
GPR r4.

addisr4,r0,hi(Symbol)
ori r4,r4,lo(Symbol)

If Symbol represents the offset of X from GPR r2, then the following
code moves 32-bit address of X into r4.

addisr4,r2,high(Symbol)
addi r4,r4,lo(Symbol)

The following code uses the high() operand to load the word X into
r4. These operators may be used to manipulate external symbols.

addisr4,r0,high(Symbol)
lwz r4,lo(Symbol)(r4)
250 Ultra C/C++ Processor Guide

6PowerPC
For load and store instructions using the register indirect with immediate
index addressing mode, it is not necessary to explicitly indicate an index
of 0. For example, the following are equivalent:

lwz r4,0(r1)
lwz r4,(r1)

The special symbols cr0-cr7, lt, gt, eq, so, and un used in many
examples in the PowerPC 601 Microprocessor User’s Manual are not
directly supported by the PowerPC assembler. For example, the
following examples generate errors:

bdnzt eq,<target>
bdnze 4*cr5+eq,<target>
crnot eq,cr5*4+eq
crclr so

These instruction forms may be successfully used and translated if the
following definitions are in the source file or in an external file included
using the use assembler directive.

cr0: equ0 * condition register field
 definitions

cr1: equ1
...
cr7: equ7

lt: equ0 * condition code definitions
gt: equ1
eq: equ2
so: equ3
un: equ3

GPRs, FPRs, and CRFs must be referenced by name. The use of
numbers to denote register objects is not supported except where
specifically noted.

When the GPR r0 is used in a read operation in certain instructions on
the PowerPC family of processors, the value used by the instruction is 0
rather than the content of r0. For these instructions, the assembler
allows the use of the numeral 0 in place of the register name r0. For
example, in each of the following instruction pairs, the instructions are
encoded identically.
Ultra C/C++ Processor Guide 251

6 PowerPC
addisr5,r0,312
addisr5,0,312
subi r0,r0,$7fff
subi r0,0,$7fff
la r10,$56(r0)
la r10,$56(0)
lbzx r8,r0,r12
lbzx r8,0,r12

Special Purpose Registers

The PowerPC assembler accepts either the appropriate register
number or name as identified in Table 6-19 for SPRs used in the mtspr
and mfspr instructions. For example, the following two instructions are
equivalent:

mfsprr4,ctr
mfsprr4,9

NoteNote
The SPRs shown in the following table may not be valid for a specific
processor. Consult your hardware documentation for valid SPR
numbers.

Table 6-19 SPRs by Name

SPR Name SPR Number

asr 280

bar 159
252 Ultra C/C++ Processor Guide

6PowerPC
cdbcr 983

cmpa 144

cmpb 145

cmpc 146

cmpd 147

cmpe 152

cmpf 153

cmpg 154

cmph 155

counta 150

countb 151

ctr 9

dabr 1013

dac1 1014

dac2 1015

dar 19

dbat0l 537

Table 6-19 SPRs by Name

SPR Name SPR Number
Ultra C/C++ Processor Guide 253

6 PowerPC
dbat0u 536

dbat1l 539

dbat1u 538

dbat2l 541

dbat2u 540

dbat3l 543

dbat3u 542

dbcr 1010

dbsr 1008

dc_adr 569

dc_cst 568

dc_dat(ro) 570

dccr 1018

dcmp 977

dcwr 954

dear(ro) 981

dec 22

Table 6-19 SPRs by Name

SPR Name SPR Number
254 Ultra C/C++ Processor Guide

6PowerPC
der 149

dmiss 976

dpdr 630

dsisr 18

ear 282

ecr(ro) 148

eid(wo) 81

eie(wo) 80

esasrr 987

esr 980

evpr 982

fpecr 1022

hash1 978

hash2 979

hid0 1008

hid1 1009

hid15 1023

Table 6-19 SPRs by Name

SPR Name SPR Number
Ultra C/C++ Processor Guide 255

6 PowerPC
hid2 1010

hid5 1013

iabr 1010

iac1 1012

iac2 1013

ibat0l 529

ibat0u 528

ibat1l 531

ibat1u 530

ibat2l 533

ibat2u 532

ibat3l 535

ibat3u 534

ibr 986

ic_adr 561

ic_cst 560

ic_dat(ro) 562

Table 6-19 SPRs by Name

SPR Name SPR Number
256 Ultra C/C++ Processor Guide

6PowerPC
icadr 561

iccr 1019

iccst 560

icdat(ro) 562

icdbdr 979

icmp 981

icr(ro) 148

ictc 1019

ictrl 158

imiss 980

immr 638

l2cr 1017

lctrl1 156

lctrl2 157

lr 8

lt 1022

m_casid 793

Table 6-19 SPRs by Name

SPR Name SPR Number
Ultra C/C++ Processor Guide 257

6 PowerPC
m_tw 799

m_twb 796

md_ap 794

md_ctr 792

md_dbcam 824

md_dbram0 825

md_dbram1 826

md_epn 795

md_rpn 798

md_twc 797

mi_ap 786

mi_ctr 784

mi_dbcam 816

mi_dbram0 817

mi_dbram1 818

mi_epn 787

mi_rpn 790

Table 6-19 SPRs by Name

SPR Name SPR Number
258 Ultra C/C++ Processor Guide

6PowerPC
mi_twc 789

mmcr0 952

mmcr1 956

mq 0

nre(wo) 82

nri(wo) 82

pbl1 1020

pbl2 1022

pbu1 1021

pbu2 1023

pid 945

pir 1023

pit 987

pmc1 953

pmc2 954

pmc3 957

pmc4 958

Table 6-19 SPRs by Name

SPR Name SPR Number
Ultra C/C++ Processor Guide 259

6 PowerPC
pvr(ro) 287

rpa 982

rtcl(ro) 5

rtcl(wo) 21

rtcu(ro) 4

rtcu(wo) 20

sda 959

sdr1 25

sebr 990

ser 991

sgr 953

sia 955

sp 1021

sprg0 272

sprg1 273

sprg2 274

sprg3 275

Table 6-19 SPRs by Name

SPR Name SPR Number
260 Ultra C/C++ Processor Guide

6PowerPC
srr0 26

srr1 27

srr2 990

srr3 991

tbhi 988

tbhu(ro) 972

tbl(wo) 284

tblo 989

tblu(ro) 973

tbu(wo) 285

tcr 986

thrm1 1020

thrm2 1021

thrm3 1022

tsr 984

tsrs 985

ummcr0 936

Table 6-19 SPRs by Name

SPR Name SPR Number
Ultra C/C++ Processor Guide 261

6 PowerPC
Table 6-20 shows the SPRs by number. Some SPRs may not be valid
for a specific processor. Consult your hardware documentation for valid
SPR numbers.

ummcr1 940

upmc1 937

upmc2 938

upmc3 941

upmc4 942

usia 939

xer 1

zpr 944

Table 6-20 SPRs by Number

SPR Number SPR Name

0 mq

1 xer

4 rtcu(ro)

5 rtcl(ro)

8 lr

Table 6-19 SPRs by Name

SPR Name SPR Number
262 Ultra C/C++ Processor Guide

6PowerPC
9 ctr

18 dsisr

19 dar

20 rtcu(wo)

21 rtcl(wo)

22 dec

25 sdr1

26 srr0

27 srr1

80 eie(wo)

81 eid(wo)

82 nre(wo)

82 nri(wo)

144 cmpa

145 cmpb

146 cmpc

147 cmpd

Table 6-20 SPRs by Number

SPR Number SPR Name
Ultra C/C++ Processor Guide 263

6 PowerPC
148 icr(ro)

148 ecr(ro)

149 der

150 counta

151 countb

152 cmpe

153 cmpf

154 cmpg

155 cmph

156 lctrl1

157 lctrl2

158 ictrl

159 bar

272 sprg0

273 sprg1

274 sprg2

275 sprg3

Table 6-20 SPRs by Number

SPR Number SPR Name
264 Ultra C/C++ Processor Guide

6PowerPC
280 asr

282 ear

284 tbl(wo)

285 tbu(wo)

287 pvr(ro)

528 ibat0u

529 ibat0l

530 ibat1u

531 ibat1l

532 ibat2u

533 ibat2l

534 ibat3u

535 ibat3l

536 dbat0u

537 dbat0l

538 dbat1u

539 dbat1l

Table 6-20 SPRs by Number

SPR Number SPR Name
Ultra C/C++ Processor Guide 265

6 PowerPC
540 dbat2u

541 dbat2l

542 dbat3u

543 dbat3l

560 ic_cst

560 iccst

561 icadr

561 ic_adr

562 ic_dat(ro)

562 icdat(ro)

568 dc_cst

569 dc_adr

570 dc_dat(ro)

630 dpdr

638 immr

784 mi_ctr

786 mi_ap

Table 6-20 SPRs by Number

SPR Number SPR Name
266 Ultra C/C++ Processor Guide

6PowerPC
787 mi_epn

789 mi_twc

790 mi_rpn

792 md_ctr

793 m_casid

794 md_ap

795 md_epn

796 m_twb

797 md_twc

798 md_rpn

799 m_tw

816 mi_dbcam

817 mi_dbram0

818 mi_dbram1

824 md_dbcam

825 md_dbram0

826 md_dbram1

Table 6-20 SPRs by Number

SPR Number SPR Name
Ultra C/C++ Processor Guide 267

6 PowerPC
936 ummcr0

937 upmc1

938 upmc2

939 usia

940 ummcr1

941 upmc3

942 upmc4

944 zpr

945 pid

952 mmcr0

953 pmc1

953 sgr

954 pmc2

954 dcwr

955 sia

956 mmcr1

957 pmc3

Table 6-20 SPRs by Number

SPR Number SPR Name
268 Ultra C/C++ Processor Guide

6PowerPC
958 pmc4

959 sda

972 tbhu(ro)

973 tblu(ro)

976 dmiss

977 dcmp

978 hash1

979 icdbdr

979 hash2

980 esr

980 imiss

981 icmp

981 dear(ro)

982 rpa

982 evpr

983 cdbcr

984 tsr

Table 6-20 SPRs by Number

SPR Number SPR Name
Ultra C/C++ Processor Guide 269

6 PowerPC
985 tsrs

986 tcr

986 ibr

987 esasrr

987 pit

988 tbhi

989 tblo

990 srr2

990 sebr

991 ser

991 srr3

1008 dbsr

1008 hid0

1009 hid1

1010 dbcr

1010 iabr

1010 hid2

Table 6-20 SPRs by Number

SPR Number SPR Name
270 Ultra C/C++ Processor Guide

6PowerPC
1012 iac1

1013 dabr

1013 iac2

1013 hid5

1014 dac1

1015 dac2

1017 l2cr

1018 dccr

1019 ictc

1019 iccr

1020 pbl1

1020 thrm1

1021 thrm2

1021 pbu1

1021 sp

1022 pbl2

1022 thrm3

Table 6-20 SPRs by Number

SPR Number SPR Name
Ultra C/C++ Processor Guide 271

6 PowerPC
Time Based Registers

1022 lt

1022 fpecr

1023 pbu2

1023 pir

1023 hid15

Table 6-20 SPRs by Number

SPR Number SPR Name

Table 6-21 Time Base Register (TBR) Support

SPR Name 505 SPR # 603 SPR #

tbu 269 269

tbl 268 268
272 Ultra C/C++ Processor Guide

6PowerPC
Device Control Registers

Table 6-22 403 DCRs Sorted Alphabetically

DCR Name DCR #

bear 144

besr 145

br0 128

br1 129

br2 130

br3 131

br4 132

br5 133

br6 134

br7 135

dmacc0 196

dmacc1 204

dmacc2 212

dmacc3 220

dmacr0 192
Ultra C/C++ Processor Guide 273

6 PowerPC
dmacr1 200

dmacr2 208

dmacr3 216

dmact0 193

dmact1 201

dmact2 209

dmact3 217

dmada0 194

dmada1 202

dmada2 210

dmada3 218

dmasa0 195

dmasa1 203

dmasa2 211

dmasa3 219

dmasr 224

exisr 64

Table 6-22 403 DCRs Sorted Alphabetically (continued)

DCR Name DCR #
274 Ultra C/C++ Processor Guide

6PowerPC
exier 66

iocr 160

Table 6-23 403 DCRs Sorted Numerically

 DCR # DCR Name

64 exisr

 66 exier

128 br0

129 br1

130 br2

131 br3

132 br4

133 br5

134 br6

135 br7

144 bear

145 besr

Table 6-22 403 DCRs Sorted Alphabetically (continued)

DCR Name DCR #
Ultra C/C++ Processor Guide 275

6 PowerPC
160 iocr

192 dmacr0

193 dmact0

194 dmada0

195 dmasa0

196 dmacc0

200 dmacr1

201 dmact1

202 dmada1

204 dmacc1

196 dmacc0

208 dmacr2

209 dmact2

210 dmada2

211 dmasa2

212 dmacc2

216 dmacr3

Table 6-23 403 DCRs Sorted Numerically (continued)

 DCR # DCR Name
276 Ultra C/C++ Processor Guide

6PowerPC
217 dmact3

218 dmada3

219 dmasa3

220 dmacc3

224 dmasr

Table 6-23 403 DCRs Sorted Numerically (continued)

 DCR # DCR Name
Ultra C/C++ Processor Guide 277

6 PowerPC
Assembly Language Mnemonics

Table 6-28 in this section lists the mnemonic names used on the
PowerPC along with their meanings. Many of the PowerPC mnemonics
include one or more optional suffixes. Symbols indicating conditions
and SPR codes may also be present in a mnemonic. Suffixes and
symbols, when present, modify the meaning of the mnemonic
instructions. The next two subsections identify and define suffixes and
symbols used in the syntax of Table 6-28.

Suffixes

. Update the condition register to reflect the
instruction result. cr1 is updated in the case of
floating point instructions, otherwise, cr0 is
updated.

o Enable setting of OV and SO in the Fixed Point
Exception Register (xer).

s For floating point instructions, execute
instruction using single precision.

l For branch instructions, cause the effective
address of the next instruction to be placed in
the Link Register (lr).

a For branch instructions, cause target address to
be interpreted as absolute rather than
PC-relative.

+ For branch instructions, indicates branch is
predicted to be taken.

- For branch instructions, indicates branch is
predicted not to be taken.
278 Ultra C/C++ Processor Guide

6PowerPC
In the Mnemonics table, optional suffixes are denoted using square
brackets ([]). For example, the mnemonic add is listed as:

add[o][.]

indicating the four valid mnemonics:

add
add.
addo
addo.

Since the branch mnemonic suffixes + and - are mutually exclusive,
these suffixes appear as [+|-] indicating the use of no greater than one
of these characters. For example,

bclr[+|-]

indicates the three valid mnemonics:

bclr
bclr+
bclr-

Symbols

The symbols <bc>, <cc>, and <tc> indicate condition codes, branch
conditions, and trap conditions respectively as identified in the following
listings. The symbol <spr> indicates any one of the special purpose
registers identified in the <spr> listing.

Table 6-24 Branch Conditions

<bc> Description

t Branch if condition true

f Branch if condition false

dnz Decrement CTR, branch if non-zero
Ultra C/C++ Processor Guide 279

6 PowerPC
dnzt Decrement CTR, branch if non-zero and condition true

dnzf Decrement CTR, branch if non-zero and condition false

dz Decrement CTR, branch if zero

dzt Decrement CTR, branch if zero and condition true

dzf Decrement CTR, branch if zero and condition false

Table 6-25 Condition Codes

<cc> Description

lt Less than

le Less than or equal (not greater than)

eq Equal

ge Greater than or equal (not less than)

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

so Summary overflow

ns Not summary overflow

Table 6-24 Branch Conditions (continued)

<bc> Description
280 Ultra C/C++ Processor Guide

6PowerPC
un Unordered (after floating-point compare)

nu Not unordered (after floating-point compare)

Table 6-26 Trap Condition Codes

<tc> Description

lt Less than

le Less than or equal

eq Equal

ge Greater than or equal

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

llt Logically less than

lle Logically less than or equal

lge Logically greater than or equal

lgt Logically greater than

Table 6-25 Condition Codes (continued)

<cc> Description
Ultra C/C++ Processor Guide 281

6 PowerPC
lnl Logically not less than

lng Logically not greater than

Table 6-27 Special Purpose Registers

<spr> Description

xer Fixed point exception register

lr Link register

ctr Count register

dsisr Data storage interrupt status register

dar Data address register

dec Decrementer

sdr1 Storage description register 1

srr0 Save/restore register 0

srr1 Save/restore register 1

ear External access register

Table 6-26 Trap Condition Codes (continued)

<tc> Description
282 Ultra C/C++ Processor Guide

6PowerPC
Mnemonics Table

The mnemonics listed in Table 6-28 are either native to the PowerPC
architecture or extended mnemonics accepted by the PowerPC
assembler as aliases for native instructions, providing a simpler syntax
for the programmer. All extended mnemonics are identified by an
asterisk in the column labeled E in the listing.

Table 6-28 Mnemonics

Mnemonic Description E

add[o][.] Add

addc[o][.] Add carrying

adde[o][.] Add extended

addi Add immediate

addic[.] Add immediate carrying

addis Add immediate shifted

addme[o][.] Add to minus one extended

addze[o][.] Add to zero extended

and[.] And logical

andc[.] And logical with complement

andi. And logical immediate (alters cr0)

andis. And logical immediate shifted (alters
cr0)
Ultra C/C++ Processor Guide 283

6 PowerPC
b[l][a] Branch unconditional

bc[l][a][+|-] Branch conditionally

b<bc>[l][a][+|-] Branch conditionally (implicit) *

b<cc>[l][a][+|-] Branch if <cc> *

bcctr[l][+|-] Branch conditionally to count register

b<cc>ctr[l][+|-] Branch if <cc> to count register *

bclr[l][+|-] Branch conditionally to link register

b<bc>lr[l][+|-] Branch conditionally to link register
(implicit)

*

b<cc>lr[l][+|-] Branch if <cc> to link register *

bctr[l] Branch unconditionally to count register *

bfctr[l][+|-] Branch if condition false to count
register

*

blr[l] Branch unconditionally to link register *

btctr[l][+|-] Branch if condition true to count register *

clrlwi[.] Clear left immediate *

clrrwi[.] Clear right immediate *

clrlslwi[.] Clear left and shift left immediate *

Table 6-28 Mnemonics (continued)

Mnemonic Description E
284 Ultra C/C++ Processor Guide

6PowerPC
cmp Compare

cmpi Compare immediate

cmpl Compare logical

cmpli Compare logical immediate

cmplw Compare logical word *

cmplwi Compare logical word immediate *

cmpw Compare word *

cmpwi Compare word immediate *

cntlzw[.] Count leading zeros in word

crand Condition register and

crandc Condition register and with complement

crclr Condition register clear *

creqv Condition register equivalent

crmove Condition register move *

crnand Condition register nand

crnor Condition register nor

crnot Condition register not *

Table 6-28 Mnemonics (continued)

Mnemonic Description E
Ultra C/C++ Processor Guide 285

6 PowerPC
cror Condition register or

crorc Condition register or with complement

crset Condition register set *

crxor Condition register xor

dcbf Data cache block flush

dcbi Data cache block invalidate

dcbst Data cache block store

dcbt Data cache block touch

dcbtst Data cache block touch for store

dcbz Data cache block set to zero

divw[o][.] Divide word

divwu[o][.] Divide word unsigned

eciwx External control input word indexed

ecowx External control output word indexed

eieio Enforce in-order execution of I/O

eqv[.] Equivalent logical

extlwi[.] Extract and left justify immediate *

Table 6-28 Mnemonics (continued)

Mnemonic Description E
286 Ultra C/C++ Processor Guide

6PowerPC
extrwi[.] Extract and right justify immediate *

extsb[.] Extend sign byte

extsh[.] Extend sign half word

fabs[.] Floating point absolute value

fadd[s][.] Floating point add

fcmpo Floating point compare ordered

fcmpu Floating point compare unordered

fctiw[.] Floating point convert to integer word

fctiwz[.] Floating point convert to integer word
round toward zero

fdiv[s][.] Floating point divide

fmadd[s][.] Floating point multiply and add

fmr[.] Floating point move register

fmsub[s][.] Floating point multiply and subtract

fmul[s][.] Floating point multiply

fnabs[.] Floating point negative absolute value

fneg[.] Floating point negate

fnmadd[s][.] Floating point negative multiply and add

Table 6-28 Mnemonics (continued)

Mnemonic Description E
Ultra C/C++ Processor Guide 287

6 PowerPC
fnmsub[s][.] Floating point negative multiply and
subtract

frsp[.] Floating point round to single precision

fsub[s][.] Floating point subtract

icbi Instruction cache block invalidate

inslwi[.] Insert from left immediate *

insrwi[.] Insert from right immediate *

isync Instruction synchronize

la Load address *

lbz Load byte and zero

lbzu Load byte and zero with update

lbzux Load byte and zero with update indexed

lbzx Load byte and zero indexed

lfd Load floating-point double

lfdu Load floating-point double with update

lfdux Load floating-point double with update
indexed

lfdx Load floating-point double indexed

Table 6-28 Mnemonics (continued)

Mnemonic Description E
288 Ultra C/C++ Processor Guide

6PowerPC
lfs Load floating-point single

lfsu Load floating-point single with update

lfsux Load floating-point single with update
indexed

lfsx Load floating-point single indexed

lha Load half word algebraic

lhau Load half word algebraic with update

lhaux Load half word algebraic with update
indexed

lhax Load half word algebraic indexed

lhbrx Load half word byte-reversed indexed

lhz Load half word and zero

lhzu Load half word and zero with update

lhzux Load half word and zero with update
indexed

lhzx Load half word and zero indexed

li Load immediate *

lis Load immediate shifted *

lmw Load multiple word

Table 6-28 Mnemonics (continued)

Mnemonic Description E
Ultra C/C++ Processor Guide 289

6 PowerPC
lswi Load string word immediate

lswx Load string word indexed

lwarx Load word and reverse indexed

lwbrx Load word byte-reverse indexed

lwz Load word and zero

lwzu Load word and zero with update

lwzux Load word and zero with update indexed

lwzx Load word and zero indexed

mcrf Move condition register field

mcrfs Move to condition register from fpscr

mcrxr Move to condition register from xer

mfcr Move from condition register

mffs[.] Move from fpscr

mfibatl Move from one of ibat0 - ibat3
lower

*

mfibatu Move from one of ibat0 - ibat3
upper

*

mfmsr Move from machine state register

Table 6-28 Mnemonics (continued)

Mnemonic Description E
290 Ultra C/C++ Processor Guide

6PowerPC
mfpvr Move from pvr *

mfspr Move from SPR

mfsr Move from SPR

mf<spr> Move from the SPR indicated by <spr> *

mtsprg Move from one of sprg0 - sprg3 *

mfsrin Move from segment register indirect

mftb Move from time base register

mftbl Move from time base register lower

mftbu Move from time base register upper

mr[.] Move general purpose register *

mtcrf Move to condition register fields

mtfsb0[.] Move to fpscr bit 0

mtfsb1[.] Move to fpscr bit 1

mtfsf[.] Move to fpscr fields

mtfsfi[.] Move to fpscr field immediate

mtibatl Move to one of ibat0 - ibat3 upper *

mtibatu Move to one of ibat0 - ibat3 upper *

Table 6-28 Mnemonics (continued)

Mnemonic Description E
Ultra C/C++ Processor Guide 291

6 PowerPC
mtmsr Move to machine state register

mtspr Move to SPR

mt<spr> Move to the SPR indicated by <spr> *

mtsprg Move to one of sprg0 - sprg3 *

mtsr Move to segment register

mtsrin Move to segment register indirect

mulhw[.] Multiply high word

mulhwu[.] Multiply high word unsigned

mulli Multiply low word immediate

mullw[o][.] Multiply low word

nand[.] Not and logical

neg[o][.] Negate

nop No operation *

nor[.] Not or logical

not[.] Not logical *

or[.] Or logical

orc[.] Or logical with complement

Table 6-28 Mnemonics (continued)

Mnemonic Description E
292 Ultra C/C++ Processor Guide

6PowerPC
ori Or logical immediate

oris Or logical immediate shifted

rfi Return from interrupt

rlwimi[.] Rotate left word immediate then mask
insert

rlwinm[.] Rotate left word immediate then and
with mask

rlwnm[.] Rotate left word then and with mask

rotlwi[.] Rotate left word immediate *

rotrwi[.] Rotate right word immediate *

rotlw[.] Rotate left word *

sc System call

slw[.] Shift left word

slwi[.] Shift left word immediate *

sraw[.] Shift right algebraic word

srawi[.] Shift right algebraic word immediate

srw[.] Shift right word

srwi[.] Shift right word immediate *

Table 6-28 Mnemonics (continued)

Mnemonic Description E
Ultra C/C++ Processor Guide 293

6 PowerPC
stb Store byte

stbu Store byte with update

stbux Store byte with update indexed

stbx Store byte indexed

stfd Store floating-point double

stfdu Store floating-point double with update

stfdux Store floating-point double with update
indexed

stfdx Store floating-point double indexed

stfs Store floating-point single

stfsu Store floating-point single with update

stfsux Store floating-point single with update
indexed

stfsx Store floating-point single indexed

sth Store half word

sthbrx Store half word byte-reversed indexed

sthu Store half word with update

sthux Store half word with update indexed

Table 6-28 Mnemonics (continued)

Mnemonic Description E
294 Ultra C/C++ Processor Guide

6PowerPC
sthx Store half word indexed

stmw Store multiple word

stswi Store string word immediate

stswx Store string word indexed

stw Store word

stwbrx Store word byte-reversed indexed

stwcx. Store word conditional indexed (alters
cr0)

stwu Store word with update

stwux Store word with update indexed

stwx Store word indexed

sub[o][.] Subtract *

subc[o][.] Subtract carrying *

subf[o][.] Subtract from

subfc[o][.] Subtract from carrying

subfe[o][.] Subtract from extended

subfic Subtract from immediate carrying

subfme[o][.] Subtract from minus one extended

Table 6-28 Mnemonics (continued)

Mnemonic Description E
Ultra C/C++ Processor Guide 295

6 PowerPC
subfze[o][.] Subtract from zero extended

subi Subtract immediate *

subic[.] Subtract immediate carrying *

subis Subtract immediate shifted *

sync Synchronize

tlbie Translation lookaside buffer invalidate
entry

trap Trap unconditionally *

tw Trap word

tw<tc> Trap word if <tc> *

twi Trap word immediate

tw<tc>i Trap word if <tc> immediate *

xor[.] Exclusive or logical

xori Exclusive or logical immediate

xoris Exclusive or logical immediate shifted

Table 6-28 Mnemonics (continued)

Mnemonic Description E
296 Ultra C/C++ Processor Guide

6PowerPC
Extended Mnemonics

This section provides the equivalent forms for each of the extended
mnemonics listed in Table 6-28. The subsections following are
organized according to mnemonic function.

Subtract Immediate

Subtract

Table 6-29 Subtract Immediate

Extended Mnemonic Equivalent To

subi rX,rY,value addi rX,rY,-value

subis rX,rY,value addis rX,rY,-value

subic[.]rX,rY,value addic[.]rX,rY,-value

subic. rX,rY,value addic. rX,rY,-value

Table 6-30 Subtract

Extended Mnemonics Equivalent To

sub[o][.] rX,rY,rZ subf[o][.] rX,rZ,rY

subc[o][.] rX,rY,rZ subfc[o][.] rX,rZ,rY
Ultra C/C++ Processor Guide 297

6 PowerPC
Word Compare

Extract, Insert, Rotate, Shift, and Clear

NoteNote
All expressions used above are in unsigned mod 32 arithmetic.

Table 6-31 Word Compare

Extended Mnemonics Equivalent To

cmpwi crfD,rA,si cmpi crfD,0,rA,si

cmpw crfD,rA,rB cmp crfD,0,rA,rB

cmplwi crfD,rA,ui cmpli crfD,0,rA,ui

cmplw crfD,rA,rB cmpl crfD,0,rA,rB

Table 6-32 Extract, Insert, Rotate, Shift, and Clear

Extended Mnemonics Equivalent To

extlwi[.] rA,rS,n,b rlwinm[.] rA,rS,b,0,n-1

extrwi[.] rA,rS,n,b rlwinm[.] rA,rS,b+n,32-n,31
298 Ultra C/C++ Processor Guide

6PowerPC
inslwi[.] rA,rS,n,b rlwimi[.]
rA,rS,32-b,b,(b+n)-1

insrwi[.] rA,rS,n,b rlwimi[.]
rA,rS,32-(b+n),b,(b+n)-1

rotlwi[.] rA,rS,n rlwinm[.] rA,rS,n,0,31

rotrwi[.] rA,rS,n rlwinm[.] rA,rS,32-n,0,31

rotlw[.] rA,rS,rB rlwnm[.] rA,rS,rB,0,31

slwi[.] rA,rS,n rlwinm[.] rA,rS,n,0,31-n

srwi[.] rA,rS,n rlwinm[.] rA,rS,32-n,n,31

clrlwi[.] rA,rS,n rlwinm[.] rA,rS,0,n,31

clrrwi[.] rA,rS,n rlwinm[.] rA,rS,0,0,31-n

clrlslwi[.] rA,rS,b,n rlwinm[.] rA,rS,n,b-n,31-n

Table 6-32 Extract, Insert, Rotate, Shift, and Clear (continued)

Extended Mnemonics Equivalent To
Ultra C/C++ Processor Guide 299

6 PowerPC
Move to/from Special Purpose Registers

Where <n> is one of 0, 1, 2, or 3 and the relation between <spr> and
<num> is given by the following table.

Table 6-33 Move to/from Special Purpose Registers

Extended Mnemonics Equivalent To

mfpvr rX mfspr rX,287

mfsprg rX,<n> mfspr rX,272+<n>

mfibatu rX,<n> mfspr rX,528+2<n>

mfibatl rX,<n> mfspr rX,529+2<n>

mt<spr> rX mtspr <num>,rX

mtsprg <n>,rX mtspr 272+<n>,rX

mtibatu <n>,rX mtspr 528+2<n>,rX

mtibatl <n>,rX mtspr 529+2<n>,rX

Table 6-34 <spr> to <num> Relationship

<spr> <num>

xer 1

lr 8

ctr 9
300 Ultra C/C++ Processor Guide

6PowerPC
Move to/from Time Base Registers

dsisr 18

dar 19

dec 22

sdr1 25

srr0 26

srr1 27

ear 282

Table 6-34 <spr> to <num> Relationship

<spr> <num>

Table 6-35 Move to/from Time Base Registers

Extended Mnemonics Equivalent To

mftb rX mftb rX,268

mftbl rX mftb rX,268

mftbu rX mftb rX,269

mttbl rX mtspr 284,rX

mttbu rX mtspr 285,rX
Ultra C/C++ Processor Guide 301

6 PowerPC
Conditional Branch

Where <bc> and <num> are related in the following table.

Table 6-36 Conditional Branch

Extended Mnemonics Equivalent To

b<bc>[l][a] bi,target16 bc[l][a] <num>,bi,target16

bctr[l] bcctr[l] 20,0

bfctr[l] bi bcctr[l] 4,bi

btctr[l] bi bcctr[l] 12,bi

blr[l] bclr[l] 20,0

b<bc>lr[l] bi bclr[l] <num>,bi

Table 6-37 <bc> to <num> Relationship

<bc> <num>

dnzf 0

dzf 2

f 4

dnzt 8

dzt 10
302 Ultra C/C++ Processor Guide

6PowerPC
Branch Mnemonics Incorporating Conditions

t 12

dnz 16

dz 18

Table 6-37 <bc> to <num> Relationship (continued)

<bc> <num>

Table 6-38 Branch Mnemonics Incorporating Conditions

Extended Mnemonics Equivalent To

b<cc>[l][a]
crf,target16

bc[l][a]
<t_f>,crf+<cond>,target16

b<cc>[l][a] target16 bc[l][a]
<t_f>,0+<cond>,target16

b<cc>ctr[l] crf bcctr[l] <t_f>,crf+<cond>

b<cc>ctr[l] bcctr[l] <t_f>,0+<cond>

b<cc>lr[l] crf bclr[l] <t_f>,crf+<cond>

b<cc>lr[l] bclr[l] <t_f>,0+<cond>
Ultra C/C++ Processor Guide 303

6 PowerPC
Where <cc>, <t_f>, and <cond> are related as shown in Table 6-39.

Table 6-39 <cc>, <t_f>, and <cond> Relationships

<cc> <t_f> <cond> Description

lt 12 (t) 0 (lt) Less than

le 4 (f) 1 (gt) Not greater than

eq 12 (t) 2 (eq) Equal

ge 4 (f) 0 (lt) Not less than

gt 12 (t) 1 (gt) Greater than

nl 4 (f) 0 (lt) Not less than

ne 4 (f) 2 (eq) Not equal

ng 4 (f) 1 (gt) Not greater than

so 12 (t) 3 (so) Summary overflow

ns 4 (f) 3 (so) Not summary overflow

un 12 (t) 3 (un) Unordered

nu 4 (f) 3 (un) Not unordered
304 Ultra C/C++ Processor Guide

6PowerPC
Branch Prediction Suffixes

The + and − branch prediction suffixes are available for use with any
conditional branch mnemonic. If the following equivalences can be
inferred from the preceding branch mnemonic mappings:

Then the following instructions are also equivalent:

Table 6-40 Branch Prediction Suffixes

Extended Mnemonic Equivalent To

b<xxx>[l][a] <operand> bc[l][a] bo,bi,target16

b<xxx>ctr[l] <operand> bcctr[l] bo,bi

b<xxx>lr[l] <operand> bclr[l] bo,bi

Table 6-41 Equivalent Instructions

Extended Mnemonic Equivalent To

b<xxx>[l][a]+ <operand> bc[l][a]
bo+<x>,bi,target16

b<xxx>[l][a]- <operand> bc[l][a]
bo+<y>,bi,target16

b<xxx>ctr[l]+ <operand> bcctr[l] bo+1,bi

b<xxx>ctr[l]- <operand> bcctr[l] bo,bi

b<xxx>lr[l]+ <operand> bclr[l] bo+1,bi

b<xxx>lr[l]- <operand> bclr[l] bo,bi
Ultra C/C++ Processor Guide 305

6 PowerPC
Where:

If target16 < 0, <x> = 0 and <y> = 1

If target16 Š 0, <x> = 1 and <y> = 0

Traps

Where <tc> and <num> are related as shown.

Table 6-42 Traps

Extended Mnemonics Equivalent To

trap rA,rB tw 31,rA,rB

tw<tc> rA,rB tw <num>,rA,rB

tw<tc>i rA,target16 twi <num>,rA,target16

Table 6-43 <tc> and <num> Relationship

<tc> <num>

lt 16

le 20

eq 4

ge 12

gt 8
306 Ultra C/C++ Processor Guide

6PowerPC
nl 12

ne 24

ng 20

llt 2

lle 6

lge 5

lgt 1

lnl 5

lng 6

Table 6-43 <tc> and <num> Relationship (continued)

<tc> <num>
Ultra C/C++ Processor Guide 307

6 PowerPC
Miscellaneous

Table 6-44 Miscellaneous

Extended Mnemonics Equivalent To

nop ori r0,r0,0

li rX,value addi rX,r0,value

lis rX,value addis rX,r0,value

la rX,D(rY) addi rX,rY,D

mr[.] rX,rY or[.] rX,rY,rY

not[.] rX,rY nor[.] rX,rY,rY
308 Ultra C/C++ Processor Guide

6PowerPC
Power Mnemonics Supported by PowerPC 601

Table 6-45 Power Mnemonics Supported by PowerPC 601

Mnemonic Description

abs[o][.] Absolute value

clcs Cache line compute size

div[o][.] Divide

divs[o][.] Divide short

doz[o][.] Difference or zero

dozi Difference or zero immediate

lscbx[.] Load string and compare byte indexed

maskg[.] Mask generate

maskir[.] Mask insert from register

mul[o][.] Multiply

nabs[o][.] Negative absolute value

rlmi[.] Rotate left then mask insert

rrib[.] Rotate right and insert bit

sle[.] Shift left extended
Ultra C/C++ Processor Guide 309

6 PowerPC
sleq[.] Shift left extended with mq

sliq[.] Shift left immediate with mq

slliq[.] Shift left long immediate with mq

sllq[.] Shift left long with mq

slq[.] Shift left with mq

sraiq[.] Shift right algebraic immediate with mq

sraq[.] Shift right algebraic with mq

sre[.] Shift right extended

srea[.] Shift right extended algebraic

sreq[.] Shift right extended with mq

sriq[.] Shift right immediate with mq

srliq[.] Shift right long immediate with mq

srlq[.] Shift right long with mq

srq[.] Shift right with mq

Table 6-45 Power Mnemonics Supported by PowerPC 601 (continued)

Mnemonic Description
310 Ultra C/C++ Processor Guide

6PowerPC
PowerPC 403-Specific Mnemonics

Table 6-46 PowerPC 403-Specific Mnemonics

Mnemonic Description

rfci Return from critical interrupt

dccci Data cache congruence class invalidate

icbt Load instruction cache block

iccci Instruction cache congruence class invalidate

wrtee Write external enable

wrteei Write external enable immediate

mfdcr Move from device control register

mtdcr Move to device control register
Ultra C/C++ Processor Guide 311

6 PowerPC
PowerPC 603-Specific Mnemonics

Table 6-47 PowerPC 603-Specific Mnemonics

Mnemonic Description

tlbld Load data TLB entry

tlbli Load instruction TLB entry
312 Ultra C/C++ Processor Guide

6PowerPC
PowerPC 602-Specific Mnemonics

Table 6-48 PowerPC 602-Specific Mnemonics

Mnemonic Description

mfrom Move from ROM

esa Enable special access

dsa Disable special access
Ultra C/C++ Processor Guide 313

6 PowerPC
Stack Checking

This section provides PowerPC-specific information about stack
checking. Refer to Using Ultra C/C++ for more general information on
stack checking.

If stack checking is inappropriate for the module being created, you will
need to define the following items:

• a global pointer called _stbot (initialized to ULONG_MAX if possible)

• a function called _stkhandler (it returns to its caller)

A function called _stkoverflow is called when the stack appears to
overflow. If a non-static function called _stkoverflow resides in an
ROF that is linked to make the object module, that function is called
instead of the default function. The default function writes a message to
the standard error path and causes the program to exit with a status of
one. _stkoverflow neither accepts parameters nor returns a value.

NoteNote
If _stkoverflow is inappropriate for your application, consider writing
a function to handle stack overflow.

_stkhandler, the function that checks for stack overflow, can be
revised. Revision may be necessary if stack checking is inapplicable to
the module that calls the library functions. _stkhandler() is passed
the desired stack pointer in r3 and does not return a value.

NoteNote
Stack handler code must be compiled with stack checking turned off
(-r in ucc mode).
314 Ultra C/C++ Processor Guide

Chapter 7: SuperH

This chapter contains information specific to the Hitachi SuperH family
of processors. The following sections are included:

• Executive and Phase Information
• C/C++ Application Binary Interface Information
• Assembly Language with SH-4 Target
• SuperH Processor-Specific Optimizations
• _asm() Register Pseudo Functions
• Assembler/ Linker
• Working with PC-Relative Data
• Stack Checking
315

7 SuperH
Executive and Phase Information

This section describes various features of the compiler executive and
phases that are SuperH specific.

Executive -tp Option

-tp[=]<target>{[,]<suboptions>}
Specify Target Processor and Target
Processor Options

Specify the target processor and target processor sub-options.
Target processors are identified in Table 7-1 and
target processor sub-options are identified in Table 7-2.

Table 7-1 Target Processor

SuperH Family Targets Target Processor

sh, sh3 SH7708/SH7709

sh4 SH7750
316 Ultra C/C++ Processor Guide

7SuperH
Table 7-2 Mode -tp Sub-Options

Suboptions Description Processor

fp Use a statically linked library to
implement floating-point operations
(default)

SH-3

fpd Enable denormalized number support. SH-4

fps Use dynamically linked shared library
to implement floating-point operations.

SH-3

sd Use 16-bit data references (default) SH-3, SH-4

ld Use 32-bit data references SH-3, SH-4

scd Use 16-bit code area data reference
(default)

SH-3, SH-4

lcd Use 32-bit code area data references SH-3, SH-4

sc Use 12-bit code references SH-3, SH-4

mc Use 16-bit code references (default) SH-3, SH-4

lc Use 32-bit code references SH-3, SH-4

sb Use 8-bit branches SH-3, SH-4

mb Use 12-bit branches (default) SH-3, SH-4

lb Use 32-bit branches SH-3, SH-4
Ultra C/C++ Processor Guide 317

7 SuperH
Predefined Macro Names for the Preprocessor

The macro names in Table 7-3 are predefined in the preprocessor for
target systems.

Target macros are used to conditionalize code so that machine- and
operating system-independent programs can be created.

The executive automatically defines the _MPF and _FPF macro for the
target processor. Table 7-4 provides an example of this behavior.

For more information on exactly which macros are defined for the
SuperH processors, run the executive in verbose and dry run modes
stopping after the front end. For example, to check the defines on for the
SH-3 target (source file need not actually exist):

xcc -b -h -efe -tp=sh3 t.c

This causes the executive to print a line for SH-3 similar to:

"cpfe -m --target=11 -Id:\MWOS\SRC\DEFS -I\MWOS\OS9000\SRC\DEFS
-I\MWOS\OS9000\SH3\DEFS -D_UCC -D_MAJOR_REV=2 -D_MINOR_REV=2
-D_SPACE_FACTOR=1 -D_TIME_FACTOR=1 -D_OS9000 -D_MPFSH3 -D_MPFSH
-D_FPFSH -D_BIG_END -w --Extended_ANSI --gen_c_file_name=t.i t.c"

To check the defines for an SH-4 target:

xcc -b -h -efe -tp=sh4 t.c

Table 7-3 Macros

Macro Description

_MPFSH Generic SuperH processor

_MPFSH3 SH-3 (SH7708/SH7709) processor

_MPFSH4 SH-4 (SH7750) processor

_FPFSH SH-3 Floating-point support

_FPFSH4 SH-4 Floating-point support
318 Ultra C/C++ Processor Guide

7SuperH
The executive prints a line for SH-4 similar to:

"cpfe -m --target=14 -Id:\MWOS\SRC\DEFS -Id:\MWOS\OS9000\SRC\DEFS
-Id:\MWOS\OS9000\SH4\DEFS -D_UCC -D_MAJOR_REV=2 -D_MINOR_REV=2
-D_SPACE_FACTOR=1 -D_TIME_FACTOR=1 -D_OS9000 -D_MPFSH4 -D_MPFSH
-D_FPFSH4 -D_BIG_END -w --Extended_ANSI --gen_c_file_name=t.i t.c"

NoteNote
Note that _MPFSH, _MPFSH4 macros are defined.

The _MPFSH macro indicates that a source file is being compiled for a
SuperH family target.

Table 7-4 identifies the relationship between the target processor and
the preprocessor macros. Note that specific targets also define the
general macro _MPFSH.

Table 7-4 _MPFxxx and _FPFxxx Macro Behaviors

Target Microprocessor Family Macros Defined

sh3 _MPFSH3 _MPFSH _FPFSH

sh4 _MPFSH4 _MPFSH _FPFSH4
Ultra C/C++ Processor Guide 319

7 SuperH
SuperH-Unique Phase Option Functionality

Phases having unique phase option functionality on the SuperH
processor are:

• Back End Options
• Assembly Optimizer Options
• Linker Options

Back End Options
-m=<non remote memory left>

Informs the back end that other files in
the program have used some amount of
the 64K non-remote data.

-pd Enables denormalized number support.
(SH-4)

The back end orders the data area based on static analysis of the data
area objects and sorts the data based on usage and size. This means
that the most heavily used objects end up in the non-remote area. To do
this, the back end needs information about how the object-code linker
lays out the data area for the entire program. This option may be used
to inform the back end that the files it is unable to process will use a
specified amount of data space.
320 Ultra C/C++ Processor Guide

7SuperH
Code generation options provide specifications for code generated by
the back end. Most of these options can be controlled via executive
command line options, thus there should not be a need to explicitly use
them.

Table 7-5 Code Generation Options

Option Description

-pg Use stand-alone code area address calculation
(This option is obsolete. It is provided for backwards
compatibility, but it has no effect on code generation.)

-pl Cause long references to global/static data objects

-pla Cause branches to be long

-plb Cause function calls to be long

-plc Cause some references to code objects to be long

-pmb Cause function calls to be medium (default)

-pnp Save the previous stack pointer on the stack

-ps Do not emit stack checking code
Ultra C/C++ Processor Guide 321

7 SuperH
Target architecture code generation options provide specifications
unique to a target architecture for code generated by the back end.

Assembly Optimizer Options
-b Do not perform long/medium branch

simplification

-t[=]<num> Specify target processor family

Table 7-6 SH-3 Code Generation Options

Option Description

-pSH3 Does not have floating-point hardware support.
Supports dynamic shift operations. (besh only)

-pSH4 Has single and double-precision hardware
floating-point support; supports dynamic shift
operations. (besh4 only)

Table 7-7 Assembly Optimizer Processor Numbers

<num> Assembly Optimizer Target

1 SH-3 family processor

2 SH-4 family processor
322 Ultra C/C++ Processor Guide

7SuperH
-p=<X> Selectively skip processor-specific
optimizations

-s<method> Set the peephole scheduling method

Assember Options
-m Accept a target number.

Table 7-8 Assembly Optimizer Processor-Specific Optimizations

<X> Processor-Specific Optimization

l Location (memory and register contents)
tracking

d Branch delay slot filling

p Pooling of PC-relative data

r Copy propagation

n Register renaming

Table 7-9 Peephole Scheduling Methods

<method> Description

s Spread dependent instructions (default)

n No reordering of instructions
Ultra C/C++ Processor Guide 323

7 SuperH
Linker Options
-t=<target> Linker, specify target module type

Table 7-10 Target Module Type

Target Module Type

os9k_sh OS-9 for SH-3 Family Processors

os9k_sh4 OS-9 for SH-4 Family Processors
324 Ultra C/C++ Processor Guide

7SuperH
C/C++ Application Binary Interface
Information

Register usage, passing arguments to functions, and language features
are described in this section.

Register Usage

General purpose and other registers are identified in this section.

Table 7-11 Register Classes

Register Class Names Used Processor

General Purpose
Registers

r0 - r15, gp, sp SH-3, SH-4

System Registers mach, macl, pr, pc,
fpul

SH-3, SH-4

Control Registers sr, gbr, vbr, ssr, spc SH-3, SH-4

Control Register fpscr SH-4

Floating point
Registers

fr0 - fr15

dr0, dr2, ..., dr14

SH-4
Ultra C/C++ Processor Guide 325

7 SuperH
NoteNote
The single and double precision registers for SH-4 are not separate.
Each double precision register is formed from two single precision
registers: fr0 and fr1 comprise dr0, fr2 and fr3 comprise dr2, and so
forth. Loading dr0 will change fr0 and fr1 and vice versa.

General Purpose Registers
The following table describes names and meanings of the general
purpose register set used by the C/C++ Compiler and supported by the
Ultra C assembler. The assembler supports both the register number
and the alternate name. The alternate name is used for convenience
since the name gives the user a hint to its intended purpose.

Figure 7-1 General Purpose Register
Register # Alias Description Processor

r0 Caller-saved; function integer
return register; for functions
returning aggregates, this points
to the returned aggregate.

SH-3, SH-4

r1-r3 Caller-saved/volatile. SH-3, SH-4

r4-r7 Caller-saved; Up to four
arguments placed in these
registers

SH-3, SH-4

r4/r5 pair for floating point
return

SH-3

r8-r13 Callee-saved; for locals or
temporaries

SH-3, SH-4

r14 gp Biased pointer to static data area SH-3, SH-4

r15 sp Stack pointer SH-3, SH-4
326 Ultra C/C++ Processor Guide

7SuperH
NoteNote
No register is dedicated to point at constant data. Refer to a later
section regarding code area data item references.

macl
mach
gbr

Callee saved SH-3, SH-4

fpul Caller saved SH-4

fr0 Caller saved; float point function
return register

SH-4

fr1-fr3 Caller saved SH-4

fr4-fr11 Caller saved/volatile.
Up to eight single-precision
arguments are placed in these
registers.

SH-4

fr12-fr15 Callee saved SH-4

dr0 Caller saved
Double function return register

SH-4

dr2 Caller saved SH-4

dr4-dr10 Caller saved; up to four double
precision arguments are placed
in these registers

SH-4

dr12,
dr14

Callee saved registers SH-4

Figure 7-1 General Purpose Register
Register # Alias Description Processor
Ultra C/C++ Processor Guide 327

7 SuperH
NoteNote
If a floating point needs to be performed in interrupt service routines, all
of the caller-saved floating point registers, including FPUL and FPSCR
registers, will have to be saved manually. You do not have to save the
callee-saved floating point registers because the Compiler will save
them.

Passing Arguments to Functions

When an argument is passed to a called function, the argument is in
one of two places, in a register or in the Output Parameter Area (OPA)
of the calling function.

The called function determines the location of the argument by
argument type and the order specified in the argument list. Standard
argument promotions are assumed to be used where applicable
(example: for optional parameters and parameters in the absence of a
prototype). Optional parameters and parameters of aggregate types are
passed on the stack regardless of position.
328 Ultra C/C++ Processor Guide

7SuperH
With the SH-4 processor, single precision floating point parameters are
passed in single precision registers when available. If all such registers
set aside for parameter passing are in use, single precision floating
point parameters are passed on the stack. Double precision floating
point parameters use double precision registers, which are comprised
of consecutive pairs of single precision registers. If a pair is not
available, the value is passed on the stack. If an odd number of single
precision parameters precede a double precision parameter passed in
a register, a gap is left in the single precision registers, which may be
filled by a later single precision parameter. For example, in a function

double indemnity (float f1, double d, float f2)

the parameter f1 will be passed in fr4, d will be passed in dr6 (which
consists of fr6 and fr7), and f2 will be passed in fr5.

The SH-3 processor does not have floating point registers. Therefore,
single precision floating point parameters use integer registers when
available. If one is not available, it is passed on the stack. Double
precision floating point parameters use a consecutive pair of integer
registers. If a pair is not available, the value is passed on the stack. If
there is a single parameter register available, it is used for a later
argument if it fits.

For SH-3, if a function is to return a value, an integral return value is
returned in r0 or a single precision in r4; double precision in r4-r5
pair.

For SH-4, if a function is to return a value, an integral return value is
returned in r0 or a single precision in fr0; double precision in dr0.

If a function is to return a struct, the address of a return area is passed
as the first integral argument (r4) and is returned in the integral return
register (r0).
Ultra C/C++ Processor Guide 329

7 SuperH
SH-3 Floating Point Parameter Example
This is an example function for an SH-3 target.

func(int, int, float double, float);
func1() {
 int a, b;
 float c, d;
 double d1;

 func(a, b, c, d1, d);
}

This function generates the following code:

...
* func(a, b, c, d1, d);
 mov.l @(16,r15),r4 <-- first parameter (int) in r4
 mov.l @(20,r15),r5 <-- second parameter (int) in r5
 mov.l @(24,r15),r6 <-- third parameter (float) in r6
 mov.l @(28,r15),r1 <-- fourth parameter (double) needs two consecutive
 mov.l @(32,r15),r2 registers, but we only have r7 left, so it is passed
 mov.l r1,@(8,sp) on the stack, in the OPA
 mov.l r2,@(12,sp)
 mov.l @(36,r15),r7 <-- fifth parameter (float) uses the remaining register r7
 mov.w @(=_$L59,pc),r1
 bra =_$L60 **skip
 nop
=_$L59
 dc.sw =func-=_$L60-4
=_$L60
 bsrf r1
 nop
...
330 Ultra C/C++ Processor Guide

7SuperH
SH-4 Floating Point Parameter Example
This is an example function for an SH-4 target.

extern void func(int, int, float, double, float, int, int,
int);

func1()
{
 int a, b, c, d, e;
 float f1, f2;
 double d1;

 func(a, b, f1, d1, f2, c, d, e);
}

* func(a, b, f1, d1, f2, c, d, e);
 mov.l @(16,r15),r4 <-- first parameter (int) in r4
 mov.l @(20,r15),r5 <-- second parameter (int) in r5
 mov #24,r1
 add r15,r1
 sts fpscr,r2 **PR=0
 mov #-9,r3
 swap.w r3,r3
 and r3,r2
 lds r2,fpscr **PR
 fmov.s @r1,fr4 <-- third parameter (float) in fr4
 mov #32,r1
 add r15,r1
 fmov.s @r1+,fr6 <-- fourth parameter (double) in dr6
(fr6/fr7)
 fmov.s @r1,fr7
 mov #40,r1
 add r15,r1
 fmov.s @r1,fr5 <-- fifth parameter (float) in fr5
 mov.l @(44,r15),r6 <-- sixth parameter (int) in r6
 mov.l @(48,r15),r7 <-- seventh parameter (int) in r7
 mov.l @(52,r15),r1
 mov.l r1,@(8,sp) <-- eighth parameter (int) on the stack
 mov.l @(=_$L22,pc),r1
 bra =_$L23 **skip
Ultra C/C++ Processor Guide 331

7 SuperH
 nop
 align 4
=_$L22
 dc.l =func-=_$L23-4
=_$L23
 bsrf r1
 nop

NoteNote
Individual parameters passed on the stack are aligned to the maximum
alignment requirement of any data type on a target (8 bytes for SH-4).
332 Ultra C/C++ Processor Guide

7SuperH
Figure 7-2 Stack Frame for a Function

2nd Stack
Argument
1st Stack
Argument

Return Address

Automatics

Output Parameter
Area

Old Stack Pointer

Return Address

Register Save
Area

:
:
:

High
Memory

Low
Memory

Stack Pointer

Stack
Grows
Down

Very Old
Stack Pointer
Ultra C/C++ Processor Guide 333

7 SuperH
Stack Pointer Points to the one-time allocated stack for
the function

Old Stack Pointer Contains the calling function’s stack
pointer. It is only used for “unwinding”
the stack by the debugger.

Output Parameter Area The area for stack arguments that are
passed to functions that this function
calls

Automatics The area for function locals (and
compiler generated temporaries)

Register Save Area The area the compiler saves the
callee-saved registers that it uses

Return Address This place is reserved for non-leaf
functions to save their return address

Very Old Stack Pointer The saved stack pointer for the function
that called the calling function

Stack Arguments These are the argument that were
passed on the stack to this function

SH-3 Stack Alignment
The register save area, automatic area, output parameter area and
stack pointer are all 4-byte aligned. Padding is added where needed.

SH-4 Stack Alignment
The register save area, automatic area, output parameter area and
stack pointer are all 8-byte aligned. Padding is added where needed.
334 Ultra C/C++ Processor Guide

7SuperH
C Language Features

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Other implementation-defined areas are identified in the Language
Features chapter of the Using Ultra C/C++ manual and the Overview
chapter of the Ultra C Library Reference manual. Refer to an
ANSI/ISO specification for more information.

In conformance with the ANSI/ISO C specification, the
implementation-defined areas of the compiler are listed in this section.
Each bulleted item contains one implementation-defined issue. The
number in parentheses included with each bulleted item indicates the
location in the ANSI/ISO specification where further information is
provided.

Characters
• The number of bits in a character in the execution character set

(5.2.4.2.1).

There are 8 bits in a character in the execution character set.

Integers
• The representations and sets of values of the various integer types

(6.1.2.5).
Ultra C/C++ Processor Guide 335

7 SuperH
Table 7-12 Integer Type/Range

Type Representation
Minimum /
Maximum

char, signed char 8-bit 2’s complement -128 /
127

unsigned char 8-bit binary 0 /
255

short int 16-bit 2’s complement -32768 /
32767

unsigned short
int

16-bit binary 0 /
65535

int 32-bit 2’s complement -2147483648 /
2147483647

unsigned int 32-bit binary 0 /
4294967295

long int 32-bit 2’s complement -2147483648 /
2147483647

unsigned long int 32-bit binary 0 /
4294967295
336 Ultra C/C++ Processor Guide

7SuperH
• The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented (6.2.1.2).

When converting a longer integer to a shorter signed integer, the least significant
<n> bits of the longer integer are moved to the integer of <n> bits. The resulting
value in the smaller integer is dictated by the representation. For example, if the
conversion is from int to short, the least significant 16 bits are moved from the
int to the short. This value is then considered a 2’s complement 16-bit integer.

When conversion from unsigned to signed occurs with equally sized integers, the
most significant bit becomes the sign bit. Therefore, if the unsigned integer is less
than 0x80000000, the conversion has no affect. Otherwise, a negative number
results.

• The sign of the remainder on integer division (6.3.5).

The result of an inexact division of one negative and one positive integer is the
smallest integer greater than or equal to the algebraic quotient.

The sign of the remainder on integer division is the same as that of the dividend.

Floating-Point
• The representations and sets of values of the various types of

floating-point numbers (6.1.2.5).

Refer to the float.h header file for other limits and values.

Table 7-13 Floating-Point Number Characteristics

Type Format
Minimum /
Maximum

float 32-bit
IEEE 754

1.17549435e-38f /
3.40282347e38f

double 64-bit
 IEEE 754

2.2250738585072016e-308 /
1.7976931348623157e308

long double 64-bit
IEEE 754

2.2250738585072016e-308 /
1.7976931348623157e308
Ultra C/C++ Processor Guide 337

7 SuperH
Arrays and Pointers
• The type of integer required to hold the maximum size of an array.

That is, the type of the size of operator, size_t (6.3.3.4, 7.1.1).

An unsigned long int is required to hold the maximum size of an array.
unsigned long int is defined as to size_t in ansi_c.h.

• The result of casting a pointer to an integer or vice versa (6.3.4).

Since pointers are treated much like unsigned long integers, the integer is
promoted using the usual promotion rules to an unsigned long. That is, the sign bit
propagates out to the full 32-bit width.

• The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdiff_t (6.3.6, 7.1.1).

A signed long int is required to hold the difference between two pointers to
elements of the same array. long int is defined as ptrdiff_t in ansi_c.h.

Registers
• The extent to which objects can actually be placed in registers by

use of the register storage-class specifier (6.5.1).

The compiler automatically makes decisions about what objects are placed in
registers, thus giving no special storage considerations for the register
storage-class.

Structures, Unions, Enumerations, and Bit-Fields
• The padding and alignment of members of structures (6.5.2.1). This

should present no problem unless binary data written by one
implementation are read by another.
338 Ultra C/C++ Processor Guide

7SuperH
Table 7-14 shows the alignment of the various objects within a
structure. Required padding is supplied if the next available space is
not at the correct alignment for the object. For example, a structure
declared as:

 struct {
 char mem1;
 long mem2;

 };

would be an 8-byte structure: one byte for mem1, three bytes of padding
to get mem2 to 4-byte alignment, and four bytes for mem2.

• Whether “plain” int bit-field is treated as a signed int or as an
unsigned int bit-field (6.5.2.1).

A “plain” int bit-field is treated as a signed int bit-field.

• The order of allocation of bitfields within a unit (6.5.2.1).

Bit fields are allocated from most-significant bit to least-significant bit.

Table 7-14 Alignment Table

Type Alignment Requirement

char 1

short 2

int 4

long 4

pointers 4

float 4

double SH-3 target: 4 SH-4 target: 8

long double SH-3 target: 4 SH-4 target: 8
Ultra C/C++ Processor Guide 339

7 SuperH
• Whether a bit-field can straddle a storage-unit boundary (6.5.2.1).

Bit fields are allocated end-to-end until a non-bit field member is allocated or until
that positioning would cross an addressable boundary such that no object of an
integral type could both contain the bit field and be correctly aligned.

• The integer type chosen to represent the values of an enumeration
type (6.5.2.2).

Enum values are represented in 32 bit two’s complement integers.

Processing Directives
• Whether the value of a single-character, character constant in a

constant expression that controls inclusion matches the value of the
same character constant in the execution character set. Whether
such a character constant may have a negative value (6.8.1).

The value of a single-character character constant in a constant expression that
controls inclusion matches the value of the same character constant in the
execution character set. This character constant may have a negative value.

• The method for locating includable source files (6.8.2).

This method is described in the Using the Executive chapter of the Using Ultra
C/C++ manual.

• The support of quoted names for includable source files (6.8.2).

Quoted names are supported for #include preprocessing directives.

• The mapping of source file character sequences (6.8.2).

The mapping of source file character sequences is one-to-one. The
case-sensitivity of file names depends on the file system being used.
340 Ultra C/C++ Processor Guide

7SuperH
Assembly Language with SH-4 Target

Because there are few instruction encodings with fixed-length 16-bit
instructions, integer and floating point behaviors are affected. The
permissible immediate operands range and the displacement sizes are
limited and r0 is widely used as an implicit operand or component of
instructions. The greatest effects with floating point are:

4. The bank-switching nature of the floating point registers under
control of bits in the FPSCR

5. The overloading of particular bit patterns so that the same
instruction encoding behaves differently under control of bits in the
FPSCR

When working with the FPSCR register and assembly language
escapes that do floating point, ensure that the SZ and FR enable bits
come out the same way they go in.

At the time of this writing, the SH-4 back end does not allow values to
be encouraged into the xd registers as is possible with the fr and dr
registers.
Ultra C/C++ Processor Guide 341

7 SuperH
SuperH Processor-Specific Optimizations

In addition to providing the standard generic assembly optimizations,
the Ultra C/C++ icode optimizer (iopt) and SuperH assembly optimizer
(optsh) provide processor-specific optimizations. These are:

Special Common Sub-Expressions
Delay Slot Filling
Long/Medium Branch Simplification
Code Area Data Pooling and Consolidation
Copy Propagation

Special Common Sub-Expressions

On the SuperH processors, loading certain constants (< -128 or >= 128
for signed constants, >= 128 for unsigned constants, all floating point
constants on SH-3 and all floating point constants except single
precision 0 and single precision 1 on the SH-4 processor) and
computing the addresses of global variables and functions are very
expensive due to the limited size of displacement in most instructions.
So, the icode optimizer creates common sub-expressions associated
with the above so they can be computed just once into a register and
the contents of the register can be reused every time a reference to the
expression is made.

Delay Slot Filling

In order to reduce code size and/or increase code efficiency, the
assembly optimizer attempts to fill the delay slots of those instructions
that have them with useful instructions. To do this, it looks for a movable
instruction in the series of preceding instructions or, in some cases, the
following or destination instructions. If the delay slot cannot be filled with
a useful instruction, it is either left alone or, in the case of conditional
branches, the delay slot is removed altogether.
342 Ultra C/C++ Processor Guide

7SuperH
Long/Medium Branch Simplification

During the code generation phase, the compiler is unaware of the
distances between different sections of code. As a result, the back end
is somewhat conservative in the branch instructions that it emits. For
example, the back end produces sub-optimal code for the following C
code:

* if (x) y *= x;

 tst r4,r4
 bf =_$L1
 bra =_$138e
 nop
=_$L1
 mul.l r4,r5
 sts macl,r5
=_$138e
 ...

The assembly optimizer attempts to shorten these branching
sequences. Given the above example, the assembly optimizer outputs
the following:

 tst r4,r4
 bt =_$138e
=_$L1
 mul.l r4,r5
 sts macl,r5
=_$138e

Here is another example of a long branch to subroutine:

 ...
 mov.w @(=_$L3,pc),r0
 bra =_$L4 **skip
 nop
 align 2
=_$L3
 dc.sw =func-=_$L4-4
=_$L4
Ultra C/C++ Processor Guide 343

7 SuperH
 bsrf r0
 nop
 ...

This can be converted to a simple branch to subroutine, if the assembly
optimizer can determine that the branch target is in range:

...
bsr =func
nop
...

Code Area Data Pooling and Consolidation

The SuperH instruction set limits the size of immediate values to 12 bits
(in the case of BRA and BSR); generally fewer. As a result, it is often
necessary to load data into registers. This is what is done for long
branches and subroutine calls as well as large numerical values. This
data can be stored in the code area and copied into registers using
PC-relative loads. The assembly optimizer attempts to pool this code
area data together beyond naturally occurring divisions (such as a
return from subroutine) to limit the number of extra branches in code.
For example, given the following code:

extern int x;
func(&x);

The back end might generate:

 mov.w @(=_$L6,pc),r4
 bra =_$L7 **skip
 nop
=_$L6
 dc.sw =w
=_$L7
 add r14,r4
 mov.w @(=_$L3,pc),r0
 bra =_$L4 **skip
 nop
 align 2
344 Ultra C/C++ Processor Guide

7SuperH
=_$L3
 dc.sw =func-=_$L4-4
=_$L4
 bsrf r0
 nop
 ...
 rts
 nop

The assembly optimizer could change this to:

 mov.w @(=_$L6,pc),r4
=_$L7
 add r14,r4
 mov.w @(=_$L3,pc),r0
=_$L4
 bsrf r0
 nop
 ...
 rts
 nop
=_$L6 dc.sw =x
 align 2
=_$L3 dc.sw =func2-=_$L4-4

Copy Propagation

The assembly code optimizer tries to eliminate needless copies
between register temporaries; resulting in smaller, more efficient code.
For example:

mov.l @r0,r8
mov r8,r7
exts.b r7,r7

This may be changed to the following:

mov.l @r0,r8
exts.b r8,r7
Ultra C/C++ Processor Guide 345

7 SuperH
As another example:

mov.l @r0,r8
mov r8,r7
exts.b r8,r8
mov #0,r7

This may be changed to the following:

mov.l @r0,r7
exts.b r7,r8
mov #0,r7
346 Ultra C/C++ Processor Guide

7SuperH
_asm() Register Pseudo Functions

_asm() uses register pseudo functions as identified in Table 7-15.

Table 7-15 _asm() Register Pseudo Functions

Register Description Processor

__reg_gen Any non-dedicated integer register SH-3

__reg_r<n> The register specified by
n (0 <= n <= 13)

SH-3

__reg_single Any single precision register SH-4

__reg_double Any double precision register SH-4

__reg_fr<n> The single precision register
specified by n
(0 <= n <= 15)

SH-4

__reg_dr<n> The double precision register
specified by n
(n in {0, 2, 4, 6, 8, 10, 12, 14})

SH-4
Ultra C/C++ Processor Guide 347

7 SuperH
Assembler/ Linker

The assembler allows use of standard SuperH assembly language
mnemonics and syntax, modified as described in this section. For more
specific information about individual instructions, consult the following
documentation:

• SH7000/SH7600 Series Programming Manual
• SH7700 Series SuperH RISC Engine Programming Manual
• SH-3E Single-Chip RISC Microprocessor Programming Manual

ROF Edition Number

The SuperH assembler emits ROF Edition #15.

External References

The SuperH assembler allows the use of external references with any
operators within any expression fields not defined to be constant
expression fields.

Symbol Biasing

The linker does not bias code or data symbols for system, file
managers, device drivers, device descriptors, or data modules. For all
other types of modules, or for raw code, the linker biases both code and
data symbols by -32764 (0x7ffc). Initialization routines for raw code
should ensure that the static storage pointer (r14) is initialized with the
proper base address, adjusted to account for the biasing.
348 Ultra C/C++ Processor Guide

7SuperH
Assembler Syntax Extensions and Limitations

The Ultra C/C++ compiler’s adaptation of the SuperH instruction syntax
has a few notable differences from what is defined in SuperH
programming reference manuals:

• The assembler uses white space as the comment delimiter. As a
result, the operand stream must not include any white space.

• The forward slash character ("/") is not allowed within instruction
mnemonics. As a result, those mnemonics that contain a forward
slash (such as BF/S and CMP/EQ) contain a period (“.”) instead.

An example of SuperH syntax and its equivalent Ultra C/C++ syntax are
shown in Table 7-16.

To see other uses of Ultra C/C++ assembly, it is possible to stop the
compilation process after the back end has finished (using the -ebe
compiler switch) and view the resulting assembly file.

Global Data Accessing

Global data for a process is stored in a single region of memory,
accessed via a dedicated register. Since the SuperH’s load with
displacement only has a 4-bit unsigned displacement field, this
instruction is not practical to use for global data accesses and to use it
would also cause other modes to be too limited. A similar situation
exists for the use of the following code sequence since this only
accesses a maximum of 256 bytes, words and/or longs (less if larger
structures are involved).

Table 7-16 SuperH and Ultra C/C++ Syntax Equivalents

SuperH Syntax Ultra C/C++ Syntax

bf/s label bf.s label

cmp/eq r1,r2 cmp.eq r1,r2
Ultra C/C++ Processor Guide 349

7 SuperH
mov lo8(_symb),r0
mov.l @(r0,gp),rd

Therefore, we recommend adopting two global data accessing modes,
one for accessing up to 64K of data and another that allows the entire
32-bit address space to be accessed.

The following code can be emitted for short data accesses:

mov.w @(_symb_addr,PC),r0
bra _around
nop

_symb_addr dc.sw _symb
_around mov.l @(r0,gp),rd

It can handle offsets from -32768 to 32764, thereby allowing access to
approximately 64K of data. For long data accesses, the following
PC-relative addressing mode should be used.

mov.l @(_symb_addr,PC),r0
bra _around
nop
align4

_symb_addr dc.l _symb
_around mov.l @(r0,gp),rd

The above examples assume:

• rd is the destination register

• _symb is a referenced value to be replaced by the linker

• gp is the name of the dedicated register “pointing” to the global data
area

The assembly code optimizer eliminates as many of the branches
around displacements in code as possible.
350 Ultra C/C++ Processor Guide

7SuperH
Code Accessing

Ultra C/C++ takes advantage of the SuperH PC-relative load and mova
instructions to perform code accesses. Therefore, you can adopt two
code accessing modes: one for accessing up to 64K of code and
another for accessing the entire 32-bit address space.

The following code can be emitted for short code accesses:

L1 mova @(0,PC),r0
mov.w @(L2,PC),rd
bra L3
nop

L2 dc.sw -((L1&0xfffffffc)+4)-_symb
L3 add r0,rd

It can handle offsets from -32768 to 32764, thereby allowing access to
approximately 64K of data. For long code accesses, the following
PC-relative addressing mode should be used.

L1 mova @(0,PC),r0
mov.l @(L2,PC),rd
bra L3
nop
align4

L2 dc.l -((L1&0xfffffffc)+4)-_symb
L3 add r0,rd

The above examples assume:

• rd is the destination register

• _symb is a referenced value to be replaced by the linker

Calling Functions

The SuperH processor supports three different models for calling a
function. The short model works for programs under 4K. Calls to a
function look like this:

bsr _printf
Ultra C/C++ Processor Guide 351

7 SuperH
In the medium model, programs is guaranteed to work if their size is
less than 32K. Code for these calls look like this:

mov.w @(_pntf_ofst,PC),r0
bra _call_pt
nop

_pntf_ofstdc.sw _printf-_call_pt-4
_call_pt bsfr r0

nop

For any other programs, the code looks like this:

mov.l @(_pntf_ofst,PC),r0
bra _call_pt
nop
align 4

_pntf_ofstdc.l _print-_call_pt-4
_call_pt bsrf r0

nop

In this way, the user can minimize the size of the code.

Calls through pointers to functions should be done in the following
manner:

<get the value in register rd>
jsr @rd
352 Ultra C/C++ Processor Guide

7SuperH
Working with PC-Relative Data

The SuperH instruction set limits branch labels to 12 bits. It is possible
to perform branches using 16 or 32 bits by loading a PC-relative
displacement into a register. Following are examples of medium and
long branches to a destination symbol =dest:

Medium branch to dest
mov.w @(disp,pc),r0

baddr braf r0
nop
slign 2

disp dc.sw dest-baddr-4

Long branch to dest
mov.l @(disp,pc),r0

baddr braf r0
nop
align 4

disp dc.1 dest-baddr-4

It is important to note the .sw extension used on the define constant
pseudo-instruction in the medium branch example. This is necessary
because the value is to be signed displacement and the linker should
give an error if it does not fit within -32768 and 32767.
Ultra C/C++ Processor Guide 353

7 SuperH
Stack Checking

This section provides SuperH-specific information about stack
checking. Refer to Using Ultra C/C++ for more general information on
stack checking.

If stack checking is inappropriate for the module being created, you will
need to define the following items:

• a global pointer called _stbot (initialized to ULONG_MAX if possible)

• a function called _stkhandler (it returns to its caller)

A function called _stkoverflow is called when the stack appears to
overflow. If a non-static function called _stkoverflow resides in an
ROF that is linked to make the object module, that function is called
instead of the default function. The default function writes a message to
the standard error path and causes the program to exit with a status of
one. _stkoverflow neither accepts parameters nor returns a value.

NoteNote
If _stkoverflow is inappropriate for your application, consider writing
a function to handle stack overflow.

_stkhandler, the function that checks for stack overflow, can be
revised. Revision may be necessary if stack checking is inapplicable to
the module that calls the library functions. _stkhandler() is passed
the desired stack pointer in r3 and does not return a value.

NoteNote
Stack handler code must be compiled with stack checking turned off
(-r in ucc mode).
354 Ultra C/C++ Processor Guide

	HOME
	Ultra C/C++ Processor Guide
	Table of Contents
	Chapter 1: 68K
	Executive and Phase Information
	Executive -tp Option
	ucc and c89 Option Mode
	compat Option Mode

	Predefined Macro Names for the Preprocessor
	68K-Unique Phase Option Functionality
	Back End Options
	Assembly Optimizer Options
	Assembler Options
	Linker Options

	C/C++ Application Binary Interface Information
	Register Usage
	Passing Arguments to Functions
	C Language Features
	Characters
	Integers
	Floating Point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, and Bit-Fields
	Preprocessing Directives

	_asm() Register Pseudo Functions
	Span Dependent Optimizations
	Methods for Reducing Compiled Code Size
	Overriding Compiler Size Defaults
	User Program Modules
	System and Non-program Modules

	fopen() Append Bit
	Using Math
	Assembler/ Linker
	ROF Edition Number
	External References
	Symbol Biasing

	Assembly Language Mnemonics
	Registers
	Addressing Mode Syntax Definitions
	Symbols
	Instruction Conventions
	Mnemonics Table

	Additional Information for 68020, 68030, 68040, 68060, and CPU32 Processors
	Floating Point Numbers
	Assembly Language Mnemonics

	68881/68882/68040/68060 Floating Point Mnemonics
	Floating Point Examples
	Dyadic Instructions
	Monadic Instructions
	Data Movement Instructions
	Program Control Instructions
	System Control Operations

	Floating Point Condition Predicates used for <cc>
	Constant ROM Table
	Default Stack Handler Function
	Default Stack Overflow Message and Exit

	Chapter 2: ARM
	Executive and Phase Information
	Executive -tp Option
	Predefined Macro Names for the Preprocessor
	ARM-Unique Phase Option Functionality
	Back End Options
	Assembly Optimizer Options
	Linker Options

	C/C++ Application Binary Interface Information
	Register Usage
	General Purpose Registers.
	Floating Point Registers

	Passing Arguments to Functions
	C Language Features
	Characters
	Integers
	Floating Point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, and Bit-Fields
	Processing Directives

	ARM Processor-Specific Optimizations
	Special Common Sub-Expressions
	Code Area Data Pooling and Consolidation
	Conditionalizing of Instructions
	Copy Propagation

	_asm() Register Pseudo Functions
	Assembler/ Linker
	ROF Edition Number
	External References
	Symbol Biasing
	Assembler Syntax Extensions and Limitations
	Working with Immediate Data

	Stack Checking

	Chapter 3: SH-5
	Executive and Phase Information
	Executive -tp Option
	Predefined Macro Names for the Preprocessor
	SH-5m-Unique Phase Option Functionality
	Back End Options
	Linker Options

	C/C++ Application Binary Interface Information
	Register Usage
	floating-point Registers
	Target Address Registers

	Pointer and non-64-bit Integer Representation
	Passing Arguments to Functions
	C Language Features
	Characters
	Integers
	floating-point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, and Bit-Fields
	Preprocessing Directives

	_asm() Register Pseudo Functions
	SH-5 Processor-Specific Optimizations
	Special Common Sub-Expressions

	Assembler/ Linker
	ROF Edition Number
	External References
	Symbol Biasing
	Code Symbol Values
	Assembler Syntax Extensions and Limitations

	Stack Checking

	Chapter 4: MIPS
	Executive and Phase Information
	Executive -tp Option
	Predefined Macro Names for the Preprocessor
	MIPS-Unique Phase Option Functionality
	Back End Options
	Assembly Optimizer Options
	Linker Options

	C/C++ Application Binary Interface Information
	Register Usage
	Floating Point Registers
	Special Purpose Registers

	Passing Arguments to Functions
	C Language Features
	Characters
	Integers
	Floating Point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, and Bit-Fields
	Preprocessing Directives

	_asm() Register Pseudo Functions
	MIPS Processor-Specific Optimizations
	Special Common Sub-Expressions
	Delay Slot Filling
	Copy Propagation
	Register Renaming
	Instruction Scheduling

	Assembler/ Linker
	ROF Edition Number
	External References
	Symbol Biasing

	Assembler Syntax Extensions and Limitations
	Stack Checking

	Chapter 5: Pentium and 80x86
	Executive and Phase Information
	Executive -tp Option
	Predefined Macro Names for the Preprocessor
	80x86-Unique Phase Option Functionality
	Back End Options
	Assembly Optimizer Options
	Assembler Options
	Linker Options

	C/C++ Application Binary Interface Information
	Register Usage
	Passing Arguments to Functions
	C Language Features
	Characters
	Integers
	The Sign of the Remainder on Integer Division (6.3.5)
	Floating Point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, and Bit-Fields
	Preprocessing Directives

	_asm() Register Pseudo Functions
	Span Dependent Optimizations
	Assembler/ Linker
	ROF Edition #9
	External References
	Symbol Biasing

	Assembly Language Mnemonics
	Default Stack Handler Function
	Default Stack Overflow Message and Exit

	Chapter 6: PowerPC
	Executive and Phase Information
	Executive -tp Option
	Predefined Macro Names for the Preprocessor
	PowerPC-Unique Phase Option Functionality
	Back End Options
	Assembly Optimizer Options
	Linker Options

	C/C++ Application Binary Interface Information
	Register Usage
	General Purpose Registers
	Floating Point Registers
	Condition Registers

	Passing Arguments to Functions
	Callee Saved Registers
	C Language Features
	Characters
	Integers
	Floating Point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, and Bit-Fields
	Preprocessing Directives

	_asm() Register Pseudo Functions
	PowerPC Processor-Specific Optimizations
	Special Common Sub-Expressions
	Copy Propagation
	Target-Driven Instruction Scheduling
	Register Renaming

	Assembler/ Linker
	ROF Edition Number
	External References
	Symbol Biasing
	Assembler Syntax Extensions and Limitations
	Special Purpose Registers
	Time Based Registers
	Device Control Registers

	Assembly Language Mnemonics
	Suffixes
	Symbols
	Mnemonics Table

	Extended Mnemonics
	Subtract Immediate
	Subtract
	Word Compare
	Extract, Insert, Rotate, Shift, and Clear
	Move to/from Special Purpose Registers
	Move to/from Time Base Registers
	Conditional Branch
	Branch Mnemonics Incorporating Conditions
	Branch Prediction Suffixes
	Traps
	Miscellaneous

	Power Mnemonics Supported by PowerPC 601
	PowerPC 403-Specific Mnemonics
	PowerPC 603-Specific Mnemonics
	PowerPC 602-Specific Mnemonics
	Stack Checking

	Chapter 7: SuperH
	Executive and Phase Information
	Executive -tp Option
	Predefined Macro Names for the Preprocessor
	SuperH-Unique Phase Option Functionality
	Back End Options
	Assembly Optimizer Options
	Linker Options

	C/C++ Application Binary Interface Information
	Register Usage
	General Purpose Registers

	Passing Arguments to Functions
	SH-4 Floating Point Parameter Example
	SH-3 Stack Alignment
	SH-4 Stack Alignment

	C Language Features
	Characters
	Integers
	Floating-Point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, and Bit-Fields
	Processing Directives

	Assembly Language with SH-4 Target
	SuperH Processor-Specific Optimizations
	Special Common Sub-Expressions
	Delay Slot Filling
	Long/Medium Branch Simplification
	Code Area Data Pooling and Consolidation
	Copy Propagation

	_asm() Register Pseudo Functions
	Assembler/ Linker
	ROF Edition Number
	External References
	Symbol Biasing
	Assembler Syntax Extensions and Limitations
	Global Data Accessing
	Code Accessing
	Calling Functions

	Working with PC-Relative Data
	Stack Checking

