Ultra C/C+ +

Processor Guide

RadiSys.

Version 2.6

www.radisys.com Revision A ¢ October 2002

Copyright and publication information

This manual reflects version 2.6 of Ultra C/C+ +.
Reproduction of this document, in part or whole, by
any means, electrical, mechanical, magnetic, optical,
chemical, manual, or otherwise is prohibited, without
written permission from RadiSys Corporation.

Disclaimer

The information contained herein is believed to be
accurate as of the date of publication. However,
RadiSys Corporation will not be liable for any damages
including indirect or consequential, from use of the
OS-9 operating system, Microware-provided software,

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys Corpo-
ration expressly prohibits any reproduction of the soft-
ware on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system may
constitute copyright infringements and misappropria-
tion of trade secrets and confidential processes which
are the property of RadiSys Corporation and/or other
parties. Unauthorized distribution of software may
cause damages far in excess of the value of the copies

or reliance on the accuracy of this documentation. involved.
The information contained herein is subject to change
without notice.

October 2002

Copyright ©2003 by RadiSys Corporation.
All rights reserved.

EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are

trademarks of RadiSys Corporation.

DAVID, MAUI, 0OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are

trademarks of RadiSys Corporation.

T All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Table of Contents

Chapter 1: 68K 9
10 Executive and Phase Information
10 Executive -tp Option
14 Predefined Macro Names for the Preprocessor
17 68K-Unique Phase Option Functionality
24 C/C++ Application Binary Interface Information
24 Register Usage
25 Passing Arguments to Functions
25 C Language Features

32 _asm() Register Pseudo Functions

33 Span Dependent Optimizations

33 Methods for Reducing Compiled Code Size
35 fopen() Append Bit

37 Using Math

38 Assembler/ Linker

38 ROF Edition Number

38 External References

39 Symbol Biasing

40 Assembly Language Mnemonics

40 Registers

41 Addressing Mode Syntax Definitions
42 Symbols

43 Instruction Conventions

44 Mnemonics Table

51 Additional Information for 68020, 68030, 68040, 68060, and
CPU32 Processors

51 Floating Point Numbers

51 Assembly Language Mnemonics

MICROWARE SOFTWARE

59 68881/68882/68040/68060 Floating Point Mnemonics

60 Floating Point Examples

61 Dyadic Instructions

63 Monadic Instructions

65 Data Movement Instructions
67 Program Control Instructions
68 System Control Operations

69 Floating Point Condition Predicates used for <cc>
72 Constant ROM Table

Chapter 2: ARM 77
78 Executive and Phase Information
78 Executive -tp Option
79 Predefined Macro Names for the Preprocessor
82 ARM-Unique Phase Option Functionality
87 C/C++ Application Binary Interface Information
87 Register Usage
90 Passing Arguments to Functions
93 C Language Features
99 ARM Processor-Specific Optimizations

104 _asm() Register Pseudo Functions
105 Assembler/ Linker
105 ROF Edition Number

105 External References
105 Symbol Biasing
106 Assembler Syntax Extensions and Limitations

109 Working with Immediate Data
111 Stack Checking

Chapter 3: SH-5 113

114 Executive and Phase Information
114 Executive -tp Option

115 Predefined Macro Names for the Preprocessor
117 SH-5m-Unique Phase Option Functionality
120 C/C++ Application Binary Interface Information
120 Register Usage

123 Pointer and non-64-bit Integer Representation
124 Passing Arguments to Functions

128 C Language Features

135 _asm() Register Pseudo Functions

136 SH-5 Processor-Specific Optimizations

136 Special Common Sub-Expressions

137 Assembler/ Linker

137 ROF Edition Number

137 External References

137 Symbol Biasing

138 Code Symbol Values

138 Assembler Syntax Extensions and Limitations
145 Stack Checking

Chapter 4: MIPS 147

148 Executive and Phase Information

148 Executive -tp Option

150 Predefined Macro Names for the Preprocessor
152 MIPS-Unique Phase Option Functionality
159 C/C++ Application Binary Interface Information
159 Register Usage

163 Passing Arguments to Functions

165 C Language Features

172 _asm() Register Pseudo Functions

175 MIPS Processor-Specific Optimizations

175 Special Common Sub-Expressions

176 Delay Slot Filling

176 Copy Propagation

177 Register Renaming

MICROWARE SOFTWARE

178 Instruction Scheduling

179 Assembler/ Linker

179 ROF Edition Number

179 External References

179 Symbol Biasing

180 Assembler Syntax Extensions and Limitations
182 Stack Checking

Chapter 5: Pentium and 80x86 183

184 Executive and Phase Information

184 Executive -tp Option

185 Predefined Macro Names for the Preprocessor
186 80x86-Unique Phase Option Functionality
189 C/C++ Application Binary Interface Information
189 Register Usage

190 Passing Arguments to Functions

190 C Language Features

196 _asm() Register Pseudo Functions

198 Span Dependent Optimizations

199 Assembler/ Linker

199 ROF Edition #9

199 External References

200 Symbol Biasing

201 Assembly Language Mnemonics

Chapter 6: PowerPC 219

220 Executive and Phase Information

220 Executive -tp Option

222 Predefined Macro Names for the Preprocessor
226 PowerPC-Unique Phase Option Functionality
231 C/C++ Application Binary Interface Information
231 Register Usage

235
237
238
245
246
246
247
247
248
249
249
249
250
250
252
272
273
278
278
279
283
297
297
297
298
298
300
301
302
303
305
306
308
309

Passing Arguments to Functions
Callee Saved Registers
C Language Features
_asm() Register Pseudo Functions
PowerPC Processor-Specific Optimizations
Special Common Sub-Expressions
Copy Propagation
Target-Driven Instruction Scheduling
Register Renaming
Assembler/ Linker
ROF Edition Number
External References
Symbol Biasing
Assembler Syntax Extensions and Limitations
Special Purpose Registers
Time Based Registers
Device Control Registers
Assembly Language Mnemonics
Suffixes
Symbols
Mnemonics Table
Extended Mnemonics
Subtract Immediate
Subtract
Word Compare
Extract, Insert, Rotate, Shift, and Clear
Move to/from Special Purpose Registers
Move to/from Time Base Registers
Conditional Branch
Branch Mnemonics Incorporating Conditions
Branch Prediction Suffixes
Traps
Miscellaneous
Power Mnemonics Supported by PowerPC 601

MICROWARE SOFTWARE

311 PowerPC 403-Specific Mnemonics
312 PowerPC 603-Specific Mnemonics
313 PowerPC 602-Specific Mnemonics
314 Stack Checking
Chapter 7: SuperH 315
316 Executive and Phase Information
316 Executive -tp Option
318 Predefined Macro Names for the Preprocessor
320 SuperH-Unique Phase Option Functionality
325 C/C++ Application Binary Interface Information
325 Register Usage
328 Passing Arguments to Functions
335 C Language Features
341 Assembly Language with SH-4 Target
342 SuperH Processor-Specific Optimizations
342 Special Common Sub-Expressions
342 Delay Slot Filling
343 Long/Medium Branch Simplification
344 Code Area Data Pooling and Consolidation
345 Copy Propagation
347 _asm() Register Pseudo Functions
348 Assembler/ Linker
348 ROF Edition Number
348 External References
348 Symbol Biasing
349 Assembler Syntax Extensions and Limitations
349 Global Data Accessing
351 Code Accessing
351 Calling Functions
353 Working with PC-Relative Data
354 Stack Checking

Chapter 1: 68K

This chapter contains information specific to the 68K family of
processors. The following sections are included:

» Executive and Phase Information

e C/C++ Application Binary Interface Information

e Span Dependent Optimizations

» fopen() Append Bit

e Using Math

» Assembler/ Linker

* Assembly Language Mnemonics

+ Additional Information for 68020, 68030, 68040, 68060, and
CPU32 Processors

» 68881/68882/68040/68060 Floating Point Mnemonics
* Floating Point Condition Predicates used for <cc>
* Constant ROM Table

MICROWARE SOFTWARE

MICROWARE SOFTWARE

Executive and Phase Information

The Executive - t p option, predefined macro names for the
preprocessor, and 68K-unique phase option functionality is described in

this section.

Executive -tp Option

Executive - t p enables options dependent upon executive mode. The
options for each mode are identified following.

ucc and c89 Option Mode

-t p[=] <t ar get >[<subopt i ons>]

Specify Target Processor and Target Processor Sub-Options.

Table 11 ucc Target Processors

Target

Target Processor

68000 or 68K

68010 or 010

68070 or 070

68301

68302

68303

68306

68000

68010

68070

68301

68302

68303

68306

Table 1-1 ucc Target Processors (continued)

Target Target Processor
68307 68307
68322 68322
68328 68328
CPU32 CPU32
CPU32+ CPU32+
68330 68330
68331 68331
68332 68332
68f 333 68F333
68334 68334
68340 68340
68341 68341
68349 68349
68360 68360
68020 or 020 68020
68030 or 030 680030

68ec030 or ec030 68EC030

MICROWARE SOFTWARE

Table 1-1 ucc Target Processors (continued)

Target Target Processor
68040 or 040 68040
68ec040 or ec040 68EC040

68l c040 or | c040 68LC040
68ec060 or ec060 68EC060

68l c060 or oc060 68LCO060

68060 or 060 68060

Sub-options are identified in the following table.

Table 1-2 Mode -tp Sub-Options

Suboptions Description

sc Use 16-bit code references (use
jumptable if necessary)

I c Use 32-bit code references (default)
sd Use 16-bit data references (default)

| d Use 32-bit data references

compat Option Mode

Options identified in Table 1-3 for t p_opt s are valid for the
-t p[=] <t ar get >[<subopt i ons>] option when <t ar get > is 68K,
68020, or 020.

Table 1-3 compat Mode -tp Sub-Options

Suboptions Description

cl Long word code access (default when
<t arget >is 68020 or 020)

cw Word code access (default when <t ar get >
is 68K)
dl Long word data access (default when

<t arget >is 68020 or 020)

dw Word data access (default when <t ar get >
is 68K)

[Do not emit 68881 instructions

j Prevent linker from creating jumptable

For example:
cc -tp=020i
-k[=] <nump[W I J[cw cl][]
Specify Target Processor
<nun® is the target machine:
0 = 68000 (default)
2 =68020
w causes generation of 16-bit data offsets (default 68000).
| causes generation of 32-bit data offsets (default 68020).

cw causes generation of 16-bit code references (default 68000).

cl causes generation of 32-bit code references (default 68020).

f causes generation of 68881 instructions for float/double types.
-t p[=] <t ar get >[<subopti ons>]

Specify the target processor sub-options to use. Table 1-4
Identifies target processors.

Table 1-4 compat Target Processor Options

Target Target Processor

68K MC68000/08/10/12/70
68020 MC68020/30/40/60
020 MC68020/30/40/60
CPU32 CPU32-family

Predefined Macro Names for the Preprocessor

The macro names in Table 1-5 are predefined in the preprocessor for
target systems.

Table 1-5 Macros

Macro Target Processor
_MPF68K All supported 68000 family
_MPF68010 68010

_MPF68070 68070

Table 1-5 Macros (continued)

Macro Target Processor
_MPF68301 68301
_MPF68302 68302
_MPF68303 68303
_PF68306 68306
_MPF68307 68307
_MPF68322 68322
_IMPF68328 68328
_MPFCPU32 CPU32 family
_MPFCPU32PLUS CPU32+ family
_MPF68330 68330
_MPF68331 68331
_MPF68332 68332
_WPF68F333 68333
_MPF68334 68334
_MPF68340 68340
_MPF68341 68341

_MPF68349 68349

MICROWARE SOFTWARE

Table 1-5 Macros (continued)

Macro Target Processor
_MPF68360 68360
_MPF68020 68020
_MPF68030 68030
_MPFG8ECD30 68ECO030
_MPF68040 68040
_MPF68EC040 68ECO040
_MPF68LC040 68LC040
_MPF68ECO60 68EC060
_MPF68LC060 68LCO060
_MPF68060 68060

Target names specify the compiler to use when writing machine- and
operating system-independent programs.

The executive defines the _MPF macro for the target processor as well
as any processors that are generally considered subsets of the target
processor. Table 1-6 provides a few examples of this behavior.

For more information on which macros are defined for 68K target
processors, run the executive in verbose and dry run modes stopping
after the front end. For example, type the following line to check the
defines for the 68349 target (source file not required):

cc -b -h -efe -tp=68349 t.c

This causes the executive to print a line similar to the following:

"cpfe -t=0 -x -v=/dd/ MADS/ SRC/ DEFS - v=/ dd/ MADS/ 0S9/ SRC/ DEFS -n -d_UCC
-d_SPACE_FACTOR=1 -d_TI ME_FACTOR=1 -d_OSK - d_MPF68349 -d_MPFCPU32PLUS
-d_MPF68K -d_FPF881 -d_BIG END -o0=t.i t.c"

i Note

_MPF68349, MPFCPU32PLUS, and _MPF68K macros are defined.

The _MPF68K macro indicates that a source file is being compiled for a
Motorola 68000 family target.

Table 1-6 _MPFxxx Macro Behavior

Target Microprocessor Family Macros Defined

68000 _MPF68K

CPU32 _MPF68K, _MPFCPU32

68020/ 030 _MPF68K, MPF68020

68040 _MPF68K, _MPF68020, _MPF68040

68060 _MPF68K, _MPF68020, _MPF68040,
_MPF68060

68K-Unique Phase Option Functionality
Phases having unique phase option functionality on the 68K processor
are:
« Back End Options
* Assembly Optimizer Options
« Assembler Options

e Linker Options

MICROWARE SOFTWARE

Back End Options

The back end orders the data area based static analysis of the data
area objects and sorts the data based on use and size. This means that
the most heavily used objects reside in the non-remote area. To do this,
the back end requires information about how the object linker lays out
the data area for the entire program. Table 1-7 identifies options
enabling information to be identified to the back end.

Table 1-7 Information Options

Option Description

- mE<non renot e Specify that other files in the program

nmenory | eft> have used some amount of the 64K data
area

- pa Notify the back end about using a
jumptable

- pl Cause references to external data to be
long

- ps Do not emit stack checking code

- p68000 Emit code for the 68000

- p68020 Emit code for the 68020

- pcpu32 Emit code for the CPU32

- p68040 Emit code for the 68040

- p68060 Emit code for the 68060

Assembly Optimizer Options
- s<met hod>
Set the peephole scheduling method

Table 1-8 Peephole Scheduling Methods

Method Description

S Spread dependent instructions

c Compress floating point instructions
n No reordering of instructions

-t[=] <nun»

Specify Target Processor Family

Table 1-9 Assembly Optimizer Processor Numbers

Number Assembly Optimizer Target
1 MC68000/08/10/12/70

2 CPU32-family

3 MC68020/30

4 MC68040

5 MC68060

MICROWARE SOFTWARE

Assembler Options

-b Optimize Branch Sizing

Optimize sizes for span-dependent instructions. Span-dependent
instructions are branches and instructions with an operand
containing a PC-relative displacement.

When using this option, span-dependent instructions with branch
targets or PC-relative displacements of the form i nt er nal _| abel
+ <const ant > cause the code produced for the instructions to be
as small as possible.

Span-dependent instructions using internal labels that do not fit the
above form are sized normally, according to the instruction
extension. Span-dependent instructions using external labels are
also sized according to the instruction extension.

Note
- b changes the default size of the base displacement in extended
addressing modes from long to word.

- bt Optimize Branch Sizing Making Branches to Externals Long

Use the largest size possible for branch or PC-relative
displacements with external labels. This option assures the ability to
reach the location independent of code size.

Note
- bt changes the default size of the base displacement in extended
addressing modes from long to word.

- Long Branches and PC-Relative References

Causes long branches and PC-relative references to access a
jumptable when - n0. This option implies - b.

- nknun® Specify Machine Assembler to Use
Specify machine assembler to use:

Table 110 Machine Assemblers

Number Machine Assembler
0 68000 (default)

1 68010

2 68020

3 68030

4 68040

6 68060

-r Require Use of Register Designator

Require register names to be distinguished from variable names by
placing a percent sign (% before each register name. If this option is
on, a register designator (%) is necessary before a register name.
The default is of f .

-y Make all branches long.

MICROWARE SOFTWARE

Linker Options

The following options are available for the linker.

-a

Convert Out-of-Range bsr s and PC-Relative | eas to
Jumptable References

bsr s that address labels more than 32K distant are automatically
converted to j sr s using a jumptable (in the initialized data area)
that contains the desired destination address. | eas are changed to
move instructions that move the destination from a jump instruction
in the jumptable. The linker automatically builds the required
jumptables and includes them in the output file. This allows large
programs to overcome the +32K offset limit of bsr instructions
without violating the operating system requirement for position
independent code.

Allow Initialized Static Storage to be Included in a System
Type Module

The module header used in this case is the program type module
header but the type/language field reflects a type of system.

Note

Using this option does not imply that the 68K kernel initializes the static
storage area for this module, only that the data structures are set in the
module such that the 68K kernel or some other code could initialize the
static storage area.

-]

Print Jumptable Calculation Map
Refer to the description in - a.

- t =<t ar get >Specify Target Module Type

Table 1-11 Target Module Type

Target Module Type

0s9 68K 68K

MICROWARE SOFTWARE

C/C++ Application Binary Interface
Information

Register usage, passing arguments to functions, and language features
are described in this section.

Register Usage

The compiler uses registers as identified in Table 1-12.

Table 112 Register Use

Register Description

do/ d1 Parameter passing/return
ab Frame/local pointer

a6 Static storage pointer

a7 Stack pointer

The compiler uses all other registers for temporaries and register
variables.

Passing Arguments to Functions

When an argument is passed to a called function, the argument is in
one of two places: in a register or on the stack. The called function
determines the location of the argument by argument type and the order
specified in the argument list. For this discussion:

* Anintegral argument is an argument of type i nt , a pointer, or a
char orshort convertedtoani nt.

* A double argument is an argument of type doubl e or af | oat
converted to a doubl e.

The first integral argument is passed in dO, and the second integral
argument, if any, is passed in d1. A single double argument is passed in
d0 and d1, with the most significant half in dO and the least significant
half in d1. Any remaining arguments are pushed on the stack. If the first
argument is integral and the second is double, the integral argument is
passed in dO and the double is passed entirely on the stack.

Parameters to functions taking variable arguments are passed
differently. All variable arguments are passed on the stack.

Any st ruct arguments are copied to the next location on the stack.

The parameters are pushed on the stack in the reverse order that they
appeared in the function call.

If a function is to return a value, the integral (or float) value is returned in
dO0. A double value is returned in dO and d1. If the returned value is a
struct, then the address of the return area is passed as an argument
to the callee in a0; the called function copies the returned st r uct to
this location.

C Language Features

In conformance with the ANSI/ISO C specification, the
implementation-defined areas are listed in this section. Each bulleted
item contains one implementation-defined issue. The number in
parentheses included with each bulleted item indicates the location in
the ANSI/ISO specification where further information is provided.

MICROWARE SOFTWARE

For More Information

Other implementation-defined areas are included in Language
Features chapter of the Using Ultra C/C++ manual and the Overview
chapter of the Ultra C Library Reference manual. Refer to an
ANSI/ISO specification for more information.

Characters

 The number of bits in a character in the execution character set
(5.2.4.2.1).

There are 8 bits in a character in the execution character set.

Integers

* The representations and sets of values of the various integer types
(6.1.2.5).

Table 113 Integer Type/Range

Minimum /
Type Representation Maximum
char, si gned char 8-bit 2’'s complement -128/

127
unsi gned char 8-bit binary 0/

255
short int 16-bit 2's complement -32768 /

32767

Table 1-13 Integer Type/Range (continued)

Minimum /
Type Representation Maximum
unsi gned short int 16-bit binary 0/
65535
I nt 32-bit 2’'s complement -2147483648 /
2147483647
unsi gned i nt 32-bit binary 0/
4294967295
| ong i nt 32-bit 2’'s complement -2147483648 /
2147483647
unsi gned | ong int 32-bit binary 0/
4294967295

The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented (6.2.1.2).

When converting a longer integer to a shorter signed integer, the least significant
<n> bits of the longer integer are moved to the integer of <n> bits. The resulting
value in the smaller integer is dictated by the representation. For example, if the
conversion is from i Nt to short, then the least significant 16 bits are moved
from the i nt to the short . This value is then considered a 2's complement 16-bit
integer.

When conversion from unsigned to signed occurs with equally sized integers, the
most significant bit becomes the sign bit. Therefore, if the unsigned integer is less
than 0x80000000, the conversion has no effect. Otherwise, a negative number
results.

MICROWARE SOFTWARE

* The sign of the remainder on integer division (6.3.5).

The result of an inexact division of one negative and one positive integer is the
smallest integer greater than or equal to the algebraic quotient.

The sign of the remainder on integer division is the same as that of the dividend.

Floating Point

* The representations and sets of values of the various types of
floating-point numbers (6.1.2.5).

Table 1-14 Floating Point Number Characteristics

Minimum /

Type Format Maximum

fl oat 32 bit IEEE 754 1. 17549435e- 38f /
3.40282347e38f

doubl e 64 bit IEEE 754 2. 2250738585072016e- 308
/

1.7976931348623157e308
| ong doubl e 64 bitIEEE 754 2.2250738585072016e- 308

1. 7976931348623157e308

Refer to the f | oat . h header file for other limits and values.

Arrays and Pointers

* The type of integer required to hold the maximum size of an array.
Such as the type of the size of operator, si ze_t (6.3.3.4, 7.1.1).

Anunsi gned | ong i nt isrequired to hold the maximum size of an array.
unsi gned 1ong int is defined as si ze_t inansi _c. h.

The result of casting a pointer to an integer or vice versa (6.3.4).

Since pointers are treated much like unsigned long integers, the integer is
promoted using the usual promotion rules to an unsigned long. The sign bit
propagates out to the full 32-bit width.

The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdi ff _t (6.3.6, 7.1.1).

A signed | ong int isrequired to hold the difference between two pointers to
elements of the same array. | ong i nt is defined as ptrdi ff_t inansi _c. h.

Registers

The extent to which objects can actually be placed in registers by
use of the register storage-class specifier (6.5.1).

The compiler automatically makes decisions regarding which objects are placed in
registers, giving no special storage consideration to the register storage-class.

Structures, Unions, Enumerations, and Bit-Fields

The padding and alignment of members of structures (6.5.2.1). This
should present no problem unless binary data written by one
implementation are read by another.

Table 1-15 shows the alignment of the various objects within a
structure. Required padding is supplied if the next available space is
not at the correct alignment for the object. For example, a structure
declared as:

struct {
char nment,;
| ong nent;
1

would be a four-byte structure (32-bit), including one byte for ment,
two bytes for men®, and one byte of padding to complete the
structure.

Non-character structure members and sub-structures containing
non-character members are aligned on an even byte boundary.
Character structure members do not have alignment restrictions.

Table 115 Alignment Table

MICROWARE SOFTWARE

Type Alignment Requirement
char 1
short 1
i nt 2
| ong 2
fl oat 2
doubl e 2

* Whether “plain” i nt bit field is treated as a signed i nt or as an
unsigned i nt bit field (6.5.2.1).

A plain i nt bit field is treated as a signed i nt bit field.

* The order of allocation of bit fields within a unit (6.5.2.1).

The bit fields are allocated from most significant bit to least significant bit.

* Whether a bit field can straddle a storage-unit boundary (6.5.2.1).

Bit fields may straddle a storage unit. Bit fields are allocated end-to-end until a
non-bit field member is allocated or 32-bit size is executed.

* The integer type chosen to represent the values of an enumeration

type (6.5.2.2).

Enumvalues are represented in 32-bit two's complement integers.

Preprocessing Directives

Whether the value of a single-character, character constant in a
constant expression that controls inclusion matches the value of the
same character constant in the execution character set. Whether
such a character constant may have a negative value (6.8.1).

The value of a single-character, character constant in a constant expression that
controls inclusion matches the value of the same character constant in the
execution character set. This character constant may be a negative value.

The method for locating includable source files (6.8.2).

This method is described in the Using Ultra C/C++ manual in the Using the
Executive chapter.

The support of quoted names for includable source files (6.8.2).
Quoted names are supported for #i ncl ude preprocessing directives.
The mapping of source file character sequences (6.8.2).

The mapping of source file character sequences is one-to-one. The
case-sensitivity of file names depends on the file system being used.

MICROWARE SOFTWARE

_asm() Register Pseudo Functions

_asm() uses register pseudo functions as identified in Table 1-16.

Table 1-16 _asm() Register Pseudo Functions

Register Description

__reg_data Any data register

__reg_addr Any non-dedicated address register

__reg_gen Any data registers or non-dedicated address
register

__reg_fl oat Any floating point register

__reg_d[0-7] Individual data registers as indicated by
name

__reg_a[0-7] Individual address registers as indicated by
name

The address registers a5, a6, and a7 are defined by the compiler to be
the frame pointer, static storage pointer, and stack pointer respectively.
Their pseudo functions cannot have parameters and the user of

_asnm() must be responsible for any attempts to modify these registers.

Span Dependent Optimizations

The compiler performs branch shortening and PC-relative
addressing mode shortening.

* Branch shortening reduces the instruction size on branch
instructions when the distance to the destination is known to be
within certain limits.

» PC-relative addressing mode shortening reduces the instruction
size for the PC-relative addressing mode when the label is within
certain limits.

Methods for Reducing Compiled Code Size

Methods of reducing compiled code size include overriding compiler
size defaults, I-code linking, and use of provided, small library functions.

For More Information

For information on reducing compiled code size via I-code linking and
use of provided small library functions, refer to the chapter describing
compiling in the Using Ultra C/C++ manual.

Overriding Compiler Size Defaults

When compiling a small model program with code references spanning
references of less than 32K, the sc specification of the target processor
option (- t p) directs the compiler to impose short external references to
generate more efficient code. When compiling a program module (as
opposed to a driver or system module) the assembler or linker may
patch the code and create a jump table in the data area to enable

MICROWARE SOFTWARE

references spanning more than 32K. This is a reasonable way to use
the compiler when compiling during development. Compile each source
file to an ROF and link at the end with the object linker.

User Program Modules

An example of compiling a source file to an ROF (using ucc as the
executive option mode) and linking user program modules follows.

Cc filel.c -tp=68K, sc -eas=RELS **conpile file #1 with short externs**
cc file2.c -tp=68K sc -eas=RELS **conpile file #2 with short externs**
cc file3.c -tp=68K, sc -eas=RELS **conpile file #3 with short externs**

** |ink in default libraries with long externals
and create a junptable if necessary **

cc -tp=68K,sc -f=test RELS/filel.r RELS/file2.r RELS/file3.r

System and Non-program Modules

Producing smaller code for system or non-program modules differs from
the procedure used for user program modules. System and
non-program module types disallow initialized data, therefore the object
linker jumptable is disallowed. When compiling a program with
references spanning less than 32K, the sc specification of the target
processor option (- t p) directs the compiler to impose short external
references to generate more efficient code. Use the sc specifier on
each file in the module until the linker generates an out of range error
on a file, then remove the sc specifier for this file.

fopen() Append Bit

The implementation of the append mode for f open() requires that the
device descriptor for the device that the program runs to have the
append bit set. Most descriptors do not have this bit set.

The append bit is set in the device mode capabilities byte of an RBF
descriptor. The append bit is bit number 4 (0x10).

For More Information
For more information on using noded, refer to the noded utility
description in the user manual for your operating system.

noded can be used to set this bit. The following example illustrates
setting the append bit:

$ noded hO

0S-9/ 68000 Mbdul e Editor
Copyright 1987 M croware Systens Corp.
Type ? for editing hel p nessage

noded: e
descriptor nane : hO =
file manager nane : RBF =
devi ce driver nane : rbvccs =
port address . $fff47000 =
irq vector : 101 =
irqg | evel : 2 =
irq priority : 5 =
devi ce node capabilities ; $a7 = $b7
devi ce cl ass ; $01 =

noded: w

noded: q

MICROWARE SOFTWARE

Once the capabilities byte is properly set, integrate the new descriptor
into the boot procedure in place of the old descriptor by making a new
bootfile. Refer to the 0s9gen utility in the Utilities Reference manual
or, use noded directly on the 68K boot file:

moded hO -f=/hO/os9boot

Using Math

Ultra C/C++ generates one model of floating point code. If the floating
point coprocessor is absent in the system, a floating point emulation
software module makes it appear as if it exists.

In K&R source mode, existing ROFs or libraries compiled to use the
software math must link with the old mat h. | library when making
applications that use them. Not linking with the old nat h. | library
requires recompilation of any ROFs or libraries that used mat h. | ,
mat h881. | , or the math trap handler, mat h and nat h881.

To use the floating point math functions on a processor that does not
have a math coprocessor, perform the following steps:

Step 1. Add the floating point module name to the bootfile as identified in Table
117.

Table 117 Floating Point Module

Target 68K Version Floating Point Module
68000/20/30 2.4 or greater f pu

68040 2.4 f pu040

68040 3.0 or greater f psp040

68060 3.0 or greater f psp060

Step 2. Add the floating point module name to the extension module list in the
I ni t module and remake the extension module list.

Step 3. Remake the bootfile and reboot the system.

MICROWARE SOFTWARE

Assembler/ Linker

The assembler uses standard Motorola instruction syntax as modified in
the Assembly Language Mnemonics section in this chapter.

ROF Edition Number

The r 68 assembler supports ROF Edition #15.

External References

ROF Edition #15 is only capable of representing limited expressions
involving external references. These expressions can consist only of
simple addition and subtraction operations involving two operands at
most. The following expression forms involving external references are
supported. All other forms are illegal.

Ext ernal + Absol ute
External - Absol ute
Ext ernal - External

The linker performs subtraction by negating one operand and adding it
to the other operand. This method can cause problems on signed
values of either word or byte length as the linker may report
over/underflow errors. Therefore, expressions involving external names
should not be too complex.

For More Information

Refer to the ROF Edition Number 9 Format section in the Assembler
and Object Code Linker Overview chapter of the Using Ultra C/C++
manual.

Symbol Biasing

The linker does not bias code symbols for the 68000 target. Data
symbols are biased only for program and trap handler type modules.
The bias value applied to data symbols is - 32768 (-0x8000).
Neither code nor data symbols are biased for 68000 raw code.

MICROWARE SOFTWARE

Assembly Language Mnemonics

The Mnemonics table in this section lists the mnemonic names used on
the 68K processors with their meanings. Many of the mnemonics
include one or more optional symbols indicating conditions. Symbols,
when present, modify the meaning of the mnemonic instructions.
Additionally, instruction conventions are used in the mnemonics table.
The following tables identify and define reserved registers and
addressing modes, symbols, and instruction conventions used in the
syntax of the mnemonics table.

Registers

Table 1-18 Reserved Register Names

Register Name Description

An Address register n

Dn Data register n

pc or pcr Program counter

Sr Status register

ccr Condition codes

ssp Supervisor stack pointer
usp User stack pointer

Register notation n represents 0 through 7.

Addressing Mode Syntax Definitions

Table 1-19 Addressing Mode Syntax

Addressing Mode

Description

Dn
An
Rn

Xn. s

(An)

(An) +

- (An)

d(An)

d(An, Xn. s)
(XXX) . W
(xxXx) . |
d(pc)
d(pc, Xn. s)

HXXX

Data register direct
Address register direct
Data or address register direct

Index register n (either address or data)

. S indicates the index register size. It is either
. w(word) or . | (long, default)

Address register indirect

Address register indirect with postincrement
Address register indirect with predecrement
Address register indirect with offset
Address register indirect with index
Absolute short

Absolute long

Program counter indirect with offset
Program counter indirect with index

Immediate data

Symbols

MICROWARE SOFTWARE

The symbol <cc> indicates condition codes as identified in the following

table.

Table 1-20 Condition Codes Used with Assembler

Instructions

Mnemonic Condition Description

cc IC Carry clear

CS C Carry set

eq Z Equal

ge N. V+IN. TV Greater than or equal
gt N.V.Z+'N. I V.1 Z Greater than

hi IC.!'z Higher

hs IC Higher or the same
Il e Z+N. ' V+I N. V Less than or equal
o C Lower

I's C+z Lower or the same
It N. ' V+IN. V Less than

m N Minus

ne 1z Not equal

Table 1-20 Condition Codes Used with Assembler
Instructions (continued)

Mnemonic Condition Description
pl I'N Plus
Ve Vv Overflow clear
VS \Y Overflow set
N = negative
Z = zero
V = overflow
C=carry

Instruction Conventions

Instruction mnemonics shown in the following table are used in the
Mnemonics table.

Table 1-21 Instruction Mnemonics

Mnemonic Description

<cc> Condition code
<dat a> Immediate data of appropriate size
.S Indicates . w, .|, or.b. The defaultis . w, if the size is

not explicitly given.
<ea> Any legal addressing mode for the instruction

<d> Shift direction may be | for left or r right

Mnemonics Table

MICROWARE SOFTWARE

Table 1-22 Mnemonic Summary

Mnemonic

Description

abcd Dy, Dx

abcd - (Ay), - (Ax)
add. s <ea>, Dn

add. s Dn, <ea>
adda. s <ea>, An
addi . s #<dat a>, <ea>

addq. s #<dat a>, <ea>

7]

addx. s Dy, Dx

addx.s -(Ay), -(Ax)
and. s <ea>, Dn

and. s Dn, <ea>
andi . s #<dat a>, <ea>
andi #<dat a>, ccr
andi

#<dat a>, sr

as<d>.s Dx, Dy

Add decimal with extend register
Add decimal with extend memory
Add binary register

Add binary memory

Add address (. wor . | only)

Add immediate

Add quick

Add extended register

Add extended memory

AND logical register

AND logical memory

AND immediate

AND immediate to condition code
AND immediate to status register

Arithmetic shift register

Table 1-22 Mnemonic Summary (continued)

Mnemonic

Description

as<d>. s #<dat a>, Dy
as<d> w <ea>

bcc <l abel >

bcc. s <l abel >

bchg. s Dn, <ea>

bchg. s #<dat a>, <ea>

bclr.s Dn, <ea>
bclr.s #<dat a>, <ea>
bra <I abel >

bra.s <l abel >
bset.s Dn, <ea>
bset.s #<dat a>, <ea>
bsr <l abel >

bsr.s <l abel >

bt st.s Dn, <ea>

Arithmetic shift immediate register
Arithmetic shift memory

Conditional branch word displacement.
cc represents the branch condition
code.

Conditional branch byte displacement.
cc represents the branch condition
code.

Test bit and change register (. b or. 1)

Test bit and change immediate (. b or

)

Test bit and clear register (. b or . |)
Test bit and clear immediate (. b or . |)
Branch word displacement

Branch byte displacement

Test bit and set register (. bor. 1)
Test bit and set immediate (. b or. |)
Branch subroutine word displacement
Branch subroutine byte displacement

Test bit register (. b or. |)

MICROWARE SOFTWARE

Table 1-22 Mnemonic Summary (continued)

Mnemonic

Description

bt st.s #<dat a>, <ea>
chk <ea>, Dn

clr.s <ea>

cnp. s <ea>, Dn
chpa.s <ea>, An
cnpi . s #<dat a>, <ea>
cmpms (Ay) +, (Ax) +
dbcc dn, <I abel >

di vs <ea>, Dn

di vu <ea>, Dn

eor.s Dn, <ea>
eori.s #<data>, <ea>
#<dat e>, ccr

eori

eori #<data>, sr

exg Rx, Ry
ext.s Dn

jmp <ea>

Test bit immediate (. b or. 1)
Check register against bounds
Clear operand
Compare data register
Compare address register
Compare immediate
Compare memory

Test condition, decrement and branch
Signed divide

Unsigned divide

Exclusive OR

Exclusive OR immediate
Exclusive OR condition code
Exclusive OR status register
Exchange registers

Sign extend (. wor . 1)

Jump

Table 1-22 Mnemonic Summary (continued)

Mnemonic

Description

j sSr <ea>
| ea <ea>, An

i nk An,
#<di spl acenent >

| s<d>. s Dx, Dy

| s<d>. s #<dat a>, Dy
| s<d> <ea>

nove. s <ea>, <ea>
nove ccr, <ea>

nove <ea>, ccr

nove <ea>, sr

nove sr, <ea>

nove usp, An
nove An, usp

novea. s <ea>, An

Jump to subroutine
Load effective address

Link and allocate

Logical shift data

Logical shift immediate
Logical shift memory

Move from source to destination
Move from condition codes

Move to condition codes

Move to status register

Move from status register. This is
privileged. Avoid this instruction in
programs that are to execute in
user-state.

Move from user stack pointer

Move to user stack pointer

Move address (. wor . |)

MICROWARE SOFTWARE

Table 1-22 Mnemonic Summary (continued)

Mnemonic

Description

novem s <ea>,
<reg list>

novep. s dx, d(Ay)

movep. s d(Ay), dx

noveq. | #<data>, dn
mul s <ea>, Dn

mul u <ea>, Dn

nbcd <ea>

neg.s <ea>

negx.s <ea>

nop

not.s <ea>

Move multiple
<reg list> CrnRegisterr x-ry

Consecutive registers/ Register
delimiter #<expr > Register list mask

Examples:

do doO only

dO/ d4/ a5 do, d4, a5
d0-d7/a0-a5 dO through d7,

a0 through a5

Move peripheral data (. wor . |) from
register to memory

Move peripheral data (. wor . |) from
memory to register

Move quick

Signed nultiply
Unsigned multiply

Negate decimal with extend
Negate

Negate with extend

No operation

Logical complement

Table 1-22 Mnemonic Summary (continued)

Mnemonic

Description

or.s <ea>, Dn

or.d Dn, <ea>

ori.s #<data>, <ea>
ori #<data>, ccr

ori #<data>, sr

pea <ea>

reset

ro<d>.s Dx, Dy
ro<d>.s #<data>, dy
ro<d> <ea>
rox<d>.s Dx, Dy
rox<d>.s #<data>, dy

rox<d> <ea>

Inclusive ORregister

Inclusive OR memory

Inclusive ORimmediate
Inclusive OR condition codes
Inclusive OR status register
Push effective address

Reset external devices

Rotate without extend register
Rotate without extend immediate
Rotate without extend memory
Rotate with extend register
Rotate with extend immediate
Rotate with extend memory

Return from exception

Return and restore condition codes

Return from subroutine

Subtract decimal with extended register

MICROWARE SOFTWARE

Table 1-22 Mnemonic Summary (continued)

Mnemonic

Description

sbcd - (Ay), - (Ax)

s<cc> <ea>

st op #<dat a>

sub. s <ea>, Dn

sub. s Dn, <ea>
suba. s <ea>, An
subi . s #<dat a>, <ea>
subq. s #<dat a>, <ea>
subx. s Dy, Dx

swap Dn

tas <ea>

trap #<vector>
trapv

tst.s <ea>

unl k An

Subtract decimal with extended
memory

Set according to conditional registers.
cc represents the branch condition
code.

Load and stop

Subtract binary register

Subtract binary memory

Subtract address (. wor . |)
Subtract immediate

Subtract quick

Subtract with extend register
Swap register halves

Test and set operand

Trap

Trap on overflow

Test operand

Unlink

Additional Information for 68020, 68030,
68040, 68060, and CPU32 Processors

The assembler can process all 680x0 instructions and syntax. However,
there is a superset of 68020, 68030, 68040, 68060, and CPU32
instructions. The information presented in this section is in addition to
the information in the preceding sections.

Floating Point Numbers

Specify floating point numbers in the following format (the exponent
may be specified with either an uppercase or lowercase e):

[-]digits[.digits[e[£][digits]

The range for floating point numbers is £2. 2* 10”"- 308 to
+1. 8* 107 308. For example:

-1. 10.5 le5
-1. 36E-124 106352. 671e4 123456789

Assembly Language Mnemonics

Table 1-23 Reserved Register Names

Register Name Description
sfc Source function code
df c Destination function

cacr Cache control register

MICROWARE SOFTWARE

Table 1-23 Reserved Register Names (continued)

Register Name

Description

vbr
caar
nmep

i sp
tc
itto
ittl
dttO
dttl
musr
urp
srp
iacr0
iacrl
dacr O

dacr 1

Vector base register

Cache address register

Master stack pointer

Interrupt stack pointer

MMU translation control register

Instruction transparent translation register O
Instruction transparent translation register 1
Data transparent translation register 0

Data transparent translation register 1

MMU status register

User root pointer

Supervisor root pointer

Instruction access control register O
Instruction access control register 1

Data access control register 0

Data access control register 1

Table 1-23 Reserved Register Names (continued)

Register Name Description

vbr Vector base register

caar Cache address register

nmsp Master stack pointer

I Sp Interrupt stack pointer

tc MMU translation control register

itto Instruction transparent translation register 0
ittl Instruction transparent translation register 1
dttO Data transparent translation register 0
dttl Data transparent translation register 1
mmusr MMU status register

urp User root pointer

srp Supervisor root pointer

iacrO Instruction access control register 0

iacrl Instruction access control register 1

dacr O Data access control register 0

dacr1 Data access control register 1

MICROWARE SOFTWARE

Table 1-23 Reserved Register Names (continued)

Register Name Description
buscr Bus control register
pcr Data access control register 1

In the following definitions, (di sp) is an expression. If di sp is a
symbol ending with . wor . | , the parentheses are required to
distinguish the symbol name from the size extension. * Sis an optional
scale factor. If * Sis used, it must be *1,*2, *4, or * 8.

Table 1-24 Addressing Mode Syntax

Addressing Mode Description
((disp).w An) Address register indirect with offset
((disp).s, An, Xn. s*S) Address register indirect with index

(base displacement)

([(disp).s,An], Xn. s*S, (di sp). Memory indirect post-indexed
s)

([(disp).s, An, Xn. s*S], (disp). Memory indirect pre-indexed
s)

For the memory indirect addressing modes, all four parameters are
optional. The assembler encodes the proper modes to indicate the
suppression of the missing parameters. The assembler accepts the
68000 addressing modes d(An) and d(An, Xn. s) . In this case, the
68020 brief format extension format is generated. If the operand begins
with a left parenthesis ((), the 68020 full format extension format is
always generated.

Table 1-25 Mnemonic Summary

Mnemonic

Description

b<cc>. b <l abel >

b<cc>. w <l abel >

b<cc>.| <l abel >

bf chg <ea>{of f set: wi dt h}

bf clr <ea>{of fset:w dt h}

bf exts <ea>{of fset:w dth}, Dn
bf extu <ea>{of fset:w dth}, Dn
bf ffo <ea>{of fset:w dth}, Dn
bfi ns Dn, <ea>{of fset: w dt h}
bf set <ea>{of fset: w dth}
bf t st <ea>{of fset:w dt h}
bgnd

bkpt #<data>

bra.b <l abel >

bra.w <I abel >

bra.l <l abel >

bsr.b <l abel >

Conditional branch byte displacement
Conditional branch word displacement
Conditional branch long displacement
Test bit field and change

Test bit field and clear
Extract bit field signed
Extract bit field unsigned

Find first one in bit field

Insert bit field

Set bit field

Test bit field

Enter background mode

Breakpoint

Branch byte displacement

Branch word displacement

Branch long displacement

Branch subroutine byte displacement

MICROWARE SOFTWARE

Table 1-25 Mnemonic Summary (continued)

Mnemonic Description

bsr.w <l abel > Branch subroutine word displacement
bsr.| <l abel > Branch subroutine long displacement
cal | m #<dat a>, <ea> Call module

cas Dc, Du, <ea> Compare and swap with operand
cas2 Compare and swap with operand

Dcl: Dc2, Dul: Du2, (Rnl): (Rn2)

chk.l <ea> Check register against bounds

chk2.s <ea>, Rn Check register against bounds (. b, . w,
or.l)

ci nv Invalidate cache lines

cnp2.s <ea>, Rn Compare register against bounds (. b,
.wor.l)

cpush Push and invalidate cache lines

di vs. w <ea>, Dn Signed divide - 32/16—16r:16q

divs.| <ea>, Dg Signed divide - 32/32—32q

divs.| <ea>, Dr: Dq Signed divide - 64/32—32r:32q

divsl.|l <ea>, Dr:Dq Signed divide - 32/32—32r:32q

di vu. w <ea>, Dn Unsigned divide - 32/16—16r:16q

di vu. | <ea>, Dq Unsigned divide - 32/32—32q

di vu.| <ea>, Dr: Dg Unsigned divide - 64/32—32r:32q

Table 1-25 Mnemonic Summary (continued)

Mnemonic

Description

divul .1 <ea>, Dr:Dq

extb.l Dn

link.l An, #<displacenent>
| pstop

nmovec Rc, Rn

movec Rn, Rc

noves. s Rn, <ea>

nmoves. s <ea>, Rn

nmovel6

mul s. w <ea>, Dn

mul s. | <ea>, Dn

mul s. | <ea>, Dh: Dl

mul u. w <ea>, Dn

mul u. | <ea>, Dn

nmul u. | <ea>, Dh: DI

pack -(Ax), -(Ay), #<adj ust >
pack Dx, Dy, #<adj ust >
pflush

pl oad

Unsigned divide - 32/32—32r:32q

Extend byte to longword

Link and allocate (long displacement)

Low-power stop

Move from control register T
Move to control register t
Move to address space

Move from address space
Move 16 byte block

Signed multiply 16 x 16—32
Signed multiply 32 x 32—»32
Signed multiply 32 x 32—64
Unsigned multiply 16 x 16—32
Unsigned multiply 32 x 32—»32
Unsigned multiply 32 x 32—64
Pack BCD

Pack BCD

Flush entry in the ATC

Load an entry into the ATC

MICROWARE SOFTWARE

Table 1-25 Mnemonic Summary (continued)

Mnemonic Description

pl par (An) Load physical address (read)
pl paw (An) Load physical address (write)
pt est Test a logical address

rtd #<di spl acenent >

rtmRn

trap <cc>

trap <cc>.w #<dat a>

trap <cc>.| #<data>

unpk - (Ax), - (Ay), #<adj ust >

unpk Dx, Dy, #<adj ust >

Return and deallocate
Return from module
Trap on condition
Trap on condition
Trap on condition
Unpack BCD

Unpack BCD

t Valid registers for Rc: sfc, dfc, cacr, usp, vbr, caar, nmsp,
isp, tc, itt0, ittl, dttO, dttl, nmusr, urp, buscr, pcr,
srp, iacr0, iacrl, dacr0O, and dacrl.

68881/68882/68040/68060 Floating Point
Mnemonics

The assembler recognizes instructions and addressing modes
referencing the 68881 floating point coprocessor.

The following register names are reserved for referencing the 68881.
They may not be redefined or used out of context, unless you use the
assembler - r option:

FPnFloating point register (0-7)

FPcr Floating point control register

FPsr Floating point status register

FPi ar Floating point instruction address register

The assembler recognizes the following floating operand data format
extensions:

B Byte integer
WWord integer
L Longword integer
S Single-precision real
D Double-precision real
X Extended precision real
The P (packed decimal real) data format is not supported.

Floating point constants may be specified when a floating point
instruction indicates immediate addressing. Floating point constants
can be given in decimal format or left-justified hexadecimal format. The
size of the immediate data value is determined from the data format
extension given on the floating point instruction. Single-precision values
are stored internally as double-precision and converted to
single-precision before storing into the instruction. Extended precision
constants can be given only as hexadecimal values.

Floating Point Examples

MICROWARE SOFTWARE

Table 1-26 Floating Point Examples

Example Description

fadd. | #10,fp0 Long integer value of 10 is converted
to extended and added to f p0O

fadd. | #0x10, fpO Same as above

fadd.s #5,fp0 Single-precision value of 5 is converted
to extended and added to f pO

fadd. s #0x40A0, f pO Same as above

fadd. d #1. 3e4, fp0 Double-precision value of 130000 is
converted to extended precision and
added to f pO.

fadd. d #0x40C964, f p0 Same as above

fadd. x #0x3ff, fp0 Extended value of 3FFO00000000000

is added to f pO

Floating point expressions are not supported.

The 68881 instruction mnemonic summary uses the notation:

<dat a>Immediate data of appropriate size

<ea>Any legal addressing mode for the instruction

In the 68881 instruction mnemonic summary, the following format
describes the instructions:

Mnemonic Format Syntax Description

<i nst> b,w l,s,d or x <syntax> <descri ption of
instruction>

For example:

f add b,wl,s,d, x <ea>, FPn Add
X FPm FPn

The preceding example describes the f add instruction. It shows that
the add instruction may take the form f add. b, f add. w, or f add. | and
use the syntax <ea>, FPn. However, f add. x may use the syntax
FPm FPn. For example:

fadd. x fpoO, fpl
fadd. x #5, fp0

Dyadic Instructions

Dyadic floating point instructions require two source operands.

» The first source operand can be any effective address or a floating
point register

* The second source operand must be a floating point register

The results of the operation are stored in this same register. The
general format of the dyadic instructions is as follows:

Mnemonic Format Syntax

<dyadi ¢ i nst> b,w1,s,d, x <ea>, FPn
X FPm FPn

MICROWARE SOFTWARE

The following 68881 floating point instructions use the above dyadic
syntax:

Table 1-27 Dyadic 68881 Floating Point Instructions

Mnemonic Description

f add Add

fcnp Compare

fdiv Divide

f mod Module remainder

f mul Multiply

frem IEEE remainder

fscal e Scale exponent
fsgldiv Single precision divide

f sgl mul Single precision multiply

f sub Subtract

Monadic Instructions

Monadic floating point instructions require only one source operand.
These instructions can specify a source and destination operand. The
source operand can be any effective address or a floating point register.
The operation is performed on the source operand and the result is
placed in the destination operand, which is always a floating point
register. If the source operand is

* An effective address, any operand format can be given.
» A floating point register, only the x format is allowed.

If no destination floating point register is given, the operation is
performed on the given register and the resulting value is stored in the
same register.

The general format of the monadic instructions is as follows:

Mnemonic Format Syntax

<monadic inst> b,w|,s,d, x <ea> FPn
X FPm FPn
X FPn

The following 68881 floating point instructions use this monadic syntax:

Table 1-28 Monadic 68881 Floating Point Instructions

Mnemonic Description

f abs Absolute value

facos Arc cosine

fasin Arc sine

fatan Arc tangent

fat anh Hyperbolic arc tangent

fcos Cosine

MICROWARE SOFTWARE

Table 1-28 Monadic 68881 Floating Point Instructions (continued)

Mnemonic Description

f cosh Hyperbolic cosine
f et ox eX

f et oxml e(x1)

f get exp Get exponent

f get man Get mantissa
fint Integer part
fintrz Integer part; round to zero
fl ogl0 Logqg

fl og2 Log,

f1 ogn Loge

fl ognpl Loge.1

f neg Negate

fsin Sine

fsinh Hyperbolic sine
fsgrt Square root

ftan Tangent

ftanh Hyperbolic tangent

Table 1-28 Monadic 68881 Floating Point Instructions (continued)

Mnemonic Description
ft ent ox 10X
f t wot ox X

Data Movement Instructions

Table 1-29 Data Movement Instructions

Mnemoni
c Format Syntax Description
f nove X FPm FPn Floating move
b,w I,s,d, <ea>, FPn
X
b,w I,s,d, FPm <ea>
X
I <ea>, FPcr

FPcr, <ea>

MICROWARE SOFTWARE

Table 1-29 Data Movement Instructions (continued)

Mnemoni
c Format Syntax Description
f movecr #ccc, FPn Move from constant
ROM
fmovem |, X <flist> <ea Move multiple floating
| x > registers. <fl i st>is
<ea>, <flist a sequence of floating
X > registers. A slash (/)
X separates each
Dn, <ea> register in the list.
<ea>, Dn Consecutive registers

may be grouped by
using a hyphen (-)
between the beginning
and ending registers.
If | format is given,
only FPCR, FPSR, or
FPI AR are allowed. If
X is given, only

FPO- FP7 are allowed.

Program Control Instructions

Table 1-30 Program Control Instructions

Mnemonic Syntax Description

f b<cc> <| abel > Branch on floating condition T

f db<cc> Dn, <l abel Decrement and branch on floating
> condition

f nop No operation

fs<cc> <ea> Set on floating condition T

ftst <ea> Test floating operand

T This instruction uses floating point condition predicates for <cc>.

MICROWARE SOFTWARE

System Control Operations

Table 1-31 System Control Operations

Mnemonic Syntax Description

frestore <ea> Restore internal state

f save <ea> Save internal state
ftrap<cc> #<dat a> Trap on floating condition 1

T This instruction uses floating point condition predicates for <cc>.

The f si ncos instruction is a special dual monadic instruction.
Consequently, two operands are given:

Mnemonic Format Syntax Description
fsi ncos b,w I,s,d, x <ea> FPc: FPs Simultaneous sine
and cosine.
X FPm FPc: FPs FPc is the resulting
cosine value,

FPs is the resulting
sine value.

Floating Point Condition Predicates used for
<cc>

Table 1-32 Floating Point Condition Predicates Used

for <cc>
Mnemonic Description
eq Equal
f False
ge Greater than or equal
gl Greater or less than
gle Greater or less than or equal
gt Greater than
| e Less than or equal
| t Less than
ne Not equal
nge Not greater than or equal
ngl Not greater or less than
ngl e Not greater or less than or equal

ngt Not greater than

Table 1-32 Floating Point Condition Predicates Used

for <cc> (continued)

MICROWARE SOFTWARE

Mnemonic Description

nl e Not less than or equal

nl t Not less than

oge Ordered greater than or equal
ogl Ordered greater or less than
ogt Ordered greater than

ol e Ordered less than or equal

ol t Ordered less than

or Ordered

seq Signaling equal

sf Signaling false

she Signaling not equal

st Signaling true

t True

ueq Unordered or equal

uge Unordered or greater than or equal
ugt Unordered or greater than

ul e Unordered or less than or equal

Table 1-32 Floating Point Condition Predicates Used
for <cc> (continued)

Mnemonic Description

ul t Unordered or less than

un Unordered

MICROWARE SOFTWARE

Constant ROM Table

The following are offsets into the 68881 constant ROM that contain
useful values:

Table 1-33 Constant ROM Table

Offset Constant
$00 Pl

$0B Loglo(z)
$0C e

$0D Log,®©
$0E Loglo(e)
$OF 0.0

$30 In,

$31 Inq1g
$32 10°

$33 101
$34 102
$35 104

$36 108

Table 1-33 Constant ROM Table (continued)

Offset Constant
$37 1016
$38 1032
$39 1084
$3A 10128
$3B 10256
$3C 10512
$3D 101024
$3E 102048
$3F 104096

If stack checking is inappropriate for the module being created, define
the following:

» 32-bitglobal called _st kl i mi t (initialized to a large positive value if
possible)

* Function called _st khandl er that just returns to its caller

A function called _st kover f | owis called when the stack appears to
overflow. If a non-static function called _st kover f | owresides in an
ROF that is linked to make the object module, that function is called
instead of the default function. The default function writes a message to
the standard error path and causes the program to exit with a status of
one. _st kover f | owneither accepts parameters nor returns a value.

MICROWARE SOFTWARE

Note
If st koverfl owis inappropriate for your application, consider writing
a function to handle stack overflow.

The function that checks for stack overflow, st khandl| er, may be
revised. This may be necessary if stack checking is inapplicable to the
module that calls the library functions. _st khandl er () neither
accepts parameters nor returns a value.

The following source files (Default Stack Handler Function and Default
Stack Overflow Message and Exit) contain the code for the stack
checking and error exiting routines for 68K.

Note
Stack handler code must be compiled with stack checking turned off
(-r inucc mode).

Default Stack Handler Function

/* typedef to the 1 byte unit so pointer arithmetic is easy */
typedef unsigned char byte

static byte *__asm get_stack(); /* get current stack pointer */
static void __asm put_stack(byte *);/* set current stack pointer */

/*
_stkhandl er ()
Checks for stack overflow _stklimt will be set with the negative
val ue of the nunmber of bytes that the function needs. This function
does not take too nmuch advantage of old information in the globals
because ol d stack checki ng code does not update it.

*/

voi d _stkhandl er ()

{

byte *sp; /* stack pointer */

/*
Fi gure out what stack limt should really be.
This is necessary because we may have gotten here after an
arbitrary nunber of calls to the old stack checki ng code which
only nodifies _stbot.

*/
if ((_stklimt = (sp = __asmget_stack())) - (byte *)_stbot) < 0) {
_stbot = sp;
_stklimt = 0;
if (sp <= (byte *)_ntop) { /* overflow? */
__asm put _stack(sp - 256);
_stklimt = 256;
_stkoverflow);
}
_maxstack = (byte *)_sttop - sp;/* reset maxi mumso far */
}
}
static byte *__asm get_stack(void)
{
regi ster byte *stack_ptr;
_asnm(“ nove.l 9%9,%", _ reg_a7(),
__reg_gen(__obj _assign(stack_ptr)));
return stack_ptr;
}

static void __asm put_stack(new_sp)
byte *new_sp;

{
}

_asm(“ nove.l %,9%", __reg_a7(), __reg_gen(new_sp));

MICROWARE SOFTWARE

Default Stack Overflow Message and Exit

static const char ovf[] = "**** Stack Overflow ****\n";

/*
_stkoverflow)
print a nmessage and exit
*/
void _stkoverflow()
{

/* write nessage above to stderr and exit */
u_int32 size = sizeof (ovf);

if (stderr-> flag & WRITE)
~os witeln(_fileno(stderr), (void *)ovf, &size);
_0s_exit (ECS_STKOVF) ;

Chapter 2: ARM

This chapter contains information specific to the ARM family of
processors. The following sections are included:

Executive and Phase Information

e C/C++ Application Binary Interface Information
« _asm() Register Pseudo Functions

* Assembler/ Linker

» Stack Checking

MICROWARE SOFTWARE

MICROWARE SOFTWARE

Executive and Phase Information

Executive - t p enables specific options dependent upon executive
mode. Processors and sub-options for ucc and ¢89 option modes are
identified in this section.

Executive -tp Option
-tp[=] <target>{[,] <subopti ons>} Specify Target Processor
and Target Processor Options

Specify the target processor <t ar get > and target processor
sub-options. Target processors are identified in Table 2-1 and
- t p sub-options are identified in Table 2-2.

Table 2-1 Target Processor

Target Target Processor

ARM Generic ARM

ARW3 ARM Version 3

ARM710A ARM 710A Version 3
ARW4 ARM Version 4

ARM/ TDM ARM 7TDMI

ARWA4BE ARM Version 4 big-endian
ARW5 ARM Version 5 (big-endian)

XScal e Intel XScale Architecture (big-endian)

Table 2-2 Mode -tp Sub-Options

Suboptions Description

sd Use 12-bit data references

| d Use 20-bit data references (default)

fp Use static link library for floating-point
support

vid Use 28-bit data references

scd Use 12-bit const data references

| cd Use 20-bit const data references
(default)

vl cd Use 28-bit const data references

Predefined Macro Names for the Preprocessor

The macro names in Table 2-3 are predefined in the preprocessor for
target systems.

Table 2-3 Macros

Macro Description

_MPFARM Generic ARM processor
_MPFARMBE Generic ARM processor (big-endian)
_MPFARW3 ARM Version 3 processor

_MPFARM/10A ARM 710A processor

MICROWARE SOFTWARE

Table 2-3 Macros (continued)

Macro Description

_MPFARW4 ARM Version 4 processor

_MPFARM/ TDM ARM 7TDMI processor

_ MPFARW4BE ARM Version 4 processor, big-endian

_MPFARWS ARM Version 5 processor, big-endian

_MPFXSCALE Intel XScale processor, big-endian

_FPFARM ARM floating point processor

_FPFARMBE ARM floating point processor,
big-endian

Target names specify the compiler to use when writing machine- and
operating system-independent programs.

The executive defines the _MPF macro for the target processor as well
as any processors that are generally considered subsets of the target
processor. Table 2-4 provides a few examples of this behavior.

For more information on exactly which macros are defined for the ARM
processors, run the executive in verbose and dry run modes stopping
after the front end. For example, to check the defines for the
ARM7TDMI target (source file not required):

cc -b -h -efe -tp=ARM/TDM t.c
This causes the executive to print a line similar to:

“cpfe -m--target=10 -1/dd/ MAOS/ SRC/ DEFS -1/ dd/ MAOS/ OS9000/ SRC/ DEFS
-1/ dd/ MADS/ 0S9000/ ARMV4/ DEFS - D_UCC - D_SPACE_FACTOR=1 - D_TI ME_FACTOR=1
-D_0S9000 - D _MPFARM/TDM -D MPFARWA - D _MPFARM - D_FPFARM - D LI L_END
-w --Extended_ANSI --gen_c file_nanme=t.i t.c"

m{— Note

Note that MPFARM/ TDM , MPFARW4, and _ MPFARMmacros are
defined.

The _MPFARMmMmacro indicates that a source file is being compiled for
an ARM little-endian family target. The _ MPFARMBE macro indicates
that a source file is being compiled for an ARM big-endian family target.

Table 2-4 identifies the relationship between the target processor and
the preprocessor macros. Note that specific targets also define the
subset macros (example: when targeting the ARM/ TDM ,
_MPFARM/TDM , ARWA4, and _ MPFARMare defined).

Table 2-4 _MPFxxx Macro Behavior

Target Microprocessor Family Macros Defined
Generic ARM _MPFARM _MPFARMW3

ARM Version 3 _MPFARM _MPFARW3

710A _MPFARM _MPFARW3 _MPFARM/ 10A
ARM Version 4 _MPFARM _MPFARWA4

7TDMI _MPFARM _VMPFARW4 —MPFARM/ TDM
ARM Version 4, _MPFARMBE _MPFARWA4BE

big-endian

MICROWARE SOFTWARE

Table 2-4 _MPFxxx Macro Behavior (continued)

Target Microprocessor Family Macros Defined
ARM Version 5, _MPFARMBE _MPFARWS

big-endian

Intel XScale _MPFARMBE _MPFARWS MPEXSCALE
processor,

big-endian

ARM-Unique Phase Option Functionality

Phases having unique phase option functionality on the ARM processor
are:

 Back End Options
* Assembly Optimizer Options
e Linker Options

Back End Options

-meE<non renote nenory |eft>
Informs the back end that other files in
the program have used some amount of
the 4K data area.

The back end orders the data area based on static analysis of the data
area objects and sorts the data based on usage and size. This means
that the most heavily used objects end up in the non-remote area. To do
this, the back end needs information about how the object linker lays out
the data area for the entire program.

Code generation options provide specifications for code generated by
the back end.

Table 2-5 Code Generation Options

Option Description

- pXx Make references to external data extra long (28/32 bits)

- pXxc Make some references to code symbols extra long (28/32
bits)

- pl Make references to external data long (20/24 bits)

-plc Make some references to code symbols long (20/24 bits)
- ps Disable stack checking code

- pg Enable the back end to generate code to derive r 12 rather
than relying on a globally set r 12 for each function that
needs it. This option might be used for non-program
modules that have multiple entry points.

Target architecture code generation options provide specifications
unique to a target architecture for code generated by the back end.

MICROWARE SOFTWARE

-p<target architecture> Identifies the target architecture for
which to generate code. Availability of
halfword and signed byte load and store
instructions differ based upon target
architecture.

Table 2-6 <target architecture> Code Generation Options

Option Description

- parnv3 Generate code which does not use halfword or
signed byte load and store instructions. (Not
available in little-endian code generator)

- parmv4 Generate code which uses halfword and signed
byte load and store instructions.

- par mv5 Generate code identical to -parmv4. (Not available
in little-endian code generator)

Note

ARM Version 3 code executes correctly on ARM Version 4 architecture,
however, there is a degradation in performance on signed byte and
halfword data.

Because the ARM Version 3 lacks instructions to load and store
halfwords as a unit, it is impossible to generate strictly correct code for
manipulating objects of type volatile short, volatile signed short, and
volatile unsigned short. This affects those writing code such as device
drivers, since a two-byte memory-mapped I/O port cannot be properly
accessed on an ARM Version 3.

Assembly Optimizer Options

-t [=] <nun» Specify target processor family

Table 2-7 Assembly Optimizer Processor Numbers

<num> Assembly Optimizer Target
1 ARM (default)
- p=<X> Selectively skip processor-specific

optimizations

Table 2-8 Assembly Optimizer Processor-Specific Optimizations

<X> Processor-Specific Optimization

I Location tracking

c Conditionalized execution

p Pooling of PC-relative data

r Copy/shift propagation

- s<net hod> Set the peephole scheduling method

Table 2-9 Peephole Scheduling Methods

<method> Description

S Spread dependent instructions

c Compress floating point instructions

MICROWARE SOFTWARE

Table 2-9 Peephole Scheduling Methods

<method> Description
n No reordering of instructions
b Both spread and compress

Linker Options

-t=<target> Linker, specify target module type

Table 2-10 Target Module Type

Target Module Type

0s9k_arm 0S-9 for ARM

0s9k_ar nmbe 0S-9 for ARM, big-endian

C/C++ Application Binary Interface
Information

Register usage, passing arguments to functions, and language features
are described in this section.

Register Usage

General purpose, floating point, and other registers are identified in this
section.

Table 2-11 Register Classes

Register Class Names Used

General Purpose Registers ro - rl1l5, gp, cp, sp,
lr, pc

Floating Point Registers fo - f7

Coprocessor Registers cO - cl15

Program Status Registers cpsr, spsr

MICROWARE SOFTWARE

General Purpose Registers.

Table 2-12 General Purpose Register Use for 32-bit Arguments

Alternate

Register Name Description

ro-r5 Callee-saved register (for locals and temporaries).

reé ap Static storage pointer.

r7 1st integral argument passed; integral return value.
For functions returning aggregates (e.g., structures)
this points to the returned aggregate.*

r8 2nd integral argument passed. *

ro 3rd integral argument passed. *

rio 4th integral argument passed. *

ril Caller-saved register (for locals and temporaries).

ri2 cp Constant storage pointer. T

ri3 sp Stack pointer.

ria Ir Subroutine link register.

ris pc Program counter.

* If register is not in use as described in the table, it can be used for integral
user register variables and compiler temporaries.

T Used to access const qualified data in the code area of the module. This
is accomplished by using the register as a pointer to the code area data.
The register is automatically initialized by the kernel for program modules.
Non-program modules must either set the register up themselves or use
the back end option -pg to generate the code to set up the register for each
function that needs it.

The values in r 7 through r 11 need not be preserved across a function
call. That is, a function is safe to use these registers without saving and
restoring their values.

The compiler uses the remainder of the integral registers (r O through
r 5) for integral user register variables and compiler temporaries.

ARMV4 only: Table 2-13 shows how registers r 7-r 10 are used for
64-bit long long integer arguments. Any consecutive registers from the
set of R7- R10 can be used to hold a long long integer argument. The
lower numbered register holds the least significant 32 bits of the
argument and the higher numbered register holds the most significant
32 bits of the argument.

An interesting situation can occur when a function has both long long
and other integral arguments. If three of the registers hold long
arguments and the next argument is a long long, then the long long will
be saved on the stack. Long long arguments will continue to be stored
on the stack until a 32-bit integer argument is encountered and stored in
R10. Therefore the argument in register R10 can not be assumed to be
the argument that logically follows the argument in R9.

Table 2-13 General Purpose Register Use for 64-bit Arguments

Alternate

Register Name Description

r7 32-bit segment of integral return value. For
functions returning aggregates (e.g., structures) this
points to the returned aggregate.*

r8 32-bit segment of integral argument passed. *

ro 32-bit segment of integral argument passed. *

rio 32-bit segment of integral argument passed. *

* |f register is not in use as described in the table, it can be used for integral
user register variables and compiler temporaries.

MICROWARE SOFTWARE

Floating Point Registers

Table 2-14 Floating Point Registers

Register Description

fo 1st floating point argument passed, floating point return
value

fl 2nd floating point argument passed

f2 3rd floating point argument passed

f3 4th floating point argument passed

When not in use, any of registers f 0 through f 3 can be used as
temporary register variables.

Functions can use the values in registers f 0 through f 3 (caller saved
registers) without saving/restoring them for the functions’ callers. A
calling function must save them if they expect to keep their values
across the call to a function.

The compiler uses the remainder of the floating point registers (f 4
through f 7) for floating point user register variables and compiler
temporaries.

Passing Arguments to Functions

When an argument is passed to a called function, the argument is in
one of two places, in a register or in the Output Parameter Area (OPA)
of the calling function.

The called function determines the location of the argument by
argument type and the order specified in the argument list.

For this discussion:

* Anintegral argument is an argument of type i nt , a pointer, or a
char orshort convertedtoani nt.

* A floating point argument is an argument of type doubl e or a
f 1 oat converted to a doubl e.

There are four integral registers used for parameter passing: r 7 through
r 10 inclusive. Four floating point registers are available for floating point
parameter passing: f O through f 3 inclusive.

The OPA is also used to pass arguments (when the registers have been
exhausted). Figure 2-1 illustrates a stack frame for a function.

Figure 2-1 Stack Frame for a Function

Higher Addresses

Stack Pointer
Lower Addresses

Caller's Stack Frame

Return Address
(4 bytes)

Register Save Area

Locals and Compiler
Temporaries Area

Output Parameter Area

Old Stack Pointer
(4 bytes)

A

Function
Stack
Frame

MICROWARE SOFTWARE

The basic algorithm the compiler uses to pass arguments is as follows:

if function returns a struct
put address of struct return area into first integral passing register
while still nore argunents
if parameter is part of variable argunents
put argunment into next position in OPA
else if argunment is a struct
copy struct into next position in OPA
el se
if argunent is integra
if argument is 64-bit integer type
if pair of integral passing registers are avail able
put argunent into register pair
el se
put argunment into next two 32-bit words of OPA
el se
if an integral passing register is available
put argunment into integral register
el se
put argument into next position in OPA
else if argunent is floating-point
if a floating-point passing register is available
put argument into floating-point register
el se
put argument into next position in OPA
advance to next argunent

The OPA is filled from lowest address to highest address.

St ruct arguments and parameters that comprise the variable
argument to a variable argument function are always passed on the
OPA. If a function is to return a value, an integral return value is
returned in r 7 or a floating point return value is returned in f 0. If a
function is to return a st r uct , the address of a return area is passed
as the first integral argument, inr 7.

C Language Features

For More Information

Other implementation-defined areas are identified in the Language
Features chapter of the Using Ultra C/C++ manual and the Overview
chapter of the Ultra C Library Reference manual. Refer to an
ANSI/ISO specification for more information.

In conformance with the ANSI/ISO C specification, the
iImplementation-defined areas of the compiler are listed in this section.
Each bulleted item contains one implementation- defined issue. The
number in parentheses included with each bulleted item indicates the
location in the ANSI/ISO specification where further information is
provided.

Characters

* The number of bits in a character in the execution character set
(5.2.4.2.1).

There are eight bits in a character in the execution character set.

MICROWARE SOFTWARE

Integers

* The representations and sets of values of the various integer types
(6.1.2.5).

Table 2-15 Integer Type/Range

Minimum /
Type Representation Maximum
char, si gned char 8 bit 2's complement -128 1/
127
unsi gned char 8 bit binary 0/
255
short int * 16 bit 2’'s complement -32768 /
32767
unsi gned short 16 bit binary 0/
i nt * 65535
i nt 32 bit 2's complement -2147483648 /
2147483647
unsi gned i nt 32 bit binary 0/
4294967295
| ong int 32 bit 2's complement -2147483648 /
2147483647
unsi gned | ong i nt 32 bit binary 0/

4294967295

Table 2-15 Integer Type/Range

Minimum /
Type Representation Maximum
| ong | ong 64-bit 2's complement - 263y
263 -1
unsi gned | ong 64-bit binary 0/
| ong 264 .1

* On ARM V3 architecture, it is not possible to access 16-bit values with a
single instruction. Use of volatile on this integer type generates a warning.

* The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented (6.2.1.2).

When converting a longer integer to a shorter signed integer, the
least significant <n> bits of the longer integer are moved to the
integer of <n> bits. The resulting value in the smaller integer is
dictated by the representation. For example, if the conversion is from
i nt to short, then the least significant 16 bits are moved from the
i nt tothe short. This value is then considered a 2's complement
16-bit integer.

When conversion from unsigned to signed occurs with equally sized
integers, the most significant bit becomes the sign bit. Therefore, if
the unsigned integer is less than 0x80000000, the conversion has
no affect. Otherwise, a negative number results.

» The sign of the remainder on integer division (6.3.5).

The result of an inexact division of one negative and one positive
integer is the smallest integer greater than or equal to the algebraic
guotient.

The sign of the remainder on integer division is the same as that of
the dividend.

MICROWARE SOFTWARE

Floating Point

* The representations and sets of values of the various types of
floating-point numbers (6.1.2.5).

Table 2-16 Floating Point Number Characteristics

Minimum /

Type Format Maximum

fl oat 32-bit 1.17549435e- 38f /
IEEE 754 3.40282347e38f

doubl e 64-bit 2.2250738585072016e- 308 /
IEEE 754 1.7976931348623157e308

| ong doubl e 64-bit 2.2250738585072016e- 308 /
IEEE 754 1.7976931348623157e308

Refer to the f | oat . h header file for other limits and values.

Arrays and Pointers

* The type of integer required to hold the maximum size of an array.
That is, the type of the size of operator, si ze_t (6.3.3.4, 7.1.1).

Anunsi gned | ong i nt is required to hold the maximum size of
an array. unsi gned |l ong i nt isdefinedastosize t in
ansi _c. h.

* The result of casting a pointer to an integer or vice versa (6.3.4).

Since pointers are treated much like unsigned long integers, the
integer is promoted using the usual promotion rules to an unsigned
long. That is, the sign bit propagates out to the full 32-bit width.

* The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdi ff _t (6.3.6, 7.1.1).

A signed long int is required to hold the difference between two
pointers to elements of the same array. long int is defined as
ptrdiff_t inansi_c. h.

Registers

* The extent to which objects can actually be placed in registers by
use of the register storage-class specifier (6.5.1).

The compiler automatically makes decisions about what objects are
placed in registers, thus giving no special storage considerations for
the register storage-class.

Structures, Unions, Enumerations, and Bit-Fields

* The padding and alignment of members of structures (6.5.2.1). This
should present no problem unless binary data written by one
implementation are read by another.

Table 2-17 shows the alignment of the various objects within a
structure. Required padding is supplied if the next available space is
not at the correct alignment for the object. For example, a structure
declared as:

struct {
char men;
| ong nent;
}

would be an eight-byte structure (64-bit), one byte for memi, four
bytes for men®, and three bytes of padding to complete the
structure.

Table 2-17 Alignment Table

MICROWARE SOFTWARE

Type Alignment Requirement
char 1
short 2
i nt 4
| ong 4
 ong | ong 4
poi nters 4
f1 oat 4
doubl e 4
| ong doubl e 4

* Whether “plain” i nt bit-field is treated as a signed i nt or as an
unsigned i nt bit-field (6.5.2.1).

A “plain” i nt bit-field is treated as a signed i nt bit-field.

* The order of allocation of bit fields within a unit (6.5.2.1).

Bit fields are allocated from most significant bit to least significant bit.

* Whether a bit-field can straddle a storage-unit boundary (6.5.2.1).

Bit fields are allocated end-to-end until a non-bit field member is allocated or until
that positioning would cross an addressable boundary such that no object of an
integral type could both contain the bit field and be correctly aligned.

* The integer type chosen to represent the values of an enumeration
type (6.5.2.2).

Enum values are represented in 32-bit two’s complement integers.

Processing Directives

* Whether the value of a single-character, character constant in a
constant expression that controls inclusion matches the value of the
same character constant in the execution character set. Whether
such a character constant may have a negative value (6.8.1).

The value of a single-character character constant in a constant expression that
controls inclusion matches the value of the same character constant in the
execution character set. This character constant may have a negative value.

* The method for locating includable source files (6.8.2).

This method is described in the Using the Executive chapter of the Using Ultra
C/C++ manual.

» The support of quoted names for includable source files (6.8.2).
Quoted names are supported for #i ncl ude preprocessing directives.
« The mapping of source file character sequences (6.8.2).

The mapping of source file character sequences is one-to-one. The
case-sensitivity of file names depends on the file system being used.

ARM Processor-Specific Optimizations

The Ultra C/C++ ARM assembly optimizer (opt ar i), in addition to
providing the standard generic assembly optimizations, provides
processor-specific optimizations. These are:

» Special Common Sub-Expressions

* Code Area Data Pooling and Consolidation
» Conditionalizing of Instructions

» Copy Propagation

MICROWARE SOFTWARE

Special Common Sub-Expressions

On the ARM architecture, certain constants are more expensive to work
with than others. To account for this, the common sub-expression
elimination optimization is performed on expressions involving
potentially expensive constants. These include the following:

* The computation of global variable addresses.

* The computation of integer constants that require several arithmetic
instructions or one pc-relative load to compute. For example, the
constant Oxaabbccdd. The constant 0xffOO would not be considered.

* The computation of all floating point constants, with the exception of
0.0, 1.0, 2.0, 3.0, 4,0, 5.0, 10.0, and 0.5.

Code Area Data Pooling and Consolidation

The ARM instruction set limits the size of immediate values to 8 bits
rotated by 2n. Often times data can be built up using immediates
exclusively. For example:

=x equ 0x333
mov R7, Oxf f &=x
add R7, Oxff 00&=x

At other times it is more appropriate to load the value from memory.
This data can be stored in the code area and loaded into registers using
PC-relative loads. The assembly optimizer attempts to pool this code
area data together behind naturally occurring divisions (such as a return
from subroutine) to limit the number of extra branches in code. For
example, given the following C code:

extern int x, vy;

func(&, &y);
func2(&x);

The backend might generate:

ldr R7,=_$L1
b =_$L2 **skip
= $L1

dc. | =x

= $L2

add R7, R6, R7

| dr R8, = $L3

b = $L4 **skip
= $L3

dc.l =y

= $L4

add R8, R6, R8
bl =func

| dr R7,=_$L5

b = $L6 **skip
= $L5

dc. | =x
= $L6

add R7, R6, R7
bl =func2

ldnfd R13!, {PC}

The assembly optimizer could change this to:

ldr r7,=_$L1
= $L2

add r7,r6,r7
| dr r8,=_$L3
=_$L4

add r8,r6,r8
bl =func

ldr r7,=_$L5
= $L6

add r7,r6,r7
bl =func2

| dnfd r13!, {PC}
= $L5
= $L1 dc.| =x

_$L3 dc.| =y

MICROWARE SOFTWARE

Conditionalizing of Instructions

In the ARM architecture, conditional execution is not limited to
conditional branches. Every instruction can be conditionalized. The
Ultra C/C++ ARM assembly optimizer attempts to take advantage of this
capability to reduce code size and improve performance.

For example, given the following C code:
b =x &y && c;
The backend might generate:

cmp R7,0
beq =_$I 4el
cnp R8,0
beq =_$%$I 4el

beq =_$%$I 4el
mov R7,1

b = _$l 4e5

= $l 4e3

mov R7,0

= $l 4e5

The assembly optimizer could then change this to:

cmp r7,0
cnmpne r8,0
cnpne r9,0
nmovne r7,1
bne =_$I 4e5
= $l 4e3

mov R7,0
= $l 4e5

This optimization pays close attention to the desired time/space ratio
such that the number of instructions that are conditionalized depends
on how important space is compared to time.

Copy Propagation

The assembly code optimizer tries to eliminate needless copies
between register temporaries; resulting in smaller, more efficient code.
For example:

ldr r7,[gp, x]
nov r8,1sl(r7,2)
add r8,r7,r8

This may be changed to the following:

ldr r7,[r6, X]
add r8,r7,1sl(r7,2)

As another example:

nmov r8,1sl(r7,2)
and r8,r8,r7

This may be changed to the following:
and r8,r7,1sl(r7,2)

MICROWARE SOFTWARE

_asm() Register Pseudo Functions

_asm() uses registers pseudo functions as identified in Table 2-18.

Table 2-18 _asm() Register Pseudo Functions

Register Description

__reg_gen Any non-dedicated integer register
__reg_fl oat Any floating point register
__reg_r<n> The integer register specified by

n (0 <= n < 16)

__reg_f<n> The floating point register specified by
n (0 <= n < 8)

Assembler/ Linker

The assembler allows use of standard ARM assembly language
mnemonics and syntax, modified as described in this section. For more
specific information about individual instructions, consult the following
documentation:

* ARM Architecture Reference
« ARM FPA10 Data Sheet

ROF Edition Number

The ARM assembler emits ROF Edition #15.

External References

The ARM assembler allows the use of external references with any
operators within any expression fields not defined to be constant
expression fields.

Symbol Biasing

There is no biasing of either code (r 12) or static (r 6) pointers for the
ARM processor.

MICROWARE SOFTWARE

Assembler Syntax Extensions and Limitations

The Ultra C/C++ Compiler’s adaptation of the ARM instruction syntax
has a few notable differences from what is defined by the ARM
Architecture Reference manuals.

* The assembler uses the space character as the comment delimiter.
As a result, the operand stream must not include any spaces.

» Because of the above restriction, the shifted register operand
value syntax was altered.

An example of ARM syntax and its equivalent Ultra C/C++ syntax are
shown in Table 2-19.

Table 2-19 Equivalent ARM Instruction Syntax

Instruction ARM Syntax Ultra C/C++ Syntax
nov r2, r0, LSL #2 r2,1sl(ro0, 2)

add ro, r5, r5, ASR #3 ro,r5,asr(rb,3)
rsb ro, r5, r5, LSL #3 ro,r5,1sl(r5, 3)
sub ri0, r9, r8, LSR #4 r10,r9,1sr(r8,4)
mov ri2, r4, ROR r3 ri2,ror(r4,r3)
mn rl, r4, RRX rl, rrx(r4)

These equivalencies are due to restrictions in the Ultra C/C++
assembler and for ease in reading and understanding the syntax. To
see other uses of Ultra C/C++ assembly, it is possible to stop the
compilation process after the back end has finished (using the - ebe
option) and view the resulting assembly file.

* The Ultra C/C++ ARM assembler does not require the # designator
in front of immediate values. The value is known to be an immediate
based on its context. In cases where the context is ambiguous
(example: a value has been equated to the name r 3 (not
recommended)), the assembler assumes the register is intended
for use.

* The Ultra C/C++ assembler provides an nop instruction to do
nothing. This is equivalent to:

andeq ro,r0,r0

* The # character is used in place of the ” character for load and store
multiple instructions. For example, the first line is original ARM
assembly syntax, the second line is the equivalent Ultra C/C++ ARM
assembly syntax:

stnfd sp!,{r7-r14}"
stnfd sp!,{r7-rl4}#

* The syntax accepted by the Ultra C/C++ ARM assembler for the
move from general purpose register to SR instruction may be slightly
different than that specified in ARM architecture manuals. The
following syntax is accepted:

nmer{<cond>} <psr> fl g, <i medi at e>
mer{ <cond>} <psr>_flg, <rn>

msr { <cond>} <psr>_all, <rn>
msr{<cond>} <psr>, <rn>
msr{<cond>} <psr>_f,<i medi at e>
msr { <cond>} <psr>_[fsxc], <rn>

Table 2-20 Variables

Variable Description

{ } Optional Entry

[] Enter one character only shown within the brackets

MICROWARE SOFTWARE

Table 2-20 Variables (continued)

Variable Description
<cond> ARM conditional execution code
<per > One of cpsr or spsr

<i mredi ate> ARM 8-hit rotated immediate

<rn> A general purpose register

» Coprocessor registers (as referred to by the coprocessor
instructions cdp, | dc, st ¢, nr ¢, and ntr) are designated by their
register number and prefixed by the letter c.

* The mnemonic extensions specifying conditional execution
accepted by the assembler are identified in Table 2-21.

Table 2-21 Integer Type/Range

Mnemonic Description

eq Equal

ne Not equal

cs/ hs Carry set / unsigned higher or same
cc/lo Carry clear / unsigned lower

m Negative

pl Positive or zero

Vs Overflow

Ve No overflow

Table 2-21 Integer Type/Range (continued)

Mnemonic Description

hi Unsigned higher

I s Unsigned lower or same

ge Signed greater than or equal

| t Signed less than

gt Signed greater than

|l e Signed less than or equal

al Always (equivalent to no extension)
nv Never*

* Use of the NV conditional extension is not recommended as its effect is
unpredictable. Acceptance of the NV conditional extension by the
assembler is not assurance that it will work as expected.

Working with Immediate Data

The ARM instruction set limits the size of immediate data to 8 bits for
data processing instructions. The ARM assembler does not implement
constant explosion, leaving this responsibility to the assembly
language programmer. Bitwise operations are useful for this purpose;
specifically the bi t wi se and (&). The following code illustrates the
addition of a 16-bit unsigned immediate to a register.

ui nml6 set OxfOfO
add r7,r7, Oxff &ui mml6
add r7,r7, 0xff00&ui nml6

MICROWARE SOFTWARE

Similarly, the ARM instruction set limits the size of immediate data to 12
bits for general load-store instructions. Again, the assembly language
programmer must allow for this. The following code illustrates
non-remote data access from the static data area.

vsect
stuff ds.l 1
ends
add r7,gp, Oxfffff0O00&st uff
ldr r7,[r7,0xfff&stuff]

Note that the bitwise and operation in the addition statement masks
only the lower twelve bits, leaving the upper twenty bits. This allows the
object code linker to detect an error that would otherwise be difficult to
track (such as a value being out of range). If, for instance, the linker
symbol st uf f evaluated to 0x00115004, the linker would display the
following message:

The val ue $115000 cannot be encoded into a field
8-bits rotated by 2n bits.

Therefore, an additional add instruction would be necessary.

Stack Checking

This section provides ARM-specific information about stack checking.
Refer to Using Ultra C/C++ for more general information on stack
checking.

If stack checking is inappropriate for the module being created, you will
need to define the following items:

* aglobal pointer called _st bot (initialized to ULONG_MAX if possible)
« afunction called _st khandl er (it returns to its caller)

A function called _st kover f | owis called when the stack appears to
overflow. If a non-static function called _st kover f | owresides in an
ROF that is linked to make the object module, that function is called
instead of the default function. The default function writes a message to
the standard error path and causes the program to exit with a status of
one. _st kover fl owneither accepts parameters nor returns a value.

i Note

If st koverfl owis inappropriate for your application, consider writing
a function to handle stack overflow.

_st khandl er, the function that checks for stack overflow, can be
revised. Revision may be necessary if stack checking is inapplicable to
the module that calls the library functions. _st khandl er () is passed
the desired stack pointer in r 3 and does not return a value.

i Note

Stack handler code must be compiled with stack checking turned off
(-r inucc mode).

ARM

MICROWARE SOFTWARE

112 Ultra C/C++ Processor Guide

Chapter 3: SH-5

This chapter contains information specific to the SH-5 family of
processors. The following sections are included:

Executive and Phase Information

e C/C++ Application Binary Interface Information
« _asm() Register Pseudo Functions

e SH-5 Processor-Specific Optimizations

» Assembler/ Linker

» Stack Checking

MICROWARE SOFTWARE

MICROWARE SOFTWARE

Executive and Phase Information

Executive - t p enables specific options that are dependent upon
executive mode. Processors and sub-options for ucc and c¢89 option
modes are identified in this section.

Executive -tp Option

-tp[=] <target>{[,] <suboptions>}

Use this option when you want to specify
the target processor <t ar get > and
target processor sub-options. Target
processors are identified in Table 3-1
and - t p sub-options are identified in

Table 3-2.
Table 3-1 Target Processor
Target Target Processor
SH5m Generic SH-5 in media mode
SH8000 SH8000 family

Table 3-2 Mode -tp Sub-Options

Suboptions Description

sd Use 16-bit data references (default).

| d Use 32-bit data references.

Table 3-2 Mode -tp Sub-Options (continued)

Suboptions Description

scd Use 16-bit code area data references (default).
| cd Use 32-bit code area data references.

sc Use 16-bit code function references (default).

| c Use 32-bit code function references.

sb Use 18-bit function-internal branches (default).
I b Use 32-bit function-internal branches.

Predefined Macro Names for the Preprocessor

The macro names in Table 3-3 are predefined in the preprocessor for
target systems.

Table 3-3 Macros

Macro Description

_MPFSH5 Generic SH-5 processor (media or compact)
_MPFSH5M Generic SH-5media processor
_IMPFSH8000 SHB000 series processor

_FPFSH5M SH-5media floating-point processor

MICROWARE SOFTWARE

Target macros are used to place conditions on code so that machine-
and operating system-independent programs can be created. Each
target macro name specifies a particular compiler.

The executive defines the _MPF macro for the target processor as well
as any processors that are generally considered subsets of the target
processor. Table 3-4 contains the complete list of macro combinations.

For more information on exactly which macros are defined for the SH-5
processors, run the executive in verbose and dry run modes stopping
after the front end. For example, to check the defines for the SH-5media
target (source file not required), enter the following on the command
line:

Xxcc -b -h -efe -tp=shbtmt.c
This causes the executive to print something similar to the code below:

Include file paths:

\ mwos\ SRC\ DEFS

\ mvos\ OS9000\ SRC\ DEFS

\ mvos\ OS9000\ SH5M DEFS
"cpfe -m--target=8 -1\ mws\ SRC\ DEFS -1\ mwos\ OS9000\ SRC\ DEFS
- I'\ maos\ 0S9000\ SH5M DEFS - D_UCC - D MAJOR _REV=2 - D_M NOR_REV=4 - D_SPACE_FACTOR=1
-D_TI ME_FACTOR=1 -D 0S9000 - D MPFSH5M - D _MPFSH5 - D FPFSH5M -D BI G END -w
--Extended_ANSI --gen_c file_name=t.i t.c"

Note
Both MPFSH5 and _MPFSH5Mare defined.

The _MPFSH5 macro indicates that a source file is being compiled for a
SH-5 family target.

Table 3-4 identifies the relationship between the target processor and
the preprocessor macros. Note that specific targets also define the
subset macros. (For example, when targeting the SH-8000, the
_MPFSH5 and _ MPFSH5Mmacros are defined.)

Table 3-4 _MPFxxx Macro Behavior

Target Microprocessor Family Macros Defined
SH5M _MPFSH5 _MPFSHS5M
SH8000 _MPFSHS _MPFSHSM _ MPFSHB000

SH-5m-Unique Phase Option Functionality

The following phases have unique phase option functionality on the
SH-5m processor:

« Back end
* Assembly optimizer
¢ Linker

Back End Options

-mE<non renote nenory |eft>

This option informs the back end that other files in the program have
used some amount of the 64K data area.

The back end gives orders to the data area based on static analysis of
the data area objects, and sorts the data based on usage and size. This
means that the most heavily used objects end up in the non-remote
area. To accomplish this, the back end needs information concerning
how the object linker will lay out the data area for the entire program.

MICROWARE SOFTWARE

Code generation options provide specifications for code generated by
the back end.

Table 3-5 Code Generation Options

Option Description

- pg Generate code to derive cp (r13) rather than relying on
a globally set cp for each function that needs it. This
option might be used for non-program modules that
have multiple entry points.

- pl Cause references to external data objects to be long.
-pla Cause all non-function branches to be long.

-plc Cause references to constant data objects to be long.
-plf Cause references to functions to be long.

- ps No stack checking code.

Target architecture code generation options provide specifications that
are unique to target architecture (for code generated by the back end).

-p<target architecture>

Use this option to identify the target
architecture for which to generate code.
Implementation of multiply and divide
instructions differs based on target
architecture.

Table 3-6 <target architecture> Code Generation Options

Option Description

- pSHomM Generate code for the generic SH-5 processor
in media mode.

Linker Options

-t=<target> This is a linker option to specify target
module type.

Table 3-7 Target Module Type

Target Module Type

0s9k _sh5m 0S-9 for SH-5media

MICROWARE SOFTWARE

C/C++ Application Binary Interface
Information

The following information is described in this section:
* Register Usage

* Arguments Passed to Functions

» Callee Saved Registers

* Language Features

Register Usage

General purpose, floating-point, and other registers are defined in this
section. The register classes are listed and explained below.

* General Purpose Registers (GPRS)
* Floating-Point Registers (FPRS)

Table 3-8 General Purpose Registers

Register Names Description

ro, rl Caller save

r2 Integer or pointer return register; caller save

rz -r9 Incoming integer and pointer arguments; caller
save

rio / Ir Linkage register; caller save

ril / at Reserved for long reference computation in

assembler; caller save

Table 3-8 General Purpose Registers (continued)

Register Names Description

ri2 / fp Local frame pointer; callee save

ri3 / cp Global constant data pointer; callee save
ri4 / gp Global data pointer; callee save

ri5 / sp Stack pointer; callee save

ri6 - r19 Caller save

r20 - r23 Callee save

r24 - r31 Caller save

r32 - r62 Callee save

re3 / zero Hard-coded 0 value register

* |f the register is not used as stated above, it may be used for integral user
register variables and compiler temporaries.

T cp (r13) is used to access const -qualified data in the code area of the
module. This is accomplished by using the register cp as a biased (by
32K- 16 [0x7ffO] bytes) pointer to the code area data. cp is automatically
initialized by the kernel for program modules. Non-program modules must
either set up cp themselves or use the back end option - pg to generate the
code necessary to set up cp for each function that needs it.

The valuesinr O through r9, r1l, r16-r19,andr 24 -r 31 do not
need to be preserved across a function call; a function is safe to use
these registers without saving and restoring the registers’ values.

The compiler uses the remainder of the integral registers for integral
user register variables and compiler temporaries.

MICROWARE SOFTWARE

floating-point Registers

Table 3-9 Floating-point Registers

Floating-point

Register Description

fro, frl Floating-point return value; caller save
fro - frll Floating-point function arguments
fri2 - fr15 Callee save

fri16 - fr35 Caller save

fr36 - fr63 Callee save

When not in use for argument passing, any registers from f r O through
fr 11 can be used as temporary register variables.

Functions can use values f r 0 through fr 11 and f r 16 through f r 35
without saving or restoring them for the functions' callers. However, a
function must save them if they are expected to maintain their values
across a call to a function.

Target Address Registers

Table 3-10 Target Address Register Usage

Registers Description

trO - tr4 Caller save

tr5 - tr7 Callee save

Pointer and non-64-bit Integer Representation

Pointers and non-64-bit integers (including char) are held in registers
in a 32-bit signed format. That is, the upper 32 bits of the 64-bit register
contain a sign extension of the lower 32 bits regardless of the
signedness of the 32-bit value. This results in a correct 64-bit
representation of all types of integers except 32-bit unsigned values.
Take this fact into consideration when writing assembly language that
calls C functions. Do not assume that the result of a function returning a
32-bit unsigned value will always be positive when treated as a 64-bit
value.

Be sure to use 32-bit instructions (commonly the .| extension) when
writing assembly language that manipulates pointers or 32-bit or
smaller integers. The use of 32-bit instructions is beneficial for pointers
because it ensures that only valid addresses are generated by pointer
arithmetic. The use of 32-bit instructions is also beneficial for integers
because it keeps registers in the correct format for calling C functions.

MICROWARE SOFTWARE

Passing Arguments to Functions

When an argument is passed to a called function, the argument is in
one of two places: in a register or in the Output Parameter Area (OPA)
of the calling function.

The called function determines the location of the argument by
argument type and the order specified in the argument list.

For the purposes of this discussion, the following statements are true:
* An integral argument is an argument of integer or pointer type.

* A floating-point argument is an argument of type doubl e or
float.

There are eight integral registers used for parameter passing: r 2
through r 9. There are also twelve 32-bit registers available for
floating-point argument passing: f r O through f r 11. (This allows for up
to six 64-bit floating-point arguments.)

The OPA is also used to pass arguments when the registers have been
exhausted. Figure 3-1 illustrates a stack frame for a function.

Figure 3-1 Stack Frame for a Function
Higher Address

Caller's OPA

Local Variables

Caller's FP

_________ Stack Frame

Saved Registers

OPA

SP >
—— 8Bytes —1 Lower Address

It is possible for a function to have a zero-length stack frame.
Furthermore, any or all of the areas of a stack frame can be omitted. For
example, suppose local variables are omitted. Because no local
variables have been allocated, the caller’s f p register will not be saved
and no new f p register value will be created.

Arguments are passed to functions as though the code generator
performed the following steps at each call site:

1. Ifthe called function returns a structure, the pointer to the location at
which to return the structure is placed in the first parameter register
(r 2). r 2 is then no longer a candidate for further use.

MICROWARE SOFTWARE

2. For each argument, consider its type:

Integral: Place the argument into the next available integral
parameter register (r 2 through r 9). If there are no available integral
argument registers, the next position in the OPA is used.

doubl e: Place the argument in the next available pair of 32-bit
floating-point parameter registers so that the first member of the pair
is an even-numbered 32-bit floating-point register. This can leave a
“hole” in the floating-point parameter registers (if the previous
parameter was f | oat and placed in an even-numbered register). If
their are no more pairs of floating-point parameter registers, the next
position of the OPA is used.

f | oat : Place the argument into the next available 32-bit
floating-point parameter register. If a 32-bit floating-point parameter
register had to be skipped because a doubl e parameter needed an
even-numbered floating-point register, the skipped one is used. If
there are no more floating-point parameter registers, the next
position of the OPA is used.

Structure or Union: Copy the argument into the next position of the
OPA.

3. For each variable argument, place the argument in the next available
position in the OPA.

The OPA is filled from lowest address to highest address. Padding is
added for arguments whose alignment requirements are not met by
prior arguments. The following example demonstrate the above
concepts:

void func(int pl, int p2)

rz = pl

r3 = p2
voi d func(float pl, float p2)

fro =

voi d func(double pl, double p2)
drO (fr0, frl) pl
dr2 (fr2, fr3) p2

void func(int pl, float p2, double p3, float p4)

r2z = pl
frO = p2
dr2 (fr2, fr3) = p3
frl = p4
void func(int pl, struct { int x, y; } p2, int p3)
r2z = pl
OPA + 0 = p2.Xx
OPA + 4 = p2.y
r3 = p3

struct { int x, y; } func(int pl, int p2)

r2 = <return struct address>
r3 = pl
r4 = p2

void func(char *pl, ...);

func(pl, int p2, double p3, float p4, Iong |ong p5)
rz = pl
OPA + 0 = p2
OPA + 4 = <4 bytes paddi ng>
OPA + 8 = p3
OPA + 16 = p4
OPA + 20 = <4 bytes paddi ng>
OPA + 24 = p5

MICROWARE SOFTWARE

C Language Features

In conformance with the ANSI/ISO C specification, the
implementation-defined areas of the compiler are listed in this section.
Each bulleted item contains one implementation-defined issue. The
number in parentheses included with each bulleted item indicates the
location in the ANSI/ISO specification where more information is
provided.

For More Information

Other implementation-defined areas are included in the Using Ultra
C/C++ manual and the Ultra C Library Reference manual. Refer to an
ANSI/ISO specification for more information.

Characters

 The number of bits in a character in the execution character set
(5.2.4.2.1)

There are eight bits in a character in the execution character set.

Integers

* The representations and sets of values of the various integer types

(6.1.2.5)

Table 3-11 Integer Type/Range

Minimum /

Type Representation Maximum

char,si gned 8-bit 2's complement -128 /

char 127

unsi gned 8-bit binary 0/

char 255

short int 16-bit 2's complement - 32768 |/
32767

unsi gned 16-bit binary 0/

short int 65535

I nt 32-bit 2’'s complement -2147483648 /
2147483647

unsi gned 32-bit binary 0/

i nt 4294967295

| ong int 32-bit 2’'s complement -2147483648 |/
2147483647

unsi gned 32-bit binary 0/

| ong i nt 4294967295

Table 3-11 Integer Type/Range (continued)

MICROWARE SOFTWARE

Minimum /
Type Representation Maximum
I ong I ong * 64-bit 2's complement - 263y
263 -1
unsi gned 64-bit binary 0/
|l ong | ong * 264 .1

*| ong | ong is not a part of the current ANSI standard.

The result of converting an integer to a shorter signed integer or the
result of converting an unsigned integer to a signed integer of equal
length (if the value cannot be represented) (6.2.1.2)

When converting a longer integer to a shorter signed integer, the
least significant <n> bits of the longer integer are moved to the
integer of <n> bits. The resulting value in the smaller integer is
dictated by the representation. For example, if the conversion is from
I nt toshort, the least significant 16 bits are moved from the i nt
to the short . This value is then considered a 2’s complement 16-bit
integer.

When conversion from unsigned to signed occurs with equally sized
integers, the most significant bit becomes the sign bit. Therefore, if
the unsigned integer is less than 0x80000000, the conversion has
no affect. Otherwise, a negative number results.

The sign of the remainder on integer division (6.3.5)

The result of an inexact division of one negative and one positive
integer is the smallest integer greater than or equal to the algebraic
guotient.

The sign of the remainder on integer division is the same as that of
the dividend.

floating-point

* The representations and sets of values of the various types of
floating-point numbers (6.1.2.5)

Table 3-12 floating-point Number Characteristics

Minimum /

Type Format Maximum

float 32 bit IEEE 754 1.17549435e- 38f /
3.40282347e38f

double 64 bit IEEE 754 2.2250738585072016e- 308 /
1.7976931348623157e308

long double 64 bit IEEE 754 2.2250738585072016e- 308 /

1.7976931348623157e308

Refer to the f | oat . h header file for other limits and values.

Arrays and Pointers

* The type of integer required to hold the maximum size of an array
(the type of the size of operator, si ze_t) (6.3.3.4, 7.1.1)

Anunsi gned | ong int isrequired to hold the maximum size of
an array. unsi gned | ong int isdefinedassize_t in
ansi _c. h.

* The result of casting a pointer to an integer or vice versa (6.3.4)

Since pointers are treated much like unsigned long integers, the
integer will be promoted using the usual promotion rules to an
unsigned long. That is, the sign bit propagates out to the full 32-bit
width.

MICROWARE SOFTWARE

The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdi ff _t (6.3.6, 7.1.1)

Asigned | ong i nt isrequired to hold the difference between two
pointers to elements of the same array. | ong i nt is defined as
ptrdiff_t inansi_c. h.

Registers

The extent to which objects can actually be placed in registers by
use of the register storage-class specifier (6.5.1)

The compiler automatically makes decisions about what objects are
placed in registers, giving no special storage considerations for the
register storage-class.

Structures, Unions, Enumerations, and Bit-Fields

The padding and alignment of members of structures (6.5.2.1)

This should present no problem unless binary data written by one
implementation are read by another.

Table 3-13 shows the alignment of the various objects within a
structure. Required padding is supplied if the next available space is not
at the correct alignment for the object. For example, a structure
declared as:

struct {

char neml;
| ong nent;
b

would be an eight byte structure, including one byte for ment, three
bytes of padding to get men® to four byte alignment, and four bytes for
ment.

Table 3-13 Alignment Table

Type Alignment Requirement
char 1
short 2
i nt 4
| ong 4
| ong | ong 8
poi nters 4
fl oat 4
doubl e 8
| ong doubl e 8

* Whether “plain” i nt bit field is treated as a signed i nt or as an
unsigned i nt bit field (6.5.2.1)

A “plain” i nt bit field is treated as a signed i nt bit-field.
» The order of allocation of bit fields within a unit (6.5.2.1)

Bit fields are allocated from most significant bit to least significant
bit.

MICROWARE SOFTWARE

Whether or not a bit field can straddle a storage-unit boundary
(6.5.2.1)

Bit fields are allocated end-to-end until a non-bit field member is
allocated or until that positioning would cross an addressable
boundary such that no object of an integral type could both contain
the bit field and be correctly aligned.

The integer type chosen to represent the values of an enumeration
type (6.5.2.2)

Enumvalues are represented in 32-bit two’s complement integers.

Preprocessing Directives

Whether or not the value of a single-character character constant, in
a constant expression that controls inclusion, matches the value of
the same character constant in the execution character set

Whether or not such a character constant may have a negative
value (6.8.1)

The value of a single-character character constant, in a constant
expression that controls inclusion, matches the value of the same
character constant in the execution character set. This character
constant may have a negative value.

The method for locating includable source files (6.8.2)

This method is described in the Using the Executive chapter of the
Using Ultra C/C++ manual.

The support of quoted names for includable source files (6.8.2)
Quoted names are supported for #include preprocessing directives.
The mapping of source file character sequences (6.8.2)

The mapping of source file character sequences is one-to-one. The
case-sensitivity of file names depends on the file system being used.

_asm() Register Pseudo Functions

_asn() uses registers pseudo functions as identified in Table 3-14.

Table 3-14 _asm() Register Pseudo Functions

Register Description
__reg_gen Any non-dedicated integer register
__reg_float Any 32-bit floating-point register

__reg_doubl e

__reg_r<n>

__reg_fr<n>

__reg_dr<n>

__reg_zero

—_reg_gp
__reg_sp
_reg_fp

_reg_lr

__reg_cp

__reg_at

Any even-numbered 64-bit floating-point register
pair

The integer register specified by r<n>, <n>is 0 to 63

The 32-bit floating-point register specified by fr<n>,
<n>is 0 to 63

The 64-bit floating-point register specified by dr<n>,
<n>is an even number from 0 to 62

Constant zero register, same as __reg_r63
Global pointer register, same as __reg_rl4
Stack pointer register, same as __reg_r15

Frame pointer register, same as __reg_rl12

Link register, same as __reg_r10. Request this
register if you call functions via Ir from within
embedded assembly.

Constant pointer register; same as __reg_r 13

Assembler temporary register, same as __reg_rll

MICROWARE SOFTWARE

SH-5 Processor-Specific Optimizations

In addition to providing the standard generic assembly optimizations,
the Ultra C/C++ SH-5media assembly optimizer (opt sh5m), provides
processor-specific optimizations. They are discussed in this section.

For More Information

The Using Ultra C/C++ manual contains additional information on
assembly level optimizations.

Special Common Sub-Expressions

On the SH-5m architecture, certain constants are more expensive to
work with than others. To account for this, the common sub-expression
elimination optimization is performed on expressions involving
potentially expensive constants.

* The computation of all floating-point constants as none of the
floating-point instructions allow for floating-point immediates

» The computation of integer constants that require two or more
instructions

An example of an integer constant included in this category is
Oxf f eef f ee. An example of a constant not included is
Oxffffffee.

Assembler/ Linker

The SH-5m assembler allows use of standard SH-5m assembly
language mnemonics and syntax, modified as described in this section.
For more specific information about individual instructions, consult the
following books:

e SuperH TM (SH) 64-Bit RISC Series SH-5 CPU Core Volume 2:
Shmedia

ROF Edition Number

The SH-5m assembler emits ROF Edition #15.

External References

The SH-5m assembler allows the use of external references with any
operators within expression fields not defined as constant expression
fields.

Symbol Biasing

The linker biases both code and data symbols by - 32752 (-0x7ff0).
Initialization routines for raw code should ensure that the static storage
pointer (r 14) and constant storage pointer (r 13) are initialized with the
proper base addresses (adjusted to account for this biasing).

The linker does not bias any symbols for system, file manager, device
driver, device descriptor, or data modules.

MICROWARE SOFTWARE

Code Symbol Values

The SH-5media assembler (ash5m) creates ROF files such that all
symbols that refer to the code area are off by one. This relieves most of
the burden related to the SH-5's dual-mode architecture from the
programmer. This requires that labels referring to code area data items
be decremented by one. That is, the following code will compute the
address of a constant string into r 0 (assuming cp is already set
correctly):

movi string-1,r0
add.l cp,r0,r0

Map, debug (.dbg), and symbol table (.stb) files reflect the addition of
one to code area symbols.

Assembler Syntax Extensions and Limitations

The Ultra C/C++ Compiler's adaptation of the SH-5media instruction
syntax has a few notable differences from what is defined in SH-5media
architecture manuals.

» All Microware assemblers use white space characters as comment
delimiters. As a result, the arguments to mnemonics may not include
any spaces.

* The SH-5media instruction set limits immediates to 16-bit signed
values. To allow for manipulation of 32-bit immediate data, the
following operators are available in the SH-5media assembler:

hi (x) = x >> 16 /* upper 16 bits */

1 o(x) = X & Oxffff /* lower 16 bits */

The following code moves the 32-bit value represented by Synbol
into GPR rO:

novi hi (Synbol), r0

shori l o(Synbol), r0

If Synbol is a 32-bit offset from GPR gp, then the following code
moves the 32-bit address of Synbol intr0:

nmovi hi (Synbol), r0
shori I o(Synbol), r0
add. | ro,gp, r0

Alternatively, the value of 32-bit integer data symbol Synbol can be
loaded into r 1 as follows:

nmovi hi (Synbol), r0
shori | o(Synbol), r0
| dx. | ro,gp,rl

The /|1 and/ u modifiers in standard SH-5media assembly
language are replaced with _| and _u in Microware’s SH-5media
assembler.

The “$” character used to express the current program counter is
replaced by the “*” character in Microware’s SH-5media assembler.
This assures some level of source-code compatibility with other
Microware assemblers. $ is used to prefix hexadecimal constants.
“Ox” is also a valid hexadecimal constant prefix.

In addition to the SH-5media instruction set, the Microware Ultra
C/C++ SH-5media assembler also accepts the synthetic instructions
specified in Table 3-15.

Table 3-15 SH-5m Assembler Synthetic Instructions

Synthetic Instruction SH-5media Instruction Sequence
nove rS, rD add rS, zero, rD
junp | abel pta | abel ,tr0

blink tr0, zero

junp. | | abel novi hi (| abel -pt), at

shori | o(l abel -pt+1), at
pt ptrel at,trO
blink trO0, zero

MICROWARE SOFTWARE

Table 3-15 SH-5m Assembler Synthetic Instructions (continued)

Synthetic Instruction

SH-5media Instruction Sequence

junp | abel,trD

pta | abel ,trD
blink trD, zero

junp.| label,trD

nmovi hi (1 abel -pt), at
shori | o(l abel -pt+1), at
pt ptrel at,trD

blink trD, zero

jlink Iabel,rD

pta | abel,tr0
blink tr0O,rD

jlink.l label,rD

nmovi hi (| abel -pt), at
shori | o(l abel -pt+1), at
pt ptrel at,trO

blink tr0,rD

jlink Iabel,rD,trD

pta | abel ,trD
blink trD, rD

jlink.l label,rDtrD nmovi hi (| abel -pt), at
shori | o(l abel -pt+1), at
pt ptrel at,trD
blink trD, rD
jabs[_I| _u] rS, rD ptabs rS,tr0
blink tr0O,rD
jabs[_I'| _u] ptabs rS,trD
rSrbtrD blink trD, rD

Table 3-15 SH-5m Assembler Synthetic Instructions (continued)

Synthetic Instruction

SH-5media Instruction Sequence

j<cc>[|| _u] pta[|| _u] label,tr0O
rMrN, | abel b<ce>[1| _u] rMrNtrO
where <cc> is:
eq : ==
ne | =
gt : >
ge : >=
gtu : > unsigned
geu : >= unsigned
j<cc>[1] _u]. | novi hi (| abel -pt), at
rMrN, | abel shori | o(label -pt+1), at
pt ptrel[_I]|_u] at,trO
b<cc>[|| _u] rMrNtrO
j<cc>[|| _u] pta | abel ,trD

rMrN,|abel,trD

b<cc>[|| _u] rMrNtrD

j<cc>[1] _u]. | novi hi (| abel -pt), at
rMrN, | abel,trD shori | o(label -pt+1), at
pt ptrel[_I]|_u] at,trD
b<cc>[|| _u] rMrNtrD
j<cci>[_I|_u] pta[|| _u] label,tr0
rMinmm | abel b<cci>[|| _u] rMimmtro
where <cci> is:
eqi : ==

nei : =

MICROWARE SOFTWARE

Table 3-15 SH-5m Assembler Synthetic Instructions (continued)

Synthetic Instruction SH-5media Instruction Sequence
j<cci>[_I|_u].l nmovi hi (1 abel -pt), at
rMinmml abel shori | o(l abel - pt +1), at
pt ptrel[_I|_u] at,trO
b<cci>[|| _u] rMimmtrO
j<cci>[1] _u] pta | abel ,trD
rMimmlabel,trD b<cci>[_I|_u] rMimmtrD
j<cci>[_I|_u].l nmovi hi (1 abel -pt), at
rMinmmlabel,trD shori | o(l abel - pt +1), at
pt ptrel[_I| _u] at,trD
b<cci>[_I| _u] rMimmtrD
tcall trap, func novi trap, at
trapa at
dc.w trap
dc. w func

* When instructions call for a register specification, the assembler will
accept two different names for the same register. These are called
register aliases and are specified in Table 3-16.

Table 3-16 SH-5m Assembler Register Aliases

Alias Name Real Name Description

lr rio Link register
at ril Assembler/linker temporary

fp riz Frame pointer

Table 3-16 SH-5m Assembler Register Aliases (continued)

Alias Name Real Name Description

cp ri3 Constant data pointer

ap ri4 Global data pointer

sp ris Stack pointer

Sr cr0 Status register

SSr crl Saved status register

pssr cr2 Panic-saved status register

i nt evt cr4 Interrupt event

expevt crb Exception event

pexpevt cré Panic-saved exception event
tra crv Trap an exception

spc cr8 Saved program counter
pspc cr9 Panic-saved program counter
resvec crl0 Reset vector

vbr crll Vector base register

tea crl3 Faulting effective address
dcr crl6 Debug control

kcrO crl7 Kernel register 0

MICROWARE SOFTWARE

Table 3-16 SH-5m Assembler Register Aliases (continued)

Alias Name Real Name Description

kcrl cri8 Kernel register 1
ctc cr62 Clock tick counter

usr cr63 User-state status register

Stack Checking

This section provides SH5-specific information about stack checking.
Refer to Using Ultra C/C++ for more general information on stack
checking.

If stack checking is inappropriate for the module being created, you will
need to define the following items:

* aglobal pointer called _st bot (initialized to ULONG_MAX if possible)
« afunction called _st khandl er (it returns to its caller)

A function called _st kover f | owis called when the stack appears to
overflow. If a non-static function called _st kover f | owresides in an
ROF that is linked to make the object module, that function is called
instead of the default function. The default function writes a message to
the standard error path and causes the program to exit with a status of
one. _st kover fl owneither accepts parameters nor returns a value.

i Note

If st koverfl owis inappropriate for your application, consider writing
a function to handle stack overflow.

_st khandl er, the function that checks for stack overflow, can be
revised. Revision may be necessary if stack checking is inapplicable to
the module that calls the library functions. _st khandl er () is passed
the desired stack pointer in r 3 and does not return a value.

i Note

Stack handler code must be compiled with stack checking turned off
(-r inucc mode).

SH-5

MICROWARE SOFTWARE

146 Ultra C/C++ Processor Guide

Chapter 4: MIPS

This chapter contains information specific to the MIPS family of
processors. The following sections are included:

Executive and Phase Information

e C/C++ Application Binary Interface Information
« _asm() Register Pseudo Functions

« MIPS Processor-Specific Optimizations

» Assembler/ Linker

* Assembler Syntax Extensions and Limitations
» Stack Checking

MICROWARE SOFTWARE

MICROWARE SOFTWARE

Executive and Phase Information

Executive - t p enables specific options dependent upon executive
mode. Processors and sub-options for ucc and ¢89 option modes are
identified in this section.

Executive -tp Option

-tp[=] <target>{[,] <suboptions>}
Specify Target Processor and Target
Processor Options

Specify the target processor <t ar get > and target processor
sub-options. Target processors are identified in Table 4-1 and -t p
sub-options are identified in Table 4-2.

Table 4-1 Target Processor

Target Target Processor

MIPS Generic MIPS

MIPS3000 MIPS 3000

MIPS32 Generic MIPS32
IDT3081 IDT MIPS 3081
TX3900 Toshiba MIPS 3900
MIPS64 Generic MIPS64

MIPS64PFP Generic MIPS64PFP (with paired FPU registers)

IDT4650 IDT MIPS 4650

Table 4-1 Target Processor (continued)

Target Target Processor

MIPS64DFP Generic MIPS64DFP (with 64-bit FPU registers)

IDT4700 IDT MIPS 4700

Table 4-2 Mode -tp Sub-Options

Suboptions Description

sd Use 16-bit data references (default)

| d Use 32-bit data references

scd Use 16-bit code area data references (default)

| cd Use 32-bit code area data references

fp Use static link library for floating-point support

sc Use 16-bit code (functions only) references (default)
| c Use 32-bit code (functions only) references

sb Use 16-bit branches (default)

I b Use 32-bit branches

MICROWARE SOFTWARE

Predefined Macro Names for the Preprocessor

The macro names in Table 4-3 are predefined in the preprocessor for
target systems.

Table 4-3 Macros

_MPFM PS64PFP
_MPFM PS64DFP
_MPFI DT3081
_MPFI DT4650
_MPFI DT4700
_MPFTX3900

_FPFM PS

Macro Description

_MPEM PS Generic MIPS processor
_MPFM PS3000 MIPS 3000 processor
_MPFM PS32 MIPS32 processor
_MPEM PS64 MIPS64 processor

MIPS64PFP processor
MIPS64DFP processor
IDT 3081 processor
IDT 4650 processor
IDT 4700 processor
Toshiba 3900 processor

MIPS floating point processor

Target names specify the compiler to use when writing
machine-independent and operating system-independent programs.

The executive defines the _MPF macro for the target processor as well
as any processors that are generally considered subsets of the target
processor. Table 4-4 provides a few examples of this behavior.

For more information on exactly which macros are defined for the MIPS
processors, run the executive in verbose and dry run modes stopping
after the front end. For example, to check the defines for the MIPS3000
target (source file not required):

Xxcc -b -h -efe -tp=M PS3000 t.c

This causes the executive to print a line similar to:

"cpfe -m--target=9 -1d:\ MAOS\ SRC\ DEFS

-1 d: \ MAOS\ GS9000\ SRC\ DEFS

-1 d: \ MAOS\ GS9000\ M PS3000\ DEFS

-1 d: \ MADS\ GS9000\ M PS\ DEFS

-D UCC -D MAJOR REV=2 -D M NOR_REV=3 -D SPACE_FACTOR=1 -D TI ME_FACTOR=1
-D _0s9000 -D MPFM PS3000 -D MPFM PS -D FPFM PS -D Bl G END -w
--Extended_ANS|I --gen_c_file_name=t.i t.c"

Note
Note that both MPFM PS and _MPFM PS3000 are defined.

The _MPFM PS macro indicates that a source file is being compiled for
a MIPS family target.

Table 4-4 identifies the relationship between the target processor and
the preprocessor macros. Note that specific targets also define the
subset macros (For example, when targeting the MIPS3000, the
_MPFMIPS and _MPFMIPS3000 are defined).

Table 4-4 _MPFxxx Macro Behavior

Target Microprocessor Family Macros Defined
Generic MIPS _MFPM PS

MIPS 3000 _MPFM PS _MPFM PS3000

MIPS32 _MPFEM PS _MPFM PS32

MIPS64 _MPEM PS _MPFM PS64

MICROWARE SOFTWARE

Table 4-4 _MPFxxx Macro Behavior (continued)

Target Microprocessor Family Macros Defined

MIPS64PFP _MPFM PS _MPFM PS64 _MPFM PS64PFP

MIPS64DFP _MPEM PS _VMPFM PS64 _MPFM PS64DFP

IDT 3081 _MPFM PS _MPFM PS3000 _MPFI DT3081

IDT 4650 _MPFM PS _MPFM PS64 _MPFM PS64PFP
_MPFI DT4650

IDT 4700 _MPFM PS _MPFM PS64 _MPFM PS64DFP
_MPFI DT4700

Toshiba 3900 _MWPEM PS _WMPFM PS3000 _MPFTX3900

MIPS-Unique Phase Option Functionality

Phases having unique phase option functionality on the MIPS
processor are:

 Backend
» Assembly optimizer
* Linker

Back End Options

-m=<non renote nenory left>

Informs the back end that other files in the program have used some
amount of the 64K data area.

The back end orders the data area based on static analysis of the data
area objects and sorts the data based on usage and size. This means
that the most heavily used objects end up in the non-remote area. To do
this, the back end needs information about how the object linker will lay
out the data area for the entire program.

Code generation options provide specifications for code generated by
the back end.

Table 4-5 Code Generation Options

Option Description

- pg Generate code to derive cp ($30) rather than relying on
a globally set cp for each function that needs it. This
option might be used for non-program modules that
have multiple entry points.

- pl Cause references to data objects to be long

-plc Cause references to constant data objects to be long
-plb Cause references to functions to be long

-pla Cause all branches to be long

- pme<n> Average memory latency for loads, in cycles (default 7)

- pnbs Don’t perform bit shift elimination optimizations.
- pnf Do not emit FP (copl) operations
-pnfm Do not use FP registers to copy data

If this option is not selected, the back end looks for
opportunities to copy data from one location to another
using FP registers.

MICROWARE SOFTWARE

Table 4-5 Code Generation Options (continued)

Option Description

- pnp Do not store previous sp in prologue (hinders
debugging)

- pnr Do not add register liveness information as comments

(for assembly optimizer)

- ps No stack checking code
- pu Use unordered (non-signalling) fp compares
- pv Do notusetrunc, round, fl oor, orcei l

instructions.

Target architecture code generation options provide specifications
unique to a target architecture for code generated by the back end.

-p<target architecture>

Identifies the target architecture for which to generate code.
Implementation of multiply and divide instructions differs based upon
target architecture.

Table 4-6 <target architecture> Code Generation Options

Option Description

- pm ps Generate code for the generic MIPS target
(default). This code should run on any processor
(although f pu emulation may be necessary).
Only MIPS-I instructions are generated with the
exception of some floating point instructions
(doubl e | oad/ st ore, trunc, and r ound)
which provide for smaller code and allow for
paired or 64-bit f pu registers. Nop's fill delay
slots (e.g., | oads and br anches).

The back end does not choose instructions
specific to a processor; if MIPS 3000-specific
instructions appear in assembly language
escapes, the compiled code does not port to
other MIPS family processors.

- pm ps3000 Generate code identical to that for the generic
MIPS target except that only MIPS-I instructions
are used.

- pm ps32 Generate code for MIPS32 processors.

- pm ps64 Generate code for MIPS64 processors. MIPS-III

64-bit integer instructions support the C | ong
| ong data type.

MICROWARE SOFTWARE

Table 4-6 <target architecture> Code Generation Options (continued)

Option Description

- pm ps64pfp Generate code identical to MIPS64 except that
paired floating point registers are assumed.

- pm ps64dfp Generate code identical to MIPS64 except 64-bit
floating point registers are assumed, so
odd-numbered registers may be used.

Assembly Optimizer Options

- p=<X> Selectively skip processor-specific
optimizations

Table 4-7 Processor-Specific Assembly Optimizations

<X> Processor-Specific Optimization

d Delay slot filling
I Location tracking
n Register renaming

r Copy propagation

- s<net hod> Set the peephole scheduling method

Table 4-8 Peephole Scheduling Methods

Method Description

S Spread dependent instructions

c Compress floating point instructions

b Both spread and compress (default except for
4700)

n No reordering of instructions (not
recommended)

-t[=] <nun» Specify target processor family

Table 4-9 Assembly Optimizer Processor Numbers

Number Assembly Optimizer Target

1 Generic MIPS Processor (default)
2 MIPS3000

3 MIPS64

4 IDT4650

5 IDT4700

6 TX3900

MICROWARE SOFTWARE

For More Information
See MIPS Processor-Specific Optimizations on page 175. for more
information.

Linker Options

-t=<target> Linker, specify target module type

Table 4-10 Target Module Type

Target Module Type

0s9k_m ps 0S-9 for MIPS

C/C++ Application Binary Interface
Information

Register usage, passing arguments to functions, callee saved registers,
and language features are described in this section.

Register Usage

General purpose, floating point, and other registers are defined in this
section. The register classes are listed and explained below.

» General Purpose Registers (GPRS)
* Floating Point Registers (FPRS)

* Multiply/Divide HI Register

e Multiply/Divide LO Register

Table 4-11 General Purpose Registers

Register Name Description $ Syntax

zero Constant zero $0

AT Compiler temporary $1

v0, vl Function return (allows for $2, $3
64-bit)

a0 - a3 Incoming args $4 - $7

to - t7 Temporaries $8 - $15

sO - s7 Saved temporaries $16 - $23

MICROWARE SOFTWARE

Table 4-11 General Purpose Registers (continued)

Register Name Description $ Syntax
t8, t9 Register variables and $24, $25
compiler temporaries
ko, k1 Exception handling $26, $27
ap Global data pointer $28
sp Stack pointer $29
cp Constant Data Pointer $30
ra Return Address $31

* |If register is not in use for above-stated use, may be used for integral user
register variables and compiler temporaries.

T $30 is used to access const qualified data in the code area of the module.
This is accomplished by using the register $30 as a biased (by 32K- 16
[0x7ff0] bytes) pointer to the code area data. $30 is automatically
initialized by the kernel for program modules. Non-program modules must
either set $30 up themselves or use the back end option - pg to generate
the code to set $30 up for each function that needs it.

The values in vO, v1, a0 through a3, t O throught9, vO, and v1
need not be preserved across a function call. That is, a function is safe
to use these registers without saving and restoring their values.

The compiler does not use at, kO, or k1.

The compiler uses the remainder of the integral registers for integral
user register variables and compiler temporaries.

Floating Point Registers

Table 4-12 Floating Point Registers

MIPS/MIPS32/

MIPS64/4DFP

4PFP Register Register Description
fo/fl fo Floating point return value
f2/f3-110/f11 f2-f11 Floating point register
variables and temporaries
f12/f13 f12 1st floating point argument
passed
f14/f15 f14 2nd floating point
argument passed
fl Floating point register
variable and temporary
f13 Floating point register
variable and temporary
f15 Floating point register
variable and temporary
fi16/f17-f18/f19 f16-f19 Floating point register
variables and temporaries
f20/f21-f30/f31 f20-f31 Floating point register

variable

MICROWARE SOFTWARE

Only the even-numbered registers are used for argument passing (f 12
and f 14) and function return (f 0). For targets that have 64-bit floating
point registers, the following odd-numbered register is used as a
temporary.

When not in use for argument passing, any of f 12 through f 15 may be
used as temporary register variables.

Functions may use the values in f O through f 19 without
saving/restoring them for the functions' callers; a function must save
them if they are expected to maintain their values across a call to a
function.

Note

If you are compiling a driver, file manager, ticker, or other system
component that uses floating-point and you get unresolved references
to the symbols below you can resolve the references by adding the
following floating-point values to your module.

const double _ zero[] = {0.0, 0.0};
const float _ _float_pos_1 = 1.0;
const float _ float_neg_1 = -1.0;

const float _ float_2 pow 31 = ((fl oat)0x8000) * 0x10000;
const float _ float_2 pow 32 ((fl oat)0x10000) * 0x10000;

const float _ float_2 pow 63 ((fl oat)0x8000) * 0x10000 * 0x10000 *
0x10000;

const float _ float_2 pow 64
0x10000;

((f1oat)0x10000) * 0x10000 * 0x10000 *

const double _ double_pos_1 = 1.0;

const double _ double_neg 1 = -1.0;

const double _ double_2_pow 31 = ((doubl e) 0x8000) * 0x10000;
const double __ double_2 pow 32 ((doubl e) 0x10000) * 0x10000;

const double __double_2 pow 63 ((doubl e) 0x8000) * 0x10000 * 0x10000
* 0x10000;

const double _ _double_2 pow 64 = ((doubl e) 0x10000) * 0x10000 * 0x10000
* 0x10000;

These values should be compiled to a ROF (.r) file. This ROF file
should be included on the link line directly after the root psect (e.g.
fmstart.r, drvstart.r, etc.). Because these values are accessed with
16-bit offsets, they must appear early in the link statement to be easily
accessible from the CP.

Special Purpose Registers

The multiply/divide HI and LOregisters are used by the compiler when
performing multiplication, division, and modulus operations.

Any co-processor registers are available for hand-written assembly
language use, although values may need to be saved and restored.

Passing Arguments to Functions

When an argument is passed to a called function, the argument is in
one of two places, in a register or in the Output Parameter Area (OPA)
of the calling function.

The called function determines the location of the argument by
argument type and the order specified in the argument list.

For this discussion:

* Anintegral argument is an argument of type i nt , a pointer, or a
char orshort convertedtoani nt.

» A floating point argument is an argument of type doubl e or a
f | oat converted to a double.

There are four integral registers used for parameter passing: $4 through
$7, inclusive. Two registers are available for floating point argument
passing: f 12 and f 14 (and their paired registers on appropriate
processors).

The OPA is also used to pass arguments (when the registers have been
exhausted). Figure 4-1 illustrates a stack frame for a function.

MICROWARE SOFTWARE

The link area is allocated by the caller as a location where the function
can store its link register and current stack pointer (before additional
allocation occurs).

Figure 4-1 Stack Frame for a Function

Higher Addresses

Caller's Stack Frame

Link area (8 bytes)
Allocated by Caller

Register Save Area

Automatics Not in Registers Function Stack

Frame

Output Parameter Area

Stack Pointer—— Link Area (8 bytes)
for Child Function

Lower Addresses

The basic algorithm the compiler uses to pass arguments is as follows:

if function returns a struct
put address of struct return area into first integral passing register
while still nore argunents
if parameter is part of variable argunents
put argument into next position in OPA
else if paraneter is a struct
copy struct into next position in OPA
el se
if argunent is integra
if an integral passing register is available
put argument into integral register
el se
put argument into next position in OPA
else if argunment is floating-point
if a floating-point passing register is available
put argument into floating-point register
el se
put argunment into next position in OPA
advance to next argunent

The OPA is filled from lowest address to highest address.

Struct arguments and parameters that comprise the variable arguments
to a variable argument function are always passed on the OPA. If a
function is to return a value, an integral return value is returned in $2 or
a floating point return value is returned in f 0. If a function is to return a
struct, the address of a return area is passed as the first integral
argument, in $4.

C Language Features

In conformance with the ANSI/ISO C specification, the
implementation-defined areas of the compiler are listed in this section.
Each bulleted item contains one implementation-defined issue. The
number in parentheses included with each bulleted item indicates the
location in the ANSI/ISO specification where further information is
provided.

For More Information

Other implementation-defined areas are included in the Using Ultra
C/C++ manual and the Ultra C Library Reference manual. Refer to an
ANSI/ISO specification for more information.

Characters

*« The number of bits in a character in the execution character set
(5.2.4.2.1).

There are eight bits in a character in the execution character set.

MICROWARE SOFTWARE

Integers

* The representations and sets of values of the various integer types
(6.1.2.5).

Table 4-13 Integer Type/Range

Minimum /

Type Representation Maximum

char,si gned 8-bit 2's complement -128 /

char 127

unsi gned 8-bit binary 0/

char 255

short int 16-bit 2's complement - 32768 /
32767

unsi gned 16-bit binary 0/

short int 65535

i nt 32-bit 2’'s complement -2147483648 /
2147483647

unsi gned 32-bit binary 0/

I nt 4294967295

| ong int 32-bit 2’'s complement -2147483648 /
2147483647

unsi gned 32-bit binary 0/

long int 4294967295

Table 4-13 Integer Type/Range (continued)

Minimum /
Type Representation Maximum
| ong | ong * 64-bit 2’'s complement _063
263 -1
unsi gned 64-bit binary 0/
|l ong | ong * 204 .1

* MIPS64 targets only (MIPS-III ISA required). | ong | ong is not a part of the
current ANSI standard.

The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented (6.2.1.2).

When converting a longer integer to a shorter signed integer, the
least significant <n> bits of the longer integer are moved to the
integer of <n> bits. The resulting value in the smaller integer is
dictated by the representation. For example, if the conversion is from
i nt to short, then the least significant 16 bits are moved from the
i nt tothe short. This value is then considered a 2's complement
16-bit integer.

When conversion from unsigned to signed occurs with equally sized
integers, the most significant bit becomes the sign bit. Therefore, if

the unsigned integer is less than 0x80000000, the conversion has
no affect. Otherwise, a negative number results.

The sign of the remainder on integer division (6.3.5).

The result of an inexact division of one negative and one positive
integer is the smallest integer greater than or equal to the algebraic
guotient.

The sign of the remainder on integer division is the same as that of
the dividend.

MICROWARE SOFTWARE

Floating Point

The representations and sets of values of the various types of
floating-point numbers (6.1.2.5).

Table 4-14 Floating Point Number Characteristics

Minimum /

Type Format Maximum

float 32 bit IEEE 754 1.17549435e- 38f /
3.40282347e38f

double 64 bit IEEE 754 2.2250738585072016e- 308 /
1.7976931348623157e308

long double 64 bit IEEE 754 2.2250738585072016e- 308 /

1.7976931348623157e308

Refer to the f | oat . h header file for other limits and values.

Arrays and Pointers

The type of integer required to hold the maximum size of an array.
That is, the type of the size of operator, si ze_t (6.3.3.4, 7.1.1).

Anunsi gned | ong int isrequired to hold the maximum size of
an array. unsi gned | ong int isdefinedassize_t in
ansi _c. h.

The result of casting a pointer to an integer or vice versa (6.3.4).

Since pointers are treated much like unsigned long integers, the
integer will be promoted using the usual promotion rules to an
unsigned long. That is, the sign bit propagates out to the full 32-bit
width.

The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdi ff _t (6.3.6, 7.1.1).

Asigned | ong i nt isrequired to hold the difference between two
pointers to elements of the same array. | ong i nt is defined as
ptrdiff_t inansi_c.h.

Registers

* The extent to which objects can actually be placed in registers by
use of the register storage-class specifier (6.5.1).

The compiler automatically makes decisions about what objects are
placed in registers, thus giving no special storage considerations for
the register storage-class.

Structures, Unions, Enumerations, and Bit-Fields

* The padding and alignment of members of structures (6.5.2.1). This
should present no problem unless binary data written by one
implementation are read by another.

MICROWARE SOFTWARE

Table 4-15 shows the alignment of the various objects within a
structure. Required padding is supplied if the next available space is
not at the correct alignment for the object. For example, a structure
declared as:

struct {
char memt,
| ong nent;
1

would be an eight byte structure, one byte for mem1, three bytes of
padding to get mem?2 to four byte alignment, and four bytes for
mem2.

Table 4-15 Alignment Table

Type Alignment Requirement
char 1
short 2
i nt 4
| ong 4
l ong | ong 8
poi nters 4
fl oat 4
doubl e 8

| ong doubl e 8

Whether “plain” i nt bit field is treated as a signed i nt or as an
unsigned i nt bit field (6.5.2.1).

A “plain” i nt bit field is treated as a signed i nt bit-field.

The order of allocation of bit fields within a unit (6.5.2.1).

Bit fields are allocated from most significant bit to least significant
bit.

Whether a bit field can straddle a storage-unit boundary (6.5.2.1).

Bit fields are allocated end-to-end until a non-bit field member is
allocated or until that positioning would cross an addressable
boundary such that no object of an integral type could both contain
the bit field and be correctly aligned.

The integer type chosen to represent the values of an enumeration
type (6.5.2.2).

Enumvalues are represented in 32-bit two’s complement integers.

Preprocessing Directives

Whether the value of a single-character character constant in a
constant expression that controls inclusion matches the value of the
same character constant in the execution character set. Whether
such a character constant may have a negative value (6.8.1).

The value of a single-character character constant in a constant

expression that controls inclusion matches the value of the same
character constant in the execution character set. This character
constant may have a negative value.

The method for locating includable source files (6.8.2).

This method is described in the Using the Executive chapter of the
Using Ultra C/C++ manual.

The support of quoted names for includable source files (6.8.2).
Quoted names are supported for #include preprocessing directives.

The mapping of source file character sequences (6.8.2).

The mapping of source file character sequences is one-to-one. The
case-sensitivity of file names depends on the file system being used.

MICROWARE SOFTWARE

_asm() Register Pseudo Functions

_asm() uses registers pseudo functions as identified in Table 4-16.

Table 4-16 _asm() Register Pseudo Functions

Register Description
__reg_gen Any non-dedicated integer register
__reg_fl oat Any non-dedicated floating point register (single or
pair)
__reg_<n> The register specified by $<n>, <n> is 1 to 31
__reg_zero Constant zero register; equivalentto __reg 0
__reg_at Compiler temporary register; equivalentto __reg_1
__reg_v<n> The register specified by v<n>, <n> is 0 or 1;
equivalent to
__reg_<N> where <N>is 2 or 3
__reg_a<n> The register specified by a<n>, <n> is 0 to 3;
equivalent to
_reg <N> when Nis 4 to 7
__reg_t<n> The register specified byt <n>, <n> is 0 to 9;
equivalent to
__reg_<N> where Nis 8 to 15, 24, or 25
__reg_s<n> The register specified by s<n>, <n> is 0 to 7;
equivalent to
reg<N> where Nis 16 to 23
__reg_k<n> The register specified by k<n>, <n> is 0 or 1;

equivalent to
__reg_<N> where Nis 26 or 27

Table 4-16 _asm() Register Pseudo Functions

Register Description

__reg_gp Global pointer register; equivalentto __ reg_28
__reg_sp Stack pointer register; equivalentto __reg_29
__reg_cp Constant pointer register; equivalentto __reg_30
_reg_ra Return address register; equivalentto __reg 31
__reg_recall Retrieves the register object specified by a previous

pseudo-function.

__reg_hi The register containing the most-significant bits of a
register pair (odd register); used in conjunction with
__reg_recall and __reg_fl oat

_reg_lo The register containing the least-significant bits of a
register pair (even register); used in conjunction with
__reg_recall and__reg fl oat

__call Used to inform the compiler of the intention to call a
subroutine from withinan _asm() ;
example:" _reg_ra(__call())"

__reg_call ee_save[d] Any callee-saved general purpose register

__reg_caller_save[d] Any caller-saved general purpose register

The reg_recall, _ reg _hi,and__reg_| o pseudo-functions
are used in a different manner than the other pseudo-functions.

The user may recall a previous _asmargument whose value is a
register using the __reg_recal | () pseudo-function, in conjunction
withone of __reg_gen() or _reg_float().__reg_recall ()
takes one integer argument, the ordinal number of the argument it is to
duplicate; it should be specified as the argumentto __reg_gen() ifit
Is to return an integer register or __reg_fl oat () ifitisto return a
floating point register. See the next item for an example of its usage.

MICROWARE SOFTWARE

__reg_hi () or__reg_l o() may be used to extract either the most
significant half or the least significant half, respectively, of a paired
floating point register. The user normally calls __reg fl oat () to
reserve the register in question, thenuses __reg_hi () or

__reg_l o() inconjunctionwith __reg_recal | () toreference either
half. The following example uses __reg_f 1 oat () to allocate a register

pairand __reg_hi () and __reg_Il o() to access the individual
registers.

_asm(”
swcl o%d, 0(93)
swcl w2, 4(938)

__reg_float(a),
_reg_hi(__reg_float(__reg_recall(0))),
_reg lo(__reg float(__reg_recall (0))),
__reg_gen(&b));

MIPS Processor-Specific Optimizations

In addition to providing the standard generic assembly optimizations,
the Ultra C/C++ MIPS assembly optimizer (opt m ps), provides
processor-specific optimizations. These are:

Special Common Sub-Expressions
Delay Slot Filling

Copy Propagation

Register Renaming

Instruction Scheduling

For More Information

The Using Ultra C/C++ manual contains additional information on
assembly level optimizations.

Special Common Sub-Expressions

On the MIPS architecture, certain constants are more expensive to
work with than others. To account for this, the common sub-expression
elimination optimization is performed on expressions involving
potentially expensive constants. These include the following:

The computation of all floating point constants as none of the
floating point instructions allow for floating point immediates.

The computation of integer constants that require two or more
instructions. For example the constant Oxffeeffee. The constant
oxf f f f f f ee would not be considered.

MICROWARE SOFTWARE

Delay Slot Filling

The assembly optimizer attempts to fill the delay slots of those
instructions that have them with useful instructions (in an attempt to
reduce code size and/or increase code efficiency). To do this, it looks for
a movable instruction in the series of preceding instructions or, in some
cases, the following or destination instructions. If the delay slot cannot
be filled with a useful instruction, it is either left alone or, in the case of
unconditional branches, the delay slot is removed altogether.

Copy Propagation

The assembly code optimizer tries to eliminate needless copies
between register temporaries; resulting in smaller, more efficient code.
For example:

| w $4, =x($28)
nop

nove $8, $4
addiu $8, $8, -1
bne $8, $0, =$L1
nop

This may be changed to the following:
I w $8, =x($28)
nop
addiu $8,%$8,-1

bne $8, $0, =$L1
nop

Register Renaming

In an effort to conserve registers, the back end often generates code
using the same temporary register in sequential instructions, much to
the dismay of the instruction scheduler. The assembly optimizer uses
different registers when possible to help itself schedule better. For

example:

* conpute w+= X +y + z
| w $8, =x+0($28)
nop

| w $9, =y+0($28)
nop

addu $8, $8, $9

| w $9, =z+0($28)
nop

addu $8, $9, $8

| w $9, =w+0($28)
nop

addu $9, $9, $8
sw $9, =w+0($28)

This may be changed to the following:

| w $8, =x+0($28)
| w $3, =y+0($28)
lw $1, =z+0($28)
| w $9, =w+0($28)
addu $8, $8, $3
addu $8, $1, $8
addu $9, $9, $8
sw $9, =w+0($28)

The use of different registers allows for more freedom in instruction

scheduling.

MICROWARE SOFTWARE

Instruction Scheduling

Instruction scheduling is usually performed in an effort to increase
generated code speed. This involves spreading dependent instructions
to eliminate any latencies between them. For the MIPS, instruction
scheduling is also important to ensure proper execution. Some MIPS
targets contain pipeline hazards which are not guarded by hardware
interlocks. For example, on many MIPS3000 architectures there is a
one-cycle delay on the availability of the destination register for a load.
The backend inserts nop instructions into these delay slots. The
assembly optimizer attempts to fill these delay slots with useful
instructions when possible.

Other recognized hazards may include: multiply/divide instructions and
those that access the Hl and LOregisters, floating point comparisons,
integer/floating point moves, and integer/control register moves.

Assembler/ Linker

The assembler allows use of standard MIPS assembly language
mnemonics and syntax, modified as described in this section. For more
specific information about individual instructions, consult the following
books:

* IDT R30xx Family Software Reference Manual

o IDT79R4640 and IDT79R4650 RISC Processor Hardware User's
Manual

e IDT79R4600 and IDT79R4700 RISC Processor Hardware User's
Manual

ROF Edition Number

The MIPS assembler emits ROF Edition #15.

External References

The MIPS assembler allows the use of external references with any
operators within any expression fields not defined to be constant
expression fields.

Symbol Biasing

The linker does not bias code or data symbols for system, file
managers, device drivers, device descriptors, or data modules. For all
other types of modules, or for raw code, the linker biases both code and
data symbols by - 32752 (- 0x7f f 0) . Initialization routines for raw
code should ensure that the static storage pointer ($28) and constant
storage pointer ($30) are initialized with the proper base addresses,
adjusted to account for this biasing.

MICROWARE SOFTWARE

Assembler Syntax Extensions and Limitations

The Ultra C Compiler's adaptation of the MIPS instruction syntax has a
few notable differences from what is defined in MIPS architecture
manuals.

All Microware assemblers use the space character as the comment
delimiter. As a result, the operand stream must not include any
spaces.

The MIPS instruction set limits immediates to 16-bit signed and
unsigned values. To allow for manipulation of 32-bit immediate data,
the following operators are available in the MIPS assembler:

hi (x) = x >> 16 /* upper 16 bits */
high(x) = (x >> 16) + ((x >> 15) & 1) [/* upper 16 bits + sign bit of [ower 16 */
1 o(x) = X & 0x0000ffff /* lower 16 bits */

The following code moves the 32-bit value represented by Synbol
into GPR a0:

| ui a0, hi (=Synbol)

ori a0, a0, | o(=Synbol)

If Symbol represents the offset of x from GPR gp, then the following
code moves the 32-bit address of x int a0:

[ui a0, hi gh(=Synbol)

addu a0, a0, gp

add a0, a0, | o(=Synbol)

Alternatively, the value of x can be loaded into a0 as follows:
| ui a0, hi gh(=Synbol)

addu a0, a0, gp

| w a0, | o(=Synbol) (a0)

In addition to the MIPS instruction set, the Microware Ultra C/C++
MIPS assembler also accepts the synthetic instructions specified in
Table 4-17.

Table 4-17 MIPS Assembler Synthetic Instructions

Synthetic Instruction MIPS Instruction

1 or regd regl, zero

nove regY reg
b | abel beq zero, zero, | abel

bal | abel bgezal zero, | abel

MICROWARE SOFTWARE

Stack Checking

This section provides MIPS-specific information about stack checking.
Refer to Using Ultra C/C++ for more general information on stack
checking.

If stack checking is inappropriate for the module being created, you will
need to define the following items:

* aglobal pointer called _st bot (initialized to ULONG_MAX if possible)
» afunction called _st khandl er (it returns to its caller)

A function called _st kover f | owis called when the stack appears to
overflow. If a non-static function called _st kover f | owresides in an
ROF that is linked to make the object module, that function is called
instead of the default function. The default function writes a message to
the standard error path and causes the program to exit with a status of
one. _st kover fl owneither accepts parameters nor returns a value.

i Note

If st koverf | owis inappropriate for your application, consider writing
a function to handle stack overflow.

_st khandl er, the function that checks for stack overflow, can be
revised. Revision may be necessary if stack checking is inapplicable to
the module that calls the library functions. _st khandl er () is passed
the desired stack pointer in r 3 and does not return a value.

i Note

Stack handler code must be compiled with stack checking turned off
(-r inucc mode).

Chapter 5: Pentium and 80x86

This chapter provides information specific to the Pentium processor and
the 80x86 family of processors. The following sections are included:

» Executive and Phase Information

e C/C++ Application Binary Interface Information

« _asm() Register Pseudo Functions

e Span Dependent Optimizations

» Assembler/ Linker

* Assembly Language Mnemonics

RadiSys.

MICROWARE SOFTWARE

MICROWARE SOFTWARE

Executive and Phase Information

This section describes the Executive -t p option, predefined macro
names for the preprocessor, and Pentium- and 80x86-unique phase
option functionality.

Executive -tp Option
-tp[=] <target> Specify the target processor.

Table 5-1 Target Processors

<target> Target Processor
80386 180386

386 180386

80486 180486

486 180486

pS Pentium

Table 5-2 -tp Sub-Options

<suboptions> Description

sd Use 8 bit data references

l d Use 32 bit data references (default)

Predefined Macro Names for the Preprocessor

The macro names in Table 5-3 are predefined in the preprocessor for
target systems.

Table 5-3 Macros

Macro Description

_FPF387 80387 floating point target coprocessor family
_IMPF386 80386 target processor

_IMPF486 80486 target processor

_MPFP5 Pentium target processor

Target names specify the compiler to use when writing machine- and
operating system-independent programs.

The executive defines the _MPF macro for the target processor as well
as any processors that are generally considered subsets of the target
processor. Table 5-4 provides a few examples of this behavior.

For more information on which macros are defined for Pentium and
80x86 target processors, run the executive in verbose and dry run
modes, stopping after the front end. For example, to check the defines
for the p5 (Pentium) target (source file not required):

cc -b -h -efe -tp=p5 t.c
This causes the executive to print a line similar to:

"cpfe -m--target=1 -1\ mws\ SRC\ DEFS

-1\ mvos\ OS9000\ SRC\ DEFS - |\ mwos\ OS9000\ 80386\ DEFS
--translate _nanmes 2 -D UCC -D MAJOR REV=2

-D_M NOR_REV=5 -D SPACE FACTOR=1 -D Tl ME_FACTOR=1
-D _0S9000 -D MPFP5 -D MPF486 -D MPF386 -D FPF387

-D LIL_END -D__LONGLONG BI T=64 -w - - Ext ended_ANSI

--gen_c _file nanme=t.i t.c"

MICROWARE SOFTWARE

m§— Note

Note that _MPFP5, MPF486, and MPF386 macros are defined.

The _MPF386 macro indicates that a source file is being compiled for
an Intel 80x86 family target.

Table 5-4 identifies the relationship between the target processor and
the preprocessor macros.

Table 5-4 _MPFxxx Macro Behavior

Target Microprocessor Macros Defined
80386 _MPF386

80486 _MPF486, _MPF386
Pentium _MPFP5, MPF386

80x86-Unique Phase Option Functionality

Phases having unique phase option functionality on the 80x86
processor are:

 Back End Options
* Assembly Optimizer Options
e Assembler Options

* Linker Options

Back End Options

Options identified in the following table are available for the back end.

Table 5-5 Information Options

Option Description

- pd Clear the direction flag at function entry

- pg Do not use data area to calculate code area addresses
- ps Do not emit stack checking code

- p5 Emit code for Pentium processor

Assembly Optimizer Options

-t [=] <nun» Specify Target Processor Family

Table 5-6 Assembly Optimizer Processor Numbers

Number Assembly Optimizer Target
1 80386
2 486

3 Pentium

MICROWARE SOFTWARE

- s<net hod> Set the peephole scheduling method

Table 5-7 Peephole Scheduling Methods

Method Description

S Spread dependent instructions

c Compress floating point instructions
n No reordering of instructions

Assembler Options

-b Optimize Branch Sizing
- nknunp Specify Microprocessor

Table 5-8 Microprocessor

Number Description
80386 80386 processor (default)
8086 8086 processor

Linker Options
-t =<t arget > Specify target module type

Table 5-9 Target Module Type

Target Module Type

0s9k 386 0OS-9 for x86

C/C++ Application Binary Interface

Information

This section describes the register usage, passing arguments to
functions, and language features.

Register Usage

The compiler uses registers identified in Table 5-10.

Table 5-10 Register Usage

Register

Description

eax

ebp
ebx
ecx
edi

edx
esi

esp

stO

Function argument/return register, temporaries,
and register variables

Frame pointer

Global static storage pointer
Temporaries and register variables
Temporaries and register variables
Temporaries and register variables
Temporaries and register variables
Stack pointer

80387 stack top; float/double return register

MICROWARE SOFTWARE

Passing Arguments to Functions

When arguments are passed to a called function, the argument resides
in one of two places, in a register or on the stack.

The called function determines the location of the argument by the
following argument type and the order specified in the argument list.

For this section, the following statements are assumed:

* Anintegral argument is an argument of type i nt or poi nter or
char, orshort convertedtoanint.

* A double argument is an argument of type doubl e or f | oat
converted to doubl e.

The first integral argument is passed in eax, and the second integral
argument, if any, is pushed on the stack. A single double argument is
pushed on the stack as are remaining arguments. If the first argument is
integral and the second is double, the integral argument is passed in
eax and the double is pushed on the stack.

Any st ruct orl ong | ong arguments are copied to the next location
on the stack. Al ong | ong is pushed such that the most signifcant 32
bits appear at a higher address than the least significant 32 bits.

If a function returns a value, the integral value is returned in eax. A
doubl e (or f | oat) value is returned in st 0. If the returned value is a
st ruct, then the address of the return area is passed as an argument
to the callee in edi ; the called function copies the returned st r uct to
this location. If the return value is al ong | ong, the least significant 32
bits are returned in eax and the most significant 32 bits are returned in
edx.

C Language Features

In conformance with the ANSI/ISO C specification, the
implementation-defined areas of Ultra C/C++ are listed in this section.
Each bulleted item contains one implementation-defined issue. The

number in parentheses included with each bulleted item indicates the
location in the ANSI/ISO specification where further information is
provided.

For More Information

Other implementation- defined areas are defined in the Language
Features chapter of the Using Ultra C/C++ manual and the Overview
chapter of the Ultra C Library Reference manual. Refer to an
ANSI/ISO specification for more information.

Characters

* The number of bits in a character in the execution character set
(5.2.4.2.1).

There are eight bits in a character in the execution character set.

Integers

* The representations and sets of values of the various integer types
(6.1.2.5).

Table 5-11 Integers

Minimum /
Type Representation Maximum
char, si gned char 8-bit 2's -128 /
complement 127
unsi gned char 8-bit binary 0/

255

MICROWARE SOFTWARE

Table 5-11 Integers

Minimum /
Type Representation Maximum
short int 16-bit 2’s - 32768 /
complement 32767
unsi gned short int 16-bit binary 0/
65535
i nt 32-bit 2's -2147483648 /
complement 2147483647
unsi gned i nt 32-bit binary 0/
4294967295
| ong i nt 32-bit 2's -2147483648 /
complement 2147483647
unsi gned | ong int 32-bit binary 0/
4294967295
l ong | ong 64-bit 2’s _063 4
complement 263 _ 1
unsi gned | ong | ong 64-bit binary 0/
264 -1

* The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented (6.2.1.2).

When converting a longer integer to a shorter signed integer, the least significant
<n> bits of the longer integer are moved to the integer of <n> bits. The resulting
value in the smaller integer is dictated by the representation. For example, if the
conversion is from i nt to short, the least significant 16 bits are moved from the
i nt to the short . This value is then considered a 2's complement 16-bit integer.

When conversion from unsigned to signed occurs with equally sized integers, the
most significant bit becomes the sign bit. Therefore, if the unsigned integer is less
than 0x80000000, the conversion has no effect. Otherwise, a negative number
results.

The Sign of the Remainder on Integer Division (6.3.5)

* The result of an inexact division of one negative and one positive
integer is the smallest integer greater than or equal to the algebraic
quotient.

The sign of the remainder on integer division is the same as that of the dividend.

Floating Point

* The representations and sets of values of the various types of
floating-point numbers (6.1.2.5).

Table 5-12 Floating Point Number Characteristics

Minimum /

Type Format Maximum

fl oat 32 bit IEEE 754 1.17549435e- 38f /
3.40282347e38f

doubl e 64 bit IEEE 754 2.2250738585072016e- 308 /

1. 7976931348623157e308

N

. 2250738585072016e- 308 /
1.7976931348623157e308

| ong doubl e 64 bit IEEE 754

Refer to the f | oat . h header file for other limits and values.

Arrays and Pointers

* The type of integer required to hold the maximum size of an array.
That is, the type of the si zeof operator, si ze_t (6.3.3.4, 7.1.1).

MICROWARE SOFTWARE

An unsi gned | ong int isrequired to hold the maximum size of an array.
unsi gned long int isdefinedassize t inansi_c. h.

The result of casting a pointer to an integer or vice versa (6.3.4).

Since pointers are treated much like unsi gned | ong integers, the integer is
promoted using the usual promotion rules to an unsi gned | ong. That is, the
sign bit propagates out to the full 32-bit width.

The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdi ff _t (6.3.6, 7.1.1).

Asigned | ong int isrequiredto hold the difference between two pointers to
elements of the same array. | ong int isdefinedasptrdiff_t inansi_c. h.

Registers

The extent to which objects can actually be placed in registers by
use of the register storage-class specifier (6.5.1).

The compiler automatically makes decisions about which objects are placed in
registers, giving no special storage considerations for the register storage-class.

Structures, Unions, Enumerations, and Bit-Fields

The padding and alignment of members of structures (6.5.2.1). This
should present no problem unless binary data written by one
implementation are read by another.

Non-character structure members and sub-structures containing non-character
members are aligned on an even byte boundary. Character structure members
have no alignment restrictions.

Whether “plain” i nt bit field is treated as a signed i nt or as an
unsigned i nt bit field (6.5.2.1).

A plaini nt bit field is treated as a signed i nt bit field.

The order of allocation of bit fields within a unit (6.5.2.1).

The bit fields are allocated from least significant bit to most significant bit.
Whether a bit field can straddle a storage-unit boundary (6.5.2.1).

Bit fields can straddle a storage unit. That is, bit fields are allocated end-to-end
until a non-bit-field member is allocated or 32-bit size is executed.

The integer type chosen to represent the values of an enumeration
type (6.5.2.2).

Enumuvalues are represented in 32-bit two’s complement integers.

Preprocessing Directives

Whether the value of a single-character, character constant in a
constant expression that controls inclusion matches the value of the
same character constant in the execution character set. Whether
such a character constant may have a negative value (6.8.1).

The value of a single-character character constant in a constant expression that
controls inclusion matches the value of the same character constant in the
execution character set. This character constant may have a negative value.

The method for locating includable source files (6.8.2).

This method is described in the Using the Executive chapter of the Using
Ultra C/C++ manual.

The support of quoted names for includable source files (6.8.2).
Quoted names are supported for #i Ncl ude preprocessing directives.

The mapping of source file character sequences (6.8.2).

The mapping of source file character sequences is one-to-one. The
case-sensitivity of file names depends on the file system being used.

MICROWARE SOFTWARE

_asm() Register Pseudo Functions

_asm() uses registers pseudo functions as identified in Table 5-13.

Table 5-13 _asm() Register Pseudo Functions

Register Description

__reg_gen Any non-dedicated 32 bit integer register

__reg_bitl6 ﬁ_ny 16-bit integer register with an accessible 8

It

_reg_bit8 Any 8-bit integer register not part of a dedicated
32-bit register

__reg_eax Individual 32-bit register

__reg_ebx Individual 32-bit integer register

__reg_ecx Individual 32-bit register

__reg_edx Individual 32-bit register

__reg_esi Individual 32-bit register

__reg_edi Individual 32-bit register

__reg_ebp Individual 32-bit register

__reg_esp Individual 32-bit register

__reg_ax Individual 16-bit integer registers

__reg._cx Individual 16-bit integer registers

__reg_dx

Individual 16-bit integer registers

Table 5-13 _asm() Register Pseudo Functions (continued)

Register Description

__reg_al AL

__reg_cl CL

MICROWARE SOFTWARE

Span Dependent Optimizations

The compiler performs branch shortening. Branch shortening reduces
the instruction size on branch instructions when the distance to the
destination is known to be within certain limits.

Assembler/ Linker

The assembler allows use of standard Intel assembly language.
However, the order of operands accepted by the assembler is:

<i nstruction> <sour ce>, <desti nati on>

For more specific information about individual instructions, refer to the
appropriate hardware manuals.

ROF Edition #9

The Pentium and 80x86 assembler supports ROF Edition #9.2.

i Note

The 386 linker will not accept ROFs/libraries created with pre-UltraC2.4
assembler/libgen.

External References

ROF Edition Number 9.2 is only capable of representing limited
expressions involving external references. These expressions can
consist only of simple addition and subtraction operations involving two
operands at most. The following expression forms involving external
references are supported. All other forms are illegal.

Ext ernal + Absol ute
External - Absol ute
Ext ernal - External

MICROWARE SOFTWARE

The linker performs subtraction by negating one operand and adding it
to the other operand. This method can cause problems on signed
values of either word or byte length as the linker may report
over/underflow errors. Therefore, expressions involving external names
should not be too complex.

For More Information

Refer to the ROF Edition Number 9 Format section in the Assembler
and Object Code Linker Overview chapter of the Using Ultra C/C++
manual.

Symbol Biasing

The linker does not bias code symbols for the 80x86/Pentium targets.
Data symbols are biased only for system, file manager, device driver,
device descriptor, and data modules. For all other module types, the
linker biases data symbols by -128 (-0x80) bytes. When generating raw
code for these processors, the linker biases data symbols by -128 bytes
as well. Initialization routines for such code should be sure to add 128 to
the base address loaded into the global static storage pointer (ebp) to
accommodate this biasing.

Assembly Language Mnemonics

Table 5-14 Assembly Language Mnemonics

Mnemonic Description

aaa ASCII adjust after addition

aad ASCII adjust before division

aam ASCII adjust after multiplication

aas ASCII adjust after subtraction

adc Add with carry

add Add integers

and Logical AND

ar pl Adjust requested privilege level

bound Check array index against register and then bounds in
memory

bsf Bit scan forward

bsr Bit scan reverse

bt Bit test

bt c Bit test and complement

btr Bit test and reset

MICROWARE SOFTWARE

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description

bt s Bit test and set

cal | Call a procedure

cbw Convert byte to word

cdq Convert dword to qword

clc Clear the carry flag

cld Clear the direction flag

cli Clear the interrupt flag

clts Clear the task-switched flag

cnc Complement the carry flag

cnp Compare. The first operand must be a register or
immediate. The second operand must be a register or
memory.

cnps Compare string

cwd Convert word to dwor d

cwde Convert word to dwor d

daa Decimal adjust after addition

das Decimal adjust after subtraction

dec Decrement

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description

div Unsigned divide

ent er Create stack frame

hi t Halt

i div Signed divide

i mul Signed multiplication
in Input from a port

I nc Increment

i ns Input string

I nt Call to interrupt procedure
into Interrupt on overflow

i ret Return from interrupt
ja Jump if above

j ae Jump if above or equal
jb Jump if below

j be Jump if below or equal
jcC Jump if carry

j Xz Jump if CS ==

Table 5-14 Assembly Language Mnemonics (continued)

MICROWARE SOFTWARE

Mnemonic Description

je Jump if equal

j ecxz Jump if ECX ==

jg Jump if greater than

| ge Jump if greater than or equal
jl Jump if less than

jle Jump if less than or equal
jm Jump

j na Jump if not above

] nae Jump if not above or equal
j nb Jump if not below

j nbe Jump if not below or equal
j nc Jump if not carry

| ne Jump if not equal

j ng Jump if not greater than

j nge Jump if not greater or equal
j nl Jump if not less than

jnle

Jump if not less than or equal

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description

j no Jump if no overflow

j np Jump if not parity

j ns Jump if not sign

j nz Jump if not zero

jo Jump if overflow

ip Jump if parity

j pe Jump if parity even

j po Jump if parity odd

js Jump if sign

]z Jump if zero

| ahf Load flags into AH register
| ar Load access rights

| ds Load DS segment register
| ea Load effective address

| eave Procedure exit

| es Load ES segment register
I fs Load FS segment register

MICROWARE SOFTWARE

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description

| gdt Load global descriptor table

I gs Load GS segment register

[dt Load interrupt descriptor table
[l dt Load local descriptor table

| msw Load machine status word

| ock Bus lock

| ods Load string

| oop Loop control while ECX counter not zero
| oope Loop while equal

| oopne Loop while not equal

| oopnz Loop while not zero

| oopz Loop while zero

| sl Load segment limit

| ss Load SS segment register
[tr Load task register

nov Move data

novs Move string

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description

MOV SX Move with sign extension
novzx Move with zero extension
mul Unsigned multiplication
neg Negate (two’s complement)
nop No operation

not Negate (one’s complement)
or Logical inclusive OR

out Write to port

outs Output string

pop Pop a word from the stack
popa Pop all registers off stack
popf Pop from stack into flags
push Push onto the stack

pusha Push all onto stack

pushf Push flags onto stack

rcl Rotate left through carry

rcr

Rotate right through carry

MICROWARE SOFTWARE

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description

rep Repeat

repe Repeat while equal
repne Repeat while not equal
repnz Repeat while not zero
repz Repeat while zero

ret Return

r ol Rotate left

ror Rotate right

sahf Store AHregister into flags
sal Shift arithmetic left

sar Shift arithmetic right
sbb Subtract with borrow
scas Scan string

seta Set byte above

set ae Set byte above or equal
setb Set byte below

set be Set byte below or equal

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description

sete Set byte equal

setg Set byte greater than

set ge Set byte greater than or equal
set| Set byte less

setle Set byte less than or equal
setz Set byte zero

set na Set byte not above

set nae Set byte not above or equal
set nb Set byte not below

set nbe Set byte not below or equal
set ne Set byte not equal

set ng Set byte not greater than

set nge Set byte not greater than or equal
set nl Set byte not less than

setnle Set byte not less than or equal
set no Set byte no overflow

set np Set byte not parity

Table 5-14 Assembly Language Mnemonics (continued)

MICROWARE SOFTWARE

Mnemonic Description

setns Set byte not sign

set nz Set byte not zero

seto Set byte overflow

setp Set byte parity

set pe Set byte parity even

set po Set byte parity odd

sets Set byte sign

sgdt Store global descriptor table
shl Shift logical left

shl d Double precision shift left
shr Shift logical right

shrd Double precision shift right
si dt Store interrupt descriptor table
sl dt Store local descriptor table
SMBW Store machine status word
stc Set carry flag

std Set direction flag

Table 5-14 Assembly Language Mnemonics (continued)

Mnemonic Description

sti Set interrupt flag

st os Store string

str Store task register

sub Subtract

t est Logical compare

verr Verify a segment for reading
verw Verify a segment for writing
wai t Wait for coprocessor

xchg Exchange

x| at Table look-up translation
Xor Logical exclusive OR

Table 5-15 Floating Point Mnemonics

Mnemonic Description
f abs Absolute value
f add Addition

faddp Addition

Table 5-15 Floating Point Mnemonics (continued)

MICROWARE SOFTWARE

Mnemonic Description

fbld BCD load

fbstp BCD store and pop
fchs Change sign

fcom Compare

fcomp Compare

f conpp Compare

fcos Cosine

f decstp Decrement stack pointer
fdiv Division

fdivp Division

fdivr Division reverse
fdivrp Division reverse

ffree Free register

fincstp Increment stack pointer
fld Real load

fldl Load 1

fldc

Load control word

Table 5-15 Floating Point Mnemonics (continued)

Mnemonic Description

fl denv Load environment
fldl2e Load log,e
fldl2t Load log,10
fldlg2 Load logq2
f1dln2 Load logg2

fldpi Load &

fldz Load zero

f mul Multiply

fmul p Multiply

fncl ex Clear exceptions
fninit Initialize processor
fnop No operation
fnsave Save state

fnstc Store control word
fnst env Store environment
fnsts Store status word

f pat an Partial arctangent

Table 5-15 Floating Point Mnemonics (continued)

MICROWARE SOFTWARE

Mnemonic Description

f prem Partial remainder
fpreml Partial remainder (IEEE)
f ptan Partial tangent
frndi nt Round to integer
frstor Restore state

fscal e Power of two scaling
fsin Sine

fsi ncos Sine and cosine
fsqrt Square root

f st Real store

fstp Real store and pop
fsub Subtraction

f subp Subtraction

f subr Subtraction reverse
ftst Test

fucom Unordered compare

fuconp

Unordered compare

Table 5-15 Floating Point Mnemonics (continued)

Mnemonic Description

fuconmpp Unordered compare

f xam Examine

fxch Exchange registers

fxtract Extract exponent and significand
fyl 2x y * | ogox

fyl 2xpl y * logy(x + 1)

f2xml X _ 1

If stack checking is inappropriate for the module being created, define
the following:

e 32-bitglobal called _st kl i m t (initialized to a large positive value if
possible)

* Function called _st khandl er that just returns to its caller

A function called _st kover f | owis called when the stack appears to
overflow. If a non-static function called _st kover f | owresides in an
ROF that is linked to make the object module, that function is called
instead of the default function. The default function writes a message to
the standard error path and causes the program to exit with a status of
one. _st kover f| owneither accepts parameters nor returns a value.

Note
If st koverfl| owis inappropriate for your application, consider writing
a function to handle stack overflow.

MICROWARE SOFTWARE

The function that checks for stack overflow, _st khandl| er, may be
revised. This may be necessary if stack checking is inapplicable to the
module that calls the library functions. _st khandl er () neither
accepts parameters nor returns a value.

The following source files (Default Stack Handler Function and Default
Stack Overflow Message and Exit) contain the code for the stack
checking and error exiting routines for 80x86.

Note
Stack handler code must be compiled with stack checking turned off
(-r inucc mode).

Default Stack Handler Function

/* typedef to the 1 byte unit so pointer arithmetic is easy */
typedef unsigned char byte

static byte *__asm get_stack(); /* get current stack pointer */
static void __asm put_stack(byte *);/* set current stack pointer */

/*
_stkhandl er ()
Checks for stack overflow _stklimt will be set with the negative
val ue of the number of bytes that the function needs. This function
does not take too much advantage of old information in the gl obals
because ol d stack checki ng code does not update it.

*/

voi d _stkhandl er ()

{

byte *sp; /* stack pointer */

/*
Fi gure out what stack limt should really be
This is necessary because we nmay have gotten here after an
arbitrary number of calls to the old stack checki ng code which
only nodifies _stbot.

*/

if ((_stklimt = (sp = __asmget_stack())) - (byte *)_stbot) < 0) {
_stbot = sp;
_stklimt = 0;

if (sp <= (byte *)_ntop) { /* overflow? */
__asm put _stack(sp - 256);
_stklimt = 256;
_stkoverflow);

}
_maxstack = (byte *)_sttop - sp;/* reset maxi mumso far */
}
}
static byte *__asm get_stack(void)
{
regi ster byte *stack_ptr;
_asm(" nov.|l 9®,%d", _ reg_esp(),
__reg_gen(__obj _assign(stack_ptr)));
return stack_ptr;
}

static void __asm put _stack(new_sp)
byte *new_sp;

{
}

_asm(" nov.l 9%,9%", __reg_esp(), _ reg_gen(new sp));

MICROWARE SOFTWARE

Default Stack Overflow Message and Exit

static const char ovf[] = "**** Stack Overflow ****\n";

/*
_stkoverflow)
print a nmessage and exit
*/
void _stkoverflow()
{

/* write nessage above to stderr and exit */
u_int32 size = sizeof (ovf);

if (stderr-> flag & WRITE)
~os witeln(_fileno(stderr), (void *)ovf, &size);
_0s_exit (ECS_STKOVF) ;

Chapter 6: PowerPC

This chapter contains information specific to the PowerPC family of
processors. The following sections are included:

Executive and Phase Information

e C/C++ Application Binary Interface Information
« _asm() Register Pseudo Functions

« PowerPC Processor-Specific Optimizations

» Assembler/ Linker

* Assembly Language Mnemonics

 Extended Mnemonics

* Power Mnemonics Supported by PowerPC 601
« PowerPC 403-Specific Mnemonics

e« PowerPC 603-Specific Mnemonics
 PowerPC 602-Specific Mnemonics

» Stack Checking

MICROWARE SOFTWARE

MICROWARE SOFTWARE

Executive and Phase Information

Executive -t p enables specific options dependent upon executive
mode. Processors and sub-options for ucc and ¢89 option modes are
identified in this section.

Executive -tp Option

-tp[=] <target>{[,] <subopti ons>} Specify Target Processor
and Target Processor Options

Specify the target processor <t ar get > and target processor
sub-options. Target processors are identified in Table 6-1 and -t p
sub-options are identified in Table 6-2.

Table 6-1 Target Processor

Target Target Processor
PPC Generic PPC
403 PPC403

405 PPC405

505 MPC505

555 MPC555

601 MPC601

602 MPC602

603 MPC603

604 MPC604

Table 6-1 Target Processor (continued)

Target Target Processor
750 MPC750

821 MPC821

860 MPC860

8240 MPC8240

8260 MPC8260

Table 6-2 Mode -tp Sub-Options

Suboptions Description

sd Use 16-bit data references (default)

| d Use 32-bit data references

scd Use 16-bit const data references (default)
| cd Use 32-bit const data references

fp Use static link library for floating-point support

Predefined Macro Names for the Preprocessor

MICROWARE SOFTWARE

The macro names in Table 6-3 are predefined in the preprocessor for

target systems.

Table 6-3 Macros

Macro

Description

_ MPFPOVERPC
_MPFPPC403
_MPFPPC405
_MPFPPC505
_MPFPPC555
_MPFPPC501
_MPFPPC502
_MPFPPC603
_MPFPPC504
_MPFPPC750
_MPFPPC821
_MPFPPC860

_ MPFPPC8240

Generic PowerPC processor

PowerPC 403 processor
PowerPC 405 processor
PowerPC 505 processor
PowerPC 555 processor
PowerPC 601 processor
PowerPC 602 processor
PowerPC 603 processor
PowerPC 604 processor
PowerPC 750 processor
PowerPC 821 processor

PowerPC 860 processor

PowerPC 8240 processor

Table 6-3 Macros (continued)

Macro Description
_MPFPPC8260 PowerPC 8260 processor
_FPFPOVERPC PowerPC floating point processing

Target names specify the compiler to use when writing machine- and
operating system-independent programs.

The executive defines the _ MPF macro for the target processor as well
as any processors that are generally considered subsets of the target
processor. Table 6-4 provides a few examples of this behavior.

For more information on exactly which macros are defined for the
PowerPC processors, run the executive in verbose and dry run modes
stopping after the front end. For example, to check the defines for the
601 target (source file not required):

cc -b -h -efe -tp=601t.c

MICROWARE SOFTWARE

This causes the executive to print a line similar to:

"cpfe -t=4 -x -v=/dd/ MNOS/ SRC/ DEFS
- v=/ dd/ MADS/ GS9000/ SRC/ DEFS
- v=/ dd/ MAOS/ GS9000/ PPC/ DEFS - d_UCC - d_SPACE_FACTOR=1
-d_TI ME_FACTOR=1 -d_(S9000 -d_MPFPPC601 -d_MPFPONERPC
-d_FPFPONERPC -d_BI G END -o=t.i t.c"

Note
Note that both _MPFPPC601 and _ MPFPONERPC macros are defined.

The _MPFPOWERPC macro indicates that a source file is being compiled
for a PowerPC family target.

Table 6-4 identifies the relationship between the target processor and
the preprocessor macros. Note that specific targets also define the
subset macros (e.g., when targeting the 607, both _MPF601 and
_MPFPOVNERPC are defined).

Table 6-4 _MPFxxx Macro Behavior

Target Microprocessor Family Macros Defined
Generic PowerPC _ MPFPOVERPC

403 _MPFPOVNERPC _MPFPPC403

405 _MPFPONERPC _ MPFPPC405

505 _MPFPOVNERPC _MPFPPC505

555 _MPFPONERPC _MPFPPC555

601 _MPFPONERPC _MPFPPC601

602 _MPFPOWERPC _ MPFPPC602

Table 6-4 _MPFxxx Macro Behavior

Target Microprocessor Family Macros Defined
603 _MPFPONERPC _MPFPPC603

604 _VMPFPOVNERPC _MPFPPC604

750 _MPFPONERPC _MPFPPC750

821 _MPFPONERPC _MPFPPC821

860 _MPFPOVNERPC _MPFPPC860

8240 _MPFPONERPC _MPFPPC8240

8260 _MPFPOVNERPC _MPFPPC8260

MICROWARE SOFTWARE

PowerPC-Unique Phase Option Functionality

Phases having unique phase option functionality on the PowerPC
processor are:

 Back End Options
* Assembly Optimizer Options
* Linker Options

Back End Options

-meE<non renote nenory |eft>

Informs the back end that other files in the program have used some
amount of the 64K data area.

The back end orders the data area based on static analysis of the data
area objects and sorts the data based on usage and size. This means
that the most heavily used objects end up in the non-remote area. To do
this, the back end needs information about how the object linker will lay
out the data area for the entire program.

Code generation options provide specifications for code generated by
the back end.

Table 6-5 Code Generation Options

Option Description

- pl Cause references to external data to be long

-plc Causes some references to code symbols to be
long

- ps No stack checking code

- pnd Use non-destructive stack checking, not for use with

-ps nor -pc

Table 6-5 Code Generation Options (continued)

Option Description

- pnr Do not emit register liveness information for the
assembly language optimizer.

- pc Force all registers to be callee-saved

- pg Causes the back end to generate code to derive
r 13 rather than relying on a globally setr 13 for
each function that needs it. This option might be
used for non-program modules that have multiple
entry points.

Target architecture code generation options provide specifications
unique to a target architecture for code generated by the back end.

-p<target architecture>

Identifies the target architecture for which to generate code.
Implementation of string instructions in hardware and alignment of
memory accesses for load and store instructions differs based upon
target architecture.

Table 6-6 <target architecture> Code Generation Options

Option Description

- p403, p405 Generate code specifically for PowerPC
architectures that implement string instructions in
hardware but require memory references to be
aligned.

MICROWARE SOFTWARE

Table 6-6 <target architecture> Code Generation Options (continued)

Option Description

- p601 Generate code specifically for PowerPC
architectures that implement string instructions in
hardware and allow misaligned accesses for load
and store instructions.

- p602 Generate code specifically for PowerPC
architectures that do not implement string
instructions in hardware but allow misaligned
accesses for load and store instructions.

Note

The executive instructs the back end to emit the most appropriate code
for the target named in the executive - t p option. In the default case

(- t p=PPC), a target architecture option is not sent to the back end. This
implies code generation for an architecture which does not implement
string instructions in hardware and that requires alignment of memory
accesses for load and store instructions.

Assembly Optimizer Options

- s<net hod> Set the peephole scheduling method

Table 6-7 Peephole Scheduling Methods

Method Description

S Spread dependent instructions

c Compress floating point instructions

t Target-driven scheduling

w Target-driven scheduling, with
compression of floating point
instructions

n No reordering of instructions

-t[=] <nun® Specify target processor family

Table 6-8 Assembly Optimizer Processor Numbers

Number Assembly Optimizer Target
1 Generic PowerPC

2 PPC403

3 MPC505

4 MPC601

5 MPC603

6 PPC602

MICROWARE SOFTWARE

Table 6-8 Assembly Optimizer Processor Numbers (continued)

Number Assembly Optimizer Target

7 MPC604

8 MPC821

9 MPC860

10 MPC750

11 MPC8260

- p=<X> Selectively skip processor-specific

optimizations

Table 6-9 Assembly Optimizer Processor-Specific Optimizations

<> Processor-Specific Optimization

I Location Tracking
r Copy propagation

n Register naming

Linker Options

-t=<target> Linker, specify target module type

Table 6-10 Target Module Type

Target Module Type

0s9k_ppc 0S-9 for PowerPC

C/C++ Application Binary Interface
Information

Register usage, passing arguments to functions, callee saved registers,
and language features are described in this section.

Register Usage

General purpose, floating point, and other registers are defined in this
section.

Table 6-11 Register Classes

Register Class Names Used

General Purpose Registers (GPRs) r0 -r31
Floating Point Registers (FPRS) fo - 31
Condition Register Fields (CRFS) crO - cr7
Special Purpose Registers (SPRs) Refer to Table 6-19
Time Base Registers (TBRS) Refer to Table 6-21

Device Control Registers (DCRS) Refer to Table 6-22

MICROWARE SOFTWARE

General Purpose Registers

Table 6-12 General Purpose Registers

Register Description

ro Function prologue/epilog, compiler temporary *
ri Stack pointer

r2 Static storage pointer

r3 1st integral argument passed, integral return value*
ra 2nd integral argument passed *

rs 3rd integral argument passed *

reé 4th integral argument passed *

r7 5th integral argument passed *

r8 6th integral argument passed *

ro 7th integral argument passed *

rio 8th integral argument passed *

ri3 Constant storage pointer t

* |If register is not in use for above stated use, may be used for integral user
register variables and compiler temporaries.

Tt r13isused to access const qualified data in the code area of the module.
This is accomplished by using the register r 13 as a biased (by 32K-4
bytes) pointer to the code area data. r 13 is automatically initialized by the
kernel for program modules. Non-program modules must either setr 13 up
themselves or use the back end option - pg to generate the code to setr 13
up for each function that needs it.

The values in r 0 and r 3 through r 12 need not be preserved across a
function call. That is, a function is safe to use these registers without
saving and restoring their values.

The compiler uses the remainder of the integral registers for integral
user register variables and compiler temporaries.

Floating Point Registers

Table 6-13 Floating Point Registers

Register Description

fl 1st floating point argument passed, floating point
return value

f2 2nd floating point argument passed
f3 3rd floating point argument passed
fa 4th floating point argument passed
f5 5th floating point argument passed
f6 6th floating point argument passed
f7 7th floating point argument passed
f8 8th floating point argument passed
fo 9th floating point argument passed
f10 10th floating point argument passed

f11 11th floating point argument passed

MICROWARE SOFTWARE

Table 6-13 Floating Point Registers (continued)

Register Description
f12 12th floating point argument passed
f13 13th floating point argument passed

When not in use, any of registers f 1 through f 13 may be used as
temporary register variables.

Functions may use the values in f 1 through f 13 without
saving/restoring them for the functions’ callers, a function must save
them if they expect to keep their values across a call to a function.

The compiler uses the remainder of the floating point registers for
floating point user register variables and compiler temporaries.

Condition Registers

Registers cr 0 through cr 7, ctr, xer, f pscr, and | r are available for
hand-written assembly language use although the value must be saved
and restored.

WARNING
The compiler currently uses some of the above named registers and
may, in future versions, use any or all of the above named registers.

Following are descriptions of how the compiler uses four of the registers
listed above.

Table 6-14 Other Registers

Register Description

ctr Compiler temporary used for structure
assignments

cr0 Used by the compiler for all integer and
comparisons assignments

crl Used by the compiler for all floating point
assignments

lr Used by the compiler to store caller return value

Passing Arguments to Functions

When an argument is passed to a called function, the argument is in
one of two places, in a register or in the Output Parameter Area (OPA)
of the calling function.

The called function determines the location of the argument by
argument type and the order specified in the argument list.

For this discussion:

* Anintegral argument is an argument of type i nt , a pointer, or a
char or short converted to ani nt .

* A floating point argument is an argument of type double or a float
converted to a double.

There are eight integral registers used for parameter passing: r 3
through r 10 inclusive. Thirteen floating point registers are available for
floating point parameter passing: f 1 through f 13 inclusive.

MICROWARE SOFTWARE

The OPA is also used to pass arguments (when the registers have been
exhausted). Figure 6-1 illustrates a stack frame for a function.

Figure 6-1 Stack Frame for a Function

Higher Addresses
Caller's Stack Frame

Register Save Area

Function
Stack

Output Parameter Area
Frame

Link Area (8 bytes)

Stack Pointer —»
Lower Addresses

The basic algorithm the compiler uses to pass arguments is as follows:

if function returns a struct
put address of struct return area into first integral passing register
while still nore argunents
if argument is part of variable argunents
put argument into next position in OPA
else if argunent is a struct
copy struct into next position in OPA
el se
if argument is integral
if argunment is 64-bit integer type
if pair of integral passing registers are avail able
put argument into register pair
el se
put argument into next two 32-bit words of OPA
el se
if an integral passing register is available
put argunent into integral register

el se
put argument into next position in OPA

else if argument is floating-point
if a floating-point passing register is available
put argunent into floating-point register
el se
put argument into next position in OPA
advance to next argunent

The OPA is filled from lowest address to highest address.

Struct arguments and arguments that comprise the variable arguments
to a variable argument function are always passed on the OPA. If a
function is to return a value, an integral return value is returned in r 3 or
a floating point return value is returned in f 1. If a function is to return a
struct, the address of a return area is passed as the first integral
argument, inr 3.

Callee Saved Registers

The back end for PowerPC is capable of supporting two calling
conventions:

» Caller saved registers — Registers r 0 through r 10 and f O through
f 13 are volatile and do not require saving by a function if they are
modified. This is the default code generation model.

» Callee saved registers — All registers modified by a function must
be saved upon entry and restored prior to returning to the caller.
This model can be used by using the back end - pc option.

The callee saved registers convention is implemented by saving all
modified registers at the beginning of the function and restoring the
modified registers before returning to the caller. If function calls appear
inside a function compiled with callee saved registers, it is assumed that
the called functions use the callee saved registers convention also.
Caller saved register functions may call callee saved register functions
without adverse effects.

The compiler libraries are not compiled with callee saved register
conventions. Therefore, functions compiled with callee saved registers
may not call compiler library functions without the extra overhead of
saving all the volatile registers before the call and restoring them after
the call returns.

MICROWARE SOFTWARE

C Language Features

In conformance with the ANSI/ISO C specification, the
implementation-defined areas of the compiler are listed in this section.
Each bulleted item contains one implementation- defined issue. The
number in parentheses included with each bulleted item indicates the
location in the ANSI/ISO specification where further information is
provided.

For More Information

Other implementation-defined areas are included in the Language
Features chapter of the Using Ultra C/C++ manual and the Overview
chapter of the Ultra C Library Reference manual. Refer to an
ANSI/ISO specification for more information.

Characters

 The number of bits in a character in the execution character set
(5.2.4.2.1).

There are eight bits in a character in the execution character set.

Integers

* The representations and sets of values of the various integer types
(6.1.2.5).

Table 6-15 Integer Type/Range

Minimum /
Type Representation Maximum
char, si gned char 8-bit 2’'s complement -128/
127
unsi gned char 8-bit binary 0/
255
short int 16-bit 2's complement -32768 /
32767
unsi gned short int 16-bit binary 0/
65535
i nt 32-bit 2’'s complement -2147483648 /
2147483647
unsi gned i nt 32-bit binary 0/
4294967295
| ong int 32-bit 2’'s complement -2147483648 /
2147483647
unsi gned | ong int 32-bit binary 0/

4294967295

MICROWARE SOFTWARE

Table 6-15 Integer Type/Range

Minimum /
Type Representation Maximum
| ong | ong 64-bit 2’'s complement _ 263

263 -1
unsi gned | ong | ong 64-bit binary 0/

264 .1

The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented (6.2.1.2).

When converting a longer integer to a shorter signed integer, the least significant
<n> bhits of the longer integer are moved to the integer of <n> bhits. The resulting
value in the smaller integer is dictated by the representation. For example, if the
conversion is fromi nt to short, then the least significant 16 bits are moved from
the i nt to the short . This value is then considered a 2's complement 16-bit
integer.

When conversion from unsigned to signed occurs with equally sized integers, the
most significant bit becomes the sign bit. Therefore, if the unsigned integer is less
than 0x80000000, the conversion has no affect. Otherwise, a negative number
results.

The sign of the remainder on integer division (6.3.5).

The result of an inexact division of one negative and one positive integer is the
smallest integer greater than or equal to the algebraic quotient.

The sign of the remainder on integer division is the same as that of the dividend.

Floating Point

The representations and sets of values of the various types of
floating-point numbers (6.1.2.5).

Table 6-16 Floating Point Number Characteristics

Minimum /

Type Format Maximum

fl oat 32 bit IEEE 754 1.17549435e- 38f /
3.40282347e38f

doubl e 64 bit IEEE 754 2.2250738585072016e- 308 /

| ong doubl e 64 bit IEEE 754

1.7976931348623157e308

N

. 2250738585072016e- 308 /
1.7976931348623157e308

Refer to the f | oat . h header file for other limits and values.

Arrays and Pointers

The type of integer required to hold the maximum size of an array.
That is, the type of the size of operator, si ze_t (6.3.3.4, 7.1.1).

Anunsi gned | ong i nt isrequired to hold the maximum size of an array.
unsi gned | ong int isdefinedassi ze_t inansi _c. h.

The result of casting a pointer to an integer or vice versa (6.3.4).

Since pointers are treated much like unsi gned | ong integers, the integer is
promoted using the usual promotion rules to an unsi gned | ong. That is, the
sign bit propagates out to the full 32-bit width.

The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdi ff _t (6.3.6, 7.1.1).

Asigned | ong int isrequired to hold the difference between two pointers to
elements of the same array. | ong i nt isdefinedasptrdiff_t inansi_c.h.

MICROWARE SOFTWARE

Registers

The extent to which objects can actually be placed in registers by
use of the register storage-class specifier (6.5.1).

The compiler automatically makes decisions about what objects are placed in
registers, thus giving no special storage considerations for the register
storage-class.

Structures, Unions, Enumerations, and Bit-Fields

The padding and alignment of members of structures (6.5.2.1). This
should present no problem unless binary data written by one
implementation are read by another.

Table 6-17 shows the alignment of the various objects within a structure.
Required padding is supplied if the next available space is not at the correct
alignment for the object. For example, a structure declared as:

struct {
char nent;
| ong neng;
s

would be an 8-byte structure, one byte for nemil, three bytes of padding to get
men? to 4-byte alignment, and four bytes for neng.

Table 6-17 Alignment Table

Type Alignment Requirement
char 1
short 2
i nt 4
| ong 4

| ong | ong 4

Table 6-17 Alignment Table (continued)

Type Alignment Requirement
poi nters 4
fl oat 4
doubl e 8
| ong doubl e 8

* Whether “plain” i nt bit-field is treated as a signed i nt or as an
unsigned i nt bit-field (6.5.2.1).

A “plain” i nt bit-field is treated as a signed i nt bit-field.
* The order of allocation of bitfields within a unit (6.5.2.1).
Bit fields are allocated from most significant bit to least significant bit.
* Whether a bit-field can straddle a storage-unit boundary (6.5.2.1).

Bit fields are allocated end-to-end until a non-bit field member is allocated or until
that positioning would cross an addressable boundary such that no object of an
integral type could both contain the bit field and be correctly aligned.

MICROWARE SOFTWARE

The integer type chosen to represent the values of an enumeration
type (6.5.2.2).

Enumvalues are represented in 32-bit two's complement integers.

Preprocessing Directives

Whether the value of a single-character, character constant in a
constant expression that controls inclusion matches the value of the
same character constant in the execution character set. Whether
such a character constant may have a negative value (6.8.1).

The value of a single-character character constant in a constant expression that
controls inclusion matches the value of the same character constant in the
execution character set. This character constant may have a negative value.

The method for locating includable source files (6.8.2).

This method is described in the Using the Executive chapter of the Using Ultra
C/C++ manual.

The support of quoted names for includable source files (6.8.2).
Quoted names are supported for #i ncl ude preprocessing directives.
The mapping of source file character sequences (6.8.2).

The mapping of source file character sequences is one-to-one. The
case-sensitivity of file names depends on the file system being used.

_asm() Register Pseudo Functions

_asn() uses registers pseudo functions as identified in Table 6-18.

Table 6-18 _asm() Register Pseudo Functions

Register Description
__reg_gen Any non-dedicated integer register
__reg_base Any (non-dedicated) integer register exceptr 0
__reg_float Any floating point register
__reg_r<n> The integer register specified by

n (0 <=n< 32)
__reg_f<n> The floating point register specified by

n (0 <= n < 32

MICROWARE SOFTWARE

PowerPC Processor-Specific Optimizations

In addition to providing the standard generic assembly optimizations,
the Ultra C/C++ PowerPC assembly optimizer (opt ppc) provides the
following processor-specific optimizations:

» Special Common Sub-Expressions
» Copy Propagation
» Target-Driven Instruction Scheduling

* Register Renaming

Special Common Sub-Expressions

On the PowerPC architecture, certain constants are more expensive to
work with than others. To account for this, the common sub-expression
elimination optimization is performed on expressions involving
potentially expensive constants. These include the following:

* The computation of all floating point constants as none of the
floating point instructions allow for floating point immediates.

» The computation of integer constants that require two or more
instructions. For example the constant Oxffeeffee. The constant
Oxffffffee would not be considered.

Copy Propagation

The assembly code optimizer tries to eliminate needless copies
between register temporaries, resulting in smaller, more efficient code.
For example:

lwz rd, =x(r2)
nr r5,r4
addi r4,r5,1

This may be changed to the following:

lwz r5, =x(r2)
addi r4,r5,1

Target-Driven Instruction Scheduling

Using target-driven instruction scheduling, the assembly optimizer can
factor in what it knows about the target architecture when scheduling
instructions. Following are variables that can be taken into account:

* Number and types of instruction units
* Number of instructions that can be executed at a time
* Time required for an instruction to produce its results

* Time it takes an instruction to keep an instruction unit from executing
other instructions

Another important variable is whether a target processor has hardware
floating point or not. If it does, then floating point instructions should be
scheduled just like any other instructions; mixed in with other
instructions to improve throughput. However, if the target processor
does not have hardware floating point support and the instructions must
be emulated, it is best to compress the floating point instructions. When
compressed, the instructions can be emulated much faster.

MICROWARE SOFTWARE

Register Renaming

It is possible to use the same temporary register in sequential
instructions. However, this can confuse the instruction scheduler. The
assembly optimizer uses different registers when possible to help itself
perform schedule instructions. For example:

* conpute sum=a + b + ¢ + d
lwz r3,a(r2)
lwz r4,b(r2)
add r3,r3,r4
lwz r4,c(r2)
add r3,r3,r4
lwz r4,d(r2)
add r3,r3,r4
stw r3,sun(r?2)

This may be changed to the following:

lwz r3,a(r2)
lwz r5, b(r2)
lwz rl,c(r2)
add r3,r3,r5
lwz r4,d(r2)
add r3,r3,rl
add r3,r3,r4
stw r3,sun(r?2)

The use of different registers allowed the spreading of register loads
from their subsequent uses.

Assembler/ Linker

The assembler allows use of standard PowerPC assembly language
mnemonics and syntax, modified as described in this section. For more
specific information about individual instructions, consult the following
books:

PowerPC Microprocessor Family: The Programming Environments
IBM PowerPC 403GA User’s Manual

Technical Summary — PowerPC MPC505 RISC Microcontroller
Motorola Semiconductor Technical Data

PowerPC 601 RISC Microprocessor User's Manual
Motorola/IBM, Revision 1

PowerPC 602 RISC Microprocessor User’'s Manual
PowerPC 603 Microprocessor User’'s Manual
PowerPC 604 — RISC Microprocessor User's Manual
MPC821 — Functional Design Specification Rev. 0.4

ROF Edition Number

The PowerPC assembler emits ROF Edition #15.

External References

The PowerPC assembler allows the use of external references with any
operators within any expression fields not defined to be constant
expression fields.

MICROWARE SOFTWARE

Symbol Biasing

The linker does not bias code or data symbols for system, file
managers, device drivers, device descriptors, or data modules. For all
other types of modules, or for raw code, the linker biases both code and
data symbols by - 32764 (- 0x7f f c) . Initialization routines for raw
code should ensure that the static storage pointer (r 2) and constant
storage pointer (r 13) are initialized with the proper base addresses,
adjusted to account for this biasing.

Assembler Syntax Extensions and Limitations

The PowerPC instruction set limits the size of immediate data to 16 bits.
To allow for the manipulation of 32-bit immediate data, the following
operators are available in the PowerPC assembler:

high(x)= ((x >> 16) & Oxffff) + ((x & 0x8000) >> 15)
hi(x)= x >> 16
[o(x)= x & Oxffff

The following code moves the 32-bit value represented by Synbol into
GPR 4.

addi sr4, r0, hi (Synbol)
ori r4,r4,1o(Synbol)

If Synbol represents the offset of X from GPR r 2, then the following
code moves 32-bit address of X into r 4.

addi sr4, r 2, hi gh(Synbol)

addi r4,r4,1o0(Synbol)

The following code uses the hi gh() operand to load the word X into
r 4. These operators may be used to manipulate external symbols.

addi sr4, r 0, hi gh(Synbol)
Iwz r4,1o(Synbol)(r4)

For load and store instructions using the register indirect with immediate
index addressing mode, it is not necessary to explicitly indicate an index
of 0. For example, the following are equivalent:

lwz r4,0(rl)
lwz r4,(rl)

The special symbolscr0-cr7,1t,gt, eq, so, and un used in many
examples in the PowerPC 601 Microprocessor User’s Manual are not
directly supported by the PowerPC assembler. For example, the
following examples generate errors:

bdnzt eq, <t arget >

bdnze 4*cr5+eq, <t ar get >
crnot eq, cr5*4+eq

crclr so

These instruction forms may be successfully used and translated if the
following definitions are in the source file or in an external file included
using the use assembler directive.

cr0: equO * condition register field
definitions

crl: equl

cr7: equ7

lt: equ0 * condition code definitions
gt: equl

eq: equ2

so: equ3

un: equ3

GPRs, FPRs, and CRFs must be referenced by name. The use of
numbers to denote register objects is not supported except where
specifically noted.

When the GPR r 0 is used in a read operation in certain instructions on
the PowerPC family of processors, the value used by the instruction is 0
rather than the content of r 0. For these instructions, the assembler
allows the use of the numeral 0 in place of the register name r 0. For
example, in each of the following instruction pairs, the instructions are
encoded identically.

MICROWARE SOFTWARE

addi sr5,r0, 312
addi sr5, 0, 312
subi r0,r0, $7fff
subi r0,0, $7fff
la r10, $56(r0)
la r10, $56(0)
| bzx r8,r0,r12

| bzx r8,0,r12

Special Purpose Registers

The PowerPC assembler accepts either the appropriate register
number or name as identified in Table 6-19 for SPRs used in the nt spr
and nf spr instructions. For example, the following two instructions are
equivalent:

nfsprr4,ctr
nfsprr4,9

i Note

The SPRs shown in the following table may not be valid for a specific
processor. Consult your hardware documentation for valid SPR
numbers.

Table 6-19 SPRs by Name

SPR Name SPR Number

asr 280

bar 159

Table 6-19 SPRs by Name

SPR Name SPR Number
cdbcer 983
cnpa 144
cnpb 145
cnpc 146
cnpd 147
cnpe 152
cnpf 153
cnpg 154
cnph 155
count a 150
countb 151
ctr 9
dabr 1013
dacl 1014
dac?2 1015
dar 19

dbat Ol 537

Table 6-19 SPRs by Name

MICROWARE SOFTWARE

SPR Name SPR Number
dbat Ou 536
dbat 1| 539
dbat 1u 538
dbat 2| 541
dbat 2u 540
dbat 3l 543
dbat 3u 542
dbcr 1010
dbsr 1008
dc_adr 569
dc_cst 568
dc_dat (ro) 570
dccer 1018
dcnp 977
dcwr 954
dear (ro) 981
dec 22

Table 6-19 SPRs by Name

SPR Name SPR Number
der 149
dmi ss 976
dpdr 630
dsi sr 18
ear 282
ecr(ro) 148
ei d(wo) 81
ei e(wo) 80
esasrr 987
esr 980
evpr 982
f pecr 1022
hashl 978
hash2 979
hi dO 1008
hi dl 1009

hi d15 1023

Table 6-19 SPRs by Name

MICROWARE SOFTWARE

SPR Name SPR Number
hi d2 1010
hi d5 1013
i abr 1010
iacl 1012
iac2 1013
i bat Ol 529
i bat Ou 528
i bat 11 531
i bat 1u 530
i bat 2l 533
i bat 2u 532
i bat 3l 535
I bat 3u 534
i br 986
i c_adr 561
i c_cst 560
ic_dat(ro) 562

Table 6-19 SPRs by Name

SPR Name SPR Number
i cadr 561
i ccr 1019
I ccst 560
I cdat (ro) 562
i cdbdr 979
i cnp 981
icr(ro) 148
ictc 1019
ictrl 158
imss 980
I 638
| 2cr 1017
lctrll 156
lctrl 2 157
I r 8

| t 1022
m casi d 793

Table 6-19 SPRs by Name

MICROWARE SOFTWARE

SPR Name SPR Number
mtw 799
m t wb 796
nmd_ap 794
md_ctr 792
nd_dbcam 824
nmd_dbr anD 825
md_dbr anmil 826
nd_epn 795
nmd_rpn 798
md_twc 797
m _ap 786
m ctr 784
m _dbcam 816
m _dbranD 817
m _dbraml 818
m _epn 787
m _rpn 790

Table 6-19 SPRs by Name

SPR Name SPR Number
m_twe 789
mmcr 0 952
mcr 1 956
ng 0

nr e(Wo) 82
nri (wo) 82
pbl 1 1020
pbl 2 1022
pbul 1021
pbu2 1023
pi d 945
pir 1023
pi t 987
pntl 953
pnc2 954
pnc3 957

pntc4 958

Table 6-19 SPRs by Name

MICROWARE SOFTWARE

SPR Name SPR Number
pvr(ro) 287
rpa 982
rtcl(ro) 5
rtcl (wo) 21
rtcu(ro) 4
rtcu(wo) 20
sda 959
sdrl 25
sebr 990
ser 991
sgr 953
sia 955
sp 1021
sprgo 272
sprgl 273
Sprg2 274
sprg3 275

Table 6-19 SPRs by Name

SPR Name SPR Number
srr0 26
srrl 27
srr2 990
srr3 991
t bhi 088
t bhu(ro) 972
t bl (wo) 284
tblo 989
tblu(ro) 973
t bu(wo) 285
tcr 986
t hr ml 1020
t hr n2 1021
t hrnB 1022
tsr 984
tsrs 985

unmcr 0 936

MICROWARE SOFTWARE

Table 6-19 SPRs by Name

SPR Name SPR Number
ummer 1 940

upncl 937

upnc?2 938

upnc3 941

upnc4 942

usi a 939

xer 1

Zpr 944

Table 6-20 shows the SPRs by number. Some SPRs may not be valid
for a specific processor. Consult your hardware documentation for valid
SPR numbers.

Table 6-20 SPRs by Number

SPR Number SPR Name
0 Y
1 xer
4 rtcu(ro)
5 rtcl (ro)

8 [r

Table 6-20 SPRs by Number

SPR Number SPR Name
9 ctr

18 dsi sr

19 dar

20 rtcu(wo)
21 rtcl (wo)
22 dec

25 sdrl

26 srr0

27 srril

80 ei e(wo)
81 ei d(wo)
82 nr e(wo)
82 nri (wo)
144 cnpa

145 cnpb

146 cnpc

147 cnpd

Table 6-20 SPRs by Number

MICROWARE SOFTWARE

SPR Number SPR Name
148 icr(ro)
148 ecr(ro)
149 der

150 count a
151 countb
152 cnpe
153 cnpf
154 cnpg
155 crph
156 lctrll
157 lctrl 2
158 ictrl
159 bar

272 sprgo
273 sprgl
274 sprg2
275 sprg3

Table 6-20 SPRs by Number

SPR Number SPR Name
280 asr

282 ear

284 t bl (wo)
285 t bu(wo)
287 pvr(ro)
528 i bat Ou
529 i bat Ol
530 i bat 1u
531 i bat 1l
532 i bat 2u
533 i bat 2|
534 i bat 3u
535 i bat 3l
536 dbat Ou
537 dbat 0l
538 dbat 1u

539 dbat 1l

Table 6-20 SPRs by Number

MICROWARE SOFTWARE

SPR Number SPR Name
540 dbat 2u
541 dbat 2|

542 dbat 3u
543 dbat 3l

560 i c_cst

560 I ccst

561 i cadr

561 i c_adr

562 i c_dat(ro)
562 I cdat (ro)
568 dc_cst

569 dc_adr

570 dc_dat (ro)
630 dpdr

638 i

784 m _ctr

786 m _ap

Table 6-20 SPRs by Number

SPR Number SPR Name
787 m _epn
789 m_twe
790 m _rpn
792 md_ctr
793 m casi d
794 nd_ap

795 nd_epn
796 m t wb

797 md_twe
798 md_rpn
799 mtw

816 m _dbcam
817 m _dbran0
818 m _dbranil
824 md_dbcam
825 nmd_dbr anD
826 nd_dbr anil

Table 6-20 SPRs by Number

MICROWARE SOFTWARE

SPR Number SPR Name
936 ummcr 0
937 upncl
938 upnc?2
939 usi a
940 ummer 1
941 upnc3
942 upnt4
944 zZpr
945 pi d
952 mecr 0
953 pntl
953 sgr
954 pnt2
954 dewr
955 si a
956 mmcr 1
957 pnt3

Table 6-20 SPRs by Number

SPR Number SPR Name
958 pnt4

959 sda

972 t bhu(ro)
973 tbl u(ro)
976 dm ss
977 dcnp
978 hashl
979 i cdbdr
979 hash?2
980 esr

980 imss
981 icnp

981 dear (ro)
982 rpa

982 evpr

983 cdbcr
984 tsr

MICROWARE SOFTWARE

Table 6-20 SPRs by Number

SPR Number SPR Name
985 tsrs
986 tcr
986 i br
987 esasrr
987 pi t
988 t bhi
989 tblo
990 srr2
990 sebr
991 ser
991 srr3
1008 dbsr
1008 hi dO
1009 hi d1
1010 dbcr
1010 I abr

1010 hi d2

Table 6-20 SPRs by Number

SPR Number SPR Name
1012 iacl
1013 dabr
1013 iac2
1013 hi d5
1014 dacl
1015 dac2
1017 | 2cr
1018 dccr
1019 ictc
1019 iccr
1020 pbl 1
1020 t hrml
1021 t hr n2
1021 pbul
1021 sp
1022 pbl 2

1022 t hrn8

MICROWARE SOFTWARE

Table 6-20 SPRs by Number

SPR Number SPR Name
1022 | t

1022 f pecr
1023 pbu2
1023 pir

1023 hi d15

Time Based Registers

Table 6-21 Time Base Register (TBR) Support

SPR Name 505 SPR # 603 SPR #

t bu 269 269

t bl 268 268

Device Control Registers

Table 6-22 403 DCRs Sorted Alphabetically

DCR Name DCR #
bear 144
besr 145
br 0 128
br1 129
br 2 130
br3 131
br 4 132
br5 133
br 6 134
br 7 135
drmaccO 196
dmaccl 204
dmacc?2 212
drmacc3 220

dnacr O 192

MICROWARE SOFTWARE

Table 6-22 403 DCRs Sorted Alphabetically (continued)

DCR Name DCR #
dnmacr 1 200
drmacr 2 208
drmacr 3 216
drmact O 193
drmact 1 201
dnmact 2 209
drmact 3 217
dmadaO 194
dmadal 202
dnmada2 210
dmada3 218
drmasa0 195
dmasal 203
dmasa?2 211
dmasa3 219
dmasr 224

exi sr 64

Table 6-22 403 DCRs Sorted Alphabetically (continued)

DCR Name DCR #
exi er 66
i ocr 160

Table 6-23 403 DCRs Sorted Numerically

DCR # DCR Name
64 exi sr
66 exi er
128 br0O
129 br1l
130 br 2
131 br3
132 br 4
133 br5
134 br 6
135 br 7
144 bear

145 besr

MICROWARE SOFTWARE

Table 6-23 403 DCRs Sorted Numerically (continued)

DCR # DCR Name
160 I ocr
192 dmacr O
193 drmact O
194 drmadaO
195 dmasa0
196 drmaccO
200 dmacr 1
201 dmact 1
202 drmadal
204 dmaccl
196 dmaccO
208 dmacr 2
209 dmact 2
210 dmada?2
211 dmasa2
212 drmacc?2

216 dnacr 3

Table 6-23 403 DCRs Sorted Numerically (continued)

DCR # DCR Name
217 drmact 3
218 dmada3
219 dmasa3
220 dmacc3

224 dmasr

MICROWARE SOFTWARE

Assembly Language Mnemonics

Table 6-28 in this section lists the mnemonic names used on the
PowerPC along with their meanings. Many of the PowerPC mnemonics
include one or more optional suffixes. Symbols indicating conditions
and SPR codes may also be present in a mnemonic. Suffixes and
symbols, when present, modify the meaning of the mnemonic
instructions. The next two subsections identify and define suffixes and
symbols used in the syntax of Table 6-28.

Suffixes

Update the condition register to reflect the
instruction result. cr 1 is updated in the case of
floating point instructions, otherwise, cr 0 is
updated.

o] Enable setting of OV and SOin the Fixed Point
Exception Register (xer).

S For floating point instructions, execute
instruction using single precision.

I For branch instructions, cause the effective
address of the next instruction to be placed in
the Link Register (I r).

a For branch instructions, cause target address to
be interpreted as absolute rather than
PC-relative.

+ For branch instructions, indicates branch is
predicted to be taken.

- For branch instructions, indicates branch is
predicted not to be taken.

In the Mnemonics table, optional suffixes are denoted using square
brackets ([]). For example, the mnemonic add is listed as:

add[o] [.]

indicating the four valid mnemonics:

add

add.

addo
addo.

Since the branch mnemonic suffixes + and - are mutually exclusive,
these suffixes appear as [+| -] indicating the use of no greater than one
of these characters. For example,

belr[+| -]

indicates the three valid mnemonics:

bcl r

bclr+
bel r -

Symbols

The symbols <bc>, <cc>, and <t ¢> indicate condition codes, branch
conditions, and trap conditions respectively as identified in the following
listings. The symbol <spr > indicates any one of the special purpose
registers identified in the <spr > listing.

Table 6-24 Branch Conditions

<bc> Description
t Branch if condition true
f Branch if condition false

dnz Decrement CTR, branch if non-zero

MICROWARE SOFTWARE

Table 6-24 Branch Conditions (continued)

<bc> Description

dnzt Decrement CTR, branch if non-zero and condition true
dnzf Decrement CTR, branch if non-zero and condition false
dz Decrement CTR, branch if zero

dzt Decrement CTR, branch if zero and condition true

dzf Decrement CTR, branch if zero and condition false

Table 6-25 Condition Codes

<cc> Description

|t Less than

l e Less than or equal (not greater than)
eq Equal

ge Greater than or equal (not less than)
gt Greater than

nl Not less than

ne Not equal

ng Not greater than

SO Summary overflow

ns Not summary overflow

Table 6-25 Condition Codes (continued)

<cc> Description
un Unordered (after floating-point compare)
nu Not unordered (after floating-point compare)

Table 6-26 Trap Condition Codes

<tc> Description

| t Less than

| e Less than or equal

eq Equal

ge Greater than or equal

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

1t Logically less than

I'le Logically less than or equal
| ge Logically greater than or equal

| gt Logically greater than

MICROWARE SOFTWARE

Table 6-26 Trap Condition Codes (continued)

<tc> Description
[ni Logically not less than
I ng Logically not greater than

Table 6-27 Special Purpose Registers

<spr> Description

xer Fixed point exception register

lr Link register

ctr Count register

dsi sr Data storage interrupt status register
dar Data address register

dec Decrementer

sdrl Storage description register 1

srr0 Save/restore register 0

srrl Save/restore register 1

ear External access register

Mnemonics Table

The mnemonics listed in Table 6-28 are either native to the PowerPC
architecture or extended mnemonics accepted by the PowerPC
assembler as aliases for native instructions, providing a simpler syntax
for the programmer. All extended mnemonics are identified by an
asterisk in the column labeled E in the listing.

Table 6-28 Mnemonics

Mnemonic Description E
add[o] [.] Add

addc[o] [.] Add carrying

adde[o] [.] Add extended

addi Add immediate

addi c[.] Add immediate carrying

addi s Add immediate shifted

addne[o] [.] Add to minus one extended

addze[o] [.] Add to zero extended

and[.] And logical

andc| .] And logical with complement

andi . And logical immediate (alters cr 0)
andi s. And logical immediate shifted (alters

cr0)

MICROWARE SOFTWARE

Table 6-28 Mnemonics (continued)

Mnemonic Description E

b[1]]a] Branch unconditional

be[l][a][+] -] Branch conditionally

b<bc>[1][a][+| -] Branch conditionally (implicit) *

b<cc>[1][a][+] -] Branchif<cc> *

becetr[I][+] -] Branch conditionally to count register

b<cc>ctr[I][+] -] Branch if <cc> to count register *

belr[1][+ -] Branch conditionally to link register

b<bc>lr[1][+] -] Branch conditionally to link register *
(implicit)

b<cc>lr[1][+] -] Branch if <cc> to link register *

betr[1] Branch unconditionally to count register *

bfctr[I][+]-] Bra_nch if condition false to count *
register

blr[l] Branch unconditionally to link register *

btctr[I][+]-] Branch if condition true to count register *

clriw[.] Clear left immediate *

clrrwi[.] Clear right immediate *

clrislwil.] Clear left and shift left immediate *

Table 6-28 Mnemonics (continued)

Mnemonic Description

cnp Compare

cnpi Compare immediate

cnpl Compare logical

cnpl i Compare logical immediate

cnpl w Compare logical word

cnpl wi Compare logical word immediate
chpw Compare word

cnpwi Compare word immediate
cntlzw .] Count leading zeros in word
crand Condition register and

crandc Condition register and with complement
crclr Condition register cl ear

creqv Condition register equi val ent
crnove Condition register nove

crnand Condition register nand

crnor Condition register nor

crnot Condition register not

MICROWARE SOFTWARE

Table 6-28 Mnemonics (continued)

Mnemonic Description E
cror Condition register or

crorc Condition register or with complement
crset Condition register set *
crxor Condition register xor

dcbf Data cache block flush

dcbi Data cache block invalidate

dcbst Data cache block store

dcbt Data cache block touch

dcbt st Data cache block touch for store

dcbz Data cache block set to zero

divw o] [.] Divide word

di vwu[o] [.] Divide word unsigned

eci wx External control input word indexed

€COoWX External control output word indexed
eielo Enforce in-order execution of 1/0

eqv|.] Equivalent logical

extlwil[.] Extract and left justify immediate *

Table 6-28 Mnemonics (continued)

Mnemonic Description

extrw [.] Extract and right justify immediate

extsb[.] Extend sign byte

extsh[.] Extend sign half word

fabs[.] Floating point absolute value

fadd[s][.] Floating point add

fcnpo Floating point compare ordered

f cnpu Floating point compare unordered

fetiw.] Floating point convert to integer word

fectiwz.] Floating point convert to integer word
round toward zero

fdiv[s][.] Floating point divide

frmadd[s][.] Floating point multiply and add

fr[.] Floating point move register

fmsub[s][.] Floating point multiply and subtract

frul [s]].] Floating point multiply

fnabs| .] Floating point negative absolute value

fneg[.] Floating point negate

fnmadd[s][.]

Floating point negative multiply and add

MICROWARE SOFTWARE

Table 6-28 Mnemonics (continued)

Mnemonic Description E

fnmsub[s][.] Floating point negative multiply and
subtract

frsp[.] Floating point round to single precision

fsub[s][.] Floating point subtract

i chbi Instruction cache block invalidate

inslw[.] Insert from left immediate *

insrw[.] Insert from right immediate *

i sync Instruction synchronize

I a Load address *

| bz Load byte and zero

| bzu Load byte and zero with update

| bzux Load byte and zero with update indexed

| bzx Load byte and zero indexed

I fd Load floating-point double

| fdu Load floating-point double with update

| f dux Load floating-point double with update
indexed

| fdx Load floating-point double indexed

Table 6-28 Mnemonics (continued)

Mnemonic Description

| fs Load floating-point single

| fsu Load floating-point single with update

| f sux Load floating-point single with update
indexed

| fsx Load floating-point single indexed

| ha Load half word algebraic

| hau Load half word algebraic with update

| haux Load half word algebraic with update
indexed

| hax Load half word algebraic indexed

| hbr x Load half word byte-reversed indexed

| hz Load half word and zero

| hzu Load half word and zero with update

| hzux Load half word and zero with update
indexed

| hzx Load half word and zero indexed

li Load immediate

lis Load immediate shifted

I mw Load multiple word

MICROWARE SOFTWARE

Table 6-28 Mnemonics (continued)

Mnemonic Description E

| swi Load string word immediate

| swx Load string word indexed

| war x Load word and reverse indexed

| wbr x Load word byte-reverse indexed

| wz Load word and zero

[wzu Load word and zero with update

| wzux Load word and zero with update indexed

| wz x Load word and zero indexed

ner f Move condition register field

ncrfs Move to condition register from f pscr

necr xr Move to condition register from xer

nfcr Move from condition register

nffs[.] Move from f pscr

nfi bat | Move from one of i bat 0 - i bat3 *
lower

nfi bat u Move from one of i bat 0 - i bat3 *
upper

nf ner Move from machine state register

Table 6-28 Mnemonics (continued)

Mnemonic Description

nf pvr Move from pvr

nf spr Move from SPR

nf sr Move from SPR

nf <spr> Move from the SPR indicated by <spr >
ntsprg Move from one of sprg0 - sprg3
nfsrin Move from segment register indirect
nftb Move from time base register

nf t bl Move from time base register lower

nft bu Move from time base register upper
nrl.] Move general purpose register

ntcrf Move to condition register fields

nt fsbO[.] Move to f pscr bit 0

ntfsblf.] Move to f pscr bit 1

ntfsf[.] Move to f pscr fields

mfsfil.] Move to f pscr field immediate

nti bat | Move to one of i bat 0 - i bat 3 upper
nti bat u Move to one of i bat 0 - i bat 3 upper

MICROWARE SOFTWARE

Table 6-28 Mnemonics (continued)

Mnemonic Description E
nm ner Move to machine state register

n spr Move to SPR

nt <spr > Move to the SPR indicated by <spr > *
nmsprg Move to one of sprg0 - sprg3 *
nt sr Move to segment register

ntsrin Move to segment register indirect

mul hw(.] Multiply high word

mul hwul .] Multiply high word unsigned

mul | i Multiply low word immediate

mul lw o] [.] Multiply low word

nand| .] Not and logical

neg[o][.] Negate

nop No operation *
nor.] Not or logical

not|.] Not logical *
or[.] Or logical

orcl[.] Or logical with complement

Table 6-28 Mnemonics (continued)

Mnemonic Description

ori Or logical immmediate

oris Or logical immediate shifted

rfi Return from interrupt

riwimil.] Rotate left word immediate then mask
Insert

riw nnf.] Rotate left word immediate then and
with mask

rliwnnf.] Rotate left word then and with mask

rotlw|.] Rotate left word immediate

rotrwil.] Rotate right word immediate

rotlw.] Rotate left word

sc System call

slw .] Shift left word

slwi[.] Shift left word immediate

sraw .] Shift right algebraic word

srawi[.] Shift right algebraic word immediate

srw .| Shift right word

srwif.]

Shift right word immediate

MICROWARE SOFTWARE

Table 6-28 Mnemonics (continued)

Mnemonic Description E

stb Store byte

st bu Store byte with update

st bux Store byte with update indexed

st bx Store byte indexed

stfd Store floating-point double

stfdu Store floating-point double with update

st f dux Store floating-point double with update
indexed

st f dx Store floating-point double indexed

stfs Store floating-point single

stfsu Store floating-point single with update

st f sux Store floating-point single with update
indexed

st fsx Store floating-point single indexed

sth Store half word

st hbr x Store half word byte-reversed indexed

st hu Store half word with update

st hux Store half word with update indexed

Table 6-28 Mnemonics (continued)

Mnemonic Description

st hx Store half word indexed

st mw Store multiple word

stsw Store string word immediate

St swx Store string word indexed

stw Store word

st wbr x Store word byte-reversed indexed

st wex. Store word conditional indexed (alters
cr0)

st wu Store word with update

st wux Store word with update indexed

St wx Store word indexed

sub[o] [.] Subtract

subc[o][.] Subtract carrying

subf[o][.] Subtract from

subfc[o][.]

subfe[o0][.]

subfic

subfne[o][.]

Subtract from carrying
Subtract from extended
Subtract from immediate carrying

Subtract from minus one extended

MICROWARE SOFTWARE

Table 6-28 Mnemonics (continued)

Mnemonic Description E
subfze[o][.] Subtract from zero extended
subi Subtract immediate *
subi c[.] Subtract immediate carrying *
subi s Subtract immediate shifted *
sync Synchronize
tlbie Translation lookaside buffer invalidate

entry
trap Trap unconditionally *
tw Trap word
t w<t c> Trap word if <t ¢c> *
tw Trap word immediate
t w<t c>i Trap word if <t ¢c> immediate *
xor[.] Exclusive or logical
XOr i Exclusive or logical immediate

Xoris Exclusive or logical immediate shifted

Extended Mnemonics

This section provides the equivalent forms for each of the extended
mnemonics listed in Table 6-28. The subsections following are
organized according to mnemonic function.

Subtract Immediate

Table 6-29 Subtract Immediate

Extended Mnemonic

Equivalent To

subi rX rY,val ue
subis rX, rY, val ue
subic[.]rXrY,val ue

subic. rXrY, val ue

addi rX rY,-val ue
addis rX rY, -val ue
addic[.]rX rY, -val ue

addic. rX rY,-val ue

Subtract

Table 6-30 Subtract

Extended Mnemonics

Equivalent To

sub[o][.] rXrY,rzZ

subc[o][.] rXrY,rZ

subf[o][.] rXrZrY

subfc[o][.] rX rZrY

MICROWARE SOFTWARE

Word Compare

Table 6-31 Word Compare

Extended Mnemonics Equivalent To

cnpwi crfD, rA, si cnpi crfD, O, rA si

cnpw crfD, rA rB cnp crfD, 0O, rA rB

cnplwi crfD, rA ui cnpli crfD, 0, rA ui
cnplw crfD, rA rB cnpl crfD, O, rA rB

Extract, Insert, Rotate, Shift, and Clear

i Note

All expressions used above are in unsigned nod 32 arithmetic.

Table 6-32 Extract, Insert, Rotate, Shift, and Clear

Extended Mnemonics Equivalent To

extlwi[.] TArS nb riwwnni.] rArS b,0,n-1

extrmi[.] rArSn,b riwinn{.] rArS, b+n, 32-n, 31

Table 6-32 Extract, Insert, Rotate, Shift, and Clear (continued)

Extended Mnemonics Equivalent To

inslw[.] rArSn,b riwimi.]
rArS, 32-b, b, (b+n)-1

insrw[.] rArSn,b riwimi.]
rArS, 32-(b+n), b, (b+n)-1

rotlw[.] rArSn riwnnf.] rArS,n, 0,31
rotrwi[.] rArSn rtwwnni.] rArS, 32-n,0, 31
rotlw.] rArS rB rtwanf.] rArS,rB, 0, 31
slwi[.] rArSn riwnnf.] rArS n,0,31-n
srwi[.] TArS,n riwwnnf.] rArS, 32-n,n, 31
clriw[.] rArS,n riwwnnf.] rArS 0,n, 31
clrrwm[.] rArSn riwnnf.] rArS 0,0,31-n

clrislwi[.] rArS,b,n riwinnf.] rArS,n,b-n,31-n

MICROWARE SOFTWARE

Move to/from Special Purpose Registers

Table 6-33 Move to/from Special Purpose Registers

Extended Mnemonics

Equivalent To

nf pvr rX
nfsprg rX, <n>
nfibatu rX <n>
nfibatl rX <n>
m<spr> rX
msprg <n>,rX
ntibatu <n>, rX

mibatl <n> rX

nf spr
nf spr
nf spr
nf spr
m spr
nt spr
nt spr

m spr

rX, 287

rX, 272+<n>
r X, 528+2<n>
r X, 529+2<n>
<nune, r X
272+<n>, r X
528+2<n>,r X

529+2<n>,r X

Where <n>is one of 0, 1, 2, or 3 and the relation between <spr > and
<nun® is given by the following table.

Table 6-34 <spr> to <num> Relationship

<spr> <num>
xer 1
Ir 8
ctr 9

Table 6-34 <spr> to <num> Relationship

<spr> <num>
dsi sr 18
dar 19
dec 22
sdrl 25
srr0 26
srrl 27

ear 282

Move to/from Time Base Registers

Table 6-35 Move to/from Time Base Registers

Extended Mnemonics Equivalent To

nftb rX nftb rX 268
nftbl rX nftb rX 268
nftbu rX nftb rX 269
ntbl rX nmspr 284,rX

nttbu rX ntspr 285, rX

Conditional Branch

Table 6-36 Conditional Branch

MICROWARE SOFTWARE

Extended Mnemonics

Equivalent To

b<bc>[1][a] bi,target16
betr[1]

bfctr[1] bi

btctr[1] bi

blr[I]

b<bc>I r[I] bi

bc[l1][a] <nun®, bi,targetl6
bcectr[I] 20,0

bcetr[I] 4, bi

bcetr[1] 12, bi

belr[1] 20,0

bclr[1] <nun®, bi

Where <bc> and <nun® are related in the following table.

Table 6-37 <bc> to <num> Relationship

<bc> <num>
dnzf 0
dzf 2
f 4
dnzt 8

dzt 10

Table 6-37 <bc> to <num> Relationship (continued)

<bc> <num>
t 12
dnz 16
dz 18

Branch Mnemonics Incorporating Conditions

Table 6-38 Branch Mnemonics Incorporating Conditions

Extended Mnemonics Equivalent To
b<cc>[1]][a] bec[l]]a]
crf,target 16 <t _f>, crf+<cond>, target 16

b<cc>[1][a] targetl6 bc[l][a]
<t _f>, 0+<cond>,target16

b<cc>ctr[l] crf bcctr[l] <t_f>, crf+<cond>
b<cc>ctr[1] bcetr[1] <t_f>, 0+<cond>
b<cc>Ir[I] crf bclr[l] <t_f>, crf+<cond>

b<cc>Ir[1] bclr[I] <t_f>, 0+<cond>

MICROWARE SOFTWARE

Where <cc>, <t _f >, and <cond> are related as shown in Table 6-39.

Table 6-39 <cc>, <t_f>, and <cond> Relationships

<cc> <t_f> <cond> Description

It 12 (t) 0 (It) Less than

e 4 (f) 1 (qt) Not greater than
eq 12 (t) 2 (eq) Equal

ge 4 (f) 0 (It) Not less than

gt 12 (t) 1 (qt) Greater than

nl 4 (f) 0 (It) Not less than

ne 4 (f) 2 (eq) Not equal

ng 4 (f) 1 (qt) Not greater than
o) 12 (t) 3 (so0) Summary overflow
ns 4 (f) 3 (so) Not summary overflow
un 12 (t) 3 (un) Unordered

nu 4 (f) 3 (un) Not unordered

Branch Prediction Suffixes

The + and — branch prediction suffixes are available for use with any
conditional branch mnemonic. If the following equivalences can be
inferred from the preceding branch mnemonic mappings:

Table 6-40 Branch Prediction Suffixes

Extended Mnemonic Equivalent To

b<xxx>[1][a] <operand> bc[l][a] bo, bi,targetl6
b<xxx>ctr[|] <operand> bcctr[l] bo, bi

b<xxx>lr[l] <operand> bclr[I] bo, bi

Then the following instructions are also equivalent:

Table 6-41 Equivalent Instructions

Extended Mnemonic Equivalent To

b<xxx>[1][a] + <operand> bc[l]][a]
bo+<x>, bi, target 16

b<xxx>[1][a]- <operand> bc[l]][a]
bo+<y>, bi, target 16

b<xxx>ctr[l]+ <operand> bcctr[l] bo+l, bi
b<xxx>ctr[l]- <operand> bcctr[l] bo, bi
b<xxx>Ir[l]+ <operand> bclr[1] bo+l, bi

b<xxx>lr[l]- <operand> bclr[1] bo, bi

MICROWARE SOFTWARE

Where:

Iftarget 16 < 0,<x> = Q0and<y> =

Iftarget16 S 0,<x> = land<y> =
Traps

Table 6-42 Traps

Extended Mnemonics Equivalent To

trap rA;rB tw 31, rA rB

tw<tc> rA rB tw <nune, rA rB

tw<tc> rA targetl6 tw <nunp, rA target 16

Where <t ¢> and <nun® are related as shown.

Table 6-43 <tc> and <num> Relationship

<tc> <num>
|t 16

le 20

eq 4

ge 12

gt 8

Table 6-43 <tc> and <num> Relationship (continued)

<tc> <num>
nl 12

ne 24

ng 20
|1t 2

Ile 6

| ge 5

| gt 1

| nl 5

Miscellaneous

Table 6-44 Miscellaneous

MICROWARE SOFTWARE

Extended Mnemonics

Equivalent To

nop
[i rX val ue
lis rX val ue
la rX D(rY)
nrf.] rXry

not[.] rXrY

ori r0,r0,0

addi rX ro0, val ue
addis rX, ro0, val ue
addi rX,rY,D
or[.] rXrY, rY

nor[.] rXrY,rY

Power Mnemonics Supported by PowerPC 601

Table 6-45 Power Mnemonics Supported by PowerPC 601

Mnemonic Description

abs[o0][.] Absolute value

clcs Cache line compute size
div[o][.] Divide

divs[o][.] Divide short

doz[o][.] Difference or zero

dozi Difference or zero immediate
| scbx] .] Load string and compare byte indexed
maskg| .] Mask generate

maskir[.] Mask insert from register
mul[o] [.] Multiply

nabs[o][.] Negative absolute value

rimip.]
rrib[.]

sle[.]

Rotate left then mask insert
Rotate right and insert bit

Shift left extended

MICROWARE SOFTWARE

Table 6-45 Power Mnemonics Supported by PowerPC 601 (continued)

Mnemonic Description

sleq[.] Shift left extended with ny
sliq[.] Shift left immediate with ng
slliqf.] Shift left long immediate with nqg
sl1q[.] Shift left long with nq

slq[.] Shift left with ng

sraiq[.] Shift right algebraic immediate with nq
sraq[.] Shift right algebraic with ng
sre[.] Shift right extended

sreal.] Shift right extended algebraic
sreq[.] Shift right extended with ny
sriq[.] Shift right immediate with nqg
srliqf.] Shift right long immediate with ng
srlq[.] Shift right long with nqg

srq[.] Shift right with ng

PowerPC 403-Specific Mhemonics

Table 6-46 PowerPC 403-Specific Mnemonics

Mnemonic Description

rfci Return from critical interrupt

dccci Data cache congruence class invalidate

i cbt Load instruction cache block

I ccci Instruction cache congruence class invalidate
wtee Write external enable

wt eei Write external enable immediate

nf dcr Move from device control register

nt dcr Move to device control register

MICROWARE SOFTWARE

PowerPC 603-Specific Mnemonics

Table 6-47 PowerPC 603-Specific Mnemonics

Mnemonic Description

tlbld Load data TLB entry

tlbli Load instruction TLB entry

PowerPC 602-Specific Mhemonics

Table 6-48 PowerPC 602-Specific Mnemonics

Mnemonic Description
nfrom Move from ROM
esa Enable special access

dsa Disable special access

MICROWARE SOFTWARE

Stack Checking

This section provides PowerPC-specific information about stack
checking. Refer to Using Ultra C/C++ for more general information on
stack checking.

If stack checking is inappropriate for the module being created, you will
need to define the following items:

* aglobal pointer called _st bot (initialized to ULONG_MAX if possible)
» afunction called _st khandl er (it returns to its caller)

A function called _st kover f | owis called when the stack appears to
overflow. If a non-static function called _st kover f | owresides in an
ROF that is linked to make the object module, that function is called
instead of the default function. The default function writes a message to
the standard error path and causes the program to exit with a status of
one. _st kover fl owneither accepts parameters nor returns a value.

i Note

If st koverf | owis inappropriate for your application, consider writing
a function to handle stack overflow.

_st khandl er, the function that checks for stack overflow, can be
revised. Revision may be necessary if stack checking is inapplicable to
the module that calls the library functions. _st khandl er () is passed
the desired stack pointer in r 3 and does not return a value.

i Note

Stack handler code must be compiled with stack checking turned off
(-r inucc mode).

Chapter 7: SuperH

This chapter contains information specific to the Hitachi SuperH family
of processors. The following sections are included:

» Executive and Phase Information

e C/C++ Application Binary Interface Information

* Assembly Language with SH-4 Target

e SuperH Processor-Specific Optimizations

« _asm() Register Pseudo Functions

» Assembler/ Linker

* Working with PC-Relative Data

» Stack Checking

MICROWARE SOFTWARE

MICROWARE SOFTWARE

Executive and Phase Information

This section describes various features of the compiler executive and
phases that are SuperH specific.

Executive -tp Option

-tp[=] <target >{[,] <subopti ons>}
Specify Target Processor and Target
Processor Options

Specify the target processor and target processor sub-options.
Target processors are identified in Table 7-1 and
target processor sub-options are identified in Table 7-2.

Table 7-1 Target Processor

SuperH Family Targets Target Processor

sh, sh3 SH7708/SH7709

sh4 SH7750

Table 7-2 Mode -tp Sub-Options

Suboptions Description Processor
fp Use a statically linked library to SH-3
implement floating-point operations
(default)
f pd Enable denormalized number support. SH-4
fps Use dynamically linked shared library ~ SH-3
to implement floating-point operations.
sd Use 16-bit data references (default) SH-3, SH-4
| d Use 32-bit data references SH-3, SH-4
scd Use 16-bit code area data reference SH-3, SH-4
(default)
| cd Use 32-bit code area data references SH-3, SH-4
sc Use 12-bit code references SH-3, SH-4
nc Use 16-bit code references (default) SH-3, SH-4
l c Use 32-bit code references SH-3, SH-4
sb Use 8-bit branches SH-3, SH-4
nb Use 12-bit branches (default) SH-3, SH-4
I b Use 32-bit branches SH-3, SH-4

MICROWARE SOFTWARE

Predefined Macro Names for the Preprocessor

The macro names in Table 7-3 are predefined in the preprocessor for
target systems.

Table 7-3 Macros

Macro Description

_MPFSH Generic SuperH processor
_IMPFSH3 SH-3 (SH7708/SH7709) processor
_MPFSH4 SH-4 (SH7750) processor
_FPFSH SH-3 Floating-point support
_FPFSH4 SH-4 Floating-point support

Target macros are used to conditionalize code so that machine- and
operating system-independent programs can be created.

The executive automatically defines the _MPF and _FPF macro for the
target processor. Table 7-4 provides an example of this behavior.

For more information on exactly which macros are defined for the
SuperH processors, run the executive in verbose and dry run modes
stopping after the front end. For example, to check the defines on for the
SH-3 target (source file need not actually exist):

Xcc -b -h -efe -tp=sh3 t.c
This causes the executive to print a line for SH-3 similar to:

"cpfe -m--target=11 -1d:\ MADS\ SRC\ DEFS - |\ MADS\ 0OS9000\ SRC\ DEFS
-1\ MADS\ OS9000\ SH3\ DEFS -D_UCC -D MAJOR REV=2 -D M NOR_REV=2
-D_SPACE_FACTOR=1 -D _TI ME_FACTOR=1 - D _0S9000 -D MPFSH3 -D MPFSH
-D_FPFSH -D BI G END -w --Extended_ANSI --gen_c_file_nane=t.i t.c"

To check the defines for an SH-4 target:
Xxcc -b -h -efe -tp=sh4 t.c

The executive prints a line for SH-4 similar to:

"cpfe -m--target=14 -1d:\ MADS\ SRC\ DEFS -1 d: \ MADS\ GS9000\ SRC\ DEFS
-1 d: \ MADS\ CS9000\ SH4\ DEFS - D UCC - D MAJOR REV=2 -D M NOR_REV=2

- D _SPACE_FACTOR=1 -D Tl ME_FACTOR=1 -D _0S9000 -D MPFSH4 - D_MPFSH
-D_FPFSH4 -D BI G END -w --Extended_ANS| --gen_c_file_name=t.i t.c"

Note
Note that MPFSH, _MPFSH4 macros are defined.

The _MPFSH macro indicates that a source file is being compiled for a
SuperH family target.

Table 7-4 identifies the relationship between the target processor and
the preprocessor macros. Note that specific targets also define the
general macro _ MPFSH.

Table 7-4 _MPFxxx and _FPFxxx Macro Behaviors

Target Microprocessor Family Macros Defined

sh3 _MPFSH3 _MPFSH _FPFSH

sh4 _MPFSH4 _MPFSH _FPFSH4

MICROWARE SOFTWARE

SuperH-Unique Phase Option Functionality

Phases having unique phase option functionality on the SuperH
processor are:

 Back End Options
* Assembly Optimizer Options
* Linker Options

Back End Options

-meE<non renote nenory |eft>
Informs the back end that other files in
the program have used some amount of
the 64K non-remote data.

- pd Enables denormalized number support.
(SH-4)

The back end orders the data area based on static analysis of the data
area objects and sorts the data based on usage and size. This means
that the most heavily used objects end up in the non-remote area. To do
this, the back end needs information about how the object-code linker
lays out the data area for the entire program. This option may be used
to inform the back end that the files it is unable to process will use a
specified amount of data space.

Code generation options provide specifications for code generated by
the back end. Most of these options can be controlled via executive
command line options, thus there should not be a need to explicitly use

them.

Table 7-5 Code Generation Options

Option Description
- pg Use stand-alone code area address calculation
(This option is obsolete. It is provided for backwards
compatibility, but it has no effect on code generation.)
- pl Cause long references to global/static data objects
-pla Cause branches to be long
-plb Cause function calls to be long
-plc Cause some references to code objects to be long
- pnb Cause function calls to be medium (default)
- pnp Save the previous stack pointer on the stack

_pS

Do not emit stack checking code

MICROWARE SOFTWARE

Target architecture code generation options provide specifications
unique to a target architecture for code generated by the back end.

Table 7-6 SH-3 Code Generation Options

Option Description

- pSH3 Does not have floating-point hardware support.
Supports dynamic shift operations. (besh only)

- pSH4 Has single and double-precision hardware
floating-point support; supports dynamic shift
operations. (besh4 only)

Assembly Optimizer Options

-b Do not perform long/medium branch
simplification

-t[=] <nune Specify target processor family

Table 7-7 Assembly Optimizer Processor Numbers

<num> Assembly Optimizer Target

1 SH-3 family processor

2 SH-4 family processor

- p=<X> Selectively skip processor-specific
optimizations

Table 7-8 Assembly Optimizer Processor-Specific Optimizations

<X> Processor-Specific Optimization

I Location (memory and register contents)

tracking
d Branch delay slot filling
p Pooling of PC-relative data
r Copy propagation
n Register renaming
- s<net hod> Set the peephole scheduling method

Table 7-9 Peephole Scheduling Methods

<method> Description
S Spread dependent instructions (default)
n No reordering of instructions

Assember Options
-m Accept a target number.

MICROWARE SOFTWARE

Linker Options

-t =<t arget > Linker, specify target module type

Table 7-10 Target Module Type

Target Module Type

0s9k_sh 0S-9 for SH-3 Family Processors

0s9k _sh4 0S-9 for SH-4 Family Processors

C/C++ Application Binary Interface
Information

Register usage, passing arguments to functions, and language features
are described in this section.

Register Usage

General purpose and other registers are identified in this section.

Table 7-11 Register Classes

Register Class Names Used Processor

General Purpose ro - rl5, gp, sp SH-3, SH-4

Registers

System Registers mach, macl, pr, pc, SH-3, SH-4
f pul

Control Registers sr, gbr, vbr, ssr, spc SH-3,SH-4
Control Register f pscr SH-4

Floating point fro - frilb SH-4
Registers dro, dr2, ..., dri4

MICROWARE SOFTWARE

m§— Note

The single and double precision registers for SH-4 are not separate.
Each double precision register is formed from two single precision
registers: frO and fr1 comprise dr0, fr2 and fr3 comprise dr2, and so

forth. Loading drO will change frO and frl and vice versa.

General Purpose Registers

The following table describes names and meanings of the general
purpose register set used by the C/C++ Compiler and supported by the
Ultra C assembler. The assembler supports both the register number
and the alternate name. The alternate name is used for convenience
since the name gives the user a hint to its intended purpose.

Figure 7-1 General Purpose Register

Register # Alias Description Processor
ro Caller-saved; function integer SH-3, SH-4
return register; for functions
returning aggregates, this points
to the returned aggregate.
ri-r3 Caller-saved/volatile. SH-3, SH-4
ra-r7 Caller-saved; Up to four SH-3, SH-4
arguments placed in these
registers
r4/ r5 pair for floating point SH-3
return
r8-ri3 Callee-saved; for locals or SH-3, SH-4
temporaries
ri4 ap Biased pointer to static data area SH-3, SH-4
ris sp Stack pointer SH-3, SH-4

Figure 7-1 General Purpose Register

Register # Alias Description Processor
nmacl Callee saved SH-3, SH-4
mach
gbr
f pul Caller saved SH-4
fro Caller saved; float point function SH-4
return register
fri-fr3 Caller saved SH-4
fra-frll Caller saved/volatile. SH-4
Up to eight single-precision
arguments are placed in these
registers.
fri12-fri5 Callee saved SH-4
drO Caller saved SH-4
Double function return register
dr2 Caller saved SH-4
dr4-dr10 Caller saved; up to four double SH-4
precision arguments are placed
in these registers
dr12, Callee saved registers SH-4
dr14
Note

No register is dedicated to point at constant data. Refer to a later
section regarding code area data item references.

MICROWARE SOFTWARE

m§— Note

If a floating point needs to be performed in interrupt service routines, all
of the caller-saved floating point registers, including FPUL and FPSCR
registers, will have to be saved manually. You do not have to save the

callee-saved floating point registers because the Compiler will save
them.

Passing Arguments to Functions

When an argument is passed to a called function, the argument is in

one of two places, in a register or in the Output Parameter Area (OPA)
of the calling function.

The called function determines the location of the argument by
argument type and the order specified in the argument list. Standard
argument promotions are assumed to be used where applicable
(example: for optional parameters and parameters in the absence of a
prototype). Optional parameters and parameters of aggregate types are
passed on the stack regardless of position.

With the SH-4 processor, single precision floating point parameters are
passed in single precision registers when available. If all such registers
set aside for parameter passing are in use, single precision floating
point parameters are passed on the stack. Double precision floating
point parameters use double precision registers, which are comprised
of consecutive pairs of single precision registers. If a pair is not
available, the value is passed on the stack. If an odd number of single
precision parameters precede a double precision parameter passed in
a register, a gap is left in the single precision registers, which may be
filled by a later single precision parameter. For example, in a function

double indemity (float f1l, double d, float f2)

the parameter f1 will be passed in fr4, d will be passed in dr6 (which
consists of fr6 and fr7), and f2 will be passed in fr5.

The SH-3 processor does not have floating point registers. Therefore,
single precision floating point parameters use integer registers when
available. If one is not available, it is passed on the stack. Double
precision floating point parameters use a consecutive pair of integer
registers. If a pair is not available, the value is passed on the stack. If
there is a single parameter register available, it is used for a later
argument if it fits.

For SH-3, if a function is to return a value, an integral return value is
returned in r O or a single precision in r 4; double precisioninr4-r5
pair.

For SH-4, if a function is to return a value, an integral return value is
returned in r O or a single precision in frO; double precision in dr 0.

If a function is to return a struct, the address of a return area is passed
as the first integral argument (r4) and is returned in the integral return
register (r0).

SH-3 Floating Point Parameter Example
This is an example function for an SH-3 target.

func(int, int, float double, float);

funcl() {
int a, b;
float c, d;
doubl e di;

func(a, b, c, di, d);
}

This function generates the following code:

* func(a, b, c, di, d);

mov.l @16,r15),r4 <-- first parameter (int)inr4

mov.| @20,r15),r5 <--second parameter (int) in r5

mov.|l @24,r15),r6 <--third parameter (float) in r6

mov.l @28,r15),r1 <--fourth parameter (double) needs two consecutive
mov.l @32,r15),r2 registers, but we only have r7 left, so it is passed
mov.l rl, @8, sp) on the stack, in the OPA

mov.l r2, @12, sp)

mov.l @36,r15),r7 <--fifth parameter (float) uses the remaining register r7
mov. w @=_%$L59, pc),r1l

bra
nop
= $L59
dc. sw =func-=_$L60-4
= $L60
bsrf ril
nop

$L60 **skip

SH-4 Floating Point Parameter Example

This is an example function for an SH-4 target.

extern void
int);

funcl()

{

b, c,
f2;

i nt
fl oat
doubl e

a1
f1,
di;

func(a, b,

* func(a, b, f1, di,
mov.|l @16,r15),r4
mov. |l @20,r15),r5
mov #24,r1
add r15,r1
sts fpscr,r2 **PR=0
mov #-9,r3
swap.w r3,r3
and r3,r2
lds r2, fpscr **PR
frov.s @1,fr4
mov #32,r1
add rl15,r1
frov.s @1+,fr6

(fre/fr7)
frov.s @1,fr7
mov #40,r1
add r15,r1
frov.s @1,fr5
@44,r15),r6
@48,r15),r7
@52,r15),r1
ri, @8, sp)
@=_%$L22,pc),r1

_$L

o
o
nov. |
o
o
= 23 **skip

func(int,

f1, di,

d1

f2,
<- -
<- -

int,

f2,

fl oat, double, float, int, int,

€,

c, d, e);

c, d, e);
first paraneter (int)
second paraneter (int)

inr4
inr5h

third paraneter (float) in fr4

fourth paraneter (double) in dré6

fifth paraneter (float) in fr5
sixth paranmeter (int) in ré6
seventh paraneter (int) inr7

ei ghth paranmeter (int) on the stack

MICROWARE SOFTWARE
nop
align 4
= $L22
dc. | =func-=_%$L23-4
= $L23
bsrf ri1
nop

i Note

Individual parameters passed on the stack are aligned to the maximum
alignment requirement of any data type on a target (8 bytes for SH-4).

Figure 7-2 Stack Frame for a Function

High

Memory
2nd Stack
Argument
1st Stack
Argument
Very Old

Stack Pointer
—

Low
Memory

Stack Pointer

Return Address

Register Save
Area

I

Automatics

Area

Return Address
|

Output Parameter

Old Stack Pointer/

Stack
Grows
Down

Stack Pointer

Old Stack Pointer

Output Parameter Area

Automatics

Register Save Area
Return Address

Very Old Stack Pointer

Stack Arguments

SH-3 Stack Alignment

MICROWARE SOFTWARE

Points to the one-time allocated stack for
the function

Contains the calling function’s stack
pointer. It is only used for “unwinding”
the stack by the debugger.

The area for stack arguments that are
passed to functions that this function
calls

The area for function locals (and
compiler generated temporaries)

The area the compiler saves the
callee-saved registers that it uses

This place is reserved for non-leaf
functions to save their return address

The saved stack pointer for the function
that called the calling function

These are the argument that were
passed on the stack to this function

The register save area, automatic area, output parameter area and
stack pointer are all 4-byte aligned. Padding is added where needed.

SH-4 Stack Alignment

The register save area, automatic area, output parameter area and
stack pointer are all 8-byte aligned. Padding is added where needed.

C Language Features

For More Information

Other implementation-defined areas are identified in the Language
Features chapter of the Using Ultra C/C++ manual and the Overview
chapter of the Ultra C Library Reference manual. Refer to an
ANSI/ISO specification for more information.

In conformance with the ANSI/ISO C specification, the
iImplementation-defined areas of the compiler are listed in this section.
Each bulleted item contains one implementation-defined issue. The
number in parentheses included with each bulleted item indicates the
location in the ANSI/ISO specification where further information is
provided.

Characters

* The number of bits in a character in the execution character set
(5.2.4.2.1).

There are 8 bits in a character in the execution character set.

Integers

* The representations and sets of values of the various integer types
(6.1.2.5).

Table 7-12 Integer Type/Range

MICROWARE SOFTWARE

Minimum /
Type Representation Maximum
char, si gned char 8-bit 2’'s complement -128 /
127
unsi gned char 8-bit binary 0/
255
short int 16-bit 2's complement - 32768 /
32767
unsi gned short 16-bit binary 0/
i nt 65535
i nt 32-bit 2’'s complement - 2147483648 /
2147483647
unsi gned i nt 32-bit binary 0/
4294967295
| ong int 32-bit 2’'s complement - 2147483648 /
2147483647
unsigned | ong int 32-bit binary 0/

4294967295

The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented (6.2.1.2).

When converting a longer integer to a shorter signed integer, the least significant
<n> bits of the longer integer are moved to the integer of <n> bhits. The resulting
value in the smaller integer is dictated by the representation. For example, if the
conversion is from i nt to short, the least significant 16 bits are moved from the
i nt tothe short. This value is then considered a 2's complement 16-bit integer.

When conversion from unsigned to signed occurs with equally sized integers, the
most significant bit becomes the sign bit. Therefore, if the unsigned integer is less
than 0x80000000, the conversion has no affect. Otherwise, a negative number
results.

The sign of the remainder on integer division (6.3.5).

The result of an inexact division of one negative and one positive integer is the
smallest integer greater than or equal to the algebraic quotient.

The sign of the remainder on integer division is the same as that of the dividend.

Floating-Point

The representations and sets of values of the various types of
floating-point numbers (6.1.2.5).

Table 7-13 Floating-Point Number Characteristics

Minimum /

Type Format Maximum

fl oat 32-bit 1. 17549435e- 38f /
IEEE 754 3.40282347e38f

doubl e 64-bit 2.2250738585072016e- 308 /
IEEE 754 1.7976931348623157e308

| ong doubl e 64-bit 2.2250738585072016e- 308 /
IEEE 754 1.7976931348623157e308

Refer to the f | oat . h header file for other limits and values.

MICROWARE SOFTWARE

Arrays and Pointers

The type of integer required to hold the maximum size of an array.
That is, the type of the size of operator, si ze_t (6.3.3.4, 7.1.1).

Anunsi gned | ong i nt isrequired to hold the maximum size of an array.
unsi gned | ong int isdefinedastosize_t inansi_c. h.

The result of casting a pointer to an integer or vice versa (6.3.4).

Since pointers are treated much like unsigned long integers, the integer is
promoted using the usual promotion rules to an unsigned long. That is, the sign bit
propagates out to the full 32-bit width.

The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdi ff _t (6.3.6, 7.1.1).

Asigned | ong int isrequired to hold the difference between two pointers to
elements of the same array. | ong i nt isdefinedasptrdi ff_t inansi_c. h.

Registers

The extent to which objects can actually be placed in registers by
use of the register storage-class specifier (6.5.1).

The compiler automatically makes decisions about what objects are placed in
registers, thus giving no special storage considerations for the register
storage-class.

Structures, Unions, Enumerations, and Bit-Fields

The padding and alignment of members of structures (6.5.2.1). This
should present no problem unless binary data written by one
implementation are read by another.

Table 7-14 shows the alignment of the various objects within a
structure. Required padding is supplied if the next available space is
not at the correct alignment for the object. For example, a structure
declared as:

struct {
char memt;
| ong men®;
s
would be an 8-byte structure: one byte for ment, three bytes of padding
to get nene to 4-byte alignment, and four bytes for nene.

Table 7-14 Alignment Table

Type Alignment Requirement

char 1

short 2

I nt 4

| ong 4

poi nters 4

f | oat 4

doubl e SH-3 target: 4 SH-4 target: 8
| ong doubl e SH-3 target: 4 SH-4 target: 8

* Whether “plain” i nt bit-field is treated as a signed i nt or as an
unsigned i nt bit-field (6.5.2.1).

A “plain” i nt bit-field is treated as a signed i nt bit-field.
* The order of allocation of bitfields within a unit (6.5.2.1).

Bit fields are allocated from most-significant bit to least-significant bit.

MICROWARE SOFTWARE

Whether a bit-field can straddle a storage-unit boundary (6.5.2.1).

Bit fields are allocated end-to-end until a non-bit field member is allocated or until
that positioning would cross an addressable boundary such that no object of an
integral type could both contain the bit field and be correctly aligned.

The integer type chosen to represent the values of an enumeration
type (6.5.2.2).

Enumvalues are represented in 32 bit two’s complement integers.

Processing Directives

Whether the value of a single-character, character constant in a
constant expression that controls inclusion matches the value of the
same character constant in the execution character set. Whether
such a character constant may have a negative value (6.8.1).

The value of a single-character character constant in a constant expression that
controls inclusion matches the value of the same character constant in the
execution character set. This character constant may have a negative value.

The method for locating includable source files (6.8.2).

This method is described in the Using the Executive chapter of the Using Ultra
C/C++ manual.

The support of quoted names for includable source files (6.8.2).
Quoted names are supported for #i ncl ude preprocessing directives.
The mapping of source file character sequences (6.8.2).

The mapping of source file character sequences is one-to-one. The
case-sensitivity of file names depends on the file system being used.

Assembly Language with SH-4 Target

Because there are few instruction encodings with fixed-length 16-bit
instructions, integer and floating point behaviors are affected. The
permissible immediate operands range and the displacement sizes are
limited and r0 is widely used as an implicit operand or component of
instructions. The greatest effects with floating point are:

4. The bank-switching nature of the floating point registers under
control of bits in the FPSCR

5. The overloading of particular bit patterns so that the same
instruction encoding behaves differently under control of bits in the
FPSCR

When working with the FPSCR register and assembly language
escapes that do floating point, ensure that the SZ and FR enable bits
come out the same way they go in.

At the time of this writing, the SH-4 back end does not allow values to
be encouraged into the xd registers as is possible with the fr and dr
registers.

MICROWARE SOFTWARE

SuperH Processor-Specific Optimizations

In addition to providing the standard generic assembly optimizations,
the Ultra C/C++ icode optimizer (i opt) and SuperH assembly optimizer
(opt sh) provide processor-specific optimizations. These are:

Special Common Sub-Expressions

Delay Slot Filling

Long/Medium Branch Simplification

Code Area Data Pooling and Consolidation
Copy Propagation

Special Common Sub-Expressions

On the SuperH processors, loading certain constants (< -128 or >= 128
for signed constants, >= 128 for unsigned constants, all floating point
constants on SH-3 and all floating point constants except single
precision 0 and single precision 1 on the SH-4 processor) and
computing the addresses of global variables and functions are very
expensive due to the limited size of displacement in most instructions.
So, the icode optimizer creates common sub-expressions associated
with the above so they can be computed just once into a register and
the contents of the register can be reused every time a reference to the
expression is made.

Delay Slot Filling

In order to reduce code size and/or increase code efficiency, the
assembly optimizer attempts to fill the delay slots of those instructions
that have them with useful instructions. To do this, it looks for a movable
instruction in the series of preceding instructions or, in some cases, the
following or destination instructions. If the delay slot cannot be filled with
a useful instruction, it is either left alone or, in the case of conditional
branches, the delay slot is removed altogether.

Long/Medium Branch Simplification

During the code generation phase, the compiler is unaware of the
distances between different sections of code. As a result, the back end
Is somewhat conservative in the branch instructions that it emits. For
example, the back end produces sub-optimal code for the following C
code:

*if (x) y *= x;

tst r4,r4
bf = $L1
bra = $138e
nop
= $L1
mul .1 r4,r5
sts nmacl,r5

= $138e

The assembly optimizer attempts to shorten these branching
sequences. Given the above example, the assembly optimizer outputs
the following:

tst r4,r4
bt = $138e
= $L1

mul .l r4,r5
sts nmacl,r5
= $138e

Here is another example of a long branch to subroutine:

mov.w @=_$L3, pc),r0
bra =_$L4 **skip
nop
align 2
= $L3
dc. sw =func-=_$L4-4
= $L4

MICROWARE SOFTWARE

bsrf r0
nop

This can be converted to a simple branch to subroutine, if the assembly
optimizer can determine that the branch target is in range:

bsr =func
nop

Code Area Data Pooling and Consolidation

The SuperH instruction set limits the size of immediate values to 12 bits
(in the case of BRA and BSR); generally fewer. As a result, it is often
necessary to load data into registers. This is what is done for long
branches and subroutine calls as well as large numerical values. This
data can be stored in the code area and copied into registers using
PC-relative loads. The assembly optimizer attempts to pool this code
area data together beyond naturally occurring divisions (such as a
return from subroutine) to limit the number of extra branches in code.
For example, given the following code:

extern int x;
func(&x);

The back end might generate:

mov.w @=_$L6, pc),r4
bra = $L7 **skip

nop

= $L6
dc. sw =w
= $L7

add r14,r4

mov.w @=_$L3, pc),r0
bra = $L4 **skip

nop

align 2

= $L3
dc. sw =func-=_$L4-4

= $L4
bsrf r0
nop
rts
nop

The assembly optimizer could change this to:

nov.w @=_%$L6, pc),r4

= $L7

add r14,r4

mov.w @=_%$L3, pc),r0
= $L4

bsrf r0

nop

rts

nop
= $L6 dc.sw =x

align 2

=_$L3 dc.sw =func2-=_$L4-4

Copy Propagation

The assembly code optimizer tries to eliminate needless copies
between register temporaries; resulting in smaller, more efficient code.
For example:

nmov.l @O0, r8
mov r8,r7
exts.b r7,r7

This may be changed to the following:

nmov.l @O0, r8
exts.b r8,r7

As another example:

mov.l @0, r8
mov r8,r7
exts.b r8,r8
mov #0,r7

This may be changed to the following:

mov.l @0, r7
exts.b r7,r8
nov #0,r7

MICROWARE SOFTWARE

_asm() Register Pseudo Functions

_asn() uses register pseudo functions as identified in Table 7-15.

Table 7-15 _asm() Register Pseudo Functions

Register Description Processor
__reg_gen Any non-dedicated integer register SH-3
__reg_r<n> The register specified by SH-3
n (0 <= n <= 13)
__reg_single Any single precision register SH-4
__reg_doubl e Any double precision register SH-4
_reg_fr<n> The single precision register SH-4
specified by n
(0<=n<=15)
__reg_dr<n> The double precision register SH-4

specified by n
(nin{0, 2, 4, 6, 8, 10, 12, 14})

MICROWARE SOFTWARE

Assembler/ Linker

The assembler allows use of standard SuperH assembly language
mnemonics and syntax, modified as described in this section. For more
specific information about individual instructions, consult the following
documentation:

e SH7000/SH7600 Series Programming Manual
* SH7700 Series SuperH RISC Engine Programming Manual
* SH-3E Single-Chip RISC Microprocessor Programming Manual

ROF Edition Number

The SuperH assembler emits ROF Edition #15.

External References

The SuperH assembler allows the use of external references with any
operators within any expression fields not defined to be constant
expression fields.

Symbol Biasing

The linker does not bias code or data symbols for system, file
managers, device drivers, device descriptors, or data modules. For all
other types of modules, or for raw code, the linker biases both code and
data symbols by - 32764 (0x7f f c) . Initialization routines for raw code
should ensure that the static storage pointer (r 14) is initialized with the
proper base address, adjusted to account for the biasing.

Assembler Syntax Extensions and Limitations

The Ultra C/C++ compiler’s adaptation of the SuperH instruction syntax
has a few notable differences from what is defined in SuperH
programming reference manuals:

* The assembler uses white space as the comment delimiter. As a
result, the operand stream must not include any white space.

* The forward slash character ("/") is not allowed within instruction
mnemonics. As a result, those mnemonics that contain a forward
slash (such as BF/ S and CMP/ EQ) contain a period (*.") instead.

An example of SuperH syntax and its equivalent Ultra C/C++ syntax are
shown in Table 7-16.

Table 7-16 SuperH and Ultra C/C++ Syntax Equivalents

SuperH Syntax Ultra C/C++ Syntax
bf/s | abel bf.s | abel
cnp/eq rl,r2 cnp.eq rl,r2

To see other uses of Ultra C/C++ assembly, it is possible to stop the
compilation process after the back end has finished (using the - ebe
compiler switch) and view the resulting assembly file.

Global Data Accessing

Global data for a process is stored in a single region of memory,
accessed via a dedicated register. Since the SuperH’s load with
displacement only has a 4-bit unsigned displacement field, this
instruction is not practical to use for global data accesses and to use it
would also cause other modes to be too limited. A similar situation
exists for the use of the following code sequence since this only
accesses a maximum of 256 bytes, words and/or longs (less if larger
structures are involved).

MICROWARE SOFTWARE

nmov | 08(_synb),r0
nmov. | @ro,gp),rd

Therefore, we recommend adopting two global data accessing modes,
one for accessing up to 64K of data and another that allows the entire
32-bit address space to be accessed.

The following code can be emitted for short data accesses:

nmov. w @ _synb_addr,PC),r0
bra _around
nop

_synb_addr dc.sw _synb

_around nmov. | @ro0,gp),rd

It can handle offsets from -32768 to 32764, thereby allowing access to
approximately 64K of data. For long data accesses, the following
PC-relative addressing mode should be used.

nmov. | @ _synb_addr,PC),r0
bra _around
nop
al i gn4d
_synb_addr dc. | _synb
_around nmov. | @ro0,gp),rd

The above examples assume:
* rd is the destination register
 _synb is areferenced value to be replaced by the linker

* gp is the name of the dedicated register “pointing” to the global data
area

The assembly code optimizer eliminates as many of the branches
around displacements in code as possible.

Code Accessing

Ultra C/C++ takes advantage of the SuperH PC-relative load and mova
instructions to perform code accesses. Therefore, you can adopt two
code accessing modes: one for accessing up to 64K of code and
another for accessing the entire 32-bit address space.

The following code can be emitted for short code accesses:

L1 nova @o0,PC,r0

nov. w @L2,PQ,rd

bra L3

nop
L2 dc. sw -((L1&Oxfffffffc)+4)- symb
L3 add ro,rd

It can handle offsets from -32768 to 32764, thereby allowing access to
approximately 64K of data. For long code accesses, the following
PC-relative addressing mode should be used.

L1 nova @o0,PC,ro0

nov. | @L2,PQ,rd

bra L3

nop

al i gn4
L2 dc. | -((L1&Oxfffffffc)+4)- _symb
L3 add ro,rd

The above examples assume:
* rd is the destination register
« synb is a referenced value to be replaced by the linker

Calling Functions

The SuperH processor supports three different models for calling a
function. The short model works for programs under 4K. Calls to a
function look like this:

bsr _printf

MICROWARE SOFTWARE

In the medium model, programs is guaranteed to work if their size is
less than 32K. Code for these calls look like this:

nmv.w @ pntf_ofst,PC),r0
bra _call _pt
nop
_pntf_ofstdc.sw _printf-_call _pt-4
_call _pt bsfr ro
nop

For any other programs, the code looks like this:

nov. | @ _pntf_ofst,PC),r0
bra _call _pt
nop
align 4
_pntf_ofstdc. | _print-_call _pt-4
_call _pt Dbsrf ro
nop

In this way, the user can minimize the size of the code.

Calls through pointers to functions should be done in the following
manner:

<get the value in register rd>
j sr @d

Working with PC-Relative Data

The SuperH instruction set limits branch labels to 12 bits. It is possible
to perform branches using 16 or 32 bits by loading a PC-relative
displacement into a register. Following are examples of medium and
long branches to a destination symbol =dest :

Medium branch to dest

nov.w @disp,pc),r0
baddr braf ro

nop

slign 2
di sp dc.sw dest-baddr-4

Long branch to dest

nov. | @disp,pc),r0
baddr braf ro

nop

align 4
di sp dc.1 dest - baddr -4

It is important to note the . swextension used on the define constant
pseudo-instruction in the medium branch example. This is necessary
because the value is to be signed displacement and the linker should
give an error if it does not fit within - 32768 and 32767.

MICROWARE SOFTWARE

Stack Checking

This section provides SuperH-specific information about stack
checking. Refer to Using Ultra C/C++ for more general information on
stack checking.

If stack checking is inappropriate for the module being created, you will
need to define the following items:

* aglobal pointer called _st bot (initialized to ULONG_MAX if possible)
» afunction called _st khandl er (it returns to its caller)

A function called _st kover f | owis called when the stack appears to
overflow. If a non-static function called _st kover f | owresides in an
ROF that is linked to make the object module, that function is called
instead of the default function. The default function writes a message to
the standard error path and causes the program to exit with a status of
one. _st kover fl owneither accepts parameters nor returns a value.

i Note

If st koverf | owis inappropriate for your application, consider writing
a function to handle stack overflow.

_st khandl er, the function that checks for stack overflow, can be
revised. Revision may be necessary if stack checking is inapplicable to
the module that calls the library functions. _st khandl er () is passed
the desired stack pointer in r 3 and does not return a value.

i Note

Stack handler code must be compiled with stack checking turned off
(-r inucc mode).

	HOME
	Ultra C/C++ Processor Guide
	Table of Contents
	Chapter 1: 68K
	Executive and Phase Information
	Executive -tp Option
	ucc and c89 Option Mode
	compat Option Mode

	Predefined Macro Names for the Preprocessor
	68K-Unique Phase Option Functionality
	Back End Options
	Assembly Optimizer Options
	Assembler Options
	Linker Options

	C/C++ Application Binary Interface Information
	Register Usage
	Passing Arguments to Functions
	C Language Features
	Characters
	Integers
	Floating Point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, and Bit-Fields
	Preprocessing Directives

	_asm() Register Pseudo Functions
	Span Dependent Optimizations
	Methods for Reducing Compiled Code Size
	Overriding Compiler Size Defaults
	User Program Modules
	System and Non-program Modules

	fopen() Append Bit
	Using Math
	Assembler/ Linker
	ROF Edition Number
	External References
	Symbol Biasing

	Assembly Language Mnemonics
	Registers
	Addressing Mode Syntax Definitions
	Symbols
	Instruction Conventions
	Mnemonics Table

	Additional Information for 68020, 68030, 68040, 68060, and CPU32 Processors
	Floating Point Numbers
	Assembly Language Mnemonics

	68881/68882/68040/68060 Floating Point Mnemonics
	Floating Point Examples
	Dyadic Instructions
	Monadic Instructions
	Data Movement Instructions
	Program Control Instructions
	System Control Operations

	Floating Point Condition Predicates used for <cc>
	Constant ROM Table
	Default Stack Handler Function
	Default Stack Overflow Message and Exit

	Chapter 2: ARM
	Executive and Phase Information
	Executive -tp Option
	Predefined Macro Names for the Preprocessor
	ARM-Unique Phase Option Functionality
	Back End Options
	Assembly Optimizer Options
	Linker Options

	C/C++ Application Binary Interface Information
	Register Usage
	General Purpose Registers.
	Floating Point Registers

	Passing Arguments to Functions
	C Language Features
	Characters
	Integers
	Floating Point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, and Bit-Fields
	Processing Directives

	ARM Processor-Specific Optimizations
	Special Common Sub-Expressions
	Code Area Data Pooling and Consolidation
	Conditionalizing of Instructions
	Copy Propagation

	_asm() Register Pseudo Functions
	Assembler/ Linker
	ROF Edition Number
	External References
	Symbol Biasing
	Assembler Syntax Extensions and Limitations
	Working with Immediate Data

	Stack Checking

	Chapter 3: SH-5
	Executive and Phase Information
	Executive -tp Option
	Predefined Macro Names for the Preprocessor
	SH-5m-Unique Phase Option Functionality
	Back End Options
	Linker Options

	C/C++ Application Binary Interface Information
	Register Usage
	floating-point Registers
	Target Address Registers

	Pointer and non-64-bit Integer Representation
	Passing Arguments to Functions
	C Language Features
	Characters
	Integers
	floating-point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, and Bit-Fields
	Preprocessing Directives

	_asm() Register Pseudo Functions
	SH-5 Processor-Specific Optimizations
	Special Common Sub-Expressions

	Assembler/ Linker
	ROF Edition Number
	External References
	Symbol Biasing
	Code Symbol Values
	Assembler Syntax Extensions and Limitations

	Stack Checking

	Chapter 4: MIPS
	Executive and Phase Information
	Executive -tp Option
	Predefined Macro Names for the Preprocessor
	MIPS-Unique Phase Option Functionality
	Back End Options
	Assembly Optimizer Options
	Linker Options

	C/C++ Application Binary Interface Information
	Register Usage
	Floating Point Registers
	Special Purpose Registers

	Passing Arguments to Functions
	C Language Features
	Characters
	Integers
	Floating Point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, and Bit-Fields
	Preprocessing Directives

	_asm() Register Pseudo Functions
	MIPS Processor-Specific Optimizations
	Special Common Sub-Expressions
	Delay Slot Filling
	Copy Propagation
	Register Renaming
	Instruction Scheduling

	Assembler/ Linker
	ROF Edition Number
	External References
	Symbol Biasing

	Assembler Syntax Extensions and Limitations
	Stack Checking

	Chapter 5: Pentium and 80x86
	Executive and Phase Information
	Executive -tp Option
	Predefined Macro Names for the Preprocessor
	80x86-Unique Phase Option Functionality
	Back End Options
	Assembly Optimizer Options
	Assembler Options
	Linker Options

	C/C++ Application Binary Interface Information
	Register Usage
	Passing Arguments to Functions
	C Language Features
	Characters
	Integers
	The Sign of the Remainder on Integer Division (6.3.5)
	Floating Point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, and Bit-Fields
	Preprocessing Directives

	_asm() Register Pseudo Functions
	Span Dependent Optimizations
	Assembler/ Linker
	ROF Edition #9
	External References
	Symbol Biasing

	Assembly Language Mnemonics
	Default Stack Handler Function
	Default Stack Overflow Message and Exit

	Chapter 6: PowerPC
	Executive and Phase Information
	Executive -tp Option
	Predefined Macro Names for the Preprocessor
	PowerPC-Unique Phase Option Functionality
	Back End Options
	Assembly Optimizer Options
	Linker Options

	C/C++ Application Binary Interface Information
	Register Usage
	General Purpose Registers
	Floating Point Registers
	Condition Registers

	Passing Arguments to Functions
	Callee Saved Registers
	C Language Features
	Characters
	Integers
	Floating Point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, and Bit-Fields
	Preprocessing Directives

	_asm() Register Pseudo Functions
	PowerPC Processor-Specific Optimizations
	Special Common Sub-Expressions
	Copy Propagation
	Target-Driven Instruction Scheduling
	Register Renaming

	Assembler/ Linker
	ROF Edition Number
	External References
	Symbol Biasing
	Assembler Syntax Extensions and Limitations
	Special Purpose Registers
	Time Based Registers
	Device Control Registers

	Assembly Language Mnemonics
	Suffixes
	Symbols
	Mnemonics Table

	Extended Mnemonics
	Subtract Immediate
	Subtract
	Word Compare
	Extract, Insert, Rotate, Shift, and Clear
	Move to/from Special Purpose Registers
	Move to/from Time Base Registers
	Conditional Branch
	Branch Mnemonics Incorporating Conditions
	Branch Prediction Suffixes
	Traps
	Miscellaneous

	Power Mnemonics Supported by PowerPC 601
	PowerPC 403-Specific Mnemonics
	PowerPC 603-Specific Mnemonics
	PowerPC 602-Specific Mnemonics
	Stack Checking

	Chapter 7: SuperH
	Executive and Phase Information
	Executive -tp Option
	Predefined Macro Names for the Preprocessor
	SuperH-Unique Phase Option Functionality
	Back End Options
	Assembly Optimizer Options
	Linker Options

	C/C++ Application Binary Interface Information
	Register Usage
	General Purpose Registers

	Passing Arguments to Functions
	SH-4 Floating Point Parameter Example
	SH-3 Stack Alignment
	SH-4 Stack Alignment

	C Language Features
	Characters
	Integers
	Floating-Point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, and Bit-Fields
	Processing Directives

	Assembly Language with SH-4 Target
	SuperH Processor-Specific Optimizations
	Special Common Sub-Expressions
	Delay Slot Filling
	Long/Medium Branch Simplification
	Code Area Data Pooling and Consolidation
	Copy Propagation

	_asm() Register Pseudo Functions
	Assembler/ Linker
	ROF Edition Number
	External References
	Symbol Biasing
	Assembler Syntax Extensions and Limitations
	Global Data Accessing
	Code Accessing
	Calling Functions

	Working with PC-Relative Data
	Stack Checking

