
RadiSys. 118th Street
Des Moines, Iowa 50325

515-223-8000

Revision A • April 2003www.radisys.com

OS-9® Technical
Manual

Version 4.2

April 2003
Copyright ©2003 by RadiSys Corporation.

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.2 Microware OS-9.
Reproduction of this document, in part or whole, by
any means, electrical, mechanical, magnetic, optical,
chemical, manual, or otherwise is prohibited, without
written permission from RadiSys Corporation.

Disclaimer

The information contained herein is believed to be
accurate as of the date of publication. However,
RadiSys Corporation will not be liable for any damages
including indirect or consequential, from use of the
OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation.
The information contained herein is subject to change
without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys Corpo-
ration expressly prohibits any reproduction of the soft-
ware on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system may
constitute copyright infringements and misappropria-
tion of trade secrets and confidential processes which
are the property of RadiSys Corporation and/or other
parties. Unauthorized distribution of software may
cause damages far in excess of the value of the copies
involved.

3

Contents

Chapter 1: System Overview
System Modularity... 12.

Level 1 -- The Kernel, Clock, and Init Modules ... 12.

Level 2 — IOMAN ... 12.

Level 3 — File Managers... 12.

Level 4 — Device Drivers .. 13.

Level 5 — Device Descriptors.. 13.

I/O Overview... 13.

Memory Modules .. 14.

Basic Module Structure ... 15.

The CRC Value... 16.

ROMed Memory Modules .. 16.

Module Header Definitions... 16.

mh_com ..17

Chapter 2: The Kernel
Kernel Functions.. 24.

System Call Overview .. 24.

User-State and System-State .. 24.

Installing System-State Routines .. 25.

Kernel System Call Processing.. 26.

Non-I/O Calls ... 26.

I/O Calls.. 27.

Memory Management ... 27.

OS-9 Memory Map ... 28.

System Memory Allocation ... 28.

Operating System Object Code ... 29.

System Global Memory... 29.

System Dynamic Memory ... 29.

User Memory .. 29.

Memory Fragmentation ... 30.

Colored Memory ... 30.

Colored Memory Definition List ... 30.

SSM and Cache ... 33.

Cache List... 33.

PowerPC Processors: SSM and Cache ... 33.

Colored Memory in Homogenous Memory Systems ... 39.

System Performance .. 39.

Reconfiguring Memory Areas ... 39.

System Initialization... 40.

Init: The Configuration Module .. 40.

Extension Modules .. 40.

Contents

OS-9 Technical Manual 4

Process Creation .. 41.

Process Memory Areas .. 42.

Process States .. 43.

Process Scheduling ... 44.

Preemptive Task Switching.. 44.

Chapter 3: Interprocess Communication
Signals ... 48.

Signal Codes.. 48.

Signal Implementation... 49.

Non-Recursive Calling.. 50.

Recursive Calling .. 50.

Alarms... 52.

User-State Alarms.. 52.

Cyclic Alarms.. 52.

Time of Day Alarms.. 53.

Relative Time Alarms.. 53.

System-State Alarms.. 53.

Events .. 54.

ev_str/ev_infostr ..55
Wait and Signal Operations .. 57.

The F_EVENT System Call ... 58.

Semaphores.. 59.

Semaphore States .. 60.

Acquiring Exclusive Access ... 60.

Releasing Exclusive Access .. 60.

Usemaphores ... 61.

P and V Operations... 61.

Reset ... 63.

The F_EVENT, F_USEMA System Call... 63.

Pipes .. 64.

Named and Unnamed Pipes .. 64.

Operations on Pipes... 65.

Creating Pipes ... 65.

Opening Pipes ... 65.

Read/Readln.. 66.

Write/Writeln .. 67.

Close ... 67.

Getstat/Setstat ... 67.

GetStat Status Codes Supported by PIPEMAN.. 67.

SetStat Status Codes Supported by PIPEMAN... 68.

Pipe Directories ... 68.

Data Modules .. 69.

Creating Data Modules ... 69.

The Link Count... 69.

Saving to Disk ... 69.

Chapter 4: Subroutine Libraries and Trap Handlers
Subroutine Libraries .. 72.

Installing and Executing Subroutine Libraries ... 72.

Contents

OS-9 Technical Manual 5

Terminating Subroutine Libraries.. 73.

Trap Handlers ... 73.

Installing and Executing Trap Handlers .. 74.

Chapter 5: Resource Locking
Overview ... 78.

Lock Structure Definition.. 78.

Create and Delete Resource Locks .. 79.

Preallocate Locks as Part of the Resource .. 80.

Signals and Locks .. 81.

Signal Sensitive Locks.. 81.

Ignoring Signals... 82.

FIFO Buffers .. 83.

Process Queuing.. 84.

Chapter 6: OS-9 System Calls
Using OS-9 System Calls.. 88.

_oscall Function .. 88.

Using the System Calls .. 90.

System Call Descriptions ... 90.

Interrupt Context .. 90.

System Calls Reference .. 91.

F_ABORT ...92
F_ACQLK ...94
F_ALARM (System-State)..96
F_ALARM (User-State)..99
F_ALARM, A_ATIME ..101
F_ALARM, A_CYCLE..102
F_ALARM, A_DELET ..103
F_ALARM, A_RESET...104
F_ALARM, A_SET..105
F_ALLPRC..106
F_ALLTSK...107
F_ALTMDIR ...108
F_APROC ...109
F_CAQLK ...110
F_CCTL (User-State) ...111
F_CCTL (System-State) ...113
F_CHAIN..115
F_CHAINM ..118
F_CHKMEM ..121
F_CHMDIR ..123
F_CLRSIGS ...124
F_CMDPERM...125
F_CMPNAM...126
F_CONFIG ...128
F_CPYMEM ...129
F_CRC ..131
F_CRLK ..133
F_DATMOD ...134

Contents

OS-9 Technical Manual 6

F_DATTACH ..136
F_DDLK..138
F_DELLK ..139
F_DELMDIR...140
F_DELTSK ..141
F_DEXEC ...142
F_DEXIT...145
F_DFORK ...146
F_DFORKM ...148
F_EVENT..150
F_EVENT, EV_ALLCLR ...152
F_EVENT, EV_ALLSET ..154
F_EVENT, EV_ANYCLR..156
F_EVENT, EV_ANYSET...158
F_EVENT, EV_CHANGE ...160
F_EVENT, EV_CREAT ...162
F_EVENT, EV_CREAT | F_USEMA..164
F_EVENT, EV_DELET..166
F_EVENT, EV_DELET | F_USEMA ..167
F_EVENT, EV_INFO ..168
F_EVENT, EV_LINK ..170
F_EVENT, EV_LINK | F_USEMA ...172
F_EVENT, EV_PULSE...174
F_EVENT, EV_READ ...176
F_EVENT, EV_RESET | F_USEMA...177
F_EVENT, EV_SET ...179
F_EVENT, EV_SETAND...181
F_EVENT, EV_SETOR ...183
F_EVENT, EV_SETR ..185
F_EVENT, EV_SETXOR...187
F_EVENT, EV_SIGNL ..189
F_EVENT, EV_SIGNL | F_USEMA ...191
F_EVENT, EV_TRYWAIT...193
F_EVENT, EV_TRYWAIT | F_USEMA ...195
F_EVENT, EV_TSTSET ..197
F_EVENT, EV_UNLNK ..199
F_EVENT, EV_UNLNK | F_USEMA...200
F_EVENT, EV_WAIT ..201
F_EVENT, EV_WAIT | F_USEMA...203
F_EVENT, EV_WAITR ...205
F_EXIT ...207
F_FINDPD ..209
F_FMOD...210
F_FORK..211
F_FORKM ..214
F_GBLKMP...216
F_GETMDP ..218
F_GETSYS ..219
F_GMODDR ..221

Contents

OS-9 Technical Manual 7

F_GPRDBT ...222
F_GPRDSC ...223
F_ICPT ..224
F_ID ..226
F_INITDATA ..228
F_IRQ ...229
F_LINK ...231
F_LINKM ...233
F_LOAD ...235
F_MKMDIR..237
F_MEM...238
F_MODADDR..239
F_MOVE...240
F_NPROC...241
F_PERMIT ..242
F_PROTECT...244
F_PRSNAM ..246
F_RELLK ..248
F_RETPD ..249
F_RTE ...250
F_SEND ..251
F_SETCRC..253
F_SETSYS ...254
F_SIGLNGJ...256
F_SIGMASK..258
F_SIGRESET ...260
F_SIGRS..261
F_SLEEP..263
F_SLINK ...265
F_SLINKM..267
F_SPRIOR...268
F_SRQMEM ...269
F_SRTMEM..271
F_SSPD..272
F_SSVC ...273
F_STIME...275
F_STRAP...277
F_SUSER ...280
F_SYSDBG ..281
F_SYSID..282
F_THEXIT ..284
F_THFORK ..285
F_THREAD ..287
F_TIME...288
F_TLINK...289
F_TLINKM ...291
F_UACCT ...293
F_UNLINK ...294
F_UNLOAD..295

Contents

OS-9 Technical Manual 8

F_VMODUL ...296
F_WAIT...298
F_WAITID...300
F_WAITLK..302
F_YIELD ...304
I_ALIAS ..305
I_ATTACH..306
I_CHDIR...308
I_CIOPROC..310
I_CLOSE ...311
I_CONFIG ..312
I_CREATE...313
I_DELETE...315
I_DETACH..316
I_DUP ...317
I_GETDL ..319
I_GETPD...320
I_GETSTAT...321
I_GETSTAT, SS_COPYPD...323
I_GETSTAT, SS_CSTATS...324
I_GETSTAT, SS_DEVNAME...325
I_GETSTAT, SS_DEVOPT...326
I_GETSTAT, SS_DEVTYPE ...327
I_GETSTAT, SS_DISKFREE ..328
I_GETSTAT, SS_DSIZE ...329
I_GETSTAT, SS_EDT ..330
I_GETSTAT, SS_EOF...331
I_GETSTAT, SS_FD ...332
I_GETSTAT, SS_FdAddr..333
I_GETSTAT, SS_FDINFO..334
I_GETSTAT, SS_LUOPT..335
I_GETSTAT, SS_PARITY...336
I_GETSTAT, SS_PATHOPT ...337
I_GETSTAT, SS_POS ...338
I_GETSTAT, SS_READY ...339
I_GETSTAT, SS_SIZE ..340
I_GIOPROC..341
I_IODEL ...342
I_IOEXIT ..343
I_IOFORK ..344
I_MAKDIR ...345
I_OPEN...347
I_RDALST ..349
I_READ...350
I_READLN ...352
I_SEEK ..354
I_SETSTAT..355
I_SETSTAT, SS_ATTR ...357
I_SETSTAT, SS_BREAK...358

Contents

OS-9 Technical Manual 9

I_SETSTAT, SS_CACHE..359
I_SETSTAT, SS_DCOFF ..360
I_SETSTAT, SS_DCON ...361
I_SETSTAT, SS_DEVOPT..362
I_SETSTAT, SS_DSRTS..363
I_SETSTAT, SS_ENRTS...364
I_SETSTAT, SS_ERASE ...365
I_SETSTAT, SS_FD ..366
I_SETSTAT, SS_FILLBUFF ..367
I_SETSTAT, SS_FLUSHMAP ...368
I_SETSTAT, SS_HDLINK ..369
I_SETSTAT, SS_LOCK ..370
I_SETSTAT, SS_LUOPT...371
I_SETSTAT, SS_PATHOPT ..372
I_SETSTAT, SS_RELEASE ...373
I_SETSTAT, SS_RENAME...374
I_SETSTAT, SS_RESET..375
I_SETSTAT, SS_RETEN ..376
I_SETSTAT, SS_RFM...377
I_SETSTAT, SS_SENDSIG ...378
I_SETSTAT, SS_SIZE ...379
I_SETSTAT, SS_SKIP ...380
I_SETSTAT, SS_SKIPEND ...381
I_SETSTAT, SS_TICKS ..382
I_SETSTAT, SS_WFM..383
I_SETSTAT, SS_WTRACK ..384
I_SGETSTAT ...386
I_TRANPN ...387
I_WRITE...388
I_WRITELN..389

Appendix A: Example Code
Sysgo ... 392.

Signals: Example Program ... 394.

Alarms: Example Program... 396.

Events: Example Program.. 398.

Semaphores: Example Program.. 400.

Usemaphores: Example Program ... 402.

The Subroutine Library.. 405.

Subroutine Module ... 405.

root psect File ... 405.

function File.. 406.

Application Call into a Subroutine Module... 406.

Initialization ... 406.

Trap Handlers ... 408.

trapc.a... 408.

thandler.c .. 410.

tcall.c .. 411.

ttest.c .. 412.

Contents

OS-9 Technical Manual 10

Appendix B: OS-9 Error Codes
Error Categories .. 414.

Errors .. 415.

Index

11

1 System Overview

This chapter provides a general overview of OS-9® system modularity, I/O
processing, memory modules, and program modules. It includes the following
topics:

• System Modularity

• I/O Overview

• Memory Modules

Chapter 1: System Overview

OS-9 Technical Manual 12

System Modularity
OS-9 has five levels of modularity. These are illustrated in Figure 1-1.

Figure 1-1. OS-9 Module Organization

Level 1 -- The Kernel, Clock, and Init Modules

The kernel provides basic system services, including process control and resource
management. The clock module is a software handler for the specific real-time clock
hardware. The kernel uses the Init module as an initialization table during system
startup.

Level 2 — IOMAN

IOMAN coordinates the input/output (I/O) system by passing I/O requests to the
appropriate file managers.

Level 3 — File Managers

File managers process I/O requests for similar classes of I/O devices. Refer to the I/O
Overview in this chapter for a list of the file managers Microware currently
supports for OS-9.

OS-9 Kernel

User
Applications
and Util it ies

IOMan

Device Drivers

File Managers

Device Descriptors

Init

Clock

Subroutine Libraries

CSL Library

Trap Handlers

For specific information about IOMAN, file managers, device drivers, and
device descriptors, refer to I/O Overview, Chapter 2, The Kernel, and the OS-9
Porting Guide.

Chapter 1: System Overview

OS-9 Technical Manual 13

Level 4 — Device Drivers

Device drivers handle the basic physical I/O functions for specific I/O controllers.
Standard OS-9 systems are typically supplied with a disk driver, serial port drivers
for terminals and serial printers, and a driver for parallel printers. You can add
customized drivers of your own design or purchase drivers from a hardware vendor.

Level 5 — Device Descriptors

Device descriptors are small tables that associate specific I/O ports with their logical
name, device driver, and file manager. These modules also contain the physical
address of the port and initialization data.

One important component not shown is the shell, which is the command
interpreter. The shell is an application program, not part of the operating system,
and is described in the Using OS-9 manual.

For a list of the specific modules comprising OS-9 for your system, use the ident
utility on the sysboot file.

Although all modules can be resident in ROM, the system bootstrap module is
usually the only ROMed module in disk-based systems. All other modules are
loaded into RAM during system startup.

I/O Overview
The OS-9 kernel does not directly process I/O requests. Instead, the kernel passes
I/O requests to the I/O manager (IOMAN), and IOMAN passes requests to the
appropriate file managers. Microware includes the following file managers in the
Microware OS-9 for Embedded Systems and Board Level Solution package:

Table 1-1. File Managers

File Manager Description
RBF The Random Block File manager handles I/O for random-access,

block-structured devices such as disks and hard drives.
SCF The Sequential Character File manager handles I/O for

sequential-access, character-structured devices such as
terminals, printers, and modems.

SBF The Sequential Block File manager handles I/O for sequential-
access, block-structured devices.

PIPEMAN The Pipe file Manager handles I/O for interprocess
communications through memory buffers called pipes.

PCF The PC file manager handles reading and writing to PC-DOS
disks.

For more information about these file managers, refer to Chapter 2, The
Kernel, or the OS-9 Porting Guide.
Microware also supports additional communication file managers. Refer to the
SoftStax® and Lan Communications manual sets for details.

Chapter 1: System Overview

OS-9 Technical Manual 14

Figure 1-2 illustrates how an OS-9 I/O request is processed.

Figure 1-2. Processing an OS-9 I/O Request

Memory Modules
OS-9 is unique because it manages both the physical assignment of memory to
programs and the logical contents of memory by using memory modules. A memory
module is a logical, self-contained program, program segment, or collection of data.

OS-9 supports nine predefined module types and enables you to define your own
module types. Each type of module has a different function. The predefined module
types are defined in the m_tylan field of the module header definition.

Modules do not have to be complete programs or written in machine language.
Modules simply have to be re-entrant, position independent, and conform to the
basic module structure described in the next section.

1. The user makes a request for data/status.
8. The user receives the data/
status.

2. The kernel determines the request is an
I/O request and passes it to IOMan

3. IOMan identifies and validates the I/O
request and determines the appropriate fi le

manager, device driver, and other
necessary resources. Then, IOMan passes

the request to the appropriate file
manager.

4. The fi le manager further validates the
request and performs device-independent
processing. It also calls the device driver

for hardware interaction, as necessary.

5. The device driver performs
device-specific processing and
transfers the data/status back
to the file manager.

6. The file manager monitors
and processes the data/status.

7. The kernel and IOMan work
with the file manager to return
the data/status to the user.

IOMan

File Managers

Device Drivers

OS-9 Kernel

User Process

Chapter 1: System Overview

OS-9 Technical Manual 15

OS-9 is based on a programming style called re-entrant code. That is, code that does
not modify itself. This allows two or more different processes to share one copy of a
module simultaneously. The processes do not effect each other, provided each
process has an independent area for its variables.

Almost all OS-9 family software is re-entrant and uses memory efficiently. For
example, a screen editor may require 26K of memory to load. If a request to run the
editor is made while another user (process) is running it, OS-9 allows both processes
to share the same copy, saving 26K of memory.

A position-independent module is in no way dependent on, or aware of where it is
loaded in memory. This enables OS-9 to load the program wherever memory space
is available. In many operating systems, the user must specify a load address to
place the program in memory. OS-9 determines an appropriate load address only
when the program is started.

OS-9 compilers and interpreters automatically generate position-independent code.
In assembly language programming, however, you must insure position
independence by avoiding absolute address modes. Alternatives to absolute
addressing are described in the Assembler and Linker chapters of the Using Ultra
C/C++ manuals.

Basic Module Structure

Each module has three parts: a module header, a module body, and a CRC value as
shown in Figure 1-3.

Figure 1-3. Basic Memory Module Format

The module header contains information describing the module and its use. It is
defined in assembly language by a psect directive. The linker creates the header at
link time. The information contained in the module header includes the module
name, size, type, language, memory requirements, and entry point. For specific
information about the structure and individual fields of the module header, refer to
the Module Header Definitions section in this chapter.

Data modules are an exception to the no-modification restriction. However,
careful coordination is required for several processes to update a shared data
module simultaneously.

Module Header

Module Body

Initialization data
Program/Consultants

CRC Value

Chapter 1: System Overview

OS-9 Technical Manual 16

The module body contains initialization data, program instructions, and constant
tables. The last three bytes of the module hold a CRC (cyclic redundancy check)
value used to verify the module integrity when the module is loaded into memory.
The linker creates the CRC at link time.

The CRC Value

A CRC (cyclic redundancy check) value is at the end of all modules, except data
modules. The CRC, which is used to validate the entire module, is an error checking
method used frequently in data communications and storage systems. The CRC is
also a vital part of the ROM memory module search technique. It provides a high
degree of confidence that programs in memory are intact before execution and is an
effective backup for the error detection systems of disk drives and memory systems.

In OS-9, a 24-bit CRC value is computed over the entire module starting at the first
byte of the module header and ending at the byte just before the CRC. OS-9
compilers and linkers automatically generate the module header and CRC values. If
required, a user program can use the F_CRC system call to compute a CRC value
over any specified data bytes. For a full description of how F_CRC computes a CRC
value, refer to the description of the F_CRC call in Chapter 6, OS-9 System Calls.

In the case of data modules, the CRC value is not calculated when created. The
CRC must be calculated and set on a data module before that module is loaded into
memory.

OS-9 cannot recognize a module with an incorrect CRC value. For this reason, you
must update the CRC value of a module modified in any way, or the module cannot
be loaded from disk or located in ROM. Use the OS-9 fixmod utility to update the
CRC of a modified module.

ROMed Memory Modules

When OS-9 starts after a system reset, the kernel searches for modules in ROM.
The kernel detects the modules by looking for the module header sync code (for
example, 0xf00d for PowerPC processors). When this byte pattern is detected, the
header parity is checked to verify a correct header. If this test succeeds, the module
size is obtained from the header and a 24-bit CRC is computed over the entire
module. If the CRC is valid, the module is entered into the module directory.

OS-9 links to all of its component modules found during the search. All ROMed
modules present in the system at startup are automatically included in the system
module directory. This enables you to create partially or completely ROM-based
systems. Any non-system module found in ROM is also included. This enables user-
supplied software to be located during the start-up process and entered into the
module directory.

Module Header Definitions

The structure definition for a module header is listed here, followed by a description
of each field.

Chapter 1: System Overview

OS-9 Technical Manual 17

mh_com

The module header structure is contained in the header file module.h.

Declaration

typedef struct mh_com {

 u_int16 m_sync, /* sync bytes */

 m_sysrev; /* system revision check value */

 u_int32 m_size; /* module size */

 owner_id m_owner; /* group/user ID */

 u_int32 m_name; /* offset to module name */

 u_int16 m_access, /* access permissions */

 m_tylan, /* module type and language */

 m_attrev, /* module attributes and revision /*

 m_edit; /* module edition number */

 u_int32 m_needs, /* module hardware requirements flags */

 /* (reserved) */

 m_share, /* offset of shared data in statics */

 m_symbol, /* offset to symbol table */

 m_exec, /* offset to execution entry point */

 m_excpt, /* offset to exception entry point*/

 m_data, /* data storage requirement */

 m_stack, /* stack size */

 m_idata, /* offset to initialized data */

 m_idref, /* offset to data reference lists */

 m_init, /* offset to initialization routine*/

 m_term, /* offset to termination routine */

 m_dbias, /* data area pointer bias*/

 m_cbias; /* code area pointer bias */

 u_int16 m_ident; /* linkage locale identifier */

 char m_spare[8]; /* reserved */

 u_int16 m_parity; /* header parity */

} mh_com, *Mh_com;

Chapter 1: System Overview

OS-9 Technical Manual 18

Fields

m_sync

Constant bytes (for example, 0xf00d for the PowerPC) used to locate modules
during the startup memory search. The value of m_sync is processor
dependent.

m_sysrev

Identifies the format of a module.

m_size

Overall size of the module in bytes, including header and CRC.

m_owner

Group/user ID of the module’s owner.

m_name

Contains the offset of the module name string relative to the start (first sync
byte) of the module. The name string can be located anywhere in the module
and consists of a string of ASCII characters terminated by a null (0) byte.

m_access

Defines the permissible module access by its owner or by other users. The
write permissions on memory modules only make sense for data modules.
Module access permission values are located in the header file module.h and
are defined as follows:

All bits not defined in the preceding table are reserved.

Name Description
MP_OWNER_READ $0001 = Read permission by owner
MP_OWNER_WRITE $0002 = Write permission by owner
MP_OWNER_EXEC $0004 = Execute permission by owner
MP_GROUP_READ $0010 = Read permission by group
MP_GROUP_WRITE $0020 = Write permission by group
MP_GROUP_EXEC $0040 = Execute permission by group
MP_WORLD_READ $0100 = Read permission by world
MP_WORLD_WRITE $0200 = Write permission by world
MP_WORLD_EXEC $0400 = Execute permission by world

Chapter 1: System Overview

OS-9 Technical Manual 19

m_tylan

Contains the module type (first byte) and language (second byte). The
language codes indicate if the module is executable and which language the
run-time system requires for execution, if any. Module type values and
language codes are located in the header file module.h and are defined as
follows:

Module Type Description
MT_ANY 0 = Not used (wildcard value in system calls)
MT_PROGRAM 1 = Program module
MT_SUBROUT 2 = Subroutine module
MT_MULTI 3 = Multi-module (reserved for future use)
MT_DATA 4 = Data module
MT_CDBDATA 5 = Configuration Data Block data module

6-10 = Reserved for future use
MT_TRAPLIB 11 = User trap library
MT_SYSTEM 12 = System module
MT_FILEMAN 13 = File manager module
MT_DEVDRVR 14 = Physical device driver
MT_DEVDESC 15 = Device descriptor module

16-up = User definable
ML_ANY 0 = Unspecified language

(wildcard in system calls)
ML_OBJECT 1 = Machine language
ML_ICODE 2 = Basic I-code (reserved for future use)
ML_PCODE 3 = Pascal P-code (reserved for future use)
ML_CCODE 4 = C I-code (reserved for future use)
ML_CBLCODE 5 = Cobol I-code (reserved for future use)
ML_FRTNCODE 6 = Fortran

7-15 = Reserved for future use
16-255 = User definable

Not all combinations of module type codes and languages are
compatible.

Chapter 1: System Overview

OS-9 Technical Manual 20

m_attrev

Contains the module attributes (first byte) and revision (second byte). The
attribute byte is defined in the header file module.h and as follows:

If two modules with the same name and type are found in the memory search
or are loaded into the current module directory, only the module with the
highest revision level is kept. This enables easy substitution of modules for
update or correction, especially ROMed modules.

m_edit

Indicates the software release level for maintenance. OS-9 does not use this
field. Whenever a program is revised (even for a small change), increase this
number. Internal documentation within the source program can be keyed to
this system.

m_needs

Module hardware requirements flags (reserved for future use).

m_share

Offset to any shared data the module contains within its global data area. For
example, this field is used by IOMAN to locate the main statics storage
structure of file managers and device drivers.

m_symbol

Reserved.

m_exec

Offset to the program starting address, relative to the module starting address.

m_excpt

Relative address of a routine to execute if an uninitialized user trap is called.

m_data

Required size of the program data area (storage for program variables).

m_stack

Minimum required size of the program’s stack area.

m_idata

Offset to an eight-byte value which precedes the initialized data area. The first
four bytes contain an offset from the beginning of the program’s memory to
the beginning of the initialized data area, which contains values to copy to the
program data area. The linker places all constant values declared in vsects
here. The second four bytes contain the number of initialized data bytes to
follow.

Bit Description
7 The module is re-entrant (sharable by multiple tasks).
6 The module is sticky. A sticky module is not removed from memory

until its link count becomes -1 or memory is required for another use.
5 The module is a system-state module.

Chapter 1: System Overview

OS-9 Technical Manual 21

m_idref

Offset to a table of values to locate pointers in the data area. Initialized
variables in the program’s data area may contain pointers to absolute
addresses. Code pointers are adjusted by adding the absolute starting address
of the object code area. Data pointers are adjusted by adding the absolute
starting address of the data area.

F_FORK automatically calculates the effective address at execution time using
the tables created in the module. The first word of each table is the most
significant (MS) word of the offset to the pointer. The second word is a count
of the number of least significant (LS) word offsets to adjust. The adjustment
is made by combining the MS word with each LS word entry. This offset
locates the pointer in the data area. The pointer is adjusted by adding the
absolute starting address of the object code or the data area (for code pointers
or data pointers respectively). It is possible, after exhausting this first count,
another MS word and LS word are given. This continues until an MS word of
zero and an LS word of zero are found.

m_init

Offset to the trap handler initialization routine.

m_term

Reserved.

m_dbias

This field contains the bias value applied by the linker to the global data
accesses in the module. Biasing global data accesses allows the compiler to
generate efficient data accesses to a larger data space.

m_cbias

This field contains the bias value applied by the linker to the code symbols
within the module. Biasing code references allows the compiler to generate
efficient code references to a larger area of code.

m_ident

Linkage site identifier. This field is not currently implemented.

m_spare

Reserved.

m_parity

A complement of the exclusive-OR of the previous header words. OS-9 uses
this field to check module integrity.

Chapter 1: System Overview

OS-9 Technical Manual 22

23

2 The Kernel

This chapter outlines the primary functions of the kernel. It includes the following
topics:

• Kernel Functions

• System Call Overview

• Kernel System Call Processing

• Memory Management

• OS-9 Memory Map

• Memory Fragmentation

• Colored Memory

• System Initialization

• Extension Modules

• Process Creation

• Process Scheduling

Chapter 2: The Kernel

OS-9 Technical Manual 24

Kernel Functions
The nucleus of OS-9 is the kernel, which manages resources and controls
processing. The kernel is a ROMable, compact, OS-9 module written in C
language. The primary responsibility of the kernel is to process and coordinate
system calls or service requests.

OS-9 has two general types of system calls. These include I/O calls, such as reads
and writes, and system function calls.

System functions include those listed below:

• Memory management

• System initialization

• Process creation and scheduling

• Exception/interrupt processing

When a system call is made, the processor is changed to privileged state. The way
this is done depends on which processor is being used. The kernel determines what
type of system call you want to perform. The kernel directly executes the calls that
perform system functions, but does not execute the I/O calls. Instead, the I/O calls
are passed to IOMAN.

System Call Overview

User-State and System-State

There are two distinct OS-9 environments in which you can execute object code:

user-state User-state is the normal program environment in which
processes are executed. Generally, user-state processes do not
deal directly with the specific hardware configuration of the
system.

system-state System-state is the environment in which OS-9 system calls
and interrupt service routines are executed.

Functions executing in system-state have several advantages over those running in
user-state:

• A system-state routine has access to all processor capabilities For example, on
memory protected systems, a system-state routine can access memory in the
system: it can mask interrupts, alter internal data structures, or take direct
control of hardware interrupt vectors.

• System-state routines are never time sliced. Once a process has entered system
state, no other process executes until the system-state process finishes or goes to
sleep (F_SLEEP waiting for I/O). The only processing that may preempt a system-
state routine is interrupt servicing.

For information about specific system calls, refer to Chapter 6, OS-9 System
Calls.

Chapter 2: The Kernel

OS-9 Technical Manual 25

• Some OS-9 system calls are only accessible from system-state.

The characteristics of system state make it the only way to provide certain types
of programming functions. For example, it is almost impossible to provide
direct I/O to a physical device from user state. However, do not run all
programs in system state.

• Signal handler routines cannot be called for system state processes. The process
must dequeue them manually.

• In a multi-user environment, it is important to ensure each user receives a fair
share of the CPU time. This is the basic function of time slicing.

• Memory protection prevents user-state routines from accidentally damaging
data structures they do not own.

• A user-state process may be aborted. If a system-state routine loses control, the
entire system usually crashes.

• It is far more difficult and dangerous to debug system-state routines than user-
state routines. You can use the user-state debugger to find most user-state
problems. Generally, system-state problems are much more difficult to locate.

• User programs almost never have to be concerned with physical hardware; they
are essentially isolated from it. This makes user-state programs easier to write
and port.

Installing System-State Routines

With direct access to all system hardware, any system-state routine has the ability to
take over the entire machine. It is often a challenge to keep system-state routines
from crashing or hanging up the system. increase system stability, the methods of
creating routines that operate in system state are limited.

In OS-9, there are four ways to provide system-state routines:

1. Install an OS9P2 module in the system bootstrap file or in ROM.

During cold start, the OS-9 kernel links to this module, and if found, calls its
execution entry point. Typically, the OS9P2 module is used to install new system
service requests.

2. Use the I/O system as an entry into system state.

File managers and device drivers are always executed in system state. In fact, the
most obvious reason to write system-state routines is to provide support for new
hardware devices. It is possible to write a dummy device driver and use the
I_GETSTAT or I_SETSTAT routines to provide a gateway to the driver.

If a system call returns with an exception error code, a system-state exception
has occured. If you are getting system state exceptions, there is a bug either in
the OS-9 system code, a driver, or some user developed system code. Be
advised that such exceptions can leave the system and the user program in an
unknown and unstable state.

Chapter 2: The Kernel

OS-9 Technical Manual 26

3. Write a trap handler module.

For routines of limited use that are to be dynamically loaded and unlinked, this
is perhaps the most convenient method. It is often practical to debug trap
handler routines as user-state subroutines and then convert the finished routines
to a trap handler module. OS-9 trap handlers always execute in system state.

4. Set the supervisor state bit in the attribute/revision word for the module.

A program executes in system state if the supervisor state bit in the module
attribute/revision word is set and if the module is owned by the super user.

Kernel System Call Processing
The kernel processes all OS-9 system calls (service requests). System call parameters
are passed and returned in parameter blocks.

There are two general types of system calls:

• Non-I/O calls (calls performing system functions)

• I/O calls

System calls are identified by a function code passed in the service request
parameter block. Every standard OS-9 system call has an associated symbolic name
for the function code provided in the funcs.h C header file. The non-I/O call
symbols begin with F_ and the I/O calls begin with I_. For example, the system call
to link a module is called F_LINK.

Non-I/O Calls

There are two types of non-I/O system calls:

User-State System Calls These calls perform memory management,
multitasking, and other functions for user programs.
These are mainly processed by the kernel.

System-State System Calls These calls can only be used by system software in
system-state and usually operate on internal OS-9
data structures. To preserve the modularity of OS-9,
these requests are system calls rather than
subroutines. User-state programs cannot access these
calls, but system modules such as device drivers can
use these calls.

In general, system-state routines may use any of the ordinary (user-state) system
calls. However, avoid making system calls at inappropriate times. For example, an
interrupt service routine should avoid I/O calls, memory requests, timed sleep
requests, and other calls that can be particularly time consuming (such as F_CRC).

Memory requested in system-state is not recorded in the process descriptor memory
list. The requesting process must ensure the memory is returned to the system before
the process terminates.

Chapter 2: The Kernel

OS-9 Technical Manual 27

I/O Calls

When the kernel receives an I/O request, it immediately passes the request to
IOMAN. IOMAN passes the request to the appropriate file manager and device
driver for processing.

Any I/O system call may be used in a system-state routine, with one slight difference
than when executed in user state: all path numbers used in system state are system
path numbers. Each user-state process has a path table used to convert its local path
numbers to system path numbers. The system itself has a global path number table
used to convert system path numbers into actual addresses of path descriptors.
System-state I/O system calls must be made using system path numbers.

For example, a system-state OS-9 I_WRITE system call prints an error message on
the caller’s standard error path. To do this, a system-state process may not perform
output on path number two. Instead, it must use the I_TRANPN system call to
translate the user path number to its associated system path number.

When a user-state process exits with open I/O paths, the F_EXIT routine
automatically closes the paths. This is possible because OS-9 keeps track of the
open paths in the process path table. In system state, the I_OPEN and I_CREATE
system calls return a system path number that is not recorded in the process path
table or anywhere else by OS-9; the system-state routine that opens an I/O path
must ensure the path is eventually closed. This is true even if the underlying process
is abnormally terminated.

Memory Management
If any object (such as a program and constant table) is to be loaded in memory, it
must use the standard OS-9 memory module format described in Chapter 1, System
Overview. This enables OS-9 to maintain a module directory to keep track of
modules in memory. The module directory contains the name, address, and other
related information about each module in memory.

After OS-9 has been booted, a single module directory exists containing all of the
boot modules. You may create additional module directories and subdirectories at
your discretion. Each module directory has independent access permissions. By
using multiple module directories, modules with the same name can be loaded in
memory and executed without conflict.

This can be extremely useful in the continuing development of existing software.
When a module is loaded in memory, it is added to the process current module
directory.

When a process creates a new process, the OS-9 kernel searches the current module
directory for the target module. If this search fails, the kernel searches the process’
alternate module directory, initially specified in your login file. If that search fails,
the kernel attempts to load the module into the current module directory.

Chapter 2: The Kernel

OS-9 Technical Manual 28

Each module directory entry contains a link count. The link count is the number of
processes using the module. When a process links to a module in memory, the link
count of the module is incremented by one. When a process unlinks from a module,
the link count is decremented by one. When a module’s link count becomes zero, its
memory is deallocated and the module is removed from the module directory, unless
the module is sticky.

A sticky module is not removed from memory until its link count becomes -1 or
memory is required for another use. A module is sticky if the sixth bit of the module
header’s attribute byte (first byte of the m_attrev field) is set. If several modules are
merged together and loaded, you must unlink all of those modules before any are
removed from the module directory.

OS-9 Memory Map
OS-9 uses a software memory management system in which all memory is
contained within a single memory map. Therefore, all user tasks share a common
address space.

A map of an example OS-9 memory space is shown in Figure 2-1. The sections
shown are not required to be at specific addresses. Microware recommends you
keep each section in contiguous reserved blocks arranged in an order that facilitates
future expansion. It is always advantageous for RAM to be physically contiguous
whenever possible.

Figure 2-1. Example OS-9 Memory Map

System Memory Allocation

During the OS-9 start-up sequence, an automatic search function in the kernel and
the boot ROM locates blocks of RAM and ROM. OS-9 reserves some RAM for its
own data structures. ROM blocks are searched for valid OS-9 ROM modules.

The amount of memory OS-9 requires is variable. Actual requirements depend on
the system configuration and the number of active tasks and open files. The
following sections describe various parts of the OS-9 system memory.

Refer to Chapter 5 of Using OS-9 for more information on module directories.

Highest Memory Address

Lowest Memory Address

Unused. Available for future RAM or
ROM expansion.

RAM
256K minimum

1M recommended

Exception Vector area

Chapter 2: The Kernel

OS-9 Technical Manual 29

Operating System Object Code

On disk-based systems, operating system component modules (such as the kernel,
I/O managers, and device drivers) are normally bootstrap-loaded into RAM. OS-9
does not dynamically load overlays or swap system code. Therefore, no additional
RAM is required for system code. Alternately, you can place OS-9 in ROM for non-
disk systems.

System Global Memory

The OS-9 kernel allocates a section of RAM memory for internal use. It contains
the following items:

• an exception jump table

• the debugger/boot variables

• a system global area

Variables in the system global area are symbolically defined in the sysglob.h library
and the variable names begin with d_.

User programs should never directly access system global variables. System calls are
provided to allow user programs to read the information in this area.

System Dynamic Memory

OS-9 maintains dynamic-sized data structures (such as I/O buffers, path descriptors,
and process descriptors) that are allocated from the general RAM area when
needed. The system modules allocate and maintain these structures. For example,
IOMAN allocates memory for path descriptors and maintains them. The system
global memory area contains the pointers to these system data structures.

User Memory

All unused RAM memory is assigned to a free memory pool. Memory space is
removed and returned to the pool as it is allocated or deallocated for various
purposes. OS-9 automatically assigns memory from the free memory pool whenever
any of the following occur:

• Modules are loaded in RAM.

• New processes are created.

• Processes request additional RAM.

• OS-9 requires more I/O buffers.

• OS-9 internal data structures must be expanded.

Storage for user program object code modules and data space is dynamically
allocated from and deallocated to the free memory pool. User object code modules
are also automatically shared if two or more tasks execute the same object program.
User object code application programs can also be stored in ROM memory. The
total memory required for user memory depends largely upon the application
software that is to be run.

Chapter 2: The Kernel

OS-9 Technical Manual 30

Memory Fragmentation
Once a program is loaded, it remains at the address where it was originally loaded.
Although position-independent programs can be initially placed at any address
where free memory is available, program modules cannot be dynamically relocated
afterwards. This can lead to memory fragmentation.

When programs are loaded, they are assigned the first sufficiently large block of
memory at the highest address possible in the address space. However, if a colored
memory request is made, this may not be true. If a number of program modules are
loaded, and subsequently one or more non-contiguous modules are unlinked,
several fragments of free memory space will exist. The total free memory space can
be large, but because it is scattered, not enough space exists in a single block to load
a particular program module.

To avoid memory fragmentation, load modules at system startup. This places the
modules in contiguous memory space. You can also initialize each standard device
when the system is booted. This enables the devices to allocate memory from higher
RAM.

If serious memory fragmentation does occur, the system administrator can kill
processes and unlink modules in ascending order of importance until there is
sufficient contiguous memory. The mfree utility can determine the number and size
of free memory blocks.

Colored Memory
OS-9 colored memory allows a system to recognize different memory types and
reserve areas for special purposes. For example, part of a RAM can store video
images and another part can be battery-backed. The kernel allows areas of RAM
like these to be isolated and accessed specifically. You can request specific memory
types or colors when you allocate memory buffers, create modules in memory, or
load modules into memory. If a specific type of memory is not available, the kernel
returns error #237, EOS_NORAM.

Colored memory lists are not essential on systems whose RAM consists of one
homogeneous type, although they can improve system performance and allow
flexibility in configuring memory search areas.

Colored Memory Definition List

The kernel must have a description of the CPU address space in order to use the
colored memory routines. This is accomplished by including a colored memory
definition list in default.des. The list describes the characteristics of each memory
region. The kernel searches each for RAM during system startup.

Chapter 2: The Kernel

OS-9 Technical Manual 31

The following information describes a memory area to the kernel:

• Memory color (type)

• Memory priority

• Memory access permissions

• Local bus address

• Block size to be used by the kernel cold start routine to search the area for RAM
or ROM

• External bus translation address (for DMA and dual-ported RAM)

• Optional name

The memory list (memlist) may contain as many regions as needed. If no list is
specified, the kernel automatically creates one region describing the memory found
by the bootstrap ROM.

Each line in the memory list must contain all the parameters in the following order:
type, priority, attributes, blksiz, addr begin, addr end, name, and DMA-offset.

The colored memory list must end on an even address. Descriptions of the memlist
fields are included below:

Table 2-1. memlist Fields

Parameter Size Definition
Memory Type word Type of memory. Two memory types are currently

defined in memory.h:
MEM_SYS 0x01 System RAM memory
MEM_SHARED 0x8000 Shared memory

(0x8000 - 0xffff)
Priority word High priority RAM is allocated first (255 - 0). If the

block priority is 0, the block can only be allocated by a
request for the specific color (type) of the block.

Access Permissions word Memory type access bit definitions:
• Bit 0: B_USERRAM

Indicates memory allocatable by user processes.
(This bit is ignored if B_ROM bit is also set.)

• Bit 1: B_PARITY
Indicates parity memory; initialized by kernel during
start-up.

• Bit 2: B_ROM
Indicates ROM; the kernel searches this for
modules during start-up.

• Bit 3: B_NVRAM
Non-volatile RAM; the kernel searches this for
modules during start-up.

• Bit 4: B_SHARED
Shared memory; reserved for future use.

NOTE: Only B_USERRAM memory can be initialized.

Chapter 2: The Kernel

OS-9 Technical Manual 32

The complete memory list structure definitions are located in the alloc.h file and
are listed below:

/* initialization table (in memdefs module data area) */

typedef struct mem_table {

 u_int16

 type, /* memory type code */

 prior, /* memory allocation priority */

 access, /* access permissions */

 blksiz; /* search block size */

 u_char

 lolim, / beginning absolute address for this type */

 hilim; / ending absolute address +1 for this type */

 u_int32

 descr; /* optional description string offset */

 u_int32

 dma_addr, /* address translation address for dma's, etc.*/

 rsvd2[2]; /* reserved, must be zero */

} *Mem_tbl, mem_tbl;

/* access bit definitions */

#define B_USERRAM (0x01) /* memory allocatable by user procs */

#define B_PARITY (0x02) /* parity memory; must be initialized */

#define B_ROM (0x04) /* read-only memory; searched for modules */

#define B_NVRAM (0x08) /* non-volatile RAM; searched for modules */

#define B_SHARED (0x10) /* shared memory (Reserved for future use.)*/

Search Block Size word The kernel checks every search block size to see if
RAM/ROM exists.

Low Memory Limit long Beginning address of the block as referenced by the
CPU.

High Memory Limit long End address of the block as referenced by the CPU.
Description String
Offset

long This 32-bit offset of a user-defined string describes the
type of memory block.

Address Translation
Adjustment

long External bus address of the beginning of the block. If
zero, this field does not apply. Refer to _os_trans()
for more information.

Refer to your OS-9 Device Descriptor and Configuration Module Reference for
more information on creating a memory list in the init modules.

Table 2-1. memlist Fields (Continued)

Parameter Size Definition

Chapter 2: The Kernel

OS-9 Technical Manual 33

SSM and Cache

The SSM module provides user-state security. The cache module is used to enforce
cacheing policy on ranges of memory. The following sections describe these
modules and how they are used with OS-9 and its supported processors.

Cache List

OS-9 supports the ability to precisely define the caching modes used for regions of
memory in the system. Precise definition of these modes for particular regions
allows you to configure the system for optimal performance and/or system
functionality. In many cases, regions of memory must be declared non-cachable so
cache coherency problems do not result when processes directly reference I/O
devices and memory shared with other processors.

When the SSM module is installed in the system, it provides a default cache mode of
“writeback” for user-state accesses. This default mode can be over-ridden for
specific regions by creating cache list entries in the Init module. The cache list is
used to describe the cacheing policy enforced by the cache module.

The cache list entries must end with a longword of 0xffffffff (-1). The following
table describes the CacheList parameters:

The cache mode is usually controlled by SSM, rather than the cache module. Cache
mode information is located in the following location:

MWOS/OS9000/SRC/DEFS/cache.h

PowerPC Processors: SSM and Cache

This section explains how SSM and cache modules work in order to provide system
security and caching policy. This information pertains to the following PowerPC
processors: 603, 604, 750, 8240, and 8260.

Cacheing policies consist of the following types of cache behaviors:

• Writeback or “copyback” cache is the default cache mode of a memory region.
It is the fastest type of cache, and the most problematic. With copyback cache,
values written to memory are first written to cache--not to main memory.
During normal operation of the processor, data values held in cache are written
to main memory. Under normal circumstances this is not a problem; the cache
module provides services in which a programmer can force the write of data
values in cache to main memory. This ensures that the data values in the cache
are coherent with the data values in main memory. Typically, this is important in
multi-processor environments, especially DMA devices. Processors and DMA
devices can only read main memory, and not the caches of another processor.

Table 2-2. CacheList Parameters

Parameter Size Definition
Block Start long Start address of memory region.
Block End long End address (+1) of memory region.
Cache Mode word Cache mode (MMU specific) for region.

Chapter 2: The Kernel

OS-9 Technical Manual 34

• Write through cache is the fastest type of cache, after Copyback. Writes to this
cache are written to the cache and to the memory immediately. Reads are still
cached.

• The last type of cache is no cache at all. In other words, read and writes bypass
the cache and go directly into memory.

Using the cachelist in the init module, all cacheing policies can be specified on
memory ranges. The 600 series PowerPC processor has two mechanisms in order to
enforce cache policy: the first is the memory segment model; the second is the block
address translation (BAT) mechanism.

The memory segment model is used for user-state memory protection and security,
as well as cache policy. The SSM module controls this mechanism. The minimum
memory range to control is 4k bytes.

The cache module controls the BAT mechanism. In addition, if the SSM module is
not included within the system, the BAT mechanism will be used for system-state
and user-state cache policies.

The BAT mechanism is simpler than the memory segment module; however, its
options are more limited. This limitation is reflected directly onto the cachelist in
the init module. Minimum memory range for a BAT is 128k bytes; regions are in the
multiple of power of two from through 256M bytes. Actual BAT memory sizes are
as follows: 128k, 256k, 512k 1M, 2M, 4M, 8M, 16M, 32M, 64M, 128M, and
256M. Each of these memory ranges must aligned according to their size, therefore,
a 128k memory range must begin on a 128k memory address alignment, and a 32M
memory range must begin on a 32M memory address alignment. There are four
BAT registers on the processor; each defines only one memory range.

The cachelist for the PowerPC family of processors contains the following structure:

init cachelist[0] { /* Initialize cache list element */

 blk_beg = 0x00000000; /* beginning address of memory region */

 blk_end = 0x02000000; /* ending address +1 */

 mode = 0; /* cache mode of region */

};

The cachelist consists of two parts: the system-state list and the user-state list. The
system-state list is the cacheing policy of memory accessed from system-state, and
the user-state list is the cacheing policy of memory accessed from user-state. The
user-state list follows the system-state list in the array. (Each list is terminated with
an entry that has the beginning address of 0xffffffff.)

Where the mode is concerned, a 0 indicates copyback cache. Macros have been
defined to enforce other modes. IO_CACHE_MODE is used no cache;
CM_DWTHRU is used to write through mode.

Chapter 2: The Kernel

OS-9 Technical Manual 35

Guidelines for Defining Cachelist

In order to define a cachelist, the following guidelines should be followed:

• Minimum segment size should be 128k bytes.

• Minimum segment start address alignment should be 128k bytes.

• A segment start alignment address size must be less than or equal to the segment
size itself. The 256M segment size is the exception. Multiple 256M segments
can be defined as one region.

• The segment for address 0 must have sufficient memory to bring up the kernel.
In other words, it must have enough memory for the kernel's globals, IRQ
stack, and bootfile--if it is loaded into RAM.

• The memory definitions for different segments must not overlap.

• The SSM module must be placed before the cache module in the extension list.
In other words, the SSM module must run before the cache module can run if
both are in the system. The SSM or the cache module can run stand-alone as
well.

• The user-state cachelist normally inherits system-state list entries. Only specific
user-state cacheing differences need to be listed in the user-state cache list. For
example, video memory made accessible to user-state needs to be marked as
IO_CACHE_MODE, or with a data cache write-through, with the user-state
driver forcing stores or flushes.

Cachelist Example for PowerPC system:

/* System-state Dram */

init cachelist[0] { /* Initialize cache list element */

 blk_beg = 0x00000000; /* beginning address of memory region */

 blk_end = 0x10000000; /* ending address +1 */

 mode = 0; /* cache mode of region */

};

/* The rest of memory is considered non-cached. */

init cachelist[1] { /* Initialize cache list element */

 blk_beg = 0x10000000; /* beginning address of memory region */

 blk_end = 0x00000000; /* ending address +1 */

 mode = IO_CACHE_MODE; /* cache mode of region */

};

/* End of system-state cache list */

init cachelist[2] { /* Initialize cache list element */

 blk_beg = 0xffffffff; /* beginning address of memory region */

 blk_end = 0x00000000; /* ending address +1 */

 mode = 0; /* cache mode of region */

};

Chapter 2: The Kernel

OS-9 Technical Manual 36

/* User-state list DRAM */

init cachelist[3] { /* Initialize cache list element */

 blk_beg = 0x00000000; /* beginning address of memory region */

 blk_end = 0x02000000; /* ending address +1 */

 mode = 0; /* cache mode of region */

};

/* End of user list */

init cachelist[4] { /* Initialize cache list element */

 blk_beg = 0xffffffff; /* beginning address of memory region */

 blk_end = 0x00000000; /* ending address +1 */

 mode = 0; /* cache mode of region */

};

With the above cachelist, there is 256M bytes of copyback cached dram; the rest of
the system is considered non-cached.

Setup for Allocatable NON-CACHED Memory

By matching the memlist entries in the init module to the cachelist entries, a region
of non-cached memory can be defined. In this way, anything in the system can use
the non-cached memory as a resource. The following entries define a region of 512k
bytes of non-cached memory out of 32M of total memory. You should define such
regions at the end of physical dram.

/* Memlist entries */

init memlist[0] { /* Initialize memory list element */

 type = MEM_SYS; /* memory type code */

 prior = 0xFF; /* memory allocation priority */

 access = B_USERRAM; /* access permissions
*/

 blksiz = 0x800; /* search block size */

 lolim = 0x00080000; /* beginning absolute address */

 hilim = 0x01F80000; /* ending absolute address + 1 */

};

init memlist[1] { /* Initialize memory list element */

 type = MEM_NOCACHE; /* memory type code */

 prior = 0x0; /* memory allocation priority */

 access = B_USERRAM; /* access permissions */

 blksiz = 0x800; /* search block size */

 lolim = 0x01F80000; /* beginning absolute address */

 hilim = 0x02000000; /* ending absolute address + 1 */

};

Chapter 2: The Kernel

OS-9 Technical Manual 37

/* End of memlist */

init memlist[2] { /* Initialize memory list element */

 type = 0; /* memory type code */

 prior = 0x0; /* memory allocation priority */

 access = 0; /* access permissions */

 blksiz = 0x0; /* search block size */

 lolim = 0x0; /* beginning absolute address */

 hilim = 0x0; /* ending absolute address + 1 */

};

/* Cachelist entires */

/* DRAM */

init cachelist[0] { /* Initialize cache list element */

 blk_beg = 0x00000000; /* beginning address of memory region */

 blk_end = 0x01F80000; /* ending address +1 */

 mode = 0; /* cache mode of region */

};

init cachelist[1] { /* Initialize cache list element */

 blk_beg = 0x01F80000; /* beginning address of memory region */

 blk_end = 0x02000000; /* ending address +1 */

 mode = IO_CACHE_MODE; /* cache mode of region */

};

/* The rest of memory is considered non-cached. */

init cachelist[2] { /* Initialize cache list element */

 blk_beg = 0x10000000; /* beginning address of memory region */

 blk_end = 0x00000000; /* ending address +1 */

 mode = IO_CACHE_MODE; /* cache mode of region */

};

/* End of system-state cache list */

init cachelist[3] { /* Initialize cache list element */

 blk_beg = 0xffffffff; /* beginning address of memory region */

 blk_end = 0x00000000; /* ending address +1 */

 mode = 0; /* cache mode of region */

};

Chapter 2: The Kernel

OS-9 Technical Manual 38

/* DRAM */

init cachelist[4] { /* Initialize cache list element */

 blk_beg = 0x00000000; /* beginning address of memory region */

 blk_end = 0x01f80000; /* ending address +1 */

 mode = 0; /* cache mode of region */

};

init cachelist[5] { /* Initialize cache list element */

 blk_beg = 0x01f80000; /* beginning address of memory region */

 blk_end = 0x02000000; /* ending address +1 */

 mode = IO_CACHE_MODE; /* cache mode of region */

};

init cachelist[6] { /* Initialize cache list element */

 blk_beg = 0xffffffff; /* beginning address of memory region */

 blk_end = 0; /* ending address +1 */

 mode = 0; /* cache mode of region */

};

The MEM_NOCACHE type of memory is defined as memory that is not cached.
Once defined in this manner, system drivers and other code can use the non-cached
memory.

The memlist entry for MEM_NOCACHE has a priority of 0.

The cache module is responsible for splitting up the cache list into a BAT array list.
This list is sorted, and the cache module has an exception handler that will replace
BAT registers in the processor to allow access, and cache policy into the particular
region of memory.

BAT register 0 contains the entry for address 0 and is never replaced. BAT registers
1, 2, and 3 are all capable of being replaced via “round robin”. This BAT array list
contains all of the individual entries defined by the cachelist. Each cachelist entry
may get split up into several BAT array elements as needed. For example, in the
cachelist[2] entry above, the entire 3.75G byte area splits into 15 BAT array
elements, each one 256M bytes in size. Because there is no 31.5M byte BAT entry
size in cachelist[0], the cachelist[0] entry splits into six BAT array elements. The
breakdown is as follows:

1 16M segment
1 8M segment
1 4M segment
1 2M segment
1 1M segment
1 512K segment

The cachelist[1] entry takes up the other 512K that makes up the 32M of physical
memory contained by the computer.

Chapter 2: The Kernel

OS-9 Technical Manual 39

Performance Considerations

The above BAT array scheme can have a negative impact on performance. Although
the first segment is locked into BAT register 0, the other five segments in
cachelist[0], the segment in cachelist[1], and other segments in cachelist[2] for I/O
regions contend for the other three BAT registers. However, there are some
procedures for handling this.

• If you do not need non-cached memory, do not use it. Defining a small non-
cached memory region results more in the necessary replacement of some
segments than a larger non-cached memory region.

• Define differing priorities of memory. If segment 1 is defined alone as a high
priority memory in the memlist, and the other segments grouped into a lower
priority memory in the memlist, all of the beginning kernel setup and processes
will run from the first segment. The other memory priorities will only be
allocated when this segment has run out of memory.

Colored Memory in Homogenous Memory Systems

As previously mentioned, colored memory definitions are not essential for systems
whose memory is homogenous. However, these types of systems can benefit from
this feature of the kernel in terms of system performance and ease of memory list
reconfiguration.

System Performance

In a homogeneous memory system, the kernel allocates memory from the top of
available RAM when requests are made by F_SRQMEM (loading modules). If the
system has RAM on-board the CPU and off-board in external memory boards with
higher addresses, the modules tend to be loaded in the off-board RAM. On-board
RAM is not used for a F_SRQMEM call until the off-board memory cannot
accommodate the request.

Due to bus access arbitration, programs running in off-board memory execute more
slowly than if they were executing in on-board memory. Also, external bus activity
is increased. This may impact the performance of other bus masters in the system.

The colored memory lists can reverse this tendency in the kernel, so a CPU can not
use off-board memory until all of its on-board memory is used. This results in faster
program execution and less saturation of the system’s external bus. To do this, make
the priority of the on-board memory higher than the off-board memory.

Reconfiguring Memory Areas

In a homogeneous memory system, the memory search areas are defined in the
ROM memory list. Changes to these areas previously required new ROMs be made
from source code (usually impossible for end users) or from a patched version of the
original ROMs (usually difficult for end users).

Chapter 2: The Kernel

OS-9 Technical Manual 40

The colored memory lists somewhat alleviate this situation by configuring the
search areas as follows:

• the ROM memory list describes only the on-board memory.

• the colored memory lists in default.des define any external bus memory search
areas in the Init module only.

Using colored memory in this situation enables the end user to easily reconfigure the
external bus search areas by adjusting the lists in default.des and making a new
Init module. The ROM does not require patching.

System Initialization
After a hardware reset, the kernel (located in ROM or loaded from disk, depending
on your system configuration) is executed by the bootstrap ROM. The kernel
initializes the system; this includes locating ROM modules and running the system
start-up task.

Init: The Configuration Module

The init module:

• Is non-executable module of type MT_SYSTEM

• Contains a table of system start-up parameters

• Specifies the initial table sizes and system device names during startup

• Is always available to determine system limits

• Is required to be in memory when the system is booting and usually resides in
the sysboot file or in ROM

• Begins with a standard module header

The m_exec offset in the module header is a pointer to the system constant
table. The fields of this table are defined in the init.h header file.

Extension Modules
To enhance OS-9 capabilities, you can execute additional modules at boot time.
These extension modules provide a convenient way to install a new system call code
or collection of system call codes, such as a system security module. The kernel calls
the modules at boot time if their names are specified in the Extension list of the init
module and the kernel can locate them.

Refer to the OS-9 Device Descriptor and Configuration Module Reference for
a listing of the init module fields.

Chapter 2: The Kernel

OS-9 Technical Manual 41

To include an extension module in the system, you can either program the module
into system memory or use the p2init utility to add it to a running system.

When an extension module is called for initialization during coldstart, the module’s
entry point is executed with its global static storage (if any) pre-initialized and set.
The extension module is passed a pointer to the kernel’s global static storage as
defined in the header file sysglob.h.

Process Creation
All OS-9 programs are run as processes or tasks. New processes are created by the
F_FORK system call. The most important parameter passed in the fork system call is
the name of the primary module that the new process is to execute initially.

The following list outlines the creation process:

1. Locate or Load the Program.

OS-9 searches for the module in memory by means of the module directory. If
OS-9 cannot locate the module, it loads a mass-storage file into memory using
the requested module name as a file name.

2. Allocate and Initialize a Process Descriptor and an I/O Descriptor.

After the primary module has been located, a data structure called a process
descriptor is assigned to the new process. The process descriptor is a table
containing information about the process such as its state, memory allocation,
and priority. The I/O descriptor contains information about the process I/O
such as the I/O paths and counts of bytes read and written. The process
descriptor and I/O descriptor are automatically initialized and maintained.
Processes do not need to be aware of the existence or contents of process
descriptors or I/O descriptors.

3. Allocate the Stack and Data Areas.

The primary module’s header contains a data and stack size. OS-9 allocates a
contiguous memory area of the required size from the free memory space.
Process memory areas are discussed in the following section.

4. Initialize the Process.

The new process’ registers are set to the proper addresses in the data area and
object code module. If the program uses initialized variables and/or pointers,
they are copied from the object code area to the proper addresses in the data
area.

If any of these steps cannot be performed, creation of the new process is aborted
and the process that originated the fork is notified of the error. If all are completed,
the new process is added to the active process queue for execution scheduling.

Refer to the Utilities Reference for information about p2init. Refer to the
OS-9 Device Descriptor and Configuration Module Reference for procedures
to change the init modules and your board guide for instructions on how to
build a new boot file containing the desired extension modules.

Chapter 2: The Kernel

OS-9 Technical Manual 42

The new process is assigned a unique number, called a process ID, that is used as its
identifier. Other processes can communicate with it by referring to its ID in various
system calls. The process also has an associated group ID and user ID which
identify all processes and files belonging to a particular user and group of users. The
IDs are inherited from the parent process.

Processes terminate when they execute an F_EXIT system service request or when
they receive fatal signals or errors. Terminating the process performs the following
functions:

• Closes any open paths

• Deallocates the process’ memory

• Unlinks its primary module

• Unlinks any subroutine libraries or trap handlers the process may have used

Process Memory Areas

All processes are divided into two logically separate memory areas:

• code

• data

This division provides the modular software capabilities for OS-9.

Each process has a unique data area, but not necessarily a unique program memory
module. This allows two or more processes to share the same copy of a program.
This automatic OS-9 functionality results in more efficient use of available memory.

A program must be in the form of an executable memory module to be run. The
program is position independent and ROMable, and the memory it occupies is
considered to be read-only. It may link to and execute code in other modules.

The process data area is a separate memory space where all of the program
variables are kept. The top part of this area is used for the program’s stack. The
actual memory addresses assigned to the data area are unknown at the time the
program is written. A base address is kept in a register to access the data area. You
can read and write to this area.

If a program uses variables requiring initialization, the initial values are copied by
OS-9 from the read-only program area to the data area where the variables actually
reside. The OS-9 linker builds appropriate initialization tables that OS-9 uses to
initialize the variables.

Chapter 2: The Kernel

OS-9 Technical Manual 43

Process States

A process can be in one of five states:

A separate queue (linked list of process descriptors) exists for each process state,
except the suspended state. State changes are accomplished by moving a process
descriptor from its current queue to another queue.

Table 2-3. Process States

State Description
Active The process is active and ready for execution. Active processes are

given time for execution according to their relative priority with respect
to all other active processes. The scheduler uses a method that
compares the ages of all active processes in the queue. All active
processes receive some CPU time, even if they have a very low relative
priority.

Event The process is inactive until the associated event occurs. The event
state is entered when a process executes an F_EVENT service request
when the specified event condition is not satisfied. The process remains
inactive until another process or interrupt service routine performs an
F_EVENT system call that satisfies the waiting process’s condition.

Sleeping The process is inactive for a specific period of time or until a signal is
received. The sleep state is entered when a process executes an
F_SLEEP service request. F_SLEEP specifies a time interval for which the
process is to remain inactive. Processes often sleep to avoid wasting
CPU time while waiting for some external event, such as completing
I/O. Zero ticks specifies an infinite period of time.
A process waiting on an event waits in a queue associated with the
specific event, but behaves as though it was in the sleep queue.

Suspended The process is inactive, unknown to the system, and not a member of
any queue. The suspended state is entered when a process or system
module does an F_SSPD call on a given process. The process can be
reactivated with an F_APROC call.

Waiting The process is inactive until a child process terminates or until a signal
is received. When a process executes an F_WAIT system service request,
it enters the wait state. The process remains inactive until one of its
descendant processes terminates or until it receives a signal.

Chapter 2: The Kernel

OS-9 Technical Manual 44

Process Scheduling
OS-9 is a multitasking operating system. This means two or more independent
programs, called processes, or tasks, can execute simultaneously. Each second of
CPU time is shared by several processes. Although the processes appear to run
continuously, the CPU only executes one instruction at a time. The OS-9 kernel
determines which process to run and for how long, based on the priorities of the
active processes.

The CPU is interrupted by a real-time clock every tick. By default, a tick is .01
second (10 milliseconds). At any occurrence of a tick, OS-9 can stop executing one
program and begin executing another. The tick length is hardware dependent. Thus,
to change the tick length, you must rewrite the clock driver and re-initialize the
hardware.

The longest amount of time a process controls the CPU before the kernel re-
evaluates the active process queue is called a slice or time slice per slice at run-time,
adjust the system global variable d_tslice.

You can also change the number of ticks per slice prior to booting the system by
modifying m_slice in the init modules.

To ensure efficiency, only processes on the active process queue are considered for
execution. The active process queue is organized by process age, a count of how
many task switches have occurred since the process entered the active queue plus
the process’ initial priority. The oldest process is at the head of the queue. The OS-9
scheduling algorithm allocates some execution time to each active process.

When a process is placed in the active queue, its age is set to the process assigned
priority and the ages of all other processes are incremented. Ages are never
incremented beyond 0xffff.

After the time slice of the currently executing process, the kernel executes the
process with the highest age.

Preemptive Task Switching

During critical real-time applications, fast interrupt response time is sometimes
necessary. OS-9 provides this by preempting the currently executing process when a
process with a higher priority becomes active. The lower priority process loses the
remainder of its time slice and is re-inserted in the active queue.

Two system global variables affect task switching:

• d_minpty (minimum priority).

• d_maxage (maximum age).

The action of switching from the execution of one process to another is called
task switching. Task switching does not effect program execution.

Refer to the OS-9 Device Descriptor and Configuration Module Reference for
information to modify this field.

Chapter 2: The Kernel

OS-9 Technical Manual 45

Both variables are initially set in the Init module and are accessible by users with a
group ID of zero (super users) through the F_SETSYS system call.

If the priority or age of a process is less than d_minpty, the process is not considered
for execution and is not aged. Usually, this variable is not used and is set to zero.

d_maxage is the maximum age to which processes can be incremented. When
d_maxage is activated, tasks are divided into high priority tasks and low priority
tasks.

Low priority tasks do not age past d_maxage; high priority tasks receive all of the
available CPU time and are not aged. Low priority tasks are run only when the high
priority tasks are inactive. Usually, this variable is not used and is set to zero.

If the minimum system priority is set above the priority of all running tasks, the
system completely shuts down. It can only be recovered by a reset. This makes
it crucial to restore d_minpty to a normal level when the critical task(s) finishes.

Chapter 2: The Kernel

OS-9 Technical Manual 46

47

3 Interprocess
Communication

This chapter describes the five forms of interprocess communication supported by
OS-9. The following topics are included:

• Signals

• Alarms

• Events

• Semaphores

• Usemaphores

• Usemaphores

• Operations on Pipes

• Data Modules

Chapter 3: Interprocess Communication

OS-9 Technical Manual 48

Signals
In interprocess communications, a signal is an intentional disturbance in a system.
OS-9 signals are designed to synchronize concurrent processes, but you can also use
them to transfer small amounts of data. Because they are usually processed
immediately, signals provide real-time communication between processes.

Signals are also referred to as software interrupts because a process receives a signal
similarly to how a CPU receives an interrupt. Signals enable a process to send a
numbered interrupt to another process. If an active process receives a signal, the
intercept routine is executed immediately (if installed) and the process resumes
execution where it left off. If a sleeping or waiting process receives a signal, the
process is moved to the active queue, the signal routine is executed, and the process
resumes execution right after the call that removed it from the active queue.

Each signal has two parts:

• process ID of the destination

• signal code

Signal Codes

OS-9 supports the following signal codes.

If a process does not have an intercept routine for a signal it received, the
process is killed. This applies to all signals greater than 1 (wake-up signal).

Table 3-1. Signal Codes

Signal Description
1 Wake-up signal. Sleeping/waiting processes receiving this

signal are awakened, but the signal is not intercepted by the
intercept handler. Active processes ignore this signal. A
program can receive a wake-up signal safely without an
intercept handler. The wake-up signal is not queued.

2 Keyboard abort signal. When <control>E is typed, this signal
is sent to the last process to perform I/O on the terminal.
Usually, the intercept routine performs exit(2) when it
receives a keyboard abort signal.

3 Keyboard interrupt signal. When <control>C is typed, this
signal is sent to the last process to perform I/O on the
terminal. Usually, the intercept routine performs exit(3)
when it receives a keyboard interrupt signal.

4 Unconditional system abort signal. The super user can send
the kill signal to any process, but non-super users can send
this signal only to processes with their group and user IDs.
This signal terminates the receiving process, regardless of the
state of its signal mask, and is not intercepted by the intercept
handler.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 49

You can design a signal routine to interpret the signal code word as data. For
example, various signal codes could be sent to indicate different stages in a process’
execution. This is extremely effective because signals are processed immediately
when received.

The following system calls enable processes to communicate through signal.

Signal Implementation

For some advanced applications, it is helpful to understand how the operating
system invokes a signal intercept routine when delivering a signal to a process. It
may be necessary to understand the contents of the user stack when executing a
process’ signal intercept routine. An application can call a signal intercept routine
either non-recursively or recursively.

5 Hang-up signal. SCF sends this signal when the modem
connection is lost.

6-19 Reserved
20-25 Reserved
26-31 User-definable signals that are deadly to I/O operations.
32-127 Reserved
128-191 Reserved
192-255 Reserved
256- 4294967295 User-definable non-deadly to I/O signals.

Table 3-1. Signal Codes (Continued)

Signal Description

Refer to the _pthread_setsignalrange() function to specify the range of
signals that the Pthread layer uses. By default, the Pthreads layers use signal
values between 40,000 and 49,999 inclusive.

Table 3-2. System Calls

Name Description
F_ICPT Installs a signal intercept routine.
F_SEND Sends a signal to a process.
F_SIGLNGJ Sets signal mask value and returns on specified stack image.
F_SIGMASK Enables/disables signals from reaching the calling process.
F_SIGRESET Resets process intercept routine recursion depth.
F_SLEEP Deactivates the calling process until the specified number of ticks

has passed or a signal is received.

Refer to the following for more information:
• For specific information about these system calls, refer to Chapter 6, OS-9

System Calls. The Microware Ultra C/C++ compiler also supports a
corresponding C call for each of these calls.

• Refer to Appendix A, Example Code for a sample program demonstrating
how you can use signals.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 50

Non-Recursive Calling

When trying to synchronize signals, most applications call signal intercept routines
for a process non-recursively. In the case of non-recursive invocation of the intercept
routine, the operating system performs the following tasks to maintain the user
stack for the process:

1. Save the process’ main executing context on the process’ system state stack.

2. Loads the process’ global statics pointer associated with the intercept routine (as
specified when performing the F_ICPT call).

3. Loads the process’ code constant pointer.

4. Loads the process’ user stack pointer with its value at the time of the signal
interruption.

5. Calls the process’ intercept routine.

In some cases, depending on the target system, the C-code application binary
interface (ABI) can require the operating system allocate some additional stack
space in order to call a C-code intercept routine.

Figure 3-1 shows the user stack contents as it appears in the case of a non-recursive
invocation of a signal intercept routine.

Figure 3-1. Non-recursive Invocation of Signal Intercept Routine

Recursive Calling

Normally, the operating system prevents recursive invocation of an intercept
routine by incrementing a variable associated with the process, known as the signal
mask, when calling the intercept routine. The operating system then decrements the
signal mask value upon returning from the intercept routine through the F_RTE
system call. When the operating system sees that the signal mask of a process is non-
zero, it does not attempt to invoke the intercept routine when it detects a pending
signal.

(Optional)
C-code stack space as

defined by the ABI

Stack information
associated with the

interrupted thread of
execution

High Memory

User Stack Pointer

Alternative User Stack Pointer

Chapter 3: Interprocess Communication

OS-9 Technical Manual 51

The only way an intercept routine can be called recursively when a signal is pending
is if the process explicitly clears its signal mask, through the F_SIGMASK or F_SIGLNGJ
system calls, or implicitly via the user-state F_SLEEP and F_WAIT services, from
within the context of its intercept routine. When calling an intercept routine
recursively, the stack contents of the user stack are quite different from the non-
recursive case. In order to keep from over consuming the system stack when saving
its context, the operating system copies the saved context along with its floating-
point context to the user-state stack.

Figure 3-2 shows the user-state stack contents as it appears in the case of a recursive
invocation of a signal intercept routine.

Figure 3-2. Recursive Invocation of Signal Intercept Routine

The exact contents of the floating-point context shown in Figure 3-2 can vary
within a given processor family, depending on whether or not the processor has
hardware support for floating point calculations. If the processor has a hardware
floating-point unit (FPU), the contents of the FPU context directly reflect the
hardware context. If the processor does not have a hardware FPU, the FPU context
area shown in
Figure 3-2 contains whatever the FPU software emulation module must preserve on
behalf of the process. The actual size of this area can be determined at execution
time by consulting the variable d_fpusize in the operating system globals area (see
F_GETSYS).

The PowerPC 6xx series processors containing a full hardware floating-point
implementation are the only processors that vary from this described stack format.
For this family of processors the FPU context is actually a part of the long stack
frame as described in the regppc.h header file. The stack format resembles the
format described previously with the exception that the FPU context is not separate
from the long stack format.

Stack information associated with the
interrupted thread of execution

Previous user-stack pointer value

(Optional)
C-code stack space as defined by ABI

Floating-point context as defined by
reg< CPU Family> .h

Long stack frame context as defined by
reg< CPU Family> .h

High Memory

User Stack Pointer + sizeof(regs)

User Stack Pointer + sizeof(regs)
or sizeof(fpu_contents)

User Stack Pointer + 4

User Stack Pointer

Alternate User Stack Pointer

Chapter 3: Interprocess Communication

OS-9 Technical Manual 52

Alarms

User-State Alarms

The user-state alarm requests enable a program to arrange for a signal to be sent to
itself. The signal may be sent at a specific time of day or after a specified interval has
passed. The program may also request the signal be sent periodically, each time the
specified interval has passed.

Cyclic Alarms

A cyclic alarm provides a time base within a program. This simplifies the
synchronization of certain time-dependent tasks. For example, a real-time game or
simulation might allow 15 seconds for each move. You could use a cyclic alarm
signal to determine when to update the game board.

The advantages of using cyclic alarms are more apparent when multiple time bases
are required. For example, suppose you are using an OS-9 process to update the
real-time display of a car’s digital dashboard.

The process might perform the following functions:

• Update a digital clock display every second.

• Update the car’s speed display five times per second.

• Update the oil temperature and pressure display twice per second.

• Update the inside/outside temperature every two seconds.

• Calculate miles to empty every five seconds.

Each function the process must monitor can have a cyclic alarm, whose period is the
desired refresh rate, and whose signal code identifies the particular display function.
The signal handling routine might read an appropriate sensor and directly update
the dashboard display. The operating system handles all of the timing details.

Table 3-3. User-State Alarm Descriptions

Alarm Description
F_ALARM, A_ATIME Sends a signal at a specific time.
F_ALARM, A_CYCLE Sends a signal at the specified time intervals.
F_ALARM, A_DELET Removes a pending alarm request.
F_ALARM, A_RESET Resets an existing alarm request.
F_ALARM, A_SET Sends a signal after the specified time interval.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 53

Time of Day Alarms

You can set an alarm to provide a signal at a specific time and date. This provides a
convenient mechanism for implementing a cron type of utility—executing programs
at specific days and times. Another use is to generate a traditional alarm clock
buzzer for personal reminders.

This type of alarm is sensitive to changes made to the system time. For example,
assume the current time is 4:00 and a program sends itself a signal at 5:00. The
program can either set an alarm to occur at 5:00 or set the alarm to go off in one
hour. Assume the system clock is 30 minutes slow, and the system administrator
corrects it. In the first case, the program wakes up at 5:00; in the second case, the
program wakes up at 5:30.

Relative Time Alarms

You can use this type of alarm to set a time limit for a specific action. Relative time
alarms are frequently used to cause an I_READ request to abort if it is not satisfied
within a maximum time. This can be accomplished by sending a keyboard abort
signal at the maximum allowable time and then issuing the I_READ request. If the
alarm arrives before the input is received, the I_READ request returns with an error.
Otherwise, the alarm should be cancelled. The example program deton.c (in
Appendix A, Example Code) demonstrates this technique.

System-State Alarms

A system-state counterpart exists for user-state alarm function. However, the
system-state version is considerably more powerful than its user state equivalent.
When a user-state alarm expires, the kernel sends a signal to the requesting process.
When a system-state alarm expires, the kernel executes the system-state subroutine
specified by the requesting process at a very high priority.

OS-9 supports the following system-state alarm functions:

The alarm is executed by the kernel process, not by the original requester process.
During execution, the user number of the system process is temporarily changed to
the original requester. The stack pointer passed to the alarm subroutine is within the
system process descriptor and contains about 4KB of free space.

Table 3-4. System-State Alarm Descriptions

Alarm Description
F_ALARM, A_ATIME Executes a subroutine at a specified time
F_ALARM, A_CYCLE Executes a subroutine at specified time intervals
F_ALARM, A_DELET Removes a pending alarm request
F_ALARM, A_RESET Resets an existing alarm request
F_ALARM, A_SET Executes a subroutine after a specified time interval

Chapter 3: Interprocess Communication

OS-9 Technical Manual 54

The kernel automatically deletes the pending alarm requests belonging to a process
when that process terminates. This may be undesirable in some cases. For example,
assume an alarm is scheduled to shut off a disk drive motor if the disk has not been
accessed for 30 seconds. The alarm request is made in the disk device driver on
behalf of the I/O process. This alarm does not work if it is removed when the
process exits.

The alarm has persistence if the TH_SPOWN bit in the alarm call’s flags parameter is
set. This causes the alarm to be owned by the system process rather than the current
process.

An alarm subroutine must not perform any function resulting in any kind of
sleeping or queuing. This includes F_SLEEP, F_WAIT, F_LOAD, F_EVENT, F_ACQLK,
F_WAITLK, and F_FORK (if it might require F_LOAD). Other than these functions, the
alarm subroutine may perform any task.

One possible use of the system-state alarm function might be to poll a positioning
device, such as a mouse or light pen, every few system ticks. Be conservative when
scheduling alarms and make the cycle as large as reasonably possible. Otherwise,
you could waste a great deal of the available CPU time.

Events
OS-9 events are multiple value semaphores. They synchronize concurrent processes
that are accessing shared resources such as files, data modules, and CPU time. For
example, if two processes need to communicate with each other through a common
data module, you may need to synchronize the processes so only one process at a
time updates the data module.

Events do not transmit any information, although processes using the event system
can obtain information about the event, and use it as something other than a
signaling mechanism.

An OS-9 event is a global data structure maintained by the system. The event
structure is listed here and is defined in the header file events.h. The following
section contains descriptions of each field.

If you use this technique, you must ensure the module containing the alarm
subroutine remains in memory until after the alarm expires.

For a program demonstrating how alarms can be used, see Appendix A,
Example Code.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 55

ev_str/ev_infostr
Event Structure

Declaration

typedef struct {

 event_id ev_id; /* event id number */

 u_int16 ev_namsz; /* size of memory to allocate for name */

 u_char *ev_name; /* pointer to event name */

 u_int16 ev_link, /* event use count */

 ev_perm; /* event permissions */

 owner_id ev_owner; /* event owner (creator) */

 int16 ev_winc, /* wait increment value */

 ev_sinc; /* signal increment value */

 int32 ev_value; /* current event value */

 Pr_desc ev_quen, /* next event in queue */

 ev_quep; /* previous event in queue */

 u_char ev_resv[14]; /* reserved */

} ev_str, *Ev_str;

The structure used by the F_EVENT, EV_INFO request contains a subset of the
standard event fields. This structure is listed here and defined in the header file
events.h.

typedef struct {
 event_id ev_id; /* event id number */

 u_int16 ev_link, /* event use count */

 ev_perm; /* event permissions */

 owner_id ev_owner; /* event owner (creator) */

 int16 ev_winc, /* wait increment value */

 ev_sinc; /* signal increment value */

 int32 ev_value; /* current event value */

} ev_infostr, *Ev_infostr;

Description

The OS-9 event system provides the following facilities:

• To create and delete events

• To permit processes to link/unlink events and obtain event information

• To suspend operation until an event occurs

• For various means of signaling

Chapter 3: Interprocess Communication

OS-9 Technical Manual 56

Fields

ev_id

A unique ID is created from this number and the event’s array position.

ev_namsz

Size of the event name in bytes.

ev_name

The event name must be unique.

ev_link

The event use count.

ev_perm

The event’s access permissions which are used to verify that a process has
access to an event when an F_EVENT, EV_LINK operation is performed.

ev_owner

The ID of the event owner (creator).

ev_winc

The event wait increment. ev_winc is added to the event value when a process
waits for the event. It is set when the event is created and does not change.

ev_sinc

The event’s signal increment. ev_sinc is added to the event value when the
event is signaled. It is set when the event is created and does not change.

ev_value

This four byte integer represents the current event value.

ev_quen

A pointer to the next process in the event queue. An event queue is circular
and includes all processes waiting for the event. Each time the event is
signaled, this queue is searched.

ev_quep

A pointer to the previous process in the event queue.

ev_resv

Reserved for future use.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 57

Wait and Signal Operations

The two most common operations performed on events are wait and signal.

Wait

The wait operation performs the following three functions:

1. Suspends the process until the event is within a specified range

2. Adds the wait increment to the current event value

3. Returns control to the process just after the wait operation was called

Signal

The signal operation performs the following three functions:

1. Adds the signal increment to the current event value

2. Checks for other processes to awaken

3. Returns control to the process

These operations enable a process to suspend itself while waiting for an event and
to reactivate when another process signals the event has occurred.

To coordinate sharing a non-sharable resource, user programs must:

• Wait for the resource to become available.

• Mark the resource as busy.

• Use the resource.

• Signal the resource is no longer busy.

Due to time slicing, the first two steps in this process must be indivisible. Otherwise,
two processes might check an event and find it free. Then, both processes try to
mark it busy. This would correspond to two processes using a printer at the same
time. The F_EVENT service request prevents this from happening by performing both
steps in the wait operation.

For example, you can use events to synchronize the use of a printer. You set the
initial event value to 0, the wait increment to -1, and the signal increment to 1.
When a process wants exclusive use of the printer, it performs an event wait call
with a value range of zero and checks to see if a printer is available. If the event
value is zero, it applies the wait increment (-1), causing the event value to go to -1
and marking the printer as busy; the process is allowed to use the printer. A negative
event value indicates the printer is busy; the process is suspended until the event
value comes into range (becomes zero in this case). When a process is finished with
the printer, it performs an event signal call, the signal increment is applied causing
the event value to be incremented by one, and then the process in range is activated.

For a program demonstrating how events can be used see Appendix A,
Example Code.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 58

The F_EVENT System Call

The F_EVENT system call creates named events for this type of application. The name
event was chosen instead of semaphore because F_EVENT synchronizes processes in a
variety of ways not usually found in semaphore primitives. OS-9 event routines are
very efficient and are suitable for use in real-time control applications.

Event variables require several maintenance functions as well as the signal and wait
operations. To keep the number of system calls required to a minimum, you can
access all event operations through the F_EVENT system call.

Functions exist to enable you to create, delete, link, unlink, and examine events.
Several variations of the signal and wait operations are also provided. Specific
parameters and functions of each event operation are discussed in the F_EVENT
description in Chapter 6, OS-9 System Calls. The following event functions that are
supported:

Table 3-5. Event Functions

Event Description
F_EVENT, EV_ALLCLR Wait for all bits defined by mask to become clear.
F_EVENT, EV_ALLSET Wait for bits defined by mask to become set.
F_EVENT, EV_ANYCLR Wait for bits defined by mask to become clear.
F_EVENT, EV_ANYSET Wait for bits defined by mask to become set.
F_EVENT, EV_CHANGE Wait for any of the bits defined by mask to change.
F_EVENT, EV_CREAT Create new event.
F_EVENT, EV_DELET Delete existing event.
F_EVENT, EV_INFO Return event information.
F_EVENT, EV_LINK Link to existing event by name.
F_EVENT, EV_PULSE Signal an event occurrence.
F_EVENT, EV_READ Read event value without waiting.
F_EVENT, EV_SET Set event variable and signal an event occurrence.
F_EVENT, EV_SETAND Set event value by ANDing the event value with a mask.
F_EVENT, EV_SETOR Set event value by ORing the event value with a mask.
F_EVENT, EV_SETR Set relative event variable and signal an event

occurrence.
F_EVENT, EV_SETXOR Set event value by XORing the event value with a mask.
F_EVENT, EV_SIGNL Signal an event occurrence.
F_EVENT, EV_TSTSET Wait for all bits defined by mask to clear; set these bits.
F_EVENT, EV_UNLNK Unlink event.
F_EVENT, EV_WAIT Wait for event to occur.
F_EVENT, EV_WAITR Wait for relative to occur.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 59

Semaphores
Semaphores support exclusive access to shared resources. Semaphores are similar to
events in the way they provide applications with mutually exclusive access to data
structures. Semaphores differ from events in that they are strictly binary in nature,
which increases their efficiency.

OS-9 supports the semaphore routines shown in the following table:

A single semaphore system call, F_SEMA, provides all of the semaphore functionality.
F_SEMA requires the following two parameters:

• One indicating which operation is being performed on the semaphore

• A pointer to the semaphore structure

Unlike events, there is no system call provided to create a semaphore; you must
provide the storage for the semaphore. Because semaphores are typically used to
protect specific resources, you should declare the semaphore structure as part of the
resource structure. In addition, you must be certain that this storage is properly
initialized (to a known value) prior to initializing the semaphore structure for use
(via _os_sema_init()). In many cases this storage initialization is handled for you
by OS-9 (such as inside a data module or part of global data).

A typical application using semaphores might create a data module containing the
memory for the intended resource and its associated semaphore. By using a data
module for implementing semaphores, applications can use OS-9 module protection
mechanisms to protect the semaphore.

Once you have created and initialized the semaphore data module, additional
processes within the application may use the semaphore by linking to the
semaphore data module. You must create the semaphore data module with
appropriate permissions to allow the other processes within the application to link
to and use the semaphore and its resource.

Since using C bindings is the preferred method of accessing OS-9 semaphores,
F_SEMA is not documented in Chapter 8. Refer to the Ultra C/C++ Library
Reference for information on the os_sema calls.

Table 3-6.

Name Description
_os_sema_init() Initialize the semaphore data structure for use.
_os_sema_p() Reserve a semaphore.
_os_sema_term() Terminate the use of a semaphore data structure.
_os_sema_v() Release a semaphore.

For a program demonstrating how you may use semaphores, see Appendix A,
Example Code.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 60

Semaphore States

A semaphore has two states:

Reserved When a semaphore is reserved, any process attempting to
reserve the semaphore waits. This includes the process that
has the semaphore reserved.

Free When a semaphore is free, any process may claim the
semaphore.

Acquiring Exclusive Access

To acquire exclusive access to a resource, a process may use the _os_sema_p()
C binding to reserve the semaphore. If the semaphore is already busy, the process is
suspended and placed at the end of the wait queue of the semaphore.

Releasing Exclusive Access

To release exclusive access to a resource, a process may use the _os_sema_v()
C binding to release the semaphore. When the owner process releases the
semaphore, the first process in the semaphore queue is activated and retries the
reserve operation on the semaphore.

The definition for the semaphore structure can be found in the semaphore.h header
file. Semaphores use the following data structure:

/* Semaphore structure definition */

typedef struct semaphore {

 sema_val

 s_value; /* semaphore value (free/busy status) */

 u_int32 s_lock; /* semaphore structure lock (use count) */

 Pr_desc s_qnext, /* wait queue for process descriptors */

 s_qprev; /* wait queue for process descriptors */

 u_int32 s_length, /* current length of wait queue */

 s_owner, /* current owner of semaphore (process ID) */

 s_user, /* reserved for users */

 s_flags, /* general purpose bit-field flags */

 s_sync, /* integrity sync code */

 s_reserved[3]; /* reserved for system use */

} semaphore, *Semaphore;

Chapter 3: Interprocess Communication

OS-9 Technical Manual 61

Usemaphores
OS-9 usemaphores (unlocking, unlinking semaphores) binary semaphores that are
automatically unlocked, if necessary, and unlinked when a process terminates. They
synchronize concurrent processes that are accessing shared resources such as files,
data modules, or CPU time. For example, if two processes need to access a non-
sharable resource such as a printer, you may need to synchronize the processes so
only one process at a time uses the printer. Further, if the process currently using the
printer terminates unexpectedly you want the printer automatically freed so other
processes may access it. Usemaphores have a facility that allows processes to know
that a usemaphore was freed automatically by OS-9. This allows them to clean up
after the terminated process. For example, if it’s known that the last process using
the printer terminated unexpectedly, the next process to use the printer might want
to issue a formfeed to ensure that printing starts in the expected place.

OS-9 keeps track of each usemaphore that a process currently has a link to as well
as the set of semaphores that a process currently owns. When a process terminates,
any semaphores that are currently owned are released (and marked as needing a
reset) and any semaphores that are currently linked to by the process are unlinked.

Usemaphores are implemented using specialized events. Refer to the previous
section for more detailed information about events. The system calls related to
usemaphores are declared in the header file semaphore.h.

Description

The OS-9 usemaphore system provides the following facilities:

• creates and delete usemaphores

• permits processes to link/unlink usemaphores

• suspends operation until a usemaphore is available

• checks for the availability of a usemaphore without blocking

• releases a usemaphore

P and V Operations

The two most common operations performed on usemaphores are “P” (wait for the
usemaphore) and “V” (release the usemaphore).

P (Wait)

The P operation performs the following three functions:

1. suspends the process until the usemaphore is available (unowned)

2. marks the current process as the usemaphore owner

3. adds the usemaphore to the list of the process’ owned usemaphores

Chapter 3: Interprocess Communication

OS-9 Technical Manual 62

V (Release)

The P operation performs the following three functions:

1. removes the usemaphore from the list of the process’ owned usemaphores

2. marks the usemaphore as unowned

3. activates one process waiting for the usemaphore, if there is one or more
waiting

These operations enable a process to suspend itself while waiting for a usemaphore
and to reactivate when another process releases the usemaphore.

To coordinate sharing a non-sharable resource, user programs must:

• Wait for the resource to become available.

• Mark the resource as busy.

• Use the resource.

• Signal the resource is no longer busy.

Due to time slicing, the first two steps in this process must be indivisible. Otherwise,
two processes might check a usemaphore and find it unowned. Then, both
processes try to mark it owned. This would correspond to two processes using a
printer at the same time. The usemaphorer service request prevents this from
happening by performing both steps atomically in the P operation.

For example, you can use a usemaphore to synchronize the use of a printer. You set
the initial usemaphore value to one (unowned). When a process wants exclusive use
of the printer, it performs a usemaphore P call to check if the printer is available. If
the event value is one, it claims ownership of the usemaphore, thus marking the
printer as busy. A usemaphore value of zero indicates the printer is busy; the process
is suspended until the usemaphore is released (becomes one). When a process is
finished with the printer, it performs a V usemaphore call, the usemaphore is
marked unowned, and then any process waiting is activated.

Also available is a “try P” operation that allows a process to check the usemaphore
for being unowned. If it is unowned at the time of the call it is marked as being
owned by the calling process and SUCCESS is returned. If the usemaphore is
currently owned, EAGAIN is returned indicating the usemaphore could not be
acquired without blocking.

For a program demonstrating how usemaphores can be used see Appendix A,
Example Code.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 63

Reset

Usemaphores sometimes need to be reset. A usemaphore needs to be reset after
OS-9 automatically marks it as unowned due to the owning process having
terminated. Usemaphores acted upon in this way must be reset because the status of
the resource they were protected is indeterminate.

The reset operation performs these basic steps atomically:

1. ensures that the usemaphore needs to be reset

2. marks the current process as the usemaphore’s owner

3. clears the fact that a reset needs to be performed on the usemaphore

Doing these three steps atomically ensures that only one process is allowed to
successfully reset a usemaphore.

After the reset is complete, use the normal V operation to release the semaphore.

Both of the claiming operations, P and try P, will return errors if used on a
usemaphore that needs to be reset.

The F_EVENT, F_USEMA System Call

Variations of the F_EVENT system calls manipulate named usemaphores. OS-9
usemaphore routines are very efficient and are suitable for use in real-time control
applications.

Functions exist to enable you to create, delete, link, unlink, P, try P, V, and reset
usemaphores. Specific parameters and functions of each usemaphore operation are
discussed in the F_EVENT, F_USEMA description in Chapter 6, OS-9 System Calls. The
following usemaphore functions are supported:

Table 3-7. Supported Usemaphore Functions

Usemaphore Description
F_EVENT, EV_CREAT | F_USEMA Create new usemaphore.
F_EVENT, EV_DELET | F_USEMA Delete existing usemaphore.
F_EVENT, EV_LINK | F_USEMA Link to existing usemaphore by name.
F_EVENT, EV_RESET | F_USEMA Reset usemaphore.
F_EVENT, EV_SIGNL | F_USEMA Release a usemaphore (V).
F_EVENT, EV_TRYWAIT | F_USEMA Acquire ownership of usemaphore if not already

owned (try P).
F_EVENT, EV_UNLNK | F_USEMA Unlink from usemaphore.
F_EVENT, EV_WAIT | F_USEMA Wait for ownership of a usemaphore (P).

Chapter 3: Interprocess Communication

OS-9 Technical Manual 64

Pipes
An OS-9 pipe is a first-in first-out (FIFO) buffer that enables concurrently executing
processes to communicate data; the output of one process (the writer) is read as
input by a second process (the reader). Communication through pipes eliminates the
need for an intermediate file to hold data.

PIPEMAN is the OS-9 file manager supporting interprocess communication
through pipes. PIPEMAN is a re-entrant subroutine package called for I/O service
requests to a device named /pipe.

A pipe contains 128 bytes, unless a different buffer size is specified when the pipe is
created. Typically, a pipe is used as a one-way data path between two processes:

• writing

• reading

The reader waits for the data to become available and the writer waits for the buffer
to empty. However, any number of processes can access the same pipe
simultaneously: PIPEMAN coordinates these processes. A process can even arrange
for a single pipe to send data to itself. You can use this to simplify type conversions
by printing data into the pipe and reading it back using a different format.

Data transfer through pipes is extremely efficient and flexible. Data does not have
to be read out of the pipe in the same size sections in which it was written.

You can use pipes much like signals to coordinate processes, but with these
advantages:

• Longer messages (more than 32 bits)

• Queued messages

• Determination of pending messages

• Easy process-independent coordination (using named pipes)

Named and Unnamed Pipes

OS-9 supports both named and unnamed (anonymous) pipes. The shell uses
unnamed pipes extensively to construct program pipelines, but user programs can
also use them. Unnamed pipes can be opened only once. Independent processes may
communicate through them only if the pipeline was constructed by a common
parent to the processes. This is accomplished by making each process inherit the
pipe path as one of its standard I/O paths.

The use of named pipes is similar to that of unnamed pipes. The main difference is a
named pipe can be opened by several independent processes, which simplifies
pipeline construction. Other specific differences are noted in the following sections.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 65

Operations on Pipes

Creating Pipes

The I_CREATE system call is used with the pipe file manager to create new named or
unnamed pipe files.

You can create pipes using the pathlist /pipe (for unnamed pipes, pipe is the name
of the pipe device descriptor) or /pipe/<name> (<name> is the logical file name being
created). If a pipe file with the same name already exists, an error (EOS_CEF) is
returned. Unnamed pipes cannot return this error.

All processes connected to a particular pipe share the same physical path descriptor.
Consequently, the path is automatically set to update mode regardless of the mode
specified at creation.
You can specify access permissions. They are handled similarly to permissions on
files in random block file systems.

The size of the default FIFO buffer associated with a pipe is specified in the pipe
device descriptor. To override this default when creating a pipe, set the initial file
size bit of the mode parameter and pass the desired file size in the parameter block.

If no default or overriding size is specified, a 128-byte FIFO buffer is created.

You can rename a named pipe to an unnamed pipe and an unnamed pipe to a
named pipe.

Opening Pipes

When accessing unnamed pipes, I_OPEN, like I_CREATE, opens a new anonymous
pipe file. When accessing named pipes, I_OPEN searches for the specified name
through a linked list of named pipes associated with a particular pipe device.

Opening an unnamed pipe is simple, but sharing the pipe with another process is
more complex. If a new path to /pipe is opened for the second process, the new
path is independent of the old one.

The only way for more than one process to share the same unnamed pipe is through
the inheritance of the standard I/O paths through the F_FORK call. As an example,
the following C language pseudocode outline describes a method the shell can use to
construct a pipeline for the command dir -u ! qsort. It is assumed paths 0 and 1
are already open.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 66

StdInp = _os_dup(0) save the shell’s standard input

StdOut = _os_dup(1) save shell’s standard output

_os_close(1) close standard output

_os_open("/pipe") open the pipe (as path 1)

_os_fork("dir","-u") fork "dir" with pipe as standard output

_os_close(0) free path 0

_os_dup(1) copy the pipe to path 0

_os_close(1) make path available

_os_dup(StdOut) restore original standard out

_os_fork("qsort") fork qsort with pipe as standard input

_os_close(0) get rid of the pipe

_os_dup(StdInp) restore standard input

_os_close (StdInp) close temporary path

_os_close (StdOut) close temporary path

The main advantage of using named pipes is several processes can communicate
through the same named pipe without having to inherit it from a common parent
process. For example, the above steps can be approximated by the following
command:

$ dir -u >/pipe/temp & qsort </pipe/temp

The OS-9 shell always constructs its pipelines using the unnamed /pipe descriptor.

Read/Readln

The I_READ and I_READLN system calls return the next bytes in the pipe buffer. If not
enough data is ready to satisfy the request, the process reading the pipe is put to
sleep until more data becomes available.

The end-of-file is recognized when the pipe is empty and the number of processes
waiting to read the pipe is equal to the number of users on the pipe. If any data was
read before the end-of-file was reached, an end-of-file error is not returned.
However, the returned byte count is the number of bytes actually transferred, which
is less than the number requested.

The read and write system calls are faster than the readln and writeln system
calls because PIPEMAN does not have to check for carriage returns and the
loops moving data are tighter.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 67

Write/Writeln

The I_WRITE and I_WRITELN system calls work in almost the same way as I_READ
and I_READLN. A pipe error (EOS_WRITE) is returned when all the processes with a
full unnamed pipe open attempt to write to the pipe. Since there is no reader
process, each process attempting to write to the pipe receives the error and the pipe
remains full.

When named pipes are being used, PIPEMAN never returns the EOS_WRITE error. If
a named pipe becomes full before a process receiving data from the pipe has opened
it, the process writing to the pipe is put to sleep until a process reads the pipe.

Close

When a pipe path is closed, its path count is decremented. If no paths are left open
on an unnamed pipe, its memory is returned to the system. With named pipes, its
memory is returned only if the pipe is empty. A non-empty pipe (with no open
paths) is artificially kept open, waiting for another process to open and read from
the pipe. This permits pipes to be used as a type of temporary, self-destructing RAM
disk file.

Getstat/Setstat

PIPEMAN supports a wide range of status codes enabling the insertion of pipes as a
communications channel between processes where an random block file (RBF) or
serial character file (SCF) device would normally be used. For this reason, most RBF
and SCF status codes are implemented to perform without returning an error. The
actual function may differ slightly from the other file managers, but it is usually
compatible.

GetStat Status Codes Supported by PIPEMAN

The following table shows only the supported GetStat status codes. All other codes
return an EOS_UNKSVC error (unknown service request).

Table 3-8. GetStat Status Codes

Name Description
I_GETSTAT, SS_DEVOPT Read the default path options for the device.
I_GETSTAT, SS_EOF Test for end-of-file condition.
I_GETSTAT, SS_FD Read the pseudo file descriptor image for the pipe

associated with the specified path.
I_GETSTAT, SS_FDINFO Read the pseudo file descriptor sector for the pipe

specified by a sector number.
I_GETSTAT, SS_LUOPT Read the logical unit options section.
I_GETSTAT, SS_PATHOPT Read the path options section of the path descriptor.
I_GETSTAT, SS_READY Test whether data is available in the pipe. It returns the

number of bytes in the buffer.
I_GETSTAT, SS_SIZE Return the size of the associated pipe buffer.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 68

SetStat Status Codes Supported by PIPEMAN

The table below shows the SetStat status codes supported by PIPEMAN.

The I_MAKDIR and I_CHDIR service requests are illegal service routines on pipes.
They return EOS_UNKSVC.

Pipe Directories

Opening an unnamed pipe in the Dir mode enables it to be opened for reading. In
this case, PIPEMAN allocates a pipe buffer and pre-initializes it to contain the
names of all open named pipes on the specified device. Each name is null-padded to
make a 32-byte record. This enables utilities that normally read an RBF directory
file sequentially to work with pipes.

PIPEMAN is not a true directory device; commands like chd and makdir do not
work with /pipe.

The head of a linked list of named pipes is maintained in the logical unit static
storage of the pipe device. If several pipe descriptors with different default pipe
buffer sizes are on a system, the I/O system notices the same file manager, port
address (usually zero), and logical unit number are being used. It does not allocate
new logical unit static storage for each pipe device and all named pipes will be on
the same list.

For example, if two pipe descriptors exist, a directory of either device reveals all the
named pipes for both devices. If each pipe descriptor has a unique port address (0,
1, 2, etc.) or unique logical unit number, the I/O system allocates different logical
unit static storage for each pipe device. This produces expected results.

Table 3-9. SetStat Status Codes

Name Description
I_SETSTAT, SS_ATTR Changes the file attributes of the associated pipe.
I_SETSTAT, SS_DEVOPT Does nothing, but returns without error.
I_SETSTAT, SS_FD Writes the pseudo file descriptor image for the pipe.
I_SETSTAT, SS_LUOPT Does nothing, but returns without error.
I_SETSTAT, SS_PATHOPT Does nothing, but returns without error.
I_SETSTAT, SS_RELEASE Releases the device from the SS_SENDSIG processing before

data becomes available.
I_SETSTAT, SS_RENAME Changes the name of a named pipe, changes a named

pipe to an unnamed pipe, and changes an unnamed pipe
to a named pipe.

I_SETSTAT, SS_SIZE Resets the pipe buffer if the specified size is zero.
Otherwise, it has no effect, but returns without error.

I_SETSTAT, SS_SENDSIG Sends the process the specified signal when data becomes
available.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 69

Data Modules
OS-9 data modules enable multiple processes to share a data area and to transfer
data among themselves. A data module must have a module header and a valid
CRC to be loaded into memory. Data modules can be non-reentrant (modifiable).
One or more processes can share and modify the contents of a data module.

OS-9 does not have restrictions as to the content, organization, or use of the data
area in a data module. These considerations are determined by the processes using
the data module.

OS-9 does not synchronize processes using a data module. Consequently, thoughtful
programming, usually involving events or signals, is required to enable several
processes to update a shared data module simultaneously.

Creating Data Modules

The F_DATMOD system call creates a data module with a specified set of attributes,
data area size, and module name. The data area is cleared automatically. The data
module is created and entered into the calling process’ current module directory. A
CRC value is not computed for the data module when it is created.

It is essential the data module header and name string not be modified to prevent
the module from becoming unknown to the system.

The Microware C compiler provides several C calls to create and use data modules
directly. These include the _mkdata_module() and _os_datmod() calls which are
specific to data modules, and the modlink(), modload(), munlink(), munload(),
_os_link(), _os_unlink(), _os_unload(), _os_setcrc(), and _setcrc() calls that
apply to all OS-9 modules.

The Link Count

Like all OS-9 modules, data modules have an associated link count. The link count
is a counter of how many processes are currently linked to the module. Generally,
the module is taken out of memory when this count reaches 0. If you want the
module to remain in memory when the link count is zero, make the module sticky
by setting the sticky bit in the module header attribute byte.

Saving to Disk

If a data module is saved to disk, you can use the dump utility to examine the module
format and contents. You can save a data module to disk with the save utility or by
writing the module image into a file. If the data module was modified since its CRC
value was created, the saved module CRC will be bad and it becomes impossible to
reload the module into memory.

To allow the module to be reloaded, use the F_SETCRC system call or the _setcrc()
C library call before writing the module to disk. Or, use the fixmod utility after the
module has been written to disk.

For more information on these calls, refer to the Using Ultra C/C++ manual.

Chapter 3: Interprocess Communication

OS-9 Technical Manual 70

71

4 Subroutine Libraries and Trap
Handlers

This chapter explains how to install, execute, and terminate subroutine libraries. It
also explains how to install and execute trap handlers. It includes the following
topics:

• Subroutine Libraries

• Trap Handlers

Chapter 4: Subroutine Libraries and Trap Handlers

OS-9 Technical Manual 72

Subroutine Libraries
An OS-9 subroutine library is a module containing a set of related or frequently
used subroutines. Subroutine libraries enable distinct processes to share common
code. Any user program may dynamically link to the user subroutine library and
call it at execution time.

Although subroutine libraries reduce the size of the execution program, they do not
accomplish anything that could not be done by linking the program with the
appropriate library routines at compilation time. In fact, programs calling
subroutine libraries execute slightly slower than linked programs performing the
same function. A program can link to a maximum of sixteen subroutine libraries,
numbered from zero to fifteen.

Microware provides a standard subroutine library of I/O conversions for C
language programs. Subroutine library identifier zero is reserved for the Microware
csl subroutine library. Identifiers one through nine are also reserved for Microware
use.

Like standard OS-9 program modules, subroutine libraries have one entry point and
may have their own global static storage. The module type of subroutine library
modules is MT_SUBROUT and the module language is ML_OBJECT.

Subroutine functions are usually executed as though they were called directly by the
main program. System calls or other operations that could be performed by the
calling module can also be performed in a subroutine library.

Installing and Executing Subroutine Libraries

To install a subroutine library, a user program must use the F_SLINK system call.
F_SLINK attempts to link to the subroutine library. If the link is successful, it
allocates and initializes the global static storage and returns pointers to the library’s
entry point and to the library’s global static storage area.

Typically, a main program’s first call to a subroutine library calls an initialization
routine. The initialization routine usually has very little to do, but could be used to
open files, link to additional subroutine libraries or data modules, or perform other
startup activities.

The main program must save the entry pointer and static storage pointer returned
by F_SLINK to enable subsequent calls to the subroutine library.

The OS-9 C library provides functions to install and call subroutine libraries. The
_sliblink() function installs a specified subroutine module saving the subroutine
library’s entry and global static storage pointers in the global arrays _sublibs[] and
_submems[], respectively.

You can use the _subcall function to call an existing subroutine library. For
example, suppose the main program reference in C is the following statement:

my_function(p1, p2, p3, p4)

Chapter 4: Subroutine Libraries and Trap Handlers

OS-9 Technical Manual 73

The _subcall reference in 80386 assembler would be as follows:

my_function: call _subcall

dc.l SUB_LIB_NUM

dc.l SUB_MY_FUNCTION

_subcall does the following:

• Retrieves the subroutine library and function identifiers

• Adjusts the program stack

• Dispatches to the subroutine library entry point with the correct global static
storage configuration

To create a subroutine library, you must create a table of _subcall calls, and
subroutine library and function identifiers as previously described. In addition,
some dispatch code must be written in the subroutine library. For more
information, refer to the subroutine library example provided in the The Subroutine
Library section of Appendix A, Example Code.

Terminating Subroutine Libraries

Programs using subroutine libraries do not need to explicitly terminate the use of
the libraries. When a process terminates, the OS-9 kernel unlinks any subroutine
libraries and releases their resources on behalf of the process. But, a program may
terminate the use of a subroutine library explicitly by performing a _sliblink()
call. In this case, you must specify a null string for the subroutine library name and
the associated subroutine library identifier. This unlinks the subroutine library and
returns its resources to the system.

These are the resources associated with the calling process’ invocation of the
subroutine library and do not affect the resources of other processes using the same
subroutine library.

Trap Handlers
Trap handlers are similar to subroutine libraries with the following exceptions:

• When a trap handler is linked, the kernel calls the trap initialization entry point.
The kernel does not call an initialization entry point when the subroutine library
is linked. Instead, the main program must call the initialization routine, if one
exists.

• A trap handler may have more than one entry point; there is exactly one entry
point in a subroutine library.

• Trap handlers only execute in system state; subroutine libraries execute in the
same state as the main program.

The return from the subroutine in the subroutine library takes the flow of
execution directly back to the initial function reference in the main program.

Chapter 4: Subroutine Libraries and Trap Handlers

OS-9 Technical Manual 74

• There may be a termination routine for a trap handler; there is no explicit
termination entry point for a subroutine library.

• Dispatching to subroutine libraries does not involve the kernel in any way.

Trap handlers have three execution entry points:

• A trap execution entry point

• A trap initialization entry point

• A trap termination entry point

Trap handler modules are of module type MT_TRAPLIB and module language
ML_OBJECT.

The trap module routines are usually executed as though they were called with the
standard function call instruction, except for minor stack differences. Any system
calls or other operations that could be performed by the calling module are usable
in the trap module.

An example C trap handler is included in Appendix A, Example Code.

Installing and Executing Trap Handlers

A user program installs a trap handler by executing the F_TLINK system request.
When this is done, the OS-9 kernel performs the following functions:

• Links to the trap module

• Allocates and initializes its static storage, if any

• Executes the trap module’s initialization routine

Typically, the initialization routine has very little to do. It can open files, link to
additional trap or data modules, or perform other startup activities. It is called only
once per trap handler in any given program.

A trap module used by a program is usually installed as part of the program
initialization code. At initialization, a particular trap number
(0 - 15) is specified that refers to the trap vector. Numbers zero through nine are
reserved for Microware use.

The OS-9 relocatable macro assembler has a special mnemonic (tcall) for making
trap library function calls. The syntax for the tcall mnemonic is as follows:

tcall <trap library number>, <function code>

Usually, a table of tcalls with associated labels is created for calling the trap library
functions from C programs. For example:

_asm (“
 func1: tcall T_TrapLib1, T_func1
 func2: tcall T_TrapLib1, T_func2
 .
 .
 .
 funcN: tcall T_TrapLib1, T_funcN
“);

Chapter 4: Subroutine Libraries and Trap Handlers

OS-9 Technical Manual 75

Then, the main program can call the functions in the trap library as follows:

func1(param1, param2, ..., paramN);

The tcall mnemonic causes the program to dispatch the OS-9 kernel similarly to a
system service request. The OS-9 kernel then uses the trap library identifier to
dispatch to the associated trap handler module.

To create a trap handler library, you should create a table of tcall calls with trap
handler and function identifiers as previously described. In addition, some dispatch
and function return codes must be written in the trap handler module.

From user programs, you can delay installing a trap module until the first time it is
actually needed. If a trap module has not been installed for a particular trap when
the first tcall is made, OS-9 checks the program’s exception entry offset. The
program is aborted if this offset is zero. Otherwise, OS-9 passes control to the
exception routine. At this point, the trap handler can be installed, and the first
tcall reissued.

For more information, refer to the trap handler example provided in Appendix
A, Example Code.

Chapter 4: Subroutine Libraries and Trap Handlers

OS-9 Technical Manual 76

77

5 Resource Locking

This chapter describes the lock structure definition, lock creation, signal lock
relationships, and FIFO buffer usage. It includes the following topics:

• Overview

• Preallocate Locks as Part of the Resource

• Signals and Locks

• FIFO Buffers

Chapter 5: Resource Locking

OS-9 Technical Manual 78

Overview
The OS-9 I/O system uses resource locking calls to provide exclusive access to
critical regions and help ensure proper resource management. If you write file
managers or drivers, review this chapter for an explanation of resource locking and
implementation details.

Resource locking helps prevent data corruption by limiting process access to critical
sections of code; it protects data structures from simultaneous modification by
multiple processes. To manage processes waiting to enter critical areas, resource
locking provides an associated queue. The queue orders lock requests according to
the relative priority of the calling process.

The following are the OS-9 resource locking calls. Refer to Chapter 6, OS-9 System
Calls for a detailed description of each call.

Lock Structure Definition

The lock structure definition for the kernel is as follows:

typedef struct lock_desc *lock_id;

typedef struct lock_desc {

 lock_id l_id; /* lock identifier */

 Pr_desc l_owner, /* current owner */

 l_lockqn, /* next process in lock list */

 l_lockqp; /* previous process in lock list */

} lk_desc, *Lk_desc;

Conceptually, this structure could be shown as:

Figure 5-1. Lock Structure

Resource locking is only available in system state.

Table 5-1. OS-9 Resource Locking Calls

Call Description
F_ACQLK Acquire ownership of a resource lock.
F_CAQLK Conditionally acquire ownership of a resource lock.
F_CRLK Create a new resource lock descriptor.
F_DELLK Delete an existing lock descriptor.
F_RELLK Release ownership of a resource lock.
F_WAITLK Activate the next process waiting to acquire a lock, and suspend the

current process.

Lock ID PreviousNext
Owner

Process

Chapter 5: Resource Locking

OS-9 Technical Manual 79

The next and previous boxes represent the queuing capabilities of resource locking
calls. When one or more processes are waiting to acquire a lock, they work with
corresponding process descriptor fields to determine which process should receive
the lock next. Lock requests are queued in the order in which they are received,
according to their relative priority. Higher priority processes are queued ahead of
lower priority processes.

Create and Delete Resource Locks

OS-9 provides a call to dynamically create and initialize a resource lock. The F_CRLK
call allocates data space for the lock, initializes the associated queue, and sets the
lock ownership to a free state. A lock identifier is returned for subsequent use by the
lock calls.

When a lock is no longer needed, you can use the F_DELLK call to deallocate it. The
data space for the lock is returned to the system. Prior to deleting a lock you must
ensure any processes waiting in its queue are removed from the queue and re-
activated. The F_DELLK call does not check the queue for waiting processes; it is the
responsibility of the application to empty the waiting queue of the lock.

The following C language example demonstrates how to dynamically create and
delete a resource lock.

#include <types.h>

#include <lock.h>

Lk_desc lock; /* declare a pointer to a lock structure */

 /* dynamically allocate a new lock */

if ((error = _os_crlk(&lock)) != SUCCESS)

 return error;

/* an example use of the lock */

if ((error = _os_acqlk(lock, &signal)) != SUCCESS)

 return error;

/* delete the lock */

_os_dellk (lock);

The lock identifier is the address of the lock structure.

Chapter 5: Resource Locking

OS-9 Technical Manual 80

Preallocate Locks as Part of the Resource
To reduce the overhead and memory fragmentation caused by dynamically created
locks, you can declare the lock structure for a given resource as part of the resource
structure. Prior to using the lock, you must initialize the lock structure fields.

For example:

#include <types.h>

#include <const.h>

#include <lock.h>

#include <process.h>

/* Resource declaration with the lock structure included */

struct xyz {

 lk_desc lock;

 int a;

 char *b;

 unsigned c;

} resource;

/* set the lock identifier */

resource.lock.l_id = &resource.lock;

/* declare the lock free */

resource.lock.l_owner = NULL;

/* initialize the lock structure's queue pointers */

resource.lock.l_lockqp = resource.lock.l_lockqn =

 FAKEHD(Pr_desc, resource.lock.l_lockqn, p_lockqn);

At this point, the lock within the resource structure is ready for use. Subsequent
lock calls are made by passing the address of the lock as its identifier. The following
acquire lock example demonstrates this:

/* use a lock declared within a resource structure */

if ((error = _os_acqlk(&resource.lock, &signal)) != SUCCESS)

 return error;

The FAKEHD initialization macro is located in the const.h header file.

Chapter 5: Resource Locking

OS-9 Technical Manual 81

Signals and Locks
Locks have an associated queue used for suspending processes waiting to acquire a
busy lock. If the lock is busy, the acquiring process is placed in the queue according
to the relative priorities of any other waiting processes. When the owner process
releases its ownership of the lock, the next process in the queue is activated and
granted sole ownership of the lock. On the new owner’s next time slice, the process
returns from the acquire lock system call without error and continues to execute
from that point. Normally, this is the proper sequence of events; the active process
has ownership of the resource. But it is possible for a process to be prematurely
activated prior to acquiring ownership of the lock.

If, for example, the process receives a signal while waiting in the lock queue, the
process is activated without acquiring the lock and the acquire lock call returns an
EOS_SIGNAL error. To avoid this error, it is critical that applications check the return
value of the acquire lock calls to validate whether or not the active process has
gained ownership of the lock. If a process is activated by a signal, the application
writer determines how to respond to the error condition. The application may abort
its operation and return with an error, or ignore the signal and attempt to re-acquire
the lock. Depending on the application, either action may be appropriate.

Signal Sensitive Locks

The following example uses a lock to protect a critical section of code modifying a
non-sharable resource. This example is completely sensitive to any signals a process
may receive while waiting to acquire the lock. A process receiving a signal while
waiting in this lock’s queue is activated and the acquire lock call returns the error
EOS_SIGNAL.

#include <lock.h>

#include <types.h>

#include <errno.h>

lk_desc lock;

signal_code signal;

/* acquire exclusive access to the resource */

if ((error = _os_acqlk(&lock, &signal)) != SUCCESS)

 return error;

<critical section>

/* release exclusive access to the resource and activate the next process
*/

_os_rellk(&lock);

Chapter 5: Resource Locking

OS-9 Technical Manual 82

Ignoring Signals

There may be situations when a process is prematurely activated by a signal, and it
is not appropriate for the application to simply return an error. In this case, the
application may ignore the activating signal and error and attempt to re-acquire the
lock.

The activating signal is not lost. The operating system queues it on behalf of the
process. Upon return from system state, the signal is delivered to the process
through its signal intercept routine.

This acquire lock example demonstrates how to use locks that ignore signals.

#include <lock.h>

#include <types.h>

#include <errno.h>

lk_desc lock;

signal_code signal;

while ((error = _os_aqclk(&lock, &signal)) != SUCCESS) {

 if (error == EOS_SIGNAL)

 continue; /* signal received, ignore it */

 else

 return error; /* some other erroneous condition */

 <critical section>

 /*release exclusive access to resource and activate the next process*/

 _os_rellk(&lock);

}

Below is an example of a lock that is partially sensitive to signals. It ignores any
non-deadly signals a process might receive, but returns an error for any deadly
signal. In this case, a deadly signal is any signal with a value less than 32.

#include <lock.h>

#include <types.h>

#include <errno.h>

lk_desc lock;

signal_code signal;

while ((error = _os_aqclk(&lock, &signal)) != SUCCESS) {

 if (error == EOS_SIGNAL) {

 if (signal >= 32)

 continue; /* signal greater than 32 received, ignore it */

 else

 return error; /* signal less than 32 received */

 }

 else break; /* some other erroneous condition */

 <critical section>

 /*release exclusive access to resource and activate the next process*/

 _os_rellk(&lock);

}

Chapter 5: Resource Locking

OS-9 Technical Manual 83

FIFO Buffers
You can use locks to synchronize the reader and writer of a FIFO buffer resource.
The resource has an associated lock; any reader or writer requiring access to the
resource must first acquire the resource lock. After acquiring the resource, the
process may proceed to modify the buffer. If during the course of modification the
reader empties the buffer or the writer fills the buffer, the F_WAITLK call suspends the
process to wait for more data to enter or leave the buffer.

#include <lock.h>

#include <types.h>

#include <errno.h>

lk_desc lock;

signal_code signal;

/* acquire exclusive access to the resource */

if ((error = _os_acqlk(&lock, &signal)) != SUCCESS) return error;

/* loop until total number of bytes is read/written */

while (bytes_read/bytes_written < bytes_to_read/bytes_to_write) {

 /* check for bytes available to read/write */

 if (bytes_available == 0) {

 /* no bytes available, so release the ownership of the lock, */

 /* activate the reader/writer if it is waiting, and unconditionally
*/

 /* suspend the current reader/writer */

 if ((error = _os_waitlk(&lock, &signal)) != SUCCESS)

 return error;

 }

 else {

 <transfer bytes>

 }

}

/* number of bytes to read/write has been satisfied, so release lock */

_os_rellk(&lock);

Chapter 5: Resource Locking

OS-9 Technical Manual 84

Process Queuing

The diagram below is a conceptual illustration of the queuing process and the effect
of various calls on the lock structure.

Figure 5-2. Effect of Various Calls on the Lock Structure

With this cal l , the queue is re-ordered;
process 3 is of a higher priori ty than
process 2. Process 3 wi l l be next to
acquire the lock.

This conditional acquire cal l has no effect
on the lock structure; i t is only performed
if the lock is owned by another process. In
this case, i t returns error EOS_NOLOCK.

Lock ID
Owner

Process= 0
Next= 0 Previous= 0

Lock ID
Owner

Process= 1
Next= 0 Previous= 0

Lock ID
Owner

Process= 1
Next= 2 Previous= 2

Lock ID Owner
Process= 1

Next= 3 Previous= 2

Lock ID Owner
Process= 1

Next= 3 Previous= 2

Lock ID Owner
Process= 3

Next= 2 Previous= 2

F_ACQLK
Process: 1
Priori ty: 90

F_ACQLK
Process: 2
Priori ty: 100

F_ACQLK
Process: 3
Priority: 110

F_CALQLK
Process: 4
Priority: 115

F_RELLK
Process: 1
Priority: 90

In this cal l , the owner process= 0, so
the lock is available to process 1.
Process 1 now owns the lock.

This cal l places process 2 in the queue.
Process 2 must wait unti l process 1
releases the lock before i t can become
the owner of the process.

This call releases process 1. The lock is
now avai lable to process 3. Process 2
moves up in l ine; i t can acquire the lock
after process 3 is released.

Chapter 5: Resource Locking

OS-9 Technical Manual 85

The following figure show the locking sequence with one process and with multiple
processes.

Figure 5-3. Locking Sequence

Single Process

Mult iple Process

Lock ID
Owner

Process
Next Previous

proc ID 1
priori ty 100

next
previous

Owner Process

Lock ID
Owner

Process
Next Previous

proc ID 1
priori ty 100

next
previous

Owner Process

proc ID 3
priori ty 110

next
previous

proc ID 2
priori ty 110

next
previous

Process Waiting for Lock

Chapter 5: Resource Locking

OS-9 Technical Manual 86

87

6 OS-9 System Calls

This chapter explains how to use OS-9 system calls and contains an alphabetized
list of all OS-9 system calls. It includes the following topics:

• Using OS-9 System Calls

• System Calls Reference

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 88

Using OS-9 System Calls
System calls are used to communicate between the OS-9 operating system and C or
assembly language programs. There are four general categories of system calls:

• User-state system calls

• I/O system calls

• System-state system calls

• System-state I/O system calls

All of the OS-9 system calls require a single parameter to be passed to the operating
system, called the parameter block. Parameter blocks are the means by which
applications and system software pass parameters to the operating system for
service requests. When a system call is performed, a pointer to the associated service
request parameter block is passed to the operating system. The operating system
acquires the specific parameters it needs for the service request from the parameter
block and returns any result parameters through the parameter block.

Every system call parameter block contains the same substructure, syscb. syscb
contains:

• An identifier of the service request

• The edition number of the service request interface

• The size of the associated parameter block

• A result field for returning error status

For programming convenience, a C language system call library containing a C
interface for each of the OS-9 system calls is provided. A complete description of
the C language interface for each of the system calls can be found in the Ultra C
Library Reference.

_oscall Function

There is a single routine located in the system call library providing the gateway
into the operating system. The _oscall function expects a parameter block pointer
and uses whatever trap or software interrupt facility is available on a given
hardware platform to enter into the operating system.

The _oscall() request is a common interface to the kernel and the mechanism by
which all OS-9 system calls are made. _oscall() has one parameter: the address of
a parameter block or structure belonging to the system call. Each OS-9 system call
binding creates a parameter block that is passed to the kernel by _oscall().

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 89

For example, the C binding for the F_FMOD system call fills the parameter block and
passes the address of the block directly to the kernel through _oscall():

#include "defsfile"

/* _os_fmod - find module directory entry service request. */

_os_fmod(type_lang, moddir_entry, mod_name)

u_int16 *type_lang;

Mod_dir *moddir_entry;

u_char *mod_name;

{

 register error_code error;

 f_findmod_pb pb; /* declare parameter block of appropriate type */

 pb.cb.code = F_FMOD; /* fill parameter block field;

 fn code defined in funcs.h */

 pb.cb.param_size = sizeof f_findmod_pb; /* fill parameter block
field */

 pb.cb.edition = _OS_EDITION; /* fill edition number */

 pb.type_lang = *type_lang; /* fill parameter block field */

 pb.mod_name = mod_name; /* fill parameter block field */

 if ((error = _oscall(&pb)) == SUCCESS) { /* make _oscall */
 type_lang = pb.type_lang; / return value */

 moddir_entry = pb.moddir_entry; / return value */

 }

 return error;

}

For more information about installing system calls, refer to the description of
the F_SSVC.
A complete list of structures for OS-9 system calls is included in Chapter 1,
System Overview.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 90

Using the System Calls

The typical sequence for executing an OS-9 system call would be as follows:

1. Allocate a parameter block specific to the system call.

2. Initialize the parameter block including the system sub-block.

3. Call the operating system (through _oscall).

4. Check for errors upon return.

5. Process return parameters, if applicable.

All of the predefined parameter blocks for the OS-9 are located in the srvcb.h
header file. Each system call description within this chapter includes a full
description of the parameter block structure specific to the system call, as well as a
full summary of the functionality of the system call.

System Call Descriptions

The OS-9 Attributes field indicates the state of each call, whether the call is an I/O
call, and if the call can be used during an interrupt. The characteristic for each field
(for example user, system, I/O, or interrupt) is listed where appropriate. In addition,
the OS-9 Attributes table indicates whether a function is thread-safe or -unsafe.

System-state system calls are privileged. They may be executed only while OS-9 is in
system state (for example, when it is processing another service request or executing
a file manager or device driver). System-state functions are included in this manual
primarily for the benefit of those programmers who write device drivers and other
system-level applications.

Some system calls generate errors themselves; these are listed as Possible Errors. If
the returned error code does not match any of the given possible errors, it was
probably returned by another system call made by the main call. In the system call
description section, strings passed as parameters are terminated by a null byte.

If you use the system calls from assembly language, do not alter registers.

Interrupt Context

If you use any system calls in an interrupt service routine that are not listed in the
following table, you can corrupt the integrity of your system.

F_ALARM, A_RESET F_EVENT, EV_SET F_GPRDBT F_SUSER

F_APROC F_EVENT, EV_SETAND F_ICPT F_SYSID

F_CAQLK F_EVENT, EV_SETOR F_ID F_TIME

F_CCTL (System-
State)

F_EVENT, EV_SETR F_INITDATA F_UACCT

F_CLRSIGS F_EVENT, EV_SETXOR F_MOVE I_CIOPROC

F_CPYMEM F_EVENT, EV_SIGNL F_SEND I_GETDL

F_EVENT, EV_INFO F_EVENT, EV_UNLNK F_SETSYS I_GETPD

F_EVENT, EV_LINK F_EVENT, EV_WAIT F_SPRIOR I_GETSTAT, SS_COPYPD

F_EVENT, EV_PULSE F_EVENT, EV_WAITR F_SSPD I_GETSTAT, SS_DEVNAME

F_EVENT, EV_READ F_FMOD F_SSVC I_GETSTAT, SS_DEVTYPE

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 91

System Calls Reference
The following section describes the system calls in detail.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 92

F_ABORT
Emulate Exception Occurrence

Headers

#include <regs.h>

Parameter Block Structure

typedef struct f_abort_pb {

syscbcb;

u_int32strap_code,

address,

except_id;

} f_abort_pb, *F_abort_pb;

Description

F_ABORT emulates the occurrence of an exception. This service request executes the
same recovery code in the OS used to recover from exceptions occurring in the
system. The OS responds to this service just as it would if the specified exception
had actually occurred. This allows applications or system extension modules to
force an exception condition without actually triggering the exception. An
application may use this service to test its exception handlers that were installed
using the F_STRAP service.

This service is used by some of the floating-point emulation extension modules on
processors lacking hardware floating-point support to trigger floating-point
exception conditions detected during software emulation of floating-point
instructions. The service emulates the floating-point exceptions that would have
occurred if the floating-point instructions had been executed by real hardware.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

strap_code

The associated code used in the F_STRAP service request to setup an exception
handler. It is the F_STRAP code of the exception to emulate. The F_STRAP codes
are defined in the reg<CPU>.h header file for the target CPU platform.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 93

address

The address of where the exception is to have occurred.

except_id

The hardware vector identifier of the exception to emulate. The exception
vector identifiers are defined in the reg<CPU>.h header file for the target CPU
platform.

See Also

F_STRAP

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 94

F_ACQLK
Acquire Ownership of Resource Lock

Headers

#include <lock.h>

#include <types.h>

Parameter Block Structure

typedef struct f_acqlk_pb {

syscb cb;

lock_id lid;

signal_code signal;

} f_acqlk_pb, *F_acqlk_pb;

Description

F_ACQLK acquires ownership of a resource lock (it attempts to gain exclusive access
to a resource).

If the lock is not owned by another process, the calling process is granted ownership
and the call returns without error.

If the lock is already owned, the calling process is suspended and inserted into a
waiting queue for the resource based on relative scheduling priority.

When ownership of the lock is released, the next process in the queue is granted
ownership and is activated. The activated process returns from the system call
without error. If, during the course of waiting on a lock, a process receives a signal,
the process is activated without gaining ownership of the lock. The process returns
from the system call with an EOS_SIGNAL error code and the signal code returned in
the signal pointer.

If a waiting process receives an S_WAKEUP signal, the signal code does not register
and will be zero.

Attributes

Operating System: OS-9
State: System
Threads: Safe

Parameters

cb

The control block header.

lid

The lock identifier of the lock you are attempting to acquire.

signal

The signal prematurely terminating the acquisition of the lock.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 95

Possible Errors

EOS_SIGNAL

See Also

F_CAQLK

F_CRLK

F_DELLK

F_RELLK

F_WAITLK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 96

F_ALARM (System-State)
System-State OS-9 Alarm Request

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_salarm_pb {

syscb cb;

alarm_id alrm_id;

u_int16 alrm_code;

u_int32 time,

flags;

u_int32 (*function)();

void *func_pb;

} f_salarm_pb, *F_salarm_pb;

Description

The system-state alarm requests execute a system-state subroutine at a specified
time. They are provided for functions such as turning off a disk drive motor if the
disk is not accessed for a period of time.

System-state alarms, as well as user-state alarms, always belong to some process.
This process, for system-state alarms, is either the creating process (if the TH_SPOWN
bit was 0 when the process had the operating system create the alarm) or the system
process (if the TH_SPOWN bit was 1 when the process had the operating system create
the alarm). For user-state alarms, they always belong to the creating process and
never the system process. If a process gives ownership of an alarm to the system
process, then the alarm remains in the system until either it expires, or some system-
state process deletes it. In all other respects, system-state alarms behave as user-state
alarms.

The time interval is the number of system clock ticks (or 1/256 second) to wait
before an alarm signal is sent. If the high order bit is set, the low 31 bits are
interpreted as 1/256 second. All times are rounded up to the nearest tick.

The alarm functions do not return any error code if the operating system cannot
wait for the requested time due to an overflow when converting a time from 256ths-
of-a-second into clock ticks. This only occurs if you specify a time in 256ths-of-a-
second and the system clock ticks occur at a rate greater than 512 ticks-per-second.
If an overflow occurs, the operating system waits for the longest delay possible.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 97

The following system-state alarm functions are supported:

System-state alarms are run by the system process. They should not perform any
function resulting in any kind of queuing, such as F_SLEEP; F_WAIT; F_LOAD; and
F_EVENT, EV_WAIT. When such functions are required, the caller must provide a
separate process to perform the function, rather than an alarm.

If an alarm execution routine suffers any kind of bus trap, address trap, or other
hardware-related error, the system crashes.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

alrm_id

The alarm identifier returned by the system call. The alarm ID may
subsequently be used to delete the alarm, if desired, by using the F_ALARM,
A_DELET alarm call.

Table 6-1.

Alarm Description
F_ALARM, A_ATIME Executes a subroutine at a specified time.
F_ALARM, A_CYCLE Executes a subroutine at specified time intervals.
F_ALARM, A_DELET Removes a pending alarm request.
F_ALARM, A_RESET Resets an existing alarm request.
F_ALARM, A_SET Executes a subroutine after a specified time interval.

During an A_RESET request, the TH_SPOWN bit has the following meaning: if 0,
allow the calling process to update only its own alarms; if 1, allow the calling
process to update any alarm.
During an A_DELETE request, the TH_SPOWN bit has the following meaning: if 0,
allow the calling process to delete only its own alarms; if 1, allow the calling
process to delete any alarm. If the alarm_id field is 0 and the TH_SPOWN bit is 1,
the operating system deletes all alarms belonging to the system process.

IRQ routines cannot create or delete alarms since such actions cause memory
allocations/deallocations, that are illegal from an IRQ routine. The way to
handle such things is to create the alarms before the IRQ routine needs them,
and then have the IRQ routine use only RESETs, that are legal in IRQ routines.
For non-system, process-owned alarms, the user number in the system process
descriptor changes temporarily to the user number of the original process.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 98

alrm_code

The particular alarm function to perform.

time

The specified time.

flags

One of the following two alarm flags defined in <process.h>:

function

The function to be executed.

func_pb

Points to the function’s parameters block.

Possible Errors

EOS_NOCLK

EOS_NORAM

EOS_PARAM

EOS_UNKSVC

See Also

F_ALARM (User-State)

F_EVENT, EV_WAIT

F_LOAD

F_SLEEP

F_WAIT

Flag Value Description
TH_DELPB 0x00000001 Indicates the associated function parameter block’s

memory should be returned to the system after
executing the alarm function.

TH_SPOWN 0x00000002 Indicates the system-state alarm should be owned by
the system process and not the current process.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 99

F_ALARM (User-State)
User-State Set Alarm Clock

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_alarm_pb {

syscb cb;

alarm_id alrm_id;

u_int16 alrm_code;

u_int32 time;

signal_code signal;

} f_alarm_pb, *F_alarm_pb;

Description

The user-state alarm requests enable a user process to create an asynchronous
software alarm clock timer. The timer sends a signal to the calling process when the
specified time period has elapsed. A process may have multiple alarm requests
pending.

The time interval is the number of system clock ticks (or 1/256 second) to wait
before an alarm signal is sent. If the high order bit is set, the low 31 bits are
interpreted as 1/256 second.=

The alarm functions do not return any error code if the operating system cannot
wait for the requested time due to an overflow when converting a time from 256ths-
of-a-second into clock ticks. This only occurs if you specify a time in 256ths-of-a-
second and the system clock ticks occur at a rate greater than 512 ticks-per-second.
If an overflow occurs, the operating system waits for the longest delay possible.

The following user-state alarm functions are supported:

All times are rounded up to the nearest system clock tick.

Table 6-2. Alarm Function Descriptions

Function Description
F_ALARM, A_ATIME Send signal at specified time.
F_ALARM, A_CYCLE Send signal at specified time intervals.
F_ALARM, A_DELET Remove pending alarm request.
F_ALARM, A_RESET Reset existing alarm request to occur at a newly specified time.
F_ALARM, A_SET Send signal after specified time interval.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 100

Attributes

Operating System: OS-9

State: User

Threads: Safe

Parameters

cb

The control block header.

alrm_id

The alarm identifier returned by the system call. The alarm ID may
subsequently be used to delete the alarm, if desired, by using the F_ALARM,
A_DELET alarm call.

alrm_code

The particular alarm function to perform.

time

The specified time.

signal

The signal value originally belonging to the alarm.

Possible Errors

EOS_BPADDR

EOS_NORAM

EOS_PARAM

EOS_UNKSVC

See Also

F_ALARM (System-State)

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 101

F_ALARM, A_ATIME
Send Signal At Specified Time (User-State)

Execute Subroutine At Specified Time (System-State)

Headers

#include <types.h>

Parameter Block Structure

If OS-9 is in system state, see F_ALARM (System-State) for the parameter block
structure. Otherwise, see F_ALARM (User-State) for the parameter block structure.

Description

A_ATIME sends one signal at the specified time in user state or executes a subroutine
at the specified time in system state.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

alrm_id

The alarm identifier returned by the system call. The alarm ID may
subsequently be used to delete the alarm, if desired, by using the F_ALARM,
A_DELET alarm call.

signal

The signal code of the signal to send.

time

The specified time. The value is considered to be an absolute value in seconds
since 1 January 1970 Greenwich Mean Time.

Possible Errors

EOS_NOCLK

EOS_NORAM

EOS_PARAM

See Also

F_ALARM, A_SET

F_ALARM (System-State)

F_ALARM (User-State)

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 102

F_ALARM, A_CYCLE
Send Signal at Specified Time Intervals

Headers

#include <types.h>

Parameter Block Structure

If OS-9 is in system state, see F_ALARM (System-State) for the parameter block
structure. Otherwise, see F_ALARM (User-State) for the parameter block structure.

Description

A_CYCLE sends a signal after the specified time interval has elapsed and then resets
the alarm. This provides a recurring periodic signal.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

alrm_id

The returned alarm ID.

alrm_code

The particular alarm function to perform (in this case, A_CYCLE).

signal

The signal code of the signal to send.

time

Specify the time interval between signals. The time interval may be specified in
system clock ticks; or if the high order bit is set, the low 31 bits are considered
a time in 1/256 second. The minimum time interval allowed is two system
clock ticks.

Possible Errors

EOS_NOCLK

EOS_NORAM

EOS_PARAM

See Also

F_ALARM, A_SET

F_ALARM (System-State)

F_ALARM (User-State)

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 103

F_ALARM, A_DELET
Remove Pending Alarm Request

Headers

#include <types.h>

Parameter Block Structure

If OS-9 is in system-state, see F_ALARM (System-State) for the parameter block
structure. Otherwise, see F_ALARM (User-State).

Description

A_DELET removes a cyclic alarm, or any alarm that has not expired.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

alrm_id

Specify the alarm identification number. If alrm_id is zero, all pending alarm
requests are removed.

Possible Errors

EOS_BPADDR

EOS_IBA

EOS_NORAM

EOS_PARAM

See Also

F_ALARM, A_SET

F_ALARM (System-State)

F_ALARM (User-State)

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 104

F_ALARM, A_RESET
Reset Existing Alarm Request

Headers

#include <types.h>

Parameter Block Structure

If OS-9 is in system state, see F_ALARM (System-State) for the parameter block
structure. Otherwise, see F_ALARM (User-State) for the parameter block structure.

Description

A_RESET resets an existing alarm to occur at the newly specified time. It does not
reset any other characteristics of the original alarm.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

alrm_id

The ID of the alarm to reset.

signal

The signal code of the signal to send.

time

May be specified in system clock ticks; or if the high order bit is set, the low
31 bits are considered a time in 1/256 second. The minimum time interval
allowed is two clock ticks.

Possible Errors

EOS_NOCLK

EOS_NORAM

EOS_PARAM

See Also

F_ALARM, A_SET

F_ALARM (System-State)

F_ALARM (User-State)

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 105

F_ALARM, A_SET
Send Signal After Specified Time Interval

Headers

#include <types.h>

Parameter Block Structure

If OS-9 is in system state, see F_ALARM (System-State) for the parameter block
structure. Otherwise, see F_ALARM (User-State) for the parameter block structure.

Description

A_SET sends one signal after the specified time interval has elapsed.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

alrm_id

The alarm identifier returned by the system call. The alarm ID can
subsequently be used to delete the alarm, if desired, by using the A_DELET
alarm call.

signal

The signal code of the signal to send.

time

May be specified in system clock ticks; or if the high order bit is set, the low
31 bits are considered a time in 1/256 second. The minimum time interval
allowed is two system clock ticks.

Possible Errors

EOS_BPADDR

EOS_NORAM

EOS_PARAM

See Also

F_ALARM, A_DELET

F_ALARM (System-State)

F_ALARM (User-State)

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 106

F_ALLPRC
Allocate Process Descriptor

Headers

#include <process.h>

Parameter Block Structure

typedef struct f_allprc_pb {

syscb cb;

process_id proc_id;

Pr_desc proc_desc;

} f_allprc_pb, *F_allprc_pb;

 Description

F_ALLPRC allocates and initializes a process descriptor. The address of the descriptor
is stored in the process descriptor table. Initialization consists of clearing the
descriptor and setting its process identifier.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

proc_id

A returned value. It is the process ID of the new process descriptor.

proc_desc

A returned value. It points to the new process descriptor.

Possible Errors

EOS_PRCFUL

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 107

F_ALLTSK
Allocate Task

Headers

#include <process.h>

Parameter Block Structure

typedef struct f_alltsk_pb{

syscb cb;

Pr_desc proc_desc;

} f_alltsk_pb, *F_alltsk_pb;

Description

F_ALLTSK is called just before a process becomes active to ensure the protection
hardware is ready for the process. F_ALLTSK sets the protection hardware to the map
for the process pointed to by proc_desc.

F_ALLTSK is only supported on systems with a memory protection unit (for example,
all 80x86). The SSM module must be present in the bootfile.

If the SSM module is not present in the system, an EOS_UNKSVC error is returned. You
should ignore this error.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

proc_desc

Point to the process descriptor.

Possible Errors

EOS_UNKSVC

See Also

F_DELTSK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 108

F_ALTMDIR
Set Alternate Working Module Directory

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_altmdir_pb {

syscb cb;

u_char *name;

} f_altmdir_pb, *F_altmdir_pb;

Description

F_ALTMDIR establishes an alternate working module directory for a process.

When a process performs an F_LINK or F_FORK system call, the search for the
specified target module begins in the process’ current module directory. If that
search fails, the alternate module directory is searched. This enables processes to
link to or execute modules from different locations within system memory.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

name

Point to the name of the alternate working module directory.

Possible Errors

EOS_MNF

EOS_PERMIT

See Also

F_CHMDIR

F_FORK

F_LINK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 109

F_APROC
Insert Process in Active Process Queue

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_aproc_pb {

syscb cb;

process_id proc_id;

} f_aproc_pb, *F_aproc_pb;

Description

F_APROC inserts a process into the active process queue so it may be scheduled for
execution.

All processes already in the active process queue are aged. The age of the new
process is set to its priority, and the process is inserted according to its relative age.
If the new process has a higher priority than the currently active process, the active
process gives up the remainder of its time slice and the new process runs
immediately.

OS-9 does not preempt a process in system state (for example, the middle of a
system call). However, OS-9 does set a bit (TIMOUT in p_state) in the process
descriptor causing the process to surrender its time slice when it re-enters user state.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

proc_id

Specify the ID of the process to place in the active process queue.

Possible Errors

EOS_IPRCID

EOS_PERMIT

See Also

F_NPROC

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 110

F_CAQLK
Conditionally Acquire Ownership of Resource Lock

Headers

#include <lock.h>

Parameter Block Structure

typedef struct f_caqlk_pb {

syscb cb;

lock_id lid;

} f_caqlk_pb, *F_caqlk_pb;

Description

F_CAQLK conditionally acquires ownership of a resource lock.

If the lock is not owned by another process, the calling process is granted ownership
and the call returns without error.

If the lock is already owned, the calling process is not suspended. Instead, it returns
from the F_CAQLK call with an EOS_NOLOCK error and is not granted ownership of the
resource lock.

Attributes

Operating System: OS-9
State: System and Interrupt
Threads: Safe

Parameters

cb

The control block header.

lid

The identifier of the lock you are attempting to acquire.

Possible Errors

EOS_NOLOCK

See Also

F_ACQLK

F_CRLK

F_DELLK

F_RELLK

F_WAITLK

Refer to Chapter 6 for more information on locks.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 111

F_CCTL (User-State)
User-State Cache Control

Headers

#include <types.h>

#include <cache.h>

Parameter Block Structure

typedef struct f_cache_pb {

syscb cb;

u_int32 control;

void *addr;

u_int32 size;

} f_cache_pb, *F_cache_pb;

Description

F_CCTL performs operations on the system instruction and/or data caches, if there
are any.

If the C_ADDR bit of the control parameter is set, then the addr and size parameters
are used to flush the specific target address from the cache. This functionality is
only supported on hardware platforms with this capability.

Only system-state processes and super-group processes can perform the other
precise operations of F_CCTL.

Any program that builds or changes executable code in memory should flush the
instruction cache with F_CCTL before executing the new code. This is necessary
because the hardware instruction cache may not be updated by data (write) accesses
on certain hardware set ups and may therefore contain the unchanged
instruction(s). For example, if a subroutine builds a system call on its stack, it
should first use the F_CCTL system to flush the instruction cache before it executes
the temporary instructions.

Attributes

Operating System: OS-9

State: User

Threads: Safe

Parameters

cb

The control block header.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 112

control

Specify the cache operation.If control is zero, the system instruction and data
caches are flushed. Only super-group processes can perform this operation.
Only three bits may be used:

addr

Specify the target address for the flush operation.

size

Indicate the size of the target memory area to be flushed.

Possible Errors

EOS_PARAM

Bit Name Description
Bit 2 C_FLDATA Flush data cache
Bit 6 C_FLINST Flush instruction cache
Bit 8 C_ADDR Indicates a specific target address for flush

operation

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 113

F_CCTL (System-State)
System-State Cache Control

Headers

#include <types.h>

#include <cache.h>

Parameter Block Structure

typedef struct f_scache_pb {

syscb cb;

u_int32 control;

u_int32 (*cctl)();

void *cctl_data;

void *addr;

u_int32 size;

} f_scache_pb, *F_scache_pb;

Description

F_CCTL performs operations on the system instruction and/or data caches, if there
are any.

Any program that builds or changes executable code in memory should flush the
instruction cache by F_CCTL prior to executing the new code. This is necessary
because the hardware instruction cache is not updated by data (write) accesses and
may contain the unchanged instruction(s). For example, if a subroutine builds a
system call on its stack, the F_CCTL system call to flush the instruction cache must be
executed prior to executing the temporary instructions.

If the C_GETCCTL bit of control is set, F_CCTL returns a pointer to the cache control
routine in the cache extension module and a pointer to that routine’s static global
data. This enables drivers and file managers to call the cache routine directly, rather
than making a possibly time-consuming F_CCTL request.

Attributes

Operating System: OS-9

State: System and Interrupt

Threads: Safe

The OS-9 kernel calls the cache extension module directly.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 114

Parameters

cb

The control block header.

control

Specify the cache operation. If control is zero, the system instruction and data
caches are flushed. The following bits are defined in the control parameter
for precise operation:

All other bits are reserved. If any reserved bit is set, an EOS_PARAM error is
returned. Precise operation of F_CCTL can only be performed by system-state
processes and super-group processes.

If the C_ADDR bit of the control parameter is set, then the addr and size
parameters are used to flush the specific target address from the cache. This
functionality is only supported on hardware platforms with this capability.

cctl

The returned cache routine.

cctl_data

The returned cache routine’s static data.

addr

Specify the target address for the flush operation.

size

Indicate the size of the target memory area to be flushed.

Possible Errors

EOS_PARAM

Bit Name Description
Bit 0 C_ENDATA If set, enables data cache.
Bit 1 C_DISDATA If set, disables data cache.
Bit 2 C_FLDATA If set, flushes data cache.
Bit 3 C_INVDATA If set, invalidates data cache.
Bit 4 C_ENINST If set, enables instruction cache.
Bit 5 C_DISINST If set, disables instruction cache.
Bit 6 C_FLINST If set, flushes instruction cache.
Bit 7 C_INVINST If set, invalidates instruction cache.
Bit 8 C_ADDR Flags a target address for flush operation.
Bits 9-14 Reserved for future use by RadiSys.
Bit 15 C_GETCCTL If set, returns a pointer to the cache control routine

and cache static global data.
Bit 16 C_STODATA If set, stores data cache (if supported by hardware).
Bits 17-31 Reserved for future use by RadiSys.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 115

F_CHAIN
Load and Execute New Primary Module

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_chain_pb {

syscb cb;

u_int16 priority,

path_cnt;

u_char *mod_name,

*params;

u_int32 mem_size,

param_size;

u_int16 type_lang;

} f_chain_pb, *F_chain_pb;

Description

F_CHAIN executes a new program without the overhead of creating a new process. It
is functionally similar to a F_FORK command followed by an F_EXIT. F_CHAIN
effectively resets the calling process’ program and data memory areas and begins
executing a new primary module. Open paths are not closed or otherwise affected.

F_CHAIN executes as follows:

1. The process’ old primary module is unlinked.

2. The system parses the name string of the new process’ primary module (the
program that is executed). Next, the current and alternate module directories
are searched to see if a module with the same name and type/language is already
in memory. If so, the module is linked. If not, the name string is used as the
pathlist of a file to be loaded into memory. The first module in this file is linked.

3. The data memory area is reconfigured to the size specified in the new primary
module’s header.

4. Intercepts and pending signals are erased.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 116

5. The following structure definition is passed to the initial function of the new
module (this is identical to F_FORK).

typedef struct {

 process_id proc_id; /* process ID */

 owner_id owner; /* group/user ID */

 prior_level priority; /* priority */

 u_int16 path_count; /* of I/O paths inherited*/

 u_int32 param_size, /* size of parameters */

 mem_size; /*total initial memory allocated*/

 u_char *params, /* parameter pointer */

 mem_end; / top of memory pointer */

 Mh_com mod_head; /*primary (forked) module ptr*/

} fork_params, *Fork_params;

The minimum overall data area size is 256 bytes.

F_CHAIN never returns to the calling process. If an error occurs during the Chain, it
is returned as an exit status to the parent of the process performing the Chain.

Attributes

Operating System: OS-9
State: User and System
Threads: Safe

Parameters

cb

The control block header.

priority

The initial priority of the process.

path_cnt

Specify the number of I/O paths to copy (inherit).

mod_name

Point to the new program to execute.

params

Point to the parameter string to pass to the new process.

mem_size

Specify the additional memory size above the default specified in the primary
module’s module header.

param_size

Specify the size of the parameter string.

type_lang

Specify the desired module type/language. type_lang must be either
program/object or zero (for any).

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 117

Possible Errors

EOS_NEMOD

See Also

F_CHAINM

F_FORK

F_FORKM

F_LOAD

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 118

F_CHAINM
Execute New Primary Module Given Pointer to Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_chainm_pb {

syscb cb;

u_int16 priority,

path_cnt;

Mh_com mod_head;

u_char *params;

u_int32 mem_size,

param_size;

} f_chainm_pb, *F_chainm_pb;

Description

F_CHAINM executes a new program without the overhead of creating a new process.
It is functionally similar to a F_FORK command followed by an F_EXIT. F_CHAINM
resets the calling process’ program and data memory areas and begins executing a
new primary module. Open paths are not closed or otherwise affected.

F_CHAINM is similar to F_CHAIN. However, F_CHAINM is passed a pointer to the module
instead of the module name.

F_CHAINM executes as follows:

1. The process’ old primary module is unlinked.

2. The system tries to link to the module pointed to by the module header pointer.

3. The data memory area is reconfigured to the specified size in the new primary
module’s header.

4. Intercepts and pending signals are erased.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 119

5. The following structure definition is passed to the initial function of the new
module (this is identical to F_FORK).

typedef struct {

 process_id proc_id; /* process ID */

 owner_id owner; /* group/user ID */

 prior_level priority; /* priority */

 u_int16 path_count; /* number of I/O paths
 inherited */

 u_int32 param_size, /* size of parameters */

 mem_size; /* total initial memory
 allocated */

 u_char *params, /* parameter pointer */

 mem_end; / top of memory pointer */

 Mh_com mod_head; /*primary (forked) module ptr*/

} fork_params, *Fork_params;

The minimum overall data area size is 256 bytes.

An error is returned only if there is not enough memory to hold the parameters. If
an error occurs during the Chainm, it is returned as an exit status to the parent of the
process performing the Chainm.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

priority

The initial priority of the process.

path_cnt

The number of I/O paths to copy (inherit).

mod_head

Point to the module header.

params

Point to the parameter string to pass to the new process.

mem_size

Specify the additional memory size above the default specified in the primary
module’s module header.

param_size

Specify the size of the parameter string.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 120

Possible Errors

EOS_CRC

See Also

F_CHAIN

F_FORK

F_FORKM

F_LOAD

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 121

F_CHKMEM
Check Memory Block’s Accessibility

Headers

#include <process.h>

Parameter Block Structure

typedef struct f_chkmem_pb {

syscb cb;

u_int32 size;

u_int16 mode;

u_char *mem_ptr;

Pr_desc proc_desc;

} f_chkmem_pb, *F_chkmem_pb;

Description:

F_CHKMEM is called by system routines before accessing data at the specified address
on behalf of a process to determine if the process has access to the specified memory
block.

F_CHKMEM must check the process’ protection image to determine if access to the
specified memory area is permitted. F_CHKMEM is called by system-state routines that
can access memory (such as I_READ and I_WRITE) to determine if the user process
has access to the requested memory. This software check is necessary because the
protection hardware is expected to be disabled for system-state routines.

• The calling process cannot use this service to check for write-only memory
because it assumes read-only as the minimum. To check for no-access to a
segment of memory, the calling process can check for read access and ensure the
resulting status code is EOS_BPADDR. To check for read-only access, there must be
two calls to F_CHKMEM.

• F_CHKMEM is only useful on systems with an MMU and having the SSM module
in their bootfile. When SSM is active, the operating system validates all
arguments. On systems without SSM, the call always returns successful because
every process has full access rights to the entire memory space.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 122

Parameters

cb

The control block header.

size

Specify the size of the memory area.

mode

Specify the permissions to check.

mem_ptr

Point to the beginning of the memory to check.

proc_desc

Point to the process descriptor of the target process.

Possible Errors

EOS_BPADDR

EOS_UNKSVC (from user-state, with or without SSM)

See Also

F_ALLTSK

F_DELTSK

F_PERMIT

F_PROTECT

I_READ

I_WRITE

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 123

F_CHMDIR
Change Process’ Current Module Directory

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_chmdir_pb {

syscb cb;

u_char *name;

} f_chmdir_pb, *F_chmdir_pb;

Description

F_CHMDIR changes a process’ current module directory.

The calling process must have access permission to the specified module directory
or an EOS_PERMIT error is returned.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

name

Point to the new current module directory. name can be a full pathlist or
relative to the current module directory. To change to the system’s root
module directory, specify a slash (/) for name.

Possible Errors

EOS_BNAM

EOS_MNF

EOS_PERMIT

See Also

F_MKMDIR

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 124

F_CLRSIGS
Clear Process Signal Queue

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_clrsigs_pb {

syscb cb;

process_id proc_id;

} f_clrsigs_pb, *F_clrsigs_pb;

Description

F_CLRSIGS removes any pending signals sent to the target process.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

proc_id

Identify the target process.

Possible Errors

EOS_IPRCID

See Also

F_SIGMASK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 125

F_CMDPERM
Change Permissions of Module Directory

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_cmdperm_pb {

syscb cb;

u_char *name;

u_int16 perm;

} f_cmdperm_pb, *F_cmdperm_pb;

Description

F_CMDPERM changes the access permissions of an existing module directory. This
makes it possible to restrict access to a particular module directory.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

name

Point to the name of the existing module directory.

perm

Specify the new permissions.

Possible Errors

EOS_BNAM

EOS_MNF

EOS_PERMIT

See Also

F_MKMDIR

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 126

F_CMPNAM
Compare Two Names

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_cmpnam_pb {

syscb cb;

u_int32 length;

u_char *string,

*pattern;

int32 result;

} f_cmpnam_pb, *F_cmpnam_pb;

Description

F_CMPNAM compares a target name to a source pattern to determine if they are equal.
F_CMPNAM is not case-sensitive; it does not differentiate between upper and lower
case characters.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

length

Specify the length of the pattern string.

string

Point to the target name string. The target name must be terminated by a null
byte.

pattern

Point to the pattern string. Two wildcard characters are recognized in the
pattern string:

• A question mark (?) matches any single character.

• An asterisk (*) matches any string.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 127

result

A returned value. It is the lexicographic result of the comparison.

• If result is zero, the target string is the same as the pattern string.

• If result is negative, the target name is greater than the pattern string.

• If result is positive, the target string is less than the pattern string.

Possible Errors

EOS_DIFFER

EOS_STKOVF

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 128

F_CONFIG
Configure an Element

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_config_pb {

syscb cb;

u_int32 code;

void *param;

} f_config_pb, *F_config_pb;

Description

F_CONFIG is a wildcard call that configures elements of the operating system that
may or may not be process specific. It reconfigures operating system resources at
runtime. The target resources may be system-wide resources or process-specific,
depending on the nature of the call.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

code

Identify the target configuration code. Currently, no sub-codes are defined for
this call.

*param

Point to any additional parameters required by the specified configuration
function.

See Also

I_CONFIG

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 129

F_CPYMEM
Copy External Memory

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_cpymem_pb {

syscb cb;

process_id proc_id;

u_char *from,

*to;

u_int32 count;

} f_cpymem_pb, *F_cpymem_pb;

Description

F_CPYMEM uses F_MOVE to copy data from one location to another and (at present)
ignores the proc_id argument (refer to the Parameters section below). The
difference between F_MOVE and F_CPYMEM is the OS allows only system-state
processes to use the former, while the OS allows either user- or system-state
processes to use the later.

For system-state processes, the only difference between these two services is
F_CPYMEM is slightly slower, since it has more routines to call before transferring
control to F_MOVE.

For user-state processes, F_CPYMEM is the only choice for copying restricted memory.

The OS (if the SSM is active) calls F_CHKMEM to ensure the caller has read and write
access to the output. The OS allows the input address to be any existent location of
memory (it allows user-state processes to copy even restricted data if it exists in
RAM).

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 130

Parameters

cb

The control block header.

proc_id

Specify the process ID of the owner of the external memory.

This service does not currently use the proc_id input, which was valid when
OS-9 was running on the MC6809 architecture. To allow memory access
beyond 64KB, OS-9 used F_CPYMEM to do bank switching in order to allow a
process to copy data from a different bank of memory. The proc_id argument
was nothing more than a bank selector. At this point there is no need for the
proc_id argument, but it is reserved for future use.

from

The address of the external process’ memory to copy.

to

Point to the caller’s destination buffer.

count

The number of bytes to copy.

Possible Errors

EOS_BPADDR

See Also

F_MOVE

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 131

F_CRC
Generate CRC

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_crc_pb {

syscb cb;

u_char *start;

u_int32 count,

accum;

} f_crc_pb, *F_crc_pb;

Description

F_CRC generates or checks the CRC (cyclic redundancy check) values of sections of
memory. Compilers, assemblers, and other module generators use F_CRC to generate
a valid module CRC. If the CRC of a new module is to be generated, the CRC is
accumulated over the module (excluding the CRC). The accumulated CRC is
complemented and stored in the correct position in the module.

The CRC is calculated over a specified number of bytes starting at the source
address. It is not necessary to cover an entire module in one call, because the CRC
may be accumulated over several calls. The CRC accumulator must be initialized to
0xffffffff before the first F_CRC call for any particular module.

To generate the CRC of an existing module, the calculation should be performed on
the entire module, including the module CRC. The CRC accumulator contains the
CRC constant bytes if the module CRC is correct. The CRC constant is defined in
module.h as CRCCON. The value is 0x00800fe3.

To generate the CRC for a module complete the following steps:

Step 1. Initialize the accumulator to -1.

Step 2. Perform the CRC over the module.

Step 3. Call F_CRC with a NULL value for start.

Step 4. Complement the CRC accumulator.

Step 5. Write the contents of the accumulator to the module.

The CRC value is three bytes long, in a four-byte field. To generate a valid module
CRC, include the byte preceding the CRC in the check and initialize this byte to
zero. If a data pointer of zero is passed, the CRC is updated with one zero data byte.
F_CRC always returns 0xff in the most significant byte of the accum parameter; accum
can be stored (after complement) in the last four bytes of a module as the correct
CRC.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 132

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

start

Point to the data.

count

Specify the byte count for the data.

accum

A returned value. It points to the CRC accumulator.

See Also

F_SETCRC

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 133

F_CRLK
Create New Resource Lock Descriptor

Headers

#include <lock.h>

Parameter Block Structure

typedef struct f_crlk_pb {

syscb cb;

lock_id lid;

} f_crlk_pb, *F_crlk_pb;

Description

F_CRLK creates a new resource lock descriptor. A resource lock descriptor is
allocated and initialized to a free state (not currently owned). Locks can be used to
protect resources in a multi-tasking environment. They provide a mechanism for
exclusive access to a given resource.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

lid

A returned value. It is the lock identifier for the lock descriptor. lid is used as
a handle to perform further operations on the lock.

Possible Errors

EOS_NORAM

See Also

F_ACQLK

F_CAQLK

F_DELLK

F_RELLK

F_WAITLK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 134

F_DATMOD
Create Data Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_datmod_pb {

syscb cb;

u_char *mod_name;

u_int32 size;

u_int16 attr_rev,

type_lang,

perm;

void *mod_exec;

Mh_com mod_head;

u_int32color

} f_datmod_pb, *F_datmod_pb;

Description

F_DATMOD creates a data module with the specified attribute/revision and clears the
data portion of the module. The module is created and entered into the current
module directory. Several processes can communicate with each other using a
shared data module.

Be careful not to alter the data module’s header or name string to prevent the
module from becoming unknown to the system.

The created module contains at least size usable data bytes, but may be somewhat
larger. The module itself is larger by at least the size of the module header and CRC,
and is rounded up to the nearest system memory allocation boundary.

F_DATMOD does not create a CRC value for the data module. If you load the data
module into memory, you must first create the CRC value.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 135

Parameters

mod_name

Point to the module name string.

size

The size of the data portion.

attr_rev

A returned value. The value of the module’s attribute and revision.

type_lang

A returned value. The value of the module’s type and language.

perms

Specify the access permissions for the module.

mod_exec

A returned value. It points to the module data.

mod_head

A returned value. It points to the module header.

color

Memory color type. If color is zero, MEM_ANY is the memory type.

Possible Errors

EOS_BNAM

EOS_KWNMOD

See Also

F_SETCRC

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 136

F_DATTACH
Attach Debugger to a Running Process

Headers

#include <regs.h>

Parameter Block Structure

typedef struct f_dattach_pb {

syscb cb;

process_id proc_id;

Regs reg_stack;

Fregs freg_stack;

} f_dattach_pb, *F_dattach_pb;

Description

F_DATTACH attaches the calling debugger to an active process, enabling the debugger
to assume debug control over the existing process. It establishes a debug session in
the same way F_DFORK starts a new process for debug execution. Once a debugger
performs the debug attach operation, the target process is suspended from
execution and the debugger can then proceed to execute the target process under its
control using the F_DEXEC service request. One important difference between
F_DATTACH and F_DFORK is with the F_DATTACH call, the target process continues
normal execution when the parent debugging process exits. The debug resources of
the target process are released but the process does not terminate. However, when a
process is started with the F_DFORK service request, the process is terminated when
the parent debugger performs the F_DEXIT service request.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

proc_id

The process identifier of the target process to attach to for debugging.

reg_stack

Point to a register image buffer in the caller's data area where the kernel
returns the current register image of the target debug process.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 137

freg_stack

Point to a floating-point register image buffer in the caller's data area where
the kernel returns the current floating-point register image of the target debug
process. Note, this floating-point image can contain an empty image since the
target process may not be using the floating-point facilities of the system.

Possible Errors

EOS_IPRCID

EOS_PERMIT

See Also

F_DEXEC

F_DEXIT

F_DFORK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 138

F_DDLK
Check for Deadlock Situation

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_ddlk_pb {

syscb cb;

process_id proc_id;

} f_ddlk_pb, *F_ddlk_pb;

Description

F_DDLK checks for a deadlock situation between processes. A search for the current
process (calling process) in the linked list of potential conflicting processes is begun
from the process specified by proc_id.

F_DDLK is useful for preventing a deadlock situation when protecting multiple
resources from simultaneous accesses. The deadlock list usually represents the list of
processes waiting to acquire access to an associated resource.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

proc_id

Specify the process with which to begin the search.

If the calling process is already in the linked list of processes, an EOS_DEADLK
error is returned to the caller.

If the process is not in the linked list, the current process is added to the list
associated with proc_id.

Possible Errors

EOS_DEADLK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 139

F_DELLK
Delete Existing Lock Descriptor

Headers

#include <lock.h>

Parameter Block Structure

typedef struct f_dellk_pb {

syscb cb;

lock_id lid;

} f_dellk_pb, *F_dellk_pb;

Description

F_DELLK deletes an existing lock descriptor.

F_DELLK does not check for suspended processes still waiting to acquire the lock; an
implementation using locks must release all processes waiting on a resource lock
prior to deleting it. You can corrupt the system if you do not release suspended
processes prior to deletion.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

lid

The lock identifier for the lock to delete.

See Also

F_ACQLK

F_CAQLK

F_CRLK

F_RELLK

F_WAITLK

Refer to Chapter 6 for more information about locks.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 140

F_DELMDIR
Delete Existing Module Directory

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_delmdir_pb {

syscb cb;

u_char *name;

} f_delmdir_pb, *F_delmdir_pb;

Description

F_DELMDIR deletes an existing module directory. If the target module directory is not
empty, an EOS_DNE directory not empty error is returned.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

name

Point to the module directory.

Possible Errors

EOS_BNAM

EOS_DNE

EOS_MNF

EOS_PERMIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 141

F_DELTSK
Deallocate Process Descriptor

Headers

#include <process.h>

Parameter Block Structure

typedef struct f_deltsk_pb {

syscb cb;

Pr_desc proc_desc;

} f_deltsk_pb, *F_deltsk_pb;

Description

F_DELTSK is called when a process terminates to return the process’ protection
resources. This call must release any protection structures allocated to the process,
whether this be memory or any hardware resource.

F_DELTSK is only supported on systems with a memory protection unit (for example,
all 80386 and 80486 systems and PowerPC systems). The SSM module must be
present in the bootfile.

If the SSM module is not present in the system, an EOS_UNKSVC error is returned. You
should ignore this error.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

proc_desc

Point to the process descriptor.

Possible Errors

EOS_BNAM

EOS_UNKSVC

See Also

F_ALLTSK

F_CHKMEM

F_PERMIT

F_PROTECT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 142

F_DEXEC
Execute Debugged Program

Headers

#include <types.h>

#include <dexec.h>

Parameter Block Structure

typedef struct f_dexec_pb {

syscb cb;

process_id proc_id;

dexec_mode mode;

u_char *params;

u_int32 num_instr,

tot_instr,

except,

addr;

u_int16 num_bpts,

**brk_pts;

dexec_status status;

error_code exit_status;

} f_dexec_pb, *F_dexec_pb;

Description

F_DEXEC controls the execution of a suspended child process created by F_DFORK.
The process performing the F_DEXEC is suspended, and its debugged child process is
executed instead. This process terminates and control returns to the parent after the
specified number of instructions have been executed, a breakpoint is reached, or an
unexpected exception occurs. Therefore, the parent and the child processes are
never active at the same time.

When F_DEXEC is executed in DBG_M_SOFT or DBG_M_COUNT mode, it traces every
instruction of the child process and checks for the termination conditions.
Breakpoints are lists of addresses to check and work with ROMed object programs.
Consequently, the child process being debugged runs at a slow speed.

When F_DEXEC is executed in DBG_M_HARD mode, it replaces the instruction at each
breakpoint address with an illegal opcode. Next, it executes the child process at full
speed (with the trace bit clear) until a breakpoint is reached or the program
terminates. This can save an enormous amount of time. However, F_DEXEC cannot
count the number of executed instructions.

When status is DBG_S_EXCEPT, the except parameter is the specific exception
identifier (error) causing the child to return to the debugger.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 143

OS-9 system calls made by the suspended program are executed at full speed and
are considered one logical instruction. This is also true of system-state trap
handlers. You cannot debug system-state processes.

The system uses the register buffer and floating point register buffer passed in the
F_DFORK call to save and restore the child’s registers. Changing the contents of the
register buffer alters the child process’ registers.

An F_DEXIT call must be made to return the debugged process’ resources (memory).

Tracing is allowed through subroutine libraries and intercept routines. This is not a
problem, but you will see code executed that is not explicitly in your sources.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

proc_id

The process ID of the child to execute.

mode

Specify the debug mode. These modes are defined in the header file dexec.h:

params

The parameter list pointer. This will be implemented in a future release.

num_instr

The number of instructions to execute. If num_instr is zero, commands are
executed continuously. Upon completion of the F_DEXEC call, num_instr is
updated with a value representing the original number of instructions less the
number of instructions executed.

tot_instr

A returned value. It points to the number of instructions executed so far when
the child is executed in trace mode.

Debug Modes Description
DBG_M_INACTV Inactive mode (used by the kernel).
DBG_M_HARD Hard breakpoints/full speed execution.
DBG_M_SOFT Soft breakpoints/continuous execution.
DBG_M_COUNT Execute count instructions.
DBG_M_CONTROL Execute until change of control (future release).

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 144

except

A returned value. It is the exception the child received, when the child process
returned due to an exception.

addr

A returned value. It is the violation address associated with an exception
condition.

num_bpts

Specify the number of breakpoints in the list.

brk_pts

Point to the breakpoint list. The breakpoint list is a list of addresses indicating
which instructions are considered breakpoints.

status

The process return status. status indicates the reason the child process
returned to the debugger. The following status modes are defined in the
header file dexec.h:

exit_status

A returned value. It is the child’s exit status, when the child performs an
F_EXIT call.

Possible Errors

EOS_IPRCID

EOS_PRCABT

See Also

F_CHAIN

F_DEXIT

F_DFORK

F_EXIT

Status Modes Description
DBG_S_FINISH The command finished successfully.
DBG_S_BRKPNT The process hit a breakpoint.
DBG_S_EXCEPT An exception occurred during execution.
DBG_S_CHILDSIG The process received a signal (no intercept).
DBG_S_PARENTSIG The debugger received a signal.
DBG_S_CHAIN The process made an F_CHAIN system call.
DBG_S_EXIT The process made an F_EXIT system call.
DBG_S_CONTROL The process executed a jmp or bra (future release).
DBG_S_WATCH The process hit a watch point (future release).
DBG_S_FORK The process made an F_FORK system call.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 145

F_DEXIT
Exit Debugged Program

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_dexit_pb {

syscb cb;

process_id proc_id;

} f_dexit_pb, *F_dexit_pb;

Description

F_DEXIT terminates a suspended child process created by F_DFORK. The F_EXIT done
by the child process does not release the child’s resources in the case of a debugged
process. This enables examination of the child after its termination. Therefore, the
debugger must do an F_DEXIT to release the child’s resources after this call.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

proc_id

The process ID of the child to terminate.

Possible Errors

EOS_IPRCID

See Also

F_DEXEC

F_DFORK

F_EXIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 146

F_DFORK
Fork Process Under Control of Debugger

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_dfork_pb {
syscb cb;

u_int16 priority,

path_cnt;

process_id proc_id;

Regs reg_stack;

Fregs freg_stack;

u_char *mod_name,

*params;

u_int32 mem_size,

param_size;

u_int16 type_lang;

} f_dfork_pb, *F_dfork_pb;

Description:

F_DFORK creates a new process that becomes a child of the caller. It sets up the
process’ memory, MPU registers, and standard I/O paths. In addition, F_DFORK
enables a debugger utility to create a process whose execution can be closely
controlled. The created process is not placed in the active queue, but is left in a
suspended state. This enables the debugger to control its execution through the
F_DEXEC and F_DEXIT system calls.

The child process is created in the DBG_M_SOFT (trace) mode and is executed with
F_DEXEC.

The register buffer is an area in the caller’s data area permanently associated with
each child process. It is set to an image of the child’s initial registers for use with
F_DEXEC.

For information about process creation, refer to the F_FORK description.
Processes whose primary module is owned by a super-user can only be debugged by
a super user. You cannot debug system-state processes.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 147

Parameters

cb

The control block header.

priority

The priority of the new process.

path_cnt

The number of I/O paths for the child to inherit.

proc_id

A returned value. It is the new child process ID.

reg_stack

Point to the register buffer.

freg_stack

Point to the floating point register buffer.

mod_name

Point to the module name.

params

Point to the parameter string to pass to the new process.

mem_size

Specify any additional stack space to allocate above the default specified in the
primary module’s module header.

param_size

Specify the size of the parameter string.

type_lang

Specify the desired type and language of the primary module to be executed.

Possible Errors

EOS_MNF

EOS_NEMOD

EOS_NORAM

EOS_PERMIT

EOS_PNNF

See Also

F_DEXEC

F_DEXIT

F_DFORKM

F_FORK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 148

F_DFORKM
Fork Process Under Control of Debugger

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_dforkm_pb {

syscb cb;

u_int16 priority,

path_cnt;

process_id proc_id;

Regs reg_stack;

Fregs freg_stack;

Mh_com mod_head;

u_char *params;

u_int32 mem_size,

param_size;

} f_dforkm_pb, *F_dforkm_pb;

Description

F_DFORKM creates a new process that becomes a child of the caller. It sets up the
process’ memory, MPU registers, and standard I/O paths. In addition, F_DFORKM
enables a debugger utility to create a process whose execution can be closely
controlled. The created process is not placed in the active queue, but is left in a
suspended state. This enables the debugger to control its execution through the
F_DEXEC and F_DEXIT system calls. F_DFORKM is similar to F_DFORK. However,
F_DFORKM is passed a pointer to the module to fork rather than the module name.

For more information, refer to the description of F_DFORK.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

priority

The priority of the new process.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 149

path_cnt

The number of I/O paths for the child to inherit.

proc_id

A returned value. It is a the new child process ID.

reg_stack

Point to the register buffer.

freg_stack

Point to the floating point register buffer.

mod_head

Point to the module header.

params

Point to the parameter string to pass to the new process.

mem_size

Specify any additional stack space to allocate above the default specified in the
primary module’s module header.

param_size

Specify the size of the parameter string.

Possible Errors

EOS_MNF

EOS_NEMOD

EOS_NORAM

EOS_PERMIT

EOS_PNNF

See Also

F_DEXEC

F_DEXIT

F_DFORK

F_FORK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 150

F_EVENT
Process Synchronization and Communication

Headers

Refer to the specific event for the header to include.

Parameter Block Structure

Refer to the specific event for the appropriate parameter block structure.

Description

OS-9 events are multiple-value semaphores that synchronize concurrent processes
sharing resources such as files, data modules, and CPU time. The events’ functions
enable processes to create/delete events, link/unlink events, get event information,
and suspend operation until an event occurs. Events are also used for various means
of signalling.

The following events functions are currently supported:

Table 6-3. Events Functions

Event Description
F_EVENT, EV_ALLCLR Wait for all bits defined by mask to become clear.
F_EVENT, EV_ALLSET Wait for all bits defined by mask to become set.
F_EVENT, EV_ANYCLR Wait for any bits defined by mask to become clear.
F_EVENT, EV_ANYSET Wait for any bits defined by mask to become set.
F_EVENT, EV_CHANGE Wait for any bits defined by mask to change.
F_EVENT, EV_CREAT Create new event.
F_EVENT, EV_DELET Delete existing event.
F_EVENT, EV_INFO Return event information.
F_EVENT, EV_LINK Link to existing event by name.
F_EVENT, EV_PULSE Signal event occurrence.
F_EVENT, EV_READ Read event value without waiting.
F_EVENT, EV_SET Set event variable and signal event occurrence.
F_EVENT, EV_SETAND Set event value by ANDing the event value with a mask.
F_EVENT, EV_SETOR Set event value by ORing the event value with a mask.
F_EVENT, EV_SETR Set relative event variable and signal event occurrence.
F_EVENT, EV_SETXOR Set event value by XORing the event value with a mask.
F_EVENT, EV_SIGNL Signal event occurrence.
F_EVENT, EV_TSTSET Wait for all bits defined by mask to clear, then set these bits.
F_EVENT, EV_UNLNK Unlink event.
F_EVENT, EV_WAIT Wait for event to occur.
F_EVENT, EV_WAITR Wait for relative event to occur.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 151

Specific parameters and functions of each event operation are discussed in the
following pages. The EV_XXX function names are defined in the system definition file
funcs.h. The event value is added to min_val and max_val, and the actual values are
returned to the caller. If an underflow or overflow occurs on the addition, the values
0x80000000 (minimum integer) and 0x7fffffff (maximum integer) are used,
respectively.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Possible Errors

EOS_EVNTID

See Also

F_EVENT, EV_SIGNL

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 152

F_EVENT, EV_ALLCLR
Wait for All Bits Defined by Mask to Become Clear

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evallclr_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

signal_code signal;

u_int32 mask;

} f_evallclr_pb, *F_evallclr_pb;

Description

EV_ALLCLR waits until one of the event set calls occurs that clears all of the bits
corresponding to the set bits in the mask. The event variable is ANDed with the
value in mask. If the resulting value is not zero, the calling process is suspended in a
FIFO event queue.

Attributes

Operating System: OS-9
State: User and System
Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_ALLCLR event function code.

ev_id

Identify the event.

value

A returned value. It is the actual event value after the set operation that
activated the suspended process.

If the process receives a signal while in the event queue, it is activated and an
EOS_SIGNAL error is returned, even though the event has not actually occurred.
Also, the current event value is returned and the caller’s intercept routine is
executed.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 153

signal

Contains the returned signal code.

mask

Specify the activation mask. It indicates which bits are significant to the caller.

Possible Errors

EOS_EVNTID

EOS_SIGNAL

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 154

F_EVENT, EV_ALLSET
Wait for Event to Occur

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evallset_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

signal_code signal;

u_int32 mask;

} f_evallset_pb, *F_evallset_pb;

Description

EV_ALLSET waits until one of the event set calls occurs that sets all of the bits
corresponding to the set bits in the mask. The event variable is ANDed with the
value in mask and then EXCLUSIVE-ORed with it. If the resulting value is not zero,
the calling process is suspended in a FIFO event queue.

Attributes

Operating System: OS-9
State: User and System
Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_ALLSET event function code.

ev_id

Identify the event.

value

A returned value. It is the actual event value after the set operation that
activated the suspended process.

If the process receives a signal while in the event queue, it is activated and an
EOS_SIGNAL error is returned, even though the event has not actually occurred.
Also, the current event value is returned and the caller’s intercept routine is
executed.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 155

signal

Contains the returned signal code.

mask

Specify the activation mask. It indicates which bits are significant to the caller.

Possible Errors

EOS_EVNTID

EOS_SIGNAL

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 156

F_EVENT, EV_ANYCLR
Wait for Event to Occur

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evanyclr_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

signal_code signal;

u_int32 mask;

} f_evanyclr_pb, *F_evanyclr_pb;

Description

EV_ANYCLR waits for an event to occur. The event variable is ANDed with the value
in mask and then EXCLUSIVE-ORed with it. If the resulting value is zero, the
calling process is suspended in a FIFO event queue. It waits until one of the event set
calls occurs that clears any of the bits corresponding to the set bits in the mask.

Attributes

Operating System: OS-9
State: User and System
Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_ANYCLR event function code.

ev_id

Identify the event.

value

A returned value. It is the actual event value after the set operation that
activated the suspended process.

If the process receives a signal while in the event queue, it is activated and an
EOS_SIGNAL error is returned, even though the event has not actually occurred.
Also, the current event value is returned and the caller’s intercept routine is
executed.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 157

signal

Contains the returned signal code.

mask

Specify the activation mask. It indicates which bits are significant to the caller.

Possible Errors

EOS_EVNTID

EOS_SIGNAL

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 158

F_EVENT, EV_ANYSET
Wait for Event to Occur

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evanyset_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

signal_code signal;

u_int32 mask;

} f_evanyset_pb, *F_evanyset_pb;

Description

EV_ANYSET waits until one of the event set calls occurs that sets any of the bits
corresponding to the set bits in the mask. The event variable is ANDed with the
value in mask. If the resulting value is zero, the calling process is suspended in a
FIFO event queue.

Attributes

Operating System: OS-9
State: User and System
Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_ANYCLR event function code.

ev_id

Identify the event.

value

A returned value. It is the actual event value after the set operation that
activated the suspended process.

If the process receives a signal while in the event queue, it is activated and an
EOS_SIGNAL error is returned, even though the event has not actually occurred.
Also, the current event value is returned and the caller’s intercept routine is
executed.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 159

signal

Contains the returned signal code.

mask

Specify the activation mask. It indicates which bits are significant to the caller.

Possible Errors

EOS_EVNTID

EOS_SIGNAL

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 160

F_EVENT, EV_CHANGE
Wait for Event to Occur

Headers:

#include <types.h>

Parameter Block Structure

typedef struct f_evchange_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

signal_code signal;

u_int32 mask;

u_int32 pattern;

} f_evchange_pb, *F_evchange_pb;

Description

EV_CHANGE waits until one of the event set calls occurs that changes any of the bits
corresponding to the set bits in mask. The event variable is ANDed with the value in
mask. If the resulting value is not equal to the wait pattern, the calling process is
suspended in a FIFO event queue.

Attributes

Operating System: OS-9
State: User and System
Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_ANYCLR event function code.

ev_id

Identify the event.

value

A returned value. It is the actual event value after the set operation that
activated the suspended process.

If the process receives a signal while in the event queue, it is activated and an
EOS_SIGNAL error is returned, even though the event has not actually occurred.
Also, the current event value is returned and the caller’s intercept routine is
executed.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 161

signal

Contains the returned signal code.

mask

Specify the activation mask. It indicates which bits are significant to the caller.

pattern

Specify the wait pattern.

Possible Errors

EOS_EVNTID

EOS_SIGNAL

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 162

F_EVENT, EV_CREAT
Create New Event

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evcreat_pb {

syscb cb;

u_int16 ev_code,

wait_inc,

sig_inc,

perm,

color;

event_id ev_id;

u_char *ev_name;

u_int32 value;

} f_evcreat_pb, *F_evcreat_pb;

Description

EV_CREAT creates events dynamically as needed. When an event is created, an initial
value is specified, as well as increments to be applied each time the event is waited
for or occurs. Subsequent event calls use the returned ID number to refer to the
created event.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_CREAT event function code.

wait_inc

Specify the auto-increment value for EV_WAIT.

sig_inc

Specify the auto-increment value for EV_SIGNL.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 163

perm

Specify the access permissions.

color

Specify the memory type for the event structure.

ev_id

A returned value. Event identifier used for subsequent event calls.

ev_name

Point to the event name string.

value

Specify the initial event variable value.

Possible Errors

EOS_BNAM

EOS_EVBUSY

EOS_EVFULL

EOS_NORAM

See Also

F_EVENT, EV_DELET

F_EVENT, EV_SIGNL

F_EVENT, EV_WAIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 164

F_EVENT, EV_CREAT | F_USEMA
Create New Usemaphore

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evcreat_pb {

syscb cb;

u_int16 ev_code,

wait_inc,

sig_inc,

perm,

color;

event_id ev_id;

u_char *ev_name;

u_int32 value;

} f_evcreat_pb, *F_evcreat_pb;

Description

EV_CREAT | F_USEMA creates usemaphores dynamically as needed. When a
usemaphore is created an initial value is specified. Subsequent usemaphore calls use
the returned ID number to refer to the created usemaphore.

No usemaphore may have the same name as an event.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_CREAT | F_USEMA function code.

wait_inc

Specify the auto-increment value for EV_WAIT. wait_inc must be -1.

sig_inc

Specify the auto-increment value for EV_SIGNL. sig_inc must be 1.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 165

perm

Specify the access permissions.

color

Specify the memory type for the usemaphore structure.

ev_id

A returned value. It is the usemaphore identifier used for subsequent
usemaphore calls.

ev_name

Pointer to the usemaphore name string.

value

Specify the initial usemaphore variable value. value must be 0 or 1.If it is 0,
the usemaphore will be created as if it was atomically created in the released
state and then aquired by the calling process.

Possible Errors

EOS_BNAM

EOS_EVBUSY

EOS_EVFULL

EOS_NORAM

See Also

F_EVENT, EV_DELET

F_EVENT, EV_SIGNL

F_EVENT, EV_WAIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 166

F_EVENT, EV_DELET
Remove Event

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evdelet_pb {
syscb cb;

u_int16 ev_code;

u_char *ev_name;

} f_evdelet_pb, *F_evdelet_pb;

Description

EV_DELET removes an event from the system event table, freeing the entry for use by
another event. Events have an implicit use count (initially set to 1), which is
incremented with each EV_LINK call and decremented with each EV_UNLINK call. An
event may not be deleted unless its use count is zero.

OS-9 does not automatically unlink events when EOS_EXIT occurs.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_DELET event function code.

name

Point to the event’s name string.

Possible Errors

EOS_BNAM

EOS_EVBUSY

EOS_EVNF

See Also

F_EVENT, EV_CREAT

F_EVENT, EV_LINK

F_EVENT, EV_UNLNK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 167

F_EVENT, EV_DELET | F_USEMA
Remove Usemaphore

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evdelet_pb {
syscb cb;

u_int16 ev_code;

u_char *ev_name;

} f_evdelet_pb, *F_evdelet_pb;

Description

EV_DELET | F_USEMA removes a usemaphore from the system usemaphore table,
freeing the entry for use by another event or usemaphore. Usemaphores have an
implicit use count (initially set to 1 by EV_CREAT | F_USEMA), which is incremented
with each EV_LINK | F_USEMA call and decremented with each EV_UNLINK | F_USEMA
call. A usemaphore may not be deleted unless its use count is zero.

OS-9 automatically unlocks, if necessary, and unlinks any linked usemaphores upon
process termination, but does not delete them.

Attributes

Operating System: OS-9
State: User and System
Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_DELET | F_USEMA function code.

name

Pointer to the usemaphore’s name string.

Possible Errors

EOS_BNAM

EOS_EVBUSY

EOS_EVNF

See Also

F_EVENT, EV_CREAT | F_USEMA

F_EVENT, EV_LINK | F_USEMA

F_EVENT, EV_UNLNK | F_USEMA

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 168

F_EVENT, EV_INFO
Return Event Information

Headers

#include <events.h>

Parameter Block Structure

typedef struct f_evinfo_pb {
syscb cb;

u_int16 ev_code;

event_id ev_id;

u_int32 size;

u_char *buffer;

} f_evinfo_pb, *F_evinfo_pb;

Description

EV_INFO returns event information in your buffer. This call is used by utilities
needing to know the status of all active events. The information returned is defined
by the ev_infostr event information structure defined in the events.h header file.

The name of the event is appended to the end of the information structure. The
information buffer and size parameters must be large enough to accommodate the
name of the target event.

EV_INFO returns the event information block for the first active event whose index is
greater than or equal to this index. If no such event exists, an error is returned.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_INFO event function code.

ev_id

Specify the event index to use to begin the search. Unlike other event
functions, only an event index is passed in the ev_id parameter. The index is
the system event number, ranging from zero to one less than the maximum
number of system events.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 169

size

Specify the buffer size.

buffer

Point to the buffer containing the event information.

Possible Errors

EOS_EVNTID

See Also

ev_str/ev_infostr

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 170

F_EVENT, EV_LINK
Link to Existing Event by Name

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evlink_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

u_char *ev_name;

} f_evlink_pb, *F_evlink_pb;

Description

EV_LINK determines the ID number of an existing event. Once an event has been
linked, all subsequent references are made using the returned event ID. This permits
the system to access events quickly, while preventing programs from using invalid or
deleted events. The event use count is incremented when an EV_LINK is performed.
To keep the use count synchronized properly, use EV_UNLINK when the event is no
longer used.

The event access permissions are checked only at link time.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_LINK event function code.

ev_name

Point to the event name string.

ev_id

The event identifier used for subsequent event calls.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 171

Possible Errors

EOS_BNAM

EOS_EVNF

EOS_PERMIT

See Also

F_EVENT, EV_UNLNK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 172

F_EVENT, EV_LINK | F_USEMA
Link to Existing Usemaphore by Name

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evlink_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

u_char *ev_name;

} f_evlink_pb, *F_evlink_pb;

Description

EV_LINK | F_USEMA determines the ID number of an existing usemaphore. Once a
usemaphore has been linked, all subsequent references are made using the returned
usemaphore ID. This permits the system to access usemaphores quickly, while
preventing programs from using invalid or deleted usemaphores. The usemaphore
use count is incremented when an EV_LINK | F_USEMA is performed. To keep the use
count synchronized properly, use EV_UNLINK | F_USEMA when the usemaphore is no
longer used.

OS-9 automatically unlocks, if necessary, and unlinks any linked usemaphores upon
process termination, but does not delete them.

The usemaphore access permissions are checked only at link time.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_LINK | F_USEMA function code.

ev_name

Pointer to the usemaphore name string.

ev_id

The usemaphore identifier used for subsequent usemaphore calls.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 173

Possible Errors

EOS_BNAM

EOS_EVNF

EOS_PERMIT

See Also

F_EVENT, EV_UNLNK | F_USEMA

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 174

F_EVENT, EV_PULSE
Signal Event Occurrence

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evpulse_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

u_int32 actv_flag;

} f_evpulse_pb, *F_evpulse_pb;

Description

EV_PULSE signals an event occurrence. The event value is set to what is passed in
value, and the signal auto-increment is not applied. Then, the event queue is
searched for the first process waiting for that event value, after which the original
event value is restored.

EV_PULSE with the actv_flag set executes as follows for each process in the queue
until the queue is exhausted:

1. The signal auto-increment is added to the event variable.

2. The first process in range is awakened.

3. The event value is updated with the wait auto-increment.

4. The search is continued with the updated value.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_PULSE event function code.

ev_id

Identify the event.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 175

value

The event value prior to the pulse operation.

actv_flag

Specify which process(es) to activate.

• If actv_flag is one, all processes in range are activated.

• If actv_flag is not set, only the first process in the event queue waiting for
that range is activated.

Possible Errors

EOS_EVNTID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 176

F_EVENT, EV_READ
Read Event Value Without Waiting

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evread_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

} f_evread_pb, *F_evread_pb;

Description

EV_READ reads the value of an event without waiting or affecting the event variable.
This determines the availability of the event without wait.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_READ event function code.

ev_id

Identify the event.

value

The current event value.

Possible Errors

EOS_EVNTID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 177

F_EVENT, EV_RESET | F_USEMA
Acquire Ownership of a Usemaphore and Reset

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evwait_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

signal_code signal;

u_int32 min_val,

max_val;

} f_evwait_pb, *F_evwait_pb;

Description

EV_RESET | F_USEMA claims ownership of a usemaphore and clears the need for a
reset. This is a non-blocking call. If a reset is necessary the caller will be granted
ownership immediately and the need to reset the usemaphore will be cleared. If no
reset is required EOS_USNORST will be returned.

The caller should use F_EVENT, EV_SIGNL | F_USEMA to release the ownership
acquired via F_EVENT, EV_RESET | F_USEMA.

Usemaphores have to be reset when the operating system releases ownership
because a process terminates without manually releasing ownership.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_RESET | F_USEMA function code.

ev_id

Identify the usemaphore.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 178

value

A returned value. It is the actual usemaphore value prior to the application of
the wait increment.

signal

A returned value.Since this is a non-blocking call the value of signal is not
defined.

min_val

The minimum activation value. This must be 1.

max_val

The maximum activation value. This must be 1.

Possible Errors

EOS_EVNTID

EOS_USRST

See Also

F_EVENT, EV_SIGNL | F_USEMA

F_EVENT, EV_WAIT | F_USEMA

F_EVENT, EV_TRYWAIT | F_USEMA

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 179

F_EVENT, EV_SET
Set Event Variable and Signal Event Occurrence

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evset_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

u_int32 actv_flag;

} f_evset_pb, *F_evset_pb;

Description

EV_SET signals an event has occurred. The current event variable is set to the value
passed at value, rather than updated with the signal auto-increment. Next, the
event queue is searched for the first process waiting for the event value.

EV_SET with the actv_flag set executes as follows for each process in the queue
until the queue is exhausted:

1. The first process in range is awakened.

2. The event value is updated with the wait auto-increment.

3. The search is continued with the updated value.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_SET event function code.

ev_id

Identify the event.

value

The event value prior to the set operation.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 180

actv_flag

Specify which process(es) to activate.

• If actv_flag is one, all processes in range are activated.

• If actv_flag is not set, only the first process in the event queue waiting for
that range is activated.

Possible Errors

EOS_EVNTID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 181

F_EVENT, EV_SETAND
Set Event Variable and Signal Event Occurrence

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evsetand_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

u_int32 mask,

actv_flag;

} f_evsetand_pb, *F_evsetand_pb;

Description

EV_SETAND signals an event has occurred. The current event variable is ANDed with
the value passed in mask rather than updated with the signal auto-increment. Next,
the event queue is searched for the first process waiting for that event value.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_SETAND event function code.

ev_id

Identify the event.

value

The event value prior to the logical operation.

mask

The event mask. It indicates which bits are significant to the caller.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 182

actv_flag

Specify which process(es) to activate.

• If actv_flag is one, all processes in range are activated.

• If actv_flag is not set, only the first process in the event queue waiting for
that range is activated.

Possible Errors

EOS_EVNTID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 183

F_EVENT, EV_SETOR
Set Event Variable and Signal Event Occurrence

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evsetor_pb {
syscb cb;

u_int16 ev_code;

event_id ev_id;

u_int32 mask,

actv_flag;

} f_evsetor_pb, *F_evsetor_pb;

Description

EV_SETOR signals an event has occurred. The current event variable is ORed with the
value passed in mask. Next, the event queue is searched for the first process waiting
for that event value.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_SETOR event function code.

ev_id

Identify the event.

value

The event value prior to the logical operation.

mask

The event mask. It indicates which bits are significant to the caller.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 184

actv_flag

Specify which processes to activate.

• If actv_flag is one, all processes in range are activated.

• If actv_flag is not set, only the first process in the event queue waiting for
that range is activated.

Possible Errors

EOS_EVNTID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 185

F_EVENT, EV_SETR
Set Relative Event Variable and Signal Event Occurrence

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evsetr_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

u_int32 actv_flag;

} f_evsetr_pb, *F_evsetr_pb;

Description

EV_SETR signals an event has occurred. The current event value is incremented by
value, rather than by the signal auto-increment. Next, the event queue is searched
for the first process waiting for that event value. Arithmetic underflows or
overflows are set to 0x80000000 (minimum integer) or 0x7fffffff (maximum
integer), respectively.

EV_SETR with the actv_flag set executes as follows for each process in the queue
until the queue is exhausted:

1. The first process in range is awakened.

2. The event value is updated with the wait auto-increment.

3. The search is continued with the updated value.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_SETOR event function code.

ev_id

Identify the event.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 186

value

The event value prior to the logical operation.

actv_flag

Specify which processes to activate.

• If actv_flag is one, all processes in range are activated.

• If actv_flag is not set, only the first process in the event queue waiting for
that range is activated.

Possible Errors

EOS_EVNTID

See Also

F_EVENT, EV_SET

F_EVENT, EV_SIGNL

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 187

F_EVENT, EV_SETXOR
Set Event Variable and Signal Event Occurrence

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evsetxor_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

u_int32 mask,

actv_flag;

} f_evsetxor_pb, *F_evsetxor_pb;

Description

EV_SETXOR signals an event has occurred. The current event value is EXCLUSIVE-
ORed with mask rather than updated with the signal auto-increment. Next, the
event queue is searched for the first process waiting for that event value.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_SETOR event function code.

ev_id

Identify the event.

value

The event value prior to the logical operation.

mask

The event mask. It indicates which bits are significant to the caller.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 188

actv_flag

Specify which processes to activate.

• If actv_flag is one, all processes in range are activated.

• If actv_flag is not set, only the first process in the event queue waiting for
that range is activated.

Possible Errors

EOS_EVNTID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 189

F_EVENT, EV_SIGNL
Signal Event Occurrence

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evsignl_pb {
syscb cb;

u_int16 ev_code;

event_id ev_id;

u_int32 actv_flag;

} f_evsignl_pb, *F_evsignl_pb;

Description

EV_SIGNL signals an event has occurred. The current event variable is updated with
the signal auto-increment specified when the event was created. Next, the event
queue is searched for the first process waiting for that event value.

EV_SIGNL with the actv_flag set, executes as follows for each process in the queue
until the queue is exhausted:

1. The signal auto-increment is added to the event variable.

2. The first process in range is awakened.

3. The event value is updated with the wait auto-increment.

4. The search is continued with the updated value.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_SETOR event function code.

ev_id

Identify the event.

value

The event value prior to the logical operation.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 190

actv_flag

Specify which processes to activate.

• If actv_flag is one, all processes in range are activated.

• If actv_flag is not set, only the first process in the event queue waiting for
that range is activated.

Possible Errors

EOS_EVNTID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 191

F_EVENT, EV_SIGNL | F_USEMA
Release Ownership of a Usemaphore

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evsignl_pb {
syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

u_int32 actv_flag;

} f_evsignl_pb, *F_evsignl_pb;

Description

EV_SIGNL | F_USEMA releases the the ownership of a usemaphore.The current
usemaphore variable is updated with the signal auto-increment (plus 1), thus
releasing ownership. Next, the usemaphore queue is searched for the first process
waiting for the usemaphore.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_SIGNL | F_USEMA function code.

ev_id

Identify the semaphore.

value

The usemaphore value prior to the release operation. Will always be 1.

actv_flag

Specify which processes to activate. Must be 0.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 192

Possible Errors

EOS_EVNTID

EOS_PARAM

See Also

F_EVENT, EV_WAIT | F_USEMA

F_EVENT, EV_TRYWAIT | F_USEMA

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 193

F_EVENT, EV_TRYWAIT
Check for Event Without Blocking

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evwait_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

signal_code signal;

u_int32 min_val,

max_val;

} f_evwait_pb, *F_evwait_pb;

Description

EV_TRYWAIT checks if the current event value is in the range between the minimum
and maximum activation values. If it is in range, the wait auto-increment (specified
at creation) is added to the event variable and SUCCESS is returned. If the value is
not in range, EAGAIN is returned.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_TRYWAIT event function code.

ev_id

Identify the event.

value

A returned value. It is the event value at the time of the call.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 194

signal

A returned value. The value of signal is undefined for EV_TRYWAIT since it
does not block.

min_val

The minimum activation value.

max_val

The maximum activation value. The event value is added to min_val and
max_val, and the actual absolute values are returned to the caller. If an
underflow or overflow occurs on the addition, the values 0x80000000
(minimum integer) or 0x7fffffff (maximum integer) are used, respectively.

Possible Errors

EOS_EVNTID

EOS_EVPARM

EAGAIN

See Also

F_EVENT, EV_SIGNL

F_EVENT, EV_WAIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 195

F_EVENT, EV_TRYWAIT | F_USEMA
Acquire Ownership of a Usemaphore Without Blocking

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evwait_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

signal_code signal;

u_int32 min_val,

max_val;

} f_evwait_pb, *F_evwait_pb;

Description

EV_TRYWAIT | F_USEMA claims ownership of the specified usemaphore if it is
currently unowned. If it is unowned, the wait auto-increment (minus 1) is then
applied to the usemaphore value. If it is currently owned, EAGAIN is returned.

If the usemaphore needs to be reset EOS_USRST will be returned.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_TRYWAIT | F_USEMA function code.

ev_id

Identify the usemaphore.

value

A returned value. It is the actual usemaphore value prior to the application of
the wait increment.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 196

signal

A returned value. Since EV_TRYWAIT | F_USEMA is a non-blocking operation,
the value of the signal field is undefined.

min_val

The minimum activation value. This must be 1.

max_val

The maximum activation value. This must be 1.

Possible Errors

EOS_EVNTID

EOS_USRST

EOS_PARAM

See Also

F_EVENT, EV_SIGNL | F_USEMA

F_EVENT, EV_WAIT | F_USEMA

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 197

F_EVENT, EV_TSTSET
Wait for Event to Occur

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evtstset_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

signal_code signal;

u_int32 mask;

} f_evtstset_pb, *F_evtstset_pb;

Description

EV_TSTSET waits for an event to occur. The event variable is ANDed with the value
in mask. If the result is not zero, the calling process is suspended in a FIFO event
queue until an EV_SIGNL occurs clearing all of the bits corresponding to the set bits
in the mask. Next, the bits corresponding to the set bits in the mask are set.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_SETOR event function code.

ev_id

Identify the event.

value

The event value prior to the logical operation.

mask

The event mask. It indicates which bits are significant to the caller.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 198

actv_flag

Specify which processes to activate.

• If actv_flag is one, all processes in range are activated.

• If actv_flag is not set, only the first process in the event queue waiting for
that range is activated.

Possible Errors

EOS_EVNTID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 199

F_EVENT, EV_UNLNK
Unlink Event

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evunlnk_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

} f_evunlnk_pb, *F_evunlnk_pb;

Description

EV_UNLNK informs the system a process is no longer using the event. This decrements
the event use count and allows the event to be deleted with the EV_DELET event
function when the count reaches zero.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_UNLINK event function code.

ev_id

Specify the event.

Possible Errors

EOS_EVNTID

See Also

F_EVENT, EV_DELET

F_EVENT, EV_LINK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 200

F_EVENT, EV_UNLNK | F_USEMA
Unlink Usemaphore

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evunlnk_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

} f_evunlnk_pb, *F_evunlnk_pb;

Description

EV_UNLNK | F_USEMA informs the system a process is no longer using the
usemaphore. This decrements the usemaphore use count and allows the
usemaphore to be deleted with the EV_DELET | F_USEMA function when the count
reaches zero.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_UNLINK | F_USEMA function code.

ev_id

Specify the usemaphore.

Possible Errors

EOS_EVNTID

See Also

F_EVENT, EV_DELET | F_USEMA

F_EVENT, EV_LINK | F_USEMA

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 201

F_EVENT, EV_WAIT
Wait for Event to Occur

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evwait_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

signal_code signal;

u_int32 min_val,

max_val;

} f_evwait_pb, *F_evwait_pb;

Description

EV_WAIT waits until an event call places the value in the range between the minimum
and maximum activation values. Next, the wait auto-increment (specified at
creation) is added to the event variable.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_WAIT event function code.

ev_id

Identify the event.

value

A returned value. It is the actual event value prior to the set operation that
activates the suspended process.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 202

signal

A returned value. It is the signal code, if it is activated by a signal. If a process
in the event queue receives a signal, it is activated even though the event has
not actually occurred. The auto-increment is not added to the event variable,
and an EOS_SIGNAL error is returned. Also, the event value is returned, even
though it is not in range, and the caller’s intercept routine is executed.

min_val

The minimum activation value.

max_val

The maximum activation value. The event value is added to min_val and
max_val, and the actual absolute values are returned to the caller. If an
underflow or overflow occurs on the addition, the values 0x80000000
(minimum integer) and 0x7fffffff (maximum integer) are used, respectively.

Possible Errors

EOS_EVNTID

See Also

F_EVENT, EV_SIGNL

F_EVENT, EV_WAIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 203

F_EVENT, EV_WAIT | F_USEMA
Acquire Ownership of a Usemaphore

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evwait_pb {

syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

signal_code signal;

u_int32 min_val,

max_val;

} f_evwait_pb, *F_evwait_pb;

Description

EV_WAIT | F_USEMA waits until a usemaphore is unowned and then claims
ownership. Then, the wait auto-increment (minus 1) is applied to the usemaphore
value.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_WAIT | F_USEMA function code.

ev_id

Identify the usemaphore.

value

A returned value. It is the actual usemaphore value prior to the application of
the wait increment.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 204

signal

A returned value. It is the signal code, if it is activated by a signal. If a process
in the usemaphore queue receives a signal, it is activated even though
ownership has not actually been granted. The auto-increment is not added to
the usemaphore variable, and an EOS_SIGNAL error is returned. Also, the
event value is returned, even though it is not in range, and the process’ signal
handling code is executed.

min_val

The minimum activation value. This must be 1.

max_val

The maximum activation value. This must be 1.

Possible Errors

EOS_EVNTID

EOS_USRST

See Also

F_EVENT, EV_SIGNL | F_USEMA

F_EVENT, EV_TRYWAIT | F_USEMA

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 205

F_EVENT, EV_WAITR
Wait for Relative Event to Occur

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evwaitr_pb {
syscb cb;

u_int16 ev_code;

event_id ev_id;

int32 value;

signal_code signal;

u_int32 min_val,

max_val;

} f_evwaitr_pb, *F_evwaitr_pb;

Description

EV_WAITR waits until an event call places the value in the range between the
minimum and maximum activation values, where min_val and max_val are relative
to the current event value. Next, the wait auto-increment (specified at creation) is
added to the event variable.

The event value is added to min_val and max_val, and the actual absolute values are
returned to the caller. If an underflow or overflow occurs on the addition, the values
0x80000000 (minimum integer) and 0x7fffffff (maximum integer) are used,
respectively.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

ev_code

The EV_WAIT event function code.

ev_id

Identify the event.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 206

value

A returned value. It is the actual event value prior to the set operation that
activates the suspended process.

signal

A returned value. It is the signal code, if it is activated by a signal. If a process
in the event queue receives a signal, it is activated even though the event has
not actually occurred. The auto-increment is not added to the event variable,
and an EOS_SIGNAL error is returned. Also, the event value is returned, even
though it is not in range, and the caller’s intercept routine is executed.

min_val

The minimum activation value.

max_val

The maximum activation value. The event value is added to min_val and
max_val, and the actual absolute values are returned to the caller. If an
underflow or overflow occurs on the addition, the values 0x80000000
(minimum integer) and 0x7fffffff (maximum integer) are used, respectively.

Possible Errors

EOS_EVNTID

See Also

F_EVENT, EV_SIGNL

F_EVENT, EV_WAIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 207

F_EXIT
Terminate Calling Process

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_exit_pb {

syscb cb;

status_code status;

} f_exit_pb, *F_exit_pb

Description

F_EXIT allows a process to terminate itself. Its data memory area is deallocated and
its primary module is unlinked. All open paths are automatically closed.

The parent can detect the death of a child process by executing F_WAIT. This returns
(to the parent) the exit status passed by the child in its exit call. The shell assumes
the exit status is an OS-9 error code. The exit status can also be a user-defined
status value.

Processes to be called directly by the shell should only return an OS-9 error code or
zero (if no error occurred).

The parent must perform an F_WAIT or an F_EXIT before the child process descriptor
is returned to free memory.

F_EXIT executes as follows:

1. Close all paths.

2. Return the memory to the system.

3. Unlink the primary module, subroutine libraries, and trap handlers.

4. Free the process descriptor of any dead child processes.

5. Free the process descriptor if the parent is dead.

6. Leave the process in limbo until the parent notices the death if the parent has
not executed F_WAIT.

7. If the parent is waiting, move it to the active queue and informs it of
death/status.

8. Remove the child from the sibling list and free its process descriptor memory.

Only primary modules, subroutine libraries, and trap handlers are unlinked. Other
modules loaded or linked by the process should be unlinked before calling F_EXIT.

Although F_EXIT closes any open paths, it ignores errors returned by I_CLOSE. Due
to I/O buffering, write errors can go unnoticed when paths are left open. However,
by convention, the standard I/O paths (0, 1, and 2) are usually left open.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 208

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

status

The status code returned to the parent process.

See Also

F_APROC

F_FORK

F_SRTMEM

F_UNLINK

F_WAIT

I_CLOSE

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 209

F_FINDPD
Find Process Descriptor

Headers

#include <process.h>

Parameter Block Structure

typedef struct f_findpd_pb {

syscb cb;

process_id proc_id;

Pr_desc proc_desc;

} f_findpd_pb, *F_findpd_pb;

Description

F_FINDPD converts a process number to the absolute address of its process descriptor
data structure.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

proc_id

Specify the process ID.

proc_desc

A returned value. It is the pointer to the process descriptor.

Possible Errors

EOS_IPRCID

See Also

F_ALLPRC

F_RETPD

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 210

F_FMOD
Find Module Directory Entry

Headers

#include <moddir.h>

Parameter Block Structure

typedef struct f_findmod_pb {

syscb cb;

u_int16 type_lang;

Mod_dir moddir_entry;

u_char *mod_name;

} f_findmod_pb, *F_findmod_pb;

Description

F_FMOD searches the module directory for a module whose name, type, and language
match the parameters. If found, a pointer to the module directory entry is returned
in moddir_entry.

Attributes

Operating System: OS-9

State: System and Interrupt

Threads: Safe

Parameters

cb

The control block header.

type_lang

Specify the type and language of the module.

moddir_entry

A returned value. It is the pointer to the module directory entry.

mod_name

Point to the module name.

Possible Errors

EOS_BNAM

EOS_MNF

See Also

F_LINK

F_LOAD

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 211

F_FORK
Create New Process

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_fork_pb {

syscb cb;

u_int16 priority,

path_cnt;

process_id proc_id;

u_char *mod_name,

*params;

u_int32 mem_size,

param_size;

u_int16 type_lang;

u_int16 orphan;

} f_fork_pb, *F_fork_pb;

Description

F_FORK creates a new process that becomes a child of the caller. It sets up the new
process’ memory, MPU registers, and standard I/O paths.

The system parses the name string of the new process’ primary module (the
program that is initially executed). If the program is found in the current or
alternate module directory, the module is linked and executed. If the program is not
found, the name string is used as the pathlist of the file to be loaded into memory.
The first module in this file is linked and executed. The module must be program
object code with the appropriate read and/or execute permissions to be loaded
successfully.

The primary module’s header determines the process’ initial data area size. OS-9
attempts to allocate RAM equal to the required data storage size, the size of any
parameters passed, and the size specified by mem_size. The RAM area must be
contiguous.

The execution offset in the module header is used to set the PC to the module’s entry
point.

When the shell processes a command line, it passes a copy of the command line
parameters (if any) as a parameter string. The shell appends an end-of-line character
to the parameter string to simplify string-oriented processing.

If one or more of these operations is unsuccessful, the fork is aborted and the caller
receives an error.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 212

F_FORK passes the following structure (defined in <fork.h>) as a parameter to the
newly-created process:

typedef struct {

 process_id proc_id; /* process ID */

 owner_id owner; /* group/user ID */

 priority_level priority; /* priority */

 u_int16 path_count; /* number of I/O paths inherited */

 u_int32 param_size, /* size of parameters */

 mem_size; /* total initial memory allocated */

 u_char *params, /* parameter pointer */

 mem_end; / top of memory pointer */

 Mh_exec mod_head; /* primary (forked) module ptr*/

} fork_params, *Fork_params;

The child and parent processes execute concurrently. If the parent executes F_WAIT
immediately after the fork, it waits until the child dies before it resumes execution.
A child process descriptor is returned to free memory only when the parent
performs an F_WAIT or an F_EXIT service request.

Modules owned by a super user can execute in system state if the system-state bit in
the module’s attributes is set. This should only be done when necessary because this
process is not time sliced and system protection is not enabled for this process.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

priority

Specify the priority of the new process. If priority is zero, the new process
inherits the same priority as the calling process.

path_cnt

Specify the number of I/O paths for the child to inherit.

proc_id

A returned value. It is the child process ID.

mod_name

Point to the module name.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 213

params

Point to the parameter string to pass to the new process.

mem_size

Specify any additional stack space to allocate above the default specified in the
primary module’s module header.

param_size

Specify the size of the parameter string.

type_lang

Specify the desired type and language. If type_lang is zero, any module,
regardless of type and language, may be loaded.

orphan

If the orphan flag is non-zero, the new process executes without a parent. If
orphan is zero, the new process is the child of the calling process.

Possible Errors

EOS_NORAM

EOS_PERMIT

EOS_PNNF

See Also

F_CHAIN

F_EXIT

F_WAIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 214

F_FORKM
Create New Process by Module Pointer

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_forkm_pb {

syscb cb;

u_int16 priority,

path_cnt;

process_id proc_id;

Mh_com mod_head;

u_char *params;

u_int32 mem_size,

param_size;

u_int16 orphan;

} f_forkm_pb, *F_forkm_pb;

Description

F_FORKM creates a new process that becomes a child of the caller. It sets up the new
process’ memory, MPU registers, and standard I/O paths. The new process is forked
by a module pointer. F_FORKM assumes the module pointer is the primary module
pointer for the new process.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

priority

Specify the priority of the new process. If priority is zero, the new process
inherits the same priority as the calling process.

path_cnt

Specify the number of I/O paths for the child to inherit.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 215

proc_id

A returned value. It is the child process ID.

mod_head

Point to the module header of the module to fork.

params

Point to the parameter string to pass to the new process.

mem_size

Specify any additional stack space to allocate above the default specified in the
primary module’s module header.

param_size

Specify the size of the parameter string.

orphan

If the orphan flag is non-zero, the new process executes without a parent. If
orphan is zero, the new process is the child of the calling process.

Possible Errors

EOS_MNF

EOS_NORAM

EOS_PERMIT

See Also

F_FORK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 216

F_GBLKMP
Get Free Memory Block Map

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_gblkmp_pb {

syscb cb;

Mem_list start;

u_char *buffer;

u_int32 size,

min_alloc,

num_segs,

tot_mem,

free_mem;

} f_gblkmp_pb, *F_gblkmp_pb;

Description

F_GBLKMP copies the address and size of the system’s free RAM blocks into your
buffer for inspection. It also returns information concerning the free RAM as noted
by the parameters.

A series of structures showing the address and size of free RAM blocks is returned
in your buffer in the following format:

typedef struct {

 u_char *address; /* pointer to block */

 u_int32 size; /* size of block */

};

Although F_GBLKMP returns the address and size of the system’s free memory blocks,
you cannot directly access these blocks. Use F_SRQMEM to request free memory
blocks.

The address and size of free RAM changes with system use. mfree and similar
utilities use F_GBLKMP to determine the status of free system memory.

The OS suffixes the array of info structures, to which buffer points, with a sentinel
as follows:

info.address NULL

info.size 0

The OS adds this sentinel only if at least one unused info structure occupies the
buffer after processing.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 217

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

start

The address to begin reporting the segments.

buffer

Point to the buffer to use.

size

Specify the buffer size in bytes. It is also an output containing the number of
unused info structures in the buffer.

When size is 0, the service does not validate or use buffer. It also updates the
following parameters on every call.

min_alloc

A returned value. It is the minimum memory allocation size for the system.

num_segs

A returned value. It is the number of memory fragments in the system.

tot_mem

A returned value. It is the total RAM found by the system at startup.

free_mem

A returned value. It is the current total free RAM available.

See Also

F_SRQMEM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 218

F_GETMDP
Get Current and Alternate Module Directory Pathlists

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_get_mdp_pb {

syscb cb;

u_char *current,

*alternate;

} f_get_mdp_pb, *F_get_mdp_pb;

Description

F_GETMDP returns pathlists to the current module directory and the alternate module
directory.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

current

Point to the buffer for returning the pathlist of the current module directory.

alternate

Point to the buffer for returning the pathlist of the alternate module directory.

See Also

F_ALTMDIR

F_CHMDIR

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 219

F_GETSYS
Examine System Global Variable

Headers

#include <types.h>

#include <sysglob.h>

Parameter Block Structure

typedef struct f_getsys_pb {

syscb cb;

u_int32 offset,

size;

union {

u_char byt;

u_int16 wrd;

u_int32 lng;

} sysvar;

} f_getsys_pb, *F_getsys_pb;

Description

F_GETSYS enables a process to examine a system global variable. Consult the
sysglob.h header file for a description of the system global variables.

The format and contents of the system global variables may change in future
releases of OS-9.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

offset

The variable’s offset in the system globals.

size

Specify the size of the variable.

sysvar

A union of the three sizes of variables accessible by F_GETSYS.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 220

byt

A byte size variable.

wrd

A word size variable.

lng

A long size variable.

See Also

F_SETSYS

the DEFS files section of the OS-9 Porting Guide

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 221

F_GMODDR
Get Copy of Module Directory

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_get_moddir_pb {

syscb cb;

u_char *buffer;

u_iont32 count;

} f_get_moddir_pb, *F_get_moddir_pb;

Description

F_GMODDR copies the process’ current module directory into your buffer for
inspection.

F_GMODDR is provided primarily for use by mdir and similar utilities. The format and
contents of the module directory may change on different releases of OS-9.
Therefore, you should use the output of mdir to determine the names of modules in
memory.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

buffer

Point to the buffer.

count

The maximum number of bytes to copy, and upon return from F_GMODDR it is
the number of bytes actually copied.

Although the module directory contains pointers to each module in the system,
never access the modules directly. Instead, use F_CPYMEM to copy portions of the
system’s address space for inspection.

See Also

F_CPYMEM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 222

F_GPRDBT
Get Copy of Process Descriptor Block Table

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_get_prtbl_pb {

syscb cb;

u_char *buffer;

u_int32 count;

} f_get_prtbl_pb, *F_get_prtbl_pb;

Description

F_GPRDBT copies the process descriptor block table into your buffer for inspection.
The procs utility uses F_GPRDBT to determine which processes are active in the
system.

Attributes

Operating System: OS-9

State: User and Interrupt

Threads: Safe

Parameters

cb

The control block header.

buffer

Point to the buffer.

count

The maximum number of bytes to copy and upon return from F_GPRDBT it is
the number of bytes actually copied.

Although F_GPRDBT returns pointers to all process descriptors, never access the
process descriptors directly. Instead, use F_GPRDSC to inspect specific process
descriptors.

See Also

F_GPRDSC

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 223

F_GPRDSC
Get Process Descriptor Copy

Headers

#include <process.h>

#include <types.h>

Parameter Block Structure

typedef struct f_gprdsc_pb {

 syscb cb;

 process_id proc_id;

 u_char *buffer;

 u_int32 count;

 u_int32 type;

} f_gprdsc_pb, *F_gprdsc_pb;

Description

F_GPRDSC copies the contents of a process descriptor into the specified buffer for
inspection. The procs utility uses F_GPRDSC to obtain information about an existing
process.

Attributes

Operating System: OS-9
State: User
Threads: Safe

Parameters

cb

The control block header.

procid

The requested process ID.

buffer

Point to the buffer.

count

The maximum number of bytes to copy, and upon return from F_GPRDSC, it is
the number of bytes actually copied.

type

The type of descritpor to get. The valid values for type are _OS_GET_PRDESC or
_OS_GET_PRSRC. _OS_GET_PRDESC returns the specified state descriptor and
_OS_GET_PRSRC returns the specified resource descriptor.

Possible Errors

EOS_IPRCID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 224

F_ICPT
Set Up Signal Intercept Trap

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_intercept_pb {

syscb cb;

u_int32 (*function)();

void *data_ptr;

} f_intercept_pb, *F_intercept_pb;

Description

F_ICPT tells OS-9 to install a signal intercept routine.

When a process executing an F_ICPT call receives a signal, the process’ intercept
routine is executed, and the signal code is passed as a parameter. A signal aborts a
process that has not used F_ICPT. Many interactive programs set up an intercept
routine to handle keyboard abort and keyboard interrupt signals.

The intercept routine is entered asynchronously because a signal can be sent at any
time, similar to an interrupt. The signal code is passed as a parameter. The intercept
routine should be short and fast, such as setting a flag in the process’ data area. You
should avoid complicated system calls (such as I/O). After the intercept routine has
been completed, it may return to normal process execution by executing F_RTE.

Each time the intercept routine is called, the state of the processor (such as its
registers) is pushed on to the user’s system stack.

Attributes

Operating System: OS-9

State: User and Interrupt

Threads: Safe

Parameters

cb

The control block header.

function

Point to the intercept routine.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 225

data_ptr

Point to the intercept routine’s global storage. It usually contains the address
of the program’s data area. The syntax for the signal handler is as follows:

void usr_sighand(sig_code, sig_count)

signal_code sig_code; /* signal received */

u_int32 sig_count; /* number of signals pending */

See Also

F_RTE

F_SEND

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 226

F_ID
Get Process ID and User ID

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_id_pb {

syscb cb;

process_id proc_id;

u_int16 priority,

age;

int32 schedule;

owner_id user_id;

} f_id_pb, *F_id_pb;

Description

F_ID returns the caller’s process ID number, current process priority and age,
scheduling constant, and owner ID. OS-9 assigns the process ID, and each process
has a unique process ID. The owner ID is defined in the system password file and is
used for system and file security. Several processes can have the same owner ID.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

proc_id

A returned value. It is the current process ID number.

priority

A returned value. It is the priority of the current process.

age

A returned value. It is the age of the current process.

schedule

A returned value. It is the scheduling constant of the current process.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 227

group

A returned value. It is the group number of the current process.

user

A returned value. It is the user number of the current process.

Possible Errors

EOS_BPADDR

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 228

F_INITDATA
Initialize Static Storage from Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_init_data_pb {

syscb cb;

Mh_com mod_head;

u_char *data;

} f_init_data_pb, *F_init_data_pb;

Description

F_INITDATA clears the uninitialized data area, copies the module header’s initialized
data to the specified data area, and clears the remote data area (if it exists). Next, it
adjusts the code and data offsets.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

mod_head

Point to the module header.

data

Point to the data area.

Possible Errors

EOS_BMHP

EOS_BMID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 229

F_IRQ
Add or Remove Device from IRQ Table

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_irq_pb {

syscb cb;

u_int16 vector,

priority;

void *irq_entry;

u_char *statics;

} f_irq_pb, *F_irq_pb;

Description

F_IRQ installs an IRQ service routine into the system polling table.

OS-9 does not poll the I/O port prior to calling the interrupt service routine. Device
drivers are required to determine if their device caused an interrupt.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

vector

Specify the vector number of the associated interrupt.

priority

Specify the priority. (65535 is reserved.) IRQ service routines for the same
vector are placed into a polling table for the vector according to their relative
priorities:

• If priority is 0, only this device can use the vector.

• If priority is 1, it is polled first and no other device can have a priority of
one on the vector.

• If priority is 65534, it is polled last on the vector.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 230

irq_entry

Point to the IRQ service routine entry point. If irq_entry is zero, the call
deletes the IRQ service routine.

statics

Point to the global static storage. statics must be unique to the device.

Possible Errors

EOS_VCTBSY signifies that the vector is busy or in use.

EOS_PARAM is returned if an attempt is made to delete an IRQ routine that
is not installed for that interrupt.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 231

F_LINK
Link to Memory Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_link_pb {

syscb cb;

u_char *mod_name;

Mh_com mod_head;

void *mod_exec;

u_int16 type_lang,

attr_rev;

} f_link_pb, *F_link_pb;

Description

F_LINK searches the current and alternate module directories for a module whose
name, type, and language match the parameters.

The module’s link count keeps track of how many processes are using the module. If
the requested module is not re-entrant, only one process may link to it at a time.

If the module’s access word does not give the process read permission, the link call
fails. F_LINK cannot find a module whose header has been destroyed (altered or
corrupted).

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

mod_name

Point to the module name. If mod_name is an explicit module directory pathlist
(for example, /usr/tony/prog), the mod_name pointer is updated to point to
the module that was successfully linked (for example, prog).

mod_head

A returned value. It is the address of the module’s header.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 232

mod_exec

A returned value. It is the pointer to the absolute address of the module’s
execution entry point. The module header includes this information.

type_lang

A returned value. It is the type and language of the module.

attr_rev

A returned value. It points to the attribute and revision level of the module.

Possible Errors

EOS_BNAM

EOS_MNF

EOS_MODBSY

See Also

F_LINKM

F_LOAD

F_UNLINK

F_UNLOAD

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 233

F_LINKM
Link to Memory Module by Module Pointer

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_linkm_pb {

syscb cb;

Mh_com mod_head;

void *mod_exec;

u_int16 type_lang,

attr_rev;

} f_linkm_pb, *F_linkm_pb;

Description

F_LINKM causes OS-9 to link to the module specified by mod_head.

The module’s link count keeps track of how many processes are using the module. If
the requested module is not re-entrant, only one process can link to it at a time.

If the module’s access word does not give the process read permission, the link call
fails. Link cannot find a module whose header has been destroyed (altered or
corrupted).

Attributes

Operating System: OS-9
State: User and System
Threads: Safe

Parameters

cb

The control block header.

mod_head

Point to the module.

mod_exec

A returned value. It points to the pointer to the absolute address of the
module’s execution entry point.

type_lang

The type and language of the module. If type_lang is zero, any module can be
linked to regardless of the type and language. Upon completion, type_lang is
updated with the type/language value from the module’s module header.

attr_rev

A returned value. It is the attribute and revision level of the module.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 234

Possible Errors

EOS_BNAM

EOS_MNF

EOS_MODBSY

See Also

F_LINK

F_LOAD

F_UNLINK

F_UNLOAD

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 235

F_LOAD
Load Module(s) from File

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_load_pb {

syscb cb;

u_char *mod_name;

Mh_com mod_head;

void *mod_exec;

u_int32 mode;

u_int16 type_lang,

attr_rev,

color;

} f_load_pb, *F_load_pb;

Description

F_LOAD loads an OS-9 memory module from a disk file or a serial device (SCF) into
the current module directory. When loading from a disk file as specified by
mod_name pathlist, the target file is opened and one or more memory modules are
read from the file into memory until an error or end of file is reached. When loading
from a serial device (SCF), the Kernel attempts to load only one memory module by
first reading the header of the module and then the body of the module. In either
case, the path to the disk file or serial device is closed after the loading operation.

An error can indicate an actual I/O error, a module with a bad parity or CRC, or
insufficient memory of the desired type.

When a module is loaded, its name is added to the calling process’ current module
directory, and the first module read is linked. The parameters returned are the same
as those returned by a link call and apply only to the first module loaded.

To be loaded, the file must contain a module (or modules) with a proper module
header and CRC. If the file’s access mode is S_IEXEC, the file is loaded from the
current execution directory. If the file’s access mode is S_IREAD, the file is loaded
from the current data directory.

If any of the modules loaded belong to the super user, the file must also belong to
the super user. This prevents normal users from executing privileged service
requests.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 236

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

mod_name

Point to the module name (pathlist or serial device name).

mod_head

A returned value. It is the pointer to the module.

mod_exec

A returned value. It is the pointer to the module execution entry point.

mode

Specify the access mode. The access modes are defined in the module.h header
file.

type_lang

A returned value. It is the type and language of the first module loaded.

attr_rev

A returned value. It is the attribute and revision level of the module.

color

Specify the type of memory in which to load the modules. Modules are loaded
into the highest physical memory available of the specified type.

Possible Errors

EOS_MEMFUL

EOS_BMID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 237

F_MKMDIR
Create New Module Directory

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_makmdir_pb {

syscb cb;

u_char *name;

u_int16 perm;

} f_makmdir_pb, *F_makmdir_pb;

Description

F_MKMDIR creates a new module directory. The name of the new module directory is
relative to the current module directory.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

name

Point to the name of the new module directory.

perm

Specify the access permissions for the new module directory.

Possible Errors

EOS_KWNMOD

EOS_NORAM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 238

F_MEM
Resize Data Memory Area

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_mem_pb {

syscb cb;

u_char *mem_ptr;

u_int32 size;

} f_mem_pb, *F_mem_pb;

Description

F_MEM contracts or expands the process’ data memory area. The size requested is
rounded up to an even memory allocation block. Additional memory is allocated
contiguously upward (towards higher addresses), or deallocated downward from
the old highest address.

This request cannot return all of a process’ memory or deallocate the memory at its
current stack pointer.

If there is adequate free memory for an expansion request, but the memory is not
contiguous, F_MEM returns an error. Memory requests by other processes may have
fragmented memory resulting in small, scattered blocks that are not adjacent to the
caller’s present data area.

Attributes

Operating System: OS-9
State: User and System
Threads: Safe

Parameters

cb

The control block header.

mem_ptr

A returned value. It is the new end of data segment plus 1.

size

The memory size in bytes. The actual size of the memory is returned in size. If
size is zero, F_MEM treats the call as a request for information and returns the
current upper bound in mem_ptr and the amount of free memory in size.

Possible Errors

EOS_DELSP

EOS_MEMFUL

EOS_NORAM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 239

F_MODADDR
Find Module Given Pointer

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_modaddr_pb {

syscb cb;

u_char *mem_ptr;

Mh_com mod_head;

} f_modaddr_pb, *F_modaddr_pb;

Description

F_MODADDR locates a module given a pointer to any position with the module and
returns a pointer to the module’s header.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

mem_ptr

Point to any position within the module.

mod_head

A returned value. It is the pointer to the associated module header.

Possible Errors

EOS_MNF

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 240

F_MOVE
Move Data (Low Bound First)

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_move_pb {
syscb cb;

u_char *from,

*to;

u_int32 count;

} f_move_pb, *F_move_pb;

Description

F_MOVE is a fast block-move subroutine that copies data bytes from one address
space to another, usually from system to user or vice versa. The data movement
subroutine is optimized to use long moves if possible. If source and destination
buffers overlap, appropriate moves (left to right or right to left) are used to avoid
data loss due to incorrect propagation.

Attributes

Operating System: OS-9

State: System and Interrupt

Threads: Safe

Parameters

cb The control block header.

from Point to the source data.

to Point to the destination data.

count The byte count to copy.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 241

F_NPROC
Start Next Process

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_nproc_pb {

syscb cb;

} f_nproc_pb, *F_nproc_pb;

Description

F_NPROC removes the next process from the active process queue and initiates its
execution. If there is no process in the queue, OS-9 waits for an interrupt and
checks the active process queue again.

F_NPROC does not return to the caller.

The process calling F_NPROC should already be in one of the system’s process queues.
If not, the process becomes unknown to the system. This occurs even though the
process descriptor still exists and is printed out by a procs command.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

See Also

F_APROC

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 242

F_PERMIT
Allow Access to Memory Block

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_permit_pb {

syscb cb;

process_id pid;

u_int32 size;

u_char *mem_ptr;

u_int16 perm;

} f_permit_pb, *F_permit_pb;

Description

F_PERMIT is called when a process allocates memory or links to a module to allow
the process to access a block of memory.

F_PERMIT must update SSM (System Security Module) data structures to show a
process may access the specified memory in the requested mode. F_PERMIT must also
increment the number of links to this memory area in a corresponding block count
map to keep track of the number of times the same block(s) has been granted access.

A long word (p_spuimg) is reserved in each process descriptor for use by the SSM
code. The SSM may allocate data structures for each process and keep a pointer to
these structures in p_spuimg.

• The calling process cannot use this service to permit write-only memory or to
permit nothing (set no permissions). This service must be used to permit at least
read-only access.

• The only user-state processes that may permit memory are those in group zero
(super user). All othes must be system-state processes.

• On systems without SSM, the result of any F_PERMIT call is success, regardless of
the process state since all processes have full access rights to the entire memory
space. When SSM is not active, the operating system does not validate any of
the arguments for this call.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 243

Parameters

cb

The control block header.

pid

The target process’ process identifier.

size

The size of the memory area.

mem_ptr

Point to the beginning of the memory area to grant access permissions.

perm

Specify the permissions to add.

Possible Errors

EOS_BPADDR

EOS_DAMAGE

EOS_IPRCID

EOS_NORAM

EOS_PARAM

EOS_PERMIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 244

F_PROTECT
Prevent Access to Memory Block

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_protect_pb {

syscb cb;

process_id pid;

u_int32 size;

u_char *mem_ptr;

u_int16 perm;

} f_protect_pb, *F_protect_pb;

Description

F_PROTECT is called when a process deallocates memory or unlinks a module to
remove a process’ permission to access a block of memory.

The counts in the block count map corresponding to the memory blocks being
protected must be decremented and if any block count becomes zero, the protection
image must be updated to prevent access to the corresponding memory by the
process.

Note the following:
• If F_PROTECT is called for a process being debugged, the protection maps of the

parent process must also be updated to remove access to the allocated memory.

• The only user-state processes that may protect memory are the ones in group
zero (super user). All other processes must be system-state processes.

• On systems without SSM, the result of any F_PROTECT call is success, regardless
of the process state since all processes have full access rights to the entire
memory space. When SSM is not active, the operating system does not validate
any of the arguments for this call.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 245

Parameters

cb

The control block header.

pid

Specify the process identifier for the target process.

size

The size of the memory area.

mem_ptr

Point to the beginning of the memory area to protect access permissions. size
specifies the size of memory.

perm

Specify the permissions to remove.

Possible Errors

EOS_BPADDR

EOS_IPRCID

EOS_NORAM

EOS_PERMIT

See Also

F_ALLTSK

F_PERMIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 246

F_PRSNAM
Parse Path Name

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_prsnam_pb {

syscb cb;

u_char *name;

u_int32 length;

u_char delimiter,

*updated;

} f_prsnam_pb, *F_prsnam_pb;

Description

F_PRSNAM parses a string for a valid pathlist element and returns its size. This call
parses one element in a pathname, not the entire pathname. A valid pathlist element
may contain the following characters:

A - Z Upper case letters

a - z Lower case letters

0 - 9 Numbers

. Periods

_ Underscores

$ Dollar signs

Other characters terminate the name and are returned as the pathlist delimiter.

Several F_PRSNAM calls are needed to process a pathlist with more than one name.
F_PRSNAM terminates a name when it detects a delimiter character. Usually, pathlists
must be terminated with a null byte.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 247

Parameters

cb

The control block header.

name

Point to the name string.

length

A returned value. It is the length of the pathlist element.

delimiter

A returned value. It is the pathlist delimiter.

updated

A returned value. It is a the pointer to the first character of name.

Possible Errors

EOS_BNAM

See Also

F_CMPNAM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 248

F_RELLK
Release Ownership of Resource Lock

Headers

#include <lock.h>

Parameter Block Structure

typedef struct f_rellk_pb {

syscb cb;

lock_id lid;

} f_rellk_pb, *F_rellk_pb;

Description

F_RELLK releases ownership of a resource lock and activates the next process waiting
to acquire the lock. The next process in the lock’s queue is activated and granted
exclusive ownership of the resource lock. If no other process is waiting on the lock,
the lock is simply marked free for acquisition.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

lid

The lock identifier of the lock to release.

Possible Errors

EOS_LOCKID

See Also

F_ACQLK

F_CAQLK

F_CRLK

F_DELLK

F_WAITLK

Refer to Chapter 6 for more information about resource locks.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 249

F_RETPD
Deallocate Process Descriptor

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_rtnprc_pb {

syscb cb;

process_id proc_id;

} f_rtnprc_pb, *F_rtnprc_pb;

Description

F_RETPD deallocates a process descriptor previously allocated by F_ALLPRC. You
must ensure the process’ system resources are returned prior to calling F_RETPD.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

proc_id

Identify the process descriptor.

Possible Errors

EOS_IPRCID

See Also

F_ALLPRC

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 250

F_RTE
Return from Interrupt Exception

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_rte_pb {

syscb cb;

u_int32 mode;

} f_rte_pb, *F_rte_pb;

Description

F_RTE terminates a process’ signal intercept routine and continues executing the
main program. However, if unprocessed signals are pending, the intercept routine is
re-executed until the queue of signals is exhausted before returning to the main
program.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

mode

Currently unused. Value must be 0 for future compatibility.

See Also

F_ICPT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 251

F_SEND
Send Signal to Another Process

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_send_pb {

syscb cb;

process_id proc_id;

signal_code signal;

} f_send_pb, *F_send_pb;

Description

F_SEND sends a signal to a specific process. A process may send the same signal to
multiple processes of the same group/user ID by passing 0 as the receiving process’
ID number. For example, the OS-9 shell command, kill 0, unconditionally aborts
all processes with the same group.user ID, except the shell itself. This is an effective
but dangerous tool to get rid of unwanted background tasks.

If an attempt is made to send a signal to a process with a signal pending, the signal
is placed in the process’ FIFO signal queue. If the process is in the signal intercept
routine when it receives a signal, the new signal is processed when F_RTE is executed
by the target process.

If the destination process for the signal is sleeping or waiting, it is activated to
process the signal. The signal processing intercept routine is executed, if it exists (see
F_ICPT). Otherwise, the signal aborts the destination process and the signal code
becomes the exit status (see F_WAIT).

The wake-up signal is an exception. It activates a sleeping process but does not
invoke the signal intercept routine. The wake-up signal does not abort a process
that has not made an F_ICPT call. Wake-up signals never queue and have no effect
on active processes in user state. User programs should avoid using the wake-up
signal since it is used by the system to activate sleeping processes. Signal codes are
defined as follows:

Table 6-4. Signal Codes

Code Value Description
S_WAKE 1 Wake up process
S_QUIT 2 Keyboard abort
S_INT 3 Keyboard interrupt
S_KILL 4 System abort (unconditional)
S_HANGUP 5 Hang-up

6-19 Reserved for future use by Microware (globally
definable)

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 252

The S_KILL signal may only be sent to processes with the same group ID as the
sender. Super users may kill any process.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

proc_id

The process ID number for the intended receiver. A proc_id of zero specifies
all processes with the same group/user ID.

signal

Specify the signal code to send.

Possible Errors

EOS_IPRCID

EOS_SIGNAL

EOS_USIGP

See Also

F_ICPT

F_RTE

F_SIGMASK

F_SLEEP

F_WAIT

20-25 Reserved for Microware for specific platforms
(locally definable)

26-31 User definable for specific platforms
32-127 Reserved for Microware (Ultra C)
128-191 Reserved for Microware for specific platforms

(locally definable)
192-255 Reserved for Microware (globally definable)
256- 4294967295 User definable

Table 6-4. Signal Codes (Continued)

Code Value Description

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 253

F_SETCRC
 Generate Valid CRC in Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_setcrc_pb {

syscb cb;

Mh_com mod_head;

} f_setcrc_pb, *F_setcrc_pb;

Description

F_SETCRC updates the header parity and CRC of a module in memory. The module
may be an existing module known to the system, or simply an image of a module
that is subsequently written to a file. The module must have the correct size and
sync bytes; other parts of the module are not checked.

The module image must start on a longword address or an exception may occur.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

mod_head

Point to the module.

Possible Errors

EOS_BMID

See Also

F_CRC

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 254

F_SETSYS
Set or Examine OS-9 System Global Variables

Headers

#include <sysglob.h>

Parameter Block Structure

typedef struct f_setsys_pb {
syscb cb;

u_int32 offset,

size;

union {

u_char byt;

u_int16 wrd;

u_int32 lng;

} sysvar;

} f_setsys_pb, *F_setsys_pb;

Description

F_SETSYS changes or examines a system global variable. These variables have a d_
prefix in the system header file library sysglob.h. Consult the DEFS files for a
description of the system global variables.

Only super users may change system variables. You can examine and change any
system variable, but typically, only d_minpty and d_maxage are changed. Consult
Chapter 1 for an explanation of these variables.

The system global variables are OS-9’s data area. They are highly likely to change
from one release to another. You may need to relink programs using this system call
to be able to run on future versions of OS-9.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Super users must be extremely careful when changing system global variables.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 255

Parameters

cb

The control block header.

offset

The offset to the system globals.

size

Specify the size of the target variable and which union variable is to be used to
set the target global variable.

sysvar

A union of the three sizes of variables accessible by F_SETSYS.

byt

The byte size variable.

wrd

The word size variable.

lng

The long size variable.

EXAMPLE

#include <stdio.h>

#include <sysglob.h>

main() {

 Sysglobs sg;

 glob_buff buffer;

 error_code err;

 buffer.wrd = 100;

 if ((err = _os_setsys(OFFSET(Sysglobs, d_minpty), sizeof(sg->d_minpty),
buffer)) != 0)

 printf("Failed to set the system minimum priority (d_minpty)\n");

 else

 printf("Set the system minimum priority (d_minpty) to %d\n",
buffer.wrd);

 exit(err);

}

Possible Errors

EOS_PARAM

EOS_PERMIT

See Also

F_GETSYS

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 256

F_SIGLNGJ
Set Signal Mask Value and Return on Specified Stack Image

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_siglngj_pb {

syscb cb;

void *usp;

u_int16 siglvl;

} f_siglngj_pb, *F_siglngj_pb;

Description

F_SIGLNGJ allows processes to perform longjump() operations from their signal
intercept routines and unmask signals in one operation.

This call is usually used by nested intercept routines to resume execution in the
process at a different location from where the process was interrupted by the
original signal. When this call is made, the operating system performs the following
functions:

• Validates and copies the target process stack image from the memory buffer
pointed to by the usp variable to the process’ system state stack

• Sets the process’ signal mask to the value specified in the siglvl variable

• Returns to the process restoring the context copied from the user state process
stack image

The operating system takes appropriate precautions to verify the memory location
pointed to by the usp variable is accessible to the process and to ensure the process
does not attempt to make a state change.

The stack image pointed to by the usp variable must have the format shown in
Figure 6-1.

Figure 6-1. F_SIGNLNGJ Required Stack Image

processor context

FPU context

High Memory

Low Memory
User Stack Pointer

(usp variable)

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 257

The specific format of the processor context is defined by the longstk structure
definition found in the reg<CPU Family>.h file for the associated processor. The
format of the floating-point context varies depending on whether the target system
has a hardware floating-point unit versus floating-point emulation software.

For floating-point hardware, the stack image is the same as that defined by the
fregs structure definition found in the associated reg<CPU Family>.h header file.

For floating-point emulation, the floating-point context differs from the hardware
implementation context as it may contain additional context information specific to
the FPU module performing the emulation. The definition for the floating-point
context as used by the FPU module is the fpu_context structure defined in the
associated reg<CPU Family>.h header file for the target processor.

If a particular application needs to access the contents of the process context, it may
use the size of these structures for indexing. Alternatively, the application can
determine the size of the FPU context at runtime by accessing the kernel globals
field, d_fpusize, containing the size of the FPU context.

Attributes

Operating System: OS-9

State: User

Threads: Safe

Parameters

cb

The control block header.

usp

Point to the new process stack image.

siglvl

The new signal level value.

Possible Errors

EOS_PARAM

See Also

F_SEND

F_SIGMASK

F_SLEEP

F_WAIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 258

F_SIGMASK
Mask or Unmask Signals During Critical Code

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_sigmask_pb {

syscb cb;

u_int32 mode;

} f_sigmask_pb, *F_sigmask_pb;

Description

F_SIGMASK enables signals to reach the calling process or disables signals from
reaching the calling process. If a signal is sent to a process whose mask is non-zero,
the signal is queued until the process mask becomes zero. The process’ signal
intercept routine is executed with signals inherently masked. New processes begin
with a signal mask value of zero (not masked).

Two exceptions to this rule are the S_KILL and S_WAKE signals. S_KILL terminates the
receiving process, regardless of the state of its mask. S_WAKE ensures the process is
active, but does not queue. When a process makes an F_SLEEP or F_WAIT system call,
its signal mask is automatically cleared. If a signal is already queued, these calls
return immediately to the intercept routine.

By doing additions and subtractions (instead of merely just setting a flag), this
service allows the OS and the process in question to nest the masking and
unmasking of multiple signals. Also, since a process may want to receive signals
without nesting back out through a bunch of F_SIGMASK calls, the OS provides
three ways for clearing the mask (i.e., nesting level): F_SIGMASK with a "mode"
argument of zero, F_SLEEP, and F_WAIT.

This service returns the EOS_PARAM error code whenever the calling process
specifies a "mode" argument other than negative one, zero, or one (i.e., -1, 0, or 1).
Signals are analogous to hardware interrupts and should be masked sparingly. Keep
intercept routines as short and fast as possible.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 259

Parameters

cb

The control block header.

mode

The process signal level.

Possible Errors

EOS_PARAM

See Also

F_SEND

F_SLEEP

F_WAIT

Table 6-5.

Mode Description
0 The signal mask is cleared.
1 The signal mask is incremented.
-1 The signal mask is decremented.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 260

F_SIGRESET
Reset Process Intercept Routine Recursion Depth

Headers

#include <signal.h>

Parameter Block Structure

typedef struct f_sigrst_pb {

syscb cb;

} f_sigrst_pb, *F_sigrst_pb;

Description

F_SIGRESET should be used whenever a program uses a longjmp() to get out of an
intercept routine or unmasks signals in an intercept service routine with the intent
of never using the F_RTE call to return.

if(setjmp(x) != 0) {

 _os_sigreset();

 _os_sigmask(-1);

}

Under normal circumstances, OS-9 keeps the state of the main process on the
system stack while a signal intercept routine executes. However, if the signals are
unmasked during the intercept routine, a subsequent signal causes the current state
to be stacked on the user’s stack.

This does not happen in simple cases, but if the intercept routine unmasks signals or
uses a longjmp() call and then unmasks signals, states are placed on the user’s stack.
There is no functional difference, and if the code actually expects to return through
the nested intercept routines with multiple F_RTE calls, the states must be left where
they are.

If the code uses a longjmp() call to leave the intercept routine it implicitly clears the
saved context off the stack. The kernel performs best if the code tells the kernel to
remove the context through a F_SIGRESET call.

Attributes

Operating System: OS-9
State: User
Threads: Safe

Parameters

cb

The control block header.

See Also

F_ICPT

F_RTE

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 261

F_SIGRS
Resize Process Queue Block Parameter Block

Headers

#include <srvcb.h>

Parameter Block Structure

typedef struct f_sigrs_pb {

syscb cb;

u_int32 signals;

} f_sigrs_pb, *F_sigrs_pb;

Description

F_SIGRS allows a process to change the maximum number of signals queued on its
behalf.

You can use this call to increase or decrease the number of signals queued. An error
is returned (EOS_PARAM) if a request is made to reduce the number of queued signals
while there are signals pending. The initial default for the system is specified in the
system init module.

This service returns EOS_PARAM if the user requests a signal-queue size of zero (while
the OS has no signals pending for this process) or a signal-queue size less than the
number of maximum signals (e.g., trying to resize the queue to hold only five signals
when the OS has one signal pending for a process whose maximum signal count is
ten).

This service returns EOS_NORAM if the process requests a queue whose size is larger
than available memory.

This service does not allow the caller to set the queue's size to zero. However, the
caller (if and only if there are no signals pending) can use this service to decrease the
size of the queue (even down to one). If there are pending signals, however, then the
value for signals must be greater than or equal to the maximum number of signals
that the process' queue can hold.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 262

Parameters

cb

The control block header.

signals

The new maximum number of signals.

Possible Errors

EOS_PARAM

EOS_NORAM

EOS_DAMAGE

See Also

F_SIGRESET

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 263

F_SLEEP
Put Calling Process to Sleep

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_sleep_pb {

syscb cb;

u_int32 ticks;

signal_code signal;

} f_sleep_pb, *F_sleep_pb;

Description

F_SLEEP deactivates the calling process until the requested number of ticks have
elapsed.

You cannot use F_SLEEP to time more accurately than ±1 tick because it is not
known when the F_SLEEP request was made during the current tick.

A sleep of one tick is effectively a request to surrender the current time slice. The
process is immediately inserted into the active process queue and resumes execution
when it reaches the front of the queue.

A sleep of two or more (n) ticks inserts the process in the active process queue after
(n-1) ticks occur and resumes execution when it reaches the front of the queue. The
process is activated before the full time interval if a signal (S_WAKE) is received.
Sleeping indefinitely is a good way to wait for a signal or interrupt without wasting
CPU time.

The duration of a tick is system dependent and may be determined using F_TIME
system call. If the high order bit of the ticks parameter is set, the low 31 bits are
interpreted as 1/256 second and converted to ticks before sleeping. This allows
program delays to be independent of the system’s clock rate.

This function does not return any error code if the operating system cannot wait for
the requested time due to an overflow when converting a time from 256ths-of-a-
second into clock ticks. This only occurs if you specify a time in 256ths-of-a-second
and the system clock ticks occur at a rate greater than 512 ticks-per-second. If an
overflow occurs, the operating system waits for the longest delay possible.

The system clock must be running to perform a timed sleep. The system clock is not
required to perform an indefinite sleep or to give up a time slice.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 264

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

ticks

The length of time to sleep in ticks/second.

• If ticks is zero, the process sleeps indefinitely.

• If ticks is one, the process gives up a time slice but does not necessarily
sleep for one tick.

signal

A returned value. It is the last signal the process received. signal is returned to
the calling process at the completion of the sleep.

• If signal is zero, the process slept for the time specified by ticks.

• If signal is non-zero, the number corresponds to the signal that awoke the
process.

Possible Errors

EOS_NOCLK

See Also

F_SEND

F_TIME

F_WAIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 265

F_SLINK
Install User Subroutine Module

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_slink_pb {

syscb cb;

u_int16 sub_num;

u_char *mod_name;

void *lib_exec;

u_char *mem_ptr;

Mh_com *mod_head;

} f_slink_pb, *F_slink_pb;

Description

Subroutine libraries provide a convenient way to link to a standard set of routines
at execution time. Use of subroutine libraries keeps user programs small and
automatically updates programs using the subroutine code if it is changed. This is
accomplished without recompiling or relinking the program itself. Most Microware
utilities use one or more subroutine libraries.

F_SLINK attempts to link or load the named module. It returns a pointer to the
execution entry point and a pointer to the library’s static data area for subsequent
calls to the subroutine.The calling program must store and maintain the
subroutine’s entry point and data pointer. The calling program must also set the
subroutine library’s data pointer and dispatch to the correct address.

You can remove a subroutine by passing a null pointer for the name of the module
and specifying the subroutine number. A process can link to a maximum of 16
subroutine libraries, numbered from 0 to 15.

The return value in the case of an error is -1, even though the type is a pointer and a
null is more common.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 266

Parameters

cb

The control block header.

sub_num

The subroutine number.

mod_num

Point to the name of the subroutine module.

lib_exec

A returned value. It points to the subroutine entry point.

mem_ptr

A returned value. It points to the subroutine static memory.

mod_head

A returned value. It points to the module header.

Possible Errors

EOS_BPNAM

EOS_ISUB

EOS_NORAM

EOS_PERMIT

See Also

F_TLINK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 267

F_SLINKM
Link to Subroutine Module by Module Pointer

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_slinkm_pb {

syscb cb;

u_int16 sub_num;

Mh_com mod_head;

void *lib_exec;

u_char *mem_ptr;

} f_slinkm_pb, *F_slinkm_pb;

Description

F_SLINKM is passed a pointer to the subroutine library module to install. If a library
already exists for the specified subroutine number, an error is returned. If static
storage is required for the subroutine library, it is allocated and initialized.

Attributes

Operating System: OS-9
State: User and System
Threads: Safe

Parameters

cb

The control block header.

sub_num

The subroutine number.

mod_head

Point to the module header.

lib_exec

A returned value. It points to the subroutine entry point.

mem_ptr

A returned value. It points to the subroutine static memory.

Possible Errors

EOS_NORAM

EOS_PERMIT

See Also

F_TLINKM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 268

F_SPRIOR
Set Process Priority

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_setpr_pb {

syscb cb;

process_id proc_id;

u_int16 priority;

} f_setpr_pb, *F_setpr_pb;

Description

F_SPRIOR changes the process priority to the value specified by priority. A super
user (group ID zero) may change any process’ priority. A non-super user can only
change the priorities of processes with the same user ID.

Two system global variables affect task switching.

• d_minpty is the minimum priority a task must have for OS-9 to age or execute it.

• d_maxage is the cutoff aging point.

These variables are initially set in the Init module.

A small change in relative priorities has a tremendous effect. For example, if two
processes have the priorities 100 and 200, the process with the higher priority runs
100 times before the low priority process runs at all. In actual practice, the
difference may not be this extreme because programs spend a lot of time waiting for
I/O devices.

Attributes

Operating System: OS-9
State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

proc_id

The process ID.

priority

Specify the new priority. 65535 is the highest priority; 0 is the lowest.

Possible Errors

EOS_IPRCID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 269

F_SRQMEM
System Memory Request

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_srqmem_pb {

syscb cb;

u_char *mem_ptr;

u_int32 size;

u_int16 color;

} f_srqmem_pb, *F_srqmem_pb;

Description

F_SRQMEM allocates a block of a specific type of memory.

If more than one memory area has the same priority, the area with the largest total
free space is searched first. This allows memory areas to be balanced (contain
approximately equal amounts of free space).

The requested number of bytes is rounded up to a system defined blocksize
(currently 16 bytes). F_SRQMEM is useful for allocating I/O buffers and any other
semi-permanent memory. The memory always begins on an even boundary.

Memory types or color codes are system dependent and may be arbitrarily assigned
by the system administrator. Microware reserves values below 256 for future use.

The byte count of allocated memory and the pointer to the block allocated must be
saved if the memory is ever to be returned to the system.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

mem_ptr

Point to the allocated memory block.

Do not use F_SRQMEM from Interrupt Service Routines.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 270

size

Specify the byte count of the requested memory. If size is -1, the largest block
of free memory of the specified type is allocated to the calling process. Upon
completion of the service request, size contains the actual size of the memory
block allocated.

color

Specify the memory type.

• If color is non-zero, the search is restricted to memory areas of that color.
The area with the highest priority is searched first.

• If color is zero, the search is based only on priority. This allows you to
configure a system such that fast on-board memory is allocated before
slow off-board memory. Areas with a priority of zero are excluded from
the search.

Possible Errors

EOS_MEMFUL

EOS_NORAM

See Also

F_SRTMEM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 271

F_SRTMEM
Return System Memory

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_srtmem_pb {

syscb cb;

u_char *mem_ptr;

u_int32 size;

} f_srtmem_pb, *F_srtmem_pb;

Description

F_SRTMEM deallocates memory when it is no longer needed. The returned number of
bytes is rounded up to a system defined blocksize before returning the memory.
Rounding occurs identically to that performed by F_SRQMEM.

In user state, the system keeps track of memory allocated to a process and all blocks
not returned are automatically deallocated by the system when a process terminates.

In system state, the process must explicitly return its memory.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

mem_ptr

Point to the memory block to return.

size

Specify the byte count of the returned memory.

Possible Errors

EOS_BPADDR

See Also

F_MEM

F_SRQMEM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 272

F_SSPD
Suspend Process

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_sspd_pb {

syscb cb;

process_id proc_id;

} f_sspd_pb, *F_sspd_pb;

Description

F_SSPD temporarily suspends a process. A super user (group ID zero) may suspend
any process. A non-super user can only suspend processes with the same user ID.

The process may be reactivated with F_APROC.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

proc_id

Identify the target process.

Possible Errors

EOS_IPRCID

See Also

F_APROC

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 273

F_SSVC
Service Request Table Initialization

Headers

#include <types.h>

#include <svctbl.h>

Parameter Block Structure

typedef struct f_ssvc_pb {

syscb cb;

u_int32 count;

u_int16 state_flag;

void *init_tbl,

*params;

} f_ssvc_pb, *F_ssvc_pb;

Description

F_SSVC adds or replaces service requests in OS-9’s user and privileged system service
request tables.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

count

A count of the entries in the initialization table.

state_flag

Specify whether user or system state tables, or both, are updated.

• If state_flag is 1, only the user table is updated.

• If state_flag is 2, only the system table is updated.

• If state_flag is 3, both the system and user tables are updated.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 274

init_tbl

Point to the initialization table. An example initialization table might look like
this:

error_code printmsg(), service();

svctbl syscalls[] =

{

 {F_PRINT, printmsg},

 {F_SERVICE, service}

};

params

May be a pointer to anything, but is intended to be a pointer to global static
storage. Whenever a system call is executed, the params data pointer is passed
automatically.

The following structure definition of the initialization table is located in
svctbl.h:

#if !defined(_TYPES_H)

#include <types.h>

#endif

#define USER_State 1 /* user-state service routine flag */

#define SYSTEM_State 2 /* system-state service routine flag */

/* service routine initialization table structure. */

typedef struct {

 u_int16 fcode; /* system call function code */

 u_int32 (*service)(); /* service routine pointer */

 u_int32 attr; /* attributes of system call (reserved for
future use) */

 u_int16 ed_low, /* low bound of acceptable service call
edition */

 ed_high /* upper bound of edition */

} svctbl, *Svctbl;

#endif

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 275

F_STIME
Set System Date and Time

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_setime_pb {

syscb cb;

u_int32 time;

} f_setime_pb, *F_setime_pb;

Description

F_STIME sets the current system time and starts the system real-time clock to
produce time slice interrupts. F_STIME puts the time in the system static storage area
and links the clock module. If the link is successful, the clock initialization routine is
called.

The clock module has three responsibilities:

1. Sets up hardware-dependent functions to produce system tick interrupts. This
could include moving the new time into the hardware.

2. Installs a service routine to clear the interrupt when a tick occurs.

3. The interrupt service routine must call through to the kernel’s tick routine to
allow the kernel to keep accurate time in software. The address to the kernel’s
tick routine is provided by the kernel via the clock module’s static storage
structure when the kernel initializes the clock module.

The OS-9 kernel keeps track of the current time in software, which enables clock
modules to be small and simple. Some OS-9 utilities and functions expect the clock
to have the correct time. Therefore, you should run F_STIME whenever the system is
started. This is usually done in the system startup file.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 276

Parameters

cb

The control block header.

time

Specify the time. The time is stored as the number of seconds since 1 January
1970 Greenwich Mean Time.

The time is not validated in any way. If time is zero on systems with a battery-
backed clock, the actual time is read from the real-time clock.

Possible Errors

EOS_MNF

EOS_NOCLK

EOS_NORAM

See Also

F_TIME

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 277

F_STRAP
Set Error Trap Handler

Headers

#include <types.h>

#include <settrap.h>

#include <regs.h>

Parameter Block Structure

typedef struct f_strap_pb {

syscb cb;

u_int32 *excpt_stack;

Strap init_tbl;

} f_strap_pb, *F_strap_pb;

typedef struct strap (

u_int32 vector;

u_int32 (*routine)();

} strap, *Strap;

Description

F_STRAP enables user-state programs to catch exceptions such as illegal instruction
or divide-by-zero. The exceptions that may be trapped are processor-dependent.

F_STRAP enters process-local error trap routine(s) into the process descriptor
dispatch table. If a routine for a particular exception already exists, it is replaced.

If a user routine is not provided and one of these exceptions occurs, the program is
aborted.

When a user’s exception routine is executed, it is passed the following information.

void errtrap(

u_int32 vector_errno,/* error number of the vector */

u_int32 badpc, /* PC where exception occurred */

u_int32 badaddr, /* address that caused the exception */

...); /* original register contents */

The variable arguments contain the previous values of registers that were modified
between the exception and the call to the exception handler. Generally, the variable
arguments contain the previous stack pointer and the previous values of the first
three parameter registers.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 278

Processor-Specific Variable Arguments

The following sections provide details about the variable arguments for the various
processors.

• ARMv4 and ARMv4BE

va_arg(vp, u_int32);/* exception stack pointer */

va_arg(vp, u_int32);/* exception r7 */

va_arg(vp, u_int32);/* exception r8 */

va_arg(vp, u_int32);/* exception r9 */

• MIPS3000 and MIPS32

va_arg(vp, u_int32);/* exception stack pointer */

va_arg(vp, u_int32);/* exception a0 */

va_arg(vp, u_int32);/* exception a1 */

va_arg(vp, u_int32);/* exception a2 */

• MIPS64

va_arg(vp, u_int64);/* exception stack pointer */

va_arg(vp, u_int64);/* exception a0 */

va_arg(vp, u_int64);/* exception a1 */

va_arg(vp, u_int64);/* exception a2 */

• PowerPC

va_arg(vp, u_int32);/* exception stack pointer */

va_arg(vp, u_int32);/* exception r3 */

va_arg(vp, u_int32);/* exception r4 */

va_arg(vp, u_int32);/* exception r5 */

• SH-3 and SH-4

va_arg(vp, u_int32);/* exception stack pointer */

va_arg(vp, u_int32);/* exception r4 */

va_arg(vp, u_int32);/* exception r5 */

va_arg(vp, u_int32);/* exception r6 */

• SH-5m

va_arg(vp, u_int64);/* exception stack pointer */

va_arg(vp, u_int64);/* exception r2 */

va_arg(vp, u_int64);/* exception r3 */

va_arg(vp, u_int64);/* exception r4 */

• x86/Pentium

va_arg(vp, u_int32);/* exception stack pointer */

va_arg(vp, u_int32);/* exception %eax */

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 279

Disable error exception handlers by calling F_STRAP with an initialization table
specifying 0 as the address of the routine(s) to remove. For example, the table below
removes user routines for data and instruction access exceptions on a PowerPC
processor.

strap errtab[] = {

 {STRAP_DATA, 0},

 {STRAP_INSTR, 0},

 {~0, NULL}

};

Attributes

Operating System: OS-9

State: User

Threads: Safe

Parameters

cb

The control block header.

excpt_stack

Pointer to the stack to use if an exception occurs. If excpt_stack is zero,
F_STRAP uses the stack pointer at the time of the exception.

init_tbl

Pointer to the service request initialization table. An initialization table might
appear as follows:

strap errtab[] = {

 {STRAP_DATA, errtrap},

 {STRAP_INSTR, errtrap},

 {~0, NULL}

};

Possible Errors

EOS_TRAP

See Also

F_ABORT

Be careful not to let an exception happen in an exception handling routine.
Exception handling routines are usually not re-entrant.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 280

F_SUSER
Set User ID Number

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_setuid_pb {

syscb cb;

owner_id user_id;

} f_setuid_pb, *F_setuid_pb;

Description

F_SUSER changes the current user ID to user_id.

The following restrictions apply to F_SUSER:

• Users with group ID zero may change their IDs to anything.

• A primary module owned by a group zero user may change its ID to anything.

• Any primary module may change its user ID to match the module’s owner.

All other attempts to change the user ID number return an EOS_PERMIT error.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

user_id

The desired group/user ID number.

Possible Errors

EOS_PERMIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 281

F_SYSDBG
Call System Debugger

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_sysdbg_pb {

syscb cb;

void *param1,

*param2;

} f_sysdbg_pb, *F_sysdbg_pb;

Description

F_SYSDBG calls the system level debugger, if one exists. This allows you to debug
system-state routines, such as device drivers. The caller defines the parameters to
this service request to values useful in debugging. For example, a parameter could
be a pointer to a critical data structure.

When the system level debugger is active, it runs in system state and effectively stops
timesharing. F_SYSDBG can only be called by users in group zero. Never use this call
when other users are on the system.

The break utility calls F_SYSDBG.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

param1 and param2

Parameters passed to the debugger. These are currently not used.

Possible Errors

EOS_PERMIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 282

F_SYSID
Return System Identification

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_sysid_pb {

syscb cb;

u_int32 oem,

serial,

mpu_type,

os_type,

fpu_type;

int32 time_zone

u_int32 resv1,

resv2;

u_char *sys_ident,

*copyright,

*resv3;

} f_sysid_pb, *F_sysid_pb;

Description

F_SYSID returns information about the system.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

oem

The OEM identification number.

serial

The copy serial number.

mpu_type

The processor identifier (for example 80386).

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 283

os_type

The kernel (OS) MPU configuration.

fpu_type

The floating-point processor identifier (for example 80387).

time_zone

The system time zone in minutes offset from Greenwich Mean Time (GMT).

resv1, resv2, and resv3

Reserved pointers.

sys_ident

Point to a buffer for the system identification message.

copyright

Point to a buffer for the copyright message.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 284

F_THEXIT
Exit a Thread

Headers

#include <threads.h>

Parameter Block Structure

typedef struct f_thexit_pb {

syscb cb;

error_code status;

} f_thexit_pb, *F_thexit_pb;

Description

F_THEXIT causes the calling thread to exit. If the calling program is not multi-
threaded, the EOS_PERMIT error is returned.

If successful, F_THEXIT does not return to the caller.

Threads created via pthread_create() should not use this call. Doing so results in
instability and loss of resources for the process.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

System call control block.

status

Exit status.

See Also

F_THFORK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 285

F_THFORK
Fork a Thread

Headers

#include <threads.h>

Parameter Block Structure

typedef struct f_thfork_pb {

syscb cb;

thread_t thread_id;

thread_attr_t attr;

void *stack_top;

void *start_addr;

void *arg;

void *data;

u_int32 stack_size;

} f_thfork_pb, *F_thfork_pb;

Description

F_THFORK forks a new thread of control in the current process.

Threads created with _os_thfork() or F_THFORK are not permitted to use C library
calls that have threading issues. Create threads with pthread_create().

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

System call control block.

attrInput:

Thread attribute structure.

*stack_topInput:

Thread's initial stack pointer.

*start_addrInput:

Thread's initial execution address.

*argInput:

Argument passed to thread.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 286

*dataInput:

Thread specific data pointer.

stack_sizeInput/output:

Size of stack to allocate/allocated.

See Also

F_THEXIT

F_THREAD

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 287

F_THREAD
Set Thread Parameters

Headers

#include <funcs.h>

#include <threads.h>

Parameter Block Structure

typedef struct f_thread_pb {

 syscb cb;

 u_int32 code;

 thread_t thread_id;

 void *pb;

} f_thread_pb, *F_thread_pb;

Description

F_THREAD sets thread parameters for the thread specified by thread_id.

If code is TH_TSDATA, arg is the thread specific data pointer.

Threads created via pthread_create() should not use this call. Doing so results in
instability and loss of resources for the process.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cbS

ystem call control block.

codeT

hread action code: TH_ORPHAN, etc.

thread_id

Thread ID if applicable.

*pb

Additional parameters.

See Also

F_THEXIT

F_THFORK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 288

F_TIME
Get System Date and Time

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_getime_pb {

syscb cb;

u_int32 time,

ticks;

} f_getime_pb, *F_getime_pb;

Description

F_TIME returns the current system time in the number of seconds since 1 January
1970 Greenwich Mean Time.

F_TIME returns a date and time of zero (with no error) if no previous call to F_STIME
has been made. A tick rate of zero indicates the clock is not running.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

time

A returned value. It is the current time.

ticks

Contains the following:

• The clock tick rate in ticks per second is returned in the most significant
word.

• The least significant word contains the current tick.

See Also

F_STIME

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 289

F_TLINK
Install System State Trap Handling Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_tlink_pb {

syscb cb;

u_int16 trap_num;

u_char *mod_name;

void *lib_exec,

*mod_head,

*params;

u_int32 mem_size;

} f_tlink_pb, *F_tlink_pb;

Description

Trap handlers enable a program to execute privileged (system state) code without
running the entire program in system state. Trap handlers only run in system state.

F_TLINK attempts to link or load the module specified by mod_name. If the link/load
is successful, F_TLINK installs a pointer to the module in the user’s process descriptor
for subsequent use in trap calls. If a trap module already exists for the specified trap
code, an error is returned. If static storage is required for the trap handler, OS-9
allocates and initializes it.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

trap_num

Specify the user trap number (1 through 15).

mod_name

Point to the name of the trap module. If mod_name is zero or points to a null
string, the trap handler is unlinked.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 290

lib_exec

Point to the pointer to the trap execution entry point.

mod_head

Point to the pointer to the trap module.

params

A reserved field.

mem_size

Specify the additional memory size to be allocated for the trap modules static
data area.

Possible Errors

EOS_ITRAP

EOS_MNF

EOS_NORAM

EOS_PERMIT

See Also

F_SLINK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 291

F_TLINKM
Install User Trap Handling Module by Module Pointer

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_tlinkm_pb {

syscb cb;

u_int16 trap_num;

Mh_com mod_head;

void *lib_exec;

void *params;

u_int32 mem_size;

} f_tlinkm_pb, *F_tlinkm_pb;

Description:

F_TLINKM is passed a pointer to the module to install. If a trap module already exists
for the specified trap number, an error is returned. If static storage is required for
the trap handler, it is allocated and initialized.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

trap_num

Specify the user trap number (0 through 15).

mod_head

Point to the module header.

lib_exec

Point to the trap execution entry point.

params

A reserved field.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 292

mem_size

Specify the additional memory size to be allocated for the trap module’s static
data area.

Possible Errors

EOS_ITRAP

EOS_NORAM

EOS_PERMIT

See Also

F_TLINK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 293

F_UACCT
User Accounting

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_uacct_pb {

syscb cb;

u_int16 acct_code;

Pr_desc proc_desc;

} f_uacct_pb, *F_uacct_pb;

Description

F_UACCT provides a means for users to set up an accounting system. The kernel calls
F_UACCT whenever it forks or exits a process. Therefore, F_UACCT provides a
mechanism for users to keep track of system operators.

To install a handler for this service request, use the F_SSVC system call to add the
user’s accounting routine to the system’s service request dispatch table. This is
usually done in an OS9P2 module.

You may perform your own system accounting by calling F_UACCT with a user
defined acct_code identifying the operation to perform. For example, when the
kernel forks a process it identifies the operation by passing the F_FORK code to the
accounting routine.

Attributes

Operating System: OS-9
State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

acct_code

The operation identifier. This is usually a system call function code.

proc_desc

Point to the current process descriptor.

Possible Errors

EOS_UNKSVC (This error should be ignored.)

See Also

F_SSVC

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 294

F_UNLINK
Unlink Module by Address

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_unlink_pb {

syscb cb;

Mh_com mod_head;

} f_unlink_pb, *F_unlink_pb;

Description

F_UNLINK notifies OS-9 the calling process no longer needs a module. The module’s
link count is decremented. When the link count equals zero (-1 for sticky modules),
the module is removed from the module directory and its memory is deallocated.
When several modules are loaded together as a group, they are only removed when
the link count of all modules in the group are zero (-1 for sticky modules).

Some modules cannot be unlinked; for example, device drivers in use and all
modules included in the bootfile.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

mod_head

Point to the module header.

Possible Errors

EOS_MODBSY

See Also

F_LINK

F_UNLOAD

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 295

F_UNLOAD
Unlink Module by Name

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_unload_pb {

syscb cb;

u_char *mod_name;

u_int16 type_lang;

} f_unload_pb, *F_unload_pb;

Description

F_UNLOAD locates the module in the module directory, decrements its link count, and
removes it from the directory if the count reaches zero. A sticky module is not
removed until its link count is -1. This call is similar to F_UNLINK, except F_UNLOAD is
passed the pointer to the module name instead of the address of the module header.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

mod_name

Point to the module name.

type_lang

Specify the module’s type and language.

Possible Errors

EOS_MNF

EOS_MODBSY

See Also

F_LINK

F_UNLINK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 296

F_VMODUL
Verify Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_vmodul_pb {

syscb cb;

Mh_com mod_head,

mod_block;

u_int32 block_size;

} f_vmodul_pb, *F_vmodul_pb;

Description

F_VMODUL checks the module header parity and CRC bytes of an OS-9 module. If the
header values are valid, the module is entered into the module directory. The
current module directory is searched for another module with the same name. If a
module with the same name and type exists, the one with the highest revision level
is retained in the module directory. Ties are broken in favor of the established
module.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

mod_head

Point to the module.

mod_block

Point to the memory block containing the module.

block_size

The size of the memory block containing the module.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 297

Possible Errors

EOS_BMCRC

EOS_BMHP

EOS_BMID

EOS_DIRFUL

EOS_KWNMOD

See Also

F_CRC

F_LOAD

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 298

F_WAIT
Wait for Child Process to Terminate

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_wait_pb {

syscb cb;

process_id child_id;

status_code status;

} f_wait_pb, *F_wait_pb;

Description

F_WAIT deactivates the calling process until a child process terminates. The child’s ID
number and exit status are returned to the parent.

If the caller has several children, the caller is activated when the first child dies, so
one F_WAIT call is required to detect the termination of each child.

If a child died before the F_WAIT call, the caller is reactivated immediately. F_WAIT
returns an error only if the caller has no children.

The process descriptors for child processes are not returned to free memory until
their parent process performs an F_WAIT system call or terminates.

If a signal is received by a process waiting for children to terminate, the process is
activated. In this case, child_id contains zero, because no child process has
terminated.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

The control block header.

child_id

The process ID of the terminating child.

status

The child process’ exit status code.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 299

Possible Errors

EOS_NOCHLD

See Also

F_EXIT

F_FORK

F_SEND

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 300

F_WAITID
Wait for a Specified Process or Thread to Exit

Headers

#include <process.h>

Parameter Block Structure

typedef struct f_waitid_pb {

 syscb cb;

 process_id child_id;

 status_code status;

 signal_code signal;

 u_int32 wait_flag;

} f_waitid_pb, *F_waitid_pb;

Description

F_WAITID has two primary functions:

• waiting for a child process or sibling thread

• controlling a signal for the death of a child process or sibling thread

Waiting for a Child Process or Sibling Thread

To specify a wait related activity, wait_flag should be 0.

child_id specifies the process or thread to wait for. If the value of child_id is the
ID of a thread, the caller must be a thread in the same process as child_id.
Otherwise an EOS_IPRCID error is returned.

If the call is successful, the exit code of child_id is returned in status.

If the wait is interrupted by a signal, a value of EOS_BSIG is returned by F_WAITID
and the value of the signal that caused the interruption is stored in signal.

Controlling a Signal for the Death of a Child Process or Sibling Thread

To specify a signal related activity, wait_flag should be non-zero. The valid values
for wait_flag are WT_SIGNAL and WT_RELEASE.

When wait_flag is WT_SIGNAL it specifies that the caller wants to receive a signal
when the process or thread specified by child_id terminates. The value of the signal
to be sent is signal. If the process or thread specified by child_id has already
terminated, the signal is sent immediately.

When wait_flag is WT_RELEASE it specifies that the caller is no longer interested in
getting a signal on the termination of the process or thread specified by child_id.
signal is irrelevant in this case.

status is not modified when wait_flag is non-zero. F_WAITID returns immediately
when wait_flag is non-zero; it never blocks, regardless of the state of the child.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 301

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

System call control block.

child_id

Input: Child process or Thread ID

status

Output: Status of child.

signal

Input: Signal to send.

Output: Signal that aborted blocking wait.

wait_flag

Input: wait condition flag.

See Also

F_EXIT

F_THEXIT

F_WAIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 302

F_WAITLK
Activate Next Process Waiting to Acquire Lock

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_waitlk_pb {

syscb cb;

lock_id lid;

signal_code signal;

} f_waitlk_pb, *F_waitlk_pb;

Description

F_WAITLK activates the next process waiting to acquire the lock. The next process in
the lock’s queue is activated and granted exclusive ownership of the resource lock. If
no other process is waiting on the lock, the lock is simply marked free for
acquisition. In either case, the calling process is suspended and inserted into a
waiting queue for the resource based on relative scheduling priority.

If, during the course of waiting on a lock, a process receives a signal, the process is
activated without gaining ownership of the lock.

The process returns from the wait lock call with an EOS_SIGNAL error code and the
signal code is returned via the signal pointer.

If an S_WAKEUP signal is received by a waiting process, the signal code does not register
and will be zero.

Attributes

Operating System: OS-9

State: System

Threads: Safe

Parameters

cb

The control block header.

lid

The lock ID on which to wait.

signal

Point to the received signal.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 303

Possible Errors

EOS_SIGNAL

See Also

F_ACQLK

F_CAQLK

F_CRLK

F_DELLK

F_RELLK

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 304

F_YIELD
Yield the Processor

Headers

#include <process.h>

Parameter Block Schedule

typedef struct f_yield_pb {

 syscb cb;

} f_yield_pb, *F_yield_pb;

Description

F_YIELD causes the calling process or thread to be placed back into the active queue.
The active queue contents are aged and the highest aged process is given control of
the processor. In other words, F_YIELD causes the operating system to advance to
the next executable process or thread. It is possible that the next executable process
or thread will be the one that called F_YIELD. The status of the process' or thread's
signal mask remains unchanged during this system call. F_YIELD is much like
F_SLEEP with a tick count of 1, except that signals are not implicitly unmasked.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

cb

System call control block.

See Also

F_SLEEP

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 305

I_ALIAS
Create Device Alias

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_alias_pb {

syscb cb;

u_char *alias_name,

*real_name;

} i_alias_pb, *I_alias_pb;

Description

I_ALIAS creates an alternate name for a device pathlist. Processes can then reference
a specific device pathlist with a shorter or more convenient name.

To delete an existing alias from the system, pass a NULL pointer for the real name.

Do not use a real device name as alias_name.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

alias_name

Point to the alternate name.

real_name

Point to the actual device name; it must exist. OS-9 does not validate its
existence of the device.

Possible Errors

EOS_BPNAM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 306

I_ATTACH
Attach New Device to System

Headers

#include <io.h>
#include <modes.h>

Parameter Block Structure

typedef struct i_attach_pb {

syscb cb;

u_char *name;

u_int16 mode;

Dev_list dev_tbl;

} i_attach_pb, *I_attach_pb;

Description

I_ATTACH causes a new I/O device to become known to the system or verifies the
device is already attached.

If the descriptor is found and the device is not already attached, I_ATTACH links to its
file manager and device driver and places their addresses in a new device list entry.
I_ATTACH allocates and initializes static storage memory for the file manager and
device driver. After initialization, the file manager’s I_ATTACH entry point is called to
allow for file manager specific initialization. In turn, the file manager calls the
driver’s initialization entry point to initialize the hardware. If the driver has already
been attached, the file manager usually omits calling the driver.

I_ATTACH prepares the device for subsequent use by any process, but does not
reserve the device. I_ATTACH is not required to perform routine I/O.

IOMAN attaches all devices at I_OPEN and detaches them at I_CLOSE.

Attach and Detach for devices are used together like Link and Unlink for modules.
However, you can improve system performance slightly by attaching all devices at
startup. This increments each device’s use count and prevents the device from being
reinitialized every time it is opened. If static storage for devices is allocated all at
once, memory fragmentation is minimized. If a device is attached, the termination
routine is not executed until the device is detached.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 307

Parameters

cb

The control block header.

name

Point to the I/O device. name is used to search the current module directory for
a device descriptor module with the same name in memory. This is the name
by which the device is known. The descriptor module contains the name of
the device’s file manager, device driver, and other related information.

mode

The access mode used to verify subsequent read and/or write operations are
permitted. It can be either S_IREAD or S_IWRITE.

dev_tbl

A returned value. It points to the device’s device list entry.

Possible Errors

EOS_BMODE

EOS_DEVBSY

EOS_DEVOVF

EOS_MEMFUL

See Also

I_CLOSE

I_DETACH

I_OPEN

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 308

I_CHDIR
Change Working Directory

Headers

#include <types.h>

#include <modes.h>

Parameter Block Structure

typedef struct i_chdir_pb {

syscb cb;

u_char *name;

u_int16 mode;

} i_chdir_pb, *I_chdir_pb;

Description

I_CHDIR changes a process’ working directory to the directory file specified by the
pathlist. The execution or data directory (or both) may be changed, depending on
the specified access mode. The file specified must be a directory file, and the caller
must have access permission for the specified mode.

If the access mode is read, write, or update (read and write), the current data
directory is changed. If the access mode is execute, the current execution directory is
changed. You can change both simultaneously.

The shell chd directive uses update mode. This means you must have both read and
write permission to change directories from the shell. This is a recommended
practice.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

name

Point to the pathlist.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 309

mode

Specify the access mode. The following are the valid modes:

Possible Errors

EOS_BMODE

EOS_BPNAM

Mode Description
S_IREAD Read
S_IWRITE Write
S_IEXEC Execute

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 310

I_CIOPROC
Get Pointer to I/O Process Descriptor

Headers

#include <io.h>

Parameter Block Structure

typedef struct i_cioproc_pb {

syscb cb;

process_id proc_id;

void *buffer;

u_int32 count;

} i_cioproc_pb, *I_cioproc_pb;

Description

I_CIOPROC copies the I/O process descriptor for the specified process into a buffer.

Attributes

Operating System: OS-9

State: User, System, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

proc_id

The process ID of the process.

buffer

Point to the buffer in which to copy the process descriptor.

count

Specify the number of bytes to copy.

Possible Errors

EOS_IPRCID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 311

I_CLOSE
Close Path to File/Device

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_close_pb {

syscb cb;

path_id path;

} i_close_pb, *I_close_pb;

Description

I_CLOSE terminates an I/O path.

The path number is no longer valid for OS-9 calls unless it becomes active again
through an I_OPEN, I_CREATE, or I_DUP system call.

When pathlists to non-sharable devices are closed, the devices become available to
other requesting processes.

If this is the last use of the path (it has not been inherited or duplicated by I_DUP),
all internally managed buffers and descriptors are deallocated.

F_EXIT automatically closes any open paths. By convention, standard I/O paths are
not closed unless it is desired to change the corresponding files/devices.

I_CLOSE does an implied I_DETACH call. If this causes the device use count to become
zero, the device termination routine is executed.

Attributes

Operating System: OS-9
State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

path

Identifies the I/O path to close.

Possible Errors

EOS_BPNUM

See Also

F_EXIT

I_DETACH I_DUP

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 312

I_CONFIG
Configure an Element of Process/System I/O

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_config_pb {

syscb cb;

u_int32 code;

void *param;

} i_config_pb, *I_config_pb;

Description

I_CONFIG is a wildcard call used to configure elements of the I/O subsystem that
may or may not be associated with an existing path. It is intended to be used to
dynamically reconfigure system I/O resources at runtime. The target I/O resources
may be system-wide resources or they may be process- or path-specific, depending
on the nature of the configuration call being made.

Attributes

Operating System: OS-9
State: User, System, Interrupt
Threads: Safe

Parameters

cb

The control block header.

code

Identify the target configuration code.

*param

Point to additional parameters required by the specified configuration
function.

See Also

F_CONFIG

Table 6-6. Sub-Code

Code Parameter Function
IC_PATHSZ param points to the

number of additional
paths the process wants
beyond its initial 32.

Increase the number of paths the current
process may have open beyond its initial 32.
This can only be used to increase the number of
paths a process may have. It cannot be used to
reduce the number of available paths.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 313

I_CREATE
Create Path to New File

Headers

#include <types.h>

#include <modes.h>

Parameter Block Structure

typedef struct i_create_pb {

syscb cb;

u_char *name;

u_int16 mode;

path_id path;

u_int32 perm,

size;

} i_create_pb, *I_create_pb;

Description

I_CREATE creates a new file. On multi-file devices, the new file name is entered in the
directory structure. On non-multi-file devices, I_CREATE is synonymous with
I_OPEN. Also, if the file already exists on a multi-file device, by default a path to the
file will be opened and the contents truncated.

mode must have the write bit set if data is to be written to the file. The file is given
the attributes passed in perm. The individual bits are defined as follows:

If the S_IEXEC (execute) bit of the access mode byte is set, the working execution
directory is searched first, instead of the working data directory.

If the S_IEXCL mode bit is not set and the target file already exists, the file is
truncated to zero length.

Table 6-7. Mode and Attribute Bits

Mode Bits Attribute Bits
S_IREAD = read S_IREAD = owner read permission
S_IWRITE = write S_IWRITE = owner write permission
S_IEXEC = execute S_IEXEC = owner exec permission
S_ICONTIG = ensure contig S_IGREAD = group read permission
S_IEXCL = do not recreate S_IGWRITE = group write permission
S_IAPPEND = append to file S_IGEXEC = group exec permission
S_ISHARE = exclusive use S_IOREAD = public read permission
S_ISIZE = set initial size S_IOWRITE = public write permission

S_IOEXEC = public exec permission
S_ISHARE = file is non-sharable

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 314

If the S_ICONTIG mode bit is set, the space for the file is allocated from a single
contiguous block.

If the S_IAPPEND mode bit is set and the target file already exists, the file is opened
and the associated file pointer points to the end of the file.

If the S_ISHARE mode bit is set, the opening process has exclusive access to the file.

If the S_ISIZE mode bit is set, it is assumed the size parameter contains the initial
file size of the target file.

File space is allocated automatically by I_WRITE or explicitly by an I_SETSTAT call.

If the pathlist specifies a file name that already exists, an error occurs. You cannot
use I_CREATE to make directory files (see I_MAKDIR).

I_CREATE causes an implicit I_ATTACH call. The device’s initialization routine is
executed if the device has not been attached previously.

Attributes

Operating System: OS-9
State: User, System, Interrupt
Threads: Safe

Parameters

cb

The control block header.

name

Point to the pathname of the new file.

mode

Specify the access mode. If data is to be written to the file, mode must have the
write bit set.

path

A returned value. It is the path number that identifies the file in subsequent
I/O service requests until the file is closed.

perm

Specify the attributes to use for the new file.

size

Specify the size of the new file. If the S_ISIZE (initial file size) bit is set, you
may pass an initial file size estimate in size.

Possible Errors

EOS_BPNAM
EOS_PTHFUL

See Also

I_ATTACH I_CLOSE I_MAKDIRI_OPEN
I_SETSTAT I_WRITE

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 315

I_DELETE
Delete File

Headers

#include <types.h>

#include <modes.h>

Parameter Block Structure

typedef struct i_delete_pb {

syscb cb;

u_char *name;

} i_delete_pb, *I_delete_pb;

Description

I_DELETE deletes the file specified by the pathlist. You must have non-sharable write
access to the file (the file may not already be open) or an error results. Attempts to
delete non-multi-file devices result in an error.

The access mode is ignored if a full pathlist is specified (a full pathlist begins with a
slash (/)).

Parameters

cb

The control block header.

name

Point to the file to delete.

mode

Specify the access mode. mode may be S_IREAD, S_IWRITE, or S_IEXEC. The
access mode specifies the data or execution directory (but not both) in the
absence of a full pathlist. If the access mode is read, write, or update (read and
write), the current data directory is assumed. If the execute bit is set, the
current execution directory is assumed.

Attributes

Operating System: OS-9
State: User, System, and Interrupt
Threads: Safe

Possible Errors

EOS_BPNAM

See Also

I_ATTACH I_CREATE

I_DETACH I_OPEN

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 316

I_DETACH
Remove Device from System

Headers

#include <io.h>

Parameter Block Structure

typedef struct i_detach_pb {

syscb cb;

Dev_list dev_tbl;

} i_detach_pb, *I_detach_pb;

Description

I_DETACH removes a device from the system device list if the device is not in use by
any other process.

If this is the last use of the device, the file manager’s I_DETACH routine is called, and
in turn, the device driver’s termination routine is called and any permanent storage
assigned to the file manager and driver is de-allocated. The device driver and file
manager modules associated with the device are unlinked and may be lost if not in
use by another process. It is crucial for the termination routine to remove the device
from the IRQ system.

I_DETACH must be used to detach devices attached with I_ATTACH. Both of these
attach and detach requests are used mainly by IOMAN and are of limited use to the
typical user. SCF also uses attach/detach to set up its second (echo) device.

Most devices are attached at startup and remain attached while the system is up. An
infrequently used device can be attached and then detached to free system resources
when no longer needed.

Attributes

Operating System: OS-9
State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

dev_tbl

Point to the address of the device list entry.

See Also

I_ATTACH

I_CLOSE

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 317

I_DUP
Duplicate Path

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_dup_pb {

syscb cb;

path_id dup_path,

*new_path;

} i_dup_pb, *I_dup_pb;

Description

I_DUP duplicates a path. The operation of I_DUP depends on the state from which it
is called.

When called from a user-state process and given an existing path number, I_DUP
returns a synonymous path number for the same file or device. I_DUP always uses
the lowest available path number. For example, if you perform an I_CLOSE on path
0 and an I_DUP on path 4, path 0 is returned as the new path number. In this way,
the standard I/O paths may be manipulated to contain any desired paths.

When called from a system-state process, I_DUP returns the next available system
path number.

The shell uses this service request when it redirects I/O. Service requests using either
the old or new path numbers operate on the same file or device.

I_DUP increments the use count of a path descriptor and returns a synonymous path
number. The path descriptor is NOT copied. It is usually not a good idea for more
than one process to be performing I/O on the same path concurrently. On RBF files,
this can produce unpredictable results.

Attributes

Operating System: OS-9
State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

dup_path

The path number of the path to duplicate.

new_path

The new number for the same path.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 318

Possible Errors

EOS_BPNUM

EOS_PTHFUL

See Also

I_CLOSE

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 319

I_GETDL
Get System I/O Device List Head Pointer

Headers

#include<io.h>

Parameter Block Structure

typedef struct i_getdl_pb{

syscb cb;

Dev_list dev_list_ptr;

} i_getdl_pb, *I_getdl_pb;

Description

I_GETDL returns a pointer to the first entry in the system’s I/O device list.

Attributes

Operating System: OS-9

State: User, System, I/O, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

dev_list_ptr

A returned value. It points to the first entry in the device list.

See Also

F_CPYMEM

Never access this pointer directly in user state. You should use F_CPYMEM to get
a copy of the device list entry. This system call is used by the devs utility to
determine the presence of all of the active devices in the system.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 320

I_GETPD
Find Path Descriptor

Headers

#include <types.h>

#include <io.h>

Parameter Block Structure

typedef struct i_getpd_pb {

syscb cb;

path_id path;

Pd_com path_desc;

} i_getpd_pb, *I_getpd_pb;

Description

I_GETPD converts a path number to the absolute address of its path descriptor data
structure.

Attributes

Operating System: OS-9

State: System, I/O, and Interrupt

Threads: Safe

Parameters

cb

The control block header.

path

Specify the path number.

path-id

A returned value. It points to the path descriptor.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 321

I_GETSTAT
Get File/Device Status

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct i_getstat_pb {

syscb cb;

path_id path;

u_int16 gs_code;

void *param_blk;

} i_getstat_pb, *I_getstat_pb;

Description

I_GETSTAT is a wildcard call used to handle individual device parameters that are
not uniform on all devices or are highly hardware dependent.

The exact operation of this call depends on the device driver and file manager
associated with the path. A typical use is to determine a terminal’s parameters (such
as echo on/off and delete character). It is often used with I_SETSTAT, which sets the
device operating parameters.

The mnemonics for the status codes are found in the header file funcs.h. Codes 0 -
127 are reserved for Microware’s use. You may define the remaining codes and their
parameter passing conventions. The status codes that are currently defined and the
functions they perform are described in the functions with an SS_ prefix. Supported
getstats include:

Table 6-8. Supported Getstats

Getstat Description
I_GETSTAT, SS_COPYPD Copy Contents of Path Descriptor (All)
I_GETSTAT, SS_CSTATS Get Cache Status Information (RBF)
I_GETSTAT, SS_DEVNAME Return Device Name (All)
I_GETSTAT, SS_DEVOPT Read Device Path Options
I_GETSTAT, SS_DEVTYPE Return Device Type (All)
I_GETSTAT, SS_DSIZE Get Size of SCSI Devices (RBF)
I_GETSTAT, SS_EDT Get I/O Interface Edition Number (All)
I_GETSTAT, SS_EOF Test for End of File (All)
I_GETSTAT, SS_FD Read File Descriptor Sector (RBF, PIPE)
I_GETSTAT, SS_FdAddr Get File Descriptor Block Address for Open File (RBF, PCF)
I_GETSTAT, SS_FDINFO Get Specified File Descriptor Sector (RBF, Pipe)
I_GETSTAT, SS_LUOPT Read Logical Unit Options (All)

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 322

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

cb

The control block header.

path

The path number.

gs_code

The get status code.

param_blk

Point to the parameter block corresponding to the function being performed.
If the get status function does not require a parameter block, param_blk
should be null.

Possible Errors

EOS_UNKSVC

See Also

I_SETSTAT

I_GETSTAT, SS_PARITY Calculate Parity of File Descriptor (RBF)
I_GETSTAT, SS_PATHOPT Read Path Descriptor Option Section (All)
I_GETSTAT, SS_POS Get Current File Position (RBF)
I_GETSTAT, SS_READY Test for Data Ready (RBF, SCF, PIPE)
I_GETSTAT, SS_SIZE Set File Size (RBF, PIPE, PCF)

Table 6-8. Supported Getstats

Getstat Description

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 323

I_GETSTAT, SS_COPYPD
Copy Contents of Path Descriptor (ALL)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_cpypd_pb {
u_int32 size;

void *path_desc;

} gs_cpypd_pb, *Gs_cpypd_pb;

Description

SS_COPYPD copies the contents of the specified path’s path descriptor to the path
descriptor buffer.

Attributes

Operating System: OS-9

State: User, System, I/O, and Interrupt

Threads: Safe

Parameters

size

The number of bytes to copy from the path descriptor. If the size value is
greater than the size of the target path descriptor, size is updated with the
actual size of the path descriptor.

path_desc

Point to the buffer for the path descriptor data.

Possible Errors

EOS_BPNUM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 324

I_GETSTAT, SS_CSTATS
Get Cache Status Information (RBF)

Headers

#include <rbf.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_cstats_pb {

Cachestats cache_inf;

} gs_cstats_pb, *Gs_cstats_pb;

Description

SS_CSTATS returns a copy of the current cachestats structure.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

cache_inf

Point to a structure containing information about RBF caching.

Possible Errors

EOS_BPNUM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 325

I_GETSTAT, SS_DEVNAME
Return Device Name (ALL)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_devname_pb {

u_char *namebuf;

} gs_devname_pb, *Gs_devname_pb;

Description

SS_DEVNAME returns the name of the device associated with the specified path.

Attributes

Operating System: OS-9

State: User, System, I/O, and Interrupt

Threads: Safe

Parameters

namebuf

Point to the buffer containing the device name.

Possible Errors

EOS_BPNUM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 326

I_GETSTAT, SS_DEVOPT
Read Device Path Options

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_dopt_pb {

u_int32 dopt_size;

void *user_dopts;

} gs_dopt_pb, *Gs_dopt_pb;

Description

SS_DEVOPT gets the initial (default) device path options. These options are used for
initializing new paths to the device.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

dopt_size

A returned value. It is the size of the option area.

user_dopts

Point to the list of device path options buffer.

Possible Errors

EOS_BPNUM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 327

I_GETSTAT, SS_DEVTYPE
Return Device Type (ALL)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_devtype_pb {

u_int16 type;

u_int16 class;

} gs_devtype_pb, *Gs_devtype_pb;

Description

SS_DEVTYPE returns the type and class of the device associated with the specified
path number.

The values for the device type and device class are defined in the io.h header file.

Attributes

Operating System: OS-9

State: User, System, I/O, and Interrupt

Threads: Safe

Parameters

type

A returned value. It is the device type.

class

A returned value. It is the device class.

Possible Errors

EOS_BPNUM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 328

I_GETSTAT, SS_DISKFREE
Return Information About RBF Disk Free Space

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_diskfree_pb {

u_int32 bavail;

u_int32 bsize;

u_int32 blocks;

u_int32 bcontig;

} gs_diskfree_pb, *Gs_diskfree_pb;

Description

SS_DISKFREE returns information about RBF disk free space.

Attributes

Operating System: OS-9

State: User and System

Threads: Safe

Parameters

bavail

Set to total number of free blocks on the disk.

bsize

Set to size of blocks used on the disk (256, 512, etc.).

blocks

Set to total number of blocks on the disk.

bcontig

Set to number of blocks in the largest contiguous area.

Possible Errors

EOS_READ

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 329

I_GETSTAT, SS_DSIZE
Get Size of SCSI Devices (RBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_dsize_pb {

u_int32 totblocks,

blocksize;

} gs_dsize_pb, *Gs_dsize_pb;

Description

SS_DSIZE gets information about the size of a SCSI disk drive.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

totblocks

A returned value. It is the total number of blocks on the device.

blocksize

A returned value. It is the size of a disk block in bytes.

Possible Errors

EOS_BPNUM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 330

I_GETSTAT, SS_EDT
Get I/O Interface Edition Number (ALL)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_edt_pb {

u_int32 edition;

} gs_edt_pb, *Gs_edt_pb;

Description

SS_EDT returns the I/O interface edition number of the driver. It validates the
compatibility of drivers and file managers.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

edition

The driver I/O interface edition number.

Possible Errors

EOS_BPNUM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 331

I_GETSTAT, SS_EOF
Test for End of File (ALL)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_eof_pb {

u_int32 eof;

} gs_eof_pb, *Gs_eof_pb;

Description

SS_EOF returns the EOS_EOF error if the current position of the file pointer associated
with the specified path is at the end-of-file. SCF never returns EOS_EOF.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

eof

The end-of-file status of the specified path. A value of 1 indicates end of file.

Possible Errors

EOS_BPNUM

EOS_EOF

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 332

I_GETSTAT, SS_FD
Read File Descriptor Sector (RBF, PIPE)

Headers

#include <types.h>

#include <rbf.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_fd_pb {

u_int32 info_size;

Fd_stats fd_info;

} gs_fd_pb, *Gs_fd_pb;

Description

SS_FD returns a copy of the file descriptor sector for the file associated with the
specified path.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

infosize

The number of bytes of the file descriptor to copy.

fdinfo

Point to the buffer for the file descriptor sector.

Possible Errors

EOS_BPNUM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 333

I_GETSTAT, SS_FdAddr
 Get File Descriptor Block Address for Open File (RBF, PCF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_fdaddr_pb {

u_int32 fd_blkaddr;

} gs_fdaddr_pb, *Gs_fdaddr_pb;

Description

SS_FdAddr returns the file descriptor block address associated with the specified
path number.

Only super users can make this call.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

fd_blkaddr

The block address of the file descriptor.

Possible Errors

EOS_BPNUM

EOS_PERMIT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 334

I_GETSTAT, SS_FDINFO
Get Specified File Descriptor Sector (RBF, PIPE)

Headers

#include <rbf.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_fdinf_pb {

u_int32 info_size,

fd_blk_num;

Fd_stats fd_info;

} gs_fdinf_pb, *Gs_fdinf_pb;

Description

SS_FDINFO returns a copy of the specified file descriptor sector for the file associated
with the specified path.

Typically, SS_FDINFO is used to rapidly scan a directory on a device. You do not need
to specify the path number of the file for which you want the file descriptor.
However, the path number must be an open path on the same device as the file. The
path number typically represents a path to the directory you are currently scanning.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

info_size

Specify the number of bytes of the file descriptor block to copy.

fd_blk_num

Specify the file descriptor sector number to get.

fd_info

Point to the buffer for the file descriptor block.

Possible Errors

EOS_BPNUM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 335

I_GETSTAT, SS_LUOPT
Read Logical Unit Options (ALL)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_luopt_pb {

u_int32 luopt_size;

void *user_luopts;

} gs_luopt_pb, *Gs_luopt_pb;

Description

SS_LUOPT copies the contents of the logical unit options for a path into the options
buffer.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

luopt_size

Size of the options section to copy. luopt_size may not be less than the size of
the file manager’s logical unit option section.

user_luopts

Point to the options buffer.

Possible Errors

EOS_BPNUM

EOS_BUF2SMALL

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 336

I_GETSTAT, SS_PARITY
 Calculate Parity of File Descriptor (RBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_parity_pb {
Fd_status fd;

u_int16 parity;

} gs_parity_pb, *Gs_parity_pb;

Description

SS_PARITY calculates a 32 bit vertical parity for file descriptor structures. This call is
used by utilities creating disk images (format disks) and utilities checking the
integrity of disks.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

fd

Point to the file descriptor block.

parity

The resulting parity.

Possible Errors

EOS_BPNUM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 337

I_GETSTAT, SS_PATHOPT
Read Path Descriptor Option Section (ALL)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_popt_pb {

u_int32 popt_size;

void *user_popts;

} gs_popt_pb, *Gs_popt_pb;

Description

SS_PATHOPT copies the option section of the path descriptor into the variable-sized
area options buffer. You must include rbf.h, sbf.h, and/or scf.h for the
corresponding file managers and to declare popt_size according to the size of the
rbf_opts, sbf_opts, or scf_opts. SS_PATHOPT is typically used to determine the
current settings for functions such as echo and auto line feed.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

popt_size

The size of the path options section to copy.

user_opts

Point to the options buffer.

Possible Errors

EOS_BPNUM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 338

I_GETSTAT, SS_POS
Get Current File Position (RBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_pos_pb {

u_int32 filepos;

} gs_pos_pb, *Gs_pos_pb;

Description

SS_POS returns the current position of the file pointer associated with the specified
path.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

filepos

The file position in byte-size units.

Possible Errors

EOS_BPNUM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 339

I_GETSTAT, SS_READY
Test for Data Ready (RBF,SCF, PIPE)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_ready_pb {

u_int32 incount;

} gs_ready_pb, *Gs_ready_pb;

Description

SS_READY checks for data available to be read on the specified path. The number of
characters available to be read is returned in the incount parameter. RBF devices do
not return the EOS_NRDY error. SS_READY returns the number of bytes left in the file
and SUCCESS.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

incount

The number of characters available to be read.

Possible Errors

EOS_BPNUM

EOS_NRDY

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 340

I_GETSTAT, SS_SIZE
Set File Size (RBF, PIPE, PCF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_size_pb {

u_int32 filesize;

} gs_size_pb, *Gs_size_pb;

Description

SS_SIZE gets the size of the file associated with the open path to the specified
filesize.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

filesize

The new size of the file in bytes.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 341

I_GIOPROC
Get Pointer to I/O Process Descriptor

Headers

#include <io.h>

Parameter Block Structure

typedef struct i_cioproc_pb {

syscb cb;

process_id proc_id;

Io_proc proc_desc;

} i_cioproc_pb, *I_cioproc_pb;

Description

I_GIOPROC returns a pointer to the I/O process descriptor for the process specified.

Attributes

Operating System: OS-9

State: System and I/O

Threads: Safe

Parameters

cb

The control block header.

proc_id

Specify the process ID of the process.

proc_desc

A returned value. It points to the I/O process descriptor.

Possible Errors

EOS_IPRCIDT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 342

I_IODEL
Check for Use of I/O Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct i_iodel_pb {

syscb cb;

Mh_com mod_head;

} i_iodel_pb, *I_iodel_pb;

Description

I_IODEL is executed whenever the kernel unlinks a file manager, device driver, or
device descriptor module. It is used to determine if the I/O system is still using the
module.

Attributes

Operating System: OS-9

State: System and I/O

Threads: Safe

Parameters

cb

The control block header.

mod_head

Point to the module header.

Possible Errors

EOS_MODBSY

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 343

I_IOEXIT
Terminate I/O for Exiting Process

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_ioexit_pb {

syscb cb;

process_id proc_id;

u_int32 path_cnt;

} i_ioexit_pb, *I_ioexit_pb;

Description

I_IOEXIT is executed whenever the kernel terminates or chains to a process.

Attributes

Operating System: OS-9

State: System and I/O

Threads: Safe

Parameters

cb

The control block header.

proc_id

Specify the process ID.

path_cnt

Specify the number of I/O paths.

If the most significant bit of path_cnt is reset, the process’ default data and
execution directory paths and all other open paths in the path translation
table are closed. The I/O process descriptor is also deallocated.

If the most significant bit of path_cnt is set, the remaining bits specify the
number of paths to leave open. The default directory paths are not closed, and
the I/O process descriptor is not deallocated.

Possible Errors

EOS_IPRCID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 344

I_IOFORK
Set Up I/O for New Process

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_iofork_pb {

syscb cb;

process_id par_proc_id,

new_proc_id;

u_int32 path_cnt;

} i_iofork_pb, *I_iofork_pb;

Description

I_IOFORK is executed whenever the kernel creates a new process. I_IOFORK creates
an I/O process descriptor for the new process. IOMAN uses I/O process descriptors
to maintain information about a process’ I/O. Each I/O process descriptor contains
the user-to-system path number translation table and path numbers for the process’
default data and execution directories.

Attributes

Operating System: OS-9

State: System and I/O

Threads: Safe

Parameters

cb

The control block header.

par_proc_id

The parent’s process ID.

new_proc_id

The process ID of the new process.

path_cnt

The number of I/O paths the child is to inherit from its parent.

Possible Errors

EOS_NORAM

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 345

I_MAKDIR
Make New Directory

Headers

#include <modes.h>

Parameter Block Structure

typedef struct i_makdir_pb {

syscb cb;

u_char *name;

u_int16 mode;

u_int32 perm,

size;

} i_makdir_pb, *I_makdir_pb;

Description

I_MAKDIR creates and initializes a new directory as specified by the pathlist.
I_MAKDIR is the only way to create a new directory file. The new directory file
contains only entries for itself (.) and its parent directory (..). I_MAKDIR fails on
non-multi-file devices. If the execution bit is set, OS-9 begins searching for the file in
the working execution directory, unless the pathlist begins with a slash. If the
pathlist begins with a slash, it is used as the pathlist.

The caller becomes the owner of the directory. I_MAKDIR does not return a path
number because directory files are not opened by this request. You should use
I_OPEN to open a directory.

The new directory automatically has its directory bit set in the access permission
attributes. The remaining attributes are specified by the bytes passed in the mode and
perm parameters. The individual bits for these parameters are defined as follows (if
the bit is set, access is permitted):

Table 6-9. Mode and Attribute Bits for I_MAKDIR

Mode Bits Attribute Bits
S_IREAD = read S_IREAD = owner read permission
S_IWRITE = write S_IWRITE = owner write permission
S_IEXEC = execute S_IEXEC = owner exec permission
S_ITRUNC = truncate on open S_IGREAD = group read permission
S_ICONTIG = ensure contig S_IGWRITE = group write permission
S_IEXCL = do not recreate S_IGEXEC = group exec permission
S_IAPPEND = append to file S_IOREAD = public read permission
S_ISHARE = exclusive use S_IOWRITE = public write permission
S_ISIZE = set initial size S_IOEXEC = public exec permission

S_ISHARE = file is non-sharable

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 346

• If the S_IEXEC (execute) bit of the access mode byte is set, the working execution
directory is searched first instead of the working data directory.

• If the S_IEXCL mode bit is not set and the target file already exists, the file is
truncated to zero length.

• If the S_ICONTIG mode bit is set, the space for the file is allocated from a single
contiguous block.

• If the S_ITRUNC mode bit is set and the target file already exists, the file is
truncated to zero length.

• If the S_IAPPEND mode bit is set and the target file already exists, the file is
opened and the associated file pointer points to the end of the file.

• If the S_ISHARE mode bit is set, the opening process has exclusive access to the
file.

• If the S_ISIZE mode bit is set, it is assumed the size parameter contains the
initial file size of the target file.

Attributes

Operating System: OS-9

State: User and I/O

Threads: Safe

Parameters

cb

The control block header.

name

Point to the pathlist.

mode

Specify the access mode.

perm

Specify the access permissions.

size

Specify the initial allocation size. (optional)

Possible Errors

EOS_BPNAM

EOS_CEF

EOS_FULL

See Also

I_OPEN

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 347

I_OPEN
Open Path to File or Device

Headers

#include <types.h>

#include <modes.h>

Parameter Block Structure

typedef struct i_open_pb {

syscb cb;

u_char *name;

u_int16 mode;

path_id path;

} i_open_pb, *I_open_pb;

Description

I_OPEN opens a path to an existing file or device as specified by the pathlist. I_OPEN
returns a path number used in subsequent service requests to identify the path. If the
file does not exist, an error is returned.

A non-directory file may be opened with no bits set. This allows you to use the
I_GETSTAT system requests to examine characteristics such as attributes and size, but
does not permit any actual I/O on the path.
For RBF devices, use Read mode instead of Update if the file is not going to be
modified. This inhibits record locking and can dramatically improve system
performance if more than one user is accessing the file. The access mode must
conform to the access permissions associated with the file or device (see I_CREATE).

Refer to modes.h for more information about the modes available for I_OPEN.
If the execution bit mode is set, OS-9 searches for the file in the working execution
directory, unless the pathlist begins with a slash. If the pathlist begins with a slash, it
uses the entire pathlist and opens the file or device with the execute bit set.

I_OPEN searches only for executables in the execution directory if the FAM_EXEC
access mode is used. The execution directory is designed for the location of
executable modules, not data modules. The access determination is done by

Table 6-10. Mode for I_OPEN

Mode Description
S_IREAD Read
S_IWRITE Write
S_IEXEC Execute
S_ISHARE Open file for non-sharable use
S_IFDIR Open directory file

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 348

IOMAN based on the file permissions. To override this behavior, add S_IEXEC to the
file creation permissions.

If the single user bit is set, the file is opened for non-sharable access even if the file is
sharable.

Files can be opened by several processes (users) simultaneously. Devices have an
attribute specifying whether or not they are sharable on an individual basis.

I_OPEN always uses the lowest path number available for the process.

Directory files may be opened only if the directory bit (S_IFDIR) is set in the access
mode.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

cb

The control block header.

name

Point to the path name of the existing file or device.

mode

Specify which subsequent read and/or write operations are permitted as
follows (if the bit is set, access is permitted).

path

The resulting path number.

Possible Errors

EOS_BMODE

EOS_BPNAM

EOS_FNA

EOS_PNNF

EOS_PTHFUL

EOS_SHARE

See Also

I_ATTACH

I_CLOSE

I_CREATE

I_GETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 349

I_RDALST
Copy System Alias List

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_rdalst_pb {

syscb cb;

u_char *buffer;

u_int32 count;

} i_rdalst_pb, *I_rdalst_pb;

Description

I_RDALST copies the system alias list to the caller’s buffer. At most, count bytes are
copied to the buffer. Each alias entry is null terminated.

The I_RDALST system call is used by the alias utility to display the list of aliases
currently active in the system.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

cb

The control block header.

buffer

Point to the buffer into which to copy the alias list.

count

The total number of bytes to copy. count is updated with the total number of
bytes copied.

Possible Errors

EOS_BPADDR

See Also

I_ALIAS

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 350

I_READ
Read Data from File or Device

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_read_pb {

syscb cb;

path_id path;

u_char *buffer;

u_int32 count;

} i_read_pb, *I_read_pb;

Description

I_READ reads a specified number of bytes from the specified path number. The path
must previously have been opened in read or update mode. The data is returned
exactly as read from the file/device without additional processing or editing such as
backspace and line delete. If not enough data is in the file to satisfy the read request,
fewer bytes are read than requested, but an end-of-file error is not returned.

After all data in a file has been read, the next I_READ service request returns an end-
of-file error.

The keyboard X-ON/X-OFF characters may be filtered out of the input data on SCF-
type devices unless the corresponding entries in the path descriptor have been set to
zero. You may want to modify the device descriptor so these path descriptor values are
initialized to zero when the path is opened. SCF devices usually terminate the read
request when a carriage return is reached.
The number of bytes requested are read unless the end-of-file is reached, an end-of-
record occurs (SCF only), the read times out (SCF only), or an error condition
occurs.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

cb

The control block header.

path

Specify the path number.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 351

buffer

Point to the data buffer.

count

The number of bytes to read. Upon completion, count is updated with the
number of bytes actually read.

Possible Errors

EOS_BMODE

EOS_BPNUM

EOS_EOF

EOS_READ

See Also

I_READLN

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 352

I_READLN
Read Text Line with Editing

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_readln_pb {

syscb cb;

path_id path;

u_char *buffer;

u_int32 count;

} i_readln_pb, *I_readln_pb;

Description

I_READLN reads the specified number of bytes from the input file or device until an
end-of-line character is encountered. On SCF-type devices, I_READLN also causes line
editing such as backspacing, line delete, echo, and automatic line feed to occur.
Some SCF devices may limit the number of bytes read with one call.

SCF requires the last byte entered be an end-of-record character (normally carriage
return). If more data is entered than the maximum specified, it is not accepted and a
PD_OVF character (normally bell) is echoed. For example, an I_READLN of exactly one
byte accepts only a carriage return to return without error and beeps when other
keys are pressed. An I_READLN to SCF returns the number of bytes requested unless
the read times out or an error occurs.

After all data in a file has been read, the next I_READLN service request returns an
end of file error.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

cb

The control block header.

path

Specify the path number.

buffer

Point to the data buffer.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 353

count

The number of bytes to read. Upon completion, count is updated with the
number of bytes actually read.

Possible Errors

EOS_BMODE

EOS_BPNUM

EOS_EOF

EOS_READ

See Also

I_READ

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 354

I_SEEK
Reposition Logical File Pointer

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_seek_pb {

syscb cb;

path_id path;

u_int32 offset;

} i_seek_pb, *I_seek_pb;

Description

I_SEEK repositions the path’s file pointer. The file pointer is the 32-bit address of the
next byte in the file to be read or written. I_SEEK usually does not initiate physical
positioning of the media. You can perform a seek to any value, even if the file is not
large enough. Subsequent write requests automatically expand the file to the
required size, if possible. Read requests return an end-of-file condition.

A seek to address zero is the same as a rewind operation. Seeks to non-random
access devices are usually ignored and return without error.

On RBF devices, seeking to a new disk sector rewrites the internal sector buffer to
disk if it has been modified. I_SEEK does not change the state of record locks.
Beware of seeking to a negative position. RBF interprets negatives as large positive
numbers.

Attributes

Operating System: OS-9
State: User, System, and I/O
Threads: Safe

Parameters

cb

The control block header.

path

Specify the path number.

position

Specify the new position.

Possible Errors

EOS_BPNUM

See Also

I_READ I_WRITE

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 355

I_SETSTAT
Set File/Device Status

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct i_seek_pb {

syscb cb;

path_id path;

u_int16 ss_code;

void *param_blk;

} i_seek_pb, *I_setstat_pb;

Description

I_SETSTAT is a wildcard call used to handle individual device parameters that are
not uniform on all devices or are highly hardware dependent.

Typically, set status calls are used to set a terminal’s parameters for functions such
as backspace character, delete character, echo on/off, null padding, and paging.
I_SETSTAT is commonly used with I_GETSTAT which reads the device’s operating
parameters. The mnemonics for the status codes are found in the header file
funcs.h. Codes 0-127 are reserved for Microware’s use. Users may define the
remaining codes and their parameter passing conventions.

Table 6-11. Supported SetStats

Setstat Description
I_SETSTAT, SS_ATTR Set File Attributes (RBF, Pipe, PCF)
I_SETSTAT, SS_BREAK Break Serial Connection (SCF)
I_SETSTAT, SS_CACHE Enable/Disable RBF Caching (RBF)
I_SETSTAT, SS_DCOFF Send Signal When Data Carrier Detect Line Goes False

(SCF)
I_SETSTAT, SS_DCON Send Signal When Data Carrier Detect Line Goes True

(SCF)
I_SETSTAT, SS_DEVOPT Set Device Path Options (Pipe, SBF, SCF)
I_SETSTAT, SS_DSRTS Disable RTS Line
I_SETSTAT, SS_ENRTS Enable RTS Line
I_SETSTAT, SS_ERASE Erase Tape (SBF)
I_SETSTAT, SS_FD Write File Descriptor Sector (RBF, PCF, PIPE)
I_SETSTAT, SS_FILLBUFF Fill Path Buffer With Data (SCF)
I_SETSTAT, SS_FLUSHMAP Flush Cached Bit Map Information (RBF)
I_SETSTAT, SS_HDLINK Make Hard Link to Existing File (RBF)

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 356

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

cb

The control block header.

path

The path number.

ss_code

The set status code.

param_blk

Point to the parameter block corresponding to the function being performed.
If the set status function does not require a parameter block, param_blk
should be NULL.

Possible Errors

EOS_UNKSVC

See Also

I_GETSTAT

I_SETSTAT, SS_LOCK Lock Out Record (RBF)
I_SETSTAT, SS_LUOPT Write Logical Unit Options (All)
I_SETSTAT, SS_PATHOPT Write Option Section of Path Descriptor (All)
I_SETSTAT, SS_RELEASE Release Device (SCF, PIPE)
I_SETSTAT, SS_RENAME Rename File (RBF, PIPE, SCF)
I_SETSTAT, SS_RESET Restore Head to Track Zero (RBF, SBF, PCF)
I_SETSTAT, SS_RETEN Re-tension Pass on Tape Device (SBF)
I_SETSTAT, SS_RFM Skip Tape Marks (SBF)
I_SETSTAT, SS_SENDSIG Send Signal on Data Ready (SCF, PIPE)
I_SETSTAT, SS_SIZE Set File Size (RBF, PIPE, PCF)
I_SETSTAT, SS_SKIP Skip Blocks (SBF)
I_SETSTAT, SS_SKIPEND Skip to End of Tape (SBF)
I_SETSTAT, SS_TICKS Wait Specified Number of Ticks for Record Release (RBF)
I_SETSTAT, SS_WFM Write Tape Marks (SBF)
I_SETSTAT, SS_WTRACK Write (Format) Track (RBF)

Table 6-11. Supported SetStats

Setstat Description

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 357

I_SETSTAT, SS_ATTR
Set File Attributes (RBF, PIPE, PCF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_attr_pb {

u_int32 attr;

} ss_attr_pb, *Ss_attr_pb;

Description

SS_ATTR changes a file’s attributes to the new value, if possible. You cannot set the
directory bit of a non-directory file or clear the directory bit of a non-empty
directory.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

attr

Specify the file attributes to change.

Possible Errors

EOS_BPNUM

See Also

I_GETSTAT

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 358

I_SETSTAT, SS_BREAK
Break Serial Connection (SCF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

Description:

SS_BREAK breaks a serial connection.

The driver is responsible for implementing this call.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 359

I_SETSTAT, SS_CACHE
Enable/Disable RBF Caching (RBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_cache_pb {

u_int32 enblflag,

drvscize;

} ss_cache_pb, *Ss_cache_pb;

Description

SS_CACHE enables and disables RBF caching on an RBF device.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

enblflag

The cache enable/disable flag.

• If enblflag is zero, caching is disabled.

• If enblflag is non-zero, caching is enabled.

drvcsize

The memory size for the cache.

Possible Errors

EOS_CEF

EOS_PERMIT

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 360

I_SETSTAT, SS_DCOFF
Send Signal When Data Carrier Detect Line Goes False (SCF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_dcoff_pb {

signal_code signal;

} ss_dcoff_pb, *Ss_dcoff_pb;

Description

When a modem has finished receiving data from a carrier, the Data Carrier Detect
line becomes false. SS_DCOFF sends a signal code when this happens. I_SETSTAT,
SS_DCON sends a signal when the line becomes true.

The driver is responsible for implementing this call.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

signal

The signal code to send.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT, SS_DCON

I_SETSTAT, SS_RELEASE

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 361

I_SETSTAT, SS_DCON
Send Signal When Data Carrier Detect Line Goes True (SCF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_dcon_pb {

signal_code signal;

} ss_dcon_pb, *Ss_dcon_pb;

Description

When a modem receives a carrier, the Data Carrier Detect line becomes true.
SS_DCON sends a signal code when this happens. I_SETSTAT, SS_DCOFF sends a signal
when the line becomes false.

The driver is responsible for implementing this call.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

signal

The signal code to send.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT, SS_DCOFF

I_SETSTAT, SS_RELEASE

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 362

I_SETSTAT, SS_DEVOPT
Set Device Path Options (PIPE, SBF, SCF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_dopt_pb {

u_int dopt_size;

void *user_dopts;

} ss_dopt_pb, *Ss_dopt_pb;

Description

SS_DOPT sets the initial (default) device path options. These options initialize new
paths to the device.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

dopt_size

Specify the size of the options area to copy.

user_dopts

Point to the default options for the device.

Possible Errors

EOS_BPNUM

See Also

I_GETSTAT

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 363

I_SETSTAT, SS_DSRTS
Disable RTS Line

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

This call does not use a substructure to set the status parameter block.

Description

SS_DSRTS disables the RTS line.

The driver is responsible for implementing this call.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT, SS_ENRTS

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 364

I_SETSTAT, SS_ENRTS
Enable RTS Line

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_dcoff_pb {

signal_code signal;

} ss_dcoff_pb, *Ss_dcoff_pb;

Description

SS_ENRTS asserts the RTS line.

The driver is responsible for implementing this call.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

signal is the signal code to send.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT, SS_DSRTS

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 365

I_SETSTAT, SS_ERASE
Erase Tape (SBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_erase_pb {

u_int32 blks;

} ss_erase_pb, *Ss_erase_pb;

Description

SS_ERASE erases a portion of the tape. The amount of tape erased depends on the
hardware capabilities.

This is dependent on both the hardware and the driver.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

blks

Specify the number of blocks to erase. If blks is -1, SBF erases until the end-
of-tape is reached. If blks is positive, SBF erases the amount of tape equivalent
to that number of blocks.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 366

I_SETSTAT, SS_FD
Write File Descriptor Sector (RBF, PCF, PIPE)

Headers

#include <rbf.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_fd_pb {

Fd_stats fd_info;

} ss_fd_pb, *Ss_fd_pb;

Description

SS_FD changes the file descriptor sector data. The path must be open for write.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

fd_info

Point to the file descriptor’s buffer.

You can only change fd_group, fd_owner, and the time stamps fd_atime,
fd_mtime, and fd_utime. These are the only fields written back to the disk.
These fields are defined in the fd_stats structure in rbf.h. Only the super
user can change the file’s owner ID.

Possible Errors

EOS_BPNUM

See Also

I_GETSTAT

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 367

I_SETSTAT, SS_FILLBUFF
Fill Path Buffer With Data (SCF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_fillbuff_pb {

u_int32 size;

u_char *user_buff;

} ss_fillbuff_pb, *Ss_fillbuff_pb;

Description

SS_FILLBUFF fills the input path buffer with the data in buffer.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

size

Specify the size of the buffer (amount of data to copy).

user_buff

Point to the data buffer.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 368

I_SETSTAT, SS_FLUSHMAP
Flush Cached Bit Map Information (RBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

Description

SS_FLUSHMAP flushes the cached bit map information for an RBF device. This
normally would only be performed after the bit map on the disk is changed by a
utility such as format.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 369

I_SETSTAT, SS_HDLINK
Make Hard Link to Existing File (RBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_link_pb {

u_char *link_path;

} ss_link_pb, *Ss_link_pb;

Description

SS_HDLINK creates a new directory entry specified by link_path. This directory entry
points to the file descriptor block of the open file specified by path in the I_SETSTAT
parameter block. SS_HDLINK updates the pathlist pointer.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

link_path

Point to the new name for the directory entry.

Possible Errors

EOS_BPNUM

EOS_CEF

EOS_PNNF

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 370

I_SETSTAT, SS_LOCK
Lock Out Record (RBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_lock_pb {

u_int32 size;

} ss_lock_pb, *Ss_lock_pb;

Description

SS_LOCK locks out a section of the file from the current file pointer position up to the
specified number of bytes.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

size

The size of the section to lockout. If size is zero, all locks are removed (record
lock, EOF lock, and file lock). If $ffffffff bytes are requested, the entire file is
locked out regardless of the file pointer’s location. This is a special type of file
lock that remains in effect until released by an SS_LOCK with size set to zero, a
read or write of zero bytes, or the file is closed.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 371

I_SETSTAT, SS_LUOPT
Write Logical Unit Options (ALL)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_luopt_pb {

u_int32 luopt_size;

void *user_luopts;

} ss_luopt_pb, *Ss_luopt_pb;

Description

SS_LUOPT writes the logical unit options for a path to a buffer.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

luopt_size

Specify the buffer size of the logical unit options area.

user_luopts

Point to the logical unit options.

Possible Errors

EOS_BPNUM

EOS_BUF2SMALL

See Also

I_GETSTAT

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 372

I_SETSTAT, SS_PATHOPT
Write Option Section of Path Descriptor (ALL)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_popt_pb {

u_int popt_size;

void *user_popts;

} ss_popt_pb, *Ss_popt_pb;

Description

SS_PATHOPT writes the option section of the path descriptor from the status packet
pointed to by user_opts. Typically, SS_PATHOPT sets the device operating parameters
(such as echo and auto line feed). This call is handled by the file managers, and only
copies values appropriate for user programs to change.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

popt_size

Specify the buffer size.

user_popts

Point to the options buffer.

Possible Errors

EOS_BPNUM

EOS_BUF2SMALL

See Also

I_GETSTAT

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 373

I_SETSTAT, SS_RELEASE
Release Device (SCF, PIPE)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

Description

SS_RELEASE releases the device from any SS_SENDSIG, SS_DCON, or SS_DCOFF request
made by the calling process.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT, SS_DCOFF

I_SETSTAT, SS_DCON

I_SETSTAT, SS_SENDSIG

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 374

I_SETSTAT, SS_RENAME
Rename File (RBF, PIPE, SCF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_rename_pb {

char *newname;

} ss_rename_pb, *Ss_rename_pb;

Description

SS_RENAME changes the file name of the directory entry associated with the open
path. You cannot change a file’s name to that of a file already existing in a directory.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

newname

Point to the file’s new name.

Possible Errors

EOS_CEF

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 375

I_SETSTAT, SS_RESET
Restore Head to Track Zero (RBF, SBF, PCF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

Description

For RBF and PCF, SS_RESET directs the disk head to track zero. It is used for
formatting and error recovery. For SBF, SS_RESET rewinds the tape.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 376

I_SETSTAT, SS_RETEN
Re-tension Pass on Tape Drive (SBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

Description

SS_RETEN performs a re-tension pass on the tape drive.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Possible Errors

EOS_BPNUM

EOS_NOTRDY

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 377

I_SETSTAT, SS_RFM
Skip Tape Marks (SBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_rfm_pb {
int32 cnt;

} ss_rfm_pb, *Ss_rfm_pb;

Description

SS_RFM skips the number of tape marks specified.

Parameters

cnt

Specify the number of tape marks to skip. If cnt is negative, the tape is
rewound the specified number of marks.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Possible Errors

EOS_BPNUM

EOS_NOTRDY

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 378

I_SETSTAT, SS_SENDSIG
Send Signal on Data Ready (SCF, PIPE)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_sendsig_pb {

signal_code signal;

} ss_sendsig_pb, *Ss_sendsig_pb;

Description

SS_SENDSIG sets up a signal to be sent to a process when an interactive device or
pipe has data ready. SS_SENDSIG must be reset each time the signal is sent. The
device or pipe is considered busy and returns an error if any read request arrives
before the signal is sent. Write requests to the device are allowed in this state.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

signal

The signal to send.

Possible Errors

EOS_BMODE

EOS_BPNUM

EOS_NOTRDY

See Also

I_SETSTAT, SS_RELEASE

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 379

I_SETSTAT, SS_SIZE
Set File Size (RBF, PIPE, PCF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_size_pb {

u_int32 filesize;

} ss_size_pb, *Ss_size_pb;

Description

SS_SIZE sets the size of the file associated with the open path to the specified
filesize.

If the specified size is smaller than the current size, the data beyond the new end-of-
file is lost.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

filesize

The new size of the file in bytes.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 380

I_SETSTAT, SS_SKIP
Skip Blocks (SBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_skip_pb {

int32 blks;

} ss_skip_pb, *Ss_skip_pb;

Description

SS_SKIP skips the specified number of blocks.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

blks

Specify the number of blocks to skip. If blks is negative, the tape is rewound
the specified number of blocks.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 381

I_SETSTAT, SS_SKIPEND
Skip to End of Tape (SBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

Description

SS_SKIPEND skips the tape to the end of data. This enables you to append data to
tapes on cartridge-type tape drives.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Possible Errors

EOS_BPNUM

EOS_NOTRDY

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 382

I_SETSTAT, SS_TICKS
Wait Specified Number of Ticks for Record Release (RBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_ticks_pb {

u_int32 delay;

} ss_ticks_pb, *Ss_ticks_pb;

Description:

Normally, if a read or write request is issued for part of a file locked out by another
user, RBF sleeps indefinitely until the conflict is removed. SS_TICKS may be used to
return an error (EOS_LOCK) to the user program if the conflict still exists after the
specified number of ticks have elapsed.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

delay

Specify the delay interval. The delay interval is used directly as a parameter to
RBF’s conflict sleep request.

Possible Errors

EOS_BPNUM

EOS_LOCK

See Also

I_SETSTAT

Value Description
0 The process sleeps until the record is released. This is RBF’s default.
1 Returns an error if the record is not released immediately.
Other Any other value specifies number of system clock ticks to wait until the

conflict area is released. If the high order bit is set, the lower 31 bits
are converted from 1/256 second to ticks before sleeping. This allows
programmed delays to be independent of the system clock rate.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 383

I_SETSTAT, SS_WFM
Write Tape Marks (SBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_wfm_pb {

u_int32 cnt;

} ss_wfm_pb, *Ss_wfm_pb;

Description

SS_WFM writes the specified number of tape marks at the current position.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

cnt

Specify the number of tape marks to write.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 384

I_SETSTAT, SS_WTRACK
Write (Format) Track (RBF)

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_wtrack_pb {

void *trkbuf,

*ilvtbl;

u_int32 track,

head,

interleave;

} ss_wtrack_pb, *Ss_wtrack_pb;

Description

SS_WTRACK causes a format track operation (used with most floppy disks) to occur.
For hard or floppy disks with a format entire disk command, this formats the entire
media only when the track number and side number are both zero. The interleave
table contains byte entries of LBNs ordered to match the requested interleave offset.
The path descriptor should be used with the track and side numbers to determine
what density and how many blocks a certain track should have.

This function is implemented by the driver. Only super user programs are allowed
to issue this command.

Attributes

Operating System: OS-9

State: User, System, and I/O

Threads: Safe

Parameters

trkbuf

Point to the track buffer.

ilvtbl

Point to the interleave table. The interleave table contains byte entries of
LBNs ordered to match the requested interleave offset.

track

The track number.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 385

head

The side number.

interleave

The interleave value.

Possible Errors

EOS_FMTERR

EOS_FORMAT

See Also

I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 386

I_SGETSTAT
GetStat Call Using System Path Number

Headers

#include <types.h>

#include <sg_codes.h>

Parameter Block Structure

typedef struct i_getstat_pb {

syscb cb;

path_id path;

u_init16 gs_code;

void *param_blk;

} i_getstat_pb, *I_getstat_pb;

Description

I_SGETSTAT is a wildcard call used to handle individual device parameters that are
not uniform on all devices or are highly hardware dependent. I_SGETSTAT provides
the same functionality as I_GETSTAT except the path number for I_SGETSTAT is
assumed to be a system path number and not a user path number.

Attributes

Operating System: OS-9
State: User, System, and I/O
Threads: Safe

Parameters

cb

The control block header.

path

The system path number.

gs_code

The get status code.

param_blk

Point to the parameter block corresponding to the function being performed.
If the get status function does not require a parameter block param_blk should
be NULL.

Possible Errors

EOS_UNKSVC

See Also

I_GETSTAT I_SETSTAT

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 387

I_TRANPN
Translate User Path to System Path

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_tranpn_pb {

syscb cb;

process_id proc_id;

path_id user_path,

sys_path;

} i_tranpn_pb, *I_tranpn_pb;

Description

I_TRANPN translates a user path number to a system path number. System-state
processes use this call to access the user paths (standard I/O paths).

Attributes

Operating System: OS-9

State: System and I/O

Threads: Safe

Parameters

cb

The control block header.

proc_id

Specify the process ID.

user_path

Specify the user path to translate.

sys_path

The mapped system path.

Possible Errors

EOS_BPNUM

EOS_IPRCID

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 388

I_WRITE
Write Data to File or Device

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_write_pb {

syscb cb;

path_id path;

u_char *buffer;

u_int32 count;

} i_write_pb, *I_write_pb;

Description

I_WRITE outputs bytes to a file or device associated with the specified path number.
The path must have been opened or created in the write or update access modes.

Data is written to the file or device without processing or editing. If data is written
past the present end-of-file, the file is automatically expanded.

On RBF devices, any locked record is released.

Attributes

Operating System: OS-9
State: User, System, and I/O
Threads: Safe

Parameters

cb

The control block header.

path

The specified path number for the file or device.

buffer

Point to the data buffer.

count

The number of bytes written.

Possible Errors

EOS_BMODE

EOS_BPNUM

EOS_WRITE

See Also

I_CREATE I_OPEN I_WRITELN

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 389

I_WRITELN
Write Line of Text with Editing

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_writln_pb {

syscb cb;

path_id path;

u_int32 count

u_char *buffer;

} i_writln_pb, *I_writln_pb;

Description

I_WRITELN outputs bytes to a file or device associated with the specified path
number. The path must have been opened or created in write or update access
modes. I_WRITELN writes data until it encounters a carriage return character or
count bytes. Line editing is also activated for character-oriented devices such as
terminals and printers. The line editing refers to functions such as auto line feed and
null padding at end-of-line.

The number of bytes actually written (returned in count) does not reflect any
additional bytes added by file managers or device drivers for device control. For
example, if SCF appends a line feed and nulls after carriage return characters, these
extra bytes are not counted.

On RBF devices, any locked record is released.

Attributes

Operating System: OS-9
State: User, System, and I/O
Threads: Safe

Parameters

cb

The control block header.

path

The path number of the file or device.

buffer

Point to the data buffer.

count

The number of bytes written.

Chapter 6: OS-9 System Calls

OS-9 Technical Manual 390

Possible Errors

EOS_BMODE

EOS_BPNUM

EOS_WRITE

See Also

I_CREATE

I_OPEN

I_WRITE

The OS-9 Porting Guide (the SCF Drivers line editing section)

391

A Example Code

Use the examples in this section as guides for creating your own modules. These
examples should not be considered the most current software. Software for your
individual system may be different.

This appendix includes the following topics:

• Sysgo

• Signals: Example Program

• Alarms: Example Program

• Events: Example Program

• Semaphores: Example Program

• Usemaphores: Example Program

• The Subroutine Library

• Trap Handlers

Appendix A: Example Code

OS-9 Technical Manual 392

Sysgo
Sysgo can be configured as the first user process started after the system start-up
sequence. Its standard I/O is on the system console device.

Sysgo executes as follows:

1. Change to the CMDS execution directory on the system device.

2. Execute the start-up file (as a script) from the SYS directory on the root of the
system device.

3. Fork a shell on the system console.

4. Wait for that shell to terminate and then fork it again. Unless Sysgo dies, a shell
is always running on the system console.

The standard Sysgo module for disk systems cannot be used on non-disk systems,
but is easy to customize.

_asm("_sysedit: equ 2");

#include <const.h>

#include "defsfile"

/* global variables and declarations */

u_int32 sighandler(), /* intercept handler */

 os9fork(); /* used by os9exec */

void errexit(), /* error printing routine */

 out3dec(); /* print three decimal digits */

error_code lerrmsg(); /* print the error message */

char *cmdsdir = "CMDS", /* the commands directory */

 startup = "SYS/startup", / the startup script */

 shell = "Shell"; / the shell command name */

/* main - main program body */

void main(argc, argv)

register u_int32 argc; /* number of arguments */

register u_char *argv[]; /* the arguments themselves */

{

 register path_id stdid_dup; /* duped stdin ID */

 register process_id shellpid; /* the process ID */

 char *envp[1]; /* environment variables */

 static char *args[] = { /* argv for forked shell */

 "shell",

 "-npxt\n",

 NULL

 };

Appendix A: Example Code

OS-9 Technical Manual 393

 intercept(sighandler); /* catch signals */

 if (chxdir(cmdsdir) == ERROR)

 errexit(errno, "can’t change to commands directory");

 if ((stdid_dup = dup(_fileno(stdin))) == ERROR)

 errexit(errno, "can’t duplicate standard input path");

 close(_fileno(stdin)); /* close stdin path */

 if (open(startup, S_IREAD) == ERROR) {

 lerrmsg(errno, "can’t open startup due to error #");

 dup(stdid_dup); /* reset stdin path */

 }

 envp[0] = NULL; /* initialize environments */

 for (;;) {

 if (os9exec(os9fork, shell, args, envp, 0, 0, 3) == ERROR)

 errexit(errno, "can’t fork shell");

 close(_fileno(stdin)); /* close old stdin */

 dup(stdid_dup); /* restore initial stdin */

 wait(0); /* wait for it to die */

 args[1] = "\n"; /* no more special options */

 }

}

/* sighandler - ignore signals so we stay alive */

u_int32 sighandler(sigval)

register u_int32 sigval; /* the signal */

{

 return SUCCESS; /* don’t quit */

}

/* errexit - print error message and leave */

void errexit(error, msg)

register error_code error; /* the error that caused us to quit */

register char *msg; /* our explanation */

{

 write(_fileno(stdout), msg, strlen(msg));

 exit(lerrmsg(error, " due to error #"));

}

/* lerrmsg - print error message and number */

error_code lerrmsg(error, msg)

register error_code error; /* the error code */

register char *msg; /* the error message */

Appendix A: Example Code

OS-9 Technical Manual 394

{

 write(_fileno(stdout), msg, strlen(msg));

 out3dec(error >> 16);

 write(_fileno(stdout), ":", 1);

 out3dec(error & 0xffff);

 writeln(_fileno(stdout), "\n", 1);

}

/* out3dec - output 3 decimal digits */

void out3dec(num)

register u_int32 num; /* the number to print */

{

 register u_int32 i, /* a counter */

 j; /* divisor */

 char buf[3]; /* the buffer for the characters */

 for (i = 0, j = 100; i < 3; i++, j /= 10)

 buf[i] = (num / j) + 0x30; /* convert to decimal */

 write(_fileno(stdout), buf, 3);

}

Signals: Example Program
The following program demonstrates a subroutine that reads a \n terminated string
from a terminal with a ten second timeout between the characters. This program
illustrates signal usage, but does not contain any error checking.

The _ss_ssig(path, value) library call notifies the operating system to send the
calling process a signal with signal code value when data is available on path. If
data is already pending, a signal is sent immediately. Otherwise, control is returned
to the calling program and the signal is sent when data arrives.

#include <stdio.h>

#include <errno.h>

#define TRUE 1

#define FALSE 0

#define GOT_CHAR 2001

short dataready; /* flag to show that signal was received */

/* sighand - signal handling routine for this process */

sighand(signal)

register int signal;

Appendix A: Example Code

OS-9 Technical Manual 395

{

 switch(signal) {

 /* ^E or ^C? */

 case 2:

 case 3:

 _errmsg(0,"termination signal received\n");

 exit(signal);

 /* Signal we’re looking for? */

 case GOT_CHAR:

 dataready = TRUE;

 break;

 /* Anything else? */

 default:

 _errmsg(0,"unknown signal received ==> %d\n",signal);

 exit(1);

 }

}

main()

{

 char buffer[256]; /* buffer for typed-in string */

 intercept(sighand); /* set up signal handler */

 printf("Enter a string:\n"); /* prompt user */

 /* call timed_read, returns TRUE if no timeout, -1 if timeout */

 if (timed_read(buffer) == TRUE)

 printf("Entered string = %s\n",buffer);

 else

 printf("\nType faster next time!\n");

}

int timed_read(buffer)

register char *buffer;

{

 char c = ’\0’; /* 1 character buffer for read */

 short timeout = FALSE; /* flag to note timeout occurred on read */

 int pos = 0; /* position holder in buffer */

 /* loop until <return> entered or timeout occurs */

 while ((c != ’\n’) && (timeout == FALSE)) {

 _os_sigmask(1); /* mask signals for signal setup */

 _ss_ssig(0,GOT_CHAR); /* set up to have signal sent */

 sleep(10); /* sleep for 10 seconds or until signal */

Appendix A: Example Code

OS-9 Technical Manual 396

/* NOTE: we had to mask signals before doing _ss_ssig() so we did not get
the signal between the time we _ss_ssig()’ed and went to sleep. */

 /* Now we’re awake, determine what happened */

 if (!dataready)

 timeout = TRUE;

 else {

 read(0,&c,1); /* read the ready byte */

 buffer[pos] = c; /* put it in the buffer */

 pos++; /* move our position holder */

 dataready = FALSE; /* mark data as read */

 }

 }

 /* loop has terminated, figure out why */

 if (timeout)

 return -1; /* there was a timeout so return -1 */

 else {

 buffer[pos] = ’\0’; /* null terminate the string */

 return TRUE;

 }

}

Alarms: Example Program
The following example program can be compiled with this command:

$ cc deton.c

The complete source code for the example program is as follows:

/*--*|

| Psect Name:deton.c |

| Function: demonstrate alarm to time out user input |

|---*/

@_sysedit: equ 1

#include <stdio.h>

#include <errno.h>

#include <const.h>

#define TIME(secs) ((secs << 8) | 0x80000000)

#define PASSWORD "Ripley"

/*---*/

sighand(sigcode)

{

 /* just ignore the signal */

}

/*--*/

Appendix A: Example Code

OS-9 Technical Manual 397

main(argc,argv)

int argc;

char **argv;

{

 register int secs = 0;

 register int alarm_id;

 register char *p;

 register char name[80];

 intercept(sighand);

 while (--argc)

 if (*(p = *(++argv)) == ’-’) {

 if (*(++p) == ’?’)

 printuse();

 else exit(_errmsg(1, "error: unknown option - ’%c’\n", *p));

 } else if (secs == 0)

 secs = atoi(p);

 else exit(_errmsg(1, "unknown arg - \"%s\"\n", p));

 secs = secs ? secs : 3;

 printf("You have %d seconds to terminate self-destruct...\n", secs);

 /* set alarm to time out user input */

 if ((errno = _os_alarm_set(&alarm_id, 2, TIME(secs))) != SUCCESS)

 exit(_errmsg(errno, "can’t set alarm - "));

 if (gets(name) != 0)

 _os_alarm_delete(alarm_id); /*remove alarm; it didn’t expire */

 else printf("\n");

 if (_cmpnam(name, PASSWORD, 6) == 0)

 printf("Have a nice day, %s.\n", PASSWORD);

 else printf("ka BOOM\n");

 exit(0);

}

/*--*/

/* printuse() - print help text to standard error */

printuse()

{

 fprintf(stderr, "syntax: %s [seconds]\n", _prgname());

 fprintf(stderr, "function: demonstrate use of alarm to time out
I/O\n");

 fprintf(stderr, "options: none\n");

 exit(0);

}

Appendix A: Example Code

OS-9 Technical Manual 398

Events: Example Program
The following program uses a binary semaphore to illustrate the use of events. To
execute this example, complete the following steps:

Step 1. Enter or copy the code into a file called sema1.c.

Step 2. Copy sema1.c to sema2.c.

Step 3. Compile both programs.

Step 4. Run both programs using this command: sema1 & sema2.

The program completes the following tasks:

1. Creates an event with an initial value of 1 (free), a wait increment of -1, and a
signal increment of 1.

2. Enters a loop that waits on the event.

3. Prints a message.

4. Sleeps.

5. Signals the event.

6. Unlinks itself from the event after ten times through the loop

7. Deletes the event from the system .

#include <module.h>
#include <stdio.h>
#include <memory.h>

#include <errno.h>

#include <const.h>

void main()
{

 char *ev_name = "semaevent"; /* name of event to be used */

 event_id ev_id; /* ID that is used to access event */

 u_int16 perm = MP_OWNER_READ | MP_OWNER_WRITE; /* access perms for
event */

 u_int32 value; /* returned event value */

 signal_code signal; /* returned signal value */

 int count = 0; /* loop counter */

 /* create to link to the event */

 if ((errno = _os_ev_link(ev_name, &ev_id)) != SUCCESS)

 if ((errno = _os_ev_creat(1,-1,perm,&ev_id,ev_name,1,MEM_ANY)) !=
SUCCESS)

 exit(_errmsg(errno,"error getting access to event - "));

Appendix A: Example Code

OS-9 Technical Manual 399

 while (count++ < 10)

 {

 /* wait on the event */

 if ((errno = _os_ev_wait(ev_id, &value, &signal, 1, 1)) != SUCCESS)

 exit(_errmsg(errno,"error waiting on the event - "));

 _errmsg(0,"entering \"critical section \"\n");

 /* simulate doing something useful */

 sleep(2);

 _errmsg(0,"exiting \"critical section \"\n");

 /* signal event (leaving critical section) */

 if ((errno = _os_ev_signal(ev_id, &value, 0)) != SUCCESS)

 exit(_errmsg(errno, "error signalling the event -"));

 /* simulate doing something other than critical section */

 sleep(1);

 }

 /* unlink from event */

 if ((errno = _os_ev_unlink(ev_id)) != SUCCESS)

 exit(_errmsg(errno, "error unlinking from event - "));

 /* delete event from system if this was the last process to unlink from
it */

 if ((errno = _os_ev_delete(ev_name)) != SUCCESS && errno !=
EOS_EVBUSY)

 exit(_errmsg(errno, " error deleting event from system - "));

 _errmsg(0, terminating normally\n");

}

Appendix A: Example Code

OS-9 Technical Manual 400

Semaphores: Example Program
The following example shows how to use semaphores.

#include <stdio.h>

#include <stdlib.h>

#include <types.h>

#include <module.h>

#include <modes.h>

#include <semaphore.h>

#define DMNAME “hplaserjet”

semaphore *printerSema;

error_code main(int, char **);

error_code printfile(char *);

error_code main(int argc, char **argv){

 mh_data *modptr;

 u_int16 attrev, typlang;

 u_int32 perm;

 char *dm_name = DMNAME;

 error_code error;

 /* prepare parameters */

 attrev = mkattrevs(MA_REENT,0);

 typlang = mktypelang(MT_DATA,ML_ANY);

 perm = MP_OWNER_READ|MP_OWNER_WRITE|MP_GROUP_READ|MP_GROUP_WRITE;

 /* first try to create the module */

 error = _os_datmod(dm_name, sizeof(*printerSema),

 &attrev, &typlang,perm,

 (void**)&printerSema, &modptr);

 if(error){

 /* then try to link to it */

 error = _os_link(&dm_name, (mh_com**)&modptr,
 (void**)&printerSema, &typlang, &attrev);

 if(error){

 fprintf(stderr,”Couldn’t link or create! Error#%d\n”,error);

 _os_exit(error);

 }

 }

Appendix A: Example Code

OS-9 Technical Manual 401

 /* initilize semaphore */

 _os_sema_init(printerSema);

 /* compete for the resource */

 _os_sema_p(printerSema);

 /* print the file */

 printfile(argv[1]);

 /* release the semaphore */

 _os_sema_v(printerSema);

 /* terminate semaphore */

 _os_sema_term(printerSema);

 /* unlink the data module */

 _os_unlink(modptr);

 _os_exit(0);

}

#define PRINTER “/p”

#define BUFSIZE 256

error_code printfile(char *filename){

 path_id prnpath, dskpath;

 char buffer[BUFSIZE];

 u_int32 size;

 error_code error;

 /* open path to printer */

 error = _os_open(PRINTER, FAM_WRITE, &prnpath);

 if(error != 0){

 return(error);

 }

 /* open path to disk file */

 error = _os_open(filename, FAM_READ, &dskpath);

 if(error != 0){

 _os_close(prnpath);

 return(error);

 }

Appendix A: Example Code

OS-9 Technical Manual 402

 /* until the last byte, read from disk and write to printer */

 do{

 size = BUFSIZE;

 error = _os_read(dskpath, buffer, &size);

 if(error == 0 && size > 0){

 _os_write(prnpath, buffer, &size);

 }

 }while(size > 0);

 _os_close(dskpath);

 _os_close(prnpath);

 return(0);

Usemaphores: Example Program
The following example, usemademo.c, shows how to use usemaphores.

}

#define _OPT_PROTOS

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

#include <cglob.h>

#include <types.h>

#include <module.h>

#include <modes.h>

#include <semaphore.h>

#include <memory.h>

#include <const.h>

void main(int, char **);

error_code printfile(char *, char *);

void main(int argc, char **argv)

{

 char *us_name;

 usema_id us_id;

 error_code err;

 signal_code sig;

Appendix A: Example Code

OS-9 Technical Manual 403

/* must supply printer name and filename to print */

 if (argc != 3) {

 printf("usage: %s <printer device> <filename>\n", _modname);

 exit(EXIT_FAILURE);

 }

 us_name = argv[1];

 if (*us_name++ != '/') {

 printf("%s: printer device should begin with '/'\n", _modname);

 exit(EXIT_FAILURE);

 }

 if (strchr(us_name, '/') != NULL) {

 printf("%s: printer device should not contain path components\n",

 _modname);

 exit(EXIT_FAILURE);

 }

 /* create/link usemaphore */

 err = _os_usema_create(&us_id, us_name, 1, MP_WORLD_ACCESS, MEM_ANY);

 if (err == EOS_EVBUSY)

 err = _os_usema_link(&us_id, us_name);

 if (err != SUCCESS)

 exit(_errmsg(err, "failed to create/link %s usemaphore - ",

 (u_int32)us_name, 0, 0));

 /* compete for the resource */

 for (;;) {

 err = _os_usema_p(us_id, &sig);

 if (err == EOS_USRST) {

 err = _os_usema_reset(us_id);

 if (err == SUCCESS)

 break;

 else if (err != EOS_USNORST)

 exit(_errmsg(err, "failed to reset %s usemaphore - ",

 (u_int32)us_name, 0, 0));

 }

 else if (err == SUCCESS)

 break;

 else

 exit(_errmsg(err, "failed to wait for %s usemaphore - ",

 (u_int32)us_name, 0, 0));

 }

Appendix A: Example Code

OS-9 Technical Manual 404

 /* print the file */

 err = printfile(argv[1], argv[2]);

 if (err != SUCCESS)

 exit(_errmsg(err, "failed to print the file %s on %s - ",

 (u_int32)argv[2], (u_int32)argv[1], 0));

 /* release the semaphore */

 err = _os_usema_v(us_id);

 if (err != SUCCESS)

 exit(_errmsg(err, "failed to release the %s usemaphore - ",

 (u_int32)us_name, 0, 0));

 /* terminate semaphore */

 _os_usema_unlink(us_id);

 exit(EXIT_SUCCESS);

}

#define BUFSIZE 256

error_code printfile(char *printer, char *filename)

{

 path_id prnpath, dskpath;

 u_int8 buffer[BUFSIZE];

 u_int32 size;

 error_code error;

 /* open path to printer */

 error = _os_open(printer, FAM_WRITE, &prnpath);

 if (error != SUCCESS)

 return error;

 /* open path to disk file */

 error = _os_open(filename, FAM_READ, &dskpath);

 if (error != SUCCESS) {

 _os_close(prnpath);

 return error;

 }

Appendix A: Example Code

OS-9 Technical Manual 405

 /* until the last byte, read from disk and write to printer */

 do {

 size = BUFSIZE;

 error = _os_read(dskpath, buffer, &size);

 if (error == SUCCESS && size > 0)

 _os_write(prnpath, buffer, &size);

 } while(size > 0);

 _os_close(dskpath);

 _os_close(prnpath);

 return SUCCESS;

}

The Subroutine Library

Subroutine Module

Below is an example of a subroutine module with two entrypoints. The subroutine
module consists of two files: the root psect file (in assembly language), and the
subroutine module function file (in C language).

root psect File

*substart.a: Generic psect for OS-9 subroutine modules use <oskdefs.d>

Edition equ 1

Typ_Lang set (Sbrtn<<8)+Objct

Attr_Rev set ((ReEnt+SupStat)<<8)+0

psect hcstart_a,Typ_Lang,Attr_Rev,Edition,0,0,exec

* This portion lists the functions that exist in the subroutine module.

* This is essentially an array of function pointers.

exec:

 dc.l sub_init-btext

 dc.l sub_function_1-btext

 dc.l 0

 ends

Appendix A: Example Code

OS-9 Technical Manual 406

function File

/*

** This is a "C" file that implements sub_init and ** sub_function_1.
Remember to turn of stack checking ** (-r) and compile with -bepg. Global
variables are ** ok to access in this file, since the calling **
routine will set up your global pointer.

*/

error_code sub_init(int init_param)

{

...

 return SUCCESS;

}

error_code sub_function_1(u_int32 *ticks)

{

 *ticks = ...;

 return SUCCESS;

}

Application Call into a Subroutine Module

This section describes how an application calls into a subroutine library. It also
describes how to initialize a subroutine module and how to discontinue using it.

Initialization

Before you can begin using a subroutine library, you must first link to it using the
_os_slink call, as several values returned from _os_slink must be stored. Below is
an example of how to link to a subroutine module and store the necessary returned
values.

#include <module.h>

#include <types.h>

#include <errno.h>

#include <stdlib.h>

#include <regs.h>

typedef struct {

 u_int32 *exec; /* execution point for hcsub */

 void *gp; /* global (static storage) pointer for hcsub */

 mh_com *mod_head; /* module header */

 int subnum; /* subroutine number (0..15) */

} SUB_DATA;

Appendix A: Example Code

OS-9 Technical Manual 407

/* defines array index of subroutine module function */

#define SUB_INIT 0

#define SUB_FUNCTION_1 1

/* this links to the subroutine module called 'mysub' and stores ** the
module head, execution offset, global pointer, and ** subroutine
number in the SUB_DATA structure.*/

error_code _sub_link(SUB_DATA *hc, int subnum)

{

 hc->subnum = subnum;

 return _os_slink(subnum,"mysub",(void**)&hc->exec,&hc->gp,&hc-
>mod_head);

}

/* this unlinks from the subroutine module. Only call this when ** you
are all done using 'mysub'.

*/

error_code _sub_unlink(SUB_DATA *hc)

{

 void *ptr;

 error_code err;

 err = _os_slink(hc->subnum,NULL,&ptr,&ptr,(mh_com**)&ptr);

 return err;

}

Calling into the subroutine module: The following shows functions that
setup and call into the subroutine module. These functions may be placed
into a library if several applications are to access the subroutine
module.

/* This calls the 'sub_init' entrypoint into the subroutine ** module.
This will pass one parameter to the init function: **'init_param'. */

error_code _sub_init(SUB_DATA *hc, int init_param)

{

 error_code (*func)();

 error_code err;

 void *oldstatics;

 func = (error_code(*)())((u_int8*)hc->mod_head + hc->exec[SUB_INIT]);

Appendix A: Example Code

OS-9 Technical Manual 408

oldstatics = change_static(hc->gp);

err = func();

(void) change_static(oldstatics);

 return err;

}

/*

** This calls into the "sub_function_1' entrypoint of the **
subroutine module.

** This passes one parameter: 'ticks'.

*/

error_code _sub_function_1(SUB_DATA *hc, u_int32 *ticks)

{

 error_code (*func)(u_int32*);

 error_code err;

 void *oldstatics;

 func = (error_code(*)(u_int32*))((u_int8*)hc->mod_head + hc-
>exec[SUB_FUNCTION_1]);

 oldstatics = change_static(hc->gp);

 err = func(ticks);

 (void) change_static(oldstatics);

 return err;

}

Trap Handlers
The following example trap handler consists of four files: trapc.a, thandler.c,
tcall.c, and ttest.c.

trapc.a
nam OS-9000 80386 Example System State Trap Handler

use <oskdefs.d>

type equ (TrapLib<<8)+Objct

revs equ ((ReEnt+Ghost+SupStat)<<8)

Appendix A: Example Code

OS-9 Technical Manual 409

edit equ 1

stack equ 1024

 psect Trap_9000,type,revs,edit,stack,_trap_entry

 _m_init: equ _trap_init * Trap Handler initialization entry point

 _m_term: equ _trap_term * Trap Handler termination entry point

_sysedit: equ edit edition number of module

E_ILLFNC equ $40 Illegal trap handler function code error

 vsect

_caller_eip: ds.l 1 caller’s return pc

_caller_statics: ds.l 1 caller’s static storage pointer (%ebx)

 ends

**

* _trap_entry - trap handler entry point code.

*

* input: 0(%esp) = caller’s static storage pointer (%ebx)

* 4(%esp) = trap number

* 6(%esp) = function code

* 8(%esp) = return address

*

_trap_entry: push.l %eax save registers

 push.l %esi

stacked set 2*4

 sub.l %eax,%eax sweep register

 mov.w 6+stacked(%esp),%eax get function code

 cmp.l trap_max(%ebx),%eax function code in range?

 jge.b _bad_trap branch if not

 lea trap_dsptable(%ebx),%esi get trap dispatch table

 mov.l (%esi,%eax*4),%eax get routine address

 mov.l %eax,4+stacked(%esp) set routine address

 pop.l %esi restore registers

 pop.l %eax

 pop.l _caller_statics(%ebx) save caller’s static storage

* call trap handler function

Appendix A: Example Code

OS-9 Technical Manual 410

 ret

_bad_trap pop.l %esi restore registers

 pop.l %eax

 lea 2*4(%esp),%esp pop stack

 mov.l #E_ILLFNC,%eax return error code

 ret

 ends

thandler.c
#include <const.h>

/* pre-declare trap handler functions */

int func1(), func2(), func3();

/* initialize maximum function count variable */

int trap_max = 3;

/* initialize trap handler dispatch table */

(* trap_dsptable[])() = {

 func1,

 func2,

 func3

};

/* _trap_init - trap handler initialization routine. */

_trap_init(trapnum, memsize, statics)

register int trapnum; /* trap handler number */

register int memsize; /* addtional trap handler memory size */

register void *statics; /* caller’s static storage pointer */

{

 return SUCCESS;

}

/* _trap_term - trap handler termination routine. */

_trap_term(trapnum, statics)

register int trapnum; /* trap handler number */

register void *statics; /* caller’s static storage pointer */

Appendix A: Example Code

OS-9 Technical Manual 411

{

 return SUCCESS;

}

/* func1 - first trap handler function. */

func1()

{

 return 1;

}

/* func2 - second trap handler function. */

func2()

{

 return 2;

}

/* func3 - third trap handler function. */

func3()

{

 return 3;

}

tcall.c
_asm ("

* tcall - macro definition

* tcall trap,function

*

tcall macro

 dc.w $fecd

 dc.w \1

 dc.w \2

 ret

 dc.b $00

 endm

trap_func1: tcall 8,0

trap_func2: tcall 8,1

trap_func3: tcall 8,2

");

Appendix A: Example Code

OS-9 Technical Manual 412

ttest.c
#include <stdio.h>

#include <errno.h>

#ifndef SUCCESS

#define SUCCESS 0

#endif

char *libexec;

char *modhead;

/* _trapinit - trap handler exception routine, install trap handler. */

_trapinit(trapnum, funcode)

register int trapnum;

register int funcode;

{

 register int err;

 /* validate trap number */

 if (trapnum != 8) return errno = EOS_ITRAP;

 /* install the trap handler */

 if ((err = _os_tlink(8, "trap9000", &libexec, &modhead, 0, 0)) !=
SUCCESS)

 return errno = err;

 return SUCCESS;

}

main()

{

 printf("calling function %d.\n", trap_func1());

 printf("calling function %d.\n", trap_func2());

 printf("calling function %d.\n", trap_func3());

}

413

B OS-9 Error Codes

This section lists OS-9 error codes in numerical order. The first three numbers
indicate a group of messages. Processor-specific error messages can also be added
with each processor family port. If this manual has not been updated to include the
messages for your processor, see the errmsg file in the OS9000/SRC/SYS/ERRMSG
directory. This appendix includes the following topics:

• Error Categories

• Errors

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 414

Error Categories
OS-9 error codes are grouped in the following categories:

Table B-1. OS-9 Error Code Categories

Range Description
000:001 - 000:031 Miscellaneous Errors

Refer to Table B-2.
000:032 - 000:047 Ultra C Related Errors

Refer to Table B-3.
000:060 - 000:069 Miscellaneous Program Errors

Refer to Table B-4.
000:080 - 000:089 Miscellaneous OS Errors

Refer to Table B-5.
000:102 - 000:132
000:134 - 000:163

Reserved Errors
Refer to Table B-6.

000:133 Uninitialized User Trap (1-15) Error
Refer to Table B-6.

000:164 - 000:239 Operating System Errors
(usually generated by the kernel or file managers)
Refer to Table B-7.

000:240 - 000:255 I/O Errors (generated by device drivers or file managers)
Refer to Table B-8.

000:256 ANSI C math out-of-range error
Refer to Table B-9.

001:000 - 001:099 Compiler Errors
Refer to Table B-10.

006:100 - 006:206 RAVE Errors
Refer to Table B-11.

007:001 - 007:029 Internet Errors
Refer to Table B-12.

008:257 - 008:288 IEEE1394 Errors
Refer to Table B-13.

008:321 - 008:339 SVLAN Errors
Refer to Table B-14.

020:001 - 020:022 POSIX Errors
Refer to Table B-15.

100:000 - 100:999 PowerPC Processor-specific Errors
Refer to Table B-16.

102:000 - 102:032 MIPS Processor-specific Errors
Refer to Table B-17.

103:000 - 103:008 ARM Processor-specific Errors
Refer to Table B-18.

104:002 - 104:009
104:011 - 104:115
104:200 - 104:204

SuperH Processor-specific Errors
Refer to Table B-19.

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 415

Errors
The following OS-9 error codes are defined in the errno.h file.

Table B-2. Miscellaneous Error Codes

Number Name Description
000:001 Process has aborted.
000:002 S_Abort signal Keyboard quit (^E) typed.
000:003 S_Intrpt signal Keyboard interrupt (^C) typed.
000:004 S_HangUp signal Modem hangup.

Table B-3. Ultra C Error Codes

Number Name Description
000:032 EOS_SIGABRT An abort signal was received.
000:033 EOS_SIGFPE An erroneous math operation signal was received.
000:034 EOS_SIGILL An illegal function image signal was received.
000:035 EOS_SIGSEGV A segment violation (bus error) signal was

received.
000:036 EOS_SIGTERM A termination request signal was received.
000:037 EOS_SIGALRM An alarm time elapsed signal was received.
000:038 EOS_SIGPIPE A write to pipe with no readers signal was

received.
000:039 EOS_SIGUSR1 A user signal #1 was received.
000:040 EOS_SIGUSR2 A user signal #2 was received.
000:041 EOS_SIGCHECK A machine check exception signal was received.
000:042 EOS_SIGALIGN An alignment exception signal was received.
000:043 EOS_SIGINST An instruction access exception signal was

received.
000:044 EOS_SIGPRIV A privilege violation exception signal was received.

Table B-4. Miscellaneous Program Error Codes

Number Name Description
000:064 EOS_ILLFNC Illegal function code.
000:065 EOS_FMTERR ASCII to numeric format conversion error.
000:066 EOS_NOTNUM Number not found.
000:067 EOS_ILLARG Illegal argument.
000:067 EINVAL Invalid argument (POSIX).

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 416

Table B-5. Miscellaneous Operating System Error Codes

Number Name Description
000:080 EOS_MEMINUSE Memory already in use.
000:081 EOS_UNKADDR Do not know how to translate.

Table B-6. Operating System Reserved Error Codes

Number Name Description
000:102 EOS_BUSERR A bus trap error occurred.
000:103 EOS_ADRERR An address trap error occurred.
000:104 EOS_ILLINS An illegal instruction exception occurred.
000:105 EOS_ZERDIV A zero divide exception occurred.
000:106 EOS_CHK A chk or chk2 instruction trap occurred.
000:107 EOS_TRAPV A trapv or trapcc instruction occurred.
000:108 EOS_VIOLAT A privileged instruction violation occurred.
000:109 EOS_TRACE An uninitialized Trace exception occurred.
000:110 EOS_1010 A 1010 instruction exception occurred.
000:111 EOS_1111 A 1111 instruction exception occurred.
000:112 EOS_RESRVD An invalid exception occurred (#12).
000:113 EOS_CPROTO Coprocessor protocol violation.
000:114 EOS_STKFMT System stack frame format error.
000:115 EOS_UNIRQ An uninitialized interrupt occurred.
000:116 -
000:123

An invalid exception occurred (#16 - #23).

000:124 Spurious Interrupt occurred.
000:133 EOS_TRAP An uninitialized user TRAP (1-15) was executed.
000:148 EOS_FPUNORDC Floating point coprocessor unordered condition.
000:149 EOS_FPINXACT Floating point coprocessor inexact result.
000:150 EOS_FPDIVZER Floating point coprocessor divide by zero.
000:151 EOS_FPUNDRFL Floating point coprocessor underflow.
000:152 EOS_FPOPRERR Floating point coprocessor operand error.
000:153 EOS_FPOVERFL Floating point coprocessor overflow.
000:154 EOS_FPNOTNUM Floating point coprocessor not a number.
000:155 EOS_FPUNDATA FP Unsupported data type.
000:156 EOS_MMUCONF PMMU Configuration exception.
000:157 EOS_MMUILLEG PMMU Illegal Operation exception.
000:158 EOS_MMUACCES PMMU Access Level Violation exception.
000:159 -
000:163

An invalid exception occurred (#59 - #63).

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 417

Table B-7. OS-9-Specific Error Codes

Number Name Description
000:164 EOS_PERMIT No permission.

A user process has attempted something that can only be
done by a super user.

000:164 EACESS POSIX access denied.
000:165 EOS_DIFFER The arguments to F_CHKNAM do not match.
000:166 EOS_STKOVF System stack overflow.

F_ChkNam can return this error if the pattern string is too
complex.

000:167 EOS_EVNTID Invalid or Illegal event ID number.
000:168 EOS_EVNF Event name not found.
000:169 EOS_EVBUSY The event is busy (and can’t be deleted).
000:170 EOS_EVPARAM Impossible event parameters supplied.
000:171 EOS_DAMAGE System data structures have been damaged.
000:172 EOS_BADREV Module revision is incompatible with operating system.
000:173 EOS_PTHLOST Path became lost because network node was down.
000:174 EOS_BADPART Bad (disk) partition data, or no active partition.
000:175 EOS_HARDWARE Hardware damage has been detected.
000:176 EOS_NOTME Not my device.

Error returned by an interrupt service routine when it is
polled for an interrupt its device did not cause.

000:177 EOS_BSIG Fatal signal or no intercept routine.
Process received a fatal signal or did not have an
intercept function.

000:178 EOS_BUF2SMAL
L

The buffer passed is too small.
A routine was passed a buffer too small to hold the data
requested.

000:179 EOS_ISUB Illegal/used subroutine module number.
000:180 EOS_EVTFUL Event descriptor table full.
000:196 EOS_SYMLINK Symbolic link found in path list.

A link was attempted that would have caused recursion in
the file structure. You may not link to a directory
containing the real directory.

000:197 EOS_EOLIST End of alias list.
000:198 EOS_LOCKID Illegal I/O lock identifier specified.

Usually this error occurs because a user has initialized a
device for use with more than one file manager.

000:199 EOS_NOLOCK Lock not obtained.
000:200 EOS_PTHFUL The user’s (or system) path table is full.

Usually this error occurs because a user program has
tried to open more than 32 I/O paths simultaneously. It
might also occur if the system path table becomes full
and can not be expanded.

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 418

000:201 EOS_BPNUM Bad path number.
An I/O request has been made with an invalid path
number, or one not currently open.

000:201 EBADF Bad file descriptor (POSIX).
000:203 EOS_BMODE Bad I/O mode.

An attempt has been made to perform I/O on a path
incapable of supporting it. For example, writing to a path
open for input.

000:204 EOS_DEVOVF The system’s device table is full.
To install another device descriptor, one must first be
removed. The system init module can be changed to
allow more devices.

000:205 EOS_BMID Bad module ID.
An attempt has been made to load a module without a
valid module header.

000:206 EOS_DIRFUL The module directory is full.
No more modules can be loaded or created unless one is
first unlinked. Although OS-9 automatically expands the
module directory when it becomes full, this error may be
returned because the there is not enough memory or the
memory is too fragmented to use.

000:207 EOS_MEMFUL Memory full.
This error is returned from the F_SRqMem service call when
there is not enough system RAM to fulfill the request, or if
a process has already been allocated the maximum
number of blocks permitted by the system.

000:208 EOS_UNKSVC Unknown service code.
An OS-9 call specified an unknown or invalid service
code, or a getstat/setstat call was made with an unknown
status code.

000:209 EOS_MODBSY The module is busy.
An attempt has been made to access (through F_Link) a
non-sharable module or non-sharable device already in
use.

000:210 EOS_BPADDR Bad page address.
A memory de-allocation request has been given a buffer
pointer or size that is invalid, often because it references
memory that has not been allocated to the caller. The
system detects trouble when the buffer is returned to free
memory or if it is used as the destination of a data
transfer, such as I_Read.

000:210 EFAULT Bad address (POSIX).

Table B-7. OS-9-Specific Error Codes (Continued)

Number Name Description

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 419

000:211 EOS_EOF The end of file has been reached.
An end of file condition was encountered on a read
operation.

000:211 EPIPE Broken pipe (POSIX).
000:212 EOS_VCTBSY IRQ vector is busy.

A device has tried to install itself in the IRQ table to
handle a vector claimed by another device.

000:213 EOS_NES Non-existing segment.
A search was made for a disk file segment that cannot be
found. The device could have a damaged file structure.

000:214 EOS_FNA File not accessible.
An attempt to open a file failed. The file was found, but is
inaccessible in the requested mode. Check the file’s
owner ID and access attributes.

000:214 EPERM Operation not permitted (POSIX).
000:215 EOS_BPNAM Bad pathlist specified.

The specified pathlist has a syntax error, for example, an
illegal character.

000:216 EOS_PNNF File not found.
The specified pathlist does not lead to any known file.

000:216 ENOENT No such file or directory (POSIX).
000:217 EOS_SLF File segment list is full.

A file has become too fragmented to accommodate
further growth. This can occur on a nearly full disk, or one
whose free space has become scattered. The simplest
way to solve the problem is to copy the file, which should
move it into more contiguous space.

000:218 EOS_CEF Tried to create an existing file.
The specified filename already appears in the current
directory.

000:218 EEXIST File exists (POSIX).
000:219 EOS_IBA Illegal memory block specified.

The system was called to return memory, but was passed
an invalid pointer or block size.

000:220 EOS_HANGUP Telephone (modem) connection terminated.
This error is returned when an I/O operation is attempted
on a path after irrecoverable line problems have
occurred, such as data carrier lost. It may be returned
from network devices, if the network connection is lost.

000:221 EOS_MNF Module not found.
An F_Link call was made to a module not in memory.
Modules with corrupted or modified headers will not be
found.

Table B-7. OS-9-Specific Error Codes (Continued)

Number Name Description

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 420

000:222 EOS_NOCLK No system clock.
A request was made requiring a system clock, but one is
not running. For example, a timed F_Sleep call has been
requested, but the clock was not running. The setime
utility is used to start the system clock.

000:223 EOS_DELSP Deleting stack memory.
A process tried to return the memory containing it's
current stack pointer to the system. This is also known as
a suicide attempt.

000:224 EOS_IPRCID Illegal process ID.
A system call was passed a process ID to a non-existent or
inaccessible process.

000:224 ESRCH No such process (POSIX).
000:225 EOS_PARAM Bad parameter.

A system call was passed an illegal or impossible
parameter.

000:226 EOS_NOCHLD No children.
An F_Wait call was made with no child processes to wait
for.

000:226 ECHILD No child process (POSIX)
000:227 EOS_ITRAP Invalid trap number.

An F_Tlink call was made with an invalid user trap code
or one already in use.

000:228 EOS_PRCABT The process has been aborted.
000:229 EOS_PRCFUL Too many active processes.

The system's process table is full. (Too many processes
are currently running.) The kernel automatically tries to
expand the process table, but returns this error if there is
not enough contiguous memory to do so.

000:230 EOS_IFORKP Illegal fork parameter (not currently used)
000:231 EOS_KWNMOD Known module.

A call was made to install a module that is already in
memory.

000:232 EOS_BMCRC Bad module CRC.
A CRC calculation is performed on every module when it
is installed in the system module directory. Only modules
with good CRCs are accepted. To generate a valid CRC
value in an intentionally altered module, use the fixmod
utility.

000:233 EOS_SIGNAL Signal error (replaces EOS_USIGP.)
000:234 EOS_NEMOD Non executable module.
000:235 EOS_BNAM Bad name.

This error is returned by the F_PrsNam system call if there
is a syntax error in the name.

Table B-7. OS-9-Specific Error Codes (Continued)

Number Name Description

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 421

000:236 EOS_BMHP Bad module header parity.
000:237 EOS_NORAM No RAM available.

A process has made an F_Mem request to expand its
memory size. F_Mem is no longer supported and F_SrqMem
should be used. This error may also be returned if there is
not enough contiguous memory to process a fork request
or if a device driver does not specify any static storage
requirements.

000:237 ENOMEM Insufficient RAM (POSIX).
000:238 EOS_DNE The directory is not empty.

The directory attribute of a file cannot be removed unless
the directory is empty. This prevents accidental loss of
disk space.

000:239 EOS_NOTASK No available task number.
All of the task numbers are currently in use and a request
was made to execute or create a new task. This error
could be returned by a system security module (SSM).

Table B-7. OS-9-Specific Error Codes (Continued)

Number Name Description

Table B-8. OS-9-Specific I/O Error Codes

Number Name Description
000:240 EOS_UNIT Illegal unit (drive) number.
000:241 EOS_SECT Bad disk sector number.
000:242 EOS_WP Media is write protected.
000:243 EOS_CRC Bad module cyclic redundancy check value.

A CRC error occurred on read or write verity.
000:244 EOS_READ Read error.

A data transfer error occurred during a disk read
operation, or an SCF (terminal) input buffer overrun.

000:244 EIO POSIX I/O error.
000:245 EOS_WRITE A hardware error occurred during a disk write operation.
000:246 EOS_NOTRDY Device not ready.
000:246 ENODEV No such device (POSIX).
000:246 ENXIO No such device or address (POSIX).
000:247 EOS_SEEK Seek error.

A physical seek operation was unable to find the specified
sector.

000:248 EOS_FULL Media has insufficient free space.
000:249 EOS_BTYP Bad type (incompatable media).

A read operation was attempted on incompatible media.
For example, a read operation for a double-sided disk was
tried on a single-sided disk.

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 422

000:250 EOS_DEVBSY A non-sharable device is in use.
000:250 EBUSY POSIX resource busy.
000:251 EOS_DIDC Disk ID change.

RBF copies the disk ID number (from sector zero) into the
path descriptor of each path when it is opened. If it does
not agree with the driver's current disk ID, this error is
returned. The driver updates the current disk ID only when
sector zero is read; it is possible to swap disks without RBF
noticing; this prevents this possibility.

000:252 EOS_LOCK Another process is accessing the record. Normal record
locking routines wait for a record in use by another user to
become available. However, RBF may be told (through a
SetStat call) to wait for a finite amount of time. If the
time expires before the record becomes free, this is
returned.

000:253 EOS_SHARE Non-sharable file/device is busy.
The requested file or device has the single user bit set or
was opened in single user mode and another process is
accessing the file. This is returned when an attempt is
made to delete an open file.

000:254 EOS_DEADLK I/O deadlock error, returned when two or more processes
are waiting for each other to release I/O resources before
they can proceed. One must release control to enable the
other to proceed.

000:255 EOS_FORMAT Device is format protected.
This error occurs when an attempt is made to format a
format-protected disk. A bit in the device descriptor may
be changed to allow the device to be formatted.
Formatting is usually inhibited on hard disks to prevent
accidental erasure.

Table B-8. OS-9-Specific I/O Error Codes (Continued)

Number Name Description

Table B-9. OS-9-Specific ANSI C Error Codes

Number Name Description
000:256 ERANGE ANSI C math out of range error.

Table B-10. OS-9-Specific Compiler Error Codes

Number Name Description
001:000 ERANGE ANSI C Number out of range error.
001:001 EDOM ANSI C Number Not in Domain.

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 423

Table B-11. OS-9-Specific RAVE Error Codes

Number Name Description
006:000 EOS_ILLPRM An illegal parameter was passed to a function.
006:001 EOS_IDFULL Identifier (ID) table full.

An ID table could not be expanded.
006:002 EOS_BADSIZ Bad size error.
006:003 EOS_RGFULL Region definition full (overflow).

The region is too complex.
006:004 EOS_UNID Unallocated identifier number.

An attempt was made to use an ID number for an
object (drawmap, action region, etc.) that was not
allocated.

006:005 EOS_NULLRG Null region.
006:006 EOS_BADMOD Bad drawmap/pattern mode.

An illegal mode was passed to create a drawmap or
pattern.

006:007 EOS_NOFONT No active font.
No font was activated when an attempt to output text
was made.

006:008 EOS_NODM No drawmap.
No character output drawmap was available when
attempting an _os_write or _os_writeln call.

006:009 EOS_NOPLAY No audio play in progress.
An attempt was made to stop an audio play when
none was in progress.

006:010 EOS_ABORT Asynchronous operation aborted.
006:011 EOS_QFULL Audio queue is full.

The driver queue could not handle the number of
soundmaps you were attempting to output.

006:012 EOS_BUSY Audio processor is busy.

Table B-12. OS-9-Specific Internet Error Codes

Number Name Description
007:001 EWOULDBLOCK I/O operation would block.

An operation was attempted that would cause a
process to block on a socket in non-blocking mode.

007:001 EAGAIN POSIX item temporarily available.
007:002 EINPROGRESS I/O operation now in progress.

An operation taking a long time to complete was
performed, such as a connect() call, on a socket in
non-blocking mode.

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 424

007:003 EALREADY Operation already in progress.
An operation was attempted on a non-blocking object
that already had an operation in progress.

007:003 EINTR Interrupted function call (POSIX).
007:004 EDESTADDRREQ Destination address required.

The attempted socket operation requires a destination
address.

007:005 EMSGSIZE Message too long.
A message sent on a socket was larger than the
internal message buffer or some other network limit.

007:006 EPROTOTYPE Protocol wrong type for socket.
A protocol was specified that does not support the
semantics of the socket type requested.

007:007 ENOPROTOOPT Bad protocol option.
A bad option or level was specified in a getsockopt()
or setsockopt() call.

007:008 EPROTONOSUPPORT Protocol not supported.
The requested protocol is not available or not
configured for use.

007:009 ESOCKNOSUPPORT Socket type not supported.
The requested socket type is not supported or not
configured for use.

007:010 EOPNOTSUPP Operation unsupported on socket.
007:011 EPFNOSUPPORT Protocol family not supported.
007:012 EAFNOSUPPORT Address family unsupported by protocol.
007:013 EADDRINUSE Address already in use.

Only one use of each address is normally permitted.
Wildcard use and connectionless communication are
the exceptions.

007:014 EADDRNOTAVAIL Cannot assign requested address.
Normally results when an attempt is made to create a
socket with an address not on the local machine.

007:015 ENETDOWN Network is down.
007:016 ENETUNREACH Network is unreachable.

This is usually caused by network interface hardware
that is operational, but not physically connected to the
network. This error is also returned when the network
has no way to reach the destination address.

007:017 ENETRESET Network lost connection on reset.
The host crashed and rebooted.

007:018 ECONNABORTED Software caused connection abort.
The local (host) machine caused a connection abort.

Table B-12. OS-9-Specific Internet Error Codes (Continued)

Number Name Description

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 425

007:019 ECONNRESET Connection reset by peer.
A peer forcibly closed the connection. This normally
results from a loss of connection on the remote socket
due to a time out or reboot.

007:020 ENOBUFS No buffer space available.
A socket operation could not be performed because
the system lacked sufficient buffer space or queue was
full.

007:021 EISCONN Socket is already connected.
The connection request was made for an already
connected socket. Sending a sendto() call to an
already connected destination could cause this error.

007:022 ENOTCONN Socket is not connected.
A request to send or received data was rejected
because the socket was not connected or no
destination was given for a datagram socket.

007:023 ESHUTDOWN Cannot send after socket shutdown.
Additional data transmissions are not allowed after
the socket was shut down.

007:024 ETOOMANYREFS Too many references.
007:025 ETIMEDOUT Connection timed out.

A connect() or send() request failed because the
connected peer did not properly respond after a set
period of time. The time out period depends on the
protocol used.

007:026 ECONNREFUSED Connection refused by target.
No connection could be established because the
target machine actively refused it. This usually results
from trying to connect to an inactive service on the
target host.

007:027 EBUFTOOSMALL Buffer too small for F_MBuf operation.
The specified buffer cannot be used to support
F_MBUF(SysMbuf) calls.

007:028 ESMODEXISTS Socket module already attached.
An attach was requested of an already attached
socket.

007:029 ENOTSOCK Path is not a socket.
A socket function was attempted on a path that is not
a socket.

007:030 EHOSTUNREACH No route to host.
007:031 EHOSTDOWN Host is down.
008:001 EOS_LNKDWN Layer 1 link down (driver).
008:002 EOS_CONN Connection error (driver).
008:003 EOS_RXTHREAD Error in receive thread.

Table B-12. OS-9-Specific Internet Error Codes (Continued)

Number Name Description

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 426

008:004 EOS_ME Management entity error.
008:005 EOS_SAPI Unrecognized SAPI
008:006 EOS_TEI TEI not found.
008:007 EOS_MAX_TEI Maximum number of TEI.
008:008 EOS_TSTATE Illegal TEI state.
008:009 EOS_TEI_DENIED TEI request denied by network.
008:010 EOS_PRIMITIVE TEI request denied by network.
008:011 EOS_L2IN Layer 2 error.
008:012 EOS_PEER_BUSY Peer receiver busy condition
008:013 EOS_K Maximum number of outstanding I frames.
008:014 EOS_MAXCREF Maximum number of call references.
008:015 EOS_CREF Call reference does not exist.
008:016 EOS_CALLPROG Error on call progress state.
008:017 EOS_RCVR Receiver previously assigned
008:018 EOS_REQDENIED Request denied by far end.
008:019 EOS_RXSTART Receive thread did not start.
008:020 EOS_NOSTACK Last driver on path’s stack.
008:021 EOS_BTMSTK Attempt to pop last driver.
008:022 EOS_NPBNULL Notify param block is null.
008:023 EOS_PPS_NOTFND Per path storage not found.
008:024 EOS_STKFULL Path’s stack array is full.
008:025 EOS_MBNOTINST Sysmbuf is not installed.
008:026 EOS_TMRNTFND Timer not found.
008:027 EOS_GETIME Get time error.
008:028 EOS_TIMERINT Timer interrupt.
008:029 EOS_RXMB_

NODEVENTRY
No device entry in mbuf.

008:030 EOS_PGM_TBLBSY PSI/SI table is in use.
008:031 EOS_PGM_LOVF Too many tables being read.
008:032 EOS_PGM_TBLNFND Table not found.
008:033 EOS_PGM_NFND Program not found.
008:034 EOS_PGM_NOPLAY No program is currently playing.
008:035 EOS_NODNDRVR No down driver.

Table B-12. OS-9-Specific Internet Error Codes (Continued)

Number Name Description

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 427

Table B-13. IEEE 1394 Error Codes

Number Name Description
008:257 EOS_MW1394_BUSRESET Bus reset. An IEEE 1394 Bus is reset

whenever the cable is plugged or
unplugged or a device forces a bus reset
(such as when driver software is
initialized).

008:258 EOS_MW1394_NOIRM No Isochronous Resource Manager
found.

008:259 EOS_MW1394_NNF Requested node not found on the bus.
008:260 EOS_MW1394_TIMEDOUT Timed out waiting for response. The

remote device is not present, does not
have memory mapped at the specified
location, or does not allow data transfer
to that location. This is a general error
indicating communication was not
successful.

008:261 EOS_MW1394_FAILED Internal failure.
008:262 EOS_MW1394_BADSIZE Bad size. The length of the packet (or

response) specified is either greater than
the maximum allowable payload or the
allocated Asynchronous transmit buffer
size.

008:263 EOS_MW1394_ADDRINUSE Address in use. The address could not
be mapped because some portion of the
requested range has already been
mapped.

008:264 EOS_MW1394_
ADDRNOTFND

Address not found. The address is not
currently mapped, so it need not be
unmapped.

008:265 EOS_MW1394_
ADDRNOTAVAIL

Address not available. The desired
address is not available for mapping.

008:266 EOS_MW1394_
INVCHANNEL

Invalid channel. The channel value
specified is out of range.

008:267 EOS_MW1394_CHNLINUSE Channel in use. The specific channel
requested is currently in use.

008:268 EOS_MW1394_NOCFGREG No free Isochronous configuration
registers.

008:269 EOS_MW1394_
CHNLNOTFND

Channel not found. The specified
channel was not found in the
isochronous configuration registers.

008:270 EOS_MW1394_CHNL_
STOPPED

Channel is stopped. Operations on this
channel have been stopped by a call to
ms1394IsochStop().

008:271 EOS_MW1394_NO_
FREECHNL

Channel deallocation failed.

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 428

008:272 EOS_MW1394_NOXMIT Could not transmit. Data may not be
transmitted because the FIFO is full or a
hardware condition is prohibiting
transmit.

008:273 EOS_MW1394_
INVTOPOMAP

Topology Map invalid. The Topology
Map on the Bus Manager is invalid.

008:274 EOS_MW1394_
INVSPEEDMAP

Invalid speedmap.

008:275 EOS_MW1394_BUSMGR_
EXISTS

Bus Manager already present. There is
already a Bus Manager present.

008:276 EOS_MW1394_
BEBUSMGRFAIL

IRM refused request. The request to be
a bus manager failed because the
Isochronous Resource Manager did not
honor request.

008:277 EOS_MW1394_BUSMGR_
ALRDY

Already the Bus Manager. The
requesting node is already the Bus
Manager.

008:278 EOS_MW1394_
ALLOCCHNLFAIL

Channel allocation failed.

008:279 EOS_MW1394_
FREECHNLFAIL

Channel deallocation failed.

008:280 EOS_MW1394_
CHNLFREEALRDY

Channel already free. The specified
channel is already free.

008:281 EOS_MW1394_
ALLOCBWDTHFAIL

Failed to allocate bandwidth.

008:282 EOS_MW1394_
FREEBWDTHFAIL

Failed to deallocate bandwidth.

008:283 EOS_MW1394_
BANDWIDTH_NOTAVAIL

Bandwidth is not available. The amount
of bandwidth requested is not available.
The caller may reduce the desired
maxbytesPerFrame and try again or
retry after some delay.

008:284 EOS_MW1394_INV_
BANDWIDTH_HNDL

Invalid handle. No bandwidth handle is
found with the specified handleID.

008:285 EOS_MW1394_
NOBUFFERS_ATTCHD

No buffers attached. No buffers are
attached for the specified channel.

008:286 EOS_MW1394_RCODE_
ERROR

Remote response code was not
RCODE_COMPLETE. A response code
other than RCODE_COMPLETE was
received.

008:287 EOS_MW1394_NOBUSMGR No Bus Manager found.
008:288 EOS_MW1394_

INVACCESSTYPE
Invalid access type. No valid access type
was specified.

Table B-13. IEEE 1394 Error Codes (Continued)

Number Name Description

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 429

Table B-14. SVLAN Error Codes

Number Name Description
008:321 EOS_INVALID_BRIDGE Bridge identifier is out of range.
008:322 EOS_INVALID_PORT Port is out of range.
008:323 EOS_VTM_NOT_STARTED The table manager has not been

started.
008:324 EOS_INSUFFICIENT_MEMORY The buffer is too small for data.
008:325 EOS_INVALID_MAC_ADDRESS Invalid MAC address specified.
008:326 EOS_NO_LEARNING Port does not support learning.
008:327 EOS_INVALID_PORTMAP The specified portmap is invalid.
008:328 EOS_INVALID_VID VLAN identifier value is out of range.
008:329 EOS_INVALID_PORT_NUMBER Port number is out of range.
008:330 EOS_NO_TRANSFORMED_VID No transformed VID has been

specified.
008:331 EOS_INVALID_MAX_AGE Maximum age value is out of range

and/or does not conform to the set
rules.

008:332 EOS_INVALID_FORWARD_DELAY Forward delay is out of range.
008:333 EOS_INVALID_MAX_ADDRESS Maximum address value is out of

range.
008:334 EOS_INVALID_HELLO_TIME Hello time value is out of range.
008:335 EOS_INVALID_TIMEOUT Timeout value is out of range.
008:336 EOS_NO_BRIDGE There is no such bridge.
008:337 EOS_NO_PORT There is no such port.
008:338 EOS_PORT_EXISTS The specified port is already part of the

bridge.
008:339 EOS_ENF BAT entry not found in table.

Table B-15. POSIX Error Codes

Number Name Description
020:001 E2BIG Argument list too long.
020:003 EBADMSG Bad message.
020:004 ECANCELED Operation cancelled.
020:005 EDEADLK Resource deadlock avoided.
020:006 EFBIG File too big.
020:007 EISDIR Is a directory.
020:008 EMFILE Too many process open files.
020:009 EMLINK Too many links.
020:010 ENAMETOOLONG Filename too long.
020:011 ENFILE Too many system open files.
020:012 ENOEXEC Exec format error.

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 430

020:013 ENOLCK No locks available.
020:014 ENOSPC No space left on device.
020:015 ENOSYS Function not implemented.
020:016 ENOTDIR Not a directory.
020:017 ENOTEMPTY Directory not empty.
020:018 ENOTSUP Not supported.
020:019 ENOTTY Bad I/O control operation.
020:020 EROFS Read-only file system.
020:021 ESPIPE Invalid seek.
020:022 EXDEV Improper link.

Table B-15. POSIX Error Codes (Continued)

Number Name Description

Table B-16. OS-9-Specific PowerPC Error Codes

Number Name Description
100:002 EOS_PPC_MACHCHK Machine check exception.
100:003 EOS_PPC_DATAACC Data access exception.
100:004 EOS_PPC_INSTACC Instruction access exception.
100:005 EOS_PPC_EXTINT External interrupt.
100:006 EOS_PPC_ALIGN Alignment exception.
100:007 EOS_PPC_PROGRAM Program exception.
100:008 EOS_PPC_FPUUNAV FPU unavailable exception.
100:009 EOS_PPC_DEC Decrementer exception.
100:010 EOS_PPC_IOCONT I/O controller exception.
100:012 EOS_PPC_SYSCALL System call exception.
100:032 EOS_PPC_TRACE Trace exception.

Table B-17. OS-9-Specific MIPS Error Codes

Number Name Description
102:000 EOS_MIPS_EXTINT External interrupt.
102:001 EOS_MIPS_MOD TLB Modification exception.
102:002 EOS_MIPS_TLBL TLB Miss exception (load or instruction

fetch).
102:003 EOS_MIPS_TLBS TLB Miss exception (store).
102:004 EOS_MIPS_ADEL Address Error exception (load or

instruction fetch).
102:005 EOS_MIPS_ADES Address Error exception (store).
102:006 EOS_MIPS_IBE Bus Error exception (instruction fetch).
102:007 EOS_MIPS_DBE Bus Error exception (load or store).

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 431

102:008 EOS_MIPS_SYS SYSCALL exception.
102:009 EOS_MIPS_BP Breakpoint exception.
102:010 EOS_MIPS_RI Reserved Instruction exception.
102:011 EOS_MIPS_CPU CoProcessor Unusable exception.
102:012 EOS_MIPS_OVF Arithmetic Overflow exception.
102:013 EOS_MIPS_TR Trap exception.
102:023 EOS_MIPS_WATCH Watch exception.
102:032 EOS_MIPS_UTLB User State TLB Miss exception.

Table B-17. OS-9-Specific MIPS Error Codes (Continued)

Number Name Description

Table B-18. OS-9-Specific ARM Error Codes

Number Name Description
103:001 EOS_ARM_UNDEF Undefined instruction exception.
103:003 EOS_ARM_PFABORT Instruction pre-fetch abort exception.
103:004 EOS_ARM_DTABORT Data abort exception.
103:008 EOS_ARM_ALIGN Alignment exception.

Table B-19. OS-9-Specific SuperH Error Codes

Number Name Description
104:002 EOS_SH_TLBMISSLD TLB miss on a load
104:003 EOS_SH_TLBMISSST TLB miss on a store
104:004 EOS_SH_INITPG Initial page write
104:005 EOS_SH_TLBPROTLD TLB protection violation on a load
104:006 EOS_SH_TLBPROTST TLB protection violation on a store
104:007 EOS_SH_ADDRLD Address error on a load
104:008 EOS_SH_ADDRST Address error on a store
104:009 EOS_SH_FPU FPU exception
104:011 EOS_SH_TRAPA TRAPA instruction
104:012 EOS_SH_RSRVINSTR Reserved instruction
104:013 EOS_SH_ILLSLOT Illegal slot instruction
104:015 EOS_SH_BRKPT User break point
104:200 EOS_SH_FPUINEXACT FPU inexact error
104:201 EOS_SH_FPUUNDERFLOW FPU underflow error
104:202 EOS_SH_FPUOVERFLOW FPU overflow error
104:203 EOS_SH_FPUDIVIDEO FPU divide-by-zero error
104:204 EOS_SH_FPUINVALID FPU invalid error

Appendix B: OS-9 Error Codes

OS-9 Technical Manual 432

433

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

Symbols
_os_sema_init()

semaphore initialization 59.

_os_sema_p()
semaphore

reservation 59.

_os_sema_term()
semaphore terminate 59.

_os_sema_v()
semaphore release 59.

_oscall() 88.

_sliblink()
to unlink a subroutine library 73.

_subcall
to call a subroutine library 72.

A
A_ATIME 101.

A_ATIME, F_ALARM
system-state alarms 53.

A_CYCLE 102.

A_CYCLE, F_ALARM
system-state alarms 53.

user-state alarm 52.

A_DELET 103.

A_DELET, F_ALARM
system-state alarms 53.

user-state alarm 52.

A_RESET 104.

A_RESET, F_ALARM
system-state alarms 53.

user-state alarm 52.

A_SET 105.

A_SET, F_ALARM
system-state alarms 53.

user-state alarm 52.

access permission
change for module directory 125.

accounting system
user 293.

acquire
conditional ownership of resource lock 94., 110.

acquire lock
C example 80.

check return value 81.

activate next process waiting to acquire lock 302.

active process queue
insert process into 109.

remove process 241.

add device to IRQ table 229.

alarms
A_ATIME 101.

A_CYCLE 102.

A_DELET 103.

A_RESET 104.

A_SET 105.

cyclic 52.

F_ALARM 99.

call reference 96.

flags
TH_DELPB 98.

TH_SPOWN 98.

relative time
defined 53.

remove pending request 52., 53., 103.

reset
existing request 52., 53., 104.

reset request 104.

system state
defined and listed 53.

time of day
defined 53.

user state
defined and listed 52.

alias
copy system alias list 349.

alloc.h 32.

allocate
process descriptor 106.

resource lock descriptor 133.

task 107.

allow access to memory block 242.

alternate module directory 27.

anonymous pipes
unnamed 64.

ARM
errors

list of 414.

attach

OS-9 Technical Manual

434

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

device 306.

B
B_NVRAM 31.

B_PARITY 31.

B_ROM 31.

B_USERRAM 31.

bit map
flush cached information 368.

blocks
skip 380.

SS_SKIP 380.

break serial connection 358.

breakpoints
defined 142.

hard 143.

soft 143.

C
C_ADDR 114.

C_DISDATA 114.

C_DISINST 114.

C_ENDATA 114.

C_ENINST 114.

C_FLDATA 112., 114.

C_FLINST 112., 114.

C_GETCCTL 113., 114.

C_INVDATA 114.

C_STODATA 114.

cache
control 111., 113.

disable
data 114.

instruction 114.

RBF caching 359.

enable
data 114.

instruction 114.

RBF caching 359.

F_CCTL 111.

flush
data 112., 114.

instruction 112., 114.

get status information 324.

invalidate data 114.

invalidate instruction 114.

SS_CACHE 359.

SS_CSTATS 324.

calculate parity of file descriptor 336.

call system debugger 281.

change
file name 374.

module directory permissions 125.

process’ current module directory 123.

system global variables 254.

working directory 308.

check
CRC 131.

for deadlock situation 138.

for use of I/O module 342.

memory block’s accessibility 121.

color codes 269.

colored memory 30., 39.

definition list 30.

list 31., 40.

command interpreter 13.

compare names 126.

Compiler errors 414.

configuration module 40.

contract data memory area 238.

copy external memory 129.

copy system alias list 349.

CRC 16.

check 131.

F_CRC 131.

F_SETCRC 253.

F_VMODUL 296.

generate 131., 253.

verify module 296.

CRCCON 131.

create
data module 134.

device alias 305.

directory 345.

event 162., 164.

module directory 237.

new descriptor 133.

new process 211., 214.

new resource lock descriptor 79.

path 313.

critical regions
locking 78.

cyclic alarm 52.

D
d_maxage 44., 268.

d_minpty 44., 45., 268.

d_tslice 44.

data
modules

create 134.

F_DATMOD 134.

ready
send signal on 378.

SS_SENDSIG 378.

435

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

data modules
creating 69.

DBG_M_CONTROL 143.

DBG_M_COUNT 142., 143.

DBG_M_HARD 142., 143.

DBG_M_INACTV 143.

DBG_M_SOFT 142., 143.

DBG_S_BRKPNT 144.

DBG_S_CHAIN 144.

DBG_S_CHILDSIG 144.

DBG_S_CONTROL 144.

DBG_S_EXCEPT 142., 144.

DBG_S_EXIT 144.

DBG_S_FINISH 144.

DBG_S_PARENTSIG 144.

DBG_S_WATCH 144.

de-allocate process descriptor 249.

deallocate process descriptor 141.

debug mode 143.

debugged program
debug modes 142.

execute 142.

exit 145.

F_DEXEC 142.

F_DEXIT 145.

F_DFORK 146.

F_DFORKM 148.

fork process 146., 148.

debugger
attach to a running process 136.

call system debugger 281.

F_SYSDBG 281.

delete
event 166., 167.

existing lock descriptor 139.

existing module directory 140.

file 315.

pending alarm request 103.

device
add to IRQ table 229.

attach 306.

close 311.

F_IRQ 229.

get
size of SCSI device 329.

status 321.

I_DETACH 316.

I_GETSTAT 321.

I_OPEN 347.

I_READ 350.

I_READLN 352.

I_SETSTAT 355.

I_WRITE 388.

I_WRITELN 389.

open path to 347.

read
data from 350., 352.

path options 326.

release 373.

remove 316.

from IRQ table 229.

return
name 325.

type 327.

set
path options 362.

status 355.

SS_DEVNAME 325.

SS_DEVOPT 326.

SS_DEVTYPE 327.

SS_DOPT 362.

SS_DSIZE 329.

SS_RELEASE 373.

write data to 388., 389.

Device Alias
create 305.

device descriptor
defined 13.

device descriptors
pipe 64.

device driver
defined 13.

dexec.h 143., 144.

directory
access mode 345.

attribute bits 345.

attributes 345.

change 308.

permission 125.

create 345.

F_DELMDIR 140.

F_FMOD 210.

F_GETMDP 218.

F_GMODDR 221.

F_MKMDIR 237.

I_MAKDIR 345.

mode bits 345.

module directory 218.

change current 123.

create 237.

delete 140.

find entry 210.

get copy of 221.

remove 140.

set alternate 108.

disable

OS-9 Technical Manual

436

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

data cache 114.

instruction cache 114.

RBF caching 359.

drivers
resource locking 78.

dump utility
using to examine

data modules 69.

duplicate path 317.

dynamic-sized data structures 29.

E
enable

data cache 114.

instruction cache 114.

RBF caching 359.

end of file
test for 331.

EOS_SIGNAL
no lock acquired 81.

erase tape 365.

error
EOS_SIGNAL

no lock acquired 81.

error handling
F_STRAP 277.

errors
list of

ARM 414.

MIPS 414.

PowerPC 414.

trapping 277.

EV_ALLCLR 58., 152.

EV_ALLSET 58., 154.

EV_ANYCLR 58., 156.

EV_ANYSET 58., 158.

EV_CHANGE 58., 160.

EV_CREAT 58., 63., 162., 164.

EV_DELET 58., 63., 166., 167.

ev_id
EV_INFO field

ID 56.

EV_INFO 58., 168.

ev_infostr structure 55.

EV_LINK 58., 63., 170., 172.

ev_link 56.

EV_LNK 170., 172.

ev_name
EV_INFO field

name 56.

ev_namsz
EV_INFO field

name size 56.

ev_owner 56.

ev_perm 56.

EV_PULSE 58., 174.

ev_quen 56.

ev_quep 56.

EV_READ 176.

EV_SET 58., 179.

EV_SETAND 58., 181.

EV_SETOR 58., 183.

EV_SETR 58., 185.

EV_SETXOR 58., 187.

EV_SIGNL 58., 63., 189., 191.

ev_sinc 56.

ev_str structure 55.

EV_TSTSET 58., 197.

EV_UNLNK 58., 63., 199., 200.

ev_value 56.

EV_WAIT 58., 63., 177., 193., 195., 201., 203.

EV_WAITR 58., 205.

ev_winc 56.

events
create 162., 164.

delete 166., 167.

EV_ALLCLR 152.

EV_ALLSET 154.

EV_ANYCLR 156.

EV_ANYSET 158.

EV_CHANGE 160.

EV_CREAT 162., 164.

EV_DELET 166., 167.

EV_INFO 168.

EV_INFO fields 56.

EV_LNK 170., 172.

EV_PULSE 174.

EV_READ 176.

EV_SET 179.

EV_SETAND 181.

EV_SETOR 183.

EV_SETR 185.

EV_SETXOR 187.

EV_SIGNL 189., 191.

EV_TSTSET 197.

EV_UNLNK 199., 200.

EV_WAIT 177., 193., 195., 201., 203.

EV_WAITR 205.

example
synchronization 57., 62.

F_EVENT 150.

F_EVENT call
using to synchronize resources 58., 63.

link to existing 170., 172.

read 176.

remove event 166., 167.

437

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

return information 168.

set event variable 179., 181., 183., 187.

relative 185.

signal event occurrence 174., 179., 181., 183.,
185., 187., 189., 191.

unlink 199., 200.

using to coordinate
non-sharable resources 57., 62.

wait and signal operations 57.

wait for event 152., 154., 156., 158., 160.,
177., 193., 195., 197., 201., 203.

relative 205.

events.h 54., 61.

examine system global variables 254.

example code
alarms 396.

events 398.

semaphores 400.

signals 394.

tcall.c 411.

thandler.c 410.

trap handlers 408.

trapc.a 408.

ttest.c 412.

exception jump table 29.

execute
module 115.

subroutine
after interval 53.

at intervals 53.

at time 53.

exit debugged program 145.

expand data memory area 238.

extension modules 40.

external memory
copy 129.

F_CPYMEM 129.

F
F_ACQLK 94.

resource locking 78.

F_ALARM
A_ATIME 101.

A_CYCLE 102.

A_DELET 103.

A_RESET 104.

A_SET 105.

call reference 96.

system state 96.

user state 99.

F_ALARM, A_ATIME
system-state alarms 53.

F_ALARM, A_CYCLE

system-state alarms 53.

user-state alarm 52.

F_ALARM, A_DELET
system-state alarms 53.

user-state alarm 52.

F_ALARM, A_RESET
system-state alarms 53.

user-state alarm 52.

F_ALARM, A_SET
system-state alarms 53.

user-state alarm 52.

F_ALLPRC 106.

F_ALLTSK 107.

F_ALTMDIR 108.

F_APROC 109.

F_CAQLK 94., 110.

resource locking 78.

F_CCTL 111.

system state 113.

user state 111.

F_CHAIN 115.

F_CHAINM 118.

F_CHKMEM 121.

F_CHMDIR 123.

F_CLRSIGS 124.

F_CMDPERM 125.

F_CMPNAM 126.

F_CONFIG 128.

configure 128.

F_CPYMEM 129.

F_CRC 131.

F_CRLK 79., 133.

resource locking 78.

F_DATMOD 134.

F_DATTACH 136.

attach Debugger to a Running Process 136.

F_DDLK 138.

F_DELLK 79., 139.

resource locking 78.

F_DELMDIR 140.

F_DELTSK 141.

F_DEXEC 142.

F_DEXIT 145.

F_DFORK 146.

F_DFORKM 148.

F_EVENT 150.

EV_ALLCRL 152.

EV_ALLSET 154.

EV_ANYCLR 156.

EV_ANYSET 158.

EV_CHANGE 160.

EV_CREAT 162., 164.

EV_DELET 166., 167.

OS-9 Technical Manual

438

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

EV_INFO 168.

EV_LINK 170., 172.

EV_PULSE 174.

EV_READ 176.

EV_SET 179.

EV_SETAND 181.

EV_SETOR 183.

EV_SETR 185.

EV_SETXOR 187.

EV_SIGNL 189.

EV_TSTSET 197., 200.

EV_UNLNK 199., 200.

EV_WAIT 193., 201., 203.

EV_WAITR 205.

F_EXIT 207.

F_FINDPD 209.

F_FMOD 210.

F_FORK 211.

F_FORKM 214.

F_GBLKMP 216.

F_GETMDP 218.

F_GETSYS 219.

F_GMODDR 221.

F_GPRDBT 222.

F_GPRDSC 223.

F_ICPT 224.

for installing signal intercept routine 49.

F_ID 226.

F_INITDATA 228.

F_IRQ 229.

F_LINK 231.

F_LINKM 233.

F_LOAD 235.

F_MEM 238.

F_MKMDIR 237.

F_MODADDR 239.

F_MOVE 240.

F_NPROC 241.

F_PERMIT 242.

F_PROTECT 244.

F_PRSNAM 246.

F_RELLK 248.

resource locking 78.

F_RETPD 249.

F_RTE 250.

F_SEMA
semaphore call 59.

F_SEND 251.

for signal communications 49.

F_SETCRC 253.

F_SETSYS 254.

F_SIGLNGJ 256.

F_SIGMASK 258.

F_SIGRESET 260.

signal reset 260.

F_SIGRS 261.

signal resize 261.

F_SLEEP 263.

F_SLINK 265.

installing a subroutine library 72.

F_SLINKM 267.

F_SPRIOR 268.

F_SRQMEM 269.

F_SRTMEM 271.

F_SSPD 272.

F_SSVC 273.

F_STIME 275., 288.

F_STRAP 277.

F_SUSER 280.

F_SYSDBG 281.

F_SYSID 282.

F_TIME 288.

F_TLINK 289.

to install trap handler 74.

F_TLINKM 291.

F_UACCT 293.

F_UNLINK 294.

F_UNLOAD 295.

F_VMODUL 296.

F_WAIT 298.

F_WAITLK 302.

FIFO buffer sychronization 83.

resource locking 78.

FIFO buffer resource
synchronize reader and writer 83.

file
access modes 313.

attribute bits 313.

attributes 313.

change name 374.

close 311.

create 313.

delete 315.

descriptor
calculate parity of 336.

get
address 333.

specified sector 334.

read sector 332.

SS_FD 332., 366.

SS_FdAddr 333.

SS_FDINFO 334.

SS_PARITY 336.

write sector 366.

get
current position 338.

439

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

status 321.

I_CREATE 313.

I_DELETE 315.

I_GETSTAT 321.

I_OPEN 347.

I_READ 350.

I_READLN 352.

I_SETSTAT 355.

I_WRITE 388.

I_WRITELN 389.

load module from 235.

make hard link to 369.

managers
defined 12.

PCF 13.

PIPEMAN 13., 64.

RBF 13.

SBF 13.

SCF 13.

mode bits 313.

open path to 347.

pointer
I_SEEK 354.

reposition 354.

read data from 350., 352.

rename 374.

set
attributes 357.

size 340., 379.

status 355.

SS_ATTR 357.

SS_HDLINK 369.

SS_POS 338.

SS_RENAME 374.

SS_SIZE 340., 379.

write data to 388., 389.

file managers
resource locking 78.

fill path buffer with data 367.

find
module 239.

module directory entry 210.

process descriptor 209.

fixmod 16.

flush
cached bit map information 368.

data cache 112., 114.

instruction cache 112., 114.

fork process under control of debugger 146., 148.

fork_params structure 116., 119., 212.

format
track 384.

free memory pool 29.

G
generate CRC 131., 253.

get
cache status information 324.

current file position 338.

device status 321.

file
descriptor block address 333.

descriptor sector 334.

status 321.

free memory block map 216.

I/O interface edition number 330.

pointer to I/O process descriptor 310.

process
descriptor copy 223.

ID 226.

size of SCSI device 329.

system
date/time 288.

global variable 219.

user ID 226.

Get Current File Position (RBF) 338.

GetStat
using system path number 386.

ghost bit
see sticky bit. 69.

global
path number table 27.

variables 268.

change 254.

examine 219., 254.

set 254.

group ID 42.

H
hang-up signal 49.

header files
dexec.h 143., 144.

events.h 54., 61.

module.h 17., 18., 131.

svctbl.h 274.

I
I/O 26., 27.

attach device 306.

close path 311.

descriptor 41.

device list
get 319.

I_GETDL 319.

module
check for use of 342.

OS-9 Technical Manual

440

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

I_IODEL 342.

process descriptor
get pointer to 341.

I_CIOPROC 310.

I_GIOPROC 341.

terminate for exiting process 343.

I/O errors 414.

I_ALIAS 305.

I_ATTACH 306.

I_CHDIR 308.

I_CIOPROC 310.

I_CLOSE 311.

I_CONFIG 312.

configure 312.

I_CREATE 313.

I_DELETE 315.

I_DETACH 316.

I_DUP 317.

I_GETDL 319.

I_GETPD 320.

I_GETSTAT 321.

SS_COPYPD 323.

SS_CSTATS 324.

SS_DEVNAME 325.

SS_DEVOPT 326.

SS_DEVTYPE 327.

SS_DSIZE 329.

SS_EDT 330.

SS_EOF 331.

SS_FD 332.

SS_FdAddr 333.

SS_FDINFO 334.

SS_LUOPT 335.

SS_PARITY 336.

SS_PATHOPT 337.

SS_POS 338.

SS_READY 339.

SS_SIZE 340.

I_GETSTAT, SS_DEVOPT
get status

pipes 67.

I_GETSTAT, SS_FD
get status

pipes 67.

set status
pipes 68.

I_GETSTAT, SS_FDINFO
get status

pipes 67.

I_GETSTAT, SS_LUOPT
get status

pipes 67.

I_GETSTAT, SS_PATHOPT

get status
pipes 67.

I_GETSTAT, SS_SIZE
get status

pipes 67.

I_GIOPROC 341.

I_IODEL 342.

I_IOEXIT 343.

I_IOFORK 344.

I_MAKDIR 345.

I_OPEN 347.

I_RDALST 349.

I_READ 350.

I_READLN
difference between

for pipes 66.

I_READLN 352.

I_READ
difference between

for pipes 66.

I_SEEK 354.

I_SETSTAT 355.

SS_ATTR 357.

SS_BREAK 358.

SS_CACHE 359.

SS_DCOFF 360.

SS_DCON 361.

SS_DOPT 362.

SS_DSRTS 363.

SS_ENRTS 364.

SS_ERASE 365.

SS_FD 366.

SS_FILLBUFF 367.

SS_FLUSHMAP 368.

SS_HDLINK 369.

SS_LOCK 370.

SS_LUOPT 371.

SS_PATHOPT 372.

SS_RELEASE 373.

SS_RENAME 374.

SS_RESET 375.

SS_RETEN 376.

SS_RFM 377.

SS_SENDSIG 378.

SS_SIZE 379.

SS_SKIP 380.

SS_SKIPEND 381.

SS_TICKS 382.

SS_WFM 383.

SS_WTRACK 384.

I_SETSTAT, SS_ATTR
set status

pipes 68.

441

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

I_SETSTAT, SS_DEVOPT
set status

pipes 68.

I_SETSTAT, SS_LUOPT
set status

pipes 68.

I_SETSTAT, SS_PATHOPT
set status

pipes 68.

I_SETSTAT, SS_RELEASE
set status

pipes 68.

I_SETSTAT, SS_RENAME
set status

pipes 68.

I_SETSTAT, SS_SENDSIG
set status

pipes 68.

I_SETSTAT, SS_SIZE
set status

pipes 68.

I_SGETSTAT 386.

I_TRANPN 387.

I_WRITE 388.

I_WRITELN
difference between

for pipes 66.

I_WRITELN 389.

I_WRITE
difference between

for pipes 66.

ident 13.

Init module 40.

init.h 40.

initialization table
example 274.

structure table 274.

svctbl 274.

initialize
directory 345.

process descriptor 106.

resource lock descriptor 133.

static storage 228.

insert process
in active process queue 109.

install
system state trap module 289.

user
trap handling module 291.

intercept routine
install 224.

Internet errors 414.

interprocess communication

A_RESET 104.

clear process signal queue 124.

create new event 162., 164.

delete existing event 166., 167.

link to existing event 170., 172.

read event value without waiting 176.

remove pending alarm request 103.

reset
alarm

request 104.

return event information 168.

send signal 102., 104., 251.

set
alarm 96.

event variable 179., 181., 183., 187.

relative event variable 185.

signal intercept trap 224.

signal event occurrence 174., 179., 181., 183.,
185., 187., 189., 191.

unlink event 199., 200.

wait for
bits to clear 152.

events to occur 154., 156., 158., 160.,
197., 201., 203.

relative event to occur 205.

interrupt manipulation functions
add device to IRQ table 229.

F_IRQ 229.

F_RTE 250.

remove device to IRQ table 229.

return from interrupt exception 250.

invalidate
data cache 114.

instruction cache 114.

IOMAN 29.

defined 12.

IRQ
add device to table 229.

F_IRQ 229.

remove device from table 229.

K
kernel 13., 27., 30., 39., 40., 44., 54.

lock structure definition 78.

keyboard signal
abort 48., 251.

interrupt 48., 251.

L
limit process access

with resource locking 78.

link

OS-9 Technical Manual

442

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

count
for data modules 69.

make hard link 369.

subroutine libraries 265.

to existing event 170., 172.

to memory module 231., 233.

to subroutine module 267.

load module 235.

lock
acquire

C example 80.

activate next 302.

conditionally acquire ownership 94., 110.

create 133.

deadlock situation 138.

deallocate 79.

delete descriptor 139.

dynamic creation
C example 79.

F_CRLK 79., 133.

F_DDLK 138.

F_DELLK 139.

F_RELLK 248.

F_WAITLK 302.

FIFO buffer synchronization 83.

identifier 79.

initialize fields 80.

out record 370.

preallocate in resource 80.

queue,
using signals to 81.

release ownership 248.

request queueing 79.

signal sensitive 81.

synchronize FIFO reader and writer 83.

lock structure
definition 78.

logical
unit

read options 335.

SS_LUOPT 335., 371.

write options 371.

M
m_access 18.

m_attrev 20., 28.

m_cbias 21.

m_data 20.

m_dbias 21.

m_edit 20.

m_excpt 20.

m_exec 20., 40.

m_idata 20.

m_ident 21.

m_idref 21.

m_init 21.

m_name 18.

m_owner 18.

m_parity 21.

m_share 20.

m_size 18.

m_slice 44.

m_stack 20.

m_symbol 20.

m_sync 18.

m_sysrev 18.

m_term 21.

m_tylan 14., 19.

make
hard link to existing file 369.

new directory 345.

Mask/Unmask Signals During Critical Code 258.

MEM_SHARED 31.

MEM_SYS 31.

memlist 31.

memory
assigning 29.

avoiding fragmentation 30.

block
allow access to 242.

check accessibility 121.

F_GBLKMP 216.

F_PERMIT 242.

F_PROTECT 244.

map 216.

prevent access to 244.

colored 30.

definitions 39.

lists 40.

copy external 129.

F_CPYMEM 129.

F_MEM 238.

F_SRQMEM 269.

fragmentation 30.

list 31., 39.

management functions
allocate task 107.

allow access to memory block 242.

check memory block’s accessibility 121.

deallocate process descriptor 141.

F_ALLTSK 107.

F_CHKMEM 121.

F_DELTSK 141.

F_MEM 238.

F_PERMIT 242.

F_PROTECT 244.

443

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

prevent access to memory block 244.

resize data memory areas 238.

map 28.

modules
ROMed 16.

protection calls
deallocate process descriptor 141.

F_DELTSK 141.

F_PERMIT 242.

F_PROTECT 244.

required 28.

resize data area 238.

system memory request 269.

memory.h 31.

mfree 30.

mh_com structure 17.

MIPS
errors

list of 414.

Miscellaneous errors 414.

module
basic structure 15.

check
CRC 296.

for use of 342.

header parity 296.

directory 27.

alternate 27.

change
permission 125.

create 237.

defined 27.

delete 140.

F_CMDPERM 125.

F_DELMDIR 140.

F_FMOD 210.

F_GETMDP 218.

F_GMODDR 221.

F_MKMDIR 237.

find entry 210.

get
alternate pathlist 218.

copy of 221.

current pathlist 218.

remove 140.

set alternate 108.

exeute 115.

F_LINK 231.

F_LINKM 233.

F_LOAD 235.

F_MODADDR 239.

F_SETCRC 253.

F_UNLINK 294.

F_UNLOAD 295.

F_VMODUL 296.

find 239.

generate CRC 131., 253.

I_IODEL 342.

link to 231., 233.

load 115., 235.

manipulation functions
change

permissions of module directory 125.

process’ current module directory 123.

create
data module 134.

new module directory 345.

delete
existing module directory 140.

execute
new primary module 118.

find
module directory entry 210.

module given pointer 239.

initialize static storage 228.

install
system state trap handling module 289.

user trap handling module 291.

set alternate working module directory 108.

position-independent 14.

re-entrant 14.

unlink 294., 295.

verify 296.

module.h 17., 18., 131.

move data 240.

MT_SYSTEM 40.

N
name

valid characters 246.

non-sharable
coordinating resources

with events 57., 62.

O
open path 347.

Operating system errors 414.

OS9P2 25.

P
p_spuimg 242.

p_state 109.

parse path name 246.

path
access modes 313.

OS-9 Technical Manual

444

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

attributes 313.

close 311.

create path to file 313.

descriptor
copy contents 323.

find 320.

I_GETPD 320.

read option section 337.

SS_PATHOPT 337., 372.

write option section 372.

duplicate 317.

F_PRSNAM 246.

fill buffer with data 367.

I_DUP 317.

I_OPEN 347.

I_TRANPN 387.

open 347.

options
set 362.

SS_DOPT 362.

parse name 246.

SS_FILLBUFF 367.

terminate 311.

translate user to system 387.

PC file manager 13.

PCF 13.

permissions
change module directory 125.

pipe file manager 13., 64.

pipelines
process communications

shell 64.

PIPEMAN 13., 64.

status codes
listed 67.

pipes 13.

closing 67.

creating 65.

device descriptors 64.

directories 68.

named 64.

opening
explanation 65.

returning data from 66.

unnamed 64.

writing data 67.

PowerPC errors
list of 414.

prevent access to memory block 244.

priority
F_SPRIOR 268.

set 268.

proc_id 310.

process 44.

active 43.

clear process signal 124.

create 211., 214.

data area 42.

descriptor 41.

allocate 106.

de-allocate 249.

deallocate 141.

F_DELTSK 141.

F_FINDPD 209.

F_GPRDBT 222.

F_GPRDSC 223.

F_RETPD 249.

find 209.

get
copy of 223.

table 222.

pointer to 310., 341.

I/O 310.

I_GIOPROC 341.

initialize 106.

return resources 141.

end 207.

ensure protection hardware is ready 107.

F_DFORK 146.

F_DFORKM 148.

F_EXIT 207.

F_FORK 211.

F_FORKM 214.

F_SEND 251.

F_SPRIOR 268.

F_SSPD 272.

I_IOEXIT 343.

I_IOFORK 344.

ID 42., 226.

inactive 43.

insert in active process queue 109.

insert prodess in active process queue 109.

manipulation functions
create new functions 211.

create new process 214.

deallocate process descriptor 249.

F_APROC 109.

F_CHAIN 115.

F_DFORK 146.

F_DFORKM 148., 214.

F_FINDPD 209.

F_FORK 211.

F_GPRDBT 222.

F_GPRDSC 223.

F_ID 226.

F_NPROC 241.

445

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

F_RETPD 249.

F_SPRIOR 268.

F_SSPD 272.

F_WAIT 298.

find process descriptor 209.

fork process under control of debugger
146., 148.

get
copy of process descriptor block table

222.

process descriptor copy 223.

process ID/user ID 226.

insert process in active process queue 109.

load and execute module 115.

set process priority 268.

start next process 241.

suspend process 272.

wait for child process to terminate 298.

memory area 42.

F_DFORK 146.

F_DFORKM 148.

F_EXIT 207.

F_FORK 211.

F_FORKM 214.

F_NPROC 241.

F_SEND 251.

F_SSPD 103., 272.

I_IOEXIT 343.

I_IOFORK 344.

priority 268.

scheduling 109.

priority 268.

ready for execution 43.

scheduling 44.

send signal to 251.

set
priority 268.

up I/O 344.

start next process 241.

state
active 43.

event 43.

sleeping 43.

suspended 43.

waiting 43.

states 43.

stop 343.

suspend 272.

terminate 42., 207.

I/O 343.

wait for child to terminate 298.

process queueing 84.

protect critical section of code 81.

Put Calling Process to Sleep 263.

Q
queue

active process
insert process 109.

clear process signal 124.

queue a process 84.

R
random block file manager 13.

RAVE errors 414.

RBF 13.

read
data 350.

device path options 326.

event value 176.

file descriptor sector 332.

logical unit options 335.

path descriptor option section 337.

record
lock out 370.

SS_LOCK 370.

SS_TICKS 382.

wait for release 382.

release
device 373.

ownership of resource lock 248.

remove
device 316.

from IRQ table 229.

event information 166., 167.

pending alarm request 52., 53., 103.

rename file 374.

repostion logical file pointer 354.

reset
alarm request 52., 53., 104.

resize
data memory area 238.

resource lock
acquire

C example 80.

activate 302.

conditionally acquire ownership 94., 110.

create 133.

deadlock situation 138.

delete descriptor 79., 139.

dynamic creation
C example 79.

F_CRLK 79., 133.

F_DDLK 138.

F_DELLK 139.

OS-9 Technical Manual

446

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

F_RELLK 248.

F_WAITLK 302.

FIFO buffer synchronization 83.

for creating file managers/drivers 78.

initialize fields 80.

preallocate in resource 80.

release ownership 248.

synchronize FIFO buffer reader and writer 83.

restore head to track zero 375.

retension pass on tape drive 376.

return
device

name 325.

type 327.

event information 168.

from interrupt exception 250.

system
identification 282.

Return System Memory 271.

RTS line
disable 363.

enable 364.

S
S_HANGUP 251.

S_IAPPEND 313., 345.

S_ICONTIG 313., 345.

S_IEXCL 313., 345.

S_IEXEC 309., 313., 345., 347.

S_IFDIR 347.

S_IGEXEC 313., 345.

S_IGREAD 313., 345.

S_IGWRITE 313., 345.

S_INT 251.

S_IOEXEC 313., 345.

S_IOREAD 313., 345.

S_IOWRITE 313., 345.

S_IREAD 309., 313., 345., 347.

S_ISHARE 313., 345., 347.

S_ISIZE 313., 345.

S_ITRUNC 313., 345.

S_IWRITE 309., 313., 345., 347.

S_KILL 251.

S_QUIT 251.

S_WAKE 251.

save utility
using to save to disk

data module 69.

SBF 13.

SCF 13.

SCSI device
get size of 329.

semaphore.h

structure 60.

semaphores
acquiring access 60.

application example 59.

binary event synchronization 59.

defined 59.

example code 400.

header file structure 60.

initialization
_os_sema_init() 59.

releasing
_os_sema_v() 59.

releasing access 60.

reservation
_os_sema_p() 59.

states 60.

structure definition 60.

terminate
_os_sema_term() 59.

send signal
after specified time interval 52.

at specific time 52.

at specified time intervals 52., 102.

on data ready 378.

to another process 251.

sequential block file manager 13.

sequential character file manager 13.

service request codes
range of valid 273.

service request table initialization 273.

set
alternate working module directory 108.

device
path options 362.

status 355.

event variable 179., 181., 183., 187.

file
attributes 357.

size 340., 379.

status 355.

process priority 268.

relative event variable 185.

system
date/time 275.

global variables 254.

up I/O for process 344.

up signal intercept trap 224.

user ID number 280.

SHARED 31.

shell 13.

signal
clear queue 124.

codes 251.

447

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

communications
using F_SEND 49.

event occurrence 174., 179., 181., 183., 185.,
187., 189., 191.

F_SEND 251.

for events
defined 57.

for lock queuing 81.

handler
syntax 225.

hang-up 49., 251.

intercept routine installing
using F_ICPT 49.

keyboard
abort 48., 251.

interrupt 48., 251.

remove 124.

reset
F_SIGRESET 260.

resize
F_SIGRS 261.

S_HANGUP 251.

S_INT 251.

S_KILL 251.

S_QUIT 251.

S_WAKE 251.

send
after specified time 52., 105.

at specific time 52.

at specified time 52., 101.

at specified time intervals 102.

on data ready 378.

to another process 251.

when DCD line goes false 360.

when DCD line goes true 361.

sensitive locks 81.

set mask value
return on stack image

F_SIGLNGJ 256.

SS_SENDSIG 378.

system abort 251.

unconditional system abort 48.

wake up process 251.

wake-up 48.

skip
blocks 380.

tape marks 377.

to end of tape 381.

software interrupts 48.

SS_ATTR 357.

SS_BREAK 358.

SS_CACHE 359.

SS_COPYPD 323.

SS_CSTATS 324.

SS_DCOFF 360.

SS_DCON 361.

SS_DEVNAME 325.

SS_DEVOPT 326.

SS_DEVTYPE 327.

SS_DOPT 362.

SS_DSIZE 329.

SS_DSRTS 363.

SS_EDT 330.

SS_ENRTS 364.

SS_EOF 331.

get status
pipes 67.

SS_ERASE 365.

SS_FD 332., 366.

SS_FdAddr 333.

SS_FDINFO 334.

SS_FILLBUFF 367.

SS_FLUSHMAP 368.

SS_HDLINK 369.

SS_LOCK 370.

SS_LUOPT 335., 371.

SS_OPT 67.

SS_PARITY 336.

SS_PATHOPT 337., 372.

SS_POS 338.

SS_READY 339.

get status
pipes 67.

SS_RELEA 68.

SS_RELEASE 373.

SS_RENAME 374.

SS_RESET 375.

SS_RETEN 376.

SS_RFM 377.

SS_SENDSIG 378.

SS_SIZE 67., 68., 340., 379.

SS_SKIP 380.

SS_SKIPEND 381.

SS_SSIG 68.

SS_TICKS 382.

SS_WFM 383.

SS_WTRACK 384.

standard I/O functions
attach new device to system 306.

change working directory 308.

check for use of I/O module 342.

close path to file/device 311.

copy system alias list 349.

create
device alias 305.

path to new file 313.

OS-9 Technical Manual

448

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

delete file 315.

duplicate path 317.

get
pointer to I/O process descriptor 310., 341.

system I/O device list head pointer 319.

I_ALIAS 305.

I_ATTACH 306.

I_CHDIR 308.

I_CIOPROC 310.

I_CLOSE 311.

I_CREATE 313.

I_DELETE 315.

I_DETACH 316.

I_DUP 317.

I_GETDL 319.

I_GIOPROC 341.

I_IODEL 342.

I_IOEXIT 343.

I_IOFORK 344.

I_MAKDIR 345.

I_OPEN 347.

I_RDALST 349.

I_READ 350.

I_READLN 352.

I_WRITE 388.

I_WRITELN 389.

make new directory 345.

open path to file or device 347.

read
data from file or device 350.

text line with editing 352.

remove device from system 316.

set up I/O for new process 344.

terminate I/O for exiting process 343.

write
data to file/device 388.

line of text with editing 389.

start next process 241.

static storage
F_INITDATA 228.

initialize 228.

status functions
break serial connection 358.

calculate parity of file descriptor 336.

copy contents of path descriptor 323.

disable RBF caching 359.

enable RBF caching 359.

erase tape 365.

examine system global variable 219., 254.

F_GETSYS 219.

F_SETSYS 254.

fill path buffer with data 367.

flush cached bit map information 368.

get
cache status information 324.

current file position 338.

file descriptor for open file 333.

file/device status 321.

I/O interface edition number 330.

size of SCSI devices 329.

specified file descriptor sector 334.

GetStat call using system path number 386.

I_GETSTAT 321.

I_SETSTAT 355.

I_SGETSTAT 386.

lock out record 370.

make hard link to existing file 369.

read
device path options 326.

file descriptor sector 332.

logical unit options 335.

path descriptor option section 337.

release device 373.

rename file 374.

restore head to track zero 375.

retension pass on tape drive 376.

return
device

name 325.

type 327.

send
signal on data ready 378.

signal when DCD liine goes
false 360.

true 361.

wait for record release 382.

set
device path options 362.

file attributes 357.

file size 340., 379.

file/device status 355.

OS-9 system global variables 254.

skip
blocks 380.

tape marks 377.

to end of tape 381.

SS_ATTR 357.

SS_BREAK 358.

SS_CACHE 359.

SS_COPYPD 323.

SS_CSTATS 324.

SS_DCOFF 360.

SS_DCON 361.

SS_DEVNAME 325.

SS_DEVOPT 326.

SS_DEVTYPE 327.

449

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

SS_DOPT 362.

SS_DSIZE 329.

SS_EDT 330.

SS_EOF 331.

SS_ERASE 365.

SS_FD 332., 366.

SS_FdAddr 333.

SS_FILLBUFF 367.

SS_FLUSHMAP 368.

SS_HDLINK 369.

SS_LOCK 370.

SS_LUOPT 335., 371.

SS_PARITY 336.

SS_PATHOPT 337., 372.

SS_POS 338.

SS_READY 339.

SS_RELEASE 373.

SS_RENAME 374.

SS_RESET 375.

SS_RETEN 376.

SS_RFM 377.

SS_SENDSIG 378.

SS_SIZE 340., 379.

SS_SKIP 380.

SS_SKIPEND 381.

SS_TICKS 382.

SS_WFM 383.

SS_WTRACK 384.

test for
data ready 338.

end of file 331.

write
file descriptor sector 366.

logical unit options 371., 372.

tape marks 383.

track 384.

sticky module 20., 28.

setting link count 69.

structures
ev_infostr 55.

ev_str 55.

fork_params 116., 119., 212.

svctbl 274.

subroutine
execute

after interval 53.

at intervals 53.

at time 53.

F_SLINKM 267.

library 72.

calling with _subcall 72.

creating 73.

installing 72.

terminating 73.

link to 267.

subroutine libraries
link 265.

suspend process 272.

with F_WAITLK 83.

svctbl structure 274.

svctbl.h 274.

Symbols
F_CRLK 79.

F_DELLK 79.

symbols
F_WAITLK

FIFO buffer synchronization 83.

sysboot 13.

sysglob.h 29., 41.

Sysgo 392.

system
debugger

call 281.

F_SYSDBG 281.

F_STIME 275.

F_SYSID 282.

F_TIME 288.

functions of 24.

get date/time 288.

global
area 29.

variables
change 254.

examine 219., 254.

F_GETSYS 219.

F_SETSYS 254.

set 254.

memory request 269.

path numbers 27.

remove device table entry 316.

return identification 282.

set date/time 275.

state 24.

advantages 24.

installing routines 25.

system-state
alarms

defined and listed 53.

systype.des 40.

systype.h 30.

T
tape

erase 365.

retension 376.

skip

OS-9 Technical Manual

450

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

tape marks 377.

to end 381.

SS_ERASE 365.

SS_RETEN 376.

SS_RFM 377.

SS_SKIPEND 381.

SS_WFM 383.

write marks 383.

task 44.

allocate 107.

switching 44.

pre-emptive 44.

system global variables 44.

variables affecting 268.

tcall
dispatching 75.

relocatable macro assembler
mnemonic for trap calls 74.

terminate
calling process 207.

I/O for process 343.

test for
data ready 339.

end of file 331.

TH_DELPB 98.

TH_SPOWN 54., 98.

time
functions

F_STIME 275.

F_TIME 288.

get system date and time 288.

set system date and time 275.

slice 44.

track
SS_WTRACK 384.

write 384.

translate user path to system path 387.

trap
handler 26.

calling 74.

creating library 75.

described 289.

execution entry points 74.

explained 73.

F_TLINK 289.

F_TLINKM 291.

installing 74.

system state module 289.

user 291.

number 74.

program exceptions 277.

vector 74.

U
Ultra C related errors 414.

unconditional system abort signal 48.

unlink
event 199., 200.

module 294., 295.

user
ID 42., 226.

set 280.

state 24.

user accounting system 293.

user-state
alarms

defined and listed 52.

V
valid pathlist characters 246.

verify module 296.

W
wait

for child to terminate 298.

for event 152., 154., 156., 158., 160., 177.,
193., 195., 197., 201., 203.

for events
defined 57., 61.

for record release 382.

for relative event 205.

wake-up signal 48.

write
data 388.

file descriptor sector 366.

line of text 389.

logical unit options 371.

option section of path descriptor 372.

tape marks 383.

track 384.

	HOME
	OS-9® Technical Manual
	Contents
	Chapter 1: System Overview
	System Modularity
	Level 1 -- The Kernel, Clock, and Init Modules
	Level 2 — IOMAN
	Level 3 — File Managers
	Level 4 — Device Drivers
	Level 5 — Device Descriptors

	I/O Overview
	Memory Modules
	Basic Module Structure
	The CRC Value
	ROMed Memory Modules
	Module Header Definitions
	mh_com

	Chapter 2: The Kernel
	Kernel Functions
	System Call Overview
	User-State and System-State
	Installing System-State Routines

	Kernel System Call Processing
	Non-I/O Calls
	I/O Calls

	Memory Management
	OS-9 Memory Map
	System Memory Allocation
	Operating System Object Code
	System Global Memory
	System Dynamic Memory
	User Memory

	Memory Fragmentation
	Colored Memory
	Colored Memory Definition List
	SSM and Cache
	Cache List

	PowerPC Processors: SSM and Cache
	Colored Memory in Homogenous Memory Systems
	System Performance
	Reconfiguring Memory Areas

	System Initialization
	Init: The Configuration Module

	Extension Modules
	Process Creation
	Process Memory Areas
	Process States

	Process Scheduling
	Preemptive Task Switching

	Chapter 3: Interprocess Communication
	Signals
	Signal Codes
	Signal Implementation
	Non-Recursive Calling
	Recursive Calling

	Alarms
	User-State Alarms
	Cyclic Alarms
	Time of Day Alarms
	Relative Time Alarms
	System-State Alarms

	Events
	ev_str/ev_infostr
	Wait and Signal Operations
	The F_EVENT System Call

	Semaphores
	Semaphore States
	Acquiring Exclusive Access
	Releasing Exclusive Access

	Usemaphores
	P and V Operations
	Reset
	The F_EVENT, F_USEMA System Call

	Pipes
	Named and Unnamed Pipes

	Operations on Pipes
	Creating Pipes
	Opening Pipes
	Read/Readln
	Write/Writeln
	Close
	Getstat/Setstat
	GetStat Status Codes Supported by PIPEMAN
	SetStat Status Codes Supported by PIPEMAN
	Pipe Directories

	Data Modules
	Creating Data Modules
	The Link Count
	Saving to Disk

	Chapter 4: Subroutine Libraries and Trap Handlers
	Subroutine Libraries
	Installing and Executing Subroutine Libraries
	Terminating Subroutine Libraries

	Trap Handlers
	Installing and Executing Trap Handlers

	Chapter 5: Resource Locking
	Overview
	Lock Structure Definition
	Create and Delete Resource Locks

	Preallocate Locks as Part of the Resource
	Signals and Locks
	Signal Sensitive Locks
	Ignoring Signals

	FIFO Buffers
	Process Queuing

	Chapter 6: OS-9 System Calls
	Using OS-9 System Calls
	_oscall Function
	Using the System Calls
	System Call Descriptions
	Interrupt Context

	System Calls Reference
	F_ABORT
	F_ACQLK
	F_ALARM (System-State)
	F_ALARM (User-State)
	F_ALARM, A_ATIME
	F_ALARM, A_CYCLE
	F_ALARM, A_DELET
	F_ALARM, A_RESET
	F_ALARM, A_SET
	F_ALLPRC
	F_ALLTSK
	F_ALTMDIR
	F_APROC
	F_CAQLK
	F_CCTL (User-State)
	F_CCTL (System-State)
	F_CHAIN
	F_CHAINM
	F_CHKMEM
	F_CHMDIR
	F_CLRSIGS
	F_CMDPERM
	F_CMPNAM
	F_CONFIG
	F_CPYMEM
	F_CRC
	F_CRLK
	F_DATMOD
	F_DATTACH
	F_DDLK
	F_DELLK
	F_DELMDIR
	F_DELTSK
	F_DEXEC
	F_DEXIT
	F_DFORK
	F_DFORKM
	F_EVENT
	F_EVENT, EV_ALLCLR
	F_EVENT, EV_ALLSET
	F_EVENT, EV_ANYCLR
	F_EVENT, EV_ANYSET
	F_EVENT, EV_CHANGE
	F_EVENT, EV_CREAT
	F_EVENT, EV_CREAT | F_USEMA
	F_EVENT, EV_DELET
	F_EVENT, EV_DELET | F_USEMA
	F_EVENT, EV_INFO
	F_EVENT, EV_LINK
	F_EVENT, EV_LINK | F_USEMA
	F_EVENT, EV_PULSE
	F_EVENT, EV_READ
	F_EVENT, EV_RESET | F_USEMA
	F_EVENT, EV_SET
	F_EVENT, EV_SETAND
	F_EVENT, EV_SETOR
	F_EVENT, EV_SETR
	F_EVENT, EV_SETXOR
	F_EVENT, EV_SIGNL
	F_EVENT, EV_SIGNL | F_USEMA
	F_EVENT, EV_TRYWAIT
	F_EVENT, EV_TRYWAIT | F_USEMA
	F_EVENT, EV_TSTSET
	F_EVENT, EV_UNLNK
	F_EVENT, EV_UNLNK | F_USEMA
	F_EVENT, EV_WAIT
	F_EVENT, EV_WAIT | F_USEMA
	F_EVENT, EV_WAITR
	F_EXIT
	F_FINDPD
	F_FMOD
	F_FORK
	F_FORKM
	F_GBLKMP
	F_GETMDP
	F_GETSYS
	F_GMODDR
	F_GPRDBT
	F_GPRDSC
	F_ICPT
	F_ID
	F_INITDATA
	F_IRQ
	F_LINK
	F_LINKM
	F_LOAD
	F_MKMDIR
	F_MEM
	F_MODADDR
	F_MOVE
	F_NPROC
	F_PERMIT
	F_PROTECT
	F_PRSNAM
	F_RELLK
	F_RETPD
	F_RTE
	F_SEND
	F_SETCRC
	F_SETSYS
	F_SIGLNGJ
	F_SIGMASK
	F_SIGRESET
	F_SIGRS
	F_SLEEP
	F_SLINK
	F_SLINKM
	F_SPRIOR
	F_SRQMEM
	F_SRTMEM
	F_SSPD
	F_SSVC
	F_STIME
	F_STRAP
	F_SUSER
	F_SYSDBG
	F_SYSID
	F_THEXIT
	F_THFORK
	F_THREAD
	F_TIME
	F_TLINK
	F_TLINKM
	F_UACCT
	F_UNLINK
	F_UNLOAD
	F_VMODUL
	F_WAIT
	F_WAITID
	F_WAITLK
	F_YIELD
	I_ALIAS
	I_ATTACH
	I_CHDIR
	I_CIOPROC
	I_CLOSE
	I_CONFIG
	I_CREATE
	I_DELETE
	I_DETACH
	I_DUP
	I_GETDL
	I_GETPD
	I_GETSTAT
	I_GETSTAT, SS_COPYPD
	I_GETSTAT, SS_CSTATS
	I_GETSTAT, SS_DEVNAME
	I_GETSTAT, SS_DEVOPT
	I_GETSTAT, SS_DEVTYPE
	I_GETSTAT, SS_DISKFREE
	I_GETSTAT, SS_DSIZE
	I_GETSTAT, SS_EDT
	I_GETSTAT, SS_EOF
	I_GETSTAT, SS_FD
	I_GETSTAT, SS_FdAddr
	I_GETSTAT, SS_FDINFO
	I_GETSTAT, SS_LUOPT
	I_GETSTAT, SS_PARITY
	I_GETSTAT, SS_PATHOPT
	I_GETSTAT, SS_POS
	I_GETSTAT, SS_READY
	I_GETSTAT, SS_SIZE
	I_GIOPROC
	I_IODEL
	I_IOEXIT
	I_IOFORK
	I_MAKDIR
	I_OPEN
	I_RDALST
	I_READ
	I_READLN
	I_SEEK
	I_SETSTAT
	I_SETSTAT, SS_ATTR
	I_SETSTAT, SS_BREAK
	I_SETSTAT, SS_CACHE
	I_SETSTAT, SS_DCOFF
	I_SETSTAT, SS_DCON
	I_SETSTAT, SS_DEVOPT
	I_SETSTAT, SS_DSRTS
	I_SETSTAT, SS_ENRTS
	I_SETSTAT, SS_ERASE
	I_SETSTAT, SS_FD
	I_SETSTAT, SS_FILLBUFF
	I_SETSTAT, SS_FLUSHMAP
	I_SETSTAT, SS_HDLINK
	I_SETSTAT, SS_LOCK
	I_SETSTAT, SS_LUOPT
	I_SETSTAT, SS_PATHOPT
	I_SETSTAT, SS_RELEASE
	I_SETSTAT, SS_RENAME
	I_SETSTAT, SS_RESET
	I_SETSTAT, SS_RETEN
	I_SETSTAT, SS_RFM
	I_SETSTAT, SS_SENDSIG
	I_SETSTAT, SS_SIZE
	I_SETSTAT, SS_SKIP
	I_SETSTAT, SS_SKIPEND
	I_SETSTAT, SS_TICKS
	I_SETSTAT, SS_WFM
	I_SETSTAT, SS_WTRACK
	I_SGETSTAT
	I_TRANPN
	I_WRITE
	I_WRITELN

	Appendix A: Example Code
	Sysgo
	Signals: Example Program
	Alarms: Example Program
	Events: Example Program
	Semaphores: Example Program
	Usemaphores: Example Program
	The Subroutine Library
	Subroutine Module
	root psect File
	function File

	Application Call into a Subroutine Module
	Initialization

	Trap Handlers
	trapc.a
	thandler.c
	tcall.c
	ttest.c

	Appendix B: OS-9 Error Codes
	Error Categories
	Errors

	Index

