_ 0S-9® Technical
RadiSys. Manuadl

Version 4.2

www.radisys.com Revision A * April 2003

Copyright and publication information

This manual reflects version 4.2 Microware OS-9.
Reproduction of this document, in part or whole, by
any means, electrical, mechanical, magnetic, optical,
chemical, manual, or otherwise is prohibited, without
written permission from RadiSys Corporation.

Disclaimer

The information contained herein is believed to be
accurate as of the date of publication. However,
RadiSys Corporation will not be liable for any damages
including indirect or consequential, from use of the
OS-9 operating system, Microware-provided software,

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys Corpo-
ration expressly prohibits any reproduction of the soft-
ware on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system may
constitute copyright infringements and misappropria-
tion of trade secrets and confidential processes which
are the property of RadiSys Corporation and/or other
parties. Unauthorized distribution of software may
cause damages far in excess of the value of the copies

or reliance on the accuracy of this documentation. involved.
The information contained herein is subject to change
without notice.

April 2003

Copyright ©2003 by RadiSys Corporation.
All rights reserved.

EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are

trademarks of RadiSys Corporation.

DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are

trademarks of RadiSys Corporation.

T All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

| Contents

Chapter 1: System Overview

SYSEEM MOUIATIEY ..vveieurieriiiiriitieeentteesteeete e st e eteesstteeesateessabeessabeesssteesssseesnssaesssseessseessssesansseennsees 12
Level 1 -- The Kernel, Clock, and Init MoOdUles......ccoovvuuueeeieeiiiiiiiiiiiiieeeeeeeeeeeeeeeeeveeeeee e 12
Level 2 — TOMAN L.ttt ettt ettt e bt esa e et esat e s bt e st e e beesabeesseesabeesaeeebeenas 12
LeVel 3 — Fle MANaAZETS . uccecureeecurieeiieeeeiieesteeesteeesteeesseeessseessseessseessssesasssesasssesssssesessssesnsssnenn 12
Level 4 — DeVICe DIIVELS couverutiruieiirientieieetenttetesitesteete et et eatesae e te st esseebesatesbeessesatenseensesasenseens 13
Level 5 — DEVICE DESCIIPLOTS..uverurirrerrrrerieenieesieesaessseesseessseesseessseesssesssaesssesssessssessseesssesssssssssenns 13

J/O OVEIVIEW cetviiiiiiiiiiiiiiiiic ittt ettt ab et s ba e s ab e e s s aaa s e e s eaaba s e s e sbaaaaesssnsaneesans 13

MEMOTY MOAUIES ...evieeiiiiieieeeeteeete ettt e ettt e e stte e et e e e te e e steeesteeesseesasseesssseasassaessssaesnsseeessssesasssesanns 14
Basic MOAUIE STIUCTUTE «..eeutieiiieieiiieeie ettt ettt et e e st e e st e st esabeesbeesabeesmeeebeenas 15
The CROC VAU ...uueiiiiiiieeieecctee et eetee e teeee e e st e e st e e s te e e ssaeesssseesnsasesseeassaeansseasassaeenssseennsees 16
ROMed MemOTy MOAUIES ...c.cuviiiiiieeeiiieieiieeeiteeeite e ctteeeereeeeteeestreeesaeeeesseeessaeensseeesssaeesnsasennsees 16
Module Header Defillitionseeeereeererreerierrtenienteeientenieestesseetestesseetesseensesnsesseessesmeessessessesseens 16

IR _COMM 1ottt ettt ettt et e e st e bt e st e bt e eme e st e e me e e bt e st e e seeeab e e beesabeesmeeeaneesaeeenseenne 17
Chapter 2: The Kernel

KEINE] FUNCHIONS ..eeuteritteeieeiteeiteet ettt et ettt et e st e st e et et e st e e bt e e beesbeesaseesmeeeaneesneeearaenns 24

SYSLEM Call OVEIVIEW ..vviieeiieiieiieeeieeieieeeetteeetteeettesetteeesseeeessseessssasessseesssseesssseesssseesssssesesseeesssesensees 24
User-State and SYStEM-STATE ...cuiiiiviereeiieeeriieeeereereitteeesteeeseeeesseesessseesssresessseessssessssseessssessssseesensees 24
Installing System-State ROULINESuviieciieiiiieeeiieeeciieeeiee e et eeeite e e reeesreeeseseeesataeesnseeesnsaeesssseennsees 25

Kernel System Call ProCessing......eecveereereuerrieeesieesieessieesieessieeseessseesssessseesssesssessssesssessssesssassssessssesssasans 26
INOD-T/O CallS ettt ettt ettt et st e b e st e s b et e st e bt e b e saeesbesmtesseebessenseens 26
/O CallS ettt ettt ettt ettt ettt ettt sttt e b e s he e s bt e eae e e ne e s et eneenas 27

MeEMOTY MaNQZEIMENL «.ceeiiiiiiiiiiiiiitietetee e e et ettt et e e e e e e e e seaeeeteeeeeeaeeaennnneaetaeaeaeeeeassaeannnnnrenes 27

O8-9 MEMOTY AP cettiiiiiiiiiiiiiiiitetee et e ettt ettt e e e s e see sttt tteeeeesaes s asssbabtaeeeeeeesesssnnsssssreaaeeeeens 28
System MemoOry AllOCAtION ...uvviieviieiieeeeiieeeieeeeteeeeteeetteeestee e s seee e sseeessseeessseeessesesssesessseessssenenn 28
Operating System ODJECt COE ..uviruiirriiiniiriiieiieiiieriteerite st este et e et e ssreesstessseesseesseesseesssessseenns 29
System GloDal MEMOTIYueiieiiiiiiiiiiiieiiiteerite st esiteseiteessiteessteesateessaseessseesssassnsseesnssaesassseenn 29
System Dynamic MEMOTY ...cceieiiiiiiiiiiiiietiteeeee ettt et e e e e e eeereteteeeeee e e e sesenssrreneaeeeeeeas 29
USET IMEIMOTY eeeiieiiieiieeiieetet ettt ettt e e e e e e e e e et e bttt e eeeeae e e s e sebbteeteaeeeesaaannnnssaeaaeaeeens 29

MeEMOTY Fragmentation cueeeeiieeeeeeeiiiiiiteeteeeeeeeeeeiiirteeteeeeeeeessessnstateeeeeeeessssssssnsnserstaaaeeesesssssssssnsnssnee 30

(071 [o) eTe IDLY, 153 1 3To) o A0S 30
Colored Memory Definition LiSt.....cccieiccieeiiieeeiieeeiiieeeeiieeceteeeeeeeeereeesssesesveeessseeesssesessseeassesens 30
SSM AN CACKE cnitiiiieieee ettt ettt et sa e et st e s et s bt e st e e s et eneeas 33

CACRE LISt .uuteiitieniieiteeeete ettt sttt et et e e st e st esat e e bt e st e e bee s bt e s ne e e neesaeeeneeas 33
PowerPC Processors: SSM and Cacheoccueiieiieiiiiieeieccceeceee et cree st e e eve e e ee s 33
Colored Memory in Homogenous MemOry SYStEIMSccvveeecvieercieeesirreesieeeecreessseeesseesssseesssseeens 39
SYStEM PEIfOITNANICE ..vvveiiiiieeiiieietieectee ettt e teeeeteeette e e taee e tte e e ssee s sseeesssesesseeassaeessseesssseesssssnenn 39
Reconfiguring MEMOTY ATEAS ..veivviereeerieeiieeiieenitesiteeseesseesseesseessesssessssesssessssesssassssessseesssesssasnns 39

SYStEM INITIAlIZATION. tetuttereiieeriiererteeeiteeeteessteeesiteesstteeesateesssseessssaesnsseessssaesasssessssaessssessssseesssseennsees 40
Init: The Configuration MOAULEciieviiiriiieieiieiiiieeeteeet ettt e srreessbeessiteessreessabaessssaesnsenes 40

EXTENSION MOAUIES ...ttt ettt ettt et ettt e st e e sbe e saee s bt e sate e st e saeeesaenas 40

Contents

Process Creationuiieiiiiuriiiiiiiiiiiiiiiiiieeeiitt ettt eir e eibs e e s eab bt e e s e saba s e s sesabseesessbbaseesessaseesns 41
ProOCeSS IMEIMOTY ATEAS .vvveeireuriietieeiiteeeesiitteeeeiiittteesssareeesassssatesssssssaesessssseesssssssseesssssssesesssssnssnees 42
PrOCESS STATES cneneeieiiiiiiiie ittt ettt et s et e st e e et e e e e e s e e e e e s enraeees 43

Process SCHEAUIINEveieuiiiiiiieeieeeeieeeeee et e e tee e et e e e teeeeeteeetteesseeessseeessaeanssaeesssaeesnseeeanssessnseenanes 44
Preemptive Task SWItChing.....c.veieuiiiiiiiiiiiiieeteteet ettt et ettt e sbae e 44

Chapter 3: Interprocess Communication

SIZINALS 1rreiiieiteee ettt ee e e e et e e e eeereee e e e bt aeeeee bt aaeeeeaaataaeeeantaaeeeanbtaaeeearbaeeeeennrraeeananees 48
Y T8 T 1 I O Yo LT 48
SigNal IMPlEMENTATION . .ciitiiieireriitieerrieeerteeerte e ettt esteeestteesstteeessteesssseeesssaesssseesnssassnssaesnsseessssseenn 49

NON-ReCUIrsive CalliNg......cccciieeiieieiieieiieeeciee et eeeieessreeesaeeseteeesseeseseeessseesessseessssassssseeeas 50
ReECUTISIVE CalliNE .cuvviieiierieiiiriiiieeeiieeeiteee sttt eesee e e teeetteeesateesbeeesssseeessseessssaessssessnsseasssssasnnns 50

FaN T s TS USRUPSRNY 52
USEr-SEAte ALATINIS. ceuuieiirieieeteeitet ettt ettt et ettt e st e s bt et e sae et e e st e s bt et e eabesbeeabesbtenseeaseesenseens 52
(@) Lo - ¥ s U 52
Time Of DAy ALAIIS couiiiieieeiiiieiite ettt e e et e e st eessereesabeessabaesssbaessssaesasseessssaeesnssesnnsees 53
Relative Time ALATIMIS ..ccccuuiieeiieieiieeiteeeeieeeerieeeetteestteeesteeessteeeessseeesseessssasessseessnsessssseesssseesessseenn 53
SYStEM-STALE ALATTIIS c.vveeiiuieieeiieieiieeeee e ettt eestte e e teeetteeetteesssteeessseesassaesasseasasseeessssesasseesssssesesssennn 53

EVEIIES ottt ettt ettt ettt e e ettt et e e e e e e e e e bbbttt e e e e e e eeeee b abetaaaeeeeeeeeaeannnrrnee 54

EV_STI/EV_INEOSEE weeutetteiietentteste sttt et ettt et st et e et e sb e et e sat e bt et e e st e s bt et e sbee bt eabe s st e bt satesueenbeeneesseeases 55
Wait and Signal OPErationsc.eeeeieerriiterriieeeniiieeniteeerteesiteeesreeesreeesseesssseesssseeessseeesssaeessssaesnns 57
The F_EVENT System Callceiiiiiiiiiieiiiieiiiiesiiteeeiteeesieeessieeeesireessireesssseesnssassssseesssssessssesssees 58

TS 10T] 0] 1) XTSRS 59
SEMAPROLE STALES .veiieurieiiiieeeiiereitieesite e ettt eestteeetteeeateeessaeessseeassseesassaeesssessasseeessseesasseesssssesessseenn 60
ACQUITING EXCIUSIVE ACCESS veeiuriiieiieieitieieitieeecieeeiteeeeteeessteeessseeessseeasssesesseeesssasasssssessseessesensees 60
Releasing EXCIUSIVE ACCESS .uveirviiieiriieeitieeeiieeeiieeeiteeesteeestteeesseeesseessssesesaseeesssssassssessssessessssees 60

USEMAPROTES .eveeiieeiieeriieiiieerieeitesteetteetessteestesssaesssesssaesssessseesssesssaesssesssassssessseesssessseessseenssesssasnsaenns 61
P and V OPErationsS..cccueeeesueerriiteiriiiereiiteeriteeesteesstesesseesssessssesssseesssssssssseessssessssssesssssesssssessssees 61
RSO ettt ettt ettt e e e e e ettt et e e e e e e e e e e ettt et e e e e e e e e e e rrraeaaeeeeeas 63
The F_EVENT, F_USEMA System Call........ccccteitiririirieieeeieste ettt sttt 63

IS ettt ettt e et e e e e e et et e et e e e e ee e e et a bttt e e e eeeeeeee e a bbb ttaaaaeeeeeeneeanannrrnee 64
Named and Unnamed PIPeScveeeveerierrieriieeneerieineesteestesseesseesssessseesssessseesssesssaesssessssesssessssenns 64

OPErations 0N PIPeS...cciiiiiiiiiiiiiiittiteteee ettt e ettt te e e e e s s e s e asreeet et eeeeeesessnannsnreeeaeeeeeeas 65
Creating PIPES ceeeeeiiiiiieteie ettt ettt et e e e e st ettt e e e e e e e e e srareaeeeeeas 65
OPENING PIPES ceeitiiiiiiiiittt ettt et e e e e e ettt et e e e e e e e e e e s et b eeeteeeeeeseaaannnssseeaaeaeaeas 65
T 1 2 e 1 o O USRS 66
A4 S T AN 4 a1 11 o USRS 67
ClOSE 1ttt ettt ettt ettt et ettt s e bt et bttt e e bt et e a e e bt et e s h e et e eat e bt et e e atesbe et e saeebeeaee 67
GEESTAT/SEESTAL .vuvveeiiiuiiiiieiiiriie ettt et sebb e e s eab e e s e eabbb et e s saaaa e e e s eaabbseesesaabaseesensssaeesans 67
GetStat Status Codes Supported by PIPEMANcooiiiiiiiiiiiiieieieenieeenteeesieeesveessieessaveeseveeens 67
SetStat Status Codes Supported by PIPEMANccoiiiiiiiiieiiieeeceeeeteeesteeesteessveeseveeesnveesenveeeas 68
PIPE DITECTOTIES wevvtireiriieereiiiiitttteteeeeeeeeeertettttteeeeeeesseaasseetetaeeeeeeassessasassssteaaeaeeessssssssnnsssenaaeeeees 68

DY I LYo 131 [USSP 69
Creating Data MOUIEScoveeeiiieiieeieiieesieete sttt st et e st e ee s beesste s baessessaesssessseesnseesssesnseenns 69
The LInK COUNT...eiiiiiiiiieeteeeeete ettt ettt et et st e st e s be e sbee s bt e smeesaseesmeeeaneenns 69
SAVING 10 DISK 11tiuiiiieiiiiiiieeeiee sttt st e e ste e ete e st essabaesssbeessabaessssaessssaeesssaesasssesssssasesseenn 69

Chapter 4: Subroutine Libraries and Trap Handlers

SUDIOUTINE LIDIATIES «euveiriiiiiieiieie ettt ettt ettt et s bt e et e st e saeessbeesaseesmeeeaneens 72

Installing and Executing Subroutine LiDrariescccviecierecveiiriereeiieccieeeeseee e e eeveeesvee e 72

0OS-9 Technical Manual 4

Conte

nts

Terminating Subroutine LiDIraries.....occueiiriieiriieiniiieinieeeriecerieeseiteesieeseireesireesaneessareessasaessnnns 73
TrAD HANALETS ..uvviieiieieieeccieeeiee et eetee et e e tee e et e e s rtee e eseaeeessteeessseessseessseeeansaessssaesasssesasssesenssesanns 73
Installing and Executing Trap Handlerscccveeeeiiiiiiiiieiiiecies et iree e e e esnveessevee s 74
Chapter 5: Resource Locking
VI VIEW .iettettte e et e e e e e e ettt ettt e e eeesaea e e s s ae bt e et eeeeeeeaaa i nsssbatttaaeeeeaeeaen nnanseaeaetaeeeeesaasannnnsseeaaeaaeens 78
LOCK Structure DefiNitiON ..uiecueeicciieeeiieeeiteeeeieeeeteeerteeeereessereeesseesssseeesssesesssesesssesssssseessssesessseens 78
Create and Delete ReSOUICE LOCKS ...vvieiveirierniiriiiiiienieenieesieesteesieessessseesssessseesssessseessseessessseenns 79
Preallocate Locks as Part Of the RESOUICE .ovuvviriiiriiiiiirieiiecitesiteesteeteete et e e sieesaeesteesanesseesnneensaenns 80
SIZNALS AN LLOCKS uvvieiiiieiiiieiiiieeete et et eeite et e s st e e et e e st e e sataesssbeessateessssaessssaesnnsaessnssessnsaeennsees 81
SigNAl SENSITIVE LOCKS. .1tiitiiietiiieitieieiiee ettt ee st e et e erte e seteessabeeesteesebaeessseeeesseaessseesessseessssasesseenn 81
IGNOTING SIGNALS ... tiiiiiiiieeieeecteeereeeeee ettt e e e et e e ette e e bt e e esbeeeessseesssaeessseessssassnsseesanseeeesssnennsees 82
FIFO BUI IS ceieutiiiiiieieiieeeiieeetie e ettt eestteeesteeeeteeeeae e e sseeesssaeasssaeassssasassseesssssesssseesssssasnsseensssesnnseenanes 83
PrOCeSS QUEUINEG ...vveeeeeuireieieeiitteee ettt e e ettt eee ettt e eesaareeeeseesrtteeasanraeeeesnrateeaasnnraeeesasnneneeesssnsenees 84
Chapter 6: OS-9 System Calls

Using OS-9 SyStemM Calls.....cccuiiriiriiiniiriieeiieeiie et ssieeereeseeste et este e tesseessaesssessseessesssaessseessasssasnns 88
_OSCALl FUNCHION uttiiieiiieeieisieesie et st et e st eit e st et e s teesteesate e saesssaesanesnsesnseesnsessssesnsesnssesseennsens 88
Using the SyStem Calls ..cieuieiiiiiiiiiieiiiieirite ettt eeit e ssiteesabeessareessabeessabaesssseessssaesssseessssees 90
SYStEM Call DESCIIPLIONS .uvveeurrererieerreeeeiieeeeiteesesreeesseesessseessssesassseessseeesssesssssesssssessssseesssssesesssess 90
INEEITUPE CONTEXE tetttiiiieiiiiiittttee et et e e ettt et e e e e e e e e e eaaaee bttt eeeeeees e asesbeeeeeaeeeeeaaannnnssnaeaaeaeeens 90
System Calls RELEIENCE .uveuviiiiiiiiieiiieecieeecteeeeteeertee e et e e s teeesteeesereeesaeessaeeessseeesseesnseeesssseesnsasennsees 91
F ABORT ettt ettt e ettt e e ettt e s et e e e ba e e e s e abate e e e saaee e e nreteeeeenreaeee e anees 92

F A CQLE oo eeo e e oo e e e s e e e s e e s s e e e s e e st eeee s ee s e 94
F_ALARM (SYStEM=-STALE)...ettereeurrieereriitteeeeiitteeseeiiteeeeesirteeesesusteesssssseaesessuseteesesssseaessssssseeesssssnsees 96
F_ ALARM (USEI-STATE).ueeeeeeeieeeiieeeieeeeeeeeereattsasesssieseeeeeeeeeeeeseseesesesesssssssssssssssssnnssnssssesesessessssssssssssees 99
F_ALARM, A_ATIME ...ttt ettt ettt ettt e e s st e e s s sata e e s s sabae e e s ssntaeesssssaaeesnnsneas 101
F_ALARM, A_CYCLE ...ttt reeeee s e e e e e e e e e e e e e e e eese s e s e s e s e s s s s nannnnnansasaaaseaaasaseessennnes 102

F ALARM, A _DELET ittt ettt e ette e e st ee e s st e e s seartee s s msee e e s semeteesssnneeeessnneees 103

F ALARM, A_RESET ... ittt ettt ettt e s et e e s et e e e s s eeee e s s ssseee s s s mseaeesesannnees 104

F ALARM, A _SET ettt ettt ettt ettt s et e e e s ste e e s s abt e e e s ssbbaeesssnsataesssnsaaeeessnaneeas 105
F_ALLPRC .ttt ettt ettt ettt e ettt e e s e tte e e s abt e e e s s abaaessasasaaaesssssbaaessnssstaaessasssaaesssnssees 106
FALLTSK ettt ettt ettt ettt e e et e e s st e e e s saata e e s ssaabaaeesessbaaessssssaaeesssnsaeesssssseaaeesssrees 107
F_ ALTMDIR ..ottt e e s e e e e e e e eeaeeeeeeeeseae s e s e e s s e s e s s s s nnnnnnnsnnnssaaasaeseaeeseseessesnnes 108

F APROQC ..ttt ettt ettt ettt e s e vtte e e st e s s e et e e s st e e e s s assaeeesennateeessnnaeeeesanneees 109
FL U CAQLEK ettt ettt ettt e ettt e e s ettt e e e s bt e e e s e bt e e e s st aaeesesbtee e e e abaeeeeenraaeeesnnrraas 110
F_CCTL (USEI-SEALE) ueeeeeeeeeeeeeeeeeeeeeeeereerrrrssstssnnnseeeeeeeeeeeeeeeessesesssssssssssssssssnnnnnnnssssesesssessseesssssssnnes 111
F_CCTL (SYStEIM=-STALE) 1uuuvrieerreirieerieeiieeeeieiitteeeeeiteeessssurteeessssnraeesssssstaeesssssaeesssssseesssssssnaesssssssees 113
O 7= U RPURSRN 115
O3 7= .Y USRS 118

F CHKMEM Lottt ettt ettt et e e e st e e s st e e e s st et e s s sseeee e s mnaeeeessansaeeessnnsenes 121
F_CHMDIR ettt ettt et et e e sttt e e e e e e e s e s s e beeeteeeeeeseesasnnnnnes 123
F_CLRSIGS ettt ettt et et et e e sttt e e e e e e s e e e s srebaaeeeeeeeesessannnnnnes 124
F_CMDPERM ...ttt ettt e e e e e e s e ettt e e e ee e e e e e s st beeeeeeeeeeaeeaeannnnee 125

F o CMPIN A ..ot eee s e e e eeeeeeaeeeeeeaeaaseeeraaaessesssnnsnnnnnnnssnasaasaaaseeeeseseesneennes 126
F_CONFIG .ttt ettt e ettt e e e e e e e e e s e asetbtteeeeeeeas s annsssaaaaaeaeessassssnnnnes 128

F L CPYMEM ottt ettt ettt sttt e e ettt e e st e s s e et e e s s et ee s e e msaeee e s mmeteesesnseeeessnnnenes 129

B R ettt ettt ettt et e e e e s e ettt e e e et e e e e e e re et et e e e e e e s e e e ennnnae 131

| S O 2N) (U P PP PPPPPPPPTURRRRRORt 133
F_ DATIMOD ..ctiiiiiiiiteeeeitee ettt ettt e ettt e s s st te e s s sabt e e s ssstaeesseaabaaeessssaaaessssssaeessssseaaeessassees 134

0OS-9 Technical Manual

Contents

F_ DATTACH ...ciiiiiiiiiiiitt ettt et saa e sa e as e sbs e raeeas 136
F_DDLEK .o 138
F_DELLK ..ottt 139
F_DELMDIR ... oottt sab e s st saa e aa s 140
F_DELTSK Lottt s ab s s ea 141
F_DEXEC ittt 142
F_DEXIT .ottt ettt saa e b e s b e aa e as e aa e 145
F_DFORK ..ottt s 146
F_DFORKM ..ttt s 148
F_EVENT (it s aa e s s e 150
F_EVENT, EV_ALLCLRcocciiiiiiiiiiiiiiiiiiiici ittt 152
F_EVENT, EV_ALLSEToiiiiiiiiiiiiiiiiiiiiiiciii ittt 154
F_EVENT, EV_ANYCLR ...coociiiiiiiiiiiiiiiiiit ettt sas s 156
F_EVENT, EV_ANYSET ..ottt ettt ettt 158
F_EVENT, EV_CHANGEcoiiiiiiiiiiiiiiittet ettt st 160
F_EVENT, EV_CREATcoooiiiiiiiiiiiiiititt sttt 162
F_EVENT, EV_CREAT | F_USEMA ..ottt sttt ettt et st e ste st esbeeaesstesveeeesreesse e 164
F_EVENT, EV_DELETccooiiiiiiiiiiiiiiiiiiitcttc ettt 166
F_EVENT, EV_DELET | F_USEMA ...ttt ettt ettt st sttt st st 167
F_EVENT, EV_INFOoiiiiiiiiiiiiiiceetertet ettt s ae e 168
F_EVENT, EV_LINK ..ottt ettt sn et a e s ae s 170
F_EVENT, EV_LINK | F_USEMAccoiitiittiitenteientesteeteereeteeee st e stesmeesreeeesseesseensesmeesesmeesseenne 172
F_EVENT, EV_PULSE.....cccciiiiiiiiiiiiiiiiiiiti it 174
F_EVENT, EV_READcoiiiiiiiiiiiiiiii it 176
F_EVENT, EV_RESET | F_USEMAiiitiitititetete ettt ettt st e sttt ettt et et 177
F_EVENT, EV_SET ..ottt sttt 179
F_EVENT, EV_SETANDccoctiiiiiitiiiiiiicieee ettt ettt et sn st as s 181
F_EVENT, EV_SETOR ...ccoiiiiiiiiiiiiiiiiititttc sttt 183
F_EVENT, EV_SETRcciiiiiiiiiiiiiiiiiiii it 185
F_EVENT, EV_SETXORcocciiiiiiiiiiiiiiiiiiii st 187
F_EVENT, EV_SIGNL ...cccciiiiiiiiiiiiiiiiiiiiiiitcetc sttt sas s a e 189
F_EVENT, EV_SIGNL | F_USEMAiooiiitititiiiientcte ettt ettt stesre ettt ne e s e 191
F_EVENT, EV_TRYWAITcoooiiiiiiiiiiiiii ittt 193
F_EVENT, EV_TRYWAIT | F_USEMAeoitiitiiinientententereeteseenstestesstesreseesreesseeeesseenesmeesneenes 195
F_EVENT, EV_TSTSET ..ciiiiiiiiiiiiiiiiiiii ittt 197
F_EVENT, EV_UNLNKcoociiiiiiiiiiiiiiii ittt sas s 199
F_EVENT, EV_UNLNK | F_USEMAiiittititiinientese ettt ettt st esie st sbt ettt st e i 200
F_EVENT, EV_WAIToiiiiiiiiiiiiiteteeet ettt sttt 201
F_EVENT, EV_WAIT | F_USEMA ...ttt sttt ettt st b eee et ess e nesaee e eeesnnessesnenne 203
F_EVENT, EV_WAITRcoooiiiiiiiiiiiii ittt 205
F_EXTT ot ea 207
F_FINDPD ..ottt s 209
F_EMOD i s 210
F_FORK ..o 211
F_FORKM ..ottt et s e 214
F_GBLKMP ..ottt 216
F_GETMDP ..uiiiiiiiiiiiiiiiiiiiit it s 218
F_GETSYS oot ra e 219
F_GMODDR i 221

0OS-9 Technical Manual 6

Contents

F_GPRDBT «..ooveoeeeeeeveeeeeeee s eese s seeesese s ss s sssese s e s esaeeseees s ss s sesasesesesasesasesesesassresesseseseseseres 222
F_GPRIISC oooveeeeeereveeeeeeeeeeeesese s sesesese s es st s sesesesasesasesesessessesssesesesesanesesesesesaessesssssesesesenes 223
F_ICPT oot seee s e e ee s s sese e s s e s et ee e s seseseses e esseessesesesesenesesesesesaessesssereseseseres 224
FID) et esesese e ee e e s et e s et et e s e et eeeeeseee s e s et ee et ee s ee e eereres 226
F_INTTDATA .. oooeeeeeeeeeeeeeee e eeeeseee s es e ss e se e esaeeseessees e sssase s sesasesasesesesaessesseaseeseeesenes 228
F_IRQ oo seeeeeseee e ee e e s e s s e s st ee e e s eeseseseees e eseaee s sesasesasesesesaesseeeseseeseeereres 229
F_LINK ..ot eeseseee s e eeseseeesesesesesesese s es s sssesesese s eseseseseseessesesasesesesesesasesesesassesssseseseseseres 231
F_LINKM orveoveeeeeeeseseeeseee e eesese e seeesese s es s sesesesese e sesesesesseesesesesesesesaseseseseeesseessessssesesesesenes 233
F_LOAD oot eeseseeeeeeee e se s sesesese s es et se s e s seseseees s ee s sesesesesesaneseseseeesaeseesssesesesereres 235
F_MIKIMIDIR wo oot ee et sesesese s es s esseee s e sesesesesesesseeseessesesesesenesesesesesaeesseesssesesesesenes 237
F_IMEM .o s et s e e s seeeseee s e s e ease e seseeesaeeteees st e e se e eeeesenes 238
F_MODADDR ...t ese e seseeeseees e st eese s e ease e seseseseees e esese s seeasesasesesesaesseesseesseseeeseres 239
F_MIOVE oot ee e ee e se s sese s e s et ess s s seseseseees s essss s sesanesasesesesaesesssssseseseseres 240
F_INPROC oo eeseeeseee s seseseseseses s es s sssesesesesaseseseseees s sesesesesesesesasesesesseessessresesseresesesenes 241
F_PERMIT «.ooeeeeeeeee e ee e e se s sesese s e s et ese e se e seseseseseeesseessesesesesenesasesesesaesresssessesssenenes 242
F_PROTECT corveeeeeereeeeeeeeeeseeeeseeese e sesesesessessesssesesesesesesesesesesssesesesesesesesenesasesesesseessesesessreseseseres 244
F_PRONAM ..o eeeee e eeeesese s e s ss e se e saseseeeseesseees e ssease s sesasesesesesesaesseseeseeseeeseres 246
F_RELLK ..o eeeeeeeee e s se e e e seseseeeseess e ss s s easeseseseseseeesaesseassesssasesasesesesaeesesssesseseeeseres 248
F_RETPD oot seeeseeeseess e e sesase e esaseseeeseess s se s sesasesesesaseseseseesssesssassessreseseseres 249
F_RTE oo eeseseeeseeee s ee s se e seseseseseseses s es et sese s e saseseseseeessaetsesesesesesesasessseseeessesssesseseresesereres 250
F_SEIND oo st ee s ee e seseseseseeeseee s ee et ee s s s e et eses s es s sesesesesesenesaseseeesaesseeesesereseseseres 251
F_SETCRC oo eeeeereeeee e ee e ee e seseseseseseses s es et sese e e sase e sesesesseesseessesesesesenesesesesesaessesseesreseseseres 253
F_SETSYS coreereereeeeeeeeeeeeeeeeeeseeeseseseseeeseesseess e seeesesaeeseeesaeeseeeseeseeass e sesaseseeesaseseeeseesseesseaseesseseeesenes 254
F_SIGLING] oo eeeeeeereveeeeeeee e eese e seeeeeseeeseee s ss e se e se s e e eseeeseessess e seeasesesesaseseseseess e sseassesseseeesenes 256
F_SIGIMASK ..o eeeeeveeeeee e eesesaeesesesesesaees s sseese s e sasesesesesesees s sesasesesesasesasesesesassessesssessseseres 258
F_SIGRESET .o verveeeeeeeeeeeeeesese e seseseseseseseses s eesesssesesesesaseseseseses s essesesesesesesenesesesesesaessessseseseseseses 260
F_SIGRS .o eeseeeeeseee s ee s se s e seseseses s ee s sesese s esaseseseseese s sesesesesesesesaseseseseesesesesessseseseseseres 261
F_SLEEP oottt eeeeeeseeeeeeseeeseseseseseseseses e es et seee e sesesesesesesesseesseesseeesesesenesesesesesaesreseeereseneseres 263
F_SLINK ..eooeeeeeeeeeseeeeeseee e ee e eeeeseseeeseeeseee s es e ssease s esaseseeeseeesees e seeasesesesasesasesesesaesseeeeseeseeesenes 265
F_SLINKM ... eeoeeeeeeeeeeeeeeeeeeees e seeeeeeeseseeesaees e ssees s eease s eeseseseess e esese s seeasesasesesesaeeseeeseeeseeseeesenes 267
F_SPRIOR ..o ee e ee e s sesesese s e s sseese e s seseseseseees e essesesesesasesasesesesaesseessssseseseseres 268
F_SRQMEM ..ottt eese s seseseees s ee s sssesesese e s et eess s ss s sesesesesesasesaseseeesssssasesenereseseneres 269
F_SRTIMEM ..o eeeeeeeeeeeee e eese e eseseseses s es et eese s e seseseseseses s essesssesesesesenesesesesesaeseesssssesesesenes 271
F_SSPD oo eeseeeeeeee e ee e seseseseseeeseees s ee et e s s e et ee et ee s seserereeeteeee et e e e ee s eesereres 272
F_SSVC oot eeeee s e s s e et e e e s e e e s e e sesese st ees et ee e ee e eesenes 273
F_STIME oo eeeee e s sese s e s et ee e seseseses e es e sssesesesesasesasesesesaeseesesereseseseres 275
F_STRAP ... e e seeesese s ee s sssaee e sasesesesesesees e sesesesesesasesasesesesessessessseseseseres 277
F_SUSER ..voovee oo eeseseseseeeseeesesesesesesesesesesesaes st sesesesesasesesesesesseessesssesesesesenesasesesesaessessssseseseseres 280
F_SYSDBG w.veeveeeeeeereseseeesesseeseeessesesesesesesesaees st eeee s e sesesesesesesseesseessese s sesenesesesesesaessesseeereeereseres 281
F_SYSID wrveeemeeeeeeeeeeseseseseeeseeeseesesesesesesesesesaesseeseeeesesesaseseseseseeseeseesseeesesesenesesesesesaetreeeeereseseseres 282
F_THEXIT ..o veeeseee s es e seeese e e eseeeseessess e seeese s sesasesaeesesesaessesseessesseesenes 284
F_THFORK ...oveoveeveeeeeeeee s eeeeeeseseeeseeeseess e se s sesesesesesaseseeseesssasssesesesesesesaseseseseesssessseseseseseseeeseres 285
F_THREAD ..ot eeeesese s eseeeseess e se e sesese e esaseseseseesssase e sesasesesesaseseseteessesssseseseseseeesenes 287
F_TIME e eseee s ee e ee e seseseses e ee et seeesese e seseseses s eesesssesesesesanesasesesesaeessessseseseseseses 288
F_TLINK oo eseeeeeee e seeeeesesesesesesesesesseeesesssesesesesasesesesseeesesesesesesesesesasesssesseesseessesssssseseseseres 289
F_TLINKM w.cooveeeeeeeseeeeeeeee s eesesesesesesseessese s sesesssesesesesasesesessesesesesesesesesesesasesssessesssesssesesseresesesenes 291
F_UACCT oo ee e veeeseee s e s s s s seeeseee s es s s se s sesasesaeeseeesaessesseese e sesesenes 293
F_UNLINK ..o veoeeeeeresee s e se s seeeseeeseeeseeessesssasesesesaseseeeseseseessesesesesesesasesaseseeesasssssessseseseseres 294
F_UNLOAD ...t es e seeesese s e s sssese e saseseseseseseees s sesasesesesesesaseseees st ssssesesseseseres 295

0OS-9 Technical Manual 7

Contents

F_VMODUL ..ottt 296
FoWATT oottt st a e et s b st a e et sab e et e s et e b e e aeesae e 298
F_WATTID .ottt sttt sttt e b e st saa e et e saae e saeeneesane e 300
F_oWAITLK oottt saa s s aa s s aa e 302
S € 5 U 304
LLALIAS i ea 305
LLATTACH oottt st a e st b e as e s b e sas e sra e 306
I CHDIR .. 308
I_CIOPROC ... b s ab e 310
LLCLOSE ..ottt s 311
L_CONEFIG ..ottt eabeen 312
LLCREATE.....iiiiiiiiiiiiit bbb 313
I DELETE ..ottt sttt s 315
IDETACH. ...ttt ettt e a e st a e et e be e sanesane e 316
LLDUP e 317
L_GETDL it 319
L GETPD ittt 320
L GETSTAT .ottt s b e 321
I_GETSTAT, SS_COPYPDccuiiiiiiiiiiiiiiiiiiiiiiciiite ettt st 323
I_GETSTAT, SS_CSTATS ..ottt ettt st s a e s e n e 324
I_GETSTAT, SS_DEVNAME ..ottt 325
I_GETSTAT, SS_DEVOPTcciiiiiiiiiiiiiiiii ittt 326
IL_GETSTAT, SS_DEVTYPEcccciiiiiiiiiiiiiiiiiiiiiiiiiitii sttt 327
I_GETSTAT, SS_DISKFREEcccocuiiiiiiiiiiiiiiiiiiiiiiiiic it 328
I_GETSTAT, SS_DSIZEcoiiiiiiiiiiiiiiiiiiiiiiiiic ittt st 329
I_GETSTAT, SS_EDT ..ottt ettt s et a e s e a e 330
I_GETSTAT, SS_EOFciiiiiiiiiiiiiiiiieteeeet ettt et sa e s s 331
I_GETSTAT, SS_FD ...ciiiiiiiiiiiiiiiiiii ittt s 332
L GETSTAT, SS_FAAAAIc.oiiiiiiiiiiiiiiiitcec e 333
I_GETSTAT, SS_FDINFOcccciiiiiiiiiiiiiiiiiiiiiciticti e 334
I_GETSTAT, SS_LUOPT ..ottt st sas s sa e 335
I_GETSTAT, SS_PARITY ..ottt ettt st s s 336
I_GETSTAT, SS_PATHOPTccoouiiiiiiiiiiiiiii ittt e 337
I_GETSTAT, SS_POS ..ottt s 338
IL_GETSTAT, SS_READY ..ottt 339
I_GETSTAT, SS_SIZEcoiiiiiiiiiiiiiiiiiiiiiiiiiic ettt st 340
(0] 54 2 L O 341
ILTODEL .o e 342
LTOEXIT ottt 343
LIOFORK ..ottt st 344
I_MAKDIR oottt 345
TLOPEN ..ot 347
L RDALST .ottt st a et as e aa e 349
LLREAD ottt s bbb e aeean 350
I READLN Lottt st 352
LLSEEK L.ttt 354
LLSETSTAT oottt s ab s sab s b sas e eaaeen 355
L_SETSTAT, SS_ATTR ...eiiiiiiiiiiiiiiiiiiiiiiccct ettt st an e 357
I_SETSTAT, SS_BREAKciiiiiiiiiiiiiiiiiiiiiiiititc et 358

0OS-9 Technical Manual 8

Contents

I SETSTAT, SS_CACHEcoiiitieieeeteee ettt ettt ettt sat e st s bt e e sas e e s et s bt e s meesbeesmeenas 359
[_SETSTAT, SS_DCOFEF ...ueetiiieieeiteetee ettt sttt et et e st e s bt e sat e e bt e st e s bt e s be e bt asabeesbeesaeeeas 360
[_SETSTAT, SS_DCON ...cuittitieieeiteeteestte ettt st et e et e sat e e bt e e st e sabeesat e e beesatesabeesbeebeesnteenbeesaeeas 361
[_SETSTAT, SS_DEVOPTiiitiiitiiteeiteete ettt et et ettt e bt e st e sbe e sate e st este s st esbessseasabeesseesasenas 362
I SETSTAT, SS_DSRTS. ..ottt ettt ettt st et s e st et s e s e s eeeemeesmreeeneesmeenan 363
I_SETSTAT, SS_ENRTS ...ttt ettt ettt sttt ettt e sre et st e e sne e ae s st e meeseneesnee e 364
[_SETSTAT, SS_ERASE ...ttt ettt ettt ettt sab ettt saee e s ee s bt e s meesbeesmee e 365
L SETSTAT, SS_FD ..ttt ettt ettt sttt ettt e bt e bt e st e e s bt e s bt e st e sabeenstesabeeemeeenbeesneenas 366
[_SETSTAT, SS_FILLBUETFoiiitiiitiiieeiteete ettt ettt et sat e sbt e st e st e sabe et e s beesmeeebeeeneeeas 367
[_SETSTAT, SS_FLUSHMARPuttittiiaeiteetieeste ettt et e ste e et e s te et e sate s bt e satesbeesaseesteseesseesseasseenns 368
I_SETSTAT, SS_HDLINKeottiitirttetentenie ettt sttt et et e sre s reesre e seesaee e meeseeesmeesneeeneenes 369
I_SETSTAT, SS_LOCK .ottt ettt sttt sttt et e st s bt e sare e seesaee e mee s et emeesaneesneenen 370
L SETSTAT, SS_LUOPT ..ttt ettt sttt ettt et et e st e s bt e s st e s meesareeseeeeseesmeessneesneenas 371
[_SETSTAT, SS_PATHOPT ...ttt ettt et ettt e st e st e st e bt e s ate s st e s aee e bt e smbeesbeesaeenas 372
[_SETSTAT, SS_RELEASE ...ttt ettt ettt et ettt e st e bt e st e s st e s ee e bt e s beesbeeeaeeeas 373
[_SETSTAT, SS_RENAME ..ottt ettt ettt e bt et e sbe e sbt e s bt e st e s bt e s be s beesateesbeasasenns 374
L SETSTAT, SS_RESET ...ttt ettt sttt st e bttt saee e ee s et e meesneesmee e 375
I_SETSTAT, SS_RETEN ...ttt ettt ettt sttt s bt e st s st saee e seeseeemeesne e mee e 376
L SETSTAT, SS_REM ..ttt ettt ettt ettt sb e st st s e s se e s e e ebe e s e sebeesmee e 377
[_SETSTAT, SS_SENDSIGuutiitiitteeieenitenieentte et rte et ette st e bt e st s sbeesabe e st e saeeesseesabeeeseeeseenseenas 378
[SETSTAT, SS_SIZE ..ttt ettt ettt ettt e bt e e bt e st esht e s bt e st e s bt e s teebeesmeeebeesneenas 379
I SETSTAT, SS_SKIPutiiitiiteeieeetteeieesite et e stte st e s te e bt esate e beesutesabeesute e bt esatesstesabesseesaseesseesnsenas 380
I_SETSTAT, SS_SKIPEND ...cccuttititiittiriiintenieenteetteeee et eeite e st eetesreesmeesseeseesneeseessreesmsesneesneees 381
I_SETSTAT, SS_TICKS ..ottt ettt sttt ettt et ee st st e st st e s eesneeseeemeesmneseneesneenen 382
L SETSTAT, SS_WEM... .ttt sttt ettt et et e bt e st e st e sae e e st e smeeeseesaee e st esmsesaneesneenas 383
[_SETSTAT, SS_WTRACK ..ttt ettt ite st tte st e bt e sabessbeesabeesseesabeeseesbeesseeebeesneenas 384
L S GET STAT ettt ettt sttt e st e bt e et e e e bt e e a bt e e bt e e beeaste s st e s abeeaseanmbeeabeeeneenas 386
LUTRANPN Lttt ettt ettt e e e s et b bt et e e e eeeaeese e sssabbaaeeeeeeeassessnsnsssbaaaaeeeeesassssnnnnnes 387
L WTRITE c.c ettt ettt sttt ettt e s bt e s be e s st e meesane e mae s st eemeesneesmnenen 388
LW RITELN ..ttt st ettt et e st e bt e s bt e meesan e e mee s et emeesneesnnenen 389
Appendix A: Example Code
S S0 ettt ettt ettt e s s e s ettt et e e e e e e e e e b ettt et e e e e s s e e rretateeeeeens 392
Signals: EXample PrOGIamccicieieeiiiiiiiieiiiieiriteceiteseiteesteeeesieeessieesessreessssesssssessnssesssssaessssaessssaesnnns 394
Alarms: EXample PrOZramm.....iicciiiiciieeiieeeeieeectte e ieessteeseeeeeeeeesesesessssesssssessssseesssseesssseessssessesseesas 396
Events: EXample PrOZIam.....cciccuieecciieecieeeeciieestee et e esteeeetee e tteeesveeessaeesssaeesssseessssaaassseessnsesessseeens 398
Semaphores: EXample PrOgrami......cuiicciieeccieeeiieieciieeeceeeectteesstreessseeeessaeeessseesssseessssesessesssnsesssssesanne 400
Usemaphores: EXample PrOZIramcoccueirierriieriieisiienieeseesitesseesseesseessseesssessseessesssessssesssassssessseesnes 402
The SUDIOULINE LIDTary....cccccveieeieriiiieiiieeesiteert et esie e st e ssiteseteessbtesssbaesessseesssaesssseesnsseessssaeens 405
SUDroutine MOAUIEcoouiiiiiiiiiiieee ettt ettt ettt st st 405
e Yo ol o X<t ol 231 USSP 405
LD T o) o 2 LRSS 406
Application Call into a Subroutine Module.........cccuiieeiiiiiiieiieeeee e 406
TNIEIAlIZATION t.uverieitientiniteteete ettt ettt st s b et sb et e e s bt et esat et s st e sbeeaseebeenbesmteseeseene 406
TraP HANALETS .evviieiiieeieeiieeeiee ettt ettt sbe e s et e e stte e eebeessbbaessssaesnssaesnssaesssseeenssaesnssaeeas 408
EAPCA e eeeieeeeeet ettt et et e e ee ettt et et e e e e e e e b b ettt et eeeeeeesea bbb e e et et e e e e s e e e e bbb bateteeeeeeseseennnnaaaee 408
140 F: 0 0T 1 1S3 USRIt 410
17671 | ISR URRUURE 411
EEESELC eeeeereereuuueueerteeeeeeeeeaaaeauuaasetetaeeeeesasaaaasanseaaeaaaeeeesasssassnsnneasaateeeeeeeeassasassssbeaaaeaeeeeessasssssnnnnrenes 412

0OS-9 Technical Manual 9

Contents

Appendix B: OS-9 Error Codes

EITOT CAtEZOTIES .uuuveetiieiieeiiteeeeeiiet et tee e et e e ee ettt et e et e eessessaasesbtataeaeeesessssssnsnsssaeaaaaeeeesessssnsnsnsenees 414
EITOIS oniiiiiiiiiiiii it e e s aab e 415
Index

0OS-9 Technical Manual 10

System Overview

O
29

This chapter provides a general overview of OS-9® system modularity, I/O
processing, memory modules, and program modules. It includes the following
topics:

e System Modularity
e J/O Overview

e Memory Modules

11

Chapter 1: System Overview

[

System Modularity
OS-9 has five levels of modularity. These are illustrated in Figure 1-1.
Figure 1-1. OS-9 Module Organization

User
Applications
and Utilities

—| Subroutine Libraries |

o — os9Kemel — csl Library |
_oc
—| Trap Handlers |

IOMan

File Managers

Device Drlvers |

Device Descrl ptors

Level 1 -- The Kernel, Clock, and Init Modules

The kernel provides basic system services, including process control and resource
management. The clock module is a software handler for the specific real-time clock
hardware. The kernel uses the Init module as an initialization table during system
startup.

Level 2 — IOMAN

IOMAN coordinates the input/output (I/O) system by passing I/O requests to the
appropriate file managers.

@ For specific information about IOMAN, file managers, device drivers, and
device descriptors, refer to |/O Overview, Chapter 2, The Kernel, and the OS-9
Porting Guide.

Level 3 — File Managers

File managers process I/O requests for similar classes of I/O devices. Refer to the I/O
Overview in this chapter for a list of the file managers Microware currently
supports for OS-9.

0OS-9 Technical Manual 12

Chapter 1: System Overview

[

Level 4 — Device Drivers

Device drivers handle the basic physical I/O functions for specific I/O controllers.
Standard OS-9 systems are typically supplied with a disk driver, serial port drivers
for terminals and serial printers, and a driver for parallel printers. You can add
customized drivers of your own design or purchase drivers from a hardware vendor.

Level 5 — Device Descriptors

Device descriptors are small tables that associate specific I/O ports with their logical
name, device driver, and file manager. These modules also contain the physical
address of the port and initialization data.

One important component not shown is the shell, which is the command
interpreter. The shell is an application program, not part of the operating system,
and is described in the Using OS-9 manual.

For a list of the specific modules comprising OS-9 for your system, use the i dent
utility on the sysboot file.

Although all modules can be resident in ROM, the system bootstrap module is
usually the only ROMed module in disk-based systems. All other modules are
loaded into RAM during system startup.

/O Overview

The OS-9 kernel does not directly process I/O requests. Instead, the kernel passes
I/O requests to the /O manager (IOMAN), and IOMAN passes requests to the
appropriate file managers. Microware includes the following file managers in the
Microware OS-9 for Embedded Systems and Board Level Solution package:

Table 1-1. File Managers

File Manager Description

RBF The Random Block File manager handles /O for random-access,
block-structured devices such as disks and hard drives.

SCF The Sequential Character File manager handles I/O for

sequential-access, character-structured devices such as
terminals, printers, and modems.

SBF The Sequential Block File manager handles 1/O for sequential-
access, block-structured devices.

PIPEMAN The Pipe file Manager handles |/O for interprocess
communications through memory buffers called pipes.

PCF The PC file manager handles reading and writing to PC-DOS
disks.

@ For more information about these file managers, refer to Chapter 2, The
Kernel, or the OS-9 Porting Guide.

Microware also supports additional communication file managers. Refer to the
SoftStax® and Lan Communications manual sets for details.

0OS-9 Technical Manual 13

Chapter 1: System Overview

Figure 1-2 illustrates how an OS-9 I/O request is processed.

Figure 1-2. Processing an OS-9 1/O Request

User Process

8. The user receives the data/

1. The user makes a request for data/status.
status.

2. The kernel determines the request is an 7. The kernel and 1IOMan work
I/0 request and passes it to IOMan with the file manager to return
the data/status to the user.

IOMan

3. IOMan identifies and validates the 1/O 6. The file manager monitors
request and determines the appropriate file and processes the data/status.
manager, device driver, and other
necessary resources. Then, IOMan passes
the request to the appropriate file
manager.

\ 4
File Managers
4

4. The file manager further validates the 5. The device driver performs
request and performs device-independent device-specific processing and
processing. It also calls the device driver transfers the data/status back
for hardware interaction, as necessary. to the file manager.
A 4

Device Drivers

Memory Modules

OS-9 is unique because it manages both the physical assignment of memory to
programs and the logical contents of memory by using memory modules. A memory
module is a logical, self-contained program, program segment, or collection of data.

OS-9 supports nine predefined module types and enables you to define your own
module types. Each type of module has a different function. The predefined module
types are defined in the m tyl an field of the module header definition.

Modules do not have to be complete programs or written in machine language.
Modules simply have to be re-entrant, position independent, and conform to the
basic module structure described in the next section.

0OS-9 Technical Manual 14

Chapter 1: System Overview

[

OS-9 is based on a programming style called re-entrant code. That is, code that does
not modify itself. This allows two or more different processes to share one copy of a
module simultaneously. The processes do not effect each other, provided each
process has an independent area for its variables.

Almost all OS-9 family software is re-entrant and uses memory efficiently. For
example, a screen editor may require 26K of memory to load. If a request to run the
editor is made while another user (process) is running it, OS-9 allows both processes
to share the same copy, saving 26K of memory.

‘% Data modules are an exception to the no-modification restriction. However,
careful coordination is required for several processes to update a shared data
module simultaneously.

A position-independent module is in no way dependent on, or aware of where it is
loaded in memory. This enables OS-9 to load the program wherever memory space
is available. In many operating systems, the user must specify a load address to
place the program in memory. OS-9 determines an appropriate load address only
when the program is started.

OS-9 compilers and interpreters automatically generate position-independent code.
In assembly language programming, however, you must insure position
independence by avoiding absolute address modes. Alternatives to absolute
addressing are described in the Assembler and Linker chapters of the Using Ultra
C/C+ + manuals.

Basic Module Structure

Each module has three parts: a module header, a module body, and a CRC value as
shown in Figure 1-3.

Figure 1-3. Basic Memory Module Format

Module Header

Module Body

Initialization data
Program/Consultants

CRC Value

The module header contains information describing the module and its use. It is
defined in assembly language by a psect directive. The linker creates the header at
link time. The information contained in the module header includes the module
name, size, type, language, memory requirements, and entry point. For specific
information about the structure and individual fields of the module header, refer to
the Module Header Definitions section in this chapter.

0OS-9 Technical Manual 15

Chapter 1: System Overview

The module body contains initialization data, program instructions, and constant
tables. The last three bytes of the module hold a CRC (cyclic redundancy check)
value used to verify the module integrity when the module is loaded into memory.
The linker creates the CRC at link time.

The CRC Value

A CRC (cyclic redundancy check) value is at the end of all modules, except data
modules. The CRC, which is used to validate the entire module, is an error checking
method used frequently in data communications and storage systems. The CRC is
also a vital part of the ROM memory module search technique. It provides a high
degree of confidence that programs in memory are intact before execution and is an
effective backup for the error detection systems of disk drives and memory systems.

In OS-9, a 24-bit CRC value is computed over the entire module starting at the first
byte of the module header and ending at the byte just before the CRC. OS-9
compilers and linkers automatically generate the module header and CRC values. If
required, a user program can use the F_CRC system call to compute a CRC value
over any specified data bytes. For a full description of how F_CRC computes a CRC
value, refer to the description of the F_CRC call in Chapter 6, OS-9 System Calls.

In the case of data modules, the CRC value is not calculated when created. The
CRC must be calculated and set on a data module before that module is loaded into
memory.

OS-9 cannot recognize a module with an incorrect CRC value. For this reason, you
must update the CRC value of a module modified in any way, or the module cannot
be loaded from disk or located in ROM. Use the OS-9 fi xnod utility to update the
CRC of a modified module.

ROMed Memory Modules

When OS-9 starts after a system reset, the kernel searches for modules in ROM.
The kernel detects the modules by looking for the module header sync code (for
example, 0xf00d for PowerPC processors). When this byte pattern is detected, the
header parity is checked to verify a correct header. If this test succeeds, the module
size is obtained from the header and a 24-bit CRC is computed over the entire
module. If the CRC is valid, the module is entered into the module directory.

0S-9 links to all of its component modules found during the search. All ROMed
modules present in the system at startup are automatically included in the system
module directory. This enables you to create partially or completely ROM-based
systems. Any non-system module found in ROM is also included. This enables user-
supplied software to be located during the start-up process and entered into the
module directory.

Module Header Definitions

The structure definition for a module header is listed here, followed by a description

of each field.

0OS-9 Technical Manual 16

Chapter 1: System Overview

[

mh_com
The module header structure is contained in the header file nodul e. h.
Declaration
typedef struct mh_com {
u_intl6é m sync, /* sync bytes */
m_sysrev; /* systemrevision check val ue */
u_int32 m si ze; /* modul e size */
owner _id m_owner ; /* group/user ID*/
u_int32 m_nane; /* offset to nodul e nane */
u_intlé m access, /* access perm ssions */
m tyl an, /* modul e type and | anguage */
m attrev, /* module attributes and revision /*
medit; /* modul e edition nunmber */
u_int32 m _needs, /* modul e hardware requirenents flags */
/* (reserved) */
m shar e, /* offset of shared data in statics */
m synbol , /* offset to synbol table */
m_exec, /* offset to execution entry point */
m_excpt , /* offset to exception entry point*/
m _dat a, /* data storage requirement */
m st ack, /* stack size */
m i dat a, /* offset to initialized data */
m i dref, /* offset to data reference lists */
minit, /* offset to initialization routine*/
mterm /* offset to termination routine */
m dbi as, /* data area pointer bias*/
m _cbi as; /* code area pointer bias */
u_intlé m i dent ; /* linkage |ocale identifier */
char m spare[8]; /* reserved */

u_intl6é m parity; /* header parity */
} mh_com *M_com

0OS-9 Technical Manual 17

Chapter 1: System Overview

Fields

m sync
Constant bytes (for example, 0xf00d for the PowerPC) used to locate modules
during the startup memory search. The value of m sync is processor
dependent.

m sysrev
Identifies the format of a module.

m si ze
Overall size of the module in bytes, including header and CRC.

m_owner
Group/user ID of the module’s owner.

m_nane
Contains the offset of the module name string relative to the start (first sync
byte) of the module. The name string can be located anywhere in the module
and consists of a string of ASCII characters terminated by a null (0) byte.

m access
Defines the permissible module access by its owner or by other users. The
write permissions on memory modules only make sense for data modules.
Module access permission values are located in the header file nodul e. h and
are defined as follows:

Name Description

MP_OMNER_READ $0001 = Read permission by owner
MP_OWNER_WRI TE $0002 = Write permission by owner
MP_OMER_EXEC $0004 = Execute permission by owner
MP_GROUP_READ $0010 = Read permission by group
MP_GROUP_WRI TE $0020 = Write permission by group
MP_GROUP_EXEC $0040 = Execute permission by group
MP_WORLD_READ $0100 = Read permission by world
MP_WORLD_WRI TE $0200 = Write permission by world
MP_WORLD_EXEC $0400 = Execute permission by world

All bits not defined in the preceding table are reserved.

0OS-9 Technical Manual 18

Chapter 1: System Overview

m tyl an

Contains the module type (first byte) and language (second byte). The
language codes indicate if the module is executable and which language the
run-time system requires for execution, if any. Module type values and
language codes are located in the header file modul e. h and are defined as

follows:

Module Type

Description

MT_ANY
MT_PROGRAM
MT_SUBROUT
MI_MULTI
MT_DATA
MT_CDBDATA

MI_TRAPLI B
MI_SYSTEM

MT_FI LEMAN
MT_DEVDRVR
MT_DEVDESC

M__ANY

M__OBJECT
M__| CODE
M._PCODE
M._ CCODE
M__ CBLCCDE
M._ FRTNCODE

0 = Not used (wildcard value in system calls)
1 = Program module

2 = Subroutine module

3 = Multi-module (reserved for future use)
4 = Data module

5 = Configuration Data Block data module
6-10 = Reserved for future use

11 = User trap library

12 = System module

13 = File manager module

14 = Physical device driver

15 = Device descriptor module

16-up = User definable

0 = Unspecified language

(wildcard in system calls)

1 = Machine language

2 = Basic |-code (reserved for future use)
3 = Pascal P-code (reserved for future use)
4 = C |-code (reserved for future use)

5 = Cobol I-code (reserved for future use)
6 = Fortran

7-15 = Reserved for future use

16-255 = User definable

'% Not all combinations of module type codes and languages are

compatible.

0OS-9 Technical Manual

19

[

Chapter 1: System Overview

mattrev
Contains the module attributes (first byte) and revision (second byte). The
attribute byte is defined in the header file nodul e. h and as follows:

Bit Description
7 The module is re-entrant (sharable by multiple tasks).
6 The module is sticky. A sticky module is not removed from memory

until its link count becomes -1 or memory is required for another use.
5 The module is a system-state module.

If two modules with the same name and type are found in the memory search
or are loaded into the current module directory, only the module with the
highest revision level is kept. This enables easy substitution of modules for
update or correction, especially ROMed modules.

m_edi t
Indicates the software release level for maintenance. OS-9 does not use this
field. Whenever a program is revised (even for a small change), increase this
number. Internal documentation within the source program can be keyed to
this system.

m needs
Module hardware requirements flags (reserved for future use).

m shar e
Offset to any shared data the module contains within its global data area. For

example, this field is used by IOMAN to locate the main statics storage
structure of file managers and device drivers.

m_synbol
Reserved.

m exec
Offset to the program starting address, relative to the module starting address.

m excpt
Relative address of a routine to execute if an uninitialized user trap is called.

m dat a
Required size of the program data area (storage for program variables).

m st ack
Minimum required size of the program’s stack area.

m i dat a
Offset to an eight-byte value which precedes the initialized data area. The first
four bytes contain an offset from the beginning of the program’s memory to
the beginning of the initialized data area, which contains values to copy to the
program data area. The linker places all constant values declared in vsect s
here. The second four bytes contain the number of initialized data bytes to
follow.

0OS-9 Technical Manual 20

Chapter 1: System Overview

[

m_i dr ef
Offset to a table of values to locate pointers in the data area. Initialized
variables in the program’s data area may contain pointers to absolute
addresses. Code pointers are adjusted by adding the absolute starting address
of the object code area. Data pointers are adjusted by adding the absolute
starting address of the data area.

F_FORK automatically calculates the effective address at execution time using
the tables created in the module. The first word of each table is the most
significant (MS) word of the offset to the pointer. The second word is a count
of the number of least significant (LS) word offsets to adjust. The adjustment
is made by combining the MS word with each LS word entry. This offset
locates the pointer in the data area. The pointer is adjusted by adding the
absolute starting address of the object code or the data area (for code pointers
or data pointers respectively). It is possible, after exhausting this first count,
another MS word and LS word are given. This continues until an MS word of
zero and an LS word of zero are found.

minit
Offset to the trap handler initialization routine.

mterm
Reserved.

m dbi as
This field contains the bias value applied by the linker to the global data
accesses in the module. Biasing global data accesses allows the compiler to
generate efficient data accesses to a larger data space.

m chi as
This field contains the bias value applied by the linker to the code symbols
within the module. Biasing code references allows the compiler to generate
efficient code references to a larger area of code.

m i dent
Linkage site identifier. This field is not currently implemented.

m spar e
Reserved.

mparity

A complement of the exclusive-OR of the previous header wor ds. OS-9 uses
this field to check module integrity.

0OS-9 Technical Manual 21

Chapter 1: System Overview

0OS-9 Technical Manual 22

O
29

The Kernel

This chapter outlines the primary functions of the kernel. It includes the following
topics:

Kernel Functions

System Call Overview

Kernel System Call Processing
Memory Management

0S8-9 Memory Map

Memory Fragmentation
Colored Memory

System Initialization
Extension Modules

Process Creation

Process Scheduling

23

Chapter 2: The Kernel

[

Kernel Functions

The nucleus of OS-9 is the kernel, which manages resources and controls
processing. The kernel is a ROMable, compact, OS-9 module written in C
language. The primary responsibility of the kernel is to process and coordinate
system calls or service requests.

0OS-9 has two general types of system calls. These include I/O calls, such as reads
and writes, and system function calls.

System functions include those listed below:
* Memory management

e System initialization

® Process creation and scheduling

e Exception/interrupt processing

When a system call is made, the processor is changed to privileged state. The way
this is done depends on which processor is being used. The kernel determines what
type of system call you want to perform. The kernel directly executes the calls that
perform system functions, but does not execute the I/O calls. Instead, the I/O calls
are passed to [IOMAN.

System Call Overview

@ For information about specific system calls, refer to Chapter 6, OS-9 System
Calls.

User-State and System-State

There are two distinct OS-9 environments in which you can execute object code:

user-state User-state is the normal program environment in which
processes are executed. Generally, user-state processes do not
deal directly with the specific hardware configuration of the
system.

system-state System-state is the environment in which OS-9 system calls
and interrupt service routines are executed.

Functions executing in system-state have several advantages over those running in
user-state:

* A system-state routine has access to all processor capabilities For example, on
memory protected systems, a system-state routine can access memory in the
system: it can mask interrupts, alter internal data structures, or take direct
control of hardware interrupt vectors.

e System-state routines are never time sliced. Once a process has entered system
state, no other process executes until the system-state process finishes or goes to
sleep (F_SLEEP waiting for I/O). The only processing that may preempt a system-
state routine is interrupt servicing.

0OS-9 Technical Manual 24

Chapter 2: The Kernel

e Some OS-9 system calls are only accessible from system-state.

The characteristics of system state make it the only way to provide certain types
of programming functions. For example, it is almost impossible to provide
direct I/O to a physical device from user state. However, do not run all
programs in system state.

e Signal handler routines cannot be called for system state processes. The process
must dequeue them manually.

e In a multi-user environment, it is important to ensure each user receives a fair
share of the CPU time. This is the basic function of time slicing.

e Memory protection prevents user-state routines from accidentally damaging
data structures they do not own.

® A user-state process may be aborted. If a system-state routine loses control, the
entire system usually crashes.

e It is far more difficult and dangerous to debug system-state routines than user-
state routines. You can use the user-state debugger to find most user-state
problems. Generally, system-state problems are much more difficult to locate.

e User programs almost never have to be concerned with physical hardware; they
are essentially isolated from it. This makes user-state programs easier to write
and port.

If a system call returns with an exception error code, a system-state exception

& has occured. If you are getting system state exceptions, there is a bug either in
the OS-9 system code, a driver, or some user developed system code. Be
advised that such exceptions can leave the system and the user program in an
unknown and unstable state.

Installing System-State Routines

With direct access to all system hardware, any system-state routine has the ability to
take over the entire machine. It is often a challenge to keep system-state routines
from crashing or hanging up the system. increase system stability, the methods of
creating routines that operate in system state are limited.

In OS-9, there are four ways to provide system-state routines:
1. Install an 0s9P2 module in the system bootstrap file or in ROM.

During cold start, the OS-9 kernel links to this module, and if found, calls its
execution entry point. Typically, the 089P2 module is used to install new system
service requests.

2. Use the I/O system as an entry into system state.

File managers and device drivers are always executed in system state. In fact, the
most obvious reason to write system-state routines is to provide support for new
hardware devices. It is possible to write a dummy device driver and use the

| _GETSTAT or | _SETSTAT routines to provide a gateway to the driver.

0OS-9 Technical Manual 25

Chapter 2: The Kernel

3. Write a trap handler module.

For routines of limited use that are to be dynamically loaded and unlinked, this
is perhaps the most convenient method. It is often practical to debug trap
handler routines as user-state subroutines and then convert the finished routines
to a trap handler module. OS-9 trap handlers always execute in system state.

4. Set the supervisor state bit in the attribute/revision word for the module.

A program executes in system state if the supervisor state bit in the module
attribute/revision word is set and if the module is owned by the super user.

Kernel System Call Processing

The kernel processes all OS-9 system calls (service requests). System call parameters
are passed and returned in parameter blocks.

There are two general types of system calls:

e Non-I/O calls (calls performing system functions)
e [/Ocalls

System calls are identified by a function code passed in the service request
parameter block. Every standard OS-9 system call has an associated symbolic name
for the function code provided in the funcs. h C header file. The non-1/O call
symbols begin with F_ and the I/O calls begin with | _. For example, the system call
to link a module is called F_LI NK.

Non-1/O Calls

There are two types of non-1/O system calls:

User-State System Calls These calls perform memory management,
multitasking, and other functions for user programs.
These are mainly processed by the kernel.

System-State System Calls These calls can only be used by system software in
system-state and usually operate on internal OS-9
data structures. To preserve the modularity of OS-9,
these requests are system calls rather than
subroutines. User-state programs cannot access these
calls, but system modules such as device drivers can
use these calls.

In general, system-state routines may use any of the ordinary (user-state) system
calls. However, avoid making system calls at inappropriate times. For example, an
interrupt service routine should avoid I/O calls, memory requests, timed sleep
requests, and other calls that can be particularly time consuming (such as F_CRC).

Memory requested in system-state is not recorded in the process descriptor memory
list. The requesting process must ensure the memory is returned to the system before
the process terminates.

0OS-9 Technical Manual 26

Chapter 2: The Kernel

|
1/0 Calls

When the kernel receives an I/O request, it immediately passes the request to
IOMAN. IOMAN passes the request to the appropriate file manager and device
driver for processing.

Any I/O system call may be used in a system-state routine, with one slight difference
than when executed in user state: all path numbers used in system state are system
path numbers. Each user-state process has a path table used to convert its local path
numbers to system path numbers. The system itself has a global path number table
used to convert system path numbers into actual addresses of path descriptors.
System-state I/O system calls must be made using system path numbers.

For example, a system-state OS-9 | _VRI TE system call prints an error message on
the caller’s standard error path. To do this, a system-state process may not perform
output on path number two. Instead, it must use the | _TRANPN system call to
translate the user path number to its associated system path number.

When a user-state process exits with open I/O paths, the F_EXI T routine
automatically closes the paths. This is possible because OS-9 keeps track of the
open paths in the process path table. In system state, the | _OPEN and | _CREATE
system calls return a system path number that is not recorded in the process path
table or anywhere else by OS-9; the system-state routine that opens an I/O path
must ensure the path is eventually closed. This is true even if the underlying process
is abnormally terminated.

Memory Management

If any object (such as a program and constant table) is to be loaded in memory, it
must use the standard OS-9 memory module format described in Chapter I, System
Overview. This enables OS-9 to maintain a module directory to keep track of
modules in memory. The module directory contains the name, address, and other
related information about each module in memory.

After OS-9 has been booted, a single module directory exists containing all of the
boot modules. You may create additional module directories and subdirectories at
your discretion. Each module directory has independent access permissions. By
using multiple module directories, modules with the same name can be loaded in
memory and executed without conflict.

This can be extremely useful in the continuing development of existing software.
When a module is loaded in memory, it is added to the process current module
directory.

When a process creates a new process, the OS-9 kernel searches the current module
directory for the target module. If this search fails, the kernel searches the process’
alternate module directory, initially specified in your login file. If that search fails,
the kernel attempts to load the module into the current module directory.

0OS-9 Technical Manual 27

Chapter 2: The Kernel

Each module directory entry contains a link count. The link count is the number of
processes using the module. When a process links to a module in memory, the link
count of the module is incremented by one. When a process unlinks from a module,
the link count is decremented by one. When a module’s link count becomes zero, its
memory is deallocated and the module is removed from the module directory, unless
the module is sticky.

A sticky module is not removed from memory until its link count becomes -1 or
memory is required for another use. A module is sticky if the sixth bit of the module
header’s attribute byte (first byte of the m attrev field) is set. If several modules are
merged together and loaded, you must unlink all of those modules before any are
removed from the module directory.

@/j Refer to Chapter 5 of Using OS-9 for more information on module directories.

0OS-9 Memory Map

OS-9 uses a software memory management system in which all memory is
contained within a single memory map. Therefore, all user tasks share a common
address space.

A map of an example OS-9 memory space is shown in Figure 2-1. The sections
shown are not required to be at specific addresses. Microware recommends you
keep each section in contiguous reserved blocks arranged in an order that facilitates
future expansion. It is always advantageous for RAM to be physically contiguous
whenever possible.

Figure 2-1. Example OS-9 Memory Map

Unused. Available for future RAM or <“—— Highest Memory Address
ROM expansion.

RAM
256K minimum
1M recommended

Exception Vector area <— Lowest Memory Address

System Memory Allocation

During the OS-9 start-up sequence, an automatic search function in the kernel and
the boot ROM locates blocks of RAM and ROM. OS-9 reserves some RAM for its
own data structures. ROM blocks are searched for valid OS-9 ROM modules.

The amount of memory OS-9 requires is variable. Actual requirements depend on
the system configuration and the number of active tasks and open files. The
following sections describe various parts of the OS-9 system memory.

0OS-9 Technical Manual 28

Chapter 2: The Kernel

[

Operating System Object Code

On disk-based systems, operating system component modules (such as the kernel,
I/O managers, and device drivers) are normally bootstrap-loaded into RAM. OS-9
does not dynamically load overlays or swap system code. Therefore, no additional
RAM is required for system code. Alternately, you can place OS-9 in ROM for non-
disk systems.

System Global Memory

The OS-9 kernel allocates a section of RAM memory for internal use. It contains
the following items:

® an exception jump table
e the debugger/boot variables
® agsystem global area

Variables in the system global area are symbolically defined in the sysgl ob. h library
and the variable names begin with d_.

User programs should never directly access system global variables. System calls are
provided to allow user programs to read the information in this area.

System Dynamic Memory

OS-9 maintains dynamic-sized data structures (such as I/O buffers, path descriptors,
and process descriptors) that are allocated from the general RAM area when
needed. The system modules allocate and maintain these structures. For example,
IOMAN allocates memory for path descriptors and maintains them. The system
global memory area contains the pointers to these system data structures.

User Memory

All unused RAM memory is assigned to a free memory pool. Memory space is
removed and returned to the pool as it is allocated or deallocated for various
purposes. OS-9 automatically assigns memory from the free memory pool whenever
any of the following occur:

® Modules are loaded in RAM.

e New processes are created.

e Processes request additional RAM.

® 0OS-9 requires more I/O buffers.

e OS-9 internal data structures must be expanded.

Storage for user program object code modules and data space is dynamically
allocated from and deallocated to the free memory pool. User object code modules
are also automatically shared if two or more tasks execute the same object program.
User object code application programs can also be stored in ROM memory. The
total memory required for user memory depends largely upon the application
software that is to be run.

0OS-9 Technical Manual 29

Chapter 2: The Kernel

[

Memory Fragmentation

Once a program is loaded, it remains at the address where it was originally loaded.
Although position-independent programs can be initially placed at any address
where free memory is available, program modules cannot be dynamically relocated
afterwards. This can lead to memory fragmentation.

When programs are loaded, they are assigned the first sufficiently large block of
memory at the highest address possible in the address space. However, if a colored
memory request is made, this may not be true. If a number of program modules are
loaded, and subsequently one or more non-contiguous modules are unlinked,
several fragments of free memory space will exist. The total free memory space can
be large, but because it is scattered, not enough space exists in a single block to load
a particular program module.

To avoid memory fragmentation, load modules at system startup. This places the
modules in contiguous memory space. You can also initialize each standard device

when the system is booted. This enables the devices to allocate memory from higher
RAM.

If serious memory fragmentation does occur, the system administrator can kill
processes and unlink modules in ascending order of importance until there is
sufficient contiguous memory. The nf r ee utility can determine the number and size
of free memory blocks.

Colored Memory

0S-9 colored memory allows a system to recognize different memory types and
reserve areas for special purposes. For example, part of a RAM can store video
images and another part can be battery-backed. The kernel allows areas of RAM
like these to be isolated and accessed specifically. You can request specific memory
types or colors when you allocate memory buffers, create modules in memory, or
load modules into memory. If a specific type of memory is not available, the kernel
returns error #237, ECS_NORAM

Colored memory lists are not essential on systems whose RAM consists of one
homogeneous type, although they can improve system performance and allow
flexibility in configuring memory search areas.

Colored Memory Definition List

The kernel must have a description of the CPU address space in order to use the
colored memory routines. This is accomplished by including a colored memory
definition list in def aul t . des. The list describes the characteristics of each memory
region. The kernel searches each for RAM during system startup.

0OS-9 Technical Manual 30

Chapter 2: The Kernel

The following information describes a memory area to the kernel:

e Memory color (type)

* Memory priority

® Memory access permissions

e Local bus address

® Block size to be used by the kernel cold start routine to search the area for RAM

or ROM

e External bus translation address (for DMA and dual-ported RAM)

e Optional name

The memory list (ment i st) may contain as many regions as needed. If no list is
specified, the kernel automatically creates one region describing the memory found

by the bootstrap ROM.

Each line in the memory list must contain all the parameters in the following order:
type, priority, attributes, blksiz, addr begin, addr end, name, and DMA-offset.

The colored memory list must end on an even address. Descriptions of the meni i st

fields are included below:

Table 2-1. memlist Fields

Parameter Size Definition

Memory Type word Type of memory. Two memory types are currently
defined in nenory. h:

MEM SYS 0x01 System RAM memory
MEM SHARED 0x8000 Shared memory
(0x8000 - Oxffff)

Priority word High priority RAM is allocated first (255 - 0). If the
block priority is O, the block can only be allocated by a
request for the specific color (type) of the block.

Access Permissions word Memory type access bit definitions:

0OS-9 Technical Manual

* Bit 0: B_USERRAM

Indicates memory allocatable by user processes.
(This bit is ignored if B_ROMbit is also set.)

* Bit 1: B_PARI TY
Indicates parity memory; initialized by kernel during
start-up.

* Bit 2: B ROM
Indicates ROM; the kernel searches this for
modules during start-up.

* Bit 3: B_NVRAM
Non-volatile RAM; the kernel searches this for
modules during start-up.

* Bit 4: B_SHARED
Shared memory; reserved for future use.

NOTE: Only B_USERRAMmemory can be initialized.

31

[

Chapter 2: The Kernel

Table 2-1. memlist Fields (Continued)

Parameter Size Definition

Search Block Size word The kernel checks every search block size to see if
RAM/ROM exists.

Low Memory Limit long Beginning address of the block as referenced by the
CPU.

High Memory Limit long End address of the block as referenced by the CPU.

Description String long This 32-bit offset of a user-defined string describes the

Offset type of memory block.

Address Translation long External bus address of the beginning of the block. If

Adjustment zero, this field does not apply. Refer to _os_t rans()

for more information.

@ Refer to your OS-9 Device Descriptor and Configuration Module Reference for
more information on creating a memory list in the init modules.

The complete memory list structure definitions are located in the al | oc. h file and
are listed below:
/* initialization table (in nendefs nodul e data area) */

typedef struct memtable {

u_intlé
type, /* menmory type code */
prior, /* menmory allocation priority */
access, /* access perm ssions */
bl ksi z; /* search bl ock size */
u_char
lolim / begi nning absol ute address for this type */
hilim / ending absol ute address +1 for this type */
u_int32
descr; /* optional description string offset */
u_int32
dna_addr, /* address translation address for dma's, etc.*/
rsvd2[2] ; /* reserved, must be zero */

} *Memtbl, nemthbl;

/* access bit definitions */

#defi ne B_USERRAM (0x01) /* menory all ocatable by user procs */

#define B_PARITY (0x02) /* parity menory; nust be initialized */

#defi ne B_ROM (0x04) /* read-only nenory; searched for nodul es */
#defi ne B_NVRAM (0x08) /* non-volatile RAM searched for nodul es */
#defi ne B_SHARED (0x10) /* shared nenory (Reserved for future use.)*/

0OS-9 Technical Manual 32

Chapter 2: The Kernel

|
SSM and Cache

The SSM module provides user-state security. The cache module is used to enforce
cacheing policy on ranges of memory. The following sections describe these
modules and how they are used with OS-9 and its supported processors.

Cache List

OS-9 supports the ability to precisely define the caching modes used for regions of
memory in the system. Precise definition of these modes for particular regions
allows you to configure the system for optimal performance and/or system
functionality. In many cases, regions of memory must be declared non-cachable so
cache coherency problems do not result when processes directly reference I/0O
devices and memory shared with other processors.

When the SSM module is installed in the system, it provides a default cache mode of
“writeback” for user-state accesses. This default mode can be over-ridden for
specific regions by creating cache list entries in the I ni t module. The cache list is
used to describe the cacheing policy enforced by the cache module.

The cache list entries must end with a longword of 0xffffffff (-1). The following
table describes the CacheList parameters:

Table 2-2. Cachelist Parameters

Parameter Size Definition

Block Start long Start address of memory region.

Block End long End address (+1) of memory region.
Cache Mode word Cache mode (MMU specific) for region.

The cache mode is usually controlled by SSM, rather than the cache module. Cache
mode information is located in the following location:

MAOS/ OS9000/ SRC/ DEFS/ cache. h

PowerPC Processors: SSM and Cache

This section explains how SSM and cache modules work in order to provide system

security and caching policy. This information pertains to the following PowerPC
processors: 603, 604, 750, 8240, and 8260.

Cacheing policies consist of the following types of cache behaviors:

e Writeback or “copyback” cache is the default cache mode of a memory region.
It is the fastest type of cache, and the most problematic. With copyback cache,
values written to memory are first written to cache--not to main memory.
During normal operation of the processor, data values held in cache are written
to main memory. Under normal circumstances this is not a problem; the cache
module provides services in which a programmer can force the write of data
values in cache to main memory. This ensures that the data values in the cache
are coherent with the data values in main memory. Typically, this is important in
multi-processor environments, especially DMA devices. Processors and DMA
devices can only read main memory, and not the caches of another processor.

0OS-9 Technical Manual 33

Chapter 2: The Kernel

e Write through cache is the fastest type of cache, after Copyback. Writes to this
cache are written to the cache and to the memory immediately. Reads are still
cached.

e The last type of cache is no cache at all. In other words, read and writes bypass
the cache and go directly into memory.

Using the cachelist in the init module, all cacheing policies can be specified on
memory ranges. The 600 series PowerPC processor has two mechanisms in order to
enforce cache policy: the first is the memory segment model; the second is the block
address translation (BAT) mechanism.

The memory segment model is used for user-state memory protection and security,
as well as cache policy. The SSM module controls this mechanism. The minimum
memory range to control is 4k bytes.

The cache module controls the BAT mechanism. In addition, if the SSM module is
not included within the system, the BAT mechanism will be used for system-state
and user-state cache policies.

The BAT mechanism is simpler than the memory segment module; however, its
options are more limited. This limitation is reflected directly onto the cachelist in
the init module. Minimum memory range for a BAT is 128k bytes; regions are in the
multiple of power of two from through 256M bytes. Actual BAT memory sizes are
as follows: 128k, 256k, 512k 1M, 2M, 4M, 8M, 16M, 32M, 64M, 128M, and
256M. Each of these memory ranges must aligned according to their size, therefore,
a 128k memory range must begin on a 128k memory address alignment, and a 32M
memory range must begin on a 32M memory address alignment. There are four
BAT registers on the processor; each defines only one memory range.

The cachelist for the PowerPC family of processors contains the following structure:

init cachelist[0] { /* Initialize cache list el enent */
bl k_beg = 0x00000000; /* begi nning address of nenory region */
bl k_end = 0x02000000; /* ending address +1 */
node = 0; /* cache node of region */

b

The cachelist consists of two parts: the system-state list and the user-state list. The
system-state list is the cacheing policy of memory accessed from system-state, and
the user-state list is the cacheing policy of memory accessed from user-state. The
user-state list follows the system-state list in the array. (Each list is terminated with
an entry that has the beginning address of Oxffffffff.)

Where the mode is concerned, a 0 indicates copyback cache. Macros have been
defined to enforce other modes. IO_CACHE_MODE is used no cache;
CM_DWTHRU is used to write through mode.

0OS-9 Technical Manual 34

Chapter 2: The Kernel

Guidelines for Defining Cachelist

In order to define a cachelist, the following guidelines should be followed:

Minimum segment size should be 128k bytes.
Minimum segment start address alignment should be 128k bytes.

A segment start alignment address size must be less than or equal to the segment
size itself. The 256M segment size is the exception. Multiple 256M segments
can be defined as one region.

The segment for address 0 must have sufficient memory to bring up the kernel.
In other words, it must have enough memory for the kernel's globals, IRQ
stack, and bootfile--if it is loaded into RAM.

The memory definitions for different segments must not overlap.

The SSM module must be placed before the cache module in the extension list.
In other words, the SSM module must run before the cache module can run if
both are in the system. The SSM or the cache module can run stand-alone as
well.

The user-state cachelist normally inherits system-state list entries. Only specific
user-state cacheing differences need to be listed in the user-state cache list. For
example, video memory made accessible to user-state needs to be marked as

IO_CACHE_MODE, or with a data cache write-through, with the user-state
driver forcing stores or flushes.

Cachelist Example for PowerPC system:

/* Systemstate Dram */

init cachelist[0] { /* Initialize cache list elenent */
bl k_beg = 0x00000000; /* begi nning address of nenory region */
bl k_end = 0x10000000; /* endi ng address +1 */
nmode = O; /* cache node of region */

b

/* The rest of nenory is considered non-cached. */

init cachelist[1] { /* Initialize cache list elenent */
bl k_beg = 0x10000000; /* begi nning address of nenory region */
bl k_end = 0x00000000; /* ending address +1 */
node = | O CACHE MODE; /* cache node of region */

i

/* End of systemstate cache list */

init cachelist[2] { /* Initialize cache list elenent */
bl k_beg = Oxffffffff; /* begi nning address of menory region */
bl k_end = 0x00000000; /* ending address +1 */
nmode = O; /* cache node of region */
b

0OS-9 Technical Manual 35

[

Chapter 2: The Kernel

/* User-state |ist DRAM */
init cachelist[3] {
bl k_beg = 0x00000000;
bl k_end = 0x02000000;
node = O;
b
/* End of user list */
init cachelist[4] {
bl k_beg = Oxffffffff;
bl k_end = 0x00000000;
mode = O;

}s

/*
/*
/*
/*

/+
/+
/
/

Initialize cache |ist el enent

begi nni ng address of nenory region

endi ng address +1

cache node of region

Initialize cache |ist el enent

begi nni ng address of menory region

endi ng address +1

cache node of region

*/
*/
*/
*/

*/
*/
*/
*/

With the above cachelist, there is 256 M bytes of copyback cached dram; the rest of
the system is considered non-cached.

Setup for Allocatable NON-CACHED Memory

By matching the memlist entries in the init module to the cachelist entries, a region
of non-cached memory can be defined. In this way, anything in the system can use

the non-cached memory as a resource. The following entries define a region of 512k
bytes of non-cached memory out of 32M of total memory. You should define such
regions at the end of physical dram.

/* Memist entries */
mem i st[0] {
type = MEM SYS;

init

prior = OxFF;
access = B_USERRAM

*/
bl ksi z = 0x800;
lolim= 0x00080000;
hilim= 0x01F80000;
b
init memist[1] {
type = MEM NOCACHE;
prior = 0xO0;
access = B USERRAM
bl ksi z = 0x800;
| oli m= 0x01F80000;
hi l'i m = 0x02000000;
b

0OS-9 Technical Manual

/*

/*
/*
/*

/*
/*
/*

s
s
s
s
s
s
s

Initialize nenory |i st

menory type code

el enent

menory allocation priority

access perm ssions

search bl ock size

begi nni ng absol ute address

endi ng absolute address + 1

Initialize nenory |ist el enent

nenory type code

nmenmory all ocation priority

access pern ssions

search bl ock size

begi nni ng absol ute address

endi ng absolute address + 1

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

36

Chapter 2: The Kernel

[

/* End of nmemist */

init nmemist[2] { /* Initialize nenory list elenent */
type = 0; /* nmenory type code */
prior = 0xO0; /* menmory allocation priority */
access = 0; /* access perm ssions */
bl ksi z = 0x0; /* search bl ock size */
I olim= 0xO0; /* begi nning absol ute address */
hilim= 0x0; /* ending absolute address + 1 */

b

/* Cachelist entires */

/* DRAM */

init cachelist[0] { /* Initialize cache list element */
bl k_beg = 0x00000000; /* begi nning address of nenory region */
bl k_end = 0x01F80000; /* ending address +1 */
node = 0; /* cache node of region */

b

init cachelist[1] { /* Initialize cache list elenment */
bl k_beg = 0x01F80000; /* begi nning address of menory region */
bl k_end = 0x02000000; /* ending address +1 */
node = | O CACHE_MODE; /* cache npode of region */

b

/* The rest of nenory is considered non-cached. */

init cachelist[2] { /* Initialize cache list el enent */
bl k_beg = 0x10000000; /* begi nning address of nenory region */
bl k_end 0x00000000; /* ending address +1 */
nmode = | O_CACHE_MODE; /* cache node of region */

}s

/* End of systemstate cache list */

init cachelist[3] { /* Initialize cache list el enent */
bl k_beg = Oxffffffff; /* beginning address of menory region */
bl k_end 0x00000000; /* ending address +1 */

mode = O; /* cache node of region */

0OS-9 Technical Manual 37

Chapter 2: The Kernel

/* DRAM */

init cachelist[4] { /*
bl k_beg = 0x00000000; /*
bl k_end = 0x01f 80000; | *
nmode = O; /*

b

init cachelist[5] { /*
bl k_beg = 0x01f80000; /*

bl k_end = 0x02000000; | *
nmode = | O CACHE MODE; /*
b
init cachelist[6] { /*
bl k_beg = Oxffffffff; /*
bl k_end = 0; /*
nmode = O; | *
b

Initialize cache |ist el ement */

begi nni ng address of nenory region */

endi ng address +1 */
cache node of region */
Initialize cache list element */

begi nni ng address of nenory region */

endi ng address +1 */
cache node of region */
Initialize cache |ist el ement */

begi nning address of nenory region */

endi ng address +1 */

cache node of region */

The MEM_NOCACHE type of memory is defined as memory that is not cached.
Once defined in this manner, system drivers and other code can use the non-cached

memory.

The memlist entry for MEM_NOCACHE has a priority of 0.

The cache module is responsible for splitting up the cache list into a BAT array list.
This list is sorted, and the cache module has an exception handler that will replace
BAT registers in the processor to allow access, and cache policy into the particular

region of memory.

BAT register O contains the entry for address 0 and is never replaced. BAT registers
1, 2, and 3 are all capable of being replaced via “round robin”. This BAT array list

contains all of the individual entries

defined by the cachelist. Each cachelist entry

may get split up into several BAT array elements as needed. For example, in the
cachelist[2] entry above, the entire 3.75G byte area splits into 15 BAT array
elements, each one 256M bytes in size. Because there is no 31.5M byte BAT entry
size in cachelist[0], the cachelist[0] entry splits into six BAT array elements. The

breakdown is as follows:

1 16M segment
1 8M segment
1 4M segment
1 2M segment
1 1M segment
1 512K segment

The cachelist[1] entry takes up the other 512K that makes up the 32M of physical

memory contained by the computer.

0OS-9 Technical Manual

38

Chapter 2: The Kernel

[

Performance Considerations

The above BAT array scheme can have a negative impact on performance. Although
the first segment is locked into BAT register 0, the other five segments in
cachelist[0], the segment in cachelist[1], and other segments in cachelist[2] for I/O
regions contend for the other three BAT registers. However, there are some
procedures for handling this.

e If you do not need non-cached memory, do not use it. Defining a small non-
cached memory region results more in the necessary replacement of some
segments than a larger non-cached memory region.

e Define differing priorities of memory. If segment 1 is defined alone as a high
priority memory in the memlist, and the other segments grouped into a lower
priority memory in the memlist, all of the beginning kernel setup and processes
will run from the first segment. The other memory priorities will only be
allocated when this segment has run out of memory.

Colored Memory in Homogenous Memory Systems

As previously mentioned, colored memory definitions are not essential for systems
whose memory is homogenous. However, these types of systems can benefit from
this feature of the kernel in terms of system performance and ease of memory list
reconfiguration.

System Performance

In a homogeneous memory system, the kernel allocates memory from the top of
available RAM when requests are made by F_SRQVEM (loading modules). If the
system has RAM on-board the CPU and off-board in external memory boards with
higher addresses, the modules tend to be loaded in the off-board RAM. On-board
RAM is not used for a F_SRQVEM call until the off-board memory cannot
accommodate the request.

Due to bus access arbitration, programs running in off-board memory execute more
slowly than if they were executing in on-board memory. Also, external bus activity
is increased. This may impact the performance of other bus masters in the system.

The colored memory lists can reverse this tendency in the kernel, so a CPU can not
use off-board memory until all of its on-board memory is used. This results in faster
program execution and less saturation of the system’s external bus. To do this, make
the priority of the on-board memory higher than the off-board memory.

Reconfiguring Memory Areas

In a homogeneous memory system, the memory search areas are defined in the
ROM memory list. Changes to these areas previously required new ROMs be made
from source code (usually impossible for end users) or from a patched version of the
original ROMs (usually difficult for end users).

0OS-9 Technical Manual 39

Chapter 2: The Kernel

The colored memory lists somewhat alleviate this situation by configuring the
search areas as follows:

e the ROM memory list describes only the on-board memory.

e the colored memory lists in def aul t . des define any external bus memory search
areas in the Init module only.

Using colored memory in this situation enables the end user to easily reconfigure the
external bus search areas by adjusting the lists in def aul t . des and making a new
Init module. The ROM does not require patching.

System Initialization

After a hardware reset, the kernel (located in ROM or loaded from disk, depending
on your system configuration) is executed by the bootstrap ROM. The kernel
initializes the system; this includes locating ROM modules and running the system
start-up task.

Init: The Configuration Module

Extension

The i ni t module:

e Is non-executable module of type Mr_SYSTEM

e Contains a table of system start-up parameters

e Specifies the initial table sizes and system device names during startup
e Isalways available to determine system limits

e Is required to be in memory when the system is booting and usually resides in
the sysboot file or in ROM

® Begins with a standard module header

The m exec offset in the module header is a pointer to the system constant
table. The fields of this table are defined in the i ni t. h header file.

@ Refer to the OS-9 Device Descriptor and Configuration Module Reference for
a listing of the init module fields.

Modules

To enhance OS-9 capabilities, you can execute additional modules at boot time.
These extension modules provide a convenient way to install a new system call code
or collection of system call codes, such as a system security module. The kernel calls
the modules at boot time if their names are specified in the Extension list of the i ni t
module and the kernel can locate them.

0OS-9 Technical Manual 40

Chapter 2: The Kernel

[

To include an extension module in the system, you can either program the module
into system memory or use the p2i ni t utility to add it to a running system.

@ Refer to the Utilities Reference for information about p2i ni t . Refer to the
OS-9 Device Descriptor and Configuration Module Reference for procedures
to change the i ni t modules and your board guide for instructions on how to
build a new boot file containing the desired extension modules.

When an extension module is called for initialization during coldstart, the module’s
entry point is executed with its global static storage (if any) pre-initialized and set.
The extension module is passed a pointer to the kernel’s global static storage as
defined in the header file sysgl ob. h.

Process Creation

All OS-9 programs are run as processes or tasks. New processes are created by the
F_FORK system call. The most important parameter passed in the fork system call is
the name of the primary module that the new process is to execute initially.

The following list outlines the creation process:
1. Locate or Load the Program.

OS-9 searches for the module in memory by means of the module directory. If
OS-9 cannot locate the module, it loads a mass-storage file into memory using
the requested module name as a file name.

2. Allocate and Initialize a Process Descriptor and an I/O Descriptor.

After the primary module has been located, a data structure called a process
descriptor is assigned to the new process. The process descriptor is a table
containing information about the process such as its state, memory allocation,
and priority. The I/O descriptor contains information about the process /O
such as the I/O paths and counts of bytes read and written. The process
descriptor and I/O descriptor are automatically initialized and maintained.
Processes do not need to be aware of the existence or contents of process
descriptors or I/O descriptors.

3. Allocate the Stack and Data Areas.

The primary module’s header contains a data and stack size. OS-9 allocates a
contiguous memory area of the required size from the free memory space.
Process memory areas are discussed in the following section.

4. Initialize the Process.

The new process’ registers are set to the proper addresses in the data area and
object code module. If the program uses initialized variables and/or pointers,
they are copied from the object code area to the proper addresses in the data
area.

If any of these steps cannot be performed, creation of the new process is aborted
and the process that originated the fork is notified of the error. If all are completed,
the new process is added to the active process queue for execution scheduling.

0OS-9 Technical Manual 41

Chapter 2: The Kernel

The new process is assigned a unique number, called a process ID, that is used as its
identifier. Other processes can communicate with it by referring to its ID in various
system calls. The process also has an associated group ID and user ID which
identify all processes and files belonging to a particular user and group of users. The
IDs are inherited from the parent process.

Processes terminate when they execute an F_EXI T system service request or when
they receive fatal signals or errors. Terminating the process performs the following
functions:

® Closes any open paths
e Deallocates the process’ memory
e Unlinks its primary module

e Unlinks any subroutine libraries or trap handlers the process may have used

Process Memory Areas

All processes are divided into two logically separate memory areas:
* code

e data

This division provides the modular software capabilities for OS-9.

Each process has a unique data area, but not necessarily a unique program memory
module. This allows two or more processes to share the same copy of a program.
This automatic OS-9 functionality results in more efficient use of available memory.

A program must be in the form of an executable memory module to be run. The
program is position independent and ROMable, and the memory it occupies is
considered to be read-only. It may link to and execute code in other modules.

The process data area is a separate memory space where all of the program
variables are kept. The top part of this area is used for the program’s stack. The
actual memory addresses assigned to the data area are unknown at the time the
program is written. A base address is kept in a register to access the data area. You
can read and write to this area.

If a program uses variables requiring initialization, the initial values are copied by
OS-9 from the read-only program area to the data area where the variables actually
reside. The OS-9 linker builds appropriate initialization tables that OS-9 uses to
initialize the variables.

0OS-9 Technical Manual 42

Chapter 2: The Kernel

Process States

A process can be in one of five states:

Table 2-3. Process States

State

Description

Active

The process is active and ready for execution. Active processes are
given time for execution according to their relative priority with respect
to all other active processes. The scheduler uses a method that
compares the ages of all active processes in the queue. All active
processes receive some CPU time, even if they have a very low relative

priority.

Event

The process is inactive until the associated event occurs. The event
state is entered when a process executes an F_EVENT service request
when the specified event condition is not satisfied. The process remains
inactive until another process or interrupt service routine performs an
F_EVENT system call that satisfies the waiting process’s condition.

Sleeping

The process is inactive for a specific period of time or until a signal is
received. The sleep state is entered when a process executes an
F_SLEEP service request. F_SLEEP specifies a time interval for which the
process is to remain inactive. Processes often sleep to avoid wasting
CPU time while waiting for some external event, such as completing
I/O. Zero ticks specifies an infinite period of time.

A process waiting on an event waits in a queue associated with the
specific event, but behaves as though it was in the sleep queue.

Suspended

The process is inactive, unknown to the system, and not a member of
any queue. The suspended state is entered when a process or system
module does an F_SSPD call on a given process. The process can be
reactivated with an F_APRCC call.

Waiting

The process is inactive until a child process terminates or until a signal
is received. When a process executes an F_\WAI T system service request,
it enters the wait state. The process remains inactive until one of its
descendant processes terminates or until it receives a signal.

A separate queue (linked list of process descriptors) exists for each process state,
except the suspended state. State changes are accomplished by moving a process
descriptor from its current queue to another queue.

0OS-9 Technical Manual

43

Chapter 2: The Kernel

[

Process Scheduling

0S-9 is a multitasking operating system. This means two or more independent
programs, called processes, or tasks, can execute simultaneously. Each second of
CPU time is shared by several processes. Although the processes appear to run
continuously, the CPU only executes one instruction at a time. The OS-9 kernel
determines which process to run and for how long, based on the priorities of the
active processes.

The action of switching from the execution of one process to another is called
task switching. Task switching does not effect program execution.

The CPU is interrupted by a real-time clock every tick. By default, a tick is .01
second (10 milliseconds). At any occurrence of a tick, OS-9 can stop executing one
program and begin executing another. The tick length is hardware dependent. Thus,
to change the tick length, you must rewrite the clock driver and re-initialize the
hardware.

The longest amount of time a process controls the CPU before the kernel re-
evaluates the active process queue is called a slice or time slice per slice at run-time,
adjust the system global variable d_t sl i ce.

You can also change the number of ticks per slice prior to booting the system by
modifying m sl i ce in the init modules.

@ Refer to the OS-9 Device Descriptor and Configuration Module Reference for
information to modify this field.

To ensure efficiency, only processes on the active process queue are considered for
execution. The active process queue is organized by process age, a count of how
many task switches have occurred since the process entered the active queue plus
the process’ initial priority. The oldest process is at the head of the queue. The OS-9
scheduling algorithm allocates some execution time to each active process.

When a process is placed in the active queue, its age is set to the process assigned
priority and the ages of all other processes are incremented. Ages are never
incremented beyond 0xffff.

After the time slice of the currently executing process, the kernel executes the
process with the highest age.

Preemptive Task Switching

During critical real-time applications, fast interrupt response time is sometimes
necessary. OS-9 provides this by preempting the currently executing process when a
process with a higher priority becomes active. The lower priority process loses the
remainder of its time slice and is re-inserted in the active queue.

Two system global variables affect task switching:
® d_minpty (minimum priority).

® d_maxage (maximum age).

0OS-9 Technical Manual 44

Chapter 2: The Kernel

[

Both variables are initially set in the Init module and are accessible by users with a
group ID of zero (super users) through the F_SETSYS system call.

If the priority or age of a process is less than d_ni npty, the process is not considered
for execution and is not aged. Usually, this variable is not used and is set to zero.

'% If the minimum system priority is set above the priority of all running tasks, the
system completely shuts down. It can only be recovered by a reset. This makes
it crucial to restore d_mi npt y to a normal level when the critical task(s) finishes.

d_maxage is the maximum age to which processes can be incremented. When
d_maxage is activated, tasks are divided into high priority tasks and low priority
tasks.

Low priority tasks do not age past d_naxage; high priority tasks receive all of the
available CPU time and are not aged. Low priority tasks are run only when the high
priority tasks are inactive. Usually, this variable is not used and is set to zero.

0OS-9 Technical Manual 45

Chapter 2: The Kernel

0OS-9 Technical Manual 46

Interprocess
Communication

This chapter describes the five forms of interprocess communication supported by

0S-9. The following topics are included:

Signals

Alarms

Events

Semaphores
Usemaphores
Usemaphores
Operations on Pipes

Data Modules

47

Chapter 3: Interprocess Communication

[

Signals

In interprocess communications, a signal is an intentional disturbance in a system.
OS-9 signals are designed to synchronize concurrent processes, but you can also use
them to transfer small amounts of data. Because they are usually processed
immediately, signals provide real-time communication between processes.

Signals are also referred to as software interrupts because a process receives a signal
similarly to how a CPU receives an interrupt. Signals enable a process to send a
numbered interrupt to another process. If an active process receives a signal, the
intercept routine is executed immediately (if installed) and the process resumes
execution where it left off. If a sleeping or waiting process receives a signal, the
process is moved to the active queue, the signal routine is executed, and the process
resumes execution right after the call that removed it from the active queue.

'% If a process does not have an intercept routine for a signal it received, the
process is killed. This applies to all signals greater than 1 (wake-up signal).

Each signal has two parts:

e process ID of the destination

* signal code

Signal Codes

OS-9 supports the following signal codes.
Table 3-1. Signal Codes

Signal Description

1 Wake-up signal. Sleeping/waiting processes receiving this
signal are awakened, but the signal is not intercepted by the
intercept handler. Active processes ignore this signal. A
program can receive a wake-up signal safely without an
intercept handler. The wake-up signal is not queued.

2 Keyboard abort signal. When <control>E is typed, this signal
is sent to the last process to perform /O on the terminal.
Usually, the intercept routine performs exi t (2) when it
receives a keyboard abort signal.

3 Keyboard interrupt signal. When <control>C is typed, this
signal is sent to the last process to perform 1/O on the
terminal. Usually, the intercept routine performs exi t (3)
when it receives a keyboard interrupt signal.

4 Unconditional system abort signal. The super user can send
the kill signal to any process, but non-super users can send
this signal only to processes with their group and user IDs.
This signal terminates the receiving process, regardless of the
state of its signal mask, and is not intercepted by the intercept
handler.

0OS-9 Technical Manual 48

Chapter 3: Interprocess Communication

[

Table 3-1. Signal Codes (Continued)

Signal Description

5 Hang-up signal. SCF sends this signal when the modem
connection is lost.

6-19 Reserved

20-25 Reserved

26-31 User-definable signals that are deadly to 1/O operations.

32-127 Reserved

128-191 Reserved

192-255 Reserved

256- 4294967295 User-definable non-deadly to 1/O signals.

@ Refer to the _pt hread_set si gnal range() function to specify the range of
signals that the Pthread layer uses. By default, the Pthreads layers use signal
values between 40,000 and 49,999 inclusive.

You can design a signal routine to interpret the signal code word as data. For
example, various signal codes could be sent to indicate different stages in a process’
execution. This is extremely effective because signals are processed immediately
when received.

The following system calls enable processes to communicate through signal.

Table 3-2. System Calls

Name Description

F_I CPT Installs a signal intercept routine.

F_SEND Sends a signal to a process.

F_SI GLN&J Sets signal mask value and returns on specified stack image.
F_SI GVASK Enables/disables signals from reaching the calling process.

F_SI GRESET Resets process intercept routine recursion depth.

F_SLEEP Deactivates the calling process until the specified number of ticks

has passed or a signal is received.

@ Refer to the following for more information:

* For specific information about these system calls, refer to Chapter 6, OS-9
System Calls. The Microware Ultra C/C+ + compiler also supports a
corresponding C call for each of these calls.

* Refer to Appendix A, Example Code for a sample program demonstrating
how you can use signals.

Signal Implementation

For some advanced applications, it is helpful to understand how the operating
system invokes a signal intercept routine when delivering a signal to a process. It
may be necessary to understand the contents of the user stack when executing a
process’ signal intercept routine. An application can call a signal intercept routine
either non-recursively or recursively.

0OS-9 Technical Manual 49

Chapter 3: Interprocess Communication

Non-Recursive Calling

When trying to synchronize signals, most applications call signal intercept routines
for a process non-recursively. In the case of non-recursive invocation of the intercept
routine, the operating system performs the following tasks to maintain the user
stack for the process:

1. Save the process’ main executing context on the process’ system state stack.

2. Loads the process’ global statics pointer associated with the intercept routine (as
specified when performing the F_I CPT call).

Loads the process’ code constant pointer.

4. Loads the process’ user stack pointer with its value at the time of the signal
interruption.

5. Calls the process’ intercept routine.

In some cases, depending on the target system, the C-code application binary
interface (ABI) can require the operating system allocate some additional stack
space in order to call a C-code intercept routine.

Figure 3-1 shows the user stack contents as it appears in the case of a non-recursive
invocation of a signal intercept routine.

Figure 3-1. Non-recursive Invocation of Signal Intercept Routine

«— i
Stack information High Memory

associated with the
interrupted thread of

execution
< User Stack Pointer
(Optional)
C-code stack space as
defined by the ABI
< Alternative User Stack Pointer

Recursive Calling

Normally, the operating system prevents recursive invocation of an intercept
routine by incrementing a variable associated with the process, known as the signal
mask, when calling the intercept routine. The operating system then decrements the
signal mask value upon returning from the intercept routine through the F_RTE
system call. When the operating system sees that the signal mask of a process is non-
zero, it does not attempt to invoke the intercept routine when it detects a pending
signal.

0OS-9 Technical Manual 50

Chapter 3: Interprocess Communication

The only way an intercept routine can be called recursively when a signal is pending
is if the process explicitly clears its signal mask, through the F_SI GvASK or F_SI GLNG
system calls, or implicitly via the user-state F_SLEEP and F_WAI T services, from
within the context of its intercept routine. When calling an intercept routine
recursively, the stack contents of the user stack are quite different from the non-
recursive case. In order to keep from over consuming the system stack when saving
its context, the operating system copies the saved context along with its floating-
point context to the user-state stack.

Figure 3-2 shows the user-state stack contents as it appears in the case of a recursive
invocation of a signal intercept routine.

Figure 3-2. Recursive Invocation of Signal Intercept Routine

<—— High Memory
Stack information associated with the

interrupted thread of execution

<€—— User Stack Pointer + sizeof(regs)
Long stack frame context as defined by
reg< CPU Family>.h

«—— User Stack Pointer + sizeof(regs)
Floating-point context as defined by or sizeof(fpu_contents)
reg< CPU Family> .h

<«— User Stack Pointer + 4
Previous user-stack pointer value

<€—— User Stack Pointer
(Optional)
C-code stack space as defined by ABI

<€—— Alternate User Stack Pointer

The exact contents of the floating-point context shown in Figure 3-2 can vary
within a given processor family, depending on whether or not the processor has
hardware support for floating point calculations. If the processor has a hardware
floating-point unit (FPU), the contents of the FPU context directly reflect the
hardware context. If the processor does not have a hardware FPU, the FPU context
area shown in

Figure 3-2 contains whatever the FPU software emulation module must preserve on
behalf of the process. The actual size of this area can be determined at execution
time by consulting the variable d_f pusi ze in the operating system globals area (see
F_GETSYS).

The PowerPC 6xx series processors containing a full hardware floating-point
implementation are the only processors that vary from this described stack format.
For this family of processors the FPU context is actually a part of the long stack
frame as described in the r egppc. h header file. The stack format resembles the
format described previously with the exception that the FPU context is not separate
from the long stack format.

0OS-9 Technical Manual 51

Chapter 3: Interprocess Communication

[

Alarms

User-State Alarms

The user-state alarm requests enable a program to arrange for a signal to be sent to
itself. The signal may be sent at a specific time of day or after a specified interval has
passed. The program may also request the signal be sent periodically, each time the
specified interval has passed.

Table 3-3. User-State Alarm Descriptions

Alarm Description

F_ALARM A _ATIME Sends a signal at a specific time.

F_ALARM A CYCLE Sends a signal at the specified time intervals.
F_ALARM A _DELET Removes a pending alarm request.

F_ALARM A _RESET Resets an existing alarm request.

F_ALARM A_SET Sends a signal after the specified time interval.

Cyclic Alarms

A cyclic alarm provides a time base within a program. This simplifies the
synchronization of certain time-dependent tasks. For example, a real-time game or
simulation might allow 15 seconds for each move. You could use a cyclic alarm
signal to determine when to update the game board.

The advantages of using cyclic alarms are more apparent when multiple time bases
are required. For example, suppose you are using an OS-9 process to update the
real-time display of a car’s digital dashboard.

The process might perform the following functions:

e Update a digital clock display every second.

e Update the car’s speed display five times per second.

e Update the oil temperature and pressure display twice per second.
e Update the inside/outside temperature every two seconds.

e (Calculate miles to empty every five seconds.

Each function the process must monitor can have a cyclic alarm, whose period is the
desired refresh rate, and whose signal code identifies the particular display function.
The signal handling routine might read an appropriate sensor and directly update
the dashboard display. The operating system handles all of the timing details.

0OS-9 Technical Manual 52

Chapter 3: Interprocess Communication

Time of Day Alarms

You can set an alarm to provide a signal at a specific time and date. This provides a
convenient mechanism for implementing a cr on type of utility—executing programs
at specific days and times. Another use is to generate a traditional alarm clock
buzzer for personal reminders.

This type of alarm is sensitive to changes made to the system time. For example,
assume the current time is 4:00 and a program sends itself a signal at 5:00. The
program can either set an alarm to occur at 5:00 or set the alarm to go off in one
hour. Assume the system clock is 30 minutes slow, and the system administrator
corrects it. In the first case, the program wakes up at 5:00; in the second case, the
program wakes up at 5:30.

Relative Time Alarms

You can use this type of alarm to set a time limit for a specific action. Relative time
alarms are frequently used to cause an | _READ request to abort if it is not satisfied
within a maximum time. This can be accomplished by sending a keyboard abort
signal at the maximum allowable time and then issuing the | _READ request. If the
alarm arrives before the input is received, the | _READ request returns with an error.
Otherwise, the alarm should be cancelled. The example program det on. ¢ (in
Appendix A, Example Code) demonstrates this technique.

System-State Alarms

A system-state counterpart exists for user-state alarm function. However, the
system-state version is considerably more powerful than its user state equivalent.
When a user-state alarm expires, the kernel sends a signal to the requesting process.
When a system-state alarm expires, the kernel executes the system-state subroutine
specified by the requesting process at a very high priority.

0S-9 supports the following system-state alarm functions:

Table 3-4. System-State Alarm Descriptions

Alarm Description

F_ALARM A_ATI ME Executes a subroutine at a specified time

F_ALARM A CYCLE Executes a subroutine at specified time intervals
F_ALARM A DELET Removes a pending alarm request

F_ALARM A _RESET Resets an existing alarm request

F_ALARM A_SET Executes a subroutine after a specified time interval

The alarm is executed by the kernel process, not by the original requester process.
During execution, the user number of the system process is temporarily changed to
the original requester. The stack pointer passed to the alarm subroutine is within the
system process descriptor and contains about 4KB of free space.

0OS-9 Technical Manual 53

Chapter 3: Interprocess Communication

The kernel automatically deletes the pending alarm requests belonging to a process
when that process terminates. This may be undesirable in some cases. For example,
assume an alarm is scheduled to shut off a disk drive motor if the disk has not been
accessed for 30 seconds. The alarm request is made in the disk device driver on
behalf of the I/O process. This alarm does not work if it is removed when the
process exits.

The alarm has persistence if the TH_SPOWN bit in the alarm call’s f | ags parameter is
set. This causes the alarm to be owned by the system process rather than the current
process.

C If you use this technique, you must ensure the module containing the alarm
subroutine remains in memory until after the alarm expires.

An alarm subroutine must not perform any function resulting in any kind of
sleeping or queuing. This includes F_SLEEP, F_WAI T, F_LOAD, F_EVENT, F_ACQLK,
F_WAI TLK, and F_FORK (if it might require F_LOAD). Other than these functions, the
alarm subroutine may perform any task.

One possible use of the system-state alarm function might be to poll a positioning
device, such as a mouse or light pen, every few system ticks. Be conservative when
scheduling alarms and make the cycle as large as reasonably possible. Otherwise,
you could waste a great deal of the available CPU time.

@ For a program demonstrating how alarms can be used, see Appendix A,
Example Code.

Events

OS-9 events are multiple value semaphores. They synchronize concurrent processes
that are accessing shared resources such as files, data modules, and CPU time. For
example, if two processes need to communicate with each other through a common
data module, you may need to synchronize the processes so only one process at a
time updates the data module.

Events do not transmit any information, although processes using the event system
can obtain information about the event, and use it as something other than a
signaling mechanism.

An OS-9 event is a global data structure maintained by the system. The event
structure is listed here and is defined in the header file event s. h. The following
section contains descriptions of each field.

0OS-9 Technical Manual 54

Chapter 3: Interprocess Communication

[

ev_str/ev_infostr
Event Structure

Declaration

typedef struct {

event _id ev_id; /* event id nunmber */

u_intlé ev_nansz; /* size of menory to allocate for nanme */

u_char *ev_nane; /* pointer to event nanme */

u_intlé ev_link, /* event use count */
ev_perm /* event permi ssions */

owner _id ev_owner; /* event owner (creator) */

intl6 ev_Wwi nc, /* wait increnent val ue */
ev_si nc; /* signal increnment value */

i nt32 ev_val ue; /* current event val ue */

Pr_desc ev_dquen, /* next event in queue */
ev_quep; /* previous event in queue */

u_char ev_resv[14]; /* reserved */

} ev_str, *Ev_str;

The structure used by the F_EVENT, EV_| NFOrequest contains a subset of the
standard event fields. This structure is listed here and defined in the header file
events. h.

typedef struct {

event _id ev_id; /* event id nunmber */
u_intlé ev_link, /* event use count */
ev_perm /* event perm ssions */
owner _id ev_owner; /* event owner (creator) */
intl6 ev_Wwi nc, [* wait increment val ue */
ev_si nc; /* signal increment value */
int32 ev_val ue; /* current event value */

} ev_infostr, *Ev_infostr;

Description

The OS-9 event system provides the following facilities:

e To create and delete events

e To permit processes to link/unlink events and obtain event information
e To suspend operation until an event occurs

e For various means of signaling

0OS-9 Technical Manual 55

Chapter 3: Interprocess Communication

Fields

ev_id
A unique ID is created from this number and the event’s array position.

ev_nansz
Size of the event name in bytes.

ev_name
The event name must be unique.

ev_link
The event use count.

ev_perm
The event’s access permissions which are used to verify that a process has
access to an event when an F_EVENT, EV_LI NK operation is performed.

ev_owner
The ID of the event owner (creator).

ev_w nc

The event wait increment. ev_wi nc is added to the event value when a process

waits for the event. It is set when the event is created and does not change.

ev_sinc
The event’s signal increment. ev_si nc is added to the event value when the
event is signaled. It is set when the event is created and does not change.

ev_val ue
This four byte integer represents the current event value.

ev_quen
A pointer to the next process in the event queue. An event queue is circular
and includes all processes waiting for the event. Each time the event is
signaled, this queue is searched.

ev_quep
A pointer to the previous process in the event queue.

ev_resv
Reserved for future use.

0OS-9 Technical Manual

56

Chapter 3: Interprocess Communication

[

Wait and Signal Operations

The two most common operations performed on events are wait and signal.

Wait

The wait operation performs the following three functions:

1. Suspends the process until the event is within a specified range
2. Adds the wait increment to the current event value

3. Returns control to the process just after the wait operation was called

Signal

The signal operation performs the following three functions:
1. Adds the signal increment to the current event value

2. Checks for other processes to awaken

3. Returns control to the process

These operations enable a process to suspend itself while waiting for an event and
to reactivate when another process signals the event has occurred.

To coordinate sharing a non-sharable resource, user programs must:
e Wait for the resource to become available.

e Mark the resource as busy.

e Use the resource.

e Signal the resource is no longer busy.

Due to time slicing, the first two steps in this process must be indivisible. Otherwise,
two processes might check an event and find it free. Then, both processes try to
mark it busy. This would correspond to two processes using a printer at the same
time. The F_EVENT service request prevents this from happening by performing both
steps in the wait operation.

For example, you can use events to synchronize the use of a printer. You set the
initial event value to 0, the wait increment to -1, and the signal increment to 1.
When a process wants exclusive use of the printer, it performs an event wait call
with a value range of zero and checks to see if a printer is available. If the event
value is zero, it applies the wait increment (-1), causing the event value to go to -1
and marking the printer as busy; the process is allowed to use the printer. A negative
event value indicates the printer is busy; the process is suspended until the event
value comes into range (becomes zero in this case). When a process is finished with
the printer, it performs an event signal call, the signal increment is applied causing
the event value to be incremented by one, and then the process in range is activated.

@ For a program demonstrating how events can be used see Appendix A,
Example Code.

0OS-9 Technical Manual 57

Chapter 3: Interprocess Communication

[

The F_EVENT System Call

The F_EVENT system call creates named events for this type of application. The name
event was chosen instead of semaphore because F_EVENT synchronizes processes in a
variety of ways not usually found in semaphore primitives. OS-9 event routines are
very efficient and are suitable for use in real-time control applications.

Event variables require several maintenance functions as well as the signal and wait
operations. To keep the number of system calls required to a minimum, you can
access all event operations through the F_EVENT system call.

Functions exist to enable you to create, delete, link, unlink, and examine events.
Several variations of the signal and wait operations are also provided. Specific
parameters and functions of each event operation are discussed in the F_EVENT
description in Chapter 6, OS-9 System Calls. The following event functions that are
supported:

Table 3-5. Event Functions

Event

F_EVENT, EV_ALLCLR
F_EVENT, EV_ALLSET
F_EVENT, EV_ANYCLR

Description

Wait for all bits defined by mask to become clear.

Wait for bits defined by mask to become set.
Wait for bits defined by mask to become clear.

F_EVENT, EV_ANYSET Wait for bits defined by mask to become set.
F_EVENT, EV_CHANGE Wait for any of the bits defined by mask to change.
F_EVENT, EV_CREAT Create new event.

F_EVENT, EV_DELET Delete existing event.

F_EVENT, EV_INFO Return event information.

F_EVENT, EV_LINK Link to existing event by name.

F_EVENT, EV_PULSE Signal an event occurrence.

F_EVENT, EV_READ Read event value without waiting.

F_EVENT, EV_SET
F_EVENT, EV_SETAND
F_EVENT, EV_SETOR
F_EVENT, EV_SETR

Set event variable and signal an event occurrence.
Set event value by ANDing the event value with a mask.
Set event value by ORing the event value with a mask.

Set relative event variable and signal an event
occurrence.

F_EVENT, EV_SETXOR
F_EVENT, EV_SIG\L
F_EVENT, EV_TSTSET
F_EVENT, EV_UNLNK
F_EVENT, EV.WAIT

F_EVENT, EV_WAI TR

Set event value by XORing the event value with a mask.

Signal an event occurrence.
Wait for all bits defined by mask to clear; set these bits.
Unlink event.

Wait for event to occur.

Wait for relative to occur.

0OS-9 Technical Manual 58

Chapter 3: Interprocess Communication

Semaphores

Semaphores support exclusive access to shared resources. Semaphores are similar to
events in the way they provide applications with mutually exclusive access to data

structures. Semaphores differ from events in that they are strictly binary in nature,

which increases their efficiency.

@ Since using C bindings is the preferred method of accessing OS-9 semaphores,
F_SEMA is not documented in Chapter 8. Refer to the Ultra C/C+ + Library
Reference for information on the os_senma calls.

OS-9 supports the semaphore routines shown in the following table:

Table 3-6.

Name Description

_0s_sena_i nit() Initialize the semaphore data structure for use.
_os_sema_p() Reserve a semaphore.

_os_sena_tern() Terminate the use of a semaphore data structure.
_os_sena_v() Release a semaphore.

A single semaphore system call, F_SEMA, provides all of the semaphore functionality.
F_SEMA requires the following two parameters:

¢ One indicating which operation is being performed on the semaphore
e A pointer to the semaphore structure

Unlike events, there is no system call provided to create a semaphore; you must
provide the storage for the semaphore. Because semaphores are typically used to
protect specific resources, you should declare the semaphore structure as part of the
resource structure. In addition, you must be certain that this storage is properly
initialized (to a known value) prior to initializing the semaphore structure for use
(via _os_sema_i nit ()). In many cases this storage initialization is handled for you
by OS-9 (such as inside a data module or part of global data).

@ For a program demonstrating how you may use semaphores, see Appendix A,
Example Code.

A typical application using semaphores might create a data module containing the
memory for the intended resource and its associated semaphore. By using a data
module for implementing semaphores, applications can use OS-9 module protection
mechanisms to protect the semaphore.

Once you have created and initialized the semaphore data module, additional
processes within the application may use the semaphore by linking to the
semaphore data module. You must create the semaphore data module with
appropriate permissions to allow the other processes within the application to link
to and use the semaphore and its resource.

0OS-9 Technical Manual 59

Chapter 3: Interprocess Communication

[

Semaphore States

A semaphore has two states:

Reserved

When a semaphore is reserved, any process attempting to

reserve the semaphore waits. This includes the process that
has the semaphore reserved.

Free

When a semaphore is free, any process may claim the

semaphore.

Acquiring Exclusive Access

To acquire exclusive access to a resource, a process may use the _os_sema_p()
C binding to reserve the semaphore. If the semaphore is already busy, the process is
suspended and placed at the end of the wait queue of the semaphore.

Releasing Exclusive Access

To release exclusive access to a resource, a process may use the _os_sema_v()

C binding to release the semaphore. When the owner process releases the
semaphore, the first process in the semaphore queue is activated and retries the
reserve operation on the semaphore.

The definition for the semaphore structure can be found in the semaphore. h header
file. Semaphores use the following data structure:

/* Semaphore structure definition */

typedef struct semaphore {

seme_val
s_val ue; [*
u_int32 s_| ock; /*
Pr _desc s_qgnext, /*
s_qprev; /*
u_int32 s_l ength, /*
s_owner, /*
s_user, [*
s_fl ags, /*
s_sync, /*

s_reserved[3];

} semaphore, *Senaphore;

0OS-9 Technical Manual

semaphore val ue (free/busy status) */

semaphore structure |ock (use count) */
wai t queue for process descriptors */
wai t queue for process descriptors */
current length of wait queue */

current owner of semaphore (process 1D */
reserved for users */
general purpose bit-field flags */
integrity sync code */

/* reserved for systemuse */

60

Chapter 3: Interprocess Communication

[

Usemaphores

OS-9 usemaphores (unlocking, unlinking semaphores) binary semaphores that are
automatically unlocked, if necessary, and unlinked when a process terminates. They
synchronize concurrent processes that are accessing shared resources such as files,
data modules, or CPU time. For example, if two processes need to access a non-
sharable resource such as a printer, you may need to synchronize the processes so
only one process at a time uses the printer. Further, if the process currently using the
printer terminates unexpectedly you want the printer automatically freed so other
processes may access it. Usemaphores have a facility that allows processes to know
that a usemaphore was freed automatically by OS-9. This allows them to clean up
after the terminated process. For example, if it’s known that the last process using
the printer terminated unexpectedly, the next process to use the printer might want
to issue a formfeed to ensure that printing starts in the expected place.

OS-9 keeps track of each usemaphore that a process currently has a link to as well
as the set of semaphores that a process currently owns. When a process terminates,
any semaphores that are currently owned are released (and marked as needing a

reset) and any semaphores that are currently linked to by the process are unlinked.

Usemaphores are implemented using specialized events. Refer to the previous
section for more detailed information about events. The system calls related to
usemaphores are declared in the header file semaphore. h.

Description

The OS-9 usemaphore system provides the following facilities:

e creates and delete usemaphores

e permits processes to link/unlink usemaphores

® suspends operation until a usemaphore is available

e checks for the availability of a usemaphore without blocking

e releases a usemaphore

P and V Operations

The two most common operations performed on usemaphores are “P” (wait for the
usemaphore) and “V” (release the usemaphore).

P (Wait)

The P operation performs the following three functions:

1. suspends the process until the usemaphore is available (unowned)
2. marks the current process as the usemaphore owner

3. adds the usemaphore to the list of the process’ owned usemaphores

0OS-9 Technical Manual 61

Chapter 3: Interprocess Communication

V (Release)

The P operation performs the following three functions:

1. removes the usemaphore from the list of the process’ owned usemaphores
2. marks the usemaphore as unowned

3. activates one process waiting for the usemaphore, if there is one or more
waiting

These operations enable a process to suspend itself while waiting for a usemaphore
and to reactivate when another process releases the usemaphore.

To coordinate sharing a non-sharable resource, user programs must:
e Wiait for the resource to become available.

e Mark the resource as busy.

e Use the resource.

¢ Signal the resource is no longer busy.

Due to time slicing, the first two steps in this process must be indivisible. Otherwise,
two processes might check a usemaphore and find it unowned. Then, both
processes try to mark it owned. This would correspond to two processes using a
printer at the same time. The usemaphorer service request prevents this from
happening by performing both steps atomically in the P operation.

For example, you can use a usemaphore to synchronize the use of a printer. You set
the initial usemaphore value to one (unowned). When a process wants exclusive use
of the printer, it performs a usemaphore P call to check if the printer is available. If
the event value is one, it claims ownership of the usemaphore, thus marking the
printer as busy. A usemaphore value of zero indicates the printer is busy; the process
is suspended until the usemaphore is released (becomes one). When a process is
finished with the printer, it performs a V usemaphore call, the usemaphore is
marked unowned, and then any process waiting is activated.

Also available is a “try P” operation that allows a process to check the usemaphore
for being unowned. If it is unowned at the time of the call it is marked as being
owned by the calling process and SUCCESS is returned. If the usemaphore is
currently owned, EAGAIN is returned indicating the usemaphore could not be
acquired without blocking.

@ For a program demonstrating how usemaphores can be used see Appendix A,
Example Code.

0OS-9 Technical Manual 62

Chapter 3: Interprocess Communication

Reset

Usemaphores sometimes need to be reset. A usemaphore needs to be reset after
0OS-9 automatically marks it as unowned due to the owning process having
terminated. Usemaphores acted upon in this way must be reset because the status of
the resource they were protected is indeterminate.

The reset operation performs these basic steps atomically:

1. ensures that the usemaphore needs to be reset

2. marks the current process as the usemaphore’s owner

3. clears the fact that a reset needs to be performed on the usemaphore

Doing these three steps atomically ensures that only one process is allowed to
successfully reset a usemaphore.

After the reset is complete, use the normal V operation to release the semaphore.

Both of the claiming operations, P and try P, will return errors if used on a
usemaphore that needs to be reset.

The F_EVENT, F_USEMA System Call

Variations of the F_EVENT system calls manipulate named usemaphores. OS-9
usemaphore routines are very efficient and are suitable for use in real-time control
applications.

Functions exist to enable you to create, delete, link, unlink, P, try P, V, and reset
usemaphores. Specific parameters and functions of each usemaphore operation are
discussed in the F_EVENT, F_USEMA description in Chapter 6, OS-9 System Calls. The
following usemaphore functions are supported:

Table 3-7. Supported Usemaphore Functions

Usemaphore Description

F_EVENT, EV_CREAT | F_USEMA Create new usemaphore.

F_EVENT, EV_DELET | F_USEMA Delete existing usemaphore.

F_EVENT, EV_LINK | F_USENA Link to existing usemaphore by name.

F_EVENT, EV_RESET | F_USEMA Reset usemaphore.

F_EVENT, EV_SIGNL | F_USEMA Release a usemaphore (V).

F_EVENT, EV_TRYWAIT | F_USEVA Acquire ownership of usemaphore if not already
owned (try P).

F_EVENT, EV_UNLNK | F_USEMA Unlink from usemaphore.

F_EVENT, EV_.WAIT | F_USEVA Wait for ownership of a usemaphore (P).

0OS-9 Technical Manual 63

Chapter 3: Interprocess Communication

Pipes

An OS-9 pipe is a first-in first-out (FIFO) buffer that enables concurrently executing
processes to communicate data; the output of one process (the writer) is read as
input by a second process (the reader). Communication through pipes eliminates the
need for an intermediate file to hold data.

PIPEMAN is the OS-9 file manager supporting interprocess communication
through pipes. PIPEMAN is a re-entrant subroutine package called for I/O service
requests to a device named / pi pe.

A pipe contains 128 bytes, unless a different buffer size is specified when the pipe is
created. Typically, a pipe is used as a one-way data path between two processes:

* writing
e reading

The reader waits for the data to become available and the writer waits for the buffer
to empty. However, any number of processes can access the same pipe
simultaneously: PIPEMAN coordinates these processes. A process can even arrange
for a single pipe to send data to itself. You can use this to simplify type conversions
by printing data into the pipe and reading it back using a different format.

Data transfer through pipes is extremely efficient and flexible. Data does not have
to be read out of the pipe in the same size sections in which it was written.

You can use pipes much like signals to coordinate processes, but with these
advantages:

e Longer messages (more than 32 bits)
* Queued messages
e Determination of pending messages

e Easy process-independent coordination (using named pipes)

Named and Unnamed Pipes

OS-9 supports both named and unnamed (anonymous) pipes. The shell uses
unnamed pipes extensively to construct program pipelines, but user programs can
also use them. Unnamed pipes can be opened only once. Independent processes may
communicate through them only if the pipeline was constructed by a common
parent to the processes. This is accomplished by making each process inherit the
pipe path as one of its standard I/O paths.

The use of named pipes is similar to that of unnamed pipes. The main difference is a
named pipe can be opened by several independent processes, which simplifies
pipeline construction. Other specific differences are noted in the following sections.

0OS-9 Technical Manual 64

Chapter 3: Interprocess Communication

[

Operations on Pipes

Creating Pipes

The | _CREATE system call is used with the pipe file manager to create new named or
unnamed pipe files.

You can create pipes using the pathlist / pi pe (for unnamed pipes, pi pe is the name
of the pipe device descriptor) or / pi pe/ <name> (<nanme> is the logical file name being
created). If a pipe file with the same name already exists, an error (ECS_CEF) is
returned. Unnamed pipes cannot return this error.

All processes connected to a particular pipe share the same physical path descriptor.
Consequently, the path is automatically set to update mode regardless of the mode
specified at creation.

You can specify access permissions. They are handled similarly to permissions on
files in random block file systems.

The size of the default FIFO buffer associated with a pipe is specified in the pipe
device descriptor. To override this default when creating a pipe, set the initial file
size bit of the mode parameter and pass the desired file size in the parameter block.

If no default or overriding size is specified, a 128-byte FIFO buffer is created.

You can rename a named pipe to an unnamed pipe and an unnamed pipe to a
named pipe.

Opening Pipes

When accessing unnamed pipes, | _OPEN, like | _CREATE, opens a new anonymous
pipe file. When accessing named pipes, | _OPEN searches for the specified name
through a linked list of named pipes associated with a particular pipe device.

Opening an unnamed pipe is simple, but sharing the pipe with another process is
more complex. If a new path to / pi pe is opened for the second process, the new
path is independent of the old one.

The only way for more than one process to share the same unnamed pipe is through
the inheritance of the standard I/O paths through the F_FORK call. As an example,
the following C language pseudocode outline describes a method the shell can use to
construct a pipeline for the command dir -u ! gsort. It is assumed paths 0 and 1
are already open.

0OS-9 Technical Manual 65

Chapter 3: Interprocess Communication

Stdlinp = _os_dup(0) save the shell’s standard i nput

StdQut = _os_dup(1) save shell’s standard out put
_os_cl ose(1) cl ose standard out put
_os_open("/ pi pe") open the pipe (as path 1)
_os_fork("dir","-u") fork "dir" with pipe as standard out put
_os_cl ose(0) free path 0
_os_dup(1) copy the pipe to path 0
_os_cl ose(1) nake path avail abl e
_os_dup(Stdaut) restore original standard out
_os_fork("qgsort") fork gsort with pipe as standard input
_os_cl ose(0) get rid of the pipe
_os_dup(Stdlnp) restore standard input
_os_cl ose (Stdlnp) cl ose tenporary path
_os_close (StdQut) cl ose tenporary path

The main advantage of using named pipes is several processes can communicate
through the same named pipe without having to inherit it from a common parent
process. For example, the above steps can be approximated by the following
command:

$ dir -u >/pipel/tenp & gsort </pipel/tenp

The OS-9 shell always constructs its pipelines using the unnamed / pi pe descriptor.

Read/ReadIn

The | _READ and | _READLN system calls return the next bytes in the pipe buffer. If not
enough data is ready to satisfy the request, the process reading the pipe is put to
sleep until more data becomes available.

The end-of-file is recognized when the pipe is empty and the number of processes
waiting to read the pipe is equal to the number of users on the pipe. If any data was
read before the end-of-file was reached, an end-of-file error is not returned.
However, the returned byte count is the number of bytes actually transferred, which
is less than the number requested.

The read and write system calls are faster than the readl n and wri t el n system
calls because PIPEMAN does not have to check for carriage returns and the
loops moving data are tighter.

0OS-9 Technical Manual 66

Chapter 3: Interprocess Communication

Write/Writeln

Close

The | _WRI TE and | _WRI TELN system calls work in almost the same way as | _READ
and | _READLN. A pipe error (ECS_WRI TE) is returned when all the processes with a
full unnamed pipe open attempt to write to the pipe. Since there is no reader
process, each process attempting to write to the pipe receives the error and the pipe
remains full.

When named pipes are being used, PIPEMAN never returns the EOS_WRI TE error. If
a named pipe becomes full before a process receiving data from the pipe has opened
it, the process writing to the pipe is put to sleep until a process reads the pipe.

When a pipe path is closed, its path count is decremented. If no paths are left open
on an unnamed pipe, its memory is returned to the system. With named pipes, its
memory is returned only if the pipe is empty. A non-empty pipe (with no open
paths) is artificially kept open, waiting for another process to open and read from
the pipe. This permits pipes to be used as a type of temporary, self-destructing RAM
disk file.

Getstat/Setstat

PIPEMAN supports a wide range of status codes enabling the insertion of pipes as a
communications channel between processes where an random block file (RBF) or
serial character file (SCF) device would normally be used. For this reason, most RBF
and SCF status codes are implemented to perform without returning an error. The
actual function may differ slightly from the other file managers, but it is usually
compatible.

GetStat Status Codes Supported by PIPEMAN

The following table shows only the supported Get St at status codes. All other codes
return an EOS_UNKSVC error (unknown service request).

Table 3-8. GetStat Status Codes

Name Description

| _GETSTAT, SS_DEVOPT Read the default path options for the device.

| _GETSTAT, SS_EOF Test for end-of-file condition.

| _GETSTAT, SS_FD Read the pseudo file descriptor image for the pipe
associated with the specified path.

| _GETSTAT, SS_FDI NFO Read the pseudo file descriptor sector for the pipe
specified by a sector number.

| _GETSTAT, SS_LUCPT Read the logical unit options section.

| _GETSTAT, SS_PATHOPT Read the path options section of the path descriptor.

| _GETSTAT, SS_READY Test whether data is available in the pipe. It returns the
number of bytes in the buffer.

| _GETSTAT, SS_SIZE Return the size of the associated pipe buffer.

0OS-9 Technical Manual

67

[

Chapter 3: Interprocess Communication

[

SetStat Status Codes Supported by PIPEMAN
The table below shows the Set St at status codes supported by PIPEMAN.

Table 3-9. SetStat Status Codes

Name Description

| _SETSTAT, SS_ATTR Changes the file attributes of the associated pipe.

| _SETSTAT, SS_DEVOPT Does nothing, but returns without error.

| _SETSTAT, SS_FD Writes the pseudo file descriptor image for the pipe.
I

I

I

_SETSTAT, SS_LUCPT Does nothing, but returns without error.
_SETSTAT, SS_PATHOPT Does nothing, but returns without error.

_SETSTAT, SS_RELEASE Releases the device from the SS_SENDSI G processing before
data becomes available.

| _SETSTAT, SS_RENAME Changes the name of a named pipe, changes a hamed
pipe to an unnamed pipe, and changes an unnamed pipe
to a named pipe.

| _SETSTAT, SS_SIZE Resets the pipe buffer if the specified size is zero.
Otherwise, it has no effect, but returns without error.

| _SETSTAT, SS_SENDSI G Sends the process the specified signal when data becomes
available.

The | _MAKDI Rand | _CHDI R service requests are illegal service routines on pipes.
They return ECS_UNKSVC.

Pipe Directories

Opening an unnamed pipe in the Di r mode enables it to be opened for reading. In
this case, PIPEMAN allocates a pipe buffer and pre-initializes it to contain the
names of all open named pipes on the specified device. Each name is null-padded to
make a 32-byte record. This enables utilities that normally read an RBF directory
file sequentially to work with pipes.

PIPEMAN is not a true directory device; commands like chd and makdi r do not
work with / pi pe.

The head of a linked list of named pipes is maintained in the logical unit static
storage of the pipe device. If several pipe descriptors with different default pipe
buffer sizes are on a system, the I/O system notices the same file manager, port
address (usually zero), and logical unit number are being used. It does not allocate
new logical unit static storage for each pipe device and all named pipes will be on
the same list.

For example, if two pipe descriptors exist, a directory of either device reveals all the
named pipes for both devices. If each pipe descriptor has a unique port address (0,
1, 2, etc.) or unique logical unit number, the I/O system allocates different logical
unit static storage for each pipe device. This produces expected results.

0OS-9 Technical Manual 68

Chapter 3: Interprocess Communication

|
Data Modules

0S-9 data modules enable multiple processes to share a data area and to transfer
data among themselves. A data module must have a module header and a valid
CRC to be loaded into memory. Data modules can be non-reentrant (modifiable).
One or more processes can share and modify the contents of a data module.

0S-9 does not have restrictions as to the content, organization, or use of the data
area in a data module. These considerations are determined by the processes using
the data module.

0OS-9 does not synchronize processes using a data module. Consequently, thoughtful
programming, usually involving events or signals, is required to enable several
processes to update a shared data module simultaneously.

Creating Data Modules

The F_DATMOD system call creates a data module with a specified set of attributes,
data area size, and module name. The data area is cleared automatically. The data
module is created and entered into the calling process’ current module directory. A
CRC value is not computed for the data module when it is created.

It is essential the data module header and name string not be modified to prevent
the module from becoming unknown to the system.

The Microware C compiler provides several C calls to create and use data modules
directly. These include the _nkdat a_nodul e() and _os_dat mod() calls which are
specific to data modules, and the nodl i nk(), modl oad(), munl i nk(), munl oad(),
_os_link(),_os_unlink(),_os_unload(), _os_setcrc(),and _setcrc() calls that
apply to all OS-9 modules.

@ For more information on these calls, refer to the Using Ultra C/C++ manual.

The Link Count

Like all OS-9 modules, data modules have an associated link count. The link count
is a counter of how many processes are currently linked to the module. Generally,
the module is taken out of memory when this count reaches 0. If you want the
module to remain in memory when the link count is zero, make the module sticky
by setting the sticky bit in the module header attribute byte.

Saving to Disk

If a data module is saved to disk, you can use the dunp utility to examine the module
format and contents. You can save a data module to disk with the save utility or by
writing the module image into a file. If the data module was modified since its CRC
value was created, the saved module CRC will be bad and it becomes impossible to
reload the module into memory.

To allow the module to be reloaded, use the F_SETCRC system call or the _setcrc()
C library call before writing the module to disk. Or, use the fi xnod utility after the
module has been written to disk.

0OS-9 Technical Manual 69

Chapter 3: Interprocess Communication

0OS-9 Technical Manual 70

Subroutine Libraries and Trap
Handlers

This chapter explains how to install, execute, and terminate subroutine libraries. It
also explains how to install and execute trap handlers. It includes the following
topics:

e Subroutine Libraries

e Trap Handlers

71

Chapter 4: Subroutine Libraries and Trap Handlers

[

Subroutine Libraries

An OS-9 subroutine library is a module containing a set of related or frequently
used subroutines. Subroutine libraries enable distinct processes to share common
code. Any user program may dynamically link to the user subroutine library and
call it at execution time.

Although subroutine libraries reduce the size of the execution program, they do not
accomplish anything that could not be done by linking the program with the
appropriate library routines at compilation time. In fact, programs calling
subroutine libraries execute slightly slower than linked programs performing the
same function. A program can link to a maximum of sixteen subroutine libraries,
numbered from zero to fifteen.

Microware provides a standard subroutine library of I/O conversions for C
language programs. Subroutine library identifier zero is reserved for the Microware
csl subroutine library. Identifiers one through nine are also reserved for Microware
use.

Like standard OS-9 program modules, subroutine libraries have one entry point and
may have their own global static storage. The module type of subroutine library
modules is MT_SUBROUT and the module language is M._OBJECT.

Subroutine functions are usually executed as though they were called directly by the
main program. System calls or other operations that could be performed by the
calling module can also be performed in a subroutine library.

Installing and Executing Subroutine Libraries

To install a subroutine library, a user program must use the F_SLI NK system call.
F_SLI NK attempts to link to the subroutine library. If the link is successful, it
allocates and initializes the global static storage and returns pointers to the library’s
entry point and to the library’s global static storage area.

Typically, a main program’s first call to a subroutine library calls an initialization
routine. The initialization routine usually has very little to do, but could be used to
open files, link to additional subroutine libraries or data modules, or perform other
startup activities.

The main program must save the entry pointer and static storage pointer returned
by F_SLI NK to enable subsequent calls to the subroutine library.

The OS-9 C library provides functions to install and call subroutine libraries. The
_sliblink() function installs a specified subroutine module saving the subroutine
library’s entry and global static storage pointers in the global arrays _subl i bs[] and
_subnens[], respectively.

You can use the _subcal I function to call an existing subroutine library. For
example, suppose the main program reference in C is the following statement:

my_function(pl, p2, p3, p4)

0OS-9 Technical Manual 72

Chapter 4: Subroutine Libraries and Trap Handlers

[

The _subcal | reference in 80386 assembler would be as follows:
my_function: call _subcall
dc.| SUB LI B_NUM
dc.1 SUB_MY_FUNCTI ON

_subcal I does the following:
e Retrieves the subroutine library and function identifiers
e Adjusts the program stack

e Dispatches to the subroutine library entry point with the correct global static
storage configuration

'% The return from the subroutine in the subroutine library takes the flow of
execution directly back to the initial function reference in the main program.

To create a subroutine library, you must create a table of _subcal | calls, and
subroutine library and function identifiers as previously described. In addition,
some dispatch code must be written in the subroutine library. For more
information, refer to the subroutine library example provided in the The Subroutine
Library section of Appendix A, Example Code.

Terminating Subroutine Libraries

Programs using subroutine libraries do not need to explicitly terminate the use of
the libraries. When a process terminates, the OS-9 kernel unlinks any subroutine
libraries and releases their resources on behalf of the process. But, a program may
terminate the use of a subroutine library explicitly by performing a _sli bl i nk()
call. In this case, you must specify a null string for the subroutine library name and
the associated subroutine library identifier. This unlinks the subroutine library and
returns its resources to the system.

These are the resources associated with the calling process’ invocation of the
subroutine library and do not affect the resources of other processes using the same
subroutine library.

Trap Handlers
Trap handlers are similar to subroutine libraries with the following exceptions:

e When a trap handler is linked, the kernel calls the trap initialization entry point.
The kernel does not call an initialization entry point when the subroutine library
is linked. Instead, the main program must call the initialization routine, if one
exists.

e A trap handler may have more than one entry point; there is exactly one entry
point in a subroutine library.

e Trap handlers only execute in system state; subroutine libraries execute in the
same state as the main program.

0OS-9 Technical Manual 73

Chapter 4: Subroutine Libraries and Trap Handlers

e There may be a termination routine for a trap handler; there is no explicit
termination entry point for a subroutine library.

e Dispatching to subroutine libraries does not involve the kernel in any way.
Trap handlers have three execution entry points:

e A trap execution entry point

e A trap initialization entry point

e A trap termination entry point

Trap handler modules are of module type Mr_TRAPLI B and module language
M._OBJECT.

The trap module routines are usually executed as though they were called with the
standard function call instruction, except for minor stack differences. Any system
calls or other operations that could be performed by the calling module are usable
in the trap module.

An example C trap handler is included in Appendix A, Example Code.

Installing and Executing Trap Handlers

A user program installs a trap handler by executing the F_TLI NK system request.
When this is done, the OS-9 kernel performs the following functions:

e Links to the trap module
e Allocates and initializes its static storage, if any
e Executes the trap module’s initialization routine

Typically, the initialization routine has very little to do. It can open files, link to
additional trap or data modules, or perform other startup activities. It is called only
once per trap handler in any given program.

A trap module used by a program is usually installed as part of the program
initialization code. At initialization, a particular trap number

(0 - 15) is specified that refers to the trap vector. Numbers zero through nine are
reserved for Microware use.

The OS-9 relocatable macro assembler has a special mnemonic (t cal |) for making
trap library function calls. The syntax for the t cal | mnemonic is as follows:

tcall <trap library nunmber>, <function code>

Usually, a table of t cal | s with associated labels is created for calling the trap library
functions from C programs. For example:

_asm (“
funcl: tcall T _TrapLibl, T funcl
func2: tcall T _TrapLibl, T func2

funcN: tcall T_TrapLibl, T_funcN
u);

0OS-9 Technical Manual 74

Chapter 4: Subroutine Libraries and Trap Handlers

[

Then, the main program can call the functions in the trap library as follows:
funcl(paraml, parank, ..., paranmN);

The t cal | mnemonic causes the program to dispatch the OS-9 kernel similarly to a
system service request. The OS-9 kernel then uses the trap library identifier to
dispatch to the associated trap handler module.

To create a trap handler library, you should create a table of t cal I calls with trap
handler and function identifiers as previously described. In addition, some dispatch
and function return codes must be written in the trap handler module.

@ For more information, refer to the trap handler example provided in Appendix
A, Example Code.

From user programs, you can delay installing a trap module until the first time it is
actually needed. If a trap module has not been installed for a particular trap when
the first t cal I is made, OS-9 checks the program’s exception entry offset. The
program is aborted if this offset is zero. Otherwise, OS-9 passes control to the
exception routine. At this point, the trap handler can be installed, and the first
tcal | reissued.

0OS-9 Technical Manual 75

Chapter 4: Subroutine Libraries and Trap Handlers

0OS-9 Technical Manual 76

O
29

Resource Locking

This chapter describes the lock structure definition, lock creation, signal lock
relationships, and FIFO buffer usage. It includes the following topics:

Overview

Preallocate Locks as Part of the Resource
Signals and Locks

FIFO Buffers

77

Chapter 5: Resource Locking

[

Overview

The OS-9 I/O system uses resource locking calls to provide exclusive access to
critical regions and help ensure proper resource management. If you write file
managers or drivers, review this chapter for an explanation of resource locking and
implementation details.

Resource locking helps prevent data corruption by limiting process access to critical
sections of code; it protects data structures from simultaneous modification by
multiple processes. To manage processes waiting to enter critical areas, resource
locking provides an associated queue. The queue orders lock requests according to
the relative priority of the calling process.

‘% Resource locking is only available in system state.

The following are the OS-9 resource locking calls. Refer to Chapter 6, OS-9 System
Calls for a detailed description of each call.

Table 5-1. OS-9 Resource Locking Calls

Call Description

F_ACQLK Acquire ownership of a resource lock.

F_CAQLK Conditionally acquire ownership of a resource lock.
F_CRLK Create a new resource lock descriptor.

F_DELLK Delete an existing lock descriptor.

F_RELLK Release ownership of a resource lock.

F_WAITLK Activate the next process waiting to acquire a lock, and suspend the
current process.

Lock Structure Definition

The lock structure definition for the kernel is as follows:
typedef struct |ock_desc *lock_id;

typedef struct |ock_desc {

lock_id | _id; /* lock identifier */
Pr _desc | _owner, /* current owner */
I _I ockqgn, /* next process in lock list */
I _l ockqgp; /* previous process in lock list */

} I k_desc, *Lk_desc;
Conceptually, this structure could be shown as:

Figure 5-1. Lock Structure

Lock ID Owner Next Previous
Process

0OS-9 Technical Manual 78

Chapter 5: Resource Locking

[

The next and previous boxes represent the queuing capabilities of resource locking
calls. When one or more processes are waiting to acquire a lock, they work with
corresponding process descriptor fields to determine which process should receive
the lock next. Lock requests are queued in the order in which they are received,
according to their relative priority. Higher priority processes are queued ahead of
lower priority processes.

Create and Delete Resource Locks

OS-9 provides a call to dynamically create and initialize a resource lock. The F_CRLK
call allocates data space for the lock, initializes the associated queue, and sets the
lock ownership to a free state. A lock identifier is returned for subsequent use by the

lock calls.

-% The lock identifier is the address of the lock structure.

When a lock is no longer needed, you can use the F_DELLK call to deallocate it. The
data space for the lock is returned to the system. Prior to deleting a lock you must
ensure any processes waiting in its queue are removed from the queue and re-
activated. The F_DELLK call does not check the queue for waiting processes; it is the
responsibility of the application to empty the waiting queue of the lock.

The following C language example demonstrates how to dynamically create and
delete a resource lock.

#i ncl ude <types. h>

#i ncl ude <l ock. h>
Lk _desc | ock; /* declare a pointer to a | ock structure */

/* dynami cally allocate a new | ock */
if ((error = _os_crlk(& ock)) != SUCCESS)

return error,;

/* an exanple use of the |ock */

if ((error = _os_acql k(1 ock, &signal)) != SUCCESS)
return error;

/* delete the |l ock */

_os_del Il k (1ock);

0OS-9 Technical Manual 79

Chapter 5: Resource Locking

[

Preallocate Locks as Part of the Resource

To reduce the overhead and memory fragmentation caused by dynamically created
locks, you can declare the lock structure for a given resource as part of the resource
structure. Prior to using the lock, you must initialize the lock structure fields.

For example:

#i ncl ude <types. h>
#i ncl ude <const. h>
#i ncl ude <l ock. h>

#i ncl ude <process. h>

/* Resource declaration with the |ock structure included */
struct xyz {

| k_desc | ock;

int a;

char *b;

unsi gned c;

} resource;

/* set the lock identifier */

resource.lock.l _id = & esource. | ock;

/* declare the lock free */

resource. | ock. | _owner = NULL;

/* initialize the | ock structure's queue pointers */
resource. | ock.l _| ockgp = resource.lock.|_|ockgn =

FAKEHD(Pr _desc, resource.lock.l | ockgn, p_lockgn);

‘% The FAKEHD initialization macro is located in the const . h header file.

At this point, the lock within the resource structure is ready for use. Subsequent
lock calls are made by passing the address of the lock as its identifier. The following
acquire lock example demonstrates this:

/* use a |l ock declared within a resource structure */
if ((error = _os_acql k(& esource.lock, &signal)) != SUCCESS)

return error;

0OS-9 Technical Manual 80

Chapter 5: Resource Locking

|
Signals and Locks

Locks have an associated queue used for suspending processes waiting to acquire a
busy lock. If the lock is busy, the acquiring process is placed in the queue according
to the relative priorities of any other waiting processes. When the owner process
releases its ownership of the lock, the next process in the queue is activated and
granted sole ownership of the lock. On the new owner’s next time slice, the process
returns from the acquire lock system call without error and continues to execute
from that point. Normally, this is the proper sequence of events; the active process
has ownership of the resource. But it is possible for a process to be prematurely
activated prior to acquiring ownership of the lock.

If, for example, the process receives a signal while waiting in the lock queue, the
process is activated without acquiring the lock and the acquire lock call returns an
EOS_SI GNAL error. To avoid this error, it is critical that applications check the return
value of the acquire lock calls to validate whether or not the active process has
gained ownership of the lock. If a process is activated by a signal, the application
writer determines how to respond to the error condition. The application may abort
its operation and return with an error, or ignore the signal and attempt to re-acquire
the lock. Depending on the application, either action may be appropriate.

Signal Sensitive Locks

The following example uses a lock to protect a critical section of code modifying a
non-sharable resource. This example is completely sensitive to any signals a process
may receive while waiting to acquire the lock. A process receiving a signal while
waiting in this lock’s queue is activated and the acquire lock call returns the error
ECS_SI GNAL.

#i ncl ude <l ock. h>
#i ncl ude <types. h>

#i ncl ude <errno. h>

| k_desc | ock;

signal _code signal;

/* acquire exclusive access to the resource */

if ((error = _os_acql k(& ock, &signal)) != SUCCESS)
return error;

<critical section>

/* rel ease exclusive access to the resource and activate the next process
*/

_os_rel Il k(& ock);

0OS-9 Technical Manual 81

Chapter 5: Resource Locking

Ignoring Signals

There may be situations when a process is prematurely activated by a signal, and it
is not appropriate for the application to simply return an error. In this case, the
application may ignore the activating signal and error and attempt to re-acquire the
lock.

The activating signal is not lost. The operating system queues it on behalf of the
process. Upon return from system state, the signal is delivered to the process
through its signal intercept routine.

This acquire lock example demonstrates how to use locks that ignore signals.

#i ncl ude <l ock. h>
#i ncl ude <types. h>
#i ncl ude <errno. h>

| k_desc | ock;

si gnal _code signal;

while ((error = _os_aqcl k(& ock, &signal)) !'= SUCCESS) ({
if (error == ECS_SI GNAL)

conti nue; /* signal received, ignore it */
el se
return error; /* sonme other erroneous condition */

<critical section>
/ *rel ease exclusive access to resource and activate the next process*/
_os_rel I k(& ock);

Below is an example of a lock that is partially sensitive to signals. It ignores any
non-deadly signals a process might receive, but returns an error for any deadly
signal. In this case, a deadly signal is any signal with a value less than 32.

#i ncl ude <l ock. h>
#i ncl ude <types. h>
#i ncl ude <errno. h>

| k_desc | ock;
si gnal _code signal;
while ((error = _os_aqcl k(& ock, &signal)) !'= SUCCESS) ({
if (error == EOCS_SI GNAL) {
if (signal >= 32)
continue; /* signal greater than 32 received, ignore it */
el se
return error; /* signal less than 32 received */
}
el se break; /* sone ot her erroneous condition */
<critical section>
/*rel ease exclusive access to resource and activate the next process*/
_os_rel I k(& ock);

0OS-9 Technical Manual 82

Chapter 5: Resource Locking

FIFO Buffers

You can use locks to synchronize the reader and writer of a FIFO buffer resource.
The resource has an associated lock; any reader or writer requiring access to the
resource must first acquire the resource lock. After acquiring the resource, the
process may proceed to modify the buffer. If during the course of modification the
reader empties the buffer or the writer fills the buffer, the F WAl TLK call suspends the
process to wait for more data to enter or leave the buffer.

#i ncl ude <l ock. h>
#i ncl ude <types. h>

#i ncl ude <errno. h>

| k_desc | ock;

signal _code signal;

/* acquire exclusive access to the resource */

if ((error = _os_acql k(& ock, &signal)) != SUCCESS) return error;

/* loop until total nunber of bytes is read/witten */

while (bytes read/bytes_ witten < bytes to_read/bytes to wite) {

/* check for bytes available to read/wite */

if (bytes_available == 0) {

/* no bytes available, so release the ownership of the |ock, */

/* activate the reader/witer if it is waiting, and unconditionally

*/

/* suspend the current reader/witer */

if ((error = _os_waitlk(& ock, &signal)) != SUCCESS)

return error;
}
el se {
<transfer bytes>
}

}

/* nunber of bytes to read/wite has been satisfied, so release | ock */

_os_rel Il k(& ock);

0OS-9 Technical Manual 83

[

Chapter 5: Resource Locking

Process Queuing

The diagram below is a conceptual illustration of the queuing process and the effect
of various calls on the lock structure.

Figure 5-2. Effect of Various Calls on the Lock Structure

Lock ID

Owner
Process=0

Next=0

Previous=0

F_ACQLK
Process: 1

Priority: 90

<

Lock ID

Owner
Process= 1

Next=0

Previous=0

F_ACQLK
Process: 2

Priority: 100

A

Lock ID

Owner
Process= 1

Next=2

Previous=2

F_ACQLK

Process: 3
Priority: 110

A

Lock ID

Owner
Process= 1

Next=3

Previous=2

F_CALQLK
Process: 4
Priority: 115

A

Lock ID

Owner
Process= 1

Next=3

Previous=2

F_RELLK
Process: 1

Priority: 90

A

Lock ID

Owner
Process= 3

Next=2

Previous= 2

0OS-9 Technical Manual

In this call, the owner process=0, so
the lock is available to process 1.
Process 1 now owns the lock.

This call places process 2 in the queue.
Process 2 must wait until process 1
releases the lock before it can become
the owner of the process.

With this call, the queue is re-ordered;
process 3 is of a higher priority than
process 2. Process 3 will be next to
acquire the lock.

This conditional acquire call has no effect
on the lock structure; it is only performed
if the lock is owned by another process. In
this case, it returns error EOS_NOLOCK.

This call releases process 1. The lock is
now available to process 3. Process 2
moves up in line; it can acquire the lock
after process 3 is released.

84

Chapter 5: Resource Locking

[

The following figure show the locking sequence with one process and with multiple
processes.

Figure 5-3. Locking Sequence

Single Process

Lock ID Owner Next Previous
Process

\ 4
proc ID 1
priority 100

next
previous

Owner Process

Multiple Process

> proc ID 3 proc ID 2
priority 110 priority 110
Y
Lock ID F(’? oW:eesrs Next Previous next > next
< previous < previous <€

\ Process Waiting for Lock

proc ID 1

priority 100
next
previous

Owner Process

0OS-9 Technical Manual 85

Chapter 5: Resource Locking

0OS-9 Technical Manual 86

OS-9 System Calls

This chapter explains how to use OS-9 system calls and contains an alphabetized
list of all OS-9 system calls. It includes the following topics:

e Using OS-9 System Calls

e System Calls Reference

87

Chapter 6: OS-9 System Calls

[

Using OS-9 System Calls

System calls are used to communicate between the OS-9 operating system and C or
assembly language programs. There are four general categories of system calls:

e User-state system calls

e [/O system calls

e System-state system calls

e System-state I/O system calls

All of the OS-9 system calls require a single parameter to be passed to the operating
system, called the parameter block. Parameter blocks are the means by which
applications and system software pass parameters to the operating system for
service requests. When a system call is performed, a pointer to the associated service
request parameter block is passed to the operating system. The operating system
acquires the specific parameters it needs for the service request from the parameter
block and returns any result parameters through the parameter block.

Every system call parameter block contains the same substructure, sysch. syscb
contains:

e An identifier of the service request

e The edition number of the service request interface
e The size of the associated parameter block

e A result field for returning error status

For programming convenience, a C language system call library containing a C
interface for each of the OS-9 system calls is provided. A complete description of
the C language interface for each of the system calls can be found in the Ultra C
Library Reference.

_oscall Function

There is a single routine located in the system call library providing the gateway
into the operating system. The _oscal | function expects a parameter block pointer
and uses whatever trap or software interrupt facility is available on a given
hardware platform to enter into the operating system.

The _oscal | () request is a common interface to the kernel and the mechanism by
which all OS-9 system calls are made. _oscal | () has one parameter: the address of
a parameter block or structure belonging to the system call. Each OS-9 system call
binding creates a parameter block that is passed to the kernel by _oscal I ().

0OS-9 Technical Manual 88

Chapter 6: OS-9 System Calls

[

For example, the C binding for the F_FMOD system call fills the parameter block and
passes the address of the block directly to the kernel through _oscal I ():

#include "defsfile"

/* _os_fnod - find nodule directory entry service request. */
_os_frod(type_l ang, noddir_entry, nod_nane)
u_intlé *type_Il ang;
Mod_di r *nmoddir_entry;
u_char *mod_nane;
{
register error_code error;

f _findnod_pb pb; /* decl are paraneter bl ock of appropriate type */

pb.cb.code = F_FMOD; /* fill parameter block field;

fn code defined in funcs.h */

pb. cb. param si ze = sizeof f_findnod_pb; [* fill paraneter bl ock
field */
pb.cb.edition = _OS_EDI Tl ON; /* fill edition nunber */
pb.type_lang = *type_lI ang; /[* fill paraneter block field */
pb. nod_nanme = nod_nane; [* fill paranmeter block field */
if ((error = _oscall (&pb)) == SUCCESS) { /* make _oscall */
type_l ang = pb.type_l ang; / return val ue */
noddir_entry = pb. nmoddir_entry; / return val ue */
}

return error;

}

@ For more information about installing system calls, refer to the description of
the F_ssvC.

A complete list of structures for OS-9 system calls is included in Chapter 1,
System Overview.

0OS-9 Technical Manual 89

Chapter 6: OS-9 System Calls

[

Using the System Calls

The typical sequence for executing an OS-9 system call would be as follows:
1. Allocate a parameter block specific to the system call.

2. Initialize the parameter block including the system sub-block.

3. Call the operating system (through _oscal I).

4. Check for errors upon return.

5. Process return parameters, if applicable.

All of the predefined parameter blocks for the OS-9 are located in the srvcb. h
header file. Each system call description within this chapter includes a full
description of the parameter block structure specific to the system call, as well as a
full summary of the functionality of the system call.

System Call Descriptions

The OS-9 Attributes field indicates the state of each call, whether the call is an I/O
call, and if the call can be used during an interrupt. The characteristic for each field
(for example user, system, I/O, or interrupt) is listed where appropriate. In addition,
the OS-9 Attributes table indicates whether a function is thread-safe or -unsafe.

System-state system calls are privileged. They may be executed only while OS-9 is in
system state (for example, when it is processing another service request or executing
a file manager or device driver). System-state functions are included in this manual
primarily for the benefit of those programmers who write device drivers and other

system-level applications.

Some system calls generate errors themselves; these are listed as Possible Errors. If
the returned error code does not match any of the given possible errors, it was
probably returned by another system call made by the main call. In the system call
description section, strings passed as parameters are terminated by a null byte.

If you use the system calls from assembly language, do not alter registers.

Interrupt Context

If you use any system calls in an interrupt service routine that are not listed in the
following table, you can corrupt the integrity of your system.

F_ALARM A RESET F_EVENT, EV_SET F_GPRDBT F_SUSER

F_APRCC F_EVENT, EV_SETAND F_| CPT F_SYSI D

F_CAQLK F_EVENT, EV_SETOR F_ID F_TIME

F_CCTL (System F_EVENT, EV_SETR F | Nl TDATA F_UACCT

St at e)

F_CLRSI GS F_EVENT, EV_SETXOR F_MOVE | _Cl OPRCC

F_CPYMEM F_EVENT, EV.SIGNL F_SEND | _GETDL

F_EVENT, EV_I NFO F_EVENT, EV_UNLNK F_SETSYS | _GETPD

F EVENT, EV.LINK F_EVENT, EV.WAI T F_SPRI OR | _GETSTAT, SS_COPYPD

F_EVENT, EV_PULSE F _EVENT, EV.WAITR F_SSPD | _GETSTAT, SS_DEVNAVE
I

F_EVENT, EV.READ F_FMD F_SsSvC _GETSTAT, SS_DEVTYPE

0OS-9 Technical Manual 90

Chapter 6: OS-9 System Calls

[

System Calls Reference

The following section describes the system calls in detail.

0OS-9 Technical Manual 91

Chapter 6: OS-9 System Calls

F_ABORT

Emulate Exception Occurrence

Headers

#i ncl ude <regs. h>

Parameter Block Structure

typedef struct f_abort_pb {

syschcb;

u_i nt 32strap_code,
addr ess,
except _id;

} f_abort_pb, *F_abort_pb;

Description

F_ABORT emulates the occurrence of an exception. This service request executes the
same recovery code in the OS used to recover from exceptions occurring in the
system. The OS responds to this service just as it would if the specified exception
had actually occurred. This allows applications or system extension modules to
force an exception condition without actually triggering the exception. An
application may use this service to test its exception handlers that were installed
using the F_STRAP service.

This service is used by some of the floating-point emulation extension modules on
processors lacking hardware floating-point support to trigger floating-point
exception conditions detected during software emulation of floating-point
instructions. The service emulates the floating-point exceptions that would have
occurred if the floating-point instructions had been executed by real hardware.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

strap_code
The associated code used in the F_STRAP service request to setup an exception
handler. It is the F_STRAP code of the exception to emulate. The F_STRAP codes
are defined in the reg<CPU>. h header file for the target CPU platform.

0OS-9 Technical Manual 92

Chapter 6: OS-9 System Calls

[

addr ess
The address of where the exception is to have occurred.

except _id
The hardware vector identifier of the exception to emulate. The exception
vector identifiers are defined in the reg<CPU>. h header file for the target CPU
platform.

See Also
F_STRAP

0OS-9 Technical Manual 93

Chapter 6: OS-9 System Calls

F_ACQLK

Acquire Ownership of Resource Lock

Headers

#i ncl ude <l ock. h>

#i ncl ude <types. h>

Parameter Block Structure

typedef struct f_acql k_pb {
sysch cb;
lock_id lid;
si gnal _code signal;

} f_acql k_pb, *F_acql k_pb;

Description

F_ACQLK acquires ownership of a resource lock (it attempts to gain exclusive access
to a resource).

If the lock is not owned by another process, the calling process is granted ownership
and the call returns without error.

If the lock is already owned, the calling process is suspended and inserted into a
waiting queue for the resource based on relative scheduling priority.

When ownership of the lock is released, the next process in the queue is granted
ownership and is activated. The activated process returns from the system call
without error. If, during the course of waiting on a lock, a process receives a signal,
the process is activated without gaining ownership of the lock. The process returns
from the system call with an EOS_SI GNAL error code and the signal code returned in
the si gnal pointer.

If a waiting process receives an S_WAKEUP signal, the signal code does not register
and will be zero.

Attributes

Operating System: 0S-9
State: System
Threads: Safe
Parameters

cb

The control block header.

lid
The lock identifier of the lock you are attempting to acquire.

si gnal
The signal prematurely terminating the acquisition of the lock.

0OS-9 Technical Manual 94

Chapter 6: OS-9 System Calls

[

Possible Errors
EOS_SI GNAL

See Also
F_CAQLK
F_CRLK
F_DELLK
F_RELLK
F_WAI TLK

0OS-9 Technical Manual 95

Chapter 6: OS-9 System Calls

F_ALARM (System-State)
System-State OS-9 Alarm Request

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_salarmpb {
sysch cb;
alarmid alrmid;
u_intl6 al rm code;
u_int32 tine,
fl ags;
u_int32 (*function)();
voi d *func_pb;

} f_salarmpb, *F_sal arm pb;

Description

The system-state alarm requests execute a system-state subroutine at a specified
time. They are provided for functions such as turning off a disk drive motor if the
disk is not accessed for a period of time.

System-state alarms, as well as user-state alarms, always belong to some process.
This process, for system-state alarms, is either the creating process (if the TH_SPOM
bit was 0 when the process had the operating system create the alarm) or the system
process (if the TH_SPOM bit was 1 when the process had the operating system create
the alarm). For user-state alarms, they always belong to the creating process and
never the system process. If a process gives ownership of an alarm to the system
process, then the alarm remains in the system until either it expires, or some system-
state process deletes it. In all other respects, system-state alarms behave as user-state
alarms.

The time interval is the number of system clock ticks (or 1/256 second) to wait
before an alarm signal is sent. If the high order bit is set, the low 31 bits are
interpreted as 1/256 second. All times are rounded up to the nearest tick.

The alarm functions do not return any error code if the operating system cannot
wait for the requested time due to an overflow when converting a time from 256ths-
of-a-second into clock ticks. This only occurs if you specify a time in 256ths-of-a-
second and the system clock ticks occur at a rate greater than 512 ticks-per-second.
If an overflow occurs, the operating system waits for the longest delay possible.

0OS-9 Technical Manual 96

Chapter 6: OS-9 System Calls

[

The following system-state alarm functions are supported:

Table 6-1.

Alarm Description

F_ALARM A_ATI ME Executes a subroutine at a specified time.

F_ALARM A_CYCLE Executes a subroutine at specified time intervals.
F_ALARM A_DELET Removes a pending alarm request.

F_ALARM A _RESET Resets an existing alarm request.

F_ALARM A _SET Executes a subroutine after a specified time interval.

‘% During an A_RESET request, the TH_SPOM bit has the following meaning: if 0,
allow the calling process to update only its own alarms; if 1, allow the calling
process to update any alarm.
During an A_DELETE request, the TH_SPOMN bit has the following meaning: if 0,
allow the calling process to delete only its own alarms; if 1, allow the calling
process to delete any alarm. If the al ar m i d field is 0 and the TH_SPOAN bit is 1,
the operating system deletes all alarms belonging to the system process.

System-state alarms are run by the system process. They should not perform any
function resulting in any kind of queuing, such as F_SLEEP; F_WAI T; F_LOAD; and
F_EVENT, EV_WAI T. When such functions are required, the caller must provide a
separate process to perform the function, rather than an alarm.

'% IRQ routines cannot create or delete alarms since such actions cause memory
allocations/deallocations, that are illegal from an IRQ routine. The way to

handle such things is to create the alarms before the IRQ routine needs them,

and then have the IRQ routine use only RESETs, that are legal in IRQ routines.

For non-system, process-owned alarms, the user number in the system process
descriptor changes temporarily to the user number of the original pr ocess.

If an alarm execution routine suffers any kind of bus trap, address trap, or other
hardware-related error, the system crashes.

Attributes

Operating System: 0S-9
State: System
Threads: Safe
Parameters

cb

The control block header.

alrmid
The alarm identifier returned by the system call. The alarm ID may
subsequently be used to delete the alarm, if desired, by using the F_ALARM,
A _DELET alarm call.

0OS-9 Technical Manual 97

Chapter 6: OS-9 System Calls

al rm _code

The particular alarm function to perform.
tine

The specified time.

flags
One of the following two alarm flags defined in <process. h>:

Flag Value Description

TH_DELPB 0x00000001 |ndicates the associated function parameter block’s
memory should be returned to the system after
executing the alarm function.

TH_SPOWN 0x00000002 |ndicates the system-state alarm should be owned by
the system process and not the current process.

function
The function to be executed.

func_pb
Points to the function’s parameters block.

Possible Errors
ECS_NOCLK
ECS_NORAM
EQS_PARAM
EOS_UNKSVC

See Also

F_ALARM (User - St ate)
F_EVENT, EV.WAIT
F_LOAD

F_SLEEP

FVWAIT

0OS-9 Technical Manual 98

Chapter 6: OS-9 System Calls

[

F_ALARM (User-State)
User-State Set Alarm Clock

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_alarmpb {
sysch cb;
alarmid alrmid;
u_intl6 al rm code;
u_int32 tine;
signal _code signal;

} f_alarmpb, *F_al arm pb;

Description

The user-state alarm requests enable a user process to create an asynchronous
software alarm clock timer. The timer sends a signal to the calling process when the
specified time period has elapsed. A process may have multiple alarm requests
pending.

The time interval is the number of system clock ticks (or 1/256 second) to wait
before an alarm signal is sent. If the high order bit is set, the low 31 bits are
interpreted as 1/256 second.=

'% All times are rounded up to the nearest system clock tick.

The alarm functions do not return any error code if the operating system cannot
wait for the requested time due to an overflow when converting a time from 256ths-
of-a-second into clock ticks. This only occurs if you specify a time in 256ths-of-a-
second and the system clock ticks occur at a rate greater than 512 ticks-per-second.
If an overflow occurs, the operating system waits for the longest delay possible.

The following user-state alarm functions are supported:

Table 6-2. Alarm Function Descriptions

Function Description

F_ALARM A_ATIME Send signal at specified time.
F_ALARM A _CYCLE Send signal at specified time intervals.
F_ALARM A _DELET Remove pending alarm request.

F_ALARM A _RESET Reset existing alarm request to occur at a newly specified time.
F_ALARM A_SET Send signal after specified time interval.

0OS-9 Technical Manual 99

Chapter 6: OS-9 System Calls

Attributes
Operating System: 0S-9

State: User
Threads: Safe
Parameters

cb

The control block header.

alrmid
The alarm identifier returned by the system call. The alarm ID may
subsequently be used to delete the alarm, if desired, by using the F_ALARM
A _DELET alarm call.

al rm _code
The particular alarm function to perform.

tine
The specified time.
si gnal
The signal value originally belonging to the alarm.
Possible Errors
EOS_BPADDR
EQS_NORAM
EQS_PARAM
ECS_UNKSVC

See Also

F_ALARM (System State)

0OS-9 Technical Manual 100

Chapter 6: OS-9 System Calls

[

F_ALARM, A_ATIME

Send Signal At Specified Time (User-State)
Execute Subroutine At Specified Time (System-State)

Headers

#i ncl ude <types. h>

Parameter Block Structure

If OS-9 is in system state, see F_ALARM (Syst em St at e) for the parameter block
structure. Otherwise, see F_ALARM (User - St at e) for the parameter block structure.
Description

A_ATI ME sends one signal at the specified time in user state or executes a subroutine
at the specified time in system state.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

alrmid

The alarm identifier returned by the system call. The alarm ID may
subsequently be used to delete the alarm, if desired, by using the F_ALARM,
A _DELET alarm call.

si gnal
The signal code of the signal to send.

tine
The specified time. The value is considered to be an absolute value in seconds
since 1 January 1970 Greenwich Mean Time.

Possible Errors
ECS_NOCLK
ECS_NORAM
EQS_PARAM

See Also

F_ALARM A SET
F_ALARM (System State)
F_ALARM (User- St ate)

0OS-9 Technical Manual 101

Chapter 6: OS-9 System Calls

F_ALARM, A_CYCLE

Send Signal at Specified Time Intervals

Headers

#i ncl ude <types. h>

Parameter Block Structure

If OS-9 is in system state, see F_ALARM (Syst em St at e) for the parameter block
structure. Otherwise, see F_ALARM (User - St at e) for the parameter block structure.
Description

A_CYCLE sends a signal after the specified time interval has elapsed and then resets
the alarm. This provides a recurring periodic signal.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

alrmid

The returned alarm ID.

al rm_code
The particular alarm function to perform (in this case, A_CYCLE).

si gnal
The signal code of the signal to send.

time
Specify the time interval between signals. The time interval may be specified in
system clock ticks; or if the high order bit is set, the low 31 bits are considered

a time in 1/256 second. The minimum time interval allowed is two system
clock ticks.

Possible Errors
ECS_NOCLK
ECS_NORAM
EOS_PARAM

See Also

F_ALARM A SET
F_ALARM (System State)
F_ALARM (User - St ate)

0OS-9 Technical Manual 102

Chapter 6: OS-9 System Calls

[

F_ALARM, A_DELET

Remove Pending Alarm Request

Headers

#i ncl ude <types. h>

Parameter Block Structure

If OS-9 is in system-state, see F_ALARM (Syst em St ate) for the parameter block
structure. Otherwise, see F_ALARM (User - St ate).

Description

A_DELET removes a cyclic alarm, or any alarm that has not expired.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

alrmid

Specify the alarm identification number. If al rm i d is zero, all pending alarm
requests are removed.

Possible Errors
ECS_BPADDR
ECS | BA
EOS_NORAM
ECS_PARAM

See Also

F_ALARM A SET
F_ALARM (System State)
F_ALARM (User- St ate)

0OS-9 Technical Manual 103

Chapter 6: OS-9 System Calls

F_ALARM, A_RESET

Reset Existing Alarm Request

Headers

#i ncl ude <types. h>

Parameter Block Structure

If OS-9 is in system state, see F_ALARM (Syst em St at e) for the parameter block
structure. Otherwise, see F_ALARM (User - St at e) for the parameter block structure.
Description

A_RESET resets an existing alarm to occur at the newly specified time. It does not
reset any other characteristics of the original alarm.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

alrmid

The ID of the alarm to reset.

si gnal
The signal code of the signal to send.
time
May be specified in system clock ticks; or if the high order bit is set, the low

31 bits are considered a time in 1/256 second. The minimum time interval
allowed is two clock ticks.

Possible Errors
ECS_NOCLK
ECS_NORAM
EOS_PARAM

See Also

F_ALARM A SET
F_ALARM (System State)
F_ALARM (User - St ate)

0OS-9 Technical Manual 104

Chapter 6: OS-9 System Calls

[

F ALARM, A SET
Send Signal After Specified Time Interval

Headers

#i ncl ude <types. h>

Parameter Block Structure

If OS-9 is in system state, see F_ALARM (Syst em St at e) for the parameter block
structure. Otherwise, see F_ALARM (User - St at e) for the parameter block structure.
Description

A_SET sends one signal after the specified time interval has elapsed.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

alrmid

The alarm identifier returned by the system call. The alarm ID can
subsequently be used to delete the alarm, if desired, by using the A_DELET
alarm call.

si gnal
The signal code of the signal to send.
time
May be specified in system clock ticks; or if the high order bit is set, the low

31 bits are considered a time in 1/256 second. The minimum time interval
allowed is two system clock ticks.

Possible Errors
ECS_BPADDR
ECS_NORAM
EQS_PARAM

See Also

F_ALARM A DELET
F_ALARM (System State)
F_ALARM (User- St ate)

0OS-9 Technical Manual 105

Chapter 6: OS-9 System Calls

F_ALLPRC

Allocate Process Descriptor

Headers

#i ncl ude <process. h>

Parameter Block Structure
typedef struct f_allprc_pb {
sysch cb;
process_id proc_id;
Pr_desc proc_desc;

} f_allprc_pb, *F_allprc_pb;

Description

F_ALLPRC allocates and initializes a process descriptor. The address of the descriptor
is stored in the process descriptor table. Initialization consists of clearing the
descriptor and setting its process identifier.

Attributes
Operating System: 0S-9

State: System
Threads: Safe
Parameters

cb

The control block header.

proc_id
A returned value. It is the process ID of the new process descriptor.

proc_desc
A returned value. It points to the new process descriptor.

Possible Errors
EOS_PRCFUL

0OS-9 Technical Manual 106

Chapter 6: OS-9 System Calls

[

F_ALLTSK
Allocate Task

Headers

#i ncl ude <process. h>

Parameter Block Structure
typedef struct f_alltsk_pb{
sysch cb;
Pr_desc proc_desc;

} f_alltsk_pb, *F_alltsk_pb;

Description

F_ALLTSK is called just before a process becomes active to ensure the protection
hardware is ready for the process. F_ALLTSK sets the protection hardware to the map
for the process pointed to by proc_desc.

F_ALLTSK is only supported on systems with a memory protection unit (for example,
all 80x86). The SSM module must be present in the bootfile.

If the SSM module is not present in the system, an EOS_UNKSVC error is returned. You
should ignore this error.

Attributes
Operating System: 0S-9

State: System
Threads: Safe
Parameters

cb

The control block header.

proc_desc
Point to the process descriptor.

Possible Errors
EOS_UNKSVC

See Also
F_DELTSK

0OS-9 Technical Manual 107

Chapter 6: OS-9 System Calls

F_ALTMDIR
Set Alternate Working Module Directory

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_altndir_pb {
sysch cb;
u_char *nane;

} f_altndir_pb, *F_altndir_pb;

Description
F_ALTMDI Restablishes an alternate working module directory for a process.

When a process performs an F_LI NK or F_FORK system call, the search for the
specified target module begins in the process’ current module directory. If that
search fails, the alternate module directory is searched. This enables processes to
link to or execute modules from different locations within system memory.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

name
Point to the name of the alternate working module directory.

Possible Errors

ECS_M\F
ECS_PERM T

See Also
F_CHWDI R
F_FORK
F_LINK

0OS-9 Technical Manual 108

Chapter 6: OS-9 System Calls

[

F_APROC

Insert Process in Active Process Queue

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_aproc_pb {
sysch cb;
process_id proc_id;

} f_aproc_pb, *F_aproc_pb;

Description

F_APROC inserts a process into the active process queue so it may be scheduled for
execution.

All processes already in the active process queue are aged. The age of the new
process is set to its priority, and the process is inserted according to its relative age.
If the new process has a higher priority than the currently active process, the active
process gives up the remainder of its time slice and the new process runs
immediately.

0S-9 does not preempt a process in system state (for example, the middle of a
system call). However, OS-9 does set a bit (TI MOUT in p_st at e) in the process
descriptor causing the process to surrender its time slice when it re-enters user state.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

proc_id
Specify the ID of the process to place in the active process queue.

Possible Errors
EOS_| PRCI D
EOS_PERM T

See Also
F_NPROC

0OS-9 Technical Manual 109

Chapter 6: OS-9 System Calls

F_CAQLK

Conditionally Acquire Ownership of Resource Lock

Headers

#i ncl ude <l ock. h>

Parameter Block Structure

typedef struct f_caql k_pb {
sysch cb;
lock_id lid;

} f_caql k_pb, *F_caql k_pb;

Description

F_CAQLK conditionally acquires ownership of a resource lock.

If the lock is not owned by another process, the calling process is granted ownership
and the call returns without error.

If the lock is already owned, the calling process is not suspended. Instead, it returns
from the F_CAQLK call with an ECS_NOLOCK error and is not granted ownership of the
resource lock.

@ Refer to Chapter 6 for more information on locks.

Attributes

Operating System: 0S-9

State: System and Interrupt
Threads: Safe

Parameters

ch

The control block header.
lid

The identifier of the lock you are attempting to acquire.
Possible Errors
EOS_NOLOCK

See Also

F_ACQLK
F_CRLK
F_DELLK
F_RELLK
F_WAI TLK

0OS-9 Technical Manual 110

Chapter 6: OS-9 System Calls

[

F_CCTL (User-State)
User-State Cache Control

Headers
#i ncl ude <types. h>

#i ncl ude <cache. h>

Parameter Block Structure
t ypedef struct f_cache_pb {
sysch cb;
u_int32 control;
voi d *addr;
u_int32 size;

} f_cache_pb, *F_cache_pb;

Description

F_CCTL performs operations on the system instruction and/or data caches, if there
are any.

If the C_ADDR bit of the control parameter is set, then the addr and si ze parameters
are used to flush the specific target address from the cache. This functionality is
only supported on hardware platforms with this capability.

Only system-state processes and super-group processes can perform the other
precise operations of F_CCTL.

Any program that builds or changes executable code in memory should flush the
instruction cache with F_CCTL before executing the new code. This is necessary
because the hardware instruction cache may not be updated by data (write) accesses
on certain hardware set ups and may therefore contain the unchanged
instruction(s). For example, if a subroutine builds a system call on its stack, it
should first use the F_CCTL system to flush the instruction cache before it executes
the temporary instructions.

Attributes

Operating System: 0S-9
State: User
Threads: Safe
Parameters

cb

The control block header.

0OS-9 Technical Manual 111

Chapter 6: OS-9 System Calls

control

Specify the cache operation.If control is zero, the system instruction and data

caches are flushed. Only super-group processes can perform this operation.
Only three bits may be used:

Bit Name Description

Bit 2 C_FLDATA Flush data cache

Bit 6 C_FLINST Flush instruction cache

Bit 8 C_ADDR Indicates a specific target address for flush
operation

addr
Specify the target address for the flush operation.

si ze

Indicate the size of the target memory area to be flushed.

Possible Errors
EOS_PARAM

0OS-9 Technical Manual 112

Chapter 6: OS-9 System Calls

[

F_CCTL (System-State)
System-State Cache Control

Headers
#i ncl ude <types. h>

#i ncl ude <cache. h>

Parameter Block Structure
t ypedef struct f_scache_pb {
sysch cb;
u_int32 control;
u_int32 (*cctl)();
void *cctl _dat a;
voi d *addr;
u_int32 size;

} f_scache_pb, *F_scache_pb;

Description

F_CCTL performs operations on the system instruction and/or data caches, if there
are any.

Any program that builds or changes executable code in memory should flush the
instruction cache by F_CCTL prior to executing the new code. This is necessary
because the hardware instruction cache is not updated by data (write) accesses and
may contain the unchanged instruction(s). For example, if a subroutine builds a
system call on its stack, the F_CCTL system call to flush the instruction cache must be
executed prior to executing the temporary instructions.

If the C_GETCCTL bit of control is set, F_CCTL returns a pointer to the cache control
routine in the cache extension module and a pointer to that routine’s static global
data. This enables drivers and file managers to call the cache routine directly, rather
than making a possibly time-consuming F_CCTL request.

-% The OS-9 kernel calls the cache extension module directly.

Attributes

Operating System: 0S-9

State: System and Interrupt
Threads: Safe

0OS-9 Technical Manual 113

Chapter 6: OS-9 System Calls

Parameters

cb
The control block header.

control
Specify the cache operation. If control is zero, the system instruction and data
caches are flushed. The following bits are defined in the control parameter
for precise operation:

Bit Name Description

Bit O C_ENDATA If set, enables data cache.

Bit 1 C_DI SDATA If set, disables data cache.

Bit 2 C_FLDATA |f set, flushes data cache.

Bit 3 C_I NVDATA If set, invalidates data cache.

Bit 4 C_ENINST If set, enables instruction cache.

Bit 5 C DI SINST |[f set, disables instruction cache.

Bit 6 C_FLINST If set, flushes instruction cache.

Bit 7 C_INVINST |f set, invalidates instruction cache.

Bit 8 C_ADDR Flags a target address for flush operation.

Bits 9-14 Reserved for future use by RadiSys.

Bit 15 C_GETCCTL If set, returns a pointer to the cache control routine
and cache static global data.

Bit 16 C_STODATA [f set, stores data cache (if supported by hardware).

Bits 17-31 Reserved for future use by RadiSys.

All other bits are reserved. If any reserved bit is set, an ECS_PARAMerror is
returned. Precise operation of F_CCTL can only be performed by system-state
processes and super-group processes.

If the C_ADDR bit of the control parameter is set, then the addr and si ze
parameters are used to flush the specific target address from the cache. This
functionality is only supported on hardware platforms with this capability.

cctl
The returned cache routine.

cctl _data
The returned cache routine’s static data.

addr
Specify the target address for the flush operation.

si ze
Indicate the size of the target memory area to be flushed.

Possible Errors
EOS_PARAM

0OS-9 Technical Manual 114

Chapter 6: OS-9 System Calls

[

F_CHAIN

Load and Execute New Primary Module

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_chain_pb {
sysch cb;
u_intl6 priority,
pat h_cnt;
u_char *nod_nane,
*par ans;
u_int32 nmemsize,
param si ze;
u_intl6é type_| ang;
} f_chain_pb, *F_chain_pb;

Description

F_CHAI N executes a new program without the overhead of creating a new process. It
is functionally similar to a F_FORK command followed by an F_EXI T. F_CHAI N
effectively resets the calling process’ program and data memory areas and begins
executing a new primary module. Open paths are not closed or otherwise affected.

F_CHAI N executes as follows:
1. The process’ old primary module is unlinked.

2. The system parses the name string of the new process’ primary module (the
program that is executed). Next, the current and alternate module directories
are searched to see if a module with the same name and type/language is already
in memory. If so, the module is linked. If not, the name string is used as the
pathlist of a file to be loaded into memory. The first module in this file is linked.

3. The data memory area is reconfigured to the size specified in the new primary
module’s header.

4. Intercepts and pending signals are erased.

0OS-9 Technical Manual 115

Chapter 6: OS-9 System Calls

5. The following structure definition is passed to the initial function of the new
module (this is identical to F_FORK).

typedef struct {

process_id proc_id; /* process ID */
owner _id owner ; /* group/user ID*/
prior_level priority; /* priority */
u_intlé path_count; /* of I/0O paths inherited*/
u_int32 paramsi ze, /* size of paraneters */
mem si ze; /*total initial menory allocated*/
u_char *par ans, /* paraneter pointer */
mem end; / top of menory pointer */
Mh_com nmod_head; /*primary (forked) nodule ptr*/

} fork_parans, *Fork_parans;
The minimum overall data area size is 256 bytes.

F_CHAI N never returns to the calling process. If an error occurs during the Chain, it
is returned as an exit status to the parent of the process performing the Chain.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

ch

The control block header.

priority
The initial priority of the process.

pat h_cnt
Specify the number of I/O paths to copy (inherit).

nod_nane
Point to the new program to execute.

par ams
Point to the parameter string to pass to the new process.

nmem si ze
Specify the additional memory size above the default specified in the primary
module’s module header.

param si ze
Specify the size of the parameter string.

type_Il ang

Specify the desired module type/language. t ype_| ang must be either
program/object or zero (for any).

0OS-9 Technical Manual 116

Chapter 6: OS-9 System Calls

[

Possible Errors
EOS_NEMOD

See Also
F_CHAI NM
F_FORK
F_FORKM
F_LOAD

0OS-9 Technical Manual 117

Chapter 6: OS-9 System Calls

F_CHAINM

Execute New Primary Module Given Pointer to Module

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure
typedef struct f_chainmpb {
sysch cb;
u_intl6 priority,
pat h_cnt;
Vh_com nod_head,;
u_char *pararns;
u_int32 nmemsize,
param si ze;

} f_chai nm pb, *F_chai nm pb;

Description

F_CHAI NMexecutes a new program without the overhead of creating a new process.
It is functionally similar to a F_FORK command followed by an F_EXI T. F_CHAI NM
resets the calling process’ program and data memory areas and begins executing a
new primary module. Open paths are not closed or otherwise affected.

F_CHAI NMis similar to F_CHAI N. However, F_CHAI NMis passed a pointer to the module
instead of the module name.

F_CHAI NMexecutes as follows:
1. The process’ old primary module is unlinked.
2. The system tries to link to the module pointed to by the module header pointer.

3. The data memory area is reconfigured to the specified size in the new primary
module’s header.

4. Intercepts and pending signals are erased.

0OS-9 Technical Manual 118

Chapter 6: OS-9 System Calls

[

5. The following structure definition is passed to the initial function of the new
module (this is identical to F_FORK).

typedef struct {

process_id proc_id; /* process ID */
owner _id owner ; /* group/user ID*/
prior_level priority; /* priority */
u_intlé path_count; /* nunber of 1/0O paths
inherited */
u_int32 param si ze, /* size of paraneters */
mem si ze; /* total initial nmenory
all ocated */
u_char *par ans, /* paraneter pointer */
mem end; / top of menmory pointer */
Vh_com mod_head; /*primary (forked) nodule ptr*/

} fork_parans, *Fork_parans;
The minimum overall data area size is 256 bytes.
An error is returned only if there is not enough memory to hold the parameters. If

an error occurs during the Chai nm it is returned as an exit status to the parent of the
process performing the Chai nm

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

priority
The initial priority of the process.

pat h_cnt
The number of I/O paths to copy (inherit).

nod_head
Point to the module header.

par ans
Point to the parameter string to pass to the new process.

mem si ze
Specify the additional memory size above the default specified in the primary
module’s module header.

param si ze
Specify the size of the parameter string.

0OS-9 Technical Manual 119

Chapter 6: OS-9 System Calls

Possible Errors
EOS_CRC

See Also
F_CHAIN
F_FORK
F_FORKM
F_LOAD

0OS-9 Technical Manual 120

Chapter 6: OS-9 System Calls

[

F CHKMEM
Check Memory Block’s Accessibility

Headers

#i ncl ude <process. h>

Parameter Block Structure
typedef struct f_chknem pb {
sysch cb;
u_int32 size;
u_intl6 node;
u_char *memptr;
Pr_desc proc_desc;

} f_chkmem pb, *F_chknmem pb;

Description:

F_CHKMEM is called by system routines before accessing data at the specified address
on behalf of a process to determine if the process has access to the specified memory

block.

F_CHKMEMmust check the process’ protection image to determine if access to the
specified memory area is permitted. F_CHKMEMis called by system-state routines that
can access memory (such as | _READ and | _WRI TE) to determine if the user process
has access to the requested memory. This software check is necessary because the
protection hardware is expected to be disabled for system-state routines.

e The calling process cannot use this service to check for write-only memory
because it assumes read-only as the minimum. To check for no-access to a
segment of memory, the calling process can check for read access and ensure the
resulting status code is EOS_BPADDR. To check for read-only access, there must be
two calls to F_CHKMEM

®* F_CHKMEMis only useful on systems with an MMU and having the SSM module
in their bootfile. When SSM is active, the operating system validates all
arguments. On systems without SSM, the call always returns successful because
every process has full access rights to the entire memory space.

Attributes

Operating System: 0S§-9

State: System

Threads: Safe

0OS-9 Technical Manual 121

Chapter 6: OS-9 System Calls

Parameters

cb
The control block header.

size
Specify the size of the memory area.

node
Specify the permissions to check.

mem pt r
Point to the beginning of the memory to check.

proc_desc
Point to the process descriptor of the target process.

Possible Errors
EOS_BPADDR

EOCS_UNKSVC (from user-state, with or without SSM)

See Also
F_ALLTSK
F_DELTSK
F_ PERM T
F_PROTECT
| _READ

| WRITE

0OS-9 Technical Manual 122

Chapter 6: OS-9 System Calls

[

F_CHMDIR

Change Process’ Current Module Directory

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_chndir_pb {
sysch cb;
u_char *nane;

} f_chmdir_pb, *F_chndir_pb;
Description

F_CHVDI R changes a process’ current module directory.

The calling process must have access permission to the specified module directory
or an ECS_PERM T error is returned.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

name
Point to the new current module directory. name can be a full pathlist or
relative to the current module directory. To change to the system’s root
module directory, specify a slash (/) for nane.

Possible Errors
ECS_BNAM
ECS_MNF

ECS PERM T

See Also
F_MKMDI R

0OS-9 Technical Manual 123

Chapter 6: OS-9 System Calls

F_CLRSIGS

Clear Process Signal Queue

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_clrsigs_pb {
sysch cb;
process_id proc_id;

} f_clrsigs_pb, *F_clrsigs_pb;

Description

F_CLRSI GS removes any pending signals sent to the target process.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

ch

The control block header.

proc_id
Identify the target process.

Possible Errors
EOS_| PRCI D

See Also
F_SI GVASK

0OS-9 Technical Manual 124

Chapter 6: OS-9 System Calls

[

F_CMDPERM

Change Permissions of Module Directory

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure
typedef struct f_crdperm pb {
sysch cb;
u_char *nane;
u_intl6é perm
} f_cndperm pb, *F_cndper m pb;

Description

F_CMDPERMchanges the access permissions of an existing module directory. This
makes it possible to restrict access to a particular module directory.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

nane
Point to the name of the existing module directory.

perm
Specify the new permissions.

Possible Errors

EOS_BNAM

EOS_MNF

ECS_PERM T

See Also
F_MKMDI R

0OS-9 Technical Manual 125

Chapter 6: OS-9 System Calls

F_CMPNAM

Compare Two Names

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_cnpnam pb {
sysch cb;
u_int32 | ength;
u_char *string,
*pattern;
int32 result;

} f_cnpnam pb, *F_cnpnam pb;

Description

F_CVPNAMcompares a target name to a source pattern to determine if they are equal.
F_COMPNAMIs not case-sensitive; it does not differentiate between upper and lower
case characters.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

I ength
Specify the length of the pattern string.

string
Point to the target name string. The target name must be terminated by a null
byte.

pattern
Point to the pattern string. Two wildcard characters are recognized in the
pattern string;:

® A question mark (?) matches any single character.

e An asterisk (*) matches any string.

0OS-9 Technical Manual 126

Chapter 6: OS-9 System Calls

[

resul t
A returned value. It is the lexicographic result of the comparison.

e Ifresult is zero, the target string is the same as the pattern string.
e Ifresult is negative, the target name is greater than the pattern string.

e Ifresult is positive, the target string is less than the pattern string.

Possible Errors
EOS_DI FFER
EOS_STKOVF

0OS-9 Technical Manual 127

Chapter 6: OS-9 System Calls

F_CONFIG

Configure an Element

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_config_pb {
sysch cb;
u_int32 code;
voi d *param

} f_config_pb, *F_config_pb;

Description

F_CONFI G is a wildcard call that configures elements of the operating system that
may or may not be process specific. It reconfigures operating system resources at
runtime. The target resources may be system-wide resources or process-specific,
depending on the nature of the call.

Attributes
Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

code
Identify the target configuration code. Currently, no sub-codes are defined for
this call.

*
par am
Point to any additional parameters required by the specified configuration
function.

See Also
| _CONFI G

0OS-9 Technical Manual 128

Chapter 6: OS-9 System Calls

[

F CPYMEM
Copy External Memory

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_cpynem pb {
sysch cb;
process_id proc_id;
u_char *from
*to;
u_int32 count;

} f_cpymem pb, *F_cpynmem pb;

Description

F_CPYMEM uses F_MOVE to copy data from one location to another and (at present)
ignores the proc_i d argument (refer to the Parameters section below). The
difference between F_MOVE and F_CPYMEMis the OS allows only system-state
processes to use the former, while the OS allows either user- or system-state
processes to use the later.

For system-state processes, the only difference between these two services is
F_CPYMEMIs slightly slower, since it has more routines to call before transferring
control to F_MOVE.

For user-state processes, F_CPYMEMis the only choice for copying restricted memory.

The OS (if the SSM is active) calls F_CHKVEMto ensure the caller has read and write
access to the output. The OS allows the input address to be any existent location of
memory (it allows user-state processes to copy even restricted data if it exists in

RAM).

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

0OS-9 Technical Manual 129

Chapter 6: OS-9 System Calls

Parameters

cb
The control block header.

proc_id
Specify the process ID of the owner of the external memory.

This service does not currently use the proc_i d input, which was valid when
0S-9 was running on the MC6809 architecture. To allow memory access
beyond 64KB, OS-9 used F_cPYMEMto do bank switching in order to allow a
process to copy data from a different bank of memory. The proc_i d argument
was nothing more than a bank selector. At this point there is no need for the
proc_i d argument, but it is reserved for future use.

from
The address of the external process’ memory to copy.

to
Point to the caller’s destination buffer.

count
The number of bytes to copy.

Possible Errors
EOS_BPADDR

See Also
F_MOVE

0OS-9 Technical Manual 130

Chapter 6: OS-9 System Calls

Step 1.
Step 2.
Step 3.
Step 4.
Step 5.

F_CRC
Generate CRC

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_crc_pb {
sysch cb;
u_char *start;
u_int32 count,
accum

} f_crc_pb, *F_crc_pb;

Description

F_CRC generates or checks the CRC (cyclic redundancy check) values of sections of
memory. Compilers, assemblers, and other module generators use F_CRC to generate
a valid module CRC. If the CRC of a new module is to be generated, the CRC is
accumulated over the module (excluding the CRC). The accumulated CRC is
complemented and stored in the correct position in the module.

The CRC is calculated over a specified number of bytes starting at the source
address. It is not necessary to cover an entire module in one call, because the CRC
may be accumulated over several calls. The CRC accumulator must be initialized to
Oxftftfffff before the first F_CRC call for any particular module.

To generate the CRC of an existing module, the calculation should be performed on
the entire module, including the module CRC. The CRC accumulator contains the

CRC constant bytes if the module CRC is correct. The CRC constant is defined in

modul e. h as CRCCON. The value is 0x00800fe3.

To generate the CRC for a module complete the following steps:
Initialize the accumulator to - 1.

Perform the CRC over the module.

Call F_crC with a NULL value for start.

Complement the CRC accumulator.

Werite the contents of the accumulator to the module.

The CRC value is three bytes long, in a four-byte field. To generate a valid module
CRC, include the byte preceding the CRC in the check and initialize this byte to
zero. If a data pointer of zero is passed, the CRC is updated with one zero data byte.
F_CRC always returns Oxff in the most significant byte of the accumparameter; accum
can be stored (after complement) in the last four bytes of a module as the correct
CRC.

0OS-9 Technical Manual 131

[

Chapter 6: OS-9 System Calls

Attributes
Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

ch

The control block header.

start
Point to the data.

count
Specify the byte count for the data.

accum
A returned value. It points to the CRC accumulator.

See Also
F_SETCRC

0OS-9 Technical Manual 132

Chapter 6: OS-9 System Calls

[

F_CRLK

Create New Resource Lock Descriptor

Headers

#i ncl ude <l ock. h>

Parameter Block Structure
typedef struct f_crlk_pb {
sysch cb;
lock id lid;
} f_crlk_pb, *F_crlk_pb;

Description

F_CRLK creates a new resource lock descriptor. A resource lock descriptor is
allocated and initialized to a free state (not currently owned). Locks can be used to
protect resources in a multi-tasking environment. They provide a mechanism for
exclusive access to a given resource.

Attributes
Operating System: 0S-9

State: System
Threads: Safe
Parameters

cb

The control block header.

lid
A returned value. It is the lock identifier for the lock descriptor. Ii d is used as
a handle to perform further operations on the lock.

Possible Errors
EOS_NORAM

See Also
F_ACQLK
F_CAQLK
F_DELLK
F_RELLK
F_WAI TLK

0OS-9 Technical Manual 133

Chapter 6: OS-9 System Calls

F_DATMOD
Create Data Module

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure
typedef struct f_datnod_pb {
sysch cb;
u_char *nod_nane;
u_int32 size;
u_intlé attr_rev,
type_I ang,
perm
voi d *nod_exec;
Mh_com nod_head;
u_i nt 32col or

} f_datnod_pb, *F_datnod_pb;

Description

F_DATMD creates a data module with the specified attribute/revision and clears the
data portion of the module. The module is created and entered into the current
module directory. Several processes can communicate with each other using a
shared data module.

Be careful not to alter the data module’s header or name string to prevent the
module from becoming unknown to the system.

The created module contains at least si ze usable data bytes, but may be somewhat
larger. The module itself is larger by at least the size of the module header and CRC,
and is rounded up to the nearest system memory allocation boundary.

F_DATMOD does not create a CRC value for the data module. If you load the data
module into memory, you must first create the CRC value.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe

0OS-9 Technical Manual 134

Chapter 6: OS-9 System Calls

[

Parameters

nod_nane
Point to the module name string.

size
The size of the data portion.

attr_rev
A returned value. The value of the module’s attribute and revision.

type_Il ang
A returned value. The value of the module’s type and language.

per s
Specify the access permissions for the module.

nmod_exec
A returned value. It points to the module data.

nmod_head
A returned value. It points to the module header.

col or
Memory color type. If color is zero, MEM ANY is the memory type.

Possible Errors
EOS_BNAM
EOS_KWNMOD

See Also
F_SETCRC

0OS-9 Technical Manual 135

Chapter 6: OS-9 System Calls

F DATTACH
Attach Debugger to a Running Process

Headers

#i ncl ude <regs. h>

Parameter Block Structure
typedef struct f_dattach_pb {
sysch cb;
process_id proc_id;
Regs reg_stack;
Fregs freg_stack;

} f_dattach_pb, *F_dattach_pb;

Description

F_DATTACH attaches the calling debugger to an active process, enabling the debugger
to assume debug control over the existing process. It establishes a debug session in
the same way F_DFORK starts a new process for debug execution. Once a debugger
performs the debug attach operation, the target process is suspended from
execution and the debugger can then proceed to execute the target process under its
control using the F_DEXEC service request. One important difference between
F_DATTACH and F_DFORK is with the F_DATTACH call, the target process continues
normal execution when the parent debugging process exits. The debug resources of
the target process are released but the process does not terminate. However, when a
process is started with the F_DFORK service request, the process is terminated when
the parent debugger performs the F_DEXI T service request.

Attributes
Operating System: 0S-9

State: System
Threads: Safe
Parameters

cb

The control block header.

proc_id
The process identifier of the target process to attach to for debugging.

reg_stack
Point to a register image buffer in the caller's data area where the kernel
returns the current register image of the target debug process.

0OS-9 Technical Manual 136

Chapter 6: OS-9 System Calls

[

freg_stack
Point to a floating-point register image buffer in the caller's data area where
the kernel returns the current floating-point register image of the target debug
process. Note, this floating-point image can contain an empty image since the
target process may not be using the floating-point facilities of the system.

Possible Errors

ECS_| PRCI D
ECS PERM T

See Also
F_DEXEC
FDEXIT
F_DFORK

0OS-9 Technical Manual 137

Chapter 6: OS-9 System Calls

F DDLK
Check for Deadlock Situation

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_ddl k_pb {
sysch cb;
process_id proc_id;

} f_ddl k_pb, *F_ddl k_pb;

Description

F_DDLK checks for a deadlock situation between processes. A search for the current
process (calling process) in the linked list of potential conflicting processes is begun
from the process specified by proc_i d.

F_DDLK is useful for preventing a deadlock situation when protecting multiple
resources from simultaneous accesses. The deadlock list usually represents the list of
processes waiting to acquire access to an associated resource.

Attributes
Operating System: 0S-9

State: System
Threads: Safe
Parameters

cb

The control block header.

proc_id
Specify the process with which to begin the search.

If the calling process is already in the linked list of processes, an EQS_DEADLK
error is returned to the caller.

If the process is not in the linked list, the current process is added to the list
associated with proc_i d.

Possible Errors
EOS_DEADLK

0OS-9 Technical Manual 138

Chapter 6: OS-9 System Calls

[

F_DELLK
Delete Existing Lock Descriptor

Headers

#i ncl ude <l ock. h>

Parameter Block Structure
typedef struct f_dellk_pb {
sysch cb;
lock id lid;
} f_dellk_pb, *F_dellk_pb;

Description

F_DELLK deletes an existing lock descriptor.

F_DELLK does not check for suspended processes still waiting to acquire the lock; an
implementation using locks must release all processes waiting on a resource lock
prior to deleting it. You can corrupt the system if you do not release suspended
processes prior to deletion.

@ Refer to Chapter 6 for more information about locks.

Attributes
Operating System: 0S-9

State: System
Threads: Safe
Parameters

cb

The control block header.
lid
The lock identifier for the lock to delete.
See Also
F_ACQLK
F_CAQLK
F_CRLK
F_RELLK
F_\WAI TLK

0OS-9 Technical Manual 139

Chapter 6: OS-9 System Calls

F_DELMDIR
Delete Existing Module Directory

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_delndir_pb {
sysch cb;
u_char *nane;

} f_del ndir_pb, *F_del ndir_pb;

Description

F_DELMDI Rdeletes an existing module directory. If the target module directory is not
empty, an ECS_DNE directory not empty error is returned.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

name
Point to the module directory.

Possible Errors
ECS_BNAM
EOS_DNE
ECS_MNF
ECS_PERM T

0OS-9 Technical Manual 140

Chapter 6: OS-9 System Calls

[

F_DELTSK

Deallocate Process Descriptor

Headers

#i ncl ude <process. h>

Parameter Block Structure
typedef struct f_deltsk_pb {
sysch cb;
Pr_desc proc_desc;

} f_deltsk_pb, *F_deltsk_pb;

Description

F_DELTSK is called when a process terminates to return the process’ protection
resources. This call must release any protection structures allocated to the process,
whether this be memory or any hardware resource.

F_DELTSK is only supported on systems with a memory protection unit (for example,
all 80386 and 80486 systems and PowerPC systems). The SSM module must be
present in the bootfile.

If the SSM module is not present in the system, an EGS_UNKSVC error is returned. You
should ignore this error.

Attributes

Operating System: 0S-9
State: System
Threads: Safe
Parameters

cb

The control block header.

proc_desc
Point to the process descriptor.

Possible Errors
EOS_BNAM
EOS_UNKSVC

See Also

F_ALLTSK
F_CHKMEM
F_PERM T
F_PROTECT

0OS-9 Technical Manual 141

Chapter 6: OS-9 System Calls

F DEXEC
Execute Debugged Program

Headers
#i ncl ude <types. h>

#i ncl ude <dexec. h>

Parameter Block Structure
t ypedef struct f_dexec_pb {
sysch cb;
process_id proc_id;
dexec_node node;
u_char *parans;
u_int32 numinstr,
tot_instr,
except,
addr ;
u_intl6 numbpts,
**hrk_pts;
dexec_st atus status;
error_code exit_status;

} f_dexec_pb, *F_dexec_pb;

Description

F_DEXEC controls the execution of a suspended child process created by F_DFORK.
The process performing the F_DEXEC is suspended, and its debugged child process is
executed instead. This process terminates and control returns to the parent after the
specified number of instructions have been executed, a breakpoint is reached, or an
unexpected exception occurs. Therefore, the parent and the child processes are
never active at the same time.

When F_DEXEC is executed in DBG_M SOFT or DBG_M COUNT mode, it traces every
instruction of the child process and checks for the termination conditions.
Breakpoints are lists of addresses to check and work with ROMed object programs.
Consequently, the child process being debugged runs at a slow speed.

When F_DEXEC is executed in DBG_M HARD mode, it replaces the instruction at each
breakpoint address with an illegal opcode. Next, it executes the child process at full
speed (with the trace bit clear) until a breakpoint is reached or the program
terminates. This can save an enormous amount of time. However, F_DEXEC cannot
count the number of executed instructions.

When st at us is DBG_S_EXCEPT, the except parameter is the specific exception
identifier (error) causing the child to return to the debugger.

0OS-9 Technical Manual 142

Chapter 6: OS-9 System Calls

[

OS-9 system calls made by the suspended program are executed at full speed and
are considered one logical instruction. This is also true of system-state trap
handlers. You cannot debug system-state processes.

The system uses the register buffer and floating point register buffer passed in the
F_DFORK call to save and restore the child’s registers. Changing the contents of the
register buffer alters the child process’ registers.

An F_DEXI T call must be made to return the debugged process’ resources (memory).

Tracing is allowed through subroutine libraries and intercept routines. This is not a
problem, but you will see code executed that is not explicitly in your sources.

Attributes
Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

proc_id
The process ID of the child to execute.

node
Specify the debug mode. These modes are defined in the header file dexec. h:
Debug Modes Description
DBG_M_I NACTV Inactive mode (used by the kernel).
DBG_M_HARD Hard breakpoints/full speed execution.
DBG_M_SOFT Soft breakpoints/continuous execution.
DBG_M_COUNT Execute count instructions.
DBG_M_CONTROL Execute until change of control (future release).
par ans
The parameter list pointer. This will be implemented in a future release.
num.instr
The number of instructions to execute. If num i nstr is zero, commands are
executed continuously. Upon completion of the F_DEXEC call, num i nstr is
updated with a value representing the original number of instructions less the
number of instructions executed.
tot_instr

A returned value. It points to the number of instructions executed so far when
the child is executed in trace mode.

0OS-9 Technical Manual 143

Chapter 6: OS-9 System Calls

except
A returned value. It is the exception the child received, when the child process
returned due to an exception.

addr
A returned value. It is the violation address associated with an exception
condition.

num bpts
Specify the number of breakpoints in the list.

brk_pts
Point to the breakpoint list. The breakpoint list is a list of addresses indicating
which instructions are considered breakpoints.

status

The process return status. st at us indicates the reason the child process
returned to the debugger. The following st at us modes are defined in the
header file dexec. h:

Status Modes Description

DBG_S_FI NI SH The command finished successfully.
DBG_S_BRKPNT The process hit a breakpoint.

DBG_S_EXCEPT An exception occurred during execution.
DBG_S_CHI LDSI G The process received a signal (no intercept).
DBG_S_PARENTSI G The debugger received a signal.
DBG_S_CHAIN The process made an F_CHAI N syst em call.
DBG_S_EXI T The process made an F_EXI T system call.
DBG_S_CONTROL The process executed a j np or br a (future release).
DBG_S_WATCH The process hit a watch point (future release).
DBG_S_FORK The process made an F_FORK system call.

exit_status
A returned value. It is the child’s exit status, when the child performs an
F_EXI T call.

Possible Errors
EOS_| PRCI D
EOS_PRCABT

See Also
F_CHAIN
F_DEXI T
F_DFORK
FEXIT

0OS-9 Technical Manual 144

Chapter 6: OS-9 System Calls

[

F DEXIT
Exit Debugged Program

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_dexit_pb {
sysch cb;
process_id proc_id;

} f_dexit_pb, *F_dexit_pb;

Description

F_DEXI T terminates a suspended child process created by F_DFORK. The F_EXI T done
by the child process does not release the child’s resources in the case of a debugged
process. This enables examination of the child after its termination. Therefore, the
debugger must do an F_DEXI T to release the child’s resources after this call.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

proc_id

The process ID of the child to terminate.
Possible Errors
EOS_| PRCI D

See Also
F_DEXEC
F_DFORK
FEXIT

0OS-9 Technical Manual 145

Chapter 6: OS-9 System Calls

F DFORK
Fork Process Under Control of Debugger

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct f_dfork_pb {
sysch cb;

u_intlé priority,
pat h_cnt;
process_id proc_id,
Regs reg_stack;
Fregs freg_stack;
u_char *mod_nane,
* par amns;
u_int32 nemsi ze,
param si ze;
u_intl6 type_l ang;
} f_dfork_pb, *F_dfork_pb;

Description:

F_DFORK creates a new process that becomes a child of the caller. It sets up the
process’ memory, MPU registers, and standard I/O paths. In addition, F_DFORK
enables a debugger utility to create a process whose execution can be closely
controlled. The created process is not placed in the active queue, but is left in a
suspended state. This enables the debugger to control its execution through the
F_DEXEC and F_DEXI T system calls.

The child process is created in the DBG M SOFT (trace) mode and is executed with
F_DEXEC.

The register buffer is an area in the caller’s data area permanently associated with
each child process. It is set to an image of the child’s initial registers for use with
F_DEXEC.

For information about process creation, refer to the F_FORK description.

Processes whose primary module is owned by a super-user can only be debugged by
a super user. You cannot debug system-state processes.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe

0OS-9 Technical Manual 146

Chapter 6: OS-9 System Calls

[

Parameters

cb
The control block header.

priority
The priority of the new process.

pat h_cnt
The number of I/O paths for the child to inherit.

proc_id
A returned value. It is the new child process ID.

reg_stack
Point to the register buffer.

freg_stack
Point to the floating point register buffer.

mod_nane
Point to the module name.

par ans
Point to the parameter string to pass to the new process.

mem si ze
Specify any additional stack space to allocate above the default specified in the
primary module’s module header.

param si ze
Specify the size of the parameter string.

type_lsgre]gify the desired type and language of the primary module to be executed.
Possible Errors

EOS_MNF

EOS_NEMOD

ECS_NORAM

EOS_PERM T

EOS_PNNF

See Also
F_DEXEC
F DEXIT
F_DFORKM
F_FORK

0OS-9 Technical Manual 147

Chapter 6: OS-9 System Calls

F DFORKM
Fork Process Under Control of Debugger

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_dforkmpb {
sysch cb;
u_intl6 priority,
pat h_cnt;
process_id proc_id;
Regs reg_stack;
Fregs freg_stack;
Vh_com nod_head,;
u_char *pararns;
u_int32 nemsi ze,
param si ze;

} f_dforkm pb, *F_dforkm pb;

Description

F_DFORKMcreates a new process that becomes a child of the caller. It sets up the
process’ memory, MPU registers, and standard I/O paths. In addition, F_DFORKM
enables a debugger utility to create a process whose execution can be closely
controlled. The created process is not placed in the active queue, but is left in a
suspended state. This enables the debugger to control its execution through the
F_DEXEC and F_DEXI T system calls. F_DFORKMis similar to F_DFORK. However,
F_DFORKMis passed a pointer to the module to fork rather than the module name.

For more information, refer to the description of F_DFORK.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

priority
The priority of the new process.

0OS-9 Technical Manual 148

Chapter 6: OS-9 System Calls

[

pat h_cnt
The number of I/O paths for the child to inherit.

proc_id
A returned value. It is a the new child process ID.

reg_stack
Point to the register buffer.

freg_stack
Point to the floating point register buffer.

nmod_head
Point to the module header.

par ans
Point to the parameter string to pass to the new process.

mem si ze
Specify any additional stack space to allocate above the default specified in the
primary module’s module header.

param si ze
Specify the size of the parameter string.

Possible Errors
ECS_MNF
ECS_NEMOD
ECS_NORAM
EOS_PERM T
EOS_PNNF

See Also
F_DEXEC
FDEXIT
F_DFORK
F_FORK

0OS-9 Technical Manual 149

Chapter 6: OS-9 System Calls

F_EVENT

Process Synchronization and Communication

Headers

Refer to the specific event for the header to include.

Parameter Block Structure

Refer to the specific event for the appropriate parameter block structure.

Description

OS-9 events are multiple-value semaphores that synchronize concurrent processes
sharing resources such as files, data modules, and CPU time. The events’ functions
enable processes to create/delete events, link/unlink events, get event information,
and suspend operation until an event occurs. Events are also used for various means
of signalling.

The following events functions are currently supported:

Table 6-3. Events Functions

Event Description
F_EVENT, EV_ALLCLR Wait for all bits defined by mask to become clear.

F_EVENT, EV_ALLSET Wait for all bits defined by mask to become set.

F_EVENT, EV_ANYCLR Wait for any bits defined by mask to become clear.

F_EVENT, EV_ANYSET Wait for any bits defined by mask to become set.

F_EVENT, EV_CHANGE Wait for any bits defined by mask to change.

F_EVENT, EV_CREAT Create new event.

F_EVENT, EV_DELET Delete existing event.

F_EVENT, EV_I NFO Return event information.

F_EVENT, EV_LINK Link to existing event by name.

F_EVENT, EV_PULSE Signal event occurrence.

F_EVENT, EV_READ Read event value without waiting.

F_EVENT, EV_SET Set event variable and signal event occurrence.

F_EVENT, EV_SETAND Set event value by ANDing the event value with a mask.

F_EVENT, EV_SETOR Set event value by ORing the event value with a mask.

F_EVENT, EV_SETR Set relative event variable and signal event occurrence.

F_EVENT, EV_SETXOR Set event value by XORing the event value with a mask.

F_EVENT, EV_SIGNL Signal event occurrence.

F_EVENT, EV_TSTSET Wait for all bits defined by mask to clear, then set these bits.

F_EVENT, EV_UNLNK Unlink event.

F_EVENT, EV_WAI T Wait for event to occur.

F_EVENT, EV_WAITR Wait for relative event to occur.

0OS-9 Technical Manual 150

Chapter 6: OS-9 System Calls

[

Specific parameters and functions of each event operation are discussed in the
following pages. The EV_XXX function names are defined in the system definition file
funcs. h. The event value is added to nmi n_val and max_val , and the actual values are
returned to the caller. If an underflow or overflow occurs on the addition, the values
0x80000000 (minimum integer) and Ox7fffffff (maximum integer) are used,

respectively.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe

Possible Errors
EOS_EVNTI D

See Also
F_EVENT, EV_SIG\L

0OS-9 Technical Manual 151

Chapter 6: OS-9 System Calls

F EVENT, EV_ALLCLR
Wait for All Bits Defined by Mask to Become Clear

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evallclr_pb {

sysch cb;

u_intl6é ev_code;

event _id ev_id;

int32 val ue;

signal _code signal;

u_int 32 mask;

} f_evallclr_pb, *F_evallclr_pb;

Description

EV_ALLCLR waits until one of the event set calls occurs that clears all of the bits
corresponding to the set bits in the mask. The event variable is ANDed with the
value in mask. If the resulting value is not zero, the calling process is suspended in a
FIFO event queue.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

ev_code
The EV_ALLCLR event function code.

ev_id
Identify the event.

val ue
A returned value. It is the actual event value after the set operation that
activated the suspended process.

If the process receives a signal while in the event queue, it is activated and an
EQS_SI GNAL error is returned, even though the event has not actually occurred.
Also, the current event value is returned and the caller’s intercept routine is
executed.

0OS-9 Technical Manual 152

Chapter 6: OS-9 System Calls

[

si gnal
Contains the returned signal code.

mask
Specify the activation mask. It indicates which bits are significant to the caller.

Possible Errors
EOS_EVNTI D
EOS_SI GNAL

0OS-9 Technical Manual 153

Chapter 6: OS-9 System Calls

F_EVENT, EV_ALLSET
Wait for Event to Occur

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evallset_pb {

sysch cb;

u_intl6é ev_code;

event _id ev_id;

int32 val ue;

signal _code signal;

u_int 32 mask;

} f_evallset_pb, *F_evallset_pb;

Description

EV_ALLSET waits until one of the event set calls occurs that sets all of the bits
corresponding to the set bits in the mask. The event variable is ANDed with the
value in mask and then EXCLUSIVE-ORed with it. If the resulting value is not zero,
the calling process is suspended in a FIFO event queue.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

ev_code
The EV_ALLSET event function code.

ev_id
Identify the event.

val ue
A returned value. It is the actual event value after the set operation that
activated the suspended process.

If the process receives a signal while in the event queue, it is activated and an
EQS_SI GNAL error is returned, even though the event has not actually occurred.
Also, the current event value is returned and the caller’s intercept routine is
executed.

0OS-9 Technical Manual 154

Chapter 6: OS-9 System Calls

[

si gnal
Contains the returned signal code.

mask
Specify the activation mask. It indicates which bits are significant to the caller.

Possible Errors
EOS_EVNTI D
EOS_SI GNAL

0OS-9 Technical Manual 155

Chapter 6: OS-9 System Calls

F_EVENT, EV_ANYCLR
Wait for Event to Occur

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evanyclr_pb {

sysch cb;

u_intl6é ev_code;

event _id ev_id;

int32 val ue;

signal _code signal;

u_int 32 mask;

} f_evanyclr_pb, *F_evanyclr_pb;

Description

EV_ANYCLR waits for an event to occur. The event variable is ANDed with the value
in mask and then EXCLUSIVE-ORed with it. If the resulting value is zero, the
calling process is suspended in a FIFO event queue. It waits until one of the event set
calls occurs that clears any of the bits corresponding to the set bits in the mask.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

ev_code
The EV_ANYCLR event function code.

ev_id
Identify the event.

val ue
A returned value. It is the actual event value after the set operation that
activated the suspended process.

If the process receives a signal while in the event queue, it is activated and an
EQS_SI GNAL error is returned, even though the event has not actually occurred.
Also, the current event value is returned and the caller’s intercept routine is
executed.

0OS-9 Technical Manual 156

Chapter 6: OS-9 System Calls

[

si gnal
Contains the returned signal code.

mask
Specify the activation mask. It indicates which bits are significant to the caller.

Possible Errors
EOS_EVNTI D
EOS_SI GNAL

0OS-9 Technical Manual 157

Chapter 6: OS-9 System Calls

F_EVENT, EV_ANYSET
Wait for Event to Occur

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evanyset pb {

sysch cb;

u_intl6é ev_code;

event _id ev_id;

int32 val ue;

signal _code signal;

u_int 32 mask;

} f_evanyset_pb, *F_evanyset_pb;

Description

EV_ANYSET waits until one of the event set calls occurs that sets any of the bits
corresponding to the set bits in the mask. The event variable is ANDed with the
value in mask. If the resulting value is zero, the calling process is suspended in a
FIFO event queue.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

ev_code
The EV_ANYCLR event function code.

ev_id
Identify the event.

val ue
A returned value. It is the actual event value after the set operation that
activated the suspended process.

If the process receives a signal while in the event queue, it is activated and an
EQS_SI GNAL error is returned, even though the event has not actually occurred.
Also, the current event value is returned and the caller’s intercept routine is
executed.

0OS-9 Technical Manual 158

Chapter 6: OS-9 System Calls

[

si gnal
Contains the returned signal code.

mask
Specify the activation mask. It indicates which bits are significant to the caller.

Possible Errors
EOS_EVNTI D
EOS_SI GNAL

0OS-9 Technical Manual 159

Chapter 6: OS-9 System Calls

F_EVENT, EV_CHANGE
Wait for Event to Occur

Headers:

#i ncl ude <types. h>

Parameter Block Structure

t ypedef struct f_evchange_pb {
sysch cb;
u_intl6 ev_code;
event _id ev_id;
int32 val ue;
si gnal _code signal;
u_int 32 mask;
u_int32 pattern;
} f_evchange_pb, *F_evchange_pb;

Description

EV_CHANGE waits until one of the event set calls occurs that changes any of the bits
corresponding to the set bits in mask. The event variable is ANDed with the value in
mask. If the resulting value is not equal to the wait pattern, the calling process is
suspended in a FIFO event queue.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

ch

The control block header.

ev_code
The EV_ANYCLR event function code.

ev_id
Identify the event.

val ue
A returned value. It is the actual event value after the set operation that
activated the suspended process.

If the process receives a signal while in the event queue, it is activated and an
EQS_SI GNAL error is returned, even though the event has not actually occurred.
Also, the current event value is returned and the caller’s intercept routine is
executed.

0OS-9 Technical Manual 160

Chapter 6: OS-9 System Calls

[

si gnal
Contains the returned signal code.

mask
Specify the activation mask. It indicates which bits are significant to the caller.

pattern
Specify the wait pattern.

Possible Errors
EOS_EVNTI D
EOS_SI GNAL

0OS-9 Technical Manual 161

Chapter 6: OS-9 System Calls

F_EVENT, EV_CREAT

Create New Event

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evcreat _pb {
sysch cb;
u_intl6é ev_code,
wait_inc,
si g_inc,
perm
col or;
event _id ev_id,
u_char *ev_nane;
u_int32 val ue;

} f_evcreat_pb, *F_evcreat_pb;

Description

EV_CREAT creates events dynamically as needed. When an event is created, an initial
value is specified, as well as increments to be applied each time the event is waited
for or occurs. Subsequent event calls use the returned ID number to refer to the
created event.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

ev_code
The EV_CREAT event function code.

wait_inc
Specify the auto-increment value for EV_WAI T.

sig_inc
Specify the auto-increment value for EV_SI G\L.

0OS-9 Technical Manual 162

Chapter 6: OS-9 System Calls

[

perm
Specify the access permissions.

col or
Specify the memory type for the event structure.

ev_id
A returned value. Event identifier used for subsequent event calls.

ev_nane
Point to the event name string.

val ue
Specify the initial event variable value.

Possible Errors
EOS_BNAM
ECS_EVBUSY
ECS_EVFULL
ECS_NORAM

See Also

F_EVENT, EV_DELET
F_EVENT, EV_SIG\L
F_EVENT, EV.VAIT

0OS-9 Technical Manual 163

Chapter 6: OS-9 System Calls

F_EVENT, EV_CREAT | F_USEMA

Create New Usemaphore

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evcreat _pb {
sysch cb;
u_intl6é ev_code,
wait_inc,
si g_inc,
perm
col or;
event _id ev_id,
u_char *ev_nane;
u_int32 val ue;

} f_evcreat_pb, *F_evcreat_pb;

Description

EV_CREAT | F_USEMA creates usemaphores dynamically as needed. When a
usemaphore is created an initial value is specified. Subsequent usemaphore calls use
the returned ID number to refer to the created usemaphore.

No usemaphore may have the same name as an event.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

ev_code
The EV_CREAT | F_USEMA function code.

wait_inc
Specify the auto-increment value for EV_WAI T. wait_inc must be -1.

sig_inc
Specify the auto-increment value for EV_SI G\L. si g_i nc must be 1.

0OS-9 Technical Manual 164

Chapter 6: OS-9 System Calls

[

perm
Specify the access permissions.

col or
Specify the memory type for the usemaphore structure.

ev_id
A returned value. It is the usemaphore identifier used for subsequent
usemaphore calls.

ev_nane
Pointer to the usemaphore name string.

val ue
Specify the initial usemaphore variable value. value must be 0 or 1.If it is 0,
the usemaphore will be created as if it was atomically created in the released
state and then aquired by the calling process.

Possible Errors
EOS_BNAM
EOS_EVBUSY
ECS_EVFULL
ECS_NORAM

See Also

F_EVENT, EV_DELET
F_EVENT, EV_SIG\L
F_EVENT, EV VAIT

0OS-9 Technical Manual 165

Chapter 6: OS-9 System Calls

F_EVENT, EV_DELET

Remove Event

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct f_evdel et_pb {
sysch cb;

u_intl6é ev_code;
u_char *ev_nane;

} f_evdel et _pb, *F_evdel et _pb;

Description

EV_DELET removes an event from the system event table, freeing the entry for use by
another event. Events have an implicit use count (initially set to 1), which is
incremented with each EV_LI NK call and decremented with each EV_UNLI NK call. An
event may not be deleted unless its use count is zero.

0S-9 does not automatically unlink events when EOS_EXI T occurs.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

ev_code
The EV_DELET event function code.

nane
Point to the event’s name string.

Possible Errors

ECS_BNAM
ECS_EVBUSY
ECS_EVNF

See Also

F_EVENT, EV_CREAT
F_EVENT, EV_LINK
F_EVENT, EV_UNLNK

0OS-9 Technical Manual 166

Chapter 6: OS-9 System Calls

[

F_EVENT, EV_DELET | F_USEMA

Remove Usemaphore

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evdel et_pb {
sysch cb;
u_intl6é ev_code;
u_char *ev_nane;
} f_evdel et _pb, *F_evdel et _pb;

Description

EV_DELET | F_USEMA removes a usemaphore from the system usemaphore table,
freeing the entry for use by another event or usemaphore. Usemaphores have an
implicit use count (initially set to 1 by EV_CREAT | F_USEMA), which is incremented
with each EV_LINK | F_USEMA call and decremented with each EV_UNLI NK | F_USEMA
call. A usemaphore may not be deleted unless its use count is zero.

OS-9 automatically unlocks, if necessary, and unlinks any linked usemaphores upon
process termination, but does not delete them.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

ev_code
The EV_DELET | F_USEMA function code.

name
Pointer to the usemaphore’s name string.

Possible Errors

ECS_BNAM
ECS_EVBUSY
ECS_EVNF

See Also

F_EVENT, EV_CREAT | F_USEMA
F_EVENT, EV_LINK | F_USEMA
F_EVENT, EV_UNLNK | F_USEMA

0OS-9 Technical Manual 167

Chapter 6: OS-9 System Calls

F_EVENT, EV_INFO

Return Event Information

Headers

#i ncl ude <events. h>

Parameter Block Structure

typedef struct f_evinfo_pb {
sysch cb;

u_intl6é ev_code;
event _id ev_id;
u_int32 size;
u_char *buffer;

} f_evinfo_pb, *F_evinfo_pb;

Description

EV_I NFOreturns event information in your buffer. This call is used by utilities
needing to know the status of all active events. The information returned is defined
by the ev_i nfostr event information structure defined in the events. h header file.

The name of the event is appended to the end of the information structure. The
information buf f er and si ze parameters must be large enough to accommodate the
name of the target event.

EV_I NFOreturns the event information block for the first active event whose index is
greater than or equal to this index. If no such event exists, an error is returned.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

ev_code
The EV_I NFO event function code.

ev_id
Specify the event index to use to begin the search. Unlike other event
functions, only an event index is passed in the ev_i d parameter. The index is
the system event number, ranging from zero to one less than the maximum
number of system events.

0OS-9 Technical Manual 168

Chapter 6: OS-9 System Calls

[

size
Specify the buffer size.

buf f er
Point to the buffer containing the event information.

Possible Errors
EOS_EVNTI D

See Also

ev_str/ev_infostr

0OS-9 Technical Manual 169

Chapter 6: OS-9 System Calls

F_EVENT, EV_LINK
Link to Existing Event by Name

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evlink_pb {
sysch cb;
u_intl6é ev_code;
event _id ev_id;
u_char *ev_nane;

} f_evlink_pb, *F_evlink_pb;

Description

EV_LI NK determines the ID number of an existing event. Once an event has been
linked, all subsequent references are made using the returned event ID. This permits
the system to access events quickly, while preventing programs from using invalid or
deleted events. The event use count is incremented when an EV_LI NK is performed.
To keep the use count synchronized properly, use EV_UNLI NK when the event is no
longer used.

The event access permissions are checked only at link time.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

ev_code
The EV_LI NK event function code.

ev_name
Point to the event name string.

ev_id
The event identifier used for subsequent event calls.

0OS-9 Technical Manual 170

Chapter 6: OS-9 System Calls

[

Possible Errors
ECS_BNAM
ECS_EVNF

ECS PERM T

See Also
F_EVENT, EV_UNLNK

0OS-9 Technical Manual 171

Chapter 6: OS-9 System Calls

F_EVENT, EV_LINK | F_USEMA
Link to Existing Usemaphore by Name

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evlink_pb {
sysch cb;
u_intl6é ev_code;
event _id ev_id;
u_char *ev_nane;

} f_evlink_pb, *F_evlink_pb;

Description

EV_LINK | F_USEMA determines the ID number of an existing usemaphore. Once a
usemaphore has been linked, all subsequent references are made using the returned
usemaphore ID. This permits the system to access usemaphores quickly, while
preventing programs from using invalid or deleted usemaphores. The usemaphore
use count is incremented when an EV_LI NK | F_USEMA is performed. To keep the use
count synchronized properly, use EV_UNLI NK | F_USEMA when the usemaphore is no
longer used.

OS-9 automatically unlocks, if necessary, and unlinks any linked usemaphores upon
process termination, but does not delete them.

The usemaphore access permissions are checked only at link time.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

ev_code
The EV_LINK | F_USEMA function code.

ev_nane
Pointer to the usemaphore name string.

ev_ id
The usemaphore identifier used for subsequent usemaphore calls.

0OS-9 Technical Manual 172

Chapter 6: OS-9 System Calls

[

Possible Errors
ECS_BNAM
ECS_EVNF

ECS PERM T

See Also
F_EVENT, EV_UNLNK | F_USEMA

0OS-9 Technical Manual 173

Chapter 6: OS-9 System Calls

F_EVENT, EV_PULSE

Signal Event Occurrence

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evpul se_pb {
sysch cb;
u_intl6é ev_code;
event _id ev_id;
int32 val ue;
u_int32 actv_flag;

} f_evpul se_pb, *F_evpul se_pb;

Description

EV_PULSE signals an event occurrence. The event value is set to what is passed in
val ue, and the signal auto-increment is not applied. Then, the event queue is
searched for the first process waiting for that event value, after which the original
event value is restored.

EV_PULSE with the act v_f 1 ag set executes as follows for each process in the queue
until the queue is exhausted:

1. The signal auto-increment is added to the event variable.
2. The first process in range is awakened.

3. The event value is updated with the wait auto-increment.
4

The search is continued with the updated value.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

chb

The control block header.

ev_code
The EV_PULSE event function code.

ev_ id
Identify the event.

0OS-9 Technical Manual 174

Chapter 6: OS-9 System Calls

[

val ue
The event value prior to the pulse operation.

actv_fl ag
Specify which process(es) to activate.

e Ifactv_flag is one, all processes in range are activated.

e Ifactv_flag is not set, only the first process in the event queue waiting for

that range is activated.

Possible Errors
EOS_EVNTI D

0OS-9 Technical Manual 175

Chapter 6: OS-9 System Calls

F_EVENT, EV_READ
Read Event Value Without Waiting

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evread_pb {
sysch cb;
u_intl6é ev_code;
event _id ev_id;
int32 val ue;

} f_evread_pb, *F_evread_pb;

Description

EV_READ reads the value of an event without waiting or affecting the event variable.
This determines the availability of the event without wait.

Attributes
Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

ch

The control block header.

ev_code
The EV_READ event function code.

ev_id
Identify the event.

val ue
The current event value.

Possible Errors
EOS_EVNTI D

0OS-9 Technical Manual 176

Chapter 6: OS-9 System Calls

[

F_EVENT, EV_RESET | F_USEMA

Acquire Ownership of a Usemaphore and Reset

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evwait_pb {

sysch cb;

u_intl6é ev_code;

event _id ev_id;

int32 val ue;

signal _code signal;

u_int32 mn_val,

max_val ;

} f_evwait_pb, *F_evwait_pb;

Description

EV_RESET | F_USEMA claims ownership of a usemaphore and clears the need for a
reset. This is a non-blocking call. If a reset is necessary the caller will be granted
ownership immediately and the need to reset the usemaphore will be cleared. If no
reset is required EOS_USNORST will be returned.

The caller should use F_EVENT, EV_SI GNL | F_USEMA to release the ownership
acquired via F_EVENT, EV_RESET | F_USEMA.

Usemaphores have to be reset when the operating system releases ownership
because a process terminates without manually releasing ownership.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

ev_code
The EV_RESET | F_USEMA function code.

ev_id
Identify the usemaphore.

0OS-9 Technical Manual 177

Chapter 6: OS-9 System Calls

val ue
A returned value. It is the actual usemaphore value prior to the application of
the wait increment.

si gnal
A returned value.Since this is a non-blocking call the value of signal is not

defined.

m n_val
The minimum activation value. This must be 1.

max_val
The maximum activation value. This must be 1.

Possible Errors
EOS_EVNTI D
ECS_USRST

See Also

F_EVENT, EV_SIGNL | F_USEMA
F_EVENT, EV.WAIT | F_USEMA
F_EVENT, EV_TRYWAIT | F_USEMA

0OS-9 Technical Manual 178

Chapter 6: OS-9 System Calls

[

F_EVENT, EV_SET

Set Event Variable and Signal Event Occurrence

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evset_pb {
sysch cb;
u_intl6é ev_code;
event _id ev_id;
int32 val ue;
u_int32 actv_flag;

} f_evset_pb, *F_evset_pb;

Description

EV_SET signals an event has occurred. The current event variable is set to the value
passed at val ue, rather than updated with the signal auto-increment. Next, the
event queue is searched for the first process waiting for the event value.

EV_SET with the act v_f 1 ag set executes as follows for each process in the queue
until the queue is exhausted:

1. The first process in range is awakened.
2. The event value is updated with the wait auto-increment.

3. The search is continued with the updated value.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

ev_code
The EV_SET event function code.

ev_id
Identify the event.

val ue
The event value prior to the set operation.

0OS-9 Technical Manual 179

Chapter 6: OS-9 System Calls

actv_flag
Specify which process(es) to activate.

e Ifactv_flagis one, all processes in range are activated.

e Ifactv_flagis not set, only the first process in the event queue waiting for

that range is activated.

Possible Errors

ECS_EVNTI D

0OS-9 Technical Manual 180

Chapter 6: OS-9 System Calls

[

F_EVENT, EV_SETAND

Set Event Variable and Signal Event Occurrence

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evsetand_pb {
sysch cb;
u_intl6é ev_code;
event _id ev_id;
u_int32 nask,
actv_fl ag;

} f_evsetand_pb, *F_evsetand_pb;

Description

EV_SETAND signals an event has occurred. The current event variable is ANDed with
the value passed in mask rather than updated with the signal auto-increment. Next,
the event queue is searched for the first process waiting for that event value.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

ch

The control block header.

ev_code
The EV_SETAND event function code.

ev_id
Identify the event.

val ue
The event value prior to the logical operation.

mask
The event mask. It indicates which bits are significant to the caller.

0OS-9 Technical Manual 181

Chapter 6: OS-9 System Calls

actv_flag
Specify which process(es) to activate.

e Ifactv_flagis one, all processes in range are activated.

e Ifactv_flagis not set, only the first process in the event queue waiting for

that range is activated.

Possible Errors

ECS_EVNTI D

0OS-9 Technical Manual 182

Chapter 6: OS-9 System Calls

[

F_EVENT, EV_SETOR

Set Event Variable and Signal Event Occurrence

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct f_evsetor_pb {
sysch cb;

u_intl6é ev_code;

event _id ev_id;

u_int32 nask,
actv_fl ag;

} f_evsetor_pb, *F_evsetor_pb;

Description

EV_SETCORsignals an event has occurred. The current event variable is ORed with the
value passed in mask. Next, the event queue is searched for the first process waiting
for that event value.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

ch

The control block header.

ev_code
The EV_SETOR event function code.

ev_id
Identify the event.

val ue
The event value prior to the logical operation.

mask
The event mask. It indicates which bits are significant to the caller.

0OS-9 Technical Manual 183

Chapter 6: OS-9 System Calls

actv_flag
Specify which processes to activate.

e Ifactv_flagis one, all processes in range are activated.

e Ifactv_flagis not set, only the first process in the event queue waiting for

that range is activated.

Possible Errors

ECS_EVNTI D

0OS-9 Technical Manual 184

Chapter 6: OS-9 System Calls

[

F_EVENT, EV_SETR

Set Relative Event Variable and Signal Event Occurrence

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evsetr_pb {
sysch cb;
u_intl6é ev_code;
event _id ev_id;
int32 val ue;
u_int32 actv_flag;

} f_evsetr_pb, *F_evsetr_pb;

Description

EV_SETRsignals an event has occurred. The current event value is incremented by
val ue, rather than by the signal auto-increment. Next, the event queue is searched
for the first process waiting for that event value. Arithmetic underflows or
overflows are set to 0x80000000 (minimum integer) or Ox7fffffff (maximum
integer), respectively.

EV_SETR with the act v_f 1 ag set executes as follows for each process in the queue
until the queue is exhausted:

1. The first process in range is awakened.
2. The event value is updated with the wait auto-increment.

3. The search is continued with the updated value.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

chb

The control block header.

ev_code
The EV_SETOR event function code.

ev_ id
Identify the event.

0OS-9 Technical Manual 185

Chapter 6: OS-9 System Calls

val ue
The event value prior to the logical operation.

actv_fl ag
Specify which processes to activate.

e Ifactv_flag is one, all processes in range are activated.

e Ifactv_flag is not set, only the first process in the event queue waiting for
that range is activated.

Possible Errors
EOS_EVNTI D

See Also
F_EVENT, EV_SET
F_EVENT, EV_SIG\L

0OS-9 Technical Manual 186

Chapter 6: OS-9 System Calls

[

F_EVENT, EV_SETXOR

Set Event Variable and Signal Event Occurrence

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evsetxor_pb {
sysch cb;
u_intl6é ev_code;
event _id ev_id;
u_int32 nask,
actv_fl ag;

} f_evsetxor_pb, *F_evsetxor_pb;

Description

EV_SETXCR signals an event has occurred. The current event value is EXCLUSIVE-
ORed with mask rather than updated with the signal auto-increment. Next, the
event queue is searched for the first process waiting for that event value.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

ch

The control block header.

ev_code
The EV_SETOR event function code.

ev_id
Identify the event.

val ue
The event value prior to the logical operation.

mask
The event mask. It indicates which bits are significant to the caller.

0OS-9 Technical Manual 187

Chapter 6: OS-9 System Calls

actv_flag
Specify which processes to activate.

e Ifactv_flagis one, all processes in range are activated.

e Ifactv_flagis not set, only the first process in the event queue waiting for

that range is activated.

Possible Errors

ECS_EVNTI D

0OS-9 Technical Manual 188

Chapter 6: OS-9 System Calls

[

F_EVENT, EV_SIGNL

Signal Event Occurrence

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct f_evsignl _pb {
sysch cb;

u_intl6é ev_code;
event _id ev_id;
u_int32 actv_fl ag;

} f_evsignl _pb, *F_evsignl_pb;

Description

EV_SI G\L signals an event has occurred. The current event variable is updated with
the signal auto-increment specified when the event was created. Next, the event
queue is searched for the first process waiting for that event value.

EV_SI G\L with the act v_f1 ag set, executes as follows for each process in the queue
until the queue is exhausted:

1. The signal auto-increment is added to the event variable.
2. The first process in range is awakened.

3. The event value is updated with the wait auto-increment.
4

The search is continued with the updated value.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

chb

The control block header.

ev_code
The EV_SETOR event function code.

ev id
Identify the event.

val ue
The event value prior to the logical operation.

0OS-9 Technical Manual 189

Chapter 6: OS-9 System Calls

actv_flag
Specify which processes to activate.

e Ifactv_flagis one, all processes in range are activated.

e Ifactv_flagis not set, only the first process in the event queue waiting for

that range is activated.

Possible Errors

ECS_EVNTI D

0OS-9 Technical Manual 190

Chapter 6: OS-9 System Calls

[

F_EVENT, EV_SIGNL | F_USEMA

Release Ownership of a Usemaphore

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct f_evsignl _pb {
sysch cb;

u_intl6é ev_code;
event _id ev_id;
int32 val ue;
u_int32 actv_fl ag;

} f_evsignl _pb, *F_evsignl _pb;

Description

EV_SIGNL | F_USEMA releases the the ownership of a usemaphore.The current
usemaphore variable is updated with the signal auto-increment (plus 1), thus
releasing ownership. Next, the usemaphore queue is searched for the first process
waiting for the usemaphore.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

ev_code
The EV_SIGNL | F_USEMA function code.

ev_id
Identify the semaphore.

val ue
The usemaphore value prior to the release operation. Will always be 1.

actv_flag
Specify which processes to activate. Must be 0.

0OS-9 Technical Manual 191

Chapter 6: OS-9 System Calls

Possible Errors
EOS_EVNTI D
EOS_PARAM

See Also
F_EVENT, EV.WAIT | F_USEMA
F_EVENT, EV_TRYWAIT | F_USEMA

0OS-9 Technical Manual 192

Chapter 6: OS-9 System Calls

[

F_EVENT, EV_TRYWAIT
Check for Event Without Blocking

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evwait_pb {

sysch cb;

u_intl6é ev_code;

event _id ev_id;

int32 val ue;

signal _code signal;

u_int32 mn_val,

max_val ;

} f_evwait_pb, *F_evwait_pb;

Description

EV_TRYWAI T checks if the current event value is in the range between the minimum
and maximum activation values. If it is in range, the wait auto-increment (specified
at creation) is added to the event variable and SUCCESS is returned. If the value is
not in range, EAGAIN is returned.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

ev_code
The EV_TRYWAI T event function code.

ev_id
Identify the event.

val ue
A returned value. It is the event value at the time of the call.

0OS-9 Technical Manual 193

Chapter 6: OS-9 System Calls

si gnal
A returned value. The value of si gnal is undefined for EV_TRYWAIT since it
does not block.

m n_val
The minimum activation value.

max_val
The maximum activation value. The event value is added to mi n_val and
max_val , and the actual absolute values are returned to the caller. If an
underflow or overflow occurs on the addition, the values 0x80000000
(minimum integer) or Ox7fffffff (maximum integer) are used, respectively.

Possible Errors
EOS_EVNTI D

ECS_EVPARM
EAGAI N

See Also
F_EVENT, EV_SIG\L
F_EVENT, EV.WAIT

0OS-9 Technical Manual 194

Chapter 6: OS-9 System Calls

[

F_EVENT, EV_TRYWAIT | F_USEMA
Acquire Ownership of a Usemaphore Without Blocking

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evwait_pb {

sysch cb;

u_intl6é ev_code;

event _id ev_id;

int32 val ue;

signal _code signal;

u_int32 mn_val,

max_val ;

} f_evwait_pb, *F_evwait_pb;

Description

EV_TRYWAI T | F_USEMA claims ownership of the specified usemaphore if it is
currently unowned. If it is unowned, the wait auto-increment (minus 1) is then
applied to the usemaphore value. If it is currently owned, EAGAIN is returned.

If the usemaphore needs to be reset EOS_USRST will be returned.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

ev_code
The EV_TRYWAI T | F_USEMA function code.

ev_id
Identify the usemaphore.

val ue
A returned value. It is the actual usemaphore value prior to the application of
the wait increment.

0OS-9 Technical Manual 195

Chapter 6: OS-9 System Calls

si gnal
A returned value. Since EV_TRYWAI T | F_USEMA is a non-blocking operation,
the value of the signal field is undefined.

m n_val
The minimum activation value. This must be 1.

max_val
The maximum activation value. This must be 1.

Possible Errors
EOS_EVNTI D

ECS_USRST
ECS_PARAM

See Also
F_EVENT, EV_SIG\L | F_USEMA
F_EVENT, EV.WAIT | F_USEMA

0OS-9 Technical Manual 196

Chapter 6: OS-9 System Calls

[

F EVENT, EV_TSTSET
Wait for Event to Occur

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evtstset_pb {

sysch cb;

u_intl6é ev_code;

event _id ev_id;

int32 val ue;

signal _code signal;

u_int 32 mask;

} f_evtstset_pb, *F_evtstset_pb;

Description

EV_TSTSET waits for an event to occur. The event variable is ANDed with the value
in mask. If the result is not zero, the calling process is suspended in a FIFO event
queue until an EV_SI G\L occurs clearing all of the bits corresponding to the set bits
in the mask. Next, the bits corresponding to the set bits in the mask are set.

Attributes
Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

ev_code
The EV_SETOR event function code.

ev_id
Identify the event.

val ue
The event value prior to the logical operation.

mask
The event mask. It indicates which bits are significant to the caller.

0OS-9 Technical Manual 197

Chapter 6: OS-9 System Calls

actv_flag
Specify which processes to activate.

e Ifactv_flagis one, all processes in range are activated.

e Ifactv_flagis not set, only the first process in the event queue waiting for

that range is activated.

Possible Errors

ECS_EVNTI D

0OS-9 Technical Manual 198

Chapter 6: OS-9 System Calls

F_EVENT, EV_UNLNK
Unlink Event

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evunl nk_pb {
sysch cb;
u_intl6é ev_code;
event _id ev_id;

} f_evunl nk_pb, *F_evunl nk_pb;

Description

EV_UNLNK informs the system a process is no longer using the event. This decrements
the event use count and allows the event to be deleted with the EV_DELET event
function when the count reaches zero.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

ev_code
The EV_UNLI NK event function code.

ev_id
Specify the event.

Possible Errors
EOS_EVNTI D

See Also
F_EVENT, EV_DELET
F_EVENT, EV_LINK

0OS-9 Technical Manual 199

[

Chapter 6: OS-9 System Calls

F_EVENT, EV_UNLNK | F_USEMA

Unlink Usemaphore

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evunl nk_pb {
sysch cb;
u_intl6é ev_code;
event _id ev_id;

} f_evunl nk_pb, *F_evunl nk_pb;

Description

EV_UNLNK | F_USEMA informs the system a process is no longer using the
usemaphore. This decrements the usemaphore use count and allows the
usemaphore to be deleted with the EV_DELET | F_USEMA function when the count
reaches zero.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

ev_code
The EV_UNLI NK | F_USEMA function code.

ev_id
Specify the usemaphore.

Possible Errors
EOS_EVNTI D

See Also
F_EVENT, EV_DELET | F_USEMA
F_EVENT, EV_LINK | F_USEMA

0OS-9 Technical Manual 200

Chapter 6: OS-9 System Calls

[

F_EVENT, EV_WAIT
Wait for Event to Occur

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evwait_pb {

sysch cb;

u_intl6é ev_code;

event _id ev_id;

int32 val ue;

signal _code signal;

u_int32 mn_val,

max_val ;

} f_evwait_pb, *F_evwait_pb;

Description

EV_WAI T waits until an event call places the value in the range between the minimum
and maximum activation values. Next, the wait auto-increment (specified at
creation) is added to the event variable.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

ev_code
The EV_WAI T event function code.

ev_id
Identify the event.

val ue
A returned value. It is the actual event value prior to the set operation that
activates the suspended process.

0OS-9 Technical Manual 201

Chapter 6: OS-9 System Calls

si gnal
A returned value. It is the signal code, if it is activated by a signal. If a process
in the event queue receives a signal, it is activated even though the event has
not actually occurred. The auto-increment is not added to the event variable,
and an EGS_SI GNAL error is returned. Also, the event value is returned, even
though it is not in range, and the caller’s intercept routine is executed.

m n_val
The minimum activation value.

max_val
The maximum activation value. The event value is added to mi n_val and
max_val , and the actual absolute values are returned to the caller. If an
underflow or overflow occurs on the addition, the values 0x80000000
(minimum integer) and Ox7fffffff (maximum integer) are used, respectively.

Possible Errors
EOS_EVNTI D

See Also
F_EVENT, EV_SIG\L
F_EVENT, EV.WAIT

0OS-9 Technical Manual 202

Chapter 6: OS-9 System Calls

[

F_EVENT, EV_WAIT | F_USEMA

Acquire Ownership of a Usemaphore

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_evwait_pb {

sysch cb;

u_intl6é ev_code;

event _id ev_id;

int32 val ue;

signal _code signal;

u_int32 mn_val,

max_val ;

} f_evwait_pb, *F_evwait_pb;

Description

EV_WAI T | F_USEMA waits until a usemaphore is unowned and then claims
ownership. Then, the wait auto-increment (minus 1) is applied to the usemaphore
value.

Attributes

Operating System: 0S-9

State: User and System

Threads: Safe

Parameters

cb
The control block header.

ev_code
The EV.WAI T | F_USEMA function code.

ev_id
Identify the usemaphore.

val ue
A returned value. It is the actual usemaphore value prior to the application of
the wait increment.

0OS-9 Technical Manual 203

Chapter 6: OS-9 System Calls

si gnal
A returned value. It is the signal code, if it is activated by a signal. If a process
in the usemaphore queue receives a signal, it is activated even though
ownership has not actually been granted. The auto-increment is not added to
the usemaphore variable, and an EQS_SI GNAL error is returned. Also, the
event value is returned, even though it is not in range, and the process’ signal
handling code is executed.

m n_val
The minimum activation value. This must be 1.

max_val
The maximum activation value. This must be 1.

Possible Errors
EOS_EVNTI D
EOS_USRST

See Also
F_EVENT, EV_SIG\L | F_USEMA
F_EVENT, EV_TRYWAIT | F_USEMA

0OS-9 Technical Manual 204

Chapter 6: OS-9 System Calls

[

F_EVENT, EV_WAITR

Wait for Relative Event to Occur

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct f_evwaitr_pb {
sysch cb;

u_intl6é ev_code;

event _id ev_id;

int32 val ue;

signal _code signal;

u_int32 mn_val,
max_val ;

} f_evwaitr_pb, *F_evwaitr_pb;

Description

EV_WAI TR waits until an event call places the value in the range between the
minimum and maximum activation values, where ni n_val and max_val are relative
to the current event value. Next, the wait auto-increment (specified at creation) is
added to the event variable.

The event value is added to ni n_val and max_val , and the actual absolute values are
returned to the caller. If an underflow or overflow occurs on the addition, the values
0x80000000 (minimum integer) and Ox7ftfffff (maximum integer) are used,
respectively.

Attributes

Operating System: 0S-9

State: User and System

Threads: Safe

Parameters

cb
The control block header.

ev_code
The EV_WAI T event function code.

ev_id
Identify the event.

0OS-9 Technical Manual 205

Chapter 6: OS-9 System Calls

val ue
A returned value. It is the actual event value prior to the set operation that
activates the suspended process.

si gnal
A returned value. It is the signal code, if it is activated by a signal. If a process
in the event queue receives a signal, it is activated even though the event has
not actually occurred. The auto-increment is not added to the event variable,
and an ECS_SI GNAL error is returned. Also, the event value is returned, even
though it is not in range, and the caller’s intercept routine is executed.

m n_val
The minimum activation value.

max_val
The maximum activation value. The event value is added to mi n_val and
max_val , and the actual absolute values are returned to the caller. If an
underflow or overflow occurs on the addition, the values 0x80000000
(minimum integer) and Ox7fffffff (maximum integer) are used, respectively.

Possible Errors
EOS_EVNTI D

See Also
F_EVENT, EV_SIG\L
F_EVENT, EV.WAIT

0OS-9 Technical Manual 206

Chapter 6: OS-9 System Calls

[

F_EXIT

Terminate Calling Process

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_exit_pb {
sysch cb;
status_code st at us;

} f_exit_pb, *F_exit_pb

Description

F_EXI T allows a process to terminate itself. Its data memory area is deallocated and
its primary module is unlinked. All open paths are automatically closed.

The parent can detect the death of a child process by executing F WAl T. This returns
(to the parent) the exit status passed by the child in its exit call. The shell assumes
the exit status is an OS-9 error code. The exit status can also be a user-defined
status value.

Processes to be called directly by the shell should only return an OS-9 error code or
zero (if no error occurred).

The parent must perform an F_WAI T or an F_EXI T before the child process descriptor
is returned to free memory.

F_EXI T executes as follows:

1. Close all paths.

Return the memory to the system.

Unlink the primary module, subroutine libraries, and trap handlers.
Free the process descriptor of any dead child processes.

Free the process descriptor if the parent is dead.

N kb

Leave the process in limbo until the parent notices the death if the parent has
not executed F_WAI T.

7. 1If the parent is waiting, move it to the active queue and informs it of
death/status.

8. Remove the child from the sibling list and free its process descriptor memory.

Only primary modules, subroutine libraries, and trap handlers are unlinked. Other
modules loaded or linked by the process should be unlinked before calling F_EXI T.

Although F_EXI T closes any open paths, it ignores errors returned by | _CLOSE. Due
to I/O buffering, write errors can go unnoticed when paths are left open. However,
by convention, the standard I/O paths (0, 1, and 2) are usually left open.

0OS-9 Technical Manual 207

Chapter 6: OS-9 System Calls

Attributes
Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

ch

The control block header.

stat us
The status code returned to the parent process.

See Also
F_APRCC
F_FORK
F_SRTMVEM
F_UNLI NK
F VAT

| _CLOSE

0OS-9 Technical Manual 208

Chapter 6: OS-9 System Calls

[

F_FINDPD

Find Process Descriptor

Headers

#i ncl ude <process. h>

Parameter Block Structure
typedef struct f_findpd_pb {
sysch cb;
process_id proc_id;
Pr_desc proc_desc;

} f_findpd_pb, *F_findpd_pb;

Description

F_FI NDPD converts a process number to the absolute address of its process descriptor
data structure.

Attributes
Operating System: 0S-9

State: System
Threads: Safe
Parameters

cb

The control block header.

proc_id

Specify the process ID.

proc_desc
A returned value. It is the pointer to the process descriptor.

Possible Errors
EOS_| PRCI D

See Also
F_ALLPRC
F_RETPD

0OS-9 Technical Manual 209

Chapter 6: OS-9 System Calls

F FMOD
Find Module Directory Entry

Headers

#i ncl ude <noddir. h>

Parameter Block Structure
typedef struct f_findnod_pb {
sysch cb;
u_intl6 type_| ang;
Mod_dir noddir_entry;
u_char *nod_nane;
} f_findmod_pb, *F_findnrod_pb;

Description

F_FMOD searches the module directory for a module whose name, type, and language
match the parameters. If found, a pointer to the module directory entry is returned
in moddir_entry.

Attributes

Operating System: 0S-9

State: System and Interrupt
Threads: Safe

Parameters

ch

The control block header.

type_Il ang
Specify the type and language of the module.

nmoddi r_entry
A returned value. It is the pointer to the module directory entry.

nod_nane
Point to the module name.
Possible Errors

ECS_BNAM
ECS_MNF

See Also

F_LINK
F_LOAD

0OS-9 Technical Manual 210

Chapter 6: OS-9 System Calls

[

F_FORK

Create New Process

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_fork_pb {
sysch cb;
u_intl6 priority,
pat h_cnt;
process_id proc_id;
u_char *nod_nane,
*par ans;
u_int32 memsize,
param si ze;
u_intl6 type_| ang;
u_intl6 orphan;
} f_fork_pb, *F_fork_pb;

Description

F_FORK creates a new process that becomes a child of the caller. It sets up the new
process’ memory, MPU registers, and standard I/O paths.

The system parses the name string of the new process’ primary module (the
program that is initially executed). If the program is found in the current or
alternate module directory, the module is linked and executed. If the program is not
found, the name string is used as the pathlist of the file to be loaded into memory.
The first module in this file is linked and executed. The module must be program
object code with the appropriate read and/or execute permissions to be loaded
successfully.

The primary module’s header determines the process’ initial data area size. OS-9
attempts to allocate RAM equal to the required data storage size, the size of any
parameters passed, and the size specified by nem si ze. The RAM area must be
contiguous.

The execution offset in the module header is used to set the PC to the module’s entry
point.

When the shell processes a command line, it passes a copy of the command line
parameters (if any) as a parameter string. The shell appends an end-of-line character
to the parameter string to simplify string-oriented processing.

If one or more of these operations is unsuccessful, the fork is aborted and the caller
receives an error.

0OS-9 Technical Manual 211

Chapter 6: OS-9 System Calls

F_FORK passes the following structure (defined in <f ork. h>) as a parameter to the
newly-created process:

typedef struct {

process_id proc_id; /* process ID */
owner _id owner ; /* group/user ID */
priority_|evel priority; [* priority */
u_intl6é path_count; /* nunber of |/O paths inherited */
u_int32 param si ze, /* size of paraneters */
mem si ze; /* total initial menory allocated */
u_char *par ans, [* parameter pointer */
mem end; / top of nenory pointer */
Vh_exec nod_head; [* primary (forked) nodule ptr*/

} fork_parans, *Fork_parans;

The child and parent processes execute concurrently. If the parent executes F_ WAl T
immediately after the fork, it waits until the child dies before it resumes execution.
A child process descriptor is returned to free memory only when the parent
performs an F_WAI T or an F_EXI T service request.

Modules owned by a super user can execute in system state if the system-state bit in
the module’s attributes is set. This should only be done when necessary because this
process is not time sliced and system protection is not enabled for this process.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.
priority
Specify the priority of the new process. If pri ori ty is zero, the new process

inherits the same priority as the calling process.

pat h_cnt
Specify the number of I/O paths for the child to inherit.

proc_id
A returned value. It is the child process ID.

mod_nane
Point to the module name.

0OS-9 Technical Manual 212

Chapter 6: OS-9 System Calls

[

par ams
Point to the parameter string to pass to the new process.

nmem si ze
Specify any additional stack space to allocate above the default specified in the
primary module’s module header.

param si ze
Specify the size of the parameter string.

type_Il ang
Specify the desired type and language. If t ype_| ang is zero, any module,
regardless of type and language, may be loaded.

or phan
If the or phan flag is non-zero, the new process executes without a parent. If
or phan is zero, the new process is the child of the calling process.

Possible Errors
ECS_NORAM

ECS PERM T
EOS_PNNF

See Also
F_CHAIN
FEXIT

F VAT

0OS-9 Technical Manual 213

Chapter 6: OS-9 System Calls

F_FORKM

Create New Process by Module Pointer

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure
typedef struct f_forkmpb {
sysch cb;
u_intl6 priority,
pat h_cnt;
process_id proc_id;
vh_com nod_head,;
u_char *pararns;
u_int32 memsize,
param si ze;
u_intl6 orphan;

} f_forkmpb, *F_forkm pb;

Description

F_FORKMcreates a new process that becomes a child of the caller. It sets up the new
process’ memory, MPU registers, and standard I/O paths. The new process is forked
by a module pointer. F_FORKM assumes the module pointer is the primary module
pointer for the new process.

Attributes
Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.
priority
Specify the priority of the new process. If priori ty is zero, the new process

inherits the same priority as the calling process.

pat h_cnt
Specify the number of I/O paths for the child to inherit.

0OS-9 Technical Manual 214

Chapter 6: OS-9 System Calls

[

proc_id
A returned value. It is the child process ID.

nod_head
Point to the module header of the module to fork.

par ams
Point to the parameter string to pass to the new process.

nmem si ze
Specify any additional stack space to allocate above the default specified in the
primary module’s module header.

param si ze
Specify the size of the parameter string.

or phan
If the or phan flag is non-zero, the new process executes without a parent. If
or phan is zero, the new process is the child of the calling process.

Possible Errors
EOS_MNF
EOS_NORAM
ECS_PERM T

See Also
F_FORK

0OS-9 Technical Manual 215

Chapter 6: OS-9 System Calls

F_GBLKMP
Get Free Memory Block Map

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_gbl knp_pb {
sysch cb;
Mem|ist start;
u_char *buffer;
u_int32 size,
m n_al | oc,
num segs,
t ot _mem
free_nem

} f_gbl knp_pb, *F_gbl knp_pb;

Description

F_GBLKMP copies the address and size of the system’s free RAM blocks into your
buffer for inspection. It also returns information concerning the free RAM as noted
by the parameters.

A series of structures showing the address and size of free RAM blocks is returned
in your buffer in the following format:

typedef struct {
u_char *addr ess; /* pointer to block */
u_int32 si ze; /* size of block */

s

Although F_GBLKWP returns the address and size of the system’s free memory blocks,
you cannot directly access these blocks. Use F_SRQVEMto request free memory

blocks.

The address and size of free RAM changes with system use. nf r ee and similar
utilities use F_GBLKMP to determine the status of free system memory.

The OS suffixes the array of i nf o structures, to which buffer points, with a sentinel

as follows:
i nfo. addr ess NULL
info.size 0

The OS adds this sentinel only if at least one unused i nf o structure occupies the
buffer after processing.

0OS-9 Technical Manual 216

Chapter 6: OS-9 System Calls

[

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

start
The address to begin reporting the segments.

buf f er
Point to the buffer to use.

si ze
Specify the buffer size in bytes. It is also an output containing the number of
unused i nf o structures in the buffer.

When si ze is 0, the service does not validate or use buf f er. It also updates the
following parameters on every call.

m n_al | oc
A returned value. It is the minimum memory allocation size for the system.

num segs
A returned value. It is the number of memory fragments in the system.

tot _mem
A returned value. It is the total RAM found by the system at startup.

free_nem
A returned value. It is the current total free RAM available.

See Also
F_SRQVEM

0OS-9 Technical Manual 217

Chapter 6: OS-9 System Calls

F GETMDP
Get Current and Alternate Module Directory Pathlists

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct f_get_ndp_pb {
sysch cb;
u_char *current,
*al t er nat e;

} f_get_ndp_pb, *F_get_ndp_pb;

Description

F_GETMDP returns pathlists to the current module directory and the alternate module
directory.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe

Parameters

cb
The control block header.

current
Point to the buffer for returning the pathlist of the current module directory.

alternate
Point to the buffer for returning the pathlist of the alternate module directory.

See Also
F_ALTMDI R
F_CHWDI R

0OS-9 Technical Manual 218

Chapter 6: OS-9 System Calls

F_GETSYS

Examine System Global Variable

Headers
#i ncl ude <types. h>

#i ncl ude <sysgl ob. h>

Parameter Block Structure
t ypedef struct f_getsys_pb {
syschb cb;
u_int32 offset,
si ze;
uni on {
u_char byt;
u_intl6é wd;
u_int32 | ng;
} sysvar;

} f_getsys _pb, *F_getsys_pb;

Description

F_GETSYS enables a process to examine a system global variable. Consult the
sysgl ob. h header file for a description of the system global variables.

The format and contents of the system global variables may change in future
releases of OS-9.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

of f set
The variable’s offset in the system globals.

si ze
Specify the size of the variable.

sysvar
A union of the three sizes of variables accessible by F_GETSYS.

0OS-9 Technical Manual 219

[

Chapter 6: OS-9 System Calls

byt
A byte size variable.

wrd
A word size variable.

I ng
A long size variable.

See Also
F_SETSYS
the DEFS files section of the OS-9 Porting Guide

0OS-9 Technical Manual 220

Chapter 6: OS-9 System Calls

[

F GMODDR
Get Copy of Module Directory

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_get_noddir_pb {
sysch cb;
u_char *buffer;
u_iont32 count;

} f_get_noddir_pb, *F_get_noddir_pb;

Description

F_GVODDR copies the process’ current module directory into your buffer for
inspection.

F_GVODDR is provided primarily for use by mdi r and similar utilities. The format and
contents of the module directory may change on different releases of OS-9.
Therefore, you should use the output of ndi r to determine the names of modules in
memory.

Attributes

Operating System: 0S-9

State: User and System

Threads: Safe

Parameters

cb
The control block header.

buffer
Point to the buffer.

count
The maximum number of bytes to copy, and upon return from F_GVODDR it is
the number of bytes actually copied.

Although the module directory contains pointers to each module in the system,
never access the modules directly. Instead, use F_CPYMEMto copy portions of the
system’s address space for inspection.

See Also
F_CPYMEM

0OS-9 Technical Manual 221

Chapter 6: OS-9 System Calls

F_ GPRDBT
Get Copy of Process Descriptor Block Table

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_get_prtbl_pb {
sysch cb;
u_char *buffer;
u_int32 count;

} f_get_prtbl _pb, *F_get_prtbl _pb;

Description

F_GPRDBT copies the process descriptor block table into your buffer for inspection.
The procs utility uses F_GPRDBT to determine which processes are active in the
system.

Attributes

Operating System: 0S-9

State: User and Interrupt

Threads: Safe

Parameters

cb
The control block header.

buf fer
Point to the buffer.

count
The maximum number of bytes to copy and upon return from F_GPRDBT it is
the number of bytes actually copied.

Although F_GPRDBT returns pointers to all process descriptors, never access the
process descriptors directly. Instead, use F_GPRDSC to inspect specific process
descriptors.

See Also
F_GPRDSC

0OS-9 Technical Manual 222

Chapter 6: OS-9 System Calls

[

F_GPRDSC
Get Process Descriptor Copy

Headers

#i ncl ude <process. h>
#i ncl ude <types. h>

Parameter Block Structure

t ypedef struct f_gprdsc_pb {

sysch ch;
process_id proc_id;
u_char *pbuffer;
u_int32 count;
u_int32 type;

} f_gprdsc_pb, *F_gprdsc_pb;

Description

F_GPRDSC copies the contents of a process descriptor into the specified buffer for
inspection. The procs utility uses F_GPRDSC to obtain information about an existing
process.

Attributes

Operating System: 0S-9
State: User
Threads: Safe

Parameters

cb
The control block header.

procid
The requested process ID.

buf fer
Point to the buffer.

count
The maximum number of bytes to copy, and upon return from F_GPRDSC, it is
the number of bytes actually copied.

type
The type of descritpor to get. The valid values for t ype are _0S_GET_PRDESC or
_OS_GET_PRSRC. _(OS_GET_PRDESC returns the specified state descriptor and
_0OS8_GET_PRSRC returns the specified resource descriptor.

Possible Errors
EOS_| PRCI D

0OS-9 Technical Manual 223

Chapter 6: OS-9 System Calls

F_ICPT
Set Up Signal Intercept Trap

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_intercept_pb {
sysch cb;
u_int32 (*function)();
void *data_ptr;

} f_intercept_pb, *F_intercept_pb;

Description
F_I CPT tells OS-9 to install a signal intercept routine.

When a process executing an F_I CPT call receives a signal, the process’ intercept
routine is executed, and the signal code is passed as a parameter. A signal aborts a
process that has not used F_I CPT. Many interactive programs set up an intercept
routine to handle keyboard abort and keyboard interrupt signals.

The intercept routine is entered asynchronously because a signal can be sent at any
time, similar to an interrupt. The signal code is passed as a parameter. The intercept
routine should be short and fast, such as setting a flag in the process’ data area. You
should avoid complicated system calls (such as I/O). After the intercept routine has
been completed, it may return to normal process execution by executing F_RTE.

Each time the intercept routine is called, the state of the processor (such as its
registers) is pushed on to the user’s system stack.

Attributes

Operating System: 0S-9

State: User and Interrupt
Threads: Safe

Parameters

cb

The control block header.

function
Point to the intercept routine.

0OS-9 Technical Manual 224

Chapter 6: OS-9 System Calls

[

data_ptr
Point to the intercept routine’s global storage. It usually contains the address
of the program’s data area. The syntax for the signal handler is as follows:

voi d usr_si ghand(sig_code, sig_count)

signal _code sig_code; /* signal received */

u_int32 sig_count; /* nunber of signals pending */
See Also
F_RTE
F_SEND

0OS-9 Technical Manual 225

Chapter 6: OS-9 System Calls

F ID
Get Process ID and User ID

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_id_pb {
sysch cb;
process_id proc_id;
u_intlé priority,
age;
i nt 32 schedul e;
owner _id user_id;

} f_id_pb, *F_id_pb;

Description

F_I Dreturns the caller’s process ID number, current process priority and age,
scheduling constant, and owner ID. OS-9 assigns the process ID, and each process
has a unique process ID. The owner ID is defined in the system password file and is
used for system and file security. Several processes can have the same owner ID.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

ch

The control block header.

proc_id
A returned value. It is the current process ID number.

priority
A returned value. It is the priority of the current process.

age
A returned value. It is the age of the current process.

schedul e
A returned value. It is the scheduling constant of the current process.

0OS-9 Technical Manual 226

Chapter 6: OS-9 System Calls

[

group
A returned value. It is the group number of the current process.

user
A returned value. It is the user number of the current process.

Possible Errors
EOS_BPADDR

0OS-9 Technical Manual 227

Chapter 6: OS-9 System Calls

F_INITDATA

Initialize Static Storage from Module

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure
typedef struct f_init_data_pb {
sysch cb;
Mh_com nod_head;
u_char *data;

} f_init_data_pb, *F_init_data_pb;

Description

F_I NI TDATA clears the uninitialized data area, copies the module header’s initialized
data to the specified data area, and clears the remote data area (if it exists). Next, it
adjusts the code and data offsets.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

nod_head
Point to the module header.

dat a
Point to the data area.

Possible Errors
EOS_BVHP
EOS_BM D

0OS-9 Technical Manual 228

Chapter 6: OS-9 System Calls

F IRQ
Add or Remove Device from IRQ Table

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_irq_pb {
sysch cb;
u_intlé vector,
priority;
void *irq_entry;
u_char *statics;
} f_irg_pb, *F_irq_pb;
Description

F_I RQinstalls an IRQ service routine into the system polling table.

0S-9 does not poll the I/O port prior to calling the interrupt service routine. Device
drivers are required to determine if their device caused an interrupt.

Attributes
Operating System: 0S-9

State: System
Threads: Safe
Parameters

cb

The control block header.

vect or
Specify the vector number of the associated interrupt.

priority
Specify the priority. (65535 is reserved.) IRQ service routines for the same
vector are placed into a polling table for the vector according to their relative
priorities:

e Ifpriority is 0, only this device can use the vector.

e Ifpriorityis1,itis polled first and no other device can have a priority of
one on the vector.

e Ifpriorityis 65534, it is polled last on the vector.

0OS-9 Technical Manual 229

Chapter 6: OS-9 System Calls

irg_entry
Point to the IRQ service routine entry point. If i rq_entry is zero, the call
deletes the IRQ service routine.

statics

Point to the global static storage. st ati cs must be unique to the device.
Possible Errors
EOS_VCTBSY signifies that the vector is busy or in use.

EOS_PARAM is returned if an attempt is made to delete an IRQ routine that
is not installed for that interrupt.

0OS-9 Technical Manual 230

Chapter 6: OS-9 System Calls

[

F_LINK
Link to Memory Module

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure
typedef struct f_link_pb {
sysch cb;
u_char *nod_nane;
Mh_com nod_head;
voi d *nod_exec;
u_int1l6 type_l ang,
attr_rev;

} f_link_pb, *F_link_pb;

Description

F_LI NK searches the current and alternate module directories for a module whose
name, type, and language match the parameters.

The module’s link count keeps track of how many processes are using the module. If
the requested module is not re-entrant, only one process may link to it at a time.

If the module’s access word does not give the process read permission, the link call
fails. F_LI NK cannot find a module whose header has been destroyed (altered or
corrupted).

Attributes

Operating System: 0S-9

State: User and System

Threads: Safe

Parameters

cb
The control block header.

nod_nane
Point to the module name. If nod_nane is an explicit module directory pathlist
(for example, / usr/ t ony/ pr og), the nod_nane pointer is updated to point to
the module that was successfully linked (for example, prog).

nod_head
A returned value. It is the address of the module’s header.

0OS-9 Technical Manual 231

Chapter 6: OS-9 System Calls

nod_exec
A returned value. It is the pointer to the absolute address of the module’s
execution entry point. The module header includes this information.

type_Il ang
A returned value. It is the type and language of the module.

attr_rev
A returned value. It points to the attribute and revision level of the module.

Possible Errors
ECS_BNAM
ECS_MNF
ECS_MODBSY

See Also
F_LI NKM
F_LOAD
F_UNLI NK
F_UNLOAD

0OS-9 Technical Manual 232

Chapter 6: OS-9 System Calls

[

F_LINKM
Link to Memory Module by Module Pointer

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure

typedef struct f_Iinkmpb {
sysch cb;
Vh_com nod_head,;
voi d *nod_exec;
u_intl6 type_| ang,
attr_rev;
} f_linkmpb, *F_linkm pb;

Description

F_LI NKMcauses OS-9 to link to the module specified by nod_head.

The module’s link count keeps track of how many processes are using the module. If
the requested module is not re-entrant, only one process can link to it at a time.

If the module’s access word does not give the process read permission, the link call
fails. Link cannot find a module whose header has been destroyed (altered or
corrupted).

Attributes

Operating System: 0S-9
State: User and System
Threads: Safe

Parameters

cb
The control block header.

nod_head
Point to the module.

nmod_exec
A returned value. It points to the pointer to the absolute address of the
module’s execution entry point.

type_Il ang
The type and language of the module. If t ype_I ang is zero, any module can be
linked to regardless of the type and language. Upon completion, t ype_| ang is
updated with the type/language value from the module’s module header.

attr_rev
A returned value. It is the attribute and revision level of the module.

0OS-9 Technical Manual 233

Chapter 6: OS-9 System Calls

Possible Errors
ECS_BNAM
ECS_MNF
ECS_MODBSY

See Also
F_LINK
F_LOAD
F_UNLI NK
F_UNLOAD

0OS-9 Technical Manual 234

Chapter 6: OS-9 System Calls

[

F LOAD
Load Module(s) from File

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure
typedef struct f_load_pb {
sysch cb;
u_char *nod_nane;
Mh_com nod_head;
voi d *nod_exec;
u_i nt 32 node;
u_int1l6 type_l ang,
attr_rev,
col or;

} f_load_pb, *F_load_pb;

Description

F_LOAD loads an OS-9 memory module from a disk file or a serial device (SCF) into
the current module directory. When loading from a disk file as specified by
nod_nane pathlist, the target file is opened and one or more memory modules are
read from the file into memory until an error or end of file is reached. When loading
from a serial device (SCF), the Kernel attempts to load only one memory module by
first reading the header of the module and then the body of the module. In either
case, the path to the disk file or serial device is closed after the loading operation.

An error can indicate an actual I/O error, a module with a bad parity or CRC, or
insufficient memory of the desired type.

When a module is loaded, its name is added to the calling process’ current module
directory, and the first module read is linked. The parameters returned are the same
as those returned by a link call and apply only to the first module loaded.

To be loaded, the file must contain a module (or modules) with a proper module
header and CRC. If the file’s access mode is S_I EXEC, the file is loaded from the
current execution directory. If the file’s access mode is S_I READ, the file is loaded
from the current data directory.

If any of the modules loaded belong to the super user, the file must also belong to
the super user. This prevents normal users from executing privileged service
requests.

0OS-9 Technical Manual 235

Chapter 6: OS-9 System Calls

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

nod_nane
Point to the module name (pathlist or serial device name).

nod_head
A returned value. It is the pointer to the module.

nod_exec
A returned value. It is the pointer to the module execution entry point.

node
Specify the access mode. The access modes are defined in the nodul e. h header

file.

type_Il ang
A returned value. It is the type and language of the first module loaded.

attr_rev
A returned value. It is the attribute and revision level of the module.

col or
Specify the type of memory in which to load the modules. Modules are loaded
into the highest physical memory available of the specified type.

Possible Errors
EOS_MEMFUL
EOS _BM D

0OS-9 Technical Manual 236

Chapter 6: OS-9 System Calls

[

F MKMDIR
Create New Module Directory

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_makndir_pb {
sysch cb;
u_char *nane;
u_intl6é perm
} f_makndir_pb, *F_nakndir_pb;

Description

F_MKMDI R creates a new module directory. The name of the new module directory is
relative to the current module directory.

Attributes
Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

nane
Point to the name of the new module directory.

perm
Specify the access permissions for the new module directory.

Possible Errors
EOS_KWAMOD
EOS_NORAM

0OS-9 Technical Manual 237

Chapter 6: OS-9 System Calls

F_MEM

Resize Data Memory Area

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct f_mempb {
sysch cb;
u_char *memptr;
u_int32 size;

} f_mem pb, *F_nmem pb;

Description

F_MEMcontracts or expands the process’ data memory area. The size requested is
rounded up to an even memory allocation block. Additional memory is allocated
contiguously upward (towards higher addresses), or deallocated downward from

the old highest address.

This request cannot return all of a process” memory or deallocate the memory at its
current stack pointer.

If there is adequate free memory for an expansion request, but the memory is not
contiguous, F_MEMreturns an error. Memory requests by other processes may have
fragmented memory resulting in small, scattered blocks that are not adjacent to the
caller’s present data area.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

mem pt r
A returned value. It is the new end of data segment plus 1.

si ze
The memory size in bytes. The actual size of the memory is returned in si ze. If
si ze is zero, F_MEMtreats the call as a request for information and returns the
current upper bound in mem ptr and the amount of free memory in si ze.

Possible Errors

ECS _DELSP
ECS_MVEMFUL
ECS_NORAM

0OS-9 Technical Manual 238

Chapter 6: OS-9 System Calls

[

F_MODADDR
Find Module Given Pointer

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure
typedef struct f_nodaddr_pb {
sysch cb;
u_char *memptr;
Mh_com nod_head;

} f_nodaddr_pb, *F_nodaddr_pb;

Description

F_MODADDR locates a module given a pointer to any position with the module and
returns a pointer to the module’s header.

Attributes
Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

mem ptr
Point to any position within the module.

nmod_head
A returned value. It is the pointer to the associated module header.

Possible Errors
EOS_MN\F

0OS-9 Technical Manual 239

Chapter 6: OS-9 System Calls

F_MOVE

Move Data (Low Bound First)

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct f_nove_pb {
sysch cb;

u_char *from
*to;
u_int32 count;

} f_nmove_pb, *F_nobve_pb;

Description

F_MOVE is a fast block-move subroutine that copies data bytes from one address
space to another, usually from system to user or vice versa. The data movement
subroutine is optimized to use long moves if possible. If source and destination
buffers overlap, appropriate moves (left to right or right to left) are used to avoid
data loss due to incorrect propagation.

Attributes

Operating System:

State:
Threads:

Parameters
ch

from

to

count

0OS-9 Technical Manual

0S-9
System and Interrupt

Safe

The control block header.
Point to the source data.
Point to the destination data.

The byte count to copy.

240

Chapter 6: OS-9 System Calls

[

F_NPROC
Start Next Process

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct f_nproc_pb {
sysch cb;

} f_nproc_pb, *F_nproc_pb;

Description

F_NPROC removes the next process from the active process queue and initiates its
execution. If there is no process in the queue, OS-9 waits for an interrupt and
checks the active process queue again.

F_NPROC does not return to the caller.

The process calling F_NPROC should already be in one of the system’s process queues.
If not, the process becomes unknown to the system. This occurs even though the
process descriptor still exists and is printed out by a procs command.

Attributes
Operating System: 0S-9

State: System
Threads: Safe
Parameters

cb

The control block header.

See Also
F_APROC

0OS-9 Technical Manual 241

Chapter 6: OS-9 System Calls

F_PERMIT

Allow Access to Memory Block

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_permt_pb {
sysch cb;
process_id pid;
u_int32 size;
u_char *memptr;
u_intl6é perm
} f_pernmit_pb, *F_permt_pb;

Description

F_PERM T is called when a process allocates memory or links to a module to allow
the process to access a block of memory.

F_PERM T must update SSM (System Security Module) data structures to show a

process may access the specified memory in the requested mode. F_PERM T must also
increment the number of links to this memory area in a corresponding block count
map to keep track of the number of times the same block(s) has been granted access.

A long word (p_spui ng) is reserved in each process descriptor for use by the SSM
code. The SSM may allocate data structures for each process and keep a pointer to
these structures in p_spui nyg.

e The calling process cannot use this service to permit write-only memory or to
permit nothing (set no permissions). This service must be used to permit at least
read-only access.

e The only user-state processes that may permit memory are those in group zero
(super user). All othes must be system-state processes.

* On systems without SSM, the result of any F_PERM T call is success, regardless of
the process state since all processes have full access rights to the entire memory
space. When SSM is not active, the operating system does not validate any of
the arguments for this call.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe

0OS-9 Technical Manual 242

Chapter 6: OS-9 System Calls

[

Parameters

cb
The control block header.
pid
The target process’ process identifier.

si ze
The size of the memory area.

mem pt r
Point to the beginning of the memory area to grant access permissions.

perm
Specify the permissions to add.

Possible Errors
EOS_BPADDR
EOS_DAVAGE
ECS_| PRCI D
ECS_NORAM
ECS_PARAM

ECS PERM T

0OS-9 Technical Manual 243

Chapter 6: OS-9 System Calls

F_PROTECT

Prevent Access to Memory Block

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_protect_pb {
sysch cb;
process_id pid;
u_int32 size;
u_char *memptr;
u_intl6é perm
} f_protect_pb, *F_protect_pb;

Description

F_PROTECT is called when a process deallocates memory or unlinks a module to
remove a process’ permission to access a block of memory.

The counts in the block count map corresponding to the memory blocks being
protected must be decremented and if any block count becomes zero, the protection
image must be updated to prevent access to the corresponding memory by the
process.

Note the following:

e If F_PROTECT is called for a process being debugged, the protection maps of the
parent process must also be updated to remove access to the allocated memory.

e The only user-state processes that may protect memory are the ones in group
zero (super user). All other processes must be system-state processes.

* On systems without SSM, the result of any F_PROTECT call is success, regardless
of the process state since all processes have full access rights to the entire
memory space. When SSM is not active, the operating system does not validate
any of the arguments for this call.

Attributes

Operating System: 0S§-9

State: User and System
Threads: Safe

0OS-9 Technical Manual 244

Chapter 6: OS-9 System Calls

[

Parameters

cb
The control block header.
pid
Specify the process identifier for the target process.

si ze
The size of the memory area.

mem pt r
Point to the beginning of the memory area to protect access permissions. si ze
specifies the size of memory.

perm
Specify the permissions to remove.

Possible Errors
ECS_BPADDR
EOS_| PRCI D
EOS_NORAM
ECS_PERM T

See Also
F_ALLTSK
F_PERM T

0OS-9 Technical Manual 245

Chapter 6: OS-9 System Calls

F_PRSNAM

Parse Path Name

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_prsnam pb {
sysch cb;
u_char *nane;
u_int32 | ength;
u_char delimter,
*updat ed;

} f_prsnam pb, *F_prsnam pb;

Description

F_PRSNAMparses a string for a valid pathlist element and returns its size. This call
parses one element in a pathname, not the entire pathname. A valid pathlist element
may contain the following characters:

A-2Z Upper case letters

a- z Lower case letters

0-9 Numbers
Periods

_ Underscores

$ Dollar signs

Other characters terminate the name and are returned as the pathlist delimiter.

Several F_PRSNAMcalls are needed to process a pathlist with more than one name.
F_PRSNAMterminates a name when it detects a delimiter character. Usually, pathlists
must be terminated with a null byte.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe

0OS-9 Technical Manual 246

Chapter 6: OS-9 System Calls

[

Parameters

cb
The control block header.

nane
Point to the name string.

I ength
A returned value. It is the length of the pathlist element.

delimter
A returned value. It is the pathlist delimiter.

updat ed
A returned value. It is a the pointer to the first character of nane.

Possible Errors
EOS_BNAM

See Also
F_CVPNAM

0OS-9 Technical Manual 247

Chapter 6: OS-9 System Calls

F_RELLK

Release Ownership of Resource Lock

Headers

#i ncl ude <l ock. h>

Parameter Block Structure
typedef struct f_rellk_pb {
sysch cb;
lock id lid;
} f_rellk_pb, *F_rell k_pb;

Description

F_RELLK releases ownership of a resource lock and activates the next process waiting
to acquire the lock. The next process in the lock’s queue is activated and granted
exclusive ownership of the resource lock. If no other process is waiting on the lock,
the lock is simply marked free for acquisition.

@ Refer to Chapter 6 for more information about resource locks.

Attributes

Operating System: 0S-9
State: System
Threads: Safe
Parameters

cb

The control block header.
lid

The lock identifier of the lock to release.
Possible Errors
ECS_LOCKI D

See Also
F_ACQLK
F_CAQLK
F_CRLK
F_DELLK
F_WAI TLK

0OS-9 Technical Manual 248

Chapter 6: OS-9 System Calls

[

F_RETPD

Deallocate Process Descriptor

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_rtnprc_pb {
sysch cb;
process_id proc_id;

} f_rtnprc_pb, *F_rtnprc_pb;

Description

F_RETPD deallocates a process descriptor previously allocated by F_ALLPRC. You
must ensure the process’ system resources are returned prior to calling F_RETPD.

Attributes
Operating System: 0S-9

State: System
Threads: Safe
Parameters

cb

The control block header.

proc_id
Identify the process descriptor.

Possible Errors
EOS_| PRCI D

See Also
F_ALLPRC

0OS-9 Technical Manual 249

Chapter 6: OS-9 System Calls

F_RTE

Return from Interrupt Exception

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_rte_pb {
sysch cb;
u_i nt 32 node;

} f_rte_pb, *F_rte_pb;

Description

F_RTE terminates a process’ signal intercept routine and continues executing the
main program. However, if unprocessed signals are pending, the intercept routine is
re-executed until the queue of signals is exhausted before returning to the main
program.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb
The control block header.

node
Currently unused. Value must be 0 for future compatibility.

See Also
F I CPT

0OS-9 Technical Manual 250

Chapter 6: OS-9 System Calls

F_SEND

Send Signal to Another Process

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_send_pb {
sysch cb;
process_id proc_id;
si gnal _code signal;

} f_send_pb, *F_send_pb;

Description

F_SEND sends a signal to a specific process. A process may send the same signal to
multiple processes of the same group/user ID by passing 0 as the receiving process’
ID number. For example, the OS-9 shell command, ki |1 0, unconditionally aborts
all processes with the same group.user ID, except the shell itself. This is an effective
but dangerous tool to get rid of unwanted background tasks.

If an attempt is made to send a signal to a process with a signal pending, the signal
is placed in the process’ FIFO signal queue. If the process is in the signal intercept
routine when it receives a signal, the new signal is processed when F_RTE is executed
by the target process.

If the destination process for the signal is sleeping or waiting, it is activated to
process the signal. The signal processing intercept routine is executed, if it exists (see
F_I cPT). Otherwise, the signal aborts the destination process and the signal code
becomes the exit status (see F_WAI T).

The wake-up signal is an exception. It activates a sleeping process but does not
invoke the signal intercept routine. The wake-up signal does not abort a process
that has not made an F_I CPT call. Wake-up signals never queue and have no effect
on active processes in user state. User programs should avoid using the wake-up
signal since it is used by the system to activate sleeping processes. Signal codes are
defined as follows:

Table 6-4. Signal Codes

Code Value Description
S WAKE] Wake up process
SQUT 2 Keyboard abort
S INT 3 Keyboard interrupt
SKLL 4 System abort (unconditional)
S HANGUP §5 Hang-up
6-19 Reserved for future use by Microware (globally
definable)

0OS-9 Technical Manual 251

Chapter 6: OS-9 System Calls

Table 6-4. Signal Codes (Continued)

Code Value Description

20-25 Reserved for Microware for specific platforms
(locally definable)

26-31 User definable for specific platforms

32-127 Reserved for Microware (Ultra C)

128-191 Reserved for Microware for specific platforms
(locally definable)

192-255 Reserved for Microware (globally definable)

256- 4294967295

User definable

The S_Ki LL signal may only be sent to processes with the same group ID as the
sender. Super users may kill any process.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

proc_id

The process ID number for the intended receiver. A proc_i d of zero specifies
all processes with the same group/user ID.

si gnal

Specify the signal code to send.

Possible Errors
EOS_| PRCI D
EOS_SI GNAL

ECS US| GP

See Also
F ICPT
F_RTE

F_SI GVASK
F_SLEEP
FWAIT

0OS-9 Technical Manual

252

Chapter 6: OS-9 System Calls

[

F SETCRC
Generate Valid CRC in Module

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure
typedef struct f_setcrc_pb {
sysch cb;
Mh_com nod_head;

} f_setcrc_pb, *F_setcrc_pb;

Description

F_SETCRC updates the header parity and CRC of a module in memory. The module
may be an existing module known to the system, or simply an image of a module
that is subsequently written to a file. The module must have the correct size and
sync bytes; other parts of the module are not checked.

The module image must start on a longword address or an exception may occur.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

nod_head
Point to the module.

Possible Errors
EOS_BM D

See Also
F_CRC

0OS-9 Technical Manual 253

Chapter 6: OS-9 System Calls

F_SETSYS
Set or Examine OS-9 System Global Variables

Headers

#i ncl ude <sysgl ob. h>

Parameter Block Structure

typedef struct f_setsys_pb {
sysch cb;

u_int32 offset,

si ze;
uni on {
u_char byt;
u_intlé wd;
u_int32 I ng;
} sysvar;

} f_setsys_pb, *F_setsys_pb;

Description

F_SETSYS changes or examines a system global variable. These variables have a d_
prefix in the system header file library sysgl ob. h. Consult the DEFS files for a
description of the system global variables.

Only super users may change system variables. You can examine and change any
system variable, but typically, only d_ni npty and d_naxage are changed. Consult
Chapter 1 for an explanation of these variables.

‘% Super users must be extremely careful when changing system global variables.
The system global variables are OS-9’s data area. They are highly likely to change

from one release to another. You may need to relink programs using this system call
to be able to run on future versions of OS-9.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

0OS-9 Technical Manual 254

Chapter 6: OS-9 System Calls

[

Parameters

cb
The control block header.

of f set
The offset to the system globals.

si ze
Specify the size of the target variable and which union variable is to be used to
set the target global variable.

sysvar
A union of the three sizes of variables accessible by F_SETSYS.

byt

The byte size variable.
wr d

The word size variable.
I ng

The long size variable.
EXAMPLE

#i ncl ude <stdi o. h>
#i ncl ude <sysgl ob. h>

mai n() {
Sysgl obs sg;
gl ob_buff buffer;
error_code err;

buffer.wd = 100;

if ((err = _os_setsys(OFFSET(Sysgl obs, d_minpty), sizeof(sg->d_mi npty),
buffer)) !'= 0)

printf("Failed to set the systemmnimumpriority (d_mnpty)\n");
el se

printf("Set the systemmnimumpriority (d_mnpty) to %\ n",
buf fer.wd);

exit(err);

}

Possible Errors
EOS_PARAM
EOS_PERM T

See Also
F_GETSYS

0OS-9 Technical Manual 255

Chapter 6: OS-9 System Calls

F_SIGLNGJ
Set Signal Mask Value and Return on Specified Stack Image

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_siglngj_pb {
sysch cb;
voi d *usp;
u_intl6 siglvl;
} f_siglngj_pb, *F_siglngj_pb;

Description

F_SI GLNG allows processes to perform | ongj unp() operations from their signal
intercept routines and unmask signals in one operation.

This call is usually used by nested intercept routines to resume execution in the
process at a different location from where the process was interrupted by the
original signal. When this call is made, the operating system performs the following
functions:

® Validates and copies the target process stack image from the memory buffer
pointed to by the usp variable to the process’ system state stack

e Sets the process’ signal mask to the value specified in the si gl vI variable

e Returns to the process restoring the context copied from the user state process
stack image

The operating system takes appropriate precautions to verify the memory location
pointed to by the usp variable is accessible to the process and to ensure the process
does not attempt to make a state change.

The stack image pointed to by the usp variable must have the format shown in
Figure 6-1.

Figure 6-1. F_SIGNLNGJ Required Stack Image

< High Memory

processor context

FPU context

User Stack Pointer
(usp variable)

» < Low Memory

0OS-9 Technical Manual 256

Chapter 6: OS-9 System Calls

[

The specific format of the processor context is defined by the I ongst k structure
definition found in the reg<CPU Fani | y>. h file for the associated processor. The
format of the floating-point context varies depending on whether the target system
has a hardware floating-point unit versus floating-point emulation software.

For floating-point hardware, the stack image is the same as that defined by the
fregs structure definition found in the associated r eg<CPU Fani | y>. h header file.

For floating-point emulation, the floating-point context differs from the hardware
implementation context as it may contain additional context information specific to
the FPU module performing the emulation. The definition for the floating-point
context as used by the FPU module is the f pu_cont ext structure defined in the
associated r eg<CPU Fani | y>. h header file for the target processor.

If a particular application needs to access the contents of the process context, it may
use the size of these structures for indexing. Alternatively, the application can
determine the size of the FPU context at runtime by accessing the kernel globals
field, d_f pusi ze, containing the size of the FPU context.

Attributes
Operating System: 0S-9

State: User
Threads: Safe
Parameters

cb

The control block header.

usp
Point to the new process stack image.

si gl vl
The new signal level value.

Possible Errors
EOS_PARAM

See Also
F_SEND
F_SI GVASK
F_SLEEP
FVWAT

0OS-9 Technical Manual 257

Chapter 6: OS-9 System Calls

F_SIGMASK
Mask or Unmask Signals During Critical Code

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_sigmask_pb {
sysch cb;
u_i nt 32 node;

} f_sigmask_pb, *F_sigmask_pb;

Description

F_SI GVASK enables signals to reach the calling process or disables signals from
reaching the calling process. If a signal is sent to a process whose mask is non-zero,
the signal is queued until the process mask becomes zero. The process’ signal
intercept routine is executed with signals inherently masked. New processes begin
with a signal mask value of zero (not masked).

Two exceptions to this rule are the S_KI LL and S_WAKE signals. S_KI LL terminates the
receiving process, regardless of the state of its mask. S_WAKE ensures the process is
active, but does not queue. When a process makes an F_SLEEP or F_WAI T system call,
its signal mask is automatically cleared. If a signal is already queued, these calls
return immediately to the intercept routine.

By doing additions and subtractions (instead of merely just setting a flag), this
service allows the OS and the process in question to nest the masking and
unmasking of multiple signals. Also, since a process may want to receive signals
without nesting back out through a bunch of F_SIGMASK calls, the OS provides
three ways for clearing the mask (i.e., nesting level): F_SIGMASK with a "mode"
argument of zero, F_SLEEP, and F_WAIT.

This service returns the EOS_PARAM error code whenever the calling process
specifies a "mode" argument other than negative one, zero, or one (i.e., -1, 0, or 1).
Signals are analogous to hardware interrupts and should be masked sparingly. Keep
intercept routines as short and fast as possible.

Attributes

Operating System: 0S§-9

State: User and System

Threads: Safe

0OS-9 Technical Manual 258

Chapter 6: OS-9 System Calls

[

Parameters

cb
The control block header.

node
The process signal level.

Table 6-5.
Mode Description
0 The signal mask is cleared.

1 The signal mask is incremented.

-1 The signal mask is decremented.

Possible Errors
EOS_PARAM

See Also

F_SEND
F_SLEEP
FWAIT

0OS-9 Technical Manual 259

Chapter 6: OS-9 System Calls

F_SIGRESET

Reset Process Intercept Routine Recursion Depth

Headers

#i ncl ude <signal.h>

Parameter Block Structure

typedef struct f_sigrst_pb {
sysch cb;
} f_sigrst_pb, *F_sigrst_pb;

Description

F_SI GRESET should be used whenever a program uses a | ongj mp() to get out of an
intercept routine or unmasks signals in an intercept service routine with the intent
of never using the F_RTE call to return.

if(setjnmp(x) !'=0) {

_os_sigreset();

_os_signmask(-1);

}
Under normal circumstances, OS-9 keeps the state of the main process on the
system stack while a signal intercept routine executes. However, if the signals are
unmasked during the intercept routine, a subsequent signal causes the current state
to be stacked on the user’s stack.

This does not happen in simple cases, but if the intercept routine unmasks signals or
uses a | ongj np() call and then unmasks signals, states are placed on the user’s stack.
There is no functional difference, and if the code actually expects to return through
the nested intercept routines with multiple F_RTE calls, the states must be left where
they are.

If the code uses a | ongj np() call to leave the intercept routine it implicitly clears the
saved context off the stack. The kernel performs best if the code tells the kernel to
remove the context through a F_SI GRESET call.

Attributes

Operating System: 0S-9
State: User
Threads: Safe
Parameters

cb

The control block header.

See Also

F ICPT
F_RTE

0OS-9 Technical Manual 260

Chapter 6: OS-9 System Calls

|
F_SIGRS

Resize Process Queue Block Parameter Block

Headers

#i ncl ude <srvch. h>

Parameter Block Structure
typedef struct f_sigrs_pb {
sysch cb;
u_int32 signals;

} f_sigrs_pb, *F_sigrs_pb;

Description

F_SI GRS allows a process to change the maximum number of signals queued on its

behalf.

You can use this call to increase or decrease the number of signals queued. An error
is returned (ECS_PARAM) if a request is made to reduce the number of queued signals
while there are signals pending. The initial default for the system is specified in the
system i ni t module.

This service returns EOS_PARAMIf the user requests a signal-queue size of zero (while
the OS has no signals pending for this process) or a signal-queue size less than the
number of maximum signals (e.g., trying to resize the queue to hold only five signals
when the OS has one signal pending for a process whose maximum signal count is
ten).

This service returns ECS_NORAMif the process requests a queue whose size is larger
than available memory.

This service does not allow the caller to set the queue's size to zero. However, the
caller (if and only if there are no signals pending) can use this service to decrease the
size of the queue (even down to one). If there are pending signals, however, then the
value for si gnal s must be greater than or equal to the maximum number of signals
that the process' queue can hold.

Attributes

Operating System: 0S-9

State: User and System

Threads: Safe

0OS-9 Technical Manual 261

Chapter 6: OS-9 System Calls

Parameters

cb
The control block header.

signal s
The new maximum number of signals.

Possible Errors
ECS_PARAM
ECS_NORAM
ECS_DAMAGE

See Also
F_SI GRESET

0OS-9 Technical Manual 262

Chapter 6: OS-9 System Calls

F _SLEEP
Put Calling Process to Sleep

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_sleep_pb {
sysch cb;
u_int32 ticks;
si gnal _code signal;

} f_sleep_pb, *F_sleep_pb;

Description

F_SLEEP deactivates the calling process until the requested number of ticks have
elapsed.

You cannot use F_SLEEP to time more accurately than £1 tick because it is not
known when the F_SLEEP request was made during the current tick.

A sleep of one tick is effectively a request to surrender the current time slice. The
process is immediately inserted into the active process queue and resumes execution
when it reaches the front of the queue.

A sleep of two or more (n) ticks inserts the process in the active process queue after
(n-1) ticks occur and resumes execution when it reaches the front of the queue. The
process is activated before the full time interval if a signal (S_WAKE) is received.
Sleeping indefinitely is a good way to wait for a signal or interrupt without wasting
CPU time.

The duration of a tick is system dependent and may be determined using F_TI VE
system call. If the high order bit of the #icks parameter is set, the low 31 bits are
interpreted as 1/256 second and converted to ticks before sleeping. This allows
program delays to be independent of the system’s clock rate.

This function does not return any error code if the operating system cannot wait for
the requested time due to an overflow when converting a time from 256ths-of-a-
second into clock ticks. This only occurs if you specify a time in 256ths-of-a-second
and the system clock ticks occur at a rate greater than 512 ticks-per-second. If an
overflow occurs, the operating system waits for the longest delay possible.

The system clock must be running to perform a timed sleep. The system clock is not
required to perform an indefinite sleep or to give up a time slice.

0OS-9 Technical Manual 263

Chapter 6: OS-9 System Calls

Attributes
Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

ch

The control block header.

ticks
The length of time to sleep in ticks/second.

e Ifticks is zero, the process sleeps indefinitely.

e Ifticks is one, the process gives up a time slice but does not necessarily
sleep for one tick.

si gnal
A returned value. It is the last signal the process received. si gnal is returned to
the calling process at the completion of the sleep.

e Ifsignal is zero, the process slept for the time specified by ticks.
e Ifsignal is non-zero, the number corresponds to the signal that awoke the
process.
Possible Errors
EOS_NOCLK

See Also

F_SEND
F_TIME
FWAIT

0OS-9 Technical Manual 264

Chapter 6: OS-9 System Calls

[

F_SLINK

Install User Subroutine Module

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_slink_pb {

sysch cb;

u_intl6é sub_num

u_char *nod_nane;

void *lib_exec;

u_char *memptr;

Vh_com *nod_head;

} f_slink_pb, *F_slink_pb;

Description

Subroutine libraries provide a convenient way to link to a standard set of routines
at execution time. Use of subroutine libraries keeps user programs small and
automatically updates programs using the subroutine code if it is changed. This is
accomplished without recompiling or relinking the program itself. Most Microware
utilities use one or more subroutine libraries.

F_SLI NK attempts to link or load the named module. It returns a pointer to the
execution entry point and a pointer to the library’s static data area for subsequent
calls to the subroutine.The calling program must store and maintain the
subroutine’s entry point and data pointer. The calling program must also set the
subroutine library’s data pointer and dispatch to the correct address.

You can remove a subroutine by passing a null pointer for the name of the module
and specifying the subroutine number. A process can link to a maximum of 16
subroutine libraries, numbered from 0 to 15.

The return value in the case of an error is -1, even though the type is a pointer and a
null is more common.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe

0OS-9 Technical Manual 265

Chapter 6: OS-9 System Calls

Parameters

cb
The control block header.

sub_num
The subroutine number.

nod_num
Point to the name of the subroutine module.

i b_exec
A returned value. It points to the subroutine entry point.

mem ptr
A returned value. It points to the subroutine static memory.

nmod_head
A returned value. It points to the module header.

Possible Errors
EOS_BPNAM

ECS | SUB
ECS_NORAM

ECS PERM T

See Also
F_TLI NK

0OS-9 Technical Manual 266

Chapter 6: OS-9 System Calls

[

F_SLINKM
Link to Subroutine Module by Module Pointer

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct f_slinkmpb {
sysch cb;
u_intl6 sub_num
Vvh_com nod_head,;
void *lib_exec;
u_char *memptr;
} f_slinkmpb, *F_slinkm pb;

Description

F_SLI NKMis passed a pointer to the subroutine library module to install. If a library
already exists for the specified subroutine number, an error is returned. If static
storage is required for the subroutine library, it is allocated and initialized.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

ch

The control block header.

sub_num
The subroutine number.

nod_head
Point to the module header.

i b_exec
A returned value. It points to the subroutine entry point.

mem pt r
A returned value. It points to the subroutine static memory.

Possible Errors

ECS_NORAM
ECS_PERM T

See Also
F_TLI NKM

0OS-9 Technical Manual 267

Chapter 6: OS-9 System Calls

F_SPRIOR

Set Process Priority

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct f_setpr_pb {
sysch cb;
process_id proc_id;
u_intlé priority;

} f_setpr_pb, *F_setpr_pb;

Description

F_SPRI OR changes the process priority to the value specified by priority. A super
user (group ID zero) may change any process’ priority. A non-super user can only
change the priorities of processes with the same user ID.

Two system global variables affect task switching.

e d_ninpty is the minimum priority a task must have for OS-9 to age or execute it.
* d_maxage is the cutoff aging point.

These variables are initially set in the Init module.

A small change in relative priorities has a tremendous effect. For example, if two
processes have the priorities 100 and 200, the process with the higher priority runs
100 times before the low priority process runs at all. In actual practice, the

difference may not be this extreme because programs spend a lot of time waiting for
I/O devices.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

proc_id
The process ID.
priority

Specify the new priority. 65535 is the highest priority; O is the lowest.

Possible Errors
EOS_| PRCI D

0OS-9 Technical Manual 268

Chapter 6: OS-9 System Calls

|
F SROMEM
System Memory Request

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_srqnem pb {
sysch cb;
u_char *memptr;
u_int32 size;
u_intl6 color;

} f_srgmem pb, *F_srqnmem pb;

Description
F_SRQVEMallocates a block of a specific type of memory.

If more than one memory area has the same priority, the area with the largest total
free space is searched first. This allows memory areas to be balanced (contain
approximately equal amounts of free space).

The requested number of bytes is rounded up to a system defined blocksize
(currently 16 bytes). F_SRQVEMis useful for allocating I/O buffers and any other
semi-permanent memory. The memory always begins on an even boundary.

Memory types or color codes are system dependent and may be arbitrarily assigned
by the system administrator. Microware reserves values below 256 for future use.

-% Do not use F_SRQMEM from Interrupt Service Routines.

The byte count of allocated memory and the pointer to the block allocated must be
saved if the memory is ever to be returned to the system.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

mem ptr
Point to the allocated memory block.

0OS-9 Technical Manual 269

Chapter 6: OS-9 System Calls

si ze
Specify the byte count of the requested memory. If si ze is - 1, the largest block
of free memory of the specified type is allocated to the calling process. Upon
completion of the service request, si ze contains the actual size of the memory
block allocated.

col or
Specify the memory type.

e Ifcol or is non-zero, the search is restricted to memory areas of that color.
The area with the highest priority is searched first.

e If col or is zero, the search is based only on priority. This allows you to
configure a system such that fast on-board memory is allocated before
slow off-board memory. Areas with a priority of zero are excluded from
the search.

Possible Errors
EOS_MVEMFUL
EOS_NORAM

See Also
F_SRTMEM

0OS-9 Technical Manual 270

Chapter 6: OS-9 System Calls

[

F_SRTMEM

Return System Memory

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_srtnempb {
sysch cb;
u_char *memptr;
u_int32 size;

} f_srtmempb, *F_srtnmem pb;

Description

F_SRTMEMdeallocates memory when it is no longer needed. The returned number of
bytes is rounded up to a system defined blocksize before returning the memory.
Rounding occurs identically to that performed by F_SRQVEM

In user state, the system keeps track of memory allocated to a process and all blocks
not returned are automatically deallocated by the system when a process terminates.

In system state, the process must explicitly return its memory.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

mem pt r
Point to the memory block to return.

size
Specify the byte count of the returned memory.

Possible Errors
EOS_BPADDR

See Also
F_MEM
F_SRQVEM

0OS-9 Technical Manual 271

Chapter 6: OS-9 System Calls

F_SSPD

Suspend Process

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_sspd_pb {
sysch cb;
process_id proc_id;

} f_sspd_pb, *F_sspd_pb;

Description

F_SSPD temporarily suspends a process. A super user (group ID zero) may suspend
any process. A non-super user can only suspend processes with the same user ID.

The process may be reactivated with F_APROC.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

proc_id
Identify the target process.

Possible Errors
EOS_| PRCI D

See Also
F_APROC

0OS-9 Technical Manual 272

Chapter 6: OS-9 System Calls

i
F_SSVC

Service Request Table Initialization

Headers
#i ncl ude <types. h>

#i ncl ude <svctbl . h>

Parameter Block Structure
t ypedef struct f_ssvc_pb {
sysch cb;
u_int32 count;
u_intlé state_flag;
void *init_tbl,
*par ans;

} f_ssvc_pb, *F_ssvc_pb;

Description

F_SSvC adds or replaces service requests in OS-9’s user and privileged system service
request tables.

Attributes

Operating System: 0S-9
State: System
Threads: Safe
Parameters

cb

The control block header.

count
A count of the entries in the initialization table.

state_flag
Specify whether user or system state tables, or both, are updated.

e Ifstate_flagis 1, only the user table is updated.
e Ifstate_flag is 2, only the system table is updated.

e Ifstate_flag is 3, both the system and user tables are updated.

0OS-9 Technical Manual 273

Chapter 6: OS-9 System Calls

init_thl
Point to the initialization table. An example initialization table might look like
this:

error_code printnsg(), service();

svcthl syscalls[] =

{
{F_PRINT, printnsg},
{F_SERVI CE, service}

b

par ans

May be a pointer to anything, but is intended to be a pointer to global static
storage. Whenever a system call is executed, the par ans data pointer is passed
automatically.

The following structure definition of the initialization table is located in
svctbl . h:

#if !defined(_TYPES_H)

#i ncl ude <types. h>

#endi f

#defi ne USER St at e 1 /* user-state service routine flag */
#defi ne SYSTEM State 2 /* systemstate service routine flag */
/* service routine initialization table structure. */

typedef struct ({

u_intl6é f code; /* systemcall function code */
u_int32 (*service)(); [/* service routine pointer */
u_int32 attr; /* attributes of systemcall (reserved for
future use) */
u_intl6é ed_| ow, /* low bound of acceptable service call
edition */
ed_hi gh /* upper bound of edition */

} svctbl, *Svcthbl;

#endi f

0OS-9 Technical Manual 274

Chapter 6: OS-9 System Calls

[

F STIME
Set System Date and Time

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_setime_pb {
sysch cb;
u_int32 tine;

} f_setine_pb, *F_setinme_pb;

Description

F_STI ME sets the current system time and starts the system real-time clock to
produce time slice interrupts. F_STI ME puts the time in the system static storage area
and links the clock module. If the link is successful, the clock initialization routine is

called.
The clock module has three responsibilities:

1. Sets up hardware-dependent functions to produce system tick interrupts. This
could include moving the new time into the hardware.

2. Installs a service routine to clear the interrupt when a tick occurs.

The interrupt service routine must call through to the kernel’s tick routine to
allow the kernel to keep accurate time in software. The address to the kernel’s
tick routine is provided by the kernel via the clock module’s static storage
structure when the kernel initializes the clock module.

The OS-9 kernel keeps track of the current time in software, which enables clock
modules to be small and simple. Some OS-9 utilities and functions expect the clock
to have the correct time. Therefore, you should run F_STI ME whenever the system is
started. This is usually done in the system startup file.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe

0OS-9 Technical Manual 275

Chapter 6: OS-9 System Calls

Parameters

cb
The control block header.

tine
Specify the time. The time is stored as the number of seconds since 1 January
1970 Greenwich Mean Time.

The time is not validated in any way. If ti me is zero on systems with a battery-
backed clock, the actual time is read from the real-time clock.

Possible Errors
ECS_MNF
ECS_NOCLK
ECS_NORAM

See Also
F_TIME

0OS-9 Technical Manual 276

Chapter 6: OS-9 System Calls

[

F STRAP
Set Error Trap Handler

Headers
#i ncl ude <types. h>
#i ncl ude <settrap. h>

#i ncl ude <regs. h>

Parameter Block Structure

typedef struct f_strap_pb {
sysch cb;
u_int32 *excpt _stack;
Strap init_thbl;

} f_strap_pb, *F_strap_pb;

typedef struct strap (
u_int32 vector;
u_int32 (*routine)();

} strap, *Strap;

Description

F_STRAP enables user-state programs to catch exceptions such as illegal instruction
or divide-by-zero. The exceptions that may be trapped are processor-dependent.

F_STRAP enters process-local error trap routine(s) into the process descriptor
dispatch table. If a routine for a particular exception already exists, it is replaced.

If a user routine is not provided and one of these exceptions occurs, the program is
aborted.

When a user’s exception routine is executed, it is passed the following information.
void errtrap(
u_int32 vector_errno,/* error nunber of the vector */
u_int 32 badpc, /* PC where exception occurred */
u_i nt32 badaddr, /* address that caused the exception */
L) /* original register contents */

The variable arguments contain the previous values of registers that were modified
between the exception and the call to the exception handler. Generally, the variable
arguments contain the previous stack pointer and the previous values of the first
three parameter registers.

0OS-9 Technical Manual 277

Chapter 6: OS-9 System Calls

Processor-Specific Variable Arguments

The following sections provide details about the variable arguments for the various
processors.

ARMv4 and ARMv4BE

va_arg(vp, u_int32);/*
va_arg(vp, u_int32);/*
va_arg(vp, u_int32);/*
va_arg(vp, u_int32);/*
MIPS3000 and MIPS32
va_arg(vp, u_int32);/*
va_arg(vp, u_int32);/*
va_arg(vp, u_int32);/*
va_arg(vp, u_int32);/*
MIPS64

va_arg(vp, u_int64);/*
va_arg(vp, u_int64);/*
va_arg(vp, u_int64);/*
va_arg(vp, u_int64);/*
PowerPC

va_arg(vp, u_int32);/*
va_arg(vp, u_int32);/*
va_arg(vp, u_int32);/*
va_arg(vp, u_int32);/*
SH-3 and SH-4
va_arg(vp, u_int32);/*
va_arg(vp, u_int32);/*
va_arg(vp, u_int32);/*
va_arg(vp, u_int32);/*
SH-5m

va_arg(vp, u_int64);/*
va_arg(vp, u_int64);/*
va_arg(vp, u_int64);/*
va_arg(vp, u_int64);/*
x86/Pentium

va_arg(vp, u_int32);/*
va_arg(vp, u_int32);/*

0OS-9 Technical Manual

excepti
except
except

excepti

except
excepti
excepti

except

excepti
except
except

excepti

except
excepti
excepti

except

excepti
except
except

excepti

except
excepti
excepti

except

excepti

except

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

st ack
r7 */
rg */
ro */

st ack
a0 */
al */
a2 */

st ack
a0 */
al */
a2 */

st ack
r3 */
r4 */
rs5 */

st ack
r4 */
rs5 */
re */

st ack
r2 */
r3 */
r4 */

st ack

poi

po

poi

po

poi

po

poi

Yeax */

nter

nter

nter

nter

nter

nter

nt er

*/

*/

*/

*/

*/

*/

*/

278

Chapter 6: OS-9 System Calls

[

Disable error exception handlers by calling F_STRAP with an initialization table
specifying 0 as the address of the routine(s) to remove. For example, the table below
removes user routines for data and instruction access exceptions on a PowerPC
processor.

strap errtab[] = {
{ STRAP_DATA, 0},
{ STRAP_I NSTR, 0},
{~0, NULL}

@ Be careful not to let an exception happen in an exception handling routine.
Exception handling routines are usually not re-entrant.

Attributes
Operating System: 0S-9

State: User
Threads: Safe
Parameters

cb

The control block header.

excpt _stack
Pointer to the stack to use if an exception occurs. If excpt _st ack is zero,
F_STRAP uses the stack pointer at the time of the exception.

init_tbl
Pointer to the service request initialization table. An initialization table might
appear as follows:

strap errtab[] = {
{STRAP_DATA, errtrap},
{STRAP_I NSTR, errtrap},
{~0, NULL}

b

Possible Errors
EOS_TRAP

See Also
F_ABORT

0OS-9 Technical Manual 279

Chapter 6: OS-9 System Calls

F_SUSER
Set User ID Number

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_setuid_pb {
sysch cb;
owner _id user_id;

} f_setuid_pb, *F_setuid_pb;

Description

F_SUSER changes the current user ID to user_i d.

The following restrictions apply to F_SUSER:

e Users with group ID zero may change their IDs to anything.

e A primary module owned by a group zero user may change its ID to anything.
® Any primary module may change its user ID to match the module’s owner.

All other attempts to change the user ID number return an EOS_PERM T error.

Attributes
Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

ch

The control block header.

user _id

The desired group/user ID number.

Possible Errors
EOS_PERM T

0OS-9 Technical Manual 280

Chapter 6: OS-9 System Calls

[

F SYSDBG
Call System Debugger

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_sysdbg_pb {
sysch cb;
voi d *parant,
*par an®;
} f_sysdbg_pb, *F_sysdbg_pb;

Description

F_SYSDBG calls the system level debugger, if one exists. This allows you to debug
system-state routines, such as device drivers. The caller defines the parameters to
this service request to values useful in debugging. For example, a parameter could
be a pointer to a critical data structure.

When the system level debugger is active, it runs in system state and effectively stops
timesharing. F_SYSDBG can only be called by users in group zero. Never use this call
when other users are on the system.

The br eak utility calls F_SYSDBG.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

paraml and paran?
Parameters passed to the debugger. These are currently not used.

Possible Errors
EOS_PERM T

0OS-9 Technical Manual 281

Chapter 6: OS-9 System Calls

F_SYSID

Return System |dentification

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_sysid_pb {
sysch cb;
u_int32 oem
seri al,
nmpu_type,
os_type,
fpu_type;
int32 time_zone
u_int32 resvl,
resvz;
u_char *sys_ident,
*copyri ght,
*resvas,

} f_sysid_pb, *F_sysid_pb;

Description

F_SYSI D returns information about the system.

Attributes
Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

oem
The OEM identification number.

seri al
The copy serial number.

mpu_t ype
The processor identifier (for example 80386).

0OS-9 Technical Manual 282

Chapter 6: OS-9 System Calls

[

os_type
The kernel (OS) MPU configuration.

fpu_type
The floating-point processor identifier (for example 80387).

time_zone
The system time zone in minutes offset from Greenwich Mean Time (GMT).

resvl, resv2, and resv3
Reserved pointers.

sys_i dent
Point to a buffer for the system identification message.

copyri ght
Point to a buffer for the copyright message.

0OS-9 Technical Manual 283

Chapter 6: OS-9 System Calls

F THEXIT
Exit a Thread

Headers

#i ncl ude <t hreads. h>

Parameter Block Structure

typedef struct f_thexit_pb {
sysch cb;
error_code st at us;

} f_thexit_pb, *F_thexit_pb;

Description

F_THEXI T causes the calling thread to exit. If the calling program is not multi-
threaded, the EOS_PERMIT error is returned.

If successful, F_THEXI T does not return to the caller.

Threads created via pt hread_cr eat e() should not use this call. Doing so results in
instability and loss of resources for the process.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

System call control block.

st at us
Exit status.

See Also
F_THFORK

0OS-9 Technical Manual 284

Chapter 6: OS-9 System Calls

FTH FORK
Fork a Thread

Headers

#i ncl ude <t hreads. h>

Parameter Block Structure

typedef struct f_thfork_pb {

sysch cb;

thread _t thread i d;
thread attr _t attr;

voi d *stack_t op;
voi d *start _addr;
voi d *arg;

voi d *dat a;
u_int32 stack_si ze;

} f_thfork_pb, *F_thfork_pb;

Description
F_THFORK forks a new thread of control in the current process.

Threads created with _os_t hfork() or F_THFORK are not permitted to use C library
calls that have threading issues. Create threads with pt hread_create().

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

System call control block.

attrlnput:
Thread attribute structure.

*stack_t opl nput:
Thread's initial stack pointer.

*start _addr | nput:
Thread's initial execution address.

*ar gl nput :
Argument passed to thread.

0OS-9 Technical Manual 285

[

Chapter 6: OS-9 System Calls

*dat al nput :
Thread specific data pointer.

st ack_si zel nput/ out put :
Size of stack to allocate/allocated.

See Also

F_THEXI T
F_THREAD

0OS-9 Technical Manual 286

Chapter 6: OS-9 System Calls

[

F_THREAD

Set Thread Parameters

Headers
#i ncl ude <funcs. h>

#i ncl ude <t hreads. h>

Parameter Block Structure

t ypedef struct f_thread_pb {

sysch ch;
u_int32 code;

t hread_t t hread_i d;
voi d *pb;

} f_thread_pb, *F_thread_pb;

Description

F_THREAD sets thread parameters for the thread specified by t hread_i d.

If code is TH_TSDATA, ar g is the thread specific data pointer.

Threads created via pt hread_creat e() should not use this call. Doing so results in
instability and loss of resources for the process.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cbS

ystem call control block.

codeT
hread action code: TH_ORPHAN, etc.

thread id
Thread ID if applicable.

*pb
Additional parameters.

See Also
F THEXI T
F_THFORK

0OS-9 Technical Manual 287

Chapter 6: OS-9 System Calls

F TIME
Get System Date and Time

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_getime_pb {
sysch cb;
u_int32 tine,
ticks;

} f_getine_pb, *F_getinme_pb;

Description

F_TI ME returns the current system time in the number of seconds since 1 January
1970 Greenwich Mean Time.

F_TI ME returns a date and time of zero (with no error) if no previous call to F_STI ME
has been made. A tick rate of zero indicates the clock is not running.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

time
A returned value. It is the current time.

ticks
Contains the following:

e The clock tick rate in ticks per second is returned in the most significant
word.

e The least significant word contains the current tick.

See Also
F_STIME

0OS-9 Technical Manual 288

Chapter 6: OS-9 System Calls

[

F_TLINK
Install System State Trap Handling Module

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure
typedef struct f_tlink_pb {
sysch cb;
u_intl6 trap_num
u_char *nod_nane;
void *lib_exec,
*nod_head,
*par ans;
u_int32 memsize;

} f_tlink_pb, *F_tlink_pb;

Description

Trap handlers enable a program to execute privileged (system state) code without
running the entire program in system state. Trap handlers only run in system state.

F_TLI NK attempts to link or load the module specified by mod_nane. If the link/load
is successful, F_TLI NK installs a pointer to the module in the user’s process descriptor
for subsequent use in trap calls. If a trap module already exists for the specified trap
code, an error is returned. If static storage is required for the trap handler, OS-9
allocates and initializes it.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

trap_num
Specify the user trap number (1 through 15).

nod_nane
Point to the name of the trap module. If nod_nane is zero or points to a null
string, the trap handler is unlinked.

0OS-9 Technical Manual 289

Chapter 6: OS-9 System Calls

lib_exec
Point to the pointer to the trap execution entry point.

nod_head
Point to the pointer to the trap module.

par ans

A reserved field.

nmem si ze
Specify the additional memory size to be allocated for the trap modules static
data area.

Possible Errors
EOS_| TRAP
EOS_MNF

ECS_NORAM
ECS_PERM T

See Also
F_SLINK

0OS-9 Technical Manual 290

Chapter 6: OS-9 System Calls

[

F_TLINKM
Install User Trap Handling Module by Module Pointer

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure
typedef struct f_tlinkmpb {

sysch cb;

u_intl6 trap_num

Mh_com nod_head;

void *lib_exec;

voi d *parans;

u_int32 nmemsize;

} f_tlinkmpb, *F_tlinkm pb;

Description:

F_TLI NKMis passed a pointer to the module to install. If a trap module already exists
for the specified trap number, an error is returned. If static storage is required for
the trap handler, it is allocated and initialized.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

trap_num
Specify the user trap number (0 through 15).

nod_head
Point to the module header.

i b_exec
Point to the trap execution entry point.

par ans

A reserved field.

0OS-9 Technical Manual 291

Chapter 6: OS-9 System Calls

mem si ze
Specify the additional memory size to be allocated for the trap module’s static
data area.

Possible Errors
ECS | TRAP
ECS_NORAM

ECS PERM T

See Also
F_TLI NK

0OS-9 Technical Manual 292

Chapter 6: OS-9 System Calls

[

F_UACCT

User Accounting

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct f_uacct_pb {
sysch cb;
u_intl6 acct_code;
Pr _desc proc_desc;

} f_uacct _pb, *F_uacct_pb;

Description

F_UACCT provides a means for users to set up an accounting system. The kernel calls
F_UACCT whenever it forks or exits a process. Therefore, F_UACCT provides a
mechanism for users to keep track of system operators.

To install a handler for this service request, use the F_SSVC system call to add the
user’s accounting routine to the system’s service request dispatch table. This is
usually done in an 0s9P2 module.

You may perform your own system accounting by calling F_UACCT with a user
defined acct _code identifying the operation to perform. For example, when the
kernel forks a process it identifies the operation by passing the F_FORK code to the
accounting routine.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

chb

The control block header.

acct _code
The operation identifier. This is usually a system call function code.

proc_desc
Point to the current process descriptor.

Possible Errors

EOS_UNKSVC (This error should be ignored.)

See Also
F_SSVC

0OS-9 Technical Manual 293

Chapter 6: OS-9 System Calls

F_UNLINK
Unlink Module by Address

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure
typedef struct f_unlink_pb {
sysch cb;
Mh_com nod_head;

} f_unlink_pb, *F_unlink_pb;

Description

F_UNLI NK notifies OS-9 the calling process no longer needs a module. The module’s
link count is decremented. When the link count equals zero (- 1 for sticky modules),
the module is removed from the module directory and its memory is deallocated.
When several modules are loaded together as a group, they are only removed when
the link count of all modules in the group are zero (- 1 for sticky modules).

Some modules cannot be unlinked; for example, device drivers in use and all
modules included in the bootfile.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

nod_head
Point to the module header.

Possible Errors
EOS_MODBSY

See Also

F_LINK
F_UNLOAD

0OS-9 Technical Manual 294

Chapter 6: OS-9 System Calls

[

F_UNLOAD
Unlink Module by Name

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_unload_pb {
sysch cb;
u_char *nod_nane;
u_intl6 type_| ang;
} f_unload_pb, *F_unload_pb;

Description

F_UNLQAD locates the module in the module directory, decrements its link count, and
removes it from the directory if the count reaches zero. A sticky module is not

removed until its link count is - 1. This call is similar to F_UNLI NK, except F_UNLQAD is
passed the pointer to the module name instead of the address of the module header.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

The control block header.

nod_nane
Point to the module name.

type_Il ang
Specify the module’s type and language.

Possible Errors
EOS_MNF
EOS_MODBSY

See Also

F_LINK
F_UNLI NK

0OS-9 Technical Manual 295

Chapter 6: OS-9 System Calls

F_VMODUL
Verify Module

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure
typedef struct f_vnodul _pb {
sysch cb;
Mh_com nod_head,
nmod_bl ock;
u_int32 bl ock_si ze;

} f_vnodul _pb, *F_vnodul _pb;

Description

F_vMoDUL checks the module header parity and CRC bytes of an OS-9 module. If the
header values are valid, the module is entered into the module directory. The
current module directory is searched for another module with the same name. If a
module with the same name and type exists, the one with the highest revision level
is retained in the module directory. Ties are broken in favor of the established
module.

Attributes

Operating System: 0S-9

State: System

Threads: Safe

Parameters

cb
The control block header.

nod_head
Point to the module.

nod_bl ock
Point to the memory block containing the module.

bl ock_si ze
The size of the memory block containing the module.

0OS-9 Technical Manual 296

Chapter 6: OS-9 System Calls

[

Possible Errors
ECS_BMCRC
ECS_BVHP
ECS_BM D
EOS_DI RFUL
ECS_KWNVOD

See Also
F_CRC
F_LOAD

0OS-9 Technical Manual 297

Chapter 6: OS-9 System Calls

F_WAIT

Wait for Child Process to Terminate

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_wait_pb {
sysch cb;
process_id child_id;
status_code st at us;

} f_wait_pb, *F_wait_pb;

Description

F_WAI T deactivates the calling process until a child process terminates. The child’s ID
number and exit status are returned to the parent.

If the caller has several children, the caller is activated when the first child dies, so
one F_WAI T call is required to detect the termination of each child.

If a child died before the F_WaAI T call, the caller is reactivated immediately. F_WAI T
returns an error only if the caller has no children.

The process descriptors for child processes are not returned to free memory until
their parent process performs an F_WAI T system call or terminates.

If a signal is received by a process waiting for children to terminate, the process is
activated. In this case, chi | d_i d contains zero, because no child process has
terminated.

Attributes

Operating System: 0S-9

State: User and System
Threads: Safe

Parameters

cb
The control block header.

child id
The process ID of the terminating child.

stat us
The child process’ exit status code.

0OS-9 Technical Manual 298

Chapter 6: OS-9 System Calls

[

Possible Errors
EOS_NOCHLD

See Also
FEXIT
F_FORK
F_SEND

0OS-9 Technical Manual 299

Chapter 6: OS-9 System Calls

F_WAITID
Wait for a Specified Process or Thread to Exit

Headers

#i ncl ude <process. h>

Parameter Block Structure

typedef struct f_waitid_pb {

sysch cb;
process_id child_id;
st at us_code st at us;

si gnal _code signal ;
u_int32 wai t _fl ag;

} f_waitid_pb, *F_waitid_pb;

Description

F_WAI TI D has two primary functions:

e waiting for a child process or sibling thread

e controlling a signal for the death of a child process or sibling thread
Waiting for a Child Process or Sibling Thread

To specify a wait related activity, wai t _f | ag should be 0.

chi | d_i d specifies the process or thread to wait for. If the value of chi | d_i d is the
ID of a thread, the caller must be a thread in the same process as chi | d_i d.
Otherwise an ECS_| PRCI D error is returned.

If the call is successful, the exit code of chil d_i d is returned in st at us.

If the wait is interrupted by a signal, a value of ECS_BSI Gis returned by F_ WAl TI D
and the value of the signal that caused the interruption is stored in si gnal .

Controlling a Signal for the Death of a Child Process or Sibling Thread

To specify a signal related activity, wai t _f | ag should be non-zero. The valid values
for wait_flag are WI_SI GNAL and WI_RELEASE.

When wai t _f1 ag is WI_SI GNAL it specifies that the caller wants to receive a signal
when the process or thread specified by chi | d_i d terminates. The value of the signal
to be sent is si gnal . If the process or thread specified by chi | d_i d has already
terminated, the signal is sent immediately.

When wai t _f1 ag is WI_RELEASE it specifies that the caller is no longer interested in
getting a signal on the termination of the process or thread specified by chi | d_i d.
si gnal 1is irrelevant in this case.

st at us is not modified when wai t _f1 ag is non-zero. F_WAI TI D returns immediately
when wai t _f | ag is non-zero; it never blocks, regardless of the state of the child.

0OS-9 Technical Manual 300

Chapter 6: OS-9 System Calls

[

Attributes
Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

ch

System call control block.

child_id
Input: Child process or Thread ID

stat us
Output: Status of child.

si gnal
Input: Signal to send.

Output: Signal that aborted blocking wait.

wait_flag
Input: wait condition flag.

See Also
FEXT
F_THEXI T
FVWAT

0OS-9 Technical Manual 301

Chapter 6: OS-9 System Calls

F_ WAITLK
Activate Next Process Waiting to Acquire Lock

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct f_waitlk_pb {
sysch cb;
lock id lid;
si gnal _code signal;

} f_waitlk_pb, *F_waitlk_pb;

Description

F_WAI TLK activates the next process waiting to acquire the lock. The next process in
the lock’s queue is activated and granted exclusive ownership of the resource lock. If
no other process is waiting on the lock, the lock is simply marked free for
acquisition. In either case, the calling process is suspended and inserted into a
waiting queue for the resource based on relative scheduling priority.

If, during the course of waiting on a lock, a process receives a signal, the process is
activated without gaining ownership of the lock.

The process returns from the wait lock call with an EOS_SI GNAL error code and the
signal code is returned via the signal pointer.

If an S_WAKEUP signal is received by a waiting process, the signal code does not register
and will be zero.

Attributes

Operating System: 0S-9
State: System
Threads: Safe
Parameters

cb

The control block header.

lid
The lock ID on which to wait.

si gnal
Point to the received signal.

0OS-9 Technical Manual 302

Chapter 6: OS-9 System Calls

[

Possible Errors
EOS_SI GNAL

See Also
F_ACQLK
F_CAQLK
F_CRLK
F_DELLK
F_RELLK

0OS-9 Technical Manual 303

Chapter 6: OS-9 System Calls

F_YIELD

Yield the Processor

Headers

#i ncl ude <process. h>

Parameter Block Schedule

typedef struct f_yield_pb {
sysch ch;

} f_yield_pb, *F_yield_pb;

Description

F_YI ELD causes the calling process or thread to be placed back into the active queue.
The active queue contents are aged and the highest aged process is given control of
the processor. In other words, F_YI ELD causes the operating system to advance to
the next executable process or thread. It is possible that the next executable process
or thread will be the one that called F_y1 ELD. The status of the process' or thread's
signal mask remains unchanged during this system call. F_yI ELD is much like
F_SLEEP with a tick count of 1, except that signals are not implicitly unmasked.

Attributes
Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

cb

System call control block.

See Also
F_SLEEP

0OS-9 Technical Manual 304

Chapter 6: OS-9 System Calls

[

|_ALIAS

Create Device Alias

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct i_alias_pb {
sysch cb;
u_char *alias_nane,
*real _nane;

} i_alias_pb, *I_alias_pb;

Description

| _ALI AS creates an alternate name for a device pathlist. Processes can then reference
a specific device pathlist with a shorter or more convenient name.

To delete an existing alias from the system, pass a NULL pointer for the real name.

Do not use a real device name as al i as_nane.

Attributes
Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

al i as_nane
Point to the alternate name.

real _name
Point to the actual device name; it must exist. OS-9 does not validate its
existence of the device.

Possible Errors
EOS_BPNAM

0OS-9 Technical Manual 305

Chapter 6: OS-9 System Calls

| ATTACH
Attach New Device to System

Headers

#i ncl ude <i o. h>
#i ncl ude <nodes. h>

Parameter Block Structure
typedef struct i_attach_pb {
sysch cb;
u_char *nane;
u_intl6 node;
Dev_I|ist dev_thl;
} i_attach_pb, *I_attach_pb;

Description

| _ATTACH causes a new I/O device to become known to the system or verifies the
device is already attached.

If the descriptor is found and the device is not already attached, | _ATTACHlinks to its
file manager and device driver and places their addresses in a new device list entry.
| _ATTACH allocates and initializes static storage memory for the file manager and
device driver. After initialization, the file manager’s | _ATTACH entry point is called to
allow for file manager specific initialization. In turn, the file manager calls the
driver’s initialization entry point to initialize the hardware. If the driver has already
been attached, the file manager usually omits calling the driver.

| _ATTACH prepares the device for subsequent use by any process, but does not
reserve the device. | _ATTACH is not required to perform routine I/O.

IOMAN attaches all devices at | _OPEN and detaches them at | CLOSE.

Attach and Det ach for devices are used together like Li nk and unl i nk for modules.
However, you can improve system performance slightly by attaching all devices at
startup. This increments each device’s use count and prevents the device from being
reinitialized every time it is opened. If static storage for devices is allocated all at
once, memory fragmentation is minimized. If a device is attached, the termination
routine is not executed until the device is detached.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

0OS-9 Technical Manual 306

Chapter 6: OS-9 System Calls

[

Parameters

cb
The control block header.

nane
Point to the I/O device. nane is used to search the current module directory for
a device descriptor module with the same name in memory. This is the name
by which the device is known. The descriptor module contains the name of
the device’s file manager, device driver, and other related information.

node
The access mode used to verify subsequent read and/or write operations are
permitted. It can be either S_I READ or S_I WRI TE.

dev_t bl
A returned value. It points to the device’s device list entry.

Possible Errors
EOS_BMODE
ECS_DEVBSY
ECS_DEVOVF
ECS_MEMFUL

See Also
| _CLOSE

| _DETACH
| _OPEN

0OS-9 Technical Manual 307

Chapter 6: OS-9 System Calls

| CHDIR
Change Working Directory

Headers
#i ncl ude <types. h>

#i ncl ude <nodes. h>

Parameter Block Structure
t ypedef struct i_chdir_pb {
sysch cb;
u_char *nane;
u_intl6 node;
} i_chdir_pb, *I_chdir_pb;

Description

| _CHDI R changes a process’ working directory to the directory file specified by the
pathlist. The execution or data directory (or both) may be changed, depending on
the specified access mode. The file specified must be a directory file, and the caller
must have access permission for the specified mode.

If the access mode is read, write, or update (read and write), the current data
directory is changed. If the access mode is execute, the current execution directory is
changed. You can change both simultaneously.

The shell chd directive uses update mode. This means you must have both read and
write permission to change directories from the shell. This is a recommended
practice.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb
The control block header.

name
Point to the pathlist.

0OS-9 Technical Manual 308

Chapter 6: OS-9 System Calls

[

node
Specify the access mode. The following are the valid modes:

Mode Description
S | READ Read

S | WRI TE Write

S | EXEC Execute

Possible Errors
EOS_BMODE
EOS_BPNAM

0OS-9 Technical Manual 309

Chapter 6: OS-9 System Calls

|_CIOPROC

Get Pointer to /O Process Descriptor

Headers

#i ncl ude <i o. h>

Parameter Block Structure
typedef struct i_cioproc_pb {
sysch cb;
process_id proc_id;
voi d *buffer;
u_int32 count;

} i _cioproc_pb, *I_cioproc_pb;

Description

| _Cl OPROC copies the I/O process descriptor for the specified process into a buffer.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

proc_id
The process ID of the process.

buf fer
Point to the buffer in which to copy the process descriptor.

count
Specify the number of bytes to copy.

Possible Errors
EOS_| PRCI D

0OS-9 Technical Manual 310

Chapter 6: OS-9 System Calls

[

|_CLOSE
Close Path to File/Device

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct i_close_pb {
sysch cb;
path_id path;

} i_close_pb, *I_close_pb;

Description

| _CLOSE terminates an I/O path.

The path number is no longer valid for OS-9 calls unless it becomes active again
through an | _OPEN, | _CREATE, or | _DUP system call.

When pathlists to non-sharable devices are closed, the devices become available to
other requesting processes.

If this is the last use of the path (it has not been inherited or duplicated by | _DuP),
all internally managed buffers and descriptors are deallocated.

F_EXI T automatically closes any open paths. By convention, standard I/O paths are
not closed unless it is desired to change the corresponding files/devices.

| _CLOSE does an implied | _DETACH call. If this causes the device use count to become
zero, the device termination routine is executed.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

path
Identifies the I/O path to close.

Possible Errors
EOS_BPNUM

See Also

FEXT
| _DETACH | _DUP

0OS-9 Technical Manual 311

Chapter 6: OS-9 System Calls

|_CONFIG

Configure an Element of Process/System |/O

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct i_config_pb {
syscb cb;
u_int32 code;
voi d *param

} i_config_pb, *I_config_pb;

Description

| _CONFI Gis a wildcard call used to configure elements of the I/O subsystem that
may or may not be associated with an existing path. It is intended to be used to
dynamically reconfigure system I/O resources at runtime. The target I/O resources
may be system-wide resources or they may be process- or path-specific, depending
on the nature of the configuration call being made.

Table 6-6. Sub-Code

Code Parameter Function

| C_PATHSZ par ampoints to the Increase the number of paths the current
number of additional process may have open beyond its initial 32.
paths the process wants This can only be used to increase the number of
beyond its initial 32. paths a process may have. It cannot be used to

reduce the number of available paths.

Attributes

Operating System: 0S-9

State: User, System, Interrupt
Threads: Safe

Parameters

cb

The control block header.

code
Identify the target configuration code.

*par am
Point to additional parameters required by the specified configuration
function.

See Also
F_CONFI G

0OS-9 Technical Manual 312

Chapter 6: OS-9 System Calls

[

| CREATE
Create Path to New File

Headers
#i ncl ude <types. h>

#i ncl ude <nodes. h>

Parameter Block Structure
t ypedef struct i_create_pb {
sysch cb;
u_char *nane;
u_intl6 node;
path_id path;
u_int32 perm
si ze;

} i_create_pb, *I_create_pb;

Description

| _CREATE creates a new file. On multi-file devices, the new file name is entered in the
directory structure. On non-multi-file devices, | _CREATE is synonymous with

| _OPEN. Also, if the file already exists on a multi-file device, by default a path to the
file will be opened and the contents truncated.

node must have the write bit set if data is to be written to the file. The file is given
the attributes passed in per m The individual bits are defined as follows:

Table 6-7. Mode and Attribute Bits

Mode Bits Attribute Bits

S_IREAD = read S_IREAD = owner read permission
S_IWRITE = write S_IWRITE = owner write permission
S_IEXEC = execute S_IEXEC = owner exec permission
S_ICONTIG = ensure contig S_IGREAD = group read permission
S_IEXCL = do not recreate S_IGWRITE = group write permission
S_IAPPEND = append to file S_IGEXEC = group exec permission
S_ISHARE = exclusive use S_IOREAD = public read permission
S_ISIZE = set initial size S_IOWRITE = public write permission

S_IOEXEC = public exec permission
S_ISHARE = file is non-sharable

If the S_I EXEC (execute) bit of the access mode byte is set, the working execution
directory is searched first, instead of the working data directory.

If the S_I EXCL mode bit is not set and the target file already exists, the file is
truncated to zero length.

0OS-9 Technical Manual 313

Chapter 6: OS-9 System Calls

If the S_I CONTI Gmode bit is set, the space for the file is allocated from a single
contiguous block.

If the S_| APPEND mode bit is set and the target file already exists, the file is opened
and the associated file pointer points to the end of the file.

If the S_I SHARE mode bit is set, the opening process has exclusive access to the file.

If the S_I SI ZE mode bit is set, it is assumed the si ze parameter contains the initial
file size of the target file.

File space is allocated automatically by | _WRI TE or explicitly by an | _SETSTAT call.

If the pathlist specifies a file name that already exists, an error occurs. You cannot
use | _CREATE to make directory files (see | _MAKDI R).

| _CREATE causes an implicit | _ATTACH call. The device’s initialization routine is
executed if the device has not been attached previously.

Attributes

Operating System: 0S-9

State: User, System, Interrupt
Threads: Safe

Parameters

cb

The control block header.

nane
Point to the pathname of the new file.

node
Specify the access mode. If data is to be written to the file, rode must have the
write bit set.

path
A returned value. It is the path number that identifies the file in subsequent
I/O service requests until the file is closed.

perm
Specify the attributes to use for the new file.

si ze

Specify the size of the new file. If the S_I SI ZE (initial file size) bit is set, you
may pass an initial file size estimate in si ze.

Possible Errors

ECS_BPNAM

ECS_PTHFUL

See Also

| _ATTACH | _CLOSE | _MAKDI Rl _OPEN
| _SETSTAT | _WRITE

0OS-9 Technical Manual 314

Chapter 6: OS-9 System Calls

[

| DELETE
Delete File

Headers
#i ncl ude <types. h>

#i ncl ude <nodes. h>

Parameter Block Structure

typedef struct i_delete_pb {
sysch cb;
u_char *nane;

} i _delete_pb, *I _del ete_pb;

Description

| _DELETE deletes the file specified by the pathlist. You must have non-sharable write
access to the file (the file may not already be open) or an error results. Attempts to
delete non-multi-file devices result in an error.

The access mode is ignored if a full pathlist is specified (a full pathlist begins with a
slash (7)).

Parameters

cb
The control block header.

nanme
Point to the file to delete.

node
Specify the access mode. node may be S_I READ, S_| WRI TE, or S_I| EXEC. The
access mode specifies the data or execution directory (but not both) in the
absence of a full pathlist. If the access mode is read, write, or update (read and
write), the current data directory is assumed. If the execute bit is set, the
current execution directory is assumed.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Possible Errors

ECS_BPNAM

See Also

| _ATTACH | _CREATE
| DETACH | _OPEN

0OS-9 Technical Manual 315

Chapter 6: OS-9 System Calls

| DETACH

Remove Device from System

Headers

#i ncl ude <i o. h>

Parameter Block Structure
typedef struct i_detach_pb {
sysch cb;
Dev_|ist dev_tbl;
} i_detach_pb, *I_detach_pb;

Description

| _DETACH removes a device from the system device list if the device is not in use by
any other process.

If this is the last use of the device, the file manager’s | _DETACH routine is called, and
in turn, the device driver’s termination routine is called and any permanent storage
assigned to the file manager and driver is de-allocated. The device driver and file
manager modules associated with the device are unlinked and may be lost if not in
use by another process. It is crucial for the termination routine to remove the device
from the IRQ system.

| _DETACH must be used to detach devices attached with | ATTACH. Both of these
attach and detach requests are used mainly by IOMAN and are of limited use to the
typical user. SCF also uses attach/detach to set up its second (echo) device.

Most devices are attached at startup and remain attached while the system is up. An
infrequently used device can be attached and then detached to free system resources
when no longer needed.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

dev_t bl
Point to the address of the device list entry.

See Also

| _ATTACH
| _CLOSE

0OS-9 Technical Manual 316

Chapter 6: OS-9 System Calls

[

| DUP
Duplicate Path

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct i_dup_pb {
sysch cb;
path_id dup_path,
*new_pat h;
} i _dup_pb, *I_dup_pb;

Description

| _DUP duplicates a path. The operation of | _DUP depends on the state from which it
is called.

When called from a user-state process and given an existing path number, | _DUP
returns a synonymous path number for the same file or device. | _DUP always uses
the lowest available path number. For example, if you perform an | _CLCSE on path
0 and an I _DUP on path 4, path 0 is returned as the new path number. In this way,
the standard I/O paths may be manipulated to contain any desired paths.

When called from a system-state process, | _DUP returns the next available system
path number.

The shell uses this service request when it redirects I/O. Service requests using either
the old or new path numbers operate on the same file or device.

| _DUP increments the use count of a path descriptor and returns a synonymous path
number. The path descriptor is NOT copied. It is usually not a good idea for more
than one process to be performing I/O on the same path concurrently. On RBF files,
this can produce unpredictable results.

Attributes

Operating System: 0S-9

State: User, System, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

dup_path
The path number of the path to duplicate.

new_pat h
The new number for the same path.

0OS-9 Technical Manual 317

Chapter 6: OS-9 System Calls

Possible Errors
EOS_BPNUM
EOS_PTHFUL

See Also
| _CLOSE

0OS-9 Technical Manual 318

Chapter 6: OS-9 System Calls

[

| GETDL
Get System 1/O Device List Head Pointer

Headers

#i ncl ude<i o. h>

Parameter Block Structure
typedef struct i_getdl _pb{
sysch cb;
Dev_list dev_list_ptr;
} i_getdl _pb, *I_getdl _pb;

Description

| _GETDL returns a pointer to the first entry in the system’s I/O device list.

Attributes

Operating System: 0S-9

State: User, System, I/O, and Interrupt
Threads: Safe

Parameters

cb

The control block header.

dev_list_ptr
A returned value. It points to the first entry in the device list.

Never access this pointer directly in user state. You should use F_CPYMEMto get
a copy of the device list entry. This system call is used by the devs utility to
determine the presence of all of the active devices in the system.

See Also
F_CPYMEM

0OS-9 Technical Manual 319

Chapter 6: OS-9 System Calls

| GETPD
Find Path Descriptor

Headers
#i ncl ude <types. h>

#i ncl ude <io. h>

Parameter Block Structure
t ypedef struct i_getpd_pb {
sysch cb;
path_id path;
Pd_com pat h_desc;

} i_getpd_pb, *I_getpd_pb;

Description

| _GETPD converts a path number to the absolute address of its path descriptor data
structure.

Attributes

Operating System: 0S-9

State: System, I/O, and Interrupt

Threads: Safe

Parameters

ch

The control block header.

path
Specify the path number.

path-id
A returned value. It points to the path descriptor.

0OS-9 Technical Manual 320

Chapter 6: OS-9 System Calls

| GETSTAT
Get File/Device Status

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
typedef struct i_getstat_pb {
sysch cb;
path_id path;
u_intl6 gs_code;
voi d *param bl k;

} i _getstat_pb, *I|_getstat_pb;

Description

| _GETSTAT is a wildcard call used to handle individual device parameters that are
not uniform on all devices or are highly hardware dependent.

The exact operation of this call depends on the device driver and file manager
associated with the path. A typical use is to determine a terminal’s parameters (such
as echo on/off and delete character). It is often used with | _SETSTAT, which sets the
device operating parameters.

The mnemonics for the status codes are found in the header file f uncs. h. Codes 0 -
127 are reserved for Microware’s use. You may define the remaining codes and their
parameter passing conventions. The status codes that are currently defined and the
functions they perform are described in the functions with an SS_ prefix. Supported
getstats include:

Table 6-8. Supported Getstats

Getstat Description

_CGETSTAT, SS_COPYPD Copy Contents of Path Descriptor (All)
_CGETSTAT, SS_CSTATS Get Cache Status Information (RBF)
_CGETSTAT, SS_DEVNAME Return Device Name (All)

_CGETSTAT, SS_DEVOPT Read Device Path Options

_CETSTAT, SS_DEVTYPE Return Device Type (All)

_CETSTAT, SS_DSI ZE Get Size of SCSI Devices (RBF)

_GETSTAT, SS_EDT Get I/O Interface Edition Number (All)
_CGETSTAT, SS EOF Test for End of File (All)
_CGETSTAT, SS_FD Read File Descriptor Sector (RBF, PIPE)

_GETSTAT, SS_FdAddr Get File Descriptor Block Address for Open File (RBF, PCF)
_CETSTAT, SS_FDINFO Get Specified File Descriptor Sector (RBF, Pipe)
_CGETSTAT, SS_LUCPT Read Logical Unit Options (All)

0OS-9 Technical Manual 321

[

Chapter 6: OS-9 System Calls

Table 6-8. Supported Getstats

Getstat Description

| _GETSTAT, SS_PARITY Calculate Parity of File Descriptor (RBF)

| _GETSTAT, SS_PATHOPT Read Path Descriptor Option Section (All)

| _GETSTAT, SS_PCS Get Current File Position (RBF)

| _GETSTAT, SS_READY Test for Data Ready (RBF, SCF, PIPE)

| _GETSTAT, SS_SIZE Set File Size (RBF, PIPE, PCF)

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

ch

The control block header.

path
The path number.

gs_code
The get status code.

par am bl k
Point to the parameter block corresponding to the function being performed.
If the get status function does not require a parameter block, par am bl k

should be null.

Possible Errors
EOS_UNKSVC

See Also
| SETSTAT

0OS-9 Technical Manual 322

Chapter 6: OS-9 System Calls

[

| GETSTAT, SS_COPYPD
Copy Contents of Path Descriptor (ALL)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

t ypedef struct gs_cpypd_pb {
u_int32 size;

voi d *pat h_desc;
} gs_cpypd_pb, *Gs_cpypd_pb;
Description

SS_COPYPD copies the contents of the specified path’s path descriptor to the path
descriptor buffer.

Attributes
Operating System: 0S-9

State: User, System, 1/O, and Interrupt
Threads: Safe

Parameters

size

The number of bytes to copy from the path descriptor. If the si ze value is
greater than the size of the target path descriptor, si ze is updated with the
actual size of the path descriptor.

pat h_desc
Point to the buffer for the path descriptor data.

Possible Errors
EOS_BPNUM

0OS-9 Technical Manual 323

Chapter 6: OS-9 System Calls

| GETSTAT, SS_CSTATS
Get Cache Status Information (RBF)

Headers
#i ncl ude <rbf. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct gs_cstats_pb {
Cachestats cache_inf;

} gs_cstats_pb, *Gs_cstats_pb;

Description

SS_CSTATS returns a copy of the current cachest at s structure.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

cache_i nf

Point to a structure containing information about RBF caching.

Possible Errors
EOS_BPNUM

0OS-9 Technical Manual 324

Chapter 6: OS-9 System Calls

[

| GETSTAT, SS_ DEVNAME
Return Device Name (ALL)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

t ypedef struct gs_devnane_pb {
u_char *nanebuf;

} gs_devname_pb, *Gs_devnane_pb;

Description

SS_DEVNAME returns the name of the device associated with the specified path.

Attributes
Operating System: 0S-9

State: User, System, I/O, and Interrupt
Threads: Safe

Parameters

namebuf

Point to the buffer containing the device name.

Possible Errors
EOS_BPNUM

0OS-9 Technical Manual 325

Chapter 6: OS-9 System Calls

| GETSTAT, SS_DEVOPT
Read Device Path Options

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct gs_dopt_pb {
u_int32 dopt_si ze;
voi d *user_dopts;

} gs_dopt _pb, *Gs_dopt_pb;

Description

SS_DEVOPT gets the initial (default) device path options. These options are used for
initializing new paths to the device.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

dopt _si ze

A returned value. It is the size of the option area.

user _dopts
Point to the list of device path options buffer.

Possible Errors
EOS_BPNUM

0OS-9 Technical Manual 326

Chapter 6: OS-9 System Calls

[

| GETSTAT, SS_DEVTYPE
Return Device Type (ALL)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

t ypedef struct gs_devtype_pb {
u_intlé type;
u_intl6 cl ass;

} gs_devtype_pb, *Gs_devtype_pb;

Description

SS_DEVTYPE returns the type and class of the device associated with the specified
path number.

The values for the device type and device class are defined in the i 0. h header file.

Attributes

Operating System: 0S-9

State: User, System, I/O, and Interrupt
Threads: Safe

Parameters

type

A returned value. It is the device type.

cl ass
A returned value. It is the device class.

Possible Errors
EOS_BPNUM

0OS-9 Technical Manual 327

Chapter 6: OS-9 System Calls

| GETSTAT, SS_DISKFREE
Return Information About RBF Disk Free Space

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

t ypedef struct gs_diskfree_pb {

u_int32 bavail ;
u_int32 bsi ze;
u_int32 bl ocks;
u_int32 bconti g;

} gs_diskfree_pb, *Gs_diskfree_pb;

Description

SS_DI SKFREE returns information about RBF disk free space.

Attributes
Operating System: 0S-9

State: User and System
Threads: Safe
Parameters

bavai |

Set to total number of free blocks on the disk.

bsi ze
Set to size of blocks used on the disk (256, 512, etc.).

bl ocks
Set to total number of blocks on the disk.

bcontig
Set to number of blocks in the largest contiguous area.

Possible Errors
EOS_READ

0OS-9 Technical Manual 328

Chapter 6: OS-9 System Calls

[

| GETSTAT, SS_DSIZE
Get Size of SCSI Devices (RBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct gs_dsize_pb {
u_int32 totbl ocks,
bl ocksi ze;

} gs_dsize_pb, *Gs_dsize_pb;

Description

SS_DsI ZE gets information about the size of a SCSI disk drive.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

t ot bl ocks

A returned value. It is the total number of blocks on the device.

bl ocksi ze
A returned value. It is the size of a disk block in bytes.

Possible Errors
EOS_BPNUM

0OS-9 Technical Manual 329

Chapter 6: OS-9 System Calls

| GETSTAT, SS_EDT
Get 1/O Interface Edition Number (ALL)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct gs_edt_pb {
u_int32 edition;

} gs_edt_pb, *Gs_edt_pb;

Description

SS_EDT returns the I/O interface edition number of the driver. It validates the
compatibility of drivers and file managers.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

edition

The driver I/O interface edition number.

Possible Errors
EOS_BPNUM

0OS-9 Technical Manual 330

Chapter 6: OS-9 System Calls

[

| GETSTAT, SS_EOF
Test for End of File (ALL)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct gs_eof pb {
u_int32 eof;

} gs_eof _pb, *Gs_eof _pb;

Description

SS_ECF returns the EOS_ECF error if the current position of the file pointer associated
with the specified path is at the end-of-file. SCF never returns ECS_ECF.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

eof

The end-of-file status of the specified path. A value of 1 indicates end of file.

Possible Errors
EOS_BPNUM
EOS_EOF

0OS-9 Technical Manual 331

Chapter 6: OS-9 System Calls

|_GETSTAT, SS_FD
Read File Descriptor Sector (RBF, PIPE)

Headers

#i ncl ude <types. h>
#i ncl ude <rbf.h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

typedef struct gs_fd_pb {
u_int32 info_size;
Fd_stats fd_info;

} gs_fd_pb, *Gs_fd_pb;

Description

SS_FDreturns a copy of the file descriptor sector for the file associated with the
specified path.

Attributes

Operating System: 0S-9

State: User, System, and I/O

Threads: Safe

Parameters

i nfosi ze
The number of bytes of the file descriptor to copy.

fdinfo
Point to the buffer for the file descriptor sector.

Possible Errors
EOS_BPNUM

0OS-9 Technical Manual 332

Chapter 6: OS-9 System Calls

|_GETSTAT, SS_FdAddr
Get File Descriptor Block Address for Open File (RBF, PCF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

t ypedef struct gs_fdaddr_pb {
u_int32 fd_bl kaddr;
} gs_fdaddr_pb, *Gs_fdaddr_pb;

Description

SS_FdAddr returns the file descriptor block address associated with the specified
path number.

Only super users can make this call.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

fd_bl kaddr

The block address of the file descriptor.

Possible Errors
EOS_BPNUM
EOS_PERM T

0OS-9 Technical Manual 333

[

Chapter 6: OS-9 System Calls

| GETSTAT, SS_FDINFO
Get Specified File Descriptor Sector (RBF, PIPE)

Headers
#i ncl ude <rbf. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct gs_fdinf_pb {
u_int32 info_size,
fd_blk _num
Fd_stats fd_info;
} gs_fdinf_pb, *Gs_fdinf_pb;

Description

SS_FDI NFOreturns a copy of the specified file descriptor sector for the file associated
with the specified path.

Typically, SS_FDI NFOis used to rapidly scan a directory on a device. You do not need
to specify the path number of the file for which you want the file descriptor.

However, the path number must be an open path on the same device as the file. The
path number typically represents a path to the directory you are currently scanning.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

info_size

Specify the number of bytes of the file descriptor block to copy.

fd_bl k_num
Specify the file descriptor sector number to get.

fd_info
Point to the buffer for the file descriptor block.

Possible Errors
EOS_BPNUM

0OS-9 Technical Manual 334

Chapter 6: OS-9 System Calls

[

| GETSTAT, SS_LUOPT
Read Logical Unit Options (ALL)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

t ypedef struct gs_luopt_pb {
u_int32 |uopt_size;
voi d *user_| uopts;

} gs_luopt_pb, *Gs_| uopt _pb;

Description

SS_LUOPT copies the contents of the logical unit options for a path into the options
buffer.

Attributes

Operating System: 0S-9

State: User, System, and I/O

Threads: Safe

Parameters

| uopt _si ze
Size of the options section to copy. | uopt _si ze may not be less than the size of
the file manager’s logical unit option section.

user _| uopts
Point to the options buffer.

Possible Errors
EOS_BPNUM
EOS_BUF2SMALL

0OS-9 Technical Manual 335

Chapter 6: OS-9 System Calls

| GETSTAT, SS_PARITY
Calculate Parity of File Descriptor (RBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

t ypedef struct gs_parity_pb {
Fd_status fd;

u_intlé parity;
} gs_parity_pb, *Gs_parity_pb;

Description

SS_PARI TY calculates a 32 bit vertical parity for file descriptor structures. This call is
used by utilities creating disk images (format disks) and utilities checking the
integrity of disks.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

fd

Point to the file descriptor block.

parity
The resulting parity.

Possible Errors
EOS_BPNUM

0OS-9 Technical Manual 336

Chapter 6: OS-9 System Calls

[

| GETSTAT, SS_PATHOPT
Read Path Descriptor Option Section (ALL)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct gs_popt_pb {
u_int32 popt_si ze;
voi d *user_popts;

} gs_popt _pb, *Gs_popt _pb;

Description

SS_PATHOPT copies the option section of the path descriptor into the variable-sized
area options buffer. You must include r bf . h, sbf . h, and/or scf . h for the
corresponding file managers and to declare popt _si ze according to the size of the
rbf _opts, sbf _opts, or scf _opts. SS_PATHOPT is typically used to determine the
current settings for functions such as echo and auto line feed.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

popt _si ze

The size of the path options section to copy.

user_opts
Point to the options buffer.

Possible Errors
EOS_BPNUM

0OS-9 Technical Manual 337

Chapter 6: OS-9 System Calls

|_GETSTAT, SS_POS
Get Current File Position (RBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct gs_pos_pb {
u_int32 fil epos;
} gs_pos_pb, *Gs_pos_pb;
Description
SS_PGs returns the current position of the file pointer associated with the specified
path.
Attributes
Operating System: 0S-9
State: User, System, and I/O
Threads: Safe

Parameters

filepos
The file position in byte-size units.

Possible Errors
EOS_BPNUM

0OS-9 Technical Manual 338

Chapter 6: OS-9 System Calls

[

|_GETSTAT, SS_READY
Test for Data Ready (RBF,SCF, PIPE)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct gs_ready_pb {
u_int32 incount;

} gs_ready_pb, *Gs_ready_pb;

Description

SS_READY checks for data available to be read on the specified path. The number of
characters available to be read is returned in the i ncount parameter. RBF devices do
not return the EGS_NRDY error. SS_READY returns the number of bytes left in the file
and SUCCESS.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

i ncount

The number of characters available to be read.

Possible Errors
EOS_BPNUM
EOS_NRDY

0OS-9 Technical Manual 339

Chapter 6: OS-9 System Calls

|_GETSTAT, SS_SIZE
Set File Size (RBF, PIPE, PCF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

t ypedef struct gs_size_ pb {
u_int32 filesize;

} gs_size_pb, *Gs_size_pb;

Description

SS_SI ZE gets the size of the file associated with the open path to the specified
filesize.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

filesize
The new size of the file in bytes.

Possible Errors
EOS_BPNUM

See Also
| SETSTAT

0OS-9 Technical Manual 340

Chapter 6: OS-9 System Calls

|
|_GIOPROC

Get Pointer to /O Process Descriptor

Headers

#i ncl ude <i o. h>

Parameter Block Structure
typedef struct i_cioproc_pb {
sysch cb;
process_id proc_id;
| o_proc proc_desc;

} i _cioproc_pb, *I_cioproc_pb;

Description

| _G OPRCC returns a pointer to the I/O process descriptor for the process specified.

Attributes

Operating System: 0S-9

State: System and I/O
Threads: Safe
Parameters

ch

The control block header.

proc_id
Specify the process ID of the process.

proc_desc
A returned value. It points to the I/O process descriptor.

Possible Errors
EOS_| PRCI DT

0OS-9 Technical Manual 341

Chapter 6: OS-9 System Calls

| IODEL
Check for Use of 1/O Module

Headers

#i ncl ude <nodul e. h>

Parameter Block Structure
typedef struct i_iodel _pb {
sysch cb;
Mh_com nod_head;

} i_iodel _pb, *I_iodel _pb;

Description

| _1 ODEL is executed whenever the kernel unlinks a file manager, device driver, or
device descriptor module. It is used to determine if the I/O system is still using the
module.

Attributes

Operating System: 0S-9

State: System and I/O
Threads: Safe

Parameters

cb
The control block header.

nod_head
Point to the module header.

Possible Errors
EOS_MODBSY

0OS-9 Technical Manual 342

Chapter 6: OS-9 System Calls

[

|_IOEXIT

Terminate 1/O for Exiting Process

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct i_ioexit_pb {
sysch cb;
process_id proc_id;
u_int32 path_cnt;

} i _ioexit_pb, *I _ioexit_pb;

Description

| _I CEXI T is executed whenever the kernel terminates or chains to a process.

Attributes

Operating System: 0S-9

State: System and I/O
Threads: Safe
Parameters

ch

The control block header.

proc_id
Specify the process ID.

pat h_cnt
Specify the number of I/O paths.

If the most significant bit of pat h_cnt is reset, the process’ default data and
execution directory paths and all other open paths in the path translation
table are closed. The I/O process descriptor is also deallocated.

If the most significant bit of pat h_cnt is set, the remaining bits specify the
number of paths to leave open. The default directory paths are not closed, and
the I/O process descriptor is not deallocated.

Possible Errors
EOS_| PRCI D

0OS-9 Technical Manual 343

Chapter 6: OS-9 System Calls

| IOFORK
Set Up 1/O for New Process

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct i_iofork_pb {
sysch cb;
process_id par_proc_id,
new_proc_i d;

u_int32 path_cnt;

} i_iofork_pb, *I_iofork_pb;
Description
| _1 OFORK is executed whenever the kernel creates a new process. | _| OFORK creates

an I/O process descriptor for the new process. IOMAN uses I/O process descriptors
to maintain information about a process’ I/O. Each I/O process descriptor contains
the user-to-system path number translation table and path numbers for the process’
default data and execution directories.

Attributes
Operating System: 0S-9

State: System and I/O
Threads: Safe
Parameters

cb

The control block header.

par_proc_id
The parent’s process ID.

new_proc_id
The process ID of the new process.

pat h_cnt
The number of I/O paths the child is to inherit from its parent.

Possible Errors
EOS_NORAM

0OS-9 Technical Manual 344

Chapter 6: OS-9 System Calls

| MAKDIR
Make New Directory

Headers

#i ncl ude <nodes. h>

Parameter Block Structure
typedef struct i_makdir_pb {
sysch cb;
u_char *nane;
u_intl6 node;
u_int32 perm
si ze;

} i_makdir_pb, *I_nakdir_pb;

Description

| _MAKDI R creates and initializes a new directory as specified by the pathlist.

| _MAKDI Ris the only way to create a new directory file. The new directory file
contains only entries for itself (.) and its parent directory (..). | _MAKDI R fails on
non-multi-file devices. If the execution bit is set, OS-9 begins searching for the file in
the working execution directory, unless the pathlist begins with a slash. If the
pathlist begins with a slash, it is used as the pathlist.

The caller becomes the owner of the directory. | _MAKDI R does not return a path
number because directory files are not opened by this request. You should use
| _OPEN to open a directory.

The new directory automatically has its directory bit set in the access permission
attributes. The remaining attributes are specified by the bytes passed in the node and
per mparameters. The individual bits for these parameters are defined as follows (if
the bit is set, access is permitted):

Table 6-9. Mode and Attribute Bits for |_MAKDIR

Mode Bits Attribute Bits

S_IREAD = read S_IREAD = owner read permission
S_IWRITE = write S_IWRITE = owner write permission
S_IEXEC = execute S_IEXEC = owner exec permission
S_ITRUNC = truncate on open S_IGREAD = group read permission
S_ICONTIG = ensure contig S_IGWRITE = group write permission
S_IEXCL = do not recreate S_IGEXEC = group exec permission
S_IAPPEND = append to file S_IOREAD = public read permission
S_ISHARE = exclusive use S_IOWRITE = public write permission
S_ISIZE = set initial size S_IOEXEC = public exec permission

S_ISHARE = file is non-sharable

0OS-9 Technical Manual 345

Chapter 6: OS-9 System Calls

e If the S_I EXEC (execute) bit of the access mode byte is set, the working execution
directory is searched first instead of the working data directory.

e If the S I EXCL mode bit is not set and the target file already exists, the file is
truncated to zero length.

e If the S | CONTI Gmode bit is set, the space for the file is allocated from a single
contiguous block.

e If the S I TRUNC mode bit is set and the target file already exists, the file is
truncated to zero length.

e If the S 1 APPEND mode bit is set and the target file already exists, the file is
opened and the associated file pointer points to the end of the file.

e If the S I SHARE mode bit is set, the opening process has exclusive access to the

file.

e If the S I SI ZE mode bit is set, it is assumed the si ze parameter contains the
initial file size of the target file.

Attributes

Operating System: 0S-9

State: User and I/O
Threads: Safe
Parameters

cb

The control block header.

nane
Point to the pathlist.

node
Specify the access mode.

perm
Specify the access permissions.

si ze
Specify the initial allocation size. (optional)

Possible Errors
ECS_BPNAM
EOS_CEF
EOS_FULL

See Also
| _OPEN

0OS-9 Technical Manual 346

Chapter 6: OS-9 System Calls

[

|_OPEN
Open Path to File or Device

Headers
#i ncl ude <types. h>

#i ncl ude <nodes. h>

Parameter Block Structure
t ypedef struct i_open_pb {
sysch cb;
u_char *nane;
u_intl6 node;
path_id path;
} i _open_pb, *I|_open_pb;

Description

| _OPEN opens a path to an existing file or device as specified by the pathlist. | _OPEN
returns a path number used in subsequent service requests to identify the path. If the
file does not exist, an error is returned.

A non-directory file may be opened with no bits set. This allows you to use the

| _GETSTAT system requests to examine characteristics such as attributes and size, but
does not permit any actual 1/O on the path.

For RBF devices, use Read mode instead of Update if the file is not going to be
modified. This inhibits record locking and can dramatically improve system
performance if more than one user is accessing the file. The access mode must
conform to the access permissions associated with the file or device (see | _CREATE).

Table 6-10. Mode for |_OPEN

Mode Description

S | READ Read

S | WRI TE Write

S | EXEC Execute

S | SHARE Open file for non-sharable use
S IFDIR Open directory file

Refer to nodes. h for more information about the modes available for | _OPEN.
If the execution bit mode is set, OS-9 searches for the file in the working execution
directory, unless the pathlist begins with a slash. If the pathlist begins with a slash, it
uses the entire pathlist and opens the file or device with the execute bit set.

| _OPEN searches only for executables in the execution directory if the FAM EXEC
access mode is used. The execution directory is designed for the location of
executable modules, not data modules. The access determination is done by

0OS-9 Technical Manual 347

Chapter 6: OS-9 System Calls

IOMAN based on the file permissions. To override this behavior, add S_I EXEC to the
file creation permissions.

If the single user bit is set, the file is opened for non-sharable access even if the file is

sharable.

Files can be opened by several processes (users) simultaneously. Devices have an
attribute specifying whether or not they are sharable on an individual basis.

| _OPEN always uses the lowest path number available for the process.

Directory files may be opened only if the directory bit (S_I FDI R) is set in the access
mode.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

cb

The control block header.

nane
Point to the path name of the existing file or device.

node
Specify which subsequent read and/or write operations are permitted as
follows (if the bit is set, access is permitted).

path
The resulting path number.

Possible Errors
ECS_BMODE
ECS_BPNAM
ECS_FNA
EQS_PNNF
EOS_PTHFUL
EOS_SHARE

See Also
| _ATTACH

| _CLOSE

| _CREATE

| _GETSTAT

0OS-9 Technical Manual 348

Chapter 6: OS-9 System Calls

[

| RDALST
Copy System Alias List

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct i_rdalst_pb {
sysch cb;
u_char *buffer;
u_int32 count;

} i _rdalst_pb, *I _rdal st_pb;

Description

| _RDALST copies the system alias list to the caller’s buffer. At most, count bytes are
copied to the buffer. Each alias entry is null terminated.

The | _RDALST system call is used by the al i as utility to display the list of aliases
currently active in the system.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

ch

The control block header.

buf f er
Point to the buffer into which to copy the alias list.

count
The total number of bytes to copy. count is updated with the total number of
bytes copied.

Possible Errors
EOS_BPADDR

See Also
| _ALI AS

0OS-9 Technical Manual 349

Chapter 6: OS-9 System Calls

| READ

Read Data from File or Device

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct i_read_pb {
sysch cb;
path_id path;
u_char *buffer;
u_int32 count;

} i _read_pb, *I|_read_pb;

Description

| _READ reads a specified number of bytes from the specified path number. The path
must previously have been opened in read or update mode. The data is returned
exactly as read from the file/device without additional processing or editing such as
backspace and line delete. If not enough data is in the file to satisfy the read request,
fewer bytes are read than requested, but an end-of-file error is not returned.

After all data in a file has been read, the next | _READ service request returns an end-
of-file error.

The keyboard X-ON/X-OFF characters may be filtered out of the input data on SCF-
type devices unless the corresponding entries in the path descriptor have been set to
zero. You may want to modify the device descriptor so these path descriptor values are
initialized to zero when the path is opened. SCF devices usually terminate the read
request when a carriage return is reached.

The number of bytes requested are read unless the end-of-file is reached, an end-of-
record occurs (SCF only), the read times out (SCF only), or an error condition
occurs.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

cb

The control block header.

path
Specify the path number.

0OS-9 Technical Manual 350

Chapter 6: OS-9 System Calls

[

buffer
Point to the data buffer.

count
The number of bytes to read. Upon completion, count is updated with the
number of bytes actually read.

Possible Errors
ECS_BMODE
ECS_BPNUM
ECS_EOF
EOS_READ

See Also
| READLN

0OS-9 Technical Manual 351

Chapter 6: OS-9 System Calls

| READLN
Read Text Line with Editing

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct i_readl n_pb {
sysch cb;
path_id path;
u_char *buffer;
u_int32 count;

} i_readl n_pb, *I_readl n_pb;

Description

| _READLN reads the specified number of bytes from the input file or device until an
end-of-line character is encountered. On SCF-type devices, | _READLN also causes line
editing such as backspacing, line delete, echo, and automatic line feed to occur.
Some SCF devices may limit the number of bytes read with one call.

SCF requires the last byte entered be an end-of-record character (normally carriage
return). If more data is entered than the maximum specified, it is not accepted and a
PD_OVF character (normally bell) is echoed. For example, an | _READLN of exactly one
byte accepts only a carriage return to return without error and beeps when other
keys are pressed. An | _READLN to SCF returns the number of bytes requested unless
the read times out or an error occurs.

After all data in a file has been read, the next | _READLN service request returns an
end of file error.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

cb

The control block header.

path
Specify the path number.

buf f er
Point to the data buffer.

0OS-9 Technical Manual 352

Chapter 6: OS-9 System Calls

[

count
The number of bytes to read. Upon completion, count is updated with the
number of bytes actually read.

Possible Errors
ECS_BMODE
ECS_BPNUM

ECS _ECF
ECS_READ

See Also
| READ

0OS-9 Technical Manual 353

Chapter 6: OS-9 System Calls

|_SEEK

Reposition Logical File Pointer

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct i_seek_pb {
sysch cb;
path_id path;
u_int32 offset;

} i_seek_pb, *1_seek_pb;

Description

| _SEEK repositions the path’s file pointer. The file pointer is the 32-bit address of the
next byte in the file to be read or written. | _SEEK usually does not initiate physical
positioning of the media. You can perform a seek to any value, even if the file is not
large enough. Subsequent write requests automatically expand the file to the
required size, if possible. Read requests return an end-of-file condition.

A seek to address zero is the same as a rewind operation. Seeks to non-random
access devices are usually ignored and return without error.

On RBF devices, seeking to a new disk sector rewrites the internal sector buffer to
disk if it has been modified. | _SEEK does not change the state of record locks.
Beware of seeking to a negative position. RBF interprets negatives as large positive
numbers.

Attributes

Operating System: 0S-9
State: User, System, and I/O
Threads: Safe

Parameters

cb
The control block header.

path
Specify the path number.

position
Specify the new position.

Possible Errors
EOS_BPNUM

See Also
| _READ | _WRITE

0OS-9 Technical Manual 354

Chapter 6: OS-9 System Calls

| SETSTAT
Set File/Device Status

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

typedef struct i_seek_pb {

sysch cb;
path_id path;
u_intl6 ss_code;

voi d *param bl k;

} i _seek_pb, *I|_setstat_pb;

Description

| _SETSTAT is a wildcard call used to handle individual device parameters that are
not uniform on all devices or are highly hardware dependent.

Typically, set status calls are used to set a terminal’s parameters for functions such
as backspace character, delete character, echo on/off, null padding, and paging.

| _SETSTAT is commonly used with | _GETSTAT which reads the device’s operating
parameters. The mnemonics for the status codes are found in the header file
funcs. h. Codes 0-127 are reserved for Microware’s use. Users may define the

remaining codes and their parameter passing conventions.

Table 6-11. Supported SetStats

Setstat

Description

| _SETSTAT, SS ATTR

Set File Attributes (RBF, Pipe, PCF)

_SETSTAT, SS_BREAK

Break Serial Connection (SCF)

Enable/Disable RBF Caching (RBF)

|
| _SETSTAT, SS_CACHE
| _SETSTAT, SS_DCOFF

Send Signal When Data Carrier Detect Line Goes False

(SCF)

| _SETSTAT, SS_DCON

Send Signal When Data Carrier Detect Line Goes True

(SCF)

_SETSTAT, SS_DEVOPT

Set Device Path Options (Pipe, SBF, SCF)

SETSTAT, SS_DSRTS

Disable RTS Line

_SETSTAT, SS_ENRTS

Enable RTS Line

_SETSTAT, SS_ERASE

Erase Tape (SBF)

_SETSTAT, SS_FD

Write File Descriptor Sector (RBF, PCF, PIPE)

_SETSTAT, SS_FI LLBUFF

Fill Path Buffer With Data (SCF)

SETSTAT, SS_FLUSHVAP

Flush Cached Bit Map Information (RBF)

_SETSTAT, SS_HDLI NK

0OS-9 Technical Manual

Make Hard Link to Existing File (RBF)

355

[

Chapter 6: OS-9 System Calls

Table 6-11. Supported SetStats

Setstat Description

| _SETSTAT, SS_LOCK Lock Out Record (RBF)

| _SETSTAT, SS_LUOPT Write Logical Unit Options (All)

| _SETSTAT, SS_PATHOPT Write Option Section of Path Descriptor (All)
| _SETSTAT, SS_RELEASE Release Device (SCF, PIPE)

| _SETSTAT, SS_RENAME Rename File (RBF, PIPE, SCF)

| SETSTAT, SS RESET Restore Head to Track Zero (RBF, SBF, PCF)
| _SETSTAT, SS_RETEN Re-tension Pass on Tape Device (SBF)

| _SETSTAT, SS_RFM Skip Tape Marks (SBF)

| _SETSTAT, SS_SENDSIG Send Signal on Data Ready (SCF, PIPE)

| _SETSTAT, SS_SIZE Set File Size (RBF, PIPE, PCF)

| _SETSTAT, SS_SKIP Skip Blocks (SBF)

| SETSTAT, SS_SKI PEND Sk“)to End ofpre(SBF)

| _SETSTAT, SS_TICKS Wait Specified Number of Ticks for Record Release (RBF)
| _SETSTAT, SS_WM Write Tape Marks (SBF)

| _SETSTAT, SS_WIRACK Write (Format) Track (RBF)

Attributes

Operating System:

State:
Threads:

0S§-9

User, System, and I/O
Safe

Parameters

cb

The control block header.

path

The path number.

ss_code

The set status code.

par am bl k

Point to the parameter block corresponding to the function being performed.
If the set status function does not require a parameter block, param bl k
should be NULL.

Possible Errors

EOCS_UNKSVC

See Also
| GETSTAT

0OS-9 Technical Manual

356

Chapter 6: OS-9 System Calls

[

| SETSTAT, SS_ATTR
Set File Attributes (RBF, PIPE, PCF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

t ypedef struct ss_attr_pb {
u_int32 attr;

} ss_attr_pb, *Ss_attr_pb;

Description

SS_ATTR changes a file’s attributes to the new value, if possible. You cannot set the
directory bit of a non-directory file or clear the directory bit of a non-empty
directory.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe
Parameters

attr
Specify the file attributes to change.

Possible Errors
EOS_BPNUM

See Also
| GETSTAT
| SETSTAT

0OS-9 Technical Manual 357

Chapter 6: OS-9 System Calls

| SETSTAT, SS_BREAK
Break Serial Connection (SCF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

Description:
SS_BREAK breaks a serial connection.

The driver is responsible for implementing this call.
Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Possible Errors
EOS_BPNUM

See Also
| SETSTAT

0OS-9 Technical Manual 358

Chapter 6: OS-9 System Calls

[

| SETSTAT, SS_CACHE
Enable/Disable RBF Caching (RBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct ss_cache_pb {
u_int32 enblflag,
drvsci ze;

} ss_cache_pb, *Ss_cache_pb;

Description

SS_CACHE enables and disables RBF caching on an RBF device.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

enbl fl ag

The cache enable/disable flag.
e Ifenbl flag is zero, caching is disabled.

e If enbl fl ag is non-zero, caching is enabled.

drvcsi ze
The memory size for the cache.

Possible Errors
EOS_CEF
EOS_PERM T

See Also
| SETSTAT

0OS-9 Technical Manual 359

Chapter 6: OS-9 System Calls

| SETSTAT, SS_DCOFF
Send Signal When Data Carrier Detect Line Goes False (SCF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct ss_dcoff_pb {
si gnal _code signal;

} ss_dcoff_pb, *Ss_dcoff_pb;

Description

When a modem has finished receiving data from a carrier, the Data Carrier Detect
line becomes false. SS_DCOFF sends a signal code when this happens. | _SETSTAT,
SS_DCON sends a signal when the line becomes true.

The driver is responsible for implementing this call.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

si gnal

The signal code to send.

Possible Errors
EOS_BPNUM

See Also
| SETSTAT, SS_DCON
| SETSTAT, SS RELEASE

0OS-9 Technical Manual 360

Chapter 6: OS-9 System Calls

[

|_SETSTAT, SS_DCON
Send Signal When Data Carrier Detect Line Goes True (SCF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct ss_dcon_pb {
si gnal _code signal;

} ss_dcon_pb, *Ss_dcon_pb;

Description

When a modem receives a carrier, the Data Carrier Detect line becomes true.
SS_DCON sends a signal code when this happens. | _SETSTAT, SS_DCOFF sends a signal
when the line becomes false.

The driver is responsible for implementing this call.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

si gnal

The signal code to send.

Possible Errors
EOS_BPNUM

See Also
| SETSTAT, SS_DCOFF
| SETSTAT, SS RELEASE

0OS-9 Technical Manual 361

Chapter 6: OS-9 System Calls

|_SETSTAT, SS_DEVOPT
Set Device Path Options (PIPE, SBF, SCF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct ss_dopt_pb {
u_int dopt_size;
voi d *user_dopts;

} ss_dopt_pb, *Ss_dopt _pb;

Description

SS_DOPT sets the initial (default) device path options. These options initialize new
paths to the device.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

dopt _si ze

Specify the size of the options area to copy.

user _dopts
Point to the default options for the device.

Possible Errors
EOS_BPNUM

See Also

| _GETSTAT
| _SETSTAT

0OS-9 Technical Manual 362

Chapter 6: OS-9 System Calls

[

|_SETSTAT, SS_DSRTS
Disable RTS Line

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

This call does not use a substructure to set the status parameter block.

Description

SS_DSRTS disables the RTS line.

The driver is responsible for implementing this call.
Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Possible Errors
EOS_BPNUM

See Also
| _SETSTAT, SS_ENRTS

0OS-9 Technical Manual 363

Chapter 6: OS-9 System Calls

|_SETSTAT, SS_ENRTS
Enable RTS Line

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct ss_dcoff_pb {
si gnal _code signal;

} ss_dcoff_pb, *Ss_dcoff_pb;

Description
SS_ENRTS asserts the RTS line.

The driver is responsible for implementing this call.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

si gnal is the signal code to send.

Possible Errors
EOS_BPNUM

See Also
| SETSTAT, SS DSRTS

0OS-9 Technical Manual 364

Chapter 6: OS-9 System Calls

[

| SETSTAT, SS_ERASE
Erase Tape (SBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct ss_erase_pb {
u_int32 blks;

} ss_erase_pb, *Ss_erase_pb;

Description

SS_ERASE erases a portion of the tape. The amount of tape erased depends on the
hardware capabilities.

This is dependent on both the hardware and the driver.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

bl ks

Specify the number of blocks to erase. If bl ks is -1, SBF erases until the end-
of-tape is reached. If bl ks is positive, SBF erases the amount of tape equivalent
to that number of blocks.

Possible Errors
EOS_BPNUM

See Also
| SETSTAT

0OS-9 Technical Manual 365

Chapter 6: OS-9 System Calls

| SETSTAT, SS_FD
Write File Descriptor Sector (RBF, PCF, PIPE)

Headers
#i ncl ude <rbf. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

typedef struct ss_fd_pb {
Fd_stats fd_info;

} ss_fd_pb, *Ss_fd_pb;

Description

SS_FD changes the file descriptor sector data. The path must be open for write.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

fd_info

Point to the file descriptor’s buffer.

You can only change f d_gr oup, f d_owner, and the time stamps fd_at i e,
fd_ntine, and fd_uti me. These are the only fields written back to the disk.
These fields are defined in the fd_st at s structure in r bf . h. Only the super
user can change the file’s owner ID.

Possible Errors
EOS_BPNUM

See Also

| _GETSTAT
| _SETSTAT

0OS-9 Technical Manual 366

Chapter 6: OS-9 System Calls

[

| SETSTAT, SS_FILLBUFF
Fill Path Buffer With Data (SCF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
typedef struct ss_fillbuff_pb {
u_int32 size;
u_char *user_ buff;

} ss_fillbuff_pb, *Ss_fillbuff_pb;

Description

SS_FI LLBUFF fills the input path buffer with the data in buf fer.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

si ze

Specify the size of the buffer (amount of data to copy).

user _buf f
Point to the data buffer.

Possible Errors
EOS_BPNUM

See Also
| SETSTAT

0OS-9 Technical Manual 367

Chapter 6: OS-9 System Calls

| SETSTAT, SS_FLUSHMAP
Flush Cached Bit Map Information (RBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

Description

SS_FLUSHWAP flushes the cached bit map information for an RBF device. This
normally would only be performed after the bit map on the disk is changed by a
utility such as f or mat .

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Possible Errors
EOS_BPNUM

See Also
| SETSTAT

0OS-9 Technical Manual 368

Chapter 6: OS-9 System Calls

[

| SETSTAT, SS_HDLINK
Make Hard Link to Existing File (RBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct ss_link_pb {
u_char *link_pat h;

} ss_link_pb, *Ss_link_pb;

Description

SS_HDLI NK creates a new directory entry specified by | i nk_pat h. This directory entry
points to the file descriptor block of the open file specified by pat h in the | _SETSTAT
parameter block. SS_HDLI NK updates the pathlist pointer.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

link_path

Point to the new name for the directory entry.

Possible Errors
ECS_BPNUM
ECS_CEF
EQS_PNNF

See Also
| SETSTAT

0OS-9 Technical Manual 369

Chapter 6: OS-9 System Calls

| SETSTAT, SS_LOCK
Lock Out Record (RBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct ss_lock_pb {
u_int32 size;

} ss_lock_pb, *Ss_| ock_pb;

Description

SS_LOcK locks out a section of the file from the current file pointer position up to the
specified number of bytes.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

si ze

The size of the section to lockout. If si ze is zero, all locks are removed (record
lock, EOF lock, and file lock). If $ffffffff bytes are requested, the entire file is
locked out regardless of the file pointer’s location. This is a special type of file
lock that remains in effect until released by an SS_LOCK with si ze set to zero, a
read or write of zero bytes, or the file is closed.

Possible Errors
EOS_BPNUM

See Also
| SETSTAT

0OS-9 Technical Manual 370

Chapter 6: OS-9 System Calls

[

| SETSTAT, SS_LUOPT
Write Logical Unit Options (ALL)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct ss_luopt_pb {
u_int32 |uopt_size;
voi d *user_| uopts;
} ss_luopt_pb, *Ss_|uopt_pb;
Description

SS_LUOPT writes the logical unit options for a path to a buffer.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

| uopt _si ze

Specify the buffer size of the logical unit options area.

user _| uopts
Point to the logical unit options.
Possible Errors

EOS_BPNUM
EOS_BUF2SNVALL

See Also
| GETSTAT
| SETSTAT

0OS-9 Technical Manual 371

Chapter 6: OS-9 System Calls

| SETSTAT, SS_PATHOPT
Write Option Section of Path Descriptor (ALL)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct ss_popt_pb {
u_int popt_size;
voi d *user_popts;

} ss_popt_pb, *Ss_popt_pb;

Description

SS_PATHOPT writes the option section of the path descriptor from the status packet
pointed to by user _opt s. Typically, SS_PATHOPT sets the device operating parameters
(such as echo and auto line feed). This call is handled by the file managers, and only
copies values appropriate for user programs to change.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

popt _si ze

Specify the buffer size.

user _popts
Point to the options buffer.

Possible Errors
EOS_BPNUM
EOS_BUF2SMALL

See Also

| _GETSTAT
| _SETSTAT

0OS-9 Technical Manual 372

Chapter 6: OS-9 System Calls

[

I_SETSTAT, SS_RELEASE
Release Device (SCF, PIPE)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

Description

SS_RELEASE releases the device from any SS_SENDSI G, SS_DCON, or SS_DCOFF request
made by the calling process.

Attributes

Operating System: 0S-9

State: User, System, and I/O

Threads: Safe

Possible Errors
EOS_BPNUM

See Also

| SETSTAT, SS DCOFF

| SETSTAT, SS_DCON

| SETSTAT, SS SENDSI G

0OS-9 Technical Manual 373

Chapter 6: OS-9 System Calls

|_SETSTAT, SS_RENAME
Rename File (RBF, PIPE, SCF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct ss_rename_pb {
char *newnane;

} ss_rename_pb, *Ss_rename_pb;

Description

SS_RENAME changes the file name of the directory entry associated with the open
path. You cannot change a file’s name to that of a file already existing in a directory.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

newname

Point to the file’s new name.

Possible Errors
EOS_CEF

See Also
| SETSTAT

0OS-9 Technical Manual 374

Chapter 6: OS-9 System Calls

[

| SETSTAT, SS_RESET
Restore Head to Track Zero (RBF, SBF, PCF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

Description

For RBF and PCE, ss_RESET directs the disk head to track zero. It is used for
formatting and error recovery. For SBF, SS_RESET rewinds the tape.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Possible Errors
EOS_BPNUM

See Also
| SETSTAT

0OS-9 Technical Manual 375

Chapter 6: OS-9 System Calls

I_SETSTAT, SS_RETEN
Re-tension Pass on Tape Drive (SBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

Description

SS_RETEN performs a re-tension pass on the tape drive.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Possible Errors
EOS_BPNUM
EOS_NOTRDY

See Also
| SETSTAT

0OS-9 Technical Manual 376

Chapter 6: OS-9 System Calls

[

| SETSTAT, SS_RFM
Skip Tape Marks (SBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

typedef struct ss_rfmpb {
int32 cnt;

} ss_rfmpb, *Ss_rfm pb;
Description

SS_RFMskips the number of tape marks specified.

Parameters

o Specify the number of tape marks to skip. If cnt is negative, the tape is
rewound the specified number of marks.

Attributes

Operating System: 0S-9

State: User, System, and I/O

Threads: Safe

Possible Errors
EOS_BPNUM
EOS_NOTRDY

See Also
| SETSTAT

0OS-9 Technical Manual 377

Chapter 6: OS-9 System Calls

|_SETSTAT, SS_SENDSIG
Send Signal on Data Ready (SCF, PIPE)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct ss_sendsig_pb {
si gnal _code signal;

} ss_sendsig_pb, *Ss_sendsig_pb;

Description

SS_SENDSI Gsets up a signal to be sent to a process when an interactive device or
pipe has data ready. SS_SENDSI G must be reset each time the signal is sent. The
device or pipe is considered busy and returns an error if any read request arrives
before the signal is sent. Write requests to the device are allowed in this state.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

si gnal

The signal to send.

Possible Errors
ECS_BMODE
ECS_BPNUM
EQS_NOTRDY

See Also
| SETSTAT, SS RELEASE

0OS-9 Technical Manual 378

Chapter 6: OS-9 System Calls

[

| SETSTAT, SS_SIZE
Set File Size (RBF, PIPE, PCF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
t ypedef struct ss_size pb {
u_int32 filesize;

} ss_size_pb, *Ss_size_pb;

Description

SS_SI ZE sets the size of the file associated with the open path to the specified
filesize.

If the specified size is smaller than the current size, the data beyond the new end-of-
file is lost.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

filesize

The new size of the file in bytes.

Possible Errors
EOS_BPNUM

See Also
| SETSTAT

0OS-9 Technical Manual 379

Chapter 6: OS-9 System Calls

|_SETSTAT, SS_SKIP
Skip Blocks (SBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

t ypedef struct ss_skip_pb {
int32 bl ks;

} ss_skip_pb, *Ss_skip_pb;

Description

SS_SKi P skips the specified number of blocks.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

bl ks

Specify the number of blocks to skip. If bl ks is negative, the tape is rewound
the specified number of blocks.

Possible Errors
EOS_BPNUM

See Also
| SETSTAT

0OS-9 Technical Manual 380

Chapter 6: OS-9 System Calls

[

| SETSTAT, SS_SKIPEND
Skip to End of Tape (SBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

Description

SS_SKI PEND skips the tape to the end of data. This enables you to append data to
tapes on cartridge-type tape drives.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Possible Errors
EOS_BPNUM
EOS_NOTRDY

See Also
| SETSTAT

0OS-9 Technical Manual 381

Chapter 6: OS-9 System Calls

| SETSTAT, SS_TICKS
Wait Specified Number of Ticks for Record Release (RBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

t ypedef struct ss_ticks_pb {
u_int32 del ay;

} ss_ticks_pb, *Ss_ticks_pb;

Description:

Normally, if a read or write request is issued for part of a file locked out by another
user, RBF sleeps indefinitely until the conflict is removed. SS_TI CKS may be used to
return an error (EGS_LOCK) to the user program if the conflict still exists after the
specified number of ticks have elapsed.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

del ay

Specify the delay interval. The delay interval is used directly as a parameter to
RBF’s conflict sleep request.

Value Description

0 The process sleeps until the record is released. This is RBF’s default.
1 Returns an error if the record is not released immediately.

Other Any other value specifies number of system clock ticks to wait until the
conflict area is released. If the high order bit is set, the lower 31 bits
are converted from 1/256 second to ticks before sleeping. This allows
programmed delays to be independent of the system clock rate.

Possible Errors
EOS_BPNUM
EOS_LOCK

See Also
| SETSTAT

0OS-9 Technical Manual 382

Chapter 6: OS-9 System Calls

[

| SETSTAT, SS_ WFM
Write Tape Marks (SBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure

t ypedef struct ss_wimpb {
u_int32 cnt;

} ss_wimpb, *Ss_wfm pb;

Description

SS_WMwrites the specified number of tape marks at the current position.

Attributes
Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

cnt

Specify the number of tape marks to write.

Possible Errors
EOS_BPNUM

See Also
| SETSTAT

0OS-9 Technical Manual 383

Chapter 6: OS-9 System Calls

|_SETSTAT, SS_WTRACK
Write (Format) Track (RBF)

Headers
#i ncl ude <types. h>

#i ncl ude <sg_codes. h>

Parameter Block Structure
typedef struct ss_wtrack_pb {
voi d *trkbuf,
*ilvthl;
u_int32 track,
head,
interl eave;

} ss_wtrack_pb, *Ss_wtrack_pb;

Description

SS_WIRACK causes a format track operation (used with most floppy disks) to occur.
For hard or floppy disks with a format entire disk command, this formats the entire
media only when the track number and side number are both zero. The interleave
table contains byte entries of LBNs ordered to match the requested interleave offset.
The path descriptor should be used with the track and side numbers to determine
what density and how many blocks a certain track should have.

This function is implemented by the driver. Only super user programs are allowed
to issue this command.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

t r kbuf

Point to the track buffer.

ilvtbl
Point to the interleave table. The interleave table contains byte entries of
LBNs ordered to match the requested interleave offset.

track
The track number.

0OS-9 Technical Manual 384

Chapter 6: OS-9 System Calls

[

head
The side number.

interl eave
The interleave value.

Possible Errors
EOS_FMTERR
EOS_FORVAT

See Also
| SETSTAT

0OS-9 Technical Manual 385

Chapter 6: OS-9 System Calls

| SGETSTAT
GetStat Call Using System Path Number

Headers

#i ncl ude <types. h>
#i ncl ude <sg_codes. h>

Parameter Block Structure

typedef struct i_getstat_pb {
sysch cb;
path_id path;
u_initlé gs_code;
voi d *param bl k;
} i_getstat_pb, *1_getstat_pb;

Description

| _SGETSTAT is a wildcard call used to handle individual device parameters that are
not uniform on all devices or are highly hardware dependent. | _SGETSTAT provides
the same functionality as | _GETSTAT except the path number for | _SGETSTAT is
assumed to be a system path number and not a user path number.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

ch

The control block header.

path
The system path number.

gs_code
The get status code.

par am bl k
Point to the parameter block corresponding to the function being performed.
If the get status function does not require a parameter block par am bl k should
be NULL.

Possible Errors
EOS_UNKSVC

See Also
| _GETSTAT | SETSTAT

0OS-9 Technical Manual 386

Chapter 6: OS-9 System Calls

[

| TRANPN
Translate User Path to System Path

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct i_tranpn_pb {
sysch cb;
process_id proc_id;
path_i d user_path,
sys_path;
} i_tranpn_pb, *I_tranpn_pb;

Description

| _TRANPN translates a user path number to a system path number. System-state
processes use this call to access the user paths (standard I/O paths).

Attributes
Operating System: 0S-9

State: System and I/O
Threads: Safe
Parameters

cb

The control block header.

proc_id
Specify the process ID.

user _path
Specify the user path to translate.

sys_path
The mapped system path.

Possible Errors
EOS_BPNUM
EOS_| PRCI D

0OS-9 Technical Manual 387

Chapter 6: OS-9 System Calls

|_WRITE

Write Data to File or Device

Headers

#i ncl ude <types. h>

Parameter Block Structure

typedef struct i_wite_pb {
sysch cb;
path_id path;
u_char *buffer;
u_int32 count;
} i_wite_pb, *I_wite_pb;

Description

| _WRI TE outputs bytes to a file or device associated with the specified path number.
The path must have been opened or created in the write or update access modes.

Data is written to the file or device without processing or editing. If data is written
past the present end-of-file, the file is automatically expanded.

On RBF devices, any locked record is released.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

ch

The control block header.

path
The specified path number for the file or device.

buffer
Point to the data buffer.

count
The number of bytes written.
Possible Errors

ECS_BMODE
ECS_BPNUM
ECS WRI TE

See Also
| _CREATE | _OPEN | WRI TELN

0OS-9 Technical Manual 388

Chapter 6: OS-9 System Calls

| WRITELN
Write Line of Text with Editing

Headers

#i ncl ude <types. h>

Parameter Block Structure
typedef struct i_writln_pb {
sysch cb;
path_id path;
u_int32 count
u_char *buffer;

} i_writln_pb, *I_witln_pb;

Description

| _WRI TELN outputs bytes to a file or device associated with the specified path
number. The path must have been opened or created in write or update access
modes. | _WRI TELN writes data until it encounters a carriage return character or
count bytes. Line editing is also activated for character-oriented devices such as
terminals and printers. The line editing refers to functions such as auto line feed and

null padding at end-of-line.

The number of bytes actually written (returned in count) does not reflect any
additional bytes added by file managers or device drivers for device control. For
example, if SCF appends a line feed and nulls after carriage return characters, these

extra bytes are not counted.

On RBF devices, any locked record is released.

Attributes

Operating System: 0S-9

State: User, System, and I/O
Threads: Safe

Parameters

ch

The control block header.

path
The path number of the file or device.

buf fer
Point to the data buffer.

count
The number of bytes written.

0OS-9 Technical Manual

389

[

Chapter 6: OS-9 System Calls

Possible Errors
ECS_BMODE
ECS_BPNUM
ECS WRI TE

See Also

| CREATE
| _OPEN

| WRITE

The OS-9 Porting Guide (the SCF Drivers line editing section)

0OS-9 Technical Manual 390

O
29

Example Code

Use the examples in this section as guides for creating your own modules. These
examples should not be considered the most current software. Software for your
individual system may be different.

This appendix includes the following topics:

Sysgo

Signals: Example Program
Alarms: Example Program
Events: Example Program
Semaphores: Example Program
Usemaphores: Example Program
The Subroutine Library

Trap Handlers

391

Appendix A: Example Code

Sysgo

Sysgo can be configured as the first user process started after the system start-up
sequence. Its standard I/O is on the system console device.

Sysgo executes as follows:
1. Change to the ovDs execution directory on the system device.

2. Execute the start-up file (as a script) from the SYS directory on the root of the
system device.

Fork a shell on the system console.

4. Wait for that shell to terminate and then fork it again. Unless Sysgo dies, a shell
is always running on the system console.

The standard Sysgo module for disk systems cannot be used on non-disk systems,
but is easy to customize.

_asm("_sysedit: equ 2");

#i ncl ude <const. h>
#i ncl ude "defsfile"

/* gl obal variables and declarations */

u_int32 si ghandl er (), /* intercept handler */
os9fork(); /* used by os9exec */

voi d errexit(), [* error printing routine */
out 3dec(); [* print three decimal digits */

error_code lerrmsg(); [* print the error nessage */

char *cmdsdir = "CMVDS", /* the commands directory */
startup = "SYS/startup", / the startup script */
shell = "Shell"; / the shell command nane */

/* main - main program body */

voi d mai n(argc, argv)

regi ster u_int32 argc; /* nunmber of argunents */
regi ster u_char *argv[]; /* the argunents thensel ves */
{
register path_id stdi d_dup; /* duped stdin ID */
regi ster process_id shel | pi d; /* the process ID */
char *envp[1] ; /* environnment variables */
static char *args[] = { [* argv for forked shell */
"shel I ",
"-npxt\n",
NULL
b

0OS-9 Technical Manual 392

Appendix A: Example Code

[

i ntercept(sighandler); /* catch signals */
if (chxdir(cmdsdir) == ERROR)

errexit(errno, "can't change to commands directory");
if ((stdid_dup = dup(_fileno(stdin))) == ERROR)

errexit(errno, "can't duplicate standard i nput path");
close(_fileno(stdin)); /* close stdin path */
if (open(startup, S IREAD) == ERROR) {

lerrmsg(errno, "can't open startup due to error #");

dup(stdi d_dup); /* reset stdin path */
}
envp[0] = NULL; /* initialize environnents */
for (53) {
if (os9exec(os9fork, shell, args, envp, 0, 0, 3) == ERROR)
errexit(errno, "can't fork shell");
close(_fileno(stdin)); /* close old stdin */
dup(stdi d_dup); /* restore initial stdin */
wai t (0); /* wait for it to die */
args[1] = "\n"; /* no nore special options */
}
}
/* sighandler - ignore signals so we stay alive */

u_int 32 sighandl er(sigval)

register u_int32 sigval ; /* the signal */
{

return SUCCESS; /[* don't quit */
}

/* errexit - print error nessage and | eave */

void errexit(error, nseg)

regi ster error_code error; /* the error that caused us to quit */
regi ster char *neg; /* our explanation */
{

wite(_fileno(stdout), nsg, strlen(nsg));

exit(lerrmsg(error, " due to error #"));

/* lerrnmsg - print error nessage and nunber */

error_code lerrnsg(error, nseg)

regi ster error_code error; /* the error code */
regi ster char *ne(Q; /* the error nessage */

0OS-9 Technical Manual 393

Appendix A: Example Code

{
wite(_fileno(stdout), nsg, strlen(mnsg));
out 3dec(error >> 16);
wite(_fileno(stdout), ":", 1);
out 3dec(error & Oxffff);
witeln(_fileno(stdout), "\n", 1);

}

/* out3dec - output 3 decimal digits */

voi d out 3dec(num

register u_int32 num /* the nunmber to print */
{
register u_int32 i, /* a counter */
i /* divisor */
char buf [3] ; /* the buffer for the characters */

for (i =0, j =100; i < 3; i++, | /= 10)

buf[i] = (num/ j) + 0x30; /* convert to decinmal */
wite(_fileno(stdout), buf, 3);
}

Signals: Example Program

The following program demonstrates a subroutine that reads a \ n terminated string
from a terminal with a ten second timeout between the characters. This program
illustrates signal usage, but does not contain any error checking.

The _ss_ssig(path, value) library call notifies the operating system to send the
calling process a signal with signal code value when data is available on path. If
data is already pending, a signal is sent immediately. Otherwise, control is returned
to the calling program and the signal is sent when data arrives.

#i ncl ude <stdi o. h>

#i ncl ude <errno. h>

#define TRUE 1
#define FALSE 0O

#defi ne GOT_CHAR 2001
short dat ar eady; /* flag to show that signal was received */

/* sighand - signal handling routine for this process */

si ghand(si gnal)
register int signal;

0OS-9 Technical Manual 394

Appendix A: Example Code

[

{
switch(signal) {
/* "E or "C? */
case 2:
case 3:
_errmsg(0,"term nation signal received\n");
exit(signal);
/* Signal we’'re looking for? */
case GOI_CHAR:
dat aready = TRUE
br eak;
/* Anything el se? */
defaul t:
_errmsg(0, "unknown signal received ==> %\ n", signal);
exit(1);
}
}
mai n()
{

char buffer[256]; /* buffer for typed-in string */
i ntercept (sighand); /* set up signal handler */
printf("Enter a string:\n"); /* pronpt user */

/* call timed_read, returns TRUE if no tineout,
if (tined_read(buffer) == TRUE)

-1 if tinmeout */

printf("Entered string = %\n", buffer);
el se

printf("\nType faster next tine!\n");

int tined_read(buffer)
regi ster char *buffer;
{

char ¢ = '\0’; /* 1 character buffer for read */

short timeout = FALSE; /* flag to note tineout occurred on read */

int pos = 0; /* position holder in buffer */

/* loop until <return> entered or tinmeout occurs */
while ((¢ !=’'\n") && (timeout == FALSE)) {

_os_sigmask(1); /* mask signals for signal setup */

_ss_ssig(0,G0r_CHAR); /* set up to have signal sent */

sl eep(10); /* sleep for 10 seconds or until signal */

0OS-9 Technical Manual 395

Appendix A: Example Code

/* NOTE: we had to mask signals before doing _ss_ssig() so we did not get
the signal between the time we _ss_ssig()’'ed and went to sleep. */

/* Now we’'re awake, determ ne what happened */
i f (!dataready)
ti meout = TRUE;

el se {
read(O0, &c, 1); /* read the ready byte */
buf fer[pos] = c; /* put it in the buffer */
poOS++; /* nmove our position holder */

dat ar eady = FALSE; /* mark data as read */

}

/* loop has ternmi nated, figure out why */

if (tinmeout)

return -1; /* there was a tinmeout so return -1 */
el se {
buffer[pos] = '\0"; /* null terminate the string */

return TRUE;

Alarms: Example Program

The following example program can be compiled with this command:

$ cc deton.c

The complete source code for the example program is as follows:

| Psect Nane:deton.c |
| Function: denmonstrate alarmto tine out user input |

R e I */
@sysedit: equ 1
#i ncl ude <stdio. h>
#i ncl ude <errno. h>
#i ncl ude <const. h>
#define Tl ME(secs) ((secs << 8) | 0x80000000)
#def i ne PASSWORD "Ri pl ey"
/* ___ */
si ghand(si gcode)
{
/* just ignore the signal */
}
| * o o e mm e mmmmame—a */

0OS-9 Technical Manual 396

Appendix A: Example Code

mai n(argc, ar gv)

i nt argc;

char **argv;

{
register int secs = 0;
regi ster int alarm.id;

regi ster char *p;
regi ster char nane[80] ;

i nt er cept (si ghand);
while (--argc)

if (*(p = *(++argv)) =="-") {
if (*(++p) == '?")
printuse();
el se exit(_errnmsg(1l, "error: unknown option - '9%’'\n", *p));
} else if (secs == 0)

secs = atoi(p);
el se exit(_errnmsg(1, "unknown arg - \"9%\"\n", p));

secs = secs ? secs . 3;
printf("You have %l seconds to terninate self-destruct...\n", secs);

/* set alarmto tinme out user input */
if ((errno = _os_alarmset(&larmid, 2, TIME(secs))) != SUCCESS)
exit(_errnsg(errno, "can't set alarm- "));

f (gets(nanme) != 0)
_os_alarmdel ete(alarm.id); /*renpve alarm it didn't expire */
else printf("\n");

i f (_cnpnamnane, PASSWORD, 6) == 0)
printf("Have a nice day, %.\n", PASSWORD);
el se printf("ka BOOMn");

exit(0);
}
2 * [
/* printuse() - print help text to standard error */
printuse()
{

fprintf(stderr, "syntax: % [seconds]\n", _prgnane());
I/ng)gi.ntf(stderr, "function: denonstrate use of alarmto time out

fprintf(stderr, "options: none\n");

exit(0);
}

0OS-9 Technical Manual 397

[

Appendix A: Example Code

[

Events: Example Program

Step 1.
Step 2.
Step 3.
Step 4.

The following program uses a binary semaphore to illustrate the use of events. To
execute this example, complete the following steps:

Enter or copy the code into a file called senmal. c.

Copy senal. ¢ to sema2. c.

Compile both programs.

Run both programs using this command: semal & senma2.
The program completes the following tasks:

1. Creates an event with an initial value of 1 (free), a wait increment of - 1, and a
signal increment of 1.

Enters a loop that waits on the event.
Prints a message.
Sleeps.

Signals the event.

AN O

Unlinks itself from the event after ten times through the loop

7. Deletes the event from the system .

#i ncl ude <nodul e. h>
#i ncl ude <stdio. h>
#i ncl ude <nenory. h>

#i ncl ude <errno. h>

#i ncl ude <const. h>

voi d main()

{

char *ev_name = "semmevent"; /* nane of event to be used */

event _id ev_id; /* IDthat is used to access event */

u_intlé perm= MP_OMER _READ | MP_ONNER WRI TE; /* access perns for
event */

u_int 32 val ue; /* returned event value */

si gnal _code signal; /* returned signal value */

int count = O; /* loop counter */

/* create to link to the event */

if ((errno = _os_ev_link(ev_nane, &ev_id)) != SUCCESS)

if ((errno = _os_ev_creat(1,-1,permé&ev_id,ev_nane, 1, MEM ANY)) !=

SUCCESS)

exit(_errnsg(errno,"error getting access to event - "));

0OS-9 Technical Manual 398

Appendix A: Example Code

[

whil e (count++ < 10)

{
/* wait on the event */
if ((errno = _os_ev_wait(ev_id, &alue, &signal, 1, 1)) != SUCCESS)
exit(_errnsg(errno,"error waiting on the event - "));
_errnsg(0,"entering \"critical section \"\n");
/* simul ate doi ng sonething useful */
sl eep(2);
_errmsg(0,"exiting \"critical section \"\n");
/* signal event (leaving critical section) */
if ((errno = _os_ev_signal (ev_id, &alue, 0)) != SUCCESS)

exit(_errnsg(errno, "error signalling the event -"));

/* simul ate doi ng something other than critical section */
sl eep(1);

}

/[* unlink fromevent */

if ((errno = _os_ev_unlink(ev_id)) !'= SUCCESS)
exit(_errnsg(errno, "error unlinking fromevent - "));

/* delete event fromsystemif this was the | ast process to unlink from

it */
if ((errno = _os_ev_delete(ev_nane)) != SUCCESS && errno !=
EOCS_EVBUSY)
exit(_errnsg(errno, " error deleting event fromsystem- "));

_errnsg(0, termnating nornally\n");

0OS-9 Technical Manual 399

Appendix A: Example Code

[

Semaphores: Example Program

The following example shows how to use semaphores.
4i

4i
4
4i
4
4i

ncl ude <stdio. h>

ncl ude <stdlib. h>

ncl ude <types. h>
ncl ude <nodul e. h>

ncl ude <nodes. h>

ncl ude <semaphore. h>

#def i ne DMNAME “hpl aserjet”
semaphore *printer Senm;

error_code nmain(int, char **);
error_code printfile(char *);

error_code main(int argc, char **argv){
nmh_data *nodptr;
u_intlé attrev, typlang;
u_int32 perm
char *dm name = DVNAME;
error_code error;

/* prepare paraneters */
attrev = nkattrevs(MA_REENT, 0);
typl ang = nktypel ang(MI_DATA, M._ANY) ;
perm = MP_OMER_READ| MP_OMER_WRI TE| MP_GROUP_READ| MP_GROUP_WRI TE;
/* first try to create the nodule */
error = _os_dat nod(dm nane, sizeof (*printerSema),
&attrev, &t yplang, perm
(void**) &printerSemn, &nrodptr);

if(error){
/* then try to link to it */
error = _os_link(&lm nane, (nh_cont*)&modptr,
(voi d**) &pri nter Sema, &t yplang, &attrev);
if(error){

fprintf(stderr,”Couldn’t link or create! Error#%l\n”,error);

_os_exit(error);

0OS-9 Technical Manual 400

Appendix A: Example Code

/* initilize semaphore */
_os_sema_init(printerSenma);

/* compete for the resource */

_os_sema_p(printerSem);
/* print the file */
printfile(argv[1]);

/* rel ease the semaphore */
_os_sema_v(printerSem);

/* term nate semaphore */
_os_sema_tern(printerSena);
/* unlink the data nodul e */
_os_unlink(nodptr);

_os_exit(0);

#defi ne PRI NTER “/p”
#defi ne BUFSI ZE 256

error_code printfile(char *fil enane){

path_id prnpath, dskpath;
char buffer[BUFSI ZE] ;
u_int32 size;

error_code error;

/* open path to printer */

error = _os_open(PRI NTER, FAM WRI TE, &prnpath);

if(error '=0){
return(error);

/* open path to disk file */

error = _os_open(filename, FAM READ, &dskpath);

if(error !'= 0){
_os_cl ose(prnpath);
return(error);

0OS-9 Technical Manual

401

[

Appendix A: Example Code

/* until the last byte, read fromdisk and wite to printer */
do{

size = BUFSI ZE

error = _os_read(dskpath, buffer, &size);

if(error == 0 && size > 0){

_os_wite(prnpath, buffer, &size);

}

}whil e(size > 0);

_os_cl ose(dskpat h);
_os_cl ose(prnpath);
return(0);

Usemaphores: Example Program
The following example, usemadeno. ¢, shows how to use usemaphores.
}
#define _OPT_PROTOS
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
4i
4i

ncl ude <errno. h>

ncl ude <string. h>

"
.
.
.
"
.
.

ncl ude <cgl ob. h>

ncl ude <types. h>

ncl ude <nodul e. h>

ncl ude <nodes. h>

ncl ude <senaphore. h>

ncl ude <nenory. h>

ncl ude <const. h>

void main(int, char **);

error_code printfile(char *, char *);

void main(int argc, char **argv)
{

char *us_name

usenma_id us_id;

error_code err;

si gnal _code sig;

0OS-9 Technical Manual 402

Appendix A: Example Code

[

/* must supply printer nane and filename to print */
if (argc !'= 3) {
printf("usage: % <printer device> <filename>\n", _nodnane);

exi t (EXI T_FAI LURE) ;

}
us_nanme = argv[1];
if (*us_name++ !'="/") {
printf("%: printer device should begin with '/'"\n", _nodnane);

exi t (EXI T_FAI LURE) ;

}
if (strchr(us_name, '/") !'= NULL) {
printf("%: printer device should not contain path conmponents\n",
_nodnane) ;
exi t (EXI T_FAI LURE) ;
}

/* createl/link usemaphore */
err = _os_usenma_create(&us_id, us_name, 1, MP_WORLD ACCESS, MEM ANY);
if (err == EOS_EVBUSY)
err = _os_usena_link(&us_id, us_nane);
if (err !'= SUCCESS)
exit(_errnsg(err, "failed to create/link % usemaphore - ",
(u_int32)us_nane, 0, 0));
/* conpete for the resource */
for (;3) {
err = _os_usema_p(us_id, &sig);
if (err == EOS_USRST) {
err = _os_usena_reset(us_id);
if (err == SUCCESS)
br eak;
else if (err != EOCS_USNORST)
exit(_errnsg(err, "failed to reset % usemaphore - ",
(u_int32)us_nane, 0, 0));

}

else if (err == SUCCESS)
br eak;

el se

exit(_errnsg(err, "failed to wait for % usemaphore - ",
(u_int32)us_nane, 0, 0));

0OS-9 Technical Manual 403

Appendix A: Example Code

/* print the file */
err = printfile(argv[1l], argv[2]);
if (err !'= SUCCESS)
exit(_errnsg(err, "failed to print the file % on % - ",
(u_int32)argv[2], (u_int32)argv[1l], 0));

/* rel ease the semaphore */
err = _os_usena_v(us_id);
if (err !'= SUCCESS)
exit(_errnsg(err, "failed to release the % usemaphore - ",
(u_int32)us_nane, 0, 0));

/* term nate semaphore */

_os_usena_unlink(us_id);

exi t (EXI T_SUCCESS) ;

#defi ne BUFSI ZE 256
error_code printfile(char *printer, char *fil enane)
{

path_id prnpath, dskpath;

u_i nt 8 buffer[BUFSI ZE] ;

u_int32 size;

error_code error;

/* open path to printer */
error = _os_open(printer, FAMWRI TE, &prnpath);
if (error != SUCCESS)

return error;

/* open path to disk file */
error = _os_open(filename, FAM READ, &dskpath);
if (error != SUCCESS) {

_os_cl ose(prnpath);

return error,

0OS-9 Technical Manual 404

Appendix A: Example Code

[

/* until the last byte, read fromdisk and wite to printer */
do {
size = BUFSI ZE;
error = _os_read(dskpath, buffer, &size);
if (error == SUCCESS && size > 0)
_os_wite(prnpath, buffer, &size);
} while(size > 0);

_os_cl ose(dskpat h);

_os_cl ose(prnpath);

return SUCCESS;

The Subroutine Library

Subroutine Module

Below is an example of a subroutine module with two entrypoints. The subroutine
module consists of two files: the root psect file (in assembly language), and the
subroutine module function file (in C language).

root psect File

*substart.a: Generic psect for OS-9 subroutine nmodul es use <oskdefs.d>
Edition equ 1

Typ_Lang set (Sbrtn<<8)+Cbj ct
Attr_Rev set ((ReEnt+SupStat)<<8)+0
psect hcstart_a, Typ_Lang, Attr_Rev, Edi tion, O, 0, exec
* This portion lists the functions that exist in the subroutine nodul e.
* This is essentially an array of function pointers.
exec:
dc.| sub_init-Dbtext
dc.| sub_function_1-btext
dc.l O

ends

0OS-9 Technical Manual 405

Appendix A: Example Code

function File
/*

** This is a "C'" file that inplenments sub_init and ** sub_function_1.
Remenber to turn of stack checking ** (-r) and conpile with -bepg. 4 obal

variables are ** ok to access in this file, since the calling *
routine will set up your global pointer.
*/

error_code sub_init(int init_param

{
return SUCCESS;
}
error_code sub_function_21(u_int32 *ticks)
{
*ticks = ...;
return SUCCESS;
}

Application Call into a Subroutine Module

This section describes how an application calls into a subroutine library. It also
describes how to initialize a subroutine module and how to discontinue using it.

Initialization

Before you can begin using a subroutine library, you must first link to it using the
_os_slink call, as several values returned from _os_sl i nk must be stored. Below is
an example of how to link to a subroutine module and store the necessary returned
values.

#i ncl ude <nodul e. h>
#i ncl ude <types. h>
#i ncl ude <errno. h>
#i ncl ude <stdlib. h>

#i ncl ude <regs. h>

typedef struct {
u_int32 *exec; /* execution point for hcsub */
voi d *gp; /* global (static storage) pointer for hcsub */
mh_com *nod _head; /* nodul e header */
int subnum /* subroutine nunber (0..15) */

} SUB_DATA;

0OS-9 Technical Manual 406

Appendix A: Example Code

/* defines array index of subroutine nodule function */
#define SUB_INIT O
#define SUB_FUNCTION 1 1

/* this links to the subroutine nodule called 'nysub' and stores ** the
modul e head, execution offset, global pointer, and ** subroutine
nunber in the SUB_DATA structure.*/

error_code _sub_link(SUB_DATA *hc, int subnum
{
hc- >subnum = subnum

return _os_slink(subnum "nysub", (voi d**) &c- >exec, &c- >gp, &c-
>nmod_head) ;

}

/* this unlinks fromthe subroutine nmodule. Only call this when ** you
are all done using 'nysub'.

*/
error_code _sub_unlink(SUB_DATA *hc)
{

void *ptr;

error_code err;

err = _os_slink(hc->subnum NULL, &ptr, &tr, (nmh_cont*)&ptr);

return err,;

}

Calling into the subroutine nodule: The followi ng shows functions that
setup and call into the subroutine nmodule. These functions nmay be pl aced
into alibrary if several applications are to access the subroutine
nodul e.

/* This calls the "sub_init' entrypoint into the subroutine ** nodul e.
This will pass one paraneter to the init function: **'init_param. */

error_code _sub_init(SUB_DATA *hc, int init_param
{

error_code (*func)();

error_code err;

voi d *ol dst ati cs;

func = (error_code(*)())((u_i nt8*)hc->npd_head + hc->exec[SUB_IN T]);

0OS-9 Technical Manual 407

Appendix A: Example Code

ol dstatics = change_static(hc->gp);
err = func();

(voi d) change_static(oldstatics);

return err;

/*

** This calls into the "sub_function_1' entrypoint of the **
subroutine nodul e.

** This passes one paraneter: 'ticks'.
*/
error_code _sub_function_1(SUB_DATA *hc, u_int32 *ticks)
{
error_code (*func)(u_int32*);
error_code err;
voi d *ol dstati cs;

func = (error_code(*)(u_int32*))((u_int8*)hc->md_head + hc-
>exec[SUB_FUNCTI ON_1]);

ol dstatics = change_static(hc->gp);
err = func(ticks);

(void) change_static(oldstatics);

return err;

Trap Handlers

The following example trap handler consists of four files: trapc. a, t handl er. c,
tcall.c,and ttest.c.

trapc.a

nam OS- 9000 80386 Exanple System State Trap Handl er
use <oskdefs. d>

type equ (TrapLi b<<8)+j ct
revs equ ((ReEnt+Ghost +SupSt at) <<8)

0OS-9 Technical Manual 408

Appendix A: Example Code

[

edit equ 1
stack equ 1024

psect Trap_9000, type,revs,edit,stack, trap_entry
_minit: equ _trap_init * Trap Handler initialization entry point

_mterm equ _trap_term * Trap Handl er termination entry point

_sysedit: equ edit edition nunber of nodule

E I LLFNC equ $40 Il'legal trap handler function code error

vsect

_caller_eip: ds. I 1 caller’s return pc

_caller_statics: ds.| 1 caller’s static storage pointer (% bx)
ends

Rk b Sk S b o kR R S I R S R R I R R S o b R R R R Ik S

* trap_entry - trap handler entry point code.

*

* input: 0O(%esp) caller’'s static storage pointer (% bx)

* 4(%esp) = trap nunber
* 6(%sp) = function code
* 8(%sp) = return address

_trap_entry: push.l %ax save registers
push.| % s
stacked set 2*4
sub. | %ax, %eax sweep register
mov. w 6+st acked(%esp) , ¥%eax get function code
cnp. | trap_max(%bx), %eax function code in range?
jge.b _bad_trap branch if not
| ea trap_dspt abl e(%bx), %esi get trap dispatch table
mov. | (%si, %eax*4), %eax get routine address
mov. | %eax, 4+st acked(%esp) set routine address
pop.| %esi restore registers
pop.| %ax
pop.| _caller_statics(%bx) save caller’s static storage

* call trap handler function

0OS-9 Technical Manual 409

Appendix A: Example Code

ret

_bad_trap pop.| %si restore registers
pop.| %eax
| ea 2*4(%esp), Yesp pop stack
mov. | #E I LLFNC, %ax return error code

ret

ends

thandler.c

#i ncl ude <const. h>
/* pre-declare trap handl er functions */

int funcl(), func2(), func3();

/* initialize maxi mum function count variable */

int trap_max = 3;

/* initialize trap handl er dispatch table */
(* trap_dsptable[])() = {

funci,

func2,

func3

}s

/* _trap_init - trap handler initialization routine. */

_trap_init(trapnum nensize, statics)

register int trapnum /* trap handl er nunber */

regi ster int nensize; /* addtional trap handl er menory size */
register void *statics; /* caller’s static storage pointer */
{

return SUCCESS

/* _trap_term- trap handler termnation routine. */
_trap_term(trapnum statics)
register int trapnum /* trap handl er number */

register void *statics; /* caller’'s static storage pointer */

0OS-9 Technical Manual 410

Appendix A: Example Code

return

/* funcl -
funcl()
{

return

/* func2 -
func2()
{

return

/* func3 -
func3()
{

return

tcall.c

_asm ("

kkkkkkhkkkkk*k

SUCCESS,;

first trap handl er function. */

second trap handler function. */

third trap handl er function. */

kkkhkkhkkhkkkhkkkkhkkkkk*k

* tcall - macro definition

* tcall trap,function

*

tcall macro
dc. w $f ecd
dc.w\1
dc.w\2
ret
dc. b $00
endm
trap_funcl:
trap_func2:
trap_func3:

"),

0OS-9 Technical Manual

tcall 8,0
tcall 8,1
tcall 8,2

411

[

Appendix A: Example Code

[

ttest.c

#i ncl ude <stdio. h>

#i ncl ude <errno. h>

#i f ndef SUCCESS
#defi ne SUCCESS 0
#endi f

char *Ii bexec;

char *npdhead;

/* _trapinit - trap handler exception routine, install trap handler. */
_trapinit(trapnum funcode)
register int trapnum

regi ster int funcode;

{
register int err;
/* validate trap nunber */
if (trapnum!=8) return errno = ECS_| TRAP;
/* install the trap handler */
if ((err = _os_tlink(8, "trap9000", &l ibexec, &mwdhead, 0, 0)) !=
SUCCESS)
return errno = err;
return SUCCESS;
}
mai n()
{
printf("calling function %.\n", trap_funcl());
printf("calling function %.\n", trap_func2());
printf("calling function %.\n", trap_func3());
}

0OS-9 Technical Manual 412

0OS-9 Error Codes

O
29

This section lists OS-9 error codes in numerical order. The first three numbers
indicate a group of messages. Processor-specific error messages can also be added
with each processor family port. If this manual has not been updated to include the
messages for your processor, see the errnsg file in the 059000/ SRC/ SYS/ ERRVEG
directory. This appendix includes the following topics:

e Error Categories

e FErrors

413

Appendix B: OS-9 Error Codes

[

Error Categories

OS-9 error codes are grouped in the following categories:

Table B-1. OS-9 Error Code Categories

Range

Description

000:

000:

000:

000:

000:

000:

000:

000:

000:

000:

001:

006:

007:

008:

008:

020:

100:

102:

103:

104:
104:
104:

001

032

060

080

102

134

133

164

240

256

000

100

001

257

321

001

000

000

000

002
011
200

000:

000:

000:

000:

000:

000:

000:

000:

001:

006:

007:

008:

008:

020:

100:

102:

103:

104:
104:
104:

031

047

069

089

132

163

239

255

099

206

029

288

339

022

999

032

008

009
115
204

Miscellaneous Errors
Refer to Table B-2.

Ultra C Related Errors
Refer to Table B-3.

Miscellaneous Program Errors
Refer to Table B-4.

Miscellaneous OS Errors
Refer to Table B-5.

Reserved Errors
Refer to Table B-6.

Uninitialized User Trap (1-15) Error
Refer to Table B-6.

Operating System Errors

(usually generated by the kernel or file managers)

Refer to Table B-7.

I/O Errors (generated by device drivers or file managers)

Refer to Table B-8.

ANSI C math out-of-range error
Refer to Table B-9.

Compiler Errors

Refer to Table B-10.

RAVE Errors

Refer to Table B-11.

Internet Errors

Refer to Table B-12.

IEEE1394 Errors

Refer to Table B-13.

SVLAN Errors

Refer to Table B-14.

POSIX Errors

Refer to Table B-15.

PowerPC Processor-specific Errors
Refer to Table B-16.

MIPS Processor-specific Errors
Refer to Table B-17.

ARM Processor-specific Errors
Refer to Table B-18.

SuperH Processor-specific Errors
Refer to Table B-19.

0S-9 Technical Manual

414

Appendix B: OS-9 Error Codes

Errors

The following OS-9 error codes are defined in the errno. h file.

Table B-2. Miscellaneous Error Codes

Number

Name

Description

000:
000:
000:
000:

001
002
003
004

S Abort signal
S Intrpt signal
S HangUp si gnal

Process has aborted.

Keyboard quit (” E) typed.
Keyboard interrupt (~ C) typed.
Modem hangup.

Table B-3. Ultra C Error Codes

Number Name Description

000: 032 ECS_SI GABRT An abort signal was received.

000: 033 ECS_SI GFPE An erroneous math operation signal was received.

000: 034 ECS_SIG LL An illegal function image signal was received.

000: 035 ECS_SI GSEGV A segment violation (bus error) signal was
received.

000: 036 EOS_SI GTERM A termination request signal was received.

000: 037 ECS_SI GALRM An alarm time elapsed signal was received.

000: 038 ECS_SI GPI PE A write to pipe with no readers signal was
received.

000: 039 ECS_SI GUSRL A user signal #1 was received.

000: 040 EOS_SI GUSR2 A user signal #2 was received.

000: 041 ECS_SI GCHECK A machine check exception signal was received.

000: 042 ECS_SI GALI GN An alignment exception signal was received.

000: 043 ECS_SI G NST An instruction access exception signal was
received.

000: 044 ECS_SI GPRIV A privilege violation exception signal was received.

Table B-4. Miscellaneous Program Error Codes

Number Name Description

000: 064 EOS_I LLFNC lllegal function code.

000: 065 EOS_FMIERR ASCII to numeric format conversion error.
000: 066 ECS_NOTNUM Number not found.

000: 067 ECS_I LLARG lllegal argument.

000: 067 El NVAL Invalid argument (POSIX).

0S-9 Technical Manual

415

[

Appendix B: OS-9 Error Codes

Table B-5. Miscellaneous Operating System Error Codes

Number Name Description
000: 080 EOCS_MEM NUSE Memory already in use.
000: 081 ECS_UNKADDR Do not know how to translate.

Table B-6. Operating System Reserved Error Codes

Number Name Description

000: 102 ECS_BUSERR A bus trap error occurred.

000: 103 ECS_ADRERR An address trap error occurred.

000: 104 ECS_I LLINS An illegal instruction exception occurred.
000: 105 ECS_ZERDI V A zero divide exception occurred.

000: 106 ECS_CHK A chk or chk2 instruction trap occurred.
000: 107 ECS_TRAPV Atrapv ortrapcc instruction occurred.
000: 108 EOS_VI OLAT A privileged instruction violation occurred.
000: 109 ECS_TRACE An uninitialized Trace exception occurred.
000: 110 ECS_1010 A 1010 instruction exception occurred.
000: 111 ECsS 1111 A 1111 instruction exception occurred.
000: 112 EOCS_RESRVD An invalid exception occurred (#12).

000: 113 ECS_CPROTO Coprocessor protocol violation.

000: 114 EOS_STKFMT System stack frame format error.

000: 115 EOCS_UNI RQ An uninitialized interrupt occurred.

000: 116 An invalid exception occurred (#16 - #23).
000: 123

000: 124 Spurious Interrupt occurred.

000: 133 ECS_TRAP An uninitialized user TRAP (1-15) was executed.
000: 148 EOS_FPUNORDC Floating point coprocessor unordered condition.
000: 149 ECS_FPI NXACT Floating point coprocessor inexact result.
000: 150 EOS_FPDI VZER Floating point coprocessor divide by zero.
000: 151 ECS_FPUNDRFL Floating point coprocessor underflow.

000: 152 ECS_FPOPRERR Floating point coprocessor operand error.
000: 153 ECS_FPOVERFL Floating point coprocessor overflow.

000: 154 EGS_FPNOTNUM Floating point coprocessor not a number.
000: 155 ECS_FPUNDATA FP Unsupported data type.

000: 156 EOCS_MVUCONF PMMU Configuration exception.

000: 157 ECS_MWUI LLEG PMMU lllegal Operation exception.

000: 158 EOS_MVUUACCES PMMU Access Level Violation exception.
000: 159 An invalid exception occurred (#59 - #63).
000: 163

0S-9 Technical Manual

416

Appendix B: OS-9 Error Codes

Table B-7. OS-9-Specific Error Codes

Number Name Description

000: 164 ECS PERM T No permission.
A user process has attempted something that can only be
done by a super user.

000: 164 EACESS POSIX access denied.

000:165 ECS_DIFFER The arguments to F_CHKNAMdo not match.

000:166 ~ ECS_STKOVF System stack overflow.
F_ChkNamcan return this error if the pattern string is too
complex.

000:167 EOS_EVNTID Invalid or Illegal event ID number.

000: 168 EOS_EVNF Event name not found.

000:169 EOCS_EVBUSY The event is busy (and can’t be deleted).

000: 170 EOS_EVPARAM Impossible event parameters supplied.

000: 171 ECS_DAMAGE System data structures have been damaged.

000: 172 EOS_BADREV Module revision is incompatible with operating system.

000:173 EOS_PTHLOST Path became lost because network node was down.

000: 174 EOS_BADPART Bad (disk) partition data, or no active partition.

000:175 EOCS_HARDWARE Hardware damage has been detected.

000: 176 ECS_NOTME Not my device.
Error returned by an interrupt service routine when it is
polled for an interrupt its device did not cause.

000: 177 ECS_BSIG Fatal signal or no intercept routine.
Process received a fatal signal or did not have an
intercept function.

000: 178 EOCS_BUF2SMAL The buffer passed is too small.

L A routine was passed a buffer too small to hold the data

requested.

000: 179 ECs_I SuB lllegal/used subroutine module number.

000: 180 ECS_EVTFUL Event descriptor table full.

000:196 EOS_SYM.INK Symbolic link found in path list.
A link was attempted that would have caused recursion in
the file structure. You may not link to a directory
containing the real directory.

000: 197 ECS_EOQLI ST End of alias list.

000:198 ECS_LOCKID [llegal I/O lock identifier specified.
Usually this error occurs because a user has initialized a
device for use with more than one file manager.

000:199 ECS_NOLOCK Lock not obtained.

000: 200 EOCS_PTHFUL The user’s (or system) path table is full.

0S-9 Technical Manual

Usually this error occurs because a user program has
tried to open more than 32 1/O paths simultaneously. It
might also occur if the system path table becomes full
and can not be expanded.

417

Appendix B: OS-9 Error Codes

Table B-7. OS-9-Specific Error Codes (Continued)

Number Name Description

000: 201 ECS _BPNUM Bad pqth number.
An 1/O request has been made with an invalid path
number, or one not currently open.

000: 201 EBADF Bad file descriptor (POSIX).

000: 203 ECS_BMODE Bad I/O mode.
An attempt has been made to perform I/O on a path
incapable of supporting it. For example, writing to a path
open for input.

000: 204 ECS_DEVOVF The system'’s device table is full.
To install another device descriptor, one must first be
removed. The system init module can be changed to
allow more devices.

000: 205 ECS BM D Bad module ID.
An attempt has been made to load a module without a
valid module header.

000: 206 EOS_DIRFUL The module directory is full.
No more modules can be loaded or created unless one is
first unlinked. Although OS-9 automatically expands the
module directory when it becomes full, this error may be
returned because the there is not enough memory or the
memory is too fragmented to use.

000: 207 ECS MEMFUL Memory full.
This error is returned from the F_SRgMemservice call when
there is not enough system RAM to fulfill the request, or if
a process has already been allocated the maximum
number of blocks permitted by the system.

000: 208 ECS_UNKSVC Unknown service code.
An OS-9 call specified an unknown or invalid service
code, or a getstat/setstat call was made with an unknown
status code.

000: 209 EOCS_MIXDBSY The module is busy.
An attempt has been made to access (through F_Li nk) a
non-sharable module or non-sharable device already in
use.

000: 210 ECS_BPADDR Bad page address.
A memory de-allocation request has been given a buffer
pointer or size that is invalid, often because it references
memory that has not been allocated to the caller. The
system detects trouble when the buffer is returned to free
memory or if it is used as the destination of a data
transfer, such as | _Read.

000: 210 EFAULT Bad address (POSIX).

0S-9 Technical Manual

418

Appendix B: OS-9 Error Codes

Table B-7. OS-9-Specific Error Codes (Continued)

Number Name Description

000: 211 EOS_ECF The end of file has been reached.
An end of file condition was encountered on a read
operation.

000: 211 EPIPE Broken pipe (POSIX).

000: 212 EOS_VCTBSY IRQ vector is busy.
A device has tried to install itself in the IRQ table to
handle a vector claimed by another device.

000:213 ECS_NES Non-existing segment.
A search was made for a disk file segment that cannot be
found. The device could have a damaged file structure.

000: 214 EOCS_FNA File not accessible.
An attempt to open a file failed. The file was found, but is
inaccessible in the requested mode. Check the file’s
owner |ID and access attributes.

000: 214 EPERM Operation not permitted (POSIX).

000: 215 ECS_BPNAM Bad pathlist specified.
The specified pathlist has a syntax error, for example, an
illegal character.

000: 216 ECS_PNNF File not found.
The specified pathlist does not lead to any known file.

000:216 ENCENT No such file or directory (POSIX).

000: 217 ECS_SLF File segment list is full.
A file has become too fragmented to accommodate
further growth. This can occur on a nearly full disk, or one
whose free space has become scattered. The simplest
way to solve the problem is to copy the file, which should
move it into more contiguous space.

000:218 ECS_CEF Tried to create an existing file.
The specified filename already appears in the current
directory.

000: 218 EEXI ST File exists (POSIX).

000:219 ECS_IBA lllegal memory block specified.
The system was called to return memory, but was passed
an invalid pointer or block size.

000: 220 EOCS_HANGUP Telephone (modem) connection terminated.
This error is returned when an 1/O operation is attempted
on a path after irrecoverable line problems have
occurred, such as data carrier lost. It may be returned
from network devices, if the network connection is lost.

000: 221 ECS_M\F Module not found.

0S-9 Technical Manual

An F_Li nk call was made to a module not in memory.
Modules with corrupted or modified headers will not be
found.

419

[

Appendix B: OS-9 Error Codes

Table B-7. OS-9-Specific Error Codes (Continued)

Number Name Description

000: 222 EOS_NOCLK No system clock.
A request was made requiring a system clock, but one is
not running. For example, a timed F_SI eep call has been
requested, but the clock was not running. The seti me
utility is used to start the system clock.

000: 223 EOS_DELSP Deleting stack memory.
A process tried to return the memory containing it's
current stack pointer to the system. This is also known as
a suicide attempt.

000: 224 EOCS_I| PRCI D lllegal process ID.
A system call was passed a process ID to a non-existent or
inaccessible process.

000: 224 ESRCH No such process (POSIX).

000: 225 ECS_PARAM Bad parameter.
A system call was passed an illegal or impossible
parameter.

000: 226 ECS_NOCHLD No children.
An F_Wai t call was made with no child processes to wait
for.

000: 226 ECHI LD No child process (POSIX)

000: 227 EOS_I TRAP Invalid trap number.
An F_Tl i nk call was made with an invalid user trap code
or one already in use.

000: 228 EOCS PRCABT The process has been aborted.

000: 229 ECS_PRCFUL Too many active processes.
The system's process table is full. (Too many processes
are currently running.) The kernel automatically tries to
expand the process table, but returns this error if there is
not enough contiguous memory to do so.

000: 230 ECS_| FORKP lllegal fork parameter (not currently used)

000: 231 ECS_KWNMOD Known module.
A call was made to install a module that is already in
memory.

000:232 ECS_BMCRC Bad module CRC.
A CRC calculation is performed on every module when it
is installed in the system module directory. Only modules
with good CRCs are accepted. To generate a valid CRC
value in an intentionally altered module, use the fi xnod
utility.

000: 233 ECS_SI GNAL Signal error (replaces EGS_USI GR)

000: 234 EOS_NEMXD Non executable module.

000: 235 ECS_BNAM Bad name.

0S-9 Technical Manual

This error is returned by the F_Pr sNamsystem call if there
is a syntax error in the name.

420

Appendix B: OS-9 Error Codes

Table B-7. OS-9-Specific Error Codes (Continued)

Number Name Description

000: 236 ECS_BMHP Bad module header parity.

000: 237 EOS_NORAM No RAM avadilable.
A process has made an F_Memrequest to expand its
memory size. F_Memis no longer supported and F_Sr gvem
should be used. This error may also be returned if there is
not enough contiguous memory to process a fork request
or if a device driver does not specify any static storage
requirements.

000: 237 ENOVEM Insufficient RAM (POSIX).

000: 238 ECS_DNE The directory is not empty.
The directory attribute of a file cannot be removed unless
the directory is empty. This prevents accidental loss of
disk space.

000: 239 EGS_NOTASK No available task number.

All of the task numbers are currently in use and a request
was made to execute or create a new task. This error
could be returned by a system security module (SSM).

Table B-8. OS-9-Specific /O Error Codes

Number Name Description
000: 240 ECS_UNIT lllegal unit (drive) number.
000: 241 ECS_SECT Bad disk sector number.
000: 242 EOCS_ WP Media is write protected.
000: 243 EOS_CRC Bad module cyclic redundancy check value.
A CRC error occurred on read or write verity.
000: 244 EOS_READ Read error.
A data transfer error occurred during a disk read
operation, or an SCF (terminal) input buffer overrun.
000: 244 EIO POSIX 1/O error.
000: 245 ECS WRITE A hardware error occurred during a disk write operation.
000:246 EOS_NOTRDY Device not ready.
000: 246 ENODEV No such device (POSIX).
000: 246 ENXI O No such device or address (POSIX).
000: 247 ECS SEEK Seek error.
A physical seek operation was unable to find the specified
sector.
000: 248 EOS FULL Media has insufficient free space.
000: 249 ECS_BTYP Bad type (incompatable media).

0S-9 Technical Manual

A read operation was attempted on incompatible media.
For example, a read operation for a double-sided disk was
tried on a single-sided disk.

421

[

Appendix B: OS-9 Error Codes

Table B-8. OS-9-Specific I/O Error Codes (Continued)

Number Name Description

000: 250 EOCS_DEVBSY A non-sharable device is in use.
000: 250 EBUSY POSIX resource busy.

000: 251 EOCS DI DC Disk ID change.

RBF copies the disk ID number (from sector zero) into the
path descriptor of each path when it is opened. If it does
not agree with the driver's current disk 1D, this error is
returned. The driver updates the current disk ID only when
sector zero is read; it is possible to swap disks without RBF
noticing; this prevents this possibility.

000: 252 EOS_LOCK Another process is accessing the record. Normal record
locking routines wait for a record in use by another user to
become available. However, RBF may be told (through a
Set St at call) to wait for a finite amount of time. If the
time expires before the record becomes free, this is
returned.

000: 253 EOS_SHARE Non-sharable file/device is busy.
The requested file or device has the single user bit set or
was opened in single user mode and another process is
accessing the file. This is returned when an attempt is
made to delete an open file.

000:254 EOS_DEADLK |/O deadlock error, returned when two or more processes
are waiting for each other to release 1/O resources before
they can proceed. One must release control to enable the
other to proceed.

000: 255 EOS_FORMAT Device is format protected.

This error occurs when an attempt is made to format a
format-protected disk. A bit in the device descriptor may
be changed to allow the device to be formatted.
Formatting is usually inhibited on hard disks to prevent
accidental erasure.

Table B-9. OS-9-Specific ANSI C Error Codes

Number Name Description
000: 256 ERANGE ANSI C math out of range error.

Table B-10. OS-9-Specific Compiler Error Codes

Number Name Description
001: 000 ERANGE ANSI C Number out of range error.
001: 001 EDOM ANSI C Number Not in Domain.

0S-9 Technical Manual 422

Appendix B: OS-9 Error Codes

Table B-11. OS-9-Specific RAVE Error Codes

Number Name Description
006: 000 ECS_| LLPRM An illegal parameter was passed to a function.
006: 001 EOS_I DFULL Identifier (ID) table full.
An D table could not be expanded.
006: 002 ECS_BADSI Z Bad size error.
006: 003 EOCS RGFULL Region definition full (overflow).
The region is too complex.
006: 004 ECS_UNID Unallocated identifier number.
An attempt was made to use an ID number for an
object (drawmap, action region, etc.) that was not
allocated.
006: 005 EOCS_NULLRG Null region.
006: 006 EQS_BADMOD Bad drawmap/pattern mode.
An illegal mode was passed to create a drawmap or
pattern.
006: 007 EOS_NOFONT No active font.
No font was activated when an attempt to output text
was made.
006: 008 ECS_NODM No drawmap.
No character output drawmap was available when
attempting an _os_write or _os_witel n call.
006: 009 EOCS_NOPLAY No audio play in progress.
An attempt was made to stop an audio play when
none was in progress.
006: 010 EGS_ABORT Asynchronous operation aborted.
006: 011 ECs_QFULL Audio queue is full.
The driver queue could not handle the number of
soundmaps you were attempting to output.
006:012 ECS_BUSY Audio processor is busy.

Table B-12. OS-9-Specific Internet Error Codes

Number Name Description
007:001 EWOULDBLOCK I/O operation would block.
An operation was attempted that would cause a
process to block on a socket in non-blocking mode.
007:001 EAGAIN POSIX item temporarily available.
007: 002 El NPROGRESS I/O operation now in progress.

0S-9 Technical Manual

An operation taking a long time to complete was
performed, such as a connect () call, on a socket in
non-blocking mode.

423

[

Appendix B: OS-9 Error Codes

Table B-12. OS-9-Specific Internet Error Codes (Continued)

Number

Name

Description

007:

007:
007:

007:

007:

007:

007:

007:

007:
007:
007:
007:

007:

007:
007:

007:

007:

0S-9 Technical Manual

003

003
004

005

006

007

008

009

010
011
012
013

014

015

016

017

018

EALREADY

El NTR
EDESTADDRREQ

EMSGSI ZE

EPROTOTYPE

ENOPROTOOPT

EPROTONOCSUPPORT

ESCCKNOSUPPORT

EOPNOT SUPP
EPFNOSUPPORT
EAFNOSUPPORT
EADDRI NUSE

EADDRNOTAVAI L

ENETDOMN

ENETUNREACH

ENETRESET

ECONNABORTED

Operation already in progress.
An operation was attempted on a non-blocking object
that already had an operation in progress.

Interrupted function call (POSIX).

Destination address required.
The attempted socket operation requires a destination
address.

Message too long.
A message sent on a socket was larger than the
internal message buffer or some other network limit.

Protocol wrong type for socket.
A protocol was specified that does not support the
semantics of the socket type requested.

Bad protocol option.

A bad option or level was specified in a get sockopt ()
or set sockopt () call.

Protocol not supported.

The requested protocol is not available or not
configured for use.

Socket type not supported.

The requested socket type is not supported or not
configured for use.

Operation unsupported on socket.

Protocol family not supported.

Address family unsupported by protocol.

Address already in use.

Only one use of each address is normally permitted.
Wildcard use and connectionless communication are
the exceptions.

Cannot assign requested address.

Normally results when an attempt is made to create a
socket with an address not on the local machine.
Network is down.

Network is unreachable.

This is usually caused by network interface hardware
that is operational, but not physically connected to the
network. This error is also returned when the network
has no way to reach the destination address.
Network lost connection on reset.

The host crashed and rebooted.

Software caused connection abort.

The local (host) machine caused a connection abort.

424

Appendix B: OS-9 Error Codes

Table B-12. OS-9-Specific Internet Error Codes (Continued)

Number Name Description

007: 019 ECONNRESET Connection reset by peer.
A peer forcibly closed the connection. This normally
results from a loss of connection on the remote socket
due to a time out or reboot.

007:020 ENOBUFS No buffer space available.
A socket operation could not be performed because
the system lacked sufficient buffer space or queue was
full.

007:021 EI SCONN Socket is already connected.
The connection request was made for an already
connected socket. Sending a sendt o() call to an
already connected destination could cause this error.

007: 022 ENOTCONN Socket is not connected.
A request to send or received data was rejected
because the socket was not connected or no
destination was given for a datagram socket.

007: 023 ESHUTDOWN Cannot send after socket shutdown.
Additional data transmissions are not allowed after
the socket was shut down.

007: 024 ETOOVANYREFS Too many references.

007: 025 ETI MEDOUT Connection timed out.
A connect () orsend() request failed because the
connected peer did not properly respond after a set
period of time. The time out period depends on the
protocol used.

007:026 ECONNREFUSED Connection refused by target.
No connection could be established because the
target machine actively refused it. This usually results
from trying to connect to an inactive service on the
target host.

007:027 EBUFTOOSMALL Buffer too small for F_MBuf operation.
The specified buffer cannot be used to support
F_MBUF(SysMouf) calls.

007:028 ESMODEXI STS Socket module already attached.
An attach was requested of an already attached
socket.

007: 029 ENOTSOCK Path is not a socket.
A socket function was attempted on a path that is not
a socket.

007: 030 EHOSTUNREACH No route to host.

007: 031 EHOSTDOWN Host is down.

008: 001 EOS_LNKDWW Layer 1 link down (driver).

008: 002 EOS_CONN Connection error (driver).

008: 003 EOS_RXTHREAD Error in receive thread.

0S-9 Technical Manual

425

[

Appendix B: OS-9 Error Codes

Table B-12. OS-9-Specific Internet Error Codes (Continued)

Number Name Description

008: 004 ECS_ME Management entity error.

008: 005 ECS SAPI Unrecognized SAPI

008:006 ECS_TEI TEI not found.

008: 007 ECS MAX TEI Maximum number of TEI.

008: 008 ECS_TSTATE lllegal TEI state.

008:009 ECS_TEI_DENIED TE| request denied by network.

008: 010 EOCS_PRIM TI VE TEI request denied by network.

008: 011 ECS_L2IN Layer 2 error.

008:012 EOS_PEER BUSY Peer receiver busy condition

008: 013 ECS K Maximum number of outstanding | frames.

008:014 EOS_MAXCREF Maximum number of call references.

008:015 ECS_CREF Call reference does not exist.

008: 016 EOS_CALLPROG Error on call progress state.

008: 017 EOS_RCVR Receiver previously assigned

008:018 EOS_REQDENIED Request denied by far end.

008: 019 EOS_RXSTART Receive thread did not start.

008:020 EOS_NOSTACK Last driver on path’s stack.

008:021 EOCS_BTMSTK Attempt to pop last driver.

008: 022 ECS_NPBNULL Notify param block is null.

008:023 ECS_PPS_NOTFND Per path storage not found.

008: 024 ECS_STKFULL Path’s stack array is full.

008:025 EOCS_MBNOTINST Sysmbuf is not installed.

008: 026 EOS_TVRNTFND Timer not found.

008: 027 EOCS_GETI ME Get time error.

008: 028 EOS_TI MERI NT Timer interrupt.

008: 029 ECS RXMB_ No device entry in mbuf.
NCDEVENTRY

008: 030 EOS_PGM TBLBSY PSI/S| table is in use.

008:031 ECS_PGM LOVF Too many tables being read.

008: 032 ECS_PGM TBLNFND Table not found.

008: 033 EOS_PGM NFND Program not found.

008: 034 EOS_PGM_NOPLAY No program is currently playing.

008: 035 EOS_NODNDRVR No down driver.

0S-9 Technical Manual

426

Appendix B: OS-9 Error Codes

Table B-13. IEEE 1394 Error Codes

Number

Name

Description

008: 257

008: 258

008: 259
008: 260

008: 261
008: 262

008: 263

008: 264

008: 265

008: 266

008: 267

008: 268

008: 269

008: 270

008: 271

0S-9 Technical Manual

ECS_MAL394_BUSRESET

ECS_MAL394_NOI RM

ECS_MAL394_ NNF
ECS_MAL394_TI MEDOUT

ECS_MAL394_FAI LED
ECS_MAL394 BADSI ZE

ECS_MAL394_ ADDRI NUSE

ECS_MAL394_
ADDRNOTFND

ECS MAL394_
ADDRNOTAVAI L

ECS_MAL394
| NVCHANNEL

EOCS_MAL394_CHNLI NUSE

ECS_MAL394_NOCFGREG

ECS_MAL394_
CHNLNOTFND

ECS_MAL394_ CHNL_
STOPPED

ECS_MAL394 NO_
FREECHNL

Bus reset. An IEEE 1394 Bus is reset
whenever the cable is plugged or
unplugged or a device forces a bus reset
(such as when driver software is
initialized).

No Isochronous Resource Manager
found.

Requested node not found on the bus.
Timed out waiting for response. The
remote device is not present, does not
have memory mapped at the specified
location, or does not allow data transfer
to that location. This is a general error
indicating communication was not
successful.

Internal failure.

Bad size. The length of the packet (or
response) specified is either greater than
the maximum allowable payload or the
allocated Asynchronous transmit buffer
size.

Address in use. The address could not
be mapped because some portion of the
requested range has already been
mapped.

Address not found. The address is not
currently mapped, so it need not be
unmapped.

Address not available. The desired
address is not available for mapping.
Invalid channel. The channel value
specified is out of range.

Channel in use. The specific channel
requested is currently in use.

No free Isochronous configuration
registers.

Channel not found. The specified
channel was not found in the
isochronous configuration registers.
Channel is stopped. Operations on this
channel have been stopped by a call to
ms1394lIsochStop().

Channel deallocation failed.

427

[

Appendix B: OS-9 Error Codes

Table B-13. IEEE 1394 Error Codes (Continued)

Number

Name

Description

008:

008:

008:

008:

008:

008:

008:

008:

008:

008:

008:

008:

008:

008:

008:

008:
008:

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287
288

ECS_MAL394_NOXM T

ECS MAL394_
| NVTOPOVAP

ECS_MAL394_
| NVSPEEDVAP

ECS_MAL394 BUSMGR
EXI STS

ECS_MAL394_
BEBUSMGRFAI L

ECS_MAL394 BUSMGR
ALRDY

ECS_MAL394
ALLOCCHNLFAI L

ECS MAL394
FREECHNLFAI L

ECS_MAL394
CHNL FREEAL RDY

ECS MAL394_
ALLOCBWDTHFAI L

ECS_MAL394
FREEBWDTHFAI L

ECS_MAL394_
BANDW DTH_NOTAVAI L

ECS_MAL394_| NV_
BANDW DTH_HNDL

ECS_MAL394
NOBUFFERS_ATTCHD

EOS_MAL394_RCODE_
ERROR

ECS_MAL394 NOBUSMGR

ECS_MAL394
| NVACCESSTYPE

Could not transmit. Data may not be
transmitted because the FIFO is full or a
hardware condition is prohibiting
transmit.

Topology Map invalid. The Topology
Map on the Bus Manager is invalid.

Invalid speedmap.

Bus Manager already present. There is
already a Bus Manager present.

IRM refused request. The request to be
a bus manager failed because the
Isochronous Resource Manager did not
honor request.

Already the Bus Manager. The
requesting node is already the Bus
Manager.

Channel allocation failed.
Channel deallocation failed.

Channel already free. The specified
channel is already free.

Failed to allocate bandwidth.
Failed to deallocate bandwidth.

Bandwidth is not available. The amount
of bandwidth requested is not available.
The caller may reduce the desired
maxbytesPerFrame and try again or
retry after some delay.

Invalid handle. No bandwidth handle is
found with the specified handlelD.

No buffers attached. No buffers are
attached for the specified channel.
Remote response code was not
RCODE_COMPLETE. A response code
other than RCODE_COMPLETE was

received.
No Bus Manager found.

Invalid access type. No valid access type
was specified.

0S-9 Technical Manual

428

Appendix B: OS-9 Error Codes

Table B-14. SVLAN Error Codes

Number

Name

Description

008:
008:
008:

008:
008:
008:
008:
008:
008:
008:

008:

008:
008:

008:
008:
008:
008:
008:

008:

321
322
323

324
325
326
327
328
329
330

331

332
333

334
335
336
337
338

339

ECS_| NVALI D_BRI DGE
ECS | NVALI D_PORT
ECS_VTM NOT_STARTED

EOS_| NSUFFI Cl ENT_MEMORY
ECS_| NVALI D_MAC_ADDRESS
EOS_NO_LEARNI NG

ECS_| NVALI D_PORTMVAP
EOS_| NVALI D_VI D

ECS_| NVALI D_PORT_NUMBER
EOS_NO_TRANSFORVED VI D

ECS_| NVALI D_MAX_AGE

EOS_| NVALI D_FORWARD DELAY

ECS_| NVALI D_MAX_ADDRESS

EOS_| NVALI D_HELLO TI ME
ECS_| NVALI D_TI MEQUT
EOS_NO BRI DGE
ECS_NO_PORT
EOS_PORT_EXI STS

ECS_ENF

Bridge identifier is out of range.
Port is out of range.

The table manager has not been
started.

The buffer is too small for data.
Invalid MAC address specified.

Port does not support learning.

The specified portmap is invalid.
VLAN identifier value is out of range.
Port number is out of range.

No transformed VID has been
specified.

Maximum age value is out of range

and/or does not conform to the set
rules.

Forward delay is out of range.

Maximum address value is out of
range.

Hello time value is out of range.
Timeout value is out of range.

There is no such bridge.

There is no such port.

The specified port is already part of the
bridge.

BAT entry not found in table.

Table B-15. POSIX Error Codes

Number Name Description

020: 001 E2BI G Argument list too long.

020: 003 EBADMSG Bad message.

020: 004 ECANCELED Operation cancelled.

020: 005 EDEADLK Resource deadlock avoided.
020: 006 EFBI G File too big.

020: 007 El SDI R Is a directory.

020: 008 EMFI LE Too many process open files.
020: 009 EMLI NK Too many links.

020: 010 ENAMETOOLONG Filename too long.

020: 011 ENFI LE Too many system open files.
020: 012 ENCEXEC Exec format error.

0S-9 Technical Manual

429

Appendix B: OS-9 Error Codes

Table B-15. POSIX Error Codes (Continued)

Number Name Description

020: 013 ENOLCK No locks available.

020: 014 ENOSPC No space left on device.
020: 015 ENOSYS Function not implemented.
020: 016 ENOTDI R Not a directory.

020: 017 ENOTEMPTY Directory not empty.

020: 018 ENOTSUP Not supported.

020: 019 ENOTTY Bad I/O control operation.
020: 020 EROFS Read-only file system.
020: 021 ESPI PE Invalid seek.

020: 022 EXDEV Improper link.

Table B-16. OS-9-Specific PowerPC Error Codes

Number

Name

Description

100:
100:
100:
100:
100:
100:
100:
100:
100:
100:
100:

002
003
004
005
006
007
008
009
010
012
032

ECS_PPC_MACHCHK
ECS_PPC_DATAACC
ECS_PPC | NSTACC
ECS_PPC_EXTI NT
ECS_PPC ALI GN
ECS_PPC_PROGRAM
ECS_PPC_FPUUNAV
ECS_PPC_DEC
ECS_PPC_| OCONT
ECS_PPC_SYSCALL
ECS_PPC_TRACE

Machine check exception.
Data access exception.
Instruction access exception.
External interrupt.
Alignment exception.
Program exception.

FPU unavailable exception.
Decrementer exception.
I/O controller exception.
System call exception.
Trace exception.

Table B-17. OS-9-Specific MIPS Error Codes

Number

Name

Description

102:
102:
102:

102:
102:

102:
102:
102:

0S-9 Technical Manual

000
001
002

003
004

005
006
007

ECS_M PS_EXTI NT
EOS_M PS_MD
ECS M PS_TLBL

EOS_M PS_TLBS
ECS_M PS_ADEL

ECS_M PS_ADES
ECS M PS_| BE
ECS M PS_DBE

External interrupt.
TLB Modification exception.

TLB Miss exception (load or instruction
fetch).

TLB Miss exception (store).

Address Error exception (load or
instruction fetch).

Address Error exception (store).
Bus Error exception (instruction fetch).
Bus Error exception (load or store).

430

Appendix B: OS-9 Error Codes

Table B-17. OS-9-Specific MIPS Error Codes (Continued)

Number Name Description

102: 008 ECS_M PS_SYS SYSCALL exception.

102: 009 ECS M PS_BP Breakpoint exception.

102: 010 ECS_M PS_RI Reserved Instruction exception.
102: 011 ECS_M PS_CPU CoProcessor Unusable exception.
102: 012 ECS_M PS_OVF Arithmetic Overflow exception.
102: 013 ECS M PS TR TrCIp exception.

102: 023 ECS_M PS_WATCH Watch exception.

102: 032 ECS M PS_UTLB User State TLB Miss exception.

Table B-18. OS-9-Specific ARM Error Codes

Number Name Description

103: 001 ECS_ARM_UNDEF Undefined instruction exception.
103: 003 ECS_ARM PFABORT Instruction pre-fetch abort exception.
103: 004 ECS_ARM DTABORT Data abort exception.

103: 008 ECS_ARM ALI GN Alignment exception.

Table B-19. OS-9-Specific SuperH Error Codes

Number Name Description

104: 002 ECS _SH TLBM SSLD TLB miss on a load

104: 003 ECS_SH _TLBM SSST TLB miss on a store

104: 004 ECS SH I NI TPG Initial page write

104: 005 ECS_SH TLBPROTLD TLB protection violation on a load
104: 006 ECS_SH TLBPROTST TLB protection violation on a store
104: 007 EOCS_SH_ADDRLD Address error on a load

104: 008 EOS_SH_ADDRST Address error on a store

104: 009 ECS _SH FPU FPU exception

104: 011 ECS _SH TRAPA TRAPA instruction

104: 012 ECS_SH_RSRVI NSTR Reserved instruction

104: 013 ECS SH | LLSLOT Illegal slot instruction

104: 015 ECS_SH BRKPT User break point

104: 200 ECS_SH FPUI NEXACT FPU inexact error

104: 201 ECS_SH FPUUNDERFLOW FPU underflow error

104: 202 ECS SH FPUOVERFLOW FPU overflow error

104: 203 ECS_SH_FPUDI VI DEO FPU divide-by-zero error

104: 204 ECS_SH FPUI NVALI D FPU invalid error

0S-9 Technical Manual 431

[

Appendix B: OS-9 Error Codes

0S-9 Technical Manual 432

O

Index

29,

S ABCDTETFGH
Symbols

_os_sema_init()

semaphore initialization ¢
_os_sema_p()

semaphore

reservation S ¢

_os_sema_term()

semaphore terminate J¢
_os_sema_v()

semaphore release 9
_oscall() &8
_sliblink()

to unlink a subroutine library /7

_subcall
to call a subroutine library /2

A

A_ATIME 707

A_ATIME, F_ALARM
system-state alarms J7

A_CYCLE 702

A_CYCLE, F_ALARM
system-state alarms J7
user-state alarm S

A_DELET 707

A_DELET, F_ALARM
system-state alarms J7
user-state alarm S

A_RESET 704

A_RESET, F_ALARM
system-state alarms J7
user-state alarm S

A_SET 705

A_SET, F_ALARM
system-state alarms J7
user-state alarm S

access permission

change for module directory 725

accounting system
user 2975

acquire

conditional ownership of resource lock 94, 770

acquire lock
C example &0

check return value &7

J K LMNOPQRSTUVWXYZ

activate next process waiting to acquire lock J02

active process queue
insert process into 709
remove process 247
add device to IRQ table 229
alarms
A_ATIME 707
A_CYCLE 702
A_DELET 707
A_RESET 704
A_SET 705
cyclic 52
F_ALARM 99
call reference 96
flags
TH_DELPB 98
TH_SPOWN 9§
relative time

defined S5

remove pending request 5.2, S5, /07

reset

existing request 5.2, 55, 704

reset request /04
system state
defined and listed S5
time of day
defined S5
user state
defined and listed S22
alias
copy system alias list J49
alloc.h 52
allocate
process descriptor 706
resource lock descriptor 757
task 707
allow access to memory block 242
alternate module directory 27
anonymous pipes
unnamed 64

ARM
errors
list of 474
attach

433

0S-9 Technical Manual

TSABCDEFGHIJKLMNOPQRSTUVWXYZ

device J06

B

B_NVRAM 57
B_PARITY J7
B_ROM 57
B_USERRAM 7
bit map
flush cached information J6&
blocks
skip J80
SS_SKIP 780
break serial connection JS5&
breakpoints
defined 742
hard 747
soft /475

C
C_ADDR 774
C_DISDATA 774
C_DISINST 774
C_ENDATA 774
C_ENINST 774
C_FLDATA 772, 774
C_FLINST 772, 774
C_GETCCTL 773, 774
C_INVDATA 774
C_STODATA 774
cache
control 777, 773
disable
data 774
instruction 774
RBF caching 759
enable
data 774
instruction 774
RBF caching 759
F_CCTL 777
flush
data 772, 774
instruction /7.2, 774
get status information J2¥
invalidate data 774
invalidate instruction 774
SS_CACHE 759
SS_CSTATS 724
calculate parity of file descriptor 76
call system debugger 287
change

file name 74

434

module directory permissions 725
process’ current module directory 727
system global variables 254
working directory JO8
check
CRC 757
for deadlock situation 778
for use of I/O module %2
memory block’s accessibility 7.27
color codes 269
colored memory S0, 79
definition list 70
list 77, 40
command interpreter 7.7
compare names 726
Compiler errors 474
configuration module 40
contract data memory area 278
copy external memory 729
copy system alias list J49
CRC 76
check 757
F_CRC 757
F_SETCRC 257
F_VMODUL 2%
generate /57, 257

verify module 296
CRCCON 757
create

data module 754
device alias J05
directory 45
event /6.2, 764
module directory 257
new descriptor 757
new process 277, 214
new resource lock descriptor /9
path 5775

critical regions
locking /&

cyclic alarm 52

D

d_maxage 44, 268
d_minpty 44, 45, 268
d_tslice 44
data
modules
create /54
F_DATMOD 754
ready
send signal on 57§
SS_SENDSIG 7/&

SABCDEFGHIJKLMNOPQRSTUVWXYZT

data modules

creating 69
DBG_M_CONTROL 747
DBG_M_COUNT 742, 743
DBG_M_HARD 742, 745
DBG_M_INACTV 747
DBG_M_SOFT 742, 743
DBG_S_BRKPNT /44
DBG_S_CHAIN 744
DBG_S_CHILDSIG 744
DBG_S_CONTROL 744
DBG_S_EXCEPT 742, 744
DBG_S_EXIT 744
DBG_S_FINISH 744
DBG_S_PARENTSIG 744
DBG_S_WATCH 744
de-allocate process descriptor 249
deallocate process descriptor 747
debug mode 745
debugged program

debug modes 742

execute /42

exit /45

F_DEXEC 742

F_DEXIT 745

F_DFORK 746

F_DFORKM 748

fork process 746, 748
debugger

attach to a running process 776

call system debugger 2&7

F_SYSDBG 287
delete

event 766, 767

existing lock descriptor 779

existing module directory 740

file 775

pending alarm request 707
device

add to IRQ table 229

attach J06

close 777

F_IRQ 229

get

size of SCSI device J29
status J27

I_DETACH J76

I_GETSTAT 527

I_OPEN 5747

I_READ J50

I_READLN 752

I_SETSTAT 755

I_WRITE 5788

I_ WRITELN J&89
open path to 747
read
data from S50, 752
path options J26
release 777
remove 776
from IRQ table 229
return
name 525
type 727
set
path options J62
status JJ5
SS_DEVNAME J25
SS_DEVOPT J26
SS_DEVTYPE 527
SS_DOPT J62
SS_DSIZE 529
SS_RELEASE J/77
write data to J88, 7859
Device Alias
create J05
device descriptor
defined 77
device descriptors
pipe 64
device driver
defined 77
dexec.h 7475, 744
directory
access mode J45
attribute bits J45
attributes J45
change J08
permission 725
create J45
F_DELMDIR 740
F_FMOD 270
F_GETMDP 278
F_GMODDR 227
F_MKMDIR 2577
I MAKDIR 5745
mode bits 745
module directory 278
change current 727
create 257
delete 740
find entry 270
get copy of 227
remove /40
set alternate 708
disable

435

0S-9 Technical Manual

TSABCDEFGHIJKLMNOPQRSTUVWXYZ

data cache 774

instruction cache 774

RBF caching 759
drivers

resource locking /&
dump utility

using to examine

data modules 69

duplicate path 577
dynamic-sized data structures 29

E
enable
data cache 774
instruction cache 774
RBF caching 759
end of file
test for 577
EOS_SIGNAL
no lock acquired &7
erase tape J6J
error
EOS_SIGNAL
no lock acquired &7
error handling
F_STRAP 277
errors
list of
ARM 474
MIPS 474
PowerPC 474
trapping 27/
EV_ALLCLR S¢&, 752
EV_ALLSET 5&, 754
EV_ANYCLR ¢, 756
EV_ANYSET J¢&, 758
EV_CHANGE 5¢, 760
EV_CREAT 568, 67, 7162, 16¥
EV_DELET S&, 67, 766, 167
ev_id
EV_INFO field
ID 56
EV_INFO s¢, 768
ev_infostr structure S5
EV_LINK S&, 67, 770, 172
ev_link J6
EV_LNK 7.0, 772
ev_name
EV_INFO field
name S6
ev_namsz
EV_INFO field
name size 6

436

ev_owner S6

ev_perm S6

EV_PULSE s5&, 774

ev_quen S6

ev_quep SO

EV_READ 776

EV_SET 5&, 779
EV_SETAND J&, 787
EV_SETOR s¢&, 787
EV_SETR S&, 785
EV_SETXOR J&, 787
EV_SIGNL 5¢, 67, 7189, 797
ev_sinc S6

ev_str structure S5
EV_TSTSET 5&8, 797
EV_UNLNK 5¢, 67, 799, 200

ev_value J6

EV_WAIT S5&, 67, 777, 195, 795, 207, 203

EV_WAITR &, 205
ev_winc J6
events

create /6.2, 16¥4
delete 766, 767
EV_ALLCLR 752
EV_ALLSET 754
EV_ANYCLR 756
EV_ANYSET 758
EV_CHANGE 760
EV_CREAT 762, 764
EV_DELET 766, 7167
EV_INFO 768
EV_INFO fields S6
EV_LNK 770, 172
EV_PULSE 774
EV_READ 776
EV_SET 779
EV_SETAND /787
EV_SETOR 785
EV_SETR 785
EV_SETXOR 787
EV_SIGNL 789, 797
EV_TSTSET 797
EV_UNLNK 799, 200
EV_WAIT 777, 797, 7195, 207, 207
EV_WAITR 205
example
synchronization 7, 62
F_EVENT 750
F_EVENT call

using to synchronize resources S&, 67

link to existing 7.0, 772
read 776
remove event 766, 767

SABCDEFGHIJKLMNOPQRSTUVWXYZT

return information 768
set event variable 779, 787, 7187, 7187
relative 785

signal event occurrence 774, 779, 187, 187,

185,187, 189, 197
unlink 799, 200
using to coordinate
non-sharable resources 5.7, 62
wait and signal operations S
wait for event 752, 754, 756, 7558, 760,
177,193,195, 197, 201, 203
relative 205
events.h J¥, 67
examine system global variables 254
example code
alarms 796
events J98
semaphores 400
signals 794
tcall.c 477
thandler.c 470
trap handlers 408
trapc.a 408
ttest.c 472
exception jump table 29
execute
module 775
subroutine
after interval S
at intervals J7
at time S
exit debugged program 745
expand data memory area 278
extension modules 40
external memory
copy 729
F_CPYMEM 729

F
F_ACQLK 94

resource locking /&
F_ALARM
A_ATIME 707
A_CYCLE 702
A_DELET 707
A_RESET 704
A_SET 705
call reference 96
system state 96
user state 99
F_ALARM, A_ATIME
system-state alarms J7
F_ALARM, A_CYCLE

system-state alarms S
user-state alarm JS.2
F_ALARM, A_DELET
system-state alarms S
user-state alarm S
F_ALARM, A_RESET
system-state alarms S
user-state alarm S
F_ALARM, A_SET
system-state alarms S
user-state alarm S
F_ALLPRC 706
F_ALLTSK 707
F_ALTMDIR 708
F_APROC 709
F_CAQLK 94, 770
resource locking /&
F_CCTL 777
system state /775
user state /77
F_CHAIN 775
F_CHAINM 778
F_CHKMEM 727
F_CHMDIR 727
F_CLRSIGS 724
F_CMDPERM 725
F_CMPNAM 726
F_CONFIG 728
configure 728
F_CPYMEM 729
F_CRC 757
F_CRLK 9, 757
resource locking /&
F_DATMOD 754
F_DATTACH 756
attach Debugger to a Running Process 756
F_DDILK 758
F_DELLK /9, 779
resource locking /&
F_DELMDIR 740
F_DELTSK 747
F_DEXEC 742
F_DEXIT 745
F_DFORK 746
F_DFORKM 748
F_EVENT 750
EV_ALLCRL 752
EV_ALLSET 754
EV_ANYCLR 756
EV_ANYSET 758
EV_CHANGE 760
EV_CREAT 762, 764
EV_DELET 766, 7167

437

0S-9 Technical Manual

TSABCDEFGHIJKLMNOPQRSTUVWXYZ

EV_INFO 768
EV_LINK 770, 172
EV_PULSE 774
EV_READ 776
EV_SET 779
EV_SETAND 787
EV_SETOR 787
EV_SETR 785
EV_SETXOR 787
EV_SIGNL 789
EV_TSTSET 797, 200
EV_UNLNK 799, 200
EV_WAIT 797, 207, 207
EV_WAITR 205
F_EXIT 207
F_FINDPD 209
F_FMOD 270
F_FORK 277
F_FORKM 274
F_GBLKMP 276
F_GETMDP 278
F_GETSYS 279
F_GMODDR 227
F_GPRDBT 222
F_GPRDSC 227
F_ICPT 224
for installing signal intercept routine 49
F_ID 226
F_INITDATA 228
F_IRQ 229
F_LINK 257
F_LINKM 2575
F_LOAD 275
F_MEM 25§
F_MKMDIR 25/
F_MODADDR 259
F_MOVE 240
F_NPROC 247
F_PERMIT 242
F_PROTECT 244
F_PRSNAM 246
F_RELLK 248
resource locking /&
F_RETPD 249
F_RTE 250
F_SEMA
semaphore call J9
F_SEND 257
for signal communications 79
F_SETCRC 257
F_SETSYS 254
F_SIGLNG] 256
F_SIGMASK 25§

438

F_SIGRESET 260
signal reset 260
F_SIGRS 267
signal resize 267
F_SLEEP 267
F_SLINK 265
installing a subroutine library /2
F_SLINKM 26/
F_SPRIOR 268
F_SRQMEM 269
F_SRTMEM 277
F_SSPD 272
F_SSVC 273
F_STIME 275, 288
F_STRAP 277
F_SUSER 280
F_SYSDBG 287
F_SYSID 282
F_TIME 288
F_TLINK 289
to install trap handler /¢
F_TLINKM 297
F_UACCT 297
F_UNLINK 294
F_UNLOAD 295
F_VMODUL 2%
F_WAIT 298
F_WAITLK 502
FIFO buffer sychronization &7
resource locking /&
FIFO buffer resource
synchronize reader and writer &7
file
access modes J77
attribute bits 7775
attributes 575
change name J/4
close 777
create 577
delete J75
descriptor
calculate parity of 756
get
address 777
specified sector J74
read sector 72
SS_FD J52, 566
SS_FdAddr J57
SS_FDINFO J74
SS_PARITY J76
write sector J66
get
current position JJ5&

SABCDEFGHIJKLMNOPQRSTUVWXYZT

status 527
I_CREATE 575
I_DELETE 575
I_GETSTAT 527
I_OPEN 5747
I_READ 550
I_READLN 752
I_SETSTAT 755
I_WRITE 5788
I_WRITELN J§89
load module from 255
make hard link to 769
managers

defined 72

PCF 75

PIPEMAN 77, 64

RBF 77

SBF 75

SCF 77
mode bits 77
open path to 747
pointer

I_SEEK 754

reposition JS¥
read data from S50, 752
rename J/4
set

attributes 557

size 740, 379

status JS5
SS_ATTR 557
SS_HDLINK 569
SS_POS 778
SS_RENAME J /4
SS_SIZE 340, 379
write data to J88, 789

file managers
resource locking /&
fill path buffer with data 76/
find
module 279
module directory entry 270
process descriptor 209
fixmod 76
flush
cached bit map information J6&
data cache 772, 774
instruction cache 772, 774

fork process under control of debugger 746, 7458

fork_params structure 776, 779, 272
format
track J85¥

free memory pool 29

G

generate CRC 757, 255
get
cache status information J2¥
current file position JJ§
device status 727
file
descriptor block address /77
descriptor sector J74
status 27
free memory block map 276
I/O interface edition number 550
pointer to I/O process descriptor 770
process
descriptor copy 227
ID 226
size of SCSI device 729
system
date/time 288
global variable 279
user ID 226
Get Current File Position (RBF) 578
GetStat
using system path number J§6

ghost bit
see sticky bit. 69
global
path number table 27
variables 268
change 254
examine 279, 254
set 254
group ID 47
H

hang-up signal 49

header files
dexec.h 743, 74¥4
events.h J¥, 67
module.h 77, 78, 737
svctbl.h 274

I
/O 26,27
attach device J06
close path J77
descriptor 47
device list
get 779
I_GETDL 579

module

check for use of 742

0S-9 Technical Manual

TSABCDEFGHIJKLMNOPQRSTUVWXYZ

I_IODEL 542 get status
process descriptor pipes 6/
get pointer to J4/ I_GETSTAT, SS_SIZE
I_CIOPROC 570 get status
I_GIOPROC 547 pipes 67
terminate for exiting process J47 [_GIOPROC J47
I/O errors 474 [_IODEL 742
I_ALIAS 505 [_IOEXIT 745
I_ATTACH 506 I_IOFORK 744
I_CHDIR J08 I_MAKDIR 545
I_CIOPROC 570 I_OPEN 547
I_CLOSE 577 I_RDALST 749
I_CONFIG J72 I_READ 750
configure 572 [_READLN
I_CREATE 5775 difference between
I_DELETE 575 for pipes 66
I_DETACH 776 I_READLN 752
I.DUP 577 I_READ
I_GETDL 579 difference between
I_GETPD 520 for pipes 66
I_GETSTAT 527 I_SEEK S5
SS_COPYPD 275 I_SETSTAT 555
SS_CSTATS 524 SS_ATTR 757
SS_DEVNAME 725 SS_BREAK 758
SS_DEVOPT J26 SS_CACHE 759
SS_DEVTYPE 727 SS_DCOFF J60
SS_DSIZE 529 SS_DCON J67
SS_EDT 550 SS_DOPT J62
SS_EOF JJ57 SS_DSRTS 567
SS_FD 552 SS_ENRTS J64
SS_FdAddr 577 SS_ERASE 565
SS_FDINFO 5574 SS_FD J66

SS_LUOPT JJ75
SS_PARITY JJ56
SS_PATHOPT J57

SS_FILLBUFF 56/
SS_FLUSHMAP J6&
SS_HDLINK 769

SS_POS J78 SS_LOCK 770
SS_READY 779 SS_LUOPT 577
SS_SIZE 540 SS_PATHOPT 5.2
I_GETSTAT, SS_DEVOPT SS_RELEASE 5777
get status SS_RENAME J/¢
pipes 6/ SS_RESET J/75
I_GETSTAT, SS_FD SS_RETEN J/6
get status SS_RFM 577
pipes 67 SS_SENDSIG S8
set status SS_SIZE 579
pipes 68 SS_SKIP J&80
I_GETSTAT, SS_FDINFO SS_SKIPEND &7
get status SS_TICKS 782
pipes 6/ SS_WFM 587
I_GETSTAT, SS_LUOPT SS_WTRACK J84
get status [_SETSTAT, SS_ATTR
pipes 6.7 set status

I_GETSTAT, SS_PATHOPT

440

pipes 68

SABCDEFGHIJKLMNOPQRSTUVWXYZT

[_SETSTAT, SS_DEVOPT
set status
pipes 68
[_SETSTAT, SS_LUOPT
set status
pipes 68
[_SETSTAT, SS_PATHOPT
set status
pipes 68
[_SETSTAT, SS_RELEASE
set status
pipes 68
[_SETSTAT, SS_RENAME
set status
pipes 68
I_SETSTAT, SS_SENDSIG
set status
pipes 68
[_SETSTAT, SS_SIZE
set status
pipes 68
I_SGETSTAT 786
I_TRANPN J§87
I_WRITE 5788
[_WRITELN
difference between
for pipes 66
I_WRITELN J§89
[_WRITE
difference between
for pipes 66
ident 77
Init module 40
init.h 40
initialization table
example 2/
structure table 2/
svetbl 274
initialize
directory J45
process descriptor 706
resource lock descriptor 7357
static storage 228
insert process
in active process queue 709
install
system state trap module 2&9
user
trap handling module 297
intercept routine
install 224
Internet errors 474
interprocess communication

A_RESET 704
clear process signal queue 724
create new event /6.2, /6%
delete existing event 766, 767
link to existing event 7.0, 772
read event value without waiting 776
remove pending alarm request 707
reset
alarm
request 704
return event information 768
send signal 702, 704, 257
set
alarm 96
event variable 779, 787, 785, 787
relative event variable 785
signal intercept trap 224
signal event occurrence 774, 779, 187, 787,
785,187, 189, 197
unlink event 799, 200
wait for
bits to clear 752
events to occur 7354, 756, 7558, 760,
797,201, 207
relative event to occur 205
interrupt manipulation functions
add device to IRQ table 229
F_IRQ 229
F_RTE 250
remove device to IRQ table 229
return from interrupt exception 2S¢
invalidate
data cache 774
instruction cache 774
IOMAN 29
defined 7.2
IRQ
add device to table 229
F_IRQ 229

remove device from table 229

K
kernel 77, 27, 70, 79, 40, 44, 5%
lock structure definition /&

keyboard signal
abort 48, 257
interrupt 48, 257

L

limit process access

with resource locking /&
link

441

0S-9 Technical Manual

TSABCDEFGHIJKLMNOPQRSTUVWXYZ

count
for data modules 6¢
make hard link 769
subroutine libraries 265
to existing event 770, 172
to memory module 277, 257
to subroutine module 26”7
load module 275
lock
acquire
C example 80
activate next J02

conditionally acquire ownership 94, 770

create /57
deadlock situation 758
deallocate /9
delete descriptor 779
dynamic creation
C example /9
F_CRLK 9, 757
F_DDIK 758
F_DELLK 779
F_RELLK 248
F_WAITLK 702
FIFO buffer synchronization &7
identifier /9
initialize fields &0
out record 70
preallocate in resource &0/
queue,
using signals to &7
release ownership 248
request queueing /¢
signal sensitive &7
synchronize FIFO reader and writer &7
lock structure
definition /&
logical
unit
read options S5
SS_LUOPT JJ7s5, 377
write options J/7

M

m_access 78
m_attrev 20, 28
m_cbias 27
m_data 20
m_dbias 27
m_edit 20
m_excpt 20
m_exec 20, 40
m_idata 20

442

m_ident 27
m_idref 27
m_init 27
m_name 78
m_owner /8
m_parity 27
m_share 20
m_size /&
m_slice 44
m_stack 20
m_symbol 20
m_sync /8
m_sysrev /8
m_term 27
m_tylan 74, 79
make
hard link to existing file 769
new directory J45
Mask/Unmask Signals During Critical Code 25§
MEM_SHARED 5/
MEM_SYS 57
memlist 57
memory
assigning 29
avoiding fragmentation J¢
block
allow access to 242
check accessibility 727
F_GBLKMP 276
F_PERMIT 242
F_PROTECT 244
map 276
prevent access to 244
colored S0
definitions J¢
lists 40
copy external 729
F_CPYMEM 729
F_MEM 258
F_SRQMEM 269
fragmentation J¢
list 77, 79
management functions
allocate task 707
allow access to memory block 242
check memory block’s accessibility 727
deallocate process descriptor 747
F_ALLTSK 707
F_CHKMEM 727
F_DELTSK 747
F_MEM 258
F_PERMIT 242
F_PROTECT 244

SABCDEFGHIJKLMNOPQRSTUVWXYZT

prevent access to memory block 244
resize data memory areas 258
map 28
modules
ROMed 76
protection calls
deallocate process descriptor 747
F_DELTSK 747
F_PERMIT 242
F_PROTECT 244
required 2§
resize data area 278
system memory request 269
memory.h 77
mfree J0
mh_com structure 7/
MIPS
errors
list of #74
Miscellaneous errors 474
module
basic structure 7.5
check
CRC 2%
for use of J42
header parity 296
directory 27
alternate 27
change
permission 725
create 257
defined 27
delete 740
F_CMDPERM 7.5
F_DELMDIR 740
F_FMOD 270
F_GETMDP 278
F_GMODDR 227
F_MKMDIR 2577
find entry 270
get
alternate pathlist 278
copy of 227
current pathlist 278
remove /40
set alternate 708
exeute /75
F_LINK 257
F_LINKM 255
F_LOAD 255
F_MODADDR 279
F_SETCRC 2ZJ7
F_UNLINK 294

F_UNLOAD 295
F_VMODUL 2%
find 279
generate CRC 757, 257
[_IODEL 742
link to 257, 237
load 775, 275
manipulation functions
change
permissions of module directory 725
process’ current module directory 727
create
data module 754
new module directory J45
delete
existing module directory 740
execute
new primary module 778
find
module directory entry 270
module given pointer 279
initialize static storage 228
install
system state trap handling module 2§89
user trap handling module 297
set alternate working module directory 708
position-independent 74
re-entrant /4
unlink 294, 295
verify 296
module.h 77, 78, 757
move data 240
MT_SYSTEM 40

N
name

valid characters 246
non-sharable

coordinating resources

with events S/, 62

0]

open path 747

Operating system errors 474
OSoP2 25

P

p_spuimg J42
p_state 709

parse path name 246

path
access modes 777

443

0S-9 Technical Manual

TSABCDEFGHIJKLMNOPQRSTUVWXYZ

attributes J77
close 777
create path to file 577
descriptor
copy contents 527
find J20
I_GETPD J20
read option section JJ/
SS_PATHOPT J57, 372
write option section J/2
duplicate 777
F_PRSNAM 246
fill buffer with data 767
I.DUP 577
I_OPEN 5747
I_TRANPN 587
open J47
options
set 762
SS_DOPT J62
parse name 246
SS_FILLBUFF 56/
terminate 577
translate user to system J&/
PC file manager 75
PCF 75
permissions
change module directory 725
pipe file manager 77, 64
pipelines
process communications
shell 64
PIPEMAN 77, 64
status codes
listed 67
pipes 77
closing 6/
creating 65
device descriptors 64
directories 68
named 64
opening
explanation 65
returning data from 66
unnamed 64
writing data 6/
PowerPC errors
list of #74
prevent access to memory block 244
priority
F_SPRIOR 268
set 268
proc_id 70

444

process 44

active 45
clear process signal 724
create 277, 274
data area 47
descriptor 47
allocate 706
de-allocate 249
deallocate 747
F_DELTSK 747
F_FINDPD 209
F_GPRDBT 222
F_GPRDSC 227
F_RETPD 249
find 209
get
copy of 227
table 222
pointer to 770, 747
/0 570
I_GIOPROC 5747
initialize 706
return resources /47
end 207
ensure protection hardware is ready 707
F_DFORK 746
F_DFORKM 748
F_EXIT 207
F_FORK 277
F_FORKM 274
F_SEND 257
F_SPRIOR 268
F_SSPD 272
[_IOEXIT 545
I_IOFORK 544
ID 42, 226
inactive 47
insert in active process queue 709
insert prodess in active process queue 709
manipulation functions
create new functions 277
create new process 2 /4
deallocate process descriptor 249
F_APROC 709
F_CHAIN 775
F_DFORK 746
F_DFORKM 748, 274
F_FINDPD 209
F_FORK 277
F_GPRDBT 222
F_GPRDSC 227
F_ID 226
F_NPROC 247

SABCDEFGHIJKLMNOPQRSTUVWXYZT

F_RETPD 249

F_SPRIOR 268

F_SSPD 272

F_WAIT 298

find process descriptor 209

fork process under control of debugger
146, 148

get

copy of process descriptor block table

222
process descriptor copy 227
process ID/user ID 226
insert process in active process queue 709
load and execute module 775
set process priority 268
start next process 24/
suspend process 277
wait for child process to terminate 29§
memory area 42
F_DFORK 746
F_DFORKM 748
F_EXIT 207
F_FORK 277
F_FORKM 274
F_NPROC 24/
F_SEND 257
F_SSPD 705,272
I_IOEXIT 747
I_IOFORK 744
priority 268
scheduling 709
priority 268
ready for execution 47
scheduling 44
send signal to 257
set
priority 268
up /O 544
start next process 24/
state
active 45
event 47
sleeping 47
suspended 47
waiting 47
states 47
stop J45
suspend 272
terminate 42, 207
/O 747
wait for child to terminate 298

process queueing &4
protect critical section of code &7

Put Calling Process to Sleep 267

Q

queue
active process
insert process /09
clear process signal 724
queue a process &

R

random block file manager 7.7
RAVE errors 474
RBF 77
read
data S50
device path options 726
event value 776
file descriptor sector J5.2
logical unit options J75
path descriptor option section J5”
record
lock out 70
SS_LOCK 770
SS_TICKS 582
wait for release J§2
release
device 577
ownership of resource lock 24§
remove
device J76
from IRQ table 229
event information 766, 767
pending alarm request S22, S7, 707
rename file 574
repostion logical file pointer 754
reset
alarm request 52, S5, 704
resize
data memory area 258
resource lock
acquire
C example &0
activate J02
conditionally acquire ownership 94, 770
create /57
deadlock situation 758
delete descriptor /9, 779
dynamic creation
C example /9
F_CRLK 9, 757
F_DDIK 758
F_DELLK 759

445

0S-9 Technical Manual

TSABCDEFGHIJKLMNOPQRSTUVWXYZ

F_RELLK 24§
F_WAITLK 502

FIFO buffer synchronization &7
for creating file managers/drivers /&
initialize fields 80
preallocate in resource &0
release ownership 248

synchronize FIFO buffer reader and writer &7

restore head to track zero 775
retension pass on tape drive 56
return
device
name 7525
type 727
event information 768
from interrupt exception 2S¢/
system
identification 282
Return System Memory 277
RTS line
disable J67
enable J64

S
S_HANGUP 257
S_IAPPEND 577, 745
S_ICONTIG 577, 745
S_IEXCL J77, 745
S_IEXEC J09, 7713, 345, 347
S_IFDIR 547
S_IGEXEC 7773, 745
S_IGREAD J775, 345
S_IGWRITE 57775, 745
S_INT 257
S_IOEXEC J77, 745
S_IOREAD 5775, 745
S_IOWRITE 577, 745
S_IREAD 509, 773, 345, 347
S_ISHARE 7775, 345, 347
S_ISIZE 7775, 345
S_ITRUNC 577, 545
S_IWRITE J09, 573, 345, 347
S_KILL 257
S_QUIT 257
S_WAKE 257
save utility

using to save to disk

data module 69

SBF 77
SCF 77
SCSI device

get size of 529

semaphore.h

446

structure 60

semaphores

acquiring access 60
application example 59
binary event synchronization S¢
defined ¢
example code 400
header file structure 60
initialization
_os_sema_init() S ¢
releasing
_os_sema_v() J¢
releasing access 60

reservation
_os_sema_p() J¢

states 60

structure definition 60

terminate

_os_sema_term() J¢

send signal

after specified time interval J2
at specific time J2
at specified time intervals J2, 702

on data ready J/8
to another process 257

sequential block file manager 7.7
sequential character file manager 7.7
service request codes

range of valid 277

service request table initialization 277

set

alternate working module directory 708
device
path options J62
status JS5S
event variable 779, 787, 787, 7187
file
attributes S5/
size 740, 379
status JS5S
process priority 268
relative event variable 785
system
date/time 275
global variables 254
up I/O for process J44
up signal intercept trap 224
user ID number 280

SHARED 57
shell 77

signal

clear queue 724
codes 257

SABCDEFGHIJKLMNOPQRSTUVWXYZT

communications
using F_SEND ¢
event occurrence /74, 179, 187, 7187, 785,
187,189, 197
F_SEND 257
for events
defined J/
for lock queuing &7
handler
syntax 225
hang-up 49, 257
intercept routine installing
using F_ICPT 49
keyboard
abort 48, 257
interrupt 48, 257
remove /24
reset
F_SIGRESET 260
resize
F_SIGRS 267
S_HANGUP 257
S_INT 257
S_KILL 257
S_QUIT 257
S_WAKE 257
send
after specified time S22, 705
at specific time 2
at specified time 52, 707
at specified time intervals 702
on data ready J/8
to another process 257
when DCD line goes false 760
when DCD line goes true J67
sensitive locks &7
set mask value
return on stack image
F_SIGLNG] 256
SS_SENDSIG J/&
system abort 257
unconditional system abort 4§
wake up process 257
wake-up 48
skip
blocks F80
tape marks 57/
to end of tape J&7
software interrupts 4&
SS_ATTR 557
SS_BREAK J75&
SS_CACHE /59
SS_COPYPD 5275

SS_CSTATS 724
SS_DCOFF 560
SS_DCON 567
SS_DEVNAME 725
SS_DEVOPT J26
SS_DEVTYPE 527
SS_DOPT J62
SS_DSIZE 729
SS_DSRTS 57675
SS_EDT J50
SS_ENRTS J64
SS_EOF 557
get status
pipes 6/
SS_ERASE 565
SS_FD 772, 766
SS_FdAddr 757
SS_FDINFO J74
SS_FILLBUFF 567
SS_FLUSHMAP 568
SS_HDLINK 69
SS_LOCK 770
SS_LUOPT 555, 577
SS_OPT 67
SS_PARITY J76
SS_PATHOPT 557, 3572
SS_POS 78
SS_READY 779
get status
pipes 6/
SS_RELEA 6&
SS_RELEASE 5777
SS_RENAME 774
SS_RESET 575
SS_RETEN 776
SS_RFM 577
SS_SENDSIG 7/8
SS_SIZE 67, 68, 340, 379
SS_SKIP 780
SS_SKIPEND 7&7
SS_SSIG 68
SS_TICKS 582
SS_WFM 587
SS_WTRACK 784
standard I/O functions
attach new device to system J06
change working directory J08
check for use of /O module J42
close path to file/device 577
copy system alias list 749
create
device alias J05
path to new file 775

447

0S-9 Technical Manual

delete file J75
duplicate path 577
get

pointer to I/O process descriptor J70, 747

system I/O device list head pointer 779
I_ALIAS 505
I_ATTACH 506
I_CHDIR J08
I_CIOPROC 770
I_CLOSE 577
I_CREATE 575
I_DELETE 575
I_DETACH 776
I.DUP 577
I_GETDL 779
I_GIOPROC 547
I_IODEL 742
I_IOEXIT 747
I_IOFORK 5744
I_MAKDIR 545
I_OPEN 5747
I_RDALST 549
I_READ 750
I_READLN 752
I_WRITE 5788
I_WRITELN J§89
make new directory J45
open path to file or device 747
read
data from file or device J50
text line with editing 752
remove device from system 576
set up I/O for new process 44
terminate I/O for exiting process J47
write
data to file/device 788
line of text with editing J§9

start next process 24/
static storage

F_INITDATA 228
initialize 228

status functions

break serial connection J5&

calculate parity of file descriptor J76
copy contents of path descriptor 7275
disable RBF caching 759

enable RBF caching 759

erase tape J6J5

examine system global variable 279, 254
F_GETSYS 279

F_SETSYS 254

fill path buffer with data 76/

flush cached bit map information J6&

448

TSABCDEFGHIJKLMNOPQRSTUVWXYZ

get
cache status information J2¥
current file position JJ7&
file descriptor for open file 777
file/device status 727
I/O interface edition number S50
size of SCSI devices 729
specified file descriptor sector 774
GetStat call using system path number J86
I_GETSTAT 527
I_SETSTAT 5755
I_SGETSTAT 5786
lock out record 570
make hard link to existing file 769
read
device path options 726
file descriptor sector J5.2
logical unit options J75
path descriptor option section J5”
release device 577
rename file 774
restore head to track zero 575
retension pass on tape drive J/6
return

device
name J25
type 727
send

signal on data ready J/§
signal when DCD liine goes
false J60
true J67

wait for record release 787
set

device path options J67

file attributes S5

file size 740, 379

file/device status S5

0S-9 system global variables 25¥
skip

blocks J80

tape marks 577

to end of tape J&7
SS_ATTR J57
SS_BREAK 758
SS_CACHE 759
SS_COPYPD 527
SS_CSTATS 524
SS_DCOFF 560
SS_DCON 567
SS_DEVNAME 725
SS_DEVOPT J26
SS_DEVTYPE 527

SABCDEFGHIJKLMNOPQRSTUVWXYZT

SS_DOPT JS62
SS_DSIZE 529
SS_EDT 750
SS_EOF J57
SS_ERASE 565
SS_FD 772, 766
SS_FdAddr 777
SS_FILLBUEFF J6.7
SS_FLUSHMAP 568
SS_HDLINK J69
SS_LOCK J70
SS_LUOPT 755, 577
SS_PARITY JJ76
SS_PATHOPT 557, 772
SS_POS J78
SS_READY 759
SS_RELEASE 577
SS_RENAME J /4
SS_RESET 575
SS_RETEN J/6
SS_RFM 577
SS_SENDSIG 578
SS_SIZE 540, 379
SS_SKIP S50
SS_SKIPEND 787
SS_TICKS 782
SS_WEM 587
SS_WTRACK S84
test for
data ready J58
end of file 777
write
file descriptor sector J66
logical unit options /7, 772
tape marks 787
track S84
sticky module 20, 28
setting link count 69
structures
ev_infostr S5
ev_str S5
fork_params 776, 779, 272
svctbl 274
subroutine
execute
after interval S5
at intervals S5
at time S
F_SLINKM 267
library /2
calling with _subcall /2
creating /7
installing /2

terminating /.
link to 267
subroutine libraries
link 265
suspend process 27
with F_WAITLK &5
svctbl structure 274
svctblL.h 274
Symbols
F_CRLK /9
F_DELLK /¢
symbols
F_WAITLK
FIFO buffer synchronization 87
sysboot 77
sysglob.h 29, 47
Sysgo S92
system
debugger
call 287
F_SYSDBG 287
F_STIME 275
F_SYSID 282
F_TIME 288
functions of 24
get date/time 288
global
area 29
variables
change 254
examine 279, 254
F_GETSYS 279
F_SETSYS 254
set 254
memory request 269
path numbers 27
remove device table entry 776
return identification 2§87
set date/time 275
state 24
advantages 24
installing routines 25
system-state
alarms
defined and listed J7
systype.des 40
systype.h J0

T
tape
erase J65
retension 76
skip

449

0S-9 Technical Manual

TSABCDEFGHIJKLMNOPQRSTUVWXYZ

tape marks 57/
to end J87
SS_ERASE 565
SS_RETEN 776
SS_RFM 577
SS_SKIPEND 5§87
SS_WEFM 5875
write marks J&7
task 44
allocate 707
switching 44
pre-emptive 44
system global variables 44
variables affecting 268
tcall
dispatching /5
relocatable macro assembler
mnemonic for trap calls /¢
terminate
calling process 207
I/O for process J47
test for
data ready J79
end of file 757
TH_DELPB 98
TH_SPOWN J54, 98
time
functions
F_STIME 275
F_TIME 288
get system date and time 288
set system date and time 25
slice 44
track
SS_WTRACK 584
write J84
translate user path to system path 7§~
trap
handler 26
calling /4
creating library /5
described 289
execution entry points /¥
explained /7
F_TLINK 289
F_TLINKM 297

450

installing /#
system state module 289
user 297
number /¥
program exceptions 277
vector /4

U

Ultra C related errors 474
unconditional system abort signal 4§
unlink

event 799, 200

module 294, 295
user

ID 42, 226

set 280

state 24
user accounting system 295
user-state

alarms

defined and listed J2

\

valid pathlist characters 246
verify module 296

w
wait
for child to terminate 298

for event 752, 754, 156, 158, 7160, 177,
193,795,197, 207, 207

for events
defined 5/, 67

for record release J82

for relative event 205
wake-up signal 4§
write

data J88

file descriptor sector J66

line of text J&9

logical unit options J/7

option section of path descriptor J/72

tape marks J&7
track I8

	HOME
	OS-9® Technical Manual
	Contents
	Chapter 1: System Overview
	System Modularity
	Level 1 -- The Kernel, Clock, and Init Modules
	Level 2 — IOMAN
	Level 3 — File Managers
	Level 4 — Device Drivers
	Level 5 — Device Descriptors

	I/O Overview
	Memory Modules
	Basic Module Structure
	The CRC Value
	ROMed Memory Modules
	Module Header Definitions
	mh_com

	Chapter 2: The Kernel
	Kernel Functions
	System Call Overview
	User-State and System-State
	Installing System-State Routines

	Kernel System Call Processing
	Non-I/O Calls
	I/O Calls

	Memory Management
	OS-9 Memory Map
	System Memory Allocation
	Operating System Object Code
	System Global Memory
	System Dynamic Memory
	User Memory

	Memory Fragmentation
	Colored Memory
	Colored Memory Definition List
	SSM and Cache
	Cache List

	PowerPC Processors: SSM and Cache
	Colored Memory in Homogenous Memory Systems
	System Performance
	Reconfiguring Memory Areas

	System Initialization
	Init: The Configuration Module

	Extension Modules
	Process Creation
	Process Memory Areas
	Process States

	Process Scheduling
	Preemptive Task Switching

	Chapter 3: Interprocess Communication
	Signals
	Signal Codes
	Signal Implementation
	Non-Recursive Calling
	Recursive Calling

	Alarms
	User-State Alarms
	Cyclic Alarms
	Time of Day Alarms
	Relative Time Alarms
	System-State Alarms

	Events
	ev_str/ev_infostr
	Wait and Signal Operations
	The F_EVENT System Call

	Semaphores
	Semaphore States
	Acquiring Exclusive Access
	Releasing Exclusive Access

	Usemaphores
	P and V Operations
	Reset
	The F_EVENT, F_USEMA System Call

	Pipes
	Named and Unnamed Pipes

	Operations on Pipes
	Creating Pipes
	Opening Pipes
	Read/Readln
	Write/Writeln
	Close
	Getstat/Setstat
	GetStat Status Codes Supported by PIPEMAN
	SetStat Status Codes Supported by PIPEMAN
	Pipe Directories

	Data Modules
	Creating Data Modules
	The Link Count
	Saving to Disk

	Chapter 4: Subroutine Libraries and Trap Handlers
	Subroutine Libraries
	Installing and Executing Subroutine Libraries
	Terminating Subroutine Libraries

	Trap Handlers
	Installing and Executing Trap Handlers

	Chapter 5: Resource Locking
	Overview
	Lock Structure Definition
	Create and Delete Resource Locks

	Preallocate Locks as Part of the Resource
	Signals and Locks
	Signal Sensitive Locks
	Ignoring Signals

	FIFO Buffers
	Process Queuing

	Chapter 6: OS-9 System Calls
	Using OS-9 System Calls
	_oscall Function
	Using the System Calls
	System Call Descriptions
	Interrupt Context

	System Calls Reference
	F_ABORT
	F_ACQLK
	F_ALARM (System-State)
	F_ALARM (User-State)
	F_ALARM, A_ATIME
	F_ALARM, A_CYCLE
	F_ALARM, A_DELET
	F_ALARM, A_RESET
	F_ALARM, A_SET
	F_ALLPRC
	F_ALLTSK
	F_ALTMDIR
	F_APROC
	F_CAQLK
	F_CCTL (User-State)
	F_CCTL (System-State)
	F_CHAIN
	F_CHAINM
	F_CHKMEM
	F_CHMDIR
	F_CLRSIGS
	F_CMDPERM
	F_CMPNAM
	F_CONFIG
	F_CPYMEM
	F_CRC
	F_CRLK
	F_DATMOD
	F_DATTACH
	F_DDLK
	F_DELLK
	F_DELMDIR
	F_DELTSK
	F_DEXEC
	F_DEXIT
	F_DFORK
	F_DFORKM
	F_EVENT
	F_EVENT, EV_ALLCLR
	F_EVENT, EV_ALLSET
	F_EVENT, EV_ANYCLR
	F_EVENT, EV_ANYSET
	F_EVENT, EV_CHANGE
	F_EVENT, EV_CREAT
	F_EVENT, EV_CREAT | F_USEMA
	F_EVENT, EV_DELET
	F_EVENT, EV_DELET | F_USEMA
	F_EVENT, EV_INFO
	F_EVENT, EV_LINK
	F_EVENT, EV_LINK | F_USEMA
	F_EVENT, EV_PULSE
	F_EVENT, EV_READ
	F_EVENT, EV_RESET | F_USEMA
	F_EVENT, EV_SET
	F_EVENT, EV_SETAND
	F_EVENT, EV_SETOR
	F_EVENT, EV_SETR
	F_EVENT, EV_SETXOR
	F_EVENT, EV_SIGNL
	F_EVENT, EV_SIGNL | F_USEMA
	F_EVENT, EV_TRYWAIT
	F_EVENT, EV_TRYWAIT | F_USEMA
	F_EVENT, EV_TSTSET
	F_EVENT, EV_UNLNK
	F_EVENT, EV_UNLNK | F_USEMA
	F_EVENT, EV_WAIT
	F_EVENT, EV_WAIT | F_USEMA
	F_EVENT, EV_WAITR
	F_EXIT
	F_FINDPD
	F_FMOD
	F_FORK
	F_FORKM
	F_GBLKMP
	F_GETMDP
	F_GETSYS
	F_GMODDR
	F_GPRDBT
	F_GPRDSC
	F_ICPT
	F_ID
	F_INITDATA
	F_IRQ
	F_LINK
	F_LINKM
	F_LOAD
	F_MKMDIR
	F_MEM
	F_MODADDR
	F_MOVE
	F_NPROC
	F_PERMIT
	F_PROTECT
	F_PRSNAM
	F_RELLK
	F_RETPD
	F_RTE
	F_SEND
	F_SETCRC
	F_SETSYS
	F_SIGLNGJ
	F_SIGMASK
	F_SIGRESET
	F_SIGRS
	F_SLEEP
	F_SLINK
	F_SLINKM
	F_SPRIOR
	F_SRQMEM
	F_SRTMEM
	F_SSPD
	F_SSVC
	F_STIME
	F_STRAP
	F_SUSER
	F_SYSDBG
	F_SYSID
	F_THEXIT
	F_THFORK
	F_THREAD
	F_TIME
	F_TLINK
	F_TLINKM
	F_UACCT
	F_UNLINK
	F_UNLOAD
	F_VMODUL
	F_WAIT
	F_WAITID
	F_WAITLK
	F_YIELD
	I_ALIAS
	I_ATTACH
	I_CHDIR
	I_CIOPROC
	I_CLOSE
	I_CONFIG
	I_CREATE
	I_DELETE
	I_DETACH
	I_DUP
	I_GETDL
	I_GETPD
	I_GETSTAT
	I_GETSTAT, SS_COPYPD
	I_GETSTAT, SS_CSTATS
	I_GETSTAT, SS_DEVNAME
	I_GETSTAT, SS_DEVOPT
	I_GETSTAT, SS_DEVTYPE
	I_GETSTAT, SS_DISKFREE
	I_GETSTAT, SS_DSIZE
	I_GETSTAT, SS_EDT
	I_GETSTAT, SS_EOF
	I_GETSTAT, SS_FD
	I_GETSTAT, SS_FdAddr
	I_GETSTAT, SS_FDINFO
	I_GETSTAT, SS_LUOPT
	I_GETSTAT, SS_PARITY
	I_GETSTAT, SS_PATHOPT
	I_GETSTAT, SS_POS
	I_GETSTAT, SS_READY
	I_GETSTAT, SS_SIZE
	I_GIOPROC
	I_IODEL
	I_IOEXIT
	I_IOFORK
	I_MAKDIR
	I_OPEN
	I_RDALST
	I_READ
	I_READLN
	I_SEEK
	I_SETSTAT
	I_SETSTAT, SS_ATTR
	I_SETSTAT, SS_BREAK
	I_SETSTAT, SS_CACHE
	I_SETSTAT, SS_DCOFF
	I_SETSTAT, SS_DCON
	I_SETSTAT, SS_DEVOPT
	I_SETSTAT, SS_DSRTS
	I_SETSTAT, SS_ENRTS
	I_SETSTAT, SS_ERASE
	I_SETSTAT, SS_FD
	I_SETSTAT, SS_FILLBUFF
	I_SETSTAT, SS_FLUSHMAP
	I_SETSTAT, SS_HDLINK
	I_SETSTAT, SS_LOCK
	I_SETSTAT, SS_LUOPT
	I_SETSTAT, SS_PATHOPT
	I_SETSTAT, SS_RELEASE
	I_SETSTAT, SS_RENAME
	I_SETSTAT, SS_RESET
	I_SETSTAT, SS_RETEN
	I_SETSTAT, SS_RFM
	I_SETSTAT, SS_SENDSIG
	I_SETSTAT, SS_SIZE
	I_SETSTAT, SS_SKIP
	I_SETSTAT, SS_SKIPEND
	I_SETSTAT, SS_TICKS
	I_SETSTAT, SS_WFM
	I_SETSTAT, SS_WTRACK
	I_SGETSTAT
	I_TRANPN
	I_WRITE
	I_WRITELN

	Appendix A: Example Code
	Sysgo
	Signals: Example Program
	Alarms: Example Program
	Events: Example Program
	Semaphores: Example Program
	Usemaphores: Example Program
	The Subroutine Library
	Subroutine Module
	root psect File
	function File

	Application Call into a Subroutine Module
	Initialization

	Trap Handlers
	trapc.a
	thandler.c
	tcall.c
	ttest.c

	Appendix B: OS-9 Error Codes
	Error Categories
	Errors

	Index

