| 0S-9 Technical 1/O
RadiSys. Manual

Version 4.2

www.radisys.com Revision A * April 2003

Copyright and publication information

This manual reflects version 4.2 of Microware OS-9.
Reproduction of this document, in part or whole, by
any means, electrical, mechanical, magnetic, optical,
chemical, manual, or otherwise is prohibited, without
written permission from RadiSys Corporation.

Disclaimer

The information contained herein is believed to be
accurate as of the date of publication. However,
RadiSys Corporation will not be liable for any damages
including indirect or consequential, from use of the
OS-9 operating system, Microware-provided software,

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys Corpo-
ration expressly prohibits any reproduction of the soft-
ware on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system may
constitute copyright infringements and misappropria-
tion of trade secrets and confidential processes which
are the property of RadiSys Corporation and/or other
parties. Unauthorized distribution of software may
cause damages far in excess of the value of the copies

or reliance on the accuracy of this documentation. involved.
The information contained herein is subject to change
without notice.

April 2003

Copyright ©2003 by RadiSys Corporation.
All rights reserved.

EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are

trademarks of RadiSys Corporation.

DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are

trademarks of RadiSys Corporation.

T All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

| Contents

Chapter 1: The OS-9 Input/Output System

The OS-9 Unified INPUt/OULPUL SYSTEIM ..veirrurierriierrirereriieeeireeesieeesireessueeessseesssseesssssesssssesssssessssseesssses 8
ThE I/O MANAGEL ..vveeerieieeieeeeiieeiieeeetteeeteeeetteseteeeesseeeessseessssasessseesssseesssseesssseeessssesessseeesssneessseen 8
The FILe Manager ..ueeeecuieeeeieeeeieeeiieeeeiteesieeeeteeseteeeeveeeesseeessasesnseesssseesssseesssseesassseseseeessssesessseenn 8
THE DEVICE DIIIVET «uvieeuviiieiieeeeiieeiteeeetteesteeesteeesteeeebeeessseaasseeeasseeassseaesssseesssseeasssesssseessssseensseenn 8

TOMAN ettt ettt ettt e e bt et e st e s bt et esat et e e at e e bt e s bt et e bt et e eht e bt eateebte b e s ate bt e bt eutenbeeasenbeent 9

Device DeScriptor MOAUIES.....civiiiriiriierieeiterte et et et stesteesreesteesreessaesseesseesssassssesssassseesnseessseennns 9

AA_COM ettt ettt et et et e st et e st e e st e e sbe e s abe e sme e e neesaeeereeeaee 11

Path DESCIIPLOTS wuvierurieeeiieeiiteeeeiteseitteeateesestteeasseesasseeeasssesassseessssesasssessssssssssssesssseessssesessssesnsssssesssessnns 13

JoTe I o3 o o LU 15

Access MOdes and PErMISSIONSveiecuveierueeersieeeiereeaireeesseeasseessseeesssesesssesasssssesssesesssssessssssssssssssssessns 17
ACCESS MOTES .ttt ettt et ettt sttt s et e e s bt e bt et e s bt et e et e s bt et e saeesbe et e eut e bt e benaeens 17
PEITNISSIONS ..evvvveeiieriiiiiiiiiieet ettt ettt et et e s bee et et e e e s e e s e srrbat et eeeeseseesennssnnrnraaaeeeeeas 18

FIlE IMLANAEETS «euvveeeiiieeiieiiieeeeiteesieeeettesetteessbeesestteessaeeessseessssasssssessnsseesssassnssaessssassnssseensseeenssseesnns 18
File Manager OrganiZatiOncceeeeeveeresreeesseeseseeessseesesssesssssesassseesssssesssesssssesssssessssssesssssssesssees 19

Dispatch Table Sample LiSTNEveieeieeeeieeeiiereiieeeeieeesteeeeteeesieeessseesssseesasseesssssessssssessssessssssesssees 20

Device DITVET MOAUIES ...oeicuviiieiiiecciiecciteeeetteeetee et e et e e s beeeetteesbeeeesseeessaeessseessssaesnsseessnssesssseenanes 23
Basic Functional Driver ReqUITEMENTS.....uuuieieeiiiireeeeeiireeeeeeitieeseesireeeeesesreeesessssseessssssesesssssseees 23
Interrupts and DIMAcoiiiiiiiie ettt ettt e st s e st e st e e ssabe e s abeessabaeesabaeeeanees 24

Chapter 2: Random Block File Manager (RBF)

OVEIVIEW oevviiiiiiiiiiiie ittt ettt et e sab e e aa e e sbb e e sas e e s ab s e sab e e s satesabeesenasesasbaesonnneesansesennneessnns 26

Disk File Organization......ccccueeerveeiriueeeniieersiuiesniieessseeesssesssseesssesssssessssessssssessssaessssssssssssssssssssssessns 26
Basic Disk OrZaniZatiOn ...uuiecuueeeeueeeireeeeiieeesieeeeieeesteeeessseessssesasssessssseeesssesssssesssssessssseesssseesssssees 26
TAentification BIOCK ..cc.uiiiicuieeeciieeiieeecteeestee e tee e e tte e et e esteeessaeeessreeenssesesseesssaeansseesanseeesssasennsees 27
PN L ToYeZ T o) s N0\ - USRS 28

ROOE DITOCEOTY e ueeeeeeieeeeieieieeeieieieirttite i eeeesessseeeeeeeeeeeeeeeeseseresessnsssssnsssssssssssssssaseseseaeeanens 28

BaSiC File STIUCTUTE ..eeiruiieieiieiiiiieeectee et e ete e st e ssiteessittessbeesesttesssbaesesaseesssassnsseesnssessnssaeennns 28

A STALS 1ottt ettt et et sttt et et e bttt e bt st e et e e bt e e bt e s bt e et e e neeeaeeereeeaee 29
SINAIL FILES 1etnvteeeiier ettt eeite ettt et e e ettt e et e e ettt e sateeesaeessteeessseesassaeeasseeeasseaessseesassseeasssasessseenn 32
Logical BIOCK NUMDETSeieeuiieiiiiieiiieeciee e ite et ete e reeette e s ee e s tr e e s seee e e saeeesnsesessseesnsseesnssseenn 32
SEGMENT ALIOCATION 1.uvviiiiiiieeiieectieeeteeeete e e ctteee e e stte e e taeeerseeassseessseeesssesasssesassseeessseeesnssesassseenn 32
Directory File FOrMAt....uuiiiiieiiiiiiiceiiieeeeecttee ettt ette e e e et e e e s ave e e e e e sabaeeeeesssbaeeeessnsanaasesnseneas 33

Raw Physical I/O On RBE DEVICES....cccccutirriiiririieiiiieiniieesieesesiteessiresesiaeessiseessaseessssessssseesssssessssesesssees 33
Raw Physical I/O 0n RBE DEVICES ..ccuuviireuiiiiiiieririieiiiiesnitessiitesssieeessineesseseesssseessssessnnseesssseesssssesns 34

BLOCK MOE ..ttt ettt ettt ette e ettt e et e e e te e sate e e steesstee e sseasasssessnsaesnsseesnsseanassenennns 34

RECOTA LOCKING 1eriuttiiiiiieeeiie et et eeee e te e e te e e tte e s taeesaee e s aseeseseeessseeessseaassseessseeansseeesnsseesnsssennsees 34
Record Locking and UnIOCKINGccccvieieciiieeiieieieieieeecteessteeesteessteeeseaee e see e saeesnsaeassssesessseens 35
INON-ShArable FILES ..ceeuviiiiiriiiiiieiieiteeiee et esiteste e st e st e eeessbe e aaessbe e ssessaessnesssassseesnseesnseeseenns 35
ENd Of FIle LOCK tiutttiiiiiieiieeeiteete ettt ettt et e e et esite s st e e ssataesabaesataesasaessssaessnsnesnnsees 36
DeadlOck DEteCTION .eivuviiieiieeiiiieerieeesieeerieeeetteeeitteesseteesstseesssneessseesssseesssseessssaesnsssesssssesnsssesensees 36

Record Locking Details for I/O FUNCHOMNS. ...ccicuiiiriieeeiieeeiieeeecteessieeesteessteeeseeessseesssseessssseessssssensens 36

Contents

_OS_OPEN()/_OS_CIEALE() teereeeeunereereteeeeeeeeieeeetitttteeeeeeeeese e ereeeteeeeeeeaeseaansnserateteeeesssessssnnnssnneee 36
_0S_1eAd()/_0S_1EAAII() teeeeieeeeerieeteeiieeee et e e e e e e e e e e aaeaeeeeeeeennnaraaaes 37
_OS_WITEE/_OS_WITLEIIL() teeeeeeeeeerieieeeieeeee e e eeceeeetttee e e e e e e eeeeeeaaaeeeeeeeeeeeeeeeessssasesseeseeseesesseeensnssrennes 37
08 _SEEK() e euriiee e ettt eeete ettt e e et e e e et aa e e e e e e aaeeeeebaeaeeeaataaeeeataaaeeeeataaeeeeaanaaaaeeeanrraeas 37
L OS_SEESTAT() ueererrruruuaeereerruuuieseeeerusnneeeeeessssenaseeessssnnnssesssssssnneseessssssnssssessssnnssesssssssneseseesssnnanesessssnnnns 37
FLE SECUTIEY 1ueeerreiiiieeeiieeeiteeeette e ettt e eeteee e ettt eestree e abeeesaseeesssaeesssseaassaseansssessssaanssaesssasansseeansseasnsseesnes 37
Creating RBF Drivers and DeSCIiPLOTS ...ciuuieieeiierriieeerieeriieeesieesniieesnieesssusesssssesssssessssessssssesssseessssees 38
Creating DISK DIIVErS....ciiuiiecieeeiieieiieeeeieeeriteeeeteeesteeeesresesstesassseesssseessssesesssesssssessssseesssseesesssees 38
Understanding SCSI Device Driver Differences.....c.uiircieiecieeriiieeenieeisieeeesieeeesieeeseesesnsesessessssnees 39
Hardware COnfigUrationsuiecueeeciieeeiiieeeeieeesieeesiteeesteeesseeesssseessseessssseessssesassseesssssesssseeens 39
Example SCSI Software CONfIGUIrationcccvveerveereersieenieerrieenieesieessessieesnessseeseessssesssessseenns 40
Testing the DISK DIIVEL coveivvirriiriieiieeiteste et esttessieesieesreesseessseessaesssessssesssessseesssessseesssessssessseenns 41
Creating RBF Device DIIVers...cooi ottt ettt et eereee e e e ee s 42
RBF Device Driver Storage Definitionsccceeecveeerreeierieeensiiesesiieeeseeeesseessssesesseessssessssseesanes 43
RBF Device Driver SUDTOULIIES. ..ccovereuteeriernieriteeteestte ettt et site et e steesbeeseeeseeesbeesaeeebeeas 43
GETSTAT ...ttt ettt ettt s bt e a e e st e e eat e s beesat e s bt e s ate s bt esate e bt esabeeabaesabaestesaseanseas 44
INTT ettt ettt et sttt et e s et e me e et e se e s st e be e s b e e e e s b e e smee s bt e smeteneesneeenneenee 45
IRQ SERVICE ROUTINE ...ccutiiitiiiriteeteetente ettt ettt st eeaeesre e eesseesmeesneesmeeemeesmeeemeeenne 46
READ ..ttt ettt ettt st bt st et e e a et e s e et e bt st e et e et e e s ue e e bt e st e e st e st e e neeaee 47
SETSTAT ettt ettt ettt e e bt et e e st e e bt e e ab e e st e e a et e bt e et e e at e e beessbeeabeesae e e stesabeeseanaee 48
TERMINATE ...ttt ettt ettt esa e e bt e sut e s bt e st e e bt e sabe e beesabeesseeeabeeeaseeaneesabeens 49
WRITE ..ttt ettt et ettt et e e e e e e se s e s ab et e e eeeeeee s e assssbbaaaaaeeesaasssssnsnnssseeaaaaaeesannns 50
Using RBF Device Descriptor MOUIES.........eveuiieiiirieiiieiniienieenteeieesieesees e ssieeseessseesaseesanessseenns 51
Logical Unit Static Storage InitialiZationceeeeveereeriiernieensieesiesieesteesieeseessseesseessseessessseenns 51
Disk Drive INfOrmation....cceeeuieeieerierrieeeertene ettt ettt sttt s b e sreessre e st e st e smeeeneenns 52
DiSK DEVICE OPLIONS .vvererrierirrereereerateeeasteeeasseeessseesessseessssesasseessssesessssessssssssssssssssesssssessessaees 55
Path Descriptor Options Table.......iiicuiieeiieieiieieiee ettt essre e saee e ebae e eaaeeenaee s 56
Building RBF DeVICe DESCIIPLOrS. ..iicuieiectieeeirieeeiteeeiieeasreeesseeessseeessseeessseesssssessssesessseessssssssssssenn 58
Standard Device DesCriptor MaCrOS. . uueeueereerrieerierrieenieeseesseessessseesssesssaesssessssessseesssesssesnns 59
RBF Specific Macro Definitions c..eeeeeecueeerieerierniersieeniesieesseessseessseesseesssessseesssessseessseesssesssesnns 60
Device Specific Non-Standard Definitions.......ceevcueereriierriiiernreeennieennieesnieeesseeesssneesssseesssnnees 65
Chapter 3: Sequential Character File Manager (SCF)
OVEIVIEW .eeiitiiiiiiiitie ittt ettt s eab e e sebt e e e s eabab et e s sesaab e e e s ssabeeessessateeesssanaeessossneeessnsns 68
Creating an SCF Driver/DeSCIIPLOL coeeie i eiietieetteteeeeeeeeeeieetteeeeeeeeeeeeeeasaseeteeeeeeeeeeeesennnsseeeeeeeeeeens 68
Creating SCF DeviCe DIFIVErS. ... uiiiiitiiiiieeeiiiiiitettee ettt eeeeeeeieeteeeeeeeeeesessesssteaeeeeeeeessssssnsnsssesreaeeeeees 69
SCF Device DIriver Static STOragE...ceeuuuuueiiiiiiteeteteeeeeiiiierttttteeeeeeeeeeessaerreeteeeeeeseesssssnnnssreeeaaeeeees 69
SCF Device Driver Entry SUDTOULINESccccvieiiiiieiiiieeeiieecieeeecieeesiteeetteeeiveeeveeeesreesssesesasseesnsasesnsees 72
ENABLE TRANSMITTER INTERRUPTScoiiiiiiiiitieeteteeteetee ettt et 73
GETSTAT ..ttt ettt ettt e bt e bt st e e bt e st e s ae e s bt e s mee s bt e eme e e bt e smbesabeesateentesaneeanees 74
INTT ettt et e bttt e bt e st e e bt e s bt e a e e ea bt e e st e et e e e at e e bt e e a e e e beeeabe e bt e et e e ateeateebeeeaee 75
IRQ SERVICE ROUTINE ...coiiiiiiiiittitttee et eeeeeeeeteete e e e e s ee et tteeeeeeesesssssssnssteaeaeeeeesassssnnnnns 76
READ ettt ettt et et e e e e e s e ettt e e et e e eeeeae s s s s bttt e e e e eeeeaae e rtbtaeaaeeeeeaeeeannnne 77
SETSTAT ..ttt ettt ettt s e st et s et bt e s et et e s et e e e st e et e sabeesmeesaseesmeeeaneesmeeenneennne 78
TERMINATE ...ttt ettt ettt ettt b e st esat e st e st e e bt e saeeebaesaseesmeeenbeesnsesnaesaseens 79
WRITE ..ttt ettt et et st e e bt s bt e s bt e st e e sat e e bt e s et e beesuseesmeeeabeesasesaneenaseeas 80
Using SCF Device Descriptor MOAUIES........uviiiciiiieciieieiiiieiieeceiteesieeeesieeesatesesaeeessaseesssseesssseesssseessnns 81
SCF Logical Unit StatiC STOTAZE ..uvuierrireeerieerciieeeitieeeitieeeetteeestteeesseesssseeesssesessessssssssssssesssssesssssees 81
Device Static Storage Structure Definition EXampleccciveeeciiieiiieeiieecciee e eeee e 82
SCF Logical Unit Static Storage OPLiOnSueeeveerverreerirerrieersreeneessreesssesseesssessseesssessssessseesssesssasnns 87

0S-9 Technical I/O Manual 4

Contents

SCF Path DESCIIPLOL cevuvveeeeuiieiiieeeiiteirieeesieeestteesttesestreessseeessaseessssesessseessssessssseessssessssseesssssessssseesssees 90
SCF Path Descriptor OPtions SECTION vuiieuvreerruieeerieeiiieeerreeeeieeessseeessseeessseesesssesssssesessseesssssssssseesas 92

SCF Control Character Mapping Tableeiieiiiiriieieiiieciieeectteesie st estee e s e e svee e e vaeeenes 95
Default Mapping Tablecuuiiiiiiieeccieeete ettt ettt e te e e e e e e e beeesataeessseeesnsaeeensaeesnsees 96

Building SCF Device DeSCIiPLOrS..ceureeueeeierrierriessieereessseesseessseesssessseesssesssassssesssasssesssesssesssasssssssssesns 97
SCF Device DesCriptor MaCIOS. ...uuueeeererurieeereeittteeeeiireeeeeeirtteeeesertteesessreeessesnsseeesssssssressssssseeessnns 99
SCF Control Character MapPIngccveeeecveeerieeeriieerniieesenieeessieesssseeesssesssssesssssesssssessssseesssssesessees 103
Device Specific Non-Standard Definitionsccueeeeieeerieeeesieeerieeseeeeseeeeseeessseesesssesssssesssseesanes 103

Chapter 4: The PC File Manager (PCF)

[<) 1 106
Getting Top Performance from PCF........c.ooioiiiieiiiieieeeieecteeetee ettt ee e sve e s eaaee e saaee s eneeas 106
Differences from RBFooooiiiiiiiiiee ettt ettt ee e e e e ete e e e e e e e e e e e areaeeeennreeas 106

Chapter 5: Module File Manager (modman)

[0 <3 T 108

mModman [/O SyStem Callscuiiiiiieeeiie ettt eeteeeesee e e see e e re e e treeeerveeesseeeasaeesssaeeessasannns 108
OS_ATEACK() 1rrrriiieeee et e et e ee e b e areaee e e e e e e e e atbrbaaraaaaaaeeeenennararrares 109
OS_CHAIL() tttrrrreeeeee e e ettt ee et eae e e e e e e e e e bataaararaaeeeeeenennnnarares 109
e T ol (0 YY) O SRR 109
o T o3 =Y L) § DO 109
OS_AELETE() teeeeerrrieeeeeciete e ettt ee ettt e e ee ettt e e e et e e e e eeeba e e e eeeataaeeeearaaaaeeanraaeeeeanrraaeeeannrraaeaaas 109
OS_AELACK() 1eteeetreiei ettt ettt ettt ettt eee e ee et e eeaar e e eeaaaa e e e eearaereeentaaaaeeentrrareeans 109
OS_AUP() eureetieeieeieerte et est ettt ettt st et e et e e b e e st e e ae e s be e atesrb e e aaeenbe e baeenteennresnres 109
LOS_ZOESTAL()evveereereerereneaiiiiertteteeeeeeeeeeeeaeete ettt eeese s e aarara e et e e e e e e eeeeee b rrbe et e aeeeeeseenen nnnnenaee 110
O T 1 -1 e 1 () ISRt 110
LOS_OPEIN() wueeeeeeteeeeeeraaaaaauuuertttteeeeeeeaeaaa e e ettt e teeaeeeaaa e a—aettteteeeeeeeee e nnrbtateteeeeeeeeaeannneeaee 110
O = e RO 111
_OS_TEAAIN() 1ereeerrrieeeeiteiee ettt ettt e et e e eeetr e e e eear e e e eeraa e e e e eetaaaaeeenaaraeeeeentrraaeeenntrrareeans 111
LOS_SEEK() rvreeeeiirreieieeiiteee e eeeet et eerte e eee e e e ee et e e e eetaa e e eertaaaaeeeetaaaaeeanaaraaeeeearrareeenarrrareeans 111
o T3 1 7= 1 f ST 111
LOS_WIIEE() teerrrruneeeeerrrunneeeeeressnnaeeeessssunaeeessssssnnaseesssssnnnseessssssnnnssesssssnnneessssssnnnseesssssnnanessssssnnnn 111
o T 4 5 10=1 0o 1 ORISR 112

Device Descriptor MOAUIES.........viiiciiieeiiieeciie ettt eeee e ee e ae e e e tae e e bae e s sseessaeesssaeeensesesssaeens 112

0S-9 Technical I/O Manual 5

Contents

0S-9 Technical I/O Manual 6

O
29

The OS-9 Input/Output
System

This chapter explains the software components of the OS-9 I/O system and the
relationships between those components. It includes the following topics:

e The OS-9 Unified Input/Output System
e JOMAN

e Device Descriptor Modules

e Path Descriptors

e Access Modes and Permissions

e File Managers

¢ Device Driver Modules

Chapter 1: The OS-9 Input/Output System

|
The OS-9 Unified Input/Output System

OS-9 features a versatile, unified, hardware-independent I/O system. The I/O system is
modular and can easily be expanded or customized.

The I/O subsystem consists of three modules processing I/O service requests at
different levels:

e The I/O Manager
e The File Manager
e The Device Driver

A fourth module, the device descriptor, contains the information used to assemble the
different components of an I/O subsystem. The file manager, device driver, and device
descriptor modules are standard memory modules you can install and remove
dynamically while the system is running.

The 1/O Manager

IOMAN manages the following four tasks:

e Supervise the OS-9 I/O system.

e Establish the connections between itself, the file manager, and the device driver.
® Manage various data structures.

e Ensuretheappropriate file manager and device driver modules process a particular
I/O request.

The File Manager

A file manager performs the processing for a particular class of devices such as disks or
terminals. For example, the Random Block File Manager (RBF) maintains directory
structures on disks and the Sequential Character File manager (SCF) edits the data
stream it receives from terminals.

The Device Driver

A device driver has the following three primary tasks:
e Enable OS-9 to be device-independent.

e Operate on the actual hardware device, sending data to and from the device on
behalf of the file manager.

e Isolate the file manager from actual hardware dependencies, such as control
register organization and data transfer modes.

0OS-9 Techical I/O Manual 8

Chapter 1: The OS-9 Input/Output System

I
IOMAN

When the kernel receives an I/O request, it immediately passes the request to
IOMAN. IOMAN provides the first level of service for I/O system calls by routing
data between processes and the appropriate file managers and device drivers.
IOMAN also allocates and initializes global static storage on behalf of file managers
and device drivers.

Many controllers, such as SCSI interfaces and DUARTSs (Dual Asynchronous
Receiver-Transmitters), operate multiple devices. IOMAN allocates and initializes
an additional static storage for each device called “logical unit static storage”;
IOMAN uses the storage to assist file managers and drivers with managing these
interfaces.

IOMAN maintains two important internal data structures:

e device list
e path table
These tables reflect two other structures respectively:

e device descriptor
e path descriptor

When an _os_attach () system call is first performed on a new device descriptor,
IOMAN creates a new entry in the device list. Each entry in the device list contains
information about each element required to perform I/O on a device.

A device list entry also contains pointers to the various static storages and other
data elements in use on the device. The structure definition of a device list entry is
defined in the header file io.n.

When a path is opened, IOMAN links to the device descriptor associated with the
device name specified (or implied) in the pathlist. The device descriptor contains the
names of the device driver and file manager for the device. IOMAN saves the
information in the device entry list of the device descriptor, so subsequent system
calls can be routed to these modules.

Paths are used to maintain the status of I/O operations to devices and files. IOMAN
maintains these paths using the path table. Each time a path is opened, a path
descriptor is created and an entry is added to the path table. When a path is closed,
the path descriptor is deallocated and its entry is deleted from the path table.

Device Descriptor Modules

A device descriptor module is a small, non-executable module providing
information that associates a specific I/O device with the following:

* Jlogical name

¢ hardware controller address(es)

e device driver name

e file manager name

® initialization parameters

0OS-9 Techical I/O Manual 9

Chapter 1: The OS-9 Input/Output System

Device drivers and file managers operate on general classes of devices, not specific
I/O ports. A device descriptor tailors its functions to a specific I/O port.

The name of the device descriptor is used as the logical device name by the system and
user (it is the device name given in pathlists). Its format consists of a standard module
header with a type code of device descriptor (MT_DEVDESC).

One device descriptor must exist for each I/O device in the system. However, one
device can also have several device descriptors with different initialization constants.

The device descriptor contains a constant table and logical unit static storage
initialization information. IOMAN initializes logical unit static storage with the
_os_initdata () system call, similar to how other processing elements in the system
initialize their static storage areas. IOMAN does not restrict the definition or use of
logical unit static storage.

A constant table containing information provided by a device descriptor is located at
the entry point offset of the device descriptor. IOMAN requires the first part to be
common to all device descriptors. File managers and device drivers may add
information they require after the common part. The format of the common part is
shown here and defined in the header file io.h.

@ Data defined by specific file managers is provided in the OS-9 Device Descriptor
and Configuration Module Reference.

0OS-9 Techical I/O Manual 10

Chapter 1: The OS-9 Input/Output System

[

dd _com
Declaration
/* Device descriptor data definitions */
typedef struct {
voi d *dd_port; /* device port address */
u_intlé dd_lu_num /* logical unit nunber */

dd_pd_si ze, /* path descriptor size */

dd_type, /* device type */

dd_node; /* device node capabilities */
u_int32 dd_frmgr, /* file nanager nane offset */

dd_drvr; /* device driver nane offset */
u_intlé dd_class, /* sequential or random */

dd_dscres;/* (reserved) */

} *Dd_com dd_com
Fields

dd port
dd port represents the absolute physical address of the hardware controller.

dd lu num
Distinguish the different devices driven from a unique controller. Each unique
number represents a different logical unit static storage area.

dd pd size
dd pd_size is the size of the path descriptor. Path descriptors vary in size.
IOMAN uses this value when it allocates a path descriptor.

dd_ type
Identify the I/O type of the device. The following values are defined in the header
file io.n:

Table 1-1. 1/O Type Values

Defined Name Value Description

DT _SCF 0 Sequential Character File Type
DT_RBF 1 Random Block File Type
DT_PIPE 2 Pipe File Type

DT SBF 3 Sequential Block File Type
DT_NFM 4 Network File Type

DT_CDFM 5 Compact Disc File Type

DT UCM 6 User Communication Manager

0OS-9 Techical I/O Manual 11

Chapter 1: The OS-9 Input/Output System

Table 1-1. 1/0O Type Values (Continued)

Defined Name Value Description

DT_SOCK 7 Socket Communication Manager
DT_PTTY 8 Pseudo-Keyboard Manager
DT_GFM 9 Graphics File Manager

DT_PCF 10 PC-DOS File Manager

DT_NRF 11 Non-volatile RAM File Manager
DT_I SDN 12 ISDN File Manager

DT_NPFM 13 MPFM File Manager

DT_RTNFM 14 Real-Time Network File Manager
DT_SPF 15 Stacked Protocol File Manager
DT_I NET 16 Inet File Manager

DT_MFM 17 Multi-media File Manager
DT_DVM 18 Generic Device File Manager
DT_NULL 19 Null File Manager

DT_DVDFM 20 DVD File Manager

DT_MODFM 21 Module Directory File Manager

'% DT-codes up to 127 are reserved for Microware use only.

dd _mode

Device mode capabilities.

IOMAN and the various file managers use the bits in this field to determine the
modes of which a device is capable. For example, if no read related bits are set
for an SCF device, reading will not be permitted from the device. IOMAN has

only one check of dd_mode. If a device has the S_ISHARE bit set and the

S_IFDIR bit clear, only one path may be open to device at one time. This is how
a non-sharable device is configured. A printer is an example of a non-sharable
device. The following values are defined in the header modes.h:

Table 1-2. Device Mode Values

Defined Name Value Device Capability
S_IREAD 0x0001 Read

S IWRITE 0x0002 Write

S IEXEC 0x0004 Execute

S_ISEARCH 0x0004 Search (directories)
S_IAPPEND 0x1000 Append

S _ISIZE 0x2000 Initial File Size Setting
S_ISHARE 0x4000 Non-sharable
S_IFDIR 0x8000 Directory

0OS-9 Techical I/O Manual

12

Chapter 1: The OS-9 Input/Output System

[

dd fmgr
dd_fmgr is the offset to the name string of the file manager module to use.

dd drvr
dd drvr is the offset to the name string of the device driver module to use.

dd class
dd_class is used to identify the class of the device, as random or sequential
access. The following values are defined in the header file io.h:

Table 1-3. Class of Device Values

Defined Name Value Description
DC_SEQ 0x0001 Sequential access device
DC_RND 0x0002 Random access device

'% Software checking this field should test these bits only; the rest may
be defined in the future.

dd dscres
This field is reserved for future use.

The above offsets are offsets from the beginning address of the device descriptor
module.

Path Descriptors

Every open path is represented by a data structure called a path descriptor. It contains
information required to perform I/O functions by IOMAN, file managers, and device
drivers. Path descriptors are dynamically allocated and deallocated as paths are
opened and closed.

Path descriptors are variable in size. The full RBE SBE SCF, and PCF path descriptor
structures are provided in rbf.h, sbf.h, scf.h,and pcf.h respectively. Generally, they
consist of three main sections:

e astructure common to all path descriptors: pd com
® asection of elements used by file managers and device drivers
e the path descriptor option section

IOMAN requires the first part to be common to all path descriptors. It uses this
common section to manage accesses to the path and to dispatch to the associated file
manager. File managers can add the information they need after the common part. The
options section is used to contain the dynamically alterable operating parameters for
the file or device. The appropriate file manager copies the path descriptor options from
the device descriptor module when a path is opened or created.

0OS-9 Techical I/O Manual 13

Chapter 1: The OS-9 Input/Output System

You can use the os gs popt () and os ss popt () I/O system calls to update the
option section of each path descriptor. You can not update any other fields of the path
descriptor. The format of the common part is defined in the header file io.h and
shown here.

@ Data defined by specific file managers is provided in the OS-9 Device Descriptor
and Configuration Module Reference.

In user-state, the default setting for the maximum number of paths each process can
have open at any time is 32. You can change this setting by using the os ioconfig()
system call. In system-state, the maximum number of open paths depends on available
system resources.

0OS-9 Techical I/O Manual 14

Chapter 1: The OS-9 Input/Output System

[

pd com

Declaration

t ypedef struct pathcom {

path_id pd_id; /* path nunmber */

Dev_li st d_dev; /* device list elenent pointer */
owner _id pd_own; /* path creator */

struct pathcom *pd_pat hs,

/* list of open paths on device*/

*pd_dpd;
/* ptr to default directory path desc*/
u_intlé pd_node, /* mode (READ_, WRITE_, or EXEC) */
pd_count,

/* actual nunber of open images */

pd_type, /* device type */
pd_cl ass; /* device class */
process_id pd_cpr oc;

/* current active process ID */
u_char *pd_pl buf,

/* pointer to partial pathlist */

*pd_plist;

[* pointer to conplete pathlist */
u_int32 pd_pl bsz

/* size of pathlist buffer */
| k_desc pd_I ock;

/* reserved for internal use */
voi d *pd_async;

/* asynchronous 1/ O resource pointer */
u_int32 pd_st at e; /* process status bits */
error_code (*pd_cal | back) (pd_com *, iocb_save area *, u_int32, ...)

/* ioman cal | back function pointer*/
voi d *pd_cal | backdat a

/* ioman cal | back data (reserved)*/

u_int32 pd_rsrv[5]; /* reserved */

} pd_com *Pd_com

0OS-9 Techical I/O Manual 15

Chapter 1: The OS-9 Input/Output System

Fields

pd_id
The system path number of the path descriptor.

pd dev
Pointer to the device list table entry of the device on which this path is opened.

pd own
Group/user number of the process that created the path descriptor.

pd paths
Pointer to the next path descriptor in the list of paths opened on the same device.

pd dpd
Pointer to the default directory path descriptor. When IOMAN creates a path
descriptor, and a device name was not specified in the pathlist, it stores a pointer
to the path descriptor for the default data or execution (as specified by the
mode) directory in this field.

pd mode
Requested access mode specified when the path descriptor was created.

pd count
Number of users using the path. When the path descriptor is created this field is
set to 1. pd_count is incremented when the path is duplicated using the
_os _dup () system call. The os close () request decrements this field.

pd type
Indicate the device type. The values are shown in Table 1-1 and are defined in
the header file io.n.

pd class
Indicate the device class. It is used when loading modules. The following values
are defined in Table 1-3 and are defined in the header file ic.n.

pd cproc
Process ID of the process currently using the path.

pd plbuf
Pointer to the partial pathlist buffer. This points to the portion of the pathlist
relevant to the file manager.

pd plist
Pointer to the complete pathlist.

pd plbsz
Size of the pathlist buffer.

pd lock
Reserved for internal use.

0OS-9 Techical I/O Manual 16

Chapter 1: The OS-9 Input/Output System

pd _async

Pointer to resources used for performing asynchronous I/O operations.

pd state

Process status bits used by file managers and drivers to determine the state of a

process.

Table 1-4. Process State Values

Defined Name Value Description
PD_SYSTATE 0x00000001 I/O request made from system state.
PD_CALLBACK 0x00000002 IOMAN handles callbacks.

pd callback

Pointer to the callback entry-point in IOMAN. This multi-purpose entry-point
can aid in the implementation of file managers that are
re-entrant on a given path.

Normally, IOMAN allows only a single process to enter a file manager for each
path. This entry point makes it possible for a file manager to call back to
IOMAN; from there, IOMAN can perform tasks that allow multiple processes
into the file manager that is on the same path.

pd callbackdata

Reserved for use by IOMAN during a callback.

pd rsrv

Reserved.

Access Modes and Permissions

The following sections define each of the possible access modes and permissions for
applicable OS-9 I/O calls.

Access Modes

Certain characteristics must be defined for paths. <modes.h> contains #define values,
which correspond to bit settings of access permissions. With a path, you typically
specify whether you are going to READ it, WRITE to it, or both. Other special purpose
mode settings are also available:

FAM READ
FAM WRITE
FAM EXEC

FAM APPEND
FAM SIZE
FAM NONSHARE
FAM DIR
FAM NOCREATE
FAM BLKMODE

0OS-9 Techical I/O Manual

Read mode. Path is open for reading.
Write mode. Path is open for writing.

Execute mode. Search current execution directory instead of
current data directory.

Append mode. All writes go at end-of-file.
Initial file size specified mode.
Non-sharable mode.

Directory mode.

Do not recreate existing file mode.
Perform I/O in block mode.

17

[

Chapter 1: The OS-9 Input/Output System

[

Permissions
Files and named pipes also contain access permissions, which specify how the rest of
the world can access the resource:
FAP_READ File created with owner read permission.
FAP WRITE File created with owner write permission.
FAP EXEC File created with owner execute permission.
FAP GREAD File created with group read permission.
FAP GWRITE File created with group write permission.
FAP GEXEC File created with group execute permission.
FAP PREAD File created with world read permission.
FAP PWRITE File created with world write permission.
FAP PEXEC File created with world execute permission.

File Managers

File
[]

File

managers perform the following functions:
Process the raw data stream to or from device drivers for a class of similar devices.

Service all of the I/O system service requests for a class of devices; those not
handled by the file manager are passed to the device driver by the file manager.

Perform mass storage allocation and directory processing--if applicable to the class
of devices they service.

Buffer the data stream and issue requests to the kernel for dynamic allocation of
buffer memory.

Monitor and process the data stream.

managers are re-entrant. One file manager may be used for an entire class of

devices having similar operational characteristics. OS-9 systems can have any number
of file manager modules.

The

following file managers are included in typical systems:

Table 1-5. File Managers

File

Manager Description

RBF

(Random Block File Manager) Operates random-access, block-structured
devices such as disk systems.

SCF Used with single-character-oriented devices such

(Sequential Character File Manager) as CRT or hardcopy terminals, printers, and
modems.

PIPEMAN (Pipe File Manager) Supports interprocess communication through

SBF

memory buffers called pipes.

(Sequential Block File Manager) Used with sequential block-structured devices
such as tape systems.

0OS-9 Techical I/O Manual 18

Chapter 1: The OS-9 Input/Output System

[

Table 1-5. File Managers (Continued)

File Manager Description

PCF (PC File Manager) Transfers files between OS-9 and DOS systems.
SPF (Stacked Protocol File Manager) Manages communications.

Refer to the SoftStax manual set for more
information about SPF.

File Manager Organization

A file manager is a collection of major subroutines accessed through a dispatch table in
the static storage of the file manager. IOMAN locates this table by adding an offset
specified by the m_share field of the file manager module header. The table contains
the starting address of each file manager subroutine. The first entry of the table
contains the number of subroutines pointed to by the table.

0OS-9 Techical I/O Manual 19

Chapter 1: The OS-9 Input/Output System

Dispatch Table Sample Listing

Declaration
#i ncl ude <types. h>
#defi ne FUNC_COUNT 16

struct {
u_int32 func_count; /* nunmber of functions */
error_code (*funcs[FUNC_COUNT])(); /* function table */

} dispatch_table = { FUNC_COUNT,

{Attach, Chgdir, C ose, Create, Delete, Detach, Dup, Getstat, Makdir,
Open, Read, Readln, Seek, Setstat, Wite, Witeln }

}s

Description

When IOMAN calls a file manager subroutine, it always passes two parameters. For
the Attach and petach functions, the first parameter is a pointer to the parameter
block of the caller and the second is a pointer to the device list entry. For all other
functions, the first parameter is the pointer to the caller’s parameter block and the
second is a pointer to the path descriptor for the specified path.

Functions

The following list describes functions that may be used to create a dispatch table.

Attach
When an os attach() call is made to a device, a file manager determines
whether the device has been previously attached. If it has, the file manager
increments the use count for the device and returns. If the device has not been
previously attached, the file manager may perform some additional logical unit
initialization and calls the init routine of the device driver to initialize the
hardware.

If the device driver’s init routine returns an error, the file manager returns the
error.

Chgdir
On multi-file devices, os chdir () searches for a directory file. IOMAN
allocates a path descriptor. This allows os chdir () to save information about
the directory file for later searches. IOMAN saves the path identifier in the /O
process descriptor.

_os open() () and os create () begin searching in this directory when the
caller’s pathlist does not begin with a slash (/) character. File managers that do
not support directories return an appropriate error code.

0OS-9 Techical I/O Manual 20

Chapter 1: The OS-9 Input/Output System

Close
_os_close () ensures any output to a device is completed (writing out the last
buffer if necessary), and releases any buffer space allocated when the path was
opened.

_os_close () may perform specific end-of-file processing if necessary, such as
writing end-of-file records on tapes.

Create
_os_create () performs the same function as _os_open (). If the file manager
controls multi-file devices (RBF and PIPEMAN), a new file is created.

Delete
Multi-file device managers usually do a directory search similar to _os_open ().
Once the specified file is found, these managers remove the file name from the
directory. If it is the last link to a file, any media in use by the file is returned to
unused status.

Detach
When an _os_detach () call is made to a device, a file manager decrements the
use count for the device. If the count is still non-zero, the file manager returns. If
the use count becomes zero, the file manager calls the driver’s terminate routine.
If the terminate routine returns an error, the file manager returns the error.

Dup
IOMAN implements all of the functions of the os dup () system call on a
device. Normally, file managers are called but do nothing.

Getstat
The os getstat () (get status) system calls are wildcard calls that retrieve the
status of various features of a device (or file manager) that are not generally
device independent.

The file manager can perform a specific function such as obtaining the size of a
file. Status calls that are unknown by the file manager are passed to the driver to
provide a further means of device independence.

Makdir
_os makdir () creates a directory file on multi-file devices. T MAKDIR is neither
preceded by a create nor followed by a c1ose. File managers that cannot
support directories or do not support multi-file devices should return the
EOS_UNKSvC (unknown service request) error.

Open
_os_open () opens a file on a particular device. This typically involves allocating
any required buffers, initializing path descriptor variables, and parsing the path
name. If the file manager controls multi-file devices (RBF and PIPEMAN)),
directory searching is performed to find the specified file.

Read
_os_read () returns the requested number of bytes to the user’s data buffer. If no
data is available, an EOF error is returned. os read() must be capable of
copying pure binary data, and generally does not perform editing on the data.

0OS-9 Techical I/O Manual 21

Chapter 1: The OS-9 Input/Output System

Readln
_os_readln () differs from os readln() in two respects. First, os readin is
expected to terminate when the first end-of-line character (carriage return) is
encountered. Second, os readlnperformsany inputeditingappropriate for the
device.

Specifically, the SCF file manager performs editing that involves functions such
as handling backspace, line deletion, and echo.

Seek
File managers supporting random access devices use os_seek () to position file
pointers of the already open path to the byte specified. Typically, this is a logical
movement and does not affect the physical device. No error is produced at the
time of the seek if the position is beyond the current end-of-file.

File managers that do not support random access usually do nothing, but do not
return an £OS_UNKSVC €rror.

Setstat
The os setstat() (set status) system call is the same as the os getstat ()
function except it is generally used to set the status of various features of a device
or file manager.

The os setstat() and os getstat () system calls are wildcard calls designed
to access features of a device (or file manager) that are not generally device
independent. Status calls that are unknown to the file manager are passed to the
device driver.

Write
_os write(), like os read(), must be capable of recording pure binary data
without alteration. Usually, the routines for read and write are nearly identical.
The most notable difference is os write () uses the device driver’s output
routine instead of the input routine. Writing past the end of file on a device
expands the file with new data.

RBF and similar random access devices using fixed-length records (sectors) must
often preread a sector before writing it unless the entire sector is being written.

Writeln
_os writeln() is the counterpart of os readln (). It calls the device driver to
transfer data up to and including the first (if any) carriage return encountered.
Appropriate output editing is also performed. After a carriage return, for
example, SCF usually outputs a line feed character and nulls (if appropriate).

0OS-9 Techical I/O Manual 22

Chapter 1: The OS-9 Input/Output System

Device Driver Modules

Device driver modules perform basic low-level physical I/O functions. For example a
basic function of the disk driver is to read or write a physical sector. The driver is not
concerned about files and directories, which are handled at a higher level by the OS-9
file manager. Because device drivers are re-entrant, one copy of the module can
simultaneously support multiple devices using identical I/O controller hardware.

@ This section describes the general characteristics of OS-9 device drivers. If you are
developing or modifying a device driver, read the OS-9 Porting Guide.

Basic Functional Driver Requirements

If written properly, a single physical driver module can handle multiple, identical
hardware interfaces. The specific information for each physical interface (such as port
address and initialization constants) is provided in a small device descriptor module.

The name by which the device is known to the system is the name of the device
descriptor module. OS-9 copies some of the information contained in the device
descriptor module to the logical unit and path descriptor data structure for easy access
by the drivers.

A device driver is actually a package of subroutines called by a file manager in system
state. Device driver functions include:

e initializing device controller hardware and related driver variables as required

e reading standard physical units (a character or sector depending on the device
type)

e writing standard physical units (a character or sector depending on the device
type)

e returning specified device status

e setting specified device status

e de-initializing devices, assuming the device will not be used again unless re-
initialized

e processing device interrupts generated during driver execution

All drivers must conform to the standard OS-9 memory module format. The module
type code is MT DEVDRVR. Drivers should have the system state bit set in the attribute
byte of the module header. Currently, OS-9 does not make use of this, but future
revisions will require all device drivers to be system-state modules.

0OS-9 Techical I/O Manual 23

Chapter 1: The OS-9 Input/Output System

[

Interrupts and DMA

Because OS-9 is a multi-tasking operating system, optimum system performance is
obtained when all I/O devices are configured for
interrupt-driven operation.

e For character-oriented devices, set the controller to generate an interrupt on
receipt of an incoming character and at the completion of transmission of an out-
going character. Both the input data and the output data should be buffered in the
driver.

¢ For block-type devices (RBF and SBF), set the controller to generate an interrupt
upon the completion of a block read or write operation. The driver does not need
to buffer data because the driver is passed the address of a complete buffer. A
Direct Memory Access (DMA) device, if available, significantly improves the data
transfer speed.

Usually, the initialization subroutine of the device driver adds the relevant device
interrupt service routine to the OS-9 interrupt polling system using the os irqgsystem
call. The controller interrupts are enabled and disabled by the data transfer routines
(for example, os read() and os write())as required. The termination subroutine
disables the interrupt hardware and removes the device from the interrupt polling
system.

The assignment of device interrupt priority levels can have a significant impact on
system operation.

Generally, the smarter the device, the lower you can set its interrupt level. For

example, a disk controller that buffers sectors can wait longer for service than a single-
character buffered serial port. Assign the clock tick device the highest possible level to
keep system time-keeping interference at a minimum. The following is an example:

Hi gh: cl ock ticker
"dunmb” (non-buffering) disk controller
term nal port
printer port

Low: "smart" (sector-buffering) disk controller

0OS-9 Techical I/O Manual 24

O
29

Random Block File

Manager (RBF)

This chapter describes the OS-9 disk system file structure, record locking, and file
security. It includes the following topics:

Overview

Disk File Organization

Raw Physical I/O on RBF Devices

Raw Physical I/O on RBF Devices
Record Locking Details for I/O Functions
File Security

Creating RBF Drivers and Descriptors

25

Chapter 2: Random Block File Manager (RBF)

[

Overview

The Random Block File Manager (RBF) is a re-entrant subroutine package for I/O
service request to random-access devices. Specifically, RBF is a file manager module
that supports random-access, block-oriented mass storage devic es (disk systems,
bubble memory systems, and high-performance tape systems). RBF can handle any
number or type of such systems simultaneously. It is responsible for maintaining the
logical physical file structures.

RBF supports a wide range of devices having different performance and storage
capacities. Consequently, it is highly parameter driven. The physical parameters it uses
are stored on the media itself. On disk systems, this information is written on the first
sector of track number zero. The device drivers also use the physical parameters stored
on sector 0. These parameters are written by the format program that initializes and
tests the media.

Disk File Organization

RBF supports a tree-structured file system. The physical disk organization is designed
to do the following:

e Use disk space efficiently.
® Resist accidental damage.

e Access files quickly.

Basic Disk Organization

OS-9 supports “power of two” block sizes ranging from 256 bytes to 32768 bytes. If a
disk system is used that cannot directly support the specified block size, the driver
module must divide or combine blocks to simulate the allowed size.

Disks are often physically addressed by track number, surface number, and block
number. To eliminate hardware dependencies, OS-9 uses a logical block number (LBN)
to identify each block without regard to track and surface numbering.

It is the responsibility of the disk driver module or the disk controller to map logical
block numbers to track/surface/block addresses. The OS-9 file system uses LBNs from
0 to (n - 1), where n is the total number of blocks on the drive.

'% All block addresses discussed in this section refer to LBNs.

The f or mat utility initializes the file system on blank or recycled media by creating the
track/surface/block structure. f or mat also tests the media for bad blocks and
automatically excludes them from the file system.

Every OS-9 disk has the same basic structure. An identification block is located in
logical block zero (LBN 0). It describes the physical and logical format of the storage
volume (disk media). Each volume also includes a disk allocation map—indicating the
free and allocated disk blocks, and a root directory. The identification block contains
block offsets to the file descriptors of the disk allocation map and root directory.

0OS-9 Techical I/O Manual 26

Chapter 2: Random Block File Manager (RBF)

[

Identification Block

LBN zero always contains the following identification block. In addition to a
description of the physical and logical format of the disk, the identification block
contains the volume name, date and time of creation, and additional information. If
the disk is a bootable system disk, it also includes the starting LBN and size of the
sysboot file.

typedef struct idblock {

u_int32 rid_sync, /* I D block sync pattern */
rid_diskid, /* disk I D nunber (pseudo random */
rid_totbl ocks; /* total blocks on nedia */
u_intlé rid_cylinders, /* nunber of cylinders */
rid_cyl Osi ze /* cylinder O size in blocks */
rid_cylsize, /* cylinder size in blocks */
rid_heads, /* nunber of surfaces on disk */
rid_bl ocksi ze, /* the size of a block in bytes */
rid_format, /* di sk format
Bit O: = single side

= doubl e side

= doubl e density
Bit 2: = single track (48 TPI)

0
1
Bit 1: 0 = single density
1
0
1 = double track (96 TPI) */

rid_flags, /* various flags */
rid_unusedl; /* 32 bit padding */
u_int 32 ri d_bitmap, /* block offset to bitmap FD */

rid_firstboot, /* block offset to debugger FD */
rid _bootfile, /* block offset to bootfile FD */

rid_rootdir; /* block offset to root directory FD */

u_intlé rid_group, /* group owner of nedia */
ri d_owner; /* owner of media */
tinme_t rid_ctinmne, /* creation time of media */
rid_mtime; /* time of last wite to | D block */
char rid_nane[32], /* vol ume nane */
rid_endfl ag, /* big-/little-endian flag */

rid_unused2[3]; /* long word padding */
u_int32 rid_parity; /* ID block parity */
} idblock, *Idblock;

0OS-9 Techical I/O Manual 27

Chapter 2: Random Block File Manager (RBF)

[

Allocation Map

The allocation map indicates which blocks have been allocated to files and which are
free. Each bit in the allocation map represents a block on the disk. This means the
allocation map varies in size according to the number of bits required to represent the
system. If a bit is set, the block is either in use, defective, or nonexistent. ri d_bi t map
specifies the location of the allocation map file descriptor.

Root Directory

The root directory is the parent directory of other files and directories on the disk. It is
accessed using the physical device name (such as / d1). The root directory file
descriptor is specified in ri d_rootdir.

Basic File Structure

OS-9 uses a multiple-contiguous-segment type of file structure. Segments are
physically contiguous blocks used to store the file’s data. If all the data cannot be
stored in a single segment, additional segments are allocated to the file. This can occur
if a file is expanded after creation or a number of contiguous free blocks is not
available.

All files have a file descriptor block (FD). An FD contains a list of data segments with
starting LBNs and sizes. This is also where information such as file attributes and time
of last modification is stored.

The OS-9 segmentation method keeps file data blocks in as close physical proximity as
possible to minimize disk head movement. Frequently, files (especially small files) have
only one segment. This results in the fastest possible access time. Therefore, it is good
practice to initialize the size of a file to the maximum expected size during or

immediately after its creation. This enables OS-9 to optimize its storage allocation.

The file descriptor structure is made up of one or more physical blocks on the disk.
Only extremely large or fragmented files use more than one file descriptor block. The
last element in a file descriptor is a pair of links, one to the previous file descriptor
block and one to the next file descriptor block. The end of the file descriptor list is
indicated by a next pointer pointing to the first or root file descriptor block. The
information section of the file descriptor block is only valid in the root file descriptor
block. Only the system uses the file descriptor structure; you cannot directly access the
file descriptor.

0OS-9 Techical I/O Manual 28

Chapter 2: Random Block File Manager (RBF)

fd_stats

The following structure, defined in the header file r bf . h, describes the contents of a
file descriptor block.

Declaration

typedef struct fd_stats {

u_int 32 fd_sync, /* file descriptor sync field */
fd_parity, /* validation parity */
fd_flag; /* flag word */
u_intlé fd_host, /* file host owner */
fd_group, /* file group nunber */
fd_owner, /* file owner nunber */
fd_links; /* nunmber of links to FD */
u_int32 fd_size; /* size of file in bytes */
time_t fd ctinme, /* creation timestanp */
fd atine, /* last access tinmestanp */
fd_ntinme, /* last nodified tinestanp */
fd_utinme, /* last changed tinestanp */
fd_btime; /* last backup tinmestanp */
u_intl6é fd_rev, /* RBF revision that created the FD */
f d_unused; /* spare */
} fd_stats;
Fields
fd_sync

Identifies this block as a file descriptor block. It is set to 0xf dbOboOf d.

fd parity
Contains a 32-bit vertical parity value for the file descriptor block. It is always
updated to validate the file descriptor block contents, whether in memory or on
disk, to ensure the accuracy of the file structure.

fd_fl ag
Contains the attributes and permissions of the file.

Table 2-1. File Attributes and Permissions

Flag Description

FD_SMALLFI LE File is small enough to fit in the file descriptor
FD_DI RECTORY File is a directory

FD_EXCLUSI VE Only one active open allowed

0OS-9 Techical I/O Manual 29

Chapter 2: Random Block File Manager (RBF)

Table 2-1. File Attributes and Permissions (Continued)

Flag

Description

PERM_OWNER_READ
PERM OANER WRI TE
PERM_OWKNER_SRCH
PERM_OWKNER_EXEC
PERM_GROUP_READ
PERM GROUP_WRI TE
PERM_GROUP_SRCH
PERM _GROUP_EXEC
PERM WORLD_READ
PERM WORLD WRI TE
PERM WORLD_SRCH
PERM WORLD_EXEC

Read permission by owner
Write permission by owner
Search permission by owner
Execute permission by owner
Read permission by group
Write permission by group
Search permission by group
Execute permission by group
Read permission by world
Write permission by world
Search permission by world
Execute permission by world

All bits not defined above are reserved

fd_host
Contains the host owner number of the user to which the file belongs

fd_group
Contains the group number of the user to which the file belongs. This is initially
set to the group number of the process creating the file. Only the owner of the
file or a super user can change the group number

f d_owner
Contains the owner number of the user to which the file belongs. This is initially
set to the owner number of the process creating the file. Only the owner of the
file or a super user can change the owner number

fd_links
Contains the number of hard links to this file. A hard link is a directory entry
pointing to this file

fd_size
Contains the size of the file in bytes

fd ctinme
Contains a time stamp representing the time when the file descriptor was initially
created. This time stamp is never changed

fd atinme
Contains a time stamp representing the time when the file was last accessed. This
time stamp is updated whenever the file is opened, read, or written. If the file is a
directory file, this field is not updated when it is searched by RBF

0OS-9 Techical I/O Manual 30

Chapter 2: Random Block File Manager (RBF)

[

fd_ntine
Contains a time stamp representing the time when the file was last modified. The
time stamp is updated whenever a file is opened for write or a write is performed
on the file

fd_utine
Contains a time stamp representing the time when the file was last changed. The
time stamp is updated whenever a write is performed on the file or the file
descriptor data changes

fd_btime
Contains a time stamp representing the last time a back up of the file was made.
The backup program (f save) updates the time stamp whenever a back up of the
file is made

fd_rev
Contains the edition number of the RBF file manager that created the file
descriptor

fd_unused
Reserved.

The remainder of the file descriptor block up to the last eight bytes is filled with
segment descriptors, unless the file is a small file. A small file is one whose contents fits
the area of the file descriptor that is usually reserved for segments.

The number of segment descriptors in the file descriptor block depends on the logical
block size. The structure of a segment descriptor is shown here and defined in the
header file r bf . h. The seg_of f set field contains the LBN of the first block in this
segment and the seg_count field contains the number of logical blocks in the segment.

typedef struct fd_segment {
u_int32 seg_of fset, /* segment bl ock offset */
seg_count; /* segment bl ock count */
} fd_segnent;

The last part of the file descriptor block contains links to other file descriptors for a
file. If there is only one file descriptor block for the file, these fields point to the one file
descriptor block. The links structure is shown here and defined in the header file
rbf.h.

typedef struct fd_links {
u_int32 l'ink_prev, /* previous fd block */
li nk_next; /* next fd block */

} fd_links;

0OS-9 Techical I/O Manual 31

Chapter 2: Random Block File Manager (RBF)

[

Small Files

OS-9 RBF implements a class of files called small files. A file is considered small when
its contents fit in the area of the file descriptor reserved for segments. A small file has
the FD_SMALLFI LE bit set in the fd_f1 ag field. From a user’s perspective, small files
behave exactly like other files. RBF automatically changes a small file to a non-small
file if the file grows too big to fit in the file descriptor block.

Logical Block Numbers

RBF maintains the file pointer and logical end-of-file used by application software and
converts them to the logical disk block number using the data in the segment list. You
do not have to be concerned with physical blocks. OS-9 provides fast random access to
data stored anywhere in the file. All the information required to map the logical file
pointer to a physical block number is packaged in the file descriptor block. This makes
the OS-9 record-locking functions very efficient.

Segment Allocation

Each device descriptor module has a value called a segment allocation size, that
specifies the minimum number of blocks to allocate to a new segment. Set this value so
file expansions do not produce a large number of tiny segments. If the system uses a
small number of large files, set this field to a relatively high value, and vice versa.

When a file is created, it has no data segments allocated. Write operations past the
current end-of-file allocate additional blocks to the file. The first write is always past
the end-of-file. Generally, subsequent file expansions are also made in minimum
allocation increments.

An attempt is made to expand the last segment before adding a new segment.

If all of the allocated blocks are not used when the file is closed, the segment is
truncated and any unused blocks are deallocated in the bitmap. For random-access
databases that expand frequently by only a few records, the segment list rapidly fills
with small segments. A provision has been added to prevent this from being a
problem.

If a file (opened in write or update mode) is closed when it is not at end-of-file, the last
segment of the file is not truncated. All programs dealing with a file in write or update
mode must not close the file while at end-of-file, or the file loses its excess space. The
easiest way to ensure this is to perform a _os_eek(0) before closing the file. This
method was chosen because random access files are frequently somewhere other than
end-of-file, and sequential files are almost always at end-of-file when closed.

0OS-9 Techical I/O Manual 32

Chapter 2: Random Block File Manager (RBF)

[

Directory File Format

Directory files have the same structure as other files, except the logical contents of a
directory file conform to the following conventions:

e A directory file consists of an integral number of 64-byte entries.
® The end of the directory is indicated by the normal end-of-file.

e Eachentry consists of a field for the file name and a field for the address of the first
file descriptor block of the file.

The structure of a directory entry is shown here and defined in the header file rbf . h.
The file name field (di r _unane) contains the null terminated file name. The first byte is
set to zero (a null string) to indicate a deleted or unused entry. The address field

(di r _fd_addr) contains the LBN of the first file descriptor block.

#def i ne MAXNAME 43 /* size of name */
#defi ne DI RENTSI ZE 64 /* size of directory
entry */

typedef struct dirent {
char di r _name[MAXNAVE+1] , /* name of file */
di r _unused[DI RENTSI ZE- MAXNAME- si zeof (u_i nt 32) - 1] ;
u_int32 dir_fd_addr; [* where file's FDis */
} dirent;

When a directory file is created, two entries are automatically created: the dot (.) and
dot dot (..) directory entries. These specify the directory and its parent directory,
respectively.

Raw Physical I/O on RBF Devices

You can open an entire disk as one logical file. This enables you to access any byte(s)
or block(s) by physical address without regard to the normal file system. This feature
is provided for diagnostic and utility programs that must be able to read and write to
ordinarily non-accessible disk blocks.

A device is opened for physical I/O by appending the “at” character (@) to the device
name. For example, you can open the device / d2 for raw physical I/O under the
pathlist: /d2@

Standard open, close, read, write, and seek system calls are used for physical I/O. A
seek system call positions the file pointer to the actual disk physical address of any
byte. To read a specific block, perform a seek to the address computed by multiplying
the LBN by the logical block size. For example, to read physical disk block 3 on media
with a logical block size of 256, a seek is performed to address 768 (256*3), followed
by a read system call requesting 256 bytes.

0OS-9 Techical I/O Manual 33

Chapter 2: Random Block File Manager (RBF)

If the number of blocks per track of the disk is known or read from the identification
block, any track/block address can be readily converted to a byte address for physical
I/0.

‘% Use the special @ file in update mode with extreme care. To keep system

overhead low, record locking routines only check for conflicts on paths opened for
the same file. The @ file is considered different from any other file and only
conforms to record lockouts with other users of the @ file.
Improper physical 1/O operations can corrupt the file system. Take great care
when writing to a raw device. Physical I/O calls also bypass the file security system.
For this reason, only super users can open the raw device for write permit. Non-
super users are only permitted to read the identification block (LBN 0). Attempts
to read past this return an end-of-file error.

Raw Physical 1/O on RBF Devices

Block Mode

RBF supports block mode on paths opened to the raw device. In block mode, blocks of
the device beyond the first four gigabytes can be addressed. They are addressed by
their block number, rather than their byte number.

If a path to the raw device is opened in block mode (FAM BLKMODE), semantics of some
system calls on that path change. Generally, where one would normally express a value
in bytes, the value is specified in terms of blocks. For example, an _os_seek(path, 1)
would seek to “block 1” instead of “byte 1”. In addition, where RBF would normally
return a byte number or a number of bytes, it returns a block number or number of

blocks.

I/O calls (_os_read(), _os_readin(), _os wite(),and os witeln()) still take
their counts in terms of bytes, but the number of bytes must be a multiple of the block
size of the device. For example, if the block size of the device is 256 bytes, valid sizes
for I/O would be 256, 512, etc.

Record Locking

Record locking is a general term referring to preserving the integrity of files that more
than one user or process can access. This involves recognizing when a process is trying
toread a record another process may be modifying and deferring the read request until
the record is safe. This process is referred to as conflict detection and prevention. RBF
record locking also handles non-sharable files and deadlock detection.

0OS-9 record locking is transparent to application programs. Most programs may be
written without special concern for multi-user activity.

0OS-9 Techical I/O Manual 34

Chapter 2: Random Block File Manager (RBF)

[

Record Locking and Unlocking

Conflict detection must determine when a record is being updated. RBF provides true
record locking on a byte basis. A typical record update sequence is as follows:

_os_read(path, count, buffer) program reads record;
RECORD | S LOCKED

program updates record

_0s_seek(position) reposition to record
_os_wite(path, count, buffer) record is rewitten;

RECCORD | S RELEASED
When a file is opened in update mode, any read operation locks out the record because
RBF is not aware if the record may be updated. The record remains locked until the
next read, write, or close operation occurs. Reading files opened in read or execute
modes does not lock the record because records cannot be updated in these modes.

A subtle problem exists for programs using a database and occasionally updating its
data. When you look up a particular record, the record may be locked out indefinitely
if the program neglects to release it. This problem is characteristic of record locking
systems and can be avoided by careful programming.

Only one portion of a file may be locked out at one time. If an application requires
more than one record to be locked out, multiple paths to the same file may be opened
with each path having its own record locked out. RBF notices the same process owns
both paths and keeps them from locking each other out. Alternately, the entire file may
be locked out, the records updated, and the file released.

Non-Sharable Files

You can lock files when an entire file is considered unsafe for use by more than one
user. On rare occasions, it is necessary to create a nonsharable file. A non-sharable file
can never be accessed by more than one process at a time.

To create a non-sharable file, set the exclusive access (x) bit in the file attribute byte.
The bit can be set when the file is created, or later using the at t r utility.

If the exclusive access bit has been set, only one process may open the file at a time. If
another process attempts to open the file, an error (ECS_SHARE) is returned.

Most often, a file needs to be non-sharable only while a specific program is executing.
To do this, open the file with the exclusive-access bit set in the access mode parameter.

One example might be when a file is being sorted. If the file is opened as a non-
sharable file, it is treated as though it had an exclusive access attribute. If the file has
already been opened by another process, an error (EOS_SHARE) is returned.

A necessary quirk of non-sharable files is they may be duplicated using the _os_dup()

system call, or inherited. Therefore, a non-sharable file may actually become accessible
to more than one process at a time. Non-sharable only means the file may be opened
once. It is usually a bad idea to have two processes actively using any disk file through
the same (inherited) path.

0OS-9 Techical I/O Manual 35

Chapter 2: Random Block File Manager (RBF)

[

End of File Lock

An EOF lock occurs when you read or write data at the end-of-file. The end-of-file is
kept locked until a read or write is performed that is not at end-of-file. EOF lock is the
only case when a write call automatically locks out any of the file. This avoids
problems that may otherwise occur when two users want to extend a file
simultaneously.

An interesting and useful side effect occurs when a program creates a file for sequential
output. As soon as the file is created, EOF lock is gained, and no other processes can
“pass” the writer in processing the file.

For example, if an assembly listing is redirected to a disk file, a spooler utility may
open and begin listing the file before the assembler writes the first line of output.
Record locking always keeps the spooler one step behind the assembler, making the
listing come out as desired.

Deadlock Detection

A deadlock can occur when two processes simultaneously attempt to gain control of
the same two disk areas. If each process gets one area (locking out the other process),
both processes can become stuck permanently, waiting for a segment that can never
become free. This situation is a general problem not restricted to any particular record
locking method or operating system.

If this occurs, a deadlock error (EOS_DEADLK) is returned to the process that detects the
deadlock. The easiest way to avoid deadlock errors is to access records of shared files
in the same sequences in all processes that may be run simultaneously. For example,
always read the index file before the data file, never the data file before the index file.

When a deadlock error occurs, a program cannot simply retry the operation in error. If
all processes used this strategy, none would ever succeed. At least one process must
release control over a requested segment for any to proceed.

Record Locking Details for I/O Functions

Record locking details are described, by function, in the following subsections.

_os_open()/_os_create()

When opening files, the most important guideline to follow is not to open a file for
update if it is only necessary to read. Files open for read only do not lock out records
and generally help the system run faster. If shared files are routinely opened for update
on a multi-user system, you may become hopelessly record locked for extended
periods of time.

Use the special @ file in update mode with extreme care. To keep system overhead low,
record locking routines only check for conflicts on paths opened for the same file. The
@ file is considered different from any other file and only conforms to record lockouts
with other users of the @ file.

0OS-9 Techical I/O Manual 36

Chapter 2: Random Block File Manager (RBF)

[

_os_read()/_os_readIn()

_os_read() and _os_real n() lock out records only if the file is open in update mode.
The locked out area includes all bytes starting with the current file pointer and
extending for the requested number of bytes.

For example, ifa_os_real n() call is made for 256 bytes, exactly 256 bytes are locked
out, regardless of how many bytes are actually read before a carriage return is
encountered. EOF lock occurs if the bytes requested also include the current end-of-

file.
A record remains locked until any of the following occur:
e another read is performed
® a write is performed
e the file is closed
e an _os_ss_| ock() set status call is issued
Releasing a record does not normally release EOF lock. A read or write of zero bytes
releases any record lock, EOF lock, or file lock.
_os_write/_os_writeln()

Werite calls always release any record that has been locked out. In addition, a write of
zero bytes releases EOF lock and file lock. Writing usually does not lock out any
portion of the file unless it occurs at end-of-file, when it gains EOF lock.

_os_seek()

Seek does not effect record locking.

_os_setstat()

Two setstats have been included for the convenience of record locking:
_o0s_ss_| ock() Lock or release part of a file.

_os_ss_ticks() Set the length of time a program waits for a locked record.

@ Refer to the Ultra C Library Reference manual for more information on these
calls.

File Security

Each file has a group/user ID identifying the owner of the file. These are copied from
the current process descriptor when the file is created. Usually a file’s owner ID is not
changed.

An attribute word is also specified when a file is created. The file’s attribute word tells
RBF in which modes the file may be accessed. Together with the file’s owner ID, the
attribute word provides (some) file security.

0OS-9 Techical I/O Manual 37

Chapter 2: Random Block File Manager (RBF)

The attribute word has three sets of bits indicating whether a file may be opened for
read, write, or execute by the owner, group, or public.

® An owner is a user with the same owner ID.
e The group includes all users with the same group ID.
e The public includes all users.

When a file is opened, access permissions are checked on all directories specified in the
pathlist, as well as the file itself. If you do not have permission to search a directory,
you cannot read any files in that directory.

A super user (a user with group ID of zero) may access any file in the system. Files

owned by the super user cannot be accessed by users of any other group unless specific
access permissions are set. Files containing modules owned by the super user must also
be owned by the super user. If not, the modules contained within the file can not be

loaded.
The RBF file descriptor stores the group/user ID in two 16-bit fields (f d_gr oup and

fd_owner).

C The system manager must exercise caution when assigning group/user IDs.

Creating RBF Drivers and Descriptors

The following sections discuss how to create RBF drivers and descriptors.

Creating Disk Drivers

Creating a disk driver for your target system is similar to creating a console terminal
driver as explained in Chapter 9 of the OS-9 Porting Guide. However, disk drivers are
more complicated. You can use a Microware-supplied sample disk driver source file as
a prototype.

If the target system has both floppy disks and hard disks, create the floppy disk driver
first, unless they both use a single integrated controller. You can create the hard disk
driver after the system is up and running on the floppy.

A test disk must exist with the correct type of OS-9 formatting. If you are using:
e an OS-9 based host system, you can make test disks on the host system.

® across-development system, you should obtain sample
pre-formatted disks from Microware.

You should make a non-interrupt driver the first time to make your debugging task
easier. Make a new download file that includes the disk driver and descriptor modules
along with one or two disk-related commands (such as di r and free) for testing. If
you are using the RomBug, include the driver’s . stb module for easier debugging.

You can add the previously tested and debugged console driver and descriptor modules
to your main system boot at this time. This minimizes download time as in the
previous step.

0OS-9 Techical I/O Manual 38

Chapter 2: Random Block File Manager (RBF)

Disk drivers make use of the RBF file manager. The Random Block File Manager
(RBF) is a re-entrant subroutine package for I/O service requests to random-access
devices. Specifically, RBF is a file manager module supporting random-access, block-
oriented mass storage devices (disk systems, bubble memory systems, and high-
performance tape systems). RBF can handle any number or type of such systems
simultaneously. It is responsible for maintaining the logical and physical file structures.

When you write a device driver, do not include MPU/CPU specific code. This makes
the device driver portable.

RBF supports a wide range of devices having different performance and storage
capacities. Consequently, it is highly parameter driven. The physical parameters it uses
are stored on the media itself. On disk systems, this information is written on the first
sector of track number 0. The device drivers also use the physical parameters stored on
sector 0. These parameters are written by the f or mat program that initializes and tests
the media.

Understanding SCSI Device Driver Differences

This section explains some unique aspects of SCSI device drivers. The basic premise of
the SCSI system is to break the OS-9 driver into separate areas of functionality (high-
and low-level). This enables different file managers and drivers to talk to their
respective devices on the SCSI bus.

The device driver handles the high-level functionality. The device driver is the module
called directly by the appropriate file manager. Device drivers deal with all target-
controller-specific/device-class issues (for example, SCSI hard disks or tapes).

Hardware Configurations

To configure a high-level driver, complete the following steps:
Step 1. Prepare the command packets for the SCSI target device.
Step 2. Pass this packet to the low-level subroutine module.

The low-level subroutine module passes the command packet (and data if necessary)
to the target device on the SCSI bus. The low-level code does not concern itself with
the contents of the commands/data; it performs requests for the high-level driver. The
low-level module also coordinates all communication requests between the various
high-level drivers and itself. The low-level module is often an MPU/CPU specific
module, so it can be written as an optimized module for the target system.

The device descriptor module contains the name strings for linking the modules
together. The file manager and device driver names are specified in the normal way.
The low-level module name associated with the device is indicated through the
ds_| drvrnamfield in the device-specific portion of the device descriptor. This offset
pointer points to a string containing the name of the low-level module.

0OS-9 Techical I/O Manual 39

Chapter 2: Random Block File Manager (RBF)

Example SCSI Software Configuration

An example system setup shows how drivers for disk and tape devices can be mixed on
the SCSI bus without interference. The setup includes:

Micropolis 4221 Hard Disk with embedded SCSI controller addressed as SCSI
IDO

Archive Viper QIC tape drive with embedded SCSI controller addressed as SCSI
ID 4

TEAC SCSI floppy disk drive with embedded SCSI controller addressed as SCSI
ID6

Host CPU

MVME1603

Uses NCR53C810 or NCR53C825 Interface chip
ID of chip is SCSI ID 7

The hardware setup should look similar to that shown in the figure below:

Figure 2-1. SCSI Setup

1603
D7 -
Archive Vi i i
SCSI Controllers TEAGFCT re "'E_ Iper bicropolis 4221
D4 106 o0
Physical Devices Fi0 TAPE HIC
FS‘ =il LUM O LUN 0

The high-level drivers associated with this configuration are shown in Table 2-2.

Table 2-2. High-Level Drivers

Name Handles

RBTEAC TEAC SCSI floppy devices
SBSCsI Archive VIPER tape device
RBSCCS Hard disk device

The low-level module associated with this configuration is shown in
Table 2-3.

Table 2-3. Low-Level SCSI Subroutine Module

Name Handles

SCSI 1603 NCR53C8xx Interface on the MVME 1603 CPU

0OS-9 Techical I/O Manual

40

Chapter 2: Random Block File Manager (RBF)

[

A conceptual map of the OS-9 modules for this system would look like the following
figure:

Figure 2-2. OS-9 Modules

Kernel Level 0S-9 Kern%l

File Manager Level RBF (disks) SBF (tapes|
Device Driver Level RBTEAC RBSCCS SBSCSI
Physical Bus Level SCSI1603

A common reconfiguration occurs when you add additional devices of the same type
as the existing device. For example, adding an additional disk to the SCSI bus on the
MVME1603. To add a similar controller, Micropolis 4220, to the bus, you only need
to create a new device descriptor. (The example ports have both / ho and / h1
descriptors that demonstrate the use of additional SCSI disk controller devices.) There
are no drivers to write or modify, as these already exist (RBSCCI and SCSI 1603). You
need to modify the existing descriptor for the RBSCCS device to reflect the second
device’s physical parameters (such as, SCSI ID) and change the actual name of the
descriptor itself.

Testing the Disk Driver

Test the disk driver using the following procedure. (You can omit Steps 1 and 2 if the
necessary system modules are in ROM.)

Step 1. After a reset, set the debugger’s relocation register to the RAM address where you
want the system modules (now including the console driver) loaded.

Step 2. Download the system modules, but do not insert breakpoints.

Step 3. Set the debugger’s relocation register to the RAM address where you want the disk
driver and descriptor loaded. Ensure this address does not overlap the area where the
system modules were previously loaded.

Step 4. Download the disk driver and descriptor modules, but do not insert breakpoints.

Step 5. Type gb to initiate the boot process. If a menu appears, select the Boot from ROM
option (ro). The following message should appear:

An OS-9000 kernel was found at $XXXXXXXX

0OS-9 Techical I/O Manual 41

Chapter 2: Random Block File Manager (RBF)

Step 6.

Step 7.
Step 8.

Step 9.

This is followed by a register dump and a RomBug prompt. If you do not see this
message, the system modules were probably not downloaded correctly or were loaded
into the wrong memory area.

Type gb again. This executes the kernel’s initialization code including the OS-9
module search. You should get another register dump and debug prompt.

Insert breakpoints in the disk driver if needed.
Type gb again. This starts the system. You should see the following display:
Shell $

Run the di r utility. If this fails, begin debugging by repeating this procedure with
breakpoints inserted in the driver’s | NI T, GETSTAT, SETSTAT, and READ routines.

Creating RBF Device Drivers

RBF-type device drivers support any random access storage device that reads and
writes data in fixed size blocks (for example, disks or RAM memories). The file
manager handles all file system processing and passes the driver a data buffer and a
logical block number (LBN) for each read or write operation.

Write calls to the driver initiate the block write operation and, if required, a prior
“seek” operation. For interrupt driven systems, the controller generates an interrupt
when the data has been written from the buffer on to the disk. The driver must
suspend itself until the interrupt occurs.

DMA operation s preferred if available. If the “verify” flagis set in the path descriptor
(pd_vfy), the block should be read back and verified.

Drivers for hard disks are relatively simple for two reasons:

e The driver typically works with an intelligent controller.
e The disk format is fixed.

For example, most SCSI type hard disk controllers directly accept OS-9’s logical sector
number as the physical sector address.

Floppy disk drivers are more complicated. They work with less capable disk
controllers and often must handle a variety of disk sizes.

Disk drivers keep a table in the logical unit static variable storage area containing
current track addresses and disk format information for each drive (unit). The track
addresses are used for controllers with explicit seek commands to determine if the
head must be moved prior to a read or write operation. The format data part of each
table entry selects density, number of sides, etc.

The I NI T routine obtains some initialization data from the device descriptor module.
Each disk media has similar format information recorded on LBN zero (the f or mat

utility puts it there). Whenever block zero of a floppy disk is read, the drive’s device
static storage is updated with the information actually read. This is how the driver

automatically adapts to different disk formats. Initialization of the static storage must
occur prior to access of any other block on the drive.

0OS-9 Techical I/O Manual 42

Chapter 2: Random Block File Manager (RBF)

RBF Device Driver Storage Definitions

RBF-type device driver modules contain a package of subroutines that perform block
oriented I/O to or from a specific hardware controller. Because these modules are re-
entrant, one copy of the module can simultaneously run several identical I/O
controllers.

IOMAN allocates a driver static storage area for each driver and port combination
(that may control several drives). The size of this storage area is specified in the device
driver module header (m dat a). RBF requires some of this storage area. The device
driver may use the remainder in any manner. IOMAN also allocates a logical unit
static storage area for each drive on a controller. The size of this storage area is
specified by the device descriptor module (m dat a). The structure of logical unit static
storage is described earlier in this chapter.

The format of the part of driver static storage required by RBF is shown here and
defined in the header file r bf . h. This is the dispatch table pointed to by thev_dr _st at
field of the device list described in the previous chapter.

typedef struct rbf_drv_stat {

u_int32 funcs, /* nunber of functions */
(*v_init)(), /* address of driver init routine */
(*v_read)(), /* address of driver read routine */
(*v_write)(), /* address of driver wite routine */
(*v_getstat) (), /* address of driver getstat routine */
(*v_setstat) (), /* address of driver setstat routine */
(*v_term(); /* address of device term nate routine */

lock id v _drvr_rsrc_id; /* the driver’s resource lock ID */

process_id v_busy, /* process using the device */

v_wake; /* for use by the driver */

} rbf _drv_stat, *Rbf_drv_stat;

RBF Device Driver Subroutines

As with all device drivers, RBF device drivers use a standard executable memory
module format with a module type of MI_DEVDRVR.

Within the driver’s global static storage resides the dispatch table to the driver
functions. Each function should return SUCCESS if the operation was successful.
Otherwise, it should return an appropriate error code.

Table 2-4. RBF Subroutines

Function Description

GETSTAT Get device status

INIT Initialize device and its static storage area
I RQ SERVI CE ROUTI NE Service device interrupts

READ Read sector(s)

SETSTAT Set device status

TERM NATE Terminate device

VRI TE Write sector(s)

0OS-9 Techical I/O Manual 43

Chapter 2: Random Block File Manager (RBF)

GETSTAT
Get Device Status

Syntax

error_code getstat(
voi d pb,
Rbf pd pd,
Dev_li st dev);

Description

These routines are wildcard calls used to get the device’s operating parameters as
specified for the OS-9 get st at service requests.

Usually all Get Stat codes return with an EOS_UNKSVC (UnKnown Service Request)

error.
Parameters

pb is the status parameter block.
pd is the path descriptor.

dev is the device list entry.

0S-9 Techical 1/O Manuadl 44

Chapter 2: Random Block File Manager (RBF)

[

INIT

Initialize Device and its Static Storage Area

Syntax

error_code init (Dev_list dev);

Description
The INIT routine must:

1. Check for previous initialization. It must allocate a lock for the driver in the driver
static storage and place it in v_drvr_rsrc_i d.

2. Initialize device control registers (enable interrupts if necessary).

If the driver uses interrupts, place the IRQ service routine on the IRQ polling list
by using the _os_irq() service request.

4. Ifevents are to be used for interrupt signaling, the event should be created and its
ID placed in the driver static storage.

Parameters

dev is the device list entry.

0OS-9 Techical I/O Manual 45

Chapter 2: Random Block File Manager (RBF)

IRQ SERVICE ROUTINE

Service Device Interrupts

Syntax

error_code irq(Rbf _drvr_stat drvstat);

Description

Although this routine is not included in the device driver module branch table and is
not called directly by RBE it is a key routine in interrupt-driven device drivers. Its
function is as follows:

1. Poll the device. If the interrupt is not caused by this device, the interrupt service
routine should return with an EOS_NOTME error code.

2. Service device interrupts.

3. Inform the driver that the interrupt has occurred. This could involve either
performing an event set system call or sending a signal, depending on the driver
implementation. If the signal method is used, the interrupt service routine must
clear the v_wake flag in the driver static storage area to notify the driver that the
interrupt has indeed occurred.

4. When the IRQ service routine finishes servicing an interrupt, it must return
SUCCESS. SUCCESS is defined in the const . h header file.

'% The IRQ service routine is passed one parameter. This parameter is specified
when the driver calls _os_i rq() to install the service routine on the interrupt
polling table. This value is placed in the global pointer register. See the Using Ultra
C/C++ manual for the API (global register) used for your processor. This variable
should be a pointer to the driver static storage. However, the driver can use this
parameter for anything useful.

Parameters

drvst at is the driver static storage.

0OS-9 Techical I/O Manual 46

Chapter 2: Random Block File Manager (RBF)

READ
Read Sector(s)

Syntax

error_code read(
u_int32 bl ks,
u_int32 bl kaddr,
Rbf pd pd,
Dev_li st dev);

Description

The READ routine must:
Get the buffer address from pd_buf in the path descriptor.
Verify the drive number from pd_drv in the path descriptor.

Compute the physical disk address from the logical block number.

Read block(s) from the disk into the buffer.

1
2
3
4. Seek to the physical track requested.
5
6. Wait for the command to finish.

OS-9 drivers typically use the OS-9 event system to wait for interrupts. The driver
read/write routine executes an event wait and the interrupt service routine issues an
event signal or event set to inform the driver that the interrupt has occurred. Drivers
can also use the more traditional sleep and signal method. To do this, the driver copies
the current process ID from v_busy in the driver static storage to v_wake and does an
indefinite sleep (a sleep for 0 ticks). The interrupt service routine then sends a wake up
signal to the sleeping process using the ID stored in v_wake.

Drivers do not have to be interrupt driven. A driver can simply poll the device waiting
for command completion, but this disrupts time sharing performance. If the disk
controller cannot be interrupt-driven, a programmed I/O transfer must be performed.

Whenever logical sector zero is read, the i dbl ock section must be copied to the drive
table of logical unit static storage.

If bit number 1 in the pd_cnt | field is clear, RBF only requests one sector reads. If the
bit is set, RBF may request up to pd_xf er si ze bytes of data to be read. RBF divides
pd_xf er si ze by the block size to determine the maximum number of blocks that can
be transferred. pd_xf ersi ze is defined in the path descriptor options section of the
device descriptor.

Parameters

bl ks is the number of blocks to transfer.
bl kaddr is the starting block address.

pd is the path descriptor.

dev points to the device list entry.

0OS-9 Techical I/O Manual 47

Chapter 2: Random Block File Manager (RBF)

SETSTAT

Set Device Status

Syntax

error_code setstat(
voi d pb,
Rbf pd pd,
Dev_li st dev);

Description

These routines are wildcard calls used to get the device’s operating parameters as
specified for the OS-9 set stat service requests.

Typical RBF drivers have routines to handle the SS WIRK and SS_RESET set st at calls.
Usually all get st at calls and other set st at calls return with an ECS_UNKSVC
(UnKnown Service Request) error.

Parameters

pb is the status parameter block.
pd is the path descriptor.

dev is the device list entry.

0OS-9 Techical I/O Manual 48

Chapter 2: Random Block File Manager (RBF)

TERMINATE

Terminate Device

Syntax
error_code ternm(Dev_list dev);

Description

This routine is called when a device is no longer in use in the system. This is defined as
when the link count of its device table entry becomes zero (see _os_at tach() and
| _DETACH).

The TERM routine must:
1. Wait until any pending I/O has completed.

Disable the device interrupts.

2
3. Remove the device from the IRQ polling list.
4. Delete any events used by the driver.

S

Return the lock allocated by the driver in the init routine.

Parameters

dev is the device list entry.

0OS-9 Techical I/O Manual 49

Chapter 2: Random Block File Manager (RBF)

WRITE
Write Sector(s)

Syntax

error_code wite(
u_int32 bl ks,
u_int32 bl kaddr,
Rof pd pd,
Dev_li st dev);

Description

The WRITE routine must:

Get the buffer address from pd_buf in the path descriptor.

Verify the drive number from pd_drv in the path descriptor.
Compute the physical disk address from the logical block number.
Seek to the requested physical track.

Write buffer(s) to the disk.

Wait for the command to complete.

N A=

If pd_vfy in the path descriptor is equal to zero, read the data back and verify that
itis written correctly. We recommend that the compare loop be as short as possible
to keep the necessary block interleave value to a minimum.

OS-9 drivers typically use the event system to wait for interrupts. The driver read/write
routine executes an event wait and the interrupt service routine issues an event signal
or pulse to inform the driver that the interrupt has occurred. Drivers can also use the
more traditional sleep and signal method by copying the current process ID from
v_busy in the driver static storage to v_wake. Next, it does an indefinite sleep (a sleep
for 0 ticks). The interrupt service routine then sends a wake up signal to the sleeping
process using the ID stored in v_wake.

Drivers do not have to be interrupt driven. A driver can poll the device waiting for
command completion, but this hampers time sharing performance. If the disk
controller cannot be interrupt-driven, a programmed I/O transfer must be performed.

If bit 1 in pd_cnt | is clear, RBF only requests one block writes. If the bit is set, RBF
may request up to pd_xf er si ze bytes of data to be written. RBF divides pd_xf ersi ze
by the block size to determine the maximum number of blocks that can be transferred.
pd_xf er si ze is defined in the path descriptor options section of the device descriptor.

Parameters

bl ks is the number of blocks to transfer.
bl kaddr is the starting block address.

pd is the path descriptor.

dev points to the device list entry.

0OS-9 Techical I/O Manual 50

Chapter 2: Random Block File Manager (RBF)

[

Using RBF Device Descriptor Modules

The RBF device descriptor consists of four parts:

e The OS-9 module header

¢ The common information required by IOMAN for all descriptors
e The path descriptor options

e The logical unit static storage

Two of these parts are contained in this structure (defined in rbf . h):

typedef struct rbf_desc {
dd_com dd_descom
rbf _path_opts dd_pat hopt ;
} rbf_desc, *Rbf_desc;

The table below explains the RBF device descriptor structure.

Table 2-5. RBF Device Descriptor Structure

Name Description

dd_descom This is the common information structure IOMAN requires to be in all
device descriptors.

dd_pat hopt This structure contains the RBF path descriptor options and information
IOMAN uses to initialize the device. RBF copies this information into the
path descriptor when a file is opened or created.

Logical Unit Static Storage Initialization

IOMAN initializes logical unit static storage from the device descriptor using a
declaration of the following structure. This structure is defined in rbf . h.

typedef struct rbf_lu_stat {

rbf _drv_info v_driveinfo; /* the drive's information */

u_char v_vector, /* the interrupt vector */
v_irql evel, /* the interrupt |evel */
v_priority, /* the interrupt priority */
v_unused; /* unused byte */

rbf _lu_opts v_l uopt; /* logical unit options */

u_int32 v_reserved[2] ; /* reserved */

} rbf _lu_stat;

Table 2-6. RBF Logical Unit Static Storage Structure

Name Description
v_driveinfo Disk Drive Information

RBF maintains information about the media in use in this field. A full
description of this structure follows this discussion.

v_vect or Interrupt Vector
This is the vector number of the device interrupt.

0OS-9 Techical I/O Manual 51

Chapter 2: Random Block File Manager (RBF)

Table 2-6. RBF Logical Unit Static Storage Structure (Continued)

Name Description
v_irqglevel Interrupt Level

This is the hardware priority of the device interrupt.
v_priority Interrupt Priority

This is the software (polling) priority of the device interrupt.
v_| uopt Device Options

This is the device options section. A full description of this structure
follows the discussion on Disk Drive Information.

v_reserved Reserved

Space reserved for future expansion.

Disk Drive Information

Because RBF supports a wide variety of format options for disk media, it maintains
information about the current media being processed in the logical unit static storage
for the drive. The structure definition of the drive information is shown here and a
description of each field follows. This structure is defined in the header file rbf . h.

These values should not be changed from the defaults defined in the descriptor

source file.

t ypedef struct
i dbl ock
| k_desc
Rbf _pat h_desc
| k_desc
struct freeblk

u_int32
fd_segnment v_napseg;
| dbl ock
u_int32
u_int32

struct cachedriv

| k_desc
u_intlé
u_char

Rbf _path_opts
u_char

| k_desc
Fdl _Iist
| k_desc
Bl ockbuf
u_int32
} rbf_drv_info;

0OS-9 Techical I/O Manual

rbf _drv_info {

v_0; /* standard | D bl ock */
v_file_rsrc_lk; /* the file list resource |lock */
v_filehd; /* list of open files on drive */
v_free_rsrc_lk; /* free list resource lock */
v_free, / pointer to free list structure */
v_freesearch; / start search for free space */
v_di ski d; /* di sk | D nunber */

/* the bitmap segnment */
v_bkzero; /* pointer to block zero buffer */
v_resbit, /* reserved bitmap block # (if any) */
v_trak; /* current track nunber */
v_softerr, /* recoverable error count */
v_harderr; /* non-recoverable error count */
v_cache; / drive cache information ptr */
v_crsrc_|k; /* cache resource |ock */
v_nunpat hs; /* # of open paths on this device */
v_zerord, /* block zero read flag */
v init; /* drive initialized flag */
v_dopts; /* copy of the default opts */
v_endf | ag, /* big/little endian flag */
v_dum?®[3] ; /* reserved */

v fd free rsrc_Ik; /* FD free list |ock*/

v fd free list; /* free FD bl ock structures */
v_bl ks rsrc_lk; /* free block list lock */

v_bl ks list; /* list of free block buffers */
v_reserved[4]; /* reserved */

52

Chapter 2: Random Block File Manager (RBF)

The following table gives the RBF drive information structure.

Table 2-7. RBF Drive Information Structure

Name

Description

v_0

v _file_rsrc_lk

v_filehd

v_free rsrc_ |k

v_free

v_freesearch

v_di skid

v_mapseg

v_bkzero

v_trak

v_softerr

v_harderr

0OS-9 Techical I/O Manual

ID Block Structure

This is a copy of the i dbl ock structure from the identification
sector of the media. The device driver must copy this information
from the identification sector every time it is read.

Open File List Lock Descriptor
Lock descriptor structure for locking the open file list.
List of Path Descriptors

This field points to a list of path descriptors, representing the open
files on the drive.

Resource List Lock Descriptor

Lock descriptor structure for locking the allocatable resources list.
List of Allocatable Resources

This field points to a data structure, representing the areas on the
media free for allocation. RBF searches this data structure when it
allocates space for a file.

Beginning of Free Memory

This field points to the part of the v_f r ee data structure for RBF
to start searching when it allocates space for a file.

Disk ID

RBF copies the di ski d field from the i dbl ock and stores it in this
field. It is used to detect when disks have been changed in a disk
drive.

Allocation Bitmap Segment Information

This field contains the segment information for the RBF allocation
map. RBF does not set this field until it needs the allocation map
(for an allocation or de-allocation operation).

Identification Section Pointer

This is a pointer to a buffer containing the identification sector.
Only the driver uses this field. RBF never accesses this field.
Current Track/Cylinder

This is the track/cylinder over which the head is currently
positioned. Only the driver uses this field. RBF never accesses this
field.

Recoverable Error Count

This is the number of recoverable errors that have occurred on
the drive and media. Only the driver uses this field. RBF never
accesses this field.

Non-Recoverable Error Count

This is the number of non-recoverable errors that have occurred
on the drive and media. Only the driver uses this field. RBF never
accesses this field.

53

[

Chapter 2: Random Block File Manager (RBF)

Table 2-7. RBF Drive Information Structure (Continued)

Name

Description

v_cache

v_crsrc_lk

v_nunpat hs

v_zerord

v_init

v_dopt s

v_endfl ag

v _fd free rsrc_ Ik

v_fd free_ |ist

v_bl ks rsrc_ Ik

v_bl ks |ist

v_reserved

Data Cache Pointer

This field points to the data caching structure, if caching is being
used on the drive.

Cache Data Lock Descriptor

Lock descriptor structure for locking the disk cache data structure.
Open Paths On Device

This is the number of open paths on the device.

Block 0 Read Flag

RBF drivers use this flag to determine whether or not there is a
valid sector O buffered. RBF never accesses this field.

Initialized Drive Flag

This flag indicates that the device has been initialized. RBF drivers
use this field to prevent themselves from initializing a device more
than once.

Copy of Path Descriptor Options

This is a copy of the path descriptor options. These are detailed in
the following section.

Byte Ordering Flag
This flag indicates the byte ordering used by the processor:
BIG_END processor uses most significant byte first order

LITTLE_END processor uses least significant byte first order
FD Free List Lock Descriptor

Lock descriptor structure for locking the FD free list.

List of Free FD Block Structures

This field points to the list of free file descriptor block structures.
Free Block List Lock Descriptor

Lock descriptor structure for locking the free block list.

List of Free Block Buffers

This field points to the list of free block buffers used for buffering
data blocks.

Reserved for Future Enhancements

0OS-9 Techical I/O Manual

54

Chapter 2: Random Block File Manager (RBF)

[

Disk Device Options

This section describes the definitions of the device options for RBF-type devices. The
structure definition of the device options is shown here. This structure is defined in the
header file rbf . h. IOMAN copies the device options from the device descriptor
module into the logical unit static storage when the device is attached.

typedef struct rbf_lu_ opts {

u_char lu_stp, /* step rate */

lu_tfm /* DVA transfer node */

lu_lun, /* drive logical unit nunber*/

lu ctrlrid; /* controller ID*/
u_int32 lu_totcyls; /* total nunber of cylinders */
u_int32 lu_reserved[4]; [/* reserved for future expansion */

} rbf _lu_opts, *Rbf _lu_opts;

Table 2-8. RBF Disk Device Option Structure

Name Description

lu_stp Step Rate (floppy disks)
This location contains a code that sets the head stepping rate
used with the drive. Set the step rate to the fastest value the drive
is capable of to reduce access time. These are the values
commonly used:
* 0 STEP_30MS
* 1 STEP_20MS
* 2 STEP_12MB
* 3 STEP_6MS

lu_tfm DMA Transfer Mode
This is hardware specific. If available, the byte can be set for use
of DMA mode. DMA requires only a single interrupt for each block
of characters transferred in an 1/O operation. Itis much faster than
methods that interrupt for each character transferred.

lu_lun Drive Unit Number
This number is used in the command block to identify the drive to
the controller. The driver uses this number when specifying the
device.

lu_ctrlirid SCSI Controller ID
This is the ID number of the controller attached to the drive. The
driver uses this number when communicating with the controller.

| u_reserved Reserved for Future Enhancements
lu_totcyls Cylinders On Device

This value is the actual number of cylinders on a partitioned drive.
The driver uses this value to correctly initialize the drive.

0OS-9 Techical I/O Manual 55

Chapter 2: Random Block File Manager (RBF)

Path Descriptor Options Table

The structure definition of the RBF path descriptor options is shown here. This
structure is defined in the header file r bf . h.

t ypedef struct
u_int32

} rbf _path_opt

rbf _path_opts {
pd_si d, /* nunber of surfaces */
pd_vfy, /* O=verify disk wites */
pd_f ormat, /* device format */
pd_cyl, /* nunber of cylinders */
pd_bl k, /* default blocks/track */
pd_t Ob, /* default blocks/track for trk0/secO */
pd_sas, /* segment allocation size */
pd_ilv, /* block interl eave of fset */
pd_toffs, /* track base offset */
pd_bof f s, /* block base offset */
pd_trys, [* # tries */
pd_bsi ze, /* size of block in bytes */
pd_cntl, /* control word */
pd_wpc, /* first wite preconp cylinder */
pd_rwr, /* first reduced wite current cylinder */
pd_park, /* park cylinder for hard disks */
pd_I snof fs, /* lIsn offset for partition */
pd_xfersi ze; /* max transfer size in terns of bytes */

pd_reserved[4]; /* reserved for future enhancenents

s, *Rbf_path_opts;

The following table lists the path descriptor options for RBE.

Table 2-9. RBF Path Descriptor Options Table Structure

*/

Name Description
pd_sid Heads or Sides*

This indicates the number of surfaces for a disk unit.
pd_vfy Write Verification

0OS-9 Techical I/O Manual

This fiel

d indicates whether a write is verified by a re-read and

compare. If pd_vfy is:

0
1

Verity disk write

No verification

NOTE: Write verify operations are generally performed on floppy
disks but not hard disks because of the lower soft error rate of hard

disks.

56

Chapter 2: Random Block File Manager (RBF)

Table 2-9. RBF Path Descriptor Options Table Structure (Continued)

Name Description
pd_f or mat Disk Type*
0S-9 supports the following format definitions. These are defined in
rbf. h:
FMI_DBLTRKO Track 0 is double density.
FMI_DBLBI TDNS Device is double bit density.
FMTI_DBLTRKDNS Device is double track density.
FMT_DBLSI DE Device is double sided.
FMT_El GHTI NCH Drive is eight inch.
FMT_FI VEI NCH Drive is five inch.
FMT_THREEI NCH Drive is three inch.
FMI_HI GHDENS Device is high density.
FMT_STDFMT Device is standard format.
FMI_REMOVABLE Media can be removed.
FMI_HARDI SK Device is a hard disk.
pd_cyl Cylinders
This is the number of cylinders per disk.
pd_bl k Blocks/Track*
This is the number of blocks per track on all tracks except track 0.
pd_t0b Blocks/Track 0*
This is the number of blocks per track for track 0. This may be
different than pd_bl k (depending on the specific disk format).
pd_sas Segment Allocation Size
This value specifies the default minimum number of sectors to be
allocated when a file is expanded.
pd_ilv Sector Interleave Factor*
Sectors are arranged on a disk in a certain sequential order (1, 2, 3,
etc.,, 1, 3, 5, etc.). The interleave factor determines the
arrangement. For example, if the interleave factor is 2, the sectors
would be arranged by 2’s (1, 3, 5, etc.) starting at the base sector
(refer to pd_sof f s).
pd_toffs Track Base Offset*
This is the offset to the first accessible track number. Because Track
0 is often a different density, Track O is sometimes not used as the
base track.
pd_bof fs Sector Base Offset™

0OS-9 Techical I/O Manual

This is the offset to the first accessible sector number. Sector 0 is
not always the base sector.

57

[

Chapter 2: Random Block File Manager (RBF)

Table 2-9. RBF Path Descriptor Options Table Structure (Continued)

Name

Description

pd_trys

pd_bsi ze

pd_cntl

pd_wpc

pd_rw

pd_par k

pd_I snoffs

pd_xfersize

Number of Tries

This is the number of times a device tries to access a disk before
returning an error.

Logical Block Size*

This is the logical block size in bytes.

Control Word

This is the control word. It may currently contain:

CTRL_FMTDIS Disables formatting of the device.
CTRL_MULTI Device is capable of multi-sector
transfers.

CTRL_AUTOSIZE Device size can be obtained from device.

CTRL_FMTENTIRE Device requires only one format
command.

CTRL_TRKWRITE Device needs afull track bufferforformat.
Write Precompensation Cylinder

This number determines at which cylinder to begin write
precompensation.

Reduced Write Current Cylinder

This number determines at which cylinder to begin reduced write
current.

Park Cylinder

This is the cylinder at which to park the hard disk’s head, when the
drive is to be shut down.

Logical Sector Offset*
This is the offset to be used when accessing a partitioned drive.
Maximum Transfer Size

This is the maximum size of memory the controller can transfer
at one time. The size is specified in bytes.

* This parameter is format specific.

Building RBF Device Descriptors

Making OS-9 device descriptors involves two steps:

Step 1. Modify the appropriate C macro definitions within the RBF/ <Dri ver >/ conf i g. des for
a specific device descriptor.

Step 2. Make the descriptor using the associated makefile.

The confi g. des file is organized so the macro definitions for a particular descriptor
are grouped together. For example, the following section of confi g. des contains the
macros that must be defined (this is, macros that do not have pre-defined defaults) for
the RBF ramdescriptor. They are grouped together within a C macro conditional.

0OS-9 Techical I/O Manual

58

Chapter 2: Random Block File Manager (RBF)

[

/***

* Ram Device Default Definitions (Al associated descriptors) *

***/

/* Mbdul e header nmacros */

#define MH EDIT 0x7

/* Device descriptor conmon nacros */
#def i ne PORTADDR 0

#define DRVR_NAME “ranf

#def i ne MODE Oxffff

/* rbf macros */
#define BLKSTRK 2048 /* multiplied by systemw de BLKSI ZE def aul t */
/* of 256 will equal 512 KByte ram disk. */

/***

* End of Ram Device Default Definitions *

**/

/***

* RO Ram Descriptor Override Definitions *
**/
#if defined (RO) /* RO descriptor */

/* Modul e header macros */

#defi ne MH_NAME_OVERRI DE “ro”

/* Device descriptor conmon nacros */
/* rbf macros */

#endif /* RO descriptor */

Standard Device Descriptor Macros

This section discusses the standard macro definitions used for creating RBF device
descriptors. Some of the macros have predefined values you can redefine in

RBF/ <Dri ver>/ config. des file. Others must be defined for every device descriptor.
Each discussion gives the name of the macro, an explanation of the macro, and an
example definition (in many cases this is the default value set by Microware).

0OS-9 Techical I/O Manual 59

Chapter 2: Random Block File Manager (RBF)

These five macros are common to RBE, SCF, and SBF descriptors.

Table 2-10. RBF, SCF, and SBF Common Descriptors

Name

Description and Example

PORTADDR

VECTOR

| RQLEVEL

PRI ORI TY

LUN

Controller Address

This is the address of the device on the bus. This is the lowest address
the device has mapped. Port address is hardware dependent.

#def i ne PORTADDR Oxf f f e4000

Interrupt Vector

This is the vector passed to the processor at interrupt time. Vector is
hardware/software dependent. You can program some devices to
produce different vectors.

#defi ne VECTOR 80

Interrupt Level For the Device

The number of supported interrupt levels is dependent on the
processor being used. When a device interrupts the processor, the level
of the interrupt is used to mask out lower priority devices.

#define | RQLEVEL 4

Interrupt Polling Priority

This value is software dependent. A non-zero priority determines the
position of the device within the vector. Lower values are polled first. A
priority of 1 indicates the device desires exclusive use of the vector. A
priority of O indicates the device wants to be the first device on the
polling list. OS-9 does not allow a device to claim exclusive use of a
vector if another device has already been installed on the vector.
Additionally, it does not allow another device to use the vector once the
vector has been claimed for exclusive use.

#define PRIORITY 10

Logical Unit Number of the Device

More than one device can have the same port address. The logical
unit number distinguishes the devices having the same port address.
#define LUN 2 /* drive nunber */

RBF Specific Macro Definitions

The following macros are specific to RBF:

0OS-9 Techical I/O Manual

60

Chapter 2: Random Block File Manager (RBF)

Table 2-11. RBF Macro Definitions

Name

Description and Example

STEP

SI DES

VERI FY

0OS-9 Techical I/O Manual

Step Rate
This specifies the step rate to use on the RBF device. The following values
are commonly used:

Value 5" and 3" disks 8" disks

0 30ms 15ms
1 20ms 10ms
2 12ms 6ms
3 6ms 3ms

Only the device driver uses the step rate value. The particular driver must
determine the correspondence between the step value code and the step
rate used on the drive.

#define STEP 3

Number of Heads or Sides

This defines the number of heads on the drive. For example, a double-
sided floppy drive would have a SI DES value of 2.

#def i ne SI DES 2

Write Verification Flag

If set to a non-zero value, VERI FY indicates a read after write verify is
desired. A zero value indicates no verify should be performed. Itis up to
the device driver to perform the verify.

#define VERIFY O /[* no verify */

61

[

Chapter 2: Random Block File Manager (RBF)

Table 2-11. RBF Macro Definitions (Continued)

Name

Description and Example

FORNVAT

CYLNDRS

BLKSTRK

BLKSTRKO

SEGS| ZE

0OS-9 Techical I/O Manual

Driver Format

This defines the format of the drive described by the device descriptor. The
definitions of the bits in the format word (16 bits) are defined in r bf . h:
#def i ne FMI_DBLTRKO 0x0001

/* track O is double density */
#def i ne FMI_DBLBI TDNS 0x0002
/* dev is double bit density */
#def i ne FMI_DBLTRKDNS 0x0004
/*dev is double track density*/
#define FMI_DBLSI DE 0x0008
/* device is double sided */
#defi ne FMI_EI GHTI NCH 0x0010
/* drive is eight inch */
#defi ne FMI_FI VEI NCH 0x0020
/* drive is five inch */
#defi ne FMI_THREEI NCH 0x0040
/* drive is three inch */
#defi ne FMI_H GHDENS 0x1000
/* device is high density */
#def i ne FMI_STDFMI 0x2000
/* device is standard format */
#defi ne FMI_REMOVABLE 0x4000
/* media can be renoved */
#def i ne FMI_HARDI SK 0x8000
/* device is a hard disk */
#def i ne FORVAT
FMTI_STDFMI+FMT_FI VEI NCH+FMT_DBLSI DE+FMI_DBLTRKDNS+
FMT_DBLKTRKO
Number of Cylinders
This defines the number of cylinders on the drive.
#defi ne CYLNDRS 80
Blocks Per Track
This defines the number of blocks per track on the drive on all tracks but
track O.
#def i ne BLKSTRK 16
Blocks Per Track O
This defines the number of blocks per track on track 0. Some floppy disk
formats use a track O format that is different from the rest of the media so
at least track O can be read.
#defi ne BLKSTRKO 16
Minimum Segment Allocation
This defines the minimum number of blocks RBF should allocate when it
is enlarging files.
#defi ne SEGSI ZE 1

62

Chapter 2: Random Block File Manager (RBF)

[

Table 2-11. RBF Macro Definitions (Continued)

Name Description and Example

I NTRLV Block Interleave Factor
This defines the physical interleave used when formatting the disk media.
#define | NTRLV 2

DVAMODE DMA Transfer Mode

This defines the type of DMA to be performed when transferring data to
or from the disk device. Only the device driver uses this value.
#def i ne DVAMODE 0
/* DMA transfer node */

TRKOFFS Track Offset
This defines the track offset to use when accessing the device. If a track
offset of one is used, for example, logical block O is the first block on side
0 of track (cylinder) one.
#define TRKOFFS 1
/* one track offset */

BLKOFFS Block Offset
This defines the offset to use when obtaining the physical block number
for a device. A value of 1 indicates blocks are numbered from 1 to
BLKSTRK. A value of O indicates blocks are numbered from O to BLKSTRK -
1.
#defi ne BLKOFFS 1
/* one bl ock of fset */

BLKSI ZE Block Size
This defines the size in bytes of the blocks used on the media.
#defi ne BLKSI ZE 256
/* size of a block */

CONTROL Format Control Flags
This defines the settings of various flags affecting the control of the
device. The definitions of the flags are defined in rbf. h:

#define CTRL_FMIDI S 0x0001

/* device cannot be formatted */
#define CTRL_MULTI 0x0002

/* can transfer multi sectors */
#defi ne CTRL_AUTOCSI ZE 0x0004

/* device can find its size */
#defi ne CTRL_FMTENTI RE 0x0008

[* can format entire device */
#define CTRL_TRKWRI TE 0x0010

/* do track wites for format */

#def i ne CONTROL CTRL_MULTI
/[* control word */
TRYS Number of Retries Before Error

This defines the number of retries that should be performed before
returning an error.
#define TRYS 7

0OS-9 Techical I/O Manual 63

Chapter 2: Random Block File Manager (RBF)

Table 2-11. RBF Macro Definitions (Continued)

Name Description and Example

SCSI LUN SCSI Logical Unit Number
This defines the SCSI logical unit number to be used by a device. Only the
device driver uses this value. It can be used for things other than the SCSI
logical unit number in the case of non-SCSI drivers.
#defi ne SCSI LUN 2

PRECOWP First Cylinder for Write Precompensation
This defines the starting cylinder for write precompensation. Only the
driver uses this value.
#def i ne PRECOWP CYLNDRS

REDWRI TE First Cylinder for Reduced Write Current
This defines the starting reduced write current cylinder. Only the driver
uses this value.
#def i ne REDWRI TE CYLNDRS

PARKCYL Park Cylinder
This defines the cylinder where the read/write heads of the drive should be
placed when an _os_ss_sqd() setstat is performed. Only the driver
uses this value.
#def i ne PARKCYL 0

LSNOFFS Logical Block Offset
This defines the logical block offset to be used when accessing the device.
This value is added to the logical block address RBF passes to the driver.
Only the driver uses this value.
#def i ne LSNOFFS 1

TOTCYLS Total Number of Cylinders on Drive
This defines the total number of physical cylinders on the drive. This value
is useful when working with physical drives that have been split in to a
number of logical drives. Only the driver uses this field.
#defi ne TOTCYLS 80

CTRLRI D SCSI Controller ID
This defines the SCSI controller ID for the device being accessed. Only the
driver uses this field. You can use it for other purposes on non-SCSI
devices.
#define CTRLRI D 0

DRI VERNAMVE Name of Driver
This defines the name of the RBF driver used to access the device
described by the descriptor.
#defi ne DRI VERNAME “rb5400”

0OS-9 Techical I/O Manual 64

Chapter 2: Random Block File Manager (RBF)

[

Device Specific Non-Standard Definitions

In addition to the standard fields described in rbf . des, you can add specific
definitions for particular driver/descriptor combinations. It is usually done to
accommodate specific RBF drivers.

Complete the following steps for adding device specific information to a descriptor:

Step 1. Create an edi t mod source file with the structure definition of the additional
information. For example, in rbsccs.des:

struct dev_specific {
poi nter u_int32 ds_|drvnam = | drvnam
u_int32 ds_scsiopts, "SCSI options"
b

string ldrvnam "SCSI |owlevel driver nane";
Step 2. Change the driver's header file to indicate the driver has device specific information:
#defi ne DEV_SPECI FI C

#i ncl ude <rbsccs. edne /* include the editnod generated
header file */

typedef struct dev_specific dev_specific; /* create dev_specific type */
Step 3. Add the header generation entry to the makefile for the driver. For example,

rbsccs. h : rbsccs. edm

rbsccs. edm : rbsccs. des
$(EDI TMOD) - h=dev_specific -o=rbsccs. edmrbsccs. des

Step 4. Ensure the driver's header file is included by confi . des when the descriptor is made.
Add an #i ncl ude statement if necessary.

After following these steps, make the descriptor using the descriptor makefile.

0OS-9 Techical I/O Manual 65

Chapter 2: Random Block File Manager (RBF)

0OS-9 Techical I/O Manual 66

Sequential Character File Manager
(SCF)

O
29

This chapter describes how to create an SCF device descriptor and device driver.

The following sections are included:

Overview

SCF Path Descriptor

SCF Control Character Mapping Table
Creating an SCF Driver/Descriptor
Creating SCF Device Drivers

SCF Device Driver Entry Subroutines
Using SCF Device Descriptor Modules
Building SCF Device Descriptors

67

Chapter 3: Sequential Character File Manager (SCF)

[

Overview

The Sequential File Manager (SCF) is a re-entrant subroutine package for I/O
service requests to devices that operate on a character-by-character basis (terminals,
printers, modems, etc.). SCF can support any number of SCF-type devices. In
addition, SCF contains input and output editing functions to aid in typical line-
oriented operations.

The I/O service requests applicable to SCF are listed below:

| _ATTACH | _CLOSE

| _CREATE | _DETACH

| _DUP | _GETSTAT
| _OPEN | _READ

| _READLN | _SETSTAT
| _WRITE | _WRI TLN

The I/O service requests, when made to SCE, return the appropriate error code.

SCF is responsible for arbitrating I/O requests to devices and performing line editing
functions. SCF device drivers are responsible for the actual transfer of data to and
from the device hardware. The device driver transfers data to and from the unit’s
input/output buffer. SCF transfers the data to and from the units input/output
buffer to the process’s data buffer.

SCF device drivers that support hardware with interrupt capability transfer data to
and from the unit’s buffers asynchronously. The device driver is driven by interrupts
from the device and needs no direct communication with the file manager to pass
data between the unit’s buffers and the hardware. An interrupt driven device driver
is only directly called by SCF when the device is attached (to initialize the
hardware), when the device is detached (to deinitialize the hardware), when the
transmittor interrupts need to be enabled (when data is available for transmission),
and for some select getstat/setstat service requests. SCF calls the device driver for
each character read/written to the de vice in the case that the device is being
operated in polled mode.

Creating an SCF Driver/Descriptor

Step 1.

Step 2.

Step 3.

This section summarizes the steps required to build a device descriptor for a new
board. You will be referred to more detailed procedures for the specific steps
involved in writing an SCF device driver and building a descriptor if Microware
does not supply one you can use.

Create a <dri ver > directory in the port-specific <t ar get >/ SCF directory where
<dri ver> is the name of the serial device driver chip on your board.

Create DRVR and DESC directories in the <t ar get >/ SCF/ <Dr i ver > directory, along
with makefiles, to build the drivers and descriptors. You can use the example
makefiles as a reference.

Check the Microware-supplied driver and driver-specific descriptor sources
included in the MAOS/ 0S9000/ SRC/ | O SCF/ DRVR directory for one based on the same
target device your platform uses.

0OS-9 Techical I/O Manual 68

Chapter 3: Sequential Character File Manager (SCF)

Step 4.

Step 5.
Step 6.
Step 7.

If you find a driver matching the chip on your board, check the makefiles (copied
from examples in Step 2) to make certain they point to the correct source files for
the device driver. Proceed to Step 6.

Create a new directory in MAOS/ 0S9000/ SRC/ | O’ SCF/ DRVR for the device driver.
Build a new device descriptor for the driver.

Set up the proper configuration labels for the device within the syst ype. h file for
the driver and the configuration files for the descriptor.

Creating SCF Device Drivers

This section describes the data structures and subroutines comprising an SCF device
driver. The first section describes the driver’s static storage structure definition and
the second section describes the subroutines required for an SCF driver.

@ Before you write a device driver, you should understand how the driver uses the
device descriptor. For this information, refer to the Using SCF Device
Descriptor Modules section.

SCF Device Driver Static Storage

This section describes the device driver’s static storage structure definition. The
structure definition of the driver static storage is found in scf. h and shown on the
following page. This structure contains the information SCF needs to initialize and
call the device driver.

Like all other OS-9 device drivers, SCF device drivers use a standard executable
memory module format with a module type of device driver. Every driver maintains
a driver static storage area for each device with a unique port address. The driver
static storage area always contains the following five items:

1. The first seven long words of the driver’s dispatch table structure must contain
the address of the standard driver functions. SCF drivers may declare additional
variables separate from this structure, but it is critical that this structure be
identified as the sharable portion of the driver’s static storage by equating the
name of the structure with the _m shar e label. This portion of every SCF driver
static storage must be the same.

2. A variable used by drivers to keep track of the number of times the driver has
been attached. This variable can determine when to properly terminate the
device.

A pointer to the device list entry for the specific device.
4. The number of interrupt service routines for the driver.

A table of interrupt service routine entries containing the hardware vector offset
of the associated interrupt and the address of the service routine completes the
driver static storage.

'% SCF assumes the first interrupt entry in the table is the input interrupt
service routine.

0OS-9 Techical I/O Manual 69

[

Chapter 3: Sequential Character File Manager (SCF)

The static storage of the driver is a combination of the driver static storage structure
and any other variables the driver declares.

IOMAN allocates and initializes the driver’s entire static storage at attach time and
also performs the following functions:

e Locates the driver’s dispatch table structure within the driver’s static storage
information by using the m shar e field of the driver’s module header.

e Adds this offset value to the beginning of the driver’s static storage to locate the
shared structure. This value is contained in the v_dr_st at field in the device list
entry associated with the device and is used by SCF in calling the driver.

t ypedef struct scf_drvr_stat {
error_code (*v_init)(),
/* address of driver’s init function */
(*v_read) (), /* address of driver's read function */
(*v_wite)(), /* address of driver’s wite function */
(*v_getstat)(), /* address of driver’s get_status function */
(*v_setstat)(),/* address of driver’'s put_status function */
(*v_termnate)(),/* address of driver’s term nate function */
(*v_entxirq)(); /* address of driver’'s "entxirq" function */
/* i.e. (enable transmitter interrupts) */
Dev_list v_dev_entry;/* device list entry pointer for device */
/* (initialized by SCF before calling drvr) */
u_intl6 v_attached,/* driver attached flag (maintained by drvr) */
v_rsrvd[7]; /* reserved for future use */
u_int32 v_irqcnt; /* nunber of interrupt service routines */
irg_entry wv_irqgrtns[8];
/* interrupt service routine entries */
} scf _drvr_stat;

The following table describes the device driver storage for SCE.

Table 3-1. SCF Device Driver Static Storage

Name Description

v_init This field contains the address of the driver’s initialization
routine. The initialization routine is responsible for performing
the actual initialization of the device hardware. SCF calls this
routine when an _os_at t ach() service request is made.

v_read This field contains the address of the driver’s read routine. The
driver’s read routine is only called if the driver’s input operates in
polled mode. For more information, refer to the v_pol I i n field
of the logical unit static storage structure definition
(Table 3-4).

0OS-9 Techical I/O Manual 70

Chapter 3: Sequential Character File Manager (SCF)

Table 3-1. SCF Device Driver Static Storage (Continued)

Name

Description

vV_wite

v_get st at

v_set st at

v_term nate

v_entxirq

v_dev_entry
v_attached

v_irqgcnt

0OS-9 Techical I/O Manual

This field contains the address of the driver’s write routine. The
driver’s write routine is only called if the driver’s output operates
in polled mode. For more information, refer to the v_pol | out
field of the logical unit static storage structure definition

(Table 3-4).

This field contains the address of the driver’s get status routine.
The driver’s get status routine is only called for get st at service
requests that are defined to call the driver and unknown

get st at function codes.

This field contains the address of the driver’s set status routine.
The driver’s set status routine is only called for set st at service
requests that are defined to call the driver and unknown

set st at function codes.

This field contains the address of the driver’s terminate routine.
The terminate routine is responsible for performing the actual
de-initialization of the device hardware. SCF calls this routine
when an _os_det ach() service request is made.

This field contains the address of the driver’s enable transmit
interrupts routine. The enable routine is responsible for enabling
the device’s transmitter interrupts so the device can begin its
asynchronous output. SCF only calls the enable routine when
data is available for transmission and the transmit interrupts are
disabled. For more information, refer to the v_out hal t field in
the logical unit static storage structure definition (Table 3-4).
This field points to the device list entry for this device.

The driver uses this field to keep track of the number of attach
operations performed on the device. The driver should
increment it every time the init routine is called, and decrement
it for every terminate call. This allows the driver to know when it
should truly initialize/de-initialize the hardware.

This fields specifies the number of interrupt service routines
required by the device driver.

71

[

Chapter 3: Sequential Character File Manager (SCF)

Table 3-1. SCF Device Driver Static Storage (Continued)

Name

Description

v_irgrtns

v_rsrvd

This array contains the addresses and associated vector
numbers of the interrupt service routines of the driver. The driver
may use this array to install its interrupt service routines on the
system'’s interrupt polling table. The first entry (if any) is the read
IRQ. The second entry (if any) is the write IRQ. This array
contains the addresses and associated vector number offsets
(from the base vector number of the device) of the interrupt
service routines of the driver. The base vector number is usually
zero. However, for some smart devices, there can be multiple
IRQs. The actual vector number value the driver uses to install
the routine on the system polling table is the sum of the vector
number in the logical unit static storage (v_vect or) and the
routine vector offset.

This array is reserved for future use.

SCF Device Driver Entry Subroutines

The standard driver subroutines and their parameters follow:

Table 3-2. SCF Subroutines

Function Description

ENABLE TRANSM TTER | NTERRUPTS Enable the device’s “ready-to-transmit”
interrupts.

GETSTAT Get device status.

INIT Initalize device hardware.

| RQ SERVI CE ROUTI NE Service device interrupts.

READ Read next character.

SETSTAT Set device status.

TERM NATE Terminate device.

VRl TE Write a character.

0OS-9 Techical I/O Manual

72

Chapter 3: Sequential Character File Manager (SCF)

[

ENABLE TRANSMITTER INTERRUPTS

Enable the Device’s Ready to Transmit Interrupts

Syntax

error_code entxirq(Dev_list device_entry);

Description

The enable transmitter interrupts routine is called by SCF and the driver when there
is data in the output buffer and the v_out hal t field of the output device’s logical
unit static storage indicates the ready to transmit interrupts are disabled. The init
routine should initialize this field and the interrupt service routine(s) should
maintain it properly. Also, the enable transmitter interrupts routine should flag that
the transmitter interrupt is enabled by setting the OH_| RQON bit of the v_out hal t
field.

Parameters

devi ce_entry
points to the device list entry.

0OS-9 Techical I/O Manual 73

Chapter 3: Sequential Character File Manager (SCF)

GETSTAT
Get Device Status

Syntax

error_code getstat(
| _getstat_pb ctrl _bl ock,
Scf _pat h_desc pat h_desc,
Dev_Ii st devi ce_entry);

Description

These routines are wildcard calls used to get the device parameters specified by the
get st at service requests. Many SCF-type requests are handled by IOMAN or SCE.
Any get stat functions not handled by them are passed to the device driver. If the
function code specified in the control block is not recognized by the driver, the
driver returns an EOS_UNKSVC (unknown service code) error.

Parameters

ctrl _block
is the | _GETSTAT control block.

pat h_desc
points to the path descriptor.

devi ce_entry
points to the device entry.

0OS-9 Techical I/O Manual 74

Chapter 3: Sequential Character File Manager (SCF)

[

INIT

Initialize Device Hardware

Syntax

error_code init(Dev_list device_entry);

Description
The INIT routine must:

1. Install driver interrupt service routine(s) on the system interrupt polling table
using the _os_irq() service request.

2. Initialize the device control registers with the functionality specified by the
logical unit options section.

3. Output a null byte to get the transmitter interrupts activated. The transmitter
interrupts should not actually be enabled until later when SCF has data to

9, <«

output and calls the driver’s “enable-transmitter interrupts” routine.

Parameters

devi ce_entry
is the device list entry for the device.

0OS-9 Techical I/O Manual 75

Chapter 3: Sequential Character File Manager (SCF)

IRQ SERVICE ROUTINE

Service Device Interrupts

Syntax
error_code input_irqg(Dev_Ilist device_entry);

error_code output_irq(Dev_list device_entry);

Description

The interrupt service routine is not included in the driver’s entry point table and not
called directly by SCE. It functions as follows:

1. Query device to determine if it caused the interrupt. If the device did not cause
the interrupt, exit immediately with an EOS_NOTME error.

2. Service the device interrupt (receive/transmit data). This routine puts its data
into or get its data from the buffers defined in the logical unit static storage.

3. Wake up any process waiting for I/O to complete by checking the v_wake field of
the logical unit static storage. It sends a wakeup signal to the process specified

by this field and then clears the field.

4. If the device is ready to send (assuming it is servicing an output interrupt) and
the output buffer is empty, it disables the device’s ready- to-transmit interrupts.
It also flags the interrupts as disabled by clearing the OH | RQON bit and setting
the OH_EMPTY bit of the v_out hal t flag field of the logical unit static storage.

5. If a pause character is received, sets the v_pause field of the logical unit static
storage of the output device to a non-zero value.

6. If a keyboard interrupt or keyboard quit character is received, sends the
associated signal to the process specified in the v_I proc field of the logical unit
static storage.

7. If an X-ON or X-OFF character is received, enables or disables transmitter
interrupts.

8. If the input buffer has reached the “high water mark” as specified by the
v_maxbuf f field of the logical unit static storage and X-OFF is enabled, prepares
to send an X-OFF character.

Parameters

devi ce_entry
points to the device list entry.

0OS-9 Techical I/O Manual 76

Chapter 3: Sequential Character File Manager (SCF)

[

READ
Read Next Character

Syntax
error_code read(
Scf _pat h_desc pat h_desc,
Dev_lIi st devi ce_entry);
Description

The READ routine for drivers that have interrupt driven input returns without
error. The read routine for drivers with polled input performs the same functions as
an input interrupt service routine (X-ON/X-OFF flow control, keyboard interrupt,
keyboard quit) except it polls the hardware for the next character.

Parameters

pat h_desc
points to the path descriptor.

devi ce_entry
points to the device list entry.

0OS-9 Techical I/O Manual 77

Chapter 3: Sequential Character File Manager (SCF)

SETSTAT

Set Device Status

Syntax

error_code setstat(
| _setstat_pb ctrl _bl ock,
Scf _pat h_desc pat h_desc,
Dev_Ii st devi ce_entry);

Description

Setstats are wildcard calls that set the device parameters specified by the set st at
service requests. Many SCF-type requests are handled by IOMAN or SCE. Any
setstat functions not handled by them are passed to the device driver. If the
function code specified in the control block is not recognized by the driver, the
driver returns an EOS_UNKSVC (unknown service code) error.

Parameters

ctrl _block
is the | _SETSTAT control block.

pat h_desc
points to the path descriptor.

devi ce_entry
points to the device entry.

0OS-9 Techical I/O Manual 78

Chapter 3: Sequential Character File Manager (SCF)

[

TERMINATE

Terminate Device

Syntax

error_code ternminate(Dev_|ist device_entry);

Description
The terminate routine performs the following functions:
1. De-initializes the hardware, disabling the device interrupts.

2. Removes the interrupt service routine(s) from the system interrupt polling table.

Parameters

devi ce_entry
points to the device list entry.

0OS-9 Techical I/O Manual 79

Chapter 3: Sequential Character File Manager (SCF)

WRITE
Write a Character

Syntax
error_code wite(
Scf _pat h_desc pat h_desc,
Dev_lIi st devi ce_entry);
Description

The write routine for drivers that have interrupt driven output returns without
error. The write routine for drivers with polled output performs the same functions
as an output interrupt service routine except it polls the hardware to transmit the
next character.

Parameters

pat h_desc
points to the path descriptor.

devi ce_entry
points to the device entry.

0OS-9 Techical I/O Manual 80

Chapter 3: Sequential Character File Manager (SCF)

|
Using SCF Device Descriptor Modules

The SCF device descriptor consists of four parts:

* 0S-9 module header

e common information required by IOMAN for all descriptors
e path descriptor options

e logical unit static storage

Along with the common IOMAN information, the scf _desc structure contains the
offset for the name of an output device to be used, if different from the input device.
SCF examines this structure when processing an OPEN request.

This structure is defined in scf . h:

typedef struct scf_desc {

dd_com

dd_descom /* common devi ce descriptor variables */
u_int32

dd_out dev; /* alternate output device name of fset */
u_intlé

dd_rsvd_scf[2]; /* reserved space */

} scf_desc;

Table 3-3. SCF Device Descriptors

Name Description

dd_descom This is the common information structure IOMAN requires be in
all device descriptors.

dd_out dev This is the offset to the name of the output device to be used

instead of the input device. If this field is non-zero, SCF attaches
to this device, initializes it, and issues an SS_OPEN set st at request
to the device's driver.

SCF Logical Unit Static Storage

This section describes the definitions of the logical unit (device) static storage area
for SCF-type devices. The structure definition of the device static storage is found in
scf. h. IOMAN copies the initial values from the device descriptor module into the
logical unit static storage when a path to the device is opened. This structure
contains the important variables used by the device driver and SCF to communicate
and transfer data.

0OS-9 Techical I/O Manual 81

Chapter 3: Sequential Character File Manager (SCF)

Device Static Storage Structure Definition Example

typedef struct scf_lu_stat {

har dwar e_vect or

u_char

u_intlé

u_int32

process_id

Scf _lu_stat

u_int32
u_int32
u_char

0OS-9 Techical I/O Manual

v_irql evel
v_priority,

v_pollin,

v_pol | out,

v_inhalt,
v_hangup,
v_out hal t;
v_lu_num
V_wait;
v_i rqgmask,

v_savirq_fm

v_savirq_dv,

v_savirq_ll;
v_wake,
v_busy,
v_| proc,

v_si gproc[3],

v_dcdof f[3],

v_dcdon[3] ;

v_out dev;

v_pdbuf si ze

v_maxbuf f;
v_insi ze,
V_i ncount;

*v_i nbuf ad

*v_infill,
*v_inenpty
*v_inend;

v_vector;

/* set non-0 when data carrier

/* I RQ vector nunber */
/* IRQ interrupt
/* TRQ polling priority */
1=pol | ed, 0=l RQ

| evel */

/* polled input flag;

driven */

/* polled output flag; 1=polled, 0=IRQ
driven */

/* input halted flag */

is lost */

/* output IRQ@s disabled when non-zero */

/* logical unit nunmber */

/* indicates process is waiting on I/0O */
/* Interrupt mask word */

/* previous interrupt mask word (SCF
only) */

/* prev.
only) */

interrupt mask word (driver

/* reserved for future use */
/* ID of process waiting I/O operation */
/* 1D of process currently using device */
/* # of

| ast process to use this unit */

/* process to signal on SS_SENDSI G

request; signal code; associ ated
(system) path # */

/* process to signal on SS_DCOFF
request; signal code; associ ated

(systenm) path # */

/* process to signa
signal code

on SS_DCON request;
associ ated (systen) path # */

/* output device' s static storage
pointer */

/* SCF s path buffer size for this
device */

/* input buffer maxi mum (high water
mark) */
/* size of input buffer */

/* nunber of bytes in input buffer */

/* input buffer address */

/* input buffer next-in pointer */

/* input buffer next-out pointer */

/* input buffer end of buffer pointer */

82

Chapter 3: Sequential Character File Manager (SCF)

u_int32

u_char

lock_id
u_int32
u_int32

v_out si ze,
v_out count ;
*v_out buf ad,
*v_outfill,
*v_outenpty,
*v_out end;
v_l ocki d;
v_use_cnt;

v_resrvd[5];

Scf _path_opts v_pdopt;

scf _lu_opts

v_opt;

#i f def DEV_SPECI FI CS
DEV_SPECI FI CS

#endi f

} scf _lu_stat;

/* size of output buffer */

/* nunber of bytes in output buffer */
/* output buffer address */

/* output buffer next-in pointer */

/* output buffer next-out pointer */

/* output buffer end of buffer pointer */
/* 1/Olock identifier */

/* logical unit user count */

/* reserved space */

/* ptr to path descriptor options
section */

/* logical unit options section */

/* driver specific static variables */

The following table describes the storage fields for SCE.

Table 3-4. SCF Logical Unit Static Storage Fields

Name

Description

v_vect or

v_irglevel
v_priority

v_pollin

v_pol | out

0OS-9 Techical I/O Manual

Interrupt Vector
This field contains the associated interrupt vector number for
the device.

Note: The OS-9 Configuration Reference uses
har dwar e_vect or.

Interrupt Level
This field contains the interrupt level of the device.

Interrupt Priority

This field contains the polling priority of the device.

Polled Input Flag

This field indicates whether the device’s input operates in
interrupt or polled mode. If the driver uses polled mode, SCF
calls the driver’s READ routine for every character. A non-zero
value indicates polled mode. A zero value indicates interrupt
driven input.

Polled Output Flag

This field indicates whether the device’s output operates in
interrupt or polled mode. If the driver uses polled mode, SCF
calls the driver’s WRI TE routine for every character. A non-zero
value indicates polled mode. A zero value indicates interrupt
driven output.

83

[

Chapter 3: Sequential Character File Manager (SCF)

Table 3-4. SCF Logical Unit Static Storage Fields (Continued)

Name

Description

v_i nhal t

v_hangup

v_out hal t

v_lu_num

V_wai t

v_irqmask

v_savirq_fm

0OS-9 Techical I/O Manual

Input Halted Flag

This field indicates whether or not input to the device has
been halted. It is non-zero if an X-OFF character has been
sent and input halted.

Data Carrier Lost Flag
This field is non-zero when the data carrier line has been lost,
indicating a lost connection.

Output Halt Flag

This field indicates the status of output from the device. SCF
uses this field to decide when to call the driver’s “enable
transmit IRQ” routine to begin output. Bits 2 - 4 are
undefined. Bits 5 and 6 are user-definable. Bits 0, 1, and 7
are defined as follows:

Bit 0 (0x01) indicates an X-OFF has been
received and output has been halted.

Bit 1 (0x02) indicates the output buffer is empty
and output has been halted.

Bit 7 (0x80) indicates transmitter interrupts are
enabled. It is important that the
device driver clears this bit whenever
definitions for these bits are in the
scf. h header file

Logical Unit Number

This field contains the logical unit number.

NOTE: The OS-9 Configuration Reference uses v_| un.

1/0 Wait Flag

This field indicates whether a process is waiting for /O on this

logical unit. Definitions for this field are located in the scf. h

header file. The values of this field are defined as follows:

0 No processes waiting on the device.

1 A process is waiting on input to the
device.

2 A process is waiting on output from
the device.

Interrupt Mask

This field contains the interrupt mask used for masking
interrupts to the level of the device.

NOTE: Interrupts should be masked as little as possible and
only for critical sections of the device driver.

Previous Interrupt Status (SCF use)

SCF uses this field for saving the current state of the interrupt
status register prior to masking interrupts.

84

Chapter 3: Sequential Character File Manager (SCF)

Table 3-4. SCF Logical Unit Static Storage Fields (Continued)

Name

Description

v_savirq_dv

v_wake

v_busy

v_| proc

Vv_si gproc

v_dcdof f

v_dcdon

v_out dev

v_pdbuf si ze

v_maxbuf f

0OS-9 Techical I/O Manual

Previous Interrupt Status (Driver use)
SCF device drivers use this field for saving the current state of
the interrupt status register prior to masking interrupts.

Waiting Process ID

This field contains the process identifier of any process waiting
for the device to complete 1/O.

0 indicates there is no process waiting.

Current Process ID

This field contains the process identifier of the process
currently using the device. SCF uses this field to prevent more
than one process from using the device at a time.

NOTE: v_busy is always equal to v_| proc or is zero.

Last Process ID

This field contains the process identifier of the last process to
use the device. The interrupt service routine sends this process
the proper signal when an “interrupt” or “quit” character is
received.

Signal Process Information (for data ready)

This field contains the process identifier, the signal code to
send, and the associated system path number for the process
that made an SS_SENDSI G set st at call (send signal on data
ready).

Signal Process Information (for DCD false)

This field holds the process identifier, the signal code to send,
and the associated system path number for the process that
made an SS_DCOFF set st at call (send signal on DCD false).

Signal Process Information (for DCD true)

This field holds the process identifier, the signal code to send,
and the associated system path number for the process that
made an SS_DCON set st at call (send signal on DCD true).
Output Device Static Storage Pointer

This points to the logical unit static storage structure of the
output (echo) device. In most cases, a device is its own echo
device. However, it may not be, as in the case of a keyboard
and a memory mapped video display.

Path Buffer Size

This field contains the size of the path buffer SCF uses for this
device.

Maximum Data For Path Buffer

This field is a high water marker for the path buffer. The
device driver should send an X-OFF character to the
transmitter when the path buffer fills up to this point.

85

Chapter 3: Sequential Character File Manager (SCF)

Table 3-4. SCF Logical Unit Static Storage Fields (Continued)

Description

Name
v_insize
V_i ncount
v_i nbuf ad
v_infill
v_i nenpty
v_i nend
v_outsi ze

v_out count

v_out buf ad

v_outfill

v_out enpty

0OS-9 Techical I/O Manual

Device Input Buffer Size

This field contains the size of the input buffer for this device
(logical unit).

Current Byte Count in Input Buffer

This field contains the number of bytes currently in the input
buffer. The device driver updates this field as it places
characters in the input buffer. SCF updates this field when it
removes characters from the input buffer.

Beginning of Input Buffer Pointer
This field contains a pointer to the beginning of the input
buffer for this logical unit.

Next Data Input Pointer (to Input Buffer)

This field contains a pointer to the “next-in” position for the
input buffer for this logical unit. The device driver uses and
maintains this pointer to place characters in the input buffer.

Next Data Output Pointer (from Input Buffer)

This field contains a pointer to the “next-out” position for the
input buffer for this logical unit. SCF uses and maintains this
pointer to remove characters from the input buffer.

End of Input Buffer Pointer
This field contains a pointer to the end of the input buffer for
this logical unit.

Output Buffer Size
This field contains the size of the output buffer for this logical
unit.

Current Byte Count in Output Buffer

This field contains the number of bytes currently in the output
buffer. SCF updates this field as it places characters in the
output buffer. The device driver updates this field as it removes
characters from the output buffer.

Beginning of Output Buffer Pointer

This field contains a pointer to the beginning of the output
buffer for this logical unit.

Next Data Input Pointer (to Output Buffer)

This field contains a pointer to the next-in position for the
output buffer for this logical unit. SCF uses and maintains this
pointer to place characters in the output buffer.

Next Data Output Pointer (from Output Buffer)

This field contains a pointer to the next-out position for the
output buffer for this logical unit. The device driver uses and

maintains this pointer to remove characters from the output
buffer.

86

Chapter 3: Sequential Character File Manager (SCF)

Table 3-4. SCF Logical Unit Static Storage Fields (Continued)

Name

Description

v_out end

v_| ockid

v_use_cnt

v_pdopt

v_opt

DEV_SPECI FI CS

End of Output Buffer Pointer
This field contains a pointer to the end of the output buffer for
this logical unit.

Resource Lock ID

This field contains the resource lock identifier for this logical
unit. SCF uses this field to arbitrate exclusive access to this
logical unit.

Logical Unit User Counter

This field can be used by the driver to record the number of
users using a given logical unit. This provides better control
over devices supporting more than one unit.

Path Descriptor Option Pointer
This field contains a pointer to the path descriptor options
section for this path.

Logical Unit Options

This field is the structure containing the logical unit options for
this logical unit. These options are described following this
section.

Device Specific Variable MACRO

This is a C language macro. The author of a device driver can
expand this macro to include additional variables in the
logical unit static storage structure. The additional field can
be defined in a header file for the device driver being written.
The fields are included in the structure when the device
descriptor for the logical unit is created.

SCF Logical Unit Static Storage Options

This section describes the definitions of the device options (logical unit options) for
SCEF-type devices. The structure definition of the device options is shown here. This
structure is defined in scf. h. IOMAN copies the device options from the device
descriptor module into the logical unit static storage when a path to the device is
attached. The device options may be changed afterwards using the SS_LUOPT
function of | _GETSTAT and | _SETSTAT service requests or from the keyboard using
the xnode utility.

t ypedef struct scf_lu_opts {

u_intlé

u_char

0OS-9 Techical I/O Manual

v_optsi ze; /* size of logical unit options section */
v_cl ass, /* device type; 0 = SCF */

v_err, /* accunul ated errors */

V_pause, /* imredi ate pause request */

v_line, /* lines left until end of page */

v_intr, /* keyboard interrupt character */
v_quit, /* keyboard quit character */

87

[

Chapter 3: Sequential Character File Manager (SCF)

v_psch, /* keyboard pause character */

v_xon, /* X-ON character */

v_xof f, /* X-OFF character */

v_baud, /* baud rate */

vV_parity, [* parity */

v_stopbits, /* stop bits */

v_wor dsi ze, /* word size */

v_rtsstate, /* RTS state: disable = 0; enable = non-
zero */

v_dcdst at e, /* current state of DCD |ine */

v_reserved[9]; /* reserved for future use */

} scf_lu_opts;

Table 3-5. SCF Logical Unit Static Storage Options

Name Description
v_opt si ze Options Section Size

This field specifies the size of the logical unit options section.
v_cl ass Device Type (DT_SCF = 0)

This field specifies the device type. This should be zero for SCF.
The device types are defined in the i 0. h header file.

v_err Accumulated Errors
This field is used to accumulate 1/O errors. Typically, the IRQ
service routine uses it to record errors so they can be reported later
when SCF calls one of the device driver routines.

V_pause Pause Flag
This field tells SCF when there is an immediate pause request from
the input device. It causes SCF to suspend output from
_os_writel n() until a character is entered from the input device.

v_line Lines Before End of Page
This field contains the number of lines left to output until a page
pause occurs (end-of-page).

v_intr Keyboard Interrupt Character
This field specifies the keyboard interrupt character. When a
keyboard interrupt character is entered, a keyboard interrupt
signal is sent to the last user of this unit. It terminates the current
I/O request (if any) with an EOS_BSI G error. This field is normally
setto <Ctrl >C.

v_quit Keyboard Quit Character
This field specifies the keyboard quit character. When a keyboard
quit character is entered, a keyboard quit signal is sent to the last
user of this unit. It terminates the current I/O request (if any) with
an ECS_BSI Gerror. This field is normally set to a <Ctr | >E.

0OS-9 Techical I/O Manual 88

Chapter 3: Sequential Character File Manager (SCF)

Table 3-5. SCF Logical Unit Static Storage Options (Continued)

Name

Description

v_psch

v_xon

v_xof f

v_baud

0OS-9 Techical I/O Manual

Keyboard Pause Character

This field specifies the keyboard pause character. When this
character is entered during output, output is suspended before the
next end-of-line. This also deletes any “type ahead” input for
_os_readl n().

X-ON Character

This field specifies the transmit on (X-ON) character. When this
character is received, output is resumed, assuming it was
suspended by a transmit off character.

NOTE: X-ON and X-OFF are required for software handshaking
for some devices.

X-OFF Character

This field specifies the transmit off (X-OFF) character. When this
character is received, output is suspended until a transmit on
character is received.

NOTE: X-ON and X-OFF are required for software handshaking
for some devices.

Baud Rate

This field sets the baud rate as follows:

0x00 = Hardwired Ox10 = 19200 baud

0x01 = 50 baud Ox11 = 31250 baud
0x02 = 75 baud 0x12 = 38400 baud
0x03 = 110 baud Ox14 = 57600 baud

0x04 = 134.5 baud 0x15 = 64000 baud
0x05 = 150 baud Ox16 = 115200 baud
0x06 = 300 baud 0x17 = 230400 baud
0x07 = 600 baud 0x18 = 460800 baud
0x08 = 1200 baud 0x19 = 921600 baud
0x09 = 1800 baud Oxla = 26800 baud
OxA = 2000 baud Ox1b = 153600 baud
0xB = 2400 baud Ox1c = 307200 baud
0xC = 3600 baud Ox1d = 614400 baud
0xD = 4800 baud Oxle = 1228800 baud
OxE = 7200 baud Oxff = External

OxF = 9600 baud

89

[

Chapter 3: Sequential Character File Manager (SCF)

Table 3-5. SCF Logical Unit Static Storage Options (Continued)

Name Description
v_parity Parity
This field specifies the parity to be used.
0 = no parity
1 = odd parity
2
3 = mark parity
4 = space parity
v_stopbits Stop Bits
This field specifies the number of stop bits to be used.
0 = 1 stop bit
1 =1 1/2 stop bits
2 = 2 stop bits
v_wor dsi ze Bits Per Character
This field specifies the number of bits per character.

v_rtsstate RTS Line State
This field controls the state of the RTS line. It is useful for drivers
wanting to use hardware handshaking. When this field is zero, the
RTS line is disabled. When it is non-zero, it is enabled.
v_dcdstate Current DCD Line State
This field indicates the state of the DCD Line.

even parity

SCF Path Descriptor

This section describes the definitions of the path descriptor for SCF-type devices.
The structure definition of the path descriptor is shown here. This structure is
defined in scf . h. SCF initializes the path descriptor options section from the
specified device descriptor module when a path is opened to an SCF device. The
path descriptor options can later be changed using the

_os_gs_popot ()/_os_ss_popt () service requests or from the keyboard using the
t mode utility.

t ypedef struct scf_path_desc {

struct pat hcom pd_common; /* conmmon path descriptor structure */
Dev_li st pd_out dev; /* device tbl pointer for echo device */
u_char *pd_ubuf, /* user buffer base address */

pd_pbuf, / path buffer base address */

pd_pbuf pos; / current path buffer position */
u_int32 pd_endobuf, /* end of buffer position */

pd_cur pos, /* cursor position counter */

pd_reqcnt, /* nunber of bytes requested by the caller */

pd_evl ; /* readln end of visible line counter */

0OS-9 Techical I/O Manual 90

Chapter 3: Sequential Character File Manager (SCF)

u_char

u_intl6

scf_pat h_opts

} scf_path_desc;

pd_echofl ag, /* flag if echoing output is ok for this device */

pd_Il ost; /* non-zero if path has becone dead */

/* (ie: data-carrier-detect lost) */

pd_reserved[7] ; /* reserved space */

pd_opt; /* SCF path descriptor options */

The following table lists the SCF path descriptor fields.

Table 3-6. SCF Path Descriptor Fields

Name

Description

pd_common

pd_out dev

pd_ubuf

pd_pbuf

pd_pbuf pos

pd_endobuf

pd_cur pos

pd_reqcnt

pd_evl

pd_echof | ag

pd_I ost

pd_opt

Common Path Descriptor Variables

This field is the structure containing the path descriptor variables
IOMAN requires for all path descriptors. These variables are
described in the first chapter of this manual.

Device Table Pointer for Echo Device

SCF uses this field for calling the echo device to echo input and
to output characters in polled mode.

User Buffer Base Address

This field saves the user’s buffer pointer on _os_read(),
_os_readln(), _os_wite, and _os_witel nrequests.

Path Buffer Base Address

This field points to the input buffer for the path. It is the buffer
associated with input and its editing functions.

Current Path Buffer Position

This field points to the current input position in the path buffer.
End of Buffer Position

This field contains the last character position of the path buffer.
Cursor Position Counter

SCF uses this field to maintain the current location of the cursor
on input.

Number of Bytes Requested

This field contains the total number of bytes requested on a read
or readIn request.

End of Visible Line Counter

SCF uses this field to maintain the logical end-of-visible line
when performing the editing functions of a _os_r eadl n request.
Echo Output Flag

A non-zero value in this field indicates echoing input is enabled.
Data Carrier Detect Lost Flag

A non-zero value in this field indicates a transition of the data
carrier detect line. This is useful for modem support.

Path Descriptor Options

This field is the structure containing the path descriptor options.
These options are described in the following section.

0OS-9 Techical I/O Manual

91

[

Chapter 3: Sequential Character File Manager (SCF)

[

SCF Path Descriptor Options Section

The structure definition of the path descriptor options is shown here. This structure
is defined in the header file scf . h. You can update the path descriptor options using
the _os_gs_popt ()/_os_ss_popt () system calls or the t node utility.

t ypedef struct scf_path_opts {
u_intl6 pd_opt si ze, /* path options table size */
pd_extra; /* reserved for future use */

inmap_entry pd_i nmap[32];/* Input control character nmapping table */

u_char pd_eorch, /* end of record character (read only) */
pd_eof ch, /* end of file character */
pd_t abch, /* tabul ate character (0 = none) */
pd_bel | ch, /* bell character (for input line
overflow) */
pd_bspch; /* backspace echo character */
u_char pd_case, /* case 0 = both ~0 = upper case only */
pd_backsp, /* backspace 0 = backspace ~0 =
backspace, space, backspace */
pd_del et e, /* delete O = carriage return, line fee
~0 = backspace over line */
pd_echo, /* echo 0 = no echo */
pd_al f, /* auto-linefeed 0 = no auto line feed */
pd_pause, /* pause 0 = no end of page pause */
pd_i nsm /* insert node O = type over ~0 = insert
at cursor */
u_char pd_nul I's, /* end of line null count */
pd_page, /* lines per page */
pd_t absi z, /* tabulate field size */
pd_err, /* most recent |1/O error status */
pd_rsvd[2] ; /* reserved */
u_int32 pd_col , /* current columm nunber */
pd_ti ne; /* time out value for unbl ocked reads */
Dev_lIi st pd_deventry; /* Device table address (copy) */

} scf_path_opts;

0OS-9 Techical I/O Manual 92

Chapter 3: Sequential Character File Manager (SCF)

The following table lists the SCF path descriptor options.

Table 3-7. SCF Path Descriptor Options

Name

Description

pd_opt si ze

pd_i nmap

pd_eorch

pd_eof ch

pd_t abch

pd_bel | ch

pd_bspch

pd_case

0OS-9 Techical I/O Manual

Path Descriptor Options Size
This is the total size of the SCF path options section.

Control Character Mapping Table

This is the input control character mapping table. It maps input
control characters to the input line editing functions or user-
defined control strings (break sequences). The control mapping
table is described in detail following this section.

End of Record Character

This is the end-of-record character—the terminating character
entered on each line for the _os_r eadl n system call. Output
lines from _os_writel n calls are terminated when this
character is sent. Normally, the end-of-record character is set to
“\'x0d”.

NOTE: If the end-of-record character is set to 0, _os_readl n
calls never terminate.

End of File Character

This is the end-of-file character. SCF returns an end-of-file error
for _os_read and _os_r eadl n system calls when this is the first
(and only) character input. It can be disabled by setting this
value to 0.

Tab Character

This is the tabulate character. In _os_wri tel n calls, SCF
expands this character to spaces to make tab stops at column
intervals specified by the pd_t absi z field.

NOTE: SCF does not know the effect of control characters on
particular terminals. Therefore, it may expand tabs incorrectly if
they are used.

Bell Character

This is the bell sound character. In _os_readl n calls, SCF
echoes this character to the terminal once for every character
input after the input buffer has filled. It is only useful for
terminals with sound capability. It can be disabled by setting this
value to 0.

Backspace Character

This is the backspace “output” echo character. This is the
backspace character SCF echoes when it is performing an

editing function requiring a backspace, such as move cursor
left.

Case Mode

This field indicates the casing mode SCF should use for input
and output characters. When this field is non-zero, SCF converts
all characters in the range a. . z to A. . Z.

93

[

Chapter 3: Sequential Character File Manager (SCF)

Table 3-7. SCF Path Descriptor Options (Continued)

Name Description

pd_backsp Destructive Backspace Flag
This field indicates whether backspacing (move cursor left) is
destructive or non-destructive. If it is 0, a move cursor left input
control character causes SCF to echo a pd_bspch character. If it
is non-zero, SCF echoes pd_bspch, space, pd_bspch.

pd_del ete Delete Line Function
This field specifies how SCF implements the delete line editing
function. If it is 0, SCF deletes the line by backspace-erasing the
line. If it is non-zero, SCF deletes the line by echoing a carriage
return/line feed.

pd_echo Echo Flag
This field determines whether or not SCF echoes input
characters. If it is non-zero, SCF echoes input characters. If it is
0, SCF does not echo input characters.

pd_al f Line Feed Flag
This is the automatic line feed flag. If it is 0, a line feed
character is echoed after every end-of-record character output
by the _os_wri t el n service request.

pd_pause Page Pause Flag
This field is the end of page pause indicator. If it is non-zero, an
auto page pause occurs upon reaching a full screen of output.
Refer to pd_page for information on setting the page length.

pd_i nsm _os_readIn Input Mode
This field determines the insert mode for _os_readl n calls. If it
is 0, input is in type-over mode. If it is non-zero, input characters
are inserted at the cursor position and all characters to the right
of the cursor are shifted to the right.

pd_nulI's Padding Characters
This field specifies the number of null padding characters
(always *\ 0") to be echoed after a carriage return/line feed
sequence.

pd_page Lines per Page
This field specifies the number of lines per page or screen.

pd_t absi z Tab Size
This field specifies the tab size.

pd_err 1/O Error Status
This field contains the most recent I/O error status.

pd_col Current Column Position

0OS-9 Techical I/O Manual

This field contains the current column position of the cursor.

94

Chapter 3: Sequential Character File Manager (SCF)

Table 3-7. SCF Path Descriptor Options (Continued)

Name Description

pd_time Time Out For _os_read, _os_readin
This field specifies the time out value (in ticks) for unblocked
_os_read and _os_readl n calls. When this field is set to 1 tick,
these calls return the characters currently available in the user’s
input buffer.

pd_deventry Device Table Entry Address
This field contains the address of the device table entry for the
path.

SCF Control Character Mapping Table

This table maps input control characters to the input line editing functions or user-
defined control strings. Each entry in the field directly corresponds to the control
character ASCII value in ascending order. The following control characters are
mapped in this table: 0x01 - 0x1F and 0x7F.

Each entry in the table has the following format:

typedef struct inmap_entry {

u_intlé type, /* character mapping type */
func_code; /* SCF editing function code */

u_int32 si ze; /* size of associated string */

voi d *string; /* pointer to associated string */

} inmap_entry;

Table 3-8. SCF Control Character Mapping Table

Name Description
type Mapping Type
The control character mapping type can be one of three values:
| GNORE This control character is removed from the data
stream.
PASSTHRU This control character is passed on without
editing.
EDFUNCTI ON This control character is removed from the data
stream and an editing function is performed in
its place.

0OS-9 Techical I/O Manual 95

Chapter 3: Sequential Character File Manager (SCF)

Table 3-8. SCF Control Character Mapping Table (Continued)

func_code Editing Function Code
If the type field is defined as EDFUNCTI ON and size is zero, f unc_code
must be defined. This field can be any of the following function codes:

MOVLEFT 0x00 move cursor to the left (formerly pd_bsp)
MOVRI GHT 0xO1 move cursor to the right
MOVBEG 0x02 move cursor to the beginning of the line
MOVEND 0x03 move cursor to the end of the line
REPRI NT 0x04 reprint the current line to cursor position
TRUNCATE 0x05 truncate the line at the cursor position
DEL CHRL 0x06 delete character to the left
DELCHRU 0x07 delete character under the cursor
DELWRDL 0x08 delete word to the left
DELWRDR 0x09 delete word to the right
DELI NE Ox0A delete the entire line
UNDEF1 OxOB undefined (reserved)
MODETOGL 0x0C insert mode toggle (type over vs. insert)
UNDEF2 OxOD undefined (reserved)
ENDOREC OxOE end of record (read-only)
ENDOFI LE OxOF end of file

size Size of Editing Function String

This field specifies the size of the editing function string to echo to the
terminal. If this field is specified as 0, an editing function built into SCF is
executed to perform the editing function. If this field is non-zero, the
string pointed to by st ri ng is echoed to the terminal.

string Editing Function String Pointer
This field points to the character string to be echoed to the terminal. This
is only used if size is non-zero.

Default Mapping Table

The following control character mappings are defined in scf . des. They are used
whenever a new device descriptor is created.

Table 3-9. SCF Default Mapping

Identifier Function Type Function Code Size String
0x01 <Ctrl> A EDFUNCTI ON MOVEND 0 NULL
0x02 <Crl> B EDFUNCTI ON MOVLEFT 0 NULL
0x03 <Ctrl> C | GNORE 0 0 NULL
0x04 <Crl> D EDFUNCTI ON DELCHRU 0 NULL
0x05 <Cirl > E | GNORE 0 0 NULL
0x06 <Ctrl> F EDFUNCTI ON MOVRI GHT 0 NULL
0x07 <Ctrl> G PASSTHRU 0 0 NULL

0OS-9 Techical I/O Manual

96

Chapter 3: Sequential Character File Manager (SCF)

[

Table 3-9. SCF Default Mapping (Continued)

Identifier Function Type Function Code Size String
0x08 <Crl> H EDFUNCTI ON DEL CHRL 0 NULL
0x09 <Ctrl> | EDFUNCTI ON MODETOGL 0 NULL
Ox0A <Ctrl> J PASSTHRU 0 0 NUL L
0x0B <Ctrl > K EDFUNCTI ON TRUNCATE 0 NULL
0x0C <Ctrl> L EDFUNCTI ON DELWRDL 0 NULL
Ox0D <Cirl> M EDFUNCTI ON ENDOREC 0 NULL
OX0E <Crl> N PASSTHRU 0 0 NULL
OxOF <Ctrl> O PASSTHRU 0 0 NULL
0x10 <Crl> P EDFUNCTI ON REPRI NT 0 NUL L
0Ox11 <Ctrl> Q | GNORE 0 0 NULL
0x12 <Crl> R EDFUNCTI ON DELWRDR 0 NULL
0x13 <Ctrl> S | GNORE 0 0 NULL
0x14 <Crl> T PASSTHRU 0 0 NULL
0x15 <Ctrl> U PASSTHRU 0 0 NULL
0x16 <Crl >V PASSTHRU 0 0 NUL L
0x17 <Ctrl> W | GNORE 0 0 NULL
0x18 <Crl > X EDFUNCTI ON DELI NE 0 NULL
0x19 <Crl>Y PASSTHRU 0 0 NULL
Ox1A <Cirl> Z EDFUNCTI ON MOVBEG 0 NULL
0x1B <Esc> EDFUNCTI ON ENDCFI LE 0 NULL
0x1C PASSTHRU 0 0 NUL L
0x1D PASSTHRU 0 0 NULL
Ox1E PASSTHRU 0 0 NULL
Ox1F PASSTHRU 0 0 NULL
OX7F <Del et e> EDFUNCTI ON DELCHRU 0 NULL

Building SCF Device Descriptors
Making OS-9 device descriptors involves two steps:

1. Modifying the appropriate C macro definitions within the
SCF/ <Dri ver >/ confi g. des for a specific device descriptor.

2. Making the descriptor using the associated makefile.

The confi g. des file is organized so the macro definitions for a particular descriptor
are grouped together. For example, the following example of confi g. des contains
the macros that must be defined (i.e. macros that do not have pre-defined defaults
for the SCF t er mdescriptor). They are grouped together within a C macro
conditional:

/* Device descriptor conmon nacros */
#define LUN 1
#def i ne DRVR_NAME “sc7110”

/* scf macros */

#defi ne | RQLEVEL 0

0OS-9 Techical I/O Manual 97

Chapter 3: Sequential Character File Manager (SCF)

#define PRRORITY 5
#define | NPUT_TYPE | RQDRI VEN
#defi ne OQUTPUT_TYPE | RQDRI VEN

/**

* End of Sc7110 Device Default Definitions *

**/

/**

* Termtl Sc7110 Descriptor Override Definitions (descriptor for Contl)*

**/

#i f defined (TERM T1)
/* Mbdul e header */
#define MH NAME “ternt

/* Device descriptor conmon nacros */

#defi ne PORTADDR 0x80000480

/* scf macros */

#def i ne VECTOR 0x4c

#endif /* TERM T1 */

/***

Usually a few fields for every descriptor type must be defined in order to make the
descriptor (for example, port address, vector, IRQ level). However, most of the
fields of the descriptor structures have pre-defined values. Consequently, you do not
need to redefine them. These values seldom change from descriptor to descriptor. If
a change in the operational characteristics of a device is desired, redefine the
standard macro for the target field in confi g. des and make the descriptor.

Once you have edited the confi g. des file, edit the appropriate makefile by adding
the appropriate dependencies and command lines to the makefile. When you have
added these lines, make the descriptor. The following is a typical cross hosted make
command sequence.

$ chd SCF/ SC68901/ DESC
$ os9make

The makefile invokes the edi t mod utility to create the descriptor. Edi t Mod generates
device descriptors from description files.

@ The information in this chapter describes how edi t mod can be used to create
device descriptors. edi t mod can also list or edit the contents of a device
descriptor. For more information about this utility, refer to the Utilities
Reference manual.

0OS-9 Techical I/O Manual 98

Chapter 3: Sequential Character File Manager (SCF)

SCF Device Descriptor Macros

Table 3-10 and Table 3-11 contain the SCF macro definitions used for creating SCF

device descriptors.

Table 3-10. RBF, SCF, and SBF Common Descriptors

Name

Description and Example

PORTADDR

VECTOR

| RQLEVEL

PRI ORI TY

LUN

Controller Address

Address of the device on the bus. This is the lowest address the
device has mapped. It is hardware-dependent.

#defi ne PORTADDR Oxf f f e4000

Interrupt Vector

This is the vector passed to the processor at interrupt time. It is
hardware/software-dependent. Some devices can be programmed
to produce different vectors.

#defi ne VECTOR 80

Interrupt Level For the Device

The number of supported interrupt levels is dependent on the
processor being used (e.g. 1-7 on 680x0 type CPUs). When a device
interrupts the processor, the level of the interrupt is used to mask out
lower priority devices.

#define | RQLEVEL 4

Interrupt Polling Priority

This value is software dependent. A non-zero priority determines the
position of the device within the vector. Lower values are polled first.
A priority of 1 indicates the device desires exclusive use of the
vector; a priority of O indicates the device wants to be first on the
polling list.

OS-9 does not allow a device to claim exclusive use of a vector if
another device has already been installed on the vector. Also, it does
not allow another device to use the vector once the vector has been
claimed for exclusive use.

#define PRICORITY 10

Logical Unit Number of the Device

More than one device may have the same port address. The logical

unit number distinguishes the devices having the same port address.

#define LUN 2 /[* drive nunber */

0OS-9 Techical I/O Manual

99

[

Chapter 3: Sequential Character File Manager (SCF)

The following macros are specific to SCF:

Table 3-11. SCF Macros

Name

Description

MODE

MAXBUFF

I NPUT_TYPE

OUTPUT_TYPE

SCFBUFSI ZE

I NSI ZE

0OS-9 Techical I/O Manual

Device Access Capabilities

This reflects the operational mode or capabilities of the device.
Most SCF type devices use the default value. However, in some
cases you should change MODE to include the S_I SHARE bit
signaling the device is non-sharable. For example, an SCF serial
printer port should be non-sharable.

#define MODE S_I Sl ZE| S_| READ| S_| WRI TE

/* default device node capabilities */

Maximum Data for the Input Buffer

This defines the high water mark of the input buffer. When the
input buffer reaches the defined level, the sender is sent an X-
OFF character to temporarily halt transmission.

#defi ne MAXBUFF QUTSI ZE- LOACOUNT

[* default maxbuff size */

Input Type Flag

This specifies whether input on the device is interrupt driven or
polled. If the device is operated in polled mode, SCF calls the
driver’s read routine for every character. The two values defined
for this field are:

#define IRQDRIVEN O
#defi ne POLLED 1

They are defined in scf . h. The default for this macro is interrupt
driven.

#define | NPUT_TYPE | RQDRI VEN

Output Type Flag

This specifies whether output on the device is interrupt driven or
polled. If the device is operated in polled mode, SCF calls the
driver’s write routine to transmit every character.

#define | RQDRIVEN O
#defi ne POLLED 1

They are defined in scf . h. The default for this macro is interrupt
driven.

#defi ne OUTPUT_TYPE | RQDRI VEN

Path Descriptor Buffer Size

This specifies the size of the path descriptor buffer for all paths
opened to the device. The default is 256 bytes.

#defi ne SCFBUFSI ZE 256

Logical Unit Input Buffer Size

This specifies the size of the input buffer for the logical unit. The
default is 256 bytes.

#define I NSIZE 256

100

Chapter 3: Sequential Character File Manager (SCF)

Table 3-11. SCF Macros (Continued)

Name

Description

QUTSI ZE

KYBDI NTR

KYBDQUI T

KYBDPAUSE

XON

XCOFF

UPC_LOCK

BSB

LI NEDEL

0OS-9 Techical I/O Manual

Logical Unit Output Buffer Size

This specifies the size of the output buffer for the logical unit. The
default is 256 bytes.

#define QUTSI ZE 256

Keyboard Interrupt Function

This specifies the control key to use for the keyboard interrupt
function. The default value is <control>C.

#defi ne KYBDINTR Ctrl_C

Keyboard Quit Function

This specifies the control key to use for the keyboard quit
function. The default value is <control>E.

#define KYBDQUT Ctrl_E

Keyboard Pause Function

This specifies the control key to use for the keyboard pause
function. The default value is <control>W.

#defi ne KYBDPAUSE Ctrl_W

XON Function

This specifies the control key to use for the X-ON protocol
function. The default value is <control>Q.

#define XON Crl_Q

XOFF Function

This specifies the control key to use for the X-OFF protocol
function. The default value is <control>S.

#define XOFF Crl _S

Character Case Function

This controls the casing of characters. A non-zero value converts
input and output characters in the a. . . z to characters in the

A .. Zrange. The default value is upper and lower casing.
#define UPC_LOCK PLOFF

/* default to upper and | ower case */

Backspace Character Interpretation

This controls how SCF interprets a backspace character: as a
destructive or non-destructive backspace. If this value is zero, SCF
echoes a backspace character. If this value is non-zero, SCF
echoes a backspace, space, backspace character sequence. The
default is a destructive backspace.

#define BSB PLON

/* default to destructive backspace */

Delete Line Function

This controls how SCF performs a delete line function. A zero
value causes SCF to delete a line by backspacing over it. A non-
zero value causes a carriage return/line feed sequence to be
echoed to delete the line. The default is a destructive line delete.

#define LINEDEL PLON
/* default destructive delete line */

101

[

Chapter 3: Sequential Character File Manager (SCF)

Table 3-11. SCF Macros (Continued)

Name

Description

AUTOECHO

AUTOLF

EOLNULLS

PAGEPAUSE

PAGESI ZE

TABSI ZE

I NSERTMODE

0OS-9 Techical I/O Manual

Input Echo Function

This controls whether or not input characters are echoed as they
are received. A non-zero value causes input to be echoed. A zero
value flags no echoing. The default is echo on.

#defi ne AUTOECHO PLON

/* default to echo on */

Automatic Line Feed Function

This specifies whether or not carriage returns are to be
automatically followed by line feed characters. The default is
auto line feed on.

#define AUTOLF PLON

/* default to auto line feed on */

Nulls After End-Of-Line

This specifies the number of null ($00) padding bytes to be
transmitted after a carriage return/line feed sequence. The
default value is 0.

#defi ne EOLNULLS O

/* default to no end-of-line nulls */

Page Pause Function

This specifies whether or not the automatic page pause facility of
SCF is active. A non-zero value causes an auto page pause upon
reaching a full screen of output. The default is page pause on.
#defi ne PAGEPAUSE PLON

/* default to page pause on */

Lines Per Page

This specifies the number of lines per screen (or page). The
default value is twenty-four lines per page.

#defi ne PACESI ZE 24

[* default to 24 |inel/page */

Spaces Per Tab

This specifies the number of spaces per tab. The default value is
4.

#define TABSI ZE 4

/* default to 4 spaces/tab */

Input Mode Specification

A non-zero value causes input to operate in insert mode. This is,
input characters are inserted in the current input line. A zero
value causes input to operate in the type-over mode. The default
is type-over mode. By using the associated control key, SCF
allows you to enter insert mode.

#def i ne | NSERTMODE PLOFF
/* default to insert node off */

102

Chapter 3: Sequential Character File Manager (SCF)

Table 3-11. SCF Macros (Continued)

Name

Description

BAUDRATE

LUPARI TY

STOPBI TS

WORDSI ZE

RTSSTATE

Baud Rate

This specifies the baud rate of the device. The default is 9600.
The various standard baud rate macros are defined in the scf. h
header file.

#defi ne BAUDRATE BAUD9600

/* default to 9600 baud */

Parity of Logical Unit

This specifies the parity node of the device. The default is no
parity. The various standard parity macros are defined in the
scf . h header file.

#define LUPARI TY NOPARITY

/* default to no parity */

Stop Bits

This specifies the number of stop bits to be used for transmission.
The default number of stop bits is one.

#define STOPBITS ONESTOP

/* default to one stop bit */

Bits Per Character

This specifies the number of bits per character to be used for
transmission. The default word size is eight bits per byte.

#def i ne WORDS| ZE WORDSI ZE8

[* default to 8 bits/byte */

Request to Send Flag

This determines the state of the request to send line for
hardware handshaking. The default state is disabled.

#defi ne RTSSTATE RTSDI SABLED
/* default to RTS disabled */

SCF Control Character Mapping

You can also change the input control character mapping. This involves redefining
the control character macro in SCF/ <dri ver >/ confi g. des as described previously.
The default input control character mapping macros are located in the scf . des file.

Device Specific Non-Standard Definitions

Some SCF drivers require device-specific information to be defined within the
logical unit static storage structure. The structure definition is needed for driver and
descriptor creation in differing forms (C-source include file for the driver and

edi t mod source for the descriptor).

Write the edi t nod form of the device-specifics record and adapt the driver’s makefile
to use edi t nod to generate the C-source include file from the edi t nod source.

The sc85x30 example driver does this in sc85x30. des:

#defi ne DEV_SPECI FI C

0OS-9 Techical I/O Manual

103

[

Chapter 3: Sequential Character File Manager (SCF)

data struct device_specific_des {

/* Device specific static variables */

u_int32 (“u_char *%") v_irqgport, “device hardware irq register
pointer”;

u_int32 (“u_char *9%") v_port, “device hardware register pointer”;

u_char v_autovect, “autovector flag; O=chip vector l=autovector”;

}, “sc85x30 device specific storage”;

string drvr_name = “sc85x30”;

Next, the makefile uses edi t nod to create the sc85x30. edmfile (example follows),
that is included by the primary driver include file, sc85x30. h.

BU LD = $(ED TMOD) -v$(SDI R)
- mDEV_SPECI FI CS=devi ce_speci fi c_des

$(SDI R)/ sc85x30. edm $(SDI R)/sc85x30. des $(MAKERS)
$(BUI LD) sc85x30.des -0$@

In addition to the standard fields described in syst ype. h, you can add specific
definitions for particular driver/descriptor combinations.

0OS-9 Techical I/O Manual 104

4 The PC File Manager
(PCF)

This chapter describes the PC File Manager.

105

Chapter 4: The PC File Manager (PCF)

[

Overview

PCF is a reentrant subroutine package that handles I/O service requests for random-
access PC-DOS/MS-DOS disk devices. PCF can handle any number of such devices
simultaneously, and is responsible for maintaining the defined logical file structure on
the PC-DOS/MS-DOS disk drive.

PCF supports FAT12, FAT16, and FAT32 file formats. Long file names (called VFAT),
introduced with the advent of Windows 95, are fully supported. PCF will
automatically choose the correct FAT algorithms for the device that is accessed. When
creating a FAT file system, FAT12 should be used for devices under 32MB in size and
FAT16 should be used for devices under 2GB in size. The requirements of FAT32
increase overhead and will slow down disk access.

Getting Top Performance from PCF

While PCF has been designed to achieve as much performance as possible, there are a
few steps that applications can take to insure that PCF achieves maximum throughput:

Initialize all PCF devices. For performance reasons, PCF reads the entire disk’s FAT
into memory at open time. If the device is not initialized, the reading of the FAT
can occur as many times as a file is opened on the device. To insure the FAT is read
once per device, initialize the device before using it. This will decrease file open
times, especially on slower devices such as floppy drives or large devices such as
hard drives larger than 512MB.

Pre-extend files when writing. One way of increasing write performance is to pre-
extend the file’s size by using the _os_ss_si ze() function. Note that the FAM SI ZE
bit in _os_create() is not recognized by PCE.

Differences from RBF

While PCF maintains very good compatibility with existing OS-9 disk utilities, there
are some subtle differences that should be noted.

There is no record locking. Unlike RBF, PCF does not employ record locking on a
file. However, to prevent conflicts between processes, device locking is used at each
entry point of the PCF file manager. Since PCF lacks record locking, only one path
to any given file on a PCF device should be open at any time.

FAM S| ZE is not recognized. Under RBE, a typical way to pre-extend the size of a
file at create time is to pass FAM S| ZE as a parameter to the _os_create()
function; however, the PCF file manager does not recognize this parameter. If file
pre-sizing is desired, use the _os_ss_si ze() function.

There is a different directory structure format. If the application reads the
directory raw and parses the entries, it must be written to accommodate the PCF
directory format. It is highly recommended that an application which needs to
read directory structure information use the portable functions: opendi r (),
readdir (), and cl osedi r (). These functions are compatible with all OS-9 file
storage managers.

0OS-9 Techical I/O Manual 106

Module File Manager
(modman)

This chapter explains how to use the modman file manager to process I/O service
requests to a simulated disk-based device and the configurable parameters. It
includes the following topics:

e QOverview

e Device Descriptor Modules

107

Chapter 5: Module File Manager (modman)

[

Overview

The modman file manager is a re-entrant subroutine package for I/O service
requests to read-only random-access devices. modman simulates the directory and
file structure of an RBF device. It is generally used to simulate a disk on a diskless
system.

The directory heirarchy is derived from the module directory heirarchy. The
directory contents are derived from the module directory contents. The file contents
are derived from module contents. For example, creating a module directory will
result in a new simulated directory. Loading or creating a module will result in a
new simulated file.

Modman supports the automatic creation of a directory heirarchy. When modman
is first initialized it reads a special configuration module that specify the desired
directory structure. It then uses OS-9 module directories and small data modules to
create a heirarchy. The small data modules serve as symbolic links to existing
modules. The heirarchy contents and format module are created using the mar
utility (documented in the Uz/izzes Refererce manual).

The format of the directory heirarchy specification module is a series of string pairs.
The first string of the pair is the desired pathlist to the module. The second string of
the pair is the module that should appear there. The strings are separated by white-
space characters or NUL (\0°). The first name may either begin with /<device
name> or just the directory in which the module should appear. The second string
can be either relative to the root module directory or absolute. If any of the
following lines appeared in a directory structure configuration module specified in a
modman device descritptor called /mm a module directory called INITMOD would
be create at the root with a module called initlink that would refer to the init
module in the root module directory:

[INETMODY initlink init
INNTMOD/ initlink /init

[/ INETMOD initlink /init
INITMOD i nitlink init

The directory structure configuration module is terminated by two
white-space characters in a row. Refer to the documentation for mar for
information on automatically generating this module.

modman I/O System Calls

modman handles the following I/O system calls:

Table 5-1. Included 1/O System Calls

_os_attach() _os_chdir () _os_cl ose() _os_create()
_os_del ete() _os_detach() _os_dup() _0s_getstat()
_os_makdir () _0s_open() _0s_read() _0s_read()
_os_readl n() _os_seek() _o0s_setstat () _os_wite()

_os_witeln()

0OS-9 Techical I/O Manual 108

Chapter 5: Module File Manager (modman)

[

When a process makes one of the following system calls to a modman device,
modman executes the file manager functions described for that call.
_os_attach()

If the modman device is already attached, modman simply increments the attach
count. Otherwise, modman performs the following functions for each directory
structure module specified in the device descriptor (while there are white-space,
separated pathlist pairs):

e Create the directories necessary to reach the first item of the pair.

e Create a symbolic link module with the pathlist of the first item of the pair that
refers to module named as the second item of the pair.

_os_chdir()

modman returns unknown service code (EGS_UNKSVC). You cannot change your
current data nor execution directory to a modman device.

_os_close()

modman performs the following functions:

e Check the use count in the path descriptor. If the use count is
non-zero, SUCCESS is returned.

e Free any memory allocated to maintain the path.

e Unlink from the associated module, if any.

_os_create()

modman returns unknown service code (EOS_UNKSVC). You cannot create
modules with modman. Use other means of adding modules to the system (e.g.
_os_datmod() or _os_l oad()) to create “files” on the modman device.

_os_delete()

modman returns unknown service code (EOS_UNKSVC). You cannot delete
modules with modman. Use other means of removing modules from the system (e.g.
_os_unl oad() or _os_unlink()) to remove “files” from the modman device.
_os_detach()

modman frees all memory used to maintain the device. The directory structure
created by _os_at tach() is left intact.

_os_dup()

modman returns SUCCESS, no functions beyond those performed by IOMan are
necessary.

0OS-9 Techical I/O Manual 109

Chapter 5: Module File Manager (modman)

_os_getstat()

modman supports the following getstats:

Table 5-2. os_getstat() Functions

Function Description

_0s_gs_popt () Get the current path options
_0s_gs_dopt () Get the default path options
_os_gs_fdinf() Get a copy of a specified file descriptor.
_os_gs_ready() Test for data ready.

_os_gs_fd() Get file descriptor.

_0s_gs_eof () Test for EOF condition.

_0s_gs_si ze() Determine file's size.

_0s_gs_pos() Determine current file position.
_os_gs_fdaddr () Determine the file descriptor address.

All other _os_getstat () calls return EOS_UNKSVC.

_os_makdir()

modman returns unknown service code (EOS_UNKSVC). You cannot create
module directories with modman. Use other means of creating module directories
(such as the makndi r utility or _os_makndi r ()) to create “directories” on the
modman device.

_os_open()

modman performs the following functions:

® Ensure that no modes other than read or directory are used, all other
combinations return EOS_BMODE (bad mode).

e Ensure that a full pathlist was specified because _os_chdir() is not supported.
e If directory mode is specified:

e Ensure the directory name specified is not a module; if so, return
EOS_FNA (file not accessible).

* Ensure the directory name specified exists; if not, return EOS_PNNE

e Create a snapshot of the directory’s contents in the format of an RBF
directory.

e Set the path descriptor up so that reads come from this simulated RBF
directory.

Read mode performs the following functions:

* Ensure the file name specified is not a module directory; if so, return EOS_FNA
(file not accessible).

e Follow symbolic links.

® Link to the specified module.

0OS-9 Techical I/O Manual 110

Chapter 5: Module File Manager (modman)

® Determine the beginning of the data portion of the module using thes rules:

e If the module was created by the mkdatmod utility, take advantage of the
information it writes in the module to determine the size of the data
section.

e If the module header’s m shar e value is non-zero, use it for module size.

e If the module contains only ASCII data, seek to the end of the data
portion and then back up, consuming any number of zero bytes.

e Otherwise, consider everything from m_exec to the end of the module,
minus the space for the CRC, the data portion of the file.
_os_read()
modman performs the following functions:
* Ensure that the read mode was specified when the path was opened.

® Determine if there is data left to read in the file or directory. If there is none, an
end-of-file error (EOS_ECF) is returned.

e Copy the data from the module to the user’s buffer starting at the current file
position and going until the end of the file is encountered or the count specified
by the user is exhausted.

e Return the number of bytes copied.

_os_readiIn()
modman performs the following functions:
e Ensure that the read mode was specified when the path was opened.

e Determine if there is data left to read in the file or directory. If there is none, an
end-of-file error (EOS_ECF) is returned.

* Copy the data from the module to the user’s buffer starting at the current file
position and going until the end of the file is encountered or the count specified
by the user is exhausted or a carriage return (“\x0d’) is copied.

e Return the number of bytes copied.

_os_seek()

modman sets the current position in the path descriptor to the specified position.

_os_setstat()

modman supports the _os_ss_syni i nk() setstat. This setstat creates a symbolic link
module to another module. All other os_setstat () calls return EOS_UNKSVC.

_os_write()

modman returns unknown service code (EOS_UNKSVC). You cannot write to
modules with modman. modman is designed to aid only in the emulation of a read-

0OS-9 Techical I/O Manual 111

Chapter 5: Module File Manager (modman)

only file system. To change the contents of a file write into it via other means or
unlink and old module and replace it with a new one.
_os_writeln()

modman returns unknown service code (EOS_UNKSVC). You cannot write to
modules with modman. modman is designed to aid only in the emulation of a read-
only file system. To change the contents of a file write into it via other means or
unlink and old module and replace it with a new one.

Device Descriptor Modules

This section describes the path options and logical unit static storage structures in a
modman device descriptor module.

The table below describes the path options section of the device descriptor.

Table 5-3. Path Options Structure

Name Type Description
pd_reserved u_int32 [4] Reserved
Reserved for expansion of the path options.

This table describes the logical unit static storage section of the device descriptor

table.

Table 5-4. Logical Unit Static Storage Structure

Name Type Description

v_treenod_nane char * Tree Module Name
This field is set to the name(s) of module
directory structure modules. There may be
any number of these directory structure
modules. Their names are separated by
white-space.

v_Ili nkcnt u_int32 Attach Count
This field is used to keep track of the
number of times that this locical unit has
been attached to the system. The first and
last detach are the only substantial
actions. The first attach causes modman
to parse the directory structure modules
specified in v_t r eenod_nare.

v_reserved u_int32 [4] Reserved

Reserved for expansion of the logical unit
static storage.

0OS-9 Techical I/O Manual 112

	HOME
	OS-9 Technical I/O Manual
	Contents

	Chapter 1: The OS-9 Input/Output System
	The OS-9 Unified Input/Output System
	The I/O Manager
	The File Manager
	The Device Driver

	IOMAN
	Device Descriptor Modules
	dd_com

	Path Descriptors
	pd_com

	Access Modes and Permissions
	Access Modes
	Permissions

	File Managers
	File Manager Organization
	Dispatch Table Sample Listing

	Device Driver Modules
	Basic Functional Driver Requirements
	Interrupts and DMA

	Chapter 2: Random Block File Manager (RBF)
	Overview
	Disk File Organization
	Basic Disk Organization
	Identification Block
	Allocation Map
	Root Directory
	Basic File Structure

	fd_stats
	Small Files
	Logical Block Numbers
	Segment Allocation
	Directory File Format

	Raw Physical I/O on RBF Devices
	Raw Physical I/O on RBF Devices
	Block Mode

	Record Locking
	Record Locking and Unlocking
	Non-Sharable Files
	End of File Lock
	Deadlock Detection

	Record Locking Details for I/O Functions
	_os_open()/_os_create()
	_os_read()/_os_readln()
	_os_write/_os_writeln()
	_os_seek()
	_os_setstat()

	File Security
	Creating RBF Drivers and Descriptors
	Creating Disk Drivers
	Understanding SCSI Device Driver Differences
	Hardware Configurations
	Example SCSI Software Configuration

	Testing the Disk Driver
	Creating RBF Device Drivers
	RBF Device Driver Storage Definitions
	RBF Device Driver Subroutines

	GETSTAT
	INIT
	IRQ SERVICE ROUTINE
	READ
	SETSTAT
	TERMINATE
	WRITE
	Using RBF Device Descriptor Modules
	Logical Unit Static Storage Initialization
	Disk Drive Information
	Disk Device Options
	Path Descriptor Options Table

	Building RBF Device Descriptors
	Standard Device Descriptor Macros
	RBF Specific Macro Definitions
	Device Specific Non-Standard Definitions

	Chapter 3: Sequential Character File Manager (SCF)
	Overview
	Creating an SCF Driver/Descriptor
	Creating SCF Device Drivers
	SCF Device Driver Static Storage

	SCF Device Driver Entry Subroutines
	ENABLE TRANSMITTER INTERRUPTS
	GETSTAT
	INIT
	IRQ SERVICE ROUTINE
	READ
	SETSTAT
	TERMINATE
	WRITE

	Using SCF Device Descriptor Modules
	SCF Logical Unit Static Storage
	Device Static Storage Structure Definition Example

	SCF Logical Unit Static Storage Options

	SCF Path Descriptor
	SCF Path Descriptor Options Section

	SCF Control Character Mapping Table
	Default Mapping Table

	Building SCF Device Descriptors
	SCF Device Descriptor Macros
	SCF Control Character Mapping
	Device Specific Non-Standard Definitions

	Chapter 4: The PC File Manager (PCF)
	Overview
	Getting Top Performance from PCF
	Differences from RBF

	Chapter 5: Module File Manager (modman)
	Overview
	modman I/O System Calls
	_os_attach()
	_os_chdir()
	_os_close()
	_os_create()
	_os_delete()
	_os_detach()
	_os_dup()
	_os_getstat()
	_os_makdir()
	_os_open()
	_os_read()
	_os_readln()
	_os_seek()
	_os_setstat()
	_os_write()
	_os_writeln()

	Device Descriptor Modules

