
w w w. ra d i sy s . co m
Revision B • July 2006

OS-9 for 68K Processors
OEM Installation Manual

Version 3.3

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 3.3 of OS-9 for 68K.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

OS-9 for 68K Processors OEM Installation Manual 3

Table of Contents

Chapter 1: Getting Started 11

12 Developing a Plan
12 The Host System Hardware
14 The Host System Software
14 The Target System Hardware
15 Pre-Porting Steps
17 The Make Utility
18 Common File Name Suffixes
20 Checking the Contents of the Distribution
21 Structure of the Distribution Package on the Host System
22 MWOS/OS9/SRC Directory Structure
23 MWOS/OS9 Directory Structure
25 OS-9 Macro Routines
27 MWOS/OS9/SRC/IO Directory Structure
29 MWOS/OS9/SRC/ROM Directory Structure
34 Additional Reference Materials

Chapter 2: Porting OS-9 for 68K 37

38 Getting Started
39 Understanding the OS-9 for 68K Booting Process
40 Step 1: Power Up the ROMbug Prompt
42 Step 2: ROMbug Prompt to Kernel Entry
43 Step 3: Kernel Entry Point to $ Prompt
45 The Four Porting Steps

Chapter 3: Step One: Porting the Boot Code 49

4 OS-9 for 68K Processors OEM Installation Manual

50 Introduction
50 About the Boot Code
51 How to Begin the Port: The Boot Code
52 Testing the Boot Code
52 ROM Image Versions
53 Component Files of the ROM Image
57 The Defsfile File
58 The Oskdefs.d File
59 The Systype.d File
60 The ROM Configuration Values
60 Target Specific Labels
63 Target Configuration Labels
64 CPUTyp Label and Supported Processors
66 Low Level Device Configuration Labels
67 Target System Memory Labels
68 Example Memory Definitions
71 The Vectors.a File
72 The Boot.a File
72 Steps Boot.a Goes Through to Boot the Kernel
77 Memory Search Explanations
78 The RAM Search
79 The Special Memory Search
80 The Patch Locations
81 The ioxxx and ioyyy Files
82 I/O Driver Entry Points
96 The Sysinit.a File
96 The SysInit Entry Point
97 The SInitTwo Entry Point
97 The UseDebug Entry Point
99 The Syscon.c File
100 The initext.a File
101 Putting the ROM Together

OS-9 for 68K Processors OEM Installation Manual 5

Chapter 4: Step Two: Bringing Up the Kernel and Console I/O 103

104 Preparing the First Stage OS-9 Configuration
106 Creating the Init Module
108 SCF Device Descriptor Macro Definitions
110 Creating a Console I/O Driver
111 Preparing the Download File
113 Downloading and Running the System
114 Downloading and Running the System
116 Cold Part of Kernel
117 The coldstart() Routine
118 Cold2(): Bringing Up the System the Rest of the Way
121 Debugging Hints

Chapter 5: Step Three: Creating Customized I/O Drivers and Finishing the
Boot Code 123

124 Guidelines for Selecting a Tick Interrupt Device
125 OS-9 Tick Timer Setup
126 Tick Timer Activation
127 Real-Time Clock Device Support
128 Microware Generic Clock Modules
128 Tickgeneric Support
129 Ticker Support
130 Real-Time Clock Support
131 Using Generic Clock Modules
133 Philosophy of Generic Clock Modules
134 Automatic System Clock Startup
135 Debugging Clock Modules on a Disk-Based System
136 Debugging Clock Modules on a ROM-Based System
138 Creating Disk Drivers
139 Testing the Disk Driver
141 Creating and Testing the Disk Boot Routines
143 Testing the CBoot Disk Boot Module

6 OS-9 for 68K Processors OEM Installation Manual

144 Further Considerations
145 Completing the System

Chapter 6: Step Four: Testing and Validation 147

148 General Comments Regarding Testing
149 Kernel Tests
150 Serial I/O (SCF) Tests
151 Disk I/O (RBF) Tests
152 Clock Tests
153 Final Tests
154 System Configuration Checkout
155 A Final Note

Chapter 7: Miscellaneous Application Concerns 157

158 Disk Booting Considerations
158 Boot Drivers Supporting Variable Sector Size
161 Bootstrap File Specifications
162 Making Boot Files
162 Bootstrap Driver Support
164 Soft Bus Errors Under OS-9

Chapter 8: OS-9 Cache Control 165

166 OS-9 Cache Control
167 System Implementation
167 Install Cache Operations
169 Default SysCache Modules
171 Caching Tables
174 Custom Configuration for External Caches
175 M$Compat2 Bit Fields
177 ROM Debugger and Caches
178 Peripheral Access Timing Violations
179 Timing Loops

OS-9 for 68K Processors OEM Installation Manual 7

180 Building Instructions in the Data Space
181 Data Caching and DMA
181 Indication of Cache Coherency
183 Address Translation and DMA Transfers

Chapter 9: RBF Variable Sector Support 185

186 RBF Device Drivers
188 Converting Existing Drivers to Use Variable Sector Size
190 RBF Media Conversion
191 Benefits of Non-256 Byte Logical Sectors
192 Bootstrap Drivers
194 RBF Disk Utilities

Appendix A: The CBoot Technology 195

196 Introduction
197 The CBOOT Common Booters
201 CBOOT Driver Entry Points
205 CBOOT Library Entry Points

Appendix B: Trouble Shooting 235

236 Introduction
237 Step 1: Porting the Boot Code
239 Step 2: Porting the OS-9 for 68K Kernel and Basic I/O
241 Coldstart Errors for the Atomic Versions of the Kernel and IOMan
243 Setting Up the DevCon Descriptor Field for the Sc68681 Serial Driver
246 Searching the Module Directory

Appendix C: Low-level Driver Flags 249

250 Flags for io2661.a
251 Flags for io6850.a
252 Flags for io68560.a

8 OS-9 for 68K Processors OEM Installation Manual

253 Flags for io68562.a
254 Flags for io68564.a
255 Flags for io68681.a
257 Flags for io68901.a
258 Flags for ioz8530.a

Appendix D: SCSI-System Notes 259

260 OS-9 for 68K SCSI-System Drivers
260 Hardware Configuration
261 Example One
261 OMTI5400 Controller
261 Fujitsu 2333 Hard Disk with Embedded SCSI Controller
261 Host CPU: MVME147
262 Software Configuration
263 Example Two
264 Example Three

Appendix E: Using the OS-9 for 68K System Security Module 267

268 Memory Management Units
269 Hardware/Software Requirements
269 Versions of SSM040
270 Configuring SSM for MC68451 Systems
274 Adding SSM to the OS-9 Bootfile
274 Step One: Create a New Init Module
275 Step Two: Create a New Bootfile
275 Step Three: Test SSM Operation
277 Creating a System Security Module
279 SSM Module Structure
283 Hardware Considerations
285 Complete Source Listing
285 Customized 68020 protection module

OS-9 for 68K Processors OEM Installation Manual 9

Appendix F: Example ROM Source and Makefiles 297

298 defsfile
299 systype.d
302 sysinit.a
304 syscon.c
306 rombug.make
308 rom.make
310 rom_common.make
312 rom_serial.make
314 rom_port.make
316 rom_image.make
318 bootio.c

 Index 323

10 OS-9 for 68K Processors OEM Installation Manual

Chapter 1: Gett ing Started

This chapter includes the following topics:

• Developing a Plan

• The Make Utility

• Common File Name Suffixes

• Checking the Contents of the Distribution

• Structure of the Distribution Package on the Host System

• OS-9 Macro Routines

• Additional Reference Materials

12 OS-9 for 68K Processors OEM Installation Manual

Developing a Plan

You have chosen OS-9 for 68K, the world’s leading real-time operating
system for Motorola 68000-based real-time and embedded systems. Now
we hope you find it easy to actually port OS-9 to your new target system.
But to do that, it is important you take a little time to develop a plan for
accomplishing this.

If you have not already realized it, you need to determine what your
development environment will be. This includes such things as:

• What kind of host development system you use to edit and re-compile
OS-9 source files.

• What additional development equipment is needed to test your port of
OS-9 on your target and how this equipment is connected to your host
development system. This is closely tied to the mode of operation you
use to port the OS-9 Boot ROMs to your target.

We strongly suggest you read through at least the first three chapters of
this manual before attempting to start the port. This should give you a good
perspective on what is required to accomplish the port, and should help
you develop a better plan.

Before installing OS-9 for 68K, you need to understand two terms:

host system The development system used to edit and
re-assemble OS-9 source files.

target system The system on which you intend to port
OS-9.

The Host System Hardware

The host system can be any of the following:

• A 68000 family-based computer with at least 2MB RAM and OS-9 for
68K

• Any 286 PC (or greater) running DOS

1Getting Started

OS-9 for 68K Processors OEM Installation Manual 13

NoteNote
The installation procedure may vary at times according to the type of
development system being used. This is noted when important.

You also need the following on the host system:

• A hard disk. The directory structure of the files supplied in the
distribution package assume the host system has a hard disk. This is for
storage capacity, not speed. If you use floppy disks, you must rearrange
and edit many of the source files and make files. Microware does not
guarantee OS-9 can be rebuilt on a host system with only floppy disks.

• Extra RS-232 serial ports for communicating with the target system,
PROM programmer, and any PROM or microprocessor emulation
systems you choose to use.

• A PROM programmer that can accept data from the host system
because you have to make one or more PROMs. Many commercial
PROM programmers and emulators, interfacing through RS-232 serial
links, accept programming data in the form of Motorola standard
S-records. S-records are simply binary data, usually object programs,
converted to ASCII hex characters in a standardized format.

NoteNote
The Microware-provided software (the binex and exbin utilities) can
convert data to S-record format if necessary.

• A 68000 emulation system (optional). If possible, the emulator should
have at least 128K overlay memory. The emulator provides handy
real-time debugging facilities, and the overlay memory is a convenient
substitute for making ROMs during the testing process.

14 OS-9 for 68K Processors OEM Installation Manual

• PROM emulators (optional). This type of device is most useful with a
target known to be functional and an existing resident debugger that
does not have downloading capability or when no debugger exists and
no emulation system is available.

The Host System Software

The OS-9 Developer’s Kit is a source release for Original Equipment
Manufacturers (OEMs) designed to be installed on a host system. Use of
the OS-9 Developer’s Kit requires a separately available toolkit designed for
the host system. The types of toolkits available are:

• Hawk for Windows 95/NT

• A resident toolkit for OS-9 systems

Each of the above toolkits includes the Ultra C compiler, assembler and
linker, and all utilities necessary to rebuild OS-9.

The Target System Hardware

The target system should consist of the following hardware:

• A 68000 family CPU.

• At least 128K RAM; 512K is recommended.

• At least 64K ROM capacity or an emulator with 64K of overlay memory;
however, 128K is required if you plan to use ROMbug. The 64K ROM is
for convenience in bringing up OS-9. If the system is disk-based, the
eventual target system can use as little as 32K for a boot ROM.

• Two serial I/O ports; one for a terminal and one for communications with
the host system. These are only required for the porting process.

• Any other I/O devices OS-9 must eventually support (optional). These
are not used in the initial installation steps.

An existing debugger on a functional target can be used in lieu of an
emulation system for debugging the OS-9 boot ROMs until ROMbug is
functional enough to be used. In this type of configuration, the OS-9 boot

1Getting Started

OS-9 for 68K Processors OEM Installation Manual 15

ROM image can be built to run from RAM. However, some mechanism
must exist to get the image into RAM, either by downloading through a
serial port (using the existing debugger) or by accessing memory from
another processor in the same system (a master CPU in a VMEbus
system, for example).

Pre-Porting Steps

Before you port OS-9 for 68K:

• Make sure the hardware works. It is difficult to simultaneously debug the
hardware and the software. If the target system is an untested
prototype, use the assembler to make a simple stand-alone test ROM
that just prints a message on a terminal to verify basic hardware
functionality. Using emulators and logic analyzers aids in simulation of
hardware and software.

NoteNote
The time invested in writing basic diagnostic software that fully
exercises memory, I/O devices, and interrupts is often well worth it.

• Hook up the serial ports that link the host to the target system, and, if
possible, test the communications link using existing software that
already runs on your host system.

16 OS-9 for 68K Processors OEM Installation Manual

The following is a typical host and target interconnection:

Figure 1-1 Typical Host and Target Interconnection

NoteNote
Use 9600 baud or the highest possible data rate for RS-232 links to
maximize download speed. The default is 9600 baud.

If you are porting to a slow processor (for example, 68000 8 MHz), you
may have to lower the baud rate in order for the processor to keep up
with the transfer.

The X-On/X-Off protocol is used for flow control.

CRT/
Workstation

PROM
Programmer

Host
System

Target
System

CRT

RS-232 RS-232

RS-232
Optional
RS-232

1Getting Started

OS-9 for 68K Processors OEM Installation Manual 17

The Make Utility

While you are porting OS-9 for 68K to the target system, you use the make
utility extensively. The OS-9 make utility uses makefiles to re-assemble and
link many major parts of OS-9. Makefiles simplify software creation and
maintenance.

We strongly recommend you use and maintain the makefiles as you port
OS-9. The makefiles for each major subsystem are located in the
subsystem’s highest level directory and are usually named makefile.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Familiarize yourself with the description of the make utility provided in
Using OS-9 for 68K Processors if you are using an OS-9 based host
system.

Knowing how the makefiles work is a key to understanding a port. In order
for the port to fit into your particular hardware configuration, use flags to
conditionalize the code that is assembled/compiled. These flags are fully
explained later in this manual. Customize these makefiles to fit your
hardware configuration.

18 OS-9 for 68K Processors OEM Installation Manual

Common File Name Suffixes

Microware uses the following file name suffixes to identify file types:

Table 1-1 File Name Suffixes

Suffix Definition

.a Assembly language source code.

.c C language source code.

.d Definitions (defs) source code (for assembly).

.h C header file source code.

.i Microware intermediate code (I-code) files.

.il Microware intermediate code libraries.

.l Library files.

.m Macro files.

.o Assembly language source from the compiler backend.

.r Relocatable object code (for linker input), created by the
assembler.

none Object (binary) files.

1Getting Started

OS-9 for 68K Processors OEM Installation Manual 19

NoteNote
In general, OS-9 for 68K does not require file name suffixes. However,
certain utilities, such as µMACS and cc, do require file name suffixes to
determine the mode of operation.

20 OS-9 for 68K Processors OEM Installation Manual

Checking the Contents of the Distribution

You should become familiar with the contents of the distribution package
provided by Microware. Verify it is:

• Complete

• The correct version for your host system

The distribution software consists of a set of OS-9 diskettes, discs, or tape
cartridges. Refer to the MWOS directory structure described in this chapter
for the organization of the shipping/development directory structure.

1Getting Started

OS-9 for 68K Processors OEM Installation Manual 21

Structure of the Distribution Package on the
Host System

The distribution package contains a large number of files comprising the
operating system and its utilities. A few files are source code text files. Most
others are object code files. The files are organized into subdirectories
according to major subsystems (ROM, IO, CMDS, and so forth).

A master directory called MWOS is created. The entire distribution package
file system should be copied intact into this directory structure. We have
assumed you use a hard disk based system with sufficient storage capacity
to contain the entire file system.

Microware has adopted this general directory structure across all of its
product lines. This allows all source products to reside together in a single
directory and provides a means for sharing code across all operating
system products.

NoteNote
The files in the distribution package assume this specific file and
directory organization. They can not assemble and link correctly if the
organization is not correct.

22 OS-9 for 68K Processors OEM Installation Manual

MWOS/OS9/SRC Directory Structure

Taking a closer look at MWOS/OS9/SRC we see:

Figure 1-2 MWOS/OS9/SRC Directory Structure

These directories are as follows:

Table 1-2 MWOS/OS9/SRC Directories

Directory Contains

DEFS Files of definitions that apply system-wide, or are target
independent. These are both assembler .d and C .h
include files.

IO Sources for all I/O subsystems including file-managers,
drivers, and descriptors. The file’s subdirectories are
organized by subsystem (detailed below).

IOMAN Source for the IOMan module (if you purchased a
license for IOMan source), whose functionality was
integral to the kernel in previous releases.

KERNEL Source for all kernel variants (if you purchased a
license for kernel source).

LIB Sources for all system and subsystem libraries.

SYSMODSDEFS IO MACROS ROM SYS

SRC

OS9

1Getting Started

OS-9 for 68K Processors OEM Installation Manual 23

MWOS/OS9 Directory Structure

The top-most directory structure is as follows:

Figure 1-3 MWOS/OS9 Directory Structure

MACROS Files of assembly language macro definitions that apply
system-wide or are target independent.

ROM Sources for rebuilding all boot ROM components,
except for a few that share source with SCSI drivers in
IO.

SYS A repository for files and scripts that would end up
residing in the OS-9 SYS directory on a root device.

SYSMODS Sources for system extension modules.

Table 1-2 MWOS/OS9/SRC Directories (continued)

Directory Contains

OS9

MWOS

68000 68020 CPU32 MAKETEMPL SRC

24 OS-9 for 68K Processors OEM Installation Manual

These directories are as follows:

Table 1-3 MWOS/OS9 Directories

Directory Contains

SRC The source files for the OS-9 drivers, descriptors,
system modules, defs, and macros. It is intended to be
a source directory containing hardware-specific code
written to be reuseable from target to target. It is not
intended to be the repository for final object modules
built from this source, although intermediate object files
may be found within its subdirectories.

MAKETMPL A directory for common makefile templates (include
files for makefiles). In this release, any templates found
in this directory apply only to makefiles for ISP and
related products.

68000,
68020,
and CPU32

These remaining directories can be thought of as object
directories for target processor architectures or families.
It is in these directories that processor-family-specific
objects are deposited when built, and where
target-specific source code, makefiles, and final objects
reside.

1Getting Started

OS-9 for 68K Processors OEM Installation Manual 25

OS-9 Macro Routines

The macros in the SRC/MACROS directory are designed to be useful,
general purpose macros for driver/file, manager/kernel development. Do
not place macros pertaining to specific drivers, for example, in this
directory.

NoteNote
Do not edit these macros. Many varied source files use these macros,
and your changes may have unforeseen consequences to other users.

The following list summarizes each macro’s purpose. If you add any
macros to this directory, please update this list accordingly.

Table 1-4 OS-9 Macros

Name Description

btf.m Create branch if true/false instruction sequences, for
situations where Scc instructions are used to
manipulate flags.

ldbra.m Make a dbra loop using a 32-bit value.

longio.m Define access methods for devices.

nvram.m Provides NVRAM access.

26 OS-9 for 68K Processors OEM Installation Manual

os9svc.m Make a system call quickly in a driver or file manager.
This is generally useful only for system calls that do
not return parameters (such as F$Sleep [0]and
F$Send). This call heavily relies on intimate
knowledge of the kernel, so it should not be
considered as a replacement for performing system
calls via Trap#0 (for example OS9 F$xxx).

sysglob.m Get the system global data pointer.

sysboot.m Bootstrap routines. It allows several bootstrap
modules to be used together without getting name
clashes for SysBoot.

rompak.m Set for SysInit ROM extension code.

reach32.m Make a 32-bit PC-relative branch.

Table 1-4 OS-9 Macros (continued)

Name Description

1Getting Started

OS-9 for 68K Processors OEM Installation Manual 27

MWOS/OS9/SRC/IO Directory Structure

Taking a closer look at MWOS/OS9/SRC/IO we see:

Figure 1-4 MWOS/OS9/SRC/IO Directory Structure

IO

NFM PIPE SBF SCSI

INET PCF RBF SCF

DESC DRVR FM

DESC DRVR FM

SCSI

RB54000 RBTEAC

RBVCCSRB327 RBSCCS

SCSI327 SCSI53C710 SCSICOM

DEFS SCSI33C93 SCSI53C94 SCSI5380

DOC ETC LIB UTILS

DEFS DRVR FM MAKETMPL

28 OS-9 for 68K Processors OEM Installation Manual

Almost all of the file manager subsystems contain at least two additional
subdirectories:

DESC (except for INET) Hholds descriptor sources.

DRVR Holds driver sources.

FM Holds file manager source if you purchased
a license for file manager source.

Some file manager subsystem directories contain additional subdirectories
for additional functional modularization. For example, the RBF/DRVR
directory has a SCSI subdirectory holding yet more subdirectories for each
high-level SCSI driver.

In addition to the file manager subsystems, there is a SCSI directory for low
level SCSI drivers whose usage spans across several file managers. See
the SCSI system notes in Appendix D for more information about SCSI
drivers.

1Getting Started

OS-9 for 68K Processors OEM Installation Manual 29

MWOS/OS9/SRC/ROM Directory Structure

Taking a closer look at MWOS/OS9/SRC/ROM we see:

Figure 1-5 MWOS/OS9/SRC/ROM Directory Structure

ROM

COMMON DISK MVME050 TAPE

CBOOT DEBUGGER LIB SERIAL

BOOTLIB BOOTMT2ST BOOTVIPER

BOOT7990 BOOTBP

BOOTCMCBOOT374 BOOT82596

DISK NETWORK TAPE

DEFS INETBOOT SYSBOOT TIMERS

BOOT33C93 BOOT53C094 DESC

BOOT327 BOOT5380 BOOTSCCS

30 OS-9 for 68K Processors OEM Installation Manual

These directories are as follows:

Table 1-5 MWOS/OS9/SRC/ROM Directories

Directory Contains

CBOOT Contains almost all of the boot code written in
C (except for some SCSI driver whose
source is shared with the normal running
system drivers). As can be seen in the above
diagram, it has a subdirectory structure
contained within it.

CBOOT/DEFS Include (.h) files for interface and
media-independent definitions.

CBOOT/DISK Boot disk driver and descriptor source
subdirectories.

CBOOT/INETBOOT BOOTP client source.

CBOOT/NETWORK BOOTP network driver source subdirectories.

CBOOT/SYSBOOT General purpose booters and common code
libraries.

CBOOT/TAPE Boot tape driver source subdirectories.

CBOOT/TIMER BOOTP timer sources.

COMMON Common assembler sources for all boot
ROMs.

DEBUGGER/ROMBUG ROMbug debugger source.

DISK Assembly language boot disk drivers.

1Getting Started

OS-9 for 68K Processors OEM Installation Manual 31

LIB Intermediate object libraries for linkage into
target ROM images.

MVME050 Assembly language system initialization
support routines for the MVME050.

SERIAL Assembly language low-level console and
communications port drivers.

TAPE Assembly language boot tape drivers.

Table 1-5 MWOS/OS9/SRC/ROM Directories (continued)

Directory Contains

32 OS-9 for 68K Processors OEM Installation Manual

Figure 1-6 Object Directories

As you can see, there is a different subdirectory structure for each
processor family in the 68000 architecture. Commands and system
modules common across all 68000 families reside in 68000/CMDS and
68000/CMDS/BOOTOBJS. Similarly, descriptors for VMEBus peripherals
(MVME050, MVME320, and MVME374) applying to all 68000 families
reside in the respective directory in 68000/PORTS. Clock drivers specific
to the MVME050 are built in 68000/SYSMODS/GCLOCK/MVME050.

68000

CMDS SYSMODSDEFS LIB SYS

BOOTOBJS

PORTS

GCLOCKMC6830X

MVME050

MVME320CMC MB2470 MVME050 MVME107 MVME374 OEM_MINIMUM

68020

CMDS DEFS LIB SYS

BOOTOBJS

PORTS

MVME165MVME133 MVME147 MVME167

CPU32

CMDS DEFS LIB SYS

BOOTOBJS

PORTS

WW349BCC332 BCC340

1Getting Started

OS-9 for 68K Processors OEM Installation Manual 33

Each PORTS directory contains directories for example ports to various
target VMEBus processors (MVME107 in 68000/PORTS; MVME133_4,
MVME147 and MVME165 in 68020/PORTS; BCC332, BCC340, and
WW349 in CPU32/PORTS).

Table 1-6 MWOS Object Directories

Directory Contains

CBOOT/SYSBOOT General purpose booters and common code
libraries.

CBOOT/TAPE Boot tape driver source subdirectories.

CBOOT/TIMER BOOTP timer sources.

COMMON Common assembler sources for all boot
ROMs.

DEBUGGER/ROMBUG ROMbug debugger source.

DISK Assembly language boot disk drivers.

LIB Intermediate object libraries for linkage into
target ROM images.

MVME050 Assembly language system initialization
support routines for the MVME050.

SERIAL Assembly language low-level console and
communications port drivers.

TAPE Assembly language boot tape drivers.

34 OS-9 for 68K Processors OEM Installation Manual

Additional Reference Materials

If you are not familiar with OS-9, review some of the other Microware
manuals. All of the manuals listed here are pertinent to the installation
process and are included with the software distribution.

• Using OS-9 for 68K Processors

• OS-9 for 68K Processors Technical I/O Manual

• OS-9 for 68K Processors Technical Manual

• OS-9 for 68K PC File Manager (PCM) Manual

• OS-9 for 68K OEM SSD Add-On Pak

• Utilities Reference Manual

• Using RomBug Manual

• Using the Source Level Debugger

• Getting Started with Microware Hawk

• Using Microware Hawk

• Microware Hawk Programming Reference

• Using Hawk Macros

Review these books until you have a basic idea of how OS-9 works and
how it is organized. You should be familiar enough with these manuals so
you can easily locate essential information for reference.

Other reference books may also be useful depending on your system’s
configuration. You can order OS-9 Insights and the OS-9 Primer from your
Microware distributor.

Depending on your hardware configuration, you may find some or all of the
following reference books useful. You can order these reference books
directly from Motorola or through most bookstores:

• MC68020 32 Bit Microprocessor User’s Manual
Prentice-Hall

• MC68030 Enhanced 32 Bit Microprocessor User’s Manual
Prentice-Hall

1Getting Started

OS-9 for 68K Processors OEM Installation Manual 35

• MC68881/MC68882 Floating Point Coprocessor User’s Manual
Prentice-Hall

• MC68851 User’s Manual
Prentice Hall

• CPU32 Reference Manual
Motorola

• MC68332 SIM User’s Manual
Motorola

• TPU Reference Manual
Motorola

• Programmer’s Reference Manual
Motorola

You can order this reference book from Signetics or Philips:

16/32 Bit Highly-Integrated Microprocessor SCC68070 User Manual
Philips; Parts I (hardware) and II (software)

36 OS-9 for 68K Processors OEM Installation Manual

Chapter 2: Porting OS-9 for 68K

This chapter includes the following topics:

• Getting Started

• Understanding the OS-9 for 68K Booting Process

• The Four Porting Steps

38 OS-9 for 68K Processors OEM Installation Manual

Getting Started

Once you have installed all of OS-9 for 68K’s boot code sources, driver
sources, and system modes (such as the kernel), the sheer volume of files
may overwhelm you.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

You should keep in mind Microware provides example source files for
many different types of device drivers, whether they be serial, disk
controller, tickers, or real-time clocks. You only need what your target
hardware has available. If you need the disk space, you can get rid of
the rest. (Remember, your Microware distribution tape, disc, or disks
still contain all of the files.) This can considerably narrow down your
focus of porting.

Knowing your hardware well makes it easier for you to port OS-9 to it. The
following information is extremely helpful during the porting procedure:

• What I/O devices do you have?

• How are these devices mapped into memory?

• How is the memory organized?

• What does the memory map of the entire system look like?

2Porting OS-9 for 68K

OS-9 for 68K Processors OEM Installation Manual 39

Understanding the OS-9 for 68K Booting
Process

Although the OS-9 system itself (the kernel, file managers, and processes)
is very modular in its architecture, the boot code is different and a
distinction is made between the OS-9 system and the OS-9 boot code. You
can think of the OS-9 boot code as one program, consisting of several
different files, that gets linked together and burned into ROM in order to
bring up the OS-9 system.

A bootfile must exist in order to boot OS-9. This bootfile is simply merged
OS-9 system and program modules, with the kernel usually being the first
module.

NoteNote
The bootfile must contain the kernel.

This bootfile can exist:

• In ROM

• On a disk

• On a tape

• Any other type of media

The purpose of the boot code is to:

• Set the hardware into a known, stable state

• Set up certain table and memory configurations

• Find the bootfile and start executing the kernel

Three steps are necessary to boot OS-9 for 68K. These are covered in the
following pages.

40 OS-9 for 68K Processors OEM Installation Manual

Step 1: Power Up the ROMbug Prompt

Once you supply power to the 68000 processor or a reset occurs, the
processor:

• Performs a longword read cycle at address 0.

• Places the result in the a7 register (stack pointer).

• Performs a longword read cycle at address 4.

• Places the result into the program counter (PC) register.

• Starts executing instructions as it normally does.

NoteNote
Step 1 is the most difficult step to complete, and unless you have an
emulator or existing debugger on your running target, much of this step
is done blind. However, once ROMbug is available, it is a good
debugging tool for the remainder of the port.

Many computer boards have address logic that maps these first two reads
to wherever the ROM is actually located. Then, the address mapping
returns to the board’s standard memory map.

Once this has been done, the processor can execute machine language
instructions like it normally does. The initial PC value in the OS-9 boot code
is a label called Reset:. This label is defined in the boot.a file.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

You can think of boot.a as the kernel for booting. It is prewritten and
you do not have to modify it. Chapter 3: Step One: Porting the Boot
Code, contains additional information about boot.a.

2Porting OS-9 for 68K

OS-9 for 68K Processors OEM Installation Manual 41

For more information about sysinit.a, refer to Chapter 3: Step One:
Porting the Boot Code.

Once boot.a starts executing, it:

Step 1. Sets up a few variables.

Step 2. Branches to a label called SysInit.

SysInit is defined in the sysinit.a file. Although examples of
sysinit.a are available from the boot code source, you must modify this
file to initialize specific hardware devices on the target board. SysInit
branches back to boot.a.

boot.a then:

Step 1. Determines on which processor it is running.

Step 2. Performs memory searches.

Step 3. Calls ConsInit in ioxxx.a to initialize the console port.

Step 4. Calls SysInit2 and UseDebug, which are also defined in the
sysinit.a file.

After returning to boot.a, the ROM debugger is called to give a register
dump of the processor and prompt for more instructions. The following
diagram illustrates this process:

42 OS-9 for 68K Processors OEM Installation Manual

Figure 2-1 Chart of Files and the Subroutines They Contain

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Boot.a is covered in more detail in Chapter 3: Step One: Porting the
Boot Code.

Step 2: ROMbug Prompt to Kernel Entry

boot.a branches to the SysBoot routine. SysBoot:

Step 1. Prompts the operator for the boot media or (optionally) auto-boots from
predetermined media (target specific)

Step 2. Finds the bootfile

Step 3. Finds the kernel

Step 4. Returns a pointer to the kernel in the a0 register

Apply power
to processor

vectors.a

initial SP
initial PC

boot.a

Reset:
...
bra Sysint

SysRetrn:
...
bsr Consinit
...
...
bsr Sysinit2
...
bsr UseDebug
...
bsr Debug

sysinit.a

Sysinit:
...
Bra SysRetrn

Sysinit2:
rts
UseDebug:
rts

ioxxx.a

Consinit:
rts

ROMbug

At Rombug's
prompt

2Porting OS-9 for 68K

OS-9 for 68K Processors OEM Installation Manual 43

Once SysBoot has found the bootfile and the kernel’s pointer is returned to
boot.a, boot.a:

Step 1. Sets up the registers according to the kernel’s specifications

Step 2. Jumps to the execution entry point in the kernel

Step 3: Kernel Entry Point to $ Prompt

The cold part of the kernel finishes the task of booting OS-9. It sets up
variables in the system global data table (commonly referred to as the
system globals). It also:

• Builds the kernel’s RAM memory pools by searching the memory list

• Builds the module directory by searching colored memory ROM areas,
special memory areas, and ROM memory areas

• Initializes system tables (such as the device path table)

From here, it does the following:

Step 1. Open the console device

Step 2. Chd to the system device

Step 3. Execute any P2 modules from the Init module’s Extens list

Step 4. Fork the first process

The cold part of the kernel then disinherits the first process and exits by
calling the kernel’s system execution loop. The OS-9 system should now be
booted and executing as expected.

44 OS-9 for 68K Processors OEM Installation Manual

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about the kernel’s cold routine, refer to Chapter 4:
Step Two: Bringing Up the Kernel and Console I/O.

2Porting OS-9 for 68K

OS-9 for 68K Processors OEM Installation Manual 45

The Four Porting Steps

Four steps are required to port OS-9 on your target hardware. The following
chapters explain these procedures in greater detail.

Step 1. Porting the boot code.
This procedure includes steps 1 and 2 of the OS-9 boot process. The
files needed to accomplish this are vectors.a, boot.a, ioxxx.a,
ioyyy.a, sysinit.a, systype.d, syscon.c, bootio.c, and the
sysboot and rombug libraries. This step includes:

• Hardware dependent initialization and configuration (sysinit.a).

• ROMbug.

• The ability to boot from ROM or an image downloaded into RAM. You
must define key labels in systype.d and the makefile to correctly
configure the code for your particular target hardware.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Chapter 3: Step One: Porting the Boot Code, contains more
information about the files needed.

46 OS-9 for 68K Processors OEM Installation Manual

NoteNote
For your initial port of OS-9 to your target, we strongly recommend you
first create a ROM/RAM based system to reduce the complexity of the
port (downloading target-specific modules into RAM through ROMbug’s
communication port from the development system). Later, as more of
the port is accomplished, you can incorporate other booting methods.
For this reason, source for a simple ROM/RAM boot routine has been
included in Appendix F: Example ROM Source and Makefiles. This
simple menu booter is syscon.c.

Step 2. Porting the OS-9 kernel and basic I/O system.
This involves more modification to the systype.d file. You need to
make an Init module and high-level serial drivers and descriptors for
your particular hardware. Once this is complete and is working, a
ROM-able OS-9 system exists.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The Init module is a data module from which the kernel configures
itself. For more information about the Init module, refer to Chapter 2,
The Kernel, in the OS-9 for 68K Technical Manual.

Step 3. Creating customized I/O drivers and finishing the boot code.
In this porting procedure, more high-level drivers are developed and
debugged for other serial ports, disk drivers and controllers, clocks, and
any other available devices. Once the high-level drivers are working,
you can modify the boot code to boot from the various devices
available. The C boot routines are good in this regard.

For example, once the basic port of a board has been completed (porting
procedure’s 1 and 2), a high-level driver for a floppy drive (or other
installable media) is developed next. Once it is known to work, you can

2Porting OS-9 for 68K

OS-9 for 68K Processors OEM Installation Manual 47

format a floppy disk and install an OS-9 bootfile on the floppy. At this point,
you can create a low-level driver for C boot (which may use much of the
same logic and code as the high-level driver) that boots the system from
the floppy.

Step 4. Testing and Validation
This involves the final testing and verification of the complete system.

Your distribution package was designed to follow this procedure.

48 OS-9 for 68K Processors OEM Installation Manual

Chapter 3: Step One: Port ing the Boot

Code

This chapter includes the following topics:

• Introduction

• The Defsfile File

• The Oskdefs.d File

• The Systype.d File

• The Vectors.a File

• The Boot.a File

• The ioxxx and ioyyy Files

• I/O Driver Entry Points

• The Sysinit.a File

• The Syscon.c File

• The initext.a File

• Putting the ROM Together

50 OS-9 for 68K Processors OEM Installation Manual

Introduction

This chapter deals with the first step of porting OS-9 for 68K. This involves
creating and installing a ROM that contains the system initialization code
and a special ROM debugger (ROMbug).

About the Boot Code

In a sense, the name boot code can be misleading. The boot code does not
try to boot the system by reading data from a disk; this comes in a later
step. At this point, the boot code has the following functions:

• initialize the basic CPU hardware into a known, stable state

• determine the extent and location of RAM and ROM memory

• provide low-level console I/O

• call the ROMbug debugger

The ROMbug debugger is located in the same part of the ROM as the boot
code. The ROMbug debugger can download software from the host
system. It provides powerful debugging facilities such as:

• Tracing

• Single instruction stepping

• Setting breakpoints

The ROMbug debugger remains in place for the entire porting process. It
can also be used to help debug all of your applications, especially any
system state or driver code. However, for your final production ROM, you
may wish to exclude ROMbug.

The ROM is made from a number of different files linked together to
produce the final binary object code. The vast majority of the code is not
system dependent and therefore is supplied in relocatable object code form
(files with.r or.l suffixes). You only have to edit a few source files. You
then use the make command to assemble these files and link them with the
other.l files to create the ROM binary image file.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 51

How to Begin the Port: The Boot Code

The first step in porting OS-9 is to port the boot code, or basically the code
always residing in the ROM. To do this, you need to create several files in a
new PORTS/<target> directory:

NoteNote
These files are specific to your particular hardware. systype.d and
sysinit.a are covered later in this chapter.

The files provided in Appendix F: Example ROM Source and Makefiles
are code to a working example and will not work for your particular
hardware. However, these are minimal examples and can be reworked to
match your hardware if necessary. Create these files in your own
PORTS/<target> directory in one of the processor family object
directories.

In most cases, you do not need to write the low level drivers, ioxxx.a and
ioyyy.a, because the Development Kit contains code to many existing
devices. If you have a device for which code has not been written, the entry
points needed for drivers are documented later in this chapter.

Table 3-1 Ports Directory Files

Name The File Should Contain

systype.d The target system, hardware-dependent definitions.

sysinit.a Any special hardware initialization your system may
require after a reset occurs.

52 OS-9 for 68K Processors OEM Installation Manual

NoteNote
Do not modify the other files, such as vectors.a, boot.a, and
sysboot.a. Altering these files may cause the port to not function.

Once you have properly adjusted the systype.d and sysinit.a files,
use the make-f=rombug.make command to produce a ROM image file.

Testing the Boot Code

To test the boot code:

Step 1. Burn a set of ROMs with this image.

Step 2. Turn on your hardware.

Step 3. See if a ROM debugger prompt comes up.

• If the ROM debugger prompt does come up, you have successfully
completed the initial port and are ready to continue.

• If it does not come up, look at Appendix B: Trouble Shooting.

ROM Image Versions

Generally, two slightly different makefiles exist in the PORTS/<target>
directory: rombug.make and rom.make.

1. rombug.make: Full boot menu with ROMbug.
Contains all the C boot functionality with the ROMbug ROM debugger.
This is a large image found in PORTS/<target>/
CMDS/BOOTOBJS/ROMBUG/rombug.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 53

2. rom.make: Full boot menu.
Contains the C boot functionality without a ROM debugger. This image
is much smaller than the ROMbug image alone. Find it in the
PORTS/<target>/CMDS/BOOTOBJS/NOBUG/rom. This could be
considered the final production version.

Component Files of the ROM Image

The rombug.make and rom.make makefiles create the ROM image by
combining and linking several sets of files to make the binary object code:

• The common target startup (rom_common.l).
This is built from target-independent source files (vectors.a and
boot.a) in the SRC/ROM/COMMON directory.

• The low-level serial IO code (rom.serial.l)
This is built from target-independent source files (ioxxx.a, and
ioyyy.a, if needed) in the SRC/ROM/SERIAL directory.

Table 3-2 Common Target Startup Source Files

Source Relocatable Contents

systype.d System-wide hardware definitions

boot.a boot.r Standard system initialization code

vectors.a vectors.r Exception vector table

54 OS-9 for 68K Processors OEM Installation Manual

* The actual names of the files ioxxx.a and ioyyy.r vary according to the hardware
device type. For example, a driver for a Motorola 6850 has the name io6850.a,
and so on.

• The target-specific startup and bootmenu code (rom_port.l)
This is built from target-specific source files (sysinit.a, syscon.c,
and bootio.c) in the PORTS/<target> directory.

• The CBoot libraries (sysboot.l and romio.l)

Table 3-3 Low-level IO Serial Source Files

Source Relocatable Contents

ioxxx.a ioxxx.r Console device primitive I/O routines*

ioyyy.a ioyyy.r Communication port I/O routines*

Table 3-4 Target-specific Startup and Bootmenu Code Source Files

Source Relocatable Contents

sysinit.a sysinit.r Custom initialization code

syscon.c syscon.r Custom initialization code

bootio.c bootio.r I/O support routines for binboot()

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 55

• The debug files (rombug.l).
This code is used during the port; you can exclude it from the final
production boot ROM. All debug files are provided in relocatable format.
The source code to the debug files is not supplied with the Developers
Kit because you do not need to edit or assemble these files.

NoteNote
Not all of the relocatable files listed are supplied in the distribution
package; some are created during the porting process.

Table 3-5 C Boot Libraries

Source Relocatable Contents

sysboot.l sysboot library routines.

romio.l I/O routines for CBoot and ROM
debugger.

Table 3-6 Debug Libraries

Source Relocatable Contents

rombug.l Full featured ROM debugger

56 OS-9 for 68K Processors OEM Installation Manual

WARNING!
Read the rest of this chapter before you begin editing the systype.d
file!

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 57

The Defsfile File

The defsfile file acts as a master include file to include all definition
(.d) files within assemblies in the PORTS/<target> directory. defsfile
typically includes <oskdefs.d> (from SRC/DEFS) and systype.d (from
PORTS/<target>) at a minimum.

58 OS-9 for 68K Processors OEM Installation Manual

The Oskdefs.d File

The oskdefs.d file is OS-9’s system-wide symbolic definitions file. It can
be found in the SRC/DEFS directory. oskdefs.d defines some of the
names used in systype.d.

NoteNote
Do not edit oskdefs.d. oskdefs.d is used for generic system-wide
target-independent definitions only. If system specific definitions are
needed, edit systype.d.

You should make a listing of both systype.d and oskdefs.d. Study
them so you understand how they are used and how they are related. If you
have undefined name errors when assembling various other routines later,
the files were probably not included or were not configured properly.

Notice that many hardware-dependent values and data structures are
defined as macros in systype.d. These macros are used in many other
parts of the boot ROM as well as files used in later stages of the
installation. In particular, device driver and descriptor source files reference
these macros.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 59

The Systype.d File

The systype.d file should contain the target system,
hardware-dependent definitions. This includes:

• Basic memory map information

• Exception vector methods (for example, vectors in RAM or ROM)

• I/O device controller memory addresses

• Initialization data

NoteNote
Target-specific definitions are all included in the systype.d file. This
allows you to maintain all target system specific definitions in one file.

You must create a systype.d file before you re-assemble any other
routines.

systype.d is included in the assembly of many other source files by
means of the assembler’s use directive. You need to make a new
systype.d file defining your target system as closely as possible, using
the sample file provided in the distribution package. Some definitions are
not used until later in the porting process, so some of these definitions are
not covered until later in this manual.

systype.d consists of five main sections used when porting OS-9:

1. ROM configuration values.

2. Target system specific definitions.

3. Init module CONFIG macro.

4. SCF device descriptor macros and definitions.

5. RBF device descriptor macros and definitions.

60 OS-9 for 68K Processors OEM Installation Manual

The ROM configuration values and the target system specific definitions
are the only sections important for the boot code. Therefore, these section
are covered in this chapter. Chapter 4: Step Two: Bringing Up the Kernel
and Console I/O covers the remaining sections.

The ROM Configuration Values

The ROM configuration values are normally listed at the end of the
systype.d file. These values are used to construct the boot ROM and
consist of the following:

• Target specific labels

• Target configuration values

• Low level device values

• Target system memory definitions

Target Specific Labels

Target specific labels are label definitions specific for your target hardware.
They can define:

• Memory locations for special registers on your hardware.

• Specific bit values for these registers.

For example, your target hardware processor has a register controlling to
which interrupt levels on a bus the board responds. This may be necessary
if several target boards are sharing the same bus, and you would like to
have different boards handle different interrupt levels. The base of all your
control registers on your board starts at address F800 0000 and the offset
to this particular register is 8. The register is a single byte, with each bit
corresponding to an interrupt level. Setting the bit enables the interrupt.
Conceptually, the register may look something like the following:

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 61

Figure 3-1 Interrupt Level Control Register

Your label definitions for this register might look like the following:

* Define control registers.
ControlBase equ $f800 0000
.
.
* Other registers defined.
.
.
IRQControl equ ControlBase+8
.
.
Other registers defined.
.
.
* Define Control Register Values
Level1Enable equ %00000001
Level2Enable equ %00000010
Level3Enable equ %00000100
Level4Enable equ %00001000
Level5Enable equ %00010000
Level6Enable equ %00100000
Level7Enable equ %01000000
.
.
DisableAll equ 0
LowlevelEnable equ
Level1Enable+Level2Enable+Level3Enable
HighLevelEnable equ Level4Enable+Level5Enable+Level6Enable
EnableAll equ LowLevelEnable+HighLevelEnable+Level7Enable

F8000008

L = IRQ Level

L1L2L3L4L5L6L7NA

7 0

62 OS-9 for 68K Processors OEM Installation Manual

NoteNote
This is only an example and more than likely is not valid for your
hardware. However, it does show you how to handle these definitions.

If your hardware:

• has a lot of special registers such as these, this can be a lengthy list.

• does not have many registers like this, the list can be very short.

You can review the supplied systype.d files to see how to define
hardware registers. However, the values in the supplied systype.d file
will not work on your target hardware.

For more information about the use of these labels, refer to the section on
the sysinit.a file.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 63

Target Configuration Labels

The target configuration labels are needed to configure the boot code
properly for your target hardware. The following are a list of these variables:

Table 3-7 Target Configuration Labels

Label Effect

ROMBUG Specify ROMbug is used. The initial stack area is
increased in size to accommodate the larger usage
by the C drivers, and the size of the ROM global
data area is determined dynamically. Several of the
vectors are pointed into the ROMbug handlers.
Boot.a also calls the ROMbug initialize data routine.

CBOOT Specify CBOOT technology is to be used. The ROM
global data area size is determined dynamically.
You can also use this flag to enable sync-codes in
assembler code. This allows the assembler boot
drivers to be interfaced with the CBOOT sysboot
routines.

RAMVects Specify the vectors are in RAM. This allows boot.a
to copy the vectors to the appropriate place.

PARITY Specify parity memory is present. boot.a initializes
parity by writing a pattern into the memory. The
MemList macro in systype.d defines the memory
to initialize.

64 OS-9 for 68K Processors OEM Installation Manual

CPUTyp Label and Supported Processors

The large number of variations of processors available from Motorola
makes it important to ensure the label CPUTyp (defined in systype.d for
your system) is correctly set, so certain features of the BootStrap code are
correctly invoked.

MANUAL_RAM Specify you must explicitly enable RAM memory.
This enabling is usually performed in SysInit.
Therefore, the 32-bit bra to SysInit does not work
if you have not enabled the RAM. To allow operation
in this situation, define MANUAL_RAM, and the call to
SysInit is a straight bra instruction. This means
the bra target must be within a 16-bit offset.

TRANSLATE Define the value to use for the boot driver DMA
address translation. If the local CPU memory
appears at a different address for other bus
masters, boot drivers can access the global
TransFact label to determine the system’s
address translation factor. If this label is not defined,
TransFact defaults to 0.

VBRBase Define the address for the system’s Vector Base
Register (68020, 68030 68040, and CPU32
processors only). Boot code can access the global
VBRPatch label defined in boot.a to determine
where the vectors are located. If this label is not
defined, VBRPatch defaults to 0.

CPUTyp Specify the CPU type. Valid values for CPUTyp are
defined in the next section.

Table 3-7 Target Configuration Labels (continued)

Label Effect

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 65

The label CPUTyp is used for conditional assembly of portions of the boot
code. The actual processor type is detected by the boot.a code, and
passed to the kernel. If you incorrectly define CPUTyp, the processor type
passed by the boot.a code is still correct; however, some portions of the
bootstrap code may have conditional parts missing or incorrectly invoked.

Table 3-8 CPUTyp and Related Processors

CPUTyp Value Processor
Value Passed to
Kernel

68000 68000, 68008,
68301, 68303,
68305, 68306

0

68302 68302 0

68010 68010 10

68020 68020, 68EC020 20

68030 68030, 68EC030 30

68040 68040, 68EC040,
68LC040

40

68070 68070 (aka
9xC1x0-family)

70

68300 68330, 68331,
68332, 68333,
68334, 68340,
68341, 68349,
68360

300

68349 68349 300

66 OS-9 for 68K Processors OEM Installation Manual

NoteNote
The naming conventions for 683XX processors can be confusing. The
processors numbered in the range 68301 - 68306 are 68000 core
based processors, and thus (from a software point of view) the boot.a
code takes any value of CPUTyp in the range from 68301 to 68309 to
be a 68000 processor. The processors in the number range 68330 and
up are CPU32 or CPU32+ (aka CPU030) based cores, and thus the
boot.a code takes any value of CPUTyp in the range from 68330
through to 68399 as a CPU32-based processor.

CPUTyp having a value of 68302 causes the boot.a code to reserve
vectors 60 - 63, but otherwise it is treated like a 68000.

The value passed to the kernel is a biased value, as the kernel adds a
value of 68000 to the value passed up, and then stores this new value
in the kernel's system global D_MPUTyp.

Low Level Device Configuration Labels

Low level device configuration labels configure the low level I/O. These
values are as follows:

Table 3-9 Low-level Device configuration Levels

Label Effect

Cons_Addr This is the base address of the console device. This is
used by the low level ioxxx.a serial driver.

ConsType This is used by the ioxxx.a code to determine which
device is the console.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 67

Each individual ioxxx.a and ioyyy.a driver has its own configuration
labels. These labels are defined for each driver within the source of the
driver, as well as Appendix C of this manual. Refer to the driver you will
use, and set these labels correctly.

You need to define the following labels for the low level disk booter:

• FD_Vct

• FDsk_Vct

• SysDisk

You should define these labels as 0 if you do not have a disk booter.

Target System Memory Labels

Target system memory labels define where system memory is located. The
MemDefs macro in the systype.d file is the mechanism in the boot code
to define memory. It consists of two areas:

• General system free RAM

• Special memory

The free RAM is self-explanatory. The special memory definitions are the
areas through which the kernel searches for modules when booting.

Comm_Adr This is the base address of the communications port,
or Comm port. It is used by the ROM debugger to
download S-record files from the host.

CommType This is used by the ioyyy.a code to determine which
device is the Comm port.

Table 3-9 Low-level Device configuration Levels (continued)

Label Effect

68 OS-9 for 68K Processors OEM Installation Manual

You need to define the following labels:

You can define several banks of non-contiguous RAM and special memory.
The entire RAM list is null terminated, and the entire special list is null
terminated.

Example Memory Definitions

The following is an example MemDef memory definition:

MemDefs macro
 dc.l Mem.Beg,Mem.End * 1st RAM bank start/end address
 dc.l 0 * Null terminator
 dc.l Spc.Beg,Spc.End * 1st special bank start/end addr
 dc.l 0 * Null terminator
 dc.l 0,0,0,0,0,0,0,0 * Additional places for padding
 endm

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Due to the way the boot code has been written, the first RAM bank must
be large enough to hold the system globals, the data area for the ROM
debugger, and the entire bootfile if booting from a device. Refer to the
section on the boot.a file later in this chapter for more information.

Table 3-10 Target System Memory Labels

Label Description

Mem.Beg The start of system RAM.

Mem.End The end of system RAM.

Spc.Beg The start of the special memory list.

Spc.End The end of the special memory list.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 69

NoteNote
Since the list is a null terminated list, never define Mem.Beg or
Spc.Beg as 0. Mem.Beg is usually offset by 0x400 bytes to allow room
for the vector table. This is especially important if VBRBase is set to an
area of RAM.The memory location of the vectors and general system
RAM memory must not exist in the same place. If you have a ROM
bank starting at 0, be sure to offset the Spc.Beg by an even number of
bytes, usually 2 to 4.

The following is another MemDef example. This example has multiple
banks of RAM and special areas:

MemDefs macro
 dc.l Mem.Beg,Mem.End 1st RAM bank start/end address
 dc.l Mem1.Beg,Mem1.End 2nd RAM bank start/end address
 dc.l Mem2.Beg,Mem2.End 3rd RAM bank start/end address
 dc.l 0 Null terminator
 dc.l Spc.Beg,Spc.End 1st special bank start/end addr
 dc.l Spc1.Beg,Spc1.End 2nd special bank start/end addr
 dc.l 0 Null terminator
 dc.l 0,0,0,0,0,0,0,0, Additional padding for patching
 endm

The additional areas for patching allow you to patch the memory list without
remaking the ROM image.

NoteNote
As described later in boot.a, the RAM search is a destructive search,
and the special memory search is a non-destructive, read-only search.

70 OS-9 for 68K Processors OEM Installation Manual

WARNING!
During the initial porting phase, it is often customary to define an area
of RAM as special memory, in addition to any ROM areas. The reason
for this is when you try to debug any high level drivers, either the serial
driver or later, the disk driver, it is easier to download the driver to RAM,
debug it there, make changes in the source, and when rebooting,
download the driver again. This way, you do not need to burn an
EPROM every time you change the driver. This special area of RAM
must be carved out of the normal RAM list and put as a separate bank
of special memory. Once the port is complete and all drivers are
debugged, the special RAM area can be returned to the general RAM
memory list. Modules needed in the bootlist are covered further in
Chapter 4: Step Two: Bringing Up the Kernel and Console I/O.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 71

The Vectors.a File

The vectors.a file contains definitions for the exception vector table. You
normally do not need to edit this file unless your target system has an
unusual requirement.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Appendix D: SCSI-System Notes for details of the conditional
assembly flags used by this file.

Depending on your system hardware, the actual vectors can be located in
RAM or ROM. To specify the location of the vectors, define the label
RAMVects in the systype.d file. If ROM space is exceedingly tight, all
vectors (except the reset vectors) may be located in RAM. This is only
possible if the final production version of the boot ROM has no ROM
debugger and the reset vectors are included in ROM. This saves a little
ROM space due to lack of duplication.

72 OS-9 for 68K Processors OEM Installation Manual

The Boot.a File

The boot.a file contains the system initialization code that is executed
immediately after a system reset. You should not need to edit this file. The
sysinit.a file is reserved as a place for you to put code for any special
hardware initialization your system might require after reset.

Steps Boot.a Goes Through to Boot the Kernel

Boot.a goes through the following steps to boot the kernel:

Step 1. Assume a full cold start for growth method.
The kernel validates modules using a growth method.

• With a full growth method, when the kernel validates modules, it first
validates the module header and then validates the full module’s CRC
number.

• With a quick growth method, the kernel simply validates the module
header. Although booting is quicker, there is more room for error. A
module may be in memory and may be corrupted.

Step 2. Mask interrupts to level 7.
Interrupts are masked to ensure the boot code has a chance to run.

Step 3. Call the SysInit label.
SysInit ensures all interrupts are cleared and the hardware is in a
known, stable state.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

SysInit is defined in the sysinit.a file.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 73

Step 4. Clear out RAM.
Clears out the RAM used for the system globals and the global static
storage used by ROMbug and the boot code.

Step 5. Record growth method in the Crystal global variable.
This growth method is passed to the kernel when the kernel is jumped
to.

Step 6. Set up 68000 vector table to vbr register or memory location 0 if
needed.
If the vector needs to be copied from the ROM to a RAM area, this is
where it occurs. This copy occurs if the RAMVects label is defined.

Step 7. Set up OS-9 exception jump table.
The exception jump table is an intermediate table between the vector
table and the kernel. The pea and jmp instructions are set up in the
table at this time.

Each vector in the vector table points to a particular entry in the exception
jump table. Each entry in the exception jump table has the following format:

pea #vector_table_address,-(a7)
jmp #vector_exception_handler

Step 8. Initialize global data for RomBug, if needed.
If you use RomBug, its global data needs to be initialized before it can
run.

Step 9. Determine CPU type.
Possible CPU types include 68000, 68010, 68020, 68030, 68040,
68070, or 68300. The CPU type is saved in the MPUType system global
variable. When running, the kernel keys off of this variable to determine
the type of processor on which it is running.

Step 10. Branch to the UseDebug label.
If UseDebug returns with the zero bit in the CCR cleared, the ROMbug
is enabled.

74 OS-9 for 68K Processors OEM Installation Manual

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

UseDebug is located in the sysinit.a file.

Step 11. Initialize ROMbug if it is enabled.

Step 12. Run the SysInit2 routine.
Perform any final hardware initialization.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

SysInit2 is also located in the sysinit.a file.

Step 13. Initialize the Console port and print boot strap message.
This is the first sign the system is doing anything.

Step 14. Perform RAM and special memory searches of memory and parity
enable memory if needed.
The routines use both bus error and pattern matching to determine
RAM and ROM sizes. This relies on the MemDefs macro to determine
the memory areas to search.

Step 15. Enter ROMbug if it is enabled.
The debugger is finally reached. At this point, everything needed to find
the kernel has been done.

Step 16. Call SysBoot label to obtain kernel.
You determine how this code works. A pointer to the kernel is all that
needs to be returned.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 75

NoteNote
There are several routines written to help. sysboot.a is a routine that
searches the ROM area for the kernel. There is no need to adjust this
file, it works as is.

The C boot routines are also available to simplify booting from various
devices.

SysBoot has the following register conventions when it is jumped to:

Table 3-11 SysBoot Register Conventions

Register Description

a1 Boot ROM entry point.

a3 Port address from DiskPort label.

a4 System free RAM list.

a5 Exception jump table pointer.

a6 Operating system global data area
(4K scratch memory).

a7 System ROM list.

76 OS-9 for 68K Processors OEM Installation Manual

When SysBoot returns, the following registers must be set as follows:

Step 17. Validate the kernel.
After SysBoot returns to boot.a with a pointer to the kernel, boot.a
validates the kernel header.

Step 18. Initialize registers for entry to the kernel.
Before entering the kernel, the registers should have the following
conventions:

Table 3-12 Registers Set After SysBoot Returns

Register Description

a0 Pointer to an executable module with a valid header
(hopefully, the kernel).

a4 Possibly updated free RAM list.

a5 Must be intact from above.

a7 Possibly updated system ROM list.

cc Carry set, d1.w error status if bootstrap failed.

Table 3-13 Registers Prior to Entering Kernel

Register Description

d0.l Total RAM found in the system.

d1.l MPUType.

d2.l Trapflag for system debug.

d3.l Growth startup method.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 77

Step 19. Jump to the kernel’s execution point.

Memory Search Explanations

An important function of boot.a is building the system’s memory
allocation using a memory search list. OS-9 uses this search list to define
the usable areas of the target system’s RAM and special memory. You do
not have to edit boot.a to change this table; the table is defined by the
MemDefs macro in the systype.d file.

d4-d7 Clear.

a0 Kernel entry point.

a1 Boot ROM entry point.

a2-a3 Clear.

a4 System free RAM list.

a5 Exception jump table pointer.

a6 Operating system global data area
(4K scratch memory).

a7 System ROM map.

Table 3-13 Registers Prior to Entering Kernel (continued)

Register Description

78 OS-9 for 68K Processors OEM Installation Manual

The RAM Search

The first part of the search list defines the areas of the address space
where OS-9 should normally search for RAM memory. This reduces the
time it takes for the system to perform the search. It also prevents the
search (and also OS-9) from accessing special use or reserved memory
areas such as I/O controller addresses or graphics display RAM.

The first entry, or bank, in this list must point to a block of RAM that is at
least long enough for storing system global data and global data for
ROMbug and boot code. This is the area of memory cleared out by Step 4
of the boot.a process. If the system boots from disk or another device,
then this first bank needs to be large enough to hold:

• The system globals

• The global data needed by the ROMbug and boot code

• The size of the bootfile

NoteNote
Two factors determine the size of the system’s ROM global data space:

• The required stack size.

• The amount of vsect and initialized data space used by the code.

Memory allocated for initialized and vsect data is part of the bootrom
global data area, and thus permanently allocated for bootrom
functions. If a boot driver requires large buffers (for example, disk sector
blocks), they can be dynamically allocated from and returned to the free
memory pool. The CBOOT system provides routines to do this. The
linker executed in rom_image.make reports the actual required global
data space.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 79

The actual RAM memory search is performed by reading the first four bytes
of every 8K memory block of the areas given in the search list. If a bus error
occurs, it is assumed there is no RAM or special memory in the block.
Then, a test pattern is written and read back. If the memory changed, the
search assumes this was a valid RAM block and is added to the system
free RAM list. As described earlier, you can define the PARITY label in the
systype.d file to initialize memory before any read is performed. This
initialization pattern is $FEEDCODE, in order to more easily see what RAM
was initialized.

The Special Memory Search

The second part, or the special memory part, of the search list is strictly a
non-destructive memory search. This is necessary so the memory search
does not overwrite modules downloaded into RAM or NVRAM.

During the porting process, temporarily include enough RAM (usually
about 64K) in the special memory list to download parts of the boot file. If
this download area has parity memory, you may need to:

• Manually initialize it

• Disable the CPU’s parity, if possible

• Include a temporary routine in the sysinit.a file

The RAM and special memory searches are performed during Step 14 of
the boot.a process.

80 OS-9 for 68K Processors OEM Installation Manual

The Patch Locations

Two globally available patch locations are available for the following
functions:

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 7: Miscellaneous Application Concerns, for details
of the conditional flags overriding the default values.

Table 3-14 Functions with Patch Locations

Name Description

TransFact This is a 32-bit location representing the translation
constant between the CPU’s address versus a DMA
device’s address for the same location. The default
value is 0. Boot drivers using DMA should use this
value when passing address pointers to/from the
DMA device.

VBRPatch This is a 32-bit location you can use to set the VBR of
the 68020, 68030, 68040, and CPU32 processors if
the vectors are to be located at an address other than
the default value of 0.

NOTE: Relocating the VBR is not supported for the
68000, 68008, 68010, and 68070 processors.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 81

The ioxxx and ioyyy Files

Two source files contain very low-level I/O subroutines to handle the
console I/O port and the communications port.

• The console I/O routines are used by the boot for error messages and
by the debugger for its interactive I/O.

• The communications port is used for the download and talk-through
functions.

NoteNote
In this manual, the console I/O routine files are referred to as io.xxx
and io.yyy. The actual names of these files usually reflect the names
of the hardware interface devices used by the specific target system.
For example, a source file for the Motorola 6850 device is called
io6850.a, a source file for the Signetics 2661 is called io2661.a,
and so on.

If your target system uses a common type of I/O device, you can probably
use a Microware-supplied file directly or with little modification. Otherwise,
you need to create a new source file using the supplied files as examples.

NoteNote
The physical I/O port addresses and related information are obtained
from systype.d. If the console port and the communications port use
the same type of device, you can use a single, combined file for both.

82 OS-9 for 68K Processors OEM Installation Manual

I/O Driver Entry Points

The low level I/O drivers are generally polled drivers allowing themselves to
force themselves onto the port if necessary. The driver consists of two
sides:

• A console side (for connection to an operator’s terminal).

• A communications side (for connection to a host system that facilitates
downloading object files into the target).

These are commonly referred to as the Console port and the Comm port,
respectively.

Many of Microware’s example low-level serial drivers conditionally
assemble entry points and support routines for the console side separately
from the communications side. The ConsType and CommType symbol
definitions (in systype.d) control this conditional assembly. Also,
whenever possible, the drivers are written to be port independent (for
multi-port devices). The ConsPort and CommPort symbol definitions (in
systype.d) then direct the driver to a specific port. These techniques
greatly facilitate multi-driver coexistence and code reuse from one target to
another. See Appendix C: Low-level Driver Flags for the values of these
definitions.

The following describes the entry points into the driver:

Table 3-15 I/O Driver Entry Points

Entry Point Description

ChekPort Check Comm Port

ConsDeIn Deinitialize Console Port from Polled Mode

ConsInit Initialize Console Port

ConsSet Disable Console Port

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 83

InChar Read Character from Device’s Input Port

InChChek Check Console Port

InPort Read Character from Comm Port

OutChar Output Character to Console Device

OutPort Output Character on Comm Port

OutRaw Output Character to Console Device

PortDeIn Deinitialize Comm Port from Polled Mode

PortInit Set Up and Initialize Comm Port

Table 3-15 I/O Driver Entry Points (continued)

Entry Point Description

84 OS-9 for 68K Processors OEM Installation Manual

ChekPort

Check Comm Port

Synopsis
ChekPort

Input

None

Output
d0.l character read or -1 if no data available

Description

ChekPort checks the Comm input port to determine if a character is
available to be read, and if so, return the character. If no character is
available, ChekPort must return -1.

This is similar to the InChChek routine for the Console port.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 85

ConsDeIn

Deinitialize Console Port from Polled Mode

Synopsis
ConsDeIn

Input

None

Output

None

Description

ConsDeIn deinitializes the Console port from the polled mode to the
interrupt driven I/O the high level drivers use. The ROM debugger calls
ConsDeIn before resuming normal time sharing. Essentially, ConsDeIn
should restore the state of the I/O device, which the ConsInit function
saved.

86 OS-9 for 68K Processors OEM Installation Manual

ConsInit

Initialize Console Port

Synopsis
ConsInit

Input

None

Output

None

Description

ConsInit initializes the Console port. It should reset the device, set up for
transmit and receive, and set up baud rate/parity/bits per byte/number of
stop bits and desirable interrupts on the device.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 87

ConsSet

Disable Console Port

Synopsis
ConsSet

Input

None

Output

None

Description

ConsSet disables the console port from causing interrupts. It is called
each time the debugger is called, but is intended to disable interrupts from
occurring primarily after the system has been booted up and the system
debugger is being used (to trace through system code or when the break
utility is called). ConsSet should save the state of the device so ConsDeIn
can restore it.

88 OS-9 for 68K Processors OEM Installation Manual

InChar

Read Character from Device’s Input Port

Synopsis
InChar

Input

None

Output
d0.b character to read

Description

InChar reads a character from the device’s input port. If a character is not
present, InChar must loop until one is. After the character is read, a
branch to OutChar is necessary to echo the character. If the I/O driver is
being written for the obsolete Debug ROM debugger, you need to convert
all lowercase characters to uppercase. The ROMbug ROM debugger has
no requirements.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 89

InChChek

Check Console Port

Synopsis
InChChek

Input

None

Output
d0.l Character read or -1 if no data available

Description

InChChek checks the console input port to determine if a character is
available to be read, and if so, return the character. If no character is
available, InChChek must return -1.

This is similar to the ChekPort routine for the Comm port.

90 OS-9 for 68K Processors OEM Installation Manual

InPort

Read Character from Comm Port

Synopsis
InPort

Input

None

Output
d0.b Character read

Description

InPort reads a character from the Comm port. If no character is available,
it must wait until one is available.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 91

OutChar

Output Character to Console Device

Synopsis
OutChar

Input
d0.b character to write

Output

None

Description

OutChar outputs a character to the console device. Before outputting the
character, the input port should be read for an X-Off character. If an X-Off
character is present, OutChar should delay until the character is no longer
present in the input port. OutChar also needs to check the output
character to see if it is a Carriage Return (0x0d) character and if so, output
an Line Feed (0x0a) character as well.

92 OS-9 for 68K Processors OEM Installation Manual

OutPort

Output Character on Comm Port

Synopsis
OutPort

Input
d0.b character to write

Output

None

Description

OutPort outputs a character on the Comm port, without considering flow
control (X-On and X-Off) or carriage return line feed (CR/LF) combinations.

This is similar to the OutRaw routine for the Console port.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 93

OutRaw

Output Character to Console Device

Synopsis
OutRaw

Input
d0.b character to write

Output

None

Description

OutRaw outputs a character to the console device, without considering flow
control (X-On and X-Off) or carriage return line feed (CR/LF) combinations.

This is similar to the OutPut routine for the Comm port.

94 OS-9 for 68K Processors OEM Installation Manual

PortDeIn

Deinitialize Comm Port from Polled Mode

Synopsis
PortDeIn

Input

None

Output

None

Description

PortDeIn deinitializes the Comm port from a polled mode to an interrupt
driven mode. This is similar to the ConsDeIn routine for the Console port.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 95

PortInit

Set Up and Initialize Comm Port

Synopsis
PortInit

Input

None

Output

None

Description

PortInit sets up and initializes the Comm port in the same or similar way
the ConsInit routine initializes the Console port.

96 OS-9 for 68K Processors OEM Installation Manual

The Sysinit.a File

The sysinit.a file contains all special hardware initialization your system
requires after a reset or system reboot. The sysinit.a file consists of
three different sections, or entry points:

• SysInit

• SInitTwo

• UseDebug

The SysInit Entry Point

The first entry point, SysInit, is called almost immediately after a reset by
boot.a. SysInit performs any special hardware actions the system may
require during start up. Sysinit needs to do the following:

1. Execute a reset instruction to reset all system hardware.

2. Copy the reset stack pointer and initial PC vectors from ROM to RAM if
the system has its vectors in RAM. boot.a initializes the other vectors.

3. Initialize any devices not connected to the reset line.

4. Initialize any CPU control registers and status displays. Example is
initialization of VBR register.

5. Attempt to locate and execute the extension code
(initext.a/rompak.m) if the ROMPAK1 macro is used.

This routine does not return via an rts instruction. The return to boot.a is
made directly by a bra SysRetrn instruction.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about ROMPAK1, refer to the section on
initext.a.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 97

The SInitTwo Entry Point

The second entry point, SInitTwo, is used for any system initialization
required after the first call. Often, this routine consists of a simple rts
instruction, as most systems can perform all their required initialization
during the first call to SysInit. SInitTwo is called after boot.a has:

• initialized the vector table (for vectors in RAM) and the exception jump
table

• performed the memory searches

• determined the CPU type

NoteNote
If any device still needs to be initialized or setup, this is the place to do
it.

If the ROMPAK2 macro is used, it attempts to locate and execute the
extension code associated with the second call to sysinit
(initext.a/rompak.m).

To further explain the IRQ control register example from systype.d, you
can use the following code segment as an example of writing SysInit or
SInitTwo:

* Initial interrupt control register or bus controller.
movea #IRQControl,a0
move.b #EnableAll,(a0)

The purpose is to make the code more readable. The included sysinit.a
files further demonstrate this procedure.

The UseDebug Entry Point

The third entry point, UseDebug, indicates whether the ROM debugger is
enabled. If UseDebug returns the Zero flag of the CCR as:

• true, the debugger is disabled.

98 OS-9 for 68K Processors OEM Installation Manual

• false, the debugger is enabled.

Often, whether the ROM debugger is enabled is determined by:

• reading the state of a user-configured switch on the system.

• conditioning the Zero flag accordingly.

If no user-configured switch is available, there are two other methods to set
the Zero flag:

1. Hard code the UseDebug routine so it always conditions the Zero flag
to enable/disable the ROM debugger.

2. Test the optional CallDBug flag available in boot.a. The least
significant bit of this byte may be used as a flag to indicate whether the
debugger is enabled. The following code fragment shows how to access
and test this flag:

UseDebug:btst.b #0,CallDbug(pc) test the debug flag
eori.b #Zero,ccr flip Zero (bit 0=0

indicates enabled)
rts

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 99

The Syscon.c File

The syscon.c file contains the code needed to build the boot menu the
CBOOT routines present to the console user when boot.a calls the
Sysboot routine. This file contains the routine getbootmethod() that
makes repeated iniz_boot_driver() calls to register all boot drivers
the user can initiate.

In addition, getbootmethod() returns an AUTOSELECT or USERSELECT
value to indicate to the CBOOT routines whether the user should initiate the
boot manually or if the CBOOT routines can attempt an auto-boot. It is
typical for this kind of a decision to be made by getbootmethod() based
on either a switch or jumper setting, or perhaps a value in non-volatile
memory.

100 OS-9 for 68K Processors OEM Installation Manual

The initext.a File

The Sysinit routines provide the basic initialization functions for the
system. Sometimes you need to provide application specific (for example,
custom hardware that generates an interrupt on power-up) initialization
functions. You can include this type of functionality in the normal Sysinit
code or in the initialization extension code, initext. Including this code in
an initext (a separate linked object file) allows greater flexibility for
production ROM image building, as you can use a standardized boot ROM
image and initext modules as building blocks for tailoring final ROM
configurations.

You can use the example sysinit.a file in Appendix F as an example of
how to use the initext macros, ROMPAK1 and ROMPAK2. These macros
are defined in the file SRC/MACROS/rompak.m. The initext code is
activated by placing the initext routines onto the end of the boot ROM
image, so they are located immediately after the bootROM image in ROM.
Both example makefiles, rombug.make and rom.make perform this
concatenation.

3Step One: Porting the Boot Code

OS-9 for 68K Processors OEM Installation Manual 101

Putting the ROM Together

You are now ready to begin your port. At this point, you should create your
own specific files and try to make everything into a final ROM image. Use
the example files within this manual as a starting point.

If you have problems when trying to make your image, such as assembler
or linker errors, you need to:

1. Verify systype.d is configured correctly.

2. Verify sysinit.a is referencing the labels within systype.d correctly.

3. Make sure the makefile has the correct names of your customized files
(ioxxx.a and ioyyy.a).

After the files have been assembled and linked properly, you can make a
ROM or load the code into the emulator overlay memory.

NoteNote
The linker output is a pure binary file. If your PROM programmer or
emulator requires S-records, use the binex command to convert the
data.

If your PROM programmer cannot burn more than one 8-bit wide PROM at
a time and your system has the ROMs addressed as 16-bit or 32-bit wide
memory, use the romsplit utility to convert the ROM object image into
8-bit wide files.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Utilities Reference manual for information about using
romsplit.

102 OS-9 for 68K Processors OEM Installation Manual

After you have installed the ROM code and powered up the system, you
should see the following message on the terminal:

OS-9/68K System Bootstrap

A register dump and a debugger prompt should follow. If the debugger did
not come up, you must carefully review the previous steps. Particularly,
review:

• The primitive I/O code

• The memory definitions in systype.d and sysinit.a

• The terminal connections

• The baud rate selections

Chapter 4: Step Two: Bringing Up the

Kernel and Console I /O

This chapter includes the following topics:

• Preparing the First Stage OS-9 Configuration

• Creating the Init Module

• Creating a Console I/O Driver

• Preparing the Download File

• Downloading and Running the System

• Cold Part of Kernel

• Debugging Hints

104 OS-9 for 68K Processors OEM Installation Manual

Preparing the First Stage OS-9 Configuration

In the second step of the porting process, you actually load and run the
OS-9 system. Because you are now at the OS-9 system level, you are
dealing with the OS-9 modules.

Most of the OS-9 modules needed for the OS-9 system are already
supplied. For a basic OS-9 system, use the following modules:

kernel scf
ioman sysgo
cio (recommended) shell
csl math (recommended)
fpu (fpsp040 if you are porting to 68040)

Because these modules are supplied ready to run, you can burn them into
ROM within a special memory area.

To complete this step of the port, you need to make or create three other
modules within the IO directory:

Table 4-1 IO Directory Modules

Name Description

Init The kernel’s configuration data module.

Term A descriptor for a high level console serial driver.

scxxx High level console serial driver.

4Step Two: Bringing Up the Kernel and Console I/O

OS-9 for 68K Processors OEM Installation Manual 105

NoteNote
As with the low level ioxxx.a drivers, the scxxx signifies a specific
high level driver. For example, sc6850 is the high level driver for the
6850 serial device.

NoteNote
The IO directory contains the source to the high level drivers and
descriptors.

To create these three modules, you need to:

• Expand the systype.d file.

• Create a makefile within the IO directory.

As with the low level ioxxx driver, there are several source code supplied,
high level scxxx drivers with the package as well. Also, configuration
labels for the scxxx driver needs to be defined in systype.d. Check the
high-level driver sources in SRC/IO/SCF/DRVR for the configuration labels
applicable to your selected driver.

NoteNote
The Init module must be within the same bank of special memory as
the kernel. Otherwise, the kernel is not able to find the Init module.
The serial driver and descriptor can be loaded into a RAM special
memory bank for debugging purposes.

When the OS-9 system is running, you can include some standard OS-9
utilities, such as mfree and mdir, in your special memory areas.

106 OS-9 for 68K Processors OEM Installation Manual

Creating the Init Module

Within the systype.d file is a section called CONFIG, which is commonly
referred to as the CONFIG macro. Within this CONFIG macro is all the
configuration values and labels assembled and linked into the Init
module. The example systype.d file from Appendix F: Example ROM
Source and Makefiles has an example CONFIG macro. You can modify
this for your particular system. The following are the basic variables within
the CONFIG macro:

Table 4-2 CONFIG Macro Variables

Name Description

MainFram A character string used by programs such as login
to print a banner identifying the system. You may
modify the string.

SysStart A character string used by the OS-9 kernel to locate
the initial process for the system. This process is
usually stored in a module called sysgo. Two general
versions of sysgo have been provided in the files:

• sysgo.a (for disk-based OS-9).

• sysgo_nodisk.a (for ROM-based OS-9).

SysParam A character string passed to the initial process. This
usually consists of a single carriage return.

SysDev A character string containing the name of the path to
the initial system disk. The kernel coldstart routine
sets the initial data directory to this device before
forking the SysStart process. Set this label to 0 for
a ROM-based system. For example, SysDev set 0.

4Step Two: Bringing Up the Kernel and Console I/O

OS-9 for 68K Processors OEM Installation Manual 107

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about the Init module, refer to the OS-9 for 68K
Technical Manual.

To change the Init module’s default values once the port is complete, you
can define these changes within the CONFIG macro. Refer to the init.a
source file (located in the SYSMODS directory) to see what symbolic labels
are used for which Init parameters. This allows you to tune your system
without modifying the generic init.a file.

ConsolNm A character string containing the name of the path to
the console terminal port. Messages to be printed
during start up appear here.

ClockNm A character string containing the name of the clock
module.

Extens A list of OS9P2 modules the kernel executes before
the system is running. For the initial port, this field is
not necessary. However, it must be defined or you get
linker errors.

Table 4-2 CONFIG Macro Variables (continued)

Name Description

108 OS-9 for 68K Processors OEM Installation Manual

SCF Device Descriptor Macro Definitions

The SCF device descriptor macro definitions are used when creating SCF
device descriptor modules. Seven elements are needed:

Table 4-3 Elements of SCF Device Descriptor Modules

Name Description

Port Address of Device on Bus
Generally, this is the lowest address the device has
mapped. Port is hardware dependent.

Vector Vector Given to Processor at Interrupt Time
Vector is hardware/software dependent. Some
devices can be programmed to produce different
vectors.

IRQLevel Interrupt level (1 - 7) for Device
When a device interrupts the processor, the level of
the interrupt is used to mask out lower priority
devices.

Priority Interrupt Polling Table Priority
Priority is software dependent. A non-zero
priority is used to determine the position of the
device within the vector. Lower values are polled
first. A priority of 0 indicates the device desires
exclusive use of the vector.

Parity Parity Code for Serial Port
This code sets up the parity number of bits per
character, and the number of stop bits for the serial
port. This code is explained fully in the SCF section
of the OS-9 for 68K Processors I/O Technical
Manual.

4Step Two: Bringing Up the Kernel and Console I/O

OS-9 for 68K Processors OEM Installation Manual 109

Along with the Init module, you can add the TERM descriptor to the
makefile.

NoteNote
OS-9 does not allow a device to claim exclusive use of a vector if
another device has already been installed on the vector, nor does it
allow another device to use the vector once the vector has been
claimed for exclusive use.

The driver uses these values to determine the parity, word length, and baud
rate of the device. These values are usually standard codes device drivers
use to access device specific index tables. These codes are defined in the
OS-9 for 68K Technical Manual.

BaudRate Baud Rate Selection for Serial Port
This is the baud rate for the serial port. This code is
explained fully in the SCF section of the OS-9 for
68K Processors I/O Technical Manual.

DriverName Module Name of Device Driver
This name is determined by the programmer and is
used by the I/O system to attach the device
descriptor to the driver.

Table 4-3 Elements of SCF Device Descriptor Modules (continued)

Name Description

110 OS-9 for 68K Processors OEM Installation Manual

Creating a Console I/O Driver

You must create an OS-9 driver module for the console device. There is a
good chance Microware has an existing driver based on the same device
your target system uses. If this is the case, the set up of the proper
configuration labels within the systype.d file for the device is all that is
required.

Otherwise, you must create a new driver module. The easiest way to create
a new driver module is to modify an existing Microware-supplied serial
driver.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the OS-9 for 68K Technical Manual, the OS-9 for 68K
Technical I/O Manual, and the sample source files supplied for
guidance.

Along with the Init module and the term descriptor, you can also add the
serial driver to the makefile.

Once the Init module, term descriptor, and serial driver have been
made, an ident on each module should be performed to verify the module
owner is 0.0. If it is not, the fixmod utility should be run on the module(s)
with the -u=0.0 option. This changes the module owner to 0.0.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Utilities Reference manual for more information about
ident and fixmod.

4Step Two: Bringing Up the Kernel and Console I/O

OS-9 for 68K Processors OEM Installation Manual 111

Preparing the Download File

After you are confident the console device driver and descriptor modules
are in good shape, you can prepare a download file:

Step 1. Merge each of the binary files of the OS-9 modules into a single file.
The order they are merged in is not important; however, by convention,
the kernel is first.

NoteNote
Init needs to be set up to be ROM-based. Therefore, set M$SysDev
to zero.

kernel init fpu (or fpsp040)
sysgo shell cio (recommended)
csl scf math (recommended)

Step 2. Merge two new modules into a second file:

serial.driver
term.descriptor

NoteNote
Actual file names vary according to I/O controller names.

Step 3. Convert the two binary files to S-record files using the binex utility. If
your version of binex asks for a load address, use zero.

112 OS-9 for 68K Processors OEM Installation Manual

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Utilities Reference manual for more information about
binex.

We recommend you make, download, and binex the two groups of files
separately. This saves a lot of downloading time. You can keep the OS-9
standard modules in RAM and just download the driver/descriptor file by
itself whenever it changes.

You can also merge the first set of files into the boot ROM image. Wherever
you put or load these modules, verify the memory area is defined in the
special memory list and not in the RAM list.

4Step Two: Bringing Up the Kernel and Console I/O

OS-9 for 68K Processors OEM Installation Manual 113

Downloading and Running the System

You are now ready to download OS-9 to the target system and (attempt) to
run it using the following procedure.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Using RomBug for more information on setting the
relocation register and downloading S-Records.

ROMbug has the ability to stage the boot in what we call boot stages.

Boot stages consist of breaking during the boot process twice in order to
help verify everything is all right. The first of the two breaks occur in
boot.a, just before boot.a jumps to the kernel. Here, the registers can
be investigated to verify they are all right before continuing. The second of
the two breaks is within the coldstart() routine of the kernel. At this
point, the module directory has been completed, and modules needing to
be debugged can have break points inserted at this time.

At each of the two breaks in boot stages, ROMbug displays the registers
and gives a prompt.

At each Rombug: prompt, enter gb.

The following explains the procedure to download system modules to
special memory areas.

NoteNote
Download OS-9 to the special memory area only. Use the following
procedure directly after a reset (at the first prompt).

Only do both steps 1 and 2 if you are downloading the standard system
modules. If these modules are in ROM, skip to step 3.

114 OS-9 for 68K Processors OEM Installation Manual

Downloading and Running the System

To download and run the system:

Step 1. Set ROMbug’s relocation register to the RAM address where you want
the system modules (such as the kernel) loaded.

Step 2. Download the system modules. Do not insert breakpoints yet.

Step 3. Set ROMbug’s relocation register to the RAM address where you want
the console driver and descriptor loaded. The size of this code varies
from less than 1K to as much as 2K. Be careful not to overwrite the
system modules.

Step 4. Download the console driver and descriptor modules. Do not insert
breakpoints yet.

Step 5. Type gb for RomBug to start the sysboot kernel search. This starts
boot stages. If all is well, you should see the following:

Found OS-9 Kernel module at $xxxxxxxx

This is followed by a register dump and a ROMbug prompt. If you do not
see this message, the system modules were probably not downloaded
correctly or were loaded at the wrong memory area.

Step 6. Type gb again. This executes the kernel’s initialization code including
the OS-9 module search. You should see another register dump and
ROMbug prompt.

Step 7. If you are debugging I/O drivers and want to insert breakpoints, do so
now.

Step 8. Type gb again. This should start the system. If all is well and a
breakpoint was not encountered first, you should see the following
display:

Shell
$

If the shell does not come up, see the next section for debugging
instructions.

4Step Two: Bringing Up the Kernel and Console I/O

OS-9 for 68K Processors OEM Installation Manual 115

Step 9. If you included some utilities (such as mfree and mdir), you can run
them.

Go to Chapter 5: Step Three: Creating Customized I/O Drivers and
Finishing the Boot Code if the system seems to work properly.

116 OS-9 for 68K Processors OEM Installation Manual

Cold Part of Kernel

The kernel uses a routine called coldstart() to boot itself. Before
coldstart() can run properly, boot.a must pass it the following
information:

1. Total RAM found by boot ROM.
This is an unsigned integer value of the total amount of ROM boot.a
found.

2. The processor (or MPU) type.
This is the processor number (68000, 68010, ... 68040) as determined
by boot.a.

3. System debugger active flag.
This unsigned character is non-zero if you have selected to boot by boot
stages.

4. Warmstart flag.
This unsigned character is the growth method determined by boot.a.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to The Boot.a File section in Chapter 3: Step One: Porting the
Boot Code, for more information about the available growth methods.

5. The ROM entry point.
This is a pointer to the Reset: flag in boot.a. The kernel uses this
pointer if it ever reboots itself.

6. The RAM list.
This is the RAM list found by boot.a. This RAM list has the following
structure:

struct dumbmem {
 struct dumbmem *ptr; /* ptr to next free block */
 u_int32 size; /* size of this block */
}

4Step Two: Bringing Up the Kernel and Console I/O

OS-9 for 68K Processors OEM Installation Manual 117

Multiple blocks are defined by adjacent structures together. A NULL
pointer terminates the RAM list.

7. Exception jump table pointer.
This is a pointer to the exception jump table for which boot.a set up
RAM space.

8. The ROM list.
This is the area of ROM found by boot.a. Its memory structure is the
same as the RAM lists.

The coldstart() Routine

With the preceding parameters, coldstart() performs the following
steps:

Step 1. Fill in default values into the system globals.
The kernel or system global variables are assigned default values in
this step.

Step 2. Determine if this is the correct kernel for the processor.
The kernel checks the value boot.a determined the processor to be
with an internal value with which the kernel was made. This determines
if it is the correct kernel for the processor.

Step 3. Set up system exception jump table.
The kernel fills in the jump addresses in the exception jump table.
Boot.a allocated space for the exception jump table and filled in the
code to push the exception addresses. However, it does not know at the
time what address the kernel will be at.

Step 4. Locate Init module.
coldstart() searches for the Init module in the same bank of
memory in which the kernel resides. Once Init is found, system
parameters are copied from it and put into the system globals.

118 OS-9 for 68K Processors OEM Installation Manual

Step 5. Allocate and initialize system process descriptor, initial module
directory, and dispatch table.
Memory for these tables are allocated and initialized. The system
service routines are installed into the kernel at this time.

Step 6. Find system RAM.
coldstart() searches RAM and builds the kernel’s free memory list.
Either the RAM boot.a found is verified or the colored memory list, if
defined, is used instead. Both pattern matching and bus error is used to
verify RAM.

Step 7. Search ROM list for modules.
coldstart() builds the module directory from the ROM list boot.a
found and from any colored memory having an attribute of B_ROM.

Step 8. Call the ROM debugger.
The system debugger flag parameter passed to coldstart() from
boot.a is checked. If it is set, coldstart() calls the ROMbug. This
allows you to set breakpoints to aid in the debugging of drivers for
applications.

Step 9. Allocate memory and initialize system tables.
coldstart() allocates memory and initializes the system tables.
These tables include the process descriptor table, IRQ polling table,
device table, and path descriptor table. This step also includes setting
up the alternate IRQ stack and moving the system stack pointer to the
system process descriptor.

Cold2(): Bringing Up the System the Rest of the Way

At this point, the kernel is fully functional. coldstart() next calls a
routine called cold2() to bring the system the rest of the way up.

4Step Two: Bringing Up the Kernel and Console I/O

OS-9 for 68K Processors OEM Installation Manual 119

The cold2() routine performs the following steps:

Step 1. Enable IRQs.
This part enables the IRQs that boot.a disabled. This is necessary
because the following steps include the initiation of devices that may
need IRQs enabled.

Step 2. Execute Pre-IO modules.
cold2() executes any modules defined in the Pre-IO list in the Init
module.

Step 3. Execute IOMan modules.
cold2() executes any modules defined in the IOMan list in the Init
module. The default IOMan module supplied by Microware does the
following:

• Initialize the system console.

The system console (usually specified as /term) is opened. Any errors
resulting from the open are displayed as the message:

“can’t open console term”

The M$Consol field in the Init module specifies what the console
device name is. The label ConsolNm from the systype.d file sets
M$Console.

• Initialize the system device.
IOMan performs a chd to the system device which initializes the device.
The system device is obtained from the M$SysDev field in the Init
module, and the SysDev label in the systype.d file sets M$SysDev.

Step 4. Execute custom modules.
cold2() executes any modules defined in the Extens list in the Init
module. These are commonly referred to as P2 modules.

Step 5. Fork initial process.
The M$SysGo field is the name of the first executable module.
cold2() forks the initial process with any parameters defined in the
M$SParam field of the Init module. The SysStart label in
systype.d sets up M$SysGo, and the SysParam label sets up
M$SParam.

120 OS-9 for 68K Processors OEM Installation Manual

Step 6. Start the system clock.
If specified in the M$Compat field of the Init module, cold2() starts
the system clock and ticker.

Step 7. Call the kernel.
cold2() exits by calling the main part of the kernel itself. At this point,
the system is fully booted and operating.

4Step Two: Bringing Up the Kernel and Console I/O

OS-9 for 68K Processors OEM Installation Manual 121

Debugging Hints

If OS-9 does not come up, the system may have one of these common
problems:

• The system download file is missing a module or modules.

• The download files were improperly downloaded or the second
download file (the driver) overwrote the first.

• The console driver has serious bugs.

• The console descriptor module is not set up correctly or it was forgotten.

• There is a hardware problem related to interrupt (exception) processing.

• The manager, driver, and descriptor modules ownership is not in the
super group (0.n).

The most likely problem is a defective driver module. This requires actual
debugging work. The best way to debug the driver is to repeat the
procedure outlined previously (in the section entitled Downloading and
Running the System), putting breakpoint(s) at the entry points in the
driver’s INIT, GETSTAT, SETSTAT, and WRITE routines in step 8. You can
then trace through the driver as it initializes the hardware and tries to print
the shell message. If the system never reaches this point, problems (a), (b),
or (d) are likely.

NoteNote
If you suspect serious problems related to interrupts and extensive
debugging efforts are not fruitful, try making and running a non-interrupt
driven version of the driver. This can definitively isolate the problem if it
is interrupt-related. After the simpler version is debugged, you can add
the interrupt logic.

122 OS-9 for 68K Processors OEM Installation Manual

Chapter 5: Step Three: Creating

Customized I /O Drivers and Finishing

the Boot Code

In this step, you produce a version of OS-9 that has ticker drivers,
Real-Time clock drivers, disk drivers, and uses a bootstrap to boot
OS-9 from a disk.

NoteNote
If the target system is to be ROM-based and without disk support, skip
the sections on Creating Disk Drivers.

This chapter includes the following topics:

• Guidelines for Selecting a Tick Interrupt Device

• OS-9 Tick Timer Setup

• Tick Timer Activation

• Real-Time Clock Device Support

• Microware Generic Clock Modules

• Using Generic Clock Modules

• Automatic System Clock Startup

• Creating Disk Drivers

• Creating and Testing the Disk Boot Routines

• Completing the System

124 OS-9 for 68K Processors OEM Installation Manual

Guidelines for Selecting a Tick Interrupt
Device

The interrupt level associated with the timer should be as high as possible.
Level 6 is recommended. A high interrupt level prevents ticks from being
delayed and/or lost due to interrupt activity from other peripherals. Lost
ticks cause the kernel’s time-keeping functions to lose track of real-time.
This can cause a variety of problems in processes requiring precise time
scheduling.

The interrupt service routine associated with the timer should be able to
determine the source of the interrupt and service the request as quickly as
possible.

5Step Three: Creating Customized I/O Drivers and Finishing the Boot Code

OS-9 for 68K Processors OEM Installation Manual 125

OS-9 Tick Timer Setup

You can set the tick timer rate to suit the requirements of the target system.
You should define the following variables:

• Ticks Per Second
This value is derived from the count value placed in the tick timer’s
hardware counter. It reflects the number of tick timer interrupts occuring
each second. Most systems set the tick timer to generate 100 ticks per
second, but you can vary it. A slower tick rate makes processes receive
longer time slices, which may make multitasking appear sluggish. A
faster rate may burden the kernel with extra task-switching overhead
due to more rapid swapping of active tasks.

• Ticks Per Time Slice
This parameter is stored in the Init module’s M$Slice field. It
specifies the number of ticks that can occur before the kernel suspends
an active process. The kernel then checks the active process queue
and activate the highest priority active task. The Init module sets this
parameter to a default value of 2, but this can be modified with the
CONFIG macro (in the system’s systype.d file) by setting the Slice
definition to the desired value.

• Tick Timer Module Name
The name of the tick timer module is specified in the Init module. Use
the ClockNm entry in the systype.d file’s CONFIG macro to define
this name. For example:

ClockNm dc.b "tk147",0 tick module name

126 OS-9 for 68K Processors OEM Installation Manual

Tick Timer Activation

You need to explicitly start the tick timer to allow the kernel to begin
multitasking. This is usually performed by the setime utility or by a
F$STime system call during the system startup procedures.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Utilities Reference manual for information about using
setime or the OS-9 for 68K Technical Manual for information about
F$STime.

When F$STime is called, it attempts to link to the clock module name
specified in the Init module. If the clock module is found, the module’s
entry point is called to initialize the tick timer hardware.

An alternative is to clear bit 5 of the compatibility flag in the init module. If
this bit is cleared, the kernel automatically starts the tick timer during the
kernel’s cold start routine. This is equivalent to a setime -s.

5Step Three: Creating Customized I/O Drivers and Finishing the Boot Code

OS-9 for 68K Processors OEM Installation Manual 127

Real-Time Clock Device Support

Real-time clock devices (especially those equipped with battery backup)
allow the real-time to be set without operator input. OS-9 does not explicitly
support the real-time functions of these devices, although the system tick
generator may be a real-time clock device.

The real-time functions of these devices are used with the tick timer
initialization. If the system supports a real-time clock, the tick timer code
should be written so the real-time clock is accessed to read the current time
or set the time after the ticker is initialized. When F$STime’s month
parameter is 0, a call is made to read the current time. When the month
parameter is not 0, the new time is set in the real-time clock device.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the OS-9 for 68K Technical Manual for information about
F$STime.

128 OS-9 for 68K Processors OEM Installation Manual

Microware Generic Clock Modules

To allow maximum flexibility for mixing the various types of tick timer
devices and real-time clock devices, and to simplify the implementation of
system clock functions, Microware has developed a suite of routines called
the generic clock routines.

These routines are located in the MWOS/OS9/SRC/SYSMODS/GCLOCK
directory. They provide three separate levels of support:

• Tickgeneric support

• Ticker support

• Real-time clock support

Tickgeneric Support

The tickgeneric.a file performs all common functions for tick and
real-time clock initialization. This routine is the main body of the clock
system, and it uses the following algorithm:

Step 1. Test if system clock is running. If so, then skip tick timer initialization.

Step 2. Initialize the tick timer:

• Set the system’s ticks per second value (D_TckSec).

• Add the tick timer to the system interrupt polling table.

• Call the tick timer’s initialization routine.

Step 3. Attempt to link to a module called rtclock.

5Step Three: Creating Customized I/O Drivers and Finishing the Boot Code

OS-9 for 68K Processors OEM Installation Manual 129

NoteNote
You should never need to modify this code because all system specific
functions are concentrated in the ticker and real-time clock portions of
the generic clock system.

Step 4. If the rtclock module is:

• not found, then return:

• without error if the caller is setting the time explicitly.

• an error if the caller is asking to read the real time clock.

• is found, then call the module’s:

• setime entry if the caller is explicitly setting the time.

• getime entry if the caller is reading the current time.

Ticker Support

The tick functions for various hardware timers are contained in the
tkXXX.a files. There are two ticker routines:

• Tick initialization entry routine
This routine is called by tickgeneric and enables the timer to
produce interrupts at the desired rate.

• Tick interrupt service routine
This routine services the tick timer interrupt and calls the kernel’s clock
service routine.

130 OS-9 for 68K Processors OEM Installation Manual

NoteNote
The ticker module name is user-defined and should be included in the
Init module.

The tkXXX.a and the tickgeneric.a files are linked together as a
single tkXXX module.

Real-Time Clock Support

The real-time clock functions for various real-time clock devices are
contained in the rtcXXX.a files. The two real-time clock routines are:

Get time Reads the current time from the real-time
clock device.

Set time Sets the current time in the real-time clock
device.

Under the generic clock system, the real-time clock module is always a
subroutine module called rtclock.

5Step Three: Creating Customized I/O Drivers and Finishing the Boot Code

OS-9 for 68K Processors OEM Installation Manual 131

Using Generic Clock Modules

To create system clock modules:

Step 1. Determine the type of tick device to use for the system.

Step 2. Examine the MWOS/OS9/SRC/SYSMODS/GCLOCK directory.

• If an existing tkXXX.a file supports the system’s tick device, this file is
the system’s tick module.

• If none of the files are appropriate, create a tick module by using an
existing version as a model.

Step 3. Examine the existing rtcXXX.a files in the GCLOCK directory if the
system requires real-time support.

• If a rtcxxx.a file supporting the tick device already exists, this file is
the system’s real-time clock module.

• If none of the files are appropriate, create a real-time clock module by
using an existing version as a model.

Step 4. Edit the system’s systype.d file so the following variables describe
the system’s clock configuration:

Table 5-1 Clock Configuration Variables

Variable Description

ClkVect: Tick timer vector.

ClkPrior: Tick timer priority on vector (should be highest).

ClkPort: Tick timer base address.

TicksSec: Ticks per second (usually 100).

132 OS-9 for 68K Processors OEM Installation Manual

Step 5. Set up the Init module’s CONFIG macro to reflect the tick module
name and the system ticks per time slice value. For example,

ClockNm dc.b "tk147",0
Tick module name

Slice set 4 Ticks/slice (default is 2 if this field is not
specified)

Step 6. Create a makefile specifying the system’s tick module and, if necessary,
real-time clock. Use the example makefile, makefile, in the GCLOCK
directory as a model.

Step 7. Make the tick module and, if necessary, real-time clock with the make
utility.

Step 8. Make the Init module.

Step 9. Create a bootfile for the system to include the new Init module, tick
module, and, if necessary, real-time clock module.

ClkLevel: Tick timer IRQ level (may not be required if timer is at
fixed IRQ level).

RTCBase: Real-time clock device address (if using a real-time
clock).

Table 5-1 Clock Configuration Variables (continued)

Variable Description

5Step Three: Creating Customized I/O Drivers and Finishing the Boot Code

OS-9 for 68K Processors OEM Installation Manual 133

Philosophy of Generic Clock Modules

Using generic clock modules has proven to be a successful, flexible
method for tailoring OS-9 clock functions to a variety of hardware
configurations. The following is a partial list of the benefits of using generic
clock modules:

• You only need to write the hardware specific portions of the tick timer
code.

• If you want real-time clock support, you only need to write the
hardware-specific portions of the code.

• The real-time clock module is only essential to system operation if
F$STime system calls are made requiring reading the real-time clock.
This allows the real-time clock code to be developed independently of
the tick timer code.

• You can change the real-time clock hardware without modifying the tick
timer code. To use a different real-time clock device:

Step 1. Create the new module.

Step 2. Replace the old real-time clock module in the bootfile with the new one.

Step 3. Re-boot the system.

134 OS-9 for 68K Processors OEM Installation Manual

Automatic System Clock Startup

The kernel can automatically start the system clock during its coldstart
initialization. The kernel checks the Init module’s M$Compat byte at
coldstart. If the NoClock bit is clear (bit 5 = 0), the kernel performs a
F$STime system call with the month parameter equal to 0 to start the tick
timer and set the real time.

This automatic starting of the clock can pose a problem during clock driver
development, depending on the state of the real-time clock hardware and
the modules associated with the tick timer and real-time clock. If the system
software is fully debugged, you should not encounter any problems.

The following are three common scenarios and their implications:

1. The system has a working tick module, but no real-time clock
support.
If the NoClock bit in the Init module’s M$Compat byte is clear, the
kernel performs the F$STime call. The tick timer code is executed to
start the tick timer, but the tick module returns an error because it lacks
real-time clock hardware.

The system time is invalid, but time slicing occurs. You can correctly set
the real time once the system is up. For example, you could run setime
from the startup file.

2. The system has a working tick module and real-time clock
support.
If the NoClock bit in the Init module’s M$Compat byte is clear, the
kernel performs the F$STime call. The tick timer code is executed to
start the tick timer running and the real time clock code is executed to
read the current time from the device.

If the time read from the real-time clock is valid, no errors occur and
system time slicing and time keeping function correctly. You do not need
to set the system time.

If the time read from the real-time clock is not valid, the real-time clock
code returns an error. (This could occur if the battery back-up
malfunctions.) The system time is invalid, but time slicing occurs. You
can correctly set the real time once the system is up.

5Step Three: Creating Customized I/O Drivers and Finishing the Boot Code

OS-9 for 68K Processors OEM Installation Manual 135

3. The system does not have a fully functional/debugged tick timer
module and/or real-time clock module.
In this situation, executing the tick and/or real-time clock code has
unknown and potentially fatal effects on the system. To debug the
modules, prevent the kernel from performing a F$STime call during
coldstart by setting the NoClock flag in the Init module’s M$Compat
byte (bit 5 = 1). This allows the system to come up without the clock
running. Once the system is up, you can debug the clock module(s) as
required.

Debugging Clock Modules on a Disk-Based System

NoteNote
Microware highly recommends you exclude the clock modules from the
bootfile until they are fully operational.

To debug the clock modules:

Step 1. Make the Init module with the NoClock flag in the M$Compat byte
set.

Step 2. Exclude the module(s) to be tested from the bootfile.

Step 3. Bring up the system.

Step 4. Load the tick/real-time clock module(s) explicitly.

Step 5. Use the system state debugger or a ROM debugger to set breakpoints
at appropriate places in the clock module(s).

Step 6. Run the setime utility to access the clock module(s).

Step 7. Repeat steps 5 to 6 until the clock modules are operational.

136 OS-9 for 68K Processors OEM Installation Manual

When the clock module(s) are operational:

Step 1. Remake the Init module so the NoClock flag is clear.

Step 2. Remake the bootfile to include the new Init module and the desired
clock module(s).

Step 3. Reboot the system.

Debugging Clock Modules on a ROM-Based System

For ROM-based systems there are two possible situations:

• If the system boots from ROM and has disk support, you should exclude
clock module(s) from the ROMs until they are fully debugged. They can
be debugged in the same manner as for disk-based systems.

• If the system boots from ROM and does not have disk support, you
should exclude the clock module(s) from the ROMs and download them
into special RAM until they are fully debugged. Downloading into RAM
is required so you can set breakpoints in the modules.

To debug the clock modules:

Step 1. Make the Init module with the NoClock flag in the M$Compat byte
set.

Step 2. Program the ROMs with enough modules to bring the system up, but do
not include the clock module(s) under test.

Step 3. Power up the system so it enters the ROM debugger.

Step 4. Download the module(s) to test into the special RAM area.

Step 5. Bring up the system completely.

Step 6. Use the system state debugger or ROM debugger to set breakpoints at
appropriate places in the clock module(s).

5Step Three: Creating Customized I/O Drivers and Finishing the Boot Code

OS-9 for 68K Processors OEM Installation Manual 137

Step 7. Run the setime utility to access the clock module(s).

Step 8. Repeat steps 6 to 7 until the clock modules are operational.

When the clock module(s) are operational:

Step 1. Remake the Init module so the NoClock flag is clear.

Step 2. Remake the bootfile to include the new Init module and the desired
clock module(s).

Step 3. Reboot the system.

138 OS-9 for 68K Processors OEM Installation Manual

Creating Disk Drivers

You should now create a disk driver for your target system. This is similar to
creating a console terminal driver as in the previous step. However, disk
drivers are more complicated. Again, you can use a Microware-supplied
sample disk driver source file as a prototype.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the OS-9 for 68K Processors I/O Technical Manual for
further information about disk drivers.

If the target system has both floppy disks and hard disks, you should create
the floppy disk driver first, unless they both use a single integrated
controller. You can create the hard disk driver after the system is up and
running on the floppy.

You must have a test disk of the correct type with OS-9 formatting. If you
are using:

• an OS-9 based host system, this is no problem because you can make
test disks on the host system.

• a cross-development system (Windows), you should obtain sample
pre-formatted disks from Microware.

We recommend you make a non-interrupt driver for the first time. This can
make your debugging task easier. Make a new download file that includes
the disk driver and descriptor modules along with one or two disk-related
commands (such as dir and free) for testing. If you are using the
ROMbug ROM debugger, include the driver’s .stb module for easier
debugging.

You can add the previously tested and debugged console driver and
descriptor modules to your main system boot at this time. This minimizes
download time as in the previous step.

5Step Three: Creating Customized I/O Drivers and Finishing the Boot Code

OS-9 for 68K Processors OEM Installation Manual 139

Testing the Disk Driver

Test the disk driver using the following procedure:

Step 1. After a reset, set the debugger’s relocation register to the RAM address
where you want the system modules (now including the console driver)
loaded.

Step 2. Download the system modules. Do not insert breakpoints yet.

NoteNote
Steps 1 and 2 are not necessary if the system modules are in ROM.

Step 3. Set the debugger’s relocation register to the RAM address where you
want the disk driver and descriptor loaded. Ensure this address does
not overlap the area where the system modules were previously
loaded.

Step 4. Download the disk driver and descriptor modules. Do not insert
breakpoints yet.

Step 5. Type gb to start the sysboot kernel search. If all is well, the following
message appears:

Found OS-9 Kernel module at $xxxxxxxx

This is followed by a register dump and a ROMbug prompt. If you do not
see this message, the system modules were probably not downloaded
correctly or were loaded into the wrong memory area.

Step 6. Type gb again. This executes the kernel’s initialization code including
the OS-9 module search. You should get another register dump and
debug prompt.

Step 7. If you want to insert breakpoints in the disk driver, do so now. This is
greatly simplified by attaching to the driver.

140 OS-9 for 68K Processors OEM Installation Manual

Step 8. Type gb again. This should start up the system. If all is well and a
breakpoint was not encountered first, you should see the following
display:

Shell $

Step 9. Insert a diskette correctly formatted for OS-9 in the drive and try to run
the dir utility. If this fails, begin debugging by repeating this procedure
with breakpoints inserted in the driver’s INIT, GETSTAT, SETSTAT, and
READ routines during step 8.

5Step Three: Creating Customized I/O Drivers and Finishing the Boot Code

OS-9 for 68K Processors OEM Installation Manual 141

Creating and Testing the Disk Boot Routines

After creating and debugging the basic disk driver, you must create a
simple disk boot routine. You may use the sample assembler bootxxx.a
files as prototypes or write a C Boot driver. To use a C Boot driver, refer to
Appendix A: The CBoot Technology. However, finish reading this section
for needed instructions before continuing.

The basic function of the disk boot routine is to load from a system disk a
file called OS9Boot, containing the OS-9 component modules. OS9Boot is
created and specially linked on the system disk by the os9gen utility. The
system disk almost always has a CMDS directory containing the OS-9
standard command set.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The os9gen utility builds and links the OS9Boot file. Refer to the
Utilities Reference manual for more information about how os9gen
creates the OS9Boot file.

The main operations of the disk boot subroutine (in order) are:

Step 1. Read logical sector zero which contains the bootstrap pointers of the
OS9Boot file. These values are available at offsets DD_BT and
DD_BSZ.

These variables contain:

• the logical sector number of the location of the OS9Boot file (DD_BT) on
the disk

• the size of the bootfile (DD_BSZ) itself

Step 2. Call the boot code’s memory request routine to obtain memory to hold
the OS9Boot file.

Step 3. Read the OS9Boot file into memory.

142 OS-9 for 68K Processors OEM Installation Manual

Step 4. Place the address and size of the loaded OS9Boot data into the OS-9
initial ROM search table. The size returned should be the actual bootfile
size, not the size rounded up to the next sector.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

If using CBoot, these four operations are performed automatically by
the diskboot.c routine. See Appendix A: The CBoot Technology.

To test and debug the disk boot routines, you must perform the following
steps:

Step 1. Prepare a bootable OS-9 system disk containing the system OS-9
modules. This disk should have an OS9Boot file that includes all the
modules you have been downloading, including the new disk driver and
descriptor module.

Step 2. Create a bootable OS-9 system disk. The method you use depends on
if your host system is an OS-9 system or a non-OS-9 system.

• If your host is an OS-9 system and has the same size floppy disks as
the target (if not, use the same procedures as a non-OS-9 system)
format a floppy and use the os9gen utility to create the OS9Boot file on
it. You can use the same modules as your romboot file.

• If your host is a non-OS-9 system, your target system needs to format
the floppy and put the bootfile onto the floppy by using os9gen.

Step 3. Before using os9gen, all of the modules needed for the OS9Boot file
must reside on a disk somewhere, either in a RAM disk or on the floppy
itself. Put these modules on disk by using either the save utility to save
them from memory to the disk or using kermit to transfer the modules.
Once these modules are on the disk, use the os9gen utility to make the
floppy a system disk.

5Step Three: Creating Customized I/O Drivers and Finishing the Boot Code

OS-9 for 68K Processors OEM Installation Manual 143

Step 4. Create a low level disk boot driver. To debug this low level boot driver,
use the ROMbug ROM debugger. The C Boot routines and the low level
driver are linked into a ROM image and tested. (The procedure to
debug or test is explained later in this chapter).

The rom_image.make file needs to be modified to include this low level
boot driver in the FILES macro. Also, you need to modify syscon.c to add
a menu item to start up your new low level disk boot driver. See the files
68020/PORTS/MVME147/SYSCON.C and
68020/PORTS/MVME147/RECONFIG.C for examples of how this is done.

Testing the CBoot Disk Boot Module

The following procedure tests and debugs the C Boot disk boot module:

Step 1. Merge the .stb file to the end of the ROM image by uncommenting the
RBGSTB macro in rombug.make prior to making the image.

Step 2. Once the image is burned into the eprom and installed in your target,
turn the system on and get to Rombug prompt.

Step 3. ROMbug automatically finds and attaches to the symbol table
information within the .stb file

Step 4. Type or to enable soft breakpoints.

Step 5. Set up any needed breakpoints within the boot code.

Step 6. Type gb. If all goes well, the CBoot routines should now read the
OS9Boot file from the disk into RAM, unless a breakpoint was
encountered first. Afterward, you should get another register dump and
a ROMbug prompt.

Step 7. At this point, you can use the ROM debugger’s memory dump
command to display the modules loaded by the CBoot routine.

144 OS-9 for 68K Processors OEM Installation Manual

Step 8. Type gb again. This executes the kernel’s initialization code including
the OS-9 module search. You should get another register dump and
ROMbug prompt. At this point, you should verify the entire OS9Boot file
was loaded and all modules within it found. To do this, follow the steps
listed in Searching the Module Directory from Appendix B: Trouble
Shooting.

Step 9. Type gb again. This should start up the system. If successful, the
following message appears.

shell $

If the shell $ prompt does not appear, your target system’s module is
probably bad. For example, files may be missing or OS9Boot is missing
required modules. You should go through the normal procedures for
debugging.

Further Considerations

Before going on to the next step of testing and validating, the rest of your
porting needs to be completed at this point. Any additional drivers and
booters should be developed now.

Further information within this manual should be reviewed at this time.
Review Chapter 7: Miscellaneous Application Concerns, and Chapter
8: OS-9 Cache Control (if using 68020, 68030, 68040, or 68349 that uses
caching). Review Chapter 9: RBF Variable Sector Support if using disks.
Review Appendix D: SCSI-System Notes if using SCSI.

Once all system software has been developed, proceed to Chapter 6: Step
Four: Testing and Validation.

5Step Three: Creating Customized I/O Drivers and Finishing the Boot Code

OS-9 for 68K Processors OEM Installation Manual 145

Completing the System

After testing the boot routine you must make a new boot/debug ROM. This
one has the sysboot.a module replaced by your new bootxxx.a
module. Make the new ROM by repeating the procedure given in Chapter
3: Step One: Porting the Boot Code, in the section on Putting the ROM
Together. To make the new boot/debug ROM, simply enter make
bootdebug.

NoteNote
If the resulting ROM is too large for your target system, you can make
one that omits the talk-through and/or download features by adjusting
the DBG1 macro accordingly.

Step 1. Create and debug additional drivers as required by your target system.
The clock driver is a must, and you may also need other drivers for hard
disks and parallel ports. A sample clock driver module is included in the
distribution package. You can continue to use the ROM debugger for
testing these.

Step 2. Add the additional OS-9 modules for pipes and RAM disk, to your
OS9Boot file and test it. Also, do not forget to edit the startup,
password, and motd files as appropriate for your system.

Step 3. If the target system is to be ROM-based, you may want to edit and
re-assemble the init and/or sysgo modules so they directly call your
application program (instead of sysgo or shell) upon startup.

Step 4. Make a final version of the boot ROM for distribution. In most cases, the
final version does not have ROMbug. You can create the ROM version
by entering:

make -f=rom.make

146 OS-9 for 68K Processors OEM Installation Manual

NoteNote
You should keep on hand a copy of the previous version that includes
the system debugger for future system maintenance.

Chapter 6: Step Four: Testing and

Validation

This chapter includes the following topics:

• General Comments Regarding Testing

• Kernel Tests

• Serial I/O (SCF) Tests

• Disk I/O (RBF) Tests

• Clock Tests

• Final Tests

• System Configuration Checkout

• A Final Note

148 OS-9 for 68K Processors OEM Installation Manual

General Comments Regarding Testing

The quickest basic test of a new installation is to start using the system
immediately. This usually reveals major problems if they exist. The tests
described in this section can help reveal more subtle problems.

If your testing or later use of OS-9 reveals bugs, please report them to
Microware so they can be corrected in future releases. Please forward a
complete description of the problem and examples, if possible.

Refer to the Preface for information about contacting Microware.

6Step Four: Testing and Validation

OS-9 for 68K Processors OEM Installation Manual 149

Kernel Tests

These tests check the kernel’s basic memory management and
multi-tasking functions:

• Run the mfree and mdir -e commands to verify all installed RAM and
ROM memory is accounted for.

• Run multiple background tasks, and then use kill to terminate them
one-by-one. Verify with the procs command.

• Leave the system running overnight with multiple tasks running. Run
mfree and procs at the beginning and end of the test and compare.

• After a system reset, run the mfree command and record the exact
amount of free memory. Thoroughly exercise the system by running a
large number of processes. Kill all processes, and then run mfree
again, checking for lost memory.

• Set up test cases with two and three active processes and use the
setpr command to alter process priority. Use the procs command to
verify correct allocation of CPU time.

• Load, link, and unlink utility modules. Verify link counts using the mdir
command.

150 OS-9 for 68K Processors OEM Installation Manual

Serial I/O (SCF) Tests

These tests exercise and verify the correct operating of the serial I/O:

• Exercise and verify correct basic operation of each serial and/or parallel
I/O port.

• Run xmode on each port to verify each device descriptor has the
desired default initialization values.

• Manually test the following operations for each SCF-type driver:

• Screen Pause Mode

• Halt output character (<control>W)

• Keyboard abort and keyboard interrupt (<control>E and
<control>C)

• X-OFF/X-ON flow control (<control>Q and <control>S)

• Proper baud rate configuration at all rates if software controllable

• Check for correct operation of a maximum number of I/O ports running
simultaneously.

6Step Four: Testing and Validation

OS-9 for 68K Processors OEM Installation Manual 151

Disk I/O (RBF) Tests

These tests exercise and verify correct operation of the disk system(s). The
OS-9 dcheck utility is the basic tool used to test the integrity of the disk file
structure:

• Test the reading and writing of test patterns using a simple C or Basic
program.

• Create and delete files. Verify with dir and dcheck.

• Create and delete directories. Verify with dir and dcheck.

• Ensure all sectors on a disk are accessible using a complete physical
disk copy such as copy /d0@ /d1@. Only the super user may do this.

• Create a large file, then copy and/or merge it several times until the
media is full. Then, delete files one by one and use the free command
to ensure all disk space is properly recovered.

• Format media for all formats supported by your system. Verify with
dcheck, free, and dir. Pay particular attention to interleaving. Only
the super user may do this.

• Test simultaneous floppy disk and hard disk operations (if your system
is so equipped). Especially look for DMA contention problems (if
applicable).

• Test the system with multiple drives installed to maximum expansion
capability.

152 OS-9 for 68K Processors OEM Installation Manual

Clock Tests

These tests exercise and verify correct operation of the system clock:

• Test the ability to set and reset the date and time using the setime and
date -t commands.

• Test the time of day accuracy against a stopwatch with disk and
terminal I/O operations in progress (pre-load and use the date
command for testing).

• Test the system tick accuracy against a stopwatch with and without disk
and terminal I/O operations in progress (pre-load and use the sleep
command for testing). Use at least a 10-minute test period for a rough
test, then a 12 to 24 hour period for a high accuracy test.

• Run multiple concurrent tasks and test proper timeslicing.

6Step Four: Testing and Validation

OS-9 for 68K Processors OEM Installation Manual 153

Final Tests

Complete the following as your final test:

• Test all other supported I/O devices (if any) that were not included in
previous tests.

• Thoroughly exercise the system in multi-user interactive operation if
appropriate for your application.

• Compile and/or assemble large programs.

154 OS-9 for 68K Processors OEM Installation Manual

System Configuration Checkout

Complete the following system configuration checkout:

• Verify all standard modules are in the OS9Boot file including the RAM
disk and pipeline related modules.

• Verify all standard end-user distribution files are on the system disk in
the correct directories. This includes the standard utility set in the CMDS,
DEFS, and SYS directories. Check these for completeness according to
the information provided in your license agreement.

• Set up and/or customize the motd, startup, and password files.

6Step Four: Testing and Validation

OS-9 for 68K Processors OEM Installation Manual 155

A Final Note

You have completed your first port. If you perform another installation in the
future, you will probably take some shortcuts compared to the procedures
outlined here. This is expected. It means you have gained a good insight
into the system. The reason for this is the technique you followed the first
time was not the minimal approach, but it is the least risky and most
educational method for your first port.

If you have created new drivers for commonly used peripherals, you may
want to donate source code to our master library. This can help save others
time and trouble in the future. If you wish to do so, please forward them to
Microware. We will make sure credit is given to the authors.

156 OS-9 for 68K Processors OEM Installation Manual

Chapter 7: Miscellaneous Application

Concerns

This chapter includes the following topics:

• Disk Booting Considerations

• Soft Bus Errors Under OS-9

158 OS-9 for 68K Processors OEM Installation Manual

Disk Booting Considerations

You must consider three features for new and existing boot drivers:

• Variable logical sector sizes.

• Boot files exceeding 64K in size.

• Non-contiguous boot files.

Boot Drivers Supporting Variable Sector Size

RBF logical sectors may range in size from 256 bytes to 32768 bytes, in
integral binary multiples (256, 512, 1024, ... 32768). This allows the RBF’s
logical sector size to match the driver’s physical sector size. Drivers written
under the CBOOT system that are called by the diskboot front end need
not be concerned with these issues because diskboot handles these
considerations.

7Miscellaneous Application Concerns

OS-9 for 68K Processors OEM Installation Manual 159

For boot code written before OS-9 for 68K Version 2.4, you must address
two problems:

• Determining the physical sector size of the device.
If you can query the device for the size of a sector (for example, SCSI
Read Capacity), the issue is relatively simple. If not, the issue
somewhat depends on the flexibility of the hardware. There are two
examples of drivers that may prove helpful in this issue:

Closely examine the SRC/ROM/CBOOT/SYSBOOT/diskboot.c file for
assistance in creating a booting algorithm.

Table 7-1 Sample Drivers

Name Description

SRC/ROM/DISK/
boot320.a

This driver attempts to read the disk at a
sector size of 256. If this fails, it attempts to
read the disk at 512 bytes per sector.

SRC/IO/RBF/DRVR/
SCSI/RB5400

The OMTI 5400 reads in the requested
number of bytes as determined by the
assign parameters. This allows the driver
to read sector 0 and update the path
descriptor.

160 OS-9 for 68K Processors OEM Installation Manual

• The logical sector size for the drive.
You can use the DD_LSNSize field (in logical sector 0) to determine the
logical sector size of the drive. CBOOT/SYSBOOT/diskboot.c uses
the following logic for dealing with disk drives:

If the logical and physical sector sizes do not match, the driver must
provide such a mapping. If the driver is written for use with the CBOOT
system, this issue is addressed and handled by
CBOOT/SYSBOOT/diskboot.c, which calls the driver.

Currently, CBOOT does not support a physical sector size smaller than the
logical sector size. If this were necessary, the driver would need to manage
the mapping.

As a whole, boot drivers should support the formats allowed by the high
level drivers in the system. In the case of floppy disks, OS-9 high level
drivers allow you to create and use floppy disks at various sector sizes.
However, the boot for floppies assumes the floppy drive is formatted with
256 byte sectors. This simplifies the driver. It also decreases the number of
attempts to read the disk before determining the correct format of the disk.
The current suggested format for floppy disks is the OS-9 Universal
Format.

Table 7-2

DD_LSNSize Description

0 Implies a pre-2.4 version disk drive. The logical
sector size is assumed to be 256. The physical size
of the drive is assumed to be described by the path
descriptor.

n Implies a version 2.4 or later disk drive and the
logical sector size is n. The path descriptor
determines the physical sector size.

7Miscellaneous Application Concerns

OS-9 for 68K Processors OEM Installation Manual 161

Bootstrap File Specifications

Originally, RBF bootstrap files required they be contiguous and less than
64K bytes in size. The os9gen utility installed the bootstrap file by
enforcing the contiguous data requirement and then updating the media’s
identification sector (LSN 0) with the bootstrap pointers.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Utilities Reference manual for information about using
os9gen.

The pointers originally used are:

Table 7-3 Bootstrap Pointers

Name Description

DD_BSZ Word value of bootfile size.

DD_BT 3-byte value of the starting LSN of the bootstrap DATA.

162 OS-9 for 68K Processors OEM Installation Manual

At V2.4, the original specifications were expanded so the identification
sector pointers are defined in an upwards compatible manner, as follows:

Making Boot Files

Use the os9gen utility to make the bootstrap files. By default, os9gen
creates a contiguous boot file that is less than 64K (this follows the original
specification).

If you want a large or non-contiguous boot file, use os9gen’s -e option.

Bootstrap Driver Support

If your system requires large, non-contiguous bootstrap files, you need to
modify pre-V2.4 bootstrap drivers accordingly.

When reading a boot file, the main considerations for the bootstrap driver
are as follows:

• Support should be maintained for contiguous, less than 64K boot files
because this is os9gen’s default.

Table 7-4 Identification Sector Pointers

Name Description

DD_BSZ If DD_BSZ is non-zero, this field contains the size of the
bootstrap file, as per the original specification.

If this is 0, the DD_BT field is a pointer to the file descriptor
(FD) of the bootstrap file. The FD contains the boot file size
and the segment pointer(s) for the boot file data.

DD_BT If DD_BSZ is non-zero, this is the starting LSN of the
bootstrap data, as per the original specification.

If DD_BSZ is 0, this is the LSN of the file descriptor for the
bootfile.

7Miscellaneous Application Concerns

OS-9 for 68K Processors OEM Installation Manual 163

• Once the bootstrap driver has read the media’s identification sector, it
should inspect the bootstrap variables to decide whether a bootstrap file
is present. If both the bootstrap fields are zero, the media is
non-bootable and an appropriate error should be returned. If the
bootstrap file is present, the bootstrap driver should determine what
type it is.

• If both bootstrap fields are non-zero, the driver is dealing with a
contiguous, less than 64K boot file. The driver typically:

• Allocates memory for the boot file (specified by DD_BSZ).

• Locates the start of the bootstrap data (specified by DD_BT).

• Reads the data.

• If the bootstrap size field (DD_BSZ) is 0 and the data pointer (DD_BT) is
non-zero, DD_BT is pointing to the RBF file descriptor associated with
the boot file. The driver should then:

• Read the file descriptor into memory.

• Inspect the file size (FD_SIZ) and segment entries (FD_SEG) to
determine the boot file’s size and location(s) on the disk.

The driver typically reads each segment until the entire boot file has
been read into memory. When loading the boot file into memory, the
driver must ensure the data appears in a contiguous manner.

Reading the segment entries of the boot file data requires the bootstrap
loader have a reasonable knowledge of the way RBF allocates files. In
particular, the last segment entry for the file may be rounded up to the
cluster size of the media (RBF always allocates space on a cluster basis).
The bootstrap driver can determine the media cluster size from the DD_BIT
value in the identification sector. While RBF may allocate space on a
cluster basis, the bootstrap loader should always read the exact boot file
size (rounded up to the nearest sector).

164 OS-9 for 68K Processors OEM Installation Manual

Soft Bus Errors Under OS-9

Some instructions of the MC68000-family of processors are intended to be
indivisible in their operation (examples include TAS and CAS). Systems
possessing on-board memory, off-board memory, and allow other bus
masters to access the on-board memory can run into deadlock situations
when the on-board CPU attempts to access the external bus while the
external master is accessing the on-board memory. Often, the bus arbiter
breaks the deadlock by returning a bus error to the CPU. This is not a hard
bus error (like non-existent memory), it is a soft bus error. If the instruction
is re-run, it typically succeeds, as the deadlock situation has terminated.

The file SRC/SYSMODS/SYSBUSERR/sysbuserr.a provides a
mechanism to install a soft bus error handler across the bus error jump
table entry to allow software to determine the cause of the bus error. The
soft bus-error handler can determine whether to re-run the instruction or
pass the bus error along to a previously installed handler (such as the MMU
code).

To use this facility, create a file buserr.m with two macros:

The details of the entry to these macros is documented in
SRC/SYSMODS/SYSBUSERR/sysbuserr.a.

Table 7-5 buserr.m Macros

Name Description

INSTBERR Hardware enable for soft bus error. Setup hardware
to detect soft bus errors.

BERR Bus error handler. Detect whether bus error is soft or
hard. If soft, re-run the faulted instruction. Otherwise,
call the original handler.

Chapter 8: OS-9 Cache Control

This chapter includes the following topics:

• OS-9 Cache Control

• System Implementation

• Default SysCache Modules

• Caching Tables

• Custom Configuration for External Caches

• ROM Debugger and Caches

• Peripheral Access Timing Violations

• Building Instructions in the Data Space

• Data Caching and DMA

• Address Translation and DMA Transfers

166 OS-9 for 68K Processors Installation Manual

OS-9 Cache Control

Many 68000-family systems now include hardware cache systems to
improve system performance. These cache systems are implemented as:

• On-chip caches (68020, 68030, 68040, and 68349 CPUs).

• External cache hardware on the CPU.

• An independent module.

• A combination of these methods.

On OS-9 systems, cache control is available in a flexible manner providing
you with total control over cache operation. It also allows you to customize
cache control for any special hardware requirements your system may
have.

8OS-9 Cache Control

OS-9 for 68K Processors Installation Manual 167

System Implementation

To allow maximum flexibility of the cache control operations, a separate
system module called SysCache contains all of OS-9’s system caching
functions.

The kernel installs the SysCache module as an extension module during
system cold-start initialization. The kernel searches for extension modules
specified in the Init module. If the specified module is found, the kernel
calls the module’s initialization entry point. For the SysCache module, this
entry point performs the following functions:

• Replace the kernel’s default (no-operation) F$CCtl system call with the
active version in SysCache.

• Flush and enable the system cache hardware.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the OS-9 for 68K Technical Manual for information about how
the kernel works.

Install Cache Operations

To install cache operations in the system, you should:

Step 1. Add the SysCache module’s name to the Init module’s extension
module list. For example:

Extens dc.b "OS9P2 SysCache",0

Step 2. Remake the Init module.

Step 3. Generate a new bootstrap file for the system which includes the
SysCache module and the new Init module.

168 OS-9 for 68K Processors Installation Manual

Step 4. Boot the system. The system cache function is now enabled.

If caching is not required for the system, you can disable cache operations
by excluding the SysCache module from the bootfile or not having the
SysCache module name specified in the Init module’s Extens list.

8OS-9 Cache Control

OS-9 for 68K Processors Installation Manual 169

Default SysCache Modules

Microware provides default SysCache modules to simplify your task of
implementing cache control. Each version applies to a specific sub-family
of the 68000 series CPUs.

The following modules are supplied:

Table 8-1 SysCache Modules Supplied by Microware

CPU
Type Module Name File Name Operations Performed

68000 SysCache Cache none: no on-chip cache
hardware

68008 SysCache Cache none: no on-chip cache
hardware

68010 SysCache Cache none: no on-chip cache
hardware

68070 SysCache Cache none: no on-chip cache
hardware

68020 SysCache Cache020 on-chip instruction
cache

68030 SysCache Cache030 on-chip instruction and
data cache

68040 SysCache Cache040 on-chip instruction
and data cache

68349 SysCache Cache349 on-chip instruction
cache banks.

170 OS-9 for 68K Processors Installation Manual

The 68000 SysCache module is essentially a no-operation cache control
module, as these CPUs do not have any on-chip cache hardware. The
module validates the parameters passed to the F$CCtl system routine
and exits with no error.

The 68020 SysCache module controls the on-chip instruction cache for the
68020 CPU.

The 68030 SysCache module controls the on-chip instruction and data
caches for the 68030 CPU.

The 68040 SysCache module controls the on-chip instruction and data
caches for the 68040 CPU.

The 68349 SysCache module controls the on-chip instruction cache banks
for the 68349 CPU.

8OS-9 Cache Control

OS-9 for 68K Processors Installation Manual 171

Caching Tables

The memory management unit for the 68040 has the feature of defining
memory areas of specific caching types. These caching types are
described as follows:

Table 8-2 Caching Types

Caching Type Description

Write-through This is a cache active mode. Basically in
write-through mode, whenever a write happens,
both the cache and the physical hardware
location are updated. Even though this is a
caching mode, it is slower than copy back, since
the physical hardware is updated on each write.
Reads, however, come from the cache as
normal.

Copy back This is a cache active mode. It is the highest
level of caching attainable. Both reads and
writes are cached, and the physical hardware
may or may not be updated with a write. This is
the fastest mode possible.

172 OS-9 for 68K Processors Installation Manual

The ssm040 module under OS-9 has the ability to build these tables when
OS-9 is booted. It gets the data to build these tables from the CacheList
entry from within the init module.

The system configuration information for the init module comes from the
CONFIG macro in the systype.d file. For caching, there is a label named
CacheList. Following this CacheList label are the specific CacheType
macro invocations for the systype. The CacheType needs three
parameters, the beginning address, ending address, and caching mode.

For OS-9, the caching mode is defined as follows:

• For write-through: WrtThru

• For Copy back: CopyBack

• Cache inhibited, serialized access: CISer

• Cache inhibited not-serialized access: CINotSer

Cache inhibited,
serialized access

This is a cache inhibited mode. With serialized
access, reads and writes happen as expected,
unlike with not-serialized accesses. There is no
reordering of reads over writes. This is the mode
to use when using physical hardware registers.

Cache inhibited
not-serialized
access

This is a cache inhibited mode. However with
this mode, reads may get optimized with respect
to writes. Basically the 68040 is trying to keep its
pipeline full, and it may reorder a physical read in
front of a physical write. This may not be a
desirable affect when writing to hardware
registers.

Table 8-2 Caching Types (continued)

Caching Type Description

8OS-9 Cache Control

OS-9 for 68K Processors Installation Manual 173

An example cache list for the MVME167 is as follows:
CPUALIGN
CacheList
* NOTE these have been constructed to match the regions defined
* in the MemType entries above.
 CacheType Mem.Beg,Mem.End,CopyBack
 CacheType Max.Beg,Max.End,CopyBack

 dc.l -1 terminate list
*---
If needing to turn off caching on a particular area, another field can be added to the
cache list. The following is an example cache list
*---
CPUALIGN
CacheList
* NOTE these have been constructed to match the regions defined
* in the MemType entries above.
 CacheType Mem.Beg,Mem.End,CopyBack
 CacheType Max.Beg,Max.End,CopyBack
 CacheType 0xf0000000,0xffffffff,CISer

 dc.l -1 terminate list

The above cache list turns off caching in VME standard space and VME
short I/O space.

NoteNote
The Init module controls a number of other features of caching. The
Init module fields M$Compat and M$Compat2 are used for this
control. Features controlled are:

• Cache burst mode (68030 only).

• Cache coherency (hardware snoopiness).

• Code bank enabling (68349 only).

174 OS-9 for 68K Processors Installation Manual

Custom Configuration for External Caches

The default cache operation modules supplied by Microware only control
the on-chip caches of the CPUs. These caches are the only known,
guaranteed cache mechanisms for those types of systems.

When dealing with systems equipped with external or custom hardware
caches, you can easily produce a customized SysCache module for the
individual target system. This is accomplished with the SYSCACHE macro
included in the syscache.a file in the SYSCACHE directory.

If this macro is undefined to syscache.a, a default no-op macro for
SYSCACHE allows the file to assemble without error. This is how the
Microware default modules are produced.

You may provide a custom SYSCACHE macro in a file called syscache.m.
You can include this file via a local defs file. This custom macro should
contain the code for manipulating the system’s external/custom cache
hardware.

NoteNote
The module produced with the SYSCACHE macro is specific for the
target system, making all cache hardware operational.

Upon entry to the integrator-supplied routine, the d0.l register indicates
which cache operations are desired. The integrator’s routine does not need
to check for the validity of operations. For example, a request by a user to
flush the data cache when the data cache is currently disabled by another
process results in no flush on the data cache. The integrator-supplied code
does not see the data cache flush request for this particular call.

Control of cache functionality is implemented via the M$Compat2 byte in
the Init module.

8OS-9 Cache Control

OS-9 for 68K Processors Installation Manual 175

M$Compat2 Bit Fields

The bit fields within M$Compat2 are defined as follows:

Table 8-3 M$Compat2 Bit Fields

Bit 0/1 Description

0 0 External instruction cache is not snoopy.

1 External instruction cache is snoopy (or absent).

1 0 External data cache is not snoopy.

1 External data cache is snoopy (or absent).

2 0 On-chip instruction cache is not snoopy.

1 On-chip instruction cache is snoopy (or absent).

3 0 On-chip data cache is not snoopy.

1 On-chip data cache is snoopy.

4* 0 CIC bank 0 is SRAM.

1 CIC bank 0 is cache.

5* 0 CIC bank 1 is SRAM.

1 CIC bank 1 is cache.

6* 0 CIC bank 2 is SRAM.

1 CIC bank 2 is cache.

176 OS-9 for 68K Processors Installation Manual

* Bits 4-7 are for 68349 CPU only.

The snoopy/absent flags allow the kernel to make intelligent decisions as to
when to actually flush the system’s caches (with F$CCtl calls). If the
system’s hardware capabilities allow the caches to maintain coherency via
hardware means, you can set the appropriate flags so the kernel performs
only essential cache flushes.

The 68349 CIC bank flags allow the integrator to control the mix of
SRAM/cache usage for the system.

7* 1 CIC bank 3 is SRAM.

0 CIC bank 3 is cache.

Table 8-3 M$Compat2 Bit Fields (continued)

Bit 0/1 Description

8OS-9 Cache Control

OS-9 for 68K Processors Installation Manual 177

ROM Debugger and Caches

The ROMbug debugger has a limited knowledge of caching. If you use
ROMbug in a system where there are no caches external to the CPU chip,
link it with flushcache.l when the ROM is constructed. When using a
68349 CPU, you should link flush349.l instead of the usual
flushcache.l routine.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Using RomBug for more information about ROMBug.

If external caches are available, you should provide a separate routine that
flushes any on-chip caches as well as the external caches. You can add
this routine to the sysinit.a file or link in your own (local) version of
flushcache.l. If you do provide a separate routine, do not link the ROM
with the default flushcache.l library.

NoteNote
Calls to the ROM debugger through F$SysDbg (for example, using the
break utility) works correctly because the system call maintains cache
integrity.

178 OS-9 for 68K Processors Installation Manual

Peripheral Access Timing Violations

When caching is enabled, peripheral access timing violations sometimes
occur in device drivers, especially when tight loops are written to poll device
status registers. If peripheral devices begin to exhibit erratic behavior, you
should take the following steps:

Step 1. Disable all caching for the system.

Step 2. Debug the driver until it is stable.

Step 3. Re-enable caching for the system.

If erratic behavior continues, timing violations are probably occurring
because of cache hits. In this case, the driver can:

• Disable data and/or instruction caching during critical sections of the
driver (for example, interrupt service routine).

• Re-enable caching when the critical section is completed.

NoteNote
When a driver manipulates the cache, it should try not to access the
cache hardware directly. F$CCtl calls should be performed instead.
The driver’s code is transportable and does not conflict with the
system’s cache control operations. Interrupt service routines can call
F$CCtl; therefore, cache operations may occur at any time.

8OS-9 Cache Control

OS-9 for 68K Processors Installation Manual 179

Timing Loops

Cache enabling may break routines using fixed delay timing loops. If
specific time delays are required, you may have to rewrite the loops for a
worst case loop. (Worst case is the quickest time.) Alternatively, you could
disable caching for the body of the loop.

180 OS-9 for 68K Processors Installation Manual

Building Instructions in the Data Space

Programs using their data space for building temporary instruction
sequences need to flush the instruction cache before executing the
sequences. Failure to do so may result in unpredictable program behavior.

8OS-9 Cache Control

OS-9 for 68K Processors Installation Manual 181

Data Caching and DMA

Direct Memory Access (DMA) support, if available, significantly improves
data transfer speed and general system performance, because the MPU
does not have to explicitly transfer the data between the I/O device and
memory. Enabling these hardware capabilities is generally desirable,
although systems that include cache (particularly data cache) mechanisms
need to be aware of DMA activity occurring in the system, so as to ensure
stale data problems do not arise.

NoteNote
Stale data occurs when another bus master writes to (alters) the
memory of the local processor. The bus cycles executed by the other
master may not be seen by the local cache/processor. Therefore, the
local cache copy of the memory is inconsistent with the contents of
main memory.

Device drivers performing DMA are required to ensure stale data problems
do not occur. Typically, the driver needs to flush the system caches at
appropriate times (for example, prior to writing data to the device; after
reading data from the device) unless the caches are coherent through
hardware means.

Indication of Cache Coherency

The M$Compat2 variable also has flags indicating whether or not a
particular cache is coherent. Flagging a cache as coherent (when it is)
allows the kernel to ignore specific cache flush requests, using F$CCtl.
This provides a speed improvement to the system, as unnecessary system
calls are avoided and the caches are only explicitly flushed when absolutely
necessary.

182 OS-9 for 68K Processors Installation Manual

NoteNote
An absent cache is inherently coherent, so you must indicate absent
(as well as coherent) caches.

Device drivers using DMA can determine the need to flush the data caches
using the kernel’s system global variable, D_SnoopD. This variable is set to
a non-zero value if BOTH the on-chip and external data caches are flagged
as snoopy (or absent). Thus, a driver can inspect this variable, and
determine whether a call to F$CCtl is required or not.

8OS-9 Cache Control

OS-9 for 68K Processors Installation Manual 183

Address Translation and DMA Transfers

In some systems, the local address of memory is not the same as the
address of the block as seen by other bus masters. This causes a problem
for DMA I/O drivers, as the driver is passed the local address of a buffer,
but the DMA device itself requires a different address.

The Init module’s colored memory lists provide a way to set up the
local/external addressing map for the system. Device drivers can determine
this mapping in a generic manner using the F$Trans system call. Thus,
you should write drivers that have to deal with DMA devices in a manner
ensuring the code runs on any address mapping situation. You can do this
by using the following algorithm:

• If you must pass a pointer to an external bus master, call the kernel’s
F$Trans system call.

• If F$Trans returns an unknown service request error, no address
translation is in effect for the system and the driver can pass the
unmodified address to the other master.

• If F$Trans returns any other error, something is seriously wrong. The
driver should return the error to the file manager.

• If F$Trans returns no error, the driver should verify the size returned
for the translated block is the same as the size requested. If so, the
translated address can be passed to the other master. If not, the driver
can adopt one of two strategies:

1. Refuse to deal with split blocks, and return an error to the file
manager.

2. Break up the transfer request into multiple calls to the other master,
using multiple calls to F$Trans until the original block has been fully
translated.

Drivers usually adopt method 1, as the current version of the kernel
does not allocate memory blocks spanning address translation factors.

If drivers adopt these methods, the driver functions irrespective of the
address translation issues. Boot drivers can also deal with this issue in a
similar manner by using the TransFact global label in the bootstrap ROM.

184 OS-9 for 68K Processors Installation Manual

Chapter 9: RBF Variable Sector

Support

The Random Block File Manager (RBF) supports sector sizes from 256
bytes to 32768 bytes in integral binary multiples (256, 512, 1024, ...
32768). This section addresses the issues that are important for writing
or modifying disk drivers to support variable logical sector sizes.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the OS-9 for 68K Processors Technical I/O Manual for
information about RBF.

NoteNote
OS-9 for 68K Version 2.4 was the first release of RBF to support
variable sector sizes. If you are modifying disk drivers that only support
256 byte logical sectors, you should read this section carefully.

This chapter includes the following topics:

• RBF Device Drivers

• Converting Existing Drivers to Use Variable Sector Size

• RBF Media Conversion

• Benefits of Non-256 Byte Logical Sectors

• Bootstrap Drivers

• RBF Disk Utilities

186 OS-9 for 68K Processors OEM Installation Manual

RBF Device Drivers

RBF uses the SS_VarSect GetStat function to dynamically determine
whether the driver it is calling can support logical sector sizes other than
256 bytes.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

SS_VarSect queries the driver to determine if support for variable
logical sector sizes is available. Refer to the OS-9 for 68K Technical
Manual for more information about SS_VarSect.

When you open a path to an RBF device, RBF calls the driver with
SS_VarSect, and depending on the results of the call, takes the
appropriate action:

Table 9-1 RBF Actions

If the Driver
Returns Description

Without error RBF assumes the driver can handle variable logical
sector sizes. It then uses the PD_SSize field of the
path descriptor to set the media path’s logical sector
size, so RBF’s internal buffers may be allocated.

An unknown
service
request error

RBF assumes it is running with a driver that
presumes a logical sector size of 256-bytes. RBF
allocates its buffers accordingly and does not use
the PD_SSize field of the path descriptor.

Any other
error

RBF aborts the path open operation, deallocates
any resources, and returns the error to the caller.

9RBF Variable Sector Support

OS-9 for 68K Processors OEM Installation Manual 187

Support for variable logical sector sizes is optional under the new RBF, as
existing drivers operate in the same manner as they do under previous
versions of RBF (such as in the second case above).

188 OS-9 for 68K Processors OEM Installation Manual

Converting Existing Drivers to Use Variable
Sector Size

If you want to use the variable sector size support, use the following
guidelines to convert existing drivers.

In general, device drivers written for the old RBF were written to operate
under one of two situations:

• The media logical and physical sector sizes were the same.
In this case, the driver would accept the sector count and starting LSN,
convert it to the physical disk address (if required), and then perform the
I/O transfer.

To convert these drivers written to support other logical/physical sector
sizes, you need to:

Step 1. Add support for the GetStat SS_VarSect call.

Step 2. Ensure the driver does not have any hard-wired 256-byte assumptions.

Typically, this implies the driver should:

• Use the sector size field (PD_SSize) in the path descriptor whenever it
needs to convert sector counts to byte counts (for example when
loading DMA counters).

• Maintain any disk buffers in a dynamic manner so a sector size change
on the media does not cause a buffer overrun. This usually means fixed
sized buffers allocated in the static storage of the driver should now be
allocated and returned as required, using the F$SRqMem and
F$SRtMem system calls.

9RBF Variable Sector Support

OS-9 for 68K Processors OEM Installation Manual 189

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the OS-9 for 68K Technical Manual for more information
about F$SRqmem and F$SRtMem.

In many cases, a correctly written driver only needs the addition of the
SS_VarSect handler (to simply return NO ERROR) to work with variable
sector sizes.

• The media logical and physical sector sizes were NOT the same.
In this case, the driver would translate the logical sector count and
starting LSN passed by RBF into a physical count/address, convert
those values to the physical disk address (if required), and then perform
the I/O transfer.

NoteNote
These types of drivers are known as deblocking drivers, as they
combine/split the physical sectors from the disk into the logical sectors
RBF requires.

You can convert drivers written with this method to variable logical
sector operation, although they may require more work than
non-deblocking drivers.

Apart from adding the code to handle the GetStat SS_VarSect call,
you should remove:

• The driver’s deblocking code.

• Any hardwired assumptions about sector sizes and fixed buffers.

In effect, you are converting the driver from a deblocking driver to a
non-deblocking driver.

190 OS-9 for 68K Processors OEM Installation Manual

RBF Media Conversion

Once you have updated the driver to support the new RBF, you need to
decide whether or not to convert your media (specifically hard disk drives)
to non-256 byte logical sector sizes.

• If you convert your media, you must reformat it.

• If you are using a 256-byte logical sector size, you can immediately use
the media when the driver is ready.

If you are reformatting the media, it may only require a logical reformat
(converting a deblocking 512-byte physical sector disk to 512-byte logical).
In this case, you should perform the following steps:

Step 1. Backup the media to convert.

Step 2. Reformat the media. A physical format is only required if you need or
wish to change the media’s physical sector size. (Use the format
utility’s -np option if you do not wish a physical reformat).

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Utilities Reference manual for information about using
format.

Step 3. Re-install the data saved in step 1.

Your conversion to a non-256 byte logical sector size should now be
complete.

9RBF Variable Sector Support

OS-9 for 68K Processors OEM Installation Manual 191

Benefits of Non-256 Byte Logical Sectors

Using different logical sector sizes can provide the following benefits
depending on your application requirements:

• The bitmap sector count decreases.
This may mean you can decrease the minimum cluster size of the
media on large hard disks.

• The number of clusters in a bitmap sector increases.
This allows faster bitmap searches and potentially larger segments to
be allocated in the file descriptor segment list.

• The media capacity may increase.
Many disk drives (both floppy and hard disks) can store more data on
the disk, due to the decrease in the number of sectors per track (and
thus less inter-sector gaps).

• The chances of segment list full errors decreases.
Expanding the sector size beyond 256 bytes allows more file segment
entries in the file descriptor.

192 OS-9 for 68K Processors OEM Installation Manual

Bootstrap Drivers

Converting RBF drivers and media to non-256 byte logical sectors also
implies a change to the bootstrap code if the media is to continue to provide
system bootstrap support.

NoteNote
In general, the RBF driver deals with the same issues (hard-wired
assumptions about 256 byte sectors, for example) as the BootStrap
driver.

If the BootStrap driver is to support booting from any logical sector size,
note the following:

• The BootStrap driver must be able to read the identification sector (LSN
0) of the media. Depending on the actual hardware situation and
capabilities, this may require:

• Querying the drive for the sector size (Mode Sense command to
SCSI drives).

• Reading a fixed byte-count from the drive (partial sector read).

• Attempting to read the sector using all possible sector sizes.

• Once LSN 0 has been successfully read, the BootStrap driver should
inspect the DD_LSNSize field of sector zero. This field gives the
media’s logical sector size (if it is 0, a size of 256 is assumed), and this
value combined with the known physical size allows the BootStrap
driver to load the actual bootstrap file. If the logical and physical sector
sizes differ, the BootStrap driver can use deblocking algorithms or
return an error.

9RBF Variable Sector Support

OS-9 for 68K Processors OEM Installation Manual 193

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The next section contains more information about booting concerns
with variable sector sizes.

194 OS-9 for 68K Processors OEM Installation Manual

RBF Disk Utilities

Utilities needing to ascertain the media’s logical sector size (such as the
dcheck utility) can do so by:

• Opening a path to the device.

• Checking the PD_SctSiz field of the path options section (with the
GetStat SS_OPT function code).

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

dcheck checks the disk file structure. Refer to the Utilities Reference
manual for information about using dcheck.

RBF sets the PD_SctSiz field to the media’s logical sector size when the
path is opened. If the field contains a 0, an old RBF is running in the system
and the logical sector size is assumed to be 256 bytes.

Appendix A: The CBoot Technology

This chapter includes the following topics:

• Introduction

• The CBOOT Common Booters

• CBOOT Driver Entry Points

• CBOOT Library Entry Points

196 OS-9 for 68K Processors OEM Installation Manual

Introduction

This version of OS-9 for 68K is the first release to recommend the C
booting technology referred to as CBOOT. Although CBOOT requires a larger
amount of ROM space than the assembler boots supported in previous
releases, it has several added features.

CBOOT allows you to create drivers in either C or assembly. In previous
versions, the boot routines had to manage the device and have a
knowledge of the file structure from which it was booting. The CBOOT
system provides front end code for various booting methods (such as disk
and tape) that make calls to the hardware level boot drivers. This greatly
simplifies the writing of boot code, as the only code you need to write is
generally the actual code to manage the hardware interface. You can also
create a driver source that can be conditionalized such that it could be used
as a boot driver as well as an OS-9 driver (see the
MWOS/OS9/SRC/IO/RBF/DRVR/SCSI/RBTEAC directory as an example).

You can interface previous assembler booters into the CBOOT system
relatively easily. To update existing boot drivers to use with CBOOT, use the
sysboot.m macro. For example, boot320.a has been updated to work
with CBOOT.

CBOOT allows you to create menus that can be displayed on the system
terminal. This allows you to use a terminal to select the device from which
to boot rather than by setting switches.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

CBOOT is mainly written in C. Examining the code in the CBOOT
directory can answer many questions.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 197

The CBOOT Common Booters

The following is an overview of the common booter source files located in
the MWOS/OS9/SRC/ROM/CBOOT/SYSBOOT directory. As a whole, you
should not need to modify these sources. They are, however, valuable as
documentation.

Table A-1 Common Booter Source Files

File Booters Description

diskboot.c diskboot() This is the front end code for
floppy and hard disk boots. If
necessary, the code performs
logical to physical mapping of
sectors and deblocks physical
blocks. It also allocates the
memory for the boot file. If the
boot file is large (greater than
64K) or non-contiguous,
diskboot performs the
necessary requests to read
the boot file. The
requirements for the low-level
boot driver are thus reduced
to hardware management.
This code can call either a
CBOOT C driver or a converted
assembly language driver.

initdata.c This is part of the glue that
initializes data for the CBOOT
system when ROMbug is not
being used. (ROMbug has its
own initdata.c routine).

198 OS-9 for 68K Processors OEM Installation Manual

binboot.c binboot() This is the entry point used for
testing downloaded boot
routines. It prompts for the
bootfile size, indicates the
load address to the operator,
and waits for the operator to
indicate the download is
completed. The kernel is
expected to be the first
module. Once the download is
completed, it jumps to the
kernel entry point.

misc.c This is a series of support
subroutines for CBOOT.

romboot.c romboot()
loadrom()

This is the ROM boot front
end. It searches the ROM list
spaces for a module with the
name kernel and verifies the
module header parity. The
code returns the address of
the kernel to CBOOT.
loadrom() differs from
romboot() in that after
finding a kernel module, it
moves it and all modules
contiguously following it to
system RAM and begins
executing the kernel there.

Table A-1 Common Booter Source Files (continued)

File Booters Description

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 199

The file syscon.c in PORTS/<target> provides the routines
getbootmethod() and getboottype() for the CBOOT system. You
should review and understand this file. If the system contains hardware
switches to be used to select the booting method, you should place a
routine to read the switches and configure the system for booting in this file.
There are also a set of variables defined in syscon.c that are required for
proper system operation. You can create variables that are global to the
drivers running under CBOOT by defining them in syscon.c.

sysboot.c Sysboot is the mainline for the
CBOOT system. It makes calls
to the routine
getbootmethod() and
routes its activity accordingly.

sysboot_glue.c This code provides the
interface between the
assembler boot.a code call
to sysboot.a and the CBOOT
boot code.

tapeboot.c tapeboot() This is the magnetic tape front
end. It knows about the format
that is expected of a boot tape
and manages the memory
and reading of the tape. It
calls drivers that are expected
to do little more than manage
the hardware.

Table A-1 Common Booter Source Files (continued)

File Booters Description

200 OS-9 for 68K Processors OEM Installation Manual

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Examples of boot drivers are located in the SRC/ROM/CBOOT directory.
Examining these drivers can be very instructive.

The systype.h file in PORTS/<target> performs a similar function for C
code as the assembler language systype.d file by controlling
system-wide definitions. Review this file for further information.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 201

CBOOT Driver Entry Points

Under CBOOT, the boot drivers entry points are:

Table 9-2 CBOOT Driver Entry Points

Entry Point Description

init() Initialize Hardware

read() Read Number of Blocks Requested into Memory

term() Disable Hardware

202 OS-9 for 68K Processors OEM Installation Manual

init()

Initialize Hardware

Syntax
error_code init()

Description

init() initializes the hardware for use. It may install interrupt service
routines if necessary.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 203

read()

Read Number of Blocks Requested into Memory

Syntax
error_code read(

u_int32 nsect,
u_int32 lsect);

Description

read() calculates any physical sector address needed for the device (for
example, head/sector) and reads the requested sectors into memory.

NoteNote
The total byte count is guaranteed not to exceed 64K for any given
read. If the device cannot read 64K, the read entry point must deblock
the read.

Parameters

nsect Specifies the number of sectors to read.

lsect Specifies the starting logical sector.

204 OS-9 for 68K Processors OEM Installation Manual

term()

Disable Hardware

Syntax
error_code term()

Description

term() disables the hardware and ensures any interrupts from the device
are disabled.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 205

CBOOT Library Entry Points

Under CBOOT, the library entry points are:

Table 9-3 CBOOT Driver Entry Points

Entry Point Description

calldebug() Invoke System Level Debugger

convhex() Convert Parameters to Hexadecimal
Nibble

extract() Allocate Memory from Boot ROM Free
Memory List

getbootmem() Allocate Memory for Bootfile

gethexaddr() Read Hexadecimal Address

hwprobe() Test for Existence of Hardware

InChar() Wait to Physically Receive One Character

InChChek() Perform Unblocked Read of One
Character

iniz_boot_driver() Initialize Boot Driver

insert() Return Memory to System Memory List

instr() Read String from Console Device

inttoascii() Convert Parameter to ASCII

206 OS-9 for 68K Processors OEM Installation Manual

makelower() Convert Upper Case Characters to Lower
Case

mask_irq() Mask Interrupts

OutChar() Physically Send One Character

OutHex() Convert Parameter to ASCII

Out1Hex() Convert Parameter to ASCII

Out2Hex() Convert Parameter to ASCII

Out4Hex() Convert Parameter to ASCII

outstr() Send String to Console Output Device

powerof2() Convert Value to Power of Two

setexcpt() Install Exception Service Routine

streq() Compare Two Strings for Functional
Equality

sysreset() Restart System

Table 9-3 CBOOT Driver Entry Points (continued)

Entry Point Description

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 207

calldebug()

Invoke System Level Debugger

Syntax
void calldebug();

Description

calldebug() starts the system level debugger. If no debugger is present,
the system reboots when the call is made.

208 OS-9 for 68K Processors OEM Installation Manual

convhex()

Convert Parameter to Hexadecimal Nibble

Syntax
int convhex(char inchr);

Description

convhex() converts the hexadecimal ASCII character parameter inchr
into a hexadecimal nibble and returns it to the caller. If inchr is not a
hexadecimal ASCII character, convhex() returns -1 to the caller to
indicate an error condition.

Parameters

inchr Is the parameter to be converted to ASCII
nibble.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 209

extract()

Allocate Memory from Boot ROM Free Memory List

Synopsis
error_code extract(

u_int32 *size,
u_char **mem);

Description

extract() allocates memory from the boot ROM free memory list.
Memory is allocated in 16 byte increments. For example, if 248 bytes were
requested, extract() rounds up and allocates 256 bytes.

NoteNote
Boot devices use this routine to request memory not declared in the
boot driver’s vsect declarations. Typically, this dynamic allocation is
performed by boot drivers with buffer requirements that are not known
at compilation time (such as disk boot drivers supporting variable sector
sizes). This method of dynamic allocation is useful for saving system
memory usage as any storage declarations made at compilation time
are fixed into the boot ROM global data area.

If the memory buffers are to be released (so they can be used by the
kernel, for example), they should be returned to the boot ROM free memory
list using the insert() call.

If an error occurs, extract() returns the error code. Otherwise, it returns
SUCCESS.

210 OS-9 for 68K Processors OEM Installation Manual

Parameters

size Points to a 32-bit unsigned integer that is
passed in as the size of the block requested.
The actual size of the block allocated is
returned in this same location.

mem Points to the pointer to the requested block.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 211

getbootmem()

Allocate Memory for Bootfile

Syntax
error_code getbootmem(u_int32 sizereq);

Description

getbootmem() allocates memory for a bootfile via the extract()
function. If memory for a bootfile has already been allocated by some
previously called function, getbootmem() returns that block to the system
via the insert() function.

The pointer to the bootfile memory allocated is returned in the global
variable bootram.

The actual size of the memory allocated is returned in the global variable
memsize.

If an error occurs, getbootmem() returns the error code to the caller.
Otherwise, it returns SUCCESS.

Parameters

sizereq Indicates the size of the requested memory
block.

212 OS-9 for 68K Processors OEM Installation Manual

gethexaddr()

Read Hexadecimal Address

Syntax
void *gethexaddr();

Description

gethexaddr() reads the console input device for a hexadecimal address
up to eight characters in length (32 bits). This address is then converted to
a 32-bit integer and returned to the caller.

gethexaddr() ignores any character received from the console other
than hexadecimal ASCII, a carriage return, or the letter q or Q. The letter q
or Q returns a special abort error designation of -3 to the caller.

If a carriage return is received from the console and there was no previous
input, gethexaddr() returns a -1 to indicate a no address input error.

NoteNote
Any hexadecimal input value from 0x0 to 0xfffffffc is returned to
the caller.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 213

hwprobe()

Test for Existence of Hardware

Syntax
error_code hwprobe(char *address);

Description

hwprobe() tests for the existence of hardware at address. hwprobe()
installs a bus error handler and attempts to read from address.
hwprobe() returns SUCCESS if the hardware is present or E$BusErr if it
fails.

Parameters

address Points to the address to be checked.

214 OS-9 for 68K Processors OEM Installation Manual

InChar()

Wait to Physically Receive One Character

Syntax
char InChar();

Description

InChar() waits for the hardware to physically receive one character,
echoes the input character back to the console output device (via the
OutChar() function), and returns the character to the caller.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 215

InChChek()

Perform Unblocked Read of One Character

Syntax
int InChChek();

Description

InChChek() performs an unblocked read of one character from the
console input device. If the device has not received a character,
InChChek() does not wait, but returns an error designation of -1 to the
caller. Otherwise, the character is returned.

216 OS-9 for 68K Processors OEM Installation Manual

iniz_boot_driver()

Initialize Boot Driver

Syntax
error_code iniz_boot_driver(

void *address,
char *name,
char *menuline,
char *idstring);

Description

iniz_boot_driver() initializes a boot driver by placing the parameters
in the boot driver definition array.

Parameters

address Points to the boot driver’s execution entry
point.

name Points to a null-terminated character string
that is the name of the boot driver. SysBoot
uses this name for messages concerning
the boot driver. For example, An error
occurred in the <name> boot
driver.

menuline Points to a null terminated character string
that is the message desired for the boot
driver on a menu line. This entry is also
used when the AUTOSELECT method is
used to inform the user from which boot
device SysBoot is attempting to boot. For
example, Now trying to <menuline>.

idstring Points to a null terminated character string
that is the identification code to tell
SysBoot which boot driver to call. This
string appears in the menu at the end of a
menu entry to indicate to the user what to

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 217

type in to select a given boot driver.
idstring is also used to match the string
returned by getboottype() in order to
determine the boot driver selected.

218 OS-9 for 68K Processors OEM Installation Manual

insert()

Return Memory to System Memory List

Syntax
Dumb_mem insert(

u_int32 size,
u_int32 *mem);

Description

insert() returns memory to the system memory list. Memory is returned
in 16 byte increments. For example, if 248 is passed as the size to return,
insert() rounds up and returns 256 bytes.

insert() returns the new pointer to the head of the memory list.

NoteNote
This pointer is also found in the global variable freememlist.

Parameters

size Specifies the size of the returned block.

mem Points to the block to return.

See Also
extract()

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 219

instr()

Read String from Console Device

Syntax
char *instr(

char *str,
u_int32 size);

Description

instr() reads a string from the console device into a buffer designated by
the pointer str. instr() handles the following rudimentary line editing
functions:

instr() returns to the caller when it receives a carriage return (\n) from
the console.

NoteNote
instr() ignores any character other than a carriage return if it is
received when the buffer is already full.

Table A-2 Line Editing Functions

Name Description

<CTRL> X Back up the cursor to the beginning of the line.

<CTRL> A Display the previous contents of the buffer.

<BACKSPACE> Back up the cursor one character.

220 OS-9 for 68K Processors OEM Installation Manual

Parameters

*str Points to the beginning of the input string
passed back to the caller.

size is a 32-bit unsigned integer used to
determine the size of the buffer to which the
input string is written.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 221

inttoascii()

Convert Parameter to ASCII

Syntax
u_char *inttoascii(

u_int32 value,
char *bufptr);

Description

inttoascii() converts the unsigned 32-bit integer parameter value to
a null terminated string of up to ten characters of numeric ASCII. Leading
zeroes beyond the hundreds digit are ignored. At least three digits are
guaranteed.

inttoascii() returns the buffer pointer after it is incremented to point to
the first character after the ASCII string.

Parameters

value Is the parameter to convert.

bufptr Points to a character buffer in which to
deposit the string.

222 OS-9 for 68K Processors OEM Installation Manual

makelower()

Convert Upper Case Characters to Lower Case

Syntax
char makelower(char c);

Description

makelower() converts an uppercase alphabetic ASCII character to
lowercase and returns it to the caller. Any other character is simply
returned to the caller intact.

Parameters

c Is the uppercase ASCII character to be
converted to lowercase.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 223

mask_irq()

Mask Interrupts

Syntax
u_int16 mask_irq(u_int16 mask);

Description

mask_irq() masks the interrupts in the 68xxx MPU status register to the
level indicated by the interrupt mask bits in the parameter mask.
mask_irq() returns the previous contents of the status register to the
caller.

NoteNote
mask is actually inserted directly into the 68xxx MPU status register.
The caller must ensure the supervisor state bit is not changed. The
condition codes are also affected.

mask_irq() does not take steps to preserve the trace flag. If soft
breakpoints are enabled and ROM breakpoints are active,
mask_irq() can disable them and the breakpoint may be missed.

Parameters

mask Is the mask.

224 OS-9 for 68K Processors OEM Installation Manual

OutChar()

Physically Send One Character

Syntax
void OutChar(char c);

Description

OutChar() physically sends one character to the console output device.

Parameters

c Is the character to send to the console
output device.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 225

OutHex()

Convert Parameter to ASCII

Syntax
void OutHex(char nibble);

Description

OutHex() converts the lower four bits of the parameter nibble to an
ASCII hexadecimal character (0 - F) and sends it to the console output
device via the OutChar() function.

Parameters

nibble Is the parameter to be converted to ASCII
hex.

226 OS-9 for 68K Processors OEM Installation Manual

Out1Hex()

Convert Parameter to ASCII

Syntax
void Out1Hex(u_char byte);

Description

Out1Hex() converts the unsigned character parameter byte to two ASCII
hexadecimal characters (0 - F) and sends them to the console output
device via the OutChar() function.

Parameters

byte Is the parameter to be converted to ASCII
hex.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 227

Out2Hex()

Convert Parameter to ASCII

Syntax
void Out2Hex(u_int16 word);

Description

Out2Hex() converts the 16-bit unsigned parameter word to four ASCII
hexadecimal characters (0 - F) and sends them to the console output
device via the OutChar() function.

Parameters

word Is the parameter to be converted to ASCII
hex.

228 OS-9 for 68K Processors OEM Installation Manual

Out4Hex()

Convert Parameter to ASCII

Synopsis
void Out4Hex(u_int32 longword);

Description

Out4Hex() converts the 32-bit unsigned parameter longword to eight
ASCII hexadecimal characters (0 - F) and sends them to the console output
device via the OutChar() function.

Parameters

longword Is the parameter to be converted to ASCII
hex.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 229

outstr()

Send String to Console Output Device

Syntax
error_code outstr(char *str);

Description

outstr() sends a null-terminated string to the console output device.

NoteNote
outstr() always returns SUCCESS.

Parameters

str Points to the first character in the string to
send.

230 OS-9 for 68K Processors OEM Installation Manual

powerof2()

Convert Value to Power of Two

Syntax
int powerof2(u_int32 value);

Description

powerof2() converts the unsigned 32-bit integer parameter value into a
power of two (bit position). Any remainder is discarded. If value is equal to
0, powerof2() returns -1 to indicate an error condition.

Parameters

value Is the unsigned integer parameter to be
converted.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 231

setexcpt()

Install Exception Service Routine

Syntax
u_int32 setexcpt(

u_char vector,
u_int32 irqsvc);

Description

setexcpt() installs an exception service routine directly into the
exception jump table.

setexcpt() returns the address of the exception service routine
previously installed on the vector. You can use setexcpt() to set up
specialized exception handlers (such as bus trap and address trap) and to
install interrupt service routines.

NoteNote
The caller must save the address of the previously installed exception
handler and restore it in the exception jump table (via setexcpt())
once the caller is no longer using the vector.

Parameters

vector Is a vector number (2 - 255).

irqsvc Is the address of the exception service
routine.

232 OS-9 for 68K Processors OEM Installation Manual

streq()

Compare Two Strings for Functional Equality

Syntax
u_int32 streq(

char *stg1,
char *stg2);

Description

streq() compares two strings for functional equality. The case is ignored
on alphabetic characters, for example, ‘a’ = ‘A’. If the two strings match,
streq() returns TRUE (1). Otherwise, it returns FALSE (0).

Parameters

stg1 Points to the first string to compare.

stg2 Points to the second string to compare.

AThe CBoot Technology

OS-9 for 68K Processors OEM Installation Manual 233

sysreset()

Restart System

Syntax
void sysreset();

Description

sysreset() restarts the system from dead start initialization.
sysreset() does not return to the caller.

234 OS-9 for 68K Processors OEM Installation Manual

Appendix B: Trouble Shooting

This appendix is designed to help if you run into problems while porting
OS-9 for 68K. It includes the following topics:

• Introduction

• Step 1: Porting the Boot Code

• Step 2: Porting the OS-9 for 68K Kernel and Basic I/O

• Setting Up the DevCon Descriptor Field for the Sc68681 Serial
Driver

• Searching the Module Directory

236 OS-9 for 68K Processors OEM Installation Manual

Introduction

This appendix is designed to help if you run into problems while porting
OS-9 for 68K. To use this appendix most effectively:

Step 1. Identify during which step of the booting process you are having
problems.

Step 2. Go to that section in this appendix.

Step 3. Locate the description best describing your problem.

Step 4. Read and follow the directions you find there.

BTrouble Shooting

OS-9 for 68K Processors OEM Installation Manual 237

Step 1: Porting the Boot Code

If you encountered problems during Chapter 3: Step One: Porting the
Boot Code, read this section carefully:

If you are getting unresolved references during linking, this error is the
result of one of three conditions:

1. A library is missing from the link line.
Two utilities, rdump and libgen, are available to help you find which
library contains the unresolved reference. The libgen utility locates
references for Ultra C compiler libraries, while rdump finds references
for libraries created with the Version 3.2 compiler. To search for a
reference in a library, use the following type of command:

$ rdump -a <library.l> ! grep <reference name>
$ libgen -le <library.l> ! grep <reference name>

Once the library reference is found, include the library in the LIBS
macro of the makefile.

2. The ordering of the libraries is incorrect.
If you find the references are all in the libraries you are including, then
the problem may be with the ordering of the libraries. The linker is a
single pass linker. If a function references an external variable or a
function defined earlier in the same library or another library and if the
linker has already moved pass that point, the linker is not able to resolve
the reference. For this reason, the ordering of the libraries is important.

To determine the ordering of the OS-9 standard libraries:

Step 1. Compile a simple program in verbose mode (-b with Ultra C, -bp with
the version 3.2 C compiler). The cc executive passes the libraries in the
correct order to the linker.

Step 2. Look at the linker line generated by the cc executive.

238 OS-9 for 68K Processors OEM Installation Manual

Step 3. Note the ordering of the specific libraries in which you are interested.
Many other libraries need to be linked in front of the standard libraries,
for they often call functions out of these standard libraries.

3. The libraries are in the wrong position in the link line.
Sometimes, if the libraries are not included at the end of the linker line,
unresolved references can occur. Try moving the libraries to the end
and see if this helps.

BTrouble Shooting

OS-9 for 68K Processors OEM Installation Manual 239

Step 2: Porting the OS-9 for 68K Kernel and
Basic I/O

If you encountered problems during Chapter 4: Step Two: Bringing Up
the Kernel and Console I/O, look for the error message you received and
read that section carefully:

• MPU incompatible with OS-9 kernel
You are using the wrong kernel for that specific processor. The boot
code has produced a bus error stack frame and from this, it has
determined which specific processor is being run (68000, 68010,
68020, 68030, ...). There is a specific kernel for each of these
processors, and the wrong kernel is being used.

• OS-9 Boot failed; can’t find init
The kernel could not find the Init module. Verify the Init module is in
the same special memory bank as the kernel and it has a module name
of Init. This error can also occur when boot.a finds an exceedingly
small amount (or no RAM). Verify the amount of RAM by register d0
and a4 at the first boot stage.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For additional information about d0 and a4, refer to Chapter 3: Step
One: Porting the Boot Code.

• Can’t allocate <name of> table
The kernel is trying to allocate room for its own table and has run out of
RAM. Verify the amount of RAM by register d0 and a4 at the first boot
stage.

240 OS-9 for 68K Processors OEM Installation Manual

NoteNote
The error message usually reports an error number (in Hex) to indicate
the reason why the failure occurred. These error numbers are standard
OS-9 for 68K error codes.

• Can’t open console terminal
IOMan is trying to open the console name defined in the M$Consol
field of the Init module. An error has occurred preventing IOMan from
booting. This error can occur for many reasons, including:

a. The driver and descriptor modules do not have owners of 0.0. You
can use the ident utility to verify this, and you can use the fixmod
utility to change the owner of a module.

b. Either the driver, descriptor, or the SCF file manager was not found
during the kernel’s module search list. Review the Searching the
Module Directory section of this chapter and verify these modules
were found. If not, check the special memory areas and verify these
modules are in these areas. Also, check the ROM list at the first boot
stage to make sure all special memory areas were found.

c. The driver returned an error. For some reason, the driver’s Init
routine is returning with an error. Either the driver must be debugged
using RomBug or review the source to determine the reasons why
an error can be returned.

If you are using the sc68681 driver, a common problem is the proper setting
of the DevCon descriptor field. Review the section on setting up the
DevCon field later in this appendix.

• Can’t open default device
IOMan is trying to open the default device name defined in the
M$SysDev field of the Init module. The reasons for this error are
similar to those for the console device given above except the file
manager used is RBF.

BTrouble Shooting

OS-9 for 68K Processors OEM Installation Manual 241

Coldstart Errors for the Atomic Versions of the Kernel
and IOMan

When running in an Atomic environment, if the Kernel or IOMan cannot
complete their startup procedures correctly then an error code is printed to
the system console.

These error codes are currently defined as:

Table B-1 Coldstart Errors

Module Error Meaning

kernel K-001 the processor type and kernel are not
compatible

K-002 the kernel can't find the Init module

K-003 the kernel can't allocate the process block
table

K-004 the kernel can't allocate its irq stack

K-005 the kernel can't fork the initial process

K-006 an error was returned from an extension
module

K-007 the kernel can't allocate its irq polling
table

K-008 the kernel can't allocate the event table

K-009 the total size of a process descriptor is
greater than 32K

ioman I-001 ioman can't install its service requests

242 OS-9 for 68K Processors OEM Installation Manual

If a problem occurs with startup using the development kernel or IOMan, a
full text message is printed on the system console instead of an error code.

Errors during system startup are caused by inappropriate values in the
system's Init module.

I-002 ioman can't locate the Init module

I-003 ioman can't allocate memory for the
system path and device tables

Table B-1 Coldstart Errors (continued)

Module Error Meaning

BTrouble Shooting

OS-9 for 68K Processors OEM Installation Manual 243

Setting Up the DevCon Descriptor Field for
the Sc68681 Serial Driver

There is an area of 256 bytes with the kernel’s system globals called OEM
Global Data. The kernel does not use this area; OEMs may use it for
whatever they like.

The MC68681 serial device has a peculiar feature—two of its registers are
write only registers. These registers are the:

• Interrupt Mask Register (IMR).

• Auxiliary Control Register (ACR).

Because this device has three functions (serial port A, serial port B, and a
ticker) changes to these two write only registers must be communicated to
other drivers using this device. The sc68681 driver generates a shadow
register pair of the IMR and ACR within the OEM Global Data area. In this
way, the driver running for port A can communicate changes for the driver
running for port B, as well as the ticker routines.

One shadow register pair is required for each physical 68681 serial device
used in the system, so the drivers for each side of each device can
communicate with each other. The allocation of each pair is communicated
to the driver via the DevCon section of the SCF Descriptor for each logical
device. An example allocation is:

Device #1: A-side port: “TERM” - pair #1
Device #1: B-side port: “T1” - pair #1
Device #2: A-side port: “T2” - pair #2
Device #2: B-side port: “T3” - pair #2, etc...

Each pair of bytes contains the current value of these registers, for each
68681 serial device in the system.

• The first byte of the pair is the Interrupt Mask Register (IMR) image.

• The second byte of the pair is the Auxiliary Control Register (ACR)
image.

Allocation of each pair of bytes is done via an offset pointer located in the
DevCon section of SCF device descriptors. The offset pointer is the
address offset into this area, as follows:

244 OS-9 for 68K Processors OEM Installation Manual

 Byte Offset Device Number
 ----------- -------------
 0 ----------->> device #1
 2 ----------->> device #2
 4 ----------->> device #3

You can put the following example code into your systype.d file to make
proper descriptors.

* Make Descriptors for sc68681 device
* Need to set up DevCon field correctly
 org 0 base offset starts at OEM_Glob
D_681_1 do.w 1 shadow register pair for device #1
D_681_2 do.w 1 shadow register pair for device #2
D_681_3 do.w 1 shadow register pair for device #3
D_681_4 do.w 1 shadow register pair for device #4
D_681_5 do.w 1 shadow register pair for device #5
D_681_6 do.w 1 shadow register pair for device #6
D_681_7 do.w 1 shadow register pair for device #7

* SCF device descriptor definitions
* used only by scf device descriptor modules
*
* SCFDesc:
Port,Vector,IRQlevel,Priority,Parity,BaudRate,DriverName
* M$Vect,M$IRQLvl,M$Prior,
*
*
*
* Descriptors term and t1 are for the 1st 68681 device
*
TERM macro
 SCFDesc TermBase,TermVect,TermLevel,1,0,14,sc68681
DevCon dc.w D_681_1 offset in OEM global storage
 endm
T1 macro
 SCFDesc T1Base,T1Vect,T1Level,2,0,14,sc68681
DevCon dc.w D_681_1 offset in OEM global storage
 endm
*
* Descriptors t2 and t3 are for the 2nd 68681 device
*
T2 macro
 SCFDesc T2Base,T2Vect,T2Level,2,0,14,sc68681
DevCon dc.w D_681_2 offset in OEM global storage
 endm
T3 macro
 SCFDesc T3Base,T3Vect,T3Level,2,0,14,sc68681
DevCon dc.w D_681_2 offset in OEM global storage
 endm
*
* Descriptors t4 and t5 are for the 3rd 68681 device
*
T4 macro

BTrouble Shooting

OS-9 for 68K Processors OEM Installation Manual 245

 SCFDesc T4Base,T4Vect,T4Level,2,0,14,sc68681
DevCon dc.w D_681_3 offset in OEM global storage
 endm
T5 macro
 SCFDesc T5Base,T5Vect,T5Level,2,0,14,sc68681
DevCon dc.w D_681_3 offset in OEM global storage
 endm

246 OS-9 for 68K Processors OEM Installation Manual

Searching the Module Directory

The gb command at the ROMBug prompt starts the boot stages for
ROMBug. This tells the debugger to go in boot stages.

After the initial go, the debugger breaks out of the boot procedure just
before the boot.a code jumps to the kernel. This is to check if the boot
code performed like it should. The registers should be in OS-9 format as
documented in the The Boot.a File section of Chapter 3: Step One:
Porting the Boot Code. If all seems well, another gb in RomBug or g in
debug allows the jump to the kernel and for the boot procedure to break
again.

The debugger breaks in the cold part of the kernel. The code for cold has
just completed the memory verification and the ROM memory module
searches. It is just about ready to fork the initial process. At this point, you
can manually search the module directory to see if all the modules have
been found.

At this point, the memory location pointed to by the vbr register (or
memory location 0 if on a 68000 processor) points to the beginning of
system globals. Offset 0x3c from the system globals the address of the
module directory list. Each directory entry is 16 bytes, or 10 hex bytes that
can make dumping it very handy. The first long word in a directory entry is
the address to the module itself.

From a debugger, the following gets to the module directory:

d [[.vbr]+3c]

The following actually gets to the first module listed in the directory, which
should be kernel:

d [[[.vbr]+3c]]

NoteNote
These examples assume a CPU with a VBR. If your CPU does not have
a VBR, substitute the value of 0 in the following examples.

BTrouble Shooting

OS-9 for 68K Processors OEM Installation Manual 247

The next module would be obtained by:

d [[[.vbr]+3c]+10]

The modules should be listed as they were put into the ROMs or bootfile.
To find the name of the module:

• Get the name offset from the header.

• Add the offset to the beginning of the header.

NoteNote
Remember, all modules begin with the code 4afc.

Once the system is running, you can reference the system globals with
either RomBug or SysDbg to see the module directory. For example:

d [[[.vbr]+3c]+10]

The name string of the module is pointed to by a pointer stored at offset 0xc
into the module. This offset is the offset of the name string from the
beginning of the module. This can be referenced indirectly from the
debugger and added on to the beginning of the module. Use the following
debugger to find the name of the first module:

d [[[.vbr]+3c]]+[[[[.vbr]+3c]]+c]

The second and third module names can be found as follows:

d [[[.vbr]+3c]+10]+[[[[.vbr]+3c]+10]+c]
d [[[.vbr]+3c]+20]+[[[[.vbr]+3c]+20]+c]

As a shortcut to displaying the modules, the following sequences of
commands can be used:

ROMbug: .r1 [[.vbr]+3c]
 d [.r1]+[[.r1]+c] 10 .r1 .r1+10

Simply use control-A repeatedly after entering the second line to display
the names in the module directory in sequence.

248 OS-9 for 68K Processors OEM Installation Manual

Appendix C: Low-level Driver Flags

This appendix explains the low level I/O driver flags for each driver in
the Developer’s Kit. These flags deal with chip addressing and other
issues that are different between hardware processor boards. There are
also flags determining which driver is using the Cons port and which is
using the Comm port. These flags should be defined in systype.d. If
a driver is included in the Developer’s Kit and is not listed here, simply
view the source to determine what each of the flags do.

This appendix contains the following topics:

• Flags for io2661.a

• Flags for io6850.a

• Flags for io68560.a

• Flags for io68562.a

• Flags for io68564.a

• Flags for io68681.a

• Flags for io68901.a

• Flags for ioz8530.a

250 OS-9 for 68K Processors OEM Installation Manual

Flags for io2661.a

ConsType If equated to SC2661, the driver handles
console I/O.

CommType If equated to SC2661, the driver handles
communication I/O.

SerType If equated to DBC68, the registers on the
chip are addressed for every byte
addressing. If this label is not defined, or
defined to be something else, the chip’s
registers are addresses for every other byte.

For example,

if SerType = DBC68 the addressing is base+0, base+1, base+2,
base+3.

if SerType ! = DBC68 the addressing is base+0, base+2, base+4,
base+6.

CLow-level Driver Flags

OS-9 for 68K Processors OEM Installation Manual 251

Flags for io6850.a

ConsType If equated to MC6850, the io6850.a is
used for console I/O.

CommType If equated to MC6850, the io6850.a is
used for communication I/O.

IOType This flag must be equated to either 0 or 1.
This driver accesses the 6850’s status
register with an offset of zero from the
Cons_Addr (or Comm_Adr), and the data
register is accessed either by an offset of 1
or 2 depending on whether IOType is
equated to 0 or 1 respectively.

Ser Type If equated to H68K, an onboard chip
accessible baud rate generator is available.
A flag, TimPort, needs to be equated to
address of this baud rate generator. Codes
within this conditionalized code needs to be
modified to set the baud rate generator
correctly. If there is no chip accessible baud
rate generator, SerType should not be
defined at all.

252 OS-9 for 68K Processors OEM Installation Manual

Flags for io68560.a

ConsType If equated to R68560, io68560 is used for
console I/O.

CommType If equated to R68560, io68560 is used for
communication I/O.

CPUType If equated to CPU29, another flag,
BusWidth, needs to be defined.

BusWidth label determines the addressing for the registers on the 68560.
If CPUType is not defined at all, the default addressing or bus width is 2,
registers are accessed on every other byte.

By default, the driver accesses registers starting at the base address. If you
wish to start accessing the registers at base address +1, equate label
IOBdType to 2.

CLow-level Driver Flags

OS-9 for 68K Processors OEM Installation Manual 253

Flags for io68562.a

ConsType If equated to S68562, io68562 driver
handles console I/O.

CommType If equated to S68562, io68562 handles
communication I/O.

CPUType This label can be defined to CPU30. If not
defined, or defined to be something else,
the registers of the 68562 start at the
Cons_Addr (or Comm_Adr) and are
addressed by every byte. If this label is set
to CPU30, another label, BusWidth needs
to be defined. Also, the registers start at
Cons_Addr+1 (or Comm_Adr+1).
BusWidth label is set to the number of
bytes between each register.

254 OS-9 for 68K Processors OEM Installation Manual

Flags for io68564.a

There are no flag or label definitions for this driver. All of the register labels
for the 68564 start at Cons_Addr or Comm_Adr and is addressed for every
byte. If the addressing for your hardware is different, these labels need to
be changed to fit your hardware.

CLow-level Driver Flags

OS-9 for 68K Processors OEM Installation Manual 255

Flags for io68681.a

The standard version of this code assumes the Console device is the A
side chip port, and the communications device is the B side port of the
same chip. When this situation does not apply, you need to implement
system specific conditionals via ifdef statement (refer to PACERMOS for
example coding).

For all versions, the IMR shadow images for the CONS port is assumed to
be held in the first pair of bytes, starting at the OEM global area, D_Start.

For the PACER system, the IMR shadow image for the COMM is expected
to reside in the second pair of OEM Globals.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For further information about OEM Globals and shadow registers,
please refer to the section Setting Up the DevCon Descriptor Field
for the Sc68681 Serial Driver in Appendix B: Trouble Shooting.

There are three label definitions that need to be defined for this driver:
FASTCONS, PACERMOS, and CPUType.

FASTCONS If this label is defined, the CONS port and
COMM port runs at 19.2K Baud. If not
defined, the default is 9600 Baud.

PACERMOS If this label is defined, the CONS port is on
the A side of chip one, and the COMM port
is on the B side of chip two. This also sets
the port to be even parity and seven
bits/character.

CPUType This label has several different definitions.
Its main purpose is to define the registers on
the 68681 are addressed.

VME165 addressing is every fourth byte.

256 OS-9 for 68K Processors OEM Installation Manual

VME135,VME140,VME141, SYS360. MC68340 addressing is every other
byte.

In addition to the above, the following CPUType labels have affects:

MC68340 There is a separate mode register 2 and this
allows coding for it.

SYS360 Sets up RTS on the CONS port.

CLow-level Driver Flags

OS-9 for 68K Processors OEM Installation Manual 257

Flags for io68901.a

ConsType If set to MOS68901, the io68901.a is
used as the console drivers.

CommType If set to MOS68901 the io68901.a is used
on the communications driver.

BC_68901 This label should be equated to the bus
width of the ship’s register addressing. If not
defined, the default bus width is two for
addressing the registers on every other
byte.

258 OS-9 for 68K Processors OEM Installation Manual

Flags for ioz8530.a

ConsType If equated to ZA, the A side of the chip is the
console port. If equated to ZB, the B side is
the console port.

CommType If equated to ZA, the A side of the chip is the
communications port. If equated to ZB, the
B side is the communications port.

CPUType This determines the addressing of 8530. If
set to VME117, VME107, or VME162, the
addressing starts at Cons_Addr+1 (or
Comm_Adr+1) and is accessed on every
byte.

ConsBaud Setting this sets the console device baud
rate. If this is not defined, the label
WR12Std needs to be set. This label is set
to the value to be put into write register 12 to
set the baud rate.

CommBaud Same as ConsBaud, except it sets the baud
rate for the communications port.

WR14Std This label needs to be set up for write
register 14 of the 8530.

Appendix D: SCSI-System Notes

This appendix contains information about the OS-9 for 68K
SCSI-System Drivers.

260 OS-9 for 68K Processors OEM Installation Manual

OS-9 for 68K SCSI-System Drivers

Hardware Configuration

The basic premise of this system is to break the OS-9 for 68K driver into
separate high-level and low-level areas of functionality. This allows different
file managers and drivers to talk to their respective devices on the SCSI
bus.

The device driver handles the high-level functionality. The device driver is
the module called directly by the appropriate file manager. Device drivers
deal with all controller-specific/device-class issues (for example, disk drives
on an OMTI5400).

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

When you write a device driver, do not include MPU/CPU specific code.
This makes the device driver portable. Refer to the OS-9 for 68K
Technical Manual for more information about device drivers.

The high-level drivers:

• Prepare the command packets for the SCSI target device.

• Pass this packet to the low-level subroutine module.

The low-level subroutine module passes the command packet (and data if
necessary) to the target device on the SCSI bus. The low-level code does
not concern itself with the contents of the commands/data; it simply
performs requests for the high-level driver. The low-level module also
coordinates all communication requests between the various high-level
drivers and itself. The low-level module is often an MPU/CPU specific
module, and thus can be written as an optimized module for the target
system.

DSCSI-System Notes

OS-9 for 68K Processors OEM Installation Manual 261

The device descriptor module contains the name strings for linking the
modules together. The file manager and device driver names are specified
in the normal way. The low-level module name associated with the device is
indicated via the DevCon offset in the device descriptor. This offset pointer
points to a string containing the name of the low-level module.

Example One

An example system setup shows how drivers for disk and tape devices can
be mixed on the SCSI bus without interference.

 OMTI5400 Controller

Attributes include:

• Addressed as SCSI ID 6.

• Hard disk addressed as controller’s LUN 0.

• Floppy disk addressed as controller’s LUN 2.

• Tape drive addressed as controller’s LUN 3.

Fujitsu 2333 Hard Disk with Embedded SCSI Controller

Addressed as SCSI ID 0.

Host CPU: MVME147

Attributes include:

• Uses WD33C93 SBIC Interface chip.

• Own ID of chip is SCSI ID 7.

262 OS-9 for 68K Processors OEM Installation Manual

The hardware setup looks like this:

Figure D-1 Hardware Setup

Software Configuration

The high-level drivers associated with this configuration are:

The low-level module associated with this configuration is:

Table D-1 High-level Drivers

Name Handles

RB5400 Hard and floppy disk devices on the OMTI5400.

SB5400 Tape device on the OMTI5400.

RB2333 Hard disk device.

Table D-2 Low-level Modules

Name Handles

SCSI147 WD33C93 Interface on the MVME147 CPU.

147
ID:7

OMTI5400
ID:6

F2333
ID:0

H/D
LUN 0

H/D
LUN 0

F/D
LUN 2

Tape
LUN 3

DSCSI-System Notes

OS-9 for 68K Processors OEM Installation Manual 263

A conceptual map of the OS-9 for 68K modules for this system looks like
this:

Figure D-2 Example 1 Conceptual Map of OS-9 for 68K Modules

If you have followed the previous guidelines, you can easily expand and
reconfigure the SCSI devices (both in hardware and software). Three
examples show how this could be achieved.

Example Two

This example adds a second SCSI bus using the VME620 SCSI controller.
This second bus has an OMTI5400 controller and associated hard disk.

The VME620 module uses the WD33C93 chip as the SCSI interface
controller, but it uses a NEC DMA controller chip. Thus, you need to create
a new low-level module for the VME620 (we call the module SCSI620). To
create this module, edit the existing files in the SCSI33C93 directory to add
the VME620 specific code. This new code would typically be
conditionalized. You could then create a new makefile (such as
make.vme620) to produce the final SCSI620 low-level module.

SB5400

SCSI147

OS-9 Kernel

RBF (disks) SBF (tapes)

RB2333RB5400Device Driver Level

Physical Bus Level

File Manager Level

Kernel Level

264 OS-9 for 68K Processors OEM Installation Manual

The high-level driver for the new OMTI5400 is already written (RB5400), so
you only have to create a new device descriptor for the new hard disk.
Apart from any disk parameter changes pertaining to the actual hard disk
itself (such as the number of cylinders), you could take one of the existing
RB5400 descriptors and modify it so the DevCon offset pointer points to a
string containing SCSI620 (the new low-level module).

The conceptual map of the OS-9 for 68K modules for the system now looks
like this:

Figure D-3 Example 2 Conceptual Map of OS-9 for 68K Modules

Example Three

This example adds an Adaptec ACB4000 Disk Controller to the SCSI bus
on the MVME147 CPU.

To add a new, different controller to an existing bus, you need to write a
new high-level device driver. You would create a new directory (such as
RB4000) and write the high-level driver based on an existing example
(such as RB5400). You do not need to write a low-level module, as this

SB5400

OS-9
Kernel

RBF (disks) SBF (tapes)

RB2333RB5400Device Driver
Level

Physical Bus
Level

File Manager
Level

Kernel Level

SCSI147
SCSI Bus #1

SCSI620
SCSI Bus #2

DSCSI-System Notes

OS-9 for 68K Processors OEM Installation Manual 265

already exists. You then need to create your device descriptors for the new
devices, with the module name being rb4000 and the low-level module
name being scsi147.

The conceptual map of the OS-9 for 68K modules for the system now looks
like this:

Figure D-4 Example 3 Conceptual Map of OS-9 for 68K Modules

Perhaps the most common reconfiguration occurs when you add additional
devices of the same type as the existing device. For example, adding an
additional Fujitsu 2333 disk to the SCSI bus on the MVME147. To add a
similar controller to the bus, you only need to create a new device
descriptor. There are no drivers to write or modify, as these already exist
(RB2333 and SCSI147). You need to modify the existing descriptor for the
RB2333 device to reflect the second device’s physical parameters (SCSI
ID) and change the actual name of the descriptor itself.

SB5400

OS-9 Kernel

RBF (disks) SBF (tapes)

RB2333RB5400Device Driver Level

Physical Bus Level

File Manager Level

Kernel Level

SCSI147
SCSI Bus #1

RB4000

266 OS-9 for 68K Processors OEM Installation Manual

Appendix E: Using the OS-9 for 68K

System Security Module

This appendix includes the following topics:

• Memory Management Units

• Hardware/Software Requirements

• Configuring SSM for MC68451 Systems

• Adding SSM to the OS-9 Bootfile

• Creating a System Security Module

• SSM Module Structure

• Hardware Considerations

• Complete Source Listing

268 OS-9 for 68K Processors OEM Installation Manual

Memory Management Units

This section describes the level of support for the various memory
management units (MMU) provided by Microware. Included are:

• Motorola 68451 (typically for 68010 systems)

• Motorola 68851 (typically for 68020 systems)

• Embedded MMUs found on the 68030 and 68040 microprocessors.

The 68451 requires only minor modification before use while the others are
implementation independent.

Instructions and an example are also included for instances where OEMs
may wish to design their own MMU.

EUsing the OS-9 for 68K System Security Module

OS-9 for 68K Processors OEM Installation Manual 269

Hardware/Software Requirements

The following hardware and software is required for use with the OS-9
System Security Module (SSM):

• OS-9, Version 2.4 or greater.

• A Memory Management Unit must be installed on the system:

•as a discrete chip,

•embedded on the microprocessor, or

•as a separate card.

Versions of SSM040

There are two versions of SSM040. The difference between the two is the
cache mode for supervisor state:

• ssm040 is write-thru.

• ssm040_cbsup is copy-back.

In both cases the user-state cache mode defaults to write-thru. Select the
appropriate SSM module for the supervisor state cache mode desired, and
then set up cache overrides in the Init module cache list entries to turn
on copy-back/etc regions for user-state.

270 OS-9 for 68K Processors OEM Installation Manual

Configuring SSM for MC68451 Systems

You may need to modify the code for the MC68451 SSM module for your
particular hardware. A short source file, ssmdefs.a, is included with the
OS-9 for 68K Developers Kit distribution to allow you to specify the base
address of the MC68451 chip and the offsets into the Address Space Table
used by the SSM code.

In most cases, you only need to change the device base address. Some
hardware implementations of the MC68451 (specifically the Heurikon
M10/V10 CPU's) use the DMA portion of the Address Space Table (AST)
instead of the MPU section which is normally used. You should change the
offsets for the AST registers to match your hardware. The ssmdefs.a file
has conditional directives to accommodate either the standard or Heurikon
style implementations.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to pages 3-4 of the Motorola MC68451 manual, April 1983 for a
complete description of the Address Space Table.

For example, the Eltec VEX CPU has two MC68451 chips located at
$00fa8000 and $00fa8200. The SSM code supplied by Microware
supports only one MMU, so the MMU_Addr in the ssmdefs.a file should
be changed to either $00fa8000 or $00fa8200. You must also remove
the conditional code for the Motorola MVME121 for the Eltec VEX CPU.

Before: nam ssmdefs

ttl definitions for system security module

* This file contains definitions which may need to be
* changed for different applications of the MC68451. These
* include the base address of the MMU chip and the Address
* space table registers used for the various types of memory
* accesses.

 opt -l
 use <oskdefs.d>

EUsing the OS-9 for 68K System Security Module

OS-9 for 68K Processors OEM Installation Manual 271

 use <systype.d>
 opt l

 psect ssmdefs,0,0,0,0,0

 ifndef VME121
VME121 equ 121
 endc

 ifndef CPUType
CPUType set 0
 endc

CPUType set VME121

* Define the address of the MMU chip
*
 ifne CPUType-VME121
MMU_Addr: equ $FE7000 assume heurikon
 else
MMU_Addr: equ $F60000 base address of the mmu for VME121
 endc

 ifeq CPUType-VME121
* AST register definitions for non-Heurikon
*
MMU_UserData: equ $02 offset to user data entry in ast
MMU_UserCode: equ $04 to user's code
MMU_SysData: equ $0A to system data
MMU_SysCode: equ $0C to system code

 else

* AST register definitions for Heurikon
*
MMU_UserData: equ $12 offset to user data entry in ast
MMU_UserCode: equ $14 for user's code area
MMU_SysData: equ $1A for system data
MMU_SysCode: equ $1C for system code
 endc

 ends

272 OS-9 for 68K Processors OEM Installation Manual

After: nam ssmdefs

ttl definitions for system security module

*
* This file contains definitions which may need to be
* changed for different applications of the MC68451. These
* include the base address of the MMU chip and the Address
* space table registers used for the various types of memory
* accesses.

 opt -l
 use <oskdefs.d>
 use <systype.d>
 opt l

 psect ssmdefs,0,0,0,0,0

* Define the address of the MMU chip
*

MMU_Addr: equ $FA8000 assume heurikon

* AST register definitions for Eltec VEX CPU
* Eltec uses the normal layout as described in
* the Motorola MC68451 manual.
*
MMU_UserData: equ $02 offset to user data entry in ast
MMU_UserCode: equ $04 to user's code
MMU_SysData: equ $0A to system data
MMU_SysCode: equ $0C to system code

 ends

Once the ssmdefs.a file has been modified to match your hardware, you
can assemble ssmdefs.a and link it to the ssm.r file (the relocatable
code for the MC68451 SSM module) to create the ssm object code. A
makefile is included on the distribution disk for this purpose.

To accomplish this, follow these two steps:

• Change to the SSM451 directory.

• Enter make ssm451.

For example:

EUsing the OS-9 for 68K System Security Module

OS-9 for 68K Processors OEM Installation Manual 273

$ chd /h0/MWOS/OS9/SRC/SYSMODS/SSM/SSM451
$ make ssm451

You can now install the SSM module on your system.

274 OS-9 for 68K Processors OEM Installation Manual

Adding SSM to the OS-9 Bootfile

Three steps are required to add SSM to the OS-9 for 68K Bootfile:

Step 1. Create a new init module.

Step 2. Create a new bootfile.

Step 3. Test SSM operation.

Each step is detailed below.

Step One: Create a New Init Module

To create a new init module, change your working directory to
/h0/MWOS/OS9/680X0/PORTS/<your CPU>.

Edit the system's systype.d file CONFIG macro so the string ssm
appears in the Init Module Extension list.

NoteNote
Most systems do not define Extens in this macro because the default
extension module (os9p2) is defined in init.a if no extension module
list is given in CONFIG:

Before: CONFIG macro

Mainfram dc.b "Motorola VME 110",0
SysStart dc.b "sysgo",0 name of initial module to execute
SysParam dc.b C$CR,0 parameter to SysStart
SysDev dc.b "/D0",0 initial system disk pathlist
ConsolNm dc.b "/Term",0 console terminal pathlist
ClockNm dc.b "mc6840",0 clock module name
 endm
* (Other default values may be set here)

EUsing the OS-9 for 68K System Security Module

OS-9 for 68K Processors OEM Installation Manual 275

After: CONFIG macro

Mainfram dc.b "Motorola VME 110",0
SysStart dc.b "sysgo",0 name of initial module to execute
SysParam dc.b C$CR,0 parameter to SysStart
SysDev dc.b "/D0",0 initial system disk pathlist
ConsolNm dc.b "/Term",0 console terminal pathlist
ClockNm dc.b "mc6840",0 clock module name
Extens dc.b "os9p2 ssm",0
 endm
* (Other default values may be set here)

Remake the Init module by using the makefile located in the
OS9/SRC/SYSMODS/INIT directory.

$ make init ;* Make new init module.

Step Two: Create a New Bootfile

Edit the bootlist file so the SSM you use appears in that list. For example,
ssm851 for systems using an MC68851.

$ chd MWOS/OS9/680X0/PORTS/<your CPU>
$ os9gen /h0fmt -z=bootlist;* Create the bootfile.

Step Three: Test SSM Operation

After making the new bootfile, reboot the system and test the basic
functions of SSM operation. To verify the SSM was found and initialized
correctly, attempt to access a protected area of memory.

One memory area that is protected from all user state accesses is the
Mem.Beg address in the system's systype.d file. Most systems have
Mem.Beg set to $400.

$ debug ;* Call user state debugger.
dbg: d 400 Access Mem.Beg.
0x00000400 - bus error

Access prevented: bus error results.

276 OS-9 for 68K Processors OEM Installation Manual

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the maps utility, refer to the Utilities
Reference.

To test the SSM functionality more thoroughly, use the supplied maps utility.
Run maps on all processes in the system and exercise all options of maps.

 $ maps -l ;* Loop through all processes.

Installation of SSM is now complete.

EUsing the OS-9 for 68K System Security Module

OS-9 for 68K Processors OEM Installation Manual 277

Creating a System Security Module

This section explains how to write a System Security Module (SSM) for an
OS-9 system with memory protection hardware that Microware currently
does not support. The code for individual systems varies considerably,
according to the design of the hardware. Source code for a customized
system security module is provided in a later section to illustrate the
memory management principles discussed. The module you write must
accomplish the same tasks, but may accomplish these tasks in whatever
way you deem most effective.

The System Security Module (SSM) protects system memory by
preventing processes from accessing memory not assigned to the process.
Each time a process accesses memory, the memory address is passed
through memory protection hardware which checks the address to see if
the process has access to it. If the address is protected, a bus error
exception is generated. The purpose of the SSM is to install a group of
system service requests which the kernel invokes when it gives a process
access to specific memory blocks.

NoteNote
The SSM does not provide address translation of any kind, even if the
memory management hardware is capable of this. The OS-9 for 68K
kernel's memory management routines are designed to make the
implementation of an SSM as easy as possible. To accomplish this, the
kernel must make two assumptions about how the protection hardware
works.

• The kernel assumes the memory protection hardware is disabled
during supervisor state accesses.

• The kernel assumes the user state address space may be divided
into equal-sized blocks protected independently of each other.

278 OS-9 for 68K Processors OEM Installation Manual

SSM determines the size of the memory blocks based on the amount of
addressable system memory and the protection hardware being used. The
blocks are usually 4, 8, or 16K bytes each. Smaller blocks are preferred
when possible. A process can access memory in two ways:

• It may be part of a module to which the process links (the process'
primary module is implicitly linked).

• It may be part of the process' data area.

Linked modules are not considered to be owned by a process; they are
owned by the system, and the process has been granted permission to
access them. A process' data area is considered owned by the process,
and must not be accessible to other processes. For each process, the
protection module must keep track of the following:

• The memory blocks the process may access.

• The read/write permissions for these blocks.

• The number of times each block has been made accessible to the
process.

In the example code, each process has associated with its process
descriptor a map of the system memory blocks it may access. This map is
a copy of the memory protection hardware's task image and contains
read/write permissions for each block in the address space. Two of the
protection module's subroutines, F$Permit and F$Protect, update this
map rather than the hardware. Another map, containing the number of
times specific memory blocks have been made accessible to the program,
is also kept for each process.

EUsing the OS-9 for 68K System Security Module

OS-9 for 68K Processors OEM Installation Manual 279

SSM Module Structure

The System Security Module must conform to the basic structure of all
OS-9 for 68K modules. It must be a system object module with the
supervisor state attribute. The example code illustrates how the module's
psect header establishes this. At a minimum, you must include seven
subroutines in the module body:

• Init

• F$Permit

• F$Protect

• F$AllTsk

• F$DelTsk

• F$ChkMem

• F$GSPUMp

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more specific information about memory modules, refer to the OS-9
for 68K Technical Manual.

Except for Init, these subroutines are installed as system calls the OS-9
for 68K kernel calls at appropriate times. The subroutines are not large or
difficult; the challenge in writing a protection module is deciding how to
make the memory protection hardware conform to OS-9's memory
protection model. Aside from this, the structure of the module depends
entirely on the system's specific hardware and the whim of the
programmer.

Input
a3) = SSM global static storage
a6) = system global pointer

280 OS-9 for 68K Processors OEM Installation Manual

Error
cc = carry bit set

Output
d1.w = error code if error

Destroys

The Init routine may destroy the values of (d0) and (d1).

Description

Init is called by OS-9 during coldstart and serves as the protection
module's initialization entry point.

Init initializes the following:

• Any system global variables.

• The protection hardware.

• SSM service requests.

The name of the memory protection module, usually ssm, must be included
in a list of extension module names found in the system configuration
module, init. This informs the kernel to link to the protection module
during coldstart, and if found, to execute its init entry point. The init
entry point is run in system state before any user state processes have
begun. If necessary, the protection module may declare its own static
global (vsect) variables. If a vsect is included, the vsect data is allocated
and cleared at coldstart and a pointer to these variables is passed to the
init routine in the (a3) register.

EUsing the OS-9 for 68K System Security Module

OS-9 for 68K Processors OEM Installation Manual 281

NoteNote
Initialized variables are not allowed in the vsect. The kernel never
deallocates or reuses the vsect memory. If the SSM service requests
are installed with (a3) intact, the kernel also passes this vsect pointer to
each service routine when it is called. This enables the service routines
to share some private global variables.

Two system global variables are of particular interest to the protection
module:

D_AddrLim Is the highest RAM/ROM address found by
the kernel's coldstart routine. Init can use
D_AddrLim to determine the physical block
size most appropriate for the memory
protection hardware.

D_BlkSiz Is the system's minimum memory allocation
size in bytes. The init routine should reset
D_BlkSiz to the minimum blocksize the
memory protection hardware can accept.
The value must be an integral power of two
and has a default value of sixteen bytes.

Both D_AddrLim and D_BlkSiz are of type long. In the example code,
the protection module allocates global storage to contain a task allocation
table. This table contains one entry for each hardware task number
available to be assigned to a process. Each four-byte entry contains a
pointer to the process assigned to the task number. If the task number has
not been assigned to a process, the entry is NULL.

NoteNote
If init returns the carry bit set, cold start aborts and the system does
not come up.

282 OS-9 for 68K Processors OEM Installation Manual

The remaining subroutines, implemented as system calls, are documented
in the OS-9 for 68K Technical Manual. For reference, these are:

F$Permit Allow Process Access to Specified Memory

F$Protect Remove Process' Permission to Memory
Block

F$AllTsk Ensure Protection Hardware Is Ready

F$DelTsk Release Protection Structures

F$ChkMem Check Access Permissions

F$GSPUMp Check Access Permissions

EUsing the OS-9 for 68K System Security Module

OS-9 for 68K Processors OEM Installation Manual 283

Hardware Considerations

The protection module code provided with this manual was designed for
use with a custom designed board providing memory protection without
address translation. The hardware is automatically disabled during system
state processes. The hardware supports up to 64 independent tasks. It
may be configured in one of four ways, depending on the amount of
memory in the system:

A task number (0-63) is stored in the protection unit's hardware task
register to select one of the 64 available tasks. The selected task's
hardware protection image appears as RAM on the bus at the SPU_RAM
address. The protection image for a task consists of either 256 or 512
contiguous data bytes depending on how the hardware has been
configured.

Table E-1 System Memory Size

Maximum
Address Space Block Size Number of Blocks

2 Meg 8K 256

4 Meg 8K 512

8 Meg 16K 512

16 Meg 32K 512

284 OS-9 for 68K Processors OEM Installation Manual

Each byte in the protection image contains a two-bit protection mask for
every four blocks of main memory. The protection blocks are arranged in
descending order within each byte. For example:

The software protection image is an exact copy of the protection map used
by the hardware.

Table E-2 Protection Image

Byte offset in
image Byte 0 Byte 1 Byte 2 Byte 3 . . . etc

Address block # 3 2 1 0 7 6 5 4 B A 9 8 F D E C . . . etc.

Protection bits wrwrwrwr wrwrwrwr wrwrwrwr wrwrwrwr

EUsing the OS-9 for 68K System Security Module

OS-9 for 68K Processors OEM Installation Manual 285

Complete Source Listing

NoteNote
Previous versions of the System Security Module were called the
System Protection Unit (SPU). As a result, the source code used in this
manual refers to SPU rather than SSM.

Customized 68020 protection module

Task Allocation routines -
 nam Task Allocation routines
 00000010 Edition equ 16 current edition number
 00000c01 Typ_Lang equ (Systm<<8)+Objct
 0000a000 Attr_Rev equ ((ReEnt+SupStat)<<8)+0
 psect spu,Typ_Lang,Attr_Rev,Edition,0,Init
 use <oskdefs.d>
 opt -l

* System Protection Unit (SPU) hardware definitions
 00000040 MAXTASK equ 64 total number of SPU tasks available
 01e00000 SPU_RAM equ $1e00000 SPU map image RAM area (uses odd addr)
 01e80000 SPU_Stat equ $1e80000 address of SPU status register
 01d00000 SPU_Ctl equ $1d00000 address of SPU control register
 01d80000 SPU_Task equ $1d80000 address of SPU task register
* SPU task RAM protection bits (in map image)
 00000001 ReadProt equ %00000001 enable read protect
 00000002 WritProt equ %00000010 enable write protect
* SPU status register (currently unimplemented)
 00000001 E_SPU equ %00000001 SPU error
 00000002 E_IO equ %00000010 I/O bus error
 00000004 E_TimeO equ %00000100 time out error
 00000008 E_Parity equ %00001000 parity error
* SPU control register bits
 00000000 Mem2MB equ %00000000 two megabyte address space
 00000001 Mem4MB equ %00000001 four megabyte address space
 00000002 Mem8MB equ %00000010 eight megabyte address space
 00000003 Mem16MB equ %00000011 sixteen megabyte address space (max)
 00000008 EnabSPU equ %00001000 enable SPU when set
 00000010 EnCache equ %00010000 enable 68020 inst cache (hardware)
0000 0020 SPUSizes dc.l $200000,$400000,$800000,$1000000
0010 0d0d BlkSizes dc.b 13,13,14,15 corresponding block sizes (2^n)
0014 0100 SPUBlks dc.w 256,512,512,512 corresponding number of SPU blocks

286 OS-9 for 68K Processors OEM Installation Manual

* SPU global variable definitions
* NOTE: this memory is allocated and cleared, but NOT initialized by OS-9
 vsect
 00000000 ds.b 1 reserved
 00000001 S_BlkBit ds.b 1 system block size as a power of 2
 00000002 S_SPUBlks ds.w 1 # of blocks the addr space is div into
 00000004 S_TskTbl ds.l MAXTASK SPU task allocation table
 00000000 S_MemSiz equ . size of global storage
 00000000 ends

* SPU process variable definitions
 00000000 org 0
 00000000 P_Task do.w 1 task number assigned to process
 00000002 P_BlkCnt do.l 1 ptr to block count map
 00000006 P_SPUImg equ . beginning of SPU image map
* .-------------------.
* | task number |
* |-------------------|
* | ptr to blk counts +---.
* |-------------------| |
* | SPU image | |
* | (64 or 128 bytes) | |
* |-------------------|<--"
* | block count map |
* | (256 or 512 bytes)|
* "-------------------"

* Subroutine Init
* Called by OS-9 coldstart to initialize SPU hardware
* and related global variables.
* Passed: (a3)=SPU global data ptr
* (a6)=system global ptr
* Returns: none
* Destroys: d1
* Data: D_AddrLim, D_BlkSiz
 Init:
001c 48e7 movem.l d0/d2-d3/a0-a1,-(a7) save regs
0020=226e movea.l D_AddrLim(a6),a1 get highest accessable address
0024 41fa lea SPUSizes(pc),a0 table of possible SPU block sizes
0028 7003 moveq #3,d0
002a b3d8 InitSP10 cmpa.l (a0)+,a1 would this spu size be large enough?
002c 53c8 dbls d0,InitSP10 keep searching if not
0030 625c bhi.s InitErr abort if address space too large
0032 0a00 eori.b #%0011,d0 convert to SPU ctl word size
0036 0000 ori.b #EnabSPU!EnCache,d0 add SPU (& cache) enable bit(s)
003a 13c0 move.b d0,SPU_Ctl enable SPU
0040 0240 andi.w #%0011,d0 strip out SPU blocksize index
0044 7600 moveq #0,d3
0046 163b move.b BlkSizes(pc,d0.w),d3 get size of spu block power of 2
004a 1743 move.b d3,S_BlkBit(a3) set it
004e 07c3 bset d3,d3 convert to number
0050 4203 clr.b d3 clear extraneous bits
0052=2d43 move.l d3,D_BlkSiz(a6) reset system block size
0056 d040 add.w d0,d0 times two bytes per entry

EUsing the OS-9 for 68K System Security Module

OS-9 for 68K Processors OEM Installation Manual 287

0058 363b move.w SPUBlks(pc,d0.w),d3 get number of spu blocks
005c 3743 move.w d3,S_SPUBlks(a3) save number of SPU blocks
0060 7400 moveq #0,d2clear SPU mapping RAM
0062 723f moveq #MAXTASK-1,d1 start with highest task number
0064 e44b lsr.w #2,d3 divide SPU blocks by 4 blocks per word
0066 5343 subq.w #1,d3 minus one for dbra
0068 33c1 InitSP20 move.w d1,SPU_Task select task
006e 207c movea.l #SPU_RAM,a0 get SPU mapping RAM ptr
0074 3003 move.w d3,d0 number of words per task
0076 10c2 InitSP30 move.b d2,(a0)+ clear mapping RAM for task
0078 51c8 dbra d0,InitSP30 repeat for all pages of task
007c 51c9 dbra d1,InitSP20 repeat for all tasks
0080 43fa lea SvcTbl(pc),a1
0084=4e40 os9 F$SSvc install SPU system calls
0088 4cdf Init99 movem.l (a7)+,d0/d2-d3/a0-a1 restore regs
008c 4e75 rts return carry clear
008e=003c InitErr ori #Carry,ccr return carry set
0092=323c move.w #E$NoTask,d1 return (sic) error
0096 60f0 bra.s Init99
 SvcTbl
0098=0000 dc.w F$DelTsk+SysTrap,DelTsk-*-4
009c=0000 dc.w F$AllTsk+SysTrap,AllTsk-*-4
00a0=0000 dc.w F$Permit+SysTrap,Permit-*-4
00a4=0000 dc.w F$Protect+SysTrap,Protect-*-4
00a8=0000 dc.w F$ChkMem+SysTrap,ChkMem-*-4
00ac=0000 dc.w F$GSPUMp,GSPUMp-*-4
00b0 ffff dc.w -1 end of table

* Subroutine Permit
* Update SPU image in user process to allow access to a
* specified memory area.
* Passed: d0.l=size of area
* d1.b=permission requested (Read_/Write_/Exec_)
* (a2)=address of area requested
* (a3)=SPU global data ptr
* (a4)=process descriptor requesting access
* (a6)=system global ptr
* Returns: cc=carry bit set, d1.w=error code if error
* Destroys: none
* Data: S_BlkBit
* Calls: none
 Permit:
00b2 48e7 movem.l d0-d3/a0-a2,-(a7) save regs
00b6 4a80 tst.l d0 zero size requested?
00b8 6700 beq Permit90 exit if so
00bc 74ff moveq #-1,d2 sweep reg
00be=0801 btst #WriteBit,d1 write permission requested?
00c2 6706 beq.s Permit10 continue if not
00c4 0202 andi.b #^(ReadProt+WritProt),d2 allow reads and writes
00c8 600a bra.s Permit20 continue
00ca 0201 Permit10 andi.b #Read_+Exec_,d1 read or exec permission request?
00ce 6772 beq.s Permit90 exit if not
00d0 0202 andi.b #^ReadProt,d2 allow reads
00d4=4aac Permit20 tst.l P$SPUMem(a4) is SPU process memory allocated?
00d8 6604 bne.s Permit25 continue if so

288 OS-9 for 68K Processors OEM Installation Manual

00da 616c bsr.s AllSPU allocate SPU image & block counts
00dc 6564 bcs.s Permit90 abort if error
00de 7600 Permit25 moveq #0,d3 sweep register
00e0 162b move.b S_BlkBit(a3),d3 get SPU block size power (2^n)
00e4 220a move.l a2,d1 copy beginning block address
00e6 d081 add.l d1,d0 form end of requested area (+1) ptr
00e8 5380 subq.l #1,d0 end of requested area
00ea e6a8 lsr.l d3,d0 convert end addr to last block num
00ec e6a9 lsr.l d3,d1 convert address to block number
00ee 9041 sub.w d1,d0 convert to number of blocks (-1)
00f0 1601 move.b d1,d3 copy beginning block number
00f2 0203 andi.b #%0011,d3 strip off lower two bits
00f6 d603 add.b d3,d3 make SPU bit offset of first block
00f8 e73a rol.b d3,d2shift perm bits into initial position
00fa=262c move.l P$DbgPar(a4),d3 is this program being debugged?
00fe 6714 beq.s Permit30 continue if not
0100 c78c exg d3,a4 switch to par's debugger's process desc
0102 48e7 movem.l d0-d1,-(a7) save regs
0106 4cef movem.l 8(a7),d0-d1 restore original size of area, perm
010c 61a4 bsr.s Permit update parent (debugger) SPU image
010e c78c exg a4,d3 restore process descriptor ptr
0110 4cdf movem.l (a7)+,d0-d1 restore regs
0114=08ec Permit30 bset #ImgChg,P$State(a4) mark SPU image change
011a=246c movea.l P$SPUMem(a4),a2 get SPU process memory ptr
011e 226a movea.l P_BlkCnt(a2),a1 ptr to SPU map block count
0122 41ea lea P_SPUImg(a2),a0 ptr to SPU image
0126 3601 Permit40 move.w d1,d3 copy block number
0128 e44b lsr.w #2,d3 convert block number to byte offset
012a c530 and.b d2,(a0,d3.w) unprotect block in SPU image
012e 5231 addq.b #1,(a1,d1.w) increment SPU block count
0132 6404 bcc.s Permit50 continue if no overflow
0134 5331 subq.b #1,(a1,d1.w) reset to max count (255) <<?? glitch>>
0138 e51a Permit50 rol.b #2,d2 shift mask for next block
013a 5241 addq.w #1,d1 move to next block
013c 51c8 dbra d0,Permit40 repeat until end of area requested
0140 7000 moveq #0,d0 return carry clear
0142 4cdf Permit90 movem.l (a7)+,d0-d3/a0-a2 restore regs
0146 4e75 rts

* Subroutine AllSPU
* Allocate and initialize SPU structures for new process.
* The data size per process is either 640 or 320 bytes.
* Passed: (a4)=process descriptor ptr
* Returns: cc=carry set, d1.w=error code if error
* Destroys: d1
0148 48e7 AllSPU movem.l d0/d2/a1-a2,-(a7) save regs
014c 7000 moveq #0,d0 sweep register
014e 302b move.w S_SPUBlks(a3),d0 get number of SPU blocks per map
0152 2200 move.l d0,d1 save size of block counts
0154 e480 asr.l #2,d0 divided by 4 entries per map byte
0156 2400 move.l d0,d2 save size of image map
0158 d081 add.l d1,d0 get combined size
015a d0bc add.l #P_SPUImg,d0 add size of non-map variables
0160=4e40 os9 F$SRqMem request system memory
0164 6530 bcs.s AllSPU90 abort if error

EUsing the OS-9 for 68K System Security Module

OS-9 for 68K Processors OEM Installation Manual 289

0166=294a move.l a2,P$SPUMem(a4) save ptr to SPU memory
016a 426a clr.w P_Task(a2) initialize task number
016e 43f2 lea P_SPUImg(a2,d2.l),a1 get ptr to block count map
0172 2549 move.l a1,P_BlkCnt(a2) save ptr to block counts
0176 45ea lea P_SPUImg(a2),a2 get ptr to image map
017a e44a lsr.w #2,d2 div size of image map by 4 bytes/long
017c 5382 subq.l #1,d2 minus one for dbra
017e 72ff moveq #-1,d1
0180 24c1 AllSPU10 move.l d1,(a2)+ initialize SPU image
0182 51ca dbra d2,AllSPU10
0186 302b move.w S_SPUBlks(a3),d0 get size of block count map
018a e448 lsr.w #2,d0 divide by 4 bytes per long
018c 5380 subq.l #1,d0 minus one for dbra
018e 7200 moveq #0,d1
0190 24c1 AllSPU20 move.l d1,(a2)+ initialize block counts
0192 51c8 dbra d0,AllSPU20
0196 4cdf AllSPU90 movem.l (a7)+,d0/d2/a1-a2 restore regs
019a 4e75 rts

* Subroutine Protect
* Update SPU image in user process to disallow access to a
* specified memory area.
* Passed: d0.l=size of area
* (a2)=address of area returned
* (a3)=SPU global data ptr
* (a4)=process descriptor removing access
* (a6)=system global ptr
* Returns: cc=carry bit set, d1.w=error code if error
* Destroys: none
* Data: S_BlkBit
 Protect:
019c 48e7 movem.l d0-d3/a0-a2,-(a7) save regs
01a0 4a80 tst.l d0 zero size returned?
01a2 676c beq.s Protec90 exit if so
01a4=4aac tst.l P$SPUMem(a4) SPU image allocated?
01a8 6766 beq.s Protec90 exit if not (strange)
01aa 7600 moveq #0,d3 sweep register
01ac 162b move.b S_BlkBit(a3),d3 get SPU block size power (2^n)
01b0 220a move.l a2,d1 copy beginning block address
01b2 d081 add.l d1,d0 form end of requested area (+1) ptr
01b4 5380 subq.l #1,d0 end of requested area
01b6 e6a9 lsr.l d3,d1 convert address to beginning block num
01b8 e6a8 lsr.l d3,d0 convert end addr to last block number
01ba 9041 sub.w d1,d0 convert to number of blocks (-1)
01bc 1601 move.b d1,d3 copy beginning block number
01be 0203 andi.b #%0011,d3 strip off lower two bits
01c2 d603 add.b d3,d3 make SPU bit offset of first block
01c4 7403 moveq #ReadProt+WritProt,d2 protection mask
01c6 e73a rol.b d3,d2 shift mask into initial position
01c8=262c move.l P$DbgPar(a4),d3 is this program being debugged?
01cc 670e beq.s Protec20 continue if not
01ce c78c exg d3,a4 switch to parent debugger's proc desc
01d0 2f00 move.l d0,-(a7) save reg
01d2 202f move.l 4(a7),d0 restore original size of area
01d6 61c4 bsr.s Protect update parent (debugger) SPU image

290 OS-9 for 68K Processors OEM Installation Manual

01d8 c78c exg a4,d3 restore process descriptor ptr
01da 201f move.l (a7)+,d0 restore reg
01dc=08ec Protec20 bset #ImgChg,P$State(a4) mark SPU image change
01e2=246c movea.l P$SPUMem(a4),a2 get ptr to SPU process memory
01e6 226a movea.l P_BlkCnt(a2),a1 ptr to SPU map block count
01ea 41ea lea P_SPUImg(a2),a0 ptr to SPU image
01ee 2608 move.l a0,d3 any allocated?
01f0 671e beq.s Protec90 exit if not
01f2 5331 Protec40 subq.b #1,(a1,d1.w) decrement SPU block count
01f6 6706 beq.s Protec50 protect block if zero
01f8 640c bcc.s Protec60 skip if no underflow
01fa 4231 clr.b (a1,d1.w) reset block count <<possible glitch>>
01fe 3601 Protec50 move.w d1,d3 copy block number
0200 e44b lsr.w #2,d3 convert block number to byte offset
0202 8530 or.b d2,(a0,d3.w) protect block in SPU image
0206 5241 Protec60 addq.w #1,d1 move to next block
0208 e51a rol.b #2,d2 shift mask for next block
020a 51c8 dbra d0,Protec40 repeat until end of area requested
020e 7000 moveq #0,d0 clear carry
0210 4cdf Protec90 movem.l (a7)+,d0-d3/a0-a2 restore regs
0214 4e75 rts

* Subroutine AllTsk
* Allocate task number to current process; update SPU image if
* necessary. The SPU task register is set to the allocated number.
* Passed: (a3)=SPU global data ptr
* (a4)=current process descriptor ptr (to allocate)
* (a6)=system global ptr
* Returns: cc=carry set, d1.w=error code if error
* Destroys: d1
* Data: S_TskTbl, S_SPUBlks
* Calls: FindTsk
* Note: the task table is an array of pointers to
* the process descriptor each task is using.
 AllTsk:
0216 48e7 movem.l d0/a1-a2,-(a7) save regs
021a=246c movea.l P$SPUMem(a4),a2 get SPU process memory
021e 302a move.w P_Task(a2),d0 task already assigned to process?
0222 6712 beq.s AllTsk05 continue if not
0224=08ac bclr #ImgChg,P$State(a4) test/clear image change flag
022a 663c bne.s AllTsk50 update SPU image if changed
022c 33c0 move.w d0,SPU_Task select task
0232 6000 bra AllTsk99 exit
0236 43eb AllTsk05 lea S_TskTbl+(MAXTASK*4)(a3),a1 end task table (+1) ptr
023a 303c move.w #MAXTASK-2,d0# of tasks (-1 avoid task #0, -1 dbra)
023e 4aa1 AllTsk10 tst.l -(a1) unused task?
0240 57c8 dbeq d0,AllTsk10 keep searching if not
0244 6714 beq.s AllTsk20 continue if unused task number found
0246 6100 bsr FindTsk find an appropriate task to use
024a 6500 bcs AllTsk99 abort if error
024e 3200 move.w d0,d1 copy task number
0250 e541 asl.w #2,d1 times four bytes per long
0252 43eb lea S_TskTbl(a3),a1 get task table ptr
0256 d2c1 adda.w d1,a1 form ptr to task table entry
0258 5340 subq.w #1,d0

EUsing the OS-9 for 68K System Security Module

OS-9 for 68K Processors OEM Installation Manual 291

025a 228c AllTsk20 move.l a4,(a1) mark task number in use by this process
025c=08ac bclr #ImgChg,P$State(a4) clear image change flag
0262 5240 addq.w #1,d0
0264 3540 move.w d0,P_Task(a2) set process task number
* Update SPU mapping RAM from process SPU image.
0268 48e7 AllTsk50 movem.l d1-d7/a0,-(a7) save regs
026c 33c0 move.w d0,SPU_Task set SPU task register
0272 41ea lea P_SPUImg(a2),a0 get process SPU image ptr
0276 2008 move.l a0,d0 none allocated? (should be impossible)
0278 673a beq.s AllTsk90 exit if so
027a 227c movea.l #SPU_RAM,a1 get base of SPU image RAM
0280 0c6b cmpi.w #256,S_SPUBlks(a3) 256 blocks?
0286 6718 beq.s AllTsk60 move only 64 longs if so
0288 4cd8 movem.l (a0)+,d0-d7 update SPU image
028c 48e9 movem.l d0-d7,0*4(a1) (128 pages)
0292 4cd8 movem.l (a0)+,d0-d7
0296 48e9 movem.l d0-d7,8*4(a1) (128 pages)
029c 43e9 lea 16*4(a1),a1 move to second half of SPU image
02a0 4cd8 AllTsk60 movem.l (a0)+,d0-d7
02a4 48e9 movem.l d0-d7,0*4(a1) (128 pages)
02aa 4cd8 movem.l (a0)+,d0-d7
02ae 48e9 movem.l d0-d7,8*4(a1) (128 pages)
02b4 4cdf AllTsk90 movem.l (a7)+,d1-d7/a0 restore regs
02b8 4cdf AllTsk99 movem.l (a7)+,d0/a1-a2 restore regs
02bc 4e75 rts exit

* Subroutine FindTsk
* Find a task number to assign to a process. Process currently
* assigned a task number are examined to find the least active.
* Its task number is then deallocated for use by the new process.
* Passed: (a1)=Task Table ptr
* (a6)=system global data ptr
* Returns: d0.w=task number found
* cc=carry set, d1.w=error code if error
* Destroys: d1
* Queue preference (high to low)
02be= 00 QPref dc.b Q_Wait 8 wait queue - use immediately if found
02bf= 00 dc.b Q_Dead 7 dead process - use immediately
02c0= 00 dc.b Q_Sleep 6 timed sleep queue
02c1= 00 dc.b Q_Sleep 5 untimed sleep queue
02c2= 00 dc.b Q_Debug 4 inactively debugging
02c3= 00 dc.b Q_Event 3 event queue
02c4= 00 dc.b Q_Active 2 active queue, lowest priority
02c5= 00 dc.b Q_Currnt 1 currently running
 00000008 QTypes equ *-QPref number of entries in table
* Register use:
* d0=task loop counter a0=temp proc desc ptr
* d1=temp queue type a1=task table entry ptr
* d2=task priority pref a2=preference tbl ptr
* d3=best preference found a3=best process found
02c6 48e7 FindTsk movem.l d2-d3/a0-a3,-(a7) save regs
02ca 7600 moveq #0,d3 clear 'best' queue type found
02cc 303c move.w #MAXTASK-1,d0 number of tasks available (-1 for dbra)
02d0 2059 FindTsk10 movea.l (a1)+,a0 get (next) task's proc desc ptr
02d2=1228 move.b P$QueuID(a0),d1 get the process' queue ID

292 OS-9 for 68K Processors OEM Installation Manual

02d6 45fa lea QPref(pc),a2 get queue type preference tbl ptr
02da 7407 moveq #QTypes-1,d2 number of table entries (-1 for dbra)
02dc b21a FindTsk20 cmp.b (a2)+,d1 find preference of queue type
02de 57ca dbeq d2,FindTsk20 repeat until found
02e2 5242 addq.w #1,d2 adjust preference
02e4=b23c cmp.b #Q_Sleep,d1 is process in sleep queue?
02e8 660a bne.s FindTsk30 continue if not
02ea=082a btst #TimSleep,P$State(a2) timed sleep?
02f0 6602 bne.s FindTsk30 continue if so
02f2 5342 subq.w #1,d2 make sleep(0) lower than timed sleep
02f4 b403 FindTsk30 cmp.b d3,d2 is this least active so far?
02f6 651c blo.s FindTsk50 keep searching if not
02f8 6210 bhi.s FindTsk40 update best task found if so
02fa b43c cmp.b #2,d2 is process current or active?
02fe 6214 bhi.s FindTsk50 skip it if not
0300=3228 move.w P$Prior(a0),d1 get task's priority
0304=b26b cmp.w P$Prior(a3),d1 is its priority lowest so far?
0308 640a bhs.s FindTsk50 skip it if not
030a 1602 FindTsk40 move.b d2,d3 save best queue type found
030c 2648 movea.l a0,a3 save ptr to best process (task) found
030e b63c cmp.b #7,d3 inert process found?
0312 6408 bhs.s FindTsk60 use it if so
0314 51c8 FindTsk50 dbra d0,FindTsk10 search for most inactive process
0318 4a03 tst.b d3 ANY available tasks found (surely)
031a 6718 beq.s FindTskER abort if not
031c 7000 FindTsk60 moveq #0,d0 sweep register
031e=206b movea.l P$SPUMem(a3),a0 get chosen process' SPU memory
0322 2008 move.l a0,d0 any?
0324 670e beq.s FindTskER abort if not (should be impossible)
0326 3028 move.w P_Task(a0),d0 get task number chosen
032a 4268 clr.w P_Task(a0) mark it stolen
032e 4cdf FindTsk90 movem.l (a7)+,d2-d3/a0-a3 restore regs
0332 4e75 rts
0334=323c FindTskER move.w #E$NoTask,d1 error: no available tasks
0338=003c ori #Carry,ccr return carry set
033c 60f0 bra.s FindTsk90 abort

* Subroutine DelTsk
* Called when a process terminates (TermProc) to release
* the SPU structures structures used by the process.
* Passed: (a3)=SPU global data ptr
* (a4)=process descriptor ptr to clear
* (a6)=system global ptr
* Returns: cc=carry set, d1.w=error code if error
* Destroys: d1
* Data: S_TskTbl, S_SPUBlks
 DelTsk:
033e 48e7 movem.l d0/a0/a2,-(a7) save regs
0342=246c movea.l P$SPUMem(a4),a2
0346 200a move.l a2,d0 is SPU memory allocated?
0348 672e beq.s DelTsk90 exit if not
034a 302a move.w P_Task(a2),d0 get process task number
034e 6710 beq.s DelTsk10 continue if none (or task #0)
0350 426a clr.w P_Task(a2) clear process task
0354 b07c cmp.w #MAXTASK,d0 is task number in range?

EUsing the OS-9 for 68K System Security Module

OS-9 for 68K Processors OEM Installation Manual 293

0358 6406 bhs.s DelTsk10 continue if not
035a e540 asl.w #2,d0 task number times 4 bytes per entry
035c 42b3 clr.l S_TskTbl(a3,d0.w) release task number
0360 7000 DelTsk10 moveq #0,d0 sweep register
0362 302b move.w S_SPUBlks(a3),d0 get number of SPU blocks per map
0366 e480 asr.l #2,d0 divided by 4 entries per map byte
0368 d06b add.w S_SPUBlks(a3),d0 add sz of SPU blk ct map
036c d07c add.w #P_SPUImg,d0 add size of pre-image variables
0370=42ac clr.l P$SPUMem(a4)
0374=4e40 os9 F$SRtMem return system memory
0378 4cdf DelTsk90 movem.l (a7)+,d0/a0/a2 restore regs
037c 4e75 rts

* Subroutine ChkMem
* Check SPU image in user process to determine if access
* to a specified memory area is allowed.
* Passed: d0.l=size of area
* d1.b=permission requested (Read_/Write_/Exec_)
* (a2)=address of area requested
* (a3)=SPU global data ptr
* (a4)=process descriptor requesting access
* (a6)=system global ptr
* Returns: cc=carry bit set, d1.w=error code if error
* Destroys: none
* Data: S_BlkBit
* Calls: none
 ChkMem:
037e 48e7 movem.l d0-d3/a0,-(a7) save regs
0382 4a80 tst.l d0 zero size requested?
0384 675a beq.s ChkMem90 exit if so
0386 7400 moveq #0,d2 sweep reg
0388=0801 btst #WriteBit,d1 write request?
038c 6704 beq.s ChkMem10 continue if not
038e 843c or.b #WritProt,d2 check for writes
0392 0201 ChkMem10 andi.b #Read_+Exec_,d1 read (or exec) request?
0396 6704 beq.s ChkMem20 continue if not
0398 843c or.b #ReadProt,d2 check reads
039c 4a02 ChkMem20 tst.b d2 read and/or write request?
039e 6740 beq.s ChkMem90 exit if not
03a0=4aac tst.l P$SPUMem(a4) is SPU memory allocated?
03a4 6742 beq.s ChkMemEr abort if not (very strange)
03a6 7600 moveq #0,d3 sweep register
03a8 162b move.b S_BlkBit(a3),d3 get SPU block size power (2^n)
03ac 220a move.l a2,d1 copy beginning block address
03ae d081 add.l d1,d0 form end of requested area (+1) ptr
03b0 6536 bcs.s ChkMemEr abort if address wraparound
03b2 5380 subq.l #1,d0 end of requested area
03b4 e6a8 lsr.l d3,d0 convert end address to last block num
03b6 e6a9 lsr.l d3,d1 convert address to block number
03b8 9041 sub.w d1,d0 convert to number of blocks (-1)
03ba 1601 move.b d1,d3 copy beginning block number
03bc 0203 andi.b #%0011,d3 strip off lower two bits
03c0 d603 add.b d3,d3 make SPU bit offset of first block
03c2 e73a rol.b d3,d2 shift request bits into init position
03c4=206c movea.l P$SPUMem(a4),a0 get ptr to SPU process memory

294 OS-9 for 68K Processors OEM Installation Manual

03c8 41e8 lea P_SPUImg(a0),a0 ptr to SPU image
03cc 3601 ChkMem40 move.w d1,d3 copy block number
03ce e44b lsr.w #2,d3 convert block number to byte offset
03d0 1630 move.b (a0,d3.w),d3 get SPU image byte
03d4 c602 and.b d2,d3 match request with SPU image
03d6 6610 bne.s ChkMemEr abort if illegal request
03d8 e51a rol.b #2,d2 shift mask for next block
03da 5241 addq.w #1,d1 move to next block
03dc 51c8 dbra d0,ChkMem40 repeat until end of area requested
03e0 7000 ChkMem90 moveq #0,d0 return carry clear
03e2 4cdf ChkMem95 movem.l (a7)+,d0-d3/a0 restore regs
03e6 4e75 rts
03e8=3f7c ChkMemEr move.w #E$BPAddr,6(a7) return Illegal block addr error
03ee=003c ori #Carry,ccr return carry set
03f2 60ee bra.s ChkMem95 exit

* Subroutine GSPUMp
* Return data about specified process' memory map.
* Passed: d0.w=process id whose information is returned
* d2.l=size of information buffer
* (a0)=information buffer ptr
* (a3)=SPU global data ptr
* (a4)=process descriptor requesting access
* (a5)=caller's register image ptr
* (a6)=system global ptr
* Returns: R$d0(a5)=system minimum block size
* R$d2(a5)=size of information buffer used
* Returns: cc=carry bit set, d1.w=error code if error
03f4 48e7 GSPUMp: movem.l d0/d2-d3/a0-a2,-(a7) save regs
03f8 2002 move.l d2,d0 copy block size
03fa 2448 move.l a0,a2 copy address
03fc 7203 moveq #Write_+Read_,d1 request read+write permission
03fe 6100 bsr ChkMem is memory accessible?
0402 6554 bcs.s GSPUMp99 abort if not
0404 2017 move.l (a7),d0 restore process id
0406=4e40 os9 F$GProcP get process descriptor ptr
040a 654c bcs.s GSPUMp99 abort if error
040c=42ad clr.l R$d2(a5) default no bytes in buffer
0410=2269 move.l P$SPUMem(a1),a1 get address of process spu info
0414 2009 move.l a1,d0 is process spu buffer allocated?
0416 673a beq.s GSPUMp90 exit if not
0418 45e9 lea P_SPUImg(a1),a2 get address of protection info
041c 2269 move.l P_BlkCnt(a1),a1 get address of spu block count map
0420 7000 moveq #0,d0 sweep register
0422 302b move.w S_SPUBlks(a3),d0 get the number of SPU blocks
0426 e28a lsr.l #1,d2 convert user buffer size to num of blks
0428 b480 cmp.l d0,d2 enough room for entire map?
042a 6302 bls.s GSPUMp20 skip if not
042c 2400 move.l d0,d2 copy the entire map
042e 2002 GSPUMp20 move.l d2,d0 copy number of blocks to move
0430 d080 add.l d0,d0 convert to bytecount
0432=2b40 move.l d0,R$d2(a5) return the amount of buffer used
0436 671a beq.s GSPUMp90 exit if no bytes to copy
0438 5342 subq.w #1,d2 blockcount-1 for dbra(s)
043a 121a GSPUMp50 move.b (a2)+,d1 get the (next) permission byte

EUsing the OS-9 for 68K System Security Module

OS-9 for 68K Processors OEM Installation Manual 295

043c 7604 moveq #4,d3 number of permission blocks per byte
043e 7003 GSPUMp60 moveq #ReadProt+WritProt,d0
0440 c001 and.b d1,d0 strip out bits for current block
0442 10c0 move.b d0,(a0)+ copy block permissions to buffer
0444 10d9 move.b (a1)+,(a0)+ copy block count to buffer
0446 e409 lsr.b #2,d1 shift permission bits for next block
0448 5343 subq.w #1,d3 dec num of blocks in current perm byte
044a 57ca dbeq d2,GSPUMp60 repeat until end of byte or end of buf
044e 56ca GSPUMp70 dbne d2,GSPUMp50 repeat if more blocks
0452=2b6e GSPUMp90 move.l D_BlkSiz(a6),R$d0(a5) the blk size used (clear carry)
0458 4cdf GSPUMp99 movem.l (a7)+,d0/d2-d3/a0-a2 restore regs
045c 4e75 rts
 0000045e ends

296 OS-9 for 68K Processors OEM Installation Manual

Appendix F: Example ROM Source

and Makefi les

This appendix includes the following topics:

• defsfile

• systype.d

• sysinit.a

• syscon.c

• rombug.make

• rom.make

• rom_common.make

• rom_serial.make

• rom_port.make

• rom_image.make

• bootio.c

298 OS-9 for 68K Processors OEM Installation Manual

defsfile

 opt f issue form feeds
 use <oskdefs.d>
 use systype.d

FExample ROM Source and Makefiles

OS-9 for 68K Processors OEM Installation Manual 299

systype.d

*
* System Definitions for OEM example.
*
 opt -l
 pag

* Edition History
* date comments by
* -------- -- ---
* 93/05/21 genesis XYZ
* 93/10/28 updated for OS-9 V3.0 XYZ
*

*
* test example on MVME162
*
VME162 equ 162
CPUType set VME162

* System Memory Definitions
*
* These are used by the MemDefs (for rom) and MemList (for init module)
* macros to describe the system ram structure.
*
VBRBase equ 0 base address of vectors
RAMVects equ included exception vectors are RAM

 ifndef TRANS
TRANS equ $0 no address translation
 endc
TRANSLATE equ TRANS
ProbeSize equ $1000 block probe size = 4K

DRAMBeg equ 0 physical start of system memory
DRAMSize equ $100000 assume 1MB total system memory

LoadSize equ $20000 make available 64K for downloaded rombug

 ifdef RAMLOAD
CPUSize equ DRAMSize-LoadSize
 else NOT RAMLOAD
CPUSize equ DRAMSize entire DRAM available for system memory
 endc

MapOut equ $400 vector table space at beginning of DRAM
* These are the ROM definitions for the on-board ROM sockets
Rom.Size equ $40000say we have 256K for ROM

Rom.Beg equ $FF800000 ROM starting address
Rom.End equ Rom.Beg+Rom.Size

300 OS-9 for 68K Processors OEM Installation Manual

*

Mem.Beg equ DRAMBeg+MapOut
Mem.End equ DRAMBeg+CPUSize
Spc1.Beg equ Rom.Beg
Spc1.End equ Rom.End

 ifdef RAMLOAD
Spc2.Beg equ Mem.End
Spc2.End equ Mem.End+LoadSize
 else
Spc2.Beg equ 0
Spc2.End equ 0
 endc

* Hardware type definitions
*
MPUChip equ 68000 define the microprocessor in use
CPUTyp set MPUChip (pay the old label)

 ifeq (CPUType-VME162)

IOBase equ $FFF00000
TERMBase equ IOBase+$45000 Zilog 85230 SCC

TermBase equ TERMBase+4 SCC port A (console port)
ConsType equ ZA
Cons_Adr equ TermBase console device address

T1Base equ TermBase-4 SCC port B (communication port for download)
CommType equ ZB
Comm_Adr equ T1Base auxilliary device address
 endc

* Configuration module constants
* used only by init module
*
CONFIG macro
MainFram dc.b "OEM example target",0
SysStart dc.b "sysgo",0 name of initial module to execute
SysParam dc.b 0 parameters to pass to initial module
SysDev set 0 ROM based system has no disk

ConsolNm dc.b "/term",0 console terminal pathlist
ClockNm dc.b "tk_oem",0 clock module name
Extens dc.b "os9p2 syscache ssm sysbuserr fpu",0
 endc

*
* Colored memory list definitions for init module (user adjustable)
*
 align

FExample ROM Source and Makefiles

OS-9 for 68K Processors OEM Installation Manual 301

MemList
* MemType type, priority, attributes, blksiz, addr limits, name, DMA-offset
*
* on-board ram covered by "boot rom memory list" - doesn't need parity iniz
*
 MemType SYSRAM,250,B_USER,ProbeSize,Mem.Beg,Mem.End,OnBoard,CPUBeg+TRANS

 dc.l 0 terminate this list

OnBoard dc.b "on-board ram",0

 endm

**
* SCF device descriptor definitions
* (used only by SCF device descriptor modules)
*
* SCFDesc: Port,Vector,IRQlevel,Priority,Parity,BaudRate,DriverName
*
*TERM macro
* SCFDesc Port,Vector,IRQlevel,Priority,Parity,BaudRate,DriverName
** default descriptor values can be changed here
*DevCon set 0
* endm

*
* These two labels are obsolete under "SysBoot" but are
* still required to link in "boot.a"
*
SysDisk set 0
FDsk_Vct set 0

* Memory list definitions
*

MemDefs macro
 dc.l Mem.Beg,Mem.End the normal memory search list
 dc.l 0
 dc.l Spc1.Beg,Spc1.End PROM
 dc.l Spc2.Beg,Spc2.EndSpecial RAM load area
 dc.l 0
 dc.l 0,0,0,0,0,0,0,0,0,0,0,0 free bytes for patching

 endm

 opt l

302 OS-9 for 68K Processors OEM Installation Manual

sysinit.a

* SysInit: perform system specific initialization (part 1)
*
SysInit:
 reset reset all system hardware that can be

 movea.l VBRPatch(pc),a0 get (patchable) vbr address
 movec a0,vbr set vbr

 ifdef RAMVects
*
* copy reset vectors from the rom into ram (rom appears at $0 for
* first 4 cycles after a reset, then it's the ram)
*
 move.l VectTbl(pc),0(a0) copy reset vectors across
 move.l VectTbl+4(pc),4(a0)
 endc

SIExit:
 ROMPAK1

 bra SysRetrn return to boot.a

* SInitTwo: perform system specific initialization (part 2)
*
SInitTwo:

 ROMPAK2

 rts

*
* UseDebug: return status of system debugger (enabled/not enabled)
*
UseDebug:
 btst.b #0,CallDBug(pc) test the debug flag
 eori.b #Zero,ccr flip the zero bit
 rts

* entry points for
 ifndef CBOOT
_stklimit: dc.l $80000
_stkhandler: rts
 endc

 ends

FExample ROM Source and Makefiles

OS-9 for 68K Processors OEM Installation Manual 303

* end of file

304 OS-9 for 68K Processors OEM Installation Manual

syscon.c

/*--!
! syscon.c: Boot configuration routines for the OEM example target. !
+---+
! Edition History: !
! # Date Comments By !
! -- -------- --- --- !
! 01 93/10/28 Genesis. ats !
!--*/

#include <sysboot.h>

#ifdef NOBUG
int errno;
u_char trapflag;
#endif

#ifdef _UCC
u_int32 _stklimit = 0x80000;/* big to limit _stkhandler calls

from clib.l calls */
#endif

/*
 * Declarations for real functions
 */
extern error_code sysreset(),

binboot();

char*nulstr = ""; /* only need one of these */

#ifdef _UCC
/*
 * Dummy _stkhandler routine for clib.l calls
 */
_stkhandler()
{
}
#endif

/*
 * getbootmethod: This function allows the developer to select
 * the booting method algorithm best suited for the system.
 */
int getbootmethod()
{
 /*
 * Initialize the boot drivers.
 *
 * NOTE: The order of initialization determines the order of

FExample ROM Source and Makefiles

OS-9 for 68K Processors OEM Installation Manual 305

 * priority when using the "AUTOSELECT" booting method.
 */
 iniz_boot_driver(binboot, nulstr,
 "Boot Manually Loaded Bootfile Image", "ml");
 iniz_boot_driver(romboot, "ROM", "Boot from ROM", "ro");
 iniz_boot_driver(loadrom, "ROM", "Load from ROM", "lr");
 iniz_boot_driver(sysreset, nulstr, "Restart the system", "q");

/* vflag = TRUE; */
 return USERSELECT;
}

/*
 * getboottype: When the boot method (determined by the above function)
 * is set to SWITCHSELECT, this function allows the developer to select
 * the actual booting type (device, ROM, etc...) according to hardware
 * switches, non-volatile RAM or hard-code a single boot device type
 * NOTE: for this devpak, this is a dummy function.
 */
Bdrivdef getboottype()
{

return NULL;
}

306 OS-9 for 68K Processors OEM Installation Manual

rombug.make

Makefile for OEM example ROM with ROMBUG

-b

TYPE = ROMBUG
RELSDIR = RELS/$(TYPE)
OBJDIR = CMDS/BOOTOBJS/$(TYPE)

ROMBUG customization flags

RBUG = "RBUG=-aROMBUG"
CBUG =
TDIR = "TYPE=$(TYPE)"

TARGET =
ROMDBG =

Testing options

MBUGTRC = #"MBUGTRC=-aMBUGTRC"
RAMLOAD = #"RAMLOAD=-aRAMLOAD"

MAKERS = rom_common.make \
rom_serial.make \
rom_port.make \
rom_image.make \
rom_initext.make

MAKEOPTS = $(RBUG) $(CBUG) $(TDIR) \
$(TARGET) $(ROMDBG) $(MBUGTRC) $(RAMLOAD)

MAKER = ./rombug.make # this file

INITEXT = $(OBJDIR)/initext
RBGSTB = #$(OBJDIR)/STB/rombug.stb
FILES = $(OBJDIR)/rombug $(INITEXT) $(RBGSTB)

OFILE = $(OBJDIR)/rombugger

MAKE = make # make utility
CFP = cfp # command file processor

CFPOPTS = "-s=$(MAKE) -f=* $(MAKEOPTS)"

MERGE = merge
REDIR = >-
CHD = chd
DEL = del
ALLFILES = *
TOUCH = touch

FExample ROM Source and Makefiles

OS-9 for 68K Processors OEM Installation Manual 307

-x

rombug.date: $(MAKER)
$(CFP) $(CFPOPTS) $(MAKERS)
$(MERGE) $(FILES) $(REDIR)$(OFILE)

clean: $(MAKER)
$(CHD) $(RELSDIR); $(DEL) $(ALLFILES)

end of file

308 OS-9 for 68K Processors OEM Installation Manual

rom.make

Makefile for OEM example ROM without ROMBUG

-b

TYPE = NOBUG
RELSDIR = RELS/$(TYPE)
OBJDIR = CMDS/BOOTOBJS/$(TYPE)

ROM customization flags

RBUG = "RBUG="
CBUG = "CBUG=-dNOBUG"
TDIR = "TYPE=$(TYPE)"

TARGET = "TARGET=rom"
ROMDBG = "ROMDBG="

Testing options

MBUGTRC = #"MBUGTRC=-aMBUGTRC"
RAMLOAD = #"RAMLOAD=-aRAMLOAD"

MAKERS = rom_common.make \
rom_serial.make \
rom_port.make \
rom_image.make \
rom_initext.make

MAKEOPTS = $(RBUG) $(CBUG) $(TDIR) \
$(TARGET) $(ROMDBG) $(MBUGTRC) $(RAMLOAD)

MAKER = ./rom.make # this file

INITEXT = $(OBJDIR)/initext
RBGSTB = #$(OBJDIR)/STB/rom.stb
FILES = $(OBJDIR)/rom $(INITEXT) $(RBGSTB)

OFILE = $(OBJDIR)/rommer

MAKE = make # make utility
CFP = cfp # command file processor

CFPOPTS = "-s=$(MAKE) -f=* $(MAKEOPTS)"

MERGE = merge
REDIR = >-
CHD = chd
DEL = del
ALLFILES = *
TOUCH = touch

FExample ROM Source and Makefiles

OS-9 for 68K Processors OEM Installation Manual 309

-x

rom.date: $(MAKER)
$(CFP) $(CFPOPTS) $(MAKERS)
$(MERGE) $(FILES) $(REDIR)$(OFILE)

clean: $(MAKER)
$(CHD) $(RELSDIR); $(DEL) $(ALLFILES)

end of file

310 OS-9 for 68K Processors OEM Installation Manual

rom_common.make

Makefile for the common boot modules in the OEM example ROM

ROOT = ../../.. # base of dir system
BASEROOT = $(ROOT)/68000 # dir system for LIB, etc
CPUROOT = $(ROOT)/68000 # dir system for output
SRCROOT = $(ROOT)/SRC # dir system for source

SDIR = $(SRCROOT)/ROM/COMMON# specific source dir

TYPE = ROMBUG
RDIR = RELS/$(TYPE)
RDUP = ../..
LIBROOT = $(RDIR)

SYSDEFS = $(SRCROOT)/DEFS# std OS defs

TMPDIR = /dd

MAKER = rom_common.make

SYSBOOT = #sysboot.r # use sysboot.a instead of CBOOT
OBJECTS = vectors.r boot.r $(SYSBOOT)

OLIB = rom_common.l

COMDEFS = $(SYSDEFS)/oskdefs.d
DEFS = systype.d $(COMDEFS)

RBUG = -aROMBUG
MBUGTRC = #-aMBUGTRC # enables MBUG tracing and breakpoints for testing
RAMLOAD = #-aRAMLOAD # support rombug load directly for porting

SPEC_RFLAGS = $(MBUGTRC) $(RAMLOAD) #-aFASTCONS

-mode=compat
RC = r68
SRCHDIRS = -u=. -u=$(SYSDEFS)
RFLAGS = -q $(RBUG) -aCBOOT $(SPEC_RFLAGS) $(SRCHDIRS)

TOUCH = touch
CHD = chd
MERGE = merge
REDIR = >-

-x

rom_common.date : $(LIBROOT)/$(OLIB)
$(TOUCH) $@

$(LIBROOT)/$(OLIB) : $(OBJECTS)

FExample ROM Source and Makefiles

OS-9 for 68K Processors OEM Installation Manual 311

$(CHD) $(RDIR); $(MERGE) $(OBJECTS) $(REDIR)$(RDUP)/$@

$(OBJECTS) : $(DEFS) $(MAKER)

312 OS-9 for 68K Processors OEM Installation Manual

rom_serial.make

Makefile for the I/O driver in the OEM example ROM

ROOT = ../../.. # base of dir system
BASEROOT = $(ROOT)/68000 # dir system for LIB, etc
CPUROOT = $(ROOT)/68000 # dir system for output
SRCROOT = $(ROOT)/SRC # dir system for source

SDIR = $(SRCROOT)/ROM/SERIAL# specific source dir

TYPE = ROMBUG
RDIR = RELS/$(TYPE)
RDUP = ../..
LIBROOT = $(RDIR)

SYSDEFS = $(SRCROOT)/DEFS# std OS defs
SYSMACS = $(SRCROOT)/MACROS

TMPDIR = /dd

MAKER = rom_serial.make

OBJECTS = ioz8530.r

OLIB = rom_serial.l

COMDEFS = $(SYSDEFS)/oskdefs.d
DEFS = systype.d $(COMDEFS)

RBUG = -aROMBUG
MBUGTRC = #-aMBUGTRC # enables MBUG tracing and breakpoints for testing
RAMLOAD = #-aRAMLOAD # support rombug load directly for porting

SPEC_RFLAGS = $(MBUGTRC) $(RAMLOAD) #-aFASTCONS

-mode=compat
RC = r68
SRCHDIRS = -u=. -u=$(SYSDEFS) -u=$(SYSMACS)
RFLAGS = -q $(RBUG) -aCBOOT $(SPEC_RFLAGS) $(SRCHDIRS)

TOUCH = touch
CHD = chd
MERGE = merge
REDIR = >-

-x

rom_serial.date : $(LIBROOT)/$(OLIB)
$(TOUCH) $@

$(LIBROOT)/$(OLIB) : $(OBJECTS)

FExample ROM Source and Makefiles

OS-9 for 68K Processors OEM Installation Manual 313

$(CHD) $(RDIR); $(MERGE) $(OBJECTS) $(REDIR)$(RDUP)/$@

$(OBJECTS) : $(DEFS) $(MAKER)

314 OS-9 for 68K Processors OEM Installation Manual

rom_port.make

Makefile for port modules in the OEM example ROM

ROOT = ../../.. # base of dir system
BASEROOT = $(ROOT)/68000 # dir system for LIB, etc
CPUROOT = $(ROOT)/68000 # dir system for output
SRCROOT = $(ROOT)/SRC # dir system for source

SDIR = . # specific source dir

TYPE = ROMBUG
RDIR = RELS/$(TYPE)
RDUP = ../..
LIBROOT = $(RDIR)

BOOTDEFS = $(SRCROOT)/ROM/CBOOT/DEFS
SCSIDEFS = $(SRCROOT)/IO/SCSI/DEFS
SYSDEFS = $(SRCROOT)/DEFS# std OS defs
SYSMACS = $(SRCROOT)/MACROS
CDEFS = $(ROOT)/../SRC/DEFS# std C defs

TMPDIR = /dd

MAKER = rom_port.make

SYSINIT = sysinit.r
SYSCON = bootio.r syscon.r
OBJECTS = $(SYSINIT) $(SYSCON)

OLIB = rom_port.l

COMDEFS = $(SYSDEFS)/oskdefs.d
DEFS = systype.d $(COMDEFS)

RBUG = -aROMBUG
MBUGTRC = #-aMBUGTRC # enables MBUG tracing and breakpoints for testing
RAMLOAD = #-aRAMLOAD # support rombug load directly for porting

SPEC_RFLAGS = $(MBUGTRC) $(RAMLOAD) #-aFASTCONS

CBUG = #-dNOBUG

SPEC_CFLAGS = $(CBUG)

-mode=compat
CC = cc
CSRCHDIRS = -v=. -v=$(BOOTDEFS) -v=$(SCSIDEFS) -v=$(SYSDEFS) -v=$(CDEFS)
CFLAGS = -qst=$(TMPDIR) -O=0 -dCBOOT $(SPEC_CFLAGS) $(CSRCHDIRS)

RC = r68
RSRCHDIRS = -u=. -u=$(SYSDEFS) -u=$(SYSMACS)

FExample ROM Source and Makefiles

OS-9 for 68K Processors OEM Installation Manual 315

RFLAGS = -q $(RBUG) -aCBOOT $(SPEC_RFLAGS) $(RSRCHDIRS)

TOUCH = touch
CHD = chd
MERGE = merge
REDIR = >-

-x

rom_port.date : $(LIBROOT)/$(OLIB)
$(TOUCH) $@

$(LIBROOT)/$(OLIB) : $(OBJECTS)
$(CHD) $(RDIR); $(MERGE) $(OBJECTS) $(REDIR)$(RDUP)/$@

$(SYSINIT) : $(DEFS) $(MAKER)

$(SYSCON) : $(MAKER)

316 OS-9 for 68K Processors OEM Installation Manual

rom_image.make

Makefile for linked rom image in the OEM example ROM

-b

ROOT = ../../.. # base of dir system
BASEROOT = $(ROOT)/68000 # dir system for LIB, etc
CPUROOT = $(ROOT)/68000 # dir system for output
SRCROOT = $(ROOT)/SRC # dir system for source
BOOTROOT = $(SRCROOT)/ROM/LIB
SYSROOT = $(BASEROOT)/LIB

TYPE = ROMBUG
RDIR = RELS/$(TYPE)
RDUP = ../..
LIBROOT = $(RDIR)

TMPDIR = /dd

MAKER = rom_image.make

ODIR = CMDS/BOOTOBJS/$(TYPE)

TARGET = rombug

ROMDBG = $(BOOTROOT)/rombug.l
ROMIO = $(BOOTROOT)/romio.l

FILES = $(LIBROOT)/rom_common.l \
$(LIBROOT)/rom_port.l \
$(LIBROOT)/rom_serial.l \
$(ROMDBG) $(ROMIO)

CLIB = $(SYSROOT)/clib.l
LCLIB = -l=$(CLIB)
SYS_CLIB = $(SYSROOT)/sys_clib.l
LSYS_CLIB = -l=$(SYS_CLIB)
MLIB = $(SYSROOT)/os_lib.l
LMLIB = -l=$(MLIB)
SYSL = $(SYSROOT)/sys.l
LSYSL = -l=$(SYSL)

SYSBOOT = $(BOOTROOT)/sysboot.l
LSYSBOOT = -l=$(SYSBOOT)
CACHEFL = $(BOOTROOT)/flushcache.l
LCACHEFL = -l=$(CACHEFL)

LIBS = $(LSYSBOOT) $(LCACHEFL) \
$(LCLIB) $(LSYS_CLIB) $(LMLIB) $(LSYSL)

FExample ROM Source and Makefiles

OS-9 for 68K Processors OEM Installation Manual 317

LIBDEPS = $(SYSBOOT) $(CACHEFL) \
$(CLIB) $(SYS_CLIB) $(MLIB) $(SYSL)

-mode=compat
LC = l68
LFLAGS = -r=FF800000 -swam -M=3k -g -b=4

TOUCH = touch
CHD = chd
MERGE = merge
REDIR = >-

-x

rom_image.date : $(ODIR)/$(TARGET)
$(TOUCH) $@

$(ODIR)/$(TARGET) : $(FILES) $(LIBDEPS) $(MAKER)
$(LC) $(LFLAGS) $(FILES) $(LIBS) -O=$@ $(REDIR)$@.map

318 OS-9 for 68K Processors OEM Installation Manual

bootio.c

/*
 * Copyright 1993 by Microware Systems Corporation
 * Copyright 2001 by RadiSys Corporation
 * Reproduced Under License
 *
 * This source code is the proprietary confidential property of
 * Microware Systems Corporation, and is provided to licensee
 * solely for documentation and educational purposes. Reproduction,
 * publication, or distribution in any form to any party other than
 * the licensee is strictly prohibited.
 */

#include <sysboot.h>

/* my favorite loop function */
#define LOOPfor(;;)

/* utility routines */

#define ESC 0x1b
#define CR 0x0d
#define TAB 0x09
#define BS 0x08
#define BEL 0x07

char getinchar()
{
 char inchar;

 inchar = InChar();
 if ((inchar>= 'A') && (inchar <= 'Z'))
 inchar |= CASEBIT;

 return(inchar);
}

int outhex(h)
u_int32 h;
{
 u_int32 t, l=0;
 char d;

 OutChar('0');
 OutChar('x');
 if (!h) {
 OutChar('0');
 return(1);
 }

 for (t=0x10000000; t>=1; t/=0x10)

FExample ROM Source and Makefiles

OS-9 for 68K Processors OEM Installation Manual 319

 if (h >= t) break;/* skip leading zeros */

 for (; t>=1; t/=0x10) {
 d = h / t;
 if (d <= 9)
 OutChar(d + '0');
 else
 OutChar(d - 10 + 'a');
 l++;
 h = h - d * t;
 }
 return(l);
}

int outint(i)
u_int32 i;
{
 u_int32 t, l=0;

 if (!i) {
 OutChar('0');
 return(1);
 }

 for (t=1000000000; t>=1; t/=10)
 if (i >= t) break;/* skip leading zeros */

 for (; t>=1; t/=10) {
 OutChar((i / t) | 0x30);
 i = i - (i / t) * t;
 l++;
 }
 return(l);
}

void outsome(s)
u_char *s;
{
 if (!(*s))
 outstr("<none>");
 else
 outstr(s);
}

void outerase(n)
u_int32 n;
{
 int i;

 OutChar(' ');
 OutChar(BS);

 for (i=n-1; i>0; i--) {
 OutChar(BS);
 OutChar(' ');

320 OS-9 for 68K Processors OEM Installation Manual

 OutChar(BS);
 }
}

u_char ask_ynq(quit)
u_int32 quit;
{
 char inchar, newval, newprmpt, valspec;
 u_int32 n;

 valspec = FALSE;
 newprmpt = TRUE;

 LOOP {
 if (newprmpt) {
 outstr("\n\(<yes>/<no>");
 if (quit)
 outstr("/<quit>");
 outstr("\)? ");
 if (valspec){
 if (newval == 'y')outstr("yes");
 else if (newval == 'n')outstr("no");
 else outstr("quit");
 }
 newprmpt = FALSE;
 }

 inchar = getinchar();

 if (inchar == CR) {
 if (!valspec) {
 newprmpt = TRUE;
 OutChar(BEL);
 continue;
 }
 break;
 }
 if (inchar == BS) {
 if (!valspec) {
 newprmpt = TRUE;
 OutChar(BEL);
 continue;
 }
 if (newval == 'y')n = 3;
 else if (newval == 'n')n = 2;
 else n = 4;
 outerase(n);
 valspec = FALSE;
 continue;
 }
 if (!valspec) {
 newval = inchar;
 if (inchar == 'y') {
 outstr("es");
 valspec = TRUE;

FExample ROM Source and Makefiles

OS-9 for 68K Processors OEM Installation Manual 321

 continue;
 }
 if (inchar == 'n') {
 OutChar('o');
 valspec = TRUE;
 continue;
 }
 if (quit && (inchar == 'q')) {
 outstr("uit");
 valspec = TRUE;
 continue;
 }
 }
 newprmpt = TRUE;
 OutChar(BEL);
 }
 return(newval);
}

/* Dummy entry points to satisfy linker
 * until this is put into sysboot.l */

void checknvram() {}
void outendis() {}

error_code rc_btlist() {}
error_code rc_endis() {}
error_code rc_int() {}
error_code rc_vmeints(){}
error_code reconfig() {}

322 OS-9 for 68K Processors OEM Installation Manual

OS-9 for 68K Processors OEM Installation Manual 323

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

Numerics
68000 24, 80, 164, 166, 169

emulation system 13
68008 80, 169
68010 80, 169, 268
68020 24, 80, 169, 268
68030 80, 169
68040 80, 169
68070 80, 169
68349 169

CIC bank flags 176
683XX processor naming conventions 66
68681

serial device 243

A
Adaptec ACB4000 Disk Controller 264
add devices

example 265
address translation and DMA transfers 183

B
baud rate 16
BERR 164
binboot.c 198
binex 13
boot

kernel 72
stages 113

boot code 39
finishing 46

324 OS-9 for 68K Processors OEM Installation Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

initial function 50
porting 45

boot driver
initialize 216

boot drivers
considerations 158

boot file
large 162

boot files 53
boot.a 41, 42, 45, 53, 72–80
bootfile 39

add SSM 274
allocate memory for 211

bootio.c 45, 54
bootstrap driver

support 162
bootstrap drivers 192
breakpoints 114
btf.m 25
bus errors 164

C
cache

coherency 181
control 166
custom configuration 174
DMA support 181
external 177
inhibited not-serialized access 172
inhibited, serialized access 172
peripheral access timing violations 178
timing loops 179

caching mode 172
CallDBug 98
calldebug() 207
Can’t allocate table 239
Can’t open console terminal 240
Can’t open default device 240
CBOOT 30, 63, 160

drivers entry points 201, 205

OS-9 for 68K Processors OEM Installation Manual 325

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

overview 196
ClkLevel 132
ClkPort 131
ClkPrior 131
ClkVect 131
clock

tests 152
clock module

debugging 135
generic 131

clock modules ??–133
generic 128
real-time support 130
select tick interrupt device 124
tick timer setup 125

ClockNm 107, 125
cold2() 119–120
coldstart errors 241
coldstart() 116, 117–118
comm port 82

deinitialize 94
read character from 90
set up and initialize 94, 95

Comm_Adr 67
CommType 67
CONFIG macro 106
Cons_Addr 66
ConsDeIn 85
ConsInit 41, 86
console

device driver 111
I/O driver 110

console device
read string from 219

console output device
send string to 229

console port 82
check 89
deinitialize 85
initialize 86
output character to 95

326 OS-9 for 68K Processors OEM Installation Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ConsolNm 107
ConsType 66
copy back 171
CPU32 24
CPUTyp 64

D
D_SnoopD 182
DD_BSZ 161, 163
DD_BT 161, 163
deblocking drivers 189
debug files 55
define memory 67
DEFS 22
defsfile 57
development environment 12
Direct Memory Access (DMA) 181

address translation 183
disk driver

boot routines 141
test 139

disk I/O
tests 151

diskboot.c 197
distribution package 21
download

OS-9 113
prepare file 111

driver flags 249
DriverName 109
drivers

deblocking 189

E
embedded

MMU 268
entry points 96
error codes 241

OS-9 for 68K Processors OEM Installation Manual 327

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Exbin 13
exception service routine

install 231
Extens 43, 107
external caches 177

F
F$Trans 183
FD_Vct 67
FDsk_Vct 67
file name

suffixes 18
floppy disk

suggested format 160
flow control 16
Fujitsu 2333 hard disk 261

G
gb command 246
generic clock modules 128, 131
getbootmethod() 99
growth method 72

H
hardware

disable 204
initialize 202

high-level drivers 262
host

defined 12
interconnection with target 16
requirements 12–13

host CPU 261

328 OS-9 for 68K Processors OEM Installation Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

I
I/O

drivers
entry points 82

subroutines 81
InChar 88
InChar() 214
InChChek 89
InChChek() 215
init() 202
initdata.c 197
initext.a 100
InPort 90
input port

read character from 88
Insert() 232
INSTBERR 164
instr() 219
instruction cache 180
interrupts

mask 223
Inttoascii() 221
IO 22
Io.xxx 81
Io.yyy 81
io2661.a 250
io6850.a 251
io68560.a 252
io68562.a 253
io68564.a 254
io68681.a 255
io68901.a 257
IOMAN 22
Ioxxx.a 45
ioxxx.a 54
Ioyyy.a 45
ioyyy.a 54
ioz8530.a 258
IRQLevel 108

OS-9 for 68K Processors OEM Installation Manual 329

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

K
KERNEL 22
kernel

coldstart routine 116
porting 46
tests 149

L
label definitions

example 61
ldbra.m 25
LIB 22
logical sector size 160
longio.m 25
low level I/O driver flags 249

M
M$Compat2 174, 175, 181
MACROS 23
macros 25
MainFram 106
make utility 17
makefile

defined 17
makelower() 222
MAKETMPL 24
MANUAL_RAM 64
mask_irq() 223
MC68451

and SSM 270
Mem.Beg 68
Mem.End 68
MemDefs 67, 74, 77

example 68
memory management units (MMU) 268
memory map information 59
memory search 77

330 OS-9 for 68K Processors OEM Installation Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

misc.c 198
Motorola 68451 268
Motorola 68851 268
MPUType 73
MVME147 261, 264
MVME147 CPU 262
MWOS directory structure 21

N
NoClock 134
non-contiguous boot file 162
nvram.m 25

O
OMTI5400 260

Controller 261
OS-9

cache control 166
download 113
soft bus errors 164

OS-9 driver 260
OS9Boot 141, 145
os9gen 141, 161
OS9P2 modules 107
os9svc.m 26
oskdefs.d 58
OutChar 95
OutChar() 224
OutHex() 225
OutPort 94
outstr() 229

P
PARITY 63
patch locations 80
PD_SSize 186
physical sector size 159

OS-9 for 68K Processors OEM Installation Manual 331

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Port 108
port

comm 82
console 82

PortDeIn 94
porting

boot code 45
kernel 46

PortInit 95
Priority 108
problem resolution 101, 236
PROM

emulators 14

R
RAM memory

define normal search area 78
RAMVects 63, 71, 73
RB2333 262
RB5400 262
RBF

media conversion 190
support for variable sector sizes 185

reach32.m 26
real-time clock device 127
real-time clock support 130
register conventions

before entering the kernel 76
when jumping to SysBoot 75

relocation register
ROMbug 114

requirements
target 14

ROM 23
configuration values 60
debuggers 50
global data space 78

ROM debugger prompt
power up 40

rom.make 53

332 OS-9 for 68K Processors OEM Installation Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

rom_common.l 53
ROM-based system 136
ROM-based target system 123
romboot.c 198
ROMBUG 63
ROMBug 246
ROMbug 14

caching 177
RomBug 42, 73
rombug.make 52
rompak.m 26
ROMPAK2 97
RTCBase 132

S
SB5400 262
SCF

device descriptor macro definitions 108
SCSI

bus 263
SCSI147 262
SCSI-system drivers 260
sector size 158
serial I/O

tests 150
serial port

parity code 108
setexcpt() 231
SInitTwo

functions 97
snoopy/absent flags 176
soft bus errors 164
Spc.Beg 68
Spc.End 68
special memory 79, 113
SRC 24
s-records

defined 13
SS_VarSect 186
SSM

OS-9 for 68K Processors OEM Installation Manual 333

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

structure 279
SSM040 269
stale data 181
SYS 23
SysBoot 42, 75
sysboot.c 199
sysboot.m 26
sysboot_glue.c 199
SysCache 167

default modules 169
syscom.c 45
syscon.c 54
SysDev 106
SysDisk 67
sysglob.m 26
SysInit 41, 72

functions 96
Sysinit 100
sysinit.a 41, 45, 51, 54, 96–98, 99–??
SysInit2 74
SYSMODS 23
SysParam 106
SysStart 106
system

memory list
return memory to 218

system global 78
system globals 43
system level debugger

start 207
System Security Module (SSM) 267
systype.d 45, 51, 53, 57, 59–??, 131

T
tapeboot.c 199
target

defined 12
interconnection with host 16
requirements 14

target-specific labels 60

334 OS-9 for 68K Processors OEM Installation Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

temporary instruction sequences 180
term() 204
test

boot code 52
CBoot disk boot module 143
disk driver 139
disk I/O 151
kernel 149
serial I/O 150

tick
interrupt device 124

tick timer
activation 126
OS-9 setup 125

tickgeneric.a 128
TicksSec 131
timing loops 179
TransFact 80
TRANSLATE 64

U
UseDebug 41, 73

functions 97

V
variable sector size

RBF support 185
variable sector size support

advantages of 191
convert existing drivers 188

VBRBase 64
VBRPatch 80
Vector 108
vectors.a 45, 53, 71–94
VME620 SCSI controller 263

OS-9 for 68K Processors OEM Installation Manual 335

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

W
write-through 171

336 OS-9 for 68K Processors OEM Installation Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

	OS-9 for 68K Processors OEM Installation Manual
	Table of Contents
	Chapter 1: Getting Started
	Developing a Plan
	The Host System Hardware
	The Host System Software
	The Target System Hardware
	Pre-Porting Steps

	The Make Utility
	Common File Name Suffixes
	Checking the Contents of the Distribution
	Structure of the Distribution Package on the Host System
	MWOS/OS9/SRC Directory Structure
	MWOS/OS9 Directory Structure

	OS-9 Macro Routines
	MWOS/OS9/SRC/IO Directory Structure
	MWOS/OS9/SRC/ROM Directory Structure

	Additional Reference Materials

	Chapter 2: Porting OS-9 for 68K
	Getting Started
	Understanding the OS-9 for 68K Booting Process
	Step 1: Power Up the ROMbug Prompt
	Step 2: ROMbug Prompt to Kernel Entry
	Step 3: Kernel Entry Point to $ Prompt

	The Four Porting Steps

	Chapter 3: Step One: Porting the Boot Code
	Introduction
	About the Boot Code
	How to Begin the Port: The Boot Code
	Testing the Boot Code
	ROM Image Versions
	Component Files of the ROM Image

	The Defsfile File
	The Oskdefs.d File
	The Systype.d File
	The ROM Configuration Values
	Target Specific Labels
	Target Configuration Labels
	CPUTyp Label and Supported Processors

	Low Level Device Configuration Labels
	Target System Memory Labels
	Example Memory Definitions

	The Vectors.a File
	The Boot.a File
	Steps Boot.a Goes Through to Boot the Kernel
	Memory Search Explanations
	The RAM Search
	The Special Memory Search
	The Patch Locations

	The ioxxx and ioyyy Files
	I/O Driver Entry Points
	ChekPort
	ConsDeIn
	ConsInit
	ConsSet
	InChar
	InChChek
	InPort
	OutChar
	OutPort
	OutRaw
	PortDeIn
	PortInit

	The Sysinit.a File
	The SysInit Entry Point
	The SInitTwo Entry Point
	The UseDebug Entry Point

	The Syscon.c File
	The initext.a File
	Putting the ROM Together

	Chapter 4: Step Two: Bringing Up the Kernel and Console I/O
	Preparing the First Stage OS-9 Configuration
	Creating the Init Module
	SCF Device Descriptor Macro Definitions

	Creating a Console I/O Driver
	Preparing the Download File
	Downloading and Running the System
	Downloading and Running the System

	Cold Part of Kernel
	The coldstart() Routine
	Cold2(): Bringing Up the System the Rest of the Way

	Debugging Hints

	Chapter 5: Step Three: Creating Customized I/O Drivers and Finishing the Boot Code
	Guidelines for Selecting a Tick Interrupt Device
	OS-9 Tick Timer Setup
	Tick Timer Activation
	Real-Time Clock Device Support
	Microware Generic Clock Modules
	Tickgeneric Support
	Ticker Support
	Real-Time Clock Support

	Using Generic Clock Modules
	Philosophy of Generic Clock Modules

	Automatic System Clock Startup
	Debugging Clock Modules on a Disk-Based System
	Debugging Clock Modules on a ROM-Based System

	Creating Disk Drivers
	Testing the Disk Driver

	Creating and Testing the Disk Boot Routines
	Testing the CBoot Disk Boot Module
	Further Considerations

	Completing the System

	Chapter 6: Step Four: Testing and Validation
	General Comments Regarding Testing
	Kernel Tests
	Serial I/O (SCF) Tests
	Disk I/O (RBF) Tests
	Clock Tests
	Final Tests
	System Configuration Checkout
	A Final Note

	Chapter 7: Miscellaneous Application Concerns
	Disk Booting Considerations
	Boot Drivers Supporting Variable Sector Size
	Bootstrap File Specifications
	Making Boot Files
	Bootstrap Driver Support

	Soft Bus Errors Under OS-9

	Chapter 8: OS-9 Cache Control
	OS-9 Cache Control
	System Implementation
	Install Cache Operations

	Default SysCache Modules
	Caching Tables
	Custom Configuration for External Caches
	M$Compat2 Bit Fields

	ROM Debugger and Caches
	Peripheral Access Timing Violations
	Timing Loops

	Building Instructions in the Data Space
	Data Caching and DMA
	Indication of Cache Coherency

	Address Translation and DMA Transfers

	Chapter 9: RBF Variable Sector Support
	RBF Device Drivers
	Converting Existing Drivers to Use Variable Sector Size
	RBF Media Conversion
	Benefits of Non-256 Byte Logical Sectors
	Bootstrap Drivers
	RBF Disk Utilities

	Appendix A: The CBoot Technology
	Introduction
	The CBOOT Common Booters
	CBOOT Driver Entry Points
	init()
	read()
	term()

	CBOOT Library Entry Points
	calldebug()
	convhex()
	extract()
	getbootmem()
	gethexaddr()
	hwprobe()
	InChar()
	InChChek()
	iniz_boot_driver()
	insert()
	instr()
	inttoascii()
	makelower()
	mask_irq()
	OutChar()
	OutHex()
	Out1Hex()
	Out2Hex()
	Out4Hex()
	outstr()
	powerof2()
	setexcpt()
	streq()
	sysreset()

	Appendix B: Trouble Shooting
	Introduction
	Step 1: Porting the Boot Code
	Step 2: Porting the OS-9 for 68K Kernel and Basic I/O
	Coldstart Errors for the Atomic Versions of the Kernel and IOMan

	Setting Up the DevCon Descriptor Field for the Sc68681 Serial Driver
	Searching the Module Directory

	Appendix C: Low-level Driver Flags
	Flags for io2661.a
	Flags for io6850.a
	Flags for io68560.a
	Flags for io68562.a
	Flags for io68564.a
	Flags for io68681.a
	Flags for io68901.a
	Flags for ioz8530.a

	Appendix D: SCSI-System Notes
	OS-9 for 68K SCSI-System Drivers
	Hardware Configuration
	Example One
	OMTI5400 Controller
	Fujitsu 2333 Hard Disk with Embedded SCSI Controller
	Host CPU: MVME147
	Software Configuration
	Example Two
	Example Three

	Appendix E: Using the OS-9 for 68K System Security Module
	Memory Management Units
	Hardware/Software Requirements
	Versions of SSM040

	Configuring SSM for MC68451 Systems
	Adding SSM to the OS-9 Bootfile
	Step One: Create a New Init Module
	Step Two: Create a New Bootfile
	Step Three: Test SSM Operation

	Creating a System Security Module
	SSM Module Structure
	Hardware Considerations
	Complete Source Listing
	Customized 68020 protection module

	Appendix F: Example ROM Source and Makefiles
	defsfile
	systype.d
	sysinit.a
	syscon.c
	rombug.make
	rom.make
	rom_common.make
	rom_serial.make
	rom_port.make
	rom_image.make
	bootio.c

	Index

