
w w w. ra d i sy s . co m
Revision A • July 2006

OS-9® for 68K Processors
Technical Manual

Version 3.3

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 3.3 of Microware OS-9 for 68K.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

OS-9 for 68K Processors Technical Manual 3

Table of Contents

Chapter 1: System Overview 9

10 System Modularity
13 I/O Overview
13 Embedded
14 Disk Based
14 Extended
15 Other
18 Memory Modules
20 Basic Module Structure
21 The CRC Value
22 ROMed Memory Modules
23 Module Header Definitions
30 Additional Header Fields for Individual Modules

Chapter 2: The Kernel 37

38 Responsibilities of the Kernel
38 Kernel Types
39 Kernel Differences
40 System Call Overview
40 User-State and System-State
42 Installing System-State Routines
44 Kernel System Call Processing
44 System Function Calls
45 I/O Calls
47 Memory Management
48 OS-9 Memory Map
49 System Memory Allocation

4 OS-9 for 68K Processors Technical Manual

49 Operating System Object Code
51 Memory Allocators
52 Memory Fragmentation
54 Colored Memory
54 Colored Memory Definition List
60 System Memory Cache Lists
63 System Initialization
63 Init: The Configuration Module
79 Initial System Process
81 Customization Modules
81 Syscache
82 SSM
83 FPU/FPSP
83 Including a Customization Module
85 Process Creation
87 Process Memory Areas
89 Process State
90 Process Scheduling
91 Preemptive Task-Switching
91 D_MinPty: Specifying a Minimum Priority
92 D_MaxAge: Specifying a Maximum Age
94 Exception and Interrupt Processing
98 Reset Vectors: vectors 0, 1
99 Error Exceptions: vectors 2 - 8, 10 - 24, 48 - 63
99 Trace Exception: vector 9

Chapter 3: OS-9 Input/Output System 101

102 The OS-9 Unified Input/Output System
103 IOMan Overview
104 File Manager Overview
105 The Kernel and I/O
105 Device Driver Overview
105 Device Descriptor Overview

OS-9 for 68K Processors Technical Manual 5

107 IOMan and I/O
108 Device Descriptor Modules
114 Adding Additional Devices
114 Path Descriptors
117 File Managers
118 Embedded
118 Disk Based
119 Extended
120 Other
121 File Manager Organization
121 Beginning of a Sample File Manager Module
122 File Manager I/O Responsibilities
127 Driver Module Format
128 INITIALIZE and TERMINATE
128 READ, WRITE, GETSTAT, and SETSTAT
129 ERROR
129 Sample Driver Module Header Format

Chapter 4: Interprocess Communications 131

132 Introduction
133 Signals
134 Supported User-State Signal Codes
137 Alarms
137 User-State Alarms
138 Cyclic Alarms
139 Time of Day Alarms
139 Relative Time Alarms
140 System-State Alarms
143 Events
145 The Wait and Signal Operations
146 Coordinating Non-Sharable Resources
146 The F$Event System Call
149 Semaphores

6 OS-9 for 68K Processors Technical Manual

150 Semaphore States
151 Acquiring Exclusive Access
151 Releasing Exclusive Access
152 Pipes
153 Operations on Pipes
153 Creating Pipes
154 Opening Pipes
155 Read/Readln
158 Pipe Directories
159 Data Modules
159 Creating Data Modules
160 Link Count
160 Saving to Disk

Chapter 5: User Trap Handlers 163

164 Trap Handlers
167 Installing and Executing Trap Handlers
168 OS9 and tcall: Equivalent Assembly Language Syntax
169 Calling a Trap Handler
169 Example One
169 Example Two
172 An Example Trap Handler
175 Trace of Example Two Using the Example Trap Handler

Chapter 6: The Math Module 177

178 Introduction
179 Floating Point Co-processor Emulation Modules
180 Installing Co-processor Emulation Modules
182 Math Trap Handler

Chapter 7: OS-9 File System 185

186 Disk File Organization

OS-9 for 68K Processors Technical Manual 7

186 Basic Disk Organization
187 Identification Sector
189 Allocation Map
190 Root Directory
190 Basic File Structure
192 Segment Allocation
193 Directory File Format
195 Raw Physical I/O on RBF Devices
197 Record Locking
197 Record Locking and Unlocking
198 Non-Sharable Files
199 End of File Lock
200 Deadlock Detection
201 Record Locking Details for I/O Functions
204 File Security

Appendix A: Example Code 205

206 The Init Module
213 The Sysgo Module
215 Signals: Example Program
217 Alarms: Example Program
219 Events: Example Program
221 Semaphores: Example Program
223 C Trap Handler
229 RBF Device Descriptor
238 SCF Device Descriptor
240 SBF Device Descriptor
242 Pipe Device Descriptor

Appendix B: Path Descriptors and Device Descriptors 243

244 RBF Device Descriptor Modules
260 RBF Definitions of the Path Descriptor

8 OS-9 for 68K Processors Technical Manual

265 SCF Device Descriptor Modules
275 SCF Definitions of the Path Descriptor
279 SBF Device Descriptor Modules
285 SBF Definitions of the Path Descriptor
287 Pipe Device Descriptor Modules
289 Pipe Definitions of the Path Descriptor

Appendix C: Error Codes 291

292 Error Codes
294 Miscellaneous Errors
295 Ultra C Related Errors
298 Math Trap Errors
299 Processor Exception Errors
303 Miscellaneous Errors
306 Semaphore Errors
307 Operating System Errors
316 I/O Errors
320 Compiler Errors
321 Rave Errors
333 Internet Errors
340 ISDN Errors

Appendix D: OS-9 for 68K System Calls 347

348 System Calls
350 System Calls and the System Environment

Chapter 1: System Overview

This chapter provides a general overview of the levels of modularity, I/O
processing, memory modules, and program modules for OS-9® for
68K. It includes the following topics:

• System Modularity

• I/O Overview

• Memory Modules

10 OS-9 for 68K Processors Technical Manual

System Modularity

OS-9® has four levels of modularity:

1. The Kernel, IOMan, the Clock, and the Init Modules
The kernel provides basic system services including process control
and resource management. IOMan provides Input/Output (I/O)
management, The clock module is a software handler for the specific
real-time-clock hardware. The Init module is the initialization table the
kernel uses during system startup.

2. File Managers
File managers process I/O requests for similar classes of I/O devices.
Refer to the I/O Overview in this chapter for a list of the file managers
Microware currently supports.

3. Device Drivers
Device drivers handle the basic physical I/O functions for specific I/O
controllers. Standard OS-9 systems are typically supplied with a disk
driver, serial port drivers for terminals and serial printers, and a driver
for parallel printers. You can also add customized drivers of your own
design or purchase drivers from a hardware vendor.

4. Device Descriptors
Device descriptors are small tables associating specific I/O ports with
their logical name, device driver, and file manager. These modules also
contain the physical address of the port and initialization data. By using
device descriptors, only one copy of each driver is required for each
specific type of I/O device, regardless of how many devices the system
uses.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For specific information about file managers, device drivers, and device
descriptors, refer to:

• Chapter 1: System Overview (this chapter)

• Chapter 3: OS-9 Input/Output System

1System Overview

OS-9 for 68K Processors Technical Manual 11

• The OS-9 for 68K Processors Technical I/O Manual

Figure 1-1 OS-9 Module Organization

NoteNote
The shaded boxes contain non-executable code. These modules are
referenced, not called. The kernel, file managers, and device drivers
reference descriptors directly, but only the kernel and IOMan reference
the Init module directly.

OS-9 Kernel

Math Trap Handlers

CIO Library

User Trap Handlers

IOMan

File Managers

Device Drivers

Device Descriptors

Init

Clock

User
Applications
and Utilities

12 OS-9 for 68K Processors Technical Manual

An important component, the command interpreter (the shell), is not shown
in this diagram. The shell is an application program, not part of the
operating system. It is described fully in Using OS-9 for 68K Processors.
To obtain a list of the specific modules making up OS-9 for your system,
use the ident utility on the OS9Boot file.

Although all modules could be resident in ROM, the system bootstrap
module is usually the only ROMed module in disk-based systems. All other
modules are loaded into RAM during system startup.

1System Overview

OS-9 for 68K Processors Technical Manual 13

I/O Overview

IOMan maintains the I/O system for OS-9. The kernel provides the first
level of I/O service by routing system call requests between processes and
IOMan, which then passes the requests to the appropriate file managers
and device drivers. Microware includes the following file managers in the
OS-9 for 68K distribution.

Embedded

Table 1-1 Embedded File Managers

Name Description

SCF Sequential Character File Manager
Handles I/O for sequentially character-structured
devices, such as terminals, printers, and modems.

PIPEMAN Pipe File Manager
Supports interprocess communications through
memory buffers called pipes.

14 OS-9 for 68K Processors Technical Manual

Disk Based

Extended

Table 1-2 Disk Based File Managers

Name Description

RBF Random Block File Manager
Handles I/O for random-access, block-structured
devices, such as floppy/hard disk systems.

SBF Sequential Block File Manager
Handles I/O for sequentially block-structured devices,
such as tape systems.

PCF PC File Manager
Handles reading/writing PC-DOS disks. It uses RBF
drivers and is sold separately.

Table 1-3 Extended File Managers

Name Description

IFMAN Communications Interface File Manager
Manages network interfaces.

PKMAN Pseudo-Keyboard File Manager
Provides an interface to the driver side of SCF to
enable the software to emulate a terminal.

1System Overview

OS-9 for 68K Processors Technical Manual 15

Other

Microware also supports the following file managers that are not included in
the standard OS-9 distribution:

SOCKMAN Socket File Manager
Creates and manages the interface to communication
protocols (sockets).

NFS Network File System Manager
Client file manager for mounting remote file systems.
The NFS protocol provides remote access to shared
file systems over local area networks.

Table 1-3 Extended File Managers (continued)

Name Description

Table 1-4 Other Microware File Managers

Name Description

CDFM Compact Disc File Manager
Handles CD and audio devices, as well as access to
CD ROM and CD audio.

UCM User Communications Manager
Handles video, pointer, and keyboard devices for CD-I
(Compact Disc-Interactive).

GFM Graphics File Manager
Provides a full set of text and graphics primitives,
input handling for keyboards and pointers, and high
level features for handling user interaction in a
real-time, multitasking environment.

16 OS-9 for 68K Processors Technical Manual

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For specific information about these file managers, refer to:

• Chapter 4: Interprocess Communications

• The OS-9 for 68K Processors Technical I/O Manual

NFM Network File Manager
Processes data requests over the OS-9 network.

NRF Non-Volatile RAM File Manager
Controls non-volatile RAM and handles a flat
(non-hierarchical) directory structure.

ISM ISDN Basic Rate Interface Manager
Manager connections for Basic Rate (2B+D)
Interfaces to the Integrated Services Digital Network
(ISDN).

Table 1-4 Other Microware File Managers (continued)

Name Description

1System Overview

OS-9 for 68K Processors Technical Manual 17

Figure 1-2 illustrates how OS-9 processes an I/O request:

Figure 1-2 OS-9 Module Organization

NoteNote
The shaded boxes contain non-executable code. These modules are
referenced, not called. The kernel, file managers, and device drivers
reference descriptors directly, but only the kernel and IOMan reference
the Init module directly.

OS-9 Kernel

Math Trap Handlers

CIO Library

User Trap Handlers

IOMan

File Managers

Device Drivers

Device Descriptors

Init

Clock

User
Applications
and Utilities

18 OS-9 for 68K Processors Technical Manual

Memory Modules

OS-9 is unique as it uses memory modules to manage both the physical
assignment of memory to programs and the logical contents of memory. A
memory module is a logical, self-contained program, program segment, or
collection of data.

OS-9 supports ten pre-defined types of modules and allows you to define
your own module types. Each module type has a different function.

The ten pre-defined memory types are defined by M$Type in the module
header definition as follows:

Prgm Program module

Sbrtn Subroutine module

Multi Reserved

Data Data module

CSDData Configuration status descriptor

TrapLib User trap library

Systm System module

Flmgr File manager module

Drivr Physical device driver

Table 1-5 Memory Module Characteristics

Modules do not have to be Modules are required to be

Complete programs. Re-entrant.

Written in machine language. Position-independent.

Conforms with the basic module
structure described in the next
section.

1System Overview

OS-9 for 68K Processors Technical Manual 19

The 68000 instruction set supports a programming style called re-entrant
code—code that does not modify itself. This allows two or more different
processes to share one copy of a module simultaneously. The processes
do not affect each other, provided each process has an independent area
for its variables.

Almost all OS-9 family software is re-entrant, and therefore uses memory
very efficiently. For example, umacs requires 41K bytes of memory to load.
If you make a request to run umacs while another user (process) is running
it, OS-9 allows both processes to share the same copy, saving 41K of
memory.

NoteNote
Data modules are an exception to the re-entrant requirement. However,
careful coordination is required for several processes to update a
shared data module simultaneously.

It does not matter where a position-independent module is loaded in
memory. This allows OS-9 to load the program wherever memory space is
available. In many operating systems, you must specify a load address to
place the program in memory. OS-9 determines an appropriate load
address for you when the program is run.

OS-9 compilers and interpreters automatically generate
position-independent code. In assembly language programming, however,
the programmer must insure position-independence by avoiding absolute
address modes.

20 OS-9 for 68K Processors Technical Manual

Basic Module Structure

Each module has three parts: a module header, a module body, and a CRC
value.

Figure 1-3 Basic Memory Module Format

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For specific information about the structure and individual module
header fields, refer to the list at the end of this chapter.

The module header contains information describing the module and its
use. It is defined in assembly language by a psect directive. The linker
creates the header at link-time. The information contained in the module
header includes the module’s name, size, type, language, memory
requirements, and entry point.

The module body contains initialization data, program instructions, and
constant tables.

The last three bytes of the module hold a CRC value (Cyclic Redundancy
Check value) to verify the module’s integrity. The linker creates the CRC at
link-time.

Module Header

Module Body

Initialization data
Program/Constants

CRC Value

1System Overview

OS-9 for 68K Processors Technical Manual 21

The CRC Value

The CRC (Cyclic Redundancy Check) is:

• An error checking method used frequently in data communications and
storage systems.

• A vital part of the ROM memory module search technique.

• Located at the end of all modules to check the validity of the entire
module.

• An extremely reliable assurance that programs in memory are intact
before execution.

• An effective backup for the error detection systems of disk drives and
memory systems.

NoteNote
The F$CRC description in Appendix D: OS-9 for 68K System Calls
describes how F$CRC computes a module’s CRC.

OS-9 computes a 24-bit CRC value over the entire module, starting at the
first byte of the module header and ending at the byte just before the CRC
itself. OS-9 family compilers and linkers automatically generate the module
header and CRC values. If required, your program can use the F$CRC
system call to compute a CRC value over any specified databytes.

OS-9 does not recognize a module with an incorrect CRC value. Therefore,
you must update the CRC value of any patched or modified module for
OS-9 to load the module from disk or find it in ROM. Use the OS-9 fixmod
utility to update the CRC’s of patched modules.

22 OS-9 for 68K Processors Technical Manual

NoteNote
The Atomic kernel’s checking of the CRC can be disabled using the
M$SysConf flags of the init module.

ROMed Memory Modules

When a system reset starts OS-9, the kernel searches for modules in
ROM. It detects them by looking for the module header sync code ($4AFC).
When the kernel detects this byte pattern, it checks the header parity to
verify a correct header. If this test succeeds, the kernel obtains the module
size from the header and computes a 24-bit CRC over the entire module. If
the computed CRC is valid, the module is entered into the module
directory.

OS-9 links to all of its component modules found during the search. It
automatically includes in the system module directory all ROMed modules
present in the system at startup. This allows you to create partially or
completely ROM-based systems. It also includes any non-system modules
found in ROM. This allows location of user-supplied software during the
start-up process, and its entry into the module directory.

1System Overview

OS-9 for 68K Processors Technical Manual 23

Module Header Definitions

The following table and Figure 1-4 list definitions of the standard set of
fields in the module header.

Table 1-6 Module Header Fields

Name Description

M$ID Sync Bytes ($4AFC)
These constant bytes identify the start of a module.

M$SysRev System Revision Identification
Identifies the format of a module.

M$Size Size of Module
The overall module size in bytes, including the
header and CRC.

M$Owner Owner ID
The group/user ID of the module’s owner.

M$Name Offset to Module Name
The address of the module name string relative to the
start (first sync byte) of the module. The name string
can be located anywhere in the module and consists
of a string of ASCII characters terminated by a null
(zero) byte.

24 OS-9 for 68K Processors Technical Manual

M$Accs Access Permissions
Defines the permissible module access by its owner
or other users. Module access permissions are
divided into four sections:

reserved (4 bits)

group (4 bits)

public (4 bits)

owner (4 bits)

Each of the non-reserved permission fields is defined
as:

bit 3 reserved

bit 2 execute permission

bit 1 write permission

bit 0 read permission

The total field is displayed as:

-----ewr-ewr-ewr

Table 1-6 Module Header Fields (continued)

Name Description

1System Overview

OS-9 for 68K Processors Technical Manual 25

M$Type Module Type Code
Module type values are in the oskdefs.d file. They
describe the module type code as:

 0 Not used (Wildcard value in
system calls)

Prgm 1 Program module

Sbrtn 2 Subroutine module

Multi 3 Multi-module (reserved for future
use)

Data 4 Data module

CSDData 5 Configuration status descriptor

 6-10 Reserved for future use

TrapLib 11 User trap library

Systm 12 System module (OS-9
component)

Flmgr 13 File manager module

Drivr 14 Physical device driver

Devic 15 Device descriptor module

 16-up User definable

Table 1-6 Module Header Fields (continued)

Name Description

26 OS-9 for 68K Processors Technical Manual

M$Lang Language
You can find module language codes in the
oskdefs.d file. They describe whether the module
is executable and which language the run-time
system requires for execution (if any):

 0 Unspecified language
(Wildcard value in system
calls)

Objct 1 68000 machine language

ICode 2 Basic I-code

PCode 3 Pascal P-code

CCode 4 C I-code (reserved for future
use)

CblCode 5 Cobol I-code

FrtnCode 6 Fortran

I-code 7-15 Reserved for future use

 16-255 User Definable

NOTE: Not all combinations of module type codes
and languages necessarily make sense.

Table 1-6 Module Header Fields (continued)

Name Description

1System Overview

OS-9 for 68K Processors Technical Manual 27

M$Attr Attributes
The bits are defined as follows:

Bit The Module Is

5 A system state module.

6 A sticky module. A sticky module is
retained in memory when its link count
becomes zero. The module is removed
from memory when its link count becomes
-1 or memory is required for another use.

7 Re-entrant (sharable by multiple tasks).

M$Revs Module’s Revision Level
If two modules with the same name and type are
found in the memory search or loaded into memory,
only the module with the highest revision level is kept.
This enables easy substitution of modules for update
or correction, especially ROMed modules.

M$Edit Edition
The software release level for maintenance. OS-9
does not use this field. Every time a program is
revised (even for a small change), increase this
number. We recommend you key internal
documentation within the source program to this
system.

M$Usage Comments
Reserved for offset to module usage comments (not
currently used).

M$Symbol Symbol Table Offset
Reserved for future use.

Table 1-6 Module Header Fields (continued)

Name Description

28 OS-9 for 68K Processors Technical Manual

NoteNote
Offset refers to the location of a module field, relative to the starting
address of the module. Resolve module offsets in assembly code by
using the names shown here and linking the module with the
relocatable library, sys.l or usr.l.

M$Ident Ident Code
(not currently used).

M$HdExt Module Header Extension

M$HdExtSz Module Header Extension Size
The above two fields are used to identify the location
of the additional header fields that are not part of the
standard OS-9 Device Descriptor module headers.
These fields are currently used only by the file
manager using the DPIO source code system. The
fields allow the DPIO I/O systems to specify an
initialized data offset.

M$Parity Header Parity Check
The one’s complement of the exclusive-OR of the
previous header words. OS-9 uses this for a quick
check of the module’s integrity.

Table 1-6 Module Header Fields (continued)

Name Description

1System Overview

OS-9 for 68K Processors Technical Manual 29

Table 1-7 Module Header Standard Fields

Offset Name Use

$00 M$ID Sync Bytes ($4AFC)

$02 M$SysRev Revision ID

$04 M$Size Module Size

$08 M$Owner Owner ID

$0C M$Name Module Name Offset †

$10 M$Accs Access Permissions

$12 M$Type Module Type

$13 M$Lang Module Language

$14 M$Attr Attributes

$15 M$Revs Revision Level

$16 M$Edit Edit Edition

$18 M$Usage Usage Comments Offset †

$1C M$Symbol Symbol Table

$20 M$Ident Ident Code

$22 Reserved

$28 M$HdEXT Module Header Extension

30 OS-9 for 68K Processors Technical Manual

† These fields are offset to strings

Additional Header Fields for Individual Modules

Program, trap handler, device driver, file manager, and system modules
have additional standard header fields following the universal offsets.
These additional fields are listed below and shown in Figure 1-4.

The program module is a common type of module (type: Prgm; language:
Objct). A program module is executable as an independent process by
the F$Fork or F$Chain system calls. The assembler and C compilers
produce program modules, and most OS-9 commands are program
modules. Program module headers have six fields in addition to the
universal set.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Chapter 4: Interprocess Communications describes trap handler
modules. The OS-9 for 68K Processors Technical I/O Manual
describes file manager modules and device driver modules.

$2C M$HdExtSz Module Header Extension Size

$2E M$Parity Header Parity Check

$30-up Module Type Dependent

Module Body

CRC Check

Table 1-7 Module Header Standard Fields (continued)

Offset Name Use

1System Overview

OS-9 for 68K Processors Technical Manual 31

Table 1-8 Additional Header Fields for Individual Modules

Name Description

(Program, trap handler, device driver, file manager, and system
module headers use the following two fields.)

M$Exec Execution Offset
The offset to the program’s starting address. In the
case of a file manager or device driver, this is the
offset to the module’s entry table. For data modules,
this is the offset to the module’s sharable data.

M$Excpt Default User Trap Execution Entry Point
The relative address of a routine to execute if an
uninitialized user trap is called.

(Program, trap handler, and device driver module headers use the
following field.)

M$Mem Memory Size
The required size of the program’s data area
(storage for program variables).

(Program and trap handler module headers use the following three
fields.)

M$Stack Stack Size
The minimum required size of the program’s stack
area.

32 OS-9 for 68K Processors Technical Manual

M$IData Initialized Data Offset
The offset to the initialization data area’s starting
address. This area contains values to copy to the
program’s data area. The linker places all constant
values declared in vsects here. The first four-byte
value is the offset from the beginning of the data
area to which the initialized data is copied. The next
four-byte value is the number of initialized
data-bytes to follow.

Table 1-8 Additional Header Fields for Individual Modules (continued)

Name Description

1System Overview

OS-9 for 68K Processors Technical Manual 33

M$IRefs Initialized References Offset
The offset to a table of values to locate pointers in
the data area. Initialized variables in the program’s
data area may contain values that are pointers to
absolute addresses. Adjust code pointers by adding
the absolute starting address of the object code
area. Adjust the data pointers by adding the
absolute starting address of the data area.

The F$Fork system call does the effective address
calculation at execution time using tables created in
the module.

The first word of each table is the most significant
(MS) word of the offset to the pointer.

The second word is a count of the number of least
significant (LS) word offsets to adjust.

F$Fork makes the adjustment by combining the
MS word with each LS word entry. This offset
locates the pointer in the data area. The pointer is
adjusted by adding the absolute starting address of
the object code or the data area (for code pointers
or data pointers, respectively). It is possible after
exhausting this first count that another MS word and
LS word are given. This continues until a MS word
of zero and a LS word of zero are found.

(Trap handler module headers use the following two fields.)

Table 1-8 Additional Header Fields for Individual Modules (continued)

Name Description

34 OS-9 for 68K Processors Technical Manual

NoteNote
Offset refers to the location of a module field, relative to the starting
address of the module. Resolve module offsets in assembly code by
using the names shown here and linking the module with the
relocatable library: sys.l or usr.l.

Figure 1-4 Additional Header Fields for Individual Modules

M$Init Initialization Execution Offset
The offset to the trap initialization entry point.

M$Term Termination Execution Offset
The offset to the trap termination entry point.
Microware reserves this offset for future use.

Table 1-8 Additional Header Fields for Individual Modules (continued)

Name Description

Execution Offset

Default User Trap Execution Entry
Point

Memory Size

Stack Size

Initialized Data Offset

Initialized Reference Offset

Initialized Execution Offset

Termination Execution Offset

$30

$34

$38

$3C

$40

$44

$48

$4C

File Manager/
System

Device Driver

Program

Trap Handlers

Module Type: Offset: Usage:

1System Overview

OS-9 for 68K Processors Technical Manual 35

NoteNote
See Chapter 3: OS-9 Input/Output System for additional information
on device descriptor’s additional fields.

36 OS-9 for 68K Processors Technical Manual

Chapter 2: The Kernel

This chapter outlines the responsibilities of the kernel. It explains user
and system state processing, memory management, system utilization,
process creation and scheduling, and exception and interrupt
processing. It includes the following topics:

• Responsibilities of the Kernel

• System Call Overview

• Kernel System Call Processing

• Memory Management

• OS-9 Memory Map

• System Memory Allocation

• Memory Fragmentation

• Colored Memory

• System Memory Cache Lists

• System Initialization

• Initial System Process

• Customization Modules

• Process Creation

• Process Scheduling

• Exception and Interrupt Processing

38 OS-9 for 68K Processors Technical Manual

Responsibilities of the Kernel

The kernel is the nucleus of OS-9. It manages system resources, controls
processing, and manages exception/interrupt processing. It is a ROMable,
compact OS-9 module.

The kernel’s primary responsibility is to process and coordinate system
calls, or service requests. OS-9 has two general types of system calls:

• Calls performinng Input/Output, such as reads and writes.

• Calls performing system functions. System functions include memory
management, system initialization, process creation and scheduling,
and exception/interrupt processing.

When you make a system call, a user trap to the kernel occurs. The kernel
determines what type of system call you want to perform. It directly
executes the calls performing system functions, but does not execute I/O
calls. The kernel provides the first level of processing for each I/O call, and
then calls IOMan to complete the function by calling the appropriate file
manager or device driver.

Kernel Types

There are two distinct classes of the kernel:

Development Kernel is the full-featured version of the kernel
designed to be usable in embedded and
multi-user environments.

Atomic Kernel is primarily designed to be used in
embedded systems, although it can also be
used in multi-user systems.

2The Kernel

OS-9 for 68K Processors Technical Manual 39

Kernel Differences

The main differences between the two versions of the kernel can be
summarized as follows:

• User-state debugging (F$DFork, F$DExec, F$DExit) is not
supported by the Atomic kernel. Debugging on Atomic systems is
restricted to the capabilities of the system’s ROM debugger.

• Multi-user protection mechanisms are not implemented in the Atomic
kernel environment. These mechanisms include features such as:

• Validation of user parameters. For example, validation of user buffer
for data transfers.

• External cache hardware is not supported. The Atomic kernel only
supports on-chip caches (if present).

• No MMU support for memory protection.

• Validation of module/user ID permissions. Under an Atomic kernel
(for example) any user can link to any module, regardless of the
access permissions specified in the module.

These different kernel environments allow tailoring of the target system
software to the requirements of the actual target application. Appendix D:
OS-9 for 68K System Calls contains full details of the various system calls
and in which environment they are available.

40 OS-9 for 68K Processors Technical Manual

System Call Overview

For information about specific system calls, refer to Appendix D: OS-9 for
68K System Calls.

User-State and System-State

To understand OS-9’s system calls, you should be familiar with the two
distinct OS-9 environments in which you can execute object code:

User-State The normal program environment in which
processes execute. Generally, user-state
processes do not deal directly with the
specific hardware configuration of the
system.

System-State The environment in which OS-9 system
calls and interrupt service routines execute.
On 68000-family processors, this is
synonymous with supervisor state.
System-state routines often deal with
physical hardware present on a system.

Functions executing in system state have distinct advantages over those
running in user state, including the following:

• A system-state routine can access all of the processor’s capabilities.
For example, on memory protected systems, a system-state routine
may access any memory location in the system. It may mask interrupts,
alter OS-9 internal data structures, or take direct control of hardware
interrupt vectors.

• Some OS-9 system calls are only accessible from system state.

2The Kernel

OS-9 for 68K Processors Technical Manual 41

System-state characteristics make it the only way to provide certain types
of programming functions. For example, it is almost impossible to provide
direct I/O to a physical device from user state. Not all programs, however,
should run in system state. Reasons to use user-state processing rather
than system-state processing include:

• Memory protection prevents user-state routines from accidentally
damaging data structures they do not own.

• A user-state process can be aborted. If a system-state routine loses
control, the entire system usually crashes.

• System-state routines are far more difficult and dangerous to debug
than user-state routines. You can use the user-state debugger to find
most user-state problems. Generally, system-state problems are much
more difficult to find.

• User-state programs are essentially isolated from physical hardware.
Because they are not concerned with I/O details, they are easier to
write and port.

WARNING!
If a system call returns with an exception error code, a system state
exception has occured. If you are getting system state exceptions, there
is a bug eitther in the OS-9 system code, a driver, or some
user-developed system code. Be advised that such exceptions can
leave the system and the user program in an unknown and unstable
state.

42 OS-9 for 68K Processors Technical Manual

Installing System-State Routines

System-state routines have direct access to all system hardware and can
take over the entire machine, crashing or hanging up the system. To help
prevent this, OS-9 limits the methods of creating routines that operate in
system state.

There are four ways to provide system-state routines:

1. Install an OS9P2 module in the system bootstrap file or in ROM. During
cold start, the OS-9 kernel links to this module, and if found, calls its
execution entry point. The most likely thing for such a module to do is
install new system call codes. The drawback to this method is the
OS9P2 module must be in ROM or in the bootfile when the system is
bootstrapped.

2. Use the I/O system as an entry into system state. File managers and
device drivers always execute in system state. The most obvious reason
to write system-state routines is to provide support for new hardware
devices. You can write a dummy device driver and use the I$GetStt
or I$SetStt routines to provide a gateway to the driver.

3. Write a trap handler module that executes in system state. In many
cases, it is practical to debug most of the trap handler routines in user
state, and then convert the trap module to system state. To make a trap
handler execute in system state, you must set the supervisor state bit in
the module attribute byte and create the module as super user. When
the user trap executes, it is in system state.

4. A program executes in system state if the supervisor state bit in the
module’s attribute word is set and the module is owned by the super
user. This can be useful in rare instances.

NoteNote
For routines of limited use that are dynamically loaded and unlinked,
writing a trap handler module may be the most convenient method.

2The Kernel

OS-9 for 68K Processors Technical Manual 43

NoteNote
I/O-related system-state routines may not be time-sliced. The kernel
disables system state time-slicing for a process when it dispatches to
IOMan. It is the responsibility of the file manager and/or device driver
(rarely) to allow system state time-slicing for the process while the I/O
request is executed.

44 OS-9 for 68K Processors Technical Manual

Kernel System Call Processing

The kernel processes all OS-9 system calls (service requests). The
system-wide relocatable library files, sys.l and usr.l, define symbolic
names for all system calls. The files are linked with hand-written assembly
language or compiler-generated code. The OS-9 assembler has a built-in
macro to generate system calls:

OS9 I$Read

This is recognized and assembled to produce the same code as:

TRAP #0
dc.w I$Read

In addition, the C compiler standard library includes functions to access
nearly all user mode OS-9 system calls from C programs.

Parameters for system calls are usually passed and returned in registers.
There are two general types of system calls:

• System function calls (calls that do not perform I/O).

• I/O calls.

System Function Calls

There are two types of system function calls, user-state and system-state:

User-State These requests perform memory
management, multitasking, and other
functions for user programs. They are
mainly processed by the kernel.

System-State Only system software in system state can
use these calls, and they usually operate on
internal OS-9 data structures. To preserve
OS-9’s modularity, these requests are
system calls rather than subroutines.
User-state programs cannot access them,
but system modules such as device drivers
may use them.

2The Kernel

OS-9 for 68K Processors Technical Manual 45

The symbolic name of each system function call begins with F$. For
example, the system call to link a module is F$Link.

Memory requested in system state is not recorded in the process
descriptor memory list. Therefore, you must ensure the memory is returned
to the system before the process terminates.

NoteNote
In general, system-state routines may use any of the user-state system
calls. However, you must avoid making system calls at inappropriate
times. For example, avoid I/O calls, timed sleep requests, and other
calls that can be particularly time consuming (such as F$CRC) in an
interrupt service routine.

WARNING!
Avoid the F$TLink and F$Icpt system calls in system-state routines.
Certain portions of the C library may be inappropriate for use in system
state.

I/O Calls

I/O calls perform various I/O functions. IOMan, the file manager, device
driver, and kernel process I/O calls for a particular device. The symbolic
names for this category of calls begin with I$. For example, the read
service request is I$Read.

You may use any I/O system call in a system-state routine, with one slight
difference than when executed in user-state. All path numbers used in
system state are system path numbers. Each process descriptor has a
path table that converts process local path numbers into system path

46 OS-9 for 68K Processors Technical Manual

numbers. The system itself has a global path number table to convert
system path numbers into actual addresses of path descriptors. You must
make system-state I/O system calls using system path numbers.

For example, the OS-9 F$PErr system call prints an error message on the
caller’s standard error path. To do this, it may not simply perform output on
path number two. Instead it must examine the caller’s process descriptor
and extract the system path number from the third entry (0, 1, 2, ...) in the
caller’s path table.

When a user-state process exits with open I/O paths, the F$Exit routine
automatically closes the paths. This is possible because OS-9 keeps track
of the open paths in the process’ path table. In system state, the I$Open
and I$Create system calls return a system path number that OS-9 does
not record in the process path table or anywhere else. Therefore, the
system-state routine that opens any I/O paths must ensure the paths are
eventually closed, even if the underlying process is abnormally terminated.

2The Kernel

OS-9 for 68K Processors Technical Manual 47

Memory Management

To load any object (such as a program or constant table) into memory, the
object must have the standard OS-9 memory module format as described
in Chapter 1: System Overview. This allows OS-9 to maintain a module
directory to keep track of modules in memory. The module directory
contains the name, address, and other related information about each
module in memory.

OS-9 adds the module to the module directory when it is loaded into
memory. Each directory entry contains a link count. The link count is the
number of processes using the module.

When a process links to a module in memory, the module’s link count
increments by one. When a process unlinks from a module, the module’s
link count decrements by one. When a module’s link count becomes 0, its
memory is de-allocated and it is removed from the module directory, unless
the module is sticky.

A sticky module is not removed from memory until its link count becomes
-1 or memory is required for another use. A module is sticky if the sixth bit
of the module header’s attribute field (M$Attr) is set.

48 OS-9 for 68K Processors Technical Manual

OS-9 Memory Map

OS-9 uses a software memory management system containing all memory
within a single memory map. Therefore, all user tasks share a common
address space.

A map of a typical OS-9 memory space is shown in Figure 2-1. Unless
otherwise noted, the sections shown need not be located at specific
addresses. However, Microware recommends you keep each section in
contiguous reserved blocks, arranged in an order that facilitates future
expansion. Whenever possible, it is best to have physically contiguous
RAM.

Figure 2-1 Typical OS-9 Memory Map

NoteNote
For the 68020, 68030, 68040, and CPU32 family of CPUs, you can set
the Vector Base Register (VBR) anywhere in the system. Thus, for
these types of systems, there is no requirement that RAM or ROM be at
address 0.

I/O Device Addresses

Bootstrap ROM and/or Optional ROMs for
System or Application Software

Unused: Available for Future RAM or ROM
Expansion

RAM
128K minimum

512K recommended
(the more the better)

ROM or RAM for Exception Vectors

ROM Reset Vectors

Highest Memory Address

Bootstrap ROM located here with first 8
bytes (reset vector) also mapped to
vector locations: 000000-000007.

RAM in multiples of 8K contiguous,
expanded upward

Address 000400

Address 000008

Address 000000

2The Kernel

OS-9 for 68K Processors Technical Manual 49

System Memory Allocation

During the OS-9 start-up sequence, an automatic search function in the
kernel and the boot ROM finds blocks of RAM and ROM. OS-9 reserves
some RAM for its own data structures. ROM blocks are searched for valid
OS-9 ROM modules.

OS-9 requires a variable amount of memory. Actual requirements depend
on the system configuration and the number of active tasks and open files.
The following sections describe approximate amounts of memory used by
various parts of OS-9.

Operating System Object Code

A complete set of typical operating system component modules (kernel,
IOMan, file managers, device drivers, device descriptors, and tick driver)
occupies about 50K to 64K bytes of memory. On disk-based systems,
these modules are normally bootstrap-loaded into RAM. OS-9 does not
dynamically load overlays or swap system code; therefore, no additional
RAM is required for system code.

You can place OS-9 in ROM for non-disk systems. The typical operating
system object code for ROM-based, non-disk systems occupies about 30K
to 40K bytes.

OS-9 uses a minimum of 8K RAM for internal use. The system global
memory area is usually located at the lowest RAM addressed. It contains
an exception jump table, the debugger/boot variables, and a system global
area. Variables in the system global area are symbolically defined in the
sys.l library and the variable names begin with D_. The Reset SSP vector
points to the system global area.

50 OS-9 for 68K Processors Technical Manual

WARNING!
User programs should never directly access system global variables
because of issues such as portability and (depending on hardware)
memory protection. System calls are provided to allow user programs to
read the information in this area.

OS-9 maintains dynamic-sized data structures (such as I/O buffers, path
descriptors, and process descriptors) that are allocated from the general
RAM area when needed. The System Global Memory area keeps pointers
to the addresses of these data structures. A typical small system uses
approximately 32K of RAM. The total depends on elements such as the
number of active devices, the memory, and the number of active
processes. The sys.l library source files include the exact sizes of all the
system’s data structure elements.

All unused RAM memory is assigned to a free memory pool. Memory
space is removed and returned to the pool as it is allocated or deallocated
for various purposes. OS-9 automatically assigns memory from the free
memory pool whenever any of the following occur:

• Modules are loaded into RAM.

• New processes are created.

• Processes request additional RAM.

• OS-9 requires more I/O buffers or its internal data structures must be
expanded.

Storage for user program object code modules and data space is
dynamically allocated from and deallocated to the free memory pool. User
object code modules are automatically shared if two or more tasks execute
the same object program. User object code application programs can also
be stored in ROM memory.

The total memory required for user memory depends largely on the
application software to be run. Microware suggests you have a system
minimum of 128K plus an additional 64K per user available. Alternatively, a
small ROM-based control system might only need 64K of memory.

2The Kernel

OS-9 for 68K Processors Technical Manual 51

Memory Allocators

The kernel offers two versions of the memory allocator:

• Buddy Allocator

• Standard Allocator

The allocator used is determined by the version of the kernel you select.

The Buddy Allocator is designed to give more deterministic operation in a
real-time environment than the Standard Allocator, at the expense of
memory efficiency.

The majority of systems use the Standard Allocator. This is the memory
allocator used by the kernel since the original release of OS-9. This
allocator can allocate memory to a resolution of 16-bytes. For example, a
request for 1025 bytes rounds up to 1040 bytes.

The Buddy Allocator uses a binary-buddy algorithm which maintains free
memory in block sizes that are binary multiples. Under the Buddy Allocator,
memory requests are rounded up to the next binary power of the request
size. For example, a request for 1025 bytes rounds up to 2048 bytes. The
binary-buddy technique results in faster memory allocation for the system,
and thus overall system determinism is improved. Because the Buddy
Allocator is less efficient for system memory usage, this allocator is
typically used in embedded (the Atomic kernel) applications where
real-time performance is critical.

When you use the buddy allocator, the system memory lists (either in ROM
or in the Init module’s colored memory lists) must have a start address
on the same boundary as the size of the block.

52 OS-9 for 68K Processors Technical Manual

Memory Fragmentation

Once a program is loaded, it must remain at the address where it was
originally loaded. Although position-independent programs can be initially
placed at any address where free memory is available, program modules
cannot be relocated dynamically after they are loaded. This can lead to
memory fragmentation.

When programs are loaded, they are assigned the first sufficiently large
block of memory at the highest address possible in the address space. If a
colored memory request is made, this may not be true. If a number of
program modules are loaded, and subsequently one or more
non-contiguous modules are unlinked, several fragments of free memory
space exist. The total free memory space may be quite large. However,
because it is scattered, not enough space exists in a single block to load a
particular program module.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on colored memory, refer to the next section.

You can avoid memory fragmentation by loading modules at system
startup. This places the modules in contiguous memory space. Or, you can
initialize each standard device when booting the system. This allows the
devices to allocate memory from higher RAM than would be available if the
devices were initialized after booting.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

mfree displays free system RAM. Refer to the Utilities Reference for
more information about mfree.

2The Kernel

OS-9 for 68K Processors Technical Manual 53

If serious memory fragmentation does occur, the system administrator can
kill processes and unlink modules in ascending order of importance until
there is sufficient contiguous memory to proceed. Use the mfree utility to
determine the number and size of free memory blocks.

54 OS-9 for 68K Processors Technical Manual

Colored Memory

OS-9 colored memory allows a system to recognize different memory types
and reserve areas for special purposes. For example, you could design a
part of a system’s RAM to store video images and battery back up another
part. The kernel allows isolation and specific access of areas of RAM like
these. You can request specific memory types or colors when:

• Allocating memory buffers.

• Creating modules in memory.

• Loading modules into memory.

If a specific type of memory is not available, the kernel returns error #237,
E$NoRAM.

Colored memory lists are not essential on systems with RAM consisting of
one homogeneous type, although they can improve system performance
on some systems and allow greater flexibility in configuring memory search
areas. The default memory allocation requests are still appropriate for most
homogeneous systems and for applications that do not require one
memory type over another. Colored memory lists are required for the
F$Trans system call to perform address translation.

Colored Memory Definition List

The kernel must have a description of the CPU’s address space to make
use of the colored memory routines. You can establish colored memory by
including a colored memory definition list (MemList) in the systype.d
file, which then becomes part of the Init module. The list describes each
memory region’s characteristics. The kernel searches each region in the
list for RAM during system startup.

A colored memory definition list contains the following information:

• Memory color (type)

• Memory priority

• Memory access permissions

2The Kernel

OS-9 for 68K Processors Technical Manual 55

• Local bus address

• Block size the kernel’s coldstart routine uses to search the area for RAM
or ROM

• External bus translation address (for DMA and dual-ported RAM)

• Optional name

The memory list may contain as many regions as needed. If no list is
specified, the kernel automatically creates one region describing the
memory found by the bootstrap ROM.

MemList is a series of MemType macros defined in systype.d and used
by init.a. Each line in the MemList must contain all the following
parameters, in order:

type, priority, attributes, blksiz, addr begin, addr
end, name, DMA-offset

The colored memory list must end with a longword of zero. The following
describes the MemList parameters:

Table 2-1 MemList Parameters

Parameter Size Definition

Memory Type word Type of memory. Three memory types are
currently defined in memory.h:

SYSRAM 0x01 System RAM memory

VIDEO1 0x80 Video memory for plane A

VIDEO2 0x81 Video memory for plane B

Priority word Priority of memory (0-255). High priority
memory is allocated first. If the block priority
is 0, the block can only be allocated by a
request for the specific color (type) of the
block.

56 OS-9 for 68K Processors Technical Manual

Access
Permissions

word Memory type access bit definitions:

Bit Name Description

0 B_USER User processes can allocate
this memory.

NOTE: This bit is ignored if
the B_ROM bit is set.

1 B_PARITY Parity memory; the kernel
initializes this memory
during startup.

NOTE: Only B_USER
memory may be initialized.

2 B_ROM ROM; the kernel searches
this memory for modules
during startup.

NOTE: Processes cannot
allocate B_ROM memory, as
the B_USER and B_PARITY
bits are ignored if B_ROM is
set.

3 B_NVRAM NVRAM memory is
searched for modules.

4 B_SHARE SHARED memory is
supported by allocating the
system’s data structure for
the shared memory block
out of the block itself.

Search Block
Size

word The kernel checks every (search block
size)<<4 to see if RAM/ROM exists.

Table 2-1 MemList Parameters (continued)

Parameter Size Definition

2The Kernel

OS-9 for 68K Processors Technical Manual 57

The following is an example system memory map:
CPU Address Bus Address Memory Size Physical Location
$00000000 $00200000 $200000 on-board cpu ram
$00600000 $00600000 $200000 VMEbus ram

A corresponding MemList table might appear as follows:
* memory list definitions for init module (user adjustable)
 align
* MemType type, prior, attributes, blksiz, addr limits, name, DMA-offset
MemList
* on-board ram covered by "rom memory list:"
* - this memory block is known to the "rom’s memory list," thus it was
* "parity initialized" by the rom code.
* - the cpu’s local base address of the block is at $00000000.
* - the bus base address of the block is at $200000.
* - this ram is fastest access for the cpu, so it has the highest priority.
*
 MemType SYSRAM,255,B_USER,4096,0,$200000,OnBoard,$200000

* off-board expansion ram
* - this memory block is not known to the "rom’s memory list,"
* thus it needs "parity initialization" by the kernel.
* - as the block is accessed over the bus, the base address of the block
* is the same for cpu and dma accesses.
* - this ram is slower access than on-board ram, therefore it
* has a lower priority than the on-board ram.
*
 MemType SYSRAM,250,B_USER+B_PARITY,4096,$600000,$800000,OffBoard,0

Low Memory
Limit

long Beginning address of the block, as
referenced by the CPU.

High Memory
Limit

long End address of the block (+1), as
referenced by the CPU.

Description
String Offset

word Offset of a user-defined string describing
the type of memory block.

Address
Translation
Adjustment

long The external bus address of the beginning
of the block. If 0, this field does not apply.
Refer to F$Trans for more information.

Table 2-1 MemList Parameters (continued)

Parameter Size Definition

58 OS-9 for 68K Processors Technical Manual

 dc.l 0 end of list

OnBoard dc.b "fast on-board RAM",0
OffBoard dc.b "VMEbus memory",0

Colored memory definitions are not essential for homogenous memory
systems. However, colored memory definitions in this type of system can
improve system performance and simplify memory list reconfiguration.

In a homogeneous memory system, the kernel allocates memory from the
top of available RAM when requests are made by F$SRqMem (for example,
when loading modules). If the system has RAM on-board the CPU and
off-board in external memory boards, the modules tend to be loaded into
the off-board RAM, because OS-9 always uses high memory first.
On-board RAM is not used for a F$SRqMem call until the off-board memory
is unable to accommodate the request.

Programs running in off-board memory execute slower than those running
in on-board memory, due to bus access arbitration. Also, external bus
activity increases. This may impact the performance of other bus masters
in the system.

The colored memory lists can be used to reverse this tendency in the
kernel, so a CPU does not use off-board memory until all of its on-board
memory is used. This results in faster program execution and less
saturation of the system’s external bus. Do this by making the priority of the
on-board memory higher than off-board memory, as shown in the example
lists on the preceding page.

In a homogeneous memory system, the memory search areas are defined
in the ROM’s memory list. If you do not use colored memory, you must
make new ROMs from source code (usually impossible for end-users) or
from a patched version of the original ROMs (usually difficult for end-users)
to make changes to the memory search areas.

The colored memory lists simplify changes by configuring the search areas
as follows:

• The ROM’s memory list describes only the on-board memory.

• The colored memory lists in systype.d define the on-board memory
and any external bus memory search areas in the Init module only.

2The Kernel

OS-9 for 68K Processors Technical Manual 59

The use of colored memory in a homogeneous memory system allows you
to easily reconfigure the external bus search areas by adjusting the lists in
systype.d and making a new Init module. The ROM does not require
patching.

60 OS-9 for 68K Processors Technical Manual

System Memory Cache Lists

OS-9 supports the ability to precisely define the caching modes used for
regions of memory in the system. Precise definition of these modes for
particular regions allows the user to configure the system for optimal
performance and/or system functionality.

Many systems simply desire maximum performance, but there are many
cases where regions of memory must be declared non-cachable so cache
coherency problems do not result when processes directly reference I/O
devices and memory shared with other processors.

When the SSM module is installed in the system, it provides a default
cache mode of write-back for user-state accesses. This default mode can
be over-ridden for specific regions by creating CacheList entries in the
Init module.

A CacheList entry contains the following information:

• Memory block start address.

• Memory block end address.

• Cache mode for memory block.

The CacheList may contain as many regions as needed. If no list is
specified, then the default cache mode for user-state is write-through.

CacheList is a series of CacheType macros defined in systype.d and
used by init.a. Each line in the CacheList must contain the following
parameters, in order:

block start, block end, cache mode

2The Kernel

OS-9 for 68K Processors Technical Manual 61

The cache list entries must end with a longword of 0xffffffff (-1). The
following describes the CacheList parameters:

The following is an example system memory map:

Table 2-2 CacheList Parameters

Parameter Size Definition

Block Start long Start address of memory region.

Block End long End address (+1) of memory region.

Cache Mode word Cache mode (MMU specific) for region.

Table 2-3 Example System Memory Map

CPU Address Size Memory Size, Usage, and Cache Mode

$00000000 $02000000 32Meg on-board memory, cache
enabled, copy-back mode.This
memory can be snooped by the
on-board master, so copy-back is
viable.

$02000000 $7e000000 Off-board memory. This region cannot
be snooped by the on-board master,
but as it is being used for on-board
master usage only, then copy-back
caching is viable.

62 OS-9 for 68K Processors Technical Manual

A corresponding CacheList Table might appear as follows:
* CacheList entries for init module (user adjustable)
*
* define cache-mode overrides for system
*
 CPUALIGN
CacheList
 CacheType 0,$02000000,CopyBack on-board area is copy-back
 CacheType $02000000,$80000000,CopyBack off-board area is copy-back
 CacheType $80000000,$82000000,CINotSer shared area is cache-inhibited
 CacheType $e0000000,$ffffffff,CISer I/O area us cache-inhibited, serialized
 dc.l -1 terminate list

NoteNote
There is no direct relationship between the kernel’s colored memory
lists and the CacheList entries. Each list is used for its own purpose.
For example, it is allowed to have two cache modes described for
separate regions falling within a single colored memory list entry.

$800000000 $02000000 32Meg reserved for shared memory
with other processors or a
memory-mapped video (for example).

This region should be cache-inhibited
(shared case) or for performance
(video case).

$e0000000 $20000000 System I/O regions (both on-board
peripherals and I/O expansion space).
This region must be cache inhibited
and serialized access due to the
nature of I/O devices.

Table 2-3 Example System Memory Map (continued)

CPU Address Size Memory Size, Usage, and Cache Mode

2The Kernel

OS-9 for 68K Processors Technical Manual 63

System Initialization

After a hardware reset, the bootstrap ROM executes the kernel (located in
ROM or loaded from disk, depending on the system involved). The kernel
initializes the system, which includes locating ROM modules and running
the system startup task (usually Sysgo).

Init: The Configuration Module

Init is a non-executable module of type Systm (code $0C) which
contains a table of system startup parameters. During startup, Init
specifies initial table sizes and system device names, but it is always
available to determine system limits. It must be in memory when the kernel
executes and usually resides in the OS9Boot file or in ROM.

The Init module begins with a standard module header (the standard
module header is covered in Chapter 1: System Overview) and the
additional fields shown in Table 2-4 and in Figure 2-2.

NoteNote
Refer to Appendix A: Example Code for an example program listing of
the Init module. Offset names are defined in the relocatable library
sys.l.

64 OS-9 for 68K Processors Technical Manual

Table 2-4 Init Module Values

Offset Name Description

$30 Reserved Reserved for future use.

$34 M$PollSz Number of Entries in the IRQ
Polling Table
One entry is required for each
interrupt generating device control
register. Atomic kernel default is 16.
Development kernel default is 32.

$36 M$DevCnt Device Table Size
The number of entries in the system
device table. One entry is required
for each device in the system. Atomic
IOMan default is 8. Development
IOMan default is 32.

$38 M$Procs. Initial Process Table Size
Indicates the initial number of active
processes allowed in the system. For
Atomic OS-9, this table is fixed; for
the development kernel, it
automatically expands as needed.
Atomic kernel default is 32.
Development kernel default is 64.

$3A M$Paths Initial Path Table Size
The initial number of open paths in
the system. For Atomic OS-9, this
table is fixed; for the development
kernel, it automatically expands as
needed. Atomic IOMan default is 32.
Development IOMan default is 64.

2The Kernel

OS-9 for 68K Processors Technical Manual 65

$3C M$SParam Offset to Parameter String for
Startup Module
The offset to the parameter string (if
any) to pass to the first executable
module. An offset of 0 indicates no
parameter string is required. The
parameter string itself is located
elsewhere, usually near the end of
the Init module.

$3E M$SysGo First Executable Module Name
Offset
The offset to the name string of the
first executable module; usually
SysGo or shell.

$40 M$SysDev Default Directory Name Offset
The offset to the initial default
directory name string; usually /d0 or
/h0. The kernel does a chd and chx
to this device before forking the initial
device. If the system does not use
disks, this offset must be 0.

$42 M$Consol Initial I/O Pathlist Name Offset
This offset usually points to the
/TERM string. This pathlist is opened
as the standard I/O path for the initial
process. It is generally used to set up
the initial I/O paths to and from a
terminal. This offset should contain 0
if no console device is in use.

Table 2-4 Init Module Values (continued)

Offset Name Description

66 OS-9 for 68K Processors Technical Manual

$44 M$Extens Customization Module Name
Offset
The offset to a name string of a list of
customization modules (if any). A
customization module is intended to
complement or change OS-9’s
existing standard system calls. OS-9
searches for these modules during
startup. Typically, these modules are
found in the bootfile. They are
executed in system state if found.
Modules listed in the name string are
separated by spaces. The default
name string to search for is OS9P2. If
there are no customization modules,
set this value to 0.

Note: A customization module may
only alter the d0, d1, and ccr
registers.

More Information: Refer to the
following section for more
information on customization
modules.

$46 M$Clock Clock Module Name Offset
If there is no clock module name
string, set this value to 0.

$48 M$Slice Time slice
The number of clock ticks per time
slice. The number of clock ticks per
time slice defaults to 2.

Table 2-4 Init Module Values (continued)

Offset Name Description

2The Kernel

OS-9 for 68K Processors Technical Manual 67

$4A Reserved Reserved for future use.

$4C M$Site Installation Site Code Offset
This value is usually set to 0. OS-9
does not currently use this field.

$50 M$Instal Offset to Installation Name

$52 M$CPUTyp CPU Type
CPU type: 68000, 68008, 68010,
68020, 68030, 68040, 68070, or
683XX. The default is 68000.

$56 M$OS9Lvl Level, Version, and Edition
This four byte field is divided into
three parts:

level: 1 byte

version: 2 bytes

edition: 1 byte

For example, level 1, version 3.0,
edition 1 would be 1301.

$5A M$OS9Rev Revision Offset
The offset to the OS-9 level/revision
string.

$5C M$SysPri Priority
The system priority at which the first
module (usually SysGo or shell) is
executed. This is generally the base
priority at which all processes start.
The default is 128.

Table 2-4 Init Module Values (continued)

Offset Name Description

68 OS-9 for 68K Processors Technical Manual

$5E M$MinPty Minimum Priority
The initial system minimum
executable priority. The default is 0.

$60 M$MaxAge Maximum Age
The initial system maximum natural
age. The default is 0.

$62 M$MDirSz Module Directory Size
The initial module count for the
system. For the Atomic kernel this
table is fixed; for the Development
kernel, it automatically expands as
needed. Atomic and Development
kernels’ defaults are 64.

$64 Reserved Reserved for future use.

$66 M$Events Number of Entries in the Events
Table
The initial number of entries allowed
in the events table. For the Atomic
kernel this table is fixed; for the
Development kernel, it automatically
expands as needed. Atomic kernel
default is 16. Development kernel
default is 32.

More Information: Refer to
F$Event for a discussion of using
events.

Table 2-4 Init Module Values (continued)

Offset Name Description

2The Kernel

OS-9 for 68K Processors Technical Manual 69

$68 M$Compat Revision Compatibility
This byte is used for revision
compatibility. The default is 0. The
following bits are currently defined:

Bit Set Bit To:

0 Save all registers for IRQ
routines. If you have OS-9 for
68K version 3.0 or greater, this
flag is ignored.

1 Prevent the kernel from using
stop instructions.

2 Ignore sticky bit in module
headers.

3 Disable cache burst operation
(68030 systems).

4 Patternize memory when
allocated or de-allocated.

5 Prevent kernel cold-start from
starting system clock.

6 Kernel ignores spurious IRQs.

7 Only the process creating an
alarm can delete it.

Table 2-4 Init Module Values (continued)

Offset Name Description

70 OS-9 for 68K Processors Technical Manual

$69 M$Compa 2 Compatibility Bit #2
This byte is used for revision
compatibility. The following bits are
currently defined:

Bit Function

0 0 External instruction cache is not
snoopy.*

1 External instruction cache is snoopy or
absent.

1 0 External data cache is not snoopy.

1 External data cache is snoopy or absent.

2 0 On-chip instruction cache is not snoopy.

1 On-chip instruction cache is snoopy or
absent.

3 0 On-chip data cache is not snoopy.

1 On-chip data cache is snoopy or absent.

4 0 68349: Cache/SRAM Bank 0 is SRAM.

1 68349: Cache/SRAM Bank 0 is Cache.

5 0 68349: Cache/SRAM Bank 1 is SRAM.

1 68349: Cache/SRAM Bank 1 is Cache.

6 0 68349: Cache/SRAM Bank 2 is SRAM.

1 68349: Cache/SRAM Bank 2 is Cache.

7 0 68349: Cache/SRAM Bank 3 is SRAM.

1 68349: Cache/SRAM Bank 3 is Cache.

* snoopy = cache that maintains its
integrity without software
intervention.

Table 2-4 Init Module Values (continued)

Offset Name Description

2The Kernel

OS-9 for 68K Processors Technical Manual 71

$6A M$MemList Colored Memory List Offset
The colored memory list contains an
entry for each type of memory in the
system. The list is terminated by a
long word of 0. If this field contains a
0, colored memory is not used in this
system.

More Information: For a complete
discussion on colored memory, refer
to Colored Memory earlier in this
chapter.

$6C M$IRQStk Size of Kernel’s IRQ Stack
This field contains the size (in
longwords) of the kernel’s IRQ stack.
The value must be 0 or between 256
and $ffff. If the value is zero, the
kernel uses a small default IRQ
stack. A larger IRQ stack is
recommended. The default value is
256 longwords.

$6E M$ColdTrys Retry Counter
The retry counter if the kernel’s initial
chd to the system device fails. The
default value is 0.

$70 Reserved

$72 Reserved

Table 2-4 Init Module Values (continued)

Offset Name Description

72 OS-9 for 68K Processors Technical Manual

$74 M$CacheList Cache List Offset
The cache list entries describe
alternate cache modes for user-state
accesses to memory regions. The list
is terminated by a long word of -1. If
this field is 0, the cache lists are not
used in the system.

More Information: For a complete
discussion on cache lists, refer to
System Memory Cache Lists
earlier in this chapter.

$76 M$IOMan I/O Manager Module Name Offset
The offset to a name string of a list of
I/O manager modules (if any). OS-9
searches for these modules during
startup. Typically, these modules are
found in the bootfile. They are
executed in system-state if found.
Modules listed in the name string are
separated by spaces. The default
name to search for is IOMan. If there
are no I/O modules, set this to 0.

Note: The I/O modules may only
alter the d0, d1, and ccr registers.

More Information: Refer to
Customization Modules later in this
chapter for information about
customization modules.

Table 2-4 Init Module Values (continued)

Offset Name Description

2The Kernel

OS-9 for 68K Processors Technical Manual 73

$78 M$PreIO Pre-I/O Module Name Offset
The offset to a name string of a list of
Pre-I/O modules (if any). OS-9
searches for these modules during
startup. Typically, these modules are
found in the bootfile. They are
executed in system-state if found.
Modules listed in the name string are
separated by spaces. The default
name to search for is PreIO. If there
are no Pre-I/O modules, set this to 0.

Note: The I/O modules may only
alter the d0, d1, and ccr registers.

More Information: Refer to
Customization Modules later in this
chapter for information about
customization modules.

Table 2-4 Init Module Values (continued)

Offset Name Description

74 OS-9 for 68K Processors Technical Manual

$7a M$SysConf System Configuration Flags
This word field is used for system
configuration control. The following bits are
currently defined:

Bit Function

0 0 System tables are expanded as
needed.

1 System table overflow results in an
error. The default values in the table
are set in the Init module.

Note: System table expansion only
applies to the Development kernel.
For the Atomic kernel, table sizes
are fixed from the Init module
values.

1 Reserved

2 0 CRC checking performed by
F$VModul.

1 CRC checking disabled for
F$VModul.

Note: CRC check disabling applies
only to the Atomic kernel and only for
checks made after cold start.

3 0 System-state time-slicing enabled.

1 System-state time-slicing disabled.

4 0 SSM builds user-state protection
tables on a per-process basis

1 SSM builds one user-state page
table (to allow access to all known
memory) at cold-start.

Note: This option only applies to the
development kernel. The atomic
kernel case always builds a single
user-state page table.

5 - 15 Reserved

Table 2-4 Init Module Values (continued)

Offset Name Description

2The Kernel

OS-9 for 68K Processors Technical Manual 75

NoteNote
Note the following:

• Throughout this chapter, the system directories referred to are the
defaults found in the Init module, unless otherwise specified.

• Offset refers to the location of a module field, relative to the starting
address of the module. Module offsets are resolved in assembly
code by using the names shown here and linking the module with
the relocatable library: sys.l or usr.l.

$7c Reserved

$7e M$PrcDescStack Size of Process Descriptor’s Stack
This field determines the stack area
size in a process descriptor. This
stack is used by the process when it
is performing system calls (for
example, I/O operations). Systems
with file managers/drivers using the
stack heavily (for example, drivers
written in C) may need to increase
this value. The default is 1500 bytes.

Table 2-4 Init Module Values (continued)

Offset Name Description

76 OS-9 for 68K Processors Technical Manual

Table 2-5 Additional Fields for the Init Module

Offset Name Description

$30 Reserved Currently reserved for future use.

$34 M$PollSz Number of IRQ polling table entries.

$36 M$DevCnt Device table size.

$38 M$Procs Initial process table size.

$3A M$Paths Initial path table size.

$3C M$SParam Parameter string for startup module
(usually Sysgo).

$3E M$SysGo Offset to name string of first
executable module.

$40 M$SysDev Offset to the initial default directory
name string.

$42 M$Consol Offset to the initial I/O pathlist string.

$44 M$Extens Offset to a name string of
customization modules.

$46 M$Clock Offset to the clock module name
string.

$48 M$Slice Number of clock ticks per timeslice.

$4A Reserved Currently reserved for future use.

$4C M$Site Offset to the installation site code.

2The Kernel

OS-9 for 68K Processors Technical Manual 77

$50 M$Instal Offset to the installation name string.

$52 M$CPUTyp CPU type.

$56 M$OS9Lvl Level, version, and edition number
of the operating system.

$5A M$OS9Rev Offset to the OS-9 level/revision
string.

$5C M$SysPri Initial system priority.

$5E M$MinPty Initial system minimum executable
priority.

$60 M$MaxAge Initial system maximum natural age.

$62 M$MDirSz Module directory size

$64 Reserved Currently reserved for future use.

$66 M$Events Initial number of entries allowed in
the events table.

$68 M$Compat Compatibility flag one. Byte is used
for revision compatibility.

$69 M$Compat2 Compatibility flag two. Byte is used
for cache control.

$6A M$MemList Offset to the memory segment list.

$6C M$IRQStk Size of the kernel’s IRQ stack.

Table 2-5 Additional Fields for the Init Module (continued)

Offset Name Description

78 OS-9 for 68K Processors Technical Manual

$6E M$ColdTrys Retry counter if the kernel’s initial
chd fails.

$70 Reserved Currently reserved for future use.

$72 Reserved Currently reserved for future use.

$74 M$CacheList Offset to the cache list.

$76 M$IOMan Offset to the I/O manager name.

$78 M$PreIO Offset to the Pre-I/O module list.

$7a M$SysConf System configuration. This word is
used to tailor specific system
options.

$7c Reserved Currently reserved for future use.

$7e M$PrcDescStack Size of process descriptor stack.

Table 2-5 Additional Fields for the Init Module (continued)

Offset Name Description

2The Kernel

OS-9 for 68K Processors Technical Manual 79

Initial System Process

The first process executed by OS-9 is the process named in the Init
module. When the kernel has finished its system initialization, the process
is forked and any parameters specified in the Init module is passed to
that process.

How the system is initially started is dependent upon the requirements of
the system; it can be one of the standard Sysgo modules or it can be any
custom procedure you desire.

The standard modules for starting the system are called Sysgo. If you are
using a disk-based system then the default Sysgo module can be used to
read the disk file called startup. If you have a non-disk based system,
another version of Sysgo is available (sysgo_nodisk) to bring up a shell
without using any disk for I/O.

The Sysgo for disk operation operates as follows:

Sysgo is the first user process started after the system startup sequence.
Its standard I/O is on the system console device.

Sysgo usually executes as follows:

Step 1. Change to the CMDS execution directory on the system device.

Step 2. Execute the startup file (as a script) from the root of the system
device.

Step 3. Fork a shell on the system console.

Step 4. Wait for that shell to terminate and then forks it again. Therefore, there
is always a shell running on the system console, unless Sysgo dies.

80 OS-9 for 68K Processors Technical Manual

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Appendix A: Example Code contains an example source listing of the
Sysgo module.

You may eliminate Sysgo by specifying shell as the initial module and
specifying a parameter string similar to:

startup; ex tsmon /term

The sysgo for non-disk operation operates as follows:

Step 1. Fork a shell with standard I/O paths set to the system’s default console
device.

Step 2. Wait for that shell to terminate, and then forks Shell again. Thus, there
is always Shell running on the system console unless Sysgo dies.

2The Kernel

OS-9 for 68K Processors Technical Manual 81

Customization Modules

Customization modules are additional modules you can execute at boot
time to enhance OS-9’s capabilities. They provide a convenient way to
install a new system call code or collection of system call codes, such as a
system security module. The kernel calls the modules at boot time if their
names are specified in the extension list of the Init module and the kernel
can locate them.

NoteNote
Customization modules may only modify the d0, d1, and ccr registers.

In the Init module, the M$Extens offset points to a list of module names.
By default, the module name in the list is OS9P2. If the modules are found
during cold-start, they are called. If an error is returned, the system stops.
The most common modules used are listed here:

Syscache

The syscache module allows the system to enable and control any
hardware caches present. The default syscache module supplied by
Microware controls the on-chip cache(s) for the processor being used. You
can customize this module to use any external (off-chip) cache hardware
the system may have. The syscache module installs the F$CCtl system
call routines. If you do not install the syscache module, no system caching
takes place.

Standard syscache modules (to support the on-chip capabilities of the
processor) are provided for the 68020, 68030, 68040, and 68349.

82 OS-9 for 68K Processors Technical Manual

NoteNote
External hardware caches are only supported by the Development
kernel. On-chip caching is supported by both the Atomic and
Development kernels.

SSM

The system security module (SSM) allows operation of the memory
management unit (MMU) for the processor in use.

For the Development kernel, MMU operation under OS-9 provides the
basic user-state protection mechanisms for the system so user-state
processes only access memory they are allowed to access. For the 68040
processors, the SSM module (in conjunction with the CacheList entries
of the Init module) also allows fine-tuning of the system memory’s cache
attributes, so cache modes other than the default write-through mode are
possible (for example copy-back and non-cacheable regions).

For the Atomic kernel, user-state protection is not implemented. Thus, SSM
modules that do not provide cache support (all SSM modules except the
68040 SSM) should not be used. In an Atomic kernel environment, the
68040 SSM module provides just the cache mode support described
above.

The standard SSM modules provided are:

SSM451 Supports the MC68451 MMU, for 68010
systems. This SSM module only provides
protection functions.

SSM851 Supports the MC68851 PMMU and
MC68030 MMU. Used on MC68020
systems and MC68030 systems. This SSM
module only provides protection functions.

2The Kernel

OS-9 for 68K Processors Technical Manual 83

SSM040 Supports the MC68030 MMU. Used on
MC68040 systems. This SSM module
provides protection functions (if running in a
Development kernel environment) as well as
cache mode support.

FPU/FPSP

The FPU/FPSP modules provide floating point emulation and support
functions for the system.

FPSP is used on MC68040 systems possessing an on-chip FPU and is
used to provide software emulation of MC68881/2 instructions that are not
implemented on the MC68040.

FPU is used on all other processors when the system does not have a
hardware floating point unit (MC68EC040, MC68030 without MC68882
FPCP). This module provides emulation support for the MC68882 floating
point unit.

Including a Customization Module

To include a customization module in the system, you can either burn the
module into ROM or complete the following steps:

Step 1. Assemble/link the customization code to create an OS-9 system
module.

NoteNote
os9p2 is the name of the default customization module.

84 OS-9 for 68K Processors Technical Manual

Step 2. Create a new Init module:

• Edit the CONFIG macro in the systype.d file for your CPU board.
The name of the new module must appear in the Init module
extension list. For example, if the name of the new module is mine,
add the following line immediately before the endm line:

Extens dc.b "os9p2 mine",0

• Remake the Init module.

Step 3. Create a new bootfile:

• Change to the BOOTLISTS directory for your CPU card and edit the
bootlist file so the customization module name appears in the
bootlist.

• Create a new bootfile with the os9gen utility. For example:

os9gen /h0fmt -z=bootlist

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

os9gen builds and links a bootstrap file. Refer to the Utilities
Reference manual for more information about os9gen.

Step 4. Reboot the system and make sure the new module is operational.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Using OS-9 for 68K Processors manual for additional
information on directory structure and making boots. Additional
information may also be available in the Getting Started manual for
your system.

2The Kernel

OS-9 for 68K Processors Technical Manual 85

Process Creation

All OS-9 programs run as processes or tasks. The F$Fork system call
creates new processes. The name of the primary module the new process
is to execute initially is the most important parameter passed in the fork
system call. The following outlines the creation process:

1. Locate or load the program.
OS-9 tries to find the module in memory. If it cannot find the module, it
loads a mass-storage file into memory using the requested module
name as a file name.

2. Allocate and initialize a process descriptor.
After OS-9 locates the primary module, it assigns a data structure
called a process descriptor to the new process. The process
descriptor is a table containing information about the process: its state,
memory allocation, priority, and I/O paths. The process descriptor is
automatically initialized and maintained. The process does not need to
know about the descriptor’s existence or contents.

3. Allocate the stack and data areas.
The primary module’s header contains a data and stack size. OS-9
allocates a contiguous memory area of the required size from the free
memory space. The Process Memory Areas section later in this
chapter discusses process memory areas.

4. Initialize the process.
OS-9 sets the new process’s registers to the proper addresses in the
data area and object code module (see Figure 2-2). If the program
uses initialized variables and/or pointers, they are copied from the
object code area to the proper addresses in the data area.

If OS-9 cannot perform any of these steps, it aborts the creation of the new
process and notifies the process that originated the fork of the error. If OS-9
completes all the steps, it adds the new process to the active process
queue for execution scheduling.

The new process is also assigned a process ID. This is a unique number
that is the process’ identifier. Other processes can communicate with it by
referring to its ID in system calls. The process also has an associated

86 OS-9 for 68K Processors Technical Manual

group ID and user ID. These identify all processes and files belonging to a
particular user and group of users. The group and user ID’s are inherited
from the parent process.

Processes terminate when they execute an F$Exit system service
request or when they receive fatal signals or errors. Terminating the
process:

• Closes any open paths.

• Deallocates the process’ memory.

• Unlinks its primary module.

Figure 2-2 New Process’s Initial Memory Map and Register Contents

Table 2-6 Registers Passed to the New Process

sr N000

(N=0 for non-MSP systems

N=1 for MSP systems)

(a0) undefined

(a1) top of memory pointer

(a2) undefined

pc module entry point (a3) primary module pointer

CRC Check Value

Initialization Data

Executable Object Code

Module Header

Parameters

Stack

Variables

Primary Module

Data Area

(a6) = data area base address
(lowest address)

(a1) = top of memory pointer
(a5)/(a7) = parameter starting address/stack
top

(a3) = module starting address

pc = module entry point

Register Contents

Highest
Address

Lowest
Address

2The Kernel

OS-9 for 68K Processors Technical Manual 87

NoteNote
(a6) is always biased by $8000 to allow object programs to access
64K of data using indexed addressing. You can usually ignore this bias
because the OS-9 linker automatically adjusts for it.

Process Memory Areas

OS-9 divides all processes (programs) into two logically separate memory
areas:

• Code

• Data

This division provides OS-9’s modular software capabilities.

d0.w process ID (a4) undefined

d1.l group/user ID (a5) parameter pointer

d2.w priority (a6) static storage (data area)
base pointer

d3.w # of paths inherited (a7) stack pointer (same as a5)

d4.l undefined

d5.l parameter size

d6.l total initial memory

Table 2-6 Registers Passed to the New Process (continued)

88 OS-9 for 68K Processors Technical Manual

Each process has a unique data area, but not necessarily a unique
program memory module. This allows two or more processes to share the
same copy of a program. This technique is an automatic function of OS-9
and results in extremely efficient use of available memory.

A program must be in the form of an executable memory module to be run.
The program is position-independent and ROMable, and the memory it
occupies is considered read-only. It may link to and execute code in other
modules.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Chapter 1: System Overview covers the format of an executable
memory module.

The process’ data area is a separate memory space where all of the
program’s variables are kept. The top part of this area is used for the
program’s stack. The actual memory addresses assigned to the data area
are unknown at the time the program is written. A base address is kept in a
register (usually a6) to access the data area. You can read or write to this
area.

If a program uses variables requiring initialization, OS-9 copies the initial
values from the read-only program area to the data area where the
variables actually reside. The OS-9 linker builds appropriate initialization
tables which initialize the variables.

2The Kernel

OS-9 for 68K Processors Technical Manual 89

Process State

A process is either in active, waiting, or sleeping state:

There is a separate queue (linked list of process descriptors) for each
process state. State changes are made by moving a process descriptor
from its current queue to another queue.

Table 2-7 Process States

State Description

active The process is active and ready for execution. The
scheduler gives active processes time for execution
according to their relative priority with respect to all
other active processes. It uses a method that compares
the ages of all active processes in the queue. It gives
some CPU time to all active processes, even if they
have a very low relative priority.

waiting The process is inactive until a child process terminates
or until a signal is received. The process enters the wait
state when it executes an F$Wait system service
request. It remains inactive until one of its descendant
processes terminates or until it receives a signal.

sleeping The process is inactive for a specified period of time or
until it receives a signal. A process enters the sleep
state when it executes an F$Sleep service request or
performs an event wait function on a event that is not
ready. F$Sleep specifies a time interval for which the
process is to remain inactive. Processes often sleep to
avoid wasting CPU time while waiting for some external
event, such as the completion of I/O. Zero ticks
specifies an infinite period of time. Processes waiting on
an event are also included in the sleep queue.

90 OS-9 for 68K Processors Technical Manual

Process Scheduling

OS-9 is a multitasking operating system. Two or more independent
programs, called processes or tasks, can execute simultaneously. Several
processes share each second of CPU time. Although the processes
appear to run continuously, the CPU only executes one instruction at a
time. The OS-9 kernel determines which process, and how long, to run
based on the priorities of the active processes. Task-switching is the
action of switching from the execution of one process to another.
Task-switching does not affect the programs’ execution.

A real-time clock interrupts the CPU at every tick. By default, a tick is .01
second (10 milliseconds). At any occurrence of a tick, OS-9 can suspend
execution of one program and begin execution of another. In addition, the
ticks-per-second amount is hard-wired inside the code and it is not picked
up from any parameter or configuration table. To change the tick length,
recompile the file, tk162.a.

A slice or timeslice is the longest amount of time a process controls the
CPU before the kernel re-evaluates the active process queue. By default, a
slice is two ticks. You can change the number of ticks per slice by adjusting
the system global variable D_TSlice or by modifying the Init module.

To ensure efficiency, only processes on the active process queue are
considered for execution. The active process queue is organized by
process age, a count of how many task switches have occurred since the
process entered the active queue plus the process’s initial priority. The
oldest process is at the head of the queue. OS-9’s scheduling algorithm
allocates some execution time to each active process.

When a process is placed in the active queue, its age is set to the process’s
assigned priority and the ages of all other processes increment. Ages
never increment beyond $ffff.

After the currently executing process’s timeslice, the kernel executes the
process with the highest age.

2The Kernel

OS-9 for 68K Processors Technical Manual 91

Preemptive Task-Switching

During critical real-time applications you sometimes need fast interrupt
response time. OS-9 provides this by preempting the currently executing
process when a process with a higher priority becomes active. The lower
priority process loses the remainder of its time-slice and is re-inserted into
the active queue.

Two system global variables affect task-switching:

• D_MinPty (minimum priority)

• D_MaxAge (maximum age)

Both variables are initially set in the Init module. Users with a group ID of
zero (super users) can access both variables through the F$SetSys
system call.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

F$SetSys allows you to set and examine OS-9 system global
variables. Refer to Chapter 1: System Overview for more information
about F$SetSys.

D_MinPty: Specifying a Minimum Priority

If a process’ priority or age is less than D_MinPty, the process is not
considered for execution and is not aged. Usually, this variable is not used;
it is set to 0.

92 OS-9 for 68K Processors Technical Manual

WARNING!
If the minimum system priority is set above the priority of all running
tasks, the system is completely shut down. You must reset to recover.
Therefore, it is crucial to restore D_MinPty to a normal level when the
critical task(s) finishes.

D_MaxAge: Specifying a Maximum Age

D_MaxAge is the maximum age to which a process can increment. When
D_MaxAge is activated, tasks are divided into two classes:

High priority tasks receive all of the available CPU time
and do not age.

Low priority tasks do not age past D_MaxAge. Low
priority tasks are run only when the high
priority tasks are inactive. Usually, this
variable is not used; it is set to 0.

NoteNote
System state processes may or may not be time-slicable, depending on
the process’s requirements and/or the system configuration control, as
follows:

• If the Disable SysState Time Slice flag is set in the
M$SysConf field of the Init module, the system state time slicing
is disabled for the entire system. This option is provided primarily for
backwards compatibility with V2.N system state modules, as these
may be executing critical routines affecting shared system
resources.

2The Kernel

OS-9 for 68K Processors Technical Manual 93

• If the M$SysConf flag allows system state time-slicing, and if the
process has sections of code that can not be time-sliced, the
process must do one of the following prior to entering the first critical
region:

a. Set the P$Preempt field of its process descriptor to a non-zero
value, so as to disable the process’s ability to be time-sliced, or

b. Increment/decrement the P$Preempt field on entry/exit to
critical (non-preemptable) code sections. This second method is
the preferred method, as it allows the process to be time-sliced
whenever possible.

94 OS-9 for 68K Processors Technical Manual

Exception and Interrupt Processing

One of OS-9’s features is its extensive support of the 68K family advanced
exception/interrupt system. You can install routines to handle particular
exceptions using various OS-9 system calls for the types of exceptions.

Table 2-8 Vector Descriptions for 68000/008/010/070/CPU32 Family

Vector
Number

Related
OS-9 Call Assignment

0 none Reset initial Supervisor Stack Pointer
(SSP)

1 none Reset initial Program Counter (PC)

2 F$STrap Bus error

3 F$STrap Address error

4 F$STrap Illegal instruction

5 F$STrap Zero divide

6 F$STrap CHK instruction; CHK2 (CPU32)

7 F$STrap TRAPV instruction

8 F$STrap Privilege violation

9 F$DFork Trace

10 F$STrap Line 1010 emulator

11 F$STrap Line 1111 emulator

2The Kernel

OS-9 for 68K Processors Technical Manual 95

12 none Reserved (000/008/010/070); hardware
break point (CPU32)

13 none Reserved

14 none Reserved (000/008); format error
(010/070/CPU32)

15 none Uninitialized interrupt

16-23 none Reserved

24 none Spurious interrupt

25-31 F$IRQ Level 1-7 interrupt autovectors

32 F$OS9 User TRAP #0 instruction (OS-9 call)

33-47 F$TLink User TRAP #1-15 instruction vectors

48-56 none Reserved

57-63 none/
F$IRQ

Reserved (000/008/010/CPU32) on-chip
level 1-7 auto-vectored interrupts (070)

64-255 F$IRQ Vectored interrupts (user defined)

Table 2-8 Vector Descriptions for 68000/008/010/070/CPU32 Family
 (continued)

Vector
Number

Related
OS-9 Call Assignment

96 OS-9 for 68K Processors Technical Manual

Table 2-9 Vector Descriptions for 68020/030/040

Vector
Number

Related
OS-9 Call Assignment

0 none Reset initial Supervisor Stack Pointer
(SSP)

1 none Reset initial Program Counter (PC)

2 F$STrap Bus error

3 F$STrap Address error

4 F$STrap Illegal instruction

5 F$STrap Zero divide

6 F$STrap CHK, CHK2

7 F$STrap TRAPV cpTRAPcc, TRAPcc

8 F$STrap Privilege violation

9 F$DFork Trace

10 F$STrap Line 1010 emulator

11 F$STrap Line 1111 emulator

12 none Reserved

13 none Coprocessor protocol violation (020,030
only); reserved (040)

14 none Format error

2The Kernel

OS-9 for 68K Processors Technical Manual 97

15 none Uninitialized interrupt

16-23 none Reserved

24 none Spurious interrupt

25-31 F$IRQ Level 1-7 interrupt autovectors

32 F$OS9 User TRAP #0 instruction (OS-9 call)

33-47 F$TLink User TRAP #1-15 instruction vectors

48 F$STrap FPCP Branch, or set on unordered
condition

49 F$STrap FPCP Inexact result

50 F$STrap FPCP Divide by zero

51 F$STrap FPCP Underflow error

52 F$STrap FPCP Operand error

53 F$STrap FPCP Overflow error

54 F$STrap FPCP NAN signaled

55 F$STrap Reserved (020/030); FPCP
Unimplemented data type (040)

56 none PMMU Configuration (020/030); reserved
(040)

Table 2-9 Vector Descriptions for 68020/030/040 (continued)

Vector
Number

Related
OS-9 Call Assignment

98 OS-9 for 68K Processors Technical Manual

Reset Vectors: vectors 0, 1

The reset initial SSP vector contains the address loaded into the system’s
stack pointer at startup. There must be at least 4K of RAM below and 4K of
RAM above this address for system global storage. Each time an exception
occurs, OS-9 uses this vector to find the base address of system global
data.

The reset initial program counter (PC) is the coldstart entry point to OS-9.
After startup, its only use is to reset after a catastrophic failure.

WARNING!
User programs should not use or modify either of these vectors.

57 none PMMU Illegal Operation (020); reserved
(030/040)

58 none PMMU Access Level Violation (020);
reserved (030/040)

59-63 none Reserved

64-255 F$IRQ Vectored interrupts (user defined)

Table 2-9 Vector Descriptions for 68020/030/040 (continued)

Vector
Number

Related
OS-9 Call Assignment

2The Kernel

OS-9 for 68K Processors Technical Manual 99

Error Exceptions: vectors 2 - 8, 10 - 24, 48 - 63

These exceptions are usually considered fatal program errors and cause a
user program to unconditionally terminate. If F$DFork created the
process, the process resources remain intact and control returns to the
parent debugger to allow a postmortem examination.

You may use the F$STrap system call to install a user subroutine to catch
the errors in this group that are considered non-fatal.

When an error exception occurs, the user subroutine executes in user
state, with a pointer to the normal data space used by the process and all
user registers stacked. The exception handler must decide whether and
where to continue execution.

If any of these exceptions occur in system state, it usually means a system
call was passed bad data and an error is returned. In some cases, system
data structures are damaged by passing nonsense parameters to system
calls.

NoteNote
Not all catchable exception vectors are applicable to all 68000-family
CPUs. For example, vectors 48-54 (FPCP exceptions) only apply to
68020 and 68030 CPUs.

Trace Exception: vector 9

The trace exception occurs when the status register trace bit is set. This
allows the MPU to single step instructions. OS-9 provides the F$DFork,
F$DExec, and F$DExit system calls to control program tracing.

These exceptions provide interrupt polling for I/O devices that do not
generate vectored interrupts. Internally, they are handled exactly like
vectored interrupts.

100 OS-9 for 68K Processors Technical Manual

WARNING!
Normally, you should not use Level 7 interrupts because they are non-
maskable and can interrupt the system at dangerous times. You may
use Level 7 interrupts for software refresh of dynamic RAMs or similar
functions provided the IRQ service routine does not use any OS-9
system calls or system data structures.

The system reserves user trap zero (vector 32) for standard OS-9 system
service requests. The remaining 15 user traps provide a method to link to
common library routines at execution time.

Library routines are similar to program object code modules and are
allocated their own static storage when installed by the F$TLink service
request. The execution entry point executes whenever the user trap is
called. In addition, trap handlers have initialization and termination entry
points that execute when linked and at process termination. The
termination entry point is not currently implemented.

NoteNote
Trap 13 (CIO) and trap 15 (math) are standard trap handlers distributed
by Microware.

The 192 vectored interrupts provide a minimum amount of system
overhead in calling a device driver module to handle an interrupt. Interrupt
service routines execute in system state without an associated current
process. The device driver must provide an error entry point for the system
to execute if any error exceptions occur during interrupt processing,
although this entry point is not currently implemented. The FIRQ/FFIRQ
system calls install a handler in the system’s interrupt tables. If necessary,
multiple devices may be used on the same vector.

Chapter 3: OS-9 Input/Output System

This chapter explains the software components of the OS-9 I/O system
and the relationships between those components. It includes the
following topics:

• The OS-9 Unified Input/Output System

• The Kernel and I/O

• IOMan and I/O

• File Managers

• File Manager Organization

102 OS-9 for 68K Processors Technical Manual

The OS-9 Unified Input/Output System

OS-9 allows the choice of the I/O system to be used on the target system.
The Init module’s M$IOMan field specifies the name of the I/O module to
be used (if any).

The standard I/O module for OS-9 is called IOMan. IOMan provides the
basis of the unified I/O system for OS-9, and is required for any system
using standard OS-9 file managers (for example, RBF, SCF, and device
drivers).

IOMan is provided in two versions:

• Development kernel environments (IOMan_DEV).
This version performs parameter validation. For example, verify user’s
buffer is actually allocated to the user for a Read system call.

• Atomic kernel environments (IOMan_ATOM).
This version omits the checks the Development kernel performs.

In addition to using the standard IOMan module for the I/O system, system
integrators also have the option of either:

• Designing their own custom I/O system and using that module as the
replacement for IOMan, or

• Having no formal I/O system and performing I/O directly from
applications themselves.

The replacement or removal of IOMan typically occurs on embedded,
Atomic kernel environments, where resource and performance
requirements are critical, or where the overhead of a formal I/O system is
not required.

NoteNote
If the IOMan module is removed or replaced, you should carefully
check Appendix D: OS-9 for 68K System Calls where the system
calls supported by IOMan are detailed.

3OS-9 Input/Output System

OS-9 for 68K Processors Technical Manual 103

NoteNote
The following discussions regarding OS-9’s unified I/O system assume
IOMan (or a full functional equivalent) is being used in the system.

The OS-9 I/O system is modular; you can easily expand or customize it. It
is a versatile, unified, hardware-independent I/O system and consists of the
following software components:

• IOMan

• File managers

• Device drivers

• Device descriptor

IOMan, file managers, and device drivers process I/O service requests at
different levels. The device descriptor contains information used to
assemble the elements of a particular I/O subsystem. The file manager,
device driver, and device descriptor modules are standard memory
modules. You can install or remove any of these modules while the system
is running.

IOMan Overview

IOMan supervises the overall OS-9 I/O system. IOMan:

• Maintains the I/O modules by managing various data structures.
IOMan ensures the appropriate file manager and device driver modules
process each I/O request.

• Establishes paths.
The paths connect the kernel, IOMan, the application, the file manager,
and the device driver.

104 OS-9 for 68K Processors Technical Manual

File Manager Overview

File managers perform the processing for a particular class of devices,
such as disks or terminals. They deal with logical operations on the class
of devices. For example, the Random Block File manager (RBF) maintains
directory structures on disks; the Sequential Character File manager (SCF)
edits the data stream it receives from terminals.

NoteNote
File managers deal with the I/O requests on a generic class basis.

3OS-9 Input/Output System

OS-9 for 68K Processors Technical Manual 105

The Kernel and I/O

The kernel provides the connection between the I/O system and the
application. When an application makes an I/O (I$) service request, it is
identified as such by the kernel performing the following:

• Disables system state time-slicing for the process (the file manager can
later re-enable this if desired)

• Calls the appropriate entry point in IOMan

• On return from IOMan, re-enables system state time-slicing and returns
any error result to the application

Device Driver Overview

Device drivers operate on a class of hardware. Operating on the actual
hardware device, they send data to and from the device on behalf of the file
manager. They isolate the file manager from hardware dependencies such
as control register organization and data transfer modes, translating the file
manager’s logical requests into specific hardware operations.

Device Descriptor Overview

The device descriptor contains the information required to assemble the
various I/O subsystems (device components). A device descriptor contains
the names of the file manager and device driver associated with the device,
as well as the device’s operating parameters. Parameters in device
descriptors can be:

• Fixed, such as interrupt level and port address.

• Variable, such as terminal editing settings and disk physical
parameters.

106 OS-9 for 68K Processors Technical Manual

The variable parameters in device descriptors provide the initial default
values when a path is opened, but applications can change these values.
The device descriptor name is the name of a device as known by the user.
For example, the device /d0 is described by the device descriptor d0.

3OS-9 Input/Output System

OS-9 for 68K Processors Technical Manual 107

IOMan and I/O

IOMan manages I/O system calls by routing data between processes and
the appropriate file managers and device drivers. IOMan also allocates and
initializes global static storage for device drivers.

IOMan maintains two important internal data structures:

• The device table

• The path table

These tables reflect two other structures respectively:

• The device descriptor

• The path descriptor

When a path is opened, IOMan attempts to link to the device descriptor
associated with the device name specified (or implied) in the pathlist. The
device descriptor contains the names of the device driver and file manager
for the device. The information in the device descriptor is saved by IOMan
in the device table so it can route subsequent system calls to these
modules.

Paths maintain the status of I/O operations to devices and files. IOMan
maintains these paths using the path table. Each time a path is opened, a
path descriptor is created and an entry is added to the path table. When a
path is closed, the path descriptor is deallocated and its entry is deleted
from the path table.

When an I$Attach system call is first performed on a new device
descriptor, the kernel creates a new entry in the device table. Each entry in
the table has specific information from the device descriptor concerning the
appropriate file manager and driver. It also contains a pointer to the device
driver static storage. For each device in the table, IOMan maintains a use
count indicating the current number of device users.

108 OS-9 for 68K Processors Technical Manual

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

I$Attach attaches a new device to the system. Refer to Appendix D:
OS-9 for 68K System Calls for more information about I$Attach.

Device Descriptor Modules

Device descriptor modules are small, non-executable modules containing
information to associate a specific I/O device with its:

• Logical name

• Hardware controller address(es)

• Device driver name

• File manager name

• Initialization parameters

File managers operate on a class of logical devices. Device drivers, on the
other hand, operate on a class of physical devices. A device descriptor
module tailors a device driver or file manager to a specific I/O port. At least
one device descriptor module must exist for each I/O device in the system.
An I/O device may have several device descriptors with different
initialization parameters and names. For example, a serial/parallel driver
could have two device descriptors, one for terminal operation (/t1) and
one for printer operation (/p1).

If a suitable device driver exists, you can add devices to the system by
adding the new hardware and another device descriptor. While the system
is running, device descriptors can be:

• In ROM

• In the boot file

• Loaded into RAM

3OS-9 Input/Output System

OS-9 for 68K Processors Technical Manual 109

The module name is used as the logical device name by the system and
user (it is the device name given in pathlists). Its format consists of a
standard module header with a type code of device descriptor (DEVIC).
The remaining module header fields are shown in Table 3-2.

NoteNote
These fields are standard for all device descriptor modules. They are
followed by a device-specific initialization table. Appendix B: Path
Descriptors and Device Descriptors contains the initialization tables
for each standard class of I/O devices (RBF, SCF, and SBF).

Table 3-1 Device Descriptor Modules

Name Description

M$Port Port Address
The absolute physical address of the hardware
controller.

M$Vector Interrupt Vector Number
The interrupt vector associated with the port, used
to initialize hardware and for installation on the IRQ
poll table:

25-31 for an auto-vectored interrupt. Levels 1-7.

57-63 for 68070 on-chip auto-vectored
interrupts. Levels 1-7.

64-255 for a vectored interrupt.

110 OS-9 for 68K Processors Technical Manual

M$IRQLvl Interrupt Level
The device’s physical interrupt level. It is not used
by the kernel or file manager. The device driver may
use it to mask off interrupts for the device when
critical hardware manipulation occurs.

M$Prior Interrupt Polling Priority
Indicates the priority of the device on its vector.
Smaller numbers are polled first if more than one
device is on the same vector. A priority of 0
indicates the device requires exclusive use of the
vector.

M$Mode Device Mode Capabilities
This byte is used to validate a caller’s access mode
byte in I$Create or I$Open calls. If the bit is set,
the device can perform the corresponding function.
If the Share_bit (single user bit) is set here, the
device is non-sharable. This is useful for printers.

M$FMgr File Manager Name Offset
The offset to the name string of the file manager
module for this device.

M$PDev Device Driver Name Offset
The offset to the name string of the device driver
module for this device.

Table 3-1 Device Descriptor Modules (continued)

Name Description

3OS-9 Input/Output System

OS-9 for 68K Processors Technical Manual 111

M$DevCon Device Configuration
The offset to an optional device configuration table.
You can use it to specify parameters or flags the
device driver needs that are not part of the normal
initialization table values. This table is located after
the standard initialization table. The kernel or file
manager never references it. As the pointer to the
device descriptor is passed in INIT and TERM,
M$DevCon is generally available to the driver only
during the driver’s INIT and TERM routines. Other
routines in the driver (for example, Read) must first
search the device table to locate the device
descriptor before they can access this field.

Typically, this table is used for name string pointers,
OEM global allocation pointers, or device-specific
constants/flags.

NOTE: These values, unlike the standard options,
are not copied into the path descriptor’s options
section.

M$DevFlags Device Flags
Reserved for future use.

Table 3-1 Device Descriptor Modules (continued)

Name Description

112 OS-9 for 68K Processors Technical Manual

M$Opt Table Size
This contains the size of the device’s standard
initialization table. Each file manager defines a
ceiling on M$Opt.

M$DTyp Device Type (first field of initialization table)
The file manager associated with the device defines
the device’s standard initialization table, with the
exception of the first byte (M$DTyp). The first byte
indicates the class of the device (for example, RBF
or SCF).

The initialization table (M$DTyp through M$DTyp +
M$Opt) is copied into the option section of the path
descriptor when a path to the device is opened.
Typically, this table is used for the default
initialization parameters such as the delete and
backspace characters for a terminal. Applications
may examine all of the values in this table using
I$GetStt (SS_Opt). Some of the values may be
changed using I$SetStt; some are protected by
the file manager to prevent inappropriate changes.

The theoretical maximum initialization table size is
128 bytes. However, a file manager may restrict this
to a smaller value.

Table 3-1 Device Descriptor Modules (continued)

Name Description

3OS-9 Input/Output System

OS-9 for 68K Processors Technical Manual 113

NoteNote
Offset refers to the location of a module field, relative to the starting
address of the module. Module offsets are resolved in assembly code
by using the names shown here and linking with the relocatable library:
sys.l or usr.l.

Table 3-2 Additional Standard Header Fields for Device Descriptors

Offset Name Description

$30 M$Port Port Address

$34 M$Vector Trap Vector Number

$35 M$IRQLvl IRQ Interrupt Level

$36 M$Prior IRP Polling Priority

$37 M$Mode Device Mode Capabilities

$38 M$FMgr File Manager Name Offset

$3A M$PDev Device Driver Name Offset

$3C M$DevCon Device Configuration Offset

$3E Reserved

$40 M$DevFlags Device Flags (reserved)

$44 Reserved

114 OS-9 for 68K Processors Technical Manual

Adding Additional Devices

You can add additional devices to your system. If an identical device
controller already exists, you only need to add the new hardware and
another device descriptor. Device descriptors can be in ROM, in the boot
file, or loaded into RAM from mass storage files while the system is
running.

Path Descriptors

Every open path is represented by a data structure called a path
descriptor. A path descriptor contains information required by file
managers and device drivers to perform I/O functions. Path descriptors are
dynamically allocated and de-allocated as paths are opened and closed.

Path descriptors have three sections:

• The first 30 bytes are defined universally for all file managers and
device drivers.

• PD_FST is reserved for and defined by each type of file manager for
items such as file pointers, and permanent variables.

• PD_OPT is a 128-byte option area used for dynamically alterable
operating parameters for the file or device. These variables are
initialized when the path is opened by copying the initialization table
contained in the device descriptor module, and can be examined or
altered later by user programs via GetStat and SetStat system calls. Not
all options can be modified.

$46 M$Opt Initialization Table Size

$48 M$DTyp Device Type

Table 3-2 Additional Standard Header Fields for Device Descriptors

Offset Name Description

3OS-9 Input/Output System

OS-9 for 68K Processors Technical Manual 115

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Appendix B: Path Descriptors and Device Descriptors for
the current definitions of the path descriptor option area for each
standard class of I/O devices (RBF, SCF, SBF, and Pipes). The
definitions are included in sys.l or usr.l, and are linked into
programs requiring them.

NoteNote
Offset refers to the location of a module field, relative to the starting
address of the module. Module offsets are resolved in assembly code
by using the names shown here and linking the module with the
relocatable libraries, sys.l or usr.l.

Table 3-3 Universal Path Descriptor Definitions

Offset Name
Maintained
By Description

$00 PD_PD IOMan Path Number

$02 PD_MOD IOMan Access Mode (R W E S D)

$03 PD_CNT IOMan Number of Paths using
this PD (obsolete)

$04 PD_DEV IOMan Address of Related
Device Table Entry

116 OS-9 for 68K Processors Technical Manual

$08 PD_CPR IOMan Requester’s Process ID

$0A PD_RGS IOMan Address of Caller’s MPU
Register Stack

$0E PD_BUF File
Manager

Address of Data Buffer

$12 PD_USER IOMan Group/User ID of Original
Path Owner

$16 PD_PATHS IOMan List of Open Paths on
Device

$1A PD_COUNT IOMan Number of Paths using
this PD

$1C PD_LProc IOMan Last Active Process ID

$20 PD_ErrNo File
Manager

Global errno for C
language file managers

$24 PD_SysGlob File
Manager

System global pointer for
C language file managers

$2A PD_FST File
Manager

File Manager Working
Storage

$80 PD_OPT Driver/
File
Manager

Option Table

Table 3-3 Universal Path Descriptor Definitions (continued)

Offset Name
Maintained
By Description

3OS-9 Input/Output System

OS-9 for 68K Processors Technical Manual 117

File Managers

File managers process the raw data stream to or from device drivers for a
class of similar devices. File managers make device drivers conform to the
OS-9 standard I/O and file structure by removing as many unique device
operational characteristics as possible from I/O operations. They are also
responsible for mass storage allocation and directory processing, if
applicable, to the class of devices they service.

File managers usually buffer the data stream and issue requests to the
kernel for dynamic allocation of buffer memory. They may also monitor and
process the data stream. For example, they may add line feed characters
after carriage return characters.

File managers are re-entrant. One file manager may be used for an entire
class of devices having similar operational characteristics. OS-9 systems
can have any number of file manager modules.

Microware includes the following file managers in the OS-9 standard
distributions.

NoteNote
I/O system modules must:

• Be owned by a super-user (0.n).

• Have the system-state bit set in the attribute byte of the module
header. OS-9 does not currently make use of this, but future
revisions may require I/O system modules be system-state modules.

118 OS-9 for 68K Processors Technical Manual

Embedded

Disk Based

Table 3-4 Embedded File Managers

Name Description

SCF Sequential Character File Manager
Handles I/O for sequentially character- structured
devices, such as terminals, printers, and modems.

PIPEMAN Pipe File Manager
Supports interprocess communications through
memory buffers called pipes.

Table 3-5 Disk Based File Managers

Name Description

RBF Random Block File Manager
Handles I/O for random-access, block-structured
devices, such as floppy/hard disk systems.

SBF Sequential Block File Manager
Handles I/O for sequentially block- structured devices,
such as tape systems.

PCF PC File Manager
Handles reading/writing PC-DOS disks. It uses RBF
drivers.

3OS-9 Input/Output System

OS-9 for 68K Processors Technical Manual 119

Extended

Table 3-6 Extended File Managers

Name Description

IFMAN Communications Interface File Manager
Manages network interfaces.

PKMAN Pseudo-Keyboard File Manager
Provides an interface to the driver side of SCF to
enable the software to emulate a terminal.

SOCKMAN Socket File Manager
Creates and manages the interface to communication
protocols (sockets).

NFS Network File System Manager
Client file manager for mounting remote file systems.
The NFS protocol provides remote access to shared
file systems over local area networks.

120 OS-9 for 68K Processors Technical Manual

Other

Microware also supports the following file managers that are not included in
the OS-9 distribution:

Table 3-7 Other Microware File Managers

Name Description

CDFM Compact Disc File Manager
Handles CD and audio devices, as well as access to
CD ROM and CD audio.

UCM User Communications Manager
Handles video, pointer, and keyboard devices for CD-I
(Compact Disc-Interactive).

GFM Graphics File Manager
Provides a full set of text and graphics primitives, input
handling for keyboards and pointers, and high level
features for handling user interaction in a real-time,
multitasking environment.

NFM Network File Manager
Processes data requests over the OS-9 network.

NRF Non-Volatile RAM File Manager
Controls non-volatile RAM and handles a flat
(non-hierarchical) directory structure.

ISM ISDN Basic Rate Interface Manager.
Manager connections for Basic Rate (2B+D) Interfaces
to the Integrated Services Digital Network (ISDN).

3OS-9 Input/Output System

OS-9 for 68K Processors Technical Manual 121

File Manager Organization

A file manager is a collection of major subroutines accessed through an
offset table. The table contains the starting address of each subroutine
relative to the beginning of the table. The execution entry point offset in the
module header specifies the location of the table. These routines are called
in system state. A sample listing of the beginning of a file manager module
is listed in Beginning of a Sample File Manager Module.

When the individual file manager routines are called, standard parameters
are passed in the following registers:

Beginning of a Sample File Manager Module

* Sample File Manager
* Module Header declaration

Type_Lang equ (FlMgr<<8)+Objct
Attr_Revs equ ((ReEnt+Supstat)<<8)+0
psect FileMgr,Type_Lang,Attr_Revs,Edition,0,Entry_pt

* Entry Offset Table
Entry_pt dc.w Create-Entry_pt
 dc.w Open-Entry_pt
 dc.w MakDir-Entry_pt
 dc.w ChgDir-Entry_pt
 dc.w Delete-Entry_pt
 dc.w Seek-Entry_pt

Table 3-8 Registers

Register Pointer to the

(a1) Path descriptor.

(a4) Current process descriptor.

(a5) User’s register stack. User registers pass/receive
parameters as shown in the system call description
section.

(a6) System global data area.

122 OS-9 for 68K Processors Technical Manual

 dc.w Read-Entry_pt
 dc.w Write-Entry_pt
 dc.w ReadLn-Entry_pt
 dc.w WriteLn-Entry_pt
 dc.w GetStat-Entry_pt
 dc.w SetStat-Entry_pt
 dc.w Close-Entry_pt
* Individual Routines Start Here

File Manager I/O Responsibilities

The following are the file manager’s I/O responsibilities:

Table 3-9 File Manager I/O Responsibilities

Name Description

Open Open a file on a particular device. This typically involves
allocating any buffers required, initializing path descriptor
variables, and parsing the path name. If the file manager
controls multifile devices (such as RBF and PIPEMAN),
directory searching is performed to find the specified file.

Create Perform the same function as Open. If the file manager
controls multifile devices (such as RBF and PIPEMAN), a
new file is created.

Makdir Create a directory file on multifile devices. Makdir is
neither preceded by a Create, nor followed by a Close.
File managers that cannot support directories return with
the carry bit set and an appropriate error code in register
d1.w.

3OS-9 Input/Output System

OS-9 for 68K Processors Technical Manual 123

Chgdir On multifile devices, ChgDir searches for a directory file.
If the directory is found, the address of the directory is
saved in the caller’s process descriptor at P$DIO. The
kernel allocates a path descriptor so the ChgDir function
may save information about the directory file for later
searching.

Open and Create begin searching in this directory when
the caller’s pathlist does not begin with a slash (/)
character. File managers that do not support directories
return with the carry bit set and an appropriate error code
in register d1.w.

Delete Multifile device managers usually do a directory search
similar to Open and, once found, remove the file name
from the directory. Any media the file was using is
returned to unused status.

File managers that do not support multifile devices return
an E_UNKSVC error.

Seek File managers that support random access devices use
Seek to position file pointers of the already open path to
the specified byte. Typically, this is a logical movement
and does not affect the physical device. No error is
produced at the time of the Seek, if the position is
beyond the current end of file.

File managers that do not support random access usually
do nothing, but do not return an E_UNKSVC error.

Table 3-9 File Manager I/O Responsibilities (continued)

Name Description

124 OS-9 for 68K Processors Technical Manual

Read Return the number of bytes requested to the user’s data
buffer. If there is no data available, an EOF error is
returned. Read must be able to copy pure binary data. It
generally does not edit the data. Usually, the file manager
calls the device driver to actually read the data into a
buffer. It then copies data from the buffer into the user’s
data area. This method helps keep file managers device
independent.

Write Write, like Read, must be able to record pure binary
data without alteration. Usually, the Read and Write
routines are nearly identical. The most notable difference
is Write uses the device driver’s output routine instead
of the input routine. Writing past the end of file on a
device expands the file with new data.

RBF and similar random access devices that use
fixed-length records (sectors) must often pre-read a
sector before writing it unless the entire sector is being
written.

Readln ReadLn differs from Read in two respects. First, ReadLn
is expected to terminate when the first end-of-line
character (carriage return) is encountered. Second,
ReadLn performs any input editing appropriate for the
device.

Specifically, the SCF file manager performs editing that
involves functions such as handling backspace, line
deletion, and echo.

Table 3-9 File Manager I/O Responsibilities (continued)

Name Description

3OS-9 Input/Output System

OS-9 for 68K Processors Technical Manual 125

Writeln Writeln is the counterpart of Readln. It calls the device
driver to transfer data up to and including the first (if any)
carriage return encountered. Appropriate output editing
also is performed. After a carriage return, for example,
SCF usually outputs a line feed character and nulls (if
appropriate).

GetStat GetStat (Get Status) is a wildcard call designed to
provide the status of various features of a device (or file
manager) that are not generally device independent.

The file manager may perform some specific function
such as obtaining the size of a file. Status calls that are
unknown to the file manager are passed to the driver to
provide a further means of device independence.

SetStat SetStat (Set Status) is similar to GetStat. However,
SetStat is generally used to set the status of various
features of a device (or file manager).

The file manager may perform some specific function
such as setting the size of a file to a given value. Status
calls that are unknown to the file manager are passed to
the driver to provide a further means of device
independence. For example, a SetStat call to format a
disk track may behave differently on different types of
disk controllers.

Close Close ensures any output to a device is completed
(writing out the last buffer if necessary), and releases any
buffer space allocated when the path was opened. It may
do specific end-of-file processing if necessary, such as
writing end-of-file records on tapes.

Table 3-9 File Manager I/O Responsibilities (continued)

Name Description

126 OS-9 for 68K Processors Technical Manual

Device driver modules perform basic low-level physical input/output
functions. For example, a disk driver module’s basic functions are to read or
write a physical sector. The driver is not concerned about files or
directories, which are handled at a higher level by the OS-9 file manager.
Because device driver modules are re-entrant, one copy of the module can
simultaneously support multiple devices using identical I/O controller
hardware.

This section describes the function and general design of OS-9 device
driver modules to aid programmers in modifying existing drivers or writing
new ones. To present this information in an understandable manner, only
basic drivers for character-oriented (SCF-type) and disk-oriented
(RBF-type) devices are covered.

If written properly, a single physical driver module can handle multiple
identical hardware interfaces. The specific information for each physical
interface (such as port address and initialization constants) is provided in
the device descriptor module.

The name by which the device is known to the system is the name of the
device descriptor module. OS-9 copies the initialization data of the device
descriptor to the path descriptor data structure for easy access by the
drivers.

A device driver is actually a package of seven subroutines that a file
manager calls in system state. Their functions are:

• Initialize the device controller hardware and related driver variables as
required.

• Read a standard physical unit (a character or sector, depending on the
device type).

• Write a standard physical unit (a character or sector, depending on the
device type).

• Return a specified device status.

• Set a specified device status.

• Deinitialize the device. It is assumed the device will not be used again
unless reinitialized.

• Process an error exception generated during driver execution.

3OS-9 Input/Output System

OS-9 for 68K Processors Technical Manual 127

The interrupt service subroutine is also part of the device driver, although it
is not called by the file manager, but by the kernel’s interrupt routine. It
communicates with the driver’s main section through the static storage and
certain system calls.

Driver Module Format

All drivers must conform to the standard OS-9 memory module format. The
module type code is Drivr. Drivers should have the system-state bit set in
the attribute byte of the module header. Currently OS-9 does not make use
of this, but future revisions may require all device drivers to be system state
modules. A sample assembly language header is shown in Sample Driver
Module Header Format.

The execution offset in the module header (M$Exec) gives the address of
an offset table. The offset table specifies the starting address of each of
the seven driver subroutines relative to the base address of the module.

The static storage size (M$Mem) specifies the amount of local storage the
driver requires. This is the sum of the global I/O storage, the storage
required by the file manager (V_xxx variables), and any variables and
tables declared in the driver.

The driver subroutines are called by the associated file manager through
the offset table. The driver routines are always executed in system state.
Regardless of the device type, the standard parameters listed here are
passed to the driver in registers. You may also pass other parameters that
depend on the device type and subroutine called. These are described in
individual chapters concerning the file managers in the OS-9 for 68K
Processors Technical I/O Manual.

128 OS-9 for 68K Processors Technical Manual

INITIALIZE and TERMINATE

READ, WRITE, GETSTAT, and SETSTAT

Table 3-10 Registers Used to Initialize and Terminate

Register Address of the

(a1) Device descriptor module.

(a2) Driver’s static variable storage.

(a4) Process descriptor requesting the I/O function.

(a6) System global variable storage area.

Table 3-11 Registers Used to Read, Write, Getstat, and Setstat

Register Description

(a1) Address of the path descriptor.

(a2) Address of the driver’s static variable storage.

(a4) Address of the process descriptor requesting the I/O
function.

(a5) Pointer to the calling process’ register stack.

(a6) Address of the system global variable storage area.

3OS-9 Input/Output System

OS-9 for 68K Processors Technical Manual 129

ERROR

You should define this entry point as the offset to the error exception
handling code or zero if no handler is available. The kernel does not
currently use this entry point. However, this entry point may be accessed in
future revisions.

An rts instruction terminates each subroutine. Error status is returned
using the CCR carry bit with an error code returned in register d1.w.

Sample Driver Module Header Format

* Module Header
Type_Lang equ (Drivr<<8)+Objct
Attr_Revs equ ((ReEnt+Supstat)<<8)+0
psect Acia,Typ_Lang,Attr_Rev,Edition,0,AciaEnt
* Entry Point Offset Table
AciaEnt dc.w Init Initialization routine offset

dc.w Read Read routine offset
dc.w Write Write routine offset
dc.w GetStat Get dev status routine offset
dc.w SetStat Set dev status routine offset
dc.w TrmNat Terminate dev routine offset
dc.w Error Error handler routine offset (0=none)

Because OS-9 is a multitasking operating system, you obtain optimum
system performance when all I/O devices are set up for interrupt-driven
operation.

For character-oriented devices, set up the controller to generate an
interrupt when an incoming character is received and when the
transmission of an out-going character is completed. The driver should
buffer both the input data and the output data.

In the case of block-type devices (for example, RBF or SBF), set up the
controller to generate an interrupt when a block read or write operation
finishes. The driver does not need to buffer data because the driver is
passed the address of a complete buffer. Direct Memory Access (DMA)
transfers, if available, significantly improve data transfer speed.

130 OS-9 for 68K Processors Technical Manual

Usually, the Init routine adds the relevant device interrupt service routine
to the OS-9 interrupt polling system using the F$IRQ and/or F$FIRQ
system call. The READ and WRITE routines enable and disable the
controller interrupts as required. TERM disables the physical interrupts and
then takes the device off the interrupt polling table.

The assignment of device intercept priority levels can have a significant
impact on system operation. Generally, the smarter the device, the lower
you can set its interrupt level. For example, a disk controller that buffers
sectors can wait longer for service than a single-character buffered serial
port. Assign the clock tick device the highest possible level to keep system
time-keeping interference at a minimum.

The following table shows how you can assign interrupt levels:

level 6: clock ticker
5: "dumb" (non-buffering) disk controller
4: terminal port
3: printer port
2: "smart" (sector-buffering) disk controller

Chapter 4: Interprocess

Communications

This chapter describes the five forms of interprocess communication
supported by OS-9. It includes the following topics:

• Introduction

• Signals

• Alarms

• Events

• Semaphores

• Pipes

• Data Modules

132 OS-9 68K Processors Technical Manual

Introduction

This chapter describes the six forms of interprocess communication OS-9
supports:

Table 4-1 Forms of Interprocess Communication

Name Description

Signals Synchronize concurrent processes.

Alarms Send signals or execute subroutines at specified
times.

Events Synchronize the access of shared resources for
concurrent processes.

Semaphores Support exclusive access to shared resources.

Pipes Transfer data among concurrent processes.

Data Modules Transfer or share data among concurrent
processes.

4Interprocess Communications

OS-9 68K Processors Technical Manual 133

Signals

In interprocess communications, a signal is an intentional disturbance in a
system. OS-9 signals are designed to synchronize concurrent processes,
but you can also use them to transfer small amounts of data.

NoteNote
Because they are usually processed immediately, signals provide
real-time communication between processes.

Signals are also referred to as software interrupts because a process
receives a signal similar to a CPU receiving an interrupt. Signals enable a
process to send a numbered interrupt to another process.

If an active process receives a signal:

• The intercept routine executes immediately (if installed)

• The process resumes execution where it left off

If a sleeping or waiting process receives a signal:

• The process moves to the active queue

• The intercept handler executes

• The process resumes execution immediately after the call that removed
it from the active queue

NoteNote
If a process receives a signal for which it does not have an intercept
routine, the process is killed. This applies to all signals greater than 1,
which is the wake-up signal.

134 OS-9 68K Processors Technical Manual

When you send a signal, it has two parameters:

• The process ID of the destination

• A signal code

Supported User-State Signal Codes

OS-9 supports the following signal codes in user-state:

Table 4-2 User-state Signal Codes

Signal Description

0 Unconditional Process Abort Signal
The super-user can send the kill signal to any
process, but non-super-users can send this signal
only to processes with their group and user IDs. This
signal terminates the receiving process regardless of
the state of its signal mask, and is not intercepted by
the intercept handler.

1 Wake-Up Signal
Sleeping/waiting processes receiving this signal are
awakened, but the intercept handler does not
intercept the signal. Active processes ignore this
signal. The wake-up signal is not queued if the
process’ signals are masked.

2-31 Deadly I/O Signals:

2 Keyboard Abort Signal
Entering <control>E sends this signal to the last
process to perform I/O on the terminal. Usually, the
intercept routine performs exit(2) when it receives
a keyboard abort signal.

4Interprocess Communications

OS-9 68K Processors Technical Manual 135

NoteNote
A program can receive a wake-up signal safely without an intercept
handler.

3 Keyboard Interrupt Signal
Entering <control>C sends this signal to the last
process to perform I/O on the terminal. Usually, the
intercept routine performs exit(3) when it receives
a keyboard interrupt signal.

4 Hang-Up Signal
SCF sends this when the modem connection is lost.

5-19 Reserved

20-25 Reserved

26-31 User-Definable Signals
User-definable signals; deadly to I/O operations.

32-65535 Non-Deadly I/O Signals:

32-127 Reserved

128-191 Reserved

192-255 Reserved

256-65535 User-Defined Signals
These signal numbers are non-deadly to I/0 signals.

Table 4-2 User-state Signal Codes (continued)

Signal Description

136 OS-9 68K Processors Technical Manual

You could design a signal routine to interpret the signal code word as data.
For example, you could send various signal codes to indicate different
stages in a process’ execution. This is extremely effective because signals
are processed immediately when received.

The following system calls allow processes to communicate through
signals:

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Appendix A: Example Code contains a program demonstrating how
you may use signals.

For specific information about these system calls, refer to Appendix D:
OS-9 for 68K System Calls. The Microware C compiler supports a
corresponding C call for each of these calls as well.

Table 4-3 Signal Supported System Calls

Name Description

F$Send Send a signal to a process.

F$Icpt Install a signal intercept routine.

F$Sleep Deactivate the calling process until the specified
number of ticks has passed or a signal is received.

F$Sigmask Enable/disable signals from reaching the calling
process.

4Interprocess Communications

OS-9 68K Processors Technical Manual 137

Alarms

User-State Alarms

The user-state F$Alarm (User-State) request allows a program to
arrange to send a signal to itself. The signal may be sent:

• At a specific time of day

• After a specified interval passes

• Periodically, each time the specified interval passes

OS-9 supports the following user-state alarm functions:

Table 4-4 User-state Alarm Functions

Name Description

A$Delete (User-State) Remove a pending alarm request.

A$Set (User-State) Send a signal after specified time
interval.

A$Cycle (User-State) Send a signal at specified time
intervals.

A$AtDate (User-State) Send a signal at Gregorian
date/time.

A$AtJul (User-State) Send a signal at Julian date/time.

138 OS-9 68K Processors Technical Manual

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the description of F$Alarm (User-State) in Appendix D:
OS-9 for 68K System Calls for more information about user-state
alarm functions.

Cyclic Alarms

A cyclic alarm is most useful for providing a time base within a program.
This makes it easier for you to synchronize certain time-dependent tasks.
For example, a real-time game or simulation might allow 15 seconds for
each move. You could use a cyclic alarm signal to determine when to
update the game board.

The advantages of using cyclic alarms are more apparent when multiple
time bases are required. For example, suppose you were using an OS-9
process to update the real-time display of a car’s digital dashboard. The
process might need to:

• Update a digital clock display every second

• Update the car’s speed display five times per second

• Update the oil temperature and pressure display twice per second

• Update the inside/outside temperature every two seconds

• Calculate miles to empty every five seconds

You could give each function the process must monitor a cyclic alarm
whose period is the desired refresh rate, and whose signal code identifies
the particular display function. The signal handling routine might read an
appropriate sensor and directly update the dashboard display. The system
takes care of all of the timing details.

4Interprocess Communications

OS-9 68K Processors Technical Manual 139

Time of Day Alarms

You can set an alarm to provide a signal at a specific time and date. This
provides a convenient mechanism for implementing a cron type of utility
which executes programs at specific days and times. Another use is to
generate a traditional alarm clock buzzer for personal reminders.

A key feature of this type of alarm is it is sensitive to changes made to the
system time. For example, assume the current time is 4:00 and you want a
program to send itself a signal at 5:00. The program could either set an
alarm to occur at 5:00 or set the alarm to go off in one hour. Assume the
system clock is 30 minutes slow, and the system administrator corrects it.
In the first case, the program wakes up at 5:00; in the second case, the
program wakes up at 5:30.

Relative Time Alarms

You can use a relative time alarm to set a time limit for a specific action.
Relative time alarms are frequently used to cause an I$Read request to
abort if it is not satisfied within a maximum time. To do this:

Step 1. Send a keyboard abort signal at the maximum allowable time.

Step 2. Issue the I$Read request.

If the alarm arrives before the input is received, the I$Read request
returns with an error. Otherwise, the alarm should be cancelled.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The Alarms: Example Program in Appendix A: Example Code
demonstrates this technique.

140 OS-9 68K Processors Technical Manual

System-State Alarms

A system-state counterpart exists for each of the user-state alarm
functions. However, the system-state version is considerably more powerful
than its user-state equivalent:

• When a user-state alarm expires, the kernel sends a signal to the
requesting process

• When a system-state alarm expires, the kernel executes the
system-state subroutine specified by the requesting process at a very
high priority

OS-9 supports the following system-state alarm functions:

Table 4-5 System-state Alarm Functions

Name Description

A$Delete (System-State) Remove a pending alarm
request.

A$Set (System-State) Execute a subroutine after a
specified time interval.

A$Cycle (System-State) Execute a subroutine at
specified time intervals.

A$AtDate (System-State) Execute a subroutine at a
Gregorian date/time.

A$AtJul (System-State) Execute a subroutine at Julian
date/time.

4Interprocess Communications

OS-9 68K Processors Technical Manual 141

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the description of F$Alarm (System-State) in Appendix
D: OS-9 for 68K System Calls for more information about
system-state alarm functions.

NoteNote
The alarm is executed by the kernel’s process, not by the original
requester’s process. During execution, the user number of the system
process temporarily changes to the original requester. The stack
pointer (a7) passed to the alarm subroutine is within the system
process descriptor and contains about 1K of free space.

The kernel automatically deletes a process’ pending alarm requests when
the process terminates. This may be undesirable in some cases. For
example, assume an alarm is scheduled to shut off a disk drive motor if the
disk has not been accessed for 30 seconds. The alarm request is made in
the disk device driver for the I/O process. This alarm does not work if it is
removed when the process exits.

One way to arrange for a persistent alarm is to execute the F$Alarm
(User-State) request for the system process, rather than the current I/O
process. To do this:

Step 1. Move the system variable D_SysPrc to D_Proc.

Step 2. Execute the alarm request.

Step 3. Restore D_Proc.

142 OS-9 68K Processors Technical Manual

For example:

move.l D_Proc(a6),-(a7) /*Save current process pointer*/
move.l D_SysPrc(a6),D_Proc(a6) /*Impersonate system process*/
OS9 F$Alarm /*Execute the alarm request*/
 /* (error handling omitted) */
move.l (a7)+,D_Proc(a6) /*Restore current process*/

NoteNote
a6 must be a pointer to the system globals.

WARNING!
If you use this technique, you must ensure the module containing the
alarm subroutine remains in memory until after the alarm has expired.

An alarm subroutine must not perform any function resulting in any kind of
sleeping or queuing. This includes F$Sleep, F$Wait, F$Load, F$Event
(wait), F$IOQu, and F$Fork (if it might require F$Load). Other than
these functions, the alarm subroutine may perform any task.

One possible use of the system-state alarm function might be to poll a
positioning device, such as a mouse or light pen, every few system ticks.
Be conservative when scheduling alarms, and make the cycle as large as
reasonably possible. Otherwise, you could waste a great deal of the
system’s available CPU time.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer toAlarms: Example Program in Appendix A: Example Code
for a program demonstrating how you can use alarms.

4Interprocess Communications

OS-9 68K Processors Technical Manual 143

Events

OS-9 events are multiple-value semaphores. They synchronize concurrent
processes accessing shared resources such as files, data modules, and
CPU time. For example, if two processes need to communicate with each
other through a common data module, you may need to synchronize the
processes so only one updates the data module at a time.

NoteNote
Events do not transmit any information, although processes using the
event system may get information about the event and use it as
something other than a signaling mechanism.

An OS-9 event is a 32-byte system global variable maintained by the
system. Each event includes the following fields:

Table 4-6 Event Fields

Name Bytes Description

Event ID 2 This number and the event’s array position
create a unique ID.

Event
name

12 This name must be unique and cannot
exceed eleven characters plus null
termination.

Event
value

4 A value has a range of two billion.

144 OS-9 68K Processors Technical Manual

The OS-9 event system provides facilities:

• To create and delete events

• To permit processes to link/unlink events and obtain event information

• To suspend operation until an event occurs

• For various means of signaling

You may use events directly as service requests in assembly language
programs.

Wait
increment

2 This value is added to the event value when
a process successfully waits for the event. It
is set when the event is created and does
not change.

Signal
increment

2 This value is added to the event value when
the event is signaled. It is set when the
event is created and does not change.

Link
Count

2 This is the event use count.

Next
event

4 This is a pointer to the next process in the
event queue. An event queue is circular and
includes all processes waiting for the event.
Each time the event is signaled, this queue
is searched.

Previous
event

4 This is a pointer to the previous process in
the event queue.

Table 4-6 Event Fields (continued)

Name Bytes Description

4Interprocess Communications

OS-9 68K Processors Technical Manual 145

The Wait and Signal Operations

Wait and Signal are the two most common operations performed on
events.

Wait suspends the process until the event is
within a specified range, adds the wait
increment to the current event value, and
returns control to the process just after the
wait operation was called.

Signal adds the signal increment to the current
event value, checks for other processes to
awaken, and returns control to the process.

These operations allow a process to:

• Suspend itself while waiting for an event

• Reactivate when another process signals the event has occurred

For example, you could use events to synchronize the use of a printer.
Initialize the event value to 1, the number of printers on the system. Set the
signal increment to 1 and the wait increment to minus one (-1). When a
process wants to use the printer, it checks to see if one is available—it
waits for the event value to be in the range (1, number of printers).
In this example, the number of printers is one.

An event value within the specified range indicates the printer is available;
the printer is immediately marked as busy (the event value increases by -1,
the wait increment) and the process is allowed to use it. An out of range
event value indicates the printer is busy and the process is put to sleep on
the event queue.

When a process finishes with the printer, the process signals the event; it
applies the signal increment to the event value. Then, the event queue is
searched for a process whose event value range includes the current event
value. If such a process is found, the process:

• Becomes activate

• Applies the wait increment to the event value

• Uses the printer

146 OS-9 68K Processors Technical Manual

Coordinating Non-Sharable Resources

To coordinate sharing a non-sharable resource, user programs must:

Step 1. Wait for the resource to become available.

Step 2. Mark the resource as busy.

Step 3. Use the resource.

Step 4. Signal the resource is no longer busy.

The first two steps in this process must be indivisible because of
time-slicing. Otherwise, two processes could check an event and find it
free. Then, both processes would try to mark it busy. This corresponds to
two processes using a printer at the same time. The F$Event service
request prevents this from happening by performing both steps in the Wait
operation.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Events: Example Program in Appendix A: Example Code includes a
program demonstrating how you may use events.

The F$Event System Call

The F$Event system call provides the mechanism to create named events
for this type of application. The name event was chosen instead of
semaphore because F$Event provides the flexibility to synchronize
processes in a variety of ways not usually found in semaphore primitives.
OS-9’s event routines are very efficient and suitable for use in real-time
control applications.

4Interprocess Communications

OS-9 68K Processors Technical Manual 147

Event variables require several maintenance functions as well as the
Signal and Wait operations. To keep the number of system calls required
to a minimum, you can access all event operations through the F$Event
system call.

Currently, OS-9 has functions to allow you to create, delete, link, unlink,
and examine events (listed below). It also provides several variations of the
Signal and Wait operations.

NoteNote
The F$Event description in Appendix D: OS-9 for 68K System Calls
covers the specific parameters and functions of each event operation.
The system definition file funcs.a defines Ev$ function names.
Resolve actual values for the function codes by linking with the
relocatable library sys.l or usr.l.

OS-9 supports the following event functions:

Table 4-7 Event Functions

Name Description

Ev$Link Link to an existing event by name.

Ev$UnLnk Unlink an event.

Ev$Creat Create a new event.

Ev$Delet Delete an existing event.

Ev$Wait Wait for an event to occur.

Ev$WaitR Wait for a relative event to occur.

Ev$Read Read an event value without waiting.

148 OS-9 68K Processors Technical Manual

Ev$Info Return event information.

Ev$Pulse Signal an event occurrence and search waiting
processes. Temporarily changes the event value.

Ev$Signl Signal an event occurrence and search waiting
processes. Changes the event value.

Ev$Set Set an event variable, signal an event occurrence, and
search waiting processes.

Ev$SetR Set an event variable relative to its current value and
search the waiting processes.

Table 4-7 Event Functions (continued)

Name Description

4Interprocess Communications

OS-9 68K Processors Technical Manual 149

Semaphores

Semaphores support exclusive access to shared resources. Semaphores
are similar to events in the way in which they provide applications with
mutually exclusive access to data structures. Semaphores differ from
events in they are strictly binary in nature which increases their efficiency.

OS-9 supports the following semaphore routines:

NoteNote
Using C bindings is the preferred method of accessing OS-9
semaphores.

Table 4-8 Semaphore Routines

Name Description

_os_sema_init() Initialize the semaphore data structure for
use.

_os_sema_p() Reserve a semaphore.

_os_sema_term() Terminate the use of a semaphore data
structure.

_os_sema_v() Release a semaphore.

150 OS-9 68K Processors Technical Manual

A single semaphore system call, F$Sema, provides all of the semaphore’s
functionality. F$Sema requires two parameters:

• One indicating which operation is being performed on the semaphore

• A pointer to the semaphore structure

Unlike events, there is no system call provided to create a semaphore. You
must provide the storage for the semaphore. Because semaphores are
typically used to protect specific resources, you should declare the
semaphore structure as part of the resource structure.

A typical application using semaphores would create a data module
containing the memory for the intended resource and its associated
semaphore. By using a data module for implementing semaphores,
applications can use the OS-9’s module protection mechanisms to protect
the semaphore.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Semaphores: Example Program in Appendix A: Example Code
includes a program demonstrating how you may use semaphores.

Once you have created and initialized the semaphore data module,
additional processes within the application may use the semaphore by
linking to the semaphore data module. You must create the semaphore
data module with appropriate permissions to allow the other processes
within the application to link to and use the semaphore and its resource.

Semaphore States

A semaphore has two states:

Reserved any process attempting to reserve the
semaphore waits, including the process
reserving the semaphore.

Free any process may claim the semaphore.

4Interprocess Communications

OS-9 68K Processors Technical Manual 151

Acquiring Exclusive Access

To acquire exclusive access to a resource, a process may use the
_os_sema_p() C binding to reserve the semaphore. If the semaphore is
already busy, the process is suspended and placed at the end of the
semaphore’s wait queue.

Releasing Exclusive Access

To release exclusive access to a resource, a process may use the
_os_sema_v() C binding to release the semaphore. When the owner
process releases the semaphore, the first process in the semaphore’s
queue is activated and retries the reserve operation on the semaphore.

Semaphores use the following data structure:
/* Semaphore structure definition */
typedef struct semaphore {
 u_int32 s_value, /* semaphore value (free/busy status) */
 s_lock; /* semaphore structure lock (use count)*/
 Pr_desc s_qnext, /* wait queue for process descriptors */
 s_qprev; /* wait queue for process descriptors */
 u_int32 s_length, /* current length of wait queue */
 s_owner, /* current owner of semaphore */
 s_reserved[6]; /* reserved space */
} semaphore, *Semaphore;

152 OS-9 68K Processors Technical Manual

Pipes

An OS-9 pipe is a first-in first-out (FIFO) buffer that allows concurrently
executing processes to communicate data: the output of one process (the
writer) is read as input by a second process (the reader). Communication
through pipes eliminates the need for an intermediate file to hold data.

Pipeman is the OS-9 file manager supporting interprocess communication
through pipes. Pipeman is a re-entrant subroutine package called for I/O
service requests to a device named /pipe. Although no physical device is
used in pipe communications, you must specify a driver in the pipe
descriptor module. The null driver (a driver doing nothing) is usually used,
but only gets called by pipeman for GetStat and SetStat calls.

A pipe may contain up to 90 bytes unless a different buffer size was
declared in the device descriptor. Typically, a pipe is used as a one-way
data path between two processes: one writing and one reading. The reader
waits for the data to become available, and the writer waits for the buffer to
empty. However, any number of processes can access the same pipe
simultaneously; pipeman coordinates these processes. A process can
even arrange for a single pipe to have data sent to itself. You could use this
to simplify type conversions by printing data into the pipe and reading it
back using a different format.

You can use pipes much like signals to coordinate processes, but with
these advantages:

• Longer messages (more than 16 bits).

• Queued messages.

• Determination of pending messages.

• Easy process-independent coordination (using named pipes).

OS-9 supports both named and unnamed (anonymous) pipes. The shell
uses unnamed pipes extensively to construct program pipelines, but user
programs may use them as well. You may only open a particular unnamed
pipes once. Independent processes may communicate through them only if
the pipeline was constructed by a common parent to the processes. Do this
by making each process inherit the pipe path as one of its standard I/O
paths.

4Interprocess Communications

OS-9 68K Processors Technical Manual 153

Named and unnamed pipes function nearly identically. The main difference
is several independent processes may open a named pipe, which simplifies
pipeline construction. The following sections note other specific differences.

Operations on Pipes

Creating Pipes

The I$Create system call is used with the pipe file manager to create
new named or unnamed pipe files.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Appendix D: OS-9 for 68K System Calls for more
information about I$Create.

You may create pipes using the pathlist /pipe (for unnamed pipes, pipe is
the name of the pipe device descriptor) or /pipe/<name> (<name> is the
logical file name being created). If a pipe file with the same name already
exists, an error (E$CEF) is returned. Unnamed pipes cannot return this
error.

All processes connected to a particular pipe share the same physical path
descriptor. Consequently, the path is automatically set to update mode
regardless of the mode specified at creation. You may specify access
permissions; they are handled similarly to RBF.

The size of the default FIFO buffer associated with a pipe is specified in the
pipe device descriptor. You may override this when you create a pipe by
setting the initial file size bit of the mode byte and passing the desired file
size in register d2.

If no default or overriding size is specified, a 90-byte FIFO buffer inside the
path descriptor is used.

154 OS-9 68K Processors Technical Manual

Opening Pipes

When accessing unnamed pipes, I$Open, like I$Create, opens a new
anonymous pipe file. When accessing named pipes, I$Open searches for
the specified name through a linked list of named pipes associated with a
particular pipe device. If I$Open finds the pipe, the path number returned
refers to the same physical path allocated when the pipe was created.
Internally, this is similar to the I$Dup system call.

Opening an unnamed pipe is simple, but sharing the pipe with another
process is more complex. If a new path to /pipe is opened for the second
process, the new path is independent of the old one.

The only way for more than one process to share the same unnamed pipe
is by inheriting the standard I/O paths through the F$Fork call. As an
example, the following outline describes a method in pseudo-code the shell
might use to construct a pipeline for the command dir -u ! qsort. It
assumes paths 0 and 1 are already open.

StdInp = I$Dup(0) save the shell’s standard input
StdOut = I$Dup(1) save shell’s standard output
 I$Close(1) close standard output
 I$Open("/pipe") open the pipe (as path 1)
 I$Fork("dir","-u") fork "dir" with pipe as standard output
 I$Close(0) free path 0
 I$Dup(1) copy the pipe to path 0
 I$Close(1) make path available
 I$Dup(StdOut) restore original standard out
 I$Fork("qsort") fork qsort with pipe as standard input
 I$Close(0) get rid of the pipe
 I$Dup(StdInp) restore standard input
 I$Close (StdInp) close temporary path
 I$Close (StdOut) close temporary path

The main advantage of using named pipes is several processes may
communicate through the same named pipe without having to inherit it from
a common parent process. For example, you can approximate the above
steps with the following command:

dir -u >/pipe/temp & qsort </pipe/temp

4Interprocess Communications

OS-9 68K Processors Technical Manual 155

NoteNote
The OS-9 shell always constructs its pipelines using the unnamed
/pipe descriptor.

Read/Readln

The I$Read and I$ReadLn system calls return the next bytes in the pipe
buffer. If there is not enough data ready to satisfy the request, the process
reading the pipe is put to sleep until more data is available.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Appendix D: OS-9 for 68K System Calls for more
information about I$Read and I$ReadLn.

The end-of-file is recognized when the pipe is empty and the number of
processes waiting to read the pipe is equal to the number of users on the
pipe. If any data was read before end-of-file was reached, an end-of-file
error is not returned. However, the byte count returned is the number of
bytes actually transferred, which is less than the number requested.

NoteNote
The Read and Write system calls are faster than ReadLn and WritLn
because pipeman does not have to check for carriage returns and the
loops moving data are tighter.

156 OS-9 68K Processors Technical Manual

The I$Write and I$WritLn system calls work in almost the same way
as I$Read and I$ReadLn. A pipe error (E$Write) is returned when all
the processes with a full unnamed pipe open are attempting to write to the
pipe. Each process attempting to write to the pipe receives the error, and
the pipe remains full.

When named pipes are being used, pipeman never returns the E$Write
error. If a named pipe gets full before a process receiving data from the
pipe opens it, the process writing to the pipe is put to sleep until a process
reads the pipe.

When a pipe path is closed, its path count decreases. If no paths are left
open on an unnamed pipe, its memory returns to the system. With named
pipes, its memory returns only if the pipe is empty. A non-empty, named
pipe (with no open paths) is artificially kept open, waiting for another
process to open and read from the pipe. This allows you to use pipes as a
type of temporary, self-destructing RAM disk file.

Pipeman supports a wide range of status codes to allow you to insert a
pipe between processes where an RBF or SCF device would normally be
used. For this reason, most RBF and SCF status codes are implemented to
do something without returning an error. The actual function may differ
slightly from the other file managers, but it is usually compatible.

The following are the GetStat status codes:

Table 4-9 GetStat Status Codes

Name Description

SS_Opt Read the 128-byte option section of the path descriptor.
You can use it to get the path type, data buffer size, and
name of pipe.

SS_Ready Test whether data is ready. Returns the number of
bytes in the buffer.

SS_Size Return the size of the pipe buffer.

4Interprocess Communications

OS-9 68K Processors Technical Manual 157

Other codes are passed to the device driver.

The following are the SetStat status codes:

Other codes are passed to the device driver.

The I$MakDir and I$ChgDir service requests are illegal service routines
on pipes. They return E$UnkSvc (unknown service request).

SS_EOF Test for end-of-file.

SS_FD Return a pseudo-file descriptor image.

Table 4-10 SetStat Status Codes

Name Description

SS_Attr Change the pipe file’s attributes.

SS_Break Force disconnection.

SS_FD Do nothing, but return without error.

SS_Opt Do nothing, but return without error.

SS_Relea Release the device from the SS_SSig processing
before data becomes available.

SS_Size Reset the pipe buffer if the specified size is zero.
Otherwise it has no effect, but returns without error.

SS_SSig Send a signal when the data becomes available.

Table 4-9 GetStat Status Codes (continued)

Name Description

158 OS-9 68K Processors Technical Manual

Pipe Directories

Opening an unnamed pipe in the Dir mode allows it to be opened for
reading. In this case, pipeman allocates a pipe buffer and pre-initializes it to
contain the names of all open named pipes on the specified device. Each
name is null-padded to make a 32-byte record. This allows utilities, which
normally read an RBF directory file sequentially, to work with pipes as well.

The head of a linked list of named pipes is in the static storage of the pipe
device driver (usually the null driver). If several pipe descriptors with
different default pipe buffer sizes are on a system, the I/O system notices
the same file manager, device driver, and port address (usually zero) are
being used. It does not allocate new static storage for each pipe device and
all named pipes are on the same list.

For example, if two pipe descriptors exist, a directory of either device
reveals all the named pipes for both devices. If each pipe descriptor has a
unique port address (0, 1, ...), the I/O system allocates different static
storage for each pipe device. This produces more predictable results.

4Interprocess Communications

OS-9 68K Processors Technical Manual 159

Data Modules

OS-9 data modules allow multiple processes to share a data area and to
transfer data among themselves. A data module must have a valid CRC
and module header to be loaded. A data module can be non-re-entrant; it
can modify itself and be modified by several processes.

OS-9 does not restrict the content, organization, or use of the data area in
a data module. The processes using the data module determine these
considerations.

OS-9 does not synchronize processes using a data module. Consequently,
thoughtful programming usually involving events, signals or semaphores is
required to allow several processes to update a shared data module
simultaneously.

Creating Data Modules

The F$DatMod system call creates a data module with a specified set of
attributes, data area size, and module name. The data area is cleared
automatically. The data module is created with a CRC of zero and entered
into the system module directory.

NoteNote
It is essential the data module’s header and name string not be
modified to prevent the module from becoming unknown to the system.

The Microware C compiler provides several C calls to create and use data
modules directly. These include the _mkdata_module() call, which is
specific to data modules, and the modlink(), modload(), munlink(),
munload(), _os_datmod(), _os_link(), _os_unlink(),
_os_setcrc(), and _setcrc() facilities which apply to all OS-9
modules.

160 OS-9 68K Processors Technical Manual

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about these C calls, refer to the library section of
the Using Ultra C manual.

Link Count

Like all OS-9 modules, data modules have an associated link count. The
link count is a counter of how many processes are currently linked to the
module. Generally, the module is taken out of memory when this count
reaches zero. If you want the module to remain in memory when the link
count is zero, create the module with the sticky bit set in its attribute byte.

Saving to Disk

If a data module is saved to disk, you can use the dump utility to examine
the module’s format and contents. You can save a data module to disk
using the save utility or by writing the module image into a file.

The module CRC of a data module is not valid at creation time, and a valid
CRC becomes valid once the data module is modified. A saved data
module cannot be reloaded into memory unless you:

• Use the F$SetCRC system call or _setcrc() C library call before
writing the module to disk, or

• Use the fixmod utility after the module has been written to disk.

4Interprocess Communications

OS-9 68K Processors Technical Manual 161

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about:

• F$SetCRC refer to Appendix D: OS-9 for 68K System Calls.

• dump, save, or fixmod refer to the OS-9 Utilities Reference
Manual.

• _setcrc() refer to the Using Ultra C manual.

162 OS-9 68K Processors Technical Manual

Chapter 5: User Trap Handlers

This chapter explains how to install and execute trap handlers, and
provides an example of trap handler coding. It includes the following
topics:

• Trap Handlers

• Installing and Executing Trap Handlers

• Calling a Trap Handler

• An Example Trap Handler

• Trace of Example Two Using the Example Trap Handler

164 OS-9 for 68K Processors Technical Manual

Trap Handlers

The 68000 family of microprocessors has sixteen software trap exception
vectors. The first (trap 0) is reserved for making OS-9 system calls. You
may use the remaining fifteen as service requests to user-defined user
trap handlers.

Microware provides standard trap handlers for I/O conversions in the C
language, floating point math, and trigonometric functions. The following
traps are reserved:

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For further information about the math module, refer to Chapter 6: The
Math Module.

Table 5-1 Reserved Traps

Trap Description

13 cio/csl is automatically called for any C program.
cio and csl use the same trap. C programs are compiled to
use one or the other but not both. Selection depends on the
libraries linked into the program at link time. UCC libraries
use csl while the original C compiler (now OC) used
libraries that trapped to cio. See your C compiler manual for
additional information.

15 Math is called for floating point math, extended integer math,
and/or type conversion. It is also used for programs using
transcendental and/or extended mathematical functions.

5User Trap Handlers

OS-9 for 68K Processors Technical Manual 165

A user trap handler is an OS-9 module usually containing a set of related
subroutines. Any user program may dynamically link to the user trap
handler and call it at execution time.

NoteNote
While trap handlers reduce the size of the execution program, they do
not do anything that could not be done by linking the program with
appropriate library routines at compilation time. In fact, programs calling
trap handlers execute slightly slower than linked programs performing
the same function.

Trap handlers must be written in a language that compiles to machine code
(such as assembly language or C). They should be suitably generic for use
by a number of programs.

Trap handlers are similar to normal OS-9 program modules, except trap
handlers have three execution entry points:

• A trap execution entry point

• A trap initialization entry point

• A trap termination entry point

Trap handler modules are of module type TrapLib and module language
Objct.

The trap module routines usually execute as though they were called with a
jsr instruction, except for minor stack differences. Any system calls or
other operations the calling module could perform are usable in the trap
module.

You can write a trap handler module running in system state. This is rarely
advisable, but sometimes necessary.

166 OS-9 for 68K Processors Technical Manual

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the System Call Overview section in Chapter 2: The Kernel,
for more information about the uses of system-state.

5User Trap Handlers

OS-9 for 68K Processors Technical Manual 167

Installing and Executing Trap Handlers

A user program installs a trap handler by executing the F$TLink system
request. When this is done, the OS-9 kernel:

• Links to the trap module

• Allocates and initializes its static storage (if any)

• Executes the trap module’s initialization routine

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Appendix D: OS-9 for 68K System Calls for more
information about F$TLink.

Typically, the initialization routine has very little to do. You could use it to:

• Open files

• Link to additional trap or data modules

• Perform other startup activities

It is called only once per trap handler in any given program.

A trap module used by a program is usually installed as part of the
program’s initialization code. At initialization, a particular trap number
(1-15) is specified that refers to the trap module. The program calls
functions in the trap module by using the 68000 trap instruction
corresponding to the trap number specified. This is followed by a function
word passed to the trap handler itself. The arrangement is very similar to
making a normal OS-9 system call.

The OS-9 relocatable macro assembler has special mnemonics to make
trap calls more apparent. These are:

• OS9 for trap 0

• tcall for the other user traps

168 OS-9 for 68K Processors Technical Manual

They work like built-in macros, generating code as illustrated in the
following section.

OS9 and tcall: Equivalent Assembly Language Syntax

The following shows equivalent assembly language syntax for os9 and
tcall:

From user programs, you can delay installing a trap module until the first
time it is actually needed. If a trap module has not been installed for a
particular trap when the first tcall is made, OS-9 checks the program’s
exception entry offset (M$Excpt in the module header). The program
aborts if this offset is zero. Otherwise, OS-9 passes control to the exception
routine. At this point, the trap handler can be installed, and the first tcall
reissued. The second example in this chapter shows how to do this.

Table 5-2 OS-9/tcall Equivalencies

Mnemonic Code Generation

OS9 F$TLink trap 0
dc.w F$TLink

tcall T$Math,T$DMul trap T$Math
dc.w T$DMul

5User Trap Handlers

OS-9 for 68K Processors Technical Manual 169

Calling a Trap Handler

The actual details of building and using a trap handler are best explained
by means of a simple, complete example.

Example One

The following program (TrapTst) uses trap vector 5. It installs the trap
handler and then calls it twice.
 nam TrapTst1
 ttl example one - link and call trap handler
 use /dd/defs/oskdefs.d
Edition equ 1
Typ_Lang equ (Prgrm<<8)+Objct
Attr_Rev equ (ReEnt<<8)+0
 psect traptst,Typ_Lang,Attr_Rev,Edition,1024,Test

TrapNum equ 5 trap number to use
TrapName dc.b "trap",0 name of trap handler

* Main program entry point

Test: moveq #TrapNum,d0 trap number to assign
 moveq #0,d1 no optional memory override
 lea TrapName(pc),a0 ptr to name of trap handler
 os9 F$TLink install trap handler
 bcs.s Test99 abort if error
 tcall TrapNum,0 call trap function #0
 bcs.s Test99 abort if error
 tcall TrapNum,1 call trap function #1
 bcs.s Test99 abort if error
 moveq #0,d1 exit without error
Test99 os9 F$Exit exit
 ends

Example Two

The following example shows how you could modify the preceding program
to install the trap handler in an exception routine when the first tcall is
executed. You might do this for a trap handler that may not be used at all by
a program, depending on circumstances.

170 OS-9 for 68K Processors Technical Manual

This example does not initialize the trap handler before using it, but is
otherwise identical to Example One. It provides a LinkTrap subroutine to
automatically install the trap handler when it is first used. Refer to the
Trace of Example Two Using the Example Trap Handler later in this
chapter for more information.
 nam TrapTst2
 ttl example two - call trap handler
 use /dd/defs/oskdefs.d
Edition equ 1
Typ_Lang equ (Prgrm<<8)+Objct
Attr_Rev equ (ReEnt<<8)+0
 psect traptst,Typ_Lang,Attr_Rev,Edition,1024,Test,LinkTrap

TrapNum equ 5 trap number to use
TrapName dc.b "trap",0 name of trap handler

* Main program entry point

Test: tcall TrapNum,0 call trap function #0
 bcs.s Test99 abort if error
 tcall TrapNum,1 call trap function #1
 bcs.s Test99 abort if error
 moveq #0,d1 exit without error
Test99 os9 F$Exit exit

* Subroutine LinkTrap
* Installs trap handler and then executes first trap call.
* Note: Error checking is minimized to keep example simple.
*
* Passed: d0-d7 = caller’s registers
* a0-a5 = caller’s registers
* (a6) = trap handler static storage pointer
* (a7) = trap init/entry stack frame
*
* Returns: trap installed, backs up PC to execute "tcall" instruction
*
* The stack looks like this:
* .------------------------.
* +8 | caller’s return PC |
* >------------------------<
* +6 | vector # |
* >------------<
* +4 | func code |
* >------------------------<
* | caller’s a6 register |
* (a7)-> ------------------------

LinkTrap: addq.l #8,a7 discard excess stack info
 movem.l d0-d1/a0-a2,-(a7) save registers
 moveq #TrapNum,d0 trap number to assign

5User Trap Handlers

OS-9 for 68K Processors Technical Manual 171

 moveq #0,d1 no optional memory override

 lea TrapName(pc),a0 ptr to name of trap handler
 os9 F$TLink install trap handler
 bcs.s Test99 abort if error
 movem.l (a7)+,d0-d1/a0-a2 retrieve registers
 subq.l #4,(a7) back up to tcall instruction
 rts return to tcall instruction
 ends

172 OS-9 for 68K Processors Technical Manual

An Example Trap Handler

The following makefile makes the example trap handler and test
programs:
makefile - Used to make the example trap handler and test programs.

RDIR = RELS
TRAP = trap
TEST1 = traptst1
TEST2 = traptst2

Dependencies for making the entire trap example.

trap.example: $(TRAP) $(TEST1) $(TEST2)
 touch trap.example

Dependencies for making the trap handler.

$(TRAP): $(TRAP).r
 l68 -g $(RDIR)/$(TRAP).r -l=/dd/lib/sys.l -o=$(TRAP)

Dependencies for making the traptst1 test program.

$(TEST1): $(TEST1).r
 l68 -g $(RDIR)/$(TEST1).r -l=/dd/lib/sys.l -o=$(TEST1)

Dependencies for making the traptst2 test program.

$(TEST2): $(TEST2).r
 l68 -g $(RDIR)/$(TEST2).r -l=/dd/lib/sys.l -o=$(TEST2)

The trap handler itself is listed here. It is artificially simple to avoid
confusion. Most trap handlers have several functions, and generally begin
with a dispatch routine based on the function code.
 nam Trap Handler
 ttl Example trap handler module
 use /dd/defs/oskdefs.d
Type set (TrapLib<<8)+Objct
Revs set ReEnt<<8
 psect traphand,Type,Revs,0,0,TrapEnt
 dc.l TrapInit initialization entry point
 dc.l TrapTerm termination entry point

* TrapInit: Trap handler initialization entry point.
*
* Passed: d0.w = User Trap number (1-15)
* d1.l = (optional) additional static storage
* d2-d7 = caller’s registers at the time of the trap
* (a0) = trap handler module name pointer

5User Trap Handlers

OS-9 for 68K Processors Technical Manual 173

* (a1) = trap handler execution entry point
* (a2) = trap module pointer
* a3-a5 = caller’s registers (parameters required by handler)
* (a6) = trap handler static storage pointer
* (a7) = trap init stack frame pointer
*
* Returns: (a0) = updated trap handler name pointer
* (a1) = trap handler execution entry point
* (a2) = trap module pointer
* cc = carry set, d1.w=error code if error
* Other values returned are dependent on the trap handler
*
* The stack looks like this:
* .-------------------------.
* +8 | caller’s return PC |
* >-------------------------<
* +4 | 0000 | 0000 |
* >------------|------------<
* | caller’s a6 register |
* (a7)-> -------------------------

TrapInit movem.l (a7),a6 restore user’s a6 register
 addq.l #8,a7 take other stuff off the stack
 rts return to caller

**
* TrapEnt: User trap handler entry point.
*
* Passed: d0-d7 = caller’s registers
* a0-a5 = caller’s registers
* (a6) = trap handler’s static storage pointer
* (a7) = trap entry stack frame pointer
*
* Returns: cc = carry set, d1.w=error code if error
* Other values returned are dependent on the trap handler
*
* The stack looks like this:
* .------------------------.
* +8 | caller’s return PC |
* >------------------------<
* +6 | vector # |
* >------------<
* +4 | func code |
* >------------------------<
* | caller’s a6 register |
* (a7)-> ------------------------

 org 0 stack offset definitions
S.d0 do.l 1 caller’s d0 reg
S.d1 do.l 1 caller’s d1 reg
S.a0 do.l 1 caller’s a0 reg
S.a6 do.l 1 caller’s a6 reg
S.func do.w 1 trap function code
S.vect do.w 1 vector number
S.pc do.l 1 return pc

174 OS-9 for 68K Processors Technical Manual

TrapEnt: movem.l d0-d1/a0,-(a7) save registers
 move.w S.func(a7),d0 get function code
 cmp.w #1,d0 is function in range?
 bhi.s FuncErr abort if not
 beq.s Trap10 branch if function code #1
 lea String1(pc),a0 get first string ptr
 bra.s Trap20 continue
Trap10 lea String2(pc),a0 get second string ptr
Trap20 moveq #1,d0 standard output path
 moveq #80,d1 maximum bytes to write
 os9 I$WritLn output the string
 bcs.s Abort abort if error
Trap90 movem.l (a7)+,d0-d1/a0/a6-a7 restore regs
 rts return to user

FuncErr move.w #1<<8+99,d2 abort (return error 001:099)
Abort move.w d1,S.d1+2(a7) put error code in d1.w
 ori #Carry,ccr set carry
 bra.s Trap90 exit

String1 dc.b "Microware Systems Corporation",C$CR,0
String2 dc.b " Quality keeps us #1",C$CR,0

**
* TrapTerm: Trap handler terminate entry point.
*
* As of this release (OS-9 V2.4) the trap termination entry
* point is never called by the OS-9 kernel. Documentation
* details will be available when a working implementation
* exists.

TrapTerm move.w #1<<8+199,d1 never called, if it gets here
 os9 F$Exit crash program (Error 001:199)
 ends

5User Trap Handlers

OS-9 for 68K Processors Technical Manual 175

Trace of Example Two Using the Example Trap
Handler

It is extremely educational to watch the OS-9 user debugger trace through
the execution of Example Two (using the example trap handler). User trap
handlers look like subroutines to the debugger, so it is possible to trace
through them. The output should appear something like this:
(beginning of second example program)
Test >4E450000 trap #5,0

NoteNote
Because the trap handler has not been linked as in Example One,
control jumps to the subroutine LinkTrap:

LinkTrap >508F addq.l #8,a7
LinkTrap+0x2 >48E7C0E0 movem.l d0-d1/a0-a2,-(a7)
LinkTrap+0x6 >7005 moveq.l #5,d0
LinkTrap+0x8 >7200 moveq.l #0,d1
LinkTrap+0xA >41FAFFDC lea.l bname+0xA(pc),a0
LinkTrap+0xE >4E400021 os9 F$TLink

NoteNote
Control switches to the subroutine TrapInit and then returns to
LinkTrap:

trap:btext+0x50 >4CD74000 movem.l (a7),a6
trap:btext+0x54 >508F addq.l #8,a7
trap:btext+0x56 >4E75 rts
LinkTrap+0x12 >65E8 bcs.b Test+0xE
LinkTrap+0x14 >4CDF0703 movem.l (a7)+,d0-d1/a0-a2
LinkTrap+0x18 >5997 subq.l #4,(a7)
LinkTrap+0x1A >4E75 rts

176 OS-9 for 68K Processors Technical Manual

NoteNote
Control now returns to the main program to re-execute the tcall
instruction.

Test >4E450000 trap #5,0
trap:TrapEnt >48E7C080 movem.l d0-d1/a0,-(a7)
trap:TrapEnt+0x4 >302F0010 move.w 16(a7),d0
trap:TrapEnt+0x8 >B07C0001 cmp.w #1,d0
trap:TrapEnt+0xC >621C bhi.b trap:TrapEnt+0x2A
trap:TrapEnt+0xE >6706 beq.b trap:TrapEnt+0x16
trap:TrapEnt+0x10 >41FA0026 lea.l trap:TrapEnt+0x38(pc),a0
trap:TrapEnt+0x14 >6004 bra.b trap:TrapEnt+0x1A
trap:TrapEnt+0x1A >7001 moveq.l #1,d0
trap:TrapEnt+0x1C >7250 moveq.l #80,d1
trap:TrapEnt+0x1E >4E40008C os9 I$WritLn
Microware Systems Corporation
trap:TrapEnt+0x22 >650A bcs.b trap:TrapEnt+0x2E
trap:TrapEnt+0x24 >4CDFC103 movem.l (a7)+,d0-d1/a0/a6-a7
trap:TrapEnt+0x28 >4E75 rts
Test+0x4 >6508 bcs.b Test+0xE
Test+0x6 >4E450001 trap #5,0x1
trap:TrapEnt >48E7C080 movem.l d0-d1/a0,-(a7)
trap:TrapEnt+0x4 >302F0010 move.w 16(a7),d0
trap:TrapEnt+0x8 >B07C0001 cmp.w #1,d0
trap:TrapEnt+0xC >621C bhi.b trap:TrapEnt+0x2A
trap:TrapEnt+0xE >6706 beq.b trap:TrapEnt+0x16->
trap:TrapEnt+0x16 >41FA003F lea.l trap:TrapEnt+0x57(pc),a0
trap:TrapEnt+0x1A >7001 moveq.l #1,d0
trap:TrapEnt+0x1C >7250 moveq.l #80,d1
trap:TrapEnt+0x1E >4E40008C os9 I$WritLn
 Quality keeps us #1
trap:TrapEnt+0x22 >650A bcs.b trap:TrapEnt+0x2E
trap:TrapEnt+0x24 >4CDFC103 movem.l (a7)+,d0-d1/a0/a6-a7
trap:TrapEnt+0x28 >4E75 rts
Test+0xA >6502 bcs.b Test+0xE
Test+0xC >7200 moveq.l #0,d1
Test+0xE >4E400006 os9 F$Exit

Chapter 6: The Math Module

This chapter discusses math module functions, and lists descriptions of
the assembler calls you can use with the math module. It includes the
following topics:

• Introduction

• Floating Point Co-processor Emulation Modules

• Math Trap Handler

178 OS-9 for 68K Processors Technical Manual

Introduction

OS-9 contains two module types supporting floating point math
calculations:

Floating Point Co-processor Emulation Modules
For systems lacking an MC68881 or
MC68882 floating point co-processor, the
co-processor emulation modules fpu and
fpsp040 provide a seamless software
solution for code compiled to use the
MC68882 instruction set. This includes all
code the Ultra C compiler generates, as well
as code generated using the Version 3.2
compiler with the -k=2f option.

Math Trap Handler The math trap handlers, math and
math881, are provided for backward
compatibility with code generated using the
Version 3.2 compiler with the -x option.

6The Math Module

OS-9 for 68K Processors Technical Manual 179

Floating Point Co-processor Emulation
Modules

The floating point instructions supported by the MC68881 and MC68882
co-processors cause a floating point exception when executed on a system
without a co-processor. This results in the process aborting with the error:

Error #000:111(E$1111)
A "1111" instruction exception occurred

To prevent this error and allow proper emulation of the faulted floating point
instruction, OS-9 provides the co-processor emulation module fpu (and
fpsp for the MC68040).

The co-processor emulation module provides an exception handler that
traps the floating point exception, decodes the faulted instruction, and
emulates (in the software) the functionality of the floating point instruction.
OS-9 for 68K V3.0 contains two such emulation modules:

Table 6-1 Emulation Modules

Emulation Module Description

fpu The fpu module is compatible with all OS-9 for
68K Version 3.0 systems.

fpu supports the subset of the MC68882
programming model used by Microware’s V3.2
compiler and Ultra C compiler. See Using
Ultra C for additional information on the
instructions supported by fpu.

180 OS-9 for 68K Processors Technical Manual

NoteNote
While fpu is supported on the MC68040, Microware does not
recommend its use. Instead, use the MC68040-specific fpsp module,
as it provides increased speed, precision, and functionality.

Installing Co-processor Emulation Modules

The modules fpu and fpsp are provided in the following files:

fpu MWOS/OS9/CMDS/68000/BOOTOBJS/fpu
fpsp MWOS/OS9/CMDS/68020/BOOTOBJS/fpsp040

These modules are OS-9 extension modules and must be available during
bootup.

To install either module, add the executable module to your bootfile for disk
based systems or include it in ROM for diskless systems. You also need to
add the name of the module (fpu or fpsp) to your system’s Init module’s
extensions list.

fpsp The MC68040 contains a built-in subset of the
MC68882 programming model. The fpsp
module provides the remainder of the MC68882
functionality. fpsp, with the MC68040, provides
full support of the MC68882 instruction set. The
fpsp module is only supported for the
MC68040.

Table 6-1 Emulation Modules (continued)

Emulation Module Description

6The Math Module

OS-9 for 68K Processors Technical Manual 181

During bootup, the kernel calls each extensions module listed in the Init
module’s extensions list. When the co-processor emulation module is
called in this fashion, it installs its floating point exception handler on OS-9
and initializes the data structures necessary for floating point emulation.
This is transparent to the user.

The following are the errors you may get from the emulation routines during
installation:

E$KwnMod An emulation module has already been
installed (fpu and fpsp).

E$BadId For OS-9 for 68K V3.0, fpu returns this
error if it was invoked by a module other
than the kernel's bootup routine.

E$BadRev fpu returns this error if you make an
attempt to install fpu on an incompatible
OS-9 revision/hardware platform.

182 OS-9 for 68K Processors Technical Manual

Math Trap Handler

Microware's Version 3.2 compiler provided a means to access math
functions from within the math shared trap library.

While OS-9 for 68K V3.0 and its utilities no longer require the math
module, it is provided for backward compatibility with third party
executables and relocatable libraries compiled with the V3.2 compiler. An
attempt to run such code on a system without the math trap handler results
in the error:

**** Can't install trap handler ****
 **** math ****
Error #000:216

The math module is provided in two forms, depending on the availability of
an MC68881/MC68882 co-processor in the target system. While both
modules are named math, they are differentiated by the names of the files
in which they are provided.

MWOS/OS9/68000/CMDS/math
provides software support for the routines in
the math library. While this module is
compatible on systems with or without
floating point co-processors, Microware
suggests you use the faster math881
module on systems with co-processors.

MWOS/OS9/68020/CMDS/math881
provides a version of the math library
routines that takes advantage of the
MC68882 instruction set. While this is the
preferred module for use on a system with a
co-processor, a floating point exception
occurs if used on a system with no
co-processor. (Refer to Floating Point
Co-processor Emulation Modules earlier
in this chapter.)

To install either module, simply load it into memory.

6The Math Module

OS-9 for 68K Processors Technical Manual 183

NoteNote
As the math module may be discontinued in a future release,
Microware suggests you replace all such executable and relocatable
code with code compiled with Ultra C.

184 OS-9 for 68K Processors Technical Manual

Chapter 7: OS-9 Fi le System

This chapter explains OS-9’s disk file organization, raw physical I/O on
RBF devices, record locking, and file security. It includes the following
topics:

• Disk File Organization

• Raw Physical I/O on RBF Devices

• Record Locking

• File Security

186 OS-9 for 68K Processors Technical Manual

Disk File Organization

RBF supports a tree-structured file system. The physical disk organization
is designed for:

• Efficient use of disk space

• Resistance to accidental damage

• Fast file access

The system also has the advantage of relative simplicity.

Basic Disk Organization

RBF supports logical sector sizes in integral binary multiples from 256 to
32768 bytes. If you use a disk system that cannot directly support the
logical sector size (for example, 256 byte logical sectors on a 512-byte
physical sector disk), the driver module must divide or combine sectors as
required to simulate the required logical size.

Many disks are physically addressed by:

• Track number

• Surface number

• Sector number

To eliminate hardware dependencies, OS-9 uses a logical sector number
(LSN) to identify each sector without regard to track and surface
numbering.

The disk driver module or the disk controller is responsible for mapping
logical sector numbers to track/surface/sector addresses. OS-9’s file
system uses LSNs from 0 to (n-1), where n is the total number of sectors
on the drive.

7OS-9 File System

OS-9 for 68K Processors Technical Manual 187

NoteNote
All sector addresses covered in this section refer to LSNs.

The format utility initializes the file system on blank or recycled media by
creating the track/surface/sector structure. format also tests the media for
bad sectors and automatically excludes them from the file system.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Utilities Reference for information about using format.

Every OS-9 disk has the same basic structure:

Identification Sector located in logical sector zero (LSN 0). It
contains a description of the physical and
logical format of the storage volume (disk
media).

Allocation Map usually beginning in logical sector one (LSN
1). This indicates which disk sectors are free
for use in new or expanded files.

Root Directory begins immediately after the disk allocation
map.

Identification Sector

LSN zero always contains the identification sector (see Table 7-1). It
describes the physical format of the disk, the size of the allocation map,
and the location of the root directory. It also contains the volume name,

188 OS-9 for 68K Processors Technical Manual

date and time of creation, and additional information. If the disk is a
bootable system disk, it also has the starting LSN and size of the OS9Boot
file.

Table 7-1 Identification Sector Description

Addr Size Name Description

$00 3 DD_TOT Total number of sectors on media

$03 1 DD_TKS Track size in sectors

$04 2 DD_MAP Number of bytes in allocation map

$06 2 DD_BIT Number of sectors/bit (cluster size)

$08 3 DD_DIR LSN of root directory file descriptor

$0B 2 DD_OWN Owner ID

$0D 1 DD_ATT Attributes

$0E 2 DD_DSK Disk ID

$10 1 DD_FMT Disk Format; density/sides

Bit 0: 0 = single side

1 = double side

Bit 1: 0 = single density (FM)

1 = double density (MFM)

Bit 2: 1 = double track (96
TPI/135 TPI)

Bit 3: 1 = quad track density
(192 TPI)

7OS-9 File System

OS-9 for 68K Processors Technical Manual 189

Allocation Map

The allocation map shows which sectors are:

• Allocated to files

• Free for future use

$11 2 DD_SPT Sectors/track (two byte value
DD_TKS)

$13 2 DD_RES Reserved for future use

$15 3 DD_BT System bootstrap LSN. 0 = no boot
present

$18 2 DD_BSZ Size of system bootstrap

$1A 5 DD_DAT Creation date

$1F 32 DD_NAM Volume name

$3F 32 DD_OPT Path descriptor options

$5F 1 Reserved

$60 4 DD_SYNC Media integrity code

$64 4 DD_MapLSN Bitmap starting sector number
(0=LSN 1)

$68 2 DD_LSNSize Media logical sector size (0=256)

$6A 2 DD_VersID Sector 0 Version ID

Table 7-1 Identification Sector Description (continued)

Addr Size Name Description

190 OS-9 for 68K Processors Technical Manual

DD_MapLSN specifies the allocation map start address, which is usually 1.
If this field is 0, assume an address of 1. The size of the map varies
according to how many bits are needed. Each bit in the allocation map
represents a cluster on the disk. If a bit is set, the cluster is considered to
be in use, defective, or non-existent. DD_MAP (see Table 7-1) specifies the
actual number of bytes used in the map.

NoteNote
The DD_Bit variable specifies the number of sectors per cluster. The
number of sectors per cluster is always an integral power of two.

The format utility sets the size of the allocation map depending on the
size and number of sectors per cluster. You can select the number of
sectors per cluster on the command line when using format.

Root Directory

The root directory file is the parent directory of all other files and directories
on the disk. It is the directory accessed using the physical device name
(such as /d1). Usually, it immediately follows the allocation map. The
location of the root directory file descriptor is specified in DD_DIR (see
Table 7-1).

Basic File Structure

OS-9 uses a multiple-contiguous-segment type of file structure. Segments
are physically contiguous sectors that store the file’s data. If all the data
cannot be stored in a single segment, additional segments are allocated to
the file. This may occur if a file is expanded after creation or if a sufficient
number of contiguous free sectors is not available.

The OS-9 segmentation method was designed to keep a file’s data sectors
in as close physical proximity as possible to minimize disk head movement.
Frequently, files (especially small files) have only one segment. This results

7OS-9 File System

OS-9 for 68K Processors Technical Manual 191

in the fastest possible access time. Therefore, it is good practice to initialize
the size of a file to the maximum expected size during or immediately after
its creation. This allows OS-9 to optimize its storage allocation.

All files have a sector called a file descriptor sector, or FD. FD contains a
list of the data segments with their starting LSNs and sizes. This is also
where information such as file attributes, owner, and time of last
modification is stored. Only the system uses this sector; you cannot directly
access it. Table 7-2 describes the contents of a file descriptor.

NoteNote
Offset refers to the location of a field, relative to the starting address of
the file descriptor. Offsets are resolved in assembly code by using the
names shown here and linking the module with the relocatable library:
sys.l or usr.l.

Table 7-2 FIle Descriptor Content Description

Offset Size Name Description

$00 1 FD_ATT File Attributes: D S PE PW PR E W R

$01 2 FD_OWN Owner’s User ID.

$03 5 FD_DAT Date Last Modified: Y M D H M

$08 1 FD_LNK Link Count.

$09 4 FD_SIZ File Size (number of bytes).

$0D 3 FD_CREAT Date Created: Y M D

$10 240 FD_SEG Segment List: see below.

192 OS-9 for 68K Processors Technical Manual

The attribute byte (FD_ATT) contains the file permission bits. Bit 7 is set to
indicate a directory file, bit 6 indicates a non-sharable file, bit 5 indicates
public execute, bit 4 indicates public write, and so forth.

The date last modified (FD_DAT) changes when a file is opened in write or
update mode. This is useful for making date-dependent backups.

The segment list (FD_SEG) consists of a series of five-byte entries,
continuing until the end of the logical sector. For 256-byte sectors, this
results in 48 entries. These entries have the size and address of each block
of storage used by the file in logical order. Each entry has a three-byte
logical sector number specifying the beginning of the block and a two-byte
block size (in sectors). Unused segments must be zero.

The RBF file manager maintains the file pointer and logical end-of-file used
by application software and converts them to the logical disk sector number
using the data in the segment list.

NoteNote
You do not have to be concerned with physical sectors. OS-9 provides
fast random access to data stored anywhere in the file. All the
information required to map the logical file pointer to a physical sector
number is packaged in the file descriptor sector. This makes OS-9’s
record-locking functions very efficient.

Segment Allocation

Each device descriptor module has a value called a segment allocation
size. It specifies the minimum number of sectors to allocate to a new
segment. The goal is to avoid a large number of tiny segments when a file
is expanded. If your system uses a small number of large files, you should
set this field to a relatively high value, and vice versa.

7OS-9 File System

OS-9 for 68K Processors Technical Manual 193

When a file is created, it has no data segments allocated to it. Write
operations past the current end-of-file (the first write is always past the
end-of-file) cause allocation of additional sectors to the file. Subsequent
expansions of the file are also generally made in minimum allocation
increments.

NoteNote
An attempt is made to expand the last segment before attempting to
add a new segment.

If not all of the allocated sectors are used when the file is closed, the
segment is truncated and any unused sectors are deallocated in the
bitmap. This strategy does not work well for random-access databases that
expand frequently by only a few records. The segment list is rapidly filled
with small segments. A provision has been added to prevent this from
being a problem.

If a file (opened in write or update mode) is closed when it is not at
end-of-file, the last segment of the file is not truncated. To be effective, all
programs dealing with the file in write or update mode must ensure they do
not close the file while at end-of-file, or the file loses any excess space it
may have. The easiest way to ensure this is to do a seek(0) before
closing the file. This method was chosen because random access files are
frequently somewhere other than end-of-file, and sequential files are
almost always at end-of-file when closed.

Directory File Format

Directory files have the same physical structure as other files with one
exception: RBF must impose a convention for the logical contents of a
directory file.

A directory file consists of an integral number of 32-byte entries. The end of
the directory is indicated by the normal end-of-file. Each entry consists of a
field for the file name and a field for the file’s file descriptor address:

194 OS-9 for 68K Processors Technical Manual

• The file name field (DIR_NM) is 28 bytes long (bytes 0-27) and has the
sign bit of the last character of the file name set. The first byte is set to
0, indicating a deleted or unused entry.

• The file descriptor address field (DIR_FD) is three bytes long (bytes
29-31) and is the LSN of the file’s FD sector. Byte 28 is not used and
must be 0.

When a directory file is created, two entries are automatically created: the
dot (.) and double dot (..) directory entries. These specify the directory
and its parent directory, respectively.

7OS-9 File System

OS-9 for 68K Processors Technical Manual 195

Raw Physical I/O on RBF Devices

You can open an entire disk as one logical file. This allows you to access
any byte(s) or sector(s) by physical address without regard to the normal
file system. This feature is provided for diagnostic and utility programs that
must be able to read and write to ordinarily non-accessible disk sectors.

To open a device for physical I/O, append an at (@) character to the device
name. For example, you can open the device /d2 for raw physical I/O
under the pathlist /d2@.

Standard open, close, read, write, and seek system calls are used for
physical I/O. A seek system call positions the file pointer to the actual disk
physical address of any byte. To read a specific sector, perform a seek to
the address computed by multiplying the LSN by the logical sector size of
the media. You can find the logical sector size in the PD_SctSiz field of
the path descriptor (if 0, assume a value of 256 bytes). For example, to
read sector 3 on 1024-byte logical media, perform a seek to address 3072
(1024 * 3), followed by a read system call requesting 1024 bytes.

If the number of sectors per track of the disk is known or read from the
identification sector, any track/sector address can be readily converted to a
byte address for physical I/O.

WARNING!
Use extreme care with the special @ file in update mode. To keep
system overhead low, record locking routines only check for conflicts on
paths opened for the same file. The @ file is considered different from
any other file, and therefore only conforms to record lockouts with other
users of the @ file.

Improper physical I/O operations can corrupt the file system. Take great
care when writing to a raw device. Physical I/O calls also bypass the file
security system. For this reason, only super-users are allowed to open the

196 OS-9 for 68K Processors Technical Manual

raw device for write permit. Non-super-users can only read the
identification sector (LSN 0) and the allocation bitmap. Attempts to read
past this return an end-of-file error.

7OS-9 File System

OS-9 for 68K Processors Technical Manual 197

Record Locking

Record locking refers to preserving the integrity of files that more than one
user or process can access. OS-9 record locking is designed to be as
invisible as possible to application programs.

NoteNote
Most programs may be written without special concern for multi-user
activity.

Record locking involves:

• Recognizing when a process is trying to read a record that another
process may be modifying

• Deferring the read request until the record is safe

This is referred to as conflict detection and prevention. RBF record
locking also handles non-sharable files and deadlock detection.

Record Locking and Unlocking

Conflict detection must determine when a record is in the process of being
updated. RBF provides true record locking on a byte basis. A typical record
update sequence is:
OS9 I$Read /*program reads record RECORD IS LOCKED*/
 .
 . /*program updates record*/
 .
OS9 I$Seek /*reposition to record*/
OS9 I$Write /*record is rewritten*/
 /*RECORD IS RELEASED*/

When a file is opened in update mode, any read causes the record to be
locked out because RBF does not know in advance if the record will be
updated. The record remains locked until the next read, write, or close

198 OS-9 for 68K Processors Technical Manual

occurs. Reading files opened in read or execute modes does not cause
record locking to occur because records cannot be updated in these two
modes.

A subtle but nasty problem exists for programs that interrogate a database
and occasionally update its data. When a user looks up a particular record,
the record could be locked out indefinitely if the program neglects to
release it. The problem is characteristic of record locking systems; you can
avoid it by careful programming.

NoteNote
Only one portion of a file may be locked out at a time. If an application
requires more than one record to be locked out, multiple paths to the
same file may be opened with each path having its own record locked
out. RBF notices the same process owns both paths and keeps them
from locking each other out. Alternatively, the entire file may be locked
out, the records updated, and the file released.

Non-Sharable Files

You may use file locking when an entire file is considered unsafe for use by
more than one user. On rare occasions, you need to create a
non-sharable file. A non-sharable file can never be accessed by more
than one process at a time.

To make a file non-sharable, set the single user (S) bit in the file’s attribute
byte. You can set the S bit when you create the file, or later using the attr
utility. If the single-user bit is set, only one process may open the file at a
time. If another process attempts to open the file, error (#253) is returned.

7OS-9 File System

OS-9 for 68K Processors Technical Manual 199

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Utilities Reference for more information about attr.

More commonly, a file needs to be non-sharable only while a specific
program is executing. To do this, open the file with the single-user bit set in
the access mode parameter.

For example, if a file is opened as a non-sharable file, when it is being
sorted it is treated as though it had a single-user attribute. If the file was
already opened by another process, an error (#253) is returned.

A necessary quirk of non-sharable files is they may be:

• Duplicated using the I$Dup system call

• Inherited

A non-sharable file could therefore actually become accessible to more
than one process at a time. Non-sharable only means the file may be
opened once.

NoteNote
It is usually a very bad idea to have two processes actively using any
disk file through the same (inherited) path.

End of File Lock

An EOF lock occurs when you read or write data at the end of file. You keep
the end of file locked until you perform a read or write that is not at the end
of the file. EOF lock is the only time a write call automatically locks out of
any part of the file. This avoids problems occurring when two users try to
simultaneously extend a file.

200 OS-9 for 68K Processors Technical Manual

An extremely useful side effect occurs when a program creates a file for
sequential output. When the file is created, EOF lock is gained, and no
other process can pass the writer in processing the file.

For example, if you redirect an assembly listing to a disk file, a spooler
utility can open and begin listing the file before the assembler has written
even the first line of output. Record locking always keeps the spooler one
step behind the assembler, making the listing come out as desired.

Deadlock Detection

A deadlock can occur when two processes attempt to gain control of the
same two disk areas simultaneously. If each process gets one area (locking
out the other process), both processes are stuck permanently, waiting for a
segment that can never become free. This situation is a general problem
that is not restricted to any particular record locking method or operating
system.

If this occurs, a deadlock error (#254) is returned to the process that
caused it to be detected. It is easy to create programs that, when executed
concurrently, generate lots of deadlock errors. The easiest way to avoid
them is to access records of shared files in the same sequences in all
processes that may be run simultaneously. For example, always read the
index file before the data file, never the other way around.

When a deadlock error does occur, it is not sufficient for a program to
simply re-try the operation in error. If all processes used this strategy, none
would ever succeed. At least one process must release its control over a
requested segment for any to proceed.

7OS-9 File System

OS-9 for 68K Processors Technical Manual 201

Record Locking Details for I/O Functions

The following lists record locking details for I/O functions:

Table 7-3 Record Locking Details for I/O Functions

Function Description

Open/
Create

The most important guideline to follow when opening
files is: Do not open a file for update if you only intend
to read. Files open for read only do not cause records
to be locked out, and they generally help the system
to run faster. If shared files are routinely opened for
update on a multi-user system, you can become
hopelessly record-locked for extended periods of
time.

Use the special @ file in update mode with extreme
care. To keep system overhead low, record locking
routines only check for conflicts on paths opened for
the same file. The @ file is considered different from
any other file, and therefore only conforms to record
lockouts with other users of the @ file.

202 OS-9 for 68K Processors Technical Manual

Read/
ReadLine

Read and ReadLine cause lock out of records only if
the file is open in update mode. The locked out area
includes all bytes starting with the current file pointer
and extending for the number of bytes requested.

For example, if you make a ReadLine call for 256
bytes, exactly 256 bytes are locked out, regardless of
how many bytes are actually read before a carriage
return is encountered. EOF lock occurs if the bytes
requested include the current end-of-file.

A record remains locked until any of the following
occur:

• Another read is performed

• A write is performed

• The file is closed

• A record lock SetStat is issued

Releasing a record does not normally release EOF
lock. Any read or write of zero bytes releases any
record lock, EOF lock, or file lock.

Write/
WriteLine

Write calls always release any record that is locked
out. In addition, a write of zero bytes releases EOF
lock and file lock. Writing usually does not lock out
any portion of the file unless it occurs at end of file
when it gains EOF lock.

Seek Seek does not effect record locking.

Table 7-3 Record Locking Details for I/O Functions (continued)

Function Description

7OS-9 File System

OS-9 for 68K Processors Technical Manual 203

SetStat There are two SetStat codes to deal with record
locking:

• SS_Lock locks or releases part of a file

• SS_Ticks sets the length of time a program waits
for a locked record

See the I$SetStt entry in Appendix D: OS-9 for
68K System Calls for a description of the codes.

Table 7-3 Record Locking Details for I/O Functions (continued)

Function Description

204 OS-9 for 68K Processors Technical Manual

File Security

Each file has a group/user ID identifying the file’s owner. These are copied
from the current process descriptor when the file is created. Usually, a file’s
owner ID is not changed.

An attribute byte is also specified when a file is created. The file’s attribute
byte tells RBF in which modes the file may be accessed. Together with the
file’s owner ID, the attribute byte provides (some) file security.

The attribute byte has two sets of bits to indicate whether a file may be
opened for read, write, or execute by the owner or the public. In this
context, the file’s owner is any user with the same group ID as the file’s
creator. Public means any user with a different group ID.

When a file is opened, access permissions are checked on all directories
specified in the pathlist, as well as the file itself. If you do not have
permission to read a directory, you may not read any files in that directory.

Any super-user (a user with group ID of zero) may access any file in the
system. Files owned by the super-user cannot be accessed by users of any
other group unless specific access permissions are set. Files containing
modules owned by the super-user must also be owned by the super-user. If
not, the modules contained within the file are not loaded.

NoteNote
The system manager should exercise caution when assigning
group/user IDs. The RBF File Descriptor stores the group/user ID in a
two byte field (FD_OWN). The group/user ID residing in the password file
is permitted two bytes for the group ID and two bytes for the user ID.
RBF only reads the low order byte of both the group and user ID.
Consequently, a user with the ID of 256.512 is mistaken for the super
user by RBF.

Appendix A: Example Code

This appendix contains example code you can use as a guide when
creating your own modules. It provides examples of RBF, SCF, SBF,
and pipe device descriptors. It includes the following topics:

• The Init Module

• The Sysgo Module

• Signals: Example Program

• Alarms: Example Program

• Events: Example Program

• Semaphores: Example Program

• C Trap Handler

• RBF Device Descriptor

• SCF Device Descriptor

• SBF Device Descriptor

• Pipe Device Descriptor

206 OS-9 for 68K Processors Technical Manual

The Init Module

The following is an example of the Init module:
Microware OS-9/68020 Resident Macro Assembler V2.9 93/10/12 11:15 Page 1
 ../../../SRC/SYSMODS/INIT/init.a
Init: OS-9 Configuration Module - LRCChip.d - Local Resource Controller definitions
00001 nam Init: OS-9 Configuration Module
00002
00003 * Copyright 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
00004 * by Microware Systems Corporation
00005 * Reproduced Under License
00006
00007 * This source code is the proprietary confidential property of
00008 * Microware Systems Corporation, and is provided to licensee
00009 * solely for documentation and educational purposes. Reproduction,
00010 * publication, or distribution in any form to any party other than
00011 * the licensee is strictly prohibited.
00012
00078 *
00079 00000029 Edition equ 41 current edition number
00080
00081 00000c00 Typ_Lang set (Systm<<8)+0
00082 00008000 Attr_Rev set (ReEnt<<8)+0
00083
00084 psect init,Typ_Lang,Attr_Rev,Edition,0,0
00085
00086 * Configuration constants (default; changable in "systype.d" file)
00087 *
00088 * Constants using VALUES (such as CPUTyp set 68020) may appear anywhere
00089 * in the "systype.d" file.
00090 * Constants using LABELS (such as Compat set ZapMem) MUST appear OUTSIDE
00091 * the CONFIG macro and must be conditionalized so they are
00092 * only invoked when this file (init.a) is being assembled.
00093 * If they are placed inside the CONFIG macro, then the over-ride does not
00094 * take effect.
00095 * If they are placed outside the macro and not conditionalized then
00096 * "illegal external reference" errors result when making other files.
00097 * The label _INITMOD provides the mechanism to ensure the desired
00098 * operations result.
00099 *
00100 * example systype.d setup:
00101 *
00102 * CONFIG macro
00103 * <body of macro>
00104 * endm
00105 * Slice set 10
00106 * ifdef _INITMOD
00107 * Compat set ZapMem patternize memory
00108 * endc
00109 *
00110
00111 * flag reading init module (so local labels can be over-ridden)

AExample Code

OS-9 for 68K Processors Technical Manual 207

00112 00000001 _INITMOD equ 1 flag reading init module
00113
00114 000109a0 CPUTyp set 68000 cpu type (68008/68000/68010/etc.)
00115 00000001 Level set 1 OS-9 Level One
00116 00000003 Vers set 3 Version 3.0
00117 00000000 Revis set 0
00118 00000000 Edit set 0 Edition
00119 00000000 IP_ID set 0 interprocessor identification code
00120 00000000 Site set 0 installation site code
00121 00000040 MDirSz set 64 initial module directory count
00122 00000020 PollSz set 32 IRQ polling table size (fixed)
00123 00000020 DevCnt set 32 device table size (fixed)
00124 00000040 Procs set 64 init process table size (divisible by 64)
00125 00000040 Paths set 64 initial path table size (divisible by 64)
00126 00000002 Slice set 2 ticks per time slice
00127 00000080 SysPri set 128 initial system priority
00128 00000000 MinPty set 0 initial system minimum executable priority
00129 00000000 MaxAge set 0 initial system maximum natural age limit
00130 00000000 MaxMem set 0 top of RAM (unused)
00131 00000020 Events set 32 initial event table size
00132 00000000 Compat set 0 version smoothing byte
00133 00000000 Config set 0 system configuration default
00134 00000400 StackSz set 1024 IRQ Stack Size in bytes (must be 1k <=
StackSz < 256k)
00135 00000000 ColdRetrys set 0 number of retries for coldstart's "chd"
before failing
00136 * NOTE: for V3.0, NumSigs is unimplemented
00137 00000010 NumSigs set 16 default queued signal maximum
00138 000005dc PrcDescStack set 1500 default stack size in process descriptor
00139
00140
00141 * Compat flag bit definitions
00142 *
00143 * NOTE: SlowIRQ is obsolete for V3.0
00144 *
00145 *SlowIRQequ 1<<0xxxxxxx1 save all regs during IRQ processing
00146 00000002 NoStop equ 1<<1 xxxxxx1x don't use 'stop' instruction
00147 00000004 NoGhost equ 1<<2 xxxxx1xx don't retain Ghost/Sticky memory
modules
00148 00000008 NoBurst equ 1<<3 xxxx1xxx don't enable 68030 cache burst mode
00149 00000010 ZapMem equ 1<<4 xxx1xxxx wipe out memory that is
allocated/freed
00150 00000020 NoClock equ 1<<5 xx1xxxxx don't start system clock during
coldstart
00151 00000040 SpurIRQ equ 1<<6 x1xxxxxx ignore spurious IRQs
00152 00000080 PrivAlm equ 1<<7 1xxxxxxx only alarm creator (process) can
delete alarm.
00153
00154
00155 * Compat2 flag bit definitions
00156 * (these are reserved for cache control considerations)
00157 *
00158 00000001 ExtC_I equ 1<<0 xxxxxxx1 external instruction cache is
coherent
00159 00000002 ExtC_D equ 1<<1 xxxxxx1x external data cache is coherent

208 OS-9 for 68K Processors Technical Manual

00160 00000004 OnC_I equ 1<<2 xxxxx1xx on-chip instruction cache is
coherent
00161 00000008 OnC_D equ 1<<3 xxxx1xxx on-chip data cache is coherent
00162 00000010 CBank0_En equ 1<<4 xxx1xxxx 68349: enable cache/sram bank 0 as
cache
00163 00000020 CBank1_En equ 1<<5 xx1xxxxx 68349: enable cache/sram bank 1 as
cache
00164 00000040 CBank2_En equ 1<<6 x1xxxxxx 68349: enable cache/sram bank 2 as
cache
00165 00000080 CBank3_En equ 1<<7 1xxxxxxx 68349: enable cache/sram bank 3 as
cache
00166
00167 * NOTE: DDIO is obsolete for V3.0
00168 *DDIOequ 1<<71xxxxxxx don't disable data caching when in I/O
00169
00170
00171 * Config flag bit definitions
00172 *
00173 * These definitions control various options for the system
00174 *
00175 00000001 NoTblExp equ 1<<0 xxxxxxxx xxxxxxx1 system table expansion
disabled
00176 * Note - CRCDis is only applicable for "atomic" kernel.
00177 00000004 CRCDis equ 1<<2 xxxxxxxx xxxxx1xx disable CRC check for
F$VModul
00178 00000008 SysTSDis equ 1<<3 xxxxxxxx xxxx1xxx disable system-state
time-slicing
00179
00180 * SSM_NoProt is only applicable for Development kernel: SSM builds
00181 * a "full-system" page table for User-State at cold-start, all user
00182 * processes have access to all memory (ala ATOMIC kernel)
00184
00185 * SSM_SysPT is unimplemented for V3.0
00186 00000020 SSM_SysPT equ 1<<5 xxxxxxxx xx1xxxxx (SSM) sys-state page tables
00187
00188
00189 * SSM(MMU) Page Cache Mode definitions
00190 *
00191 * These definitions affect how the SSM(MMU) page tables are setup,
00192 * with respect to USER-state data cache modes.
00193 * Note the options available are dependant upon the caching
00194 * modes supported by the MPU/MMU in use.
00195 *
00196 00000004 CM_WrtProt equ 1<<2 page is write-protected
00197 00000040 CM_CI equ 1<<6 cache inhibit bit (68851/68030/68040)
00198 00000020 CM_NotSer equ 1<<5 not-serialized access (for cache inhibited)
(68040)
00199 00000020 CM_CB equ 1<<5 copy-back (for cache enabled) (68040)
00200
00201 00000004 WritProt equ CM_WrtProt write-protected page (not usually
useful)
00202
00203 * 68040 definitions
00204 *

AExample Code

OS-9 for 68K Processors Technical Manual 209

00205 00000000 WrtThru equ 0 cache enabled, write-through (also
68020/030 cache enabled)
00206 00000020 CopyBack equ CM_CB cache enabled, copy-back
00207 00000040 CISer equ CM_CI cache inhibited, serialized access
00208 00000060 CINotSer equ CM_CI+CM_NotSer cache inhibited, not-serialized
access
00209
00210
00211 use defsfile (any above definitions may be overridden
in defsfile)
00001
00002 use <oskdefs.d>
00043
00004 use systype.d
00001 opt -l
00005
00212
00213 * Memory list definitions
00214 MemType macro
00215 dc.w \1,\2,\3,\4>>4type, priority, access, search
block size
00216 dc.l \5,\6low, high limits (where it appears on local
address bus)
00217 dc.w \7,0offset to description string (zero if none),
reserved
00218 dc.l \8,0,0address translation adjustment (for DMA,
etc.), reserved
00219 ifne \#-8 must have exactly eight arguments
00220 fail wrong number of arguments to MemType macro
00221 endc
00222 endm
00223
00224 * Cache Mode Memory list definitions
00225 *
00226 CacheType macro
00227 dc.l \1,\2 start and end address (+1) of region
00228 dc.w 0 reserved
00229 dc.w \3 cache modes for region
00230 dc.l 0 reserved
00231 ifne \#-3 must have exactly three arguments
00232 fail wrong number of arguments to CacheType macro
00233 endc
00234 endm
00235
00236 * Alignment macros (for optimization)
00237 *
00238 CPUALIGN macro
00239 ifeq (CPUTyp-68040)
00240 * force LINE alignment
00241 ifne (*-ConfigBody)&15
00242 rept 16-((*-ConfigBody)&15)
00243 dc.b 0
00244 endr
00245 endc
00246 else others just need LONG-WORD

210 OS-9 for 68K Processors Technical Manual

00247 ifne (*-ConfigBody)&3
00248 rept 4-((*-ConfigBody)&3)
00249 dc.b 0
00250 endr
00251 endc
00252 endc CPUTyp
00253 endm
00254
00255
00256 * Configuration module body
00257 *
00258 00000000 ConfigBody equ *
00259 0000 0000 dc.l MaxMem (unused)
00260 0004 002c dc.w PollSz IRQ polling table
00261 0006 0045 dc.w DevCnt device table size
00262 0008 0040 dc.w Procs initial number of processes
00263 000a 0040 dc.w Paths initial number off paths
00264 000c 00b1 dc.w SysParam parameter string for first executable
module
00265 000e 00ab dc.w SysStart first executable module name offset
00266 0010 00b2 dc.w SysDev system default device name offset
00267 0012 00b6 dc.w ConsolNm standard I/O pathlist name offset
00268 0014 00c2 dc.w Extens Customization module name offset
00269 0016 00bc dc.w ClockNm clock module name offset
00270 0018 0002 dc.w Slice number of ticks per time slice
00271 001a 0000 dc.w IP_ID interprocessor identification
00272 001c 0000 dc.l Site installation site code
00273 0020 009e dc.w MainFram installation name offset
00274 0022 0001 dc.l CPUTyp specific 68000 family processor in
use
00275 0026 0103 dc.b Level,Vers,Revis,Edit OS-9 Level
00276 002a 0090 dc.w OS9Rev OS-9 revision string offset
00277 002c 0080 dc.w SysPri initial system priority
00278 002e 0000 dc.w MinPty initial system minimum executable
priority
00279 0030 0000 dc.w MaxAge maximum system natural age limit
00280 0032 0064 dc.w MDirSz module directory count
00281 0034 0000 dc.w 0 reserved
00282 0036 0020 dc.w Events initial event table size (number of
entries)
00283 0038 10 dc.b Compat version change smooth byte
00284 0039 0f dc.b Compat2 cache control configuration
00285 003a 00f2 dc.w MemList memory definitions
00286 003c 0100 dc.w StackSz/4 IRQ stack size (in longwords)
00287 003e 0000 dc.w ColdRetrys coldstart's "chd" retry count
00288 0040 0000 dc.w 0,0 reserved (MWKK)
00289 0044 0170 dc.w CacheList SSM(MMU) cache mode over-ride list
00290 0046 01a4 dc.w IOMan IOMan module name
00291 0048 01aa dc.w PreIO "PreIO" module list (called before
IOMan/Extens modules)
00292 004a 0000 dc.w Config system configuration control
00293 004c 0010 dc.w NumSigs maximum number of queued signals
00294 004e 05dc dc.w PrcDescStack stack size in process descriptor
00295 0050 0000 dc.w 0,0,0,0,0,0,0,0 reserved
00296 0060 0000 dc.w 0,0,0,0,0,0,0,0 reserved

AExample Code

OS-9 for 68K Processors Technical Manual 211

00297 0070 0000 dc.w 0,0,0,0,0,0,0,0 reserved
00298 0080 0000 dc.w 0,0,0,0,0,0,0,0 reserved
00299
00300
00301 * Configuration name strings
00302 *
00303 0090 4f53 OS9Rev dc.b "OS-9/68K V",Vers+'0',".",Revis+'0',0
00304
00305 * The remaining names are defined in the "systype.d" macro
00306 *
00307 CONFIG
00308
00309 * default Extension module name lists (these are usually defined in
00310 * the system's systype.d file).
00311 * The calling sequence for Extension modules is:
00312 * 1. PreIO module(s)
00313 * 2. IOMan module(s)
00314 * 3. Extens (aka P2) module(s)
00315 *
00319
00321 01a4 494f IOMan dc.b "IOMan",0 default IOMan module name
00323
00325 01aa 4f53 PreIO dc.b "OS9PreIO",0 default "PreIO" module list
00326 * (these modules are called BEFORE the IOMan and Extens lists)
00328
00332
00336
00337 * define default caching modes (CPUTyp and system specific)
00338 * NOTE: the following rules should be applied in determining
00339 * the "coherency" of a cache and setting up the Compat2
00340 * cache function flags:
00341 *
00342 * - if the cache does not exits, then it is always coherent.
00343 * - the on-chip cache coherency is not changable, except
00344 * for the 68040. If a 68040 system is used with
00345 * bus-snooping disabled, then that fact should be registered
00346 * by the user defining the label NoSnoop040 in their local
00347 * "systype.d" file.
00348 * - the coherency of external caches is indicated by the
00349 * SnoopExt definition. If the external caches are
00350 * coherent or non-existant, then the label SnoopExt
00351 * should be defined in "systype.d".
00352 * - the kernel disables data caching when calling a file
00353 * manager, unless the "NoDataDis" label is defined.
00354 * Disabling data caching is required for systems possessing
00355 * drivers using dma and don't perform any explicit data
00356 * cache flushing. If your system does NOT use dma drivers,
00357 * or the drivers care for the cache, then the NoDataDis
00358 * label should be defined in "systype.d".
00359 *
00361
00364 * external caches are coherent or absent
00365 00000003 ExtCache equ ExtC_I!ExtC_D
00370

212 OS-9 for 68K Processors Technical Manual

00375 0000000f Compat2 set ExtCache!OnC_I!OnC_D 68040 on-chip caches are
snoopy
00394
00396
00397 000001b4 ends

AExample Code

OS-9 for 68K Processors Technical Manual 213

The Sysgo Module

The following is an example of the Sysgo module:
Microware OS-9/68000 Resident Macro Assembler V1.6 86/11/04 Page 1 sysgo.a
Sysgo - OS-9/68000 Initial (startup) module
00001 nam Sysgo
00002 ttl OS-9/68000 Initial (startup) module
00003
00015 00000004 Edition equ 4 current edition number
00016
00017 00000101 Typ_Lang set (Prgrm<<8)+Objct
00018 00000000 Attr_Rev set 0 (non-re- entrant)
00019 psect sysgo,Typ_Lang,Attr_Rev,Edition,128,Entry
00020
00021 use defsfile
00022
00023 vsect
00024 00000000 ds.b 255 stack space
00025 00000000 ends
00026
00027 0000=4e40 Intercpt os9 F$RTE return from intercept
00028
00029 0004 41fa Entry lea Intercpt(pc),a0
00030 0008=4e40 os9 F$Icpt
00031 000c 41fa lea CmdStr(pc),a0 default execution dir ptr
00032 0010 7004 moveq #Exec_,d0 execution mode
00033 0012=4e40 os9 I$ChgDir chg exec dir (ignore errs)
00034 0016 640c bcc.s Entry10 continue if no error
00035 0018 7001 moveq #1,d0 std output path
00036 001a 721a moveq #ChdErrSz,d1 size
00037 001c 41fa lea ChdErrMs(pc),a0 "Help, I can’t find CMDS"
00038 0020=4e40 os9 I$WritLn output error message
00039
00040 * Process startup file
00041 0024 7000 Entry10 moveq #0,d0 std input path
00042 0026=4e40 os9 I$Dup clone it
00043 002a 3e00 move.w d0,d7 save cloned path number
00044 002c 7000 moveq #0,d0 std input path
00045 002e=4e40 os9 I$Close
00046 0032 303c move.w #Read_,d0
00047 0036 41fa lea Startup(pcr),a0 "startup" pathlist
00048 003a=4e40 os9 I$Open open startup file
00049 003e 640e bcc.s Entry15 continue if no error
00050 0040 7001 moveq #1,d0 std output path
00051 0042 7220 moveq #StarErSz,d1 size of startup error msg
00052 0044 41fa lea StarErMs(pc),a0 "Can’t find ’startup’"
00053 0048=4e40 os9 I$WritLn output error message
00054 004c 6032 bra.s Entry25
00055
00056 004e 7000 Entry15 moveq #0,d0 any type module
00057 0050 7200 moveq #0,d1 no add’l default mem size
00058 0052 7406 moveq #StartPSz,d2 sz of startup shell params

214 OS-9 for 68K Processors Technical Manual

00059 0054 7603 moveq #3,d3 copy three std I/O paths
00060 0056 7800 moveq #0,d4 same priority
00061 0058 41fa lea ShellStr(pcr),a0 shell name
00062 005c 43fa lea StartPrm(pcr),a1 initial parameters
00063 0060=4e40 os9 F$Fork fork shell
00064 0064 6410 bcc.s Entry20 continue if no error
00065 0066 7001 moveq #1,d0 std output path
00066 0068 7219 moveq #FrkErrSz,d1 size
00067 006a 41fa lea FrkErrMs(pc),a0 "oh no, can’t fork Shell"
00068 006e=4e40 os9 I$WritLn output error message
00069 0072=4e40 os9 F$SysDbg crash system
00070
00071 0076=4e40 Entry20 os9 F$Wait wait for death,ignore error
00072 007a 7000 moveq #0,d0 std input path
00073 007c=4e40 os9 I$Close close redirected "startup"
00074 0080 3007 Entry25 move.w d7,d0
00075 0082=4e40 os9 I$Dup restore original std input
00076 0086 3007 move.w d7,d0
00077 0088=4e40 os9 I$Close remove cloned path
00078
00079 008c 7000 Loop moveq #0,d0 any type module
00080 008e 7200 moveq #0,d1 default memory size
00081 0090 7401 moveq #1,d2 one parameter byte (CR)
00082 0092 7603 moveq #3,d3 copy std I/O paths
00083 0094 7800 moveq #0,d4 same priority
00084 0096 41fa lea ShellStr(pcr),a0 shell name
00085 009a 43fa lea CRChar(pcr),a1 null paramter string
00086 009e=4e40 os9 F$Fork fork shell
00087 00a2 650a bcs.s ForkErr abort if error
00088 00a4=4e40 os9 F$Wait wait for it to die
00089 00a8 6504 bcs.s ForkErr
00090 00aa 4a41 tst.w d1 zero status?
00091 00ac 67de beq.s Loop loop if so
00092 00ae=4e40 ForkErr os9 F$PErr print error message
00093 00b2 60d8 bra.s Loop
00094
00095 00b4 7368 ShellStr dc.b "shell",0
00096 00ba=5379 FrkErrMs dc.b "Sysgo can’t fork ’shell’",C$CR
00097 00000019 FrkErrSz equ *-FrkErrMs
00098
00099 00d3 434d CmdStr dc.b "CMDS",0
00100 00d8=5379 ChdErrMs dc.b "Sysgo can’t chx to ’CMDS’",C$CR
00101 0000001a ChdErrSz equ *-ChdErrMs
00102
00103 00f2 7374 Startup dc.b "startup",0
00104 00fa=5379 StarErMs dc.b "Sysgo can’t open ’startup’ file",C$CR
00105 00000020 StarErSz equ *-StarErMs
00106
00107 011a 2d6e StartPrm dc.b "-npxt"
00108 011f= 00 CRChar dc.b C$CR
00109 00000006 StartPSz equ *-StartPrm
00110 00000120 ends

AExample Code

OS-9 for 68K Processors Technical Manual 215

Signals: Example Program

The following program demonstrates a subroutine reading a \n terminated
string from a terminal with a ten second timeout between the characters.
This program is designed to illustrate signal usage; it does not contain any
error checking.

The _ss_ssig(path, value) library call notifies that operating system
to send the calling process a signal with signal code value when data is
available on path. If data is already pending, a signal is sent immediately.
Otherwise, control returns to the calling program and the signal is sent
when data arrives.
#include <stdio.h>
#include <errno.h>

#define TRUE 1
#define FALSE 0

#define GOT_CHAR 2001
short dataready; /* flag to show signal was received */

/* sighand - signal handling routine for this process */
sighand(signal)
register int signal;
{
 switch(signal) {
 /* ^E or ^C? */
 case 2:
 case 3:
 _errmsg(0,"termination signal received\n");
 exit(signal);
 /* Signal we’re looking for? */
 case GOT_CHAR:
 dataready = TRUE;
 break;
 /* Anything else? */
 default:
 _errmsg(0,"unknown signal received ==> %d\n",signal);
 exit(1);
 }
}

main()
{
 char buffer[256]; /* buffer for typed-in string */

 intercept(sighand); /* set up signal handler */

 printf("Enter a string:\n"); /* prompt user */

216 OS-9 for 68K Processors Technical Manual

 /* call timed_read, returns TRUE if no timeout, -1 if timeout */
 if (timed_read(buffer) == TRUE)
 printf("Entered string = %s\n",buffer);
 else
 printf("\nType faster next time!\n");
}

int timed_read(buffer)
register char *buffer;
{
 char c = ’\0’; /* 1 character buffer for read */
 short timeout = FALSE; /* flag to note timeout occurred on read */
 int pos = 0; /* position holder in buffer */

 /* loop until <return> entered or timeout occurs */
 while ((c != ’\n’) && (timeout == FALSE)) {
 sigmask(1); /* mask signals for signal setup */
 _ss_ssig(0,GOT_CHAR); /* set up to have signal sent */
 sleep(10); /* sleep for 10 seconds or until signal */

/* NOTE: we had to mask signals before doing _ss_ssig() so we did not get the
signal between the time we _ss_ssig()’ed and went to sleep. */

 /* Now we’re awake, determine what happened */
 if (!dataready)
 timeout = TRUE;
 else {
 read(0,&c,1); /* read the ready byte */
 buffer[pos] = c; /* put it in the buffer */
 pos++; /* move our position holder */
 dataready = FALSE; /* mark data as read */
 }
 }
 /* loop has terminated, figure out why */
 if (timeout)
 return -1; /* there was a timeout so return -1 */
 else {
 buffer[pos] = ’\0’; /* null terminate the string */
 return TRUE;
 }
}

#asm
* C binding for sigmask(value)
sigmask: move.l d1,-(sp) save d1 on the stack
 move.l d0,d1 get the passed parameter in the right place
 clr.l d0 make d0 = 0
 os9 F$SigMask make the system call to mask signals
 bcc.s ret if no error...
 move.l #-1,d0 return -1 to user
 move.l d1,errno(a6) fill errno with error number
ret move.l (sp)+,d1 restore d1 from the stack
 rts return to user
#endasm

AExample Code

OS-9 for 68K Processors Technical Manual 217

Alarms: Example Program

Compile the following example program with this command:

$ cc deton.c

The complete source code for the example program is as follows:
/*--|
| Psect Name:deton.c |
| Function: demonstrate alarm to time out user input |
|--*/
@_sysedit: equ 1

#include <stdio.h>
#include <errno.h>

#define TIME(secs) ((secs << 8) | 0x80000000)
#define PASSWORD "Ripley"

/*--*/
sighand(sigcode)
{
 /* just ignore the signal */
}

/*--*/
main(argc,argv)
int argc;
char **argv;
{
 register int secs = 0;
 register int alarm_id;
 register char *p;
 register char name[80];

 intercept(sighand);
 while (--argc)
 if (*(p = *(++argv)) == ’-’) {
 if (*(++p) == ’?’)
 printuse();
 else exit(_errmsg(1, "error: unknown option - ’%c’\n", *p));
 } else if (secs == 0)
 secs = atoi(p);
 else exit(_errmsg(1, "unknown arg - \"%s\"\n", p));

 secs = secs ? secs : 3;
 printf("You have %d seconds to terminate self-destruct...\n", secs);

 /* set alarm to time out user input */
 if ((alarm_id = alm_set(2, TIME(secs))) == -1)

218 OS-9 for 68K Processors Technical Manual

 exit(_errmsg(errno, "can’t set alarm - "));

 if (gets(name) != 0)
 alm_delete(alarm_id); /* remove the alarm; it didn’t expire */
 else printf("\n");

 if (_cmpnam(name, PASSWORD, 6) == 0)
 printf("Have a nice day, %s.\n", PASSWORD);
 else printf("ka BOOM\n");

 exit(0);
}

/*--*/
/* printuse() - print help text to standard error */
printuse()
{
 fprintf(stderr, "syntax: %s [seconds]\n", _prgname());
 fprintf(stderr, "function: demonstrate use of alarm to time out I/O\n");
 fprintf(stderr, "options: none\n");
 exit(0);
}

AExample Code

OS-9 for 68K Processors Technical Manual 219

Events: Example Program

The following program uses a binary semaphore to illustrate the use of
events. To execute this example:

Step 1. Type the code into a file called sema1.c.

Step 2. Copy sema1.c to sema2.c.

Step 3. Compile both programs.

Step 4. Run both programs with this command: sema1 & sema2.

The program creates an event with an initial value of 1 (free), a wait
increment of -1, and a signal increment of 1. Then, the program enters a
loop that waits on the event, prints a message, sleeps, and signals the
event. After ten times through the loop, the program unlinks itself from the
event and deletes the event from the system.
#include <stdio.h>
#include <events.h>
#include <errno.h>

char *ev_name = "semaevent"; /* name of event to be used */
int ev_id; /* id used to access event */

main()
{
 int count = 0; /* loop counter */

 /* create or link to the event */
 if ((ev_id = _ev_link(ev_name)) == -1)
 if ((ev_id = _ev_creat(1,-1,1,ev_name)) == -1)
 exit(_errmsg(errno,"error getting access to event - "));

 while (count++ < 10) {
 /* wait on the event */
 if (_ev_wait(ev_id, 1, 1) == -1)
 exit(_errmsg(errno,"error waiting on the event - "));

 _errmsg(0,"entering \"critical section\"\n");

 /* simulate doing something useful */
 sleep(2);

220 OS-9 for 68K Processors Technical Manual

 _errmsg(0,"exiting \"critical section\"\n");

 /* signal event (leaving critical section) */
 if (_ev_signal(ev_id, 0) == -1)
 exit(_errmsg(errno,"error signalling the event - "));

 /* simulate doing something other than critical section */
 sleep(1);
 }
 /* unlink from event */
 if (_ev_unlink(ev_id) == -1)
 exit(_errmsg(errno,"error unlinking from event - "));

 /* delete event from system if this was the last process to unlink from it */
 if (_ev_delete(ev_name) == -1 && errno != E_EVBUSY)
 exit(_errmsg(errno,"error deleting event from system - "));

 _errmsg(0,"terminating normally\n");
}

AExample Code

OS-9 for 68K Processors Technical Manual 221

Semaphores: Example Program

The following example shows how to use semaphores.
#ifndef _SEMAPHORE_H
#include <semaphore.h>
#endif
#ifndef _MODULE_H
#include <module.h>
#endif
register Semaphore sema;
Semaphore locate_semaphore();
/* link/create the semaphore */
sema = locate_semaphore();
while (1) {
 /* perform semaphore "P" operation (reserve the semaphore) */
 if ((err = _os_sema_p(sema)) != SUCCESS)
 exit(_errmsg(err, "could not perform P operation - "));
 /* Enter critical section */
 /* perform semaphore "V" operation (release semaphore) */
 if ((err = _os_sema_v(sema)) != SUCCESS)
 exit(_errmsg(err, "could not perform V operation - "));
}
/* terminate usage of the semaphore */
_os_sema_term(sema);
}
#define ATTR_REV 0x8001 /* semaphore data-module's attribute revision value */
/* locate_semaphore - link or create semaphore module (initialize it). */
Semaphore locate_semaphore()
{
 register Semaphore sema;
 register mh_com *semamod;
 static char *semaname = "semaphore";
 mh_com *modlink();
 mh_com *_mkdata_module();
 /* attempt to link to the semaphore */
 if ((semamod = modlink(semaname, MT_DATA)) == ((mh_com*)-1)) {
 /* semaphore module did not exist so create it */
 if ((semamod = _mkdata_module("semaphore", sizeof semaphore, ATTR_REV,
 MP_OWNER_READ|MP_OWNER_WRITE)) == ((mh_com*)(-1)))
 exit(_errmsg(errno, "can't create the semaphore - "));
 /* get the address of the semaphore data structure */
 sema = (Semaphore)((char*)semamod + semamod->m_exec);
 /* initialize the semaphore prior to usage the first time */
 _os_sema_init(sema);
 } else {
 /* the semaphore module already exists */
 /* get the address of the semaphore data structure */
 sema = (Semaphore)((char*)semamod + semamod->m_exec);
 }
 return sema;
}

222 OS-9 for 68K Processors Technical Manual

The following example shows how to use semaphores from assembly
language.
* Semaphore
 lea.l Semaphore(a1),a0
 move.l a0,d0 semaphore address
 bsr _os_sema_init
 move.l a0,d0 semaphore address
 bsr _os_sema_p
 move.l a0,d0 semaphore address
 bsr _os_sema_v
 move.l a1,d0 semaphore address
 bsr _os_sema_term

NoteNote
Refer to the Using Ultra C manual for information about the
os_sema_xxx call’s operation and syntax.

AExample Code

OS-9 for 68K Processors Technical Manual 223

C Trap Handler

Use the following makefile to make the example C trap handler and test
programs:
makefile - Used to make the example C trap handler and test program.

CFLAGS = -sqgixt=/dd
RDIR = RELS
TRAP = ctrap
TEST = traptst

Dependencies for making the entire example.

ctrap.example: $(TRAP) $(TEST)
 touch ctrap.example

Dependencies for making the ctrap trap handler.

$(TRAP): tstart.r $(TRAP).r
 chd $(RDIR);\
 l68 tstart.r $(TRAP).r -l=/dd/lib/cio.l -l=/dd/lib/clib.l -l=/dd/lib/sys.l\
 -o=$(TRAP) -g

Dependencies for making the traptst test program.

$(TEST): $(TEST).r

$(TEST).r: $(TEST).c
 cc -gim=2k $(TEST).c -r=$(RDIR)

The complete source for the C trap handler startup routines (tstart.a) is
as follows:

*
* tstart.a - C trap handler startup routines.
*
 nam tstart C trap handler interface
 use /dd/defs/oskdefs.d

*SYSTRAP equ 1 define if trap should execute in system state

MaxParams equ 20 maximum number of "C" style parameters allowed

 ifdef SYSTRAP
AttrRevs set (ReEnt+SupStat)<<8 (system state)
 else
AttrRevs set (ReEnt)<<8 (user state)
 endc

224 OS-9 for 68K Processors Technical Manual

TypeLang set (TrapLib<<8)+Objct
 psect traphand,TypeLang,AttrRevs,0,0,TrapEnt
 dc.l TrapInit
 dc.l TrapTerm

* Subroutine TrapInit
* Trap handler initialization entry point
*
* Passed: d0.w = User Trap number (1-15)
* d1.l = (optional) additional static storage
* d2-d7 = caller’s registers at time of trap
* (a0) = trap handler module name pointer
* (a1) = trap handler execution entry point
* (a2) = trap module pointer
* a3-a5 = caller’s registers at time of trap
* (a6) = trap handler static storage pointer
* (a7) = trap init stack frame pointer
*
* Returns: d0.l = "C" trapinit return value
* (a0) = updated trap handler name pointer
* (a1) = trap handler execution entry point
* (a2) = trap module pointer
* cc = carry set, d1.w = error code if error
* Other values returned are dependent on the trap handler
*
* The user stack looks like this:
* .-------------------------.
* +8 | caller’s return PC |
* |------------+------------|
* +4 | 0000 | 0000 |
* |------------|------------|
* | caller’s a6 register |
* (usp)-> -------------------------
*
* NOTE: In system state, (a7)=system stack pointer. This has a reasonable
* amount of stack space (~1K). No assumptions about where it is
* should be made.

TrapInit: bra TrapEnt call "C" trap handler (with func. code zero)

* Subroutine TrapEnt
* User Trap entry point
*
* Passed: d0-d7 = caller’s registers
* a0-a5 = caller’s registers
* (a6) = trap handler static storage pointer
* (a7) = trap entry stack frame pointer
* usp = undisturbed user stack (in system state)
*
* Returns: cc = carry set, d1.w=error code if error
* Other values returned are dependent on the trap handler
*
* The system stack looks like this:

AExample Code

OS-9 for 68K Processors Technical Manual 225

* .-------------------------.
* +8 | caller’s return PC |
* |-------------+-----------
* +6 | vector # |
* |-------------|
* +4 | func code |
* |-------------+-----------.
* | caller’s (a6) register |
* (a7)-> -------------------------

 org 0 stack offset definitions
S_CParams do.l MaxParams
S_a0 do.l 1 caller’s a0 reg
S_a1 do.l 1 caller’s a1 reg
S_a6 do.l 1 caller’s a6 reg
S_func do.w 1 trap function code
S_vect do.w 1 user trap exception offset
S_cleanup equ .
S_pc do.l 1 return pc

TrapEnt: movem.l a0-a1,-(a7) save regs
 lea -MaxParams*4(a7),a7 allocate parameter space
 lea S_CParams(a7),a1 ptr to C parameter area

 ifdef SYSTRAP
 move usp,a0 caller’s parameters are on user stack ptr
 adda.l #12,a0 above two rts pc’s
 else
 lea S_pc+16(a7),a0 caller’s remaining C parameters ptr
 endc

 moveq #MaxParams-1,d1 number of (potential) parameters
Trap10 move.l (a0)+,(a1)+ copy caller’s params from user stack
 dbra d1,Trap10
 moveq #0,d0 sweep reg
 move.w S_func(a7),d0 1st param = func
 move.l S_a6(a7),d1 2nd param = caller’s (a6)
 bsr ctrap execute C traphandler
Trap90 movea.l S_a6(a7),a6 restore caller’s a6
 lea S_cleanup(a7),a7 discard scratch
 rts return to user program

* Subroutine TrapTerm
* Terminate trap handler servicing.
*
* As of this release (OS-9 V2.3) the trap termination entry point
* is never called by the OS-9 kernel. Documentation details will
* be available when a working implementation exists.

TrapTerm: move.w #1<<8+199,d1 never called; so if it gets here...
 OS9 F$Exit crash program (Error 001:199)

 ends

226 OS-9 for 68K Processors Technical Manual

The complete source for the example C trap handler library (ctrap.c) is
as follows:
/***
 *
 * ctrap.c - Example C trap handler library.
 *
 * ctrap(func, a6, p1, p2, ...)
 */

int ctrap(func, a6, p1, p2, p3, p4)
register int func; /* trap function code */
char *a6; /* caller’s static storage base */
unsigned int p1, p2, p3, p4; /* caller’s parameters */
{
 register int result;

 switch(func)
 {
 case 0 : result = 0; break; /* tlink call */
 case ’+’: result = p1 + p2; break;
 case ’-’: result = p1 - p2; break;
 case ’*’: result = p1 * p2; break;
 case ’/’: result = p1 / p2; break;
 case ’&’: result = p1 & p2; break;
 case ’|’: result = p1 | p2; break;
 case ’^’: result = p1 ^ p2; break;
 case ’>’: result = p1 >> p2; break;
 case ’<’: result = p1 << p2; break;
 default : result = -1; break;
 }
 return (result);
}

The complete source for traptst.c, which calls the ctrap handler, is as
follows:
/***
 *
 * traptst.c - Calls the "ctrap" trap handler.
 *
 */

main()
{
 int i, n;
 int x = 22;
 int y = 5;
 int trapnum = 6;
 char *operator = "+-*/&|^<>?";

 printf("tlink: %d\n", tlink(trapnum, "ctrap"));

 n = strlen (operator);

AExample Code

OS-9 for 68K Processors Technical Manual 227

 for (i = 0; i < n; ++i)
 printf("tcall(%d %c %d) = %d\n", x, operator[i], y,
 tcall(trapnum, operator[i], x, y));
}

/* bindings for tlink, tcall */
/**/
/* tlink(trapnum, trapname) - link to trap handler */
/* int trapnum; user trap number (1-15) */
/* char *trapname; name of trap module (NULL to unlink) */

#asm
tlink: link a5,#0
 movem.l a0-a2,-(a7) save regs
 movea.l d1,a0 copy ptr to trap handler name
 moveq #0,d1 no memory override
 OS9 F$TLink link to trap handler
 bcc.s tlink99 exit if no error
 move.l d1,errno(a6) save error number for caller
 moveq #-1,d0 return error status
tlink99 movem.l (a7)+,a0-a2 restore regs
 unlk a5
 rts
#endasm

/**/
/* tcall(trapnum, func, param1, param2, ...) - call trap handler */
/* int trapnum; user trap number (1-15) */
/* short func; trap function number */
/* other parameters may be ints or pointers */

#asm
TRAP equ $4e40 user trap(0) opcode
RTS equ $4e75 rts opcode

 vsect
trapinst ds.w 2
rtsinst ds.w 1
 ends

tcall: link a5,#0
 tst.l d0 valid trap number?
 beq.s paramerr abort if not
 cmp.l #15,d0 valid trap number?
 bhi.s paramerr
 add.w #TRAP,d0
 movem.w d0-d1,trapinst(a6) build usr trap instruction
 move.w #RTS,rtsinst(a6) set rts instruction
 moveq.l #0,d0 flush instruction cache
 os9 F$CCtl ignore error
 jsr trapinst(a6) execute trap call
 bcc.s tcall99 exit if no error
 move.l d1,errno(a6) save error number
 bra.s tcallerr abort

228 OS-9 for 68K Processors Technical Manual

paramerr move.l #E$Param,errno(a6)
tcallerr moveq #-1,d0
tcall99
 unlk a5
 rts
#endasm

AExample Code

OS-9 for 68K Processors Technical Manual 229

RBF Device Descriptor

Microware OS-9/68020 Resident Macro Assembler V2.9 93/10/15 12:25 Page 1
 ../../../SRC/IO/RBF/DESC/d0.a
D0 Device Descriptor - Device Descriptor for Floppy disk controller
00001 nam D0 Device Descriptor
00002 use defsfile
00001
00002 use <oskdefs.d>
00001 opt -l
00004 use systype.d
00001 * System Definitions for MVME147 System
00002 *
00003 opt -l
00005
00006
00003
00004 use "rbfdesc.a"
00001
00002 ttl Device Descriptor for Floppy disk controller
00003
00004 * Copyright 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1992, 1993
00005 * by Microware Systems Corporation.
00006 * Reproduced Under License.
00007
00008 * This source code is the proprietary confidential property of
00009 * Microware Systems Corporation, and is provided to licensee
00010 * solely for documentation and educational purposes. Reproduction,
00011 * publication, or distribution in any form to any party other
00012 * than the licensee is prohibited.
00050 00000011 Edition equ 17 current edition number
00051
00052 * PD_DNS values
00053 00000000 Single equ 0 FM encoded media
00054 00000001 Double equ 1 MFM encoded media/double-track
density
00055 00000002 Quad equ 1<<1 Quad track density
00056 00000004 Octal equ 1<<2 Octal track density
00057
00058 * PD_TYP values
00059 * Note: For pre-V2.4 Five/Eight defines the disk size, rotational
00060 * speed and data transfer rate. From V2.4 the physical size
00061 * is defined in bits 4 - 1, and PD_Rate defines the rotational
00062 * speed and data transfer rate.
00063
00064 * floppy disk definitions
00065 00000000 Five equ 0<<0 drive is 5 1/4"
00066 00000001 Eight equ 1<<0 drive is 8"
00067 00000000 SizeOld equ 0<<1 size/speed defined by bit 0 value
(pre-V2.4)
00068 00000002 Size8 equ 1<<1 physical size is 8"
00069 00000004 Size5 equ 2<<1 physical size is 5 1/4"
00070 00000006 Size3 equ 3<<1 physical size is 3 1/2"

230 OS-9 for 68K Processors Technical Manual

00071
00072 * hard disk definitions
00073 00000040 HRemov equ 1<<6 hard disk is removable
00074 00000080 Hard equ 1<<7 hard disk media
00075
00076 * PD_Rate values
00077 * Note: V2.4 drivers should derive the disk data transfer rate and
00078 * rotational speed from this field if PD_TYP, bits 4 - 1 are
00079 * non-zero. If not, then PD_TYP, bit 0 infers these.
00080 00000000 rpm300 equ 0 rotational speed is 300 rpm
00081 00000001 rpm360 equ 1 rotational speed is 360 rpm
00082 00000002 rpm600 equ 2 rotational speed is 600 rpm
00083 00000000 xfr125K equ 0<<4 transfer rate is 125K bits/sec
00084 00000010 xfr250K equ 1<<4 transfer rate is 250K bits/sec
00085 00000020 xrf300K equ 2<<4 transfer rate is 300K bits/sec
00086 00000030 xfr500K equ 3<<4 transfer rate is 500K bits/sec
00087 00000040 xfr1M equ 4<<4 transfer rate is 1M bits/sec
00088 00000050 xfr2M equ 5<<4 transfer rate is 2M bits/sec
00089 00000060 xfr5M equ 6<<4 transfer rate is 5M bits/sec
00090
00091 * PD_VFY values
00092 00000001 ON equ 1 "no-verify" ON
00093 00000000 OFF equ 0 "no-verify" OFF (i.e. verify is ON!)
00094
00095 * macro parameter #6 definitions (drive type)
00096
00097 00000001 d877 equ 1 single density 8"
00098 00000004 dd877 equ 4 double density 8"
00099 00000002 d540 equ 2 single density 5 1/4" 40 trk
00100 00000005 dd540 equ 5 double density 5 1/4" 40 trk
00101 00000003 d580 equ 3 single density 5 1/4" 80 trk
00102 00000006 dd580 equ 6 double density 5 1/4" 80 trk
00103 00000007 ramdisk equ 7 volatile ram disk
00104 00000008 nvramdisk equ 8 non-volatile ram disk
00105 00000009 uv580 equ 9 universal 5 1/4" 80 track
00106 0000000a autosize equ 10 autosize device (SS_DSize tells media
size)
00107 0000000b dd380 equ 11 double density 3 1/2", 80 trk
00108 0000000c uv380 equ 12 universal 3 1/2" 80 track
00109 0000000d hd580 equ 13 double density 5 1/4" 80 track '8"
image'
00110 0000000e ed380 equ 14 double density 3 1/2" 80 track, 4M
byte unformatted
00111 0000000f hd577 equ 15 double density 5 1/4" 77 track '8"
image'
00112 00000010 uv577 equ 16 universal 5 1/4" '8" image'
00113 00000011 uv877 equ 17 universal 8"
00114 00000012 hd380 equ 18 double density 3 1/2" 80 track, 2M
(UF)/ 1.4M (F)
00115
00116 00000003 Density set BitDns+(TrkDns<<1)
00117 00000026 DiskType set DiskKind+(DnsTrk0<<5)
00118
00119 00000f00 TypeLang set (Devic<<8)+0
00120 00008000 Attr_Rev set (ReEnt<<8)+0

AExample Code

OS-9 for 68K Processors Technical Manual 231

00121
00122 psect RBFDesc,TypeLang,Attr_Rev,Edition,0,0
00123
00124 0000 fffe dc.l Port port address
00125 0004 45 dc.b Vector auto-vector trap assignment
00126 0005 04 dc.b IRQLevel IRQ hardware interrupt level
00127 0006 05 dc.b Priority irq polling priority
00128 0007 b7 dc.b Mode device mode capabilities
00129 0008 0048 dc.w FileMgr file manager name offset
00130 000a 004c dc.w DevDrv device driver name offset
00131 000c 0053 dc.w DevCon (reserved)
00132 000e 0000 dc.w 0,0,0,0 reserved
00133 0016 0030 dc.w OptLen
00134
00135 * Default Parameters
00136 OptTbl
00137 0018= 00 dc.b DT_RBF device type
00138 0019 00 dc.b DrvNum drive number
00139 001a 03 dc.b StepRate step rate
00140 001b 26 dc.b DiskType type of disk 8"/5 1/4"/Hard/etc
00141 001c 03 dc.b Density Bit Density and track density
00142 001d 00 dc.b 0 reserved
00143 001e 004f dc.w Cylnders-TrkOffs number of logical cylinders
00144 0020 02 dc.b Heads Number of Sides (Floppy) Heads(Hard
Disk)
00145 0021 01 dc.b NoVerify OFF = disk verify ON = no verify
00146 0022 0010 dc.w SectTrk default sectors/track
00147 0024 0010 dc.w SectTrk0 default sectors/track track 0
00148 0026 0008 dc.w SegAlloc segment allocation size
00149 0028 01 dc.b Intrleav sector interleave factor
00150 0029 00 dc.b DMAMode DMA mode (driver dependant)
00151 002a 01 dc.b TrkOffs track base offset (first accessable
track)
00152 002b 01 dc.b SectOffs sector base offset (starting physical
sector number)
00153 002c 0100 dc.w SectSize # of bytes/sector
00154 002e 0002 dc.w Control control byte
00155 0030 07 dc.b Trys number of retrys 0 = no retrys/error
correction
00156 0031 00 dc.b ScsiLun scsi logical unit number
00157 0032 0000 dc.w WrtPrecomp write precomp cylinder
00158 0034 0000 dc.w RedWrtCrnt reduce write current cylinder
00159 0036 0000 dc.w ParkCyl cylinder to park head for hard disk
00160 0038 0000 dc.l LSNOffset logical sector offset
00161 003c 0050 dc.w TotalCyls total cylinders on drive
00162 003e 06 dc.b CtrlrID scsi controller id
00163 003f 10 dc.b Rates data-transfer rate & rotational speed
00164 0040 0000 dc.l ScsiOpts scsi option flags
00165 0044 00ff dc.l MaxCount-1 maximum byte count passable to driver
00166 00000030 OptLen equ *-OptTbl
00167
00168 0048 5242 FileMgr dc.b "RBF",0 Random block file manager
00169 RBFDesc macro
00170
00171 Port equ \1 Port address

232 OS-9 for 68K Processors Technical Manual

00172 Vector equ \2 autovector number
00173 IRQLevel equ \3 hardware interrupt level
00174 Priority equ \4 polling priority
00175 DevDrv dc.b "\5",0 driver module name
00176 ifgt \#-5 standard device setup requested?
00177
00178
00179 ifeq \6-d877 8", 77 track drive, single density
00180 DiskKind set Eight+Size8 (set Eight for compatibility)
00181 Cylnders set 77
00182 BitDns set Single FM encoding
00183 Rates set xfr250K+rpm360
00184 TrkDns set Single 48 tpi
00185 SectTrk set 16
00186 SectTrk0 set 16
00187 TotalCyls set Cylnders number of actual cylinders on disk
00188 endc
00189
00190 ifeq \6-dd877 8", 77 track, double density
00191 DiskKind set Eight+Size8 (set Eight for compatibility)
00192 Cylnders set 77
00193 BitDns set Double MFM encoding
00194 Rates set xfr500K+rpm360
00195 TrkDns set Single 48 tpi
00196 SectTrk set 28
00197 SectTrk0 set 16
00198 TotalCyls set Cylnders number of actual cylinders on disk
00199 endc
00200
00201 ifeq \6-d540 5 1/4", 40 track drive, single density
00202 DiskKind set Size5
00203 Cylnders set 40
00204 BitDns set Single FM encoding
00205 Rates set xfr125K+rpm300
00206 TrkDns set Single 48 tpi
00207 SectTrk set 10
00208 SectTrk0 set 10
00209 TotalCyls set Cylnders number of actual cylinders on disk
00210 endc
00211
00212 ifeq \6-dd540 5 1/4", 40 track, double density drive
00213 DiskKind set Size5
00214 Cylnders set 40
00215 BitDns set Double MFM encoding
00216 Rates set xfr250K+rpm300
00217 TrkDns set Single 48 tpi
00218 SectTrk set 16
00219 SectTrk0 set 10
00220 TotalCyls set Cylnders number of actual cylinders on disk
00221 endc
00222
00223 ifeq \6-d580 5 1/4", 80 track, single density drive
00224 DiskKind set Size5
00225 Cylnders set 80
00226 BitDns set Single FM encoding

AExample Code

OS-9 for 68K Processors Technical Manual 233

00227 Rates set xfr125K+rpm300
00228 TrkDns set Double 96tpi
00229 SectTrk set 10
00230 SectTrk0 set 10
00231 TotalCyls set Cylnders number of actual cylinders on disk
00232 endc
00233
00234 ifeq \6-dd580 5 1/4", 80 track drive, double density
00235 DiskKind set Size5
00236 Cylnders set 80
00237 BitDns set Double MFM encoding
00238 Rates set xfr250K+rpm300
00239 TrkDns set Double 96tpi
00240 SectTrk set 16
00241 SectTrk0 set 10
00242 TotalCyls set Cylnders number of actual cylinders on disk
00243 endc
00244
00245 ifeq \6-ramdisk volatile ram disk
00246 DiskKind set 0
00247 Cylnders set 0
00248 BitDns set Single
00249 TrkDns set Single
00250 SectTrk0 set 0
00251 Heads set 0
00252 StepRate set 0
00253 Intrleav set 0
00254 NoVerify set ON
00255 SegAlloc set 4
00256 Trys set 0
00257 DevCon set 0 not used by ram-disk driver
00258 Control set MultEnabl format enabled, m/s capable
00259 MaxCount set $ffffffff
00260 endc
00261
00262 ifeq \6-nvramdisk non-volatile ram disk
00263 DiskKind set 0
00264 Cylnders set 0
00265 BitDns set Single
00266 TrkDns set Single
00267 SectTrk0 set 0
00268 Heads set 0
00269 StepRate set 0
00270 Intrleav set 0
00271 NoVerify set ON
00272 SegAlloc set 4
00273 Trys set 0
00274 DevCon set 0 not used by ram disk driver
00275 Control set FmtDsabl+MultEnabl nvram disks are format disabled,
m/s capable
00276 MaxCount set $ffffffff
00277 endc
00278
00279 ifeq \6-uv580 universal 5 1/4" 80 track
00280 DiskKind set Size5 five inch disk

234 OS-9 for 68K Processors Technical Manual

00281 Cylnders set 80 number of (physical) tracks
00282 BitDns set Double MFM recording
00283 Rates set xfr250K+rpm300
00284 DnsTrk0 set Double MFM track 0
00285 TrkDns set Double 96tpi
00286 SectTrk set 16 sectors/track (except trk 0, side 0)
00287 SectTrk0 set 16 sectors/track, track 0, side 0
00288 SectOffs set 1 physical sector start = 1
00289 TrkOffs set 1 track 0 not used
00290 TotalCyls set Cylnders number of actual cylinders on disk
00291 endc
00292
00293 ifeq \6-autosize "autosize" device (SS_DSize tells
capacity)
00294 SectTrk set 0 sectors/track (except trk 0, side 0)
00295 SectTrk0 set 0 sectors/track, track 0, side 0
00296 Cylnders set 0 total cylinders
00297 Heads set 0 total heads
00298 endc
00299
00300 ifeq \6-dd380 3 1/2", 80 track drive
00301 DiskKind set Size3
00302 Cylnders set 80
00303 BitDns set Double
00304 Rates set xfr250K+rpm300
00305 TrkDns set Double 135tpi
00306 SectTrk set 16
00307 SectTrk0 set 10
00308 TotalCyls set Cylnders number of actual cylinders on disk
00309 endc
00310
00311 ifeq \6-uv380 universal 3 1/2" 80 track
00312 DiskKind set Size3
00313 Cylnders set 80 number of (physical) tracks
00314 BitDns set Double MFM recording
00315 Rates set xfr250K+rpm300
00316 DnsTrk0 set Double MFM track 0
00317 TrkDns set Double 135tpi
00318 SectTrk set 16 sectors/track (except trk 0, side 0)
00319 SectTrk0 set 16 sectors/track, track 0, side 0
00320 SectOffs set 1 physical sector start = 1
00321 TrkOffs set 1 track 0 not used
00322 TotalCyls set Cylnders number of actual cylinders on disk
00323 endc
00324
00325 ifeq \6-hd580 5 1/4" 80 track '8" image'
00326 DiskKind set Eight+Size5 (set Eight for compatibility)
00327 Cylnders set 80 number of (physical) tracks
00328 BitDns set Double MFM recording
00329 Rates set xfr500K+rpm360
00330 TrkDns set Double 96tpi
00331 SectTrk set 28 sectors/track (except trk0, side 0)
00332 SectTrk0 set 16 sectors/track, track 0, side 0
00333 TotalCyls set Cylnders number of actual cylinders on disk
00334 endc

AExample Code

OS-9 for 68K Processors Technical Manual 235

00335
00336 ifeq \6-ed380 3 1/2" 80 track EXTRA density (4M
unformatted)
00337 DiskKind set Size3
00338 Cylnders set 80 number of (physical) cylinders
00339 BitDns set Double MFM recording
00340 Rates set xfr1M+rpm300
00341 DnsTrk0 set Double MFM track 0
00342 TrkDns set Double 135tpi
00343 SectTrk set 61 sectors/track (except trk 0, side 0)
00344 SectTrk0 set 61 sectors/track, track 0, side 0
00345 SectOffs set 1 physical sector start = 1
00346 TotalCyls set Cylnders number of actual cylinders on disk
00347 endc
00348
00349 ifeq \6-hd577 5 1/4" 77 track '8" image'
00350 DiskKind set Eight+Size5 (set Eight for compatibility)
00351 Cylnders set 77 number of (physical) tracks
00352 BitDns set Double MFM recording
00353 Rates set xfr500K+rpm360
00354 TrkDns set Double 96tpi
00355 SectTrk set 28 sectors/track (except trk0, side 0)
00356 SectTrk0 set 16 sectors/track, track 0, side 0
00357 TotalCyls set Cylnders number of actual cylinders on disk
00358 endc
00359
00360 ifeq \6-uv577 universal 5 1/4" 77 track '8" image'
00361 DiskKind set Eight+Size5 (set Eight for compatibility)
00362 Cylnders set 77 number of (physical) tracks
00363 BitDns set Double MFM recording
00364 Rates set xfr500K+rpm360
00365 DnsTrk0 set Double MFM track 0
00366 TrkDns set Double 96tpi
00367 SectTrk set 28 sectors/track (except trk0, side 0)
00368 SectTrk0 set 28 sectors/track, track 0, side 0
00369 SectOffs set 1 physical sector start = 1
00370 TrkOffs set 1 track 0 not used
00371 TotalCyls set Cylnders number of actual cylinders on disk
00372 endc
00373
00374 ifeq \6-uv877 universal 8" 77 track
00375 DiskKind set Eight+Size8 (set Eight for compatibility)
00376 Cylnders set 77 number of (physical) tracks
00377 BitDns set Double MFM recording
00378 Rates set xfr500K+rpm360
00379 DnsTrk0 set Double MFM track 0
00380 TrkDns set Single 48 tpi
00381 SectTrk set 28 sectors/track (except trk0, side 0)
00382 SectTrk0 set 28 sectors/track, track 0, side 0
00383 SectOffs set 1 physical sector start = 1
00384 TrkOffs set 1 track 0 not used
00385 TotalCyls set Cylnders number of actual cylinders on disk
00386 endc
00387

236 OS-9 for 68K Processors Technical Manual

00388 ifeq \6-hd380 3 1/2" 80 track (2M unformatted, 1.4M
formatted)
00389 DiskKind set Eight+Size3 (set Eight for compatibility)
00390 Cylnders set 80 number of (physical) tracks
00391 BitDns set Double MFM recording
00392 Rates set xfr500K+rpm300
00393 TrkDns set Double 96tpi
00394 SectSize set 512 physical sector size
00395 SectTrk set 18 sectors/track (except trk0, side 0)
00396 SectTrk0 set 18 sectors/track, track 0, side 0
00397 TotalCyls set Cylnders number of actual cylinders on disk
00398 endc
00399
00400 endc
00401 endm
00402
00403 ****************
00404 * Descriptor Defaults
00405 000000b7 Mode set Dir_+ISize_+Append_+Exec_+Updat_
00406 00000000 BitDns set Single
00407 00000002 Heads set 2
00408 00000002 StepRate set 2
00409 00000003 Intrleav set 3
00410 00000000 NoVerify set OFF
00411 00000000 DnsTrk0 set Single
00412 00000000 DMAMode set 0 non dma device
00413 00000008 SegAlloc set 8 minimum segment allocation size
00414 00000000 TrkOffs set 0
00415 00000000 SectOffs set 0
00416 00000100 SectSize set 256 default sector size 256 bytes.
00417 00000000 WrtPrecomp set 0 no write precomp
00418 00000000 RedWrtCrnt set 0 no reduced write current
00419 00000000 ParkCyl set 0 where to park the head for hard disk
00420 00000000 ScsiLun set 0 scsi logical unit number
00421 00000000 CtrlrID set 0 controller id
00422 00000000 LSNOffset set 0 logical sector offset for scsi hard
disks
00423 00000000 TotalCyls set 0 number of actual cylinders on disk
00424
00425 * scsi options flag definitions
00426
00427 00000001 scsi_atn set 1<<0 assert ATN supported
00428 00000002 scsi_target set 1<<1 target mode supported
00429 00000004 scsi_synchr set 1<<2 synchronous transfers supported
00430 00000008 scsi_parity set 1<<3 enable SCSI parity
00431
00432 00000000 ScsiOpts set 0 scsi options flags (default)
00433
00434 * device control word definitions
00435
00436 00000000 FmtEnabl set 0<<0 enable formatting
00437 00000001 FmtDsabl set 1<<0 disable formatting
00438 00000000 MultDsabl set 0<<1 disable multi-sectors
00439 00000002 MultEnabl set 1<<1 enable multi-sectors
00440 00000000 StabDsabl set 0<<2 device doesn't have stable id

AExample Code

OS-9 for 68K Processors Technical Manual 237

00441 00000004 StabEnabl set 1<<2 device has stable id
00442 00000000 AutoDsabl set 0<<3 device size from device descriptor
00443 00000008 AutoEnabl set 1<<3 device tells size via SS_DSize
00444 00000000 FTrkDsabl set 0<<4 device can't format a single track
00445 00000010 FTrkEnabl set 1<<4 device can format a single track
00446 00000000 WritEnab set 0<<5 device is writable by RBF
00447 00000020 WritDsabl set 1<<5 device is write-protected by RBF
00448 00000000 Control set 0 descriptor control word (default)
00449
00450 00000007 Trys set 7 number of Trys
00451 00010000 MaxCount set 65536 default maximum transfer count of
driver (16-bit)
00452 00000000 Rates set 0 default transfer-rate & rotational
speed
00453
00454 * end of file
00455
00005
00006 00000000 DrvNum set 0
00007 DiskD0
00008 0000005c ends

238 OS-9 for 68K Processors Technical Manual

SCF Device Descriptor

Microware OS-9/68020 Resident Macro Assembler V2.9 93/08/12 16:38 Page 1
 ../../../SRC/IO/SCF/DESC/term.a
Term - 68000 Term device descriptor module
00001 nam Term
00002 ttl 68000 Term device descriptor module
00003 use defsfile
00001
00002 use <oskdefs.d>
00001 opt -l
00003 use systype.d
00001 opt -l
00004
00004
00005 * The default characteristics in "scfdesc.a" can be overridden
00006 * by equating the desired values here. For example:
00007
00008 use "scfdesc.a"
00001 ttl Device Descriptor for SCF serial device
00002
00003 * Copyright 1983, 1984, 1985, 1988, 1991, 1992 by
00004 * Microware Systems Corporation.
00005 * Reproduced Under License.
00006
00007 * This source code is the proprietary confidential property of
00008 * Microware Systems Corporation, and is provided to licensee
00009 * solely for documentation and educational purposes. Reproduction,
00010 * publication, or distribution in any form to any party other
00011 * than the licensee is prohibited.
00012
00048 0016 001c dc.w OptSiz option byte count
00049
00050 * Default Parameters
00051 Options
00052 * default
00053 * name function value
00054 * -------- -------------------- -------
00055 0018= 00 dc.b DT_SCF device type SCF
00056 0019= 00 dc.b upclock upcase lock OFF
00057 001a= 00 dc.b bsb backspace=BS,SP,BS ON
00058 001b= 00 dc.b linedel line del/bsp line OFF
00059 001c= 00 dc.b autoecho full duplex ON
00060 001d= 00 dc.b autolf auto line feed ON
00061 001e= 00 dc.b eolnulls null count 0
00062 001f= 00 dc.b pagpause end of page pause OFF
00063 0020= 00 dc.b pagsize lines per page 24
00064 0021= 00 dc.b C$Bsp backspace char ^H
00065 0022= 00 dc.b C$Del delete line char ^X
00066 0023= 00 dc.b C$CR end of record char <return>
00067 0024= 00 dc.b C$EOF end of file char ESC
00068 0025= 00 dc.b C$Rprt reprint line char ^D
00069 0026= 00 dc.b C$Rpet dup last line char ^A

AExample Code

OS-9 for 68K Processors Technical Manual 239

00070 0027= 00 dc.b C$Paus pause char ^W
00071 0028= 00 dc.b C$Intr Keyboard Interrupt char ^C
00072 0029= 00 dc.b C$Quit Keyboard Quit char ^E
00073 002a= 00 dc.b C$Bsp backspace echo char ^H
00074 002b= 00 dc.b C$Bell line overflow char ^G
00075 002c 00 dc.b Parity stop bits and parity none
00076 002d 0e dc.b BaudRate bits/char and baud rate none
00077 002e=0000 dc.w EchoNam offset of echo device none
00078 0030= 00 dc.b C$XOn Transmit Enable char ^Q
00079 0031= 00 dc.b C$XOff Transmit Disable char ^S
00080 0032= 00 dc.b C$Tab tab character ^I
00088 0000001c OptSiz equ *-Options
00089
00090 0034 5363 FileMgr dc.b "Scf",0 file manager
00091
00092 * Macro to generate main features of device descriptor
00093 SCFDesc macro
00094 ifne \#-7 must have exactly seven arguments
00095 fail SCFDesc: must specify all 7 arguments
00096 endc
00097
00098 Port equ \1 Port address
00099 Vector equ \2 autovector number
00100 IRQLevel equ \3 hardware interrupt level
00101 Priority equ \4 polling priority
00102 Parity equ \5 parity, stop bits
00103 BaudRate equ \6 baud rate
00104 DevDrv dc.b "\7",0 driver module name
00105 EchoNam equ bname echo device descriptor (self)
00106
00107 ifdef KANJI
00108 ifndef Kinit
00109 Kinit set 0default values
00110 endc
00111 ifndef Kreset
00112 Kreset set 0
00113 endc
00114 ifndef Kin
00115 Kin set 0
00116 endc
00117 ifndef Kout
00118 Kout set 0
00119 endc
00120 endc KANJI
00121
00122 endm
00123
00124 00000023 Mode set ISize_+Updat_ default device mode capabilities
00009
00010 TERM
00011 00000040 ends
00012

240 OS-9 for 68K Processors Technical Manual

SBF Device Descriptor

Microware OS-9/68020 Resident Macro Assembler V2.9 93/08/12 16:40 Page 1
 ../../../SRC/IO/SBF/DESC/mt0.a
MT0 Device Descriptor - LRCChip.d - Local Resource Controller definitions
00001 nam MT0 Device Descriptor
00002 use defsfile
00001
00002 use <oskdefs.d>
00001 opt -l
00003 use systype.d
00001 opt -l
00004
00003
00004 use "sbfdesc.a"
00001 ttl Device Descriptor for Tape controller
00002
00003 * Copyright 1986, 1988, 1989, 1993 by Microware Systems Corporation.
00004 * Reproduced Under License.
00005
00006 * This source code is the proprietary confidential property of
00007 * Microware Systems Corporation, and is provided to licensee
00008 * solely for documentation and educational purposes. Reproduction,
00009 * publication, or distribution in any form to any party other
00010 * than the licensee is prohibited.
00011
00035 00000f00 TypeLang set (Devic<<8)+0
00036 00008000 Attr_Rev set (ReEnt<<8)+0
00037
00038 psect SBFDesc,TypeLang,Attr_Rev,Edition,0,0
00039
00040 0000 ffff dc.l Port port address
00041 0004 bd dc.b Vector vector trap assignment
00042 0005 02 dc.b IRQLevel IRQ hardware interrupt level
00043 0006 05 dc.b Priority irq polling priority
00044 0007 67 dc.b Mode device mode capabilities
00045 0008 002c dc.w FileMgr file manager name offset
00046 000a 0038 dc.w DevDrv device driver name offset
00047 000c 0030 dc.w DevCon device constants offset
00048 000e 0000 dc.w 0,0,0,0 reserved
00049 0016 0014 dc.w OptLen
00050
00051 * Default Parameters
00052 00000018 OptTbl equ *
00053 0018= 00 dc.b DT_SBF device type
00054 0019 00 dc.b DrvNum drive number
00055 001a 00 dc.b 0 reserved
00056 001b 64 dc.b NumBlks maximum number of block buffers
00057 001c 0000 dc.l BlkSize block size
00058 0020 03e8 dc.w DrvPrior driver process priority
00059 0022 00 dc.b SBFFlags file manager flags
00060 0023 00 dc.b DrivFlag driver flags
00061 0024 0000 dc.w DMAMode DMA type/usage

AExample Code

OS-9 for 68K Processors Technical Manual 241

00062 0026 04 dc.b ScsiID controller ID on SCSI bus
00063 0027 00 dc.b ScsiLUN tape drive LUN on controller
00064 0028 0000 dc.l ScsiOpts scsi option flags
00065 00000014 OptLen equ *-OptTbl
00066
00067 002c 5342 FileMgr dc.b "SBF",0 Sequential Block File manager
00068
00069 * SBFDesc Macro definitions
00070 *
00071 SBFDesc macro
00072
00073 Port equ \1 Port address
00074 Vector equ \2 autovector number
00075 IRQLevel equ \3 hardware interrupt level
00076 Priority equ \4 polling priority
00077 DevDrv dc.b "\5",0 driver module name
00078
00079 ifgt \#-5 standard device setup requested?
00080 * reserved for future "std" options
00081
00082 endc
00083 endm
00084
00085 ****************
00086 * Descriptor Defaults
00087 00000067 Mode set Share_+ISize_+Exec_+Updat_
00088 00000000 Speed set 0 driver defined
00089 00000002 NumBlks set 2 (0=unbuffered mode, else number of
buffers)
00090 00002000 BlkSize set 0x2000
00091 000003e8 DrvPrior set 1000 "sbf process" priority
00092 00000000 SBFFlags set 0
00093 00000000 DrivFlag set 0
00094 00000000 DMAMode set 0 driver defined
00095 00000000 ScsiID set 0
00096 00000000 ScsiLUN set 0
00097
00098 * scsi options flag definitions
00099
00100 00000001 scsi_atn set 1<<0 assert ATN supported
00101 00000002 scsi_target set 1<<1 target mode supported
00102 00000004 scsi_synchr set 1<<2 synchronous transfers supported
00103 00000008 scsi_parity set 1<<3 enable SCSI parity
00104 00000000 ScsiOpts set 0 scsi options flags
00105
00106 * end of file
00107
00108
00005
00006 00000000 DrvNum set 0
00007 TapeMT0
00008 00000040 ends

242 OS-9 for 68K Processors Technical Manual

Pipe Device Descriptor

Microware OS-9/68020 Resident Macro Assembler V2.9 94/05/05 13:20 Page 1
 pipe.a
Pipe device descriptor module -
00001 nam Pipe device descriptor module
00016
00017 use defsfile
00001
00002 use <oskdefs.d>
00001 opt -l
00003
00018
00019 00000f00 TypeLang set (Devic<<8)+0
00020 00008000 Attr_Rev set (ReEnt<<8)+0
00021 psect Pipe,TypeLang,Attr_Rev,Edition,0,0
00022
00023 0000 0000 dc.l 0 no port address
00024 0004 00 dc.b 0 no trap assignment
00025 0005 00 dc.b 0 no IRQ hardware interrupt level
00026 0006 00 dc.b 0 0 no polling priority
00027 0007 a7 dc.b Dir_+ISize_+Exec_+Updat_ device mode capabilities
00028 0008 001e dc.w PipeMgr file manager name offset
00029 000a 0026 dc.w PipeDrv device driver name offset
00030 000c 0000 dc.w 0 DevCon
00031 000e 0000 dc.w 0,0,0,0 reserved
00032 0016 0006 dc.w OptLen option byte count

00033
00034 OptTbl
00035 0018= 00 dc.b DT_Pipe Device Type: Pipe
00036 0019 00 dc.b 0 reserved
00037 001a 0000 dc.l 0 pipe buffer size (zero=default tiny
buffer)
00038 00000006 OptLen equ *-OptTbl
00039
00040 001e 5069 PipeMgr dc.b "PipeMan",0 file manager
00041 0026 4e75 PipeDrv dc.b "Null",0 device driver
00042 0000002c ends
00043

Appendix B: Path Descriptors and

Device Descriptors

This appendix includes the device descriptor initialization table
definitions and path descriptor option tables for RBF, SCF, SBF, and
PIPEMAN type devices. Refer to Appendix A: Example Code for RBF,
SCF, SBF, and pipe example device descriptors.

This appendix contains the following topics:

• RBF Device Descriptor Modules

• RBF Definitions of the Path Descriptor

• SCF Device Descriptor Modules

• SCF Definitions of the Path Descriptor

• SBF Device Descriptor Modules

• SBF Definitions of the Path Descriptor

• Pipe Device Descriptor Modules

• Pipe Definitions of the Path Descriptor

244 OS-9 for 68K Processors Technical Manual

RBF Device Descriptor Modules

This section describes the definitions of the initialization table contained in
device descriptor modules for RBF-type devices. The table immediately
follows the standard device descriptor module header fields (see Chapter
3: OS-9 Input/Output System for full descriptions). Table B-2 shows a
graphic representation of the table. The size of the table is defined in the
M$Opt field.

Table B-1 RBF Device Descriptor Modules

Name Description

PD_DTP Device Type
This field is set to one for RBF devices. (0=SCF,
1=RBF, 2=PIPE, 3=SBF, 4=NET)

PD_DRV Drive Number
Use this field to associate a one-byte logical
integer with each drive a driver/ controller handles.
Number each controller’s drives 0 to n-1 (n is the
maximum number of drives the controller can
handle and is set into V_NDRV by the driver’s
INIT routine). This number defines which drive
table the driver and RBF access for this device.
RBF uses this number to set up the drive table
pointer (PD_DTB). Before initializing PD_DTB, RBF
verifies PD_DRV is valid for the driver by checking
for a value less than V_NDRV in the driver’s static
storage. If not valid, RBF aborts the path open and
returns an error. On simple hardware, this logical
drive number is often the same as the physical
drive number.

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 245

PD_STP Step Rate
PD_STP contains a code that sets the drive’s
head-stepping rate. To reduce access time, set the
step rate to the fastest value of which the drive is
capable. For floppy disks, the following codes are
commonly used:

Step Code 5" Disks 8" Disks

0 30ms 15ms

1 20ms 10ms

2 12ms 6ms

3 6ms 3ms

For hard disks, the value in this field is usually
driver dependent.

Table B-1 RBF Device Descriptor Modules (continued)

Name Description

246 OS-9 for 68K Processors Technical Manual

PD_TYP Disk Type
Defines the physical type of the disk, and indicates
the revision level of the descriptor.

If bit 7 = 0, floppy disk parameters are described in
bits 0-6:

bit 0: 0 = 5 1/4" floppy disk (pre-Version
2.4 of OS-9 for 68K)

 1 = 8" floppy disk (pre-Version 2.4
of OS-9 for 68K)

bits 1-3: 0 = (pre-OS-9 for 68K Version 2.4
descriptor) Bit 0 describes
type/rates.

1 = 8" physical size

2 = 5 1/4" physical size

3 = 3 1/2" physical size

4-7: Reserved

bit 4: Reserved

bit 5: 0 = Track 0, side 0, single density

1 = Track 0, side 0, double density

bit 6: Reserved

If bit 7 = 1, hard disk parameters are described in
bits 0-6:

bits 0-5: Reserved

bit 6: 0 = Fixed hard disk

1 = Removable hard disk

Table B-1 RBF Device Descriptor Modules (continued)

Name Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 247

PD_DNS Disk Density
The hardware density capabilities of a floppy disk
drive:

bit 0: 0 = Single bit density (FM)

 1 = Double bit density (MFM)

bit 1: 1 = Double track density (96
TPI/135 TPI)

bit 2: 1 = Quad track density (192 TPI)

bit 3: 1 = Octal track density (384 TPI)

This parameter is format specific.

PD_CYL Logical Number of Cylinders (Tracks)
The logical number of cylinders per disk. format
uses this value, PD_SID, and PD_SCT to
determine the size of the drive. PD_CYL is often
the same as the physical cylinder count
(PD_TotCyls), but can be smaller if using
partitioned drives (PD_LSNOffs) or track
offsetting (PD_TOffs). If the drive is an autosize
drive (PD_Cntl), format ignores this field.

This parameter is format specific.

PD_SID Heads or Sides
The number of heads for a hard disk (Heads) or
the number of surfaces for a floppy disk (Sides). If
the drive is an autosize drive (PD_Cntl), format
ignores this field.

This parameter is format specific.

Table B-1 RBF Device Descriptor Modules (continued)

Name Description

248 OS-9 for 68K Processors Technical Manual

PD_VFY Verify Flag
Indicates whether or not to verify write operations.

0 = verify disk write

1 = no verification

NOTE: Write verify operations are generally
performed on floppy disks. They are not generally
performed on hard disks because of the lower soft
error rate of hard disks.

PD_SCT Default Number of Sectors/Track
If the drive is an autosize drive (PD_Cntl),
format ignores this field.

This parameter is format specific.

PD_T0S Default Sectors/Track (Track 0)
The number of sectors per track for track 0. This
may be different than PD_SCT depending on
specific disk format. If the drive is an autosize
drive (PD_Cntl), format ignores this field.

This parameter is format specific.

PD_SAS Segment Allocation Size
The default minimum number of sectors to allocate
when a file is expanded. Typically, this is set to the
number of sectors on the media track (for
example, 8 for floppy disks, 32 for hard disks), but
you can adjust it to suit your system’s
requirements.

Table B-1 RBF Device Descriptor Modules (continued)

Name Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 249

PD_ILV Sector Interleave Factor
The sequential arrangement of sectors on a disk
(for example, 1, 2, 3... or 1, 3, 5...). For example, if
the interleave factor is 2, the sectors are arranged
by 2’s (1, 3, 5...) starting at the base sector (see
PD_SOffs).

NOTE: Optimized interleaving can drastically
improve I/O throughput.

NOTE: PD_ILV is typically only used when the
media is formatted, as format uses this field to
determine the default interleave. However, when
the media format occurs (I$SetStt, SS_WTrk
call), the desired interleave is passed in the
parameters of the call.

This parameter is format specific.

PD_TFM DMA (Direct Memory Access) Transfer Mode
The mode of transfer for DMA access, if the driver
can handle different DMA modes. Use of this field
is driver dependent.

PD_TOffs Track Base Offset
The offset to the first accessible physical track
number. Track 0 is not always used as the base
track because it is often a different density.

This parameter is format specific.

PD_SOffs Sector Base Offset
The offset to the first accessible physical sector
number on a track. Sector 0 is not always the base
sector.

This parameter is format specific.

Table B-1 RBF Device Descriptor Modules (continued)

Name Description

250 OS-9 for 68K Processors Technical Manual

PD_SSize Physical Sector Size in Bytes
The default sector size is 256. Depending on
whether the driver supports non-256 byte logical
sector sizes (a variable sector size driver),
PD_SSize is used as follows:

• Variable Sector Size Driver
If the driver supports variable logical sector
sizes, RBF inspects this value during a path
open (specifically, after the driver returns no
error on the SS_VarSect GetStat call) and
uses this value as the logical sector size of the
media. This value is then copied into
PD_SctSiz of the path descriptor options
section, so application programs can know the
logical sector size of the media, if required.
RBF supports logical sector sizes from 256
bytes to 32,768 bytes, in integral binary
multiples (256, 512, 1024, etc.).

During the SS_VarSect call, the driver can
validate or update this field (or the media itself)
according to the driver’s conventions. These
typically are:

• If the driver can dynamically determine the
media’s sector size, and PD_SSize is
passed in as 0, the driver updates this field
according to the current media setting.

Table B-1 RBF Device Descriptor Modules (continued)

Name Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 251

PD_SSize
(continued)

• If the driver can dynamically set the media’s
sector size, and PD_SSize is passed in as
a non-zero value, the driver sets the media
to the value in PD_SSize (this is typical
when reformatting the media).

• If the driver cannot dynamically determine
or set the media sector size, it usually
validates PD_SSize against the supported
sector sizes, and returns an error
(E$SectSiz) if PD_SSize contains an
invalid value.

• Non-Variable Sector Size Driver
If the driver does not support variable logical
sector sizes (logical sector size is fixed at 256
bytes), RBF ignores PD_SSize. In this case,
you can use PD_SSize to support deblocking
drivers that support various physical sector
sizes.

NOTE: A non-variable sector sized driver is
defined as a driver returning the E$UnkSvc
error for GetStat (SS_VarSect).

Table B-1 RBF Device Descriptor Modules (continued)

Name Description

252 OS-9 for 68K Processors Technical Manual

PD_Cntl Device Control Word
Indicates options reflecting the device’s
capabilities. You may set these options, as follows:

bit 0: 0 = Format enable

1 = Format inhibit

bit 1: 0 = Single-Sector I/O

 1 = Multi-Sector I/O capable

bit 2: 0 = Device has non-stable ID

 1 = Device has stable ID

bit 3: 0 = Device size determined from
descriptor values

 1 = Device size obtained by
SS_DSize GetStat call

bit 4: 0 = Device cannot format a single
track

 1 = Device can format a single track

bit 5: 0 = Media is writable by RBF.

1 = Media is write-protected by
RBF.

bits 6-15: Reserved

Table B-1 RBF Device Descriptor Modules (continued)

Name Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 253

PD_Trys Number of Tries
Indicates whether a driver should try to access the
disk again before returning an error. Depending on
the driver in use, this field may be implemented as
a flag or a retry counter:

Value Flag Counter

0 retry ON Default # of retries

1 retry OFF No retries

other retry ON Specified # of retries

Drivers working with controllers having error
correcting functions (for example, E.C.C. on hard
disks) should treat PD_Trys as a flag so they can
set the controller’s error correction/retry functions
accordingly.

When formatting media, especially hard disks, the
format-enabled descriptor should set this field to
one (retry OFF) to ensure marginal media sections
are marked out of the media free space.

PD_LUN Logical Unit Number of SCSI Drive
Used in the SCSI command block to identify the
logical unit on the SCSI controller. To eliminate
allocation of unused drive tables in the driver static
storage, this number may be different from
PD_DRV. PD_DRV indicates the logical number of
the drive to the driver (the drive table to use).
PD_LUN is the physical drive number on the
controller.

PD_WPC First Cylinder to Use Write Precompensation

Table B-1 RBF Device Descriptor Modules (continued)

Name Description

254 OS-9 for 68K Processors Technical Manual

PD_RWR First Cylinder to Use Reduced Write Current

PD_Park Cylinder Used to Park Head
The cylinder at which to park the hard disk’s head
when the drive is shut down. Parking is usually
done on hard disks when they are shipped or
moved and is implemented by the SS_SQD SetStat
to the driver.

PD_LSNOffs Logical Sector Offset
The offset to use when accessing a partitioned
drive. The driver adds this value to the logical
block address passed by RBF prior to determining
the physical block address on the media. Typically,
using PD_LSNOffs is mutually exclusive to using
PD_TOffs.

PD_TotCyls Total Cylinders on Device
The actual number of physical cylinders on a
drive. It is used by the driver to correctly initialize
the controller/drive. PD_TotCyls is typically used
for physical initializing a partitioned drive or one
with PD_TOffs set to a non-zero value. In this
case, PD_CYL denotes the logical number of
cylinders of the drive. If PD_TotCyls is 0, the
driver should determine the physical cylinder
count by using the sum of PD_CYL and
PD_TOffs.

PD_CtrlrID SCSI Controller ID
The ID number of the SCSI controller attached to
the drive. The driver uses this number to
communicate with the controller.

Table B-1 RBF Device Descriptor Modules (continued)

Name Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 255

PD_ScsiOpt SCSI Driver Options Flags
The SCSI device options and operation modes. It
is the driver’s responsibility to use or reject these
values, as applicable.

bit 0: 0 = ATN not asserted (no
disconnect allowed)

 1 = ATN asserted (disconnect
allowed)

bit 1: 0 = Device cannot operate as a
target

 1 = Device can operate as a target

bit 2: 0 = Asynchronous data transfer

 1 = Synchronous data transfer

bit 3: 0 = Parity off

 1 = Parity on

All other bits are reserved.

Table B-1 RBF Device Descriptor Modules (continued)

Name Description

256 OS-9 for 68K Processors Technical Manual

PD_Rate Data Transfer/Rotational Rate
The data transfer rate and rotational speed of the
floppy media. PD_Rate is normally used only
when the physical size field (PD_TYP, bits 1-3) is
non-zero.

bits 0-3: Rotational speed

0 = 300 RPM

1 = 360 RPM

2 = 600 RPM

All other values are reserved.

bits 4-7: Data transfer rate

0 = 125K bits/sec

1 = 250K bits/sec

2 = 300K bits/sec

3 = 500K bits/sec

4 = 1M bits/sec

5 = 2M bits/sec

6 = 5M bits/sec

All other values are reserved.

PD_MaxCnt Maximum Transfer Count
The maximum byte count the driver can transfer in
one call. If this field is 0, RBF defaults to the value
of $ffff (65,535).

Table B-1 RBF Device Descriptor Modules (continued)

Name Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 257

NoteNote
Offset in the following table refers to the location of a module field,
relative to the starting address of the static storage area. Offsets are
resolved in assembly code by using the names shown here and linking
the module with the relocatable library, sys.l or usr.l.

Table B-2 Initialization Table for RBF Device Descriptor Modules

Device
Descriptor
Offset

Path
Descriptor
Label Description

$48 PD_DTP Device Class

$49 PD_DRV Drive Number

$4A PD_STP Step Rate

$4B PD_TYP Device Type

$4C PD_DNS Density

$4D Reserved

$4E PD_CYL Number of Cylinders

$50 PD_SID Number of Heads/Sides

$51 PD_VFY Disk Write Verification

$52 PD_SCT Default Sectors/Track

258 OS-9 for 68K Processors Technical Manual

$54 PD_T0S Default Sectors/Track 0

$56 PD_SAS Segment Allocation Size

$58 PD_ILV Sector Interleave Factor

$59 PD_TFM DMA Transfer Mode

$5A PD_TOffs Track Base Offset

$5B PD_SOffs Sector Base Offset

$5C PD_SSize Sector Size (in bytes)

$5E PD_Cntl Control Word

$60 PD_Trys Number of Tries

$61 PD_LUN SCSI Unit Number of Drive

$62 PD_WPC Cylinder to Begin Write
Precompensation

$64 PD_RWR Cylinder to Begin Reduced Write
Current

$66 PD_Park Cylinder to Park Disk Head

$68 PD_LSNOffs Logical Sector Offset

$6C PD_TotCyls Number of Cylinders On Device

Table B-2 Initialization Table for RBF Device Descriptor Modules
 (continued)

Device
Descriptor
Offset

Path
Descriptor
Label Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 259

$6E PD_CtrlrID SCSI Controller ID

$6F PD_Rate Data transfer/Disk Rotation Rates

$70 PD_ScsiOpt SCSI Driver Options Flags

$74 PD_MaxCnt Maximum Transfer Count

Table B-2 Initialization Table for RBF Device Descriptor Modules
 (continued)

Device
Descriptor
Offset

Path
Descriptor
Label Description

260 OS-9 for 68K Processors Technical Manual

RBF Definitions of the Path Descriptor

The first 26 fields of the path options section (PD_OPT) of the RBF path
descriptor are copied directly from the device descriptor standard
initialization table. All of the values in this table may be examined using
I$GetStt by applications using the SS_Opt code. Some of the values
may be changed using I$SetStt; some are protected by the file manager
to prevent inappropriate changes. You can update the following fields using
GetStat and SetStat system calls:

• PD_STP

• PD_TYP

• PD_DNS

• PD_CYL

• PD_SID

• PD_VFY

• PD_SCT

• PD_TOS

• PD_SAS

All other fields are read-only. The RBF path descriptor option table is
shown on the following page.

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 261

Refer to the previous section on RBF device descriptors for descriptions of
the first 26 fields. The last five fields contain information provided by RBF:

Table B-3 RBF Path Descriptor Option

Name Description

PD_ATT File Attributes (D S PE PW PR E W R)
The file’s attributes are defined as follows:

bit 0: Set if owner read.

bit 1: Set if owner write.

bit 2: Set if owner execute.

bit 3: Set if public read.

bit 4: Set if public write.

bit 5: Set if public execute.

bit 6: Set if only one user at a time can open the file.

bit 7: Set if directory file.

PD_FD File Descriptor
The LSN (Logical Sector Number) of the file’s file
descriptor is written here.

PD_DFD Directory File Descriptor
The LSN of the file’s directory file descriptor is written
here.

PD_DCP File’s Directory Entry Pointer
The current position of the file’s entry in its directory.

PD_DVT Device Table Pointer (Copy)
The address of the device table entry associated with
the path.

262 OS-9 for 68K Processors Technical Manual

NoteNote
In the following table, offset refers to the location of a path descriptor
field relative to the starting address of the path descriptor. Path
descriptor offsets are resolved in assembly code by using the names
shown here and linking with the relocatable library: sys.l or usr.l.

PD_SctSiz Logical Sector Size
The logical sector size of the device associated with
the path. If this is 0, assume a size of 256 bytes.

PD_NAME File Name

Table B-3 RBF Path Descriptor Option (continued)

Name Description

Table B-4 Option Table for RBF Path Descriptor

Offset Name Description

$80 PD_DTP Device Class

$81 PD_DRV Drive Number

$82 PD_STP Step Rate

$83 PD_TYP Device Type

$84 PD_DNS Density

$85 Reserved

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 263

$86 PD_CYL Number of Cylinders

$88 PD_SID Number of Heads/Sides

$89 PD_VFY Disk Write Verification

$8A PD_SCT Default Sectors/Track

$8C PD_TOS Default Sectors/Track 0

$8E PD_SAS Segment Allocation Size

$90 PD_ILV Sector Interleave Factor

$91 PD_TFM DMA Transfer Mode

$92 PD_TOffs Track Base Offset

$93 PD_SOffs Sector Base Offset

$94 PD_SSize Sector Size (in bytes)

$96 PD_Cntl Control Word

$98 PD_Trys Number of Tries

$99 PD_LUN SCSI Unit Number of Drive

$9A PD_WPC Cylinder to Begin Write
Precompensation

$9C PD_RWR Cylinder to Begin Reduced Write
Current

Table B-4 Option Table for RBF Path Descriptor (continued)

Offset Name Description

264 OS-9 for 68K Processors Technical Manual

$9E PD_Park Cylinder to Park Disk Head

$A0 PD_LSNOffs Logical Sector Offset

$A4 PD_TotCyls Number of Cylinders On Device

$A6 PD_CtrlrID SCSI Controller ID

$A7 PD_Rate Data Transfer/Rotational Rates

$A8 PD_ScsiOpt SCSI Driver Option Flag

$AC PD_MaxCnt Maximum Transfer Count

$B0 Reserved

$B5 PD_ATT File Attributes

$B6 PD_FD File Descriptor

$BA PD_DFD Directory File Descriptor

$BE PD_DCP File’s Directory Entry Pointer

$C2 PD_DVT Device Table Pointer (copy)

$C6 Reserved

$C8 PD_SctSiz Logical Sector Size

$CC Reserved

$E0 PD_NAME File Name

Table B-4 Option Table for RBF Path Descriptor (continued)

Offset Name Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 265

SCF Device Descriptor Modules

Device descriptor modules for SCF-type devices contain the device
address and an initialization table which defines initial values for the I/O
editing features, as listed below. The initialization table immediately follows
the standard device descriptor module header fields (refer to Chapter 3:
OS-9 Input/Output System for full descriptions). The size of the table is
defined in the M$Opt field. The initialization table is graphically shown in
Table B-6 and the following table.

NoteNote
You can change or disable most of these special editing functions by
changing the corresponding control character in the path descriptor.
You can do this with the I$SetStt service request or the tmode utility.
A permanent solution may be to change the corresponding control
character value in the device descriptor module. You can easily change
the device descriptors with the xmode utility.

Table B-5 SCF Device Descriptor Modules

Name Description

PD_DTP Device Type
Set to 0 for SCF devices. (0=SCF, 1=RBF, 2=PIPE,
3=SBF, 4=NET)

PD_UPC Letter Case
If PD_UPC is not equal to 0, input or output characters in
the range a..z are made A..Z.

266 OS-9 for 68K Processors Technical Manual

PD_BSO Destructive Backspace
If PD_BSO is 0 when a backspace character is input,
SCF echoes PD_BSE (backspace echo character). If
PD_BSO is non-zero, SCF echoes PD_BSE, space,
PD_BSE.

PD_DLO Delete
If PD_DLO is 0, SCF deletes by backspace-erasing over
the line. If PD_DLO is non-zero, SCF deletes by echoing
a carriage return/line-feed.

PD_EKO Echo
If PD_EKO is non-zero, all input bytes are echoed,
except undefined control characters, which are printed
as periods. If PD_EKO is 0, input characters are not
echoed.

PD_ALF Automatic Line Feed
If PD_ALF is non-zero, line-feeds automatically follow
carriage returns.

PD_NUL End of Line Null Count
Indicates the number of NULL padding bytes to send
after a carriage return/line-feed character.

PD_PAU End of Page Pause
If PD_PAU is non-zero, an auto page pause occurs
upon reaching a full screen of output. See PD_PAG for
setting page length.

PD_PAG Page Length
Contains the number of lines per screen (or page).

Table B-5 SCF Device Descriptor Modules (continued)

Name Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 267

PD_BSP Backspace “Input” Character
Indicates the input character recognized as backspace.
See PD_BSE and PD_BSO.

PD_DEL Delete Line Character
Indicates the input character recognized as the delete
line function. See PD_DLO.

PD_EOR End of Record Character
Defines the last character on each line entered
(I$Read, I$ReadLn). An output line is terminated
(I$WritLn) when this character is sent. Normally
PD_EOR should be set to $0D.

WARNING: If PD_EOR is set to 0, SCF’s I$ReadLn
never terminates unless an EOF or error occurs.

PD_EOF End of File Character
This field defines the end-of-file character. SCF returns
an end-of-file error on I$Read or I$ReadLn if this is
the first (and only) character input.

PD_RPR Reprint Line Character
If this character is input, SCF (I$ReadLn) reprints the
current input line. A carriage return is also inserted in
the input buffer for PD_DUP (see below) to make
correcting typing errors more convenient.

PD_DUP Duplicate Last Line Character
If this character is input, SCF (I$ReadLn) duplicates
whatever is in the input buffer through the first PD_EOR
character. Normally, this is the previous line typed.

Table B-5 SCF Device Descriptor Modules (continued)

Name Description

268 OS-9 for 68K Processors Technical Manual

PD_PSC Pause Character
If this character is typed during output, output is
suspended before the next end-of-line. This also
deletes any type ahead input for I$ReadLn.

PD_INT Keyboard Interrupt Character
If this character is input, SCF sends a keyboard
interrupt signal to the last user of this path. It terminates
the current I/O request (if any) with an error identical to
the keyboard interrupt signal code. PD_INT is normally
set to a control-C character.

PD_QUT Keyboard Abort Character
If this character is input, SCF sends a keyboard abort
signal to the last user of this path. It terminates the
current I/O request (if any) with an error code identical
to the keyboard abort signal code. PD_QUT is normally
set to a control-E character.

PD_BSE Backspace “Output” Character (Echo Character)
This field indicates the backspace character to echo
when PD_BSP is input. See PD_BSP and PD_BSO.

PD_OVF Line Overflow Character
If I$ReadLn has satisfied its input byte count, SCF
ignores any further input characters until an
end-of-record character (PD_EOR) is received. It echoes
the PD_OVF character for each byte ignored. PD_OVF is
usually set to the terminal’s bell character.

Table B-5 SCF Device Descriptor Modules (continued)

Name Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 269

PD_PAR Parity Code, Number of Stop Bits, and
Bits/Character
Bits zero and one indicate the parity as follows:

0 = no parity

1 = odd parity

3 = even parity

Bits two and three indicate the number of bits per
character as follows:

0 = 8 bits/character

1 = 7 bits/character

2 = 6 bits/character

3 = 5 bits/character

Bits four and five indicate the number of stop bits as
follows:

0 = 1 stop bit

1 = 1 1/2 stop bits

2 = 2 stop bits

Bits six and seven are reserved.

Table B-5 SCF Device Descriptor Modules (continued)

Name Description

270 OS-9 for 68K Processors Technical Manual

PD_BAU Software Adjustable Baud Rate
This one-byte field indicates the baud rate as follows:

0 = 50 baud 9 = 2000 baud

1 = 75 baud A = 2400 baud

2 = 110 baud B = 3600 baud

3 = 134.5 baud C = 4800 baud

4 = 150 baud D = 7200 baud

5 = 300 baud E = 9600 baud

6 = 600 baud F = 19200 baud

7 = 1200 baud 10 = 38400 baud

8 = 1800 baud FF = External

PD_D2P Offset to Output Device Descriptor Name String
SCF sends output to the device named in this string.
Input comes from the device named by the M$PDev
field. This permits two separate devices (a keyboard
and video display) to be one logical device. Usually
PD_D2P refers to the name of the same device
descriptor in which it appears.

PD_XON X-ON Character
See PD_XOFF below.

Table B-5 SCF Device Descriptor Modules (continued)

Name Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 271

PD_XOFF X-OFF Character
The X-ON and X-OFF characters are used to support
software handshaking. Output from a SCF device is
halted immediately when PD_XOFF is received and
does not resume until PD_XON is received. This allows
the distant end to control its incoming data stream.
Input to a SCF device is controlled by the driver. If the
input FIFO is nearly full, the driver sends PD_XOFF to
the distant end to halt input. When the FIFO has been
emptied sufficiently, the driver resumes input by
sending the PD_XON character. This allows the driver to
control its incoming data stream.

NOTE: When software handshaking is enabled, the
driver consumes the PD_XON and PD_XOFF characters
itself.

PD_Tab Tab Character
In I$WritLn calls, SCF expands this character into
spaces to make tab stops at the column intervals
specified by PD_Tabs.

NOTE: SCF does not know the effect of tab characters
on particular terminals. Tab characters may expand
incorrectly if they are sent directly to the terminal.

PD_Tabs Tab Field Size
See PD_Tab.

Table B-5 SCF Device Descriptor Modules (continued)

Name Description

272 OS-9 for 68K Processors Technical Manual

NoteNote
In the following table, offset refers to the location of a module field,
relative to the starting address of the module. Module offsets are
resolved in assembly code by using the names shown here and linking
the module with the relocatable library: sys.l or usr.l.

Table B-6 SCF Device Descriptor Initialization Table

Device
Descriptor
Offset

Path
Descriptor
Label Description

$48 PD_DTP Device Type

$49 PD_UPC Upper Case Lock

$4A PD_BSO Backspace Option

$4B PD_DLO Delete Line Character

$4C PD_EKO Echo

$4D PD_ALF Automatic Line Feed

$4E PD_NUL End Of Line Null Count

$4F PD_PAU End Of Page Pause

$50 PD_PAG Page Length

$51 PD_BSP Backspace Input Character

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 273

$52 PD_DEL Delete Line Character

$53 PD_EOR End Of Record Character

$54 PD_EOF End Of File Character

$55 PD_RPR Reprint Line Character

$56 PD_DUP Duplicate Line Character

$57 PD_PSC Pause Character

$58 PD_INT Keyboard Interrupt Character

$59 PD_QUT Keyboard Abort Character

$5A PD_BSE Backspace Output

$5B PD_OVF Line Overflow Character (bell)

$5C PD_PAR Parity Code, number of Stop Bits, and
number of Bits/Character

$5D PD_BAU Adjustable Baud Rate

$5E PD_D2P Offset To Output Device Name

$60 PD_XON X-ON Character

$61 PD_XOFF X-OFF Character

Table B-6 SCF Device Descriptor Initialization Table (continued)

Device
Descriptor
Offset

Path
Descriptor
Label Description

274 OS-9 for 68K Processors Technical Manual

$62 PD_TAB Tab Character

$63 PD_TABS Tab Column Width

Table B-6 SCF Device Descriptor Initialization Table (continued)

Device
Descriptor
Offset

Path
Descriptor
Label Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 275

SCF Definitions of the Path Descriptor

The first 27 fields of the path options section (PD_OPT) of the SCF path
descriptor are copied directly from the SCF device descriptor initialization
table. The table is shown on the following page.

You can examine or change the fields with the I$GetStt and I$SetStt
service requests or the tmode and xmode utilities.

You may disable the SCF editing functions by setting the corresponding
control character value to 0. For example, if you set PD_INT to 0, there is
no keyboard interrupt character.

NoteNote
Full definitions for the fields copied from the device descriptor are
available in the previous section. The additional path descriptor fields
are defined below.

Table B-7 SCF Path Descriptors

Name Description

PD_TBL Device Table Entry
A user-visible copy of the device table entry for the
device.

PD_COL Current Column
The current column position of the cursor.

PD_ERR Most Recent Error Status
The most recent I/O error status.

276 OS-9 for 68K Processors Technical Manual

NoteNote
In the following table, offset refers to the location of a module field,
relative to the starting address of the module. Module offsets are
resolved in assembly code by using the names shown here and linking
the module with the relocatable library: sys.l or usr.l.

Table B-8 SCF Path Descriptor Module Option Table for I/O Editing

Offset Name Description

$80 PD_DTP Device Type

$81 PD_UPC Upper Case Lock

$82 PD_BSO Backspace Option

$83 PD_DLO Delete Line Character

$84 PD_EKO Echo

$85 PD_ALF Automatic Line Feed

$86 PD_NUL End Of Line Null Count

$87 PD_PAU End Of Page Pause

$88 PD_PAG Page Length

$89 PD_BSP Backspace Input Character

$8A PD_DEL Delete Line Character

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 277

$8B PD_EOR End Of Record Character

$8C PD_EOF End Of File Character

$8D PD_RPR Reprint Line Character

$8E PD_DUP Duplicate Line Character

$8F PD_PSC Pause Character

$90 PD_INT Keyboard Interrupt Character

$91 PD_QUT Keyboard Abort Character

$92 PD_BSE Backspace Output

$93 PD_OVF Line Overflow Character (bell)

$94 PD_PAR Parity Code, number of Stop Bits, and
number of Bits/Character

$95 PD_BAU Adjustable Baud Rate

$96 PD_D2P Offset To Output Device Name

$98 PD_XON X-ON Character

$99 PD_XOFF X-OFF Character

$9A PD_TAB Tab Character

$9B PD_TABS Tab Column Width

Table B-8 SCF Path Descriptor Module Option Table for I/O Editing
 (continued)

Offset Name Description

278 OS-9 for 68K Processors Technical Manual

$9C PD_TBL Device Table Entry

$A0 PD_Col Current Column

$A2 PD_Err Most Recent Error Status

$A3 Reserved

Table B-8 SCF Path Descriptor Module Option Table for I/O Editing
 (continued)

Offset Name Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 279

SBF Device Descriptor Modules

This section describes the definitions of the initialization table contained in
device descriptor modules for SBF devices. The initialization table
immediately follows the standard device descriptor module header fields
(see Chapter 3: OS-9 Input/Output System for full descriptions). A
graphic representation of the table is shown in Table B-9. The size of the
table is defined in the M$Opt field.

Table B-9 Initialization Table for SBF Device Descriptor Module

Device
Descriptor
Offset

Path Descriptor
Label Description

$48 PD_DTP Device Type

$49 PD_TDrv Tape Drive Number

$4A PD_SBF Reserved

$4B PD_NumBlk Maximum Number of Blocks to
Allocate

$4C PD_BlkSiz Logical Block Size

$50 PD_Prior Driver Process Priority

$52 PD_SBFFlags SBF Path Flags

$53 PD_DrivFlag Driver Flags

$54 PD_DMAMode Direct Memory Access Mode

280 OS-9 for 68K Processors Technical Manual

NoteNote
In this table the offset values are the device descriptor offsets, while the
labels are the path descriptor offsets. To correctly access these offsets
in a device descriptor using the path descriptor labels, make the
following adjustment: (M$DTyp - PD_OPT).

For example, to access the tape drive number in a device descriptor, use
the following value: PD_TDrv + (M$DTyp - PD_OPT). To access the
tape drive number in the path descriptor, use PD_TDrv. Module offsets are
resolved in assembly code by using the names shown here and linking with
the relocatable library: sys.l or usr.l.

$56 PD_ScsiID SCSI Controller ID

$57 PD_ScsiLUN LUN on SCSI Controller

$58 PD_ScsiOpts SCSI Options Flags

Table B-9 Initialization Table for SBF Device Descriptor Module
 (continued)

Device
Descriptor
Offset

Path Descriptor
Label Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 281

Table B-10 SBF Device Descriptor Modules

Name Description

PD_DTP Device Class
This field is set to three for SBF devices. (0=SCF,
1=RBF, 2=PIPE, 3=SBF, 4=NET)

PD_TDrv Tape Drive Number
This is used to associate a one-byte integer with
each drive a controller handles.

• If using dedicated (for example, non-SCSI bus)
controllers, this field usually defines both the
logical and physical drive number of the tape
drive.

• If using tape drives connected to SCSI
controllers, this number defines the logical
number of the tape drive to the device driver.

The physical controller ID and LUN are specified
by the PD_ScsiID and PD_ScsiLUN fields. Each
controller’s drives should be numbered 0 to n-1 (n
is the maximum number of drives the controller can
handle). This number also defines how many drive
tables are required by the driver and SBF. SBF
verifies this number against SBF_NDRV prior to
calling the driver.

PD_NumBlk Number of Buffers/Blocks Used for Buffering
Specifies the maximum number of buffers to be
allocated by SBF for use by the auxiliary process in
buffered I/O. If this field is set to 0, unbuffered I/O is
specified.

282 OS-9 for 68K Processors Technical Manual

PD_BlkSiz Logical Block Size Used for I/O
Specifies the size of the buffer for SBF to allocate.
This buffer size is used when allocating multiple
buffers used in buffered I/O. Unless the driver
manages partial physical blocks, this size should
be an integer multiple of the physical tape block
size.

PD_Prior Driver Process Priority
The priority at which SBF’s auxiliary process runs.
This value is used during initialization. Changing
this value after initialization has no effect.

PD_SBFFlags SBF Path Flags
Specifies the actions SBF takes when the path is
closed. You can update this field using
GetStat/SetStat (SS_Opt). SBF supports the
following flag definitions:

bit 0:(f_rest_b) 0 = No rewind on close.

1 = Rewind on close.

bit 1:(f_offl_b) 0 = Do not put drive off-line on
close.

 1 = Put drive off-line on close.

bit 2:(f_eras_b) 0 = Do not erase to
end-of-tape on close.

 1 = Erase to end-of-tape on
close.

Table B-10 SBF Device Descriptor Modules (continued)

Name Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 283

PD_DrivFlag Driver Flags
This field is available for use by the device driver.

NOTE: References to these flags are often made
using the PD_Flags offset (defined in sys.l and
usr.l). This reference is equivalent to
PD_SBFFlags. References to PD_DrivFlag
should use a value of PD_Flags + 1.

PD_DMAMode Direct Memory Access Mode
This field is hardware specific. If available, you can
use this word to specify the DMA Mode of the
driver.

PD_ScsiID SCSI Controller ID
This is the ID number of the SCSI controller
attached to the device. The driver uses this number
when communicating with the controller.

Table B-10 SBF Device Descriptor Modules (continued)

Name Description

284 OS-9 for 68K Processors Technical Manual

PD_ScsiLUN Logical Unit Number of SCSI Device
This number is the value to use in the SCSI
command block to identify the logical unit on the
SCSI controller. This number may be different from
PD_TDrv to eliminate allocation of unused drive
table storage. PD_TDrv indicates the logical
number of the drive to the driver and SBF (drive
table to use). PD_ScsiLUN is the physical drive
number on the controller.

PD_ScsiOpts SCSI Driver Options Flags
This field allows SCSI device options and operation
modes to be specified. It is the driver’s
responsibility to use or reject these if applicable:

bit 0: 0 = ATN not asserted (no disconnects
allowed).

 1 = ATN asserted (disconnects allowed).

bit 1: 0 = Device cannot operate as a target.

 1 = Device can operate as a target.

bit 2: 0 = asynchronous data transfers.

 1 = synchronous data transfers.

bit 3: 0 = parity off.

 1 = parity on.

All other bits are reserved.

Table B-10 SBF Device Descriptor Modules (continued)

Name Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 285

SBF Definitions of the Path Descriptor

The reserved section (PD_OPT) of the path descriptor used by SBF is
copied directly from the initialization table of the device descriptor. The
following table is provided to show the offsets used in the path descriptor.
For a full explanation of the path descriptor fields, refer to the previous
pages.

NoteNote
In the following table, offset refers to the location of a path descriptor
field relative to the starting address of the path descriptor. Path
descriptor offsets are resolved in assembly code by using the names
shown here and linking the module with the relocatable library: sys.l
or usr.l.

Table B-11 Path Descriptor PD_OPT for SBF

Offset Name Description

$80 PD_DTP Device Type

$81 PD_TDrv Tape Drive Number

$82 PD_SBF Reserved

$83 PD_NumBlk Maximum Number of Blocks to
Allocate

$84 PD_BlkSiz Logical Block Size

$88 PD_Prior Driver Process Priority

286 OS-9 for 68K Processors Technical Manual

† References to these flags are often made using the PD_Flags offset (defined in
sys.l and usr.l). This reference is equivalent to PD_SBFFlags. References
to PD_DrivFlag should use a value of PD_Flags + 1.

$8A PD_SBFFlags† SBF Path Flags

$8B PD_DrivFlag† Driver Flags

$8C PD_DMAMode Direct Memory Access Mode

$8E PD_ScsiID SCSI Controller ID

$8F PD_ScsiLUN LUN on SCSI controller

$90 PD_ScsiOpts SCSI Options Flags

Table B-11 Path Descriptor PD_OPT for SBF (continued)

Offset Name Description

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 287

Pipe Device Descriptor Modules

This section describes the definitions of the initialization table contained in
device descriptor modules for pipe devices. The initialization table
immediately follows the standard device descriptor module header fields
(see Chapter 3: OS-9 Input/Output System for full descriptions). A
graphic representation of the table is shown in Table B-12. The size of the
table is defined in the M$Opt field.

NoteNote
In this table the offset values are the device descriptor offsets, while the
labels are the path descriptor offsets. To correctly access these offsets
in a device descriptor using the path descriptor labels, the following
adjustment must be made: (M$DTyp - PD_OPT).

For example, to access the default buffer size in a device descriptor,
use the following value: PD_BufSz + (M$DTyp - PD_OPT). Module
offsets are resolved in assembly code by using the names shown here
and linking with the relocatable library: sys.l or usr.l.

Table B-12 Initialization Table for Pipe Device Descriptor Module

Device
Descriptor
Offset

Path Descriptor
Label Description

$48 PD_DTP Device Type

$49 Reserved

$4A PD_BufSz Default pipe buffer size

288 OS-9 for 68K Processors Technical Manual

Table B-13 Pipe Device Descriptor Modules

Name Description

PD_DTP Device Class
(0=SCF 1=RBF 2=PIPE 3=SBF 4=NET) This field is
set to 2 for pipe devices.

PD_BufSz Default Pipe Buffer Size
Contains the default size of the FIFO buffer used by
the pipe. If no default size is specified and no size is
specified when creating the pipe, PD_IOBuf (see
Path Descriptor definitions) is used.

BPath Descriptors and Device Descriptors

OS-9 for 68K Processors Technical Manual 289

Pipe Definitions of the Path Descriptor

The table shown below describes the option section (PD_OPT) of the path
descriptor used by Pipeman.

NoteNote
In the following table, offset refers to the location of a module field,
relative to the starting address of the module. Module offsets are
resolved in assembly code by using the names shown here and linking
the module with the relocatable library: sys.l or usr.l.

Table B-14 Path Descriptor PD_OPT for Pipeman

Offset Name Description

$80 DV_DTP Device Type

$81 Reserved

$82 PD_BufSz Default pipe buffer size

$86 PD_IOBuf Reserved I/O buffer

$EO PD_Name Pipe file name

290 OS-9 for 68K Processors Technical Manual

Table B-15 Pipe Definitions of the Path Descriptor

Name Description

DV_DTP Device Type
This field is set to 2 for Pipe devices.
(0 = SCF, 1 = RBF, 2 = PIPE, 3 = SBF, 4 = NET)

PD_BufSz Default Pipe Buffer Size
Contains the default size of the FIFO buffer used by
the pipe. If no default size is specified and no size is
specified when creating the pipe, PD_IOBuf is
used.

PD_IOBuf Reserved I/O Buffer
This contains the small I/O buffer to be used by the
pipe if no other buffer is specified.

PD_Name Pipe File Name (if any)

Appendix C: Error Codes

This appendix lists OS-9 error codes in numerical order. It contains the
following topics:

• Error Codes

• Miscellaneous Errors

• Ultra C Related Errors

• Math Trap Errors

• Processor Exception Errors

• Miscellaneous Errors

• Semaphore Errors

• Operating System Errors

• I/O Errors

• Compiler Errors

• Rave Errors

• Internet Errors

• ISDN Errors

292 OS-9 for 68K Processors Technical Manual

Error Codes

OS-9 error codes are categorized as follows:

Table C-1 OS-9 Error Codes

Range Description

000:001 - 000:031 Miscellaneous Errors
For more information, refer to
Miscellaneous Errors.

000:032 - 000:047 Ultra C related Errors
For more information, refer to Ultra C
Related Errors.

000:064-000:067 Math Trap Related Errors
For more information, refer to Math Trap
Errors.

000:102 - 000:163 Processor Exception Errors
Error codes in this range are reserved to
indicate a processor related exception
occurred on behalf of the program. Only
those listed within this range can occur on
behalf of the user program. All other
numbers between 100 - 163 are reserved.
Unless the program provides for special
handling of the exception condition
(F$STrap), the error is fatal and the
program terminates. The listed errors that
fall between 100-163 represent the
hardware exception vector plus 100. For
more information, refer to Processor
Exception Errors.

CError Codes

OS-9 for 68K Processors Technical Manual 293

000:164 - 000:176 Miscellaneous Errors
For more information, refer to
Miscellaneous Errors

000:177 Semaphore Error
For more information, refer to Semaphore
Errors.

000:200 - 000:239 Operating System Errors
These errors are normally generated by the
kernel or file managers. For more
information, refer to Operating System
Errors.

000:240 - 000:255 I/O Errors
These error codes are generated by device
drivers or file managers. For more
information, refer to I/O Errors.

001:000 - 001:001 Compiler Errors
For more information, refer to Compiler
Errors.

006:100 - 006:206 RAVE Errors
For more information, refer to Rave Errors.

007:001 - 007:029 Internet Errors
For more information, refer to Internet
Errors.

008:001 - 008:017 ISDN Errors
For more information, refer to ISDN Errors.

Table C-1 OS-9 Error Codes (continued)

Range Description

294 OS-9 for 68K Processors Technical Manual

Miscellaneous Errors

Table C-2 OS-9 Miscellaneous Errors

Number Name Description

000:001 Process has aborted

000:002 S$Abort
signal

Keyboard Quit
The keyboard abort signal
(S$Abort) was sent. This is
usually generated by typing
<control>e.

000:003 S$Intrpt
signal

Keyboard Interrupt
The keyboard interrupt signal
(S$Intrpt) was sent. This is
usually generated by typing
<control>c.

000:004 S$HangUp
signal

Modem Hang-up
The modem hang-up signal
(S$HangUp) was sent. This is
usually generated when the
device driver detects the loss of
the data carrier.

CError Codes

OS-9 for 68K Processors Technical Manual 295

Ultra C Related Errors

Table C-3 OS-9 Ultra C Related Errors

Number Name Description

000:032 E_SIGABRT Abort Signal
An abort signal was received.

000:033 E_SIGFPE Erroneous Math Operation
An erroneous math operation
was received.

000:034 E_SIGILL Illegal Function Image Signal
An illegal function image signal
was received.

000:035 E_SIGSEGV Segment Violation
A segment violation (bus error)
signal was received.

000:036 E_SIGTERM Termination Request Signal
A termination request signal was
received.

000:037 E_SIGALRM Elapsed Alarm Time
An elapsed alarm time signal was
received.

000:038 E_SIGPIPE No Readers for Pipe
A write to a pipe with no readers
signal was received.

296 OS-9 for 68K Processors Technical Manual

000:039 E_SIGUSR1 User Signal Number 1
A user signal number 1 was
received.

000:040 E_SIGUSR2 User Signal Number 2
A user signal number 2 was
received.

000:041 E_SIGADDR Address Error Signal
An address error signal was
received.

000:042 E_SIGCHK CHK Signal
A chk instruction signal was
received.

000:043 E_SIGTRAPV TRAPV Signal
A trapv instruction signal was
received.

000:044 E_SIGPRIV Privilege Violation Signal
A privilege violation signal was
received.

000:045 E_SIGTRACE Trace Exception Signal
A trace exception signal was
received.

Table C-3 OS-9 Ultra C Related Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 297

000:046 E_SIG1010 Line A Exception Signal
A line-A exception signal was
received.

000:047 E_SIG1111 Line F Exception Signal
A line-F exception signal was
received.

Table C-3 OS-9 Ultra C Related Errors (continued)

Number Name Description

298 OS-9 for 68K Processors Technical Manual

Math Trap Errors

Table C-4 OS-9 Math Trap Errors

Number Name Description

000:064 E$IllFnc Illegal Function Code
A math trap handler error.

000:065 E$FmtErr Format Error
A math trap handler error. An
ASCII to numeric format
conversion error.

000:066 E$NotNum Number Not Found
A math trap handler error.

000:067 E$IllArg Illegal Argument
A math trap handler error.

CError Codes

OS-9 for 68K Processors Technical Manual 299

Processor Exception Errors

Table C-5 OS-9 Processor Exception Errors

Number Name Description

000:102 E$BusErr Bus Error
A bus error exception occurred.

000:103 E$AdrErr Address Error
An address error exception
occurred.

000:104 E$IllIns Illegal Instruction
An illegal instruction exception
occurred.

000:105 E$ZerDiv Zero Divide
An integer zero divide exception
occurred.

000:106 E$Chk Check
A CHK or CHK2 instruction
exception occurred.

000:107 E$TrapV Trap
A TRAPV, TRAPcc, or FTRAPcc
instruction exception occurred.

000:108 E$Violat Privilege Violation
A privilege violation exception
occurred.

300 OS-9 for 68K Processors Technical Manual

000:109 E$Trace Uninitialized Trace Exception
An uninitialized trace exception
occurred.

000:110 E$1010 1010 Trap
An A Line emulator exception
occurred.

000:111 E$1111 1111 Trap
An F Line emulator exception
occurred.

000:112 E$Resrvd Reserved

000:113 E$CProto Co-processor Protocol
Violation

000:114 E$StkFmt Format Error
A system stack frame format
error occurred.

000:115 E$UnIRQ Uninitialized Interrupt
Occurred

000:116-
000:123

Reserved

000:124 Spurious Interrupt Occurred

000:133-
000:147

E$Trap Uninitialized User TRAP 1-15
Executed

Table C-5 OS-9 Processor Exception Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 301

000:148 E$FPUnordC FPCP Error
Branch or set on floating point
unordered condition error.

000:149 E$FPInxact FPCP Error
Floating point inexact result.

000:150 E$FPDivZer FPCP Error
Floating point divide by zero
error.

000:151 E$FPUndrFl FPCP Error
Floating point underflow error.

000:152 E$FPOprErr FPCP Error
Floating point operand error.

000:153 E$FPOverFl FPCP Error
Floating point overflow error.

000:154 E$FPNotNum FPCP Error
Floating point NAN (not a
number).

000:155 E$UnData FPCP Error
Floating point unimplemented
Data Type

000:156 E$MMUConf PMMU Configuration Error

000:157 E$MMUIlleg PMMU Illegal Operation

Table C-5 OS-9 Processor Exception Errors (continued)

Number Name Description

302 OS-9 for 68K Processors Technical Manual

000:158 E$MMUAcces PMMU Access Level Violation

000:159-
000:163

Invalid Exception

Table C-5 OS-9 Processor Exception Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 303

Miscellaneous Errors

Table C-6 OS-9 Miscellaneous Errors

Number Name Description

000:164 E$Permit No Permission
A super user must own the
process or module in order to
perform the requested function.

000:165 E$Differ Different Arguments
The arguments to F$ChkMem do
not match.

000:166 E$StkOvf Stack Overflow
The process’ system or user
stack was about to overflow. This
error could be caused by:

F$ChkMem can cause this error if
the pattern string is too complex.

The data area associated with a
user exception handler
(F$STrap) is not part of your
data area. This can be caused by
specifying an invalid address or
when your stack is nested too
deep (unmasking signals within
the signal handler can cause
this).

The signal handler is nested too
deep. Unmasking signals within
the signal handler can cause this.

304 OS-9 for 68K Processors Technical Manual

000:167 E$EvntID Illegal Event ID
You specified an invalid or illegal
event ID number.

000:168 E$EvNF Event Name Not Found
You tried to link to or delete an
event, but the name of the event
is not in the event table.

000:169 E$EvBusy Event Busy
You tried to delete an event, but
its link count is non-zero. This
can also occur if you try to create
a named event that already
exists.

000:170 E$EvParm Impossible Event Parameter
You passed parameters to
F$Event that are not possible.

000:171 E$Damage System Damage
A system data structure has been
corrupted.

000:172 E$BadRev Incompatible Revision
The software revision is not
compatible with the operating
system revision.

Table C-6 OS-9 Miscellaneous Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 305

000:173 E$PthLost Path Lost
The path became lost. This
usually occurs when:

• A network node has gone
down.

• A serial connection has lost
data carrier.

• A pipe path has been broken
due to an SS_Break
SetStat.

000:174 E$BadPart Bad Partition
Bad partition data or no active
partition.

000:175 E$Hardware Hardware Damage Has Been
Detected
E$Hardware usually occurs
when the driver fails to detect the
correct responses from the
hardware. This can occur due to
hardware failure or an incorrect
hardware configuration.

000:176 E$SectSize Invalid Sector Size
The sector size of an RBF device
must be a binary multiple of 256
(256, 512, 1024, and so forth).
The maximum sector size is
32768.

Table C-6 OS-9 Miscellaneous Errors (continued)

Number Name Description

306 OS-9 for 68K Processors Technical Manual

Semaphore Errors

Table C-7 OS-9 Semaphore Errors

Number Name Description

000:177 E$BSig Unexpected or Bad Signal

CError Codes

OS-9 for 68K Processors Technical Manual 307

Operating System Errors

Table C-8 OS-9 Operating System Errors

Number Name Description

000:200 E$PthFul Path Table Full
A user program has tried to open
more than 32 I/O paths
simultaneously. When the system
path table gets full, the kernel
automatically expands it.
However, this error could be
returned if there is not enough
contiguous memory to expand
the table.

000:201 E$BPNum Illegal Path Number
The path number was too large
or for a non-existent path. This
could occur whenever passing a
path number to an I/O call.

000:202 E$Poll Interrupt Polling Table Full
You tried to install an IRQ Service
Routine into the system polling
table, but the table was full. To
install another interrupt producing
device, you must first remove
one already in the table. The
system’s INIT module specifies
the maximum number of IRQ
devices you may install.

308 OS-9 for 68K Processors Technical Manual

000:203 E$BMode Illegal Mode
You tried to perform an I/O
function that the device or file
cannot perform. This could occur,
for instance, when trying to read
from an output file (for example,
a printer).

000:204 E$DevOvf Device Table Full
OS-9 cannot add the specified
device to the system because the
device table is full. To install
another device, you must first
remove one already in the table.
The system’s INIT module
specifies the maximum number
of devices supported, but this
may be changed to add more.

000:205 E$BMID Illegal Module Header
OS-9 cannot load the specified
module because its module sync
code is incorrect.

000:206 E$DirFul Module Directory Full
The module directory is full. To
load or create another module,
you must first unlink one already
in the directory. Although OS-9
expands the module directory
when it becomes full, this error
may be returned because there is
not enough memory or the
memory is too fragmented to use.

Table C-8 OS-9 Operating System Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 309

000:207 E$MemFul Memory Full
The process can not execute
because there is not enough
contiguous RAM free. This can
also occur if a process has
already been allocated the
maximum number of blocks
permitted by the system.

000:208 E$UnkSvc Unknown Service Code
The specified service call has an
unknown or invalid service code
number. This can also occur if a
GetStat/SetStat call is made with
an unknown status code.

000:209 E$ModBsy Module Busy
You tried to access a
non-sharable module or
non-sharable device that is
already in use.

000:210 E$BPAddr Boundary Error
A memory de-allocation request
was not passed a valid block
address or you tried to
de-allocate memory not
previously assigned. The system
detects trouble when the buffer
returns to free memory or if it is
used as the destination of a data
transfer, such as I$Read.

Table C-8 OS-9 Operating System Errors (continued)

Number Name Description

310 OS-9 for 68K Processors Technical Manual

000:211 E$EOF End of File
An end of file condition was
encountered on a read operation.

000:212 E$VctBsy Vector Busy
A device is trying to use an IRQ
vector that another device is
currently using.

000:213 E$NES Non-Existing Segment
A search was made for a disk file
segment that cannot be found.
The device may have a damaged
file structure.

000:214 E$FNA File Not Accessible
You tried to open a file or device
without the correct access
permissions. Check the file’s
attributes and the owner ID.

000:215 E$BPNam Bad Path Name
There is a syntax error in the
specified pathlist (for example,
an illegal character). This can
occur whenever you reference a
path by name.

000:216 E$PNNF Path Name Not Found
The specified pathlist cannot be
found. This could be caused by
misspellings or incorrect
directories.

Table C-8 OS-9 Operating System Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 311

000:217 E$SLF Segment List Full
A file is too fragmented to be
expanded any further. This can
be caused by expanding a file
many times without regard to
memory allocation. It also occurs
on disks with little free memory or
disks whose free memory is too
scattered. A simple way to solve
this problem is to copy the file (or
disk). This should move it into
contiguous areas.

000:218 E$CEF File Already Exists
You tried to create a file using a
name that already appears in the
current directory.

000:219 E$IBA Illegal Block Address
A search for an illegal block
address has occurred. An invalid
pointer or block size has been
passed or the device’s file
structure is damaged.

000:220 E$HangUp Telephone (Modem) Data
Carrier Lost
You tried to perform an I/O
operation on a path after
irrecoverable line problems
occurred (for example, data
carrier lost). It may be returned
from network devices if the
network connection is lost.

Table C-8 OS-9 Operating System Errors (continued)

Number Name Description

312 OS-9 for 68K Processors Technical Manual

000:221 E$MNF Module Not Found
A request is made to link to a
module that is not found in the
module directory. Modules whose
headers have been modified or
corrupted can not be found.

000:222 E$NoClk No Clock
This error returns when a request
is made that uses the system
clock and the system has no
clock running. For example, a
timed sleep request returns this
error if there is no system clock
running. Use setime to start the
system clock.

000:223 E$DelSP Delete Stack Pointer Memory
A user requested de-allocation
and return of the memory where
the user’s stack is located. This
could be caused, for example, by
using the F$Mem system call to
contract the data memory of the
specified process.

000:224 E$IPrcID Illegal Process Number
A system call was passed a
process ID to a non-existent
process or a process you may
not access.

Table C-8 OS-9 Operating System Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 313

000:225 E$Param Bad Parameter
You passed a service request an
illegal or impossible parameter.

000:226 E$NoChld No Children
You made an F$Wait request,
but your process has no child
process for which to wait.

000:227 E$ITrap Illegal Trap Code
You used an unavailable (already
in use) or invalid trap code in a
F$TLink call.

000:228 E$PrcAbt Process Aborted
A process is aborted by the kill
signal code.

000:229 E$PrcFul Process Table Full
The system process table is full
(too many processes currently
running). Although OS-9
automatically tries to expand the
table, this error may occur if there
is not enough contiguous
memory to do so.

000:230 E$IForkP Illegal Parameter Area
Ridiculous parameters were
passed to a fork call.

000:231 E$KwnMod Known Module
You tried to install a module that
is already in memory.

Table C-8 OS-9 Operating System Errors (continued)

Number Name Description

314 OS-9 for 68K Processors Technical Manual

000:232 E$BMCRC Incorrect Module CRC
The specified module being
checked or verified has a bad
CRC value. Use fixmod to
generate a valid CRC.

000:233 E$USigP Unprocessed Signal Pending

000:234 E$NEMod Non-Executable Module
A process tried to execute a
module with a type other than
program/object.

000:235 E$BNam Bad Name
There is a syntax error in the
specified name.

000:236 E$BMHP Bad Parity
The specified module has bad
module header parity.

000:237 E$NoRAM RAM Full
There is no free system RAM
available at the time of the
request for memory allocation.
This also occurs when there is
not enough contiguous memory
to process a fork request.

NOTE: F$Mem is no longer
available. Use F$SRqMem
instead.

Table C-8 OS-9 Operating System Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 315

000:238 E$DNE Directory Not Empty
You tried to remove the directory
attribute from a directory that is
not empty.

000:239 E$NoTask No Task Number Available
All task numbers are currently in
use and a request was made to
execute or create a new task.
This might be returned by an
OS-9 System Security Module
(SSM).

Table C-8 OS-9 Operating System Errors (continued)

Number Name Description

316 OS-9 for 68K Processors Technical Manual

I/O Errors

Table C-9 OS-9 I/O Errors

Number Name Description

000:240 E$Unit Illegal Drive Number

000:241 E$Sect Bad Sector
Bad disk sector number.

000:242 E$WP Write Protect
Media is write protected.

000:243 E$CRC CRC Error
A CRC error occurred on read or
write verify.

000:244 E$Read Read Error
A data transfer error occurred
during disk read operation, or
SCF (terminal) input buffer
overrun.

000:245 E$Write Write Error
A hardware error occurred during
disk write operation.

000:246 E$NotRdy Not Ready
Device has not ready status.

000:247 E$Seek Seek Error
You tried to perform a physical
seek to a non-existent sector.

CError Codes

OS-9 for 68K Processors Technical Manual 317

000:248 E$Full Media Full
Insufficient free space on media.

000:249 E$BTyp Wrong Type
You tried to read incompatible
media (you attempted to read a
double-sided disk on single-sided
drive).

000:250 E$DevBsy Device Busy
A non-sharable device is in use.

000:251 E$DIDC Disk ID Change
The disk media was changed
with open files. RBF copies the
disk ID number (from sector 0)
into the path descriptor of each
path when it is opened. If this
does not agree with the driver’s
current disk ID, this error is
returned. The driver updates the
current disk ID only when sector
0 is read. Therefore, it is possible
to swap disks without RBF
noticing. This check helps to
prevent this possibility.

Table C-9 OS-9 I/O Errors (continued)

Number Name Description

318 OS-9 for 68K Processors Technical Manual

000:252 E$Lock Record Is Locked-Out
Another process is accessing the
requested record. Normal record
locking routines wait forever for a
record in use by another user to
become available. However, RBF
may be told to wait for a finite
amount of time with a SetStat. If
the time expires before the
record becomes free, this error is
returned.

000:253 E$Share Non-Sharable File Busy
The requested file or device has
the single user bit set or it was
opened in single user mode and
another process is accessing the
requested file. A common way to
get this error is to attempt to
delete a currently open file.

Table C-9 OS-9 I/O Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 319

000:254 E$DeadLk I/O Deadlock
Two processes are trying to use
the same two disk areas
simultaneously. Each process is
locking out the other process,
producing the I/O deadlock. One
of the processes must release its
control to allow the other to
proceed.

000:255 E$Format Device Is Format Protected
You tried to format a format
protected disk. To allow the
device to be formatted, change a
bit in the device descriptor.
Formatting is usually inhibited on
hard disks to prevent erasure.

Table C-9 OS-9 I/O Errors (continued)

Number Name Description

320 OS-9 for 68K Processors Technical Manual

Compiler Errors

Table C-10 OS-9 Compiler Errors

Number Name Description

001:000 ERANGE ANSI C Number Out of Range

001:001 EDOM ANSI C Number Not in Domain

CError Codes

OS-9 for 68K Processors Technical Manual 321

Rave Errors

Table C-11 OS-9 Rave Errors

Number Name Description

006:000 E$IllPrm Illegal Parameter
An illegal parameter was passed
to a function.

006:001 E$IdFull Identifier Table Full
An ID table could not be
expanded any further.

006:002 E$BadSiz Bad Size Error

006:003 E$RgFull Region definition full
(overflow)
The region is too complex.

006:004 E$UnID Unallocated Identifier Number
An attempt was made to use an
ID number for an object
(drawmap, action region, etc.)
that was not allocated.

006:005 E$NullRg Null Region
You attempted to use a null
region.

006:006 E$BadMod Bad Drawmap/Pattern Mode
An illegal mode was passed to
create a drawmap or pattern.

322 OS-9 for 68K Processors Technical Manual

006:007 E$NoFont No Active Font
No font was activated when an
attempt to output text was made.

006:008 E$NoDM No Drawmap
No character output drawmap
was available when attempting
an _os_write or
_os_writeln.

006:009 E$NoPlay No Audio Play in Progress
An attempt was made to stop an
audio play when none was in
progress.

006:010 E$Abort Audio Record/Play Aborted
An sm_off() call was done to
abort a play in progress.

006:011 E$QFull Audio Queue is Full
The driver queue could not
handle the number of
soundmaps you were attempting
to output.

006:012 E$Busy Audio Processor Is Busy

006:100 E_RES_NOSLOT No Free Slot Is Left in the
Resource Table
res_load() returns this error
when no more resource modules
can be loaded for this application.

Table C-11 OS-9 Rave Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 323

006:101 E_RES_BADSLOT Specified Resource Module ID
Is Not a Valid Slot in the
Resource Table
res_set() and res_free()
return this error if the resource
module ID does not correspond
to a valid resource module.

006:102 E_RES_NOSHARE Resource Is Not Sharable
res_get() returns this error if
the resource is non-sharable.

006:103 E_RES_NOTYPE Resource Type Is Bad
The specified type was not found
in the resource map.

006:104 E_RES_NORES Bad Resource ID
The specified resource ID was
not found in the resource map.

006:110 E_REQ_NOITEMS No Items Are Specified for
Request
req_create() returns this error
if the rq_numits field is 0.

006:111 E_REQ_BADITEM Out of Range Item Number
A specified item number is
greater than the number of items
in a request.

006:112 E_REQ_BADCOLS Out of Range Column Number
req_create() returns this error
if the rq_numcols field is 0.

Table C-11 OS-9 Rave Errors (continued)

Number Name Description

324 OS-9 for 68K Processors Technical Manual

006:113 E_REQ_BADPTR Bad Item Array Pointer
req_create() returns this error
if the rq_choices pointer is not
initialized correctly.

006:114 E_REQ_NOCREATE Could Not Create Request
req_create() returns this error
if the request could not be
created. Other functions may
return it if you try to use a
non-created request.

006:115 E_REQ_TIMEOUT Modal Request Has Timed Out
req_make() returns this error if
the time-out value is reached
before you make a selection in
the request.

006:116 E_REQ_NOSEL No Selection Was Made for a
Modal Request
req_make() returns this error if
you clicked outside of the request
or on a disabled item, thus
making no selection.

006:117 E_REQ_DEFID Bad Definition Function ID
You did not correctly initialize the
rq_type field.

006:118 E_REQ_DEFACT Bad Definition Action Code
You called the definition function
with an invalid action
parameter.

Table C-11 OS-9 Rave Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 325

006:119 E_REQ_STATE Bad Item State Value
You called the REQ_A_ISTATE
action of the standard definition
function with an invalid item state
value.

006:120 E_REQ_BADRECT Bad Request Rectangle
req_create() returns this error
if the rq_rect structure is not
initialized correctly.

006:130 E_CNT_BHVID Bad Standard Behavior ID
The cnt_bhv field was not
correctly initialized, or a bad bhv
parameter was passed to
cntl_bhv().

006:131 E_CNT_DEFID Bad Standard Definition ID
The cnt_def field was not
correctly initialized, or a bad def
parameter was passed to
cntl_def().

006:132 E_CNT_DEFACT Bad Action for Definition
Function
You passed a bad action
parameter to cntl_def().

006:133 E_CNT_BHVACT Bad Action for Behavior
Function
You passed a bad action
parameter to cntl_bhv().

Table C-11 OS-9 Rave Errors (continued)

Number Name Description

326 OS-9 for 68K Processors Technical Manual

006:134 E_CNT_STATE Bad Control State
A bad state parameter was
passed to cntl_state(), or a
bad value was found in the
cnt_state field.

006:135 E_CNT_PART Bad Control Part Code
The definition function of
standard controls returns this
error if you try to draw a bad part
of a control.

006:136 E_CNT_FLAGS Bad Flags
cntl_create() returns this
error if the cnt_flags field is
not correctly initialized.

006:137 E_CNT_MINMAX Bad Minimum, Maximum, or
Value
cntl_create() returns this
error if the cnt_min, cnt_max,
and cnt_value fields are not
correctly ordered. The order must
be:
cnt_min <= cnt_value <=
cnt_max.

006:138 E_CNT_TYPE Bad Control Type

Table C-11 OS-9 Rave Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 327

006:140 E_CLIP_DEV Cannot Find the Clipboard
Device in Preferences
You tried to load or save the
clipboard from a writable media
and the device name was not
found in the preferences.

006:141 E_CLIP_FULL Clipboard Is Full
You tried to write too many types
in the clipboard.

006:142 E_CLIP_TYPE Type Not Represented in
Clipboard
clip_getptr() returns this
error when the requested type is
not in the clipboard.

006:143 E_CLIP_ACC Clipboard Not Opened for
Requested Access
You tried to write the clipboard
which was opened for read
access.

006:144 E_CLIP_CNT Type Offset Is Greater than
Type Count
clip_type() returns this error
if the type index is out of range of
the available types.

006:145 E_CLIP_OPEN Clipboard Is Currently Not
Open
You tried to access the clipboard
before opening it.

Table C-11 OS-9 Rave Errors (continued)

Number Name Description

328 OS-9 for 68K Processors Technical Manual

006:146 E_CLIP_INIT Clipboard Is Not Initialized
The clipboard was accessed
before the program linked to it.

006:147 E_CLIP_CLOSE Clipboard Is Currently Not
Closed
clip_unlink() returns this
error if the clipboard was not
closed before trying to unlink it.

006:148 E_CLIP_RW Cannot Rewrite, the Type Is
Not in the Clipboard
clip_rewrite() returns this
error if the type was not
previously allocated with the
clip_write() function.

006:150 E_HNDLR_UNKNOWN The Handler Is Unknown
hndlr_delete() returns this
error if the handler specified is
not known.

006:155 E_ATABL_NOENTRY No Entry Found
atbl_delassoc() returns this
error when you try to delete an
association that does not exist.

006:160 E_BOX_TABLE Line Table Overflow
The specified linetab array is too
small to store the offsets of each
line start.

Table C-11 OS-9 Rave Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 329

006:161 E_BOX_COUNT Text Too Long (Maximum Is
65535)
The maximum number of
characters is 65535. This
restriction is because line start
offsets are coded on short
integers.

006:162 E_BOX_TYPE Bad Type or Type Not
Implemented

006:163 E_BOX_MAXL Attempt to Draw a Line Too
Long
The maximum number of
characters allowed in a line is
1023.

006:164 E_BOX_NOTAB Need a Line Table
If BOX_F_USETAB is set in the
type parameter, you must
specify the linetab and size
parameters.

006:165 E_BOX_NOFONT Font Not Set in Drawmap
The appropriate font(s) should
have been activated in the output
drawmap.

006:166 E_BOX_RECT Bad Rectangle
The specified rectangle is
incorrect.

Table C-11 OS-9 Rave Errors (continued)

Number Name Description

330 OS-9 for 68K Processors Technical Manual

006:180 E_INIT_VARERROR Global Variable Error
You passed an illegal global
variable ID to gsl_get() or
gsl_set().

006:185 E_INTER_NOMOD No Preference Module
No preference module was linked
before using any intl_xxx()
function.

006:186 E_INTER_ILLARG Illegal Argument
You passed a bad argument to
an internationalization function.

006:190 E_OVL_BADRECT Bad Rectangle for Overlay
The rectangle passed is illegal.
For example, ex <= sx or ey
<= sy.

006:191 E_OVL_NOTTOP Overlay Is Not the Top of the
Stack
ovl_close() returns this error
if you try to close an overlay
which is not the top of the overlay
stack.

006:192 E_OVL_UNKNOWN Unknown Overlay
You tried to access an overlay
which was not created.

Table C-11 OS-9 Rave Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 331

006:200 E_IND_DEFID Bad Definition ID
The ind_type field was not
correctly initialized, or a bad def
parameter was passed to
ind_def().

006:201 E_IND_DEFACT Bad Definition Action
You passed a bad action
parameter to a definition function.

006:202 E_IND_MINMAX Bad Minimum, Maximum, or
Value
The ind_min or ind_max
values were not initialized
correctly or you tried to set the
value of the indicator out of the
minimum/maximum range.

006:203 E_IND_BADCOORDS Bad Coordinates
ind_create() returns this error
if the coordinates given for the
indicator are not valid.

006:204 E_IND_NOCREATE Indicator Not Created
You tried to use an indicator
which was not properly created
via ind_create().

006:205 E_IND_BADFLAGS Bad Flags
ind_create() returns this error
when two or more mutually
exclusive flags are set.

Table C-11 OS-9 Rave Errors (continued)

Number Name Description

332 OS-9 for 68K Processors Technical Manual

006:206 E_IND_BADPTR Bad Pointer
A bad (NULL) pointer was found
where an initialized pointer
should be found.

006:207 E_IND_BADDISP Bad Displacement

Table C-11 OS-9 Rave Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 333

Internet Errors

Table C-12 OS-9 Internet Errors

Number Name Description

007:001 EWOULDBLOCK

-or-

I/O Operation Would Block
You tried to perform an operation
causing a process to block on a
socket in non-blocking mode.

E_IFF_RONLY Read-only Path
This path is read-only.

007:002 EINPROGRESS

-or-

I/O Operation Now in Progress
You tried to perform an operation
that takes a long time to
complete (such as connect())
on a socket in non-blocking
mode.

E_IFF_WONLY Write-only Path
This path is write-only.

007:003 EALREADY

-or-

Operation Already in Progress
An operation was attempted on a
non-blocking object that already
had an operation in progress.

E_IFF_ACTFORM No Active Form
No form is active.

334 OS-9 for 68K Processors Technical Manual

007:004 EDESTADDRREQ

-or-

Destination Address Required
The attempted socket operation
requires a destination address.

E_IFF_READER Wrong Reader
Wrong reader for this type of
form.

007:005 EMSGSIZE

-or-

Message Too Long
A message sent on a socket was
larger than the internal message
buffer or some other network
limit. Messages should be
smaller than 32768 bytes.

E_IFF_NOTIFF Not IFF
Not an IFF file.

007:006 EPROTOTYPE

-or-

Protocol Wrong Type for
Socket
A protocol was specified that
does not support the semantics
of the socket type requested. For
example, an AF_INET UDP
protocol as SOCK_STREAM is the
wrong protocol type for the
socket.

E_IFF_BADPARAM Bad Parameters

007:007 ENOPROTOOPT

-or-

Bad Protocol Option
You specified a bad option or
level in getsockopt() or
setsockopt().

Table C-12 OS-9 Internet Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 335

E_IFF_BADCAT Bad CAT ID
Bad CAT ID for iff_open.

007:008 EPROTONOSUPPORT

-or-

Protocol Not Supported
The requested protocol is not
available or not configured for
use.

E_IFF_SIZE_UNKNOWN Size Unknown
Cannot skip because size is
unknown.

007:009 ESOCKNOSUPPORT

-or-

Socket Type Not Supported
The requested socket type is not
supported or not configured for
use.

E_IFF_NOT_DATA Not To the Data Yet

007:010 EOPNOTSUPPORT
-or-

Operation Not Supported on
Socket
For example, accept() on a
datagram socket.

E_IFF_PIPE_SEEK Bad Seek
You attempted to seek back in a
pipe.

007:011 EPFNOSUPP
-or-

Protocol Family Not Supported
The requested protocol family is
not currently supported. For
example, PF_SNA.

Table C-12 OS-9 Internet Errors (continued)

Number Name Description

336 OS-9 for 68K Processors Technical Manual

E_IFF_BADCHUNKSIZE Bad Chunk Size
The fixed size chunk is not the
correct size. The reader version
may be invalid.

007:012 EAFNOSUPPORT
-or-

Protocol Does Not Support
This Address Family
The current protocol does not
support the requested address
family. For example, PF_INET
and PF_UNIX.

E_IFF_FPNOTNUM No Floating Point Conversion
Cannot make floating point
conversion.

007:013 EADDRINUSE Address Already in Use
Only one use of each address is
normally permitted. Wildcard use
and connectionless
communication are the
exceptions.

007:014 EADDRNOTAVAIL Cannot Assign Requested
Address
Normally results when you try to
create a socket with an address
not on this machine.

007:015 ENETDOWN Network Is Down
The network hardware is not
accessible.

Table C-12 OS-9 Internet Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 337

007:016 ENETUNREACH Network Is Not Reachable
The network is unreachable.
Usually caused by network
interface hardware that is
operational, but not physically
connected to the network. Or, the
network has no way to reach the
destination address.

007:017 ENETRESET Network Dropped Connection
on Reset
The host you were connected to
crashed and rebooted.

007:018 ECONNABORTED Software Caused Connection
Abort
The local (host) machine caused
a connection abort.

007:019 ECONNRESET Peer Reset Connection
A peer forcibly closed a
connection. This normally results
from a loss of the connection on
the remote socket due to a time
out or reboot.

007:020 ENOBUFS No Buffer Space Available
A socket operation could not be
performed because the system
lacked sufficient buffer space or a
queue was full.

Table C-12 OS-9 Internet Errors (continued)

Number Name Description

338 OS-9 for 68K Processors Technical Manual

007:021 EISCONN Socket Is Already Connected
You tried to connect an already
connected socket. Also caused
by a sendto() request on a
connected socket to an already
connected destination.

007:022 ENOTCONN Socket Is Not Connected
A request to send or receive data
was rejected because the socket
was not connected or no
destination was given with a
datagram socket.

007:023 ESHUTDOWN Cannot Send After Socket
Shutdown
Socket was shut down, so
additional data transmissions are
not allowed.

007:024 ETOOMANYREFS Too Many References

007:025 ETIMEDOUT Connection Timed Out
A connect() or send()
request failed because the
connected peer did not properly
respond after a period of time.
The time out period depends on
the protocol used.

Table C-12 OS-9 Internet Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 339

007:026 ECONNREFUSED Target Refused Connection
No connection could be
established because the target
machine actively refused it. This
usually results from trying to
connect to a service that is
inactive on the target host.

007:027 EBUFTOOSMALL Buffer Too Small for F$Mbuf
Operation
The specified buffer cannot be
used to support F$MBuf
(SysMbuf).

007:028 ESMODEXISTS Socket Module Already
Attached
You tried to attach a socket
module when it was already
successfully attached.

007:029 ENOTSOCK Path is Not a Socket
You tried to perform a socket
function on a path which is not a
socket.

007:030 EHOSTUNREACH No Route to Host

007:031 EHOSTDOWN Host is Down

Table C-12 OS-9 Internet Errors (continued)

Number Name Description

340 OS-9 for 68K Processors Technical Manual

ISDN Errors

Table C-13 OS-9 ISDN Errors

Number Name Description

 008:001 E$LnkDwn Line Down or Layer 1 Error on
Attach
Check to make sure the line is
plugged in or check to see if
there was a hardware failure.

008:002 E$Conn Connection Error - Connection
Not Made
An error occurred when the
connection to the call was trying
to be made. Possibilities include
maximum number of connections
have already been made or the
connection requested is not
possible.

008:003 E$RxThread Receive Thread Incoming
Packet Handler Error
There may be something in the
received packet that the receive
thread process cannot identify. It
may be due to a non-existent
SAPI or TEI. Or the driver has
sent an incorrect receive packet
to the receive thread.

CError Codes

OS-9 for 68K Processors Technical Manual 341

008:004 E$ME Management Entity Error
There is an error with the
management entity. This could
be due to a packet that the
management entity software
cannot interpret or requests to
the management entity are not
understood or cannot be carried
out.

008:005 E$SAPI Unrecognized Service Access
Point Identifier (SAPI)
The SAPI of the virtual unit or
incoming message from the
network is not a legal value.

008:006 E$TEI Terminal Endpoint Identifier
(TEI) Error
The TEI of the virtual unit, TEI
list, or incoming message from
the network is not valid.

008:007 E$Max_TEI Maximum Number of Terminal
Endpoints in Use
You tried to open a new virtual
unit, but the number of TEIs
currently open is already at the
maximum. The network places
this restriction on the system of
eight TEIs for multipoint lines.

Table C-13 OS-9 ISDN Errors (continued)

Number Name Description

342 OS-9 for 68K Processors Technical Manual

008:008 E$TState Illegal Layer 2 State
The number of the TEI state in
the virtual unit is not a legal TEI
state at layer 2. Valid TEI states
are 1-8. Any other states are
illegal.

008:009 E$TEI_Denied Terminal Endpoint (TEI)
Initialization Denied
The network has denied the TEI
request made by the file manager
when opening a path to the
device.

008:010 E$Primitive Unrecognized Primitive
A primitive has been sent to the
layer 3 part of the file manager
that is not understood or is an
incorrect primitive for the state
the call is currently in for layer 3.

008:011 E$L2In Layer 2 Error on Incoming
Message
A message has come into the
layer 2 part of the file manager
that cannot be interpreted. This
may be due to a message that is
not understandable, or a
message that cannot be acted on
due to the state of the layer 2
state machine.

Table C-13 OS-9 ISDN Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 343

008:012 E$Peer_Busy Peer Receiver (Far End) Busy
Condition
The far end has indicated it is
busy and you should not send
any more data until the far end
can take more. This is analogous
to X-ON/X-OFF protocol in serial
communications.

008:013 E$K Maximum Number of
Outstanding Messages
Exceeded
The maximum number of
outstanding frames (K) have
been sent without the far end’s
acknowledgment. For the D
channel and other reliable data
links, this error indicates you
should re-initialize layer 2.

008:014 E$MaxCRef Maximum Number of Call
References in Use
The maximum number of call
references are already in use.
The path must wait until a call
hangs up before trying again.

008:015 E$CRef Call Reference Does Not Exist
This error usually occurs when
the path references a
non-existent call.

Table C-13 OS-9 ISDN Errors (continued)

Number Name Description

344 OS-9 for 68K Processors Technical Manual

008:016 E$CallProg Call Progress State Error
An error occurred with the call
progress state machine of layer
3. Either an inappropriate action
for the state is requested, or the
call progress number does not
correspond to a legal layer 3
state.

008:017 E$Rcvr Receiver Assignment/Removal
Error
An error occurred when you tried
to assign or remove a path from
being a receiver. This error
usually occurs when trying to
assign when there is already a
path with the same layer 3
parameters assigned on the
same virtual unit.

008:018 E$REQDENIED Request Denied by Far End

008:019 E$RXSTART Receive Thread Did Not Start

008:020 E$NOSTACK Last Driver on Path’s Stack

008:021 E$BTMSTK Attempt to Pop Last Driver

008:022 E$NPBNULL Notify Param Block is NULL

008:023 E$PPS_NOTFND Per Path Storage Not Found

008:024 E$STKFULL Path’s stack Array is Full

Table C-13 OS-9 ISDN Errors (continued)

Number Name Description

CError Codes

OS-9 for 68K Processors Technical Manual 345

008:025 E$MBNOTINST Sysmuf not Installed

008:026 E$TMRNTFND Timer Not Found

008:027 E$GETIME Get Time Error

008:028 E$TIMERINT Timer Interrupt

008:029 E$RXMB_NODEVENTRY No Device Entry in Mbuf

008:030 E$PGM+TBLBSY PSI/SI Table is in Use

008:031 E$TBLOVF Too Many Tables Being Read

008:032 E$PGM_TBLNFND Table not Found

008:033 E$PGM_NFND Program not Found

008:034 E$NOPLAY No Program Currenly Playing

008:035 E$NODNDRVR No Down Driver

008:040 E$RXMB_ERR Receive Data Error Base

Table C-13 OS-9 ISDN Errors (continued)

Number Name Description

346 OS-9 for 68K Processors Technical Manual

Appendix D: OS-9 for 68K System

Calls

348 OS-9 for 68K Processors Technical Manual

System Calls

System calls allow you to communicate between the OS-9 operating
system and assembly language level programs. There are three general
categories of system calls:

• User-state

• I/O

• System-state

All system calls have a mnemonic name for easy reference:

• User and system state functions start with F$

• I/O related functions begin with I$

The mnemonic names are defined in the relocatable library file usr.l or
sys.l. You should link these files with your programs.

The OS-9 I/O system calls are simple to use because the calling program
does not have to allocate and set up file control blocks, sector buffers, etc.
Instead, OS-9 returns a path number word when you open a file/device.
You can use this path number in subsequent I/O requests to identify the
file/device until the path is closed. OS-9 internally allocates and maintains
its own data structures; you never have to deal with them.

System-state system calls are privileged and can only execute while OS-9
is in system state (when it is processing another service request, executing
a file manager, device driver, etc.). System state functions are included in
this manual primarily for the benefit of those programmers who are writing
device drivers and other system-level applications.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For a full description of system state and its uses, refer to Chapter 2:
The Kernel.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 349

System calls are performed by loading the MPU registers with the
appropriate parameters and executing a Trap #0 instruction, immediately
followed by a constant word (the request code). Function results (if any)
are returned in the MPU registers after OS-9 has processed the service
request.

All system calls use a standard convention for reporting errors; if an error
occurred, the carry bit of the condition code register is set and register
d1.w contains an appropriate error code, permitting a BCS or BCC
instruction immediately following the system call to branch on error/no
error.

Here is an example system call for the Close service request:

MOVE.W Pathnum (a6),d0
TRAP #0
DC.W I$Close
BCS.S Error

Using the assembler’s OS9 directive simplifies the call:

MOVE.W Pathnum (a6),d0
OS9 I$Close
BCS.S Error

Some system calls generate errors themselves; these are listed in the
following pages as POSSIBLE ERRORS. If the returned error code does
not match any of the given possible errors, then it was probably returned by
another system call made by the main call.

The SEE ALSO listing for each service request shows related service
requests and/or documentation that may yield more information about the
request.

In the following system call descriptions, registers not explicitly specified as
input or output parameters are not altered. Strings passed as parameters
are normally terminated by a null byte.

350 OS-9 for 68K Processors Technical Manual

System Calls and the System Environment

The availability of some of the system calls described in these sections
varies according to the kernel environment you are using (the development
kernel or the atomic kernel). In addition, some of these system calls are
implemented in modules other than the kernel (for example, the I$ calls
are implemented by IOMan).

The system call descriptions in the following pages apply to a development
kernel environment. When system call functionality differs between
development and atomic environments, the differences are noted in the
description. System calls implemented by modules other than the kernel
are also noted.

The following tables list each system call, the module (the kernel, IOMan,
SSM, or SysCache) implementing it, and points out calls with
development/atomic environment differences.

NoteNote
F$DExec, F$DExit, and F$DFork are not available under the atomic
kernel.

There are functional differences between the development and atomic
kernel for F$SysID.

Table D-1 Kernel System Calls

F$Alarm
(User-State)

F$AllPD F$AllPrc F$AProc

F$Chain F$CmpNam F$CpyMem F$CRC

F$DatMod F$DExec F$DExit F$DFork

F$DelPrc F$Exit F$Event F$FindPD

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 351

F$FIRQ F$Fork F$FModul F$GBlkMp

F$GModDr F$GPrDBT F$GPrDsc F$GProcP

F$Gregor F$Icpt F$Icpt F$IRQ

F$Julian F$Link F$Move F$Mem

F$NProc F$PrsNam F$RetPD F$RTE

F$Sema F$Send F$SetCRC F$SetSys

F$Sigmask F$SigReset F$Sleep F$SPrior

F$SRqMem F$SRqCMem F$SRtMem F$SSvc

F$STrap F$STime F$SUser F$SysDbg

F$SysID F$Time F$TLink F$Trans

F$UnLink F$UnLoad F$Wait F$UAcct

F$VModul

Table D-2 IOMan System Calls

F$AllBit F$DelBit F$IOQu F$IODel

F$Load F$PErr F$SchBit I$Attach

I$Create I$ChgDir I$Close I$Delete

I$Detach I$Dup I$GetStt I$MakDir

Table D-1 Kernel System Calls (continued)

352 OS-9 for 68K Processors Technical Manual

I$Open I$Read I$ReadLn I$Seek

I$SetStt I$SGetSt I$Write I$WritLn

Table D-3 SSM System Calls

F$AllTsk F$ChkMem F$DelTsk F$GSPUMp

F$Permit
(User-State)

F$Protect
(User-State)

Table D-4 SysCache System Calls

F$CCtl

Table D-2 IOMan System Calls (continued)

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 353

F$Alarm (System-State)

Set Alarm Clock

ASM Call
OS9 F$Alarm

Input
d0.l = Alarm ID (or zero)
d1.w = Function code
d2.l = Reserved, must be zero
d3.l = Time interval (or time)
d4.l = Date (when using absolute time)
(a0) = Register image

Output
d0.l = Alarm ID

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: System

Description

When called from system state, F$Alarm executes a system-state
subroutine at a specified time. It is provided for such functions as turning off
a disk drive motor if the disk is not accessed for a period of time.

The register image pointed to by register (a0) contains an image of the
registers to be passed to the alarm subroutine. The subroutine entry point
must be placed in R$pc(a0). The register image is copied by the
F$Alarm request into another buffer area and may be re-used immediately
for other purposes.

You can use the returned alarm ID to delete an alarm request.

354 OS-9 for 68K Processors Technical Manual

The time interval is the number of system clock ticks (or 256ths of a
second) to wait before the alarm subroutine is executed. If the high order
bit is set, the low 31 bits are interpreted as 256ths of a second.

NoteNote
All times are rounded up to the nearest clock tick.

The system automatically deletes a process’ pending alarms when the
process dies.

The alarm function code is used to select one of the related alarm
functions. Not all input parameters are always needed; each function is
described in the following pages.

System-state alarm subroutines must conform to the following conventions:

Input
d0-d7 = caller’s registers (R$d0-R$d7(a5))
(a0)-(a3) = caller’s registers (R$a0-R$a3(a5))
(a4) = system process descriptor pointer*
(a5) = ptr to register image
(a6) = system global storage pointer

Output
cc = carry set
d1.w = error code if error

NoteNote
The user number in the system process descriptor is temporarily
changed to the user number of original F$Alarm request. You do not
have to preserve the registers d0-d7 and (a0)-(a3).

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 355

NoteNote
The system process executes system-state alarms at priority 65535.
They may never perform any function resulting in any kind of queuing,
such as F$Sleep, F$Wait, F$Load, F$Event(Ev$Wait), F$IOQu,
or F$Fork. When such functions are required, the caller must provide a
separate process to perform the function, rather than an alarm.

WARNING!
If an alarm execution routine suffers any kind of bus trap, address trap,
or other hardware-related error, the system crashes.

The following F$Alarm system-state function codes are supported:

Table 7-4 F$Alarm Function Codes

Name Description

A$AtDate (System-State) Execute a subroutine at a
Gregorian date/time.

A$AtJul (System-State) Execute a subroutine at Julian
date/time.

A$Cycle (System-State) Execute a subroutine at specified
time intervals.

A$Delete (System-State) Remove a pending alarm request.

A$Set (System-State) Execute a subroutine after a
specified time interval.

356 OS-9 for 68K Processors Technical Manual

Possible Errors

E$BPAddr

E$MemFul

E$NoRAM

E$Param

E$UnkSvc

See Also

F$Alarm (User-State)

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 357

F$Alarm (User-State)

Set Alarm Clock

ASM Call
OS9 F$Alarm

Input
d0.l = Alarm ID (or zero)
d1.w = Alarm function code
d2.l = Signal code
d3.l = Time interval (or time)
d4.l = Date (when using absolute time)

Output
d0.l = Alarm ID

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$Alarm creates an asynchronous software alarm clock timer. The timer
sends a signal to the calling process when the specified time period has
elapsed. A process may have multiple alarm requests pending.

The time interval is the number of system clock ticks (or 256ths of a
second) to wait before an alarm signal is sent. If the high order bit is set,
the low 31 bits are interpreted as 256ths of a second.

358 OS-9 for 68K Processors Technical Manual

NoteNote
All times are rounded up to the nearest clock tick.

The system automatically deletes a process’ pending alarm when the
process dies.

The alarm function code selects one of the several related alarm functions.
Not all input parameters are always needed; each function is described in
detail in the following pages.

OS-9 supports the following user-state alarm function codes:

Possible Errors

E$BPAddr

E$MemFul

E$NoRAM

E$Param

Table D-5 Alarm Function Codes

Name Description

A$AtDate (User-State) Send a signal at Gregorian
date/time.

A$AtJul (User-State) Send a signal at Julian date/time.

A$Cycle (User-State) Send a signal at specified time
intervals.

A$Cycle (User-State) Remove a pending alarm request.

A$Set (User-State) Send a signal after specified time
interval.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 359

E$UnkSvc

See Also

F$Alarm (System-State)

360 OS-9 for 68K Processors Technical Manual

A$AtDate (System-State)

Execute System-State Subroutine at Gregorian Date/Time

Input
d0.l = Reserved, must be zero
d1.w = A$AtDate function code
d2.l = Reserved, must be zero
d3.l = Time (00hhmmss)
d4.l = Date (YYYYMMDD)
(a0) = Register image

Output
d0.l = alarm ID

Error Output
cc = carry bit set
d1.w = appropriate error code

Attributes
State: System

Description

A$AtDate executes a system-state subroutine at a specific date and time.

NoteNote
A$AtDate only allows you to specify time to the nearest second.
However, it does adjust if the system’s date and time have changed
(via F$STime). The alarm subroutine executes anytime the system
date/time becomes greater than or equal to the alarm time.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 361

A$AtDate (User-State)

Send Signal at Gregorian Date/Time

Input
d0.l = Reserved, must be zero
d1.w = A$AtDate function code
d2.l = Signal code
d3.l = Time (00hhmmss)
d4.l = Date (YYYYMMDD)

Output
d0.l = Alarm ID

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

A$AtDate sends a signal to the caller at a specific date and time.

NoteNote
A$AtDate only allows you to specify time to the nearest second.
However, it does adjust if the system’s date and time have changed
(via F$STime). The alarm signal is sent anytime the system date/time
becomes greater than or equal to the alarm time.

362 OS-9 for 68K Processors Technical Manual

A$AtJul (System-State)

Execute System-State Subroutine at Julian Date/Time

Input
d0.l = Reserved, must be zero
d1.w = A$AtDate or A$AtJul function code
d2.l = Reserved, must be zero
d3.l = Time (seconds after midnight)
d4.l = Date (Julian day number)
(a0) = Register image

Output
d0.l = alarm ID

Error Output
cc = carry bit set
d1.w = appropriate error code

Attributes
State: System

Description

A$AtJul executes a system-state subroutine at a specific Julian date and
time.

NoteNote
A$AtJul function only allows time to be specified to the nearest
second. However, it does adjust if the system’s date and time have
changed (via F$STime). The alarm subroutine is executed anytime the
system date/time becomes greater than or equal to the alarm time.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 363

A$AtJul (User-State)

Send Signal at Julian Date/Time

Input
d0.l = Reserved, must be zero
d1.w = A$AtDate or A$AtJul function code
d2.l = Signal code
d3.l = Time (seconds after midnight)
d4.l = Date (Julian day number)

Output
d0.l = Alarm ID

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

A$AtJul sends a signal to the caller at a specific Julian date and time.

NoteNote
A$AtJul only allows you to specify time to the nearest second.
However, it does adjust if the system’s date and time have changed
(via F$STime). The alarm signal is sent anytime the system date/time
becomes greater than or equal to the alarm time.

364 OS-9 for 68K Processors Technical Manual

A$Cycle (System-State)

Execute System-State Subroutine Every N Ticks/Seconds

Input
d0.l = reserved, must be zero
d1.w = A$Cycle function code
d2.l = reserved, must be zero
d3.l = time interval

Output
d0.l = alarm ID

Error Output
cc = carry bit set
d1.w = appropriate error code

Attributes
State: System

Description

The cycle function is similar to the set function, except the alarm is reset
after it is sent. This causes periodic execution of a system-state subroutine.

Keep cyclic system-state alarms as fast as possible and schedule them
with as long a cycle as possible to avoid consuming a large portion of
available CPU time.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 365

A$Cycle (User-State)

Send Signal Every N Ticks/Seconds

Input
d0.l = reserved, must be zero
d1.w = A$Cycle function code
d3.l = time interval (N)
(a0) = Register Image

Output
d0.l = Alarm ID

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

A$Cycle sends one signal after the specified time interval has elapsed.
A$Cycle is similar to the A$Set (User-State) function, except the
alarm is reset after it is sent, to provide a recurring periodic signal.

366 OS-9 for 68K Processors Technical Manual

A$Delete (System-State)

Remove Pending Alarm Request

Input
d0.l = Alarm ID (or zero)
d1.w = A$Delete function code

Output

None

Attributes
State: System

Description

A$Delete removes a cyclic alarm or any unexpired alarm. If 0 is passed
as the alarm ID, all pending alarm requests for the current process are
removed.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 367

A$Delete (User-State)

Remove Pending Alarm Request

Input
d0.l = Alarm ID (or zero)
d1.w = A$Delete function code

Output

None

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

A$Delete removes a cyclic alarm, or any unexpired alarm. If 0 is passed
as the alarm ID, all pending alarm requests are removed.

NoteNote
If you are running a cyclic alarm, you cannot delete the alarm from
within the context of the alarm itself.

368 OS-9 for 68K Processors Technical Manual

A$Set (System-State)

Execute System-State Subroutine After Specified Time Interval

Input
d0.l = Reserved, must be zero
d1.w = A$Set function code
d2.w = Reserved, must be zero
d3.l = Time Interval
(a0) = Register image

Output
d0.l = Alarm ID

Error Output
cc = carry bit set to one
d1.w = Error code

Attributes
State: System

Description

A$Set executes a system-state subroutine after the specified time interval
has elapsed. The time interval may be specified in system clock ticks, or
256ths of a second. The minimum time interval allowed is two system clock
ticks.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 369

A$Set (User-State)

Send Signal After Specified Time Interval

Input
d0.l = Reserved, must be zero
d1.w = A$Set function code
d2.w = Signal code
d3.l = Time Interval

Output
d0.l = Alarm ID

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

A$Set sends one signal after the specified time interval has elapsed. The
time interval may be specified in system clock ticks, or 256ths of a second.

370 OS-9 for 68K Processors Technical Manual

F$AllBit

Set Bits in Allocation Bit Map

ASM Call
OS9 F$AllBit

Input
d0.w = Bit number of first bit to set
d1.w = Bit count (number of bits to set)
(a0) = Base address of an allocation bit map

Attributes
State: User

Output

None

Error Output
cc = carry bit set
d1.w = error code if error

Description

F$AllBit sets bits in the allocation map that were found by F$SchBit,
and are now allocated. Bit numbers range from 0 to n-1, where n is the
number of bits in the allocation bit map.

NoteNote
The IOMan module implements F$AllBit.

In some applications you must allocate and de-allocate segments of a fixed
resource, such as memory. One convenient way is to set up a map
describing which blocks are available or in use. Each bit in the map
represents one block.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 371

• If the bit is set, the block is in use

• If the bit is clear, the block is available

The F$AllBit, F$DelBit, and F$SchBit system calls perform the
elementary bitmap operations of:

• Finding a free segment

• Allocating it

• Returning it when it is no longer needed

RBF uses these routines to manage cluster allocation on disks. They are
accessible to users because they are occasionally useful.

See Also

F$DelBit

F$SchBit

372 OS-9 for 68K Processors Technical Manual

F$AllPD

Allocate Process/Path Descriptor

ASM Call
OS9 F$AllPD

Input
(a0) = process/path table pointer

Output
d0.w = process/path number
(a1) = pointer to process/path descriptor

Error Output
cc = Carry bit set
d1.w = error code if error

Attributes
State: System

Description

F$AllPD allocates fixed-length blocks of system memory. It allocates and
initializes (to zeros) a block of storage and returns its address.

It can be used with F$FindPD and F$RetPD to perform simple memory
management. The system uses these routines to keep track of memory
blocks used for process and path descriptors. They can be used generally
for similar purposes by creating a map table for the data allocations. The
table must be initialized as shown in Figure D-1.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 373

Figure D-1 Map Table Initialization

See Also

F$FindPD

F$RetPD

NoteNote
This is a privileged system-state service request.

$00000000 = unallocated

Max block (N)

Blocksize

(address of block one)

(address of block two)

(N)

(2)

(1)

(0)

(a0)

4*N

8

4

2

0

Block Number Offset

374 OS-9 for 68K Processors Technical Manual

F$AllPrc

Allocate Process Descriptor

ASM Call
OS9 F$AllPrc

Input

None

Output
(a2) = Process Descriptor pointer

Error Output
cc = Carry bit set.
d1.w = Appropriate error code.

Attributes
State: System

Description

F$AllPrc allocates and initializes a process descriptor. The address of
the descriptor is kept in the process descriptor table. Initialization consists
of:

• Clearing the descriptor

• Setting up the state as system-state

• Marking as unallocated as much of the MMU image as the system
allows

On systems without memory management/protection, this is a direct call to
F$AllPD.

Possible Errors

E$PrcFul

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 375

See Also

F$AllPD

NoteNote
This is a privileged system-state service request.

376 OS-9 for 68K Processors Technical Manual

F$AllTsk

Ensure Protection Hardware Is Ready

ASM Call
OS9 F$AllTsk

Input
(a4) = current process descriptor pointer to allocate

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: System

Description

F$AllTsk is called by the kernel just before a process becomes active to
insure the protection hardware is ready for the process.

NoteNote
The system-state code making this call should know using the Trap 0
mechanism (OS9 F$) to call this routine causes the current process to
be specified, regardless of the value in (a4). If you need to specify a
process other than the current one, use the system dispatch tables to
make the call directly to the system routine, with the following input
parameter:

(a4) = process descriptor pointer

The System Security Module (SSM) implements F$AllTsk.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 377

See Also

F$DelTsk

378 OS-9 for 68K Processors Technical Manual

F$AProc

Enter Process in Active Process Queue

ASM Call
OS9 F$AProc

Input
(a0) = Address of process descriptor

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: System

Description

F$AProc inserts a process into the active process queue so it may be
scheduled for execution. All processes already in the active process queue
are aged. The age of the specified process is set to its priority. The process
is then inserted according to its relative age. If the new process has a
higher priority than the currently active process, the active process gives up
the remainder of its time-slice and the new process runs immediately.

See Also

F$NProc

Process Scheduling in Chapter 2: The Kernel

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 379

NoteNote
This is a privileged system-state service request.

380 OS-9 for 68K Processors Technical Manual

F$CCtl

Cache Control

ASM Call
OS9 F$CCtl

Input
d0.l = desired cache control operation

Output

None

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$CCtl performs operations on the system instruction and/or data caches,
if there are any.

If d0.l is 0, the system instruction and data caches are flushed.
Non-super-group, user-state processes may perform this generic
operation.

NoteNote
The syscache module implements F$CCtl.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 381

Only system-state processes (for example, device driver) and super-group
processes may perform precise operation of F$CCtl. The following bits
are defined in d0.l for precise operation:

All other bits are reserved. If any reserved bit is set, an E$Param error is
returned.

Any program building or changing executable code in memory should flush
the instruction cache by F$CCtl before executing the new code. This is
necessary because the hardware instruction cache is not updated by data
(write) accesses and may therefore contain the unchanged instruction(s).
For example, if a subroutine builds an OS-9 system call on its stack, the
F$CCtl system call to flush the instruction cache must execute before
executing the temporary instructions.

NoteNote
The cache should be flushed before trying to disable the data cache.

Table D-6 F$CCtl Bits

Bit If Set

0 Enable data cache.

1 Disable data cache.

2 Flush data cache.

4 Enable instruction cache.

5 Disable instruction cache.

6 Flush instruction cache.

382 OS-9 for 68K Processors Technical Manual

Possible Error
E$Param

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 383

F$Chain

Load and Execute New Primary Module

ASM Call
OS9 F$Chain

Input
d0.w = desired module type/language (must be
 program/object or 0=any)
d1.l = additional memory size
d2.l = parameter size
d3.w = number of I/O paths to copy
d4.w = priority
(a0) = module name ptr
(a1) = parameter ptr

Output

None. F$Chain does not return to the calling process.

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$Chain executes an entirely new program, but without the overhead of
creating a new process. It is similar to a Fork command followed by an
Exit. F$Chain effectively resets the calling process’ program and data
memory areas and begins executing a new primary module. Open paths
are not closed or otherwise affected.

Chain executes as follows:

• Unlink the process’ old primary module.

384 OS-9 for 68K Processors Technical Manual

• The system parses the name string of the new process’ primary module
(the program to be executed). Next, the system module directory is
searched to see if a module of the same name and type/language is
already in memory. If so, the module is linked. If not, the name string is
used as the pathlist of a file which is to be loaded into memory. The first
module in this file is linked.

• Reconfigure the data memory area to the specified size in the new
primary module’s header.

• Erase intercepts and any pending signals.

Figure D-2 shows how Chain sets up the data memory area and registers
for the new module (these are identical to F$Fork).

Figure D-2 Data Memory Area and Registers in Child Process

Parameter Area

Stack Area

(a1) (highest address)

Data Area

(a5), (a7)

(a6) (lowest address)

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 385

The following registers are passed to the child process:

Table D-7 Registers Passed to the Child Process

Register Description

sr n000, where:

n = 0 for non-MSP systems

n = 1 for MSP systems

pc Module entry point

d0.w Process ID

d1.l Group/user number

d2.w Priority

d3.w Number of I/O paths inherited

d4.l Undefined

d5.l Parameter size

d6.l Total initial memory allocation

d7.l Undefined

(a0) Undefined

(a1) Top of memory pointer

(a2) Undefined

(a3) Primary (forked) module pointer

(a4) Undefined

386 OS-9 for 68K Processors Technical Manual

NoteNote
(a6) is actually biased by $8000, but this can usually be ignored
because the linker biases all data references by -$8000. However, it
may be significant to note when debugging programs.

The minimum overall data area size is 256 bytes. Address registers point to
even addresses.

NoteNote
Most errors occurring during the Chain are returned as an exit status
to the parent of the process doing the chain.

Possible Error

E$NEMod

See Also

F$Fork

F$Load

(a5) Parameter pointer

(a6) Static storage (data area) base pointer

(a7) Stack pointer (same as (a5))

Table D-7 Registers Passed to the Child Process (continued)

Register Description

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 387

F$ChkMem

Check Access Permissions

ASM Call
OS9 F$ChkMem

Input
d0.l = size of area in bytes
d1.b = permission requested (Read_/Write_/Exec_)
(a2) = address of area to check
(a4) = process descriptor requesting access

Error Output
cc = carry bit set
d1.w = error code (E$BPAddr) if error (access denied)

Attributes
State: System

Description

F$ChkMem is called by system routines prior to accessing data at the
specified address on behalf of a process to determine if the process has
access to the specified memory block.

F$ChkMem must check the process’ protection image to determine if
access to the specified memory area is permitted. F$ChkMem is called by
system state routines that may access memory (such as I$Read and
I$Write) to verify the user process itself has access to the requested
memory. This software check is necessary because the protection
hardware is expected to be disabled for system state routines.

388 OS-9 for 68K Processors Technical Manual

NoteNote
If the current system call being checked was made from system-state,
you should not make F$ChkMem calls, as system-state code is
expected to have access to all system memory.

The System Security Module (SSM) implements F$ChkMem.

The system-state code making this call should know using the Trap 0
mechanism (OS9 F$) to call this routine causes the current process to
be specified, regardless of the value in (a4). If you need to specify a
process other than the current one, use the system dispatch tables to
make the call directly to the system routine, with the following input
parameters:

• d0.l = size of area in bytes

• d1.b = permission requested (Read_/Write_/Exec_)

• (a2) = address of area to check

• (a4) = process descriptor requesting access

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 389

F$CmpNam

Compare Two Names

ASM Call
OS9 F$CmpNam

Input
d1.w = Length of pattern string
(a0) = Pointer to pattern string
(a1) = Pointer to target string

Output
cc = Carry bit clear if the strings match

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$CmpNam compares a target name to a source pattern to determine if they
are equal. Upper and lower case are considered to match. Two wildcard
characters are recognized in the pattern string:

• Question mark (?) matches any single character

• Asterisk (*) matches any string

The target name must be terminated by a null byte.

Possible Errors

E$Differ The names do not match.

E$StkOvf The pattern is too complex.

390 OS-9 for 68K Processors Technical Manual

F$CpyMem

Copy External Memory

ASM Call
OS9 F$CpyMem

Input
d0.w = process ID of external memory’s owner
d1.l = number of bytes to copy
(a0) = address of memory in external process to copy
(a1) = caller’s destination buffer pointer

Output

None

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$CpyMem copies external memory into your buffer for inspection. You can
use F$CpyMem to copy portions of the system’s address space. This is
especially helpful in examining modules. You can view any memory in the
system with F$CpyMem.

See Also

F$Move

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 391

F$CRC

Generate CRC

ASM Call
OS9 F$CRC

Input
d0.l = Data byte count
d1.l = CRC accumulator
(a0) = Pointer to data

Output
d1.l = Updated CRC accumulator

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$CRC generates or checks the CRC (cyclic redundancy check) values of
sections of memory. Compilers, assemblers, or other module generators
use F$CRC to generate a valid module CRC.

If the CRC of a new module is to be generated, the CRC is accumulated
over the entire module, excluding the CRC itself. The accumulated CRC is
complemented and then stored in the correct position in the module.

You can calculate the CRC starting at the source address over a specified
number of bytes. It is not necessary to cover an entire module in one call,
since the CRC may be accumulated over several calls. The CRC
accumulator must be initialized to -1 before the first F$CRC call for any
particular module because accum is an int32 value.

392 OS-9 for 68K Processors Technical Manual

An easier method of checking an existing module’s CRC is to perform the
calculation on the entire module, including the module CRC. The CRC
accumulator contains the CRC constant bytes if the module CRC is correct.
The CRC constant is defined in sys.l and usr.l as CRCCon. Its value is
$00800fe3.

NoteNote
The CRC value is three bytes long, in a four-byte field. To generate a
valid module CRC, the caller must include the byte preceding the CRC
in the check. This byte must be initialized to 0. For convenience, if a
data pointer of 0 is passed, the CRC is updated with one zero data
byte. F$CRC always returns $ff in the most significant byte of d1, so
d1.l may be directly stored (after complement) in the last four bytes of
a module as the correct CRC.

See Also

The section on the The CRC Value in Chapter 1: System Overview.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 393

F$DatMod

Create Data Module

ASM Call
OS9 F$DatMod

Input
d0.l = size of data required (not including header or
 CRC)
d1.w = desired attr/revision
d2.w = desired access permission
d3.w = desired type/language (optional)
d4.l = memory color type (optional)
(a0) = module name string ptr

Output
d0.w = module type/language
d1.w = module attr/revision
(a0) = updated name string ptr
(a1) = module data ptr (’execution’ entry)
(a2) = module header ptr

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$DatMod creates a data module with the specified attribute/revision and
clears the data portion of the module. The module is initially created with a
CRC value of 0 and entered into the system module directory. Several
processes can communicate with each other using a shared data module.

394 OS-9 for 68K Processors Technical Manual

Be careful not to modify the data module’s header or name string to avoid
the possibility of the module becoming unknown to the system.

To utilize the optional parameters (d3.l and d4.l) set the most significant
bit of d2.w (0x8000), the specified module permissions. If that bit is not
set, the default type will be MT_DATA, the default language will be ML_ANY,
and the default memory color will be MEM_ANY.

NoteNote
The module created contains at least d0.l usable data bytes, but may
be somewhat larger. The module itself is larger by at least the size of
the module header and CRC, and rounded up to the nearest system
memory allocation boundary.

Possible Errors

E$BNam

E$MemFul

E$NoRAM

See Also

F$Move

F$SetCRC

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 395

F$DelBit

De-allocate in Bit Map

ASM Call
OS9 F$DelBit

Input
d0.w = Bit number of first bit to clear
d1.w = Bit count (number of bits to clear)
(a0) = Base address of an allocation bit map

Output

None

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$DelBit clears bits in the allocation bit map that were previously
allocated and are now free for general use. Bit numbers range from 0 to
n-1, where n is the number of bits in the allocation bit map.

NoteNote
The IOMan module implements F$DelBit.

See Also

F$AllBit

396 OS-9 for 68K Processors Technical Manual

F$CpyMem

F$SchBit

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 397

F$DExec

Execute Debugged Program

ASM Call
OS9 F$DExec

Input
d0.w = process ID of child to execute
d1.l = number of instructions to execute
 (0 = continuous)
d2.w = number of breakpoints in list
(a0) = breakpoint list
register buffer contains child register image

Output
d0.l = total number of instructions executed so far
d1.l = remaining count not executed
d2.w = exception occurred, if non-zero; exception
 offset
d3.w = classification word (addr or bus trap only)
d4.l = access address (addr or bus trap only)
d5.w = instruction register (addr or bus trap only)
 register buffer updated

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$DExec controls the execution of a suspended child process created by
the F$DFork call. The process performing F$DExec is suspended and its
debugged child process is executed instead. Once the specified number of
instructions are executed, a breakpoint is reached or an unexpected

398 OS-9 for 68K Processors Technical Manual

exception occurs, execution terminates and control returns to the parent
process. Thus, the parent and the child processes are never active at the
same time.

F$DExec traces every instruction of the child process. It checks for the
termination conditions after each instruction. Breakpoints are simply lists of
addresses to check and work with ROMed object programs. Consequently,
the child process being debugged runs at a slow speed.

If a -1 (hex $ffffffff) is passed in d1.l, F$DExec replaces the instruction at
each breakpoint address with an illegal opcode. It then executes the child
process at full speed (with the trace bit clear) until a breakpoint is reached
or the program terminates. This can save an enormous amount of time, but
it is impossible for F$DExec to count the number of executed instructions.

Any OS-9 for 68K system calls made by the suspended program are
executed at full speed and are considered one logical instruction. The
same is true of system-state trap handlers. You cannot debug system-state
processes.

The system uses the register buffer passed in the F$DFork call to save
and restore the child’s registers. Changing the contents of the register
buffer alters the child process’ registers.

If the child process terminates for any reason, the carry bit is set and
returned. Tracing may continue as long as the child process does not
perform an F$Exit (even after encountering any normally fatal error). An
F$DExit call must be made to return the debugged process’ resources
(memory).

NoteNote
The Atomic kernel does not support F$DExec.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 399

NoteNote
Tracing is not allowed through user-state trap handlers, intercept
routines, and the F$Chain system call. This is not a problem, but may
seem strange at times.

Possible Errors

E$IPrcID

E$PrcAbt

See Also

F$DExit

F$DFork

400 OS-9 for 68K Processors Technical Manual

F$DExit

Exit Debugged Program

ASM Call
OS9 F$DExit

Input
d0.w = process ID of child to terminate

Output

None

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$DExit terminates a suspended child process that was created with the
F$DFork system call. To permit examination after the process dies, normal
termination by the child process does not release any of its resources.

NoteNote
The Atomic kernel does not support F$DExit.

Possible Errors

E$IPrcID

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 401

See Also

F$DExec

F$DFork

F$Exit

402 OS-9 for 68K Processors Technical Manual

F$DFork

Fork Process Under Control of Debugger

ASM Call
OS9 F$DFork

Input
d0.w = desired module type/revision (0 = any)
d1.l = additional stack space to allocate (if any)
d2.l = parameter size
d3.w = number of I/O paths for child to inherit
d4.w = module priority
(a0) = module name ptr (or pathlist)
(a1) = parameter ptr
(a2) = register buffer: copy of child’s
 (d0-d7/a0-a7/sr/pc)

Output
d0.w = child process ID
(a0) = updated past module name string
(a2) = initial image of the child process’s registers
 in buffer

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$DFork is similar to F$Fork, except F$DFork creates a process whose
execution can be closely controlled. The child process is not placed in the
active queue but is left in a suspended state. This allows the debugger to

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 403

control its execution through the special system calls F$DExec and
F$DExit. (The child process is created with the trace bit of its status
register set and is executed with the F$DExec system call.)

The register buffer is an area in the caller’s data area permanently
associated with each child process. It is set to an image of the child’s initial
registers for use with the F$DExec call.

For information about process creation, see the F$Fork service request.

NoteNote
A process created by F$DFork does not execute unless it is told to do
so. When a process is run, the trace bit is set in the user status register.
This causes the system trace exception handler to occur once for each
user instruction executed, thus user programs run slowly.

Processes whose primary module is owned by a super-user may only
be debugged by a super-user. You cannot debug system-state
processes.

NoteNote
The Atomic kernel does not support F$DFork.

See Also

F$DExec

F$DExit

F$Fork

404 OS-9 for 68K Processors Technical Manual

F$DelPrc

De-allocate Process Descriptor Service Request

ASM Call
OS9 F$DelPrc

Input
d0.w = process ID to de-allocate

Output

None

Error Output
cc = carry set
d1.w = appropriate error code

Attributes
State: System

Description

F$DelPrc de-allocates a process descriptor previously allocated by
F$AllPD. You must ensure any system resources used by the process are
returned before calling F$DelPrc.

Currently, the F$DelPrc request is simply a convenient interface to the
F$RetPD service request. It is preferred to F$RetPD to ensure
compatibility with future releases of the operating system needing to
perform process specific de-allocations.

Possible Errors

E$BNam

E$KwnMod

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 405

See Also

F$AllPD

F$AllPrc

F$FindPD

F$RetPD

NoteNote
This is a privileged system-state service request.

406 OS-9 for 68K Processors Technical Manual

F$DelTsk

Release Protection Structures

ASM Call
OS9 F$DelTsk

Input
(a4) = process descriptor pointer to release

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: System

Description

F$DelTsk is called by the kernel when a process terminates to return the
process’ protection resources.

NoteNote
The system-state code making this call should know using the Trap 0
mechanism (OS9 F$) to call this routine causes the current process to
be specified, regardless of the value in (a4). If you need to specify a
process other than the current one, use the system dispatch tables to
make the call directly to the system routine, with the following input
parameter:

(a4) = process descriptor pointer

The System Security Module (SSM) implements F$DelTsk.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 407

NoteNote
The OS-9 kernel ignores all errors returned by F$DelTsk.

See Also

F$AllTsk

NoteNote
This is a privileged system-state service request.

408 OS-9 for 68K Processors Technical Manual

F$Event

Create, Manipulate, and Delete Events

ASM Call
OS9 F$Event

Input
d1.w = Event function code
All others are dependent on function code

Output

Dependent on function code

Error Output

Dependent on function code

Attributes
State: User

Description

Events are multiple-value semaphores that synchronize concurrent
processes sharing resources such as files, data modules, and CPU time.
F$Event provides facilities:

• To create and delete events.

• To permit processes to link/unlink events and obtain event information.

• To suspend operation until an event occurs.

• For various means of signaling.

An OS-9 event is a 32-byte system global variable maintained by the
system. The following fields are included in each event:

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 409

Table D-8 Event Fields

Event Description

Event ID This number and the event’s array position are used to
create a unique ID.

Event
name

This name must be unique and cannot exceed 12
characters.

Event
value

This four-byte integer value has a range of two billion.

Wait
increment

This value is added to the event value when a process
waits for the event. It is set when the event is created
and does not change.

Signal
increment

This value is added to the event value when the event
is signaled. This value is set when the event is created
and does not change.

Link
Count

This is the event use count.

Next
event

This is a pointer to the next process in the event
queue. An event queue is circular and includes all
processes waiting for the event. Each time the event
is signaled, this queue is searched.

Previous
event

This is a pointer to the previous process in the event
queue.

410 OS-9 for 68K Processors Technical Manual

The following function codes are supported:

Possible Errors

Dependent on function code

See Also

The section on events in Chapter 1: System Overview.

Table 7-5 Event Function Codes

Name Description

Ev$Creat Create new event.

Ev$Delet Delete existing event.

Ev$Info Return event information.

Ev$Link Link to existing event by name.

Ev$Pulse Signal an event occurrence.

Ev$Read Read event value without waiting.

Ev$Set Set event variable and signal an event occurrence.

Ev$SetR Set relative event variable; signal an event occurrence.

Ev$Signl Signal an event occurrence.

Ev$UnLnk Unlink event.

Ev$Wait Wait for event to occur.

Ev$WaitR Wait for relative to occur.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 411

Ev$Creat

Create New Event

Input
d0.l = initial event variable value
d1.w = 2 (Ev$Creat function code)
d2.w = auto-increment for Ev$Wait
d3.w = auto-increment for Ev$Signl
(a0) = event name string pointer (max 11-chars)

Output
d0.l = event ID number
(a0) = updated past event name

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

You can create and delete events dynamically as needed. When an event
is created, an initial signed value is specified, as well as signed increments
to be applied each time the event occurs or is waited for. The returned
event ID number is used in subsequent F$Event calls to refer to the event
created.

Possible Errors

E$BNam Name is syntactically incorrect or longer
than 11 chars.

E$EvFull The event table is full.

E$EvBusy The named event already exists.

412 OS-9 for 68K Processors Technical Manual

Ev$Delet

Delete Existing Event

Input
(a0) = event name string pointer (max 11-chars)
d1.w = 3 (Ev$Delet function code)

Output
(a0) = updated past event name

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

Ev$Delet removes an event from the system event table, freeing the
entry for use by another event. Events have an implicit use count (initially
set to 1), that is incremented with each Ev$Link call and decremented
with each Ev$UnLnk call. An event may not be deleted unless its use
count is zero.

NoteNote
OS-9 does not automatically unlink events when an F$Exit occurs.

Possible Errors

E$BNam Name is syntactically incorrect or longer
than 11 chars.

E$EvNF Event not found in the event table.

E$EvBusy The event has a non-zero link count.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 413

Ev$Info

Return Event Information

Input
d0.l = event index (ID number) to begin search
d1.w = 7 (Ev$Info function code)
(a0) = ptr to buffer for event information

Output
d0.l = event index found
(a0) = data returned in buffer

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

Ev$Info returns a copy of the 32-byte event table entry associated with an
event. Unlike other F$Event functions, Ev$Info only uses the low word of
d0. This index is the system event number, ranging from zero to the
maximum number of system events minus one. The event information
block for the first active event with an index greater than or equal to this
index is returned in the caller’s buffer. If none exists, an error is returned.
Ev$Info is provided for utilities needing to determine the status of all
active events.

Possible Errors

E$EvntID The index is above all active events.

414 OS-9 for 68K Processors Technical Manual

Ev$Link

Link to Existing Event by Name

Input
(a0) = event name string pointer (max 11 chars)
d1.w = 0 (Ev$Link function code)

Output
d0.l = event ID number
(a0) = updated past event name

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

Ev$Link determines the ID number of an existing event. Once an event is
linked, all subsequent references are made using the event ID returned.
This permits the system to access events quickly, while protecting against
programs using invalid or deleted events. The event use count is
incremented when an Ev$Link is performed. To keep the use count
synchronized properly, perform an Ev$UnLnk when the event will no
longer be used.

Possible Errors

E$BNam Name is syntactically incorrect or longer
than 11 chars.

E$EvNF Event not found in the event table.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 415

Ev$Pulse

Signal Event Occurrence

Input
d0.l = event ID number
d1.w = MS bit set to activate all processes in range
 LS bits = 9 (Ev$Pulse function code)
d2.l = event pulse value

Output

None

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

Ev$Pulse signals an event occurrence, but differs from Ev$Signl. The
event variable is set to the value passed in d2, and the signal
auto-increment is not applied. Then, the Ev$Signl search routine is
executed and the original event value is restored.

Possible Errors

E$EvntID The ID specified is not a valid active event.

416 OS-9 for 68K Processors Technical Manual

Ev$Read

Read Event Value Without Waiting

Input
d0.l = event ID number
d1.w = 6 (Ev$Read function code)

Output
d1.l = current event value

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

Ev$Read reads the value of an event without waiting or modifying the
event variable. You can use this to determine the availability of the event
(or associated resource) without waiting.

Possible Errors

E$EvntID ID specified is not a valid active event.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 417

Ev$Set

Set Event Variable and Signal Event Occurrence

Input
d0.l = event ID number
d1.w = MS bit set to activate all processes in range
 LS bits = A (Ev$Set function code)
d2.l = new event value

Output
d1.l = previous event value

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

Ev$Set is similar to the Ev$Signl call, except the event variable is initially
set to the value passed in d2 rather than updated with the signal
auto-increment. After this is done, the Ev$Signl routine is executed
directly.

Possible Errors

E$EvntID The ID specified is not a valid active event.

418 OS-9 for 68K Processors Technical Manual

Ev$SetR

Set Relative Event Variable and Signal Event Occurrence

Input
d0.l = event ID number
d1.w = MS bit set to activate all processes in range
 LS bits = B (Ev$SetR function code)
d2.l = (signed) increment for event variable

Output
d1.l = previous event value

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

Ev$SetR is similar to Ev$Signl, but instead of using the signal
auto-increment value to update the event variable, the value in d2 is used.
Arithmetic underflows or overflows are set to $80000000 or $7fffffff,
respectively.

Possible Errors

E$EvntID The ID specified is not a valid active event.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 419

Ev$Signl

Signal Event Occurrence

Input
d0.l = event ID number
d1.w = MS bit set to activate all processes in range
 LS bits = 8 (Ev$Signl function code)

Output

None

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

Ev$Signl signals an event has occurred. The current event variable is
updated with the signal auto-increment specified when the event was
created. Then, the event queue is searched for the first process waiting for
that event value. If the MS bit of d1 (the function code) is set, all processes
in the event queue with a value in range are activated. The sequence is the
same for each event in the queue until the queue is exhausted:

• The signal auto-increment is added to the event variable

• The first process in range is awakened

• The event variable is updated with the wait auto-increment

• The search continues with the updated value

Possible Errors

E$EvntID The ID specified is not a valid active event.

420 OS-9 for 68K Processors Technical Manual

Ev$UnLnk

Unlink Event

Input
d0.l = event ID number
d1.w = 1 (Ev$UnLnk function code)

Output

None

Error Output
cc = carry bit se
d1.w = error code if error

Attributes
State: User

Description

Ev$Unlnk informs the system a process no longer uses an event. The
event use count is decremented. When it reaches zero, you must delete it.
OS-9 uses this only for error checking.

Possible Errors

E$EvntID ID specified is not a valid active event.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 421

Ev$Wait

Wait for Event to Occur

Input
d0.l = event ID number
d1.w = 4 (Ev$Wait function code)
d2.l = minimum activation value (signed)
d3.l = maximum activation value (signed)

Output
d1.l = actual event value

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

Ev$Wait waits for an event to occur. The event variable is compared to
the range specified in d2 and d3. If the value is not in range, the calling
process is suspended in a FIFO event queue. It waits until an Ev$Signl
occurs putting the value in range and adding the wait auto-increment
(specified at creation) to the event variable.

If the process receives a signal while in the event queue, it is activated
even though the event has not actually occurred. The auto-increment is not
added to the event variable, and the event value returned is not within the
specified range. The caller’s intercept routine is executed, but an event
error is not returned.

Possible Errors

E$EvntID ID specified is not a valid active event.

422 OS-9 for 68K Processors Technical Manual

Ev$WaitR

Wait for Relative Event to Occur

Input
d0.l = event ID number
d1.w = 5 (Ev$WaitR function code)
d2.l = minimum relative activation value (signed)
d3.l = maximum relative activation value (signed)

Output
d1.l = actual event value
d2.l = minimum actual activation value
d3.l = maximum actual activation value

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

Ev$WaitR works exactly like Ev$Wait, except the range specified in d2
and d3 is relative to the current event value. The event value is added to
d2 and d3 respectively, and the actual values are returned to the caller.
The Ev$Wait function is then executed directly.

If an underflow or overflow occurs on the addition, the values $80000000
(minimum integer), and $7fffffff (maximum integer) are used,
respectively.

Possible Errors

E$EvntID ID specified is not a valid active event.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 423

F$Exit

Terminate Calling Process

ASM Call
OS9 F$Exit

Input
d1.w = Status code to be returned to parent process

Output

Process is terminated

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$Exit is the means by which a process can terminate itself. Its data
memory area is de-allocated and its primary module is unlinked. All open
paths are automatically closed.

The parent can execute an F$Wait call to detect the death of the process.
This returns (to the parent) the status word passed by the child in its exit
call. The shell assumes the status word is an OS-9 error code that the
terminating process wishes to pass back to its parent process. The status
word could also be a user-defined status value.

Processes called directly by the shell should only return an OS-9 error
code or zero if no error occurred.

424 OS-9 for 68K Processors Technical Manual

NoteNote
The parent must do an F$Wait before the process descriptor is
returned.

An F$Exit call functions as follows:

• Close all paths

• Return memory to the system

• Unlink the primary module and user trap handlers

• Free process descriptor of any dead child processes

• If the parent is dead, free the process descriptor

• If the parent has not executed an F$Wait call, leave the process in
limbo until the parent notices the death

• If the parent is waiting, move the parent to the active queue, inform the
parent of the death/status, remove the child from the sibling list, and
free its process descriptor memory

NoteNote
Only the primary module and the user trap handlers are unlinked.
Unlink any other modules that are loaded or linked by the process
before calling F$Exit.

Although F$Exit closes any open paths, it pays no attention to errors
returned by the I$Close request. Because of I/O buffering, this can cause
write errors to go unnoticed when paths are left open. However, by
convention, the standard I/O paths (0, 1, 2) are usually left open.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 425

See Also

F$AProc

F$FindPD

F$Fork

F$RetPD

F$SRtMem

F$UnLink

F$Wait

I$Close

426 OS-9 for 68K Processors Technical Manual

F$FindPD

Find Process/Path Descriptor

ASM Call
OS9 F$FindPD

Input
d0.w = process/path number
(a0) = process/path table pointer

Output
(a1) = pointer to process/path descriptor

Error Output
cc = Carry bit set
d1.w = error code if error

Attributes
State: System

Description

F$FindPD converts a process or path number to the absolute address of
its descriptor data structure. You can use it for simple memory
management of fixed length blocks. See F$AllPD for a description of the
data structure used.

See Also

F$AllPD

F$RetPD

NoteNote
This is a privileged system-state service request.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 427

F$FIRQ

Add or Remove Device from Fast IRQ Table (System-State Only)

ASM Call
OS9 F$FIRQ

Input
d0.b = vector number
 (25 - 31 for autovectors,
 57 - 63 for 68070 on-chip autovectors,
 64 - 255 for vectored IRQs.)
d1.b = reserved, must be 0.
(a0) = IRQ service routine entry point (0 = remove)
(a2) = device static storage.

Output

None

Error Output
cc = carry bit set
d1.w = error code

Attributes
State: System

Description

F$FIRQ installs an IRQ service routine into or removes one from the
system’s fast IRQ table. This fast IRQ system provides a faster interrupt
response context than the normal IRQ vector polling scheme (provided via
F$IRQ).

To:

• place a routine into the fast IRQ system, set a0 to a non-zero value.

• remove a routine from the fast IRQ system, set a0 to zero.

428 OS-9 for 68K Processors Technical Manual

Only one F$FIRQ routine can be active at a time per vector. An attempt to
install a second routine on a vector using F$FIRQ causes an E$VctBsy
error. If additional devices are required to be on the same vector as an
F$FIRQ device, use F$IRQ to install them.

Device drivers are required to determine if their device caused the
interrupt. Service routines conform to the following register conventions:

Input

d0.w = vector address (vector number * 4)

(a2) = device static storage pointer

(a6) = system global data pointer (D_'s)

(a7) = system stack (small IRQ default stack)

Output

cc = carry clear: return to interrupted context

cc = carry set: poll further devices on vector using

 F$IRQ polling system.

WARNING!
Fast interrupt service routines may destroy the d0 and a2 registers.
You must preserve all other registers used.

The interrupt stack provided is a small default IRQ stack. The service
routine must ensure this stack is not overflowed. The Init module’s IRQ
stack value does not affect this stack; the Init module value is used to
control the F$IRQ polling system stack.

Possible Errors

E$VctBsy

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 429

See Also

F$IRQ

The OS-9 for 68K Processors Technical I/O Manual contains more
information on RBF and SCF device drivers.

430 OS-9 for 68K Processors Technical Manual

F$Fork

Create New Process

ASM Call
OS9 F$Fork

Input
d0.w = desired module type/revision (usually
 program/object 0=any)
d1.l = additional memory size
d2.l = parameter size
d3.w = number of I/O paths to copy
d4.w = priority
(a0) = module name pointer
(a1) = parameter pointer

Output
d0.w = child process ID
(a0) = updated beyond module name

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$Fork creates a new process that becomes a child of the caller. It sets up
the new process’ memory, MPU registers, and standard I/O paths.

The system parses the name string of the new process’ primary module
(the program initially executed). Next, the system module directory is
searched to see if the program is already in memory. If so, the module is
linked and executed. If not, the name string is used as the pathlist of the file

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 431

to be loaded into memory. The first module in this file is linked and
executed. To be loaded, the module must be program object code and
have the appropriate read and/or execute permissions set for the user.

The primary module’s module header is used to determine the process’
initial data area size. OS-9 then attempts to allocate RAM equal to the
required data storage size plus any additional size specified in d1, plus the
size of any parameter passed. The RAM area must be contiguous.

The new process’ registers are set up as shown in the diagram on the next
page. The execution offset given in the module header is used to set the
PC to the module’s entry point. If d4.w is set to zero, the new process
inherits the same priority as the calling process.

When the shell processes a command line, it passes a copy of the
parameter portion (if any) of the command line as a parameter string. The
shell appends an end-of-line character to the parameter string to simplify
string-oriented processing.

If any of the these operations are unsuccessful, the fork is aborted and an
error is returned to the caller. The following diagram shows how F$Fork
sets up the data memory area and registers for a newly-created process.
For more information, see F$Wait.

Figure D-3 Data Memory Area and Registers in Child Process

Parameter Area

Stack Area

(a1) (highest address)

Data Area

(a5), (a7)

(a6) (lowest address)

432 OS-9 for 68K Processors Technical Manual

Table D-9 Registers Passed to the Child Process

Register Description

sr n000, where:

n = 0 for non-MSP systems

n = 1 for MSP systems

pc Module entry point

d0.w Process ID

d1.l Group/user number

d2.w Priority

d3.w Number of I/O paths inherited

d4.l Undefined

d5.l Parameter size

d6.l Total initial memory allocation

d7.l Undefined

(a0) Undefined

(a1) Top of memory pointer

(a2) Undefined

(a3) Primary (forked) module pointer

(a4) Undefined

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 433

NoteNote
(a6) is actually biased by $8000, but this can usually be ignored
because the linker biases all data references by -$8000. However, it
may be significant to note when debugging programs.

NoteNote
Both the child and parent process execute concurrently. If the parent
executes an F$Wait call immediately after the fork, it waits until the
child dies before it resumes execution. A child process descriptor is
returned only when the parent does an F$Wait call.

Modules owned by a super-user execute in system state if the system-state
bit in the module’s attributes is set. This is rarely necessary, quite
dangerous, and not recommended for beginners.

Possible Errors

E$IPrcID

(a5) Parameter pointer

(a6) Static storage (data area) base pointer

(a7) Stack pointer (same as (a5))

Table D-9 Registers Passed to the Child Process (continued)

Register Description

434 OS-9 for 68K Processors Technical Manual

See Also

F$Chain

F$Exit

F$Wait

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 435

F$GBlkMp

Get Free Memory Block Map

ASM Call
OS9 F$GblkMp

Input
d0.l = Address to begin reporting segments
d1.l = Size of buffer in bytes
(a0) = Buffer pointer

Output
d0.l = System’s minimum memory allocation size
d1.l = Number of memory fragments in system
d2.l = Total RAM found by system at startup
d3.l = Current total free RAM available
(a0) = Memory fragment information

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

436 OS-9 for 68K Processors Technical Manual

Description

F$GBlkMp copies the address and size of the system’s free RAM blocks
into the user’s buffer for inspection. It also returns various information
concerning the free RAM as noted by the output registers above. The
address and size of the free RAM blocks are returned in the user’s buffer in
following format (address and size are 4-bytes):

Figure D-4

Although F$GblkMp returns the address and size of the system’s free
memory blocks, these blocks may never be accessed directly. Use
F$SRqMem to request free memory blocks.

NoteNote
F$GBlkMp provides a status report concerning free system memory for
mfree and similar utilities. The address and size of free RAM changes
with system use. Although F$GblkMp returns the address and size of
the system’s free memory blocks, these blocks may never be accessed
directly. Use F$SRqMem to request free memory blocks.

address size

address size

address size

address size

0end of memory
fragment
information

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 437

See Also

F$Mem

F$SRqMem

438 OS-9 for 68K Processors Technical Manual

F$GModDr

Get Copy of Module Directory

ASM Call
OS9 F$GModDr

Input
d1.l = Maximum number of bytes to copy
(a0) = Buffer pointer

Output
d1.l = Actual number of bytes copied

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$GModDr copies the system’s module directory into the user’s buffer for
inspection. mdir uses F$GModDr to look at the module directory. Although
the module directory contains pointers to each module in the system, you
should never directly access the modules. Rather, use F$CpyMem to copy
portions of the system’s address space for inspection. On some systems,
directly accessing the modules may cause address or bus trap errors.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 439

NoteNote
F$GModDr is provided primarily for use by mdir and similar utilities.
The format and contents of the module directory may change on
different releases of OS-9 for 68K. For this reason, it is often preferable
to use the output of mdir to determine the names of modules in
memory.

See Also

F$CpyMem

F$Move

440 OS-9 for 68K Processors Technical Manual

F$GPrDBT

Get Copy of Process Descriptor Block Table

ASM Call
OS9 F$GPrDBT

Input
d1.l = maximum number of bytes to copy
(a0) = Buffer pointer

Output
d1.l = Actual number of bytes copied

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$GPrDBT copies the process descriptor block table into the caller’s buffer
for inspection. The procs utility uses F$GPrDBT to quickly determine
which processes are active in the system. Although F$GPrDBT returns
pointers to the process descriptors of all processes, never access the
process descriptors directly. Instead, use the F$GPrDsc system call if you
need to inspect particular process descriptors.

The system call, F$AllPD, describes the format of the process descriptor
block table.

See Also

F$AllPD

F$GPrDsc

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 441

F$GPrDsc

Get Copy of Process Descriptor

ASM Call
OS9 F$GPrDsc

Input
d0.w = Requested process ID
d1.w = Number of bytes to copy
(a0) = Process descriptor buffer pointer

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$GPrDsc copies a process descriptor into the caller’s buffer for
inspection. There is no way to change data in a process descriptor. The
procs utility uses F$GPrDsc to gain information about an existing
process.

NoteNote
The format and contents of a process descriptor may change with
different releases of OS-9 for 68K.

442 OS-9 for 68K Processors Technical Manual

Possible Errors

E$IPrcID

See Also

F$GPrDBT

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 443

F$GProcP

Get Process Pointer

ASM Call
OS9 F$GProcP

Input
d0.w = requested process ID

Output
(a1) = process descriptor pointer

Error Output
cc = Carry bit set
d1.w = appropriate error code

Attributes
State: System

Description

F$GProcP returns a pointer to the process descriptor associated with the
requested process ID. It is used by system-state code to inspect and
possibly change the contents of a process descriptor.

NoteNote
The format and contents of a process descriptor may change with
different releases of OS-9 for 68K.

If you use this call, be aware of having the process die while using this
pointer. To prevent the process descriptor from being deleted, ensure
system-state preemption for your process is disabled while using the
pointer. To do this, set the P$Preempt field of your process descriptor.

444 OS-9 for 68K Processors Technical Manual

Possible Errors

E$IPrcID

NoteNote
This is a privileged system-state service request.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 445

F$Gregor

Get Gregorian Date

ASM Call
OS9 F$Gregor

Input
d0.l = time (seconds since midnight)
d1.l = Julian date

Output
d0.l = time (00hhmmss)
d1.l = date (yyyymmdd)

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$Gregor converts Julian dates to Gregorian dates. Gregorian dates are
considered the normal calendar dates.

The Julian date is similar to the Julian date used by astronomers. It is
based on the number of days that have elapsed since January 1, 4713 B.C.
Each astronomical Julian day changes at noon. OS-9 differs slightly from
the astronomical standard by changing Julian dates at midnight. It is
relatively easy to adjust for this, when necessary.

446 OS-9 for 68K Processors Technical Manual

NoteNote
The normal (Gregorian) calendar was revised to correct errors due to
leap year at different dates throughout the world. The algorithm used by
OS-9 for 68K makes this adjustment on October 15, 1582. Be careful
when you are working with old dates, because the same day may be
recorded as a different date by different sources.

NoteNote
F$Gregor is the inverse function of F$Julian.

See Also

F$Julian

F$Time

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 447

F$GSPUMp

Return Status of Access Permissions

ASM Call
OS9 F$GSPUMp

Input
d0.w = process ID for which to get information
d2.l = size of area for information
(a0) = address of area for information

Output
d2.l = size of area for information
(a0) = address of area for information

Error Output
cc = carry bit set
d1.w = error code if error (access denied)

Attributes
State: User

Description

F$GSPUMp returns data about a specified process’ memory map for
debugging purposes.

The format of the data is:

8 bits: 00000ewr(high order)

8 bits: use count(low order)

One word in this format is returned for each memory block in the system.
This information is taken from the process’ SSM data structure. If the
address space given is not big enough, only the information that fits in the
area is returned.

F$GSPUMp is used primarily by the maps utility to display process image
information.

448 OS-9 for 68K Processors Technical Manual

NoteNote
The System Security Module (SSM) implements F$GSPUMp.

NoteNote
The buffer pointer must be word-aligned to avoid an E$AdrErr.

Possible Errors

E$AdrErr

E$IPrcID

E$Param

E$UnkSvc (non SSM systems).

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 449

F$Icpt

Set Up Signal Intercept Trap

ASM Call
OS9 F$Icpt

Input
(a0) = Address of the intercept routine
(a6) = Address to be passed to the intercept routine

Output
(d0) = Number of signals pending

Error Output

None

Attributes
State: User

Description

F$Icpt tells OS-9 to install a signal intercept routine:

• (a0) contains the address of the signal handler routine.

• (a6) usually contains the address of the program’s data area.

NoteNote
Signals sent to the process causes the intercept routine to be called
instead of the process being killed.

450 OS-9 for 68K Processors Technical Manual

After the F$Icpt call has been made, whenever the process receives a
signal, its intercept routine executes. A signal aborts a process that has not
used the F$Icpt service request and its termination status (register d1.w)
is the signal code. Many interactive programs set up an intercept routine to
handle keyboard abort and keyboard interrupt signals.

The intercept routine is entered asynchronously because a signal may be
sent at any time (similar to an interrupt) and is passed the following:

d1.w = Signal code
(a6) = Address of intercept routine data area

The intercept routine should be short and fast, such as setting a flag in the
process’s data area. Avoid complicated system calls (such as I/O). After
the intercept routine is complete, it may return to normal process execution
by executing the F$RTE system call.

NoteNote
Each time the intercept routine is called, 70 bytes are used on the
user’s stack.

See Also

F$RTE

F$Send

F$SigReset

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 451

F$ID

Get Process ID / User ID

ASM Call
OS9 F$ID

Input

None

Output
d0.w = Current process ID
d1.l = Current process group/user number
d2.w = Current process priority

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$ID returns the caller’s process ID number, group and user ID, and
current process priority (all word values). OS-9 assigns a unique process
ID to the process. The user ID is defined in the system password file, and is
used for system and file security. Several processes can have the same
user ID.

452 OS-9 for 68K Processors Technical Manual

F$IODel

Check For Busy I/O Module

ASM Call
OS9 F$IODel

Input
(a0) = module pointer

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: System

Description

F$IODel is called by the kernel when an I/O module is unlinked for the last
time. F$IODel checks the system’s device table to see if the module is
busy.

If the module is not busy, no error is returned and the caller may remove
the module. If the module is busy, an error is returned and the caller needs
to keep the link count for the module at 1.

NoteNote
The IOMan module implements F$IODel.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 453

Possible Errors

E$ModBsy

NoteNote
This is a privileged system-state service request.

454 OS-9 for 68K Processors Technical Manual

F$IOQu

Enter I/O Queue

ASM Call
OS9 F$IOQu

Input
d0.w = Process Number

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: System

Description

F$IOQu links the calling process into the I/O queue of the specified
process and performs an untimed sleep. It is assumed routines associated
with the specified process send a wake up signal to the calling process.
IOQu is used primarily and extensively by the I/O system.

For example, if a process needs to do I/O on a particular device that is busy
servicing another request, the calling process performs an F$IOQu call to
the process in control of the device. When the first process returns from the
file manager, the kernel automatically wakes up the IOQu-ed process.

NoteNote
The IOMan module implements F$IOQu.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 455

See Also

F$FindPD

F$Send

F$Sleep

NoteNote
This is a privileged system-state service request.

456 OS-9 for 68K Processors Technical Manual

F$IRQ

Add or Remove Device from IRQ Table

ASM Call
OS9 F$IRQ

Input
d0.b = vector number
 25-31 for autovectors
 57-63 for 68070 on-chip autovectors
 64-255 for vectored IRQs
d1.b = priority (0 = polled first, 255 = last)
(a0) = IRQ service routine entry point (0 = delete)
(a2) = device static storage
(a3) = port address

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: System

Description

F$IRQ installs an IRQ service routine into the system polling table. If (a0)
equals 0, the call deletes the IRQ service routine, and only (d0/a0/a2)
are used.

The port is sorted by priority onto a list of devices for the specified vector. If
the priority is 0, only this device is allowed to use the vector. Otherwise,
any vector may support multiple devices. OS-9 does not poll the I/O port

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 457

before calling the interrupt service routine and makes no use of (a3).
Device drivers are required to determine if their device caused the
interrupt. Service routines conform to the following register conventions:

Input:

d0.w = vector offset (vector number *4)
(a2) = global static pointer
(a3) = port address
(a6) = system global data pointer (D_’s)
(a7) = system stack (in active proc’s descriptor)

Output:

None

Error Output

Carry bit set if the device did not cause the interrupt.

WARNING!
Interrupt service routines may destroy the following registers: d0, d1,
a0, a2, a3, and/or a6. You must preserve all other registers used.

NoteNote
Note the following:

• You may not put zero priority multiple auto-vectored devices on the
polling list.

• Zero priority devices do no exclude use of the vector by F$FIRQ
devices.

458 OS-9 for 68K Processors Technical Manual

Possible Errors

E$POLL is returned if the polling table is full.

See Also

The OS-9 for 68K Processors Technical I/O Manual contains more
information on RBF and SCF device drivers.

NoteNote
This is a privileged system-state service request.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 459

F$Julian

Get Julian Date

ASM Call
OS9 F$Julian

Input
d0.l = time (00hhmmss)
d1.l = date (yyyymmdd)

Output
d0.l = time (seconds since midnight)
d1.l = Julian date

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$Julian converts Gregorian dates to Julian dates.

Julian dates are very convenient for computing elapsed time. To compute
the number of days between two dates, subtract the lower Julian date
number from the higher number.

The Julian day number returned is similar to the Julian date used by
astronomers. It is based on the number of days that have elapsed since
January 1, 4713 B.C. Each astronomical Julian day changes at noon. OS-9
differs slightly from the astronomical standard by changing Julian dates at
midnight. It is relatively easy to adjust for this, when necessary.

You can also use the Julian day number to determine the day of the week
for a given date. Use the following formula:

weekday = MOD(Julian_Date + 2, 7)

460 OS-9 for 68K Processors Technical Manual

This returns the day of the week as 0 = Sunday, 1 = Monday, etc.

NoteNote
The normal (Gregorian) calendar was revised to correct errors due to
leap year at different dates throughout the world. The algorithm used by
OS-9 makes this adjustment on October 15, 1582. Be careful when
working with old dates, because the same day may be recorded as a
different date by different sources.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 461

F$Link

Link to Memory Module

ASM Call
OS9 F$Link

Input
d0.w = Desired module type/language byte (0 = any)
(a0) = Module name string pointer

Output
d0.w = Actual module type/language
d1.w = Module attributes/revision level
(a0) = Updated past the module name
(a1) = Module execution entry point
(a2) = Module pointer

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$Link causes OS-9 to search the module directory for a module having a
name, language, and type as given in the parameters. If found, the address
of the module’s header is returned in (a2). The absolute address of the
module’s execution entry point is returned in (a1). As a convenience, you
can obtain this and other information from the module header. The
module’s link count is incremented to keep track of how many processes
are using the module. If the module requested is not re-entrant, only one
process may link to it at a time.

462 OS-9 for 68K Processors Technical Manual

If the module’s access word does not give the process read permission, the
link call fails. Link also fails to find modules whose header has been
destroyed (altered or corrupted) in memory.

Possible Errors

E$BNam

E$MNF

E$ModBsy

See Also

F$Load

F$UnLink

F$UnLoad

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 463

F$Load

Load Module(s) from File

ASM Call
OS9 F$Load

Input
d0.b = Access mode
d1.l = Memory "color" type to load (optional)
(a0) = Pathname string pointer

Output
d0.w = Actual module type/language
d1.w = Attributes/revision level
(a0) = Updated beyond path name
(a1) = Module execution entry pointer (of first
 module loaded)
(a2) = Module pointer

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$Load opens a file specified by the pathlist. It reads one or more memory
modules from the file into memory until it reaches an error or end of file.
Then, it closes the file. Modules are usually loaded into the highest physical
memory available.

464 OS-9 for 68K Processors Technical Manual

NoteNote
The IOMan module implements F$Load.

An error can indicate the following:

• An actual I/O error.

• A module with a bad parity or CRC.

• The system memory is full.

All loaded modules are added to the system module directory, and the first
module read is linked. The parameters returned are the same as those
returned by a link call, and apply only to the first module loaded.

To be loaded, the file must contain a module or modules possessing a
proper module header and CRC. The access mode may be specified as
either Exec_ or Read_, causing the file to load from the current execution
or data directory, respectively.

If any of the modules loaded belong to the super-user, the file must also be
owned by the super-user. This prevents normal users from executing
privileged service requests.

The input register specifying memory color type (d1.l) is only referenced if
the most significant bit of d0.b is set.

NoteNote
F$Load does not work on SCF devices.

Possible Errors

E$BMID

E$MemFul

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 465

F$Mem

Resize Data Memory Area

ASM Call
OS9 F$Mem

Input
d0.l = Desired new memory size in bytes

Output
d0.l = Actual size of new memory area in bytes
(a1) = Pointer to new end of data segment (+1)

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$Mem contracts the process’ data memory area. The new size requested
is rounded up to an even memory allocation block (16 bytes minimum).
Additional memory is allocated contiguously upward (towards higher
addresses), or de-allocated downward from the old highest address. If d0
equals 0, the call is considered an information request and the current
upper bound and size is returned.

NoteNote
If you wish to expand memory, you should use F$SRqMem.

This request can never return all of a process’ memory, or cause
de-allocation of memory at its current stack pointer.

466 OS-9 for 68K Processors Technical Manual

The request may return an error upon an expansion request even though
adequate free memory exists, because the data area must always be
contiguous. Memory requests by other processes may fragment memory
into smaller, scattered blocks that are not adjacent to the caller’s present
data area.

NoteNote
F$Mem calls to resize the data area always fail for versions of the kernel
from OS-9 for 68K V2.3 and greater. Only an information request
(d0=0) works on OS-9 for 68K V2.3 and greater.

Possible Errors

E$DelSP

E$MemFul

E$NoRAM

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 467

F$Move

Move Data (Low Bound First)

ASM Call
OS9 F$Move

Input
d2.l = Byte count to copy
(a0) = Source pointer
(a2) = Destination pointer

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: System

Description

F$Move is a fast block-move subroutine capable of copying data bytes
from one address space to another (usually from system to user or vice
versa).

The data movement subroutine is optimized to make use of long moves
whenever possible. If the source and destination buffers overlap, an
appropriate move (left to right or right to left) is used to avoid loss of data
due to incorrect propagation.

NoteNote
This is a privileged system-state service request.

468 OS-9 for 68K Processors Technical Manual

F$NProc

Start Next Process

ASM Call
OS9 F$NProc

Input

None

Output

Control does not return to caller.

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: System

Description

F$NProc takes the next process out of the active process queue and
initiates its execution. If there is no process in the queue, OS-9 waits for an
interrupt, and then checks the active process queue again.

NoteNote
The process calling NProc should already be in one of the system’s
process queues. If it is not, the calling process becomes unknown to
the system even though the process descriptor still exists and is printed
out by a procs command.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 469

See Also

F$AProc

NoteNote
This is a privileged system-state service request.

470 OS-9 for 68K Processors Technical Manual

F$Panic

System Catastrophic Occurrence

ASM Call
OS9 F$Panic

Input
d0.l = panic code

Output

None. F$Panic generally does not return.

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: System

Description

The OS-9 kernel makes a F$Panic request when it detects a disastrous,
but not necessarily fatal, system condition. Ordinarily, F$Panic is
undefined and the system dies.

The system administrator may install a service routine for F$Panic as part
of an OS9P2 startup module. The function of such a routine might be to fork
a warmstart Sysgo process or to cause the system to re-boot.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 471

Two panic codes are defined:

F$Panic is called only when the kernel believes there are no processes
remaining to be executed. Although it is likely the system is dead at this
point, it may not be. Interrupt service routines or system-state alarms could
cause the system to become active.

NoteNote
The OS-9 kernel does not detect power failure. However, some
machines are equipped with hardware that can detect power failure.
For these machines, you could install an OS9P2 routine to call
F$Panic when power failure occurs.

See Also

F$SSvc

The section on installing system-state routines in Chapter 2: The Kernel.

Table D-10 Panic Codes

Code Description

K$Idle The system has no processes to execute.

K$PFail Power failure has been detected.

472 OS-9 for 68K Processors Technical Manual

F$Permit (System-State)

Allow Process Access to Specified Memory

ASM Call
OS9 F$Permit

Input
d0.l = size of area in bytes
d1.b = permission requested (Read_/Write_/Exec_)
(a2) = address of area requested
(a3) = SSM global static storage
(a4) = process descriptor removing access
(a6) = system global pointer

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: System

Description

F$Permit is called primarily by the kernel to permit a process access to its
data and code space on SSM systems. It is also invoked when a process
requests additional memory (F$SRqMem) or links to another module so
memory can be accessed by the process.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 473

NoteNote
The system-state code making this call should know using the Trap 0
mechanism (OS9 F$) to call this routine causes the current process to
be specified, regardless of the value in (a4). If you need to specify a
process other than the current one, use the system dispatch tables to
make the call directly to the system routine, with the following input
parameters:

• d0.l = size of area in bytes

• d1.b = permission requested (Read_/Write_/Exec_)

• (a2) = address of area requested

• (a3) = SSM global static storage

• (a4) = process descriptor removing access

• (a6) = system global pointer

The System Security Module (SSM) implements F$Permit.

See Also

F$Protect (System-State)

474 OS-9 for 68K Processors Technical Manual

F$Permit (User-State)

Allow Process Access to Specified Memory

ASM Call
OS9 F$Permit

Input
d0.l = size of area in bytes
d1.b = permission requested (Read_/Write_/Exec_)
(a2) = address of area requested
(a4) = process descriptor allowing access

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$Permit permits a process to access to a specified memory region. It is
used primarily on memory protected (SSM) systems. Systems with SSM
installed only allow a process to access its own data and code spaces.
Processes requiring access to memory regions outside of their code/data
area (for example, memory mapped video) should use F$Permit before
any attempt to access the region.

Only super-group users (0.n) may call F$Permit from user-state.

NoteNote
The System Security Module (SSM) implements F$Permit.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 475

Possible Errors

E$Permit

See Also

F$Protect (User-State)

476 OS-9 for 68K Processors Technical Manual

F$PErr

Print Error Message

ASM Call
OS9 F$PErr

Input
d0.w = Error message path number (0=none)
d1.w = Error number

Output

None

Error Output

None

Attributes
State: User

Description

F$PErr is the system’s error reporting facility. It writes an error message to
the standard error path. Most OS-9 systems print ERROR #mmm.nnn. Error
numbers 000:000 to 063:255 are reserved for the operating system.

If an error path number is specified, the path is searched for a text
description of the error encountered. The error message path contains an
ASCII file of error messages. Each line may be up to 80 characters long. If
the error number matches the first seven characters in a line (000:215), the
rest of the line is printed along with the error number. Error messages may
be continued on several lines by beginning each continuation line with a
space. An example error file might contain lines like this:

000:214 (E$FNA) File not accessible.
An attempt to open a file failed. The file was
found, but is inaccessible to you in the
requested mode. Check the file’s owner ID
and access attributes.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 477

000:215 (E$BPNam) Bad pathlist specified.
The pathlist specified is syntactically
incorrect.

000:216 (E$PNNF) File not found.
The pathlist does not lead to any known file.

000:218 (E$CEF) Tried to create a file that already exists.

000:253 (E$Share) Non-sharable file busy.
The most common way to get this error is to
try to delete a currently open file. Anytime a
file already in use is opened for
non-sharable access, this error occurs. It
also occurs if you try to access a
non-sharable device (for example, a printer)
that is busy.

NoteNote
The IOMan module implements F$PErr.

478 OS-9 for 68K Processors Technical Manual

F$Protect (System-State)

Remove Process’ Permission to Memory Block

ASM Call
OS9 F$Protect

Input
d0.l = size of area in bytes
(a2) = address of area returned
(a3) = SSM global static storage
(a4) = process descriptor removing access
(a6) = system global pointer

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: System

Description

F$Protect is primarily called by the kernel to remove access permission
to a block of memory. This occurs when the process exits or when it unlinks
a module or returns extra memory resources (F$SRtMem).

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 479

NoteNote
The system-state code making this call should know using the Trap 0
mechanism (OS9 F$) to call this routine causes the current process to
be specified, regardless of the value in (a4). If you need to specify a
process other than the current one, use the system dispatch tables to
make the call directly to the system routine, with the following input
parameters:

• d0.l = size of area in bytes

• (a2) = address of area requested

• (a3) = SSM global static storage

• (a4) = process descriptor removing access

• (a6) = system global pointer

The System Security Module (SSM) implements F$Protect

Possible Errors

E$Permit

See Also

F$Permit (System-State)

480 OS-9 for 68K Processors Technical Manual

F$Protect (User-State)

Remove Process’ Permission to Memory Block

ASM Call
OS9 F$Protect

Input
d0.l = size of area in bytes
(a2) = address of area returned

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$Protect removes process access permission to a specified region
(usually permitted via F$Permit (User-State)).

Only super-group users (0.n) may call F$Protect from user-state.

NoteNote
The System Security Module (SSM) implements F$Protect.

Possible Errors

E$Permit

See Also

F$Permit (User-State)

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 481

F$PrsNam

Parse Path Name

ASM Call
OS9 F$PrsNam

Input
(a0) = Name of string pointer

Output
d0.b = Pathlist delimiter
d1.w = Length of pathlist element
(a0) = Pathlist pointer updated past the optional "/"
 character
(a1) = Address of the last character of the name +1

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$PrsNam parses a string for a valid pathlist element, returning its size.
Note this does not parse an entire pathname, only one element in it. A valid
pathlist element may contain the following characters:

A - ZUppercase letters. Periods

a - zLowercase letters _ Underscores

0 - 9Numbers$ Dollar signs

Any other character terminates the name and returns as the pathlist
delimiter.

482 OS-9 for 68K Processors Technical Manual

NoteNote
F$PrsNam processes only one name, so you may need several calls to
process a pathlist with more than one name. F$PrsNam terminates a
name on recognizing a delimiter character. Pathlists are usually
terminated with a null byte.

Figure D-5

Possible Errors

E$BNam

See Also

F$CmpNam

00ELIF/0D/

(a0)

00ELIF/0D/

(a0) (a1)
d0.b = "/"
d1.w = 2

After F$PrsNam Call:

Before F$PrsNam Call:

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 483

F$RetPD

Return Process/Path Descriptor

ASM Call
OS9 F$RetPD

Input
d0.w = process/path number
(a0) = process/path table pointer

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: System

Description

F$RetPD de-allocates a process or path descriptor. It can be used with
F$AllPD and F$FindPD to perform simple memory management of other
fixed length objects.

See Also

F$AllPD

F$FindPD

NoteNote
This is a privileged system-state service request.

484 OS-9 for 68K Processors Technical Manual

F$RTE

Return from Interrupt Exception

ASM Call
OS9 F$RTE

Input

None

Output

None

Attributes
State: User

Description

F$RTE may be used to exit from a signal processing routine.

F$RTE terminates a process signal intercept routine and continues
executing the main program. However, if there are unprocessed signals
pending, the interrupt routine executes again (until the queue is exhausted)
before returning to the main program.

NoteNote
When a signal is received, 70 bytes are used on the user stack.
Consequently, intercept routines should be kept very short and fast if
many signals are expected.

See Also

F$Icpt

F$SigReset

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 485

F$SchBit

Search Bit Map for Free Area

ASM Call
OS9 F$SchBit

Input
d0.w = Beginning bit number to search
d1.w = Number of bits needed
(a0) = Bit map pointer
(a1) = End of bit map (+1) pointer

Output
d0.w = Beginning bit number found
d1.w = Number of bits found

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$SchBit searches the specified allocation bit map for a free block
(cleared bits) of the required length, starting at the beginning bit number
(d0.w). F$SchBit returns the offset of the first block found of the specified
length.

If no block of the specified size exists, it returns with the carry set,
beginning bit number, and size of the largest block found.

486 OS-9 for 68K Processors Technical Manual

NoteNote
The IOMan module implements F$SchBit.

See Also

F$AllBit

F$DelBit

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 487

F$Send

Send Signal to Another Process

ASM Call
OS9 F$Send

Input
d0.w = Intended receiver’s process ID number
 (0 = all)
d1.w = Signal code to send

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$Send sends a signal to a specific process. The signal code is a word
value. A process may send the same signal to multiple processes of the
same group/user ID by passing 0 as the receiver’s process ID number. For
example, the OS-9 Shell command, kill 0, unconditionally aborts all
processes with the same group/user ID (except the Shell itself). This is a
handy but dangerous tool to get rid of unwanted background tasks.

If you attempt to send a signal to a process that has an unprocessed,
previous signal pending, the signal is placed in a FIFO queue of signals for
the individual process. If the process is in the signal intercept routine when
it receives a signal, the new signal is processed when F$RTE executes.

488 OS-9 for 68K Processors Technical Manual

If the destination process for the signal is sleeping or waiting, it is activated
so it may process the signal. The signal processing intercept routine is
executed, if it exists (see F$Icpt). Otherwise, the signal aborts the
destination process, and the signal code becomes the exit status (see
F$Wait).

An exception is the wakeup signal. It activates a sleeping process but does
not cause examination of the signal intercept routine and does not abort a
process that has not made an F$Icpt call.

Some of the signal codes have meanings defined by convention:

S$Kill = 0 = System abort (unconditional)
S$Wake = 1 = Wake up process
S$Abort = 2 = Keyboard abort
S$Intrpt = 3 = Keyboard interrupt
S$HangUp = 4 = Modem Hangup
 5-31 = Reserved for Microware; deadly to I/O
 32-255 = Reserved for Microware
 256-65535 = User defined

The S$Kill signal may only be sent to processes with the same group ID
as the sender. Super users may kill any process.

NoteNote
The I/O system uses the S$Wake signal extensively. It is not reliable if
used by user-state programs.

Signal values less than 32 (S$Deadly) usually cause the current I/O
operation to terminate with an error status equal to the signal value.

Possible Errors

E$IPrcID

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 489

See Also
F$Icpt
F$Sleep
F$Wait

490 OS-9 for 68K Processors Technical Manual

F$SetCRC

Generate Valid CRC in Module

ASM Call
OS9 F$SetCRC

Input
(a0) = module pointer

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$SetCRC updates the header parity and CRC of a module in memory.
The module may be an existing module known to the system, or simply an
image of a module subsequently written to a file. The module must have
correct size and sync bytes; other parts of the module are not checked.

NoteNote
The module image must start on an even address or an address error
occurs.

OS-9 does not permit any modification to the header of a module known to
the system. Modifying the header makes the module inaccessible to other
processes.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 491

Possible Errors

E$BMID

See Also

F$CRC

492 OS-9 for 68K Processors Technical Manual

F$SetSys

Set/Examine OS-9 System Global Variables

ASM Call
OS9 F$SetSys

Input
d0.w = offset of system global variable to
 set/examine
d1.l = size of variable in least significant word
 (1, 2 or 4 bytes).
 The most significant bit, if set, indicates an
 examination request. Otherwise, the variable
 is changed to the value in register d2.
d2.l = new value (if change request)

Output
d2.l = original value of system global variable

Error Output
cc = Carry set
d1.w = Appropriate error code

Attributes
State: User

Description

F$SetSys changes or examines a system global variable. These variables
have a D_ prefix in the system library sys.l. Consult the DEFS files for a
description of the system global variables.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 493

NoteNote
Only a super-user can change system variables. Any system variable
may be examined, but only a few may be altered. The only useful
variables that may be changed are D_MinPty and D_MaxAge. Consult
Process Scheduling in Chapter 2: The Kernel for an explanation of
what these variables control.

The system global variables are OS-9’s data area. It is highly likely they will
change from one release to another. You will probably have to relink
programs using this system call to run them on future versions of OS-9.

WARNING!
The super-user must be extremely careful when changing system
global variables.

See Also

F$SPrior and the DEFS Files section in the OS-9 for 68K Processors
Technical I/O Manual.

494 OS-9 for 68K Processors Technical Manual

F$Sigmask

Mask/Unmask Signals During Critical Code

ASM Call
OS9 F$SigMask

Input
d0.l = reserved, must be zero
d1.l = process signal level
 0 = clear
 1 = set/increment
 -1 = decrement

Output

None

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$SigMask enables or disables signals from reaching the calling process.
If a signal is sent to a process whose mask is disabled, the signal is queued
until the process mask becomes enabled. The process’ signal intercept
routine is executed with signals inherently masked.

Two exceptions to this rule are the S$Kill and S$Wake signals:

S$Kill terminates the receiving process,
regardless of the state of its mask.

S$Wake ensures the process is active, but does not
queue.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 495

When a process makes an F$Sleep or F$Wait system call, its signal
mask is automatically cleared. If a signal is already queued, these calls
return immediately (to the intercept routine).

NoteNote
Signals are analogous to hardware interrupts. Mask signals sparingly,
and keep intercept routines as short and fast as possible.

496 OS-9 for 68K Processors Technical Manual

F$SigReset

Reset Signal Intercept Context Stack

ASM Call
OS9 F$SigReset

Input

None

Output

None

Error Output

None

Attributes
State: User

Description

Under normal circumstances, OS-9 keeps the state of the main process on
the system stack while a signal intercept routine executes. However, if
signals are unmasked during the intercept routine, a subsequent signal
causes the current state to be stacked on the user’s stack.

This does not happen in simple cases, but if the intercept routine unmasks
signals or longjmps()s and then unmasks signals, states are placed on
the user’s stack. There is no functional difference, and if the code actually
expects to return through the nested intercept routines with multiple
F$RTEs, the states must be left where they are.

If the code uses longjmp() to leave the intercept routine it implicitly
clears the saved context off the stack. The kernel performs best if the code
tells the kernel to remove the context.

Whenever a program longjmp()s out of an intercept routine or unmasks
signals in an interrupt service routine with the intent of never F$RTEing, it
should use F$SigReset:

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 497

if(setjmp(x) != 0) {
 _os_sigreset();
 _os_sigmask(-1);
}

See Also

F$Icpt

F$RTE

498 OS-9 for 68K Processors Technical Manual

F$Sleep

Put Calling Process to Sleep

ASM Call
OS9 F$Sleep

Input
d0.l = Ticks/seconds (length of time to sleep)

Output
d0.l = Remaining number of ticks if awakened
 prematurely

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$Sleep deactivates the calling process until the requested number of
ticks have elapsed.

Sleep(0) sleeps indefinitely.

Sleep(1) gives up a time slice but does not
necessarily sleep for one tick.

You cannot use F$Sleep to time more accurately than ±1 tick, because it
is not known when the F$Sleep request was made during the current tick.

A sleep of one tick is effectively a give up current time slice request; the
process is immediately inserted into the active process queue and resumes
execution when it reaches the front of the queue.

A sleep of two or more (n) ticks causes the process to be inserted into the
active process queue after (n - 1) ticks occur and resumes execution
when it reaches the front of the queue. The process is activated before the

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 499

full time interval if a signal (in particular S$Wake) is received. Sleeping
indefinitely is a good way to wait for a signal or interrupt without wasting
CPU time.

The duration of a tick is system dependent, but is usually .01 seconds. If
the high order bit of d0.l is set, the low 31 bits are converted from 256ths
of a second into ticks before sleeping to allow program delays to be
independent of the system’s clock rate.

NoteNote
The system clock must be running to perform a timed sleep. It is not
required to perform an indefinite sleep or to give up a time-slice.

Possible Errors

E$NoClk

See Also

F$Send

F$Wait

500 OS-9 for 68K Processors Technical Manual

F$SPrior

Set Process Priority

ASM Call
OS9 F$SPrior

Input
d0.w = Process ID number
d1.w = Desired process priority: 65535 = highest
 0 = lowest

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$SPrior changes the process priority to the new value specified. A
process can only change another process’ priority if it has the same user
ID. The one exception to this rule is a super user (group ID 0), that may
alter any process’ priority.

Two system global variables affect task-switching:

D_MinPty is the minimum priority a task must have for
OS-9 to age or execute it.

D_MaxAge is the cutoff aging point.

D_MinPty and D_MaxAge are initially set in the Init module.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 501

NoteNote
A very small change in relative priorities has a large effect. For
example, if two processes have priorities 100 and 200, the process with
the higher priority runs 100 times before the low priority process runs at
all. In actual practice, the difference may not be this extreme because
programs spend a lot of time waiting for I/O devices.

Possible Errors

E$IPrcID

See Also

F$SetSys

Process Scheduling in Chapter 2: The Kernel.

502 OS-9 for 68K Processors Technical Manual

F$SRqCMem

System Request for Colored Memory

ASM Call
OS9 F$SRqCMem

Input
d0.l = Byte count of requested memory
d1.w = Memory type code (0 = any)

Output
d0.l = Byte count of memory granted
(a2) = Pointer to memory block allocated

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$SRqCMem allocates a block of a specific type of memory. If a non-zero
type is requested, the search is restricted to memory areas of that type.
The area with the highest priority is searched first.

When the type code is 0, the search is based only on priority. This allows
you to configure a system so fast, on-board memory is allocated before
slow off-board memory. Areas with a priority of 0 are excluded from the
search.

If more than one memory area has the same priority, the area with the
largest total free space is searched first. This allows memory areas to be
balanced (contain approximately equal amounts of free space).

Memory types or color codes are system dependent and may be arbitrarily
assigned by the system administrator. Values below 256 are reserved for
Microware use.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 503

The requested number of bytes are rounded up to a system defined
blocksize—currently 16 bytes. The memory always begins on an even
boundary.

If -1 is passed in d0.l, the largest block of free memory of the specified
type is allocated to the calling process.

F$SRqMem is equivalent to a F$SRqCMem request with a color of 0.

Possible Errors

E$Damage

E$MemFul

E$NoRAM

See Also

F$Mem

F$SRqMem

F$SRtMem

Init: The Configuration Module and Colored Memory sections in
Chapter 2: The Kernel

504 OS-9 for 68K Processors Technical Manual

F$SRqMem

System Memory Request

ASM Call
OS9 F$SRqMem

Input
d0.l = Byte count of requested memory

Output
d0.l = Byte count of memory granted
(a2) = Pointer to memory block allocated

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$SRqMem allocates a block of memory from the top of available RAM. The
requested number of bytes is rounded up to a system defined blocksize
(currently 16 bytes). This system call is useful for allocating I/O buffers and
any other semi-permanent memory. The memory always begins on an
even boundary.

If -1 is passed in d0.l, the largest block of free memory is allocated to the
calling process.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 505

NoteNote
You must save the byte count of allocated memory (as well as the
pointer to the block allocated) if the memory is ever to be returned to
the system.

Possible Errors

E$MemFul

E$NoRAM

See Also

F$Mem

F$SRtMem

506 OS-9 for 68K Processors Technical Manual

F$SRtMem

Return System Memory

ASM Call
OS9 F$SRtMem

Input
d0.l = Byte count of memory being returned
(a2) = Address of memory block being returned

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$SRtMem de-allocates memory after it is no longer needed. The number
of bytes returned is rounded up to a system defined blocksize before the
memory is returned. Rounding occurs identically to that done by
F$SRqMem.

In user state, the system keeps track of memory allocated to a process and
all blocks not returned are automatically de-allocated by the system when a
process terminates. In system state, the process must explicitly return its
memory.

Possible Errors

E$BPAddr

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 507

See Also

F$Mem

F$SRqMem

508 OS-9 for 68K Processors Technical Manual

F$SSpd

Suspend Process

ASM Call
OS9 F$SSpd

Input
d0.w = process ID to suspend

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$SSpd is currently not implemented.

NoteNote
You can suspend a process by setting its priority below the system’s
minimum executable priority level (D_SysMin).

See Also

F$SetPri

F$SetSys

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 509

F$SSvc

Service Request Table Initialization

ASM Call
OS9 F$SSvc

Input
(a1) = pointer to service request initialization
 table
(a3) = user defined

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: System

Description

F$SSvc adds or replaces function requests in OS-9’s user and privileged
system service request tables.

(a3) is generally used to specify the static storage pointer for the installed
system calls. This allows a global data pointer to be associated with each
installed system call. When the system call is invoked, the data pointer is
automatically passed. Whatever (a3) points to is passed to the system
call; (a3) may point to anything.

510 OS-9 for 68K Processors Technical Manual

An example initialization table might look like this:

SvcTbl

 dc.w F$Service OS-9 service request code

 dc.w Routine-*-2 Offset of routine to process request

 :

 dc.w F$Service+SysTrapRedefine system level request

 dc.w SysRoutn-*-2 Offset of routine to handle system request

 :

 dc.w -1 end of table

Valid service request codes range from (0-255).

NoteNote
The offset specified is the offset from the beginning of the next table
entry to the routine. The -2 syntax used in the assembly language is
done to counteract pre-incrementing performed by the assembler.

NoteNote
Specifying an offset of zero causes the provided service code to return
unknown service code (E$UnkSvc).

If the sign bit of the function code word is set, only the system table is
updated. Otherwise, both the system and user tables are updated.

You can only call privileged system service requests from routines
executing in system (supervisor) state. The example above shows how a
service call that must behave differently in system state than it does in user
state is installed.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 511

System service routines are executed in supervisor state. They are written
to conform to register conventions:

Input:

d0-d4 = user’s values
(a0)-(a2) = user’s values
(a3) = service routine global data pointer
(a4) = current process descriptor pointer
(a5) = user’s registers image pointer
(a6) = system global data pointer

Output:

cc = carry set
d1.w = error code if error

The service request routine should process its request and return from
subroutine with an rts instruction. Any of the registers d0-d7 and
(a0)-(a6) may be destroyed by the routine, although for convenience,
(a4)-(a6) are generally left intact.

The user’s register stack frame pointed to by (a5) is defined in the library
sys.l and follows the natural hardware stacking order. If the carry bit is
returned set, the service dispatcher sets R$cc and R$d1.w in the user’s
register stack. Any other values to be returned to the user must be changed
in their stack frame by the service routine.

NoteNote
This is a privileged system-state service request.

512 OS-9 for 68K Processors Technical Manual

F$STime

Set System Date and Time

ASM Call
OS9 F$STime

Input
d0.l = current time (00hhmmss)
d1.l = current date (yyyymmdd)

Output

Time/date is set

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$STime sets the current system date/time and starts the system real-time
clock to produce time-slice interrupts. F$STime is accomplished by putting
the date/time packet in the system direct storage area, and then linking the
clock module. The clock initialization routine is called if the link is
successful.

It is the function of the clock module to:

• Set up any hardware dependent functions to produce system tick
interrupts (including moving new date/time into hardware, if needed).

• Install a service routine to clear the interrupt when a tick occurs.

The OS-9 kernel keeps track of the current date and time in software to
make clock modules small and simple. Certain utilities and functions in
OS-9 expect the clock to be running with an accurate date and time.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 513

The kernel uses the battery-backed clock format to call F$STime during
system start-up. On systems with a battery-backed clock, this results in the
system starting with the correct time and time-slicing turned on. If the
system does not have a battery-backed clock (or if the Init module has
disabled this feature), you should perform an F$STime call during the
system start-up. For example, call F$STime in the initial application or
system start-up file.

NoteNote
The date and time are not checked for validity. On systems with a
battery-backed clock, it is usually only necessary to supply the year to
the F$STime call. The actual date and time are read from the real-time
clock. To read the time, the month field in the date parameter must be
0.

See Also

F$Link

F$Time

514 OS-9 for 68K Processors Technical Manual

F$STrap

Set Error Trap Handler

ASM Call
OS9 F$STrap

Input
(a0) = Stack to use if exception occurs
 (or zero to use the current stack)
(a1) = Pointer to service request initialization
 table

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$STrap enters process local error trap routine(s) into the process
descriptor dispatch table. If an entry for a particular routine already exists, it
is replaced.

User programs may catch the following exception errors:

Bus errorAddress error
Illegal instructionZero Divide
CHK instructionTRAPV instruction
Privilege violationLine 1010 emulator
Line 1111 emulator

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 515

User programs can also catch the following exception errors on systems
with a floating point coprocessor (68020 or 68030 with 68881/882; or
68040):

Branch or set on unordered condition
Inexact resultDivide by zero
UnderflowOperand Error
OverflowNAN signaled

If a user routine is not provided and one of these exceptions occur, the
program is aborted. An example initialization table might look like:

ExcpTbl dc.w T_TRAPV,OvfError-*-4
 dc.w T_CHK,CHKError-*-4
 dc.w -1 End of Table

When an exception routine is executed, it is passed the following:

d7.w = Exception vector offset
(a0) = Program counter when exception occurred
 (same as R$PC(a5))
(a1) = Stack pointer when exception occurred
 (R$a7(a5))
(a5) = User’s register stack image when exception
 occurred
(a6) = user’s primary global data pointer

To return to normal program execution after handling the error, the
exception must restore all registers (from the register image at (a5)) and
jump to the return program counter. For some kinds of exceptions
(especially bus and address errors), this may not be appropriate. It is the
user program’s responsibility to determine whether and where to continue
execution.

You can disable an error exception handler by calling F$STrap with an
initialization table specifying zero as the offset to the routine(s) to remove.
For example, the following table removes user routines for the trapv and
chk error exceptions:

Table dc.w T_TRAPV, 0
 dc.w T_CHK, 0
 dc.w -1

516 OS-9 for 68K Processors Technical Manual

NoteNote
Beware of exceptions in exception handling routines. They are usually
not re-entrant.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 517

F$SUser

Set User ID Number

ASM Call
OS9 F$SUser

Input
d1.l = Desired group/user ID number

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$SUser alters the current user ID to the specified ID. F$SUser has the
following restrictions:

• User number 0.0 may change their ID to anything without restriction.

• A primary module owned by user 0.0 may change its ID to anything
without restriction.

• Any primary module may change its user ID to match the module’s
owner.

All other attempts to change user ID number return an E$Permit error.

518 OS-9 for 68K Processors Technical Manual

F$SysDbg

Call System Debugger

ASM Call
OS9 F$SysDbg

Input

None

Output

None

Error Output
cc = Carry set
d1.w = Appropriate error code

Attributes
State: User

Description

F$SysDbg calls the system level debugger, if one exists, to debug
system-state routines, such as device drivers. The system level debugger
runs in system state and effectively stops timesharing when it is active. It
should never be used when there are other users on the system.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 519

NoteNote
You must enable the system debugger before installing breakpoints or
attempting to trace instructions. If no system debugger is available, the
system is reset. The system debugger takes over some of the
exception vectors directly, in particular the trace exception. This makes
it impossible to use the user debugger when the system debugger is
enabled.

If F$SysDbg is called from user-state, the user process must have a
group.user ID of 0.0. Calls from system-state (for example, file managers,
device drivers) do not have this restriction.

520 OS-9 for 68K Processors Technical Manual

F$SysID

Get System Information

ASM Call
OS9 F$SysID

Input
d0.l = reserved, must be zero.
(a0) = pointer to SysIdent buffer (or null)
(a1) = pointer to copyright buffer (or null)
(a2) = reserved, must be zero.
(a3) = reserved, must be zero.

Output
d0.l = kernel OEM registration number
d1.l = kernel copy serial number
d2.l = processor identifier (68000/68010, etc.)
d3.l = kernel (OS) identifier (68000/68010, etc.)
d4.l = floating pointer unit identifier
 (68881, 68882, 68040)
d5.l = reserved (0)
d6.l = kernel version
 (level/version/revision/edition)
d7.l = reserved (0)
(a0) = “OS-9 Version Vm.n” string (if non-zero)
 (SysIdent buffer)
(a1) = “Copyright....” string (if non-zero)
 (Copyright buffer)
(a2) = reserved
(a3) = reserved

Error Output
cc = carry bit set
d1.w = appropriate error code

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 521

Attributes
State: User

Description

F$SysID returns information about the system. You can use it to
determine specific available operating system capabilities (such as the
operating system’s (OS) release level) or system hardware characteristics
(such as floating point unit presence).

The processor identifier field indicates the class of processor in use, such
as 68000, 68020, etc. CPU32 family processors are assigned a class of
68300.

The kernel (OS) identifier identifies the specific version kernel in use. This
may differ from the processor identifier field whenever a specific version
kernel is available for a class of processors. For example, the 68349 is a
CPU32 (68300) processor family member.

The floating point unit identifier identifies the release level of the kernel in
four 1-byte fields. Thus, Level 1, OS-9 for 68K version 3.0, Edition 0 would
be a value of 01030000.

The SysIdent buffer returns a string of the form OS-9 Version Vm.n if
the input is non-zero.

The copyright buffer returns a string of the form Copyright if the
input (a1) is non-zero.

522 OS-9 for 68K Processors Technical Manual

NoteNote
Note the following:

• For the Atomic kernel, the string buffers (if non-zero) cause a NULL
to be returned in the buffer.

• The string buffers, if used, must be 80 characters. The maximum
strings returned are 79 characters plus a NULL terminator.

• Applications can check for OS-9 for 68K pre-version 3.n
configurations of the kernel by performing this call and checking the
kernel version field returned. If it is 0, the kernel is OS-9 for 68K
pre-version 3.n.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 523

F$Time

Get System Date and Time

ASM Call
OS9 F$Time

Input
d0.w = Format 0 = Gregorian
1 = Julian
2 = Gregorian with ticks
3 = Julian with ticks

Output
d0.l = Current time
d1.l = Current date
d2.w = day of week (0 = Sunday to 6 = Saturday)
d3.l = tick rate/current tick (if requested)

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$Time returns the current system date and time. In the (normal)
Gregorian format, time is expressed as 00hhmmss, and date as
yyyymmdd. The Julian format expresses time as seconds since midnight,
and date as the Julian day number. You can use this to determine the
elapsed time of an event. If ticks are requested, the clock tick rate in ticks
per second is returned in the most significant word of d3. The least
significant word contains the current tick.

524 OS-9 for 68K Processors Technical Manual

The following chart illustrates the values returned in the registers:

Figure D-6 Gregorian vs. Julian Time

NoteNote
F$Time returns a date and time of zero (with no error) if no previous
call to F$STime is made. A tick rate of zero indicates the clock is not
running.

See Also

F$Julian

F$STime

seconds since
midnight (long) 0-

86399

byte 2-3

1

0

zerobyte 3

2

1

0

hour (0-23)

minute (0-59)

second (0-59)

year (integer)

month (1-12)

day (1-31)

Julian day number
(long)

Register Offset Gregorian Format Julian Format

d0.l

d1.l

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 525

F$TLink

Install User Trap Handler Module

ASM Call
OS9 F$TLink

Input
d0.w = User Trap Number (1-15)
d1.l = Optional memory override
(a0) = Module name pointer
 If (a0)=0 or [(a0)]=0, trap handler is
 unlinked. Other parameters may be required for
 specific trap handlers.

Output
(a0) = Updated past module name
(a1) = Trap library execution entry point
(a2) = Trap module pointer
Other values may be returned by specific trap handlers

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

You can use user traps as a convenient way to link into a standard set of
library routines at execution time. This provides the advantage of keeping
user programs small, and automatically updating programs using the
library code if it is changed (without having to re-compile or re-link the
program itself). Most Microware utilities use one or more trap libraries.

526 OS-9 for 68K Processors Technical Manual

F$TLink attempts to link, or load, the named module, installing a pointer to
it in the user’s process descriptor for subsequent use in trap calls. If a trap
module already exists for the specified trap code, an error is returned.
OS-9 allocates and initializes static storage for the trap handler, if
necessary. You can remove traps by passing a null pointer.

A user program calls a trap routine using the following assembly language
directive:

tcall N,Function

This is the equivalent to:

trap #N
dc.w Function

N can be 1 to 15 (specifying which user trap vector to use). OS-9 does not
use the function code, except for passing it to the trap handler, and the
program counter is skipped past it.

F$TLink allows the program to delay installation of the handler until the
program actually uses a trap. If a user program executes a user trap call
before the corresponding F$TLink call has been made, the system
executes the user’s default trap exception entry point (specified in the
module header) if one exists.

NoteNote
System-state processes should not attempt to use trap handlers.

See Also

Chapter 5: User Trap Handlers

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 527

F$Trans

Translate Memory Address

ASM Call
OS9 F$Trans

Input
d0.l = size of block to translate
d1.l = mode: 0 - local CPU address to external bus
 addr
 1 - external bus address to local CPU
 addr
(a0) = address of block

Output
d0.l = size of block translated
(a0) = translated address of block

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

On systems with dual-ported memory, a memory location may appear at
different addresses depending on whether it is accessed via the local CPU
bus or the system’s external bus. You can use the F$Trans request to
translate an address to or from its external bus address.

F$Trans is used when the external bus address must be passed to
hardware devices, such as DMA-type controllers. Using the local CPU bus
address is faster and reduces the traffic on the external bus. Generally, you
should only use the system’s external bus address if you cannot use the
local CPU bus address.

528 OS-9 for 68K Processors Technical Manual

If the specified source block is non-linear with respect to its destination
mapping, F$Trans returns the maximum number of bytes accessible at
the translated address. In this case, subsequent calls to F$Trans must be
made until the entire block has been successfully translated. This is rare,
since OS-9’s memory management routines do not allocate non-linear
blocks.

Possible Errors

E$IBA

E$Param

E$UnkSvc

See Also

Chapter 2: The Kernel sections onInit: The Configuration Module and
Colored Memory.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 529

F$UAcct

User Accounting

ASM Call
OS9 F$UAcct

Input
d0.w = Function code (F$Fork, F$Chain, F$Exit)
(a0) = Process descriptor pointer

Output

None

Error Output
cc = carry bit set
d1.w = error code if error

Attributes
State: User

Description

F$UAcct is a user-defined system call that may be installed by an OS9P2
module. It is called in system state at the beginning and end of every
process; whenever you execute F$Fork, F$Chain, or F$Exit.

The kernel’s fork and chain routines make an F$UAcct request just before
a new process is inserted in the active queue. Since the new process is
ready to execute, its user number, priority, primary module, parameters,
etc. are known to F$UAcct. This provides a variety of opportunities for a
F$UAcct routine. For example:

• A system administrator could keep track of every program run and who
ran what program.

• Automatically lower the priority of particular programs.

• Keep a log of everything a specific user does.

530 OS-9 for 68K Processors Technical Manual

NoteNote
If F$UAcct returns an error during F$Fork, the new process
terminates with the error code in d1.w.

OS-9’s process termination routine makes a F$UAcct request just before a
process’ resources are returned to the system. The process descriptor
contains information about the CPU time consumed, how many bytes were
read or written, how many system calls were made, etc. Once again,
F$UAcct could be used to record or react to this information. The system
ignores any F$UAcct error returned at the end of a process.

NoteNote
You must preserve the values in all registers except d0 and d1.

Possible Errors

E$Param

E$UnkSvc

See Also

F$SSvc

Chapter 2: The Kernel (section on installing system-state routines).

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 531

F$UnLink

Unlink Module by Address

ASM Call
OS9 F$UnLink

Input
(a2) = Address of the module header

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$UnLink tells OS-9 the module is no longer needed by the calling
process. The module’s link count is decremented. When the link count is
zero, the module is removed from the module directory and its memory is
de-allocated. When several modules are loaded together as a group,
modules are only removed when the link count of all modules in the group
have zero link counts.

Device driver modules in use and certain system modules cannot be
unlinked.

See Also

F$UnLoad

532 OS-9 for 68K Processors Technical Manual

F$UnLoad

Unlink Module by Name

ASM Call
OS9 F$UnLoad

Input
d0.w = Module type/language
(a0) = Module name pointer

Output
(a0) = Updated past module name

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$UnLoad locates the module in the module directory, decrements its link
count, and removes it from the directory if the count reaches zero. Note this
call differs from F$UnLink as the pointer to the module name is supplied
rather than the address of the module header.

See Also

F$UnLink

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 533

F$VModul

Validate Module

ASM Call
OS9 F$VModul

Input
d0.l = beginning of module group (ID)
d1.l = module size
(a0) = module pointer

Output
(a2) = Directory entry pointer

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: System

Description

F$VModul checks the module header parity and CRC bytes of an OS-9
module.

If the header values are valid, the module is entered into the module
directory, and a pointer to the directory entry is returned.

The module directory is first searched for another module with the same
name. If a module with the same name and type exists, the one with the
highest revision level is retained in the module directory. Ties are broken in
favor of the established module.

534 OS-9 for 68K Processors Technical Manual

Possible Errors

E$BMCRC

E$BMID

E$BMHP

E$DirFul

E$KwnMod

See Also

F$CRC

F$Load

NoteNote
This is a privileged system-state service request.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 535

F$Wait

Wait for Child Process to Terminate

ASM Call
OS9 F$Wait

Input

None

Output
d0.w = Terminating child process’s ID
d1.w = Child process’s exit status code

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User

Description

F$Wait causes the calling process to deactivate until a child process
terminates by executing a F$Exit system call, or otherwise is terminated.
The child’s ID number and exit status are returned to the parent. If the child
process died due to a signal, the exit status word (register d1) is the signal
code.

If the caller has several child processes, the caller is activated when the
first one dies, so one Wait system call is required to detect termination of
each child.

If a child process died before the Wait call, the caller is reactivated
immediately. Wait returns an error only if the caller has no child
processes.

536 OS-9 for 68K Processors Technical Manual

NoteNote
The process descriptors for child processes are not returned to free
memory until their parent process does a F$Wait system call or
terminates.

If a signal is received by a process waiting for children to terminate, it is
activated. In this case, d0.w contains zero, since no child process has
terminated.

Possible Errors

E$NoChld

See Also

F$Exit

F$Fork

F$Send

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 537

I$Attach

Attach New Device to System

ASM Call
OS9 I$Attach

Input
d0.b = Access mode (Read_, Write_, Updat_)
(a0) = Device name pointer

Output
(a2) = Address of the device table entry

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

I$Attach causes an I/O device to become known to the system. Use it to
attach a new device to the system, or to verify it is already attached.

The device’s name string is used to search the system module directory to
see if a device descriptor module with the same name is in memory (this is
the name by which the device is known). The descriptor module contains
the name of the device’s:

• File manager

• Device driver

• Other related information

538 OS-9 for 68K Processors Technical Manual

If the descriptor is found and the device is not already attached, OS-9 links
to its file manager and device driver. It then places their addresses in a new
device table entry. Any permanent storage needed by the device driver is
allocated, and the driver’s initialization routine is called to initialize the
hardware. If the device has already been attached, it is not re-initialized.

You can use the access mode parameter to verify that subsequent read
and/or write operations are permitted. An Attach system call is not
required to perform routine I/O. It does not reserve the device in question;
I$Attach simply prepares it for subsequent use by any process.

The kernel attaches all devices at open and detaches them at close.

NoteNote
The IOMan module implements I$Attach.

NoteNote
Attach and Detach for devices are similar to Link and Unlink for
modules; they are usually used together. However, system
performance can improve slightly if all devices are attached at startup.
This increments each device’s use count and prevents the device from
being re-initialized every time it is opened. This also has the advantage
of allocating the static storage for devices all at once, thus minimizing
memory fragmentation. If this is done, the device driver termination
routine is never executed.

Possible Errors

E$BMode

E$DevBsy

E$DevOvf

E$MemFul

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 539

See Also

I$Detach

540 OS-9 for 68K Processors Technical Manual

I$ChgDir

Change Working Directory

ASM Call
OS9 I$ChgDir

Input
d0.b = Access mode (read/write/exec)
(a0) = Address of the pathlist

Output
(a0) = Updated past pathname

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

I$ChgDir changes a process’ working directory to another directory file
specified by the pathlist. Depending on the access mode given, either the
execution or the data directory (or both) may change. The file specified
must be a directory file, and the caller must have access permission for the
specified mode.

Access Modes: 1 = Read

 2 = Write

 3 = Update (read and write)

 4 = Execute

If the access mode is read, write, or update, the current data directory
changes. If the access mode is execute, the current execution directory
changes. Both can change simultaneously.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 541

NoteNote
The shell chd directive uses Update mode—you must have both read
and write permission to change directories from the shell. This is a
recommended practice.

NoteNote
The IOMan module implements I$ChgDir.

Possible Errors

E$BMode

E$BPNam

542 OS-9 for 68K Processors Technical Manual

I$Close

Close Path to File/Device

ASM Call
OS9 I$Close

Input
d0.w = Path number

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

I$Close terminates the I/O path specified by the path. The path number is
no longer valid for any OS-9 calls unless it becomes active again through
an Open, Create, or Dup system call. When pathlists to non-sharable
devices are closed, the devices become available to other requesting
processes. If this is the last use of the path (it has not been inherited or
duplicated by I$Dup), all OS-9 internally managed buffers and descriptors
are de-allocated.

NoteNote
The OS-9 F$Exit service request automatically closes any open
paths. By convention, standard I/O paths are not closed unless it is
necessary to change the files/devices they correspond to.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 543

NoteNote
I$Close does an implied I$Detach call. If this causes the device use
count to become zero, the device termination routine is executed.

NoteNote
The IOMan module implements I$Close.

Possible Errors

E$BPNum

See Also

I$Detach

544 OS-9 for 68K Processors Technical Manual

I$Create

Create Path to New File

ASM Call
OS9 I$Create

Input
d0.b = Access mode (S, I, E, W, R)
d1.w = File attributes (access permission)
d2.l = Initial allocation size (optional)
(a0) = Pathname pointer

Output
d0.w = Path number
(a0) = Updated past the pathlist

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

I$Create creates a new file. On multi-file devices, the new file name is
entered in the directory structure, and Create is synonymous with Open.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 545

The access mode parameter passed in register d0.b must have the write
bit set if any data is to be written to the file. The file is given the attributes
passed in the register d1.w. The individual bits are defined as follows:

If the execute bit (bit 2) of the access mode byte is set, directory searching
begins with the working execution directory instead of the working data
directory.

The path number returned by OS-9 identifies the file in subsequent I/O
service requests until the file is closed.

Write automatically allocates file space for the file. The SetStat call
(SS_Size) explicitly allocates file space. If the size bit (bit 5) is set, an
initial file size estimate may be passed in d2.l.

An error occurs if the pathlist specifies an already existing file name. You
cannot use I$Create to make directory files (see I$MakDir).

Create causes an implicit I$Attach call. If the device has not previously
been attached, the device’s initialization routine is executed.

Table D-11 I$Create Bits

Mode Bits (d0.w) Attribute Bits (d1.w)

0 = Read 0 = Owner Read Permission

1 = Write 1 = Owner Write Permission

2 = Execute 2 = Owner Execute Permission

5 = Initial File Size 3 = Public Read Permission

6 = Single User 4 = Public Write Permission

5 = Public Execute Permission

6 = Non-Sharable File

546 OS-9 for 68K Processors Technical Manual

NoteNote
The caller is made the owner of the file. To maintain compatibility with
OS-9/6809 disk formats, there is only space for two bytes of owner ID.
The LS byte of the user’s group and the LS byte of the user’s ID are
used as the owner ID. All user’s with the same group ID may access
the file as the owner.

If an initial file size is specified with I$Create, the exact amount specified
may not be allocated. You must execute a SS_Size SetStat after creating
the file to ensure sufficient space was allocated.

NoteNote
The IOMan module implements I$Create.

Possible Errors

E$BPNam

E$PthFul

See Also

I$Attach

I$Close

I$MakDir

I$Open

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 547

I$Delete

Delete File

ASM Call
OS9 I$Delete

Input
d0.b = Access mode (read/write/exec)
(a0) = Pathname pointer

Output
(a0) = Updated past pathlist

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

I$Delete deletes the file specified by the pathlist. The caller must have
non-sharable write access to the file (the file may not already be open) or
an error results. An attempt to delete a non-multifile device results in an
error.

The access mode is used to specify the data or execution directory (but not
both) in the absence of a full pathlist. If the access mode is read, write, or
update, the current data directory is assumed. If the execute bit is set, the
current execution directory is assumed. Note if a full pathlist is specified (a
pathlist beginning with a slash (/)), the access mode is ignored.

548 OS-9 for 68K Processors Technical Manual

NoteNote
The IOMan module implements I$Delete.

Possible Errors

E$BPNam

See Also

I$Attach

I$Create

I$Detach

I$Open

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 549

I$Detach

Remove Device from System

ASM Call
OS9 I$Detach

Input
(a2) = Address of the device table entry

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

I$Detach removes a device from the system device table, if not in use by
any other process. If this is the last use of the device, the device driver’s
termination routine is called, and any permanent storage assigned to the
driver is de-allocated. The device driver and file manager modules
associated with the device are unlinked and may be lost if not in use by
another process. It is crucial for the termination routine to remove the
device from the IRQ system.

You must use the I$Detach service request to detach devices that were
attached with the I$Attach service request. Both of these are used
mainly by the kernel and are of limited use to the typical user. SCF also
uses Attach/Detach to set up its second (echo) device.

Most devices are attached at startup and remain attached. Seldom used
devices can be attached to the system and used for a while, and then
detached to free system resources when no longer needed.

550 OS-9 for 68K Processors Technical Manual

NoteNote
If an invalid address is passed in (a2), the system may crash or
undergo severe damage.

NoteNote
The IOMan module implements I$Detach.

See Also

I$Attach

I$Close

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 551

I$Dup

Duplicate Path

ASM Call
OS9 I$Dup

Input
d0.w = Path number of path to duplicate

Output
d0.w = New number for the same path

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

Given the number of an existing path, I$Dup returns a synonymous path
number for the same file or device. I$Dup always uses the lowest
available path number. For example, if you do I$Close on path #0, then
do I$Dup on path #4, path #0 is returned as the new path number. In this
way, the standard I/O paths may be manipulated to contain any desired
paths.

The shell uses this service request when it redirects I/O. Service requests
using either the old or new path numbers operate on the same file or
device.

552 OS-9 for 68K Processors Technical Manual

NoteNote
This only increments the use count of a path descriptor and returns a
synonymous path number. The path descriptor is not copied. It is
usually not a good idea for more than one process to be doing I/O on
the same path concurrently. On RBF files, unpredictable results may
occur.

NoteNote
The IOMan module implements I$Dup.

Possible Errors

E$BPNum

E$PthFul

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 553

I$GetStt

Get File/Device Status

ASM Call
OS9 I$GetStt

Input
d0.w = Path number
d1.w = Function code
Others = dependent on function code

Output

Dependent on function code

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

This is a wildcard call used to handle individual device parameters that are
not uniform on all devices, or are highly hardware dependent. The exact
operation of this call depends on the device driver and file manager
associated with the path.

A typical use is to determine a terminal’s parameters (such as echo on/off
and delete character). It is commonly used with the SetStt call, which
sets the device operating parameters.

The mnemonics for the status codes are found in the relocatable library
sys.l or usr.l. Codes 0-255 are reserved for Microware use. The
remaining codes and their parameter passing conventions are user
definable (see Chapter 3, the section on device drivers).

554 OS-9 for 68K Processors Technical Manual

NoteNote
The IOMan module implements I$GetStt.

Presently defined I$GetStt function codes are listed below:

Table D-12 I$GetStt Function Codes

Name Description

SS_CDFD Return File Descriptor (CDFM)

SS_DevNam Return Device Name (All)

SS_EOF Test of End of File (RBF, SCF, PIPE)

SS_FD Read File Descriptor Sector (RBF, PIPE)

SS_FDInf Get Specified File Descriptor Sector (RBF)

SS_Free Return Amount of Free Space on Device (NRF,
NVRAM file mgr.)

SS_Opt Read PD_OPT: The Path Descriptor Option Section
(All)

SS_Pos Get Current File Position (RBF, PIPE)

SS_Ready Test for Data Ready (RBF, SCF, PIPE)

SS_Size Return Current File Size (RBF, PIPE)

SS_VarSect Query Support for Variable Logical Sector Sizes
(RBF)

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 555

Possible Errors

E$BPNum

556 OS-9 for 68K Processors Technical Manual

SS_CDFD

Return File Descriptor (CDFM)

Input
d0.w = Path number
d1.w = #SS_CDFD function code
d2.w = Number of bytes to copy
(a0) = Pointer to buffer area for file descriptor

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

SS_CDFD reads the file descriptor describing the path number. The file
descriptor may be read for information purposes only, as there are no user
changeable parameters.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 557

SS_DevNam

Return Device Name (ALL)

Input
d0.w = Path number
d1.w = #SS_DevNm function code
(a0) = Address of 32 byte area for device name

Output

Device name in 32 byte storage area, null terminated.

Attributes
State: User, System, and I/O

558 OS-9 for 68K Processors Technical Manual

SS_EOF

Test for End of File (RBF, SCF, PIPE)

Input
d0.w = Path number
d1.w = #SS_EOF function code

Output
d1.l = 0 If not EOF, (SCF never returns EOF)

Error Output
cc = Carry bit set
d1.w = Appropriate error code (E$EOF, if end of file)

Attributes
State: User, System, and I/O

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 559

SS_FD

Read File Descriptor Sector (RBF, PIPE)

Input
d0.w = Path number
d1.w = #SS_FD function code
d2.w = Number of bytes to copy(<=logical sector size
 of media)
(a0) = Address of buffer area for FD

Output

File descriptor copied into buffer

Attributes
State: User, System, and I/O

Description

Use SS_FD to inspect the file descriptor information (for example, FD_OWN
and FD_DAT) and the file segment list.

560 OS-9 for 68K Processors Technical Manual

SS_FDInf

Get Specified File Descriptor Sector (RBF)

Input
d0.w = Path number
d1.w = #SS_FDInf function code
d2.w = Number of bytes to copy (<=256)
d3.l = FD sector address
(a0) = Address of buffer area for FD

Output

File descriptor copied into buffer.

Attributes
State: User, System, and I/O

NoteNote
If SS_FDInf is called in user state, the caller must be a super-group
user. If it is called in system state, the caller does not have to be a
super-group user.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 561

SS_Free

Return Amount of Free Space on Device (NRF, NVRAM file mgr.)

Input
d0.l = Path number
d1.w = #SS_Free function code

Output
d0.l = Size of free space on device, in bytes

Attributes
State: User, System, and I/O

562 OS-9 for 68K Processors Technical Manual

SS_Opt

Read PD_OPT: The Path Descriptor Option Section (All)

Input
d0.w = Path number
d1.w = #SS_Opt function code
(a0) = Address to put a 128 byte status packet

Output

Status packet copied to buffer.

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

SS_Opt reads the option section of the path descriptor and copies it into
the 128 byte area pointed to by (a0). It is typically used to determine the
current settings for echo, auto line feed, etc. For a complete description of
the status packet, refer to Chapter 3: OS-9 Input/Output System the
section on file manager path descriptors.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 563

SS_Pos

Get Current File Position (RBF, PIPE)

Input
d0.w = Path number
d1.w = #SS_Pos function code

Output
d2.l = Current file position

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

564 OS-9 for 68K Processors Technical Manual

SS_Ready

Test for Data Ready (RBF, SCF, PIPE)

Input
d0.w = Path number
d1.w = #SS_Ready function code

Output
d1.l = Number of input characters available on SCF or
 pipe devices. RBF devices always return carry
 clear, d1.l=1

Error Output
cc = Carry bit set
d1.w = Appropriate error code (E$NotRdy if no data is
 available)

Attributes
State: User, System, and I/O

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 565

SS_Size

Return Current File Size (RBF, PIPE)

Input
d0.w = Path number
d1.w = #SS_Size function code

Output
d2.l = Current file size

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

566 OS-9 for 68K Processors Technical Manual

SS_VarSect

Query Support for Variable Logical Sector Sizes (RBF)

Input
d0.w = path number
d1.w = #SS_VarSect function code

Output

None

Attributes
State: User, System, and I/O

Description

SS_VarSect is an internal call between RBF and a driver. If the driver
does not return an error, the logical sector size of the media is specified in
PD_SSize. If the driver returns an error, and the error is E$UnkSvc, RBF
sets the path’s logical sector size to 256 bytes and ignores PD_SSize. If
any other error is returned, the path open is aborted and the error is
returned to the caller.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 567

I$MakDir

Make New Directory

ASM Call
OS9 I$MakDir

Input
d0.b = Access mode (see below)
d1.w = Access permissions
d2.l = Initial Allocation Size (Optional)
(a0) = Pathname pointer

Output
(a0) = Updated past pathname

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

I$MakDir is the only way to create a new directory file. It creates and
initializes a new directory as specified by the pathlist. The new directory file
contains no entries, except for an entry for itself (specified by a dot (.)) and
its parent directory (specified by double dot (..)). I$MakDir fails on
non-multi-file devices. If the execution bit is set, OS-9 begins searching for
the file in the working execution directory (unless the pathlist begins with a
slash).

The caller is made the owner of the directory. I$MakDir does not return a
path number because directory files are not opened by this request (use
I$Open to do so). The new directory automatically has its directory bit set

568 OS-9 for 68K Processors Technical Manual

in the access permission attributes. The remaining attributes are specified
by the bytes passed in register d1.w that have individual bits defined as
listed below (if the bit is set, access is permitted):

NoteNote
The IOMan module implements I$MakDir.

Possible Errors

E$BPNam

E$CEF

E$PNNF

Table D-13 I$MakDir Bits

Mode Bits (d0.b) Attribute Bits (d1.w)

0 = Read 0 = Owner Read Permission

1 = Write 1 = Owner Write Permission

2 = Execute 2 = Owner Execute Permission

5 = Initial Directory Size 3 = Public Read Permission

7 = Directory 4 = Public Write Permission

5 = Public Execute Permission

6 = Non-Sharable File

7 = Directory

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 569

I$Open

Open a Path to a File or Device

ASM Call
OS9 I$Open

Input
d0.b = Access mode (D S E W R)
(a0) = Pathname pointer

Output
d0.w = Path number
(a0) = Updated past pathname

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

I$Open opens a path to an existing file or device as specified by the
pathlist. A path number is returned which is used in subsequent service
requests to identify the path. If the file does not exist, an error is returned.

The access mode parameter specifies which subsequent read and/or write
operations are permitted as follows (if the bit is set, access is permitted):

570 OS-9 for 68K Processors Technical Manual

NoteNote
A non-directory file may be opened with no bits set. This allows you to
examine the attributes, size, etc. with the GetStt system call, but does
not permit any actual I/O on the path.

For RBF devices, use read mode instead of update if you are not going to
modify the file. This inhibits record locking, and can dramatically improve
system performance if more than one user is accessing the file. The
access mode must conform to the access permissions associated with the
file or device (see I$Create).

If the execution bit mode is set, OS-9 begins searching for the file in the
working execution directory (unless the pathlist begins with a slash).

If the single user bit is set, the file is opened for non-sharable access even
if the file is sharable.

If the append user bit is set, all writes to the file are written at end-of-file.

Table D-14 I$Open Bits

Mode Bits

0 = Read

1 = Write

2 = Execute

4 = Force writes to always append to end-of-file

6 = Open File for Non-Sharable Use

7 = Open Directory File

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 571

Files can be opened by several processes (users) simultaneously. Devices
have an attribute specifying whether or not they are sharable on an
individual basis.

I$Open always uses the lowest path number available for the process.

NoteNote
The IOMan module implements I$Open.

Directory files may be opened only if the directory bit (bit 7) is set in the
access mode.

Possible Errors

E$Bmode

E$BPNam

E$FNA

E$PNNF

E$PthFul

E$Share

See Also

I$Attach

I$Close

I$Create

572 OS-9 for 68K Processors Technical Manual

I$Read

Read Data from File or Device

ASM Call
OS9 I$Read

Input
d0.w = Path number
d1.l = Maximum number of bytes to read
(a0) = Address of input buffer

Output
d1.l = Number of bytes actually read

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

I$Read reads a specified number of bytes from the specified path number.
The path must previously have been opened in read or update mode. The
data is returned exactly as read from the file/device, without additional
processing or editing such as backspace and line delete. If there is not
enough data in the file to satisfy the read request, fewer bytes are read
than requested, but an end of file error is not returned.

After all data in a file has been read, the next I$Read service request
returns an end of file error.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 573

NoteNote
The keyboard X-ON/X-OFF characters may be filtered out of the input
data on SCF-type devices unless the corresponding entries in the path
descriptor are set to zero. You may wish to modify the device descriptor
so these values in the path descriptor are initialized to zero when the
path is opened. SCF devices usually terminate the read when a
carriage return is reached.

The IOMan module implements I$Read.

For RBF devices, if the file is open for update, the record read is locked out.
See the Record Locking section in the RBF chapter of the OS-9 for 68K
Processors Technical I/O Manual.

The number of bytes requested is read unless:

• The end-of-file is reached

• An end-of-record occurs (SCF only)

• An error condition occurs

Possible Errors

E$BMode

E$BPNum

E$EOF

E$Read

See Also

I$ReadLn

574 OS-9 for 68K Processors Technical Manual

I$ReadLn

Read Text Line with Editing

ASM Call
OS9 I$ReadLn

Input
d0.w = Path number
d1.l = Maximum number of bytes to read
(a0) = Address of input buffer

Output
d1.l = Actual number of bytes read

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

I$ReadLn is similar to I$Read except it reads data from the input file or
device until an end-of-line character is encountered. I$ReadLn also
causes line editing to occur on SCF-type devices. Line editing refers to
backspace, line delete, echo, automatic line feed, etc. Some devices (SCF)
may limit the number of bytes read with one call.

SCF requires the last byte entered be an end-of-record character (normally
carriage return). If more data is entered than the maximum specified, it is
not accepted and a PD_OVF character (normally bell) is echoed. For
example, a I$ReadLn of exactly one byte accepts only a carriage return to
return without error and beeps when other keys are pressed.

After all data in a file has been read, the next I$ReadLn service request
returns an end of file error.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 575

NoteNote
The IOMan module implements I$ReadLn.

Possible Errors

E$BMode

E$BPNum

E$Read

See Also

I$Read

576 OS-9 for 68K Processors Technical Manual

I$Seek

Reposition Logical File Pointer

ASM Call
OS9 I$Seek

Input
d0.w = Path number
d1.l = New position

Output

None

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

I$Seek repositions the path’s file pointer which is the 32-bit address of the
next byte in the file to be read or written. I$Seek usually does not initiate
any physical positioning of the media.

You can perform a Seek to any value even if the file is not large enough.
Subsequent writes automatically expand the file to the required size (if
possible), but reads return an end-of-file condition.

NoteNote
A Seek to address zero is the same as a rewind operation.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 577

Seeks to non-random access devices are usually ignored and return
without error.

NoteNote
On RBF devices, seeking to a new disk sector causes the internal
sector buffer to be rewritten to disk if it has been modified. Seek does
not change the state of record locks. Beware of seeking to a negative
position. RBF takes negatives as large positive numbers.

NoteNote
The IOMan module implements I$Seek.

Possible Errors

E$BPNum

578 OS-9 for 68K Processors Technical Manual

I$SetStt

Set File/Device Status

ASM Call
OS9 I$SetStt

Input
d0.w = Path number
d1.w = Function code
Others = Function code dependent

Output

Function code dependent.

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

This is a wildcard system call used to handle individual device parameters
that are not uniform on all devices or are highly hardware dependent. The
exact operation of this call depends on the device driver and file manager
associated with the path.

A typical use is to set a terminal’s parameters for backspace character,
delete character, echo on/off, null padding, paging, etc. It is commonly
used with the I$GetStt service request that reads the device’s operating
parameters.

The mnemonics for the status codes are found in the relocatable library
sys.l or usr.l. Codes 0-255 are reserved for Microware use. The
remaining codes and their parameter passing conventions are user
definable (see Chapter 3: OS-9 Input/Output System, the Device Driver
Overview section).

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 579

NoteNote
The IOMan module implements I$SetStt.

Presently defined I$SetStt function codes are listed below:

Table D-15 I$SetStt Function Codes

Name Description

SS_Attr Set File Attributes (RBF, PIPE)

SS_Close Notify Driver That Path Has Been Closed (SCF,
RBF, SBF)

SS_DCOff Send Signal When Data Carrier Detect Line Goes
False (SCF)

SS_DCOn Send Signal When Data Carrier Detect Line Goes
True (SCF)

SS_DsRTS Disable RTS Line (SCF)

SS_EnRTS Enable RTS Line (SCF)

SS_Feed Erase Tape (SBF)

SS_FD Write File Descriptor Sector (RBF)

SS_Lock Lock Out Record (RBF)

SS_Open Notify Driver That Path Has Been Opened

SS_Opt Write Option Section of Path Descriptor (All)

580 OS-9 for 68K Processors Technical Manual

Possible Errors

E$BPNum

SS_Relea Release Device (SCF, PIPE)

SS_Reset Restore Head to Track Zero (RBF, SBF)

SS_RFM Skip Tape Marks (SBF)

SS_Size Set File Size (RBF, PIPE)

SS_Skip Skip Blocks (SBF)

SS_SSig Send Signal on Data Ready (SCF, PIPE)

SS_Ticks Wait Specified Number of Ticks for Record Release
(RBF)

SS_WFM Write Tape Marks (SBF)

SS_WTrk Write (Format) Track (RBF)

Table D-15 I$SetStt Function Codes (continued)

Name Description

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 581

SS_Attr

Set File Attributes (RBF, PIPE)

Input
d0.w = Path number
d1.w = #SS_Attr function code
d2.b = New attributes

Output

None

Attributes
State: User, System, and I/O

Description

SS_Attr changes a file’s attributes to the new value, if possible. It is not
permitted to set the dir bit of a non-directory file, or to clear the dir bit of
a non-empty directory.

582 OS-9 for 68K Processors Technical Manual

SS_Close

Notify Driver That Path Has Been Closed (SCF, RBF, SBF)

Input
d0.w = path number
d1.w = SS_Close function code

Output

None

Attributes
State: User, System, and I/O

Description

SS_Close is an internal call for drivers.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 583

SS_DCOff

Send Signal When Data Carrier Detect Line Goes False (SCF)

Input
d0.w = path number
d1.w = SS_DCOff function code
d2.w = Signal code to be sent

Output

None

Attributes
State: User, System, and I/O

Description

When a modem has finished receiving data from a carrier, the data carrier
detect line goes false. SS_DCOff sends a signal code when this happens.
SS_DCOn sends a signal when the line goes true.

584 OS-9 for 68K Processors Technical Manual

SS_DCOn

Send Signal When Data Carrier Detect Line Goes True (SCF)

Input
d0.w = path number
d1.w = SS_DCOn function code
d2.w = Signal code to be sent

Output

None

Attributes
State: User, System, and I/O

Description

When a modem receives a carrier, the data carrier detect line goes true.
SS_DCOn sends a signal code when this happens. SS_DCOff sends a
signal when the line goes false.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 585

SS_DsRTS

Disable RTS Line (SCF)

Input
d0.w = path number
d1.w = SS_DsRTS function code

Output

None

Attributes
State: User, System, and I/O

Description

SS_DsRTS tells the driver to negate the RTS hardware handshake line.

586 OS-9 for 68K Processors Technical Manual

SS_EnRTS

Enable RTS Line (SCF)

Input
d0.w = path number
d1.w = SS_EnRTS function code

Output

None

Attributes
State: User, System, and I/O

Description

SS_EnRTS tells the driver to enable the RTS hardware handshake line.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 587

SS_Feed

Erase Tape (SBF)

Input
d0.w = path number
d1.w = SS_Feed function code
d2.l = # of blocks to erase

Output

None

Attributes
State: User, System, and I/O

Description

SS_Feed erases a portion of the tape. The amount of tape erased depends
on the capabilities of the hardware used. SBF attempts to use the
following: If -1 is passed in d2, SBF erases until the end-of-tape is reached.
If d2 receives a positive parameter, SBF erases the amount of tape
equivalent to that number of blocks. This depends on both the hardware
used and the driver.

588 OS-9 for 68K Processors Technical Manual

SS_FD

Write File Descriptor Sector (RBF)

Input
d0.w = Path Number
d1.w = #SS_FD function code
(a0) = Address of FD sector image

Output

None

Attributes
State: User, System, and I/O

Description

SS_FD changes file descriptor sector data. The path must be open for
write.

NoteNote
You can only change FD_OWN, FD_DAT, and FD_Creat. These are the
only fields written back to disk. Only the super user can change the
file’s owner ID.

SS_FD should normally be used with GetStat (SS_FD) to read the File
Descriptor (FD) before attempting to change FD sector data.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 589

SS_Lock

Lock Out Record (RBF)

Input
d0.w = Path Number
d1.w = #SS_Lock function code
d2.l = Lockout size

Output

None

Attributes
State: User, System, and I/O

Description

SS_Lock locks out a section of the file from the current file pointer position
up to the specified number of bytes.

If 0 bytes are requested, all locks are removed (Record Lock, EOF Lock,
and File Lock).

If $ffffffff bytes are requested, then the entire file is locked out regardless of
where the file pointer is. This is a special type of file lock remaining in effect
until released by SS_Lock(0), a read or write of zero bytes, or the file is
closed.

There is no way to gain file lock using only read or write system calls.

590 OS-9 for 68K Processors Technical Manual

SS_Open

Notify Driver That Path Has Been Opened

Input
d0.w = path number
d1.w = SS_Open function code

Output

None

Attributes
State: User, System, and I/O

Description

SS_Open is an internal call for drivers.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 591

SS_Opt

Write Option Section of Path Descriptor (ALL)

Input
d0.w = Path number
d1.w = #SS_Opt function code
(a0) = Address of a 128 byte status packet

Output

None

Attributes
State: User, System, and I/O

Description

SS_Opt writes the option section of the path descriptor from the 128 byte
status packet pointed to by (a0). It is typically used to set the device
operating parameters (such as echo and auto line feed). This call is
handled by the file managers, and only copies values that are appropriate
to be changed by user programs.

592 OS-9 for 68K Processors Technical Manual

SS_Relea

Release Device (SCF, PIPE)

Input
d0.w = path number
d1.w = SS_Relea function code

Output

None

Attributes
State: User, System, and I/O

Description

SS_Relea releases the device from any SS_SSig, SS_DCOn, or
SS_DCOff requests made by the calling process on this path.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 593

SS_Reset

Restore Head to Track Zero (RBF, SBF)

Input
d0.w = Path number
d1.w = #SS_Reset function code

Output

None

Attributes
State: User, System, and I/O

Description

For RBF, this directs the disk head to track zero. It is used for formatting
and for error recovery. For SBF, this rewinds the tape.

594 OS-9 for 68K Processors Technical Manual

SS_RFM

Skip Tape Marks (SBF)

Input
d0.w = path number
d1.w = SS_RFM function code
d2.l = # of tape marks

Output

None

Attributes
State: User, System, and I/O

Description

SS_RFM skips the number of tape marks specified in d2. If d2 is negative,
the tape is rewound the specified number of marks.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 595

SS_Size

Set File Size (RBF, PIPE)

Input
d0.w = Path number
d1.w = #SS_Size function code
d2.l = Desired file size

Output

None

Attributes
State: User, System, and I/O

Description

SS_Size sets the file’s size.

For pipe files, you can use SS_Size to reset the pipe path (d2.l=0),
provided the pipe has no active readers or writers. Any other value in d2.l
is ignored.

596 OS-9 for 68K Processors Technical Manual

SS_Skip

Skip Blocks (SBF)

Input
d0.w = path number
d1.w = SS_Skip function code
d2.l = # of blocks to skip

Output

None

Attributes
State: User, System, and I/O

Description

SS_Skip skips the number of blocks specified in d2. If the number is
negative, the tape is rewound the specified number of blocks.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 597

SS_SSig

Send Signal on Data Ready (SCF, PIPE)

Input
d0.w = Path number
d1.w = SS_SSig function code
d2.w = User defined signal code

Output

None

Attributes
State: User, System, and I/O

Description

SS_SSig sets up a signal to send to a process when an interactive device
or pipe has data ready. SS_SSig must be reset each time the signal is
sent. The device or pipe is considered busy and returns an error if any read
request arrives before the signal is sent. Write requests to the device are
allowed in this state.

598 OS-9 for 68K Processors Technical Manual

SS_Ticks

Wait Specified Number of Ticks for Record Release (RBF)

Input
d0.w = path number
d1.w = #SS_Ticks function code
d2.l = Delay interval

Output

None

Attributes
State: User, System, and I/O

Description

Normally, if a read or write request is issued for a part of a file locked out by
another user, RBF sleeps indefinitely until the conflict is removed.

You can use SS_Ticks to return an error (E$Lock) to the user program if
the conflict still exists after the specified number of ticks have elapsed.

The delay interval is used directly as a parameter to RBF’s conflict sleep
request. The value 0 (RBF’s default) causes a sleep forever until the record
is released. A value of 1 means if the record is not released immediately,
an error is returned. If the high order bit is set, the lower 31 bits are
converted from 256th of a second into ticks before sleeping. This allows
programmed delays to be independent of the system clock rate.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 599

SS_WFM

Write Tape Marks (SBF)

Input
d0.w = path number
d1.w = SS_WFM function code
d2.l = # of tape marks

Output

None

Attributes
State: User, System, and I/O

Description

SS_WFM writes the number of tape marks specified in d2.

600 OS-9 for 68K Processors Technical Manual

SS_WTrk

Write (Format) Track (RBF)

Input
d0.w = Path number
d1.w = #SS_WTrk function code
(a0) = Address of track buffer
 For hard disks and "autosize" media, this
 table contains 1 logical sector of data
 (pattern $E5). For floppy disks, this table
 contains the track’s physical data.
(a1) = Address of interleave table
 This table contains byte entries of LSN’s
 ordered to match the requested interleave
 offset. NOTE: This is a "logical" table and
 does not reflect the PD_SOffs base sector
 number.
d2 = Track number
d3.w = Side/density
 The low order byte has 3 bits which can be set:
 Bit 0 = SIDE (0=side zero;1=side one)
 Bit 1 = DENSITY (0=single;1=double)
 Bit 2 = TRACK DENSITY (0=single;1=double)
 The high order byte contains the side number.
d4 = Interleave value

Output

None

Attributes
State: User, System, and I/O

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 601

Description

SS_WTrk causes a format track operation (used with most floppy disks) to
occur. For hard or floppy disks with a format entire disk command, this
formats the entire media only when side 0 of the first accessible track is
specified.

602 OS-9 for 68K Processors Technical Manual

I$Write

Write Data to File or Device

ASM Call
OS9 I$Write

Input
d0.w = Path number
d1.l = Number of bytes to write
(a0) = Address of buffer

Output
d1.l = Number of bytes actually written

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

I$Write outputs bytes to a file or device associated with the path number
specified. The path must have been opened or created in the write or
update access modes.

Data is written to the file or device without processing or editing. If data is
written past the present end-of-file, the file is automatically expanded.

NoteNote
The IOMan module implements I$Write.

On RBF devices, any locked record is released.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 603

Possible Errors

E$BMode

E$BPNum

E$Write

See Also

I$Create

I$Open

I$WritLn

604 OS-9 for 68K Processors Technical Manual

I$WritLn

Write Line of Text with Editing

ASM Call
OS9 I$WritLn

Input
d0.w = Path number
d1.l = Maximum number of bytes to write
(a0) = Address of buffer

Output
d1.l = Actual number of bytes written

Error Output
cc = Carry bit set
d1.w = Appropriate error code

Attributes
State: User, System, and I/O

Description

I$WritLn is similar to I$Write except it writes data until a carriage
return character or (d1) bytes are encountered. Line editing is also
activated for character-oriented devices such as terminals, printers, etc.
The line editing refers to auto line feed, null padding at end-of-line, etc.

The number of bytes actually written (returned in d1.l) does not reflect
any additional bytes added by file managers or device drivers for device
control. For example, if SCF appends a line feed and nulls after carriage
return characters, these extra bytes are not counted.

NoteNote
The IOMan module implements I$WritLn.

DOS-9 for 68K System Calls

OS-9 for 68K Processors Technical Manual 605

On RBF devices, any locked record is released.

Possible Errors

E$BMode

E$BPNum

E$Write

See Also

I$Create

I$Open

I$Write

OS-9 for 68K Processors Technical I/O Manual chapter on SCF Drivers
(line editing).

606 OS-9 for 68K Processors Technical Manual

	OS-9® for 68K Processors Technical Manual
	Table of Contents
	Chapter 1: System Overview
	System Modularity
	I/O Overview
	Embedded
	Disk Based
	Extended
	Other

	Memory Modules
	Basic Module Structure
	The CRC Value
	ROMed Memory Modules
	Module Header Definitions
	Additional Header Fields for Individual Modules

	Chapter 2: The Kernel
	Responsibilities of the Kernel
	Kernel Types
	Kernel Differences

	System Call Overview
	User-State and System-State
	Installing System-State Routines

	Kernel System Call Processing
	System Function Calls
	I/O Calls

	Memory Management
	OS-9 Memory Map
	System Memory Allocation
	Operating System Object Code
	Memory Allocators

	Memory Fragmentation
	Colored Memory
	Colored Memory Definition List

	System Memory Cache Lists
	System Initialization
	Init: The Configuration Module

	Initial System Process
	Customization Modules
	Syscache
	SSM
	FPU/FPSP
	Including a Customization Module

	Process Creation
	Process Memory Areas
	Process State

	Process Scheduling
	Preemptive Task-Switching
	D_MinPty: Specifying a Minimum Priority
	D_MaxAge: Specifying a Maximum Age

	Exception and Interrupt Processing
	Reset Vectors: vectors 0, 1
	Error Exceptions: vectors 2 - 8, 10 - 24, 48 - 63
	Trace Exception: vector 9

	Chapter 3: OS-9 Input/Output System
	The OS-9 Unified Input/Output System
	IOMan Overview
	File Manager Overview

	The Kernel and I/O
	Device Driver Overview
	Device Descriptor Overview

	IOMan and I/O
	Device Descriptor Modules
	Adding Additional Devices
	Path Descriptors

	File Managers
	Embedded
	Disk Based
	Extended
	Other

	File Manager Organization
	Beginning of a Sample File Manager Module
	File Manager I/O Responsibilities
	Driver Module Format
	INITIALIZE and TERMINATE
	READ, WRITE, GETSTAT, and SETSTAT
	ERROR

	Sample Driver Module Header Format

	Chapter 4: Interprocess Communications
	Introduction
	Signals
	Supported User-State Signal Codes

	Alarms
	User-State Alarms
	Cyclic Alarms
	Time of Day Alarms
	Relative Time Alarms
	System-State Alarms

	Events
	The Wait and Signal Operations
	Coordinating Non-Sharable Resources
	The F$Event System Call

	Semaphores
	Semaphore States
	Acquiring Exclusive Access
	Releasing Exclusive Access

	Pipes
	Operations on Pipes
	Creating Pipes
	Opening Pipes
	Read/Readln

	Pipe Directories

	Data Modules
	Creating Data Modules
	Link Count
	Saving to Disk

	Chapter 5: User Trap Handlers
	Trap Handlers
	Installing and Executing Trap Handlers
	OS9 and tcall: Equivalent Assembly Language Syntax

	Calling a Trap Handler
	Example One
	Example Two

	An Example Trap Handler
	Trace of Example Two Using the Example Trap Handler

	Chapter 6: The Math Module
	Introduction
	Floating Point Co-processor Emulation Modules
	Installing Co-processor Emulation Modules

	Math Trap Handler

	Chapter 7: OS-9 File System
	Disk File Organization
	Basic Disk Organization
	Identification Sector
	Allocation Map
	Root Directory
	Basic File Structure
	Segment Allocation
	Directory File Format

	Raw Physical I/O on RBF Devices
	Record Locking
	Record Locking and Unlocking
	Non-Sharable Files
	End of File Lock
	Deadlock Detection
	Record Locking Details for I/O Functions

	File Security

	Appendix A: Example Code
	The Init Module
	The Sysgo Module
	Signals: Example Program
	Alarms: Example Program
	Events: Example Program
	Semaphores: Example Program
	C Trap Handler
	RBF Device Descriptor
	SCF Device Descriptor
	SBF Device Descriptor
	Pipe Device Descriptor

	Appendix B: Path Descriptors and Device Descriptors
	RBF Device Descriptor Modules
	RBF Definitions of the Path Descriptor
	SCF Device Descriptor Modules
	SCF Definitions of the Path Descriptor
	SBF Device Descriptor Modules
	SBF Definitions of the Path Descriptor
	Pipe Device Descriptor Modules
	Pipe Definitions of the Path Descriptor

	Appendix C: Error Codes
	Error Codes
	Miscellaneous Errors
	Ultra C Related Errors
	Math Trap Errors
	Processor Exception Errors
	Miscellaneous Errors
	Semaphore Errors
	Operating System Errors
	I/O Errors
	Compiler Errors
	Rave Errors
	Internet Errors
	ISDN Errors

	Appendix D: OS-9 for 68K System Calls
	System Calls
	System Calls and the System Environment

	F$Alarm (System-State)
	F$Alarm (User-State)
	A$AtDate (System-State)
	A$AtDate (User-State)
	A$AtJul (System-State)
	A$AtJul (User-State)
	A$Cycle (System-State)
	A$Cycle (User-State)
	A$Delete (System-State)
	A$Delete (User-State)
	A$Set (System-State)
	A$Set (User-State)
	F$AllBit
	F$AllPD
	F$AllPrc
	F$AllTsk
	F$AProc
	F$CCtl
	F$Chain
	F$ChkMem
	F$CmpNam
	F$CpyMem
	F$CRC
	F$DatMod
	F$DelBit
	F$DExec
	F$DExit
	F$DFork
	F$DelPrc
	F$DelTsk
	F$Event
	Ev$Creat
	Ev$Delet
	Ev$Info
	Ev$Link
	Ev$Pulse
	Ev$Read
	Ev$Set
	Ev$SetR
	Ev$Signl
	Ev$UnLnk
	Ev$Wait
	Ev$WaitR
	F$Exit
	F$FindPD
	F$FIRQ
	F$Fork
	F$GBlkMp
	F$GModDr
	F$GPrDBT
	F$GPrDsc
	F$GProcP
	F$Gregor
	F$GSPUMp
	F$Icpt
	F$ID
	F$IODel
	F$IOQu
	F$IRQ
	F$Julian
	F$Link
	F$Load
	F$Mem
	F$Move
	F$NProc
	F$Panic
	F$Permit (System-State)
	F$Permit (User-State)
	F$PErr
	F$Protect (System-State)
	F$Protect (User-State)
	F$PrsNam
	F$RetPD
	F$RTE
	F$SchBit
	F$Send
	F$SetCRC
	F$SetSys
	F$Sigmask
	F$SigReset
	F$Sleep
	F$SPrior
	F$SRqCMem
	F$SRqMem
	F$SRtMem
	F$SSpd
	F$SSvc
	F$STime
	F$STrap
	F$SUser
	F$SysDbg
	F$SysID
	F$Time
	F$TLink
	F$Trans
	F$UAcct
	F$UnLink
	F$UnLoad
	F$VModul
	F$Wait
	I$Attach
	I$ChgDir
	I$Close
	I$Create
	I$Delete
	I$Detach
	I$Dup
	I$GetStt
	SS_CDFD
	SS_DevNam
	SS_EOF
	SS_FD
	SS_FDInf
	SS_Free
	SS_Opt
	SS_Pos
	SS_Ready
	SS_Size
	SS_VarSect
	I$MakDir
	I$Open
	I$Read
	I$ReadLn
	I$Seek
	I$SetStt
	SS_Attr
	SS_Close
	SS_DCOff
	SS_DCOn
	SS_DsRTS
	SS_EnRTS
	SS_Feed
	SS_FD
	SS_Lock
	SS_Open
	SS_Opt
	SS_Relea
	SS_Reset
	SS_RFM
	SS_Size
	SS_Skip
	SS_SSig
	SS_Ticks
	SS_WFM
	SS_WTrk
	I$Write
	I$WritLn

