
w w w. ra d i sy s . co m
Revision B • July 2006

Using OS-9 for 68K
Processors

Version 3.3

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 3.3 of OS-9 for 68K.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

Using OS-9 for 68K Processors 3

Table of Contents

Chapter 1: OS-9 for 68K Overview 11

12 What Is an Operating System?
13 Using OS-9 as Your Operating System
13 Using OS-9’s Functions
15 Storing Information
16 Multitasking and Multi-user Functions
19 The Memory Module and Modular Software
20 The MWOS Directory Structures
20 About the Directory Structure
23 Development vs. Runtime
25 ISP, NFS, and Other Package’s Directories
26 Directories Contained on the System Disk

Chapter 2: Starting OS-9 35

36 Booting OS-9
37 Failure to Boot
37 Setting the System Time and Date
39 Checking the Date and Time
39 The System Prompt
41 Backing Up the System Disk
42 Formatting a Disk
42 Multiple Drive Format
43 Single Drive Format
44 Continuing the Formatting Process with Either a Single Drive

or a Multiple Drive
45 The Backup Procedure
46 Multiple Drive Backup

4 Using OS-9 for 68K Processors

47 Single Drive Backup

Chapter 3: Basic Commands and Functions 49

50 Learning the Basics
51 Logging on to a Timesharing System
52 An Introduction to the Shell
54 Using the Keyboard
54 Line Editing Control Keys
56 Interrupt Keys
57 The Page Pause Feature
58 Basic Utilities
59 The help Utility and the -? Option
60 free and mfree

Chapter 4: The OS-9 File System 63

64 OS-9 File Storage
65 The File Pointer
67 Text Files
67 Executable Program Module Files
67 Random Access Data Files
68 File Ownership
69 Attributes and the File Security System
71 The OS-9 File System
72 Current Directories
72 On Single-User Systems
73 On Multi-User Systems
73 The Home Directory
74 Directory Characteristics
75 Accessing Files and Directories: The Pathlist
75 Full Pathlists
76 Relative Pathlists
78 Basic File System Oriented Utilities

Using OS-9 for 68K Processors 5

79 dir: Display Directory Contents
80 Wildcards and dir
80 dir Options
81 chd and chx: Moving Around in the File System
81 Using chd
82 Using chx
83 Climbing Directory Trees
86 Using the pd Utility
86 Using makdir to Create New Directories
87 Rules for Constructing File Names
89 Creating Files
89 The build Utility
90 The edt Utility
90 µMACS
91 Examining File Attributes with attr
92 Listing Files
93 Copying Files
94 Copying a File into an Existing File
95 Copying Multiple Files
95 Copying Large Files
96 dsave: Using Procedure Files to Copy Files
98 Copying Multiple Files
100 Errors During dsave
100 Indenting for Directory Levels
101 Keeping Current Directory Backups
102 del and deldir: Deleting Files and Directories
102 Deleting Files
103 Deleting Directories

Chapter 5: The Shell 105

106 Shell Functions
107 Shell Options
108 Changing Shell Options

6 Using OS-9 for 68K Processors

110 The Shell Environment
114 Changing the Shell Environment
116 Built-In Shell Commands
118 Shell Command Line Processing
120 Special Command Line Features
121 Execution Modifiers
122 Additional Memory Size Modifiers
123 I/O Redirection Modifiers
124 Physical I/O Device Names
126 Using I/O Redirection Modifiers
127 Process Priority Modifier
128 Raising the Process’ Priority
128 Wildcard Matching
129 The Asterisk (*)
129 The Question Mark (?)
130 Using Wildcards Together
131 Command Separators
131 Sequential Execution
132 Concurrent Execution
133 Pipes and Filters
134 Un-named Pipes
135 Named Pipes
137 Command Grouping
137 Command Grouping and Pipelines
139 Shell Procedure Files
141 The Login Shell and Two Special Procedure Files: .login and

.logout
141 The .login File
142 The .logout File
142 The Profile Command
144 The Startup Procedure File
145 The Password File
147 Creating a Temporary Procedure File
148 Reading the File Names from Standard Input or a File

Using OS-9 for 68K Processors 7

149 Multiple Shells
151 The Procs Utility
154 Waiting for the Background Procedures
155 Stopping Procedures
158 Error Reporting
159 Running Compiled Intermediate Code Programs

Chapter 6: The make Utility 161

162 Introduction
163 The make Utility
164 Dependency Entry
166 Command Entry
167 Comment Entry
167 Include Entry
168 Macro Entry
169 Summary
170 Processing the Make File
171 Implicit Dependencies
171 Command Line Rules
172 Defaults
173 Modes
174 Set Mode
175 Macro Recognition
176 Special Macros
177 Reserved Macros
180 make Generated Command Lines
180 Compiler Command Lines
181 Assembler Command Lines
181 Linker Command Lines
183 make Options
186 MWMAKEOPTS Environment Variable
187 Examples
187 Compiling C Programs

8 Using OS-9 for 68K Processors

188 Refining the C Compiler Example
189 Make File that Uses Macros
189 Putting It All Together

Chapter 7: Making Backups 191

192 Incremental Backups
193 Making an Incremental Backup: The fsave Utility
195 The fsave Procedure
197 Example fsave Commands
199 Restoring Incremental Backups: The frestore Utility
201 The Interactive Restore Process
203 Unmark Files
204 Restore Files
204 Overwrite Existing Files
204 Change Directories on the Target Device
205 Restore Files More Than Once
205 Restore Files Without Using the Interactive Shell
205 Specify a Source Device
206 Identify the Backup Mounted on the Source Device
206 Indicate Whether the Index Is on the Volume
206 Echo Pathlists
206 Example Command Lines
208 Incremental Backup Strategies
208 The Small Daily Backup Strategy
210 The Single Tape Backup Strategy
212 Use of Tapes/Disks
213 The Tape Utility

Chapter 8: OS-9 for 68K System Management 215

216 Setting Up the System Defaults: The Init Module
217 System Defaults Listed in the Init Module
231 Customization Modules

Using OS-9 for 68K Processors 9

234 Changing System Modules
234 Using the moded Utility
235 Editing the Current Module
236 Exit Edit Mode
237 Editing the systype.d File
241 Making Bootfiles
241 bootlist Files
241 Bootfile Requirements
242 Making RBF Bootfiles
242 Making Tape Bootfiles
243 Using the RAM Disk
244 Volatile RAM Disks
244 Non-Volatile RAM Disks
245 Making a Startup File
246 Initializing Devices
248 Closing a Path to a Device
249 Loading Utilities into Memory
250 Loading the Default Device Descriptor
251 Initializing the RAM Disk
251 Multi-User Systems
253 System Shutdown Procedure
256 Installing OS-9 on a Hard Disk
256 Check the Hard Disk Device Descriptor
257 Format the Hard Disk
258 Copy the Distribution Software on to the Hard Disk
259 Making the Hard Disk the System Boot Disk
260 Test Boot from the Hard Disk
261 Managing Processes in a Real-Time Environment
261 Manipulating Process’ Priority
262 Using D_MinPty and D_MaxAge to Alter the System’s Process

Scheduling
264 Using System-State and User-State Processes
265 Using the tmode and xmode Utilities
269 The Termcap File Format

10 Using OS-9 for 68K Processors

272 Termcap Capabilities
279 Example Termcap Entries

Appendix A: ASCII Conversion Chart 281

282 ASCII Symbol Definitions

 Index 293

11

Chapter 1: OS-9 for 68K Overview

This chapter is a general introduction to OS-9 for 68K. It introduces the
concept of an operating system and explains some of OS-9’s basic
features. It includes the following topics:

• What Is an Operating System?

• Using OS-9 as Your Operating System

• Storing Information

• Multitasking and Multi-user Functions

• The Memory Module and Modular Software

• The MWOS Directory Structures

• Directories Contained on the System Disk

12 Using OS-9 for 68K Processors

1 OS-9 for 68K Overview

What Is an Operating System?

An operating system is the master supervisor of the resources and
functions of a computer system. Computer resources consist of:

• Memory

• CPU time

• Input/output devices such as terminals, disk drives, and printers

OS-9 is a sophisticated operating system for microcomputers. OS-9’s
basic functions are to:

• Provide an interface between the computer and the user

• Manage the input/output (I/O) operations of the system

• Provide for loading and executing programs

• Create and manage a system of directories and files

• Manage timesharing and multitasking

• Allocate memory for various purposes

• Allocate and manage interprocess communication services

1OS-9 for 68K Overview

Using OS-9 for 68K Processors 13

Using OS-9 as Your Operating System

The most visible function of the operating system is its role as an
interface between you and the complex internal hardware and software
functions of the system. OS-9 was designed to make its powerful
features easy to use, even by persons with limited technical knowledge.

Because an operating system provides only part of the overall software
necessary to make the computer useful, application programs such as
word processors and accounting packages tend to be the most
frequently used programs. They are not part of the operating system,
but they rely heavily on services such as input and output provided by
the operating system. Most application programs are written by users or
obtained from commercial software suppliers.

Similarly, programming languages are tools used to create application
programs. These rely heavily on and are closely related to the operating
system.

To help make it easy to use, OS-9 includes a set of programs called
utilities. Utilities are not part of the basic operating system; they are
small application programs providing essential housekeeping,
management, customizing, and maintenance functions. Some utilities,
such as the µMACS text editor, are useful, general-purpose application
programs. Others, such as procs, provide information about a specific
function of the operating system.

Using OS-9’s Functions

There are two basic ways to use OS-9’s many capabilities and
functions:

• The first method uses the utility command set and the shell
command interpreter program. This allows you to type OS-9
commands directly on your keyboard. These commands are
translated into the more complex internal system calls actually
required to carry out the desired operations.

14 Using OS-9 for 68K Processors

1 OS-9 for 68K Overview

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Utilities Reference manual for descriptions of all OS-9
utilities.

• The second method uses system calls. System calls are requests
made to OS-9 within programs written in assembler or a high-level
language. These system calls are available to:

• Load programs into memory

• Create new tasks

• Create or delete files

• Read, write, open, or close files

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

System calls are largely of interest to advanced programmers and are
covered in detail in the OS-9 for 68K Technical Manual.

All OS-9 programming languages have statements causing the program
to use OS-9 system calls, often in a hidden manner.

1OS-9 for 68K Overview

Using OS-9 for 68K Processors 15

Storing Information

Another basic function of any operating system is storing information.
Without some way to store and organize your programs, data, and text,
working on a computer would be extremely complicated.

NoteNote
OS-9 stores information in files and directories located on
mass-storage devices such as floppy disks. It provides easy access
methods for updating, storing, and retrieving files and directories
through standard utilities.

OS-9 organizes all files into organizational structures called directories.
A directory is actually a special file containing the names and locations
of each file it contains. Directories can contain files and subdirectories.
In turn, these subdirectories may contain other files and subdirectories.
This is called a tree structure, or hierarchical, organization for file
storage.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about the file structure, refer to Chapter 4: The
OS-9 File System.

16 Using OS-9 for 68K Processors

1 OS-9 for 68K Overview

Multitasking and Multi-user Functions

OS-9 is a multitasking and multi-user operating system.

Multitasking, or multiprocessing, allows the computer to run many
different programs at the same time. By rapidly switching from one
program to the next, many times per second, programs appear to run at
the same time.

Each program running on the system is called a task, or process. OS-9
allows you to have one or more tasks running in the background while a
task is running in the foreground.

A foreground process is a task requiring your interaction. For example, if
you are editing a file, it is a foreground process because you are actively
using it. A program that prompts you for information is also a foreground
process because you need to respond to it.

NoteNote
A foreground process requires your interaction.

A background process does not require your attention.

A background process is a task that does not require your attention. For
example, if you are printing a text file, you do not have to supervise the
printing process. Therefore, you can have the file printing in the
background while you edit another file. This frees the computer from the
limitation of doing only one thing at a time.

1OS-9 for 68K Overview

Using OS-9 for 68K Processors 17

OS-9’s multitasking capabilities make it possible for efficient memory
use, CPU time, and I/O operations to be shared by all programs without
conflict.

Figure 1-1 Typical Multitasking Use

Multi-user, or timesharing, operation is a natural extension of the
system’s basic multitasking functions. It allows several people to use the
computer simultaneously. OS-9 provides additional security-related
timesharing functions to control access to the system and privacy within
the system.

Figure 1-2 Typical Multi-User System Configuration

Editing a file (foreground process)
Listing a file to a printer (background
process)
Sorting and merging data files (background
process)

Typical Multitasking Use:

18 Using OS-9 for 68K Processors

1 OS-9 for 68K Overview

The multitasking and multi-user capabilities tremendously increase
OS-9’s versatility. OS-9 is often used as a single-user/multitasking
system on small computers. It is also used as a multi-user/multitasking
system on larger computer systems. In either case, there is no
difference in OS-9 itself, the application software, or how either works.

1OS-9 for 68K Overview

Using OS-9 for 68K Processors 19

The Memory Module and Modular Software

A unique feature of OS-9 is its support of modular software techniques
based on memory modules. The use of memory modules can:

• Provide more efficient use of available disk and memory storage

• Make the system run faster

• Simplify programming jobs

• Make it easy to customize and adapt OS-9

All OS-9 programs are kept in the form of one or more program modules
containing pure program code. They do not contain variable storage.
OS-9 assigns variable storage in a separate block of memory at
run-time. Each module has a unique name and can be loaded into
memory or stored on disk or tape. OS-9 automatically keeps track of the
names and locations of all modules present in memory.

An important characteristic of memory modules is the sharing of one
module by several tasks or users at the same time. For example, if four
users want to run BASIC at the same time, only one copy of the BASIC
program module is loaded into memory. Other operating systems
typically load four exact copies of BASIC into memory, thus requiring
300% more memory. The shared module system is completely
automatic and usually transparent to the user.

Another advantage of memory modules is frequently used functions can
share common library modules. For example, a standard OS-9 module
called csl provides a wide range of I/O processing for virtually all
programming languages and programs. This eliminates the need for
each program to include its own standard I/O package. In addition, you
can split large and complex programs into smaller modules that are
easier to test.

20 Using OS-9 for 68K Processors

1 OS-9 for 68K Overview

The MWOS Directory Structures

The directory structure introduced in OS-9 for 68K Version 3.0
represents a significant departure from its predecessor. Its design was
influenced by a growing number of users developing not only under
OS-9, but UNIX and DOS. Microware has adopted this general directory
structure for all of its products.

The MWOS directory structure is designed to:

• Provide a consistent directory structure for all development
platforms.

• Provide similar development environments for OS-9 and OS-9 for
68K.

• Allow code sharing between OS-9 and OS-9 for 68K.

• Make provisions for code and libraries optimized for 32 bit
processors.

• Provide a clear division between the development and runtime
directories.

• Allow for multiple ports from a common set of sources.

• Provide a means to create a disk-based runtime system without
modifying makefiles.

About the Directory Structure

The new structure is built under the MWOS directory. As you descend
through the directories, the files become progressively more OS, CPU,
and hardware dependent. A simplified model appears in Figure 1-3. For
a more detailed examination, we suggest recursively walking down the
directory structure of your newly installed product.

1OS-9 for 68K Overview

Using OS-9 for 68K Processors 21

Sources particular to an operating system (OS) are kept in
MWOS/<OS>/SRC. Sources common between all OS’s are located in
MWOS/SRC. The same logic applies to C header files and assembler
defs. Ports for particular boards are kept under the <OS>/<Processor
family>/PORTS directories.

Figure 1-3 MWOS File Structure

MWOS

DOS UNIXMAKETMPL OS9 SRC

BIN

OS9000

TOOLSDEFS DPIO IO MAKETMPL

NFS

80386 SRC

manbin lib

X11

appdefaults fonts

sun4solsun4

Refer to Figure 1-
4 OS-9 File
Structure

22 Using OS-9 for 68K Processors

1 OS-9 for 68K Overview

Figure 1-4 MWOS/OS9 File Structure

A few examples may be useful here. Where performance is not an
issue, it is Microware’s practice to compile OS-9 for 68K software
products with a 68000 compiler, allowing execution on all Motorola
680X0 MPUs. Most utilities fall into this category and are found in
MWOS/OS9/68000/CMDS. When there are significant performance
benefits to be gained from compiling with a 32 bit compiler, such as with
the ISP system modules, the executables are found in
MWOS/OS9/68020/CMDS.

RELSBOOTLISTS CMDS ISP

68000 SRC

BOOTOBJS

CPU3268020

IO SYS

SYSMODSDEFS ROM

IPCONFIG

DESC SOCKDESC

PORTSCMDS LIB

CPU2 card

CPU1 card CPU3 card

PORTSCMDS LIB

BOOTOBJS STB

CPU1 card

System
Controller

Disk
Controller Card

BOOTOBJS STB

HOST1 HOST2

Ethernet Card

SLIP

OS9

MWOS

1OS-9 for 68K Overview

Using OS-9 for 68K Processors 23

If you are an doing a port of OS-9 to a new 68040 CPU card, find the
kernel and any other processor specific modules in the
MWOS/OS9/68020/CMDS/BOOTOBJS directory. The remainder of the
hardware-independent modules are in MWOS/OS9/68000/CMDS/
BOOTOBJS. CPU card specific components of the OS are found in
MWOS/OS9/<CPU>/PORTS/<YOUR CPU>.

Example boot driver source code is found in MWOS/OS9/SRC/ROM.
Example high level driver sources are found in MWOS/OS9/SRC/IO/
<FILE MANAGER>/DRVR.

Another useful example is for those doing cross development on a
Windows host. An OS-9 targeted cross compiler resides in
MWOS/DOS/BIN/ along with other cross-hosted utilities. Makefiles
should target the appropriate OS and CPU.

Development vs. Runtime

The MWOS directory structure is specifically oriented towards software
development. Whether the development occurs on a resident OS-9
system or a cross development environment, once the executable
modules have been created they are moved to their final locations on
the target machine.

When you are developing an application on a resident development
system, this might be simply a matter of copying a file from the
MWOS/OS9/<CPU>/CMDS directory to the /H0/CMDS directory. It might
involve downloading the modules into memory on a small target
system, making a boot on a server to boot the target over ethernet, or
creating a set of ROMs for a fully ROMed system.

Disk-based runtime systems are similar to their pre-V3.0 counterparts.
Contents of system dependent directories are generally lifted to the root
of the system drive, while (if desirable) a mirror image is kept within
MWOS. For example, an OS-9 for 68K Version 2.4 MVME-147
development pack looked like this:

 Directory of . 17:10:43
C CMDS DEFS IO ISP
LIB SYS SYSCACHE SYSMODS init.ramdisk
startup

24 Using OS-9 for 68K Processors

1 OS-9 for 68K Overview

NoteNote
Development (source) directories like C, IO, SYSCACHE, and SYSMODS
appeared on the root.

An OS-9 for 68K Version 3.0 MVME-147 Extended Board Support Pak
(our example’s nearest counterpart) would look like this:

 Directory of . 17:10:43
CMDS SYS ETC MWOS

All sources, header files, and libraries are now under the MWOS
directory. Depending on the application, the executables found in CMDS,
the system startup file(s) found in SYS, and the network (Internet and/or
NFS) database files are found in ETC. At the system administrator's
option, these files may also be duplicated in MWOS so they may be
modified and tested prior to committing them for use on the
development system.

Directories such as USR, TFTPBOOT, and other directories used on your
OS-9 systems can continue to reside in their current location. The SYS
and LIB directories may continue to reside on the root or on RAM disks
if desired.

Please see the Ultra C documentation for additional information about
the MWOS file structure. The sources provided in Microware products
use pathlists for defs and libs that stay within the MWOS directory
structure.

The sources and makefiles are designed to allow the relocating of the
MWOS directory. Multiple MWOS directories may be created for different
versions of OS-9 and OS-9 for 68K.

1OS-9 for 68K Overview

Using OS-9 for 68K Processors 25

ISP, NFS, and Other Package’s Directories

The ISP and NFS cmds and system modules are now located in the
target system’s CMDS and CMDS/BOOTOBJS directories. This simplifies
the startup procedures for both systems and allows utilities to be loaded
as they are needed without long PATH searching.

The startup procedures for these packages still allow the utilities to be
loaded at startup, but the practice is no longer required. You may
choose to move the systems modules to the boot so no loading is
required.

26 Using OS-9 for 68K Processors

1 OS-9 for 68K Overview

Directories Contained on the System Disk

The following is a list of directories commonly distributed with OS-9 for
68K. They are all contained in the primary directory (the root directory)
of your system disk.

Figure 1-5 Root Directories

h0

TFTPBOOTCMDS ETC MWOS SYS

BOOTOBJS

1OS-9 for 68K Overview

Using OS-9 for 68K Processors 27

Table 1-1 Root Directories

Directory Contains

CMDS The standard OS-9 utilities for running the
system.

Additional user-created programs and OS-9
modules to be executed from a shell command
line.

SYS System files and startup scripts for use in
bringing up the system, allowing logins, and
others, including:

Errmsg Text for descriptions of error
messages. An appendix listing the
error messages is included with
this manual set.

password A sample password file for
timesharing systems. The
password file contains information
such as the user name, password,
and initial process for each user.

termcap Descriptions of your terminal
characteristics.

MWOS Microware Operating System development
directory structure. See the following pages for
more information on the MWOS structure.

ETC Contains the data files used to create the
Inetdb and rpcdb configuration modules.

28 Using OS-9 for 68K Processors

1 OS-9 for 68K Overview

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about:

• Each utility distributed with OS-9, refer to the Utilities Reference
manual.

• Changing device descriptors, refer to Chapter 8: OS-9 for 68K
System Management.

• The password file, refer to Chapter 5: The Shell, and the login utility
in the Utilities Reference manual.

TFTPBOOT If the system is a bootp server, this is the
default directory for bootfiles for the client
machines.

CMDS/BOOTOBJS This directory should contain any system
modules that are to be loaded after the system is
booted.

If the MWOS directory is not otherwise needed on
the target machine, you may choose to keep the
modules required for remaking the system boot
in this directory.

Table 1-1 Root Directories (continued)

Directory Contains

1OS-9 for 68K Overview

Using OS-9 for 68K Processors 29

• The termcap file, refer to Chapter 8: OS-9 for 68K System
Management.

Figure 1-6 MWOS Directories

MWOS

UNIXDOS OS9 OS9000 SRC

30 Using OS-9 for 68K Processors

1 OS-9 for 68K Overview

Figure 1-7 MWOS/OS9 Directories

Table 1-2 MWOS Directories

Directory Contains

OS9 All OS-9 for 68K object code is targeted under this
directory. All OS-9 for 68K specific source code, defs
files, libraries, processor family code, and ports reside
here.

OS9000 All OS-9 directories (same as above).

SRC All sources that are not specific to either OS-9 or
OS-9 for 68K. C defs, common I/O systems, user
tools, and Dual Ported I/O (DPIO) are examples of
code found under the MWOS/SRC directory.

UNIX Similar to other OS directories. Contains the objects
for cross development tools for use on a variety of
UNIX based development systems.

DOS Similar to other OS directories. Contains the objects
for cross development tools for use on a Windows®-
based development system.

OS9

MWOS

68000 68020 CPU32 MAKETEMPL SRC

1OS-9 for 68K Overview

Using OS-9 for 68K Processors 31

Table 1-3 MWOS/OS-9 Directories

Directory Contains

68000 The object code and libraries specific to the 68000
family of processors or binaries created to run on all
versions of the Motorola MC68xxx family of
processors. Most OS-9 utilities are compiled to run
on all processors. In some cases (such as the
Internet utilities), speed concerns require having
versions compiled to the 68020 or CPU32 families.

The 68000 directory also contains code for the
68010, 68070, and 68302 processors.

68020 The cmds and libraries specific to the
68020/68030/68040 processors.

CPU32 Files specific to the CPU32 family, such as the
68332, 68340, and 68349 processors.

SRC The source files for the OS-9 drivers, descriptors,
system modules, defs, and macros. SRC is intended
to be a source directory containing hardware-specific
code written to be reusable from target to target. It is
not intended to be the repository for final object
modules built from this source, although intermediate
object files may be found within its subdirectories.

MAKETEMPL A directory for common makefile templates
(include files for makefiles). In this release, any
templates found in this directory apply only to
makefiles for ISP and related products.

32 Using OS-9 for 68K Processors

1 OS-9 for 68K Overview

To create the CMDS and CMDS/BOOTOBJS directories on the root of a
68030 based system, first dsave the 68000 CMDS directory, then
dsave the 68020 CMDS directory onto the target machine. This provides
all of the base utilities and modules from the 68000 directory and the
68020/68030 modules from the 68020 directory.

Each CPU directory has a PORTS subdirectory. The ports subdirectory
provides directories for a variety of target system boards.

Figure 1-8 Ports Directories

Generally, if you are going to use peripheral cards with a variety of CPU
cards, you should locate them under the 68000 directories. Drivers and
card ports specific to 68020 or CPU32 family processors would be
located under their respective <CPU>/PORTS directory.

Each card subdirectory has a structure that includes CMDS and
CMDS/BOOTOBJS directories. CPU card directories may additionally
contain a BOOTLISTS subdirectory for use in creating boots from within
the MWOS directory structure.

Figure 1-9 Source Directories

Serial CardCPU1 Card CPU2 Card
Disk

Controller Card
Ethernet Card SCSI Card

PORTS

<CPU>

1OS-9 for 68K Overview

Using OS-9 for 68K Processors 33

NoteNote
The level of source code available under the SRC directory depends on
the type of package you purchased.

Table 1-4 Source Directories

Directory Contains

DEFS Files of definitions that apply system-wide, or are
processor independent. These are both assembler .d
and C .h include files.

IO Sources for all OS-9 I/O subsystems including file
managers, drivers, and descriptors. The file’s
subdirectories are organized by subsystem.

MACROS Files of assembly language macro definitions that
apply system-wide or are target independent.

ROM Sources for rebuilding boot ROM components, except
for a few that share source with SCSI drivers in IO.

SYS A repository for files and scripts that end up residing
in the OS-9 SYS directory on the root of the system
disk.

SYSMODS Sources for system extension modules.

34 Using OS-9 for 68K Processors

1 OS-9 for 68K Overview

35

Chapter 2: Start ing OS-9

This chapter describes how to get OS-9 up and running. This includes
formatting and backup procedures. It includes the following topics:

• Booting OS-9

• Backing Up the System Disk

36 Using OS-9 for 68K Processors

2 Starting OS-9

Booting OS-9

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 1: OS-9 for 68K Overview for a description of the
directories commonly supplied with OS-9.

Before using OS-9 on your computer, you must boot the system.
Booting is also called a cold start or bootstrapping. It involves the
computer reading a portion of the system disk (or tape) into memory.

If your system is a standard disk-based computer, the system disk
contains all the modules that make up OS-9. The system disk usually
contains other files and directories frequently used during normal
operations. This includes a directory for each user, a shared commands
directory, and files used by the system.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Chapter 8: OS-9 for 68K System Management contains information
on changing the startup and OS9Boot files.

You should be familiar with two files, called startup and OS9Boot:

startup is a shell procedure file processed
immediately after the system starts
running. startup may contain any legal
OS-9 command or program.

OS9Boot contains the OS-9 system modules that
are read into memory.

2Starting OS-9

Using OS-9 for 68K Processors 37

NoteNote
The boot procedure depends on the requirements of your specific
hardware. The manufacturer supplies detailed instructions outlining the
boot procedure for the specific system involved. Follow those
instructions as specified.

Failure to Boot

If the system fails to boot:

Step 1. Recheck the hardware setup instructions, especially if you made any
modifications to your computer.

Step 2. Make sure you inserted the disk (or tape) correctly, and try the boot
sequence again.

Step 3. Make sure you followed the manufacturer’s booting instructions.

If the boot sequence fails several times, contact your supplier.

Setting the System Time and Date

When the system boots correctly, a welcome message is displayed
followed by the setime prompt. The setime utility starts the system
clock and allows OS-9 to track the date and time of the creation of new
files. The clock must be running for multitasking to take place.

38 Using OS-9 for 68K Processors

2 Starting OS-9

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to:

• The Utilities Reference manual for more information about setime
and date.

• Chapter 8: OS-9 for 68K System Management for more
information about the Init module and the system clock.

The Init module may inform the kernel to automatically start the clock
from a battery-backed clock. If the clock is not started and you have a
system with a battery-backed clock, type the following command to start
the system clock:

$ setime -s

Otherwise, execute setime by typing:

$ setime

setime prompts with the following:

yy/mm/dd hh:mm:ss [am/pm]
Time ?

At the prompt, enter the year, month, day, hour, minutes, seconds, and
optionally am or pm. Unless you specify am or pm, setime uses the 24
hour clock. For example, 15:20 is the same as 3:20 p.m. The input is
one or two digit numbers with a space, colon, semicolon, comma, or
slash used as a field delimiter. If you use a semicolon, the entire date
string must be within quotes. For example, to set the time on May 14,
1993 at 1:24 p.m., type one of the following:

• 93/5/14/1/24/pm

• 93 05 14 1 24 pm

• 93,5,14,13,24

• 93:5:14:13:24

2Starting OS-9

Using OS-9 for 68K Processors 39

• 93/5/14/13/24

• "93;5;14;13;24"

Checking the Date and Time

To find out if the system clock is running or if the date and time is
correct, use the date utility. For example:

$ date
July 2, 1993 Monday 1:25:26pm

The System Prompt

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For information on changing the shell prompt, refer to Chapter 5: The
Shell.

Once you set the time and date, the system displays the following
prompt:

$

The $ prompt means the operating system is active and waiting for you
to enter a command line. This is the default system prompt. This
manual uses the $ prompt for all examples.

40 Using OS-9 for 68K Processors

2 Starting OS-9

NoteNote
The following sections are specifically intended for systems distributed
with floppy disk system disks. These sections are also of general
interest in terms of formatting and backing up floppy disks. If you have a
hard disk or are booting from a media other than a disk, refer to
Chapter 8: OS-9 for 68K System Management.

2Starting OS-9

Using OS-9 for 68K Processors 41

Backing Up the System Disk

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to:

• The Utilities Reference manual for more information about format
and backup.

• A list of naming conventions OS-9 uses is located in Chapter 5: The
Shell.

Before experimenting with OS-9, make a backup of your master system
disk. The backup procedure involves making an exact copy of a disk. If
your system disk becomes damaged, it may become unreadable. For
this reason, it is important to have another copy stored safely away.

Before you can backup your system disk, you need a properly formatted
disk. OS-9 cannot read from or write to new disks until they have been
formatted. The format utility initializes new disks for reading and
writing. backup, the OS-9 utility that makes copies of disks, requires
the backup disk to be the same size and format as the original disk.

The following section provides the steps to follow to backup a disk on a
typical OS-9 system booting from a floppy drive (usually called /d0).

NoteNote
Before formatting your first disk, we strongly recommend you read the
entire section on formatting disks.

42 Using OS-9 for 68K Processors

2 Starting OS-9

Formatting a Disk

The format of OS-9 system disks vary by the type of disk drive and by
manufacturer. Usually, the format is set to the maximum capacity of the
disk drive.

You can place several parameters on the command line with the
format command:

-sd for single density disks.

-dd for double density disks.

-ss for single sided disks.

-ds for double sided disks.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The format utility description in the Utilities Reference manual
contains additional information about format.

Refer to your hardware documentation for the maximum capacity of
your drives. Refer also to the label of your system disk for the proper
format of your backup copy.

Multiple Drive Format

If your system has two disk drives, place the system disk in the first
drive and the new disk in the second drive. The second drive is usually
called /d1. At the $ prompt, type format, the drive name of the new
disk, any desired options, and press the <return> key to enter the
command line:

$ format /d1

This command line specifies to format the disk in the second drive as a
double-sided, double-density disk. If your disk is different, use different
options.

2Starting OS-9

Using OS-9 for 68K Processors 43

Single Drive Format

If your system has only one disk drive, you must load the format utility
into memory. The load utility puts a copy of a program into the
computer’s memory. Once format has been loaded into memory, you
can remove your system disk from the drive. OS-9 can execute the copy
of format residing in memory. You can load and execute any OS-9
utility in this fashion.

To load the format utility into memory, type the following command at
the $ prompt:

load format

After you load format complete the following steps:

Step 1. Remove the system disk from the drive.

Step 2. Place the disk to format into the drive.

Step 3. Enter the following at the $ prompt to format the disk:

format /d0

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Utilities Reference manual for more information about the
load utility.

44 Using OS-9 for 68K Processors

2 Starting OS-9

Continuing the Formatting Process with Either a Single
Drive or a Multiple Drive

In the case of both single and multiple drive systems, format displays
the specific disk format settings, followed by a prompt:

Formatting device: <drive name>
proceed?

NoteNote
<drive name> is replaced by the name of the device on which you are
trying to format. For example, /d0.

WARNING!
If the drive name in the prompt is not the name of the drive with the
blank disk, type q to quit, or you may erase your only system disk.

If the drive name and parameters in the prompt are correct, type y for
yes. If you type y at the prompt, there is a pause while the disk is being
formatted. format then prompts for the name of the disk:

volume name:

After you enter the volume name, format prints:

verifying media, building bitmap...

During the final phase of the process, the hexadecimal number of each
track is displayed as each track is verified to see if any sectors are bad.
If any bad sectors are found, an error message is displayed along with
the number of the bad sector. The number of good sectors, the number
of unusable sectors, and the total number of verified sectors are also
displayed.

2Starting OS-9

Using OS-9 for 68K Processors 45

The Backup Procedure

After a disk is formatted, you can run backup. The backup utility
makes an exact copy of the OS-9 system disk. There are other ways to
make a copy of a disk, but this method is the least complicated. The
backup process involves copying everything from your system disk to a
formatted disk.

During the backup procedure, the system disk is referred to as the
source disk. The backup disk is called the destination disk.

NoteNote
This procedure makes copies of any disk, not just the system disk.

backup makes two passes.

• The first pass reads a portion of the source disk into a buffer in
memory and writes it to the destination disk.

• The second pass verifies everything was copied to the new disk
correctly.

Generally, if an error occurs on the first pass, something is wrong with
the source disk or the drive it is in.

If an error occurs during the second pass, the problem is with the
destination disk. If backup repeatedly fails on the second pass,
reformat the disk to make sure it has no bad sectors. If the disk
reformats correctly, try the backup procedure again.

WARNING!
Never backup a system disk to a disk that has any bad sectors reported
by format.

46 Using OS-9 for 68K Processors

2 Starting OS-9

NoteNote
You may wish to write protect your source disk when using the backup
procedure. This prevents any confusion in exchanging the source and
destination disks.

Multiple Drive Backup

If your system has two disk drives complete the following steps:

Step 1. Place the source disk in the first drive (/d0).

Step 2. Place the destination disk in the second drive (/d1).

Step 3. Type backup at the $ prompt.

Step 4. Press the <return> key.

The system assumes you want to backup the disk in /d0. It responds to
backup with the following prompt:

ready to BACKUP /D0 to /D1?

Table 2-1 Responses to Backup Question

Type If

y The correct disks are in the correct drives.

q The disks are not in the correct drives. You exit the
backup procedure when you enter q.

2Starting OS-9

Using OS-9 for 68K Processors 47

If you type y, the system copies all information on the disk in /d0 onto
the disk in /d1 and returns the $ prompt.

Single Drive Backup

If your system has only one drive, you need to load the backup utility
into memory. Make sure your system disk is in /d0 and type the
following command:

load backup

After you have loaded backup, you may proceed with the backup
procedure. Type the following command:

backup /d0 -b=100k

This tells the system you are performing a single drive backup and you
want to use a 100K buffer for the backup. If your system allows you to
use a larger buffer, increase this number. The larger the buffer, the
fewer swaps you have to make. The system responds with the following
prompt:

ready to BACKUP /D0 to /D0?

If you type y, the system begins a series of prompts to complete the
backup procedure. This consists of swapping the source and
destination disks in the disk drive as prompted by the system.

The first prompt is:

ready destination, hit a key

Table 2-2 Responses to Backup Question

Type If You Are

y Ready to perform the backup.

q Not ready to perform the backup. You exit the backup
procedure when you enter q.

48 Using OS-9 for 68K Processors

2 Starting OS-9

At this prompt do the following:

Step 1. Remove the source disk from the drive.

Step 2. Insert the destination disk.

Step 3. Press any key to continue the backup procedure.

The next system prompt is:

ready source, hit a key

At this prompt, do the following:

Step 1. Remove the destination disk from the drive.

Step 2. Insert the source disk.

Step 3. Press any key to continue the backup procedure.

The exchanging of disks continues until the backup procedure is
completed.

NoteNote
When you have backed up the system disk, store the original disk in a
safe place and use the duplicate as your working system disk.

49

Chapter 3: Basic Commands and

Functions

This chapter helps you get started using the operating system. The
more frequently used system commands are discussed. These are
utilities every user should be familiar with.

This chapter includes the following topics:

• Learning the Basics

• Logging on to a Timesharing System

• An Introduction to the Shell

• Using the Keyboard

• Basic Utilities

• The help Utility and the -? Option

• free and mfree

50 Using OS-9 for 68K Processors

3 Basic Commands and Functions

Learning the Basics

Now that your system is up and running, it is time to learn about OS-9’s
basic features and utilities. This chapter and the chapter on the OS-9
file system provide an introduction to OS-9 to get you started quickly.

The secret of getting up to speed quickly with OS-9 is to first identify
and learn only the basic, everyday functions necessary to run
application programs and programming languages. It is fairly easy to
learn more as you continue to work with the system.

3Basic Commands and Functions

Using OS-9 for 68K Processors 51

Logging on to a Timesharing System

If you are using a single user system such as a personal computer, you
can skip this section. Otherwise, you need to know how to log on to a
multi-user system. This applies to both hardwire and dial-up terminals.

Until you press the <return> key, idle terminals on multi-user systems
do nothing but beep at you. Pressing the <return> key starts the
log-on program called login. login maintains system security and
starts each user with a personalized environment.

The system asks for your user name and the password the system
manager assigned to you. The system echoes your user name, but for
security purposes your password is not echoed. You have three
chances to enter a valid user name and password.

The following is an example of the login procedure:

OS-9/68040 V3.0 Vite_MVME167 - 68040 93/10/24 14:51:12
User Name: smith
Password: [not echoed]
Process #10 logged on 93/10/24 14:51:20
Welcome!
$

Depending on how the system is set up, a system-wide message of the
day may display on your screen. You can also automatically run one or
more initial programs. In addition, you are normally set up in your own
main working directory.

To log off, simply press the <escape> (end-of-file) key or type logout
any time your main shell is active.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about login and tsmon, refer to the Utilities
Reference manual.

52 Using OS-9 for 68K Processors

3 Basic Commands and Functions

An Introduction to the Shell

Every operating system has a command interpreter. A command
interpreter is a translator between the commands you type in and the
commands the operating system understands and executes. OS-9’s
command interpreter is called the shell.

The shell provides many functions and options. Chapter 5: The Shell is
exclusively devoted to the available shell features. This section is
intended to provide just enough familiarity with the shell for you to run
basic OS-9 commands.

The shell is normally started as part of the system startup sequence
on a single user system or after logging on to a timesharing system. It is
the primary interface with the system. When you enter a command, the
shell translates the command into something OS-9 can understand.

The shell functions in two ways:

1. Accepts interactive commands from your keyboard.

2. Reads a sequence of command lines from a special type of file
called a procedure file. The shell executes each command line in the
procedure file just as if the command lines had been typed in
manually from the keyboard. Procedure files are a convenient way to
eliminate typing frequently used, identical sequences of commands.

When the shell is ready for command input, it displays a $ prompt. You
can now enter a command line followed by a carriage return.

The first word of the command line is the name of a command. It may
be in upper or lower case. The command may be the name of:

• An OS-9 utility

• An application program or programming language

• A procedure file

Most commands require or accept additional parameters or options.
These parameters and options provide the program and/or the shell
with additional information such as file names and directory names to
search. Almost all options are preceded by a hyphen (-) character. All
parameters are separated by space characters.

3Basic Commands and Functions

Using OS-9 for 68K Processors 53

The shell follows a special searching sequence to locate the command
in memory or on disk. If it cannot find the command you specified, the
error #000:216, “file not found” is generally reported.

Here is an example of a simple shell command line:

$ list myfile

The name of the program is list. The file name myfile is passed to
the program.

54 Using OS-9 for 68K Processors

3 Basic Commands and Functions

Using the Keyboard

Most input to OS-9, programming languages, and application programs
is line oriented. This means as you type, the characters are collected
but not sent to the program until you press the <return> key. This
gives you a chance to correct typing errors before they are sent to the
program.

OS-9 has several features to make data entry and error correction
simple. These are called line editing features. Each of these features
use control keys generated by simultaneously pressing the <control>
key and some other character key.

Line Editing Control Keys

The line editing control keys are:

Table 3-1 Line Editing Control Keys

Key Function

<control>a Repeat the previous input line. The last line entered
is redisplayed but not executed. The cursor is
positioned at the end of the line. You may enter the
line as it is or you can add more characters to it. You
can edit the line by backspacing and typing over old
characters.

<control>d Redisplay the current input line. This is mainly used
for hardcopy terminals that cannot erase deleted
characters.

<control>h Backspace to erase previous characters. Most
keyboards have a special <backspace> key you
can use directly without using the <control> key.

3Basic Commands and Functions

Using OS-9 for 68K Processors 55

<control>q Resume the input and output previously stopped by
<control>s. The <control>q function is known
as X-On.

<control>s Halt input and output until <control>q is entered.
The <control>s function is known as X-Off. Many
serial I/O devices, such as printers, use this feature
to control output speed.

<control>w Temporarily halt output so you can read the screen
before data scrolls off. Output resumes when any
other key is pressed. See the section on the page
pause feature.

<control>x Delete line; erase the entire current line.

ESCAPE or
<control>[

Indicate the end-of-file: all OS-9 I/O devices,
including terminals, are accessed as files. This
simulates the effect of reaching the end of a disk file.

Table 3-1 Line Editing Control Keys (continued)

Key Function

56 Using OS-9 for 68K Processors

3 Basic Commands and Functions

Interrupt Keys

There are also two important control keys called interrupt keys. They
work differently than the line editing keys because you can use them at
any time, not just when a program requests input. They are normally
used to halt or alter a running program.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about tmode, refer to Chapter 8: OS-9 for 68K
System Management and the Utilities Reference manual.

Table 3-2 Interrupt Keys

Key Function

<control>c Send an interrupt signal to the most recent program.
This functions differently from program to program. If
a program does not make specific interrupt
provisions, it aborts the program. If a program has
provisions for interrupts, <control>c usually
provides a way to stop the current function and
return to a master menu or command mode. In the
shell, you can use <control>c to convert the
foreground program to a background program, if the
program has not begun I/O to the terminal.

<control>e Send a program abort signal to the program
presently running. In most cases, this key
prematurely aborts the current program and returns
you to the shell.

3Basic Commands and Functions

Using OS-9 for 68K Processors 57

These control keys are the key assignments commonly used in most
OS-9 systems. You can change the correspondence between control
keys and their functions, so your keys may be different. Use the tmode
utility to redefine the function of control keys. This command allows you
to customize OS-9 to the specific computer’s keyboard layout.

The Page Pause Feature

The page pause feature eliminates the annoyance of having output
scroll off the screen before you can read it. OS-9 counts output lines
until a full screen has been displayed. It then halts output until you press
any key. This is repeated for each screen of output.

Page pause can be fooled by lines longer than the physical width of the
screen. These long lines wrap around to the next line. The system does
not distinguish this, and consequently does not count them properly.

You can use tmode to turn this feature on and off, or to change the
number of lines per screen:

Table 3-3 Page Pause Feature

Key Function

tmode pause Turn the page pause mode on.

tmode nopause Turn the page pause mode off.

tmode pag=10 Set the page length to ten lines.

58 Using OS-9 for 68K Processors

3 Basic Commands and Functions

Basic Utilities

OS-9 provides over seventy standard utilities and built-in shell
commands. Most utilities are used rarely, if ever, by casual users. You
will frequently use less than a dozen of them and less frequently use
about a dozen more. Some of the most frequently used utilities are
listed below.

Table 3-4 Frequently Used Utilities

attr backup build chd

chx copy date del

deldir dir dsave echo

edt format free help

kill list makdir merge

mfree pd pr procs

rename set setime shell

w wait

3Basic Commands and Functions

Using OS-9 for 68K Processors 59

The help Utility and the -? Option

The most important command to learn when beginning to use the OS-9
utilities is help. The help utility is an on-line, quick reference. To use
this utility, type help, a utility name, and a carriage return. The utility
function, syntax, and available options are listed.

For example, if you cannot remember the function or syntax of the
backup utility, you could type help backup after the $ prompt:

$ help backup
Syntax: backup [<opts>] [<srcpath> <dstpath>] [<opts>]
Function: backup disks
Options:
-b=<size> use larger buffer (default is 4k)
-r don’t exit if read error occurs
-v do not verify
$

The descriptions are short and precise. Try it. This is a quick way to find
information without looking up the utility in the documentation.

NoteNote
Typing help by itself displays the syntax and use of the help utility.

The same information is also available by typing the utility name
followed by a question mark (-?). Each utility has the -? option.

60 Using OS-9 for 68K Processors

3 Basic Commands and Functions

free and mfree

After booting your OS-9 system, you may wish to see how much
memory and unused disk space is available. You can use the mfree
and free utilities to do this. mfree is useful for all systems, free is
useful for disk-based systems.

mfree displays the amount of unused memory available in the system.
For example:

$ mfree
Current total free RAM: 164.00 K-bytes

For a complete list of information concerning the unused memory, you
can use the -e option with mfree. For example:

mfree -e
Minimum allocation size: 4.00 K-bytes
Number of memory segments: 6
Total RAM at startup: 8192.00 K-bytes
Current total free RAM: 2084.00 K-bytes
Free memory map:
 Segment Address Size of Segment
 ----------------- --------------------------
 $5B000 $1000 4.00 K-bytes
 $5F000 $2000 8.00 K-bytes
 $99000 $1E3000 1932.00 K-bytes
 $29C000 $3000 12.00 K-bytes
 $2A1000 $1F000 124.00 K-bytes
 $2C5000 $1000 4.00 K-bytes

free displays the amount of unused disk space in the number of
sectors and in the number of bytes. It also displays the disk name, its
creation date, and the cluster size of the device. For example:

$ free
“Tazz: /H0 Wren V” created on: Aug 17, 1993
Capacity: 2347860 sectors (256-byte sectors, 8-sector clusters)
1477296 free sectors, largest block 1356000 sectors
378187776 of 601052160 bytes (360.66 of 573.20 Mb) free on media (62%)
347136000 bytes (331.05 Mb) in largest free block

3Basic Commands and Functions

Using OS-9 for 68K Processors 61

free uses a 4K buffer by default. To increase the buffer size, use the -b
option. For example, to use a 10K buffer you could type one of the
following:

• $ free -b=10

• $ free -b10

62 Using OS-9 for 68K Processors

3 Basic Commands and Functions

63

Chapter 4: The OS-9 Fi le System

This chapter is a detailed explanation of the tree-structured file and
directory system of OS-9. It includes the following topics:

• OS-9 File Storage

• The OS-9 File System

• Current Directories

• Accessing Files and Directories: The Pathlist

• Basic File System Oriented Utilities

64 Using OS-9 for 68K Processors

4 The OS-9 File System

OS-9 File Storage

All information stored on an OS-9 computer system is organized into
files and directories. Files and directories provide a way for you to
organize your information:

• A file may contain a program, data, or text.

• A directory is a file containing the names and locations of the files
and directories it contains.

This allows you to organize your files by topic, work group, or any other
method.

When a file is created, the information is stored as an ordered
sequence of bytes. These bytes are organized into sectors. A sector is a
pre-defined group of bytes. For example, a sector may be composed of
256 bytes. This means every 256 bytes are grouped together as a
sector.

During the format procedure, each sector is marked as being unused.
The allocation map keeps track of each sector. If a sector is in use, it is
marked in the allocation map located at the beginning of each disk as
being in use.

Table 4-1 Sectors in the Allocation Map

When a File Is Action

Created The information is stored in sectors.

Expanded The new information is stored in sectors.

Shortened/
Deleted

The previously used sectors are unmarked in the
allocation map and are available for use by other
files.

4The OS-9 File System

Using OS-9 for 68K Processors 65

Within a text file, each byte contains one character. Data is written to a
file in the order it is provided. Data is read from a file exactly as it is
stored in the file.

The File Pointer

When a file is created or opened, a file pointer is also created and
maintained for it. The file pointer holds the address of the next byte to
write or read (see Figure 4-1). As data in the file is read or written, the
file pointer is automatically moved. Therefore, successive read or write
operations transfer data sequentially (see Figure 4-2).

You can use an OS-9 system call (seek) to directly access any part of a
file by positioning the file pointer to any location in the file.

You can access the seek system call through the various languages
available for OS-9 or directly with the macro assembler command:
I$SEEK.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about I$SEEK, refer to the OS-9 for 68K
Technical Manual.

Figure 4-1 shows when creating or opening a file, the file pointer is
positioned to read from or write to the first component.

Figure 4-1 File Pointer at File Creation or File Open

r o b e r

1 2 3 4 5

66 Using OS-9 for 68K Processors

4 The OS-9 File System

Figure 4-2 shows after reading or writing the first component of a file,
the file pointer points to the second component.

Figure 4-2 Pointer After Reading First Component

Figure 4-3 shows the file pointer is pointing to the current end-of-file.
Attempting another read operation causes an end-of-file error. Another
write operation increases the size of the file.

Figure 4-3 File Pointer Pointing to Current End-of-File

Figure 4-4 shows the next write operation adds a new component to
the file and moves the file pointer to the new end-of-file.

Figure 4-4 Adding A New Component

r o b e r

1 2 3 4 5

r o b e r

1 2 3 4 5

r o b e r

1 2 3 4 5

t

6

4The OS-9 File System

Using OS-9 for 68K Processors 67

Reading up to the last byte of the file causes the next read operation to
return an end-of-file status (see Figure 4-3). Trying to read past the
end-of-file mark causes an error. To expand a file, simply write past the
previous end of the file (see Figure 4-4).

Because all OS-9 files have the same physical organization, you can
generally use file manipulation utilities on any file regardless of its
logical use. The main logical types of files used by OS-9 are:

• Text files

• Executable program module files

• Data files

• Directories

Directory files are an exception and are covered separately.

Text Files

Text files contain variable length lines of ASCII characters. Each line is
terminated by a carriage return (hex $OD). Text files typically contain
documentation, procedure files, and program source code. You can
create text files with any text editor or the build utility.

Executable Program Module Files

Executable program modules store programs that assemblers and
compilers generate. Each file may contain one or more modules with
standard OS-9 module format. The OS-9 for 68K Technical Manual
contains more information about modules.

Random Access Data Files

A random access data file is created and used primarily by high level
languages such as C, Pascal, and BASIC. The file is organized as an
ordered sequence of records of varying sizes. If each record has exactly

68 Using OS-9 for 68K Processors

4 The OS-9 File System

the same length, its beginning address within the file can be computed
to allow you to access records in any order. OS-9 does not directly deal
with records other than providing the basic file manipulation functions
high level languages that support random access records require.

File Ownership

When you create a file or directory, OS-9 automatically stores a
group.user ID with it. The group.user ID is formed from your group
number and your user number.

• The group number allows people working on the same project or
working in the same department to share a common group
identification.

• The user number identifies a specific user.

Therefore, a group.user ID identifies a specific user in a specific
group or department.

The group.user ID determines file ownership. OS-9 users are divided
into two classes:

• owner

• public

The owner is any user with the same group number as the person who
created the file. The super-user group (0.x) is also considered the
owner of the file.

The public is any person with a group ID differing from the person who
created the file.

NoteNote
A user with a group.user ID of 0.0 is referred to as a super user. A
super user can access and manipulate any file or directory on the
system regardless of the file’s ownership.

4The OS-9 File System

Using OS-9 for 68K Processors 69

On multi-user systems, the system manager generally assigns the
group.user ID for each user. This number is stored in a special file
called a password file. A super user on a multi-user system is generally
the system manager, although other people such as group managers or
project leaders may also be super users.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about password files, refer to Chapter 5: The
Shell.

On single-user systems, users have super user status by default.

Attributes and the File Security System

File use and security are based on file attributes. Each file has eight
attributes. These attributes are displayed in an eight character listing.

The term permission is used when one of the eight possible attribute
characters is set. Permission determines who can access a file or
directory and how it can be used. If a permission is not valid for the file
or directory being examined, a hyphen (-) is in its position.

Here is an attribute listing for a directory in which all permissions are
valid:

dsewrewr

70 Using OS-9 for 68K Processors

4 The OS-9 File System

By convention, attributes are read from right to left. They are:

Table 4-2 Attributes

Attribute Abbreviation Description

Owner Read r The owner can read the file. When
off, this denies any access to the
file.

Owner Write w The owner can write to the file.
When off, this attribute can be used
to protect files from accidentally
being deleted or modified.

Owner Execute e The owner can execute the file.

Public Read pr The public can read the file.

Public Write pw The public can write to the file.

Public Execute pe The public can execute the file.

Single User s When set, only one user at a time
can open the file.

Directory d When set, indicates a directory.

4The OS-9 File System

Using OS-9 for 68K Processors 71

The OS-9 File System

OS-9 uses a tree-structured, or hierarchical, organization for its file
system on mass storage devices such as disk systems (see Figure
4-5). Each mass storage device has a master directory called the root
directory.

The root directory is created automatically when a new disk is
formatted. It contains the names of the files and the subdirectories on
the disk. Every file is listed in a directory by name, and each file has a
unique name within a directory.

An OS-9 directory can contain both files and subdirectories. Each
subdirectory can contain more files and subdirectories. This allows you
to embed subdirectories within other subdirectories. The only limit to
this division is the amount of available disk space.

Figure 4-5 The File System

With the exception of the root directory, each file and directory in the
system has a parent directory. A parent directory is the directory directly
above the file or directory being discussed. For example in Figure 4-5,
the parent directory of file2 is SUB-DIRECTORY1. Likewise, the
parent directory of SUB-DIRECTORY1 is the root directory.

Root Directory

ETCfile1 Sub-Directory1 Sub-Directory2

file5file4 Sub-Directory4

ETCETC

file3file2 Sub-Directory3

72 Using OS-9 for 68K Processors

4 The OS-9 File System

Current Directories

Two working directories are always associated with each user or
process. These directories are called the current data directory and the
current execution directory.

NoteNote
A data directory is where you create and store your text files.

An execution directory is where executable files such as utilities and
programs you have created are located.

The current directory concept allows you to organize your files while
keeping them separate from other users on the system. The word
current is used because you can use the chd and chx commands to
move through the tree structure of the OS-9 file system to a different
directory. This new directory then becomes your current data or
execution directory.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about chd, refer to the Utilities Reference
manual. chd is also covered later in this chapter.

On Single-User Systems

On a single user system, OS-9 chooses the root directory of your
system disk as your initial current data directory. Your initial current
execution directory is the CMDS directory. The CMDS directory is located
in the root directory of the system disk.

4The OS-9 File System

Using OS-9 for 68K Processors 73

On Multi-User Systems

On a multi-user system, your current data and execution directories are
established for you as part of the initial login sequence. When you login,
your initial directories are set up according to your password file entry. A
password entry is established for each user on a multi-user system.
This entry lists information such as the user’s password and current
directories.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about password files, refer to Chapter 5: The
Shell and the login utility description in the Utilities Reference
manual.

Your execution directory on a multi-user system is usually the CMDS
directory, which is shared with other users. CMDS contains OS-9 utilities
and other executable files. If all users had their own copy of all OS-9
commands, a great deal of disk space would be wasted. Private
execution directories are also possible and are covered later in this
chapter.

The Home Directory

On typical multi-user systems, all users have their own data directory,
but share an execution directory. The private data directory allows you
to organize your own files by project, function, or any other method
without affecting other user’s files. The data directory specified in the
password file entry is known as your home directory. When you first
login to the system, you are placed in this directory. Using the chd utility
with no parameters also places you in this directory.

On single user systems, you may establish a home directory by setting
the HOME environment variable.

74 Using OS-9 for 68K Processors

4 The OS-9 File System

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about:

• chd: refer to the Utilities Reference manual. chd is also covered
later in this chapter.

• The HOME environment variable: refer to Chapter 5: The Shell.

Directory Characteristics

Some important characteristics relating to directory files are:

• Directories have the same ownership and attributes as regular files.
However, directories always have the d attribute set.

• Each file name within a directory must be unique. For example, you
cannot store two files named trial in the same directory. Files can
have identical names, as long as they are stored in different
directories.

• All files are stored on the same device as the directory in which they
are listed.

• The only limit to the number of files you can store in a directory is the
amount of free disk space.

4The OS-9 File System

Using OS-9 for 68K Processors 75

Accessing Files and Directories: The Pathlist

You can access all files or directories in your current data directory by
specifying the name of the file or directory after the proper command.
When only a file or directory name is given, OS-9 does not look outside
your current data directory to find it.

If you want to access a file that is not in your current data directory or
run a program that is not in your current execution directory, you must
either change your current directory or specify a pathlist through the file
system for OS-9 to follow.

There are two types of pathlists:

• Full Pathlists

• Relative Pathlists

Full Pathlists

A full pathlist starts at the root directory and follows the directory names
in the list down the file structure to a specific file or directory. A full
pathlist must begin with a slash character (/). Slashes separate names
within the pathlist.

The following example is a full pathlist from the root directory, /d1,
through two subdirectories, PASCAL and TESTS, to the file futureval.

/d1/Pascal/tests/futureval

The next example specifies a path from the root directory, /h0, through
the USR subdirectory to the NICHOLLE subdirectory.

/h0/usr/nicholle

76 Using OS-9 for 68K Processors

4 The OS-9 File System

NoteNote
A full pathlist begins at the root directory regardless of where your
current data directory is located. It lists each directory located between
the root directory and a specific file or subdirectory.

Relative Pathlists

A relative path starts at the current directory and proceeds up or down
through the file structure to the specified file or directory. A relative
pathlist does not begin with a slash (/). Slashes separate names within
a relative pathlist.

When you use a relative pathlist and the desired destination requires
going up the directory tree, you can use special naming conventions to
make moving around the pathlist easier:

• A single period (.) refers to the current directory.

• Two periods (..) refer to the current directory’s parent directory.

• Add a period for each higher directory level.

For example, to specify a directory two levels above the current
directory, three periods are required. Four periods refer to a directory
three levels above the current directory.

You can also use a UNIX-style pathlist such as ../../../.

NoteNote
Using these name substitutes does not change the directory’s name.

The following example is a relative pathlist beginning in your current
directory and goes through the subdirectories DOC and LETTERS to the
file jim.

4The OS-9 File System

Using OS-9 for 68K Processors 77

doc/letters/jim

The next pathlist goes up to the next directory above your current
directory and then through the subdirectory CHAP to the file page.

../chap/page

The next pathlist specifies a file within your current directory. No
directories are searched other than the current directory.

accounts

NoteNote
A relative pathlist begins at your current directory regardless of its
location in the overall file structure.

78 Using OS-9 for 68K Processors

4 The OS-9 File System

Basic File System Oriented Utilities

This section explains some of the OS-9 utility commands that
manipulate the file system. The utilities include dir, chd, chx, pd,
build, makdir, list, copy, dsave, del, deldir, and attr. The
examples given refer to an example file system (Figure 4-6).

Figure 4-6 Diagram of a Typical File System

h0

CMDS IO

C DEFS LIB

LIST COPY ETC

USR1 USR2 USR3

MACROS SYS

STARTUP

USR

SYSMODS

PROG

LETTER TEXT

GREEN

FALL ICE

ICK.C

GEE MAP

MANUAL

FUNCT MAIN

4The OS-9 File System

Using OS-9 for 68K Processors 79

dir: Display Directory Contents

The dir utility displays the contents of directories. Typing dir by itself
displays the contents of your current data directory. For the following
example, the current data directory is /h0 in Figure 4-6:

$ dir

directory of . 13:56:58
C CMDS DEFS IO LIB
MACROS SYS SYSMODS USR startup

To look at directories other than your current data directory, you must
either provide a pathlist to the desired directory or change your current
data directory.

For example, if you are in the root directory and you want to see what is
in the DEFS directory, type:

dir defs

dir now displays the names of the files in the DEFS directory. The
name defs is a relative pathlist. You can type dir defs because
DEFS is in your current data directory. You can also use the full pathlist,
dir /h0/defs, and get the same result.

NoteNote
To display the contents of another directory without changing your
current data directory, type dir and the pathlist to the directory.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

More information about changing directories is provided later in this
chapter.

80 Using OS-9 for 68K Processors

4 The OS-9 File System

Wildcards and dir

To display the contents of your current execution directory, type dir
-x.

You may also use wildcards with dir and with most other utilities as
well. OS-9 recognizes two wildcards:

An asterisk (*) An asterisk is replaced by any number of
letter(s), number(s), or special
characters. Consequently, an asterisk by
itself expands to include all of the files in
a given directory.

A question mark (?) A question mark is replaced by a single
letter, number, or special character.

For example, the command dir * lists the contents of all directories
located in the current data directory. The command dir /h0/cmds/d*
lists all files and directories in the CMDS directory beginning with the
letter d. The command dir prog_? lists all files in your current
directory having a file name with prog_ followed by a single character.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Chapter 5: The Shell contains more information about the use of
wildcards.

dir Options

dir has several options that are fully documented in the Utilities
Reference manual. The -e and -r options are discussed here. Try
each option and see what information is displayed.

The -e option gives an extended directory listing. An extended directory
listing displays all files within the specified directory with their attributes,
the size of the file, and the sector where the file is stored. The following
example uses the file structure shown in Figure 4-6.

4The OS-9 File System

Using OS-9 for 68K Processors 81

$ dir usr/usr1 -e
Directory of USR/USR1 12:30:00
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 93/06/17 1601 ------wr 3458 5744 letter
 12.4 93/07/03 1148 d-----wr 104A0 15944 PROG
 12.4 93/05/13 1417 d-----wr DODO 11113 TEXT

The -r option displays the contents of the specified directory and any
files contained within its subdirectories. Using Figure 4-6 as an
example, typing dir usr/usr1 -r lists the following:

Directory of . 12:30:15
 PROG TEXT letter
Directory of PROG 12:30:15
 funct main
Directory of TEXT 12:30:15
 manual

You can use the dir options with each other. Typing dir -er displays
all files within the current data directory, all files within its subdirectories,
and provides an extended listing of their attributes, sizes, etc.

chd and chx: Moving Around in the File System

The chd and chx utilities allow you to travel around the file system:

• chd changes your current data directory.

• chx changes your current execution directory.

Using chd

To change your current data directory, type chd followed by a full or
relative pathlist.

For example, if your current data directory is /h0 and you want your
current data directory to be USR, you would type chd and the pathlist of
USR.

• Using a relative pathlist, type:

chd usr

82 Using OS-9 for 68K Processors

4 The OS-9 File System

• Using a full pathlist, type:

chd /h0/usr

Your current data directory is now USR. If you type dir, you see the
contents of USR:

 directory of . 14:04:32
USR1 USR2 USR3

If you want to see which files are in the USR1 directory, type dir usr1.
Or change directories by typing chd usr1 and after the new prompt,
type dir.

If you want to return to your home directory, which in this case is /h0,
type chd without a pathlist. After changing directories, dir displays the
contents of /h0.

Using chx

The chx command allows you to redefine an existing directory as a
personal execution directory. This may be important if you have
programs you do not want other people to execute. To use this
command, type chx, followed by a full or relative pathlist to the
directory. When using a relative pathlist with chx, the pathlist is relative
to your current execution directory.

If your current data directory is USR and you want to change your
current execution directory from CMDS to USR2, you could type the
relative pathlist chx ../usr/usr2 or the full pathlist chx
/h0/usr/usr2. When you type a command after you have changed
your current execution directory, OS-9 searches USR2 instead of CMDS.

Typing dir -x displays the contents of your current execution
directory, USR2:

directory of . 14:05:06
gee ick.c map

4The OS-9 File System

Using OS-9 for 68K Processors 83

Climbing Directory Trees

You can use OS-9’s special naming conventions to move around the file
system. As a reminder, the naming conventions are periods specifying
the current directories and directories higher in the file structure. For
example:

. refers to the current directory

.. refers to the parent directory

... refers to two directory levels higher

When used as the first name in a path, you can use these naming
conventions with relative pathlists.

NoteNote
If you plan to port your code to other operating systems, remember
most operating systems only use this convention as it refers to the
current and parent directories. For example, if you use ... to refer to
the directory above a parent directory, most operating systems require
you to use ../.. instead.

The following examples relate to the file structure in Figure 4-7. The
examples assume your initial current data directory is PROG.

The following example displays the contents of PROG. It is functionally
the same command as dir:

dir .
directory of . 14:04:32

funct main

The next command displays the contents of PROG’s parent directory,
USR1.

dir ..
directory of .. 14:05:58

PROG TEXT letter

84 Using OS-9 for 68K Processors

4 The OS-9 File System

This example displays the contents of TEXT by specifying a path
starting with the parent directory (..):

dir ../text
directory of ../text 14:06:47

manual

The following command changes the current data directory from PROG
to USR3:

chd .../usr3

In Figure 4-7, USR3 is accessed from PROG using the relative path
.../usr3.

4The OS-9 File System

Using OS-9 for 68K Processors 85

Figure 4-7 Accessing Directories Using a Relative Path

You can use any number of periods (.) to access higher directories.
One period is added for each additional level. An error is not returned if
you specify a greater number of directory levels above your current data
directory than actually exist. Instead, this indicates the root directory on
your system. For example, this command displays the contents of the
root directory:

dir

h0

CMDS IO

C DEFS LIB

LIST COPY ETC

USR1 USR2 USR3

MACROS SYS

STARTUP

USR

SYSMODS

PROG

LETTER TEXT

GREEN

FALL ICE

ICK.C

GEE MAP

MANUAL

FUNCT MAIN

86 Using OS-9 for 68K Processors

4 The OS-9 File System

This may be helpful if you are not sure how far down you are in the
directory structure. The next example changes your current data
directory from PROG to MACROS:

chd/macros

Using the pd Utility

When the file system becomes complex, you may become confused as
to where the directory you are currently working in is located in relation
to the overall file system. You can use the pd utility to display the
complete pathlist from the root directory to your current data directory.

For example, if your current data directory is USR2:

pd
/h0/USR/USR2

Using makdir to Create New Directories

Likewise, if you forget which directory is your current execution
directory, type pd -x to display the pathlist to the current execution
directory.

To create new directories, use the makdir utility. For example, to create
a directory called MARKET, type:

makdir MARKET

The makdir /h0/usr/MARKET command creates a new directory
called MARKET in the USR directory.

4The OS-9 File System

Using OS-9 for 68K Processors 87

Figure 4-8 Creating the /h0/USR/MARKET Directory

MARKET now is a new entry in your current directory.

If you want the new directory created somewhere other than your
current directory, you must specify a pathlist. For example, makdir
/h0/usr/MARKET creates the new directory in USR.

Rules for Constructing File Names

When creating files and directories, you must follow certain rules. Any
file name can contain from 1 to 28 upper or lower case letters, numbers,
or special characters as listed below. While the file name may begin
with any of the following characters or digits, each file name must
contain at least one letter or number. Within these limitations, a name
can contain any combination of the following:

Upper case letter: A - Z Underscore: _

Lower case letter: a - z Period: .

Decimal digits: 0 - 9 Dollar sign: $

File names may not contain spaces. Instead, use an underscore (_) or a
period (.) to improve the readability of file and directory names. OS-9
does not distinguish upper case letters from lower case letters. The
names FRED and fred are considered the same name.

h0

CMDS SYS USR

MARKET USR1 USR2

88 Using OS-9 for 68K Processors

4 The OS-9 File System

NoteNote
By OS-9 convention, directory names are in upper case and file names
are in lower case. This allows you to easily distinguish directories from
files. This is only a recommendation for easy use; you may develop
your own style.

Here are some examples of legal names:

raw.data.2 project_review_backup
X6809 $SHIP.DIR
...c 12345

Here are some examples of illegal names:

NoteNote
File names starting with a period are not displayed by dir unless you
use the -a option. This allows you to hide files within a directory.

Table 4-3

Name Reason

Max*min * is not a legal
character

open orders name cannot
contain a space

this.name.has.more.than.28.characters too long

4The OS-9 File System

Using OS-9 for 68K Processors 89

Creating Files

You can create files in many ways. Text files are generally created with
the build utility, the edt utility, or the µMACS text editor. These file
building tools are provided with the OS-9 package for your convenience.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about build and edt, refer to the Utilities
Reference Manual.

The build Utility

Use the build utility to create short text files. To use build, type
build, followed by the name of the file you want to create. build
responds with the prompt:

?

This tells you build is waiting for input. To terminate build, type a
carriage return at the ? prompt. For example:

$ build test
? Some programmers have been known to
? howl at full moons.
?
$

 You cannot edit files with build.

90 Using OS-9 for 68K Processors

4 The OS-9 File System

The edt Utility

You can also use the edt utility to create files. edt is a line-oriented text
editor allowing you to create and edit source files. To use edt, type edt
and the desired pathlist. edt displays a question mark (?) prompt and
waits for an edit command. If the file is found, edt:

• Opens it

• Displays the last line

• Displays the ? prompt

µMACS

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about µmacs, refer to the Utilities Reference
manual.

The preferred method of creating and editing files is with µMACS.
µMACS is a screen-oriented text editor designed for creating and
modifying text files and programs. Through the use of multiple buffers,
µMACS allows you to display different files or different portions of the
same file on the same screen. In addition, extensive formatting
commands allow you to:

• Reformat paragraphs with new user-defined margins

• Transpose characters

• Capitalize words

• Change words or sections into upper or lower case

4The OS-9 File System

Using OS-9 for 68K Processors 91

Examining File Attributes with attr

When you create a file using build or µMACS, only the owner read
and owner write permissions are set. When you create a directory, it
initially has all the permissions set except the single user permission.

To examine file attributes, use the attr utility. To use this utility, type
attr, followed by the name of a file. For example:

$ attr newtest
------wr

The file newtest has the permissions set for owner reading and owner
writing. Access to this file by anyone other than the owner is denied.

NoteNote
Users with the same group.user ID as the person who created the file
are considered owners. However, if the file is created by a group 0 user,
only users in the super group can read, write, or execute the file.

If you use attr with a list of one or more attribute abbreviations, the
file’s attributes are changed accordingly, provided you have the proper
write permission to access the file. You do not need to list the attribute
abbreviations in any particular order. The letter n preceding an attribute
removes that permission.

The following command enables public read and write permission and
removes execution permission for both the owner and the public:

$ attr newtest -pw -pr -ne -npe

If you are the owner of a file, you can change the access permissions
regardless of what the permissions indicate. Thus, the owner always
has the right to delete a file, change the user privileges, etc. Users in
the same group have the same permissions as the owner.

The directory attribute is somewhat different than the other attributes. It
could be dangerous to be able to change directory files to normal files
or a normal file to a directory. For this reason, you cannot use attr to

92 Using OS-9 for 68K Processors

4 The OS-9 File System

turn the directory (d) attribute on; use makdir to turn this attribute on.
Furthermore, you can only use attr to turn the directory attribute off if
the directory is empty.

Listing Files

Use the list utility to display the contents of files. By default, list
displays the lines of text on your terminal screen. To examine a file, type
list, followed by the name of the file. For example:

$ list test
Some programmers have been known to
howl at full moons.
$

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about list, refer to the Utilities Reference
manual.

It is important to remember you cannot list a directory. If you type the
command list USR, the following error message and error number
are returned:

list: can’t open "USR". Error# 000:214.

This means you cannot access USR because it is a directory.

list displays text files. All distributed files in CMDS are executable
program module files. If you try to list the contents of a random access
data file or an executable program module file, you see what appears to
be random data displayed on your screen. This may also include
unprintable characters, such as escape or delete, that could change
your terminal’s operating parameters. If the operating characteristics of
your terminal are affected, first try turning the terminal off and on. If this
does not re-initialize the terminal, consult your terminal operating
manual.

4The OS-9 File System

Using OS-9 for 68K Processors 93

Copying Files

Use the copy utility to make a duplicate of a file. To copy a file, type
copy, followed by the name of the file to be copied, followed by the
name of the duplicate file. For example:

$ copy test newtest

If you list the file newtest, it is an exact copy of test.

The file you are copying and the duplicate file can be located in any
directory; they do not have to be in your current data directory. For files
located outside of your current data directory, use full or relative
pathlists. The following example uses Figure 4-8. The first command
copies the file gee in the USR2 directory to a file named new.info in
the TEXT directory:

copy /h0/usr/usr2/gee /h0/usr/usr1/text/new.info

Assuming your data directory is USR, the following commands have the
same effect:

copy /h0/usr/usr2/gee usr1/text/new.info
copy usr2/gee usr1/text/new.info

In Figure 4-9, gee is copied from USR2/gee to
USR1/TEXT/new.info using the command copy usr2/gee
usr1/text/new.info.

94 Using OS-9 for 68K Processors

4 The OS-9 File System

Figure 4-9 Copying Files

Copying a File into an Existing File

If you try to copy the contents of one file into an existing file, you receive
Error #000:218 Tried to create a file that already
exists. If you know the file exists but you want to overwrite it anyway,
use the -r option. For example, the following command replaces the
contents of green with the contents of fall.

h0

CMDS IO

C DEFS LIB

LIST COPY ETC

USR1 USR2 USR3

MACROS SYS

STARTUP

USR

SYSMODS

PROG

LETTER TEXT

GREEN

FALL ICE

ICK.C

GEE MAP

FUNCT MAIN

MANUAL NEW.INFO

4The OS-9 File System

Using OS-9 for 68K Processors 95

$ copy fall green -r

If you list the contents of both files, you see they are identical.

Copying Multiple Files

At some point, you may want to copy more than one file at a time into
another directory. By using the -w=<dir> option of copy, you can copy
more than one file with a single command. For example, if your current
directory is PROG and you want to copy all of the files in PROG into the
TEXT directory, you could type the following command line:

$ copy * -w=../text

NoteNote
An asterisk is a wildcard. For more information about wildcards, refer to
the section on wildcards in Chapter 5: The Shell.

This option prints the name of the file after each successful copy. If an
error occurs, the prompt continue (y/n) is displayed.

Copying Large Files

If you have a large file, the copy procedure may be slow because the
system has to perform multiple read and write statements. You can use
the -b option to increase the buffer size. This would make the copy
procedure faster for large files. To use the -b option, type copy, the
original file name, the new file name, and -b=<num>k.

For example, typing copy gee mine -b=20k allocates a 20K buffer
for copying the file gee into the file mine.

96 Using OS-9 for 68K Processors

4 The OS-9 File System

NoteNote
copy uses a 4K memory buffer by default. This means only 4K of
information is read from the original file and written to the new file at
one time.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about copy, refer to the Utilities Reference
manual.

You must have permission to copy the file. That is, you must be the
owner of the file to be copied or the public read permission must be set
in order to copy the file. You must also have permission to write in the
directory you specify. In either case, if the copy procedure is successful,
the new file has your group.user number unless you are the super user.
If you are the super user, the new file has the same group.user number
as the original file.

dsave: Using Procedure Files to Copy Files

Use the dsave utility to copy all files and directories within a specified
directory by generating a procedure file. The procedure file is either
executed later to actually perform the copy or, by specifying the -e
option, executed immediately.

A procedure file is a special OS-9 file. It contains OS-9 commands.
Each command is specified on a line, one command per line. When the
procedure file is executed, the OS-9 commands it contains are
executed in the order they are listed in the procedure file.

4The OS-9 File System

Using OS-9 for 68K Processors 97

NoteNote
To use the dsave utility, type dsave followed by the pathlist of the
directory into which the files are copied, followed by any options you
wish to use.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about procedure files, refer to Chapter 5: The
Shell.

If no pathlist is specified for the destination, the files are copied to the
current data directory when the procedure file is executed. If you do not
specify the -e option or redirect the output to a file, dsave sends the
output to the terminal.

The example below uses the following directory structure:

Figure 4-10 Dsave Example Directory Structure

h0

NOTES PROG.NAMES PROGMS

CONVERSION MY.PROJ

TALLY.C TEMP.C PROG1 TEST.C

98 Using OS-9 for 68K Processors

4 The OS-9 File System

If PROGMS is your current data directory and you type dsave
../notes, the following appears on your screen:

$ dsave ../notes
-t
chd ../notes
tmode -w=1 nopause
load copy
Makdir MY.PROJ
Chd MY.PROJ
Copy -b=10 /h0/PROGMS/MY.PROJ/prog1
Copy -b=10 /h0/PROGMS/MY.PROJ/test.c
Chd ..
Makdir CONVERSION
Chd CONVERSION
Copy -b=10 /h0/PROGMS/CONVERSION/temp.c
Copy -b=10 /h0/PROGMS/CONVERSION/tally.c
Chd ..
unlink copy
tmode -w=1 pause
$

Because the output was not redirected to a procedure file and the -e
option was not used, the above commands were not executed. They
were just echoed to your screen.

If you now type dsave ../notes -e, the commands are again
echoed to the screen. However, the contents of the PROGMS directory
are copied into the NOTES directory.

Copying Multiple Files

You can also redirect the output of dsave to a file. When you redirect
the output, the commands that are output from dsave are essentially
captured in a file. You can later execute this file to actually perform the
dsave operation.

To redirect the output from dsave to a file, use the redirection modifier
for standard output. The standard output modifier is the > symbol.

For example, from the PROGMS directory, you can redirect the output
from dsave into a file called make.bckp by typing:

dsave >make.bckp

4The OS-9 File System

Using OS-9 for 68K Processors 99

This command creates make.bckp in the current data directory. To
perform the dsave, type make.bckp at the command line.

Redirecting the output to a file is helpful when you want to save most,
but not all, of the files in the directory or directories being saved. You
can edit make.bckp before performing the dsave. This allows you to
save only selected files.

Regardless of how you decide to perform the dsave, if dsave
encounters a directory file, it automatically creates a new directory and
changes to that directory before generating copy commands for files in
the subdirectory.

In the dsave example, the directory structure looks like the following
after dsave has finished:

Figure 4-11 dsave Example Directory Structure

MY.PROJ

PROG1 TEST.C

CONVERSION

TALLY.C TEMP.C

MY.PROJ

PROG1 TEST.C

CONVERSION

TALLY.C TEMP.C

h0

NOTES LISTING PROGMS

100 Using OS-9 for 68K Processors

4 The OS-9 File System

If the current working directory is the root directory of the disk, dsave
creates a file that backups the entire disk, file by file. This is useful when
you need to copy many files from different format disks or from a floppy
disk or a hard disk.

Errors During dsave

If an error occurs during the dsave process, the following prompt is
displayed:

continue (y,n,a,q)?

You can use the -s option to turn off the prompt. This skips any file that
cannot be copied and continues the dsave routine without the error
prompt.

Indenting for Directory Levels

When you copy several subdirectories, you can use the -i option to
indent for directory levels. This helps to keep track of which files are
located in which directories.

Table 4-4 Responses During dsave

Response Indicates you

y Want to continue with dsave.

n Do not want to continue with dsave.

a Want all possible files copied and you do not want
the prompt displayed on error.

q Want to exit dsave.

4The OS-9 File System

Using OS-9 for 68K Processors 101

Keeping Current Directory Backups

You can use dsave to keep current directory backups. Use the -d or
-d=<date> options to compare the date of the file to be copied with a
file of the same name in the directory where it is to be copied. The -d
option copies any file with a more recent date. The -d=<date> option
copies any file with a date more recent than that specified. The following
example shows the use of dsave with the -d option:

$ chd /d0/BACKUP
$ dir
Directory of . 14:14:32
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 92/11/12 1417 ------wr 20CO 11113 program.c
 12.4 92/10/05 1601 ------wr 313D 5744 prog.2
$ chd /d0/WORKFILES
$ dir
Directory of . 14:14:32
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 92/11/12 1417 ------wr DODO 11113 program.c
 12.4 92/11/12 1601 ------wr 3458 5780 prog.2
$ dsave -deb32 /d0/BACKUP
$ chd /d0/BACKUP
$ dir
Directory of . 14:14:32
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 92/11/12 1417 ------wr 5990 11113 program.c
 12.4 92/11/12 1601 ------wr A12B 5780 prog.2

Only prog.2 was copied to the BACKUP directory because the date
was more recent in the WORKFILES directory.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about dsave, refer to the Utilities Reference
manual.

102 Using OS-9 for 68K Processors

4 The OS-9 File System

del and deldir: Deleting Files and Directories

Use the del and deldir utilities to eliminate unwanted files and
directories:

• del deletes a file

• deldir deletes a directory

If you no longer need a file, deleting the file frees disk space. You must
have permission to write to the file or directory in order to delete it.

Deleting Files

To delete a file, type del, followed by the name of the file you want
deleted. For example, to delete the file test you created with build,
you would type:

del test

If you execute dir, you see test is no longer displayed.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about wildcards, refer to Chapter 5: The Shell.

When deleting files, you may use wildcards. For example, if you have
three files, trial, trial1, and trial.c in a directory and you want
to use wildcards to delete trial and trial1, you may be tempted to
type del trial*, but this would also delete trial.c, a file you want
to keep.

4The OS-9 File System

Using OS-9 for 68K Processors 103

NoteNote
Use caution when you use wildcards with utilities like del and deldir.
It is easy to unintentionally delete files you want to save.

The del -p option displays the following prompt before deleting a file:

delete <filename> ? (y,n,a,q)

This helps prevent deleting files you want to keep.

Deleting Directories

Deleting a directory is a little different. Use the deldir utility to delete
directories. deldir first deletes all the files and directories in the given
directory, and then, if no errors occur, finally deletes the directory name.
For example:

$ deldir USER2
Deleting directory: USER2
Delete, List, or Quit (d, l, or q) ?

Table 4-5 Responses When Deleting Files

Response Action

y Delete the file.

n Do not delete the file.

a Delete specified files without further prompts.

q Exit the deleting process.

104 Using OS-9 for 68K Processors

4 The OS-9 File System

NoteNote
Never delete a file or directory unless you are sure you do not need it.
Files and directories deleted with the del and deldir commands are
permanently removed.

Table 4-6 Responses When Deleting a Directory

Response Action

d Delete the directory.

l List the directory contents.

q Quit without deleting any files.

105

Chapter 5: The Shell

This chapter is a detailed description of the shell; the OS-9 user
interface. It includes the following topics:

• Shell Functions

• The Shell Environment

• Built-In Shell Commands

• Shell Command Line Processing

• Command Grouping

• Shell Procedure Files

• The Startup Procedure File

• Creating a Temporary Procedure File

• Error Reporting

• Running Compiled Intermediate Code Programs

106 Using OS-9 for 68K Processors

5 The Shell

Shell Functions

The shell is the OS-9 command interpreter program. The shell
translates the commands you enter into commands the operating
system understands and executes. This allows you to use commands
such as dir, copy, and procs without knowing the complex machine
language OS-9 understands.

The shell also provides a user-configurable environment to personalize
the way OS-9 works on your system. You can use the shell to change
the shell prompt, send error messages to a file, or backup your disk
before you log out.

The shell command starts the shell program. This command is
automatically executed following system startup or after logging on to a
timesharing terminal. When the shell is ready for commands, it displays
the prompt:

$

This prompt indicates the shell is active and waiting for a command from
your keyboard. You can now type a command line followed by a
carriage return.

5The Shell

Using OS-9 for 68K Processors 107

Shell Options

A number of options are available to the shell. By default, some are
automatically turned on following startup or log on. The available shell
options are:

Table 5-1 Shell Options

Option Description

-e=<file> Print error messages from <file>. If no file is
specified, /dd/sys/errmsg is used. Without this
option, the shell prints only error numbers with a
brief message description. The OS-9 for 68K
Technical Manual contains error code
descriptions.

-ne Print no error messages. This is the default option.

-l The logout built-in command is required to
terminate the login shell. <eof> does not cause the
shell to terminate.

-nl <eof> terminates the login shell. <eof> is
normally caused by pressing the <esc> key. This is
the default option.

-p Display prompt. The default prompt is a dollar sign
($).

-p=<string> Set the current shell prompt equal to <string>.

-np Do not display the prompt.

-t Echo input lines.

-nt Do not echo input lines. This is the default option.

108 Using OS-9 for 68K Processors

5 The Shell

Changing Shell Options

You can change shell options with either of two methods:

1. Type the option on the command line or after the shell command.
For example:

$ -np Turns off the shell prompt.

$ shell -np Creates a new shell that does not prompt.
When you exit the new shell, the original shell
prompts.

2. Use set, a special shell command. To set shell options, type set,
followed by the options desired. When using the set command, a
hyphen (-) is unnecessary before the letter option. For example:

$ set np Turns off the shell prompt.

$ shell set np Creates a new shell that does not prompt.
When you exit the new shell, the original shell
prompts.

-v Verbose mode. Display a message for each
directory searched when executing a command.

-nv Turn off verbose mode. This is the default option.

-x Abort process on error. This is the default option.

-nx Do not abort process on error.

Table 5-1 Shell Options (continued)

Option Description

5The Shell

Using OS-9 for 68K Processors 109

NoteNote
The two methods described here accomplish the same function and are
provided for your convenience. Use the method that is clearest to you.

110 Using OS-9 for 68K Processors

5 The Shell

The Shell Environment

The shell maintains a unique list of environment variables for each user
on an OS-9 system. These variables affect the operation of the shell or
other programs subsequently executed and can be set according to
your preference.

You can access all environment variables by any process called by the
environment’s shell or by descendant shells. This essentially allows you
to use the environment variables as global variables.

NoteNote
If a subsequent shell redefines an environment variable, the variable is
only redefined for that shell and its descendents. The environment
variable is not redefined for the parent shell.

Environment variables are case sensitive. OS-9 does not recognize a
variable if you do not use the proper case.

5The Shell

Using OS-9 for 68K Processors 111

Four environment variables are automatically set up when you log on to
a time-sharing system:

On single user systems, you can set these variables with the setenv
command. You can also set up a procedure file with your normal
configuration of these variables. This procedure file could then be
executed each time you startup your terminal.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about setenv, refer to the Utilities Reference
manual.

Table 5-2 Environment Variables Automatically Set Up

Environment
Variable Specifies

PORT The name of the terminal. An example of a valid
name is /t1. The tsmon utility automatically sets
PORT.

HOME Your home directory. The home directory is
specified in your password file entry and is your
current data directory when you first log on the
system. This is also the directory used when you
execute the command chd with no parameters.

SHELL The first process executed when you log on to the
system.

USER The user name you typed when prompted by the
login command.

112 Using OS-9 for 68K Processors

5 The Shell

There are four other important environment variables:

Table 5-3 Additional Environment Variables

Environment
Variable Specifies

PATH Any number of directories. A colon (:) must
separate directory paths. The shell uses PATH as
a list of commands directories to search when
executing a command. If the default commands
directory does not include the file/module to
execute, each directory specified by PATH is
searched until the file/module is found or the list is
exhausted.

PROMPT The current prompt. By specifying an at sign (@) as
part of your prompt, you may easily keep track of
how many shells you have running under each
other. @ is a replaceable macro for the shell level
number. The environment variable _sh sets the
base level.

5The Shell

Using OS-9 for 68K Processors 113

_sh The base level for counting the number of shell
levels. For example, set the shell prompt to
@howdy: and _sh to 0:

$ setenv _sh 0

$ -p="@howdy: "

howdy: shell

1.howdy: shell

2.howdy: eof

1.howdy: eof

howdy:

TERM The type of terminal. TERM allows word
processors, screen editors, and other screen
dependent programs to know what type of terminal
configuration to use.

Table 5-3 Additional Environment Variables (continued)

Environment
Variable Specifies

114 Using OS-9 for 68K Processors

5 The Shell

Changing the Shell Environment

Three commands are available to use with environment variables:

setenv

setenv declares the variable and sets its value. The variable is put in
an environment storage area accessed by the shell. For example:

$ setenv PATH ..:/h0/cmds:/d0/cmds:/dd/cmds
$ setenv _sh 0

These variables are only known to the shell in which they are defined
and any descendant processes from that shell. This command does not
change the environment of the parent process of the shell issuing
setenv.

unsetenv

unsetenv clears the value of the variable and removes it from storage.
For example:

$ unsetenv PATH
$ unsetenv _sh

Table 5-4 Environment Variables Commands

Command Description

setenv Declare the variable and set the value of the
variable.

unsetenv Clear the value and remove the variable from
storage.

printenv Print the variables and their values to standard
output.

5The Shell

Using OS-9 for 68K Processors 115

printenv

printenv prints the variables and their values to standard output. For
example:

$ printenv
PATH=..:/h0/cmds:/d0/cmds:/dd/cmds
PROMPT=howdy
_sh=0

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about setenv, unsetenv, and printenv, refer
to the Utilities Reference manual.

116 Using OS-9 for 68K Processors

5 The Shell

Built-In Shell Commands

The shell has a special set of commands, or option switches, built-in to
the shell. You can execute these commands without loading a program
and creating a new process. They are executable regardless of your
current execution directory.

The built-in commands and their functions are:

Table 5-5 Built-in Shell Commands

Command Description

* <text> Indicate a comment: <text> is not
processed. This is especially useful in
procedure files.

chd <path> Change the current data directory to the
directory specified by the path.

chx <path> Change the current execution directory to the
directory specified by the path.

ex <name> Directly execute the named program. This
replaces the shell process with a new
execution module.

kill <proc ID> Abort the process specified by
<proc ID>.

logout Terminate the current shell. If the login shell
is to be terminated, the .logout file in the
home directory is executed and then the
login shell is terminated.

profile <path> Read input from a named file and then return
to the shell’s original input source.

5The Shell

Using OS-9 for 68K Processors 117

set <options> Set options for the shell.

setenv <env var>
<value>

Set environment variable to the specified
value.

setpr <proc ID>
<priority>

Change the process’ priority.

unsetenv
<env var>

Delete an environment variable from the
environment.

w Wait for a child process to terminate.

wait Wait for all child processes to terminate.

Table 5-5 Built-in Shell Commands (continued)

Command Description

118 Using OS-9 for 68K Processors

5 The Shell

Shell Command Line Processing

The shell reads and processes command lines one at a time from its
input path—usually your keyboard. Each line is first scanned, or parsed,
to identify and process any of the following parts which may be present:

After it identifies the keyword, the shell processes any execution
modifiers and separators. The shell assumes any text not yet processed
are parameters; they are passed to the program called.

The keyword must be the first word in the command line. If the keyword
is a built-in command, it is immediately executed.

Table 5-6 Command Line Parts

Command Description

keyword A name of a program, procedure file, built-in
command, or pathlist.

parameters Optional: The names of files, programs, values,
variables, or constants to pass to the program
being executed.

execution
modifiers

Optional: These modify a program’s execution by
redirecting I/O or changing the priority or memory
allocation of a process.

separators Optional: When multiple commands are placed
on the same command line, separators specify
whether they should execute sequentially or
concurrently.

5The Shell

Using OS-9 for 68K Processors 119

If the keyword is not a built-in command, the shell assumes it is a
program name and attempts to locate it. The shell searches for the
command in the following sequence:

1. The shell checks the memory to see if the program is already loaded
into the module directory. If it is already in memory, there is no need
to load another copy. The shell then calls the program to be
executed.

2. If the program was not in memory, your current execution directory is
searched. If it is found, the shell attempts to load the program. If this
fails, the shell tries to execute it as a procedure file. If this fails, the
shell attempts the same procedure using the next directory specified
in the PATH environment variable. This continues until the command
is successfully executed or the list of directories is exhausted.

3. The shell searches your current data directory. If it finds the
specified file, it is processed as a procedure file. Procedure files are
assumed to contain one or more shell command lines. These
command lines are processed by a newly created, or child, shell as
if they had been typed in manually. After all commands from the
procedure file execute, control returns to the old, or parent, shell.
Because the child shell processes the commands, all built-in
commands in the procedure file such as chd and chx only affect the
child shell.

The shell returns an error if the program is not found. If the program is
found and executed, the shell waits until the program terminates. When
the program terminates, it reports any errors returned. If there are more
input lines, the shell gets the next line and the process is repeated.

This sample command line calls a program:

$ prog #12K sourcefile -l -j >/p

In this example:

prog Is the keyword.

#12K Is a modifier requesting an alternate
memory size be assigned to this
process. In this case, 12K is used as
memory.

120 Using OS-9 for 68K Processors

5 The Shell

sourcefile -l -j Are parameters passed to prog.

> Is a modifier redirecting output to a file or
device. In this case, > redirects the
output to the printer (/p).

/p Is the system’s printer.

Special Command Line Features

In addition to basic command line processing, the shell facilitates:

• Memory allocation

• I/O redirection, including filters

• Process priority

• Wildcard pattern matching

• Multitasking: concurrent execution

These functions are accessed through execution modifiers, separators,
and wildcards. There are virtually unlimited combinations of ways to use
these capabilities.

5The Shell

Using OS-9 for 68K Processors 121

Characters comprising execution modifiers, separators, and wildcards
are stripped from the part(s) of the command line passed to a program
as parameters. You cannot pass the following characters as parameters
to programs unless you enclose them in quotes:

Execution Modifiers

The shell processes execution modifiers before the program is run. If an
error is detected in any of the modifiers, the run is aborted and the error
reported.

Table 5-7 Command Line Modifiers, Separators, and Wildcards

Name Symbol Description

Modifiers #

^

>

<

>>

Additional memory size

Process priority

Redirect output

Redirect input

Redirect error output

Separators ;

&

!

Sequential execution

Concurrent execution

Pipe construction

Wildcards *

?

Matches any character

Matches a single character

122 Using OS-9 for 68K Processors

5 The Shell

Additional Memory Size Modifiers

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about module headers, refer to the OS-9 for 68K
Technical Manual.

Every executable program is converted to machine language for
storage. During the conversion process, a module header is created for
the program. A module header is part of all executable programs and
holds information such as the program’s name, size, and memory
requirements.

When the shell processes an executable program, it allocates the
minimum amount of working memory specified in the program’s module
header. To increase the default memory size, you can assign memory in
1K increments using the pound sign modifier (#), followed by a number
of allocated kilobytes: #10k or #10. If the specified memory allocation
is smaller than would otherwise be used, the modifier is ignored.

The increase in memory allocation only affects one command. If you
want to increase the allocation for the next command, you must add the
modifier (#) again.

NoteNote
Programs written in C use the additional memory for stack space only.

5The Shell

Using OS-9 for 68K Processors 123

I/O Redirection Modifiers

Redirection modifiers redirect the program’s standard I/O paths to
alternate files or devices. Usually, programs do not use specific file or
device names. This makes redirecting standard I/O to any file or device
fairly simple without altering the program.

Programs normally receiving input from a terminal or send output to a
terminal use one or more of these standard I/O paths:

Standard Input Path Normally passes data from a terminal’s
keyboard to a program.

Standard Output Path Normally passes output data from a
program to a terminal’s display.

Standard Error Path Can be used for either input or output,
depending on the nature of the program
using it. This path is commonly used to
output routine status messages such as
prompts and errors to the terminal’s
display. By default, the standard error
path uses the same device as the
standard output path.

A new process can only be created by an existing process. The new
process is known as the child process. The process creating the child
process is known as the parent process. Each child process inherits the
parent process’ standard I/O paths.

When the shell creates a new process, it inherits the shell’s standard I/O
paths. Upon startup or logging in, the shell’s standard input is the
terminal keyboard. The standard output and standard error are directed
to the terminal’s display. Consequently, the child’s standard input is the
terminal keyboard. The child’s standard output and standard error are
directed to the terminal’s display.

When a redirection modifier is used on a shell command line, the shell
opens the corresponding paths and passes them to the new process as
its standard I/O paths.

124 Using OS-9 for 68K Processors

5 The Shell

The three redirection modifiers are:

When you use redirection modifiers on a command line, they must be
immediately followed by a path describing the file or device to or from
which the I/O is to be redirected.

Physical I/O Device Names

Each physical input/output device supported by the system must have a
unique name. Although the device names used on a system are
somewhat arbitrary, it is customary to use the names Microware
assigns to standard devices in OS-9. They are:

Table 5-8 Redirection Modifiers

Name Redirects the Standard

< Input path

> Output path

>> Error path

Table 5-9 Standard Device Names

Device Description

term Primary system terminal

t1, t2 Other serial terminals

p Parallel printer

p1 Serial printer

dd Default disk drive

5The Shell

Using OS-9 for 68K Processors 125

The h0fmt, h1fmt, etc. device descriptors have a bit set allowing you
to use the format and os9gen utilities on them. To avoid accidentally
formatting a hard disk, you should normally use the device names h0,
h1, etc.

You may only use device names as the first name of a pathlist. The
device name must be preceded by a slash (/) to indicate the name is an
I/O device. If the device is not a mass storage multi-file device, such as
a disk drive, the device name must be the only name in the path. This
restriction is true for devices such as terminals and printers.

For example, you can redirect the standard output of list to write to
the system printer instead of the terminal:

$ list correspondence >/p

d0 Floppy disk drive unit 0

d1, d2 Other floppy disk drives

h0, h1 Hard disk drives (format-inhibited)

h0fmt, h1fmt Hard disk drives (format-enabled)

n0, n1 Network devices

mt0, mt1 Tape devices

r0 RAM disk

pipe Pipe device

nil Null device

Table 5-9 Standard Device Names (continued)

Device Description

126 Using OS-9 for 68K Processors

5 The Shell

Using I/O Redirection Modifiers

The shell automatically opens or creates, and closes (as appropriate)
files referenced by I/O redirection modifiers. In the next example, the
output of dir is redirected to the path /d1/savelisting:

$ dir >/d1/savelisting

If list is used on the path /d1/savelisting, output from dir is
displayed as follows:

$ List /d1/savelisting
 directory of . 10:15:00
file1 myfile savelisting

You can use redirection modifiers before and/or after the program’s
parameters, but you can use each modifier only once in a given
command line. You can use redirection modifiers together to redirect
more than one standard path. For example, shell <>>>/t1 redirects
all three standard paths to /t1.

NoteNote
You may not place spaces between redirection operators and the
device or file path.

You can use the addition and hyphen characters (+ and -) with
redirection modifiers:

• >- redirects output to a file. If the file already exists, the output
overwrites it.

• >+ adds the output to the end of the file.

The following example overwrites dirfile with output from the
execution directory listing:

dir -x >-dirfile

To add the listing of newfile to the end of oldfile, type:

list newfile >+oldfile

5The Shell

Using OS-9 for 68K Processors 127

Process Priority Modifier

On multi-user systems or when multitasking, many processes seem to
execute simultaneously. Actually, OS-9 uses a scheduling algorithm to
allocate execution time to activate processes.

All active processes are sorted into a queue based on the age of the
process.

NoteNote
The age is a number between 0 and 65535 based on how long a
process has waited for execution and its initial priority.

On a timesharing system, the system manager assigns the initial
priority for processes started by each user. The password file contains
the priority for the initial process. The initial process is usually the shell.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Password files are covered later in this chapter.

On a single user system, processes have their priority set in the Init
module.

All child processes inherit their parent process’s priority.

When a process enters the active queue, it has an age set to its initial
priority. Every time a new active process is submitted for execution, all
earlier processes’ ages are incremented. The process with the highest
age executes first.

128 Using OS-9 for 68K Processors

5 The Shell

Raising the Process’ Priority

If you want a program to run at a higher priority, use the caret modifier
(^). By specifying a higher priority, a process is placed higher in the
execution queue. For example:

$ format /d1 ^255

In this example, the process format is assigned the priority of 255. By
assigning a lower number, you can specify a lower priority.

WARNING!
Specifying too high of a priority for a process can lock out all other
processes until their ages mature. For example, if you specify a priority
of 2000 for a large program and all the other processes have an age of
less than 100, your program is the only process executed on the system
until either your program terminates or another process’ age reaches
2000. If another process’ age reaches 2000, it runs once and is entered
back in the queue at its initial priority. Once again, your program either
runs until it terminates or until another process’ age reaches 2000.

Wildcard Matching

The shell uses some alternate ways to identify file and directory names.
It accepts wildcards in the command line. The two recognized wildcard
characters are:

• An asterisk (*) matches any group of zero or more characters.

• A question mark (?) matches any single character.

The shell searches the current data directory or the directory given in a
path for matching file names.

5The Shell

Using OS-9 for 68K Processors 129

Examples found throughout this chapter use a directory containing the
following files:

directory of FILES 14:45:20
diarydiary2 form form.backup
forms login.names logistics logs
old oldstuff setime.c shellfacts
sizes sizes.backup utils1

The Asterisk (*)

The command list log* lists the contents of login.names,
logistics, and logs. The pattern log* matches all file names
beginning with log followed by zero or more characters. The following
commands demonstrate the function of this wildcard:

list s* Lists all files in the current data directory
beginning with s: Shellfacts, setime.c,
and sizes.

del * Deletes every file in the directory FILES.

dir ../*.backup Lists all files in the parent directory ending with
.backup.

The Question Mark (?)

The question mark (?) matches any single character in the wildcard’s
position. For example, the command line list log? only lists the
contents of the file logs. The following commands demonstrate the
function of this wildcard:

del form? Deletes the file forms but not form.

list s???? Lists the contents of sizes, but not setime.c
or shellfacts.

In both examples, the shell only searches for names with five
characters.

130 Using OS-9 for 68K Processors

5 The Shell

Using Wildcards Together

You can also use wildcards together. For example, the command list
*.? lists any files ending in a period followed by any letter, number, or
special character, regardless of what comes before the period. In this
case, list *.? lists the contents of the file setime.c.

NoteNote
The shell disregards wildcard characters enclosed in double quotes.
For example:

echo "*"

This echoes an asterisk (*) to standard output—usually the terminal. If
you left out the double quotes around the asterisk, the shell would
expand the wildcard to include every file name in the current directory
and output each name to the terminal.

The shell only attempts to expand a character string containing a
wildcard if the character string could be a pathlist. The shell does not
expand wildcards used in the keyword of a command line. For
example, the shell does not expand the asterisk in the following:

d* forms

WARNING!
You must be careful when using wildcards with utilities such as del and
deldir. You should not use wildcards with the -x or -z options of most
utilities.

5The Shell

Using OS-9 for 68K Processors 131

Command Separators

A single shell input line can include more than one command line. You
can execute these command lines sequentially or concurrently:

Sequential Execution Causes one program to complete its
function and terminate before the next
program is allowed to begin execution.
Specify sequential execution with a
semicolon (;).

Concurrent Execution Allows several command lines to begin
execution and run simultaneously.
Specify concurrent execution with an
ampersand (&)

Sequential Execution

When you enter one command per line from the keyboard, programs
execute one after another (sequentially). All programs executed
sequentially are individual processes created by the shell. After
initiating execution of a program to be executed sequentially, the shell
waits until the program it created terminates. The command line prompt
does not return until the program has finished.

For example, the following command lines are executed sequentially.
The copy command is executed first, followed by the dir command.

$ copy myfile /D1/newfile
$ dir >/p

Specify more than one program on a single shell command line for
sequential execution by separating each program name and its
parameters from the next one with a semicolon (;). For example:

$ copy myfile /D1/newfile; dir >/p

The shell first executes copy and then dir. No command line prompt
appears between the execution of the copy and dir commands. The
command line executes exactly as the previous two command lines,
unless an error occurs.

132 Using OS-9 for 68K Processors

5 The Shell

If any program returns an error, subsequent commands on the same
line are not executed regardless of the -nx option. In all other regards,
a semicolon (;) and a carriage return act as identical separators.

Examples of Sequential Execution

To copy the contents of oldfile into newfile, delete oldfile when
the copy command is finished, and then list the contents of
newfile, type:

$ copy oldfile newfile; del oldfile; list newfile

To redirect the output from dir into myfile in the d1 directory, redirect
the output from list to the printer, and delete temp, type:

$ dir >/d1/myfile ; list temp >/p; del temp

Concurrent Execution

Use the ampersand (&) separator to execute programs, including the
shell, concurrently. The shell does not wait to complete a process
before processing the next command. You use concurrent execution to
start a background program.

For example:

$ dir >/P& list file1& copy file1 file2 ; del temp

The dir, list, and copy utilities run concurrently because they are
separated by an ampersand (&). del does not run until copy
terminates because sequential execution (;) was specified.

NoteNote
Use the concurrent execution separator (&) for multitasking. The
number of programs that can run at the same time depends on the
amount of free memory in the system and each program’s memory
requirements.

5The Shell

Using OS-9 for 68K Processors 133

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

If you have several processes running at once, you can display a status
summary of all your processes with the procs utility. procs lists your
current processes and pertinent information about each process.

The procs utility is covered later in this chapter.

If you add an ampersand (&) to the end of a command line, regardless
of the type of execution specified, the shell immediately:

1. Returns command to the keyboard.

2. Displays the $ prompt.

3. Waits for a new command.

This frees you from waiting for a process or sequence of processes to
terminate. This is especially useful when making a listing of a long text
file on a printer. Instead of waiting for the listing to print to completion,
you can use the concurrent execution separator to use your time more
efficiently.

Pipes and Filters

A third kind of separator is the exclamation point (!) used to construct
pipelines. Pipelines consist of two or more concurrent programs whose
standard input and/or output paths connect to each other using pipes.

A pipe is simply a way to connect the output of a process to the input of
another process, so the two run as a sequence of processes: a pipeline.
Pipes are one of the primary means to transfer data from process to
process for interprocess communications. Pipes are first-in, first-out
buffers and may hold up to 90 bytes of data at a time.

134 Using OS-9 for 68K Processors

5 The Shell

All programs in a pipeline execute concurrently. The pipes automatically
synchronize the programs so the output of one never gets ahead of the
input request of the next program in the pipeline. This ensures data
cannot flow through a pipeline any faster than the slowest program can
process it.

Any program that reads data from standard input can read from a pipe.
Any program that writes data to standard output can write data to a
pipe. Several utilities are designed so you can pipe the standard output
of one to the standard input of another. For example:

$ dir -e ! pr

This example pipes the standard output of dir to the standard input of
the pr utility instead of on the terminal screen. pr reads the output of
dir even though pr reads standard input by default. pr then displays
the result.

As Figure 5-1 shows, the standard output of the dir -e command is
piped to the standard input of the pr command through an un-named
pipe. The pr utility displays the results of the dir -e command.

Figure 5-1 Example Pipe

OS-9 provides two types of pipes:

• Named Pipes

• Un-named Pipes

Un-named Pipes

The shell creates un-named pipes when it processes an input line with
one or more exclamation point (!) separators. For each exclamation
point, the standard output of the program named to the left of the

dir -e
(WRITES)

pr
(READS)

/pipe/temp

5The Shell

Using OS-9 for 68K Processors 135

exclamation point is redirected by a pipe to the standard input of the
program named to the right of the exclamation point. Individual pipes
are created for each exclamation point present. For example:

$ update <master_file ! sort ! write_report >/p

In this example, the input for the program update is redirected from
master_file. update’s standard output becomes the standard input
for the program sort. sort’s output, in turn, becomes the standard
input for the program write_report. write_report’s standard
output is redirected to the printer.

Named Pipes

Named pipes are similar to un-named pipes with one exception: a
named pipe works as a holding buffer that another process can open at
a different time.

To create a named pipe, redirect output to /pipe/<file>, where
<file> is any legal OS-9 file name. For example:

$ list letters >/pipe/letters

The output from the list command is redirected into a named pipe,
/pipe/letters. The information remains in the pipe until it is listed,
copied, deleted, or used in some other manner.

As Figure 5-2 shows, the output from the merge command is
redirected to the named pipe, /pipe/these. /pipe/these remains
open until the contents are used in some way. In this example, another
user could later grep for a word in the file /pipe/these:

grep newone /pipe/these -nc

136 Using OS-9 for 68K Processors

5 The Shell

Once the file has been used, the named pipe is deleted.

Figure 5-2 Named Pipes

You can also create named pipes by writing to the named pipe from a
program. Named pipes are similar to mass-storage files. Named pipes
have attributes and owners. They may be deleted, copied, or listed
using the same syntax one would use to delete, copy, or list a file. You
may change the attributes of a named pipe just as you would change
the attributes of a file.

dir works with /pipe. This displays all named pipes in existence. A
dir -e command may be deceiving. If any utility other than copy
creates a named pipe, the pipe size equals 90 bytes. copy expands the
size of the pipe to the size of the file. This indicates the first 90 bytes of
the output are in the named pipe. However, if the procs utility is
executed, you see a path remains open to /pipe. If you were to copy
or list the pipe, for example, the pipe would continue to receive input
and pass it to its output path until the input process is finished. When
the pipe is empty, the named pipe is deleted automatically.

Some of the most useful applications of pipelines are character set
conversion, data compression/decompression, and text file formatting.
Programs designed to process data as components of a pipeline are
often called filters.

/pipe/these grep newone
>/pipe/these -nc

merge this that >/
pipe/these

/pipe/these

5The Shell

Using OS-9 for 68K Processors 137

Command Grouping

You can enclose sections of shell input lines in parentheses (). This
allows you to apply modifiers and separators to an entire set of
programs. The shell processes them by calling itself recursively as a
new process to execute the enclosed program list. For example, the
following commands produce the same result:

$ (dir /d0; dir /d1) >/p
$ dir /d0 >/p; dir /d1 >/p
$ dir& (procs; del it)

It is important to remember OS-9 processes commands from left to
right. In the following example, the dir command executes before the
procs and del commands located inside the parentheses.

However, one subtle difference exists. The printer is continuously
controlled by one user in the first example, while in the second case,
another user could conceivably use the printer in between the dir
commands.

You can use command grouping to execute a group of programs
sequentially with respect to each other and concurrently with respect to
the shell initiating them. For example:

$ (del *.backup; list stuff_* >p)&

This command begins to sequentially delete all files ending in .backup
and then list to the printer the contents of any files starting with stuff_.
At the same time, a $ prompt appears, indicating the shell is waiting for
a new command.

Command Grouping and Pipelines

A useful extension of this form is to construct pipelines consisting of
sequential and/or concurrent programs. For example:

$ (dir CMDS; dir SYS) ! makeuppercase ! transmit

138 Using OS-9 for 68K Processors

5 The Shell

This command line outputs the dir listings of CMDS and SYS, in that
order, through a pipe to the program makeuppercase. The total output
from makeuppercase is then piped to the program transmit.

5The Shell

Using OS-9 for 68K Processors 139

Shell Procedure Files

A procedure file is a text file containing one or more command lines that
are identical to command lines manually entered from the keyboard.
The shell executes each command line in the exact sequence given in
the procedure file.

A simple procedure file could consist of dir on one line and date on
another. When the name of this procedure file is entered from the
command line, OS-9 runs dir, followed by date.

Procedure files have a number of valuable applications. They can:

• Eliminate repetitive manual entry of commonly used command
sequences.

• Allow the computer to execute a lengthy series of programs in the
background unattended or while you are running other programs in
the foreground.

• Initialize your environment when you first log in.

In addition, you can use a procedure file to redirect the standard input,
standard output, and standard error paths from programs and utilities to
procedure files. This has many useful purposes. For example, instead
of receiving the sometimes annoying output of shell messages to your
terminal at random times, you could redirect the shell’s output to a
procedure file and review the messages at a more convenient time.

You can also run procedure files in the background by adding the
ampersand (&) operator:

$ procfile&
+4

140 Using OS-9 for 68K Processors

5 The Shell

WARNING!
If a procedure file is run in the background, it should not contain any
terminal I/O. Any terminal I/O caused by a background procedure file
minimally causes confusion as two or more processes try to control the
same I/O path.

Notice the +4 returned by the shell in the example above. This is the
process number assigned to the shell running procfile. You could
achieve the same effect with the <control>c interrupt:

$ procfile
[<control>C is typed]
+4

Using <control>c to place a procedure in the background only works
if the procedure has not yet performed I/O to the terminal. Another
limitation of the <control>c interrupt occurs when the shell has not
had time to set up the command for execution. If the shell has not
loaded files from the disk or established pipelines, the <control>c
causes the shell to abort the operation and return the shell prompt. For
this reason, you should usually use the ampersand to place a
procedure in the background.

OS-9 does not have any limit on the number of procedure files that can
execute simultaneously, as long as memory is available.

NoteNote
Procedure files themselves can cause sequential or concurrent
execution of additional procedure files.

5The Shell

Using OS-9 for 68K Processors 141

The Login Shell and Two Special Procedure Files: .login
and .logout

The login shell is the initial shell created by the login sequence to
process the user input commands after logging in.

NoteNote
The .login and .logout procedure files provide a way to execute
desired commands when logging on to and leaving the system. To
make use of these files, they must be located in the home directory.

The .login File

.login is executed each time the login command is executed. This
allows you to run a number of initializing commands without
remembering each and every command. The login shell processes
.login as a command file immediately after successfully logging on to
a system. After processing all commands in the .login file, the shell
prompts you for more commands. The main difference in handling
.login is the login shell itself actually executes the commands rather
than creating another shell to execute the commands.

You can issue commands such as set and setenv within .login and
have them affect the login shell. This is especially useful for setting up
the environment variables PATH, PROMPT, TERM, and _sh.

Here is an example .login file:

setenv PATH ..:/h0/cmds:/d0/cmds:/dd/cmds:/h0/doc/spex
setenv PROMPT "@what next: "
setenv _sh 0
setenv TERM abm85h
querymail
date
dir

142 Using OS-9 for 68K Processors

5 The Shell

The .logout File

You execute logout to exit the login shell and leave the system.
.logout is processed before the login shell terminates. It only
processes the .logout file when given to the login shell; other
subsequent shells simply terminate. You could use .logout to execute
any clean up procedures performed on a regular schedule. This might
be anything from instigating a backup procedure of some sort to printing
a reminder of things to do. Here is an example .logout file:

procs
wait
echo "all processes terminated"
* basic program to instigate backup if necessary *
disk_backup
echo "backup complete"

The Profile Command

You can use the profile built-in shell command to cause the current
shell to read its input from the named file and then return to its original
input source—usually the keyboard. To use the profile command,
enter profile and the name of a file:

profile setmyenviron

The specified file (in this case setmyenviron) may contain any utility
or shell commands, including commands to set or unset environment
variables or to change directories. These changes remain in effect after
the command has finished executing. This is in contrast to calling a
normal procedure file by name only. If you call a normal procedure file
without using the profile command, the changes would not affect the
environment of the calling shell.

You can nest profile commands. That is, the file itself may contain a
profile command for another file. When the latter profile
command is completed, the first one resumes.

5The Shell

Using OS-9 for 68K Processors 143

A particularly useful application for profile files is within a user’s
.login and .logout files. For example, if each user includes the
following line in the .login file, then system-wide commands (such as
common environments and news bulletins) can be included in the file
/dd/SYS/login_sys:

profile /dd/SYS/login_sys

You can use a similar technique for .logout files.

144 Using OS-9 for 68K Processors

5 The Shell

The Startup Procedure File

OS-9 systems used for timesharing usually have a procedure file that
brings the system up by means of one simple command or by using the
system startup file. This procedure file initiates the timesharing monitor
for each terminal. It begins by starting the system clock and initiating
concurrent execution of a number of processes having their I/O
redirected to each timesharing terminal.

tsmon is a special program that monitors a terminal for activity.
Typically, tsmon is executed as part of the start-up procedure when the
system is first brought up and remains active until the system shuts
down.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about tsmon, refer to the Utilities Reference
manual.

tsmon is normally used to monitor I/O devices capable of bi-directional
communication, such as CRT terminals. However, you can also use
tsmon to monitor a named pipe. If you do this, tsmon creates the
named pipe and then waits for some other process to write data to it.

You can run several tsmon processes concurrently, each one watching
a different group of devices. Because tsmon can monitor up to 28
device name pathlists, you must run multiple tsmon processes when
you need more than 28 devices monitored. Multiple tsmon processes
can be useful for other reasons. For example, you may want to keep
modems or terminals suspected of hardware trouble isolated from other
devices in the system.

Here is a sample procedure file for a timesharing system with terminals
named T1, T2, T3, and T71:

* system startup procedure file
echo Please Enter the Date and Time
setime

5The Shell

Using OS-9 for 68K Processors 145

tsmon /t1 /t2 /t3&
tsmon /t71* This terminal has been misbehaving

NoteNote
This login procedure requires a file called password, with the
appropriate entries, exists in the SYS directory of the system’s initial
device.

The Password File

A password file is found in the SYS directory. Each line in the password
file is a login entry for a user. The line has several fields, each separated
by a comma. The fields are:

User name The user name may contain up to 32
characters including spaces. If this field
is empty, any name matches.

Password The password may contain a maximum
of 32 characters including spaces. If this
field is omitted, no password is required
for the specified user.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about password files, refer to the login description
in the Utilities Reference manual.

Group.user ID number Both the group and the user portion of
this number may be from 0 to 65535. 0.0
is the super user. The file security
system uses this number as the
system-wide user ID to identify all

146 Using OS-9 for 68K Processors

5 The Shell

processes initiated by the user. The
system manager should assign a unique
ID to each potential user.

Initial process priority This number may be from 1 to 65535. It
indicates the priority of the initial
process.

Initial execution directory
This field is usually set to /h0/CMDS.
Specifying a period (.) for this field
defaults the initial execution directory to
the CMDS file.

Initial data directory This is usually the specific user directory.
Specifying a period (.) for this directory
defaults to the current directory.

Initial Program This field contains the name and
parameters of the program to be initially
executed. This is usually shell.

NoteNote
Fields left empty are indicated by two consecutive commas.

The following is a sample password file:

superuser,secret,0.0,255,.,.,shell -p="@howdy"
suzy,morning,1.5,128,.,/d0/SUZY,shell
don,dragon,3.10,100,.,/d0/DON,Basic

5The Shell

Using OS-9 for 68K Processors 147

Creating a Temporary Procedure File

You can create temporary procedure files to perform tasks requiring a
sequence of commands. The cfp utility creates a temporary procedure
file in the current data directory and calls the shell to execute it. After the
task is complete, cfp automatically deletes the procedure file, unless
you use the -nd option to specify you do not want the procedure file
deleted.

The following is the syntax for the cfp utility:

cfp [<opts>] [<path1>] {<path2>} [<opts>]

To use the cfp utility, type cfp, the name of the procedure file
(<path1>), and the file(s) (<path2>) used by the procedure file. If you
use the -s=<string> option, you may omit the name of the procedure
file.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about cfp, refer to the Utilities Reference
manual.

All occurrences of an asterisk (*) in the procedure file are replaced by
the given pathlist(s) unless preceded by the tilde character (~). For
example, ~* translates to *. The command procedure is not executed
until all input files have been read.

For example, if you have a procedure file in your current data directory
called copyit consisting of a single command line: copy *, you could
put all of your C programs from two directories, PROGMS and
MISC.JUNK, into your current data directory by typing:

$ cfp copyit ../progms/*.c ../misc.junk/*.c

If you do not have a procedure file, you can use the -s option. The -s
option causes cfp to read the string surrounded by quotes instead of a
procedure file. For example:

148 Using OS-9 for 68K Processors

5 The Shell

$ cfp -s="copy *" ../progms/*.c ../misc.junk/*.c

In this case, cfp creates a temporary procedure file to copy every file
ending in .c in both PROGMS and MISC.JUNK to the current data
directory. The procedure file created by cfp is deleted when all the files
have been copied.

Using the -s option is convenient because you do not have to edit the
procedure file if you want to change the copy procedure. For example, if
you are copying large C programs, you may want to increase the
memory allocation to speed up the process. You could allocate the
additional memory on the cfp command line:

$ cfp "-s=copy -b100 *" ../progms/*.c ../misc.junk/*.c

Reading the File Names from Standard Input or a File

You can use the -z and -z=<file> options to read the file names from
either standard input or a file. The -z option is used to read the file
names from standard input. For example, if you have a procedure file
called count.em containing the command count -l * and you want
to count the lines in each program to see how large the programs are
before you copy them, you could type the following command line:

$ cfp -z count.em

The command line prompt does not appear because cfp is waiting for
input. Type in the file names on separate command lines. For example:

$ cfp -z count.em
../progms/*.c
../misc.junk/*.c

When you have finished typing the file names, press the carriage return
a second time to get the shell prompt.

If you have a file containing a list of the files you want copied, you could
type:

$ cfp -z=files "-s=copy *"

5The Shell

Using OS-9 for 68K Processors 149

Multiple Shells

Like all OS-9 utilities, the shell can be simultaneously executed by more
than one process. This means in addition to each user having their own
shell, an individual user can have multiple shells.

You can use procedure files to create new shells. For example, to
execute a shell whose standard input is obtained from procfile, type:

$ shell <procfile

The new shell automatically accepts and executes the command lines
from the procedure file instead of a terminal keyboard. This technique is
sometimes called batch processing.

Shells can also fork new shells by simply processing the procedure file:

$ procfile

Basically, both of the above commands execute the commands found in
the procfile file.

By creating new shells, you can also move around the file system more
efficiently. To demonstrate this concept, the directory system in Figure
5-3 is used.

Figure 5-3 An Example Directory

Root Directory of
device d0:

DIRECTORY_1 DIRECTORY_2 DIRECTORY_3

DIR_4 DIR_5 DIR_7 DIR_8DIR_6

file_1

file_5

DIR_9

file_6

 file_2
 file_3

file_4

file_7 file_8

150 Using OS-9 for 68K Processors

5 The Shell

If your current data directory is DIR_9 and you want to work on
file_8, you would normally change your current data directory to
DIR_8 and access the file by typing:

chd /d0/DIRECTORY_3/DIR_8

To return to DIR_9, you would execute a similar command. This is
somewhat inconvenient and involves always knowing the path to each
directory.

Instead, you can create a shell and change directories:

$ (chd /d0/DIRECTORY_3/DIR_8)

This makes your current directory DIR_8, but you can return to DIR_9
by pressing the <escape> (esc) key. By this method, you may use any
directory as a base directory and fork a shell out to any other directory.

You may continue to embed as many shells as you like. Each time you
press the <escape> key, you are taken to the previous shell. In this
fashion you could conceivably escape from DIRECTORY_2 to DIR_8 to
DIR_6 to DIR_9.

NoteNote
Because of the nature of jumping from shell to shell, it is easy to get
lost. pd displays a complete pathlist from the root directory to your
current data directory. Likewise, when running multiple shells, it is easy
to forget how many shells are running. If the _sh environment variable
is set to 1 and the shell prompt includes an at sign (@), the number of
shells replaces the @ in the prompt. For example, if three shells are run
under each other, the prompt might look like this:

3.what next:

You should experiment with the multiple shell aspects to fully use OS-9.

5The Shell

Using OS-9 for 68K Processors 151

The Procs Utility

Because of OS-9’s multitasking abilities, you often have more than one
process executing at a time. You may become confused as to which
processes are still running and which processes have run to
completion. The procs utility displays a list of processes running on the
system you own. This allows you to keep track of your current
processes.

NoteNote
Processes can switch states rapidly, usually many times per second.
Therefore, the procs display is a snapshot taken at the instant the
command is executed and shows only those processes running at that
exact moment.

procs displays the following information for each process:

Table 5-10 Information Displayed By procs

Name Description

Id The process ID.

PId The parent process ID.

Grp.usr The group and user number of the process owner.

Prior The initial priority of the process.

MemSiz The amount of memory the process is using.

Sig The number of any pending signals for the process.

152 Using OS-9 for 68K Processors

5 The Shell

S State of the process

*CPU = Process is currently in the CPU. This will always
be the procs command since it has to be running when
it takes the snapshot of the process table.

a = Active. Process wants CPU time, but is having to
wait because another process is in the CPU already.

d = Debug. Process is currently being debugged.

e = Event. Process is blocked waiting on an event.

p = Semaphore. Process is blocked waiting on a
semaphore.

s = Sleeping. Process is blocked waiting on a signal or
time value to elapse.

w = Waiting. Process is blocked waiting on a child
process to terminate.

- = Zombie. Process has been terminated, but the
parent has not performed a wait to read the exit
status.

CPU Time The amount of CPU time the process has used.

Age The elapsed time since the process started.

Module &
I/O

The process name and standard I/O paths:

< Standard input

> Standard output

>> Standard error output

If several of the paths point to the same pathlist, the
identifiers for the paths are merged.

Table 5-10 Information Displayed By procs (continued)

Name Description

5The Shell

Using OS-9 for 68K Processors 153

The following is an example of procs:
$ procs
Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 2 1 0.0 128 0.25k 0 w 0.01 ??? sysgo <>>>term
 3 2 0.0 128 4.75k 0 w 4.11 01:13 shell <>>>term
 4 3 0.0 5 4.00k 0 a 12:42.06 00:14 xhog <>>>term
 5 3 0.0 128 8.50k 0 * 0.08 00:00 procs <>>term
 6 0 0.0 128 4.00k 0 s 0.02 01:12 tsmon <>>>t1
 7 0 0.0 128 4.00k 0 s 0.01 01:12 tsmon <>>>t2

procs -a displays nine pieces of information: the process ID, the
parent process ID, the process name and standard I/O paths, and six
new pieces of information:

The following is an example of procs -a:

$ procs -a
Id PId Aging F$calls I$calls Last Read Written Module & I/O
 2 1 129 5 1 Wait 0 0 sysgo <>>>term
 3 2 132 116 127 Wait 282 129 shell <>>>term
 4 3 11 1 0 TLink 0 0 xhog <>>>term
 5 3 128 7 4 GPrDsc 0 0 procs <>>>term
 6 0 130 2 7 ReadLn 0 0 tsmon <>>>t1
 7 0 129 2 7 ReadLn 0 0 tsmon <>>>t2

Table 5-11 Information Displayed by procs -a

Name Description

Aging The age of the process based on the initial priority and
how long it has waited for processing.

F$calls The number of service request calls made.

I$calls The number of I/O requests made.

Last The last system call made.

Read The number of bytes read.

Written The number of bytes written.

154 Using OS-9 for 68K Processors

5 The Shell

The -b option displays all information from procs and procs -a. The
-e option displays information for all processes in the system.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on procs, see the Utilities Reference manual.

Waiting for the Background Procedures

If you use OS-9’s multitasking ability, a number of procedures may be
running in the background. If it is important to wait for these tasks to
finish before running a new procedure, use the w or wait built-in shell
command.

NoteNote
w waits for a child process to be executed to finish.

wait waits for all child processes running in the background to finish.

REMINDER: A child process is a process that the current shell or a
child of the shell is executing.

For example, if you need to create a document from three different files
and each file has to be sorted by different fields, you can use the
following procedure files to create the same result:

start of first procedure file
qsort -f=1 file1&
qsort -f=2 file2&
qsort -f=3 file3&
wait
merge file1 file2 file3 >report
start of second procedure file

5The Shell

Using OS-9 for 68K Processors 155

qsort -f=1 file1
qsort -f=2 file2
qsort -f=3 file3
merge file1 file2 file3 >report

The first procedure file is much quicker because each of the files are
processed concurrently.

Stopping Procedures

You can use two methods to stop a procedure:

1. The <control>c or <control>e signals.

2. The kill utility.

The shell handles the keyboard generated signals in the following
manner. If OS-9 receives either of these signals while the shell is
waiting for keyboard input, it issues the following messages:

$ Read I/O error - Error #000:002 [^E typed]
$ Read I/O error - Error #000:003 [^C typed]

These are the standard messages given whenever an I/O error occurs
when reading command input data. These keyboard signals are useful
to get the shell’s attention while it is waiting for a process to terminate.

If the shell is waiting for keyboard input and <control>e is typed, the
shell forwards the keyboard abort signal to the current process and
immediately prompts for command input:

$ sleep 500
[^E is typed]
abort
$

The shell uses the abort message to acknowledge the interrupt’s
receipt.

If the shell is waiting for keyboard input and <control>c is typed, the
shell stops waiting for the current process to terminate and prompts for
command input. This action is similar to using an ampersand (&) on the
command line. For example:

156 Using OS-9 for 68K Processors

5 The Shell

$ sleep 500
[^C is typed]
8
$

You must remember you can only use <control>c in this fashion if the
command in question has not yet performed I/O to the terminal. The
signal is only received by the last process to perform I/O. If the shell has
not yet finished setting up the command for execution, the signal causes
the shell to abort the operation and return the prompt.

NoteNote
<control>c Stops the shell from waiting for the process to terminate

and returns a prompt for a command.

<control>e Forwards the keyboard abort signal to the process and
immediately prompts for input.

You can also use the kill utility to terminate background processes by
specifying the process number of the process to kill. Obtain the process
number of the process to kill from procs. kill is used in the following
manner:

kill <proc num>

For example, if you want to terminate a process called xhog:

Step 1. Execute a procs:

$ procs
Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 3 2 7.03 128 4.75k 0 w 4.11 01:13 shell <>>>term
 4 3 7.03 5 4.00k 0 a 12:42.06 00:14 xhog <>>>term
 5 3 7.03 128 8.50k 0 * 0.08 00:00 procs <>>term

From procs, you can see the process number for xhog is 4.

Step 2. Type:

$ kill 4

5The Shell

Using OS-9 for 68K Processors 157

When you execute procs again, xhog is no longer shown.

Either of these methods terminate any process running in the
background with one exception: if a process is waiting for I/O, it may not
die until the current I/O operation is complete. Therefore, if you
terminate a process and procs shows it still exists, it is probably
waiting for the output buffer to be flushed before it can die.

NoteNote
You must either own the procedure or be the super user to kill a
specified process.

158 Using OS-9 for 68K Processors

5 The Shell

Error Reporting

Many programs, including the shell, use OS-9’s standard error reporting
function. This displays a brief description of the error and an error
number on the standard error path. An appendix listing all of the
standard error codes is included with this manual.

If a longer description of errors is desired, set the -e shell option. This
prints error messages from /dd/SYS/errmsg on standard output.

5The Shell

Using OS-9 for 68K Processors 159

Running Compiled Intermediate Code
Programs

Before the shell executes a program, it checks the program module’s
language type. If its type is not 68000 machine language, the shell calls
the appropriate run-time system for that module. Versions of the shell
supplied for various systems can call different run-time systems.

For example, if you wanted to run a BASIC I-code module called
adventure, you could type either of the two commands given below;
they accomplish exactly the same thing:

$ BASIC adventure
$ adventure

160 Using OS-9 for 68K Processors

5 The Shell

161

Chapter 6: The make Uti l i ty

This chapter explains the make utility in detail. This utility is used to
maintain and regenerate software from a group of files.

This chapter includes the following topics:

• Introduction

• The make Utility

• Processing the Make File

• Implicit Dependencies

• Macro Recognition

• make Generated Command Lines

• make Options

• Examples

162 Using OS-9 for 68K Processors

6 The make Utility

Introduction

The make utility simplifies multi-source-file project maintenance by
determining what source files need to be recompiled. make examines
the dates associated with the target file and its dependents and
regenerates any out-of-date dependents and then the target. A special
procedure file (generally named makefile) is used to specify the
target file and other dependencies involved with recreating the target
file.

NoteNote
It is important for you to know two terms:

• The target file is the final product of one or more compiled source
files.

• Dependents are the files that make up a target file.

This chapter contains sections about:

• Makefile entries

• How a makefile is processed

• Implicit dependencies

• Macro recognition

• make generated command lines

• make options

The chapter concludes with some examples of how you might use
make.

6The make Utility

Using OS-9 for 68K Processors 163

The make Utility

The make utility automates the process of maintaining and re-creating
your target file. The executable target file is the final product of one or
more compiled source files. It may depend on other files for information
and instructions. These other files are known as dependents. If you
update dependency files, the target file becomes out-of-date.

A makefile is a special type of procedure file describing the relationship
between the final product and the files that make up the final product.
make uses the makefile to:

• Create a list of file dependencies and resolves implicit dependencies
(refer to the Implicit Dependencies section).

• Compare each file’s date to the main target’s date. Files with dates
equal to or after the main target’s date are considered changed.

• Recompile and relink the changed files to update the executable
main target file.

Figure 6-1 The Make Process

Source
Files

Target
Files

Main
Target

164 Using OS-9 for 68K Processors

6 The make Utility

A makefile can contain any of the following types of entries:

• Dependency Entry

• Command Entry

• Comment Entry

• Include Entry

• Macro Entry

Each type of entry is described below.

Dependency Entry

A makefile dependency entry specifies the relationship of a target file
and the dependents used to build the target file. Dependency entries
have the following syntax:

<target>: [<dependent>] {[<dependent>]}

For example, in the following dependency entry, program is the target,
and its dependents are two files: xxx.r and yyy.r.

program: xxx.r yyy.r

NoteNote
Syntax notes:

[] = Enclosed items are optional.

{ } = Enclosed items may be used 0, 1, or many times.

< > = Enclosed item is a description of the parameter to use.

The list of files following the target file is known as the dependency list.
You can list any number of space separated dependents in the
dependency list and any number of dependency entries in a makefile. A

6The make Utility

Using OS-9 for 68K Processors 165

dependent in one entry may also be a target file in another entry. There
is, however, only one main target file in each makefile. The main target
file is by default specified in the first dependency entry in the makefile.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Implicit Dependencies section for an explanation of what
happens when the main target file is not a program to compile.

NoteNote
To continue any makefile entry on the following line, place a space
followed by a backslash (\) at the end of the line to continue. You must
continue all entries longer than 256 characters on another line.

Each continuation line must adhere to the rules for its type of entry. For
example, if a command line is continued on a second line, the second
line must begin with a space or a tab:

FILE: aaa.r bbb.r ccc.r ddd.r eee.r \

fff.r ggg.r

 touch aaa.r bbb.r ccc.r \

 ddd.r eee.r fff.r ggg.r

make ignores spaces and tabs preceding non-command continuation
lines.

166 Using OS-9 for 68K Processors

6 The make Utility

Command Entry

A makefile command entry specifies the command you must execute to
update, if necessary, a particular target file. make updates a target file
only if its dependents are newer than itself. If no instructions for update
are provided, make creates a command entry to perform the operation.
The command entry created depends on the mode (compat, c89, or
ucc).

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Implicit Dependencies section of this chapter for more
information about modes and generated command entries.

make recognizes a command entry by a line beginning with one or more
spaces or tabs. Any legal OS-9 command line is acceptable. You can
give more than one command entry for any dependency entry. Each
command entry line is assumed to be complete unless it is continued
from the previous command with a backslash (\). Do not intersperse
comments with commands.

An example of command entry line syntax is:

<target>:[[<file>],<file>]
<OS-9 command line>
<OS-9 command line>\
<continued command line>

In the following example, the first line is the dependency entry and the
second line is the command entry:

program: xxx.r yyy.r
cc xxx.r yyy.r -f=program

6The make Utility

Using OS-9 for 68K Processors 167

Comment Entry

A makefile comment entry is any line beginning with an asterisk (*) or a
pound sign (#). In addition, all characters following a pound sign within
another makefile line are considered comments. The one exception to
this is when a pound sign is followed by a digit (0-9). In this case, it is
considered a stack space command line modifier. All blank lines are
ignored. For example:

<macro name> = <value>
<target> : [<file>] {[<file>]}
* the following commands are executed if a
* dependent file is newer than the target file
<OS-9 command line> # this is also a comment

Include Entry

A makefile include entry tells make to use a file that has entries
common to more than one makefile. make processes the lines of the
included file as if they were in the current makefile. This makes it easier
to change information because you can change it in one common file
rather than each individual makefile.

The syntax for the include entry is:

include <pathname>

include opens the specified file (<pathname>) and processes the
lines from that file as if they appeared in the current makefile.

NoteNote
You can nest included makefiles up to seven times.

Here is an example of a file you might include in your makefiles:

File: make_os9.tpl
OSROOT = /dd/MWOS
DEFS = -v=$(OSROOT)/SRC/DEFS -v=$(OSROOT)/OS9/SRC/DEFS

168 Using OS-9 for 68K Processors

6 The make Utility

LIBS = -w=$(OSROOT)/OS9/68000/LIB \
 -w=$(OSROOT)/OS9/68000/LIB/HOST1

Here is an example of including the make_os9.tpl common file in a
makefile:

File: makefile.os9
include ../make_os9.tpl

CFLAGS = $(DEFS)
LFALGS = $(LIBS)

test:

Macro Entry

A macro definition line has the following syntax:

<name> = [<value>]

This defines a macro called <name> with <value>. <value> can
contain references to other previously defined macros.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Macro Recognition section for more information about
macros.

Here are examples of macro entries:

PROG = util
ODIR = /h0/CMDS
TARGET = $(ODIR)/$(PROG)

If a macro name has already been used, redefinitions have no effect.
This allows a macro definition from the make command line to override
macro definitions within the makefile.

A macro does not need to have a value specified in the makefile. In
other words,

6The make Utility

Using OS-9 for 68K Processors 169

LOPTS =

is a valid line for a makefile. This type of macro is often used when a
command line definition of a macro is expected.

Summary

Dependency entry Specify the relationship of the target file
and the dependents used to build the
target file.

<target>: [<dependent>] {[<dependent>]}

Command entry An OS-9 command line. Must begin with
one or more spaces or tabs.

<OS-9 command line>
<OS-9 command line>\
<continued command line>

Comment entry Any line beginning with an asterisk (*) or
a pound sign (#).

Exception: A pound sign followed by a
digit (0-9) is considered a stack space
command line modifier.

<target>: [<dependent>] {[<dependent>]}
* comment
* comment
<command entry> # this is also a comment

Include entry Open the specified file and process the
lines as if they appear in the current
makefile.

include <pathname>

Macro entry Define a name and its corresponding
value.

<name> = <value>

170 Using OS-9 for 68K Processors

6 The make Utility

Processing the Make File

make processes the makefile three times:

1. Examines makefile, sets up dependency table, and determines the
target file.

2. Resolves implicit dependencies.

3. Compares file dates. Re-makes files as needed.

During the first pass, make examines the makefile and sets up a table of
dependencies. This table of dependencies stores the target file and the
dependency files exactly as they are listed in the makefile. When make
encounters a name on the left side of a colon, it first checks to see if it
has encountered the name before. If it has, make connects the lists and
continues.

After reading the makefile, make determines the target file on the list. It
then makes a second pass through the dependency table. During this
pass, make tries to resolve any existing implicit dependencies. (Implicit
dependencies are covered in the next section.)

make does a third pass through the list to get and compare the file
dates. When make finds a file in a dependency list that is newer than its
target file, it executes the specified command(s). If no command entry is
specified, make generates a command based on the implicit
dependencies and re-makes the file.

NoteNote
Because OS-9 only stores the time down to the closest minute, make
re-makes a file if its date matches one of its dependents.

When a command is executed, it echoes to standard output. make
normally stops if an error code is returned when a command line is
executed.

6The make Utility

Using OS-9 for 68K Processors 171

Implicit Dependencies

When make generates a command line, it assumes the target file is a
program to compile. If the target file is not a program to compile, you
must specify any necessary command entries for each dependency list.
make uses the specified mode (or the default) and following
definitions/rules when forced to create a command line.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Processing the Make File section for more information
about how make generates command lines.

Command Line Rules

Depending on the type of file, make uses the following rules:

Table 6-1 Command LIne Rules

Files Definition/Rule

Object Files with no suffix. An object file is made from a
relocatable file and linked when it needs to be made.

Relocatable Files appended by either the .r suffix (compat and
ucc modes) or the .o suffix (c89 mode).
Relocatable files are made from source files and
assembled or compiled if they need to be made.

172 Using OS-9 for 68K Processors

6 The make Utility

Defaults

make uses the following defaults:

NoteNote
Only use the default linker with programs using Cstart.

Source Files with one of the following suffixes:

ucc mode:

.a .o .i .pp .c .f

compat mode:

.a .c .f

c89 mode:

.s .be .ic .i .c .f

Table 6-1 Command LIne Rules (continued)

Files Definition/Rule

Table 6-2 Defaults

Description: Default:

Compiler

Assembler

Linker

Mode

Directory for all files

cc

r68

cc

ucc

The current data directory (.)

6The make Utility

Using OS-9 for 68K Processors 173

Modes

Three modes are built into make:

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Using Ultra C Manual, the Using the C Executive chapter
for more information about Ultra C modes.

Because Ultra C has several intermediate phases between
compilations, additional rules in the c89 and ucc rule tables bring each
intermediate compile phase to its upper levels of compilation.

For example, in ucc mode, make has built-in knowledge of bringing an
I-code file (.i) to:

• A back-end file (.o)

• An assembly optimized file (.a)

• A relocatable object file (.r)

• An executable object file

Table 6-3 Modes Built Into make

Mode Description

compat The compat files reflect the compat mode of the Ultra
C executive. This is also the mode you use if you are still
using the V3.2 C Compiler.

c89 The c89 rules reflect the c89 mode of the Ultra C
executive.

ucc The ucc rules reflect the ucc mode of the Ultra C
executive

174 Using OS-9 for 68K Processors

6 The make Utility

NoteNote
To view the built-in rules for the current mode, use the -r option. For
example, make -rn shows only the rules for makefile.

Set Mode

There are three ways to tell make to use a particular mode:

1. Set the MWMAKEOPTS environment variable to the desired mode. For
example:

setenv MWMAKEOPTS -mode=c89

2. Use the -mode=<mode> option on the command line. This method
overrides the environment variable. For example:

make -mode=compat

3. Use the -mode=<mode> option within your makefile. This overrides
both the environment variable and command line option.

6The make Utility

Using OS-9 for 68K Processors 175

Macro Recognition

In addition to recognizing compilation rules and definitions, make
recognizes certain macros. make recognizes a macro by the dollar sign
($) character in front of the name. If a macro name is longer than a
single character, you must enclose the entire name within parentheses.
For example:

$R refers to the macro R.

$(PFLAGS refers to the macro PFLAGS.

$(B) and $B refer to the macro B.

$BR is interpreted as the value for the macro
B followed by the character R.

NoteNote
If you define a macro in your makefile and then redefine it on the
command line, the command line definition overrides the makefile
definition. This feature is useful for compiling with special options.

You can define your macros in the makefile for convenience or on the
command line for flexibility. Macros are defined with the form <macro
name> = <expansion>. The expansion is substituted for the macro
name whenever the macro name appears. For example:

IDIR = /h0/MWOS/dir1

To increase make’s flexibility, you can supply a value for special macros
in the makefile. If you do not supply a value, make uses the default
value. make uses these macros when you must make assumptions to
generate command lines or search for unspecified files. For example, if
no source file is specified for program.r, make searches either the
directory specified by SDIR or the current data directory for program.a
(or .c, .p, .f).

176 Using OS-9 for 68K Processors

6 The make Utility

Special Macros

make recognizes the following special macros:

Table 6-4 Special Macros

Macro Description

IDIR=<path> make searches the directory specified by path
for all I-code files not specified by a full path list.
If IDIR is not defined in the makefile, make
searches the current directory by default.

ODIR=<path> make searches the directory specified by
<path> for all files with no suffix or relative
pathlist. If ODIR is not defined in the makefile,
make searches the current directory by default.

SDIR=<path> make searches the directory specified by
<path> for all source files not specified by a full
pathlist. If SDIR is not defined in the makefile,
make searches the current directory by default.

RDIR=<path> make searches the directory specified by
<path> for all relocatable files not specified by a
full pathlist. If RDIR is not defined, make
searches the current directory by default.

CFLAGS=<opts> These compiler options are used in implicit
compiler command lines. make uses the
specified options when it generates a compiler
command line.

RFLAGS=<opts> These assembler options are used in implicit
assembler command lines. make uses the
specified options when it generates an
assembler command line.

6The make Utility

Using OS-9 for 68K Processors 177

Reserved Macros

Some reserved macros are expanded when a command line associated
with a particular file dependency is forked. You can only use these
macros on a command line. They can be useful when you need to be
explicit about a command line but have a target program with several
dependencies. In practice, they are wildcards with the following
meanings:

LFLAGS=<opts> These linker options are used in implicit linker
command lines. make uses the specified options
when it generates a linker command line.

CC=<comp> make uses this compiler when generating
command lines. The default is cc.

RC=<asm> make uses this assembler when generating
command lines. The default is r68.

LC=<link> make uses this linker when generating command
lines. The default is cc.

Table 6-4 Special Macros (continued)

Macro Description

178 Using OS-9 for 68K Processors

6 The make Utility

Table 6-5 Reserved Macros

Macro Means to use

$@ The current target, including its full path and any suffix.

For example:

/h0/CMDS/prog : RELS/prog.r RELS/prog2.r

cc RELS/prog.r RELS/prog2.r -fd=$@

Generates:

cc RELS/prog.r RELS/prog2.r
-fd=/h0/CMDS/prog

$* The base name of the target. That is, the target name
minus any pathlist or extension.

For example:

/h0/CMDS/prog : RELS/prog.r RELS/prog2.r

chx /h0/CMDS ; cc RELS/prog.r RELS/prog2.r -fd=$*

Generates:

chx /h0/CMDS ; cc RELS/prog.r RELS/prog2.r -f=prog

6The make Utility

Using OS-9 for 68K Processors 179

$? The list of files found to be newer than the target on a
given dependency line.

For example:

print.new : main.c file1.c file2.c

spl -njnh $?

touch print.new

Generates the following if main.c and file2.c were
modified since the last time the target print.new was
made:

spl -njnh main.c file2.c

touch print.new

Note: file1.c was not remade because its date was
not later than print.new.

Table 6-5 Reserved Macros (continued)

Macro Means to use

180 Using OS-9 for 68K Processors

6 The make Utility

make Generated Command Lines

make can generate three types of command lines:

• Compiler Command Lines

• Assembler Command Lines

• Linker Command Lines

Compiler Command Lines

Make generates compiler command lines if a source file with a source
file suffix needs to be recompiled. make generated compiler command
lines have the following syntax:

compat and ucc mode:

$(CC) $(CFLAGS) $(SDIR)/<file> -f=$(ODIR)/<file>

c89 mode:

$(CC) $(CFLAGS) $(SDIR)/<file> -f $(ODIR)/<file>

For example, after macro replacement the command line might look
like:

compat and ucc mode:

cc -td=/r0 -i test.c -f=test

c89 mode:

cc -td /r0 -i test.c -f test

6The make Utility

Using OS-9 for 68K Processors 181

Assembler Command Lines

Make generates assembler command lines if an assembly language
source file needs to be re-assembled. make generated assembler
command lines have the following syntax:

compat and ucc mode:

$(RC) $(RFLAGS) $(SDIR)/<file>.a -o=$(RDIR)/<file>.r

c89 mode:

$(RC) $(RFLAGS) $(SDIR)/<file>.s -o=$(RDIR)/<file>.o

For example, after macro replacement the command line might look
like:

compat and ucc mode:

r68 -q -bt ../ASM/test.a -o=RELS/test.r

c89 mode:

r68 -q -bt ../ASM/test.s -o=RELS/test.o

Linker Command Lines

Make generates linker command lines if an object file needs to be
relinked to remake the program module. make generated linker
command lines have the following syntax:

ucc and compat mode:

$(LC) $(LFLAGS) $(RDIR)/<file>.r -f=$(ODIR)/<file>

c89 mode:

$(LC) $(LFLAGS) $(RDIR)/<file>.o -f $(ODIR)/<file>

For example, after macro replacement the command line might look
like:

compat and ucc mode:

cc -i -l=mylib.l RELS/prog.r -f=/h0/CMDS/RIC/prog

182 Using OS-9 for 68K Processors

6 The make Utility

c89 mode:

cc -i -l mylib.l RELS/prog.o -f /h0/CMDS/RIC/prog

WARNING!
When make is generating a command line for the linker, it looks at its list
and uses the first relocatable file it finds, but only the first one. For
example:

prog: x.r y.r z.r

Generates:

cc x.r, not cc x.r y.r z.r or cc prog.r

6The make Utility

Using OS-9 for 68K Processors 183

make Options

make has several options you can use to maintain files/modules. You
may include these options on the command line when you run make or,
for convenience, put them in the makefile.

When a command is executed, it is echoed to standard output, unless
you use the -s (silent) option or start the command line with an at sign
(@). Use the -n option to echo commands to standard output but not
execute them. This is useful when building your original makefile.

make normally stops if an error code is returned when a command line
is executed. To ignore errors, use the -i option or begin the command
line with a hyphen (-).

Sometimes it is helpful to see the file dependencies and their
associated dates. The -d option turns on the make debugger and
supplies:

• A complete listing of the macro definitions.

• A listing of the files as it checks the dependency list

• All the file modification dates. If the make debugger cannot find a file
to examine its date, it assumes a date of -1/00/00 00:00, indicating
you should update the file.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Implicit Dependencies section for information about rules.

To update the date on a file without remaking it, use the -t option. make
merely opens the file for update and then closes it, thus making the date
current.

If you are quite explicit about your makefile dependencies and do not
want make to assume anything, use the -b option to turn off the built-in
rules governing implicit file dependencies.

184 Using OS-9 for 68K Processors

6 The make Utility

Table 6-6 make Options

Option Description

-? Display the options, function, and command syntax of
make.

-b Do not use built-in rules.

-bo Do not use built-in rules for object files.

-d Print the dates of the files in the makefile (debug
mode).

-dd Double debug mode. Very verbose.

-f- Read the makefile from standard input.

-f=<path> Specify <path> as the makefile. If you do not specify
-f- or -f=<path>, make looks for a file named
makefile. If <path> is specified as a hyphen (-),
make commands are read from standard input.

-i Ignore errors.

-mode Set the mode (compat, ucc, or c68). If used on the
command line, this option overrides the environment
variable (MWMAKEOPTS). If the option is set in the
makefile, it overrides both the environment variable
and the command line option.

-n Display commands but do not execute them.

6The make Utility

Using OS-9 for 68K Processors 185

-o Do not assume object files need ROF files. Disable
make’s assumption that a dependency line with an
object file as the target must have an ROF file in the
dependency list. For example:

clean : del $(RDIR) /* .r $ (ODIR) / $ (PROG)

Without the -o option it generates:

make: can’t find source file to make “clean.r”

With -o, the make line executes as expected.

-r View the built-in rules for the current mode. For
example, make -rn lists the current rules without
running the makefile.

-s Silent Mode. Execute commands without echo.

-t Update the file dates without executing commands.

-u Do the make regardless of the file dates.

-x Use the cross-compiler/assembler.

-z Read a list of make targets from standard input.

-z=<path> Read a list of make targets from <path>.

Table 6-6 make Options (continued)

Option Description

186 Using OS-9 for 68K Processors

6 The make Utility

MWMAKEOPTS Environment Variable

The MWMAKEOPTS environment variable is used by make to set options
and macro definitions. The following example shows how you might use
MWMAKEOPTS to turn on debugging, turn off built-in rules, and set the
DEBUG macro to 1:

setenv MWMAKEOPTS “-d -b DEBUG=1”

make parses MWMAKEOPTS before processing command line
arguments.

Another feature of the MWMAKEOPTS is its ability to contain quoted
strings to set a macro to multiple whitespaced, separated words. An
example of this is the setting, -d “RUN_CMD=exec -n”. This setting
enables the -d option and sets the macro RUN_CMD to “exec -n”.

NoteNote
Do not use target names in the MWMAKEOPTS environment variable
because make ignores them.

6The make Utility

Using OS-9 for 68K Processors 187

Examples

The rest of this chapter contains examples of make files. These
examples are not meant to be totally inclusive of the ways in which you
can use make.

Compiling C Programs

In this example, make is used to compile high level language modules.
Each command and dependency is specified.

program: xxx.r yyy.r
 cc xxx.r yyy.r -f=program
xxx.r: xxx.c /d0/defs/oskdefs.h
 cc xxx.c -eas
yyy.r: yyy.c /d0/defs/oskdefs.h
 cc yyy.c -eas

This makefile specifies program is made up of two .r files: xxx.r and
yyy.r. These files depend on xxx.c and yyy.c, respectively, and
both depend on the oskdefs.h file.

• If either xxx.c or /d0/defs/oskdefs.h has a date more recent
than xxx.r, the command cc xxx.c -eas is executed.

• If either yyy.c or /d0/defs/oskdefs.h is newer than yyy.r,
then cc yyy.c -eas is executed.

• If either of the former commands are executed, the command cc
xxx.r yyy.r -f=program is also executed.

In this example, make specifies each command it must execute. Often
this is unnecessary as make uses specific definitions, macros, and
built-in assumptions to facilitate program compilation and generate its
own commands.

188 Using OS-9 for 68K Processors

6 The make Utility

Refining the C Compiler Example

Knowing how make works and understanding the built-in rules can
simplify coding immensely:

program: xxx.r yyy.r
 cc xxx.r yyy.r -f=program
xxx.r yyy.r: /d0/defs/oskdefs

This makefile now exploits make’s awareness of file dependencies. No
mention is made of the C language files; therefore, make looks in the
directory specified by the macro definition SDIR = <path> and adjusts
the dependency list accordingly. In this case, make looks in the current
directory by default. make also generates a command line to compile
xxx.r and yyy.r if one or both needs to be updated.

Further simplification would be possible if program was made up of
only one source file:

program:

make assumes the following from this simple command:

• program has no suffix. It is an object file and therefore needs to rely
on relocatable files to be made.

• No dependency list is given; therefore, make creates an entry in the
table for program.r.

• After creating an entry for program.r, make creates the entry for a
source file connected to the relocatable file.

Assuming it found program.a, make checks the dates on the various
files and generates one or both of the following commands if required:

r68 program.a -o=program.r
cc program.r -f=program

6The make Utility

Using OS-9 for 68K Processors 189

Make File that Uses Macros

Using these inherent features of make can be especially helpful if you
have several object files you want make to check:

* beginning
ODIR = /d0/cmds
RDIR = rels
UTILS = attr copy load dir backup dsave
SDIR = ../utils/sources
utils.files: $(UTILS)

 touch utils.files
* end

make looks in rels for attr.r, copy.r, etc. and looks in
../utils/sources for attr.c, copy.c, etc. make then generates
the proper commands to compile and/or link any of the programs that
need to be made. If one of the files in UTILS is made, the command
touch utils.files is forked to maintain a current overall date.

Putting It All Together

The following example is a makefile to create make:

* beginning
ODIR = /h0/cmds
RDIR = rels
CFILES = domake.c doname.c dodate.c domac.c
RFILES = domake.r doname.r dodate.r
PFLAGS = -p64 -nh1
R2 = ../test/domac.r
RFLAGS = -q
make: $(RFILES) $(R2) getfd.r

 linker
$(RFILES): defs.h
$(R2): defs.h

 cc $*.c -eas=../test
print.file: $(CFILES)

 pr $? $(PFLAGS) >-/p1

190 Using OS-9 for 68K Processors

6 The make Utility

 touch print.file
*end

This makefile looks for the .r files listed in RFILES in the directory
specified by RDIR: rels. The only exception is ../test/domac.r,
which has a complete pathlist specified.

Even though getfd.r does not have any explicit dependents, its
dependency on getfd.a is still checked. The source files are all found
in the current directory.

Note: you can also use this makefile to make listings. By typing make
print.file on the command line, make expands the macro $? to
include all of the files updated since the last time print.file was
updated. If you keep a dummy file called print.file in your directory,
make only prints out the newly made files. If no print.file exists,
make prints all files.

191

Chapter 7: Making Backups

This chapter explains the concept of incremental backups. The OS-9
utilities to create the backups are detailed here. It also offers two
different strategies for making backups.

This chapter includes the following topics:

• Incremental Backups

• Making an Incremental Backup: The fsave Utility

• Restoring Incremental Backups: The frestore Utility

• Incremental Backup Strategies

• The Single Tape Backup Strategy

• The Tape Utility

192 Using OS-9 for 68K Processors

7 Making Backups

Incremental Backups

Whether it’s caused by system failure or accidental erasure, loss of
stored data is a programmer’s nightmare. Consequently, backups of
files, programs, and disks are a normal part of existence. Backing up a
hard disk is usually slow and tedious because the entire system is
backed-up.

You can use incremental backups instead of full system backups.
Incremental backups save only the files that have changed since the
last backup. You must still perform a full system backup, but by using
incremental backups you can perform them less often.

OS-9 provides two utilities you can use with either tape or disk media to
facilitate the use of incremental backups:

• fsave

• frestore

Certain terms must be defined to discuss incremental backups.

• A full system backup is referred to as a level 0 backup.

• Consequent incremental backups are referenced by different level
numbers.

For example, a level 5 backup includes all files changed since the most
recent backup with a level less than 5. While this sounds complex, it is
actually quite easy to use and extremely helpful.

Two other terms need to be defined:

• A source device is the directory structure or file you are backing up.

• A target device is the tape or disk you are using to hold your backup
information.

7Making Backups

Using OS-9 for 68K Processors 193

Making an Incremental Backup: The fsave
Utility

The fsave utility performs an incremental backup of a directory
structure to tape(s) or disk(s). The syntax for the fsave utility is:

fsave [<opts>] [<path>] [<opts>]

Typing fsave by itself on the command line makes a level 0 backup of
the current directory onto a target device with the name /mt0.

NoteNote
/mt0 is the default OS-9 device name for a tape device just as /h0 is
the default OS-9 device name for a hard disk.

/h0/sys/backup_date is the backup log file fsave maintains. Each
time you execute an fsave, the backup log is updated. The backup log
keeps track of the name of the backup, the date it was created, and
more importantly, the level of the backup. When you execute fsave,
this backup log is examined to find the specified level of the current
backup and the previous backups with the same name. Once the
backup is finished, a new entry is made in the file indicating the date,
name, and level of the current backup.

fsave has the following options:

Table 7-1 fsave Options

Option Description

-? Display the use of fsave.

-b[=]<int> Allocate <int>k buffer size to read files from
the source disk.

194 Using OS-9 for 68K Processors

7 Making Backups

-d[=]<dev> Specify the target device to store the backup.
The default is /mt0.

-e Do not echo file pathlists as they are saved to
the target device.

-f[=]<path> Save to the file specified by <path>.

-g[=]<int> Specify a backup of files owned by group
number <int> only.

-j[=]<num> Specify the minimum system memory request.

-l[=]<int> Specify the level of the backup to perform.

-m[=]<path> Specify the pathlist of the date backup log file to
use. The default is /h0/sys/backup_dates.

NOTE: The file must exist; fsave does not
create the file.

-p Turn off the mount volume prompt for the first
volume.

-s Display the pathlists of all files needing to be
saved and the size of the entire backup without
actually executing the backup procedure.

-t[=]<dirpath> Specify the alternate location for the temporary
index file.

-u[=]<int> Specify a backup of files owned by user number
<int> only.

Table 7-1 fsave Options (continued)

Option Description

7Making Backups

Using OS-9 for 68K Processors 195

The fsave Procedure

When you start an fsave procedure, fsave prompts you to mount the
first volume to use. Volume in this case refers to the disk or tape used
to store the backup:

fsave: please mount volume.
(press return when mounted).

If you use a disk as the backup medium, fsave verifies the disk and
displays the following information:

verifying disk
Bytes held on this disk: 546816
Total data bytes left: 62431
Number of Disks needed: 1

NoteNote
The numbers above are used only as an example.

If you use a tape as the backup medium, no preliminary information is
displayed and the backup begins at this point.

As each file is saved to the backup device, its pathlist is echoed to the
terminal. If this is a long backup, you may want to use the -e option to
turn off the pathlist echoing.

-v Do not verify the disk volume when mounted.

-x[=]<int> Pre-extend the temporary file. <int> is given in
kilobytes.

Table 7-1 fsave Options (continued)

Option Description

196 Using OS-9 for 68K Processors

7 Making Backups

If fsave receives an error when trying to backup a file, it displays the
following message and continues the fsave operation:

error saving <file>, error - <error number>, its incomplete

NoteNote
The most common error found when executing fsave is a record lock
error. Record lock errors are caused when another user has the file in
question open.

To prevent record lock errors, perform fsave operations only when no
one else is using the system.

If the backup requires more than one volume, fsave prompts you to
mount the next volume before continuing.

At the end of the backup, fsave prints the following information:

fsave: Saving the index structure
Logical backup name:
Date of backup:
Backup made by:
Data bytes written:
Number of files:
Number of volumes:
Index is on volume:

The index to the backup is saved on the last volume used.

fsave performs recursive backups for each pathlist if one or more
directories are specified on the command line. You can specify a
maximum of 32 directories on the command line.

7Making Backups

Using OS-9 for 68K Processors 197

WARNING!
When using disks for backup purposes, fsave does not use an RBF
file structure to save the files on the target disk. It creates its own file
structure. This makes the backup disk unusable for any purpose other
than fsave and frestore without reformatting the disk. The backup
destroys any data stored on the disk before using fsave.

Example fsave Commands

Typing fsave by itself on a command line specifies a level 0 backup of
the current directory. This assumes the /mt0 device is used and
/h0/SYS/backup_dates is used as the backup log file for this
backup.

The following command specifies a level 2 backup of the current
directory using the /mt1 device. /h0/misc/my_dates is used as the
backup log file:

$ fsave -l=2 -d=/mt1 -m=/h0/misc/my_dates

The following command specifies a level 0 backup of all files owned by
user 0.0 in the CMDS directory, if CMDS is in your current directory:

$ fsave -pb=32 -g=0 -u=0 -d=/d2 CMDS

This backup uses /d2 as the target device and /h0/sys/
backup_dates as the backup log file. The mount volume prompt is not
generated for the first volume. A 32K buffer is used to read the files from
the CMDS directory.

198 Using OS-9 for 68K Processors

7 Making Backups

NoteNote
The backup_dates file must exist. fsave does not create the file. If
the file does not exist, use touch <filename> to create an empty
backup log file prior to starting fsave.

7Making Backups

Using OS-9 for 68K Processors 199

Restoring Incremental Backups: The frestore
Utility

The frestore utility restores a directory structure from multiple
volumes of tape or disk media. The syntax for frestore is:

frestore [<opts>] [<path>] [<opts>]

Typing frestore by itself on the command line attempts to restore a
directory structure from the /mt0 device to the current directory.

If you specify the pathlist of a directory on the command line, the files
are restored in that directory. fsave creates the directory structure and
an index of the directory structure.

If more than one tape/disk is involved in the fsave backup, each
tape/disk is considered to be a different volume. The volume count
begins at one (1). When you begin an frestore operation, you must
use the last volume of the backup first because it contains the index of
the entire backup.

frestore first attempts to locate and read the index of the directory
structure of the source device. frestore then begins an interactive
session with you to determine which files and directories in the backup
should be restored to the current directory.

frestore has the following options:

Table 7-2 frestore Options

Option Description

-? Display the use of frestore.

-a Force access permission for overwriting an
existing file. You must be the owner of the file or
a super user to use this option.

-b[=]<int> Specify the buffer size to use to restore the files.

200 Using OS-9 for 68K Processors

7 Making Backups

-c Check the validity of files without using the
interactive shell.

-d[=]<path> Specify the source device. The default is /mt0.

-e Display the pathlists of all files in the index, as
the index is read from the source device.

-f[=]<path> Restore from a file.

-i Display the backup name, creation date,
group.user number of the owner of the backup,
volume number of the disk or tape, and whether
the index is on the volume. -i does not cause
any files to be restored. The information is
displayed, and frestore is terminated.

-j[=]<int> Set the minimum system memory request.

-p Suppress the prompt for the first volume.

-q Overwrite an already existing file when used
with the -s option.

-s Force frestore to restore all files from the
source device without an interactive shell.

-t[=]<dirpath> Specify an alternate location for the temporary
index file.

-v Display the same information as -i, but do not
check for the index. -v does not cause any files
to be restored. The information is displayed and
frestore is terminated.

Table 7-2 frestore Options (continued)

Option Description

7Making Backups

Using OS-9 for 68K Processors 201

The Interactive Restore Process

Once you call frestore, the following prompt is displayed:

frestore> mount the last volume
(press return when ready)

When you are ready, frestore attempts to read in the index and
create the directory structure of the backup. It then displays the prompt:

frestore>

This prompt tells you that you are in the interactive shell. If the index is
not on the mounted volume, frestore displays an error message and
again prompts you to mount the last volume.

Once in the interactive shell, the frestore commands and options are
displayed when you type a return at the prompt:

frestore>
commands:
add [<path>] [-g=<#> -u=<#> -r -a] -- marks files for restoration
del [<path>] [-g=<#> -u=<#> -r -a] -- unmarks files for restoration
dir [<dir names>] [-e] -- displays a directory or directories
chd <path> -- changes directories within the restore file structure
pwd -- gives the pathlist to current dir in the restore file structure
cht <path> -- changes directories on target system
est [<path>] [-f -q] -- restores marked files in and below the current dir
check [-f] -- checks validity if marked files in and below the current dir
dump [<file>] -- dumps the contents of a file to stdout
$ -- forks a shell
quit -- quit frestore program
options:
-g=<group#> -- only mark files with ’group#’
-u=<user#> -- only mark files with ’user#’

-x[=]<int> Pre-extend the temporary file. <int> is given in
kilobytes.

-z[=]<path> Add pathlists in <path> to restoration list (from
root).

Table 7-2 frestore Options (continued)

Option Description

202 Using OS-9 for 68K Processors

7 Making Backups

-r -- mark directories recursively
-e -- display directory with extended format
-f -- force restoration of already restored files
-q -- overwrite already existing files without question
-a -- force marking or unmarking of an already restored file or dir
* -- matches any string of characters on ’add’ or ’del’ only
? -- matches any single character on ’add’ or ’del’ only

The index from the source device sets up a restore file structure
paralleling the usual OS-9 file/directory structure.

Use the dir and chd shell commands to display the restore file
structure. For example:

frestore>dir
 Directory of .

DIR1 file1 file2 file3

All files to be backed up on to the source device appear in the restore
file structure regardless of what volume they appear in. Information
concerning the file structure is available using the -e option with the
dir command:
frestore>dir -e
Directory of .
 Owner Last modified Attributes Volume Block Offset Size Name
------ -------------- ----------- ------ ----- ------ ----- ------
 1.23 89/08/22 16/14 ----r-wr 1 0 0 CF12 file1
 1.23 89/08/25 11/00 ----r-wr 1 2 0 A356 file2
 1.23 89/08/21 11/12 ----r-wr 1 4 0 45F0 file3
 1.23 89/08/24 10/57 d-ewrewr 0 5 0 120 DIR1

The interactive shell allows you to mark the files you want restored with
the add command. You can mark groups of files using the options of the
add command:

-g Mark files by group number.

-u Mark files by user number.

-r Mark all directories within a specified directory.

7Making Backups

Using OS-9 for 68K Processors 203

NoteNote
Specify the following:

• relative or complete pathlists within the restore file structure to mark
files one at a time.

• a pathlist of a directory to mark an entire directory.

Marking files does not restore them. It merely marks them as to be
restored. You can see this when you use the dir command. Each file
added to the to be restored list is marked by a plus sign (+) by its
filename.

For example, the following directory has file1 and file2 marked for
restoration, but file3 is not marked. The directories DIR1 and DIR2
also have marked files:

frestore>add file1 file2 dir1/file5 dir1/file6 dir2/file7
frestore>dir
 Directory of .
+DIR1 +DIR2 +file1 +file2
file3
frestore>dir dir1
 Directory of DIR1
file4 +file5 +file6
frestore>dir dir2
 Directory of DIR2
+file7 file8

Unmark Files

You can unmark files with the del command. To unmark entire
directories, specify the directory’s name on the command line. If you
also use the -r option, all files and directories included in the specified
directory are unmarked. For example:

frestore>del -r dir2
frestore>dir

204 Using OS-9 for 68K Processors

7 Making Backups

 Directory of . 10:42:32
+DIR1 DIR2 +file1 +file2
file3
frestore>dir dir2
 Directory of DIR2
file7 file8

Restore Files

Once files are marked, use the rest command to restore the target
device’s current directory.

Overwrite Existing Files

Files existing on the target system with the same name are overwritten
without prompting if you use rest -q. Otherwise, frestore displays
the following prompt:

frestore> file1 already exists
 write over it or skip it (w/s)

Change Directories on the Target Device

The cht command allows you to change directories on the target
device. This allows you to selectively restore files to specific directories.

NoteNote
An asterisk (*) preceding the name of a file in a dir listing indicates an
error occurred while backing up this file. This file is incomplete and
should not be restored.

7Making Backups

Using OS-9 for 68K Processors 205

After restoring files, you may continue marking and unmarking files.
Files previously restored have a hyphen (-) displayed next to their
names in the restore file structure:

frestore>dir
 Directory of . 10:42:32
-DIR1 DIR2 -file1 -file2
file3
frestore>dir dir1
 Directory of DIR1
file4 -file5 -file6

Restore Files More Than Once

There are two methods of restoring files more than once:

1. Use the -a option with the add command. This forces the file(s)
previously marked as restored to be marked as to be restored.

2. Use the -f option with the rest command. This restores any file
previously marked as restored in the current directory.

Restore Files Without Using the Interactive Shell

The -s option forces frestore to restore all files/directories of the
backup from the source device without the interactive shell.

Specify a Source Device

Using the -d option allows you to specify a source device other than
/mt0. For example, to restore all files/directories found on the /mt1
source device to the directory BACKUP without using the interactive
shell, type:

$ frestore -d=/mt1 -s BACKUP

206 Using OS-9 for 68K Processors

7 Making Backups

Identify the Backup Mounted on the Source Device

The -v option causes frestore to identify the name and volume
number of the backup mounted on the source device. The date the
backup was made and the group.user number of the person who made
the backup is also displayed. -v does not restore any files. For
example:

$ frestore -v
Backup: DOCUMENTATION
Made: 1/16/91 10:10
By: 0.0
Volume: 0

Indicate Whether the Index Is on the Volume

The -i option displays the above information and also indicates
whether the index is on the volume. Both -v and -i terminate
frestore after displaying the appropriate information. These options
are useful when trying to locate the last volume of the backup if any
mix-up has occurred.

Echo Pathlists

The -e option echoes each file pathlist as the index is read off the
source device.

Example Command Lines

To restore files/directories from the source device /mt0 to the current
directory by way of an interactive shell, type:

$ frestore

7Making Backups

Using OS-9 for 68K Processors 207

The following example restores files/directories from the source device
/d0 to the current directory using a 32K buffer to write the restored files.
As each file is read from the index, the file’s pathlist is echoed to the
terminal.

$ frestore -eb=32 -d=/d0

208 Using OS-9 for 68K Processors

7 Making Backups

Incremental Backup Strategies

Many different strategies are available for those concerned with
regularly scheduled backups. Most strategies are well documented in
computer books and magazines. The following two strategies are
offered as examples of methods that can be used.

The Small Daily Backup Strategy

This strategy requires making a level 0 backup once every four weeks.
Level 1, level 2, level 3, and level 4 backups are made on the weeks
following the level 0 backup. Between each major backup, four daily
backups would be made: level 5, 6, 7, and 8. A recommended daily
schedule is graphically presented in Figure 7-1.

This strategy is ideal for small microcomputer systems backed up by
floppy disks. Mounting disks is much easier and faster than tapes. You
can usually keep each daily backup on one disk.

This strategy is also perfect for small timely backups with little
redundancy in the backups.

One major disadvantage of this scheme is the restore time necessary in
case of a major system failure such as a hard disk being formatted,
erased, or corrupted. Because of the lack of redundancy, more
frestore operations are necessary to re-create the systems file
structure. On large systems with tape backups, this is a major
consideration.

7Making Backups

Using OS-9 for 68K Processors 209

Figure 7-1 Small Daily Backup Strategy

8

7

6

5

4

3

2

1

0

S M T W T F M T W T F M T W T F M T W T F S

Level

210 Using OS-9 for 68K Processors

7 Making Backups

The Single Tape Backup Strategy

While most strategies rely on scheduled backup level changes, the
single tape backup strategy depends on the size of the backup. The
idea behind this strategy is to increase the level of the backup only
when the backup cannot fit on a single tape. The only scheduled level
backup is the level 0 backup. The level 0 backup occurs only when a
higher level backup would not fit on a single tape or once a month,
whichever occurs first. An example month’s schedule is graphically
presented in Figure 7-2.

7Making Backups

Using OS-9 for 68K Processors 211

Figure 7-2 Single Tape Backup Strategy

This strategy is designed for tape backups of larger systems. Tapes are
used efficiently because a question as to how many tapes are needed
never arises. This strategy also cuts down on person hours, tape
mounting, and storage space used for tapes. It allows for enough
redundancy to make restoring a full system fairly painless.

Disadvantages, however, do exist. Each time you do a backup, you
must determine the size of the backup using fsave -s. As you near a
full tape’s worth of data, this takes an increasing amount of time.

3

2

1

0

S M T W T F M T W T F M T W T F M T W T F S

Level

212 Using OS-9 for 68K Processors

7 Making Backups

Use of Tapes/Disks

Whatever strategy you use, you must make a decision concerning the
number of tapes or disks to use. This decision must weigh the emphasis
placed on:

• Redundancy

• Resources

• Person-hours

• Storage

It must be offset with the possibility of tape or disk failure and system
restoration.

In the first example strategy, you must make the daily backups on
different volumes to overcome the lack of redundancy. You can use the
four daily volumes week after week as daily backup volumes because of
the lower level backups at the beginning of each week.

In the second example, theoretically, you could use the same tape for
each day until a new level backup is reached. This insures no
redundancy and minimal storage. It is also the most dangerous in case
of tape failure. Using a number of alternating tapes for each level cuts
down on storage and still allows a safety net in the case of tape failure.
Using alternating level 0 tapes is another possibility.

7Making Backups

Using OS-9 for 68K Processors 213

The Tape Utility

OS-9 provides a tape controller utility to facilitate setting up, reading,
and rewinding tapes from the terminal. When using tape media to
backup or restore your system, the tape utility is very practical. The
syntax of the tape utility is:

tape {<opts>} [<dev>] {<opts>}

tape uses the default device /mt0 if you do not specify the tape device
<dev> on the command line and you do not use the -z option.

tape has the following available options:

Table 7-3 tape Options

Option Description

-? Display the use of tape.

-b[=<num>] Skip a specified number of blocks. Default is one
block. If <num> is negative, the tape skips backward.

-e=<num> Erase a specified number of blocks of tape.

-f[=<num>] Skip a specified number of tapemarks. Default is one
tapemark. If <num> is negative, the tape skips
backward.

-o Put tape off-line.

-r Rewind the tape.

-s Determine the block size of the device.

-t Retension the tape.

-w[=<num>] Write a specified number of tapemarks. Default is
one tapemark.

214 Using OS-9 for 68K Processors

7 Making Backups

If you specify more than one option, tape executes each option
function in a specific order. Therefore, you can skip ahead a specified
number of blocks, erase, and then rewind the tape all with the same
command. The order of options executed is as follows:

Step 1. Get device name(s) from the -z option.

Step 2. Skip the number of tapemarks specified by the -f option.

Step 3. Skip the number of blocks specified by the -b option.

Step 4. Write a specified number of tapemarks.

Step 5. Erase a specified number of blocks of tape.

Step 6. Rewind the tape.

Step 7. Put the tape off-line.

For example, the following command skips four files on the
/mt0 device, erases the next two blocks, rewinds the tape, and takes
the tape off-line:

tape -e=2 -f=4 -ro

The next example determines the block size of the device:

tape -s

The next example retensions the tape, rewinds it, and then takes it
off-line:

tape -rot

-z Read a list of device names from standard input. The
default is /mt0.

-z=<file> Read a list of device names from <file>.

Table 7-3 tape Options (continued)

Option Description

215

Chapter 8: OS-9 for 68K System

Management

System managers have a range of options to consider. OS-9 allows a
system manager to tailor the system to the needs of users by changing
system modules and setting up the system defaults. OS-9 also allows
the system manager to maximize system performance by using RAM
disks, making bootfiles, and making a startup file.

This chapter contains the following topics:

• Setting Up the System Defaults: The Init Module

• Customization Modules

• Making Bootfiles

• Using the RAM Disk

• System Shutdown Procedure

• Installing OS-9 on a Hard Disk

• Managing Processes in a Real-Time Environment

• The Termcap File Format

• Termcap Capabilities

216 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

Setting Up the System Defaults: The Init
Module

The Init module is sometimes referred to as the configuration module.
It is a non-executable module located in memory in the OS9Boot file or
in ROM. The Init module contains system parameters used to
configure OS-9 during startup. The parameters set up the initial table
sizes and system device names. For example, the amount of memory to
allocate for internal tables, the name of the first program to run (usually
either SysGo or shell), and an initial directory are specified. You can
examine the system limits in the Init module at any time.

NoteNote
The Init module MUST be present in the system in order for OS-9 to
work.

The values in the Init module’s table are the system defaults. You can
change these defaults in two ways:

• Edit the CONFIG macro in the systype.d file. The systype.d file
is located in the DEFS directory. After systype.d is edited, the
Init module is remade and placed in the new bootfile.

• Modify the Init module with the moded utility.

This chapter covers both methods. Regardless of the method you use,
the changes become the system defaults.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 217

System Defaults Listed in the Init Module

The following is a list of the system defaults listed in the Init module.
Offset refers to the location of a module field, relative to the starting
address of the module. Module offsets are resolved in assembly code
by using the names shown here and by linking the module with the
relocatable library: sys.l or usr.l.

Table 8-1 System Defaults Listed in the Init Module

Offset Name Description

$30 Reserved Reserved for future use.

$34 M$PollSz Number of Entries in the IRQ Polling
Table
One entry is required for each interrupt
generating device control register. The
atomic kernel default is 16. The
development kernel default is 32.

$36 M$DevCnt Device Table Size
The number of entries in the system
device table. One entry is required for
each device in the system. The atomic
IOMan default is 8. The development
IOMan default is 32.

$38 M$Procs Initial Process Table Size
Indicates the initial number of active
processes allowed in the system. For
Atomic OS-9, this table is fixed; for the
development kernel, it automatically
expands as needed. The atomic kernel
default is 32. The development kernel
default is 64.

218 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

$3A M$Paths Initial Path Table Size
The initial number of open paths in the
system. For Atomic OS-9, this table is
fixed; for the development kernel, it
automatically expands as needed. The
atomic IOMan default is 32. The
development IOMan default is 64.

$3C M$SParam Offset to Parameter String for
Startup Module
The offset to the parameter string (if
any) to pass to the first executable
module. An offset of zero indicates no
parameter string is required. The
parameter string itself is located
elsewhere, usually near the end of the
Init module.

$3E M$SysGo First Executable Module Name Offset
The offset to the name string of the first
executable module; usually SysGo or
shell.

$40 M$SysDev Default Directory Name Offset
The offset to the initial default directory
name string; usually /d0 or /h0. The
kernel does a chd and chx to this
device before forking the initial device. If
the system does not use disks, this
offset must be zero.

Table 8-1 System Defaults Listed in the Init Module (continued)

Offset Name Description

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 219

$42 M$Consol Initial I/O Pathlist Name Offset
This offset usually points to the /TERM
string. This pathlist is opened as the
standard I/O path for the initial process.
It is generally used to set up the initial
I/O paths to and from a terminal. This
offset should contain 0 if no console
device is in use.

$44 M$Extens Customization Module Name Offset
The offset to a name string of a list of
customization modules (if any). A
customization module is intended to
complement or change OS-9’s existing
standard system calls. OS-9 searches
for these modules during startup.
Typically, these modules are found in
the bootfile. They are executed in
system state if found. Modules listed in
the name string are separated by
spaces. The default name string to
search for is OS9P2. If there are no
customization modules, set this value to
0.

NOTE: A customization module may
only alter the d0, d1, and ccr registers.

NOTE: Refer to Customization
Modules for more information on these
modules.

$46 M$Clock Clock Module Name Offset
If there is no clock module name string,
set this value to 0.

Table 8-1 System Defaults Listed in the Init Module (continued)

Offset Name Description

220 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

$48 M$Slice Time slice
The number of clock ticks per time slice.
The number of clock ticks per time slice
defaults to 2.

$4A Reserved Reserved for future use.

$4C M$Site Installation Site Code Offset
This value is usually set to 0. OS-9
does not currently use this field.

$50 M$Instal Offset to Installation Name

$52 M$CPUTyp CPU Type
CPU type: 68000, 68008, 68010,
68020, 68030, 68040, 68070, or
683XX. The default is 68000.

$56 M$OS9Lvl Level, Version, and Edition
This four byte field is divided into three
parts:

• level: 1 byte

• version: 2 bytes

• edition: 1 byte

For example, level 1, version 3.0,
edition 1 would be 1301.

$5A M$OS9Rev Revision Offset
The offset to the OS-9 level/revision
string.

Table 8-1 System Defaults Listed in the Init Module (continued)

Offset Name Description

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 221

$5C M$SysPri Priority
The system priority at which the first
module (usually SysGo or shell) is
executed. This is generally the base
priority at which all processes start. The
default is 128.

$5E M$MinPty Minimum Priority
The initial system minimum executable
priority. The default is 0.

$60 M$MaxAge Maximum Age
The initial system maximum natural
age. The default is 0.

$62 M$MDirSz Module Directory Size
The initial module count for the system.
For the Atomic kernel this table is fixed;
for the Development kernel, it
automatically expands as needed. The
default for the atomic and development
kernel is 64.

$64 Reserved Reserved for future use.

Table 8-1 System Defaults Listed in the Init Module (continued)

Offset Name Description

222 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

$66 M$Events Number of Entries in the Events
Table
The initial number of entries allowed in
the events table. For the Atomic kernel
this table is fixed; for the Development
kernel, it automatically expands as
needed. The atomic kernel default is
16. The development kernel default is
32. See the OS-9 for 68K Technical
Manual for a discussion of using
events.

Table 8-1 System Defaults Listed in the Init Module (continued)

Offset Name Description

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 223

$68 M$Compat Revision Compatibility
This byte is used for revision
compatibility. The default is 0. The
following bits are currently defined:

Bit Set Bit To:

0 Save all registers for IRQ routines.
If you have OS-9 for 68K version
3.0 or greater, this flag is ignored.

1 Prevent the kernel from using stop
instructions.

2 Ignore sticky bit in module
headers.

3 Disable cache burst operation
(68030 systems).

4 Patternize memory when allocated
or de-allocated.

5 Prevent kernel cold-start from
starting system clock.

6 Kernel ignores spurious IRQs.

7 Only the process creating an alarm
can delete it.

Table 8-1 System Defaults Listed in the Init Module (continued)

Offset Name Description

224 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

$69 M$Compat2 Compatibility Bit #2
This byte is used for revision compatibility.
The following bits are currently defined:

BitFunction

0 0 External instruction cache is not
snoopy.*

1 External instruction cache is snoopy
or absent.

1 0 External data cache is not snoopy.

1 External data cache is snoopy or
absent.

2 0 On-chip instruction cache is not
snoopy.

1 On-chip instruction cache is snoopy
or absent.

3 0 On-chip data cache is not snoopy.

1 On-chip data cache is snoopy or
absent.

4 0 68349: cache/sram bank 0 is sram.

1 68349: cache/sram bank 0 is cache.

5 0 68349: cache/sram bank 1 is sram.

1 68349: cache/sram bank 1 is cache.

6 0 68349: cache/sram bank 2 is sram.

1 68349: cache/sram bank 2 is cache.

7 0 68349: cache/sram bank 3 is sram.

1 68349: cache/sram bank 3 is cache

* snoopy = cache maintaining its integrity
without software intervention.

Table 8-1 System Defaults Listed in the Init Module (continued)

Offset Name Description

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 225

$6A M$MemList Colored Memory List Offset
The colored memory list contains an
entry for each type of memory in the
system. The list is terminated by a long
word of zero. If this field contains a 0,
colored memory is not used in this
system. For a complete discussion on
colored memory, see the OS-9 for 68K
Technical Manual.

$6C M$IRQStk Size of Kernel’s IRQ Stack
This field contains the size (in
longwords) of the kernel’s IRQ stack.
The value must be 0 or between 256
and $ffff. If the value is 0, the kernel
uses a small default IRQ stack. A larger
IRQ stack is recommended. The default
value is 256 longwords.

$6E M$ColdTrys Retry Counter
The retry counter if the kernel’s initial
chd to the system device fails. The
default value is 0.

$70 Reserved

$72 Reserved

Table 8-1 System Defaults Listed in the Init Module (continued)

Offset Name Description

226 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

$74 M$CacheList Cache List Offset
The cache list entries describe alternate
cache modes for user-state accesses to
memory regions. The list is terminated
by a long word of -1. If this field is 0, the
cache lists are not used in the system.
For a complete discussion on cache
lists, refer to the OS-9 for 68K
Technical Manual.

$76 M$IOMan I/O Manager Module Name Offset
The offset to a name string of a list of
I/O manager modules (if any). OS-9
searches for these modules during
startup. Typically, these modules are
found in the bootfile. They are executed
in system-state if found. Modules listed
in the name string are separated by
spaces. The default name to search for
is IOMan. If there are no I/O modules,
set this to 0.

NOTE: The I/O modules may only alter
the d0, d1, and ccr registers.

NOTE: Refer to Customization
Modules for information about these
modules.

Table 8-1 System Defaults Listed in the Init Module (continued)

Offset Name Description

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 227

$78 M$PreIO Pre-I/O Module Name Offset
The offset to a name string of a list of
Pre-I/O modules (if any). OS-9
searches for these modules during
startup. Typically, these modules are
found in the bootfile. They are executed
in system-state if found. Modules listed
in the name string are separated by
spaces. The default name to search for
is PreIO. If there are no Pre-I/O
modules, set this to 0.

NOTE: The I/O modules may only alter
the d0, d1, and ccr registers.

NOTE: Refer to Customization
Modules for information about these
modules.

Table 8-1 System Defaults Listed in the Init Module (continued)

Offset Name Description

228 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

$7a M$SysConf System Configuration Flags
This word field is used for system configuration
control. The following bits are currently defined.

Bit Function

0 0 System tables are expanded as
needed.

1 System table overflow results in an
error. The default values in the table
are set in the Init module.

NOTE: System table expansion only applies to
the Development kernel. For the Atomic kernel,
table sizes are fixed from the Init module
values.

1 Reserved

2 0 CRC checking performed by
F$VModul.

1 CRC checking disabled for F$VModul.

NOTE: CRC check disabling applies only to the
Atomic kernel and only for checks made after
cold start.

3 0 System-state time-slicing enabled.

1 System-state time-slicing disabled.

4 0 SSM builds user-state protection tables
on a per-process basis

1 SSM builds one user-state page table
(to allow access to all known memory)
at cold-start.

NOTE: This option only applies to the
development kernel. The atomic kernel case
always builds a single user-state page table.

5 -15 Reserved

Table 8-1 System Defaults Listed in the Init Module (continued)

Offset Name Description

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 229

NoteNote
Throughout this chapter, the system directories referred to are the
defaults found in the Init module, unless otherwise specified.

The following is a portion of the distributed init.a file:
_INITMOD equ 1 flag reading init module

CPUTyp set 68000 cpu type (68008/68000/68010/etc.)
Level set 1 OS-9 Level One
Vers set 3 Version 3.0
Revis set 0
Edit set 0 Edition
IP_ID set 0 interprocessor identification code
Site set 0 installation site code
MDirSz set 64 initial module directory count
PollSz set 32 IRQ polling table size (fixed)
DevCnt set 32 device table size (fixed)
Procs set 64 initial process table size (divisible by 64)
Paths set 64 initial path table size (divisible by 64)
Slice set 2 ticks per time slice
SysPri set 128 initial system priority
MinPty set 0 initial system minimum executable priority

$7c Reserved

$7e M$PrcDescStack Size of Process Descriptor’s Stack
This field determines the stack area
size in a process descriptor. This stack
is used by the process when it is
performing system calls (for example,
I/O operations). Systems with file
managers/drivers using the stack
heavily (for example, drivers written in
C) may need to increase this value. The
default is 1500 bytes.

Table 8-1 System Defaults Listed in the Init Module (continued)

Offset Name Description

230 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

MaxAge set 0 initial system maximum natural age limit
MaxMem set 0 top of RAM (unused)
Events set 32 initial event table size
Compat set 0 version smoothing byte
Config set 0 system configuration default
StackSz set 1024 IRQ Stack Size in bytes (must be 1k <= StackSz < 256k)
ColdRetrys set 0 number of retries for coldstart's "chd" before failing
* NOTE: for V3.0, NumSigs is unimplemented
NumSigs set 16 default queued signal maximum
PrcDescStack set 1500 default stack size in process descriptor

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the Init module, see the OS-9 for 68K
Technical Manual.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 231

Customization Modules

You can attach customization modules to OS-9 during the system’s
cold-start procedure to:

• Increase OS-9’s functionality.

• Allow hardware customization such as special bus arbitration
modes.

While customization modules extend its capabilities, OS-9 itself is not
changed.

NoteNote
A customization module may only alter the d0, d1, and ccr registers.

In the Init module, the M$Extens offset points to a list of module
names. By default, the module name in the list is OS9P2. If the modules
are found during cold-start, they are called. If an error is returned, the
system stops. The most commonly used modules are listed here:

syscache The syscache module allows the system to
enable and control any hardware caches
present. The default syscache module
supplied by Microware controls the on-chip
cache(s) for the processor being used. You can
customize this module to use any external
(off-chip) cache hardware the system may
have. The syscache module installs the
F$CCtl system call routines. If you do not
install the syscache module, no system
caching takes place.

Standard syscache modules (to support the
on-chip capabilities of the processor) are
provided for the 68020, 68030, 68040 and
68349.

232 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

NoteNote
External hardware caches are only supported by the development
kernel. On-chip caching is supported by both the atomic and
development kernels.

FPU/FPSP FPU is used on all other processors when the
system does not have a hardware floating point
unit (for example, MC68EC040, MC68030
without MC68882 FPCP). The FPU module
provides emulation support for the MC68882
floating point unit.

FPSP is used on MC68040 systems (those with
an on-chip FPU) and provides software
emulation of MC68881/2 instructions not
implemented on the MC68040.

SSM The system security module (SSM) allows
operation of the memory management unit
(MMU) for the processor in use.

For the development kernel, MMU operation
under OS-9 provides basic user-state
protection mechanisms for the system. This
ensures user processes only use memory they
are allowed to access. For the 68040
processors, the SSM module (in conjunction
with the CacheList entries of the Init
module) allows fine-tuning of the system
memory’s cache attributes. This allows for
cache modes other than the default
write-through mode (copy-back and
non-cacheable regions).

For the atomic kernel, user-state protection is
not implemented. Thus, you should only use an
SSM providing cache support (only the 68040
SSM) in an atomic kernel environment.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 233

The standard SSM modules provided by
Microware are:

SSM451 Supports the MC68451 MMU for
68010 systems. This SSM only
provides protection functions.

SSM851 Supports the MC68851 PMMU and
MC68030 MMU. Used on
MC68020 and MC68030 systems.
This SSM only provides protection
functions.

SSM040 Supports the MC68040 MMU. Used
on MC68040 systems. This SSM
provides protection functions (if
running in a development kernel
environment) as well as cache
mode support.

234 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

Changing System Modules

The provided system modules are configured to satisfy the needs of the
majority of users. However, you may wish to alter the existing modules
or create new modules. You can make new system modules and alter
existing system modules by either:

• Using the moded utility, or

• Changing the defaults in the systype.d file.

The system modules most commonly altered are the device descriptors
and the Init module.

Using the moded Utility

The moded utility allows you to edit individual fields of certain types of
OS-9 modules. You can change the Init module and any OS-9 device
descriptor modules with moded. Because moded is somewhat
restrictive, if you are building a device descriptor or changing a field
such as the file manager names, you may not want to use moded.

NoteNote
The provided moded.fields file comes with module descriptions for
standard RBF, SBF, SCF, PIPE, NETWORK, UCM, GFM, and socket
module descriptors. It also includes a description for the Init module.

To use the moded utility, type moded, the name of the desired device
descriptor, and any options. The moded: prompt shows you have
entered the editor’s command mode.

When moded is started, it attempts to read the moded.fields file.
moded.fields contains module field information for each type of
module to edit. Without this file, moded cannot function.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 235

You can use the following commands from command mode:

Editing the Current Module

To edit the current module, use the e command. If there is no current
module, the editor prompts for the module name to edit. The editor
prints the name of a field, its current value, and prompts for a new value.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about moded, refer to the Utilities Reference
manual.

Table 8-2 moded Utility Commands

Command Description

e(dit) Edit the current module.

f(ile) Open a file of modules.

l(ist) List the contents of the current module.

m(odule) Find a module in a file.

w(rite) Update the module CRC and writes to the file.

q(uit) Return to the shell.

$ Call the OS-9 shell.

? Print this help message.

236 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

You can enter the following edit commands:

If the definition of any field is unfamiliar, use the ?? command. This
provides a short description of the current field.

Exit Edit Mode

Once you have made all necessary changes to the module, exit the edit
mode by either:

• Reaching the end of the module, or

• Typing a period.

At this point, the changes made to the module exist only in memory. To
write the changes to the actual file, use the w command. This also
updates the module header parity and CRC.

Table 8-3 Edit Commands

Command Description

<expr> A new value for the field.

- Re-display last field.

. Leave edit mode.

? Print edit mode commands.

?? Print description of the current field.

<cr> Leave current value unchanged.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 237

Editing the systype.d File

You can also change system modules by editing the systype.d file
located in the DEFS directory. systype.d contains macros such as
TERM and DiskH0 for each device descriptor and the Init module.
These macros contain information such as basic memory map
information, exception vector methods (for example, vectors in RAM or
ROM), I/O device controller memory addresses, and initialization data
for each device descriptor and the init module.

systype.d consists of five main sections used when installing OS-9:

• Init module CONFIG macro.

• SCF Device Descriptor macros and definitions.

• RBF Device Descriptor macros and definitions.

• ROM configuration values.

• Target system specific definitions.

The CONFIG macro is used when creating the Init module to
determine six or more system dependent variables:

Table 8-4 System Dependent Variables

Name Description

MainFram A character string program, such as login, used to
print a banner identifying the system. You can modify
this string.

SysStart A character string the OS-9 kernel uses to locate the
initial process for the system. This process is usually
stored in a module called SysGo. Two general
versions of SysGo have been provided in the files:
SysGo.a for disk-based OS-9 and SysGo_nodisk.a
for ROM-based OS-9.

SysParam A character string passed to the initial process. This
usually consists of a single carriage return.

238 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

You can set other system parameters in this macro to override the
default values created by the init.a source file. This allows you to
perform system tuning without modifying the generic init.a file.

The following is a portion of an example systype.d file:

CONFIG macro
endm
Slice set 10
ifdef _INITMOD

Compat set ZapMem patternize memory
endc

When editing the Init module, constants may use either values or
labels. CPUTyp set 68020 is an example of a constant using a value.
These constants may appear anywhere in the systype.d file. Compat
set ZapMem is an example of a constant using a label. These
constants must appear outside the CONFIG macro and must be
conditionalized to be invoked only when init.a is being assembled. If
these values are placed inside the CONFIG macro, the old defaults are
still used. If a constant requiring a label is placed outside the macro and

SysDev A character string containing the name of the path to
the initial system disk. The kernel coldstart routine
sets the initial execution and data directories to this
device before forking the SysStart process. Set this
label to zero for a ROM-based system. For example,
SysDev set 0.

ConsolNm A character string containing the name of the path to
the console terminal port. Messages to be printed
during startup appear here.

ClockNm A character string containing the name of the clock
module.

Table 8-4 System Dependent Variables (continued)

Name Description

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 239

not conditionalized, illegal external reference errors result
when making other files. You can use the _INITMOD label to avoid
these errors.

The SCF and RBF device descriptor macro definitions are used when
creating device descriptor modules. Five elements are common to SCF
and RBF:

Table 8-5 SCF/RBF Device Descriptor Macro Definitions

Name Description

Port The address of the device on the bus. Generally, this
is the lowest address the device has mapped. Port
is hardware dependent.

Vector The vector given to the processor at interrupt time.
Vector is hardware/software dependent. You can
program some devices to produce different vectors.

IRQLevel The interrupt level (1 - 7) for the device. When a
device interrupts the processor, the level of the
interrupt is used to mask out lower priority devices.

Priority The software dependent interrupt polling table
priority . A non-zero priority determines the
position of the device within the vector. Lower values
are polled first. A priority of 0 indicates the device
desires exclusive use of the vector. OS-9 does not
allow a device to claim exclusive use of a vector if
another device has already been installed on the
vector, nor does it allow another device to use the
vector once the vector has been claimed for exclusive
use.

DriverName The module name of the device driver. You determine
the name used by the I/O system to attach the device
descriptor to the driver.

240 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

RBF macros may also contain an optional sixth element to describe
various standard floppy disk formats. These values are defined in the
file rbfdesc.a in the IO directory.

SCF macros contain two additional elements:

• Parity

• Baud Rate

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The OS-9 for 68K Technical Manual defines the standard codes used
by SCF.

The driver uses these values to determine the parity, word length, and
baud rate of the device. These values are usually standard codes used
by device drivers to access device specific index tables.

You should place definitions such as system specific control register
definitions in systype.d. This allows you to maintain all system
specific definitions in a single, system specific file.

Examine systype.d. If it does not accurately describe your system,
use any text editor to edit the appropriate macro(s) in systype.d.

After editing the macro, change your data directory to the IO directory.
Use the make utility to generate the required descriptors. For example,
the make d0 would generate the descriptors d0 and dd.d0. The output
files are placed in the CMDS/BOOTOBJS directory. Include these new
descriptors in the bootfile.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about make, refer to Chapter 6: The make Utility
and the Utilities Reference manual.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 241

Making Bootfiles

A bootfile contains a group of modules to be loaded into memory during
the system’s bootstrap sequence. The provided bootfiles have been
configured to satisfy the majority of users, but you may want to add or
remove modules from an existing bootfile.

bootlist Files

Bootfiles are usually created using a bootlist file and the -z option
of the OS9Gen or TapeGen utilities. The bootlist files contain a list of
files, one file per line, to use in creating the bootfile. Using a bootlist
file is a convenient way to maintain bootfile contents, as you can easily
edit the bootlist file.

The bootlist files are usually located in the CMDS/BOOTOBJS
directory, along with the individual files used for constructing the
bootfile.

Bootfile Requirements

The contents and module order of a bootfile are usually determined by
the end-user’s system configuration and requirements. However, note
the following points when you construct a bootfile:

• The kernel MUST be present in the system, either in ROM or in the
bootfile. If the kernel is in the bootfile, IT MUST BE THE FIRST
MODULE.

• The Init module must be present in the system, either in ROM or
in the bootfile.

All other modules depend on the system configuration.

242 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

Making RBF Bootfiles

To make a bootfile for an RBF device (hard disk or floppy disk), you
need to edit the bootlist file to match your requirements and then run
the OS9Gen utility:

chd /h0/cmds/bootobjs
<edit bootlist file>
OS9Gen <device> -z=<bootlist>

Some systems may not support boot files greater than 64K in length
and/or non-contiguous.

The <device> you specify is the disk on which you wish to install the
bootfile. If this device is a hard disk, specify the format-enabled device
name.

For example, to make a floppy-disk bootfile, type:

OS9Gen /d0 -z=bootlist.d0

To make a hard disk bootfile, type:

OS9Gen /h0fmt -z=bootlist.h0

Making Tape Bootfiles

To make a bootfile for an SBF device (tape), edit the bootlist file to
match your requirements and then run the TapeGen utility:

chd /h0/cmds/bootobjs
<edit bootlist file>
TapeGen /mt0 -bz=bootlist.tape

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 243

Using the RAM Disk

OS-9 provides support for RAM disks. These disks reside solely in
Random Access Memory (RAM). You can access the information stored
on a RAM disk significantly faster than the same information stored on a
hard or floppy disk. You may store and access any files on a RAM disk.

To use a RAM disk, you must have:

• A device descriptor

• The RAM disk driver

• The RBF file manager

You may use multiple RAM disks as long as each RAM disk has a
different port address. The only real limitation to the number of RAM
disks is the size of the memory. However, some practical considerations
exist. For example, using one large RAM disk is more efficient than
using many small RAM disks.

In many system configurations, a RAM disk is used as the default
system device. When the RAM disk is used as the default system
device, it is known as device dd, instead of r0. The name of the device
descriptor is dd_r0. Using this descriptor allows compilers to use the
RAM disk as a fast access device for temporary files. The RAM disk is
usually initialized at startup with definition and library files, if it is to be
used as the default system device. The init.ramdisk procedure file
provided in the SYS directory accomplishes this.

NoteNote
RAM disks may be volatile or non-volatile.

• A volatile RAM disk disappears when the system is reset or the
power is shut off.

244 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

• A non-volatile RAM disk resides in a place such as battery backed
up RAM and does not disappear when the system is reset or
powered down.

Volatile RAM Disks

Volatile RAM disks may be allocated memory either from free system
memory or from outside free system memory. The port address controls
the number of volatile RAM disks allocated from free system memory.
There can be up to 1024 different disks, with each disk having a unique
address from 0 to 1023.

Volatile RAM disks not allocated from the free system memory must not
be part of the system memory list, and they must have a port address
greater than or equal to 1024. This port address indicates the actual
start address of the RAM disk.

Non-Volatile RAM Disks

A non-volatile RAM disk may not be located in any memory search list
known to the system’s general memory lists (the RAM disk must be
outside the system’s knowledge). If it is located in a memory search list
known to the system’s general memory lists, the RAM disk may be
wiped out because the memory is assumed to be unallocated and may
later be given to another module. In addition, the format protect bit must
be set for non-volatile RAM disks and the port address must be greater
than or equal to 1024.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 245

Making a Startup File

Using bootfiles is not the only way of loading modules and devices into
memory at the time of startup. A startup procedure is executed each
time OS-9 is booted and the standard SysGo is used. On disk-based
systems, the startup procedure executes a startup file. The startup
file is located in the root directory of the system disk.

NoteNote
The startup file is an OS-9 procedure file. It contains OS-9
commands to be executed immediately after booting the system.

While you should load some modules and devices, such as the kernel,
from the bootlist file, loading most modules and devices from the
startup file can be advantageous. For example, it is easier to upgrade
a system by adding modules to the startup file, or the files contained
in the startup file. To change these files, you simply use a text editor
and make the changes. To change the bootlist file, you must also
use the os9gen utility.

Remember: A procedure file is made up of executable commands.
Each command is executed exactly as if it were entered from the shell
command line. Each line beginning with an asterisk (*) is a comment
and is not executed.

From the root directory, you can examine the startup file by entering:

$ list startup

A listing similar to the following is displayed:
-t -np
*
* OS-9
* Copyright 1984 by Microware Systems Corporation
* Copyright 2001 by RadiSys Corporation
*
* The commands in this file are highly system dependent and should
* be modified by the user.
*
* setime; * start system clock
link shell cio csl; * make "shell", "cio", and "csl" stay in memory

246 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

load math; * load math module
* iniz r0 h0 d0 t1 p1 ; * initialize devices
* load -z=sys/loadfile ; * make some utilities stay in memory
* load bootobjs/dd.r0 ; * get default device descriptor
* init.ramdisk>/nil >>/nil & ; * initialize it if it’s the ramdisk
* tsmon /t1 & ; * start other terminals
list sys/motd

The first executable line, -t -np, turns on the talk mode option of the
shell and turns off the OS-9 prompt option for the duration of this
procedure. The talk mode option echoes each executed command to
the terminal display. This allows you to see what commands are being
executed.

The other executable lines in the distributed startup file are followed
by a comment explaining the command’s purpose. Some standard
commands are provided as comments. If you want to execute the
command during the startup procedure, use a text editor to remove the
asterisk preceding the command.

For example, to execute the setime command when the startup file is
executed, remove the asterisk preceding the command.

NoteNote
For systems with battery backed clocks, run setime to start
timeslicing, but use the -s option. The date and time are read from the
clock.

Initializing Devices

The iniz r0 h0 d0 t1 p1 commented command initializes the
following specific devices:

r0 RAM Disk

h0 Hard Disk

d0 Floppy Disk

t1 Terminal

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 247

p1 Serial Printer

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about iniz, refer to the Utilities Reference
manual.

Whenever OS-9 opens a path to a device, it first checks to see if the
device is known to OS-9. To be known, a device must be initialized and
memory must be allocated for its device driver. If the device is unknown
at the time of the request, OS-9:

• Initializes the device

• Allocates memory

• Opens the path

For example, a simple dir /d0 command initiates this sequence of
events if d0 has not been previously initialized.

The iniz utility initializes devices. iniz performs an I$Attach
system call on each device name passed to it. This initializes the device
and links it to the system.

To initialize a device after the system has been started, type iniz and
the name(s) of the device(s) to attach to the system. iniz goes through
the procedure of initializing the device(s) and allocating the memory
needed for the device. If the device is already attached, it is not
re-initialized, but the link count is incremented.

For example, to increment the link count of modules, t2 and t3, type:

$ iniz t2 t3

You can read the device names from standard input with the
-z option or from a file with the -z=<file> option. To increment the
link counts of devices listed in a file called /h0/add.files, type:

iniz -z=/h0/add.files

248 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

Closing a Path to a Device

You can use the deiniz utility to close a path to a device. deiniz
checks the link count before removing the device from storage.

• If the link count is greater than one, deiniz lowers the link count.

• If the link count is one, deiniz lowers the link count, making it zero,
and removes the device from the system device table. The device
then becomes unknown to OS-9.

To use the deiniz utility, type deiniz followed by the name(s) of the
devices(s) to remove from the system.

For example, to decrement the link count of module p2, type:

$ deiniz p2

deiniz can read the device names from standard input with the -z
option or from a file with the -z=<file> option. To remove the files
listed in a file called /h0/not.needed, type:

$ deiniz -z=/h0/not.needed

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about iniz and deiniz, refer to the Utilities
Reference manual.

This initialize/de-initialize sequence can slow program execution and
could cause memory fragmentation problems. To avoid these
symptoms, Microware recommends all devices connected to the system
at startup be iniz-ed in the startup file.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 249

NoteNote
You must place non-sharable devices in a bootfile to become known to
the system. If a non-sharable device is iniz-ed, it is unusable because
the link count has been incremented, causing it to appear to be in use.

iniz-ing the connected device at startup:

• Initializes the device.

• Allocates memory for its driver for the duration of the time the
system is running, unless specifically deiniz-ed.

For example, a system with two floppy drives and one hard disk would
iniz these devices in the startup file:

iniz h0 d0 d1 t1 p1 p

Loading Utilities into Memory

The next line of the startup file loads a number of utilities into
memory. If a utility is not already in memory, you must load it into
memory before using it. Pre-loading basic utilities at startup time avoids
the necessity of loading the utility each time it is executed.

To load utilities into memory at startup, you must create a file containing
the names of each utility to load, one utility per line. While the file may
have any desired name, Microware recommends loadfile for obvious
reasons. You can place this file in any directory as long as you specify
its location on the command line. If loadfile were located in the SYS
directory, the startup file command line is:

load -z=sys/loadfile

Previous versions of the OS-9 package had the following commented
line in the startup file:

load utils

250 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

This method involved creating a utils file by merging the desired
utilities into a single file in the commands directory. While you can still
use this method, using loadfile is preferable because it uses less
disk space and is easier to edit.

Loading the Default Device Descriptor

Many OS-9 compilers and application programs look for definition files
and libraries in directories located on the default system device. The
default system device is known as dd. dd may be defined as any disk
device, but it is usually synonymous for one of the following devices:

r0 RAM Disk

h0 Hard Disk

d0 Floppy Disk

If you use a default device (dd) and the device descriptor is not in the
bootfile, you must load the device descriptor. The next line in the
startup file loads the device descriptor. The default device is the RAM
disk named r0.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

RAM disks are covered elsewhere in this chapter.

If you want another device to be the default device descriptor, change
the.r0 extension to reflect the appropriate device. If you have a dd
device in your bootfile or if no default device is to be used, leave this line
as a comment.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 251

Initializing the RAM Disk

If you are going to use the RAM disk, a library and definition file
structure may be built on the RAM disk. The next line in the startup
file executes the init.ramdisk procedure file. init.ramdisk is
located in the root directory. It sets up LIB and DEFS directories on
/dd. To name the RAM disk /r0, you must change a single line in
init.ramdisk; change chd /dd to chd /r0.

Multi-User Systems

The tsmon utility is used to make your system a multi-user system.
tsmon supervises idle terminals and initiates the login procedure for
multi-user systems. The startup file command line: tsmon /t1&
initiates the time-sharing monitor on the serial port /t1.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Utilities Reference manual for more information about:

• tsmon

• Each field in a password file entry (see the login utility).

tsmon can monitor up to 28 device name pathlists. Therefore, if you
have multiple devices for tsmon to monitor, you can specify up to 28
devices on each tsmon command line. You can use the ex built-in shell
command to execute tsmon without creating another shell. This
conserves system memory. For example:

ex tsmon term t1 t2 t3 t4 t5&

When a carriage return is typed on any of the specified paths, tsmon
automatically forks login and standard I/O paths are opened to the
device.

252 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

The login procedure uses the password file located in the SYS
directory for individual login validation. The provided password file
has two example login entries. If login fails because you could not
supply a valid user name or password, control returns to tsmon.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 253

System Shutdown Procedure

There are times when, for one reason or another, you want to bring your
system down. When you reset or power down your system, you may
need to do more than just press the reset button. You need to gracefully
shut down certain programs. For example, most network
communications, print spoolers, and inter-system processes need
special attention. These processes may have options or other
arrangements you need to consider before shutting down your system.

In addition to taking care of processes requiring special attention, you
should prepare the system’s users for the shutdown. If at all possible,
allow users enough time to save their files and get off the system. One
way of alerting users the system is going down is by echoing a
message using the echo and tee utilities. However, you should realize
messages sent over the system in this manner are not seen by users
who do not press a carriage return after the message has been sent.
For example, if a programmer is sitting at a shell prompt, the message
does not appear on the terminal screen until a carriage return is
entered.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about echo and tee, refer to the Utilities
Reference manual.

NoteNote
Verbal warnings are important. This means in addition to sending a
warning message out over the system, you may want to use either an
intercom system or the telephone to talk to each person connected to
the system.

254 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

You can simplify the process of actually shutting down your system by
creating a procedure file. Once created, you can run the procedure
either from the shell command line prompt or you can create a separate
password entry for the sole purpose of shutting down the system.

For example, if you have a procedure file called shutdown.sys, you
could create the following password file entry:

sys,shutdown,0.0,128,.,sys,shell shutdown.sys

Once you login as user sys with password shutdown, the shut down
procedure begins because the system immediately has the shell
execute the shutdown.sys file.

The following is an example of a procedure file you could use to shut
down the system:
-t -nx -np
*
* System Shutdown Procedure
*
echo WARNING The system will shut down in 3 minutes ! tee /t1 /t2 /t3 /t4 /t5
sleep -s 60
echo WARNING The system will shut down in 2 minutes ! tee /t1 /t2 /t3 /t4 /t5
sleep -s 115
echo WARNING 5 seconds to system shut down ! tee /t1 /t2 /t3 /t4 /t5
sleep -s 5
spl -$; * terminate spooler
nmon /n0 -d * shutdown network
sleep -s 3 * wait 3 seconds
break; * call ROM debugger

The first six commands after the comment identifying the function of the
procedure broadcast three warnings to the terminals on the system.
The first warning tells the users the system is going down. The other
two warnings serve as reminders. Remember you should also give
verbal warnings.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 255

The remaining command lines shut down the system:

Table 8-6 Shut Down Commands

Command Description

spl -$ Terminate the spooler. All unfinished jobs are lost
when the spooler is terminated.

nmon /n0 -d Bring the network down. Users from other networks
are no longer able to login to the system being shut
down.

sleep -s 3 Cause the system to wait three seconds before
executing the next command line. This allows the
previous commands time to complete execution.

break Send a break call to the ROM debugger. When the
ROM debugger receives this call, the system shuts
down.

256 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

Installing OS-9 on a Hard Disk

Once you have brought up the system and tested its basic operations,
install OS-9 on the hard disk and use it as the system boot device.
Installing the distribution software on the hard disk involves five steps:

Step 1. Checking the hard disk device descriptor.

Step 2. Formatting the hard disk.

Step 3. Copying the distribution software on to the hard disk.

Step 4. Making the hard disk the system boot disk.

Step 5. Test-booting from the hard disk.

Check the Hard Disk Device Descriptor

The installed hard disk may not necessarily match the parameters in the
provided /h0 and /h0fmt device descriptors. For example, the number
of cylinders and heads for your hard disk may be different than the
default parameters specified in the device descriptors. Before
attempting to use the hard disk, carefully examine the disk macros in
systype.d. If:

• the parameters match the drive in use, the supplied descriptors
work.

• the parameters do not match the drive in use, edit systype.d and
remake the descriptors or use the moded utility to remake the
descriptors. moded makes/changes any device descriptor module
and updates its CRC.

Once the descriptors are made, make a new bootfile with the new
descriptors replacing the old ones.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 257

Format the Hard Disk

Once the descriptors match the type of drive in use, format the hard
disk. Formatting the hard disk builds an OS-9 file structure on the media
and tests the media for defective areas. Any new descriptors are also
checked.

WARNING!
If you have any vital information such as data or programs on this disk,
you should perform backups to floppy or tape of this information. The
format process completely erases any data on the disk.

To turn off page pause and format the hard disk, enter:

$ tmode nopause
$ format /h0fmt -c=<cluster size>

NoteNote
/h0fmt must be the device name, as /h0 is format protected. Use the
-c option for large drives only.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about format and tmode, refer to the Utilities
Reference manual.

258 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

The format utility asks whether you want to perform a physical format
and a physical verify. Answer y to both questions. The physical format
operation is a lengthy process. The larger your hard disk is, the longer
you can expect to wait. The logical verify reads each cluster from the
disk.

Copy the Distribution Software on to the Hard Disk

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about dsave, refer to the Utilities Reference
manual.

Once the hard disk has been formatted correctly, use the dsave utility
to copy the distribution software on to the hard disk.

To copy the distribution files:

Step 1. Insert the first system disk in drive /d0. The first system disk contains
the CMDS directory.

Step 2. Change your current data directory to /d0:

$ chd /d0

Step 3. Copy all files from /d0 to /h0:

$ dsave -eb50 /h0

If you have more than one floppy disk to copy:

Step 1. Remove the disk in /d0 and replace it with the new disk to copy.

Step 2. Change your execution directory to /h0/CMDS:

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 259

$ chx /h0/cmds

The hard disk is now your current execution directory.

Step 3. Copy all files from /d0 to /h0:

$ dsave -eb50 /h0

Repeat this step until all floppy disks have been copied to the hard disk.

Making the Hard Disk the System Boot Disk

Copying files on to the hard disk installs the software on the hard disk. It
does not make the hard disk a bootable disk. To make the hard disk the
system boot disk, use the os9gen utility.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about os9gen, refer to the Utilities Reference
manual.

The OS9Boot file is distributed with your system software. An
OS9Boot.h0 bootfile may also be included. The only difference
between these files is the default system device name string in the
Init module. OS9Boot refers to /d0, while OS9Boot.h0 refers to
/h0.

Assuming you have copied these files on to the hard disk, do the
following to make the hard disk bootable:

Step 1. Change your current data directory to /h0:

$ chd /h0

Step 2. Rename OS9Boot to retain a copy to use with a floppy system:

$ rename OS9Boot OS9Boot.d0

260 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

Step 3. Make the hard disk bootable with the correct bootfile. You must
specify /h0fmt as the device.

$ os9gen /h0fmt OS9Boot.h0

Test Boot from the Hard Disk

Once you have completed these steps, make sure the system actually
boots from the hard disk.

If the system fails to boot correctly, reboot the system. Carefully
examine the results of the actions previously described.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 261

Managing Processes in a Real-Time
Environment

The ability to manage processes in a real-time environment is one of
OS-9’s advantages. OS-9 has three main methods by which system
managers can manage processes in a real-time environment:

1. Manipulating process’ priority.

2. Using D_MinPty and D_MaxAge to alter the system’s process
scheduling.

3. Having system state processes and user state processes.

Manipulating Process’ Priority

When you execute processes on the command line, you can change
their initial priorities using process priority modifiers. This allows you to
set the priority on crucial tasks higher so they run sooner and more
often than less crucial processes.

NoteNote
The initial priority is also a parameter for the fork and chain system
calls.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Process priority modifiers are covered in Chapter 5: The Shell.

262 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

Using D_MinPty and D_MaxAge to Alter the System’s
Process Scheduling

The D_MinPty and D_MaxAge system global variables can affect the
way OS-9 schedules processes. D_MinPty and D_MaxAge are
available to super users through the F$SetSys system call. These
system variables can be used to affect the aging of processes.

Defining the Minimum Priority

D_MinPty defines a minimum priority below which processes are
neither aged nor considered candidates for execution. Processes with
priorities less than D_MinPty remain in the waiting queue and continue
to hold any system resources they held before D_MinPty was set.

NoteNote
D_MinPty is usually set to 0. All processes are eligible for aging and
execution when this value is set to 0 because all processes have an
initial priority greater than 0.

Remember: A process’ initial priority is aged each time it is passed by
for execution while it is waiting for CPU time.

If you have a critical process needing to be run and several other users
have processes they want to run:

• Use the process priority modifier to increase the priority of the
critical process.

• Set D_MinPty to a value less than the priority you assigned to the
critical process but greater than the priority of the other processes.

The critical process now continues using the CPU until another process
with a priority greater than D_MinPty is entered into the waiting queue
or the critical process is finished.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 263

For example, if D_MinPty is set to 500 and you set the priority of your
process at 600, your process continues to use the CPU while processes
with priorities less than 500 cannot run until D_MinPty is reset.

WARNING!
D_MinPty is potentially dangerous. If the minimum system priority is
set above the priority of all running tasks, the system completely shuts
down and can only be recovered by a reset. It is crucial to restore
D_MinPty to 0 when the critical task finishes or to reset D_MinPty or
a process’ priority in an interrupt service routine.

Defining the Maximum Age

D_MaxAge defines a maximum age over which processes are not
allowed to mature. By default, this value is set to 0. When D_MaxAge is
set to 0, it has no effect on the processes waiting to use the CPU.

When set, D_MaxAge essentially divides tasks into two classes:

Low priority A low priority task is any task with a
priority below D_MaxAge. Low priority
tasks continue aging until they reach the
D_MaxAge cutoff, but they are not
executed unless there are no high
priority tasks waiting to use the CPU.

High priority A high priority task is any task with a
priority above D_MaxAge. A high priority
task receives the entire available CPU
time, but it is not aged. When the high
priority task(s) are inactive, the low
priority tasks are run.

For example, if D_MaxAge is set to 2000 and three processes with initial
priorities of 128 are in the active queue, the processes run just as if
D_MaxAge had not been set. Then, if a process with an initial priority of
2500 is entered into the active queue, it receives CPU time when the

264 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

process currently in the CPU has finished. Once using the CPU, the
high priority process runs uninterrupted until a process with a higher
priority enters the active queue or the process finishes. When the
process finishes executing, the low priority processes is again able to
use the CPU.

NoteNote
Any process performing a system call is not pre-empted until the call is
finished, unless the process voluntarily gives up its time slice. This
exception is made because these processes may be executing critical
routines affecting shared system resources and could be blocking other
unrelated processes.

Using System-State and User-State Processes

You can also use system-state processes to help manage real-time
priority processing. System-state processes are processes running in a
supervisor or protected mode. System-state processes basically have
unlimited access to system memory and other resources. When a
process in system state wants to use the CPU, it waits until it has the
highest age.

Processes in user state do not have access to all points in memory and
do not have access to all of the commands.

When a process gains time in the CPU, it runs only for the time
specified by the time slice. When it finishes using its time slice, it is
entered back in the waiting queue according to its initial priority. To force
system-state processes not to time-slice, set the appropriate bit in the
M$SysConf flags of the Init module.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 265

Using the tmode and xmode Utilities

The tmode and xmode utilities are also available to help you customize
OS-9.

tmode displays or changes the operating
parameters of your terminal. tmode
affects open paths, not the device
descriptor itself, so the changes are
temporary. The changes made by
tmode are inherited if the paths are
duplicated, but not if the paths are
opened explicitly.

xmode displays or changes the initialization
parameters of any SCF-type device such
as a video display, printer, or RS-232
port. xmode actually updates the device
descriptor. The change persists as long
as the computer is running, even if paths
to the device are repetitively opened and
closed. Some common uses of xmode
are to change the baud rates and control
definitions.

NoteNote
tmode and xmode work only on SCF devices.

In SSM systems, you must have write permission for the descriptor
module in order for xmode to work. You can use the fixmod utility to
change the permissions.

266 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

Using the tmode Utility

To use the tmode utility, type tmode and any parameter(s) to change. If
you give no parameters, the present values for each parameter are
displayed. Otherwise, the parameter(s) given on the command line are
processed. You can give any number of parameters on a command line.
Use spaces or commas to separate each parameter.

If a parameter is set to zero, OS-9 no longer uses the parameter until it
is reset to a code OS-9 recognizes. For example, the following
command sets xon and xoff to zero:

tmode xon=0 xoff=0

Consequently, OS-9 does not recognize xon and xoff until the values
are reset.

To reset the values of a parameter to their default as given in this
manual, specify the parameter with no value.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The tmode parameters are documented in the Utilities Reference
manual.

Use the -w=<path#> option to specify the path number affected. If a
path number is not provided, standard input is affected.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 267

NoteNote
If you use tmode in a shell procedure file, you must use the
-w=<path#> option to specify one of the standard paths (0, 1, or 2) to
change the terminal’s operating characteristics. The change remains in
effect until the path is closed. To permanently change a device
characteristic, you must change the device descriptor. You may alter the
device descriptor to set a device’s initial operating parameters using
xmode.

Five parameters need driver support in order to be changed by tmode:
type, par, cs, stop, and baud. If you try to change these parameters
without driver support, tmode has no effect.

Using the xmode Utility

To use the xmode utility, type xmode and any parameter(s) to change. If
you give no parameters, the present values for each parameter are
displayed. Otherwise, the parameter(s) given on the command line are
processed. You can give any number of parameters on a command line.
Use spaces or commas to separate each parameter. You must specify a
device name if the given parameter(s) are to be processed.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The xmode parameters are documented in the Utilities Reference
manual.

Like tmode, if a parameter is set to zero, the device no longer uses the
parameter until it is reset to a recognizable code. To reset the values of
parameters to their default, specify the parameter with no value. This
resets the parameter to the default value as given in this manual.

268 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

Five parameters require further explanation: type, par, cs, stop, and
baud. xmode changes these parameters only if the device is iniz-ed
directly after the xmode changes and the driver supports these
changes. Changing these parameters is usually done in the startup
file or by first deiniz-ing a file. For example, the following command
sequence changes the baud rate of /t1 to 9600:

$ deiniz t1
$ xmode /t1 baud=9600
$ iniz t1

This type of command sequence changes the device descriptor and
initializes it on the system. Only the five parameters mentioned above
need this special sequence to be changed. All other xmode parameters
are changed immediately.

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 269

The Termcap File Format

The termcap file is a text file containing control code definitions for one
or more types of terminals. Each entry is a complete description list for
a particular kind of terminal.

The first section of a termcap entry is divided into three parts. Each part
is a different way of naming the terminal. A vertical bar (|) character
separates the parts of a termcap entry. The three parts are:

• A two character entry. This is a holdover from early UNIX editions.

• The most common name for the terminal. This name must contain
no blanks.

• Long name fully describing the terminal. This name may contain
blanks for readability.

For example:

kh|abm85h|kimtron abm85h:

You must set the TERM environment variable to the name used in the
second part of the name section. In the following example, TERM is set
to abm85h:

$ setenv TERM abm85h

NoteNote
You can check the values stored in TERM by using the printenv
command:

$ printenv
TERM=abm85h

The rest of the entry consists of a sequence of control code
specifications for each control function. Use a colon (:) character to
separate each item in the list. You can continue an entry on to the next

270 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

line by using a backslash (\) character as the last character of the line.
It must appear after the last colon of the previous item. The next line
must begin with a colon. For example:

ka|amb85|kimtron abm85:\
:ct=\E3: ...

Each item begins with a terminal capability. Each capability is a two
character abbreviation. Each capability is either a boolean itself or it is
followed by a string or a number. If a boolean capability is present in the
termcap entry, then the capability exists on that terminal.

All numeric capabilities are followed by a pound sign (#) and a number.
For example, the number of columns capability for an 80 column
terminal could be described as follows:

co#80:

All string capabilities are followed by an equal sign (=) and a character
string. You can enter a time delay in milliseconds directly after the equal
sign (=) if padding is allowed in that capability. The padding characters
are supplied by tputs() after the remainder of the string is sent to
provide the time delay. The time delay may be either an integer or a
real. The time delay may be followed by an asterisk (*) to specify the
padding is proportional to the number of lines affected.

NoteNote
It is often useful to specify the time delay using the real format. For
example, the clear screen capability is specified as ^z with a time delay
of 3.5 milliseconds by the following entry:

cl=3.5*^z:

You may indicate escape sequences by an \E to indicate the escape
character. A control character is indicated by a circumflex (^) preceding
the character. The following special character constants are supported:

\b Backspace ($08)
\f Formfeed ($0C)
\n Newline ($0A)

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 271

\r Return ($0D)
\t Tab ($09)
\\ Backslash ($5C)
\^ Circumflex ($5E)

You may specify characters as three Octal digits after a backslash (\).
For example, if you must use a colon in a capability definition, it must be
specified by \072. If you must place a null character in a capability
definition use \200. C routines using termcap strip the high bits of the
output, therefore \200 is interpreted as \000.

272 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

Termcap Capabilities

termcap recognizes the following termcap capabilities. Not all of these
capabilities need to be present for most programs to use termcap.
They are provided for completeness.

NoteNote
(P) indicates you may optionally specify padding.

(P*) indicates the optional padding may be based on the number of
lines affected.

Table 8-7 Termcap Capabilities

Name Type Padding Description

ae string (P) End alternate character set

al string (P*) Add new blank line

am boolean (P) End alternate character set

as string (P) Start alternate character set

bc string Backspace if not ^H

bs boolean Terminal can backspace with ^H

bt string (P) Back tab

bw boolean Backspace wraps from column 0
to last column

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 273

CC string Command character in prototype if
terminal can be set

cd string (P*) Clear to end of display

ce string (P) Clear to end of line

ch string (P) Horizontal cursor motion only, line
stays same

cl string (P*) Clear screen

cm string (P) Cursor motion

co numeric Number of columns in line

cr string (P*) Carriage return (default ^M)

cs string (P) Change scrolling region (VT100),
like cm

cv string (P) Vertical cursor motion only

da boolean Display may be retained above

dB numeric Number of milliseconds of
backspace delay needed

db boolean Display may be retained below

dC numeric Number of milliseconds of carriage
return delay needed

dc string (P*) Delete character

Table 8-7 Termcap Capabilities (continued)

Name Type Padding Description

274 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

dF numeric Number of milliseconds of form
feed delay needed

dl string (P*) Delete line

dm string Delete mode (enter)

dN numeric Number of milliseconds of newline
delay needed

do string Down one line

dT numeric Number of milliseconds of tab
delay needed

ed string End of delete mode

ei string End of insert mode
NOTE: if ic is used, enter :ec=:

eo string Can erase overstrikes with a blank

ff string (P*) Hard copy terminal page eject
(default ^L)

hc boolean Hard copy terminal

hd string Half-line down (1/2 linefeed)

ho string Home cursor (if no cm)

hu string Half-line up

hz string Hazeltime: cannot print tildas (~)

Table 8-7 Termcap Capabilities (continued)

Name Type Padding Description

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 275

ic string (P) Insert character

if string Name of file containing
initialization string

im boolean Insert mode (enter).
NOTE: If ic is specified use
:im=:

in boolean Insert mode distinguishes nulls on
display

ip string (P*) Insert pad after character inserted

is string Terminal initialization string

k0-k9 string Sent by other function keys
0-9

kb string Sent by backspace key

kd string Sent by down arrow key

ke string Take terminal out of keypad
transmit mode

kh string Sent by home key

kl string Sent by left arrow key

kn numeric Number of other keys

ko string Termcap entries for other
non-function keys

Table 8-7 Termcap Capabilities (continued)

Name Type Padding Description

276 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

kr string Sent by right arrow key

ks string Put terminal in keypad transmit
mode

ku string Sent by up arrow key

l0-l9 string Labels on other function keys

li numeric Number of lines on screen or page

ll string Last line, first column (if no cm
entry)

ma string Arrow key map

mi boolean OK to move while in insert mode

ml string Memory lock on above cursor

ms boolean OK to move while in standout or
underline mode

mu string Turn off memory lock

nc boolean Carriage return down not work

nd string Non-destructive space

nl string (P*) Newline character

ns boolean Terminal is a non-scrolling CRT

os boolean Terminal overstrikes

Table 8-7 Termcap Capabilities (continued)

Name Type Padding Description

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 277

pc string Pad character (rather than null)

pt boolean Has hardware tabs

se string End stand out mode

sf string (P) Scroll forwards

sg numeric Number of blank characters left by
se or so

so string (P) Begin stand out mode

sr string (P) Scroll reverse

ta string Tab (other than ^I or without
padding)

tc string Entry of terminal similar to last
termcap entry

te string String to end programs using cm

ti string String to begin programs using cm

uc string Underscore one character and
move past it

ue string End underscore mode

ug numeric Number of blank characters left by
us or ue

Table 8-7 Termcap Capabilities (continued)

Name Type Padding Description

278 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

Of the capabilities, the most complex and important capability is cursor
addressing, cm. The string specifying the cursor addressing is formatted
similar to the C function: printf(). It uses % notation to identify
addressing encodings of the current line or column position. The line
and the column being addressed could be considered the arguments to
the cm string. All other characters are passed through unchanged. The
following is the notation used for cm strings:

ul boolean Terminal underlines but does not
overstrike

up string Upline (cursor up)

us string Start underscore mode

vb string Visible bell

ve string Sequence to end open/visual
mode

vs string Sequence to start open/visual
mode

xb boolean Beehive terminal (f1=<esc>,
f2=^C)

xn boolean Newline is ignored after wrap

xr boolean Return acts like ce \r\n

xs boolean Standout not erased by writing
over it

xt boolean Tabs are destructive

Table 8-7 Termcap Capabilities (continued)

Name Type Padding Description

8OS-9 for 68K System Management

Using OS-9 for 68K Processors 279

%d A decimal number (origin 0)

%2 Same as %2d

%3 Same as %3d

%. ASCII equivalent of value

%+x Adds x to value, then %

%>xy If value > x adds y, no output

%r Reverses the order of row and column, no output

%i Increments line/column (for 1 origin)

%% Gives a single %

%n Exclusive or row and column with 0140

%B BCD (16*(x/10) + (x%10), no output

%D Reverse coding (x-2*(x%16)), no output

The following examples illustrate the use of the preceding notations:

cm=6\E&%r%2c%2Y: This terminal needs a 6 millisecond delay, rows
and columns reversed, and rows and columns
to be printed as two digits. The <esc>& and Y
are sent unchanged. (HP2645)

cm=5\E[%i%d;%dH: This terminal needs a 5 millisecond delay, rows
and columns separated by a semicolon (;), and
because of its origin of 1, rows and columns are
incremented. The <esc>[, ; and H are
transmitted unchanged. (VT100)

cm=\E=%+ %+ : This terminal uses rows and columns offset by
a blank character. (ABM85H)

Example Termcap Entries

ka|abm85|kimtron abm85:\
:ce=\ET:cm=\E=%+ %+ :cl=^Z:\
:se=\Ek:so\Ej:up=^K:sg#1

280 Using OS-9 for 68K Processors

8 OS-9 for 68K System Management

If two entries in the same termcap file are very similar, you can define
one as identical to the other with certain exceptions. To do this, tc is
used with the name of the similar terminal. This capability must be the
last in the entry. All exceptions to the other terminal must appear before
the tc listing.

If a capability must be cancelled, use <cap>@. For example, this might
be a complete entry:

kh|abm85h|kimtron abm85h:\
:se=\EG0:so\EG4:tc=abm85:

281

Appendix A: ASCII Conversion Chart

282 Using OS-9 for 68K Processors

A ASCII Conversion Chart

ASCII Symbol Definitions

ASCII is an acronym for American Standard Code for Information
Interchange. It consists of 96 printable and 32 unprintable characters.
The following conversion table includes Binary, Decimal, Octal,
Hexadecimal, and ASCII. The unprintable characters are defined below:

Table A-1 ASCII Symbol Definitions

Symbol Definition

ACK acknowledge

BEL bell

BS backspace

CAN cancel

CR carriage return

DC device control

DEL delete

DLE data link escape

EM end of medium

ENQ enquiry

EOT end of transmission

ESC escape

AASCII Conversion Chart

Using OS-9 for 68K Processors 283

ETB end of transmission

ETX end of text

FF form feed

FS file separator

GS group separator

HT horizontal tabulation

LF line feed

NAK negative acknowledgment

NUL null

RS record shipment

SI shift in

SO shift out

SOH start of heading

SP space

STX start of text

SUB substitute

SYN synchronous idle

Table A-1 ASCII Symbol Definitions (continued)

Symbol Definition

284 Using OS-9 for 68K Processors

A ASCII Conversion Chart

US unit separator

VT vertical tabulation

Table A-2 ASCII Characters

Binary Decimal Octal Hex ASCII

0000000 0 0 0 NUL

0000001 1 1 1 SOH

0000010 2 2 2 STX

0000011 3 3 3 ETX

0000100 4 4 4 EOT

0000101 5 5 5 ENQ

0000110 6 6 6 ACK

0000111 7 7 7 BEL

0001000 8 10 8 BS

0001001 9 11 9 HT

0001010 10 12 A LF

0001011 11 13 B VT

Table A-1 ASCII Symbol Definitions (continued)

Symbol Definition

AASCII Conversion Chart

Using OS-9 for 68K Processors 285

0001100 12 14 C FF

0001101 13 15 D CR

0001110 14 16 E SO

0001111 15 17 F SI

0010000 16 20 10 DLE

0010001 17 21 11 DC1

0010010 18 22 12 DC2

0010011 19 23 13 DC3

0010100 20 24 14 DC4

0010101 21 25 15 NAK

0010110 22 26 16 SYN

0010111 23 27 17 ETB

0011000 24 30 18 CAN

0011001 25 31 19 EM

0011010 26 32 1A SUB

0011011 27 33 1B ESC

0011100 28 34 1C FS

Table A-2 ASCII Characters (continued)

Binary Decimal Octal Hex ASCII

286 Using OS-9 for 68K Processors

A ASCII Conversion Chart

0011101 29 35 1D GS

0011110 30 36 1E RS

0011111 31 37 1F US

0100000 32 40 20 SP

0100001 33 41 21 !

0100010 34 42 22 "

0100011 35 43 23 #

0100100 36 44 24 $

0100101 37 45 25 %

0100110 38 46 26 &

0100111 39 47 27 ’

0101000 40 50 28 (

0101001 41 51 29)

0101010 42 52 2A *

0101011 43 53 2B +

0101100 44 54 2C ,

0101101 45 55 2D -

Table A-2 ASCII Characters (continued)

Binary Decimal Octal Hex ASCII

AASCII Conversion Chart

Using OS-9 for 68K Processors 287

0101110 46 56 2E .

0101111 47 57 2F /

0110000 48 60 30 0

0110001 49 61 31 1

0110010 50 62 32 2

0110011 51 63 33 3

0110100 52 64 34 4

0110101 53 65 35 5

0110110 54 66 36 6

0110111 55 67 37 7

0111000 56 70 38 8

0111001 57 71 39 9

0111010 58 72 3A :

0111011 59 73 3B ;

0111100 60 74 3C <

0111101 61 75 3D =

0111110 62 76 3E >

Table A-2 ASCII Characters (continued)

Binary Decimal Octal Hex ASCII

288 Using OS-9 for 68K Processors

A ASCII Conversion Chart

0111111 63 77 3F ?

1000000 64 100 40 @

1000001 65 101 41 A

1000010 66 102 42 B

1000011 67 103 43 C

1000100 68 104 44 D

1000101 69 105 45 E

1000110 70 106 46 F

1000111 71 107 47 G

1001000 72 110 48 H

1001001 73 111 49 I

1001010 74 112 4A J

1001011 75 113 4B K

1001100 76 114 4C L

1001101 77 115 4D M

1001110 78 116 4E N

1001111 79 117 4F O

Table A-2 ASCII Characters (continued)

Binary Decimal Octal Hex ASCII

AASCII Conversion Chart

Using OS-9 for 68K Processors 289

1010000 80 120 50 P

1010001 81 121 51 Q

1010010 82 122 52 R

1010011 83 123 53 S

1010100 84 124 54 T

1010101 85 125 55 U

1010110 86 126 56 V

1010111 87 127 57 W

1011000 88 130 58 X

1011001 89 131 59 Y

1011010 90 132 5A Z

1011011 91 133 5B [

1011100 92 134 5C \

1011101 93 135 5D]

1011110 94 136 5E ^

1011111 95 137 5F _

1100000 96 140 60 ‘

Table A-2 ASCII Characters (continued)

Binary Decimal Octal Hex ASCII

290 Using OS-9 for 68K Processors

A ASCII Conversion Chart

1100001 97 141 61 a

1100010 98 142 62 b

1100011 99 143 63 c

1100100 100 144 64 d

1100101 101 145 65 e

1100110 102 146 66 f

1100111 103 147 67 g

1101000 104 150 68 h

1101001 105 151 69 i

1101010 106 152 6A j

1101011 107 153 6B k

1101100 108 154 6C l

1101101 109 155 6D m

1101110 110 156 6E n

1101111 111 157 6F o

1110000 112 160 70 p

1110001 113 161 71 q

Table A-2 ASCII Characters (continued)

Binary Decimal Octal Hex ASCII

AASCII Conversion Chart

Using OS-9 for 68K Processors 291

1110010 114 162 72 r

1110011 115 163 73 s

1110100 116 164 74 t

1110101 117 165 75 u

1110110 118 166 76 v

1110111 119 167 77 w

1111000 120 170 78 x

1111001 121 171 79 y

1111010 122 172 7A z

1111011 123 173 7B {

1111100 124 174 7C |

1111101 125 175 7D }

1111110 126 176 7E ~

1111111 127 177 7F DEL

Table A-2 ASCII Characters (continued)

Binary Decimal Octal Hex ASCII

292 Using OS-9 for 68K Processors

A ASCII Conversion Chart

Using OS-9 for 68K Processors 293

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

Symbols
$ prompt 39
$* macro 178
$? macro 179
$@ macro 178
.login 141
.logout 141

file 116, 142
_sh environment variable 113, 150

A
abort process 56, 116, 140, 155, 156
access to files/directories 70, 85, 91
add command

mark groups of files 202
aging 153
application program 13
assembler

command lines 181
options 176

asterisk (*) 129, 167
attr utility 91
attributes

change 91
display 91
owner 70
public 70

B
background 154
background process 16, 56, 132, 139, 140

294 Using OS-9 for 68K Processors

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

kill 156
backslash () 165
backup 41

procedure 45
strategies 208
utility 41, 45

bad sectors 45
battery backed clock 246
binary conversion table 282
bootfile 241
bootlist file 241
build utility 67, 89
built-in rules 174
built-in shell commands

chd 111, 116
chx 116
ex 116
kill 116
logout 116
profile 116, 142
set 117
setenv 114, 117
setpr 117
unsetenv 114
w 117
wait 117

C
c89 mode 173
CC macro 177
CFLAGS macro 176
cfp utility 147, 148
change directory on target device 204
chd utility 73, 82, 111, 116, 119
child shell 119
cht 204
chx utility 82, 116, 119
clock 246

set 37
ClockNm 238

Using OS-9 for 68K Processors 295

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

cold start 36
command

entry in makefile 166
grouping 137
interpreter 52
line 52, 99, 106, 108

execution modifiers 118, 119, 121
function 52
keyword 118, 119
parameters 118, 120
separators 118, 121
types generated by make 180
wildcards 121

separators 131
comment

entry in makefile 167
compat mode 173
compiler

command lines 180
options 176

concurrent execution 121
CONFIG macro 216, 237
ConsolNm 238
continue

makefile entry 165
control keys 54, 57

interrupt 56
copy utility 93
create

named pipes 136
csl 19
current

change directory 116
data directory 72, 75, 79, 81, 86
execution directory 72, 75, 80, 81, 82

customization modules 231

D
D_MaxAge 261, 262, 263
D_MinPty 261, 262

296 Using OS-9 for 68K Processors

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

data
files 67

date utility 39
decimal conversion table 282
default

assembler 172
compiler 172
directory 172
linker 172
mode 172

define
macro 175

DEFS directory 237
deiniz utility 248
del

utility 102
del command

unmark files 203
dependency

entry 164
entry (in makefile) 164
list 164

dependents 163
descriptors 234
destination disk 45
device

de-initialize 246
initialize 246
names 124

dir utility 79
directory

access 91
accessing 85, 91
attribute 70
change current 116
changing 111
chd 116
chx 116
current

data 72, 75, 79, 81, 86
execution 72, 75, 80, 81, 82

Using OS-9 for 68K Processors 297

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

defined 15
dir utility 79
displaying 79
extended listing 80
function 64
home 111
parent 71, 83
root 71

disk
destination 45
source 45

DiskH0 macro 237
display

address and size of unused memory 60
amount of unused disk space 60

dollar sign ($) 175
dsave utility 96

E
echo pathlists 206
edit

current module 235
edt utility 90
environment variables

_sh 113
changing 114
defined 110
delete 117
HOME 73, 111
MWMAKEOPTS 186
PATH 112, 141
PORT 111
PROMPT 112, 141
set 117
SHELL 111
TERM 113, 141
unset 117
USER 111

error
reporting function 158

298 Using OS-9 for 68K Processors

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ex utility 116
example

login procedure 51
makefile to create make 189
termcap entries 279

executable
program module files 67
target file 163

execution
modifier

command line 118, 119, 121
exit

edit mode 236
external (off-chip) cache hardware 231

F
F$calls 153
F$CCtl 231
F$SetSys 262
file

dependencies 163
files

access 91
accessing 85, 91
copy 93, 96
creating files

build utility 67, 89
edt utility 90
uMACS 90

data 67
delete 102
display attributes 91
executable program module 67
function 64
list utility 92
listing 92
os9boot 36
ownership 91
password 145
procedure files

Using OS-9 for 68K Processors 299

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

applications 139
dsave utility 96
startup file 245

startup 36
text 67

filter 136
foreground process 16, 56
format 42

utility 41, 44
parameters 42

free utility 60
frestore utility 199
fsave utility 193

G
group.user ID 68, 145

H
help utility 59
hexadecimal conversion table 282
home directory 111
HOME environment variable 73, 111

I
I$calls 153
I/O

device names 124
device naming conventions 124
redirection modifiers 126

identify the backup 206
IDIR macro 176
implicit

definitions 171
dependencies 170

implicit dependencies 163
include

entry in makefile 167

300 Using OS-9 for 68K Processors

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

index 206
init module 216

CONFIG macro 237
init.a file 229
initial

data directory 146
process priority 146
program 146

initialize devices 246
intermediate code programs 159

K
keyword

command line 119
defined 118

kill 155
background process 156
utility 116

L
LC macro 177
LFLAGS macro 177
library 19
line editing features 54
linker 177

command lines 181
options 177

list
processes 151

listc 92
load utility 249
login 141

procedure 51
shell 141

logout 142
utility 116

Using OS-9 for 68K Processors 301

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

M
M$CacheList 226
M$Clock 219
M$ColdTrys 225
M$Compat 223
M$Compat2 224
M$Consol 219
M$CPUTyp 220
M$DevCnt 217
M$Events 222
M$Extens 219, 231
M$Instal 220
M$IOMan 226
M$IRQStk 225
M$MaxAge 221
M$MDirS2 221
M$MemList 225
M$MinPty 221
M$OS9Lvl 220
M$OS9Rev 220
M$Paths 218
M$PollSz 217
M$PrcDescStack 229
M$PreIO 227
M$Procs 217
M$Site 220
M$Slice 220
M$SParam 218
M$SysConf 228, 264
M$SysDev 218
M$SysGo 218
M$SysPri 221
macro

define 175
definition line 168
recognition 175

MainFram 237
make

a bootfile 242
generated command lines 180

302 Using OS-9 for 68K Processors

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

generating a command line 182
options 183
set mode 174
special macros 176
startup file 245
utility 163
utility details 162

makefile 162
defined 163
valid entries 164

mark files 202
mark groups of files 202
memory

allocation 122
mfree utility 60

module 19
mfree utility 60
mode 173

set for make 174
moded utility 216, 234
modifiers

execution 118
memory size 121

module
descriptors 234
executable program 67
header 122
library 19
memory 19
program 19

multiple
RAM disks 243
shells 149

multiprocessing 16
multitasking

features 16
multi-user

systems 251
MWMAKEOPTS environment variable 186

Using OS-9 for 68K Processors 303

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

N
-n 183
named pipes 135
naming conventions for I/O devices 124
non-volatile RAM disks 244

O
object file 171
octal conversion table 282
ODIR macro 176
offset 217
operating system

defined 12
function 12

OS9Boot file 36, 216
os9gen utility 245
owner attributes 70, 91

P
page pause 57
parameter

command line 118, 120
parent

directory 71, 83
shell 119

password 145
file 69, 145

PATH 141
environment variable 112

pathlist
naming conventions 76
relative 76, 83

permission
defined 69

physical I/O device names 124
pipe (line) 133

construction 121

304 Using OS-9 for 68K Processors

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

filters 136
pipes

types of 134
PORT environment variable 111
pound sign (#) 167
printenv utility 114
priority

age 127
change for process 117
definition 127
initial 127
modifier 128
set 127

procedure file 52, 139
.logout 116
applications 139
dsave utility 96
startup file 245
temporary 147

process
a makefile 170
age 127
background 16, 56
change priority 117
child 123
defined 16
foreground 16, 56
parent 123
priority modifier 127
wait for child to terminate 117

procs utility 133, 151
profile 142

utility 116
program

execute ex utility 116
PROMPT 141

environment variable 112
prompt 39
public attributes 70

Using OS-9 for 68K Processors 305

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Q
question mark (?) 129

R
r68 177
RAM

disk 243
non-volatile 243, 244
volatile 243, 244

RBF 239
RC macro 177
RDIR macro 176
redirection

modifiers 123
relocatable

files 171, 176
library 217

restore
files 204, 205
incremental backup 199

RFLAGS macro 176
root directory 71

S
-s 183
SBF 242
SCF 239
SDIR macro 176
sectors

defined 64
separators

command line 118, 121
concurrent execution 121
pipes 121
sequential execution 121

sequential execution 121
set

306 Using OS-9 for 68K Processors

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

process priority 127
utility 117

setenv 111
utility 114, 117

setime 246
utility 37

setpr utility 117
setting the system defaults 216
shell 52

child 119
parent 119
prompt 39
terminate current 116

SHELL environment variable 111
shell utility 111

built-in command
chd 116
chd utility 73
ex 116
kill 116
logout 116
profile 116
set 117
setenv 114, 117
setpr 117
unsetenv 114, 117
w 117
w utility 154
wait 117

built-in commands
chx 116
kill 155
wait utility 154

options 107
silent, option 183
single

tape backup 210
source

device 192
disk 45
file 172

Using OS-9 for 68K Processors 307

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

special macros 176
startup file 36, 245
stop

procedure 155
super user

defined 68
sys.l 217
syscache module 231
SysDev 238
SysGo 245
SysParam 237
SysStart 237
system

clock 37
dependent variables 237
global variables 262
managers 215
modules, changing 234
security module (SSM) 232
shutdown procedure 253

systype.d file 216, 237

T
table of dependencies 170
talk mode option 246
tape

backup 210
utility 213

TapeGen utility 242
target

device 192
file 162, 163

task 16
temporary procedure file 147
TERM 141

environment variable 113
macro 237

time and date, setting 37
timesharing 17
tmode 57

308 Using OS-9 for 68K Processors

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

utility 57, 265
tsmon 144

utility 111, 251

U
ucc mode 173
unmark files 203
un-named pipes 134
unsetenv utility 114, 117
update target file with make 166
USER environment variable 111
user name 145
using the RAM disk 243
usr.l 217
utilities

backup 41, 45
date 39
defined 13
format 41
free 60
frestore 199
fsave 193
help 59
make 162
mfree 60
moded 216, 234
setime 37
tape 213
tmode 57
tsmon 111

utility 92

V
variable storage 19
view

built-in rules 174
volatile RAM disks 244
volume 199

Using OS-9 for 68K Processors 309

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

index 206

W
w utility 117, 154
wait utility 117, 154
wildcards 121, 128, 130

X
xmode 267

utility 265

310 Using OS-9 for 68K Processors

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

	Using OS-9 for 68K Processors
	Table of Contents
	Chapter 1: OS-9 for 68K Overview
	What Is an Operating System?
	Using OS-9 as Your Operating System
	Using OS-9’s Functions

	Storing Information
	Multitasking and Multi-user Functions
	The Memory Module and Modular Software
	The MWOS Directory Structures
	About the Directory Structure
	Development vs. Runtime
	ISP, NFS, and Other Package’s Directories

	Directories Contained on the System Disk

	Chapter 2: Starting OS-9
	Booting OS-9
	Failure to Boot
	Setting the System Time and Date
	Checking the Date and Time
	The System Prompt

	Backing Up the System Disk
	Formatting a Disk
	Multiple Drive Format
	Single Drive Format
	Continuing the Formatting Process with Either a Single Drive or a Multiple Drive
	The Backup Procedure
	Multiple Drive Backup
	Single Drive Backup

	Chapter 3: Basic Commands and Functions
	Learning the Basics
	Logging on to a Timesharing System
	An Introduction to the Shell
	Using the Keyboard
	Line Editing Control Keys
	Interrupt Keys
	The Page Pause Feature

	Basic Utilities
	The help Utility and the -? Option
	free and mfree

	Chapter 4: The OS-9 File System
	OS-9 File Storage
	The File Pointer
	Text Files
	Executable Program Module Files
	Random Access Data Files
	File Ownership
	Attributes and the File Security System

	The OS-9 File System
	Current Directories
	On Single-User Systems
	On Multi-User Systems
	The Home Directory
	Directory Characteristics

	Accessing Files and Directories: The Pathlist
	Full Pathlists
	Relative Pathlists

	Basic File System Oriented Utilities
	dir: Display Directory Contents
	Wildcards and dir
	dir Options
	chd and chx: Moving Around in the File System
	Using chd
	Using chx
	Climbing Directory Trees
	Using the pd Utility
	Using makdir to Create New Directories
	Rules for Constructing File Names
	Creating Files
	The build Utility
	The edt Utility
	µMACS
	Examining File Attributes with attr
	Listing Files
	Copying Files
	Copying a File into an Existing File
	Copying Multiple Files
	Copying Large Files
	dsave: Using Procedure Files to Copy Files
	Copying Multiple Files
	Errors During dsave
	Indenting for Directory Levels
	Keeping Current Directory Backups
	del and deldir: Deleting Files and Directories
	Deleting Files
	Deleting Directories

	Chapter 5: The Shell
	Shell Functions
	Shell Options
	Changing Shell Options

	The Shell Environment
	Changing the Shell Environment
	setenv
	unsetenv
	printenv

	Built-In Shell Commands
	Shell Command Line Processing
	Special Command Line Features
	Execution Modifiers
	Additional Memory Size Modifiers
	I/O Redirection Modifiers
	Physical I/O Device Names
	Using I/O Redirection Modifiers
	Process Priority Modifier
	Raising the Process’ Priority
	Wildcard Matching
	The Asterisk (*)
	The Question Mark (?)
	Using Wildcards Together
	Command Separators
	Sequential Execution
	Examples of Sequential Execution

	Concurrent Execution
	Pipes and Filters
	Un-named Pipes
	Named Pipes

	Command Grouping
	Command Grouping and Pipelines

	Shell Procedure Files
	The Login Shell and Two Special Procedure Files: .login and .logout
	The .login File
	The .logout File
	The Profile Command

	The Startup Procedure File
	The Password File

	Creating a Temporary Procedure File
	Reading the File Names from Standard Input or a File
	Multiple Shells
	The Procs Utility
	Waiting for the Background Procedures
	Stopping Procedures

	Error Reporting
	Running Compiled Intermediate Code Programs

	Chapter 6: The make Utility
	Introduction
	The make Utility
	Dependency Entry
	Command Entry
	Comment Entry
	Include Entry
	Macro Entry
	Summary

	Processing the Make File
	Implicit Dependencies
	Command Line Rules
	Defaults
	Modes
	Set Mode

	Macro Recognition
	Special Macros
	Reserved Macros

	make Generated Command Lines
	Compiler Command Lines
	Assembler Command Lines
	Linker Command Lines

	make Options
	MWMAKEOPTS Environment Variable

	Examples
	Compiling C Programs
	Refining the C Compiler Example
	Make File that Uses Macros
	Putting It All Together

	Chapter 7: Making Backups
	Incremental Backups
	Making an Incremental Backup: The fsave Utility
	The fsave Procedure
	Example fsave Commands

	Restoring Incremental Backups: The frestore Utility
	The Interactive Restore Process
	Unmark Files
	Restore Files
	Overwrite Existing Files
	Change Directories on the Target Device
	Restore Files More Than Once
	Restore Files Without Using the Interactive Shell
	Specify a Source Device
	Identify the Backup Mounted on the Source Device
	Indicate Whether the Index Is on the Volume
	Echo Pathlists
	Example Command Lines

	Incremental Backup Strategies
	The Small Daily Backup Strategy

	The Single Tape Backup Strategy
	Use of Tapes/Disks

	The Tape Utility

	Chapter 8: OS-9 for 68K System Management
	Setting Up the System Defaults: The Init Module
	System Defaults Listed in the Init Module

	Customization Modules
	Changing System Modules
	Using the moded Utility
	Editing the Current Module
	Exit Edit Mode
	Editing the systype.d File

	Making Bootfiles
	bootlist Files
	Bootfile Requirements
	Making RBF Bootfiles
	Making Tape Bootfiles

	Using the RAM Disk
	Volatile RAM Disks
	Non-Volatile RAM Disks
	Making a Startup File
	Initializing Devices
	Closing a Path to a Device
	Loading Utilities into Memory
	Loading the Default Device Descriptor
	Initializing the RAM Disk
	Multi-User Systems

	System Shutdown Procedure
	Installing OS-9 on a Hard Disk
	Check the Hard Disk Device Descriptor
	Format the Hard Disk
	Copy the Distribution Software on to the Hard Disk
	Making the Hard Disk the System Boot Disk
	Test Boot from the Hard Disk

	Managing Processes in a Real-Time Environment
	Manipulating Process’ Priority
	Using D_MinPty and D_MaxAge to Alter the System’s Process Scheduling
	Defining the Minimum Priority
	Defining the Maximum Age

	Using System-State and User-State Processes
	Using the tmode and xmode Utilities
	Using the tmode Utility
	Using the xmode Utility

	The Termcap File Format
	Termcap Capabilities
	Example Termcap Entries

	Appendix A: ASCII Conversion Chart
	ASCII Symbol Definitions

	Index

