
w w w. ra d i sy s . co m
Revision A • July 2006

MAUI® Porting Guide

Version 3.2

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 3.2 of MAUI.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

Table of Contents

Chapter 1: Configuration Description Block 7

8 Overview of the CDB
10 Device Types, Device Names, Device Parameters
10 Device Types and Names
12 Example of the Source File
13 Example of the Makefile
14 How to Modify the CDB
15 How to Build the CDB
16 How to Test the New CDB

Chapter 2: Graphics Driver Interface 17

18 Overview of Graphics Driver Interface
19 Graphics RAM
21 Graphics Device
22 Device Capabilities
22 GFX_DEV_CAP Device Capabilities
23 GFX_DEV_RES Device Resolution
24 GFX_DEV_CM Coding Methods
24 GFX_DEV_CAPEXTEN Extended Device Capabilities
25 GFX_DEV_MODES Device Modes
27 Compile State for Graphics Drivers
27 IOBLT and HWBLT Drivers
28 IOBLT Driver
29 HWBLT Driver
30 Driver Code
32 Device-Specific Code
33 Where the Files are Located
MAUI Porting Guide 3

34 How to Port Your Graphics Driver
34 Create the directory structure for your port
43 Common Source Files
44 Device-specific Files
45 Modify SOURCE Files
45 Modify the config.h file to reflect your system.
49 Modify the global.h file to reflect your graphics device

capabilities
49 Modify the static.h file to define your static storage areas.
52 Modify the hardware.h file to reflect your system hardware

definitions
52 Modify the hardware.c file to initialize your hardware
53 Modify the static.c file to initialize and terminate static

storage areas
54 Modify the remaining display functions
54 Modify the remaining viewport functions
56 How to Build your Graphics Driver
57 How to Test Your Driver

Chapter 3: Input 59

60 Overview
61 MAUI Input Process
61 MAUI Input Protocol Modules
63 Where the Files are Located
64 How to Port Your Protocol Module
64 Porting a Key Device
64 Create the directory structure for your port
66 _key.h
66 init.c
66 mppmstrt.a
67 procdata.c
68 procmsg.c
68 term.c
4 MAUI Porting Guide

69 Porting a Pointer Device
69 Create the directory structure for your port
70 _key.h
71 init.c
71 mppmstrt.a
71 procdata.c
74 procmsg.c
74 term.c
75 How to Build Your Protocol Module
76 How to Test Your Protocol Module
76 Testing Key Devices
76 Testing Pointer Devices
77 Input Protocol Module Entry Points
77 Summary of MAUI Hardware-Layer Functions
78 Location of MAUI Hardware-Layer Functions
88 Functional Data Reference
92 Message reference
116 Message Data reference

Chapter 4: Sound Driver 125

126 Overview of Sound Driver Interface
128 Device Capabilities
129 Driver Code
130 Device-specific Code
131 Where the Files are Located
132 How to Port your Sound Driver
132 Create the directory structure for your port
139 Common Code Source Files
139 Device-specific Source Files
140 Modify the SOURCE files you need
141 Modify the config.h file to reflect your system.
141 Modify the global.h file to reflect your system.
142 Modify the static.h file to define your static storage areas.
MAUI Porting Guide 5

142 Modify the hardware.h file to reflect your
system hardware definitions

143 Modify the hardware.c files to initialize your hardware
143 Modify the play.c, record.c, and irq.c files to support play

and/or record
144 Modify the remaining control functions
145 Modify the remaining device-specific functions
146 How to Build your Sound Driver
147 How to Test your Driver

Chapter 5: How to Configure a System for MAUI 149

150 Overview of MAUI Object Modules
150 Common MAUI modules
152 Port-Specific Objects
152 Configuration Description Blocks
153 Graphics Devices
153 Sound Devices
153 Input Devices
155 Demo Objects
187 Selecting a MAUI System Driver
187 MSG Support
187 CDB Support
188 MAUI System Driver Versions
188 The mauidrvr Driver
188 The mauidrvr_lock Driver
189 The mauidrvr_filter Driver
190 Using the Configuration Wizard for MAUI
196 Advanced Wizard Configuration

 Index 199
6 MAUI Porting Guide

Chapter 1: Configuration Description

Block

The Configuration Description Block (CDB) contains specific
information about your system configuration. This chapter explains what
the CDB is, where the files are located, and how to modify, build, and
test your CDB.
7

1 Configuration Description Block
Overview of the CDB

The Configuration Description Block (CDB) is one or more data
modules that describe each device in your system. Applications read
the CDB and adjust how they operate at run-time according to what
devices are present and what capabilities each device has.

The CDB is central to the concept of application portability. Applications
search the CDB data modules via the MAUI® CDB API. This API
searches memory for all modules of type (5<<8)+1.

Each device in your system is represented by an entry in CDB. The
entries are known as Device Description Records (DDRs). DDRs begin
with dc.b followed by a text string enclosed in quotes. When you
customize the cdb.a file, you simply modify the dc.b lines, adding or
subtracting lines as needed.

All DDRs do not have to be in the same CDB data module. CDB data
modules may be linked and unlinked from memory as new devices,
drivers, and descriptors are added and deleted from the system.

Each dc.b line is constructed in the same way:

dc.b “dev_type:device_name:parameters:”,13

Each line begins with dc.b, then is followed by the DDR (a string that
describes the device). The,13 serves as the line terminator for each
DDR. Following is a simple example of a CDB from an imaginary
system that describes eleven devices:

psect cdb,(5<<8)+1,$8000,200,0,entry
org 0

entry:
dc.b “0:sys:CP=\”PPC603\”:OS=\”OS9000\”:RV=\”2.0\”:

 DV=\”2.1\”:SR#12288,1:GR#512,128:”,13
 dc.b “3:/gfx:AI=\”MAUI\”:GR#2048,128:”,13
 dc.b “4:/nvr:”,13
 dc.b “5:/kx0/mp_xtkbd:”,13
 dc.b “5:/m0/mp_bsptr:”,13
 dc.b “9:/pipe:”,13
 dc.b “20:/term:”,13
 dc.b “20:/t1:”,13
 dc.b “90:/mv:”,13
 dc.b “91:/ma:”,13
 dc.b “113:/sp0/lapb/x25:”,13
8 MAUI Porting Guide

1Configuration Description Block
 dc.b “114:/r0:HD:”,13
 dc.b “1000:/win:”,13
 dc.b 0

ends

The following rules apply to DDR syntax and parameters:

• Each device in your system is represented by an entry. Each entry is
a single line beginning with dc.b followed by the DDR inside
quotation marks.

• DDR entries are delimited by a colon (:). Separate parameters in
each entry are also delimited by colons.

• Parameters that contain quotes (string parameters) must include a
back slash (\) preceding each quotation mark such as in the CP
definition “PPC603” in the example below:

dc.b “0:sys:CP=\”PPC603\”:”,13

• Each entry ends with the characters ,13 to denote an end of record.

• Though it is possible to have several devices of the same type in the
system, each device must have a unique name. Names must be less
than 80 characters long.

• If the parameter is numeric, it consists of a two character mnemonic
part, pound sign (#), and the numeric part. The numeric part
consists of one or more decimal values separated by commas. For
example, a GR#512,128 in the system device DDR (device 0)
means that the system has a 512K bank of graphics accessible
memory as color 128 (0x80). Optionally, this is followed by a comma
character and another numeric parameter. The value comprises a
variable length string of characters in the range 0x30 through 0x39.

• If the parameter is a string, it consists of a two character mnemonic
part, an equal sign (=), and a string. OS=“OS9000“ indicates that
the operating system is OS-9000. Within CDB source files strings
are enclosed in quotation marks. Quotation marks in parameters are
preceded by a back slash (\) to differentiate them from the closing
quotation marks that follow each DDR entry.
MAUI Porting Guide 9

1 Configuration Description Block
• If the parameter is boolean (yes/no type), it is
represented by two characters that indicate the particular system
capability. For example, HD in the data channel DDR (device 114)
stands for hardware direct. If the parameter is present, it indicates
yes, there is a hardware direct connection. If the parameter is absent
it indicates no, there is no hardware direct connection.

Device Types, Device Names, Device Parameters

The Maui Programing Reference manual lists all the valid device
types, device names, and device parameters. Use these descriptions as
your reference for device description records when you build or modify a
CDB. Device DDRs may appear in any order in the CDB, and
parameters within a DDR may appear in any order. If a device type and
name in a DDR does not include a specific parameter, the default
values are assumed. If the device type and name has no default value
listed for a parameter, you must supply the parameter value.

Device Types and Names

Device types are a numeric assignment, for example, Device 3 is
always a graphics device. A CDB may list more than one device of a
given type, but each device must have a unique name. Names are
arbitrary, but must be less than 80 characters long.

The System Description, device 0, is the only required DDR. It should
appear at least once in one of the CDB data modules on the system.
The format of the device name of the System Description is:

0:sys:parameters:

As this is not a physical device, the name is not preceded with a slash.
On all other DDR entries, the device names are preceded with a slash
as in the following example:
10 MAUI Porting Guide

1Configuration Description Block
3:/name:parameters:

When a device requires a protocol module, the name also includes the
name of the protocol module directly following the name and preceded
with a slash. An example of a device requiring a protocol module is a
PS/2 mouse. The DDR entry for a mouse is similar to the following:

5:/m0/mp_bsptr:TY=”ptr”:
MAUI Porting Guide 11

1 Configuration Description Block
Example of the Source File

• cdb.a

 psect cdb,(5<<8)+1,$8000,200,0,entry

 org 0

entry:

 dc.b “0:sys:CP=\”PPC603\”:OS=\”OS9000\”:RV=\”2.0\”:DV=\”2.1\”:SR#12288,1:”,13
 dc.b “2:/snd:”,13
 dc.b “3:/gfx:AI=\”MAUI\”:GR#2048,128:”,13
 dc.b “5:/kx0/mp_xtkbd:TY=\”key\”:”,13
 dc.b “5:/m0/mp_bsptr:TY=\”ptr\”:”,13
 dc.b “9:/pipe:”,13
 dc.b “20:/term:”,13
 dc.b “20:/t1:”,13
 dc.b “1000:/win:”,13
 dc.b 0

 ends
12 MAUI Porting Guide

1Configuration Description Block
Example of the Makefile

• makefile

Makefile
#***
#* This makefile builds a MAUI CDB module
#***
#* Copyright 1995 by Microware Systems Corporation **
#* Copyright 2001 by RadiSys Corporation **
#* Reproduced Under License **
#* **
#* This source code is the proprietary confidential property of Microware **
#* Systems Corporation, and is provided to licensee solely for documentation**
#* and educational purposes. Reproduction,publication, or distribution in **
#* any form to any party other than the licensee is strictly prohibited. **
#***

PORT = ../..
TRGTS = cdb

include $(PORT)/../make.com

ODIR = $(PORT)/CMDS/BOOTOBJS/MAUI
SDIR = .
OPTS = -to=$(OS) -tp=$(CPU) -k

$(TRGTS): DIRS $(ODIR)/$(TRGTS)
$(COMMENT)

$(ODIR)/cdb : $(SDIR)/cdb.a
$(CODO) $@
$(CC) $(SDIR)/$*.a $(OPTS) -fd=$@
$(FIXMOD0) $@

DIRS: .
$(MAKDIR) $(ODIR)

_clean _purge: .
$(CODO) $(ODIR)/cdb
-$(DEL) $(ODIR)/cdb
MAUI Porting Guide 13

1 Configuration Description Block
How to Modify the CDB

1. Create a directory YOURPORT for your ported files in:
MWOS/OS/CPU/PORTS

2. Define and create a CDB directory. This directory is referred to in
this chapter as CDB and assumes the pathname:
MWOS/OS/CPU/PORTS/YOURPORT/MAUI/CDB

3. Using a text editor, modify the device list in the cdb.a file to reflect
your configuration. Check that your CDB module follows these
important rules:

• Do not modify anything except the dc.b lines.

• Do not modify the last dc.b 0 line. This is the end-of-file marker.

• At least one CDB module must include a system description DDR.

• Your CDB may have more than one device of a given type.

• Each device in the CDB should have a unique name.

• Make sure every DDR line ends with a ,13. This is the
end-of-record marker.

• Make sure you place a back slash (\) before each quote mark that
appears inside the DDR. This does not apply to the quote marks
that begin and end the DDR string.

• Make sure the last lines of your file are:
dc.b 0
ends

4. Save the modified file in directory CDB.
14 MAUI Porting Guide

1Configuration Description Block
How to Build the CDB

1. Change directories to CDB directory

cd CDB

2. To make the new CDB module, type:

os9make
MAUI Porting Guide 15

1 Configuration Description Block
How to Test the New CDB

Load the produced CDB data module(s) into your target’s memory, use
the MAUI CDB API calls to verify that all the relevant data can be
retrieved from your CDB(s).
16 MAUI Porting Guide

Chapter 2: Graphics Driver Interface

MAUI graphics drivers insulate applications from hardware differences
in target systems. This chapter explains the graphics device
capabilities; the relationship between the file manager, graphics driver,
and descriptors; and how to build, modify, and verify your drivers.
17

2 Graphics Driver Interface
Overview of Graphics Driver Interface

MAUI graphics drivers interface between the graphics device and the
MAUI file manager. The graphics driver contains all device-specific code
so that MAUI applications and the MAUI APIs are insulated from
hardware differences in the target system. The following figure shows
the relationship between the MAUI file manager (MFM), graphics driver,
and descriptor:

Figure 2-1 MFM−Driver−Descriptor Relationship

The graphics device driver consists of a common code layer and a
device-specific code layer. All graphics drivers share the same set of
common code, which provides functions and definitions needed by all
drivers. Some of the common code is conditionally compiled for
individual systems. The device-specific code handles all the functions
and definitions unique to each device. When porting a graphics driver,
modify the device-specific code in the sample driver to reflect the
graphics device in your system.

MAUI File Manager (MFM)

Driver Common Code

Driver-specific Code

Code layer that is
common to all graphics
drivers. This layer of code
needs no modification.

Code layer that is specific
to your driver. Modify this
layer of code for each
driver.

Descriptor
18 MAUI Porting Guide

2Graphics Driver Interface
The device descriptor is the handle used by applications to reference a
device. The descriptor indicates the file manager, driver, and the driver
initialization data required to access the device.

Graphics RAM

MAUI classifies graphics RAM as one of two types:

• Normal RAM (accessible by the CPU)

• Pseudo RAM (not accessible by the CPU)

For normal RAM, the CPU has direct access to the graphics RAM. For
pseudo RAM, the CPU must access the graphics chip which, in turn,
accesses the graphics RAM. This is determined by the chip or board
manufacturer.

While normal RAM allows easier and normally faster access to the
graphics RAM by the application, it draws the penalty of consuming
CPU time for display memory updates. The following figure illustrates
the two types of graphics RAM:

Figure 2-2 Normal RAM and Pseudo RAM

Graphics Chip

CPU

Graphics RAM

Pseudo RAM

Graphics Chip

CPU

Graphics RAM

Normal RAM
MAUI Porting Guide 19

2 Graphics Driver Interface
If your device uses normal RAM, the kernel or the driver
may manage the memory. If the kernel manages the memory, it must be
set up by the sys_init module or appear in the memory list in the
init module (See OS-9® Technical Reference or OS-9 for 68K
Technical Reference).The configuration of RAM is described in the
CDB. Use the following decision tree to help you complete your CDB.

Figure 2-3 RAM Allocation

Does the CPU have
direct access to the

Graphics RAM?

Y
es

Does the Kernel or
Driver allocate

memory?

K
er

ne
l

Use GR# in the
CDB_TYPE_SYS entry

in the CDB

No

Driver

Use PR# in the
CDB_TYPE_GRAPHIC

entry in the CDB

Use GR# in the
CDB_TYPE_GRAPHIC

entry in the CDB
20 MAUI Porting Guide

2Graphics Driver Interface
Graphics Device

When a process opens a path to a physical device, a logical device is
created for that process. There may be several paths open to the
physical device at any one time, so multiple logical devices may exist.
The logical device that is at the top of the logical device stack is the
visible device as shown in the following figure:

Figure 2-4 Physical and Logical Graphics Devices

The physical device is simply the physical hardware that displays
graphics such as a television, monitor, or LCD.

As each path is opened to the device with gfx_open_dev(), each
path is given a logical device ID. Only the top-most logical device is
visible.

A process may clone a logical device opened by another process by
calling the function gfx_clone_dev(). When this function is called,
the logical device is shared by both processes.

Device 1

Device 2

Device 3

Physical Device

Logical Devices

This is the visible
device because it

is on top.
MAUI Porting Guide 21

2 Graphics Driver Interface
Device Capabilities

One important function of your device driver is specifying the
capabilities of the device. Graphics device capabilities are defined in a
set of data structures within the global.h file. Written specifications
for the sample drivers included with MAUI are located in the same
directory as the source files.

A hardware specification is particularly valuable when writing your
global.h file. Your specification may be different, but similar to the
specifications of the sample drivers. Following are examples of the data
structures that define device capabilities.

GFX_DEV_CAP Device Capabilities

This data structure defines the set of display capabilities. The structure
is defined as follows:
typedef struct _GFX_DEV_CAP {
 char *hw_type; /* hardware type */
 char *hw_subtype; /* hardware sub-type */
 BOOLEAN sup_vpmix; /* supports viewport mixing */
 BOOLEAN sup_extvid; /* supports external video */
 BOOLEAN sup_bkcolor; /* supports background color */
 BOOLEAN sup_vptrans; /* supports viewport transparency */
 BOOLEAN sup_vpinten; /* supports viewport intensity */
 BOOLEAN sup_sync; /* supports retrace synchronization */
 u_int8 num_res; /* number of display resolutions */
 GFX_DEV_RES *res_info; /* array of display resolutions */
 u_int8 dac_depth; /* depth of DAC in bits */
 u_int8 num_cm; /* number of coding methods */
 GFX_DEV_CM *cm_info; /* array of coding methods */
 BOOLEAN sup_decode; /* supports video decoding */
} GFX_DEV_CAP;

Following is an example of a GFX_DEV_CAP data structure of a driver,
which supports standard VGA graphics chip set mode 12H and
“X”-mode:
22 MAUI Porting Guide

2Graphics Driver Interface
GFX_DEV_CAP gdv_dev_cap = {
 "VGA", /* hardware type */
 NULL, /* hardware sub-type name (filled in later) */
 FALSE, /* supports viewport mixing */
 FALSE, /* supports external video */
 FALSE, /* supports backdrop color */
 FALSE, /* supports viewport transparency */
 FALSE, /* supports vport intensity */
 FALSE, /* supports retrace synchronization */
 sizeof(gdv_res_info)/sizeof(*gdv_res_info), /* Num res_info */
 gdv_res_info, /* pointer to display resolution information */
 6, /* depth of DAC in bits */
 sizeof(gdv_cm_info)/sizeof(*gdv_cm_info), /* Num cm_info */
 gdv_cm_info, /* pointer to coding method information */
 FALSE /* supports video decoding into a drawmap */
};

This structure references two other structures GFX_DEV_RES
gdv_res_info and GF_DEV_CM gdv_cm_info described below.
Both of these are pointers to an array of structures of their respective
types.

GFX_DEV_RES Device Resolution

The GFX_DEV_RES structure provides a description of display
setting/resolutions supported by the driver. The driver provides an array
of GFX_DEV_RES structures describing each supported display setting.
The first resolution defined in this data structure is the default resolution.
This data is structured as follows:
typedef struct _GFX_DEV_RES {
 GFX_DIMEN disp_width; /* width */
 GFX_DIMEN disp_height; /* height */
 u_int16 refresh_rate; /* refresh rate */
 GFX_INTL_MODE intl_mode; /* interlace mode */
 u_int16 aspect_x; /* x aspect ratio */
 u_int16 aspect_y; /* y aspect ratio */
} GFX_DEV_RES;

Following is an example of a GFX_DEV_RES data structure that defines
two display resolutions:
GFX_DEV_RES gdv_res_info[] = {
 {640, 480, 60, GFX_INTL_OFF, 1, 1}, /* default mode 12H */
 {360, 480, 60, GFX_INTL_OFF, 1, 1} /* X-mode */
};
MAUI Porting Guide 23

2 Graphics Driver Interface
GFX_DEV_CM Coding Methods

The GFX_DEV_CM data structure describes a coding method. The driver
provides an array of GFX_DEV_CM data structures and contains an
entry for each coding method supported by the graphics device. Coding
methods are specific formats for graphic data. The first coding method
entry is the default coding method, followed by additional supported
coding methods. This data is structured as follows:
typedef struct _GFX_DEV_CM {
 GFX_CM coding_method; /* coding method */
 BOOLEAN clut_based; /* TRUE if CLUT-based */
 u_int16 dm2dp_xmul; /* multiplier to convert X coordinate */
 u_int16 dm2dp_ymul; /* multiplier to convert Y coordinate */
 u_int8 num_color_types; /* number of color types */
 GFX_COLOR_TYPE *color types; /* array of color types*/
} GFX_DEV_CM;

A CLUT-based coding method uses an index of colors called a Color
Look-Up Table (CLUT).

Multipliers are used to convert values in the drawmap coordinate
system to equivalent values in the display coordinate system. When the
display resolution is different from the drawmap resolution the
dm2dp_xmul and dm2dp_ymul values are other than 1. Following is
an example of a GFX_DEV_CM data structure that defines two supported
coding methods, 4bpp (16 colors) coding method for VGA mode 12H
and 8bpp (256 colors) for ‘X’-mode:
GFX_DEV_CM gdv_cm_info[] = {
 {GFX_CM_4BIT, TRUE, 1, 1, GDV_NUMCOLORS, gdv_valid_colors},
 {GFX_CM_8BIT, TRUE, 1, 1, GDV_NUMCOLORS, gdv_valid_colors},
};

GFX_DEV_CAPEXTEN Extended Device Capabilities

As of MAUI 3.1 an extended or secondary device capabilities structure
should be supported by all drivers. This data structure provides
additional information about the display capabilities of the device. The
structure is defined as follows:
24 MAUI Porting Guide

2Graphics Driver Interface
typedef struct _GFX_DEV_CAPEXTEN {
 u_int16 version; /* == sizeof(GFX_DEV_CAPEXTEN) used to
 determine revision of struct */
 u_int16 num_modes; /* Number of modes in mode_info */
 GFX_DEV_MODES *mode_info; /* Array of supported modes (maybe subset) */
 GFX_VPC vp_complexity; /* Hint regarding supported viewport
 complexity */
 GFX_VPDMC vpdm_complexity; /* Hint regarding supported drawmap
 viewport complexity */
} GFX_DEV_CAPEXTEN;

Following is an example of a GFX_DEV_CAPEXTEN data structure for
the driver described above:
const GFX_DEV_CAPEXTEN gdv_dev_capexten = {
 sizeof(GFX_DEV_CAPEXTEN), /* Size/Version of structure, NEVER CHANGE */
 sizeof(gdv_dev_modes)/sizeof(*gdv_dev_modes),/* Number of modes */
 gdv_dev_modes, /* Mode info */
 GFX_VPC_ONE_EXACT, /* Supports only one viewport the
 exact size of the display */
 GFX_VPDMC_LARGER /* Can display sub-drawmaps */
};

This structure references the structure GFX_DEV_MODES
gdv_dev_modes described below. This is a pointer to an array of
device modes structures which indicate compatible device resolution
and coding method combinations supported by the graphics device.

GFX_DEV_MODES Device Modes

The GFX_DEV_MODES data structure is referenced by
GFX_DEV_CAPEXTEN to indicate compatible device resolution and
coding method combinations (modes) supported by the graphics
device. This is ideally all of the supported modes, but can be a subset if
there are too many. This data is structured as follows:
typedef struct _GFX_DEV_MODES {

u_int16 res_idx; /* res_info index index */
u_int16 cm_idx; /* cm_info index */
char *desc; /* Description of mode */

} GFX_DEV_MODES;

Following is an example of a GFX_DEV_MODES data structure that
defines a set of coding method and display resolutions pairs:
MAUI Porting Guide 25

2 Graphics Driver Interface
GFX_DEV_MODES gdv_dev_modes[] = {
 {0, 0, "640x480x4"},
 {0, 1, "640x480x8"},
 {1, 0, "360x480x4"},
 {1, 1, "360x480x8"}
};

Note that the res_idx and cm_idx fields are indexes into
GFX_DEV_CAP’s GFX_DEV_RES gdv_res_info and GF_DEV_CM
gdv_cm_info arrays, not pointers.

NoteNote
See the MAUI Programming Reference manual for complete
description of each of the data structures.
26 MAUI Porting Guide

2Graphics Driver Interface
Compile State for Graphics Drivers

This section provides information regarding the compile state for MAUI
graphics drivers, including the names of the driver files and the
functions implemented within them.

IOBLT and HWBLT Drivers

Table 2-1 IOBLT and HWBLT

Compiled to User State
Compiled to System State
(GDC_FE_SYSATE)

gdv_blt.c gdv_fe.c

_gdv_blt_drwmix _os_ss_blt_drwmix

_gdv_blt_cpymix _os_ss_blt_cpymix

_gdv_blt_pix _os_ss_blt_pix

_gdv_blt_src _os_ss_blt_src

_gdv_blt_dst _os_ss_blt_dst

_gdv_blt_ofs _os_ss_blt_ofs

_gdv_blt_mask _os_ss_blt_mask

_gdv_blt_trans _os_ss_blt_trans

_gdv_blt_exptbl _os_ss_blt_exptbl
MAUI Porting Guide 27

2 Graphics Driver Interface
IOBLT Driver

Table 2-2 Specific to IOBLT

Compiled to User State
Compiled to System State
(GDC_FE_SYSATE

gdv_copy.c gdv_fe.c

_gdv_ioblt_copyblk _os_ss_ioblt_copyblk

_gdv_ioblt_copynblk _os_ss_ioblt_copynblk

gvd_draw.c _os_ss_ioblt_copynblk

_gdv_ioblt_drawblk _os_ss_ioblt_drawblk

_gdv_ioblt_drawhline _os_ss_ioblt_drawhline

_gdv_ioblt_drawvline _os_ss_ioblt_drawvline

_gdv_ioblt_drawpixel _os_ss_ioblt_drawpixel

gdv_expd.c _os_ss_ioblt_expdblk

_gdv_ioblt_expdblk _os_ss_ioblt_expdnblk

_gdv_ioblt_expdnblk
28 MAUI Porting Guide

2Graphics Driver Interface
HWBLT Driver

Table 2-3 Specific to HWBLT

Compiled to User State
Compiled to System State
(GDC_FE_SYSATE)

hwblt.c gdv_fe.c

_gdv_hwbt_drawblk _os_ss_hwblt_drawblk
MAUI Porting Guide 29

2 Graphics Driver Interface
Driver Code

MAUI graphics drivers consist of two types of code: common code that
is already written for your driver, and device-specific code that you write.
The common code makes up a large portion of the graphics driver and
does not have to be modified. When porting a graphics driver, you
modify the device-specific code in the sample drivers to reflect the
capabilities of the graphics device in your system and implement the
functionality it can support. The device-specific code consists of a
number of files, of which some are required and others are optional,
depending on your system. The following files are required in every
graphics driver:

• config.h contains the definitions that control the
configuration of the driver including the names
of functions defined by the device-specific code.

• drvr.tpl os9make “include” file.

• global.h contains the global definitions for the driver
including device capabilities and prototypes.

• hardware.c defines functions that deal with the hardware
device setup routines such as init and
terminate.

• hardware.h contains hardware-specific definitions.

• static.c initializes and terminates static storage areas
used by the driver.

• static.h contains the definitions for static storage areas
available to the driver.

• updtdpy.c updates the display with queued changes and
optionally synchronizes changes with vertical
retrace.

• vpdmap.c sets a drawmap area to be displayed in the
viewport.

• vpdmpos.c sets a position of the drawmap in the viewport.

• vppos.c sets a position of the specified viewport.
30 MAUI Porting Guide

2Graphics Driver Interface
• vprestak.c restacks a viewport within the viewport stack.

• vpsize.c sets a size of the specified viewport.

• vpstate.c sets a state of the specified viewport to active or
not active.

Several other files may be included in the device-specific code at your
option. These files include:

• dvbkcol.c sets a background color for the display.

• dvextvid.c sets an external video on and off.

• dvtran.c sets transparent color.

• dvvpmix.c sets viewport mixing on and off.

• ioblt.c enables driver-supported bit-BLT (using I/O
registers).

• hwblt.c enables driver-supported bit-BLT (using H/W
acceleration).

• hwcur.c enables a H/W cursor.

• irq.c defines interrupt service functions.

• vpintens.c sets an intensity of the specified viewport.

When modifying the driver code, you should organize your work to
modify the files in this order:

1. Modify header files.

2. Modify required display functions.

3. Modify required viewport functions.

4. Modify optional functions.
MAUI Porting Guide 31

2 Graphics Driver Interface
Device-Specific Code

Sample driver files are located in the directory:

MWOS/SRC/DPIO/MFM/DRVR/GX_SAMP

You can use these files as templates for building your own
device-specific code.
32 MAUI Porting Guide

2Graphics Driver Interface
Where the Files are Located

MAUI is delivered with one directory of sample files and several
complete drivers. The complete drivers are example drivers that you
can modify to make your driver. The sample files contain instructions for
building your own .h and .c files.

• MAUI standard header files are located in
MWOS/SRC/DEFS/MAUI

WARNING!
These header files should never be modified by the user

• MAUI common driver code is located in
MWOS/SRC/DPIO/MFM/DRVR/GX_COMM
This directory is referred to as common throughout this chapter.
Normally you should not need to modify files in this directory. If your
implementation does have special requirements that necessitates
modifying the common code, make a copy of the relevant file(s) to
your driver specific directory and make your modifications there.

• The sample driver template files are located in:
MWOS/SRC/DPIO/MFM/DRVR/GX_SAMP

• Depending on the software package purchased, other complete
driver sources are found under:
MWOS/SRC/DPIO/MFM/DRVR/GX_*
MAUI Porting Guide 33

2 Graphics Driver Interface
How to Port Your Graphics Driver

Create the directory structure for your port

Before beginning to port your graphics driver, you must create a
directory structure to store your new files. That directory structure is
shown on the next page in the figure Directory Structure for Your
Graphics Driver Port.
34 MAUI Porting Guide

2Graphics Driver Interface
Figure 2-5 Directory Structure for Your Graphics Driver Port

/mwos

/<os> /SRC

/DPIO

/MFM

/DRVR

/<cpu>

/PORTS

/<YOURPORT

/CMDS

/BOOT

/MAUI

/MAUI

/GX_YOURDRVR

/GX_COMM /<GX_YOURDRVR>

gfx
gx_yourdrvr

desc.mak
drvr.mak
makefile
mfm_desc.h

defs.h
gdv_blt.c
gdv_copy.c
gdv_cvt2.c
gdv_dev.c
gdv_draw.c
gdv_ep.c
gdv_expd.c
gdv_fe.c
gdv_mem.c
gdv_priv.h
gdv_vp.c

config.h
drvr.tpl
dvbkcol.c
dvextvid.c
dvtran.c
dvvpmix.c
global.h
hardware.c
hardware.h
hwblt.c
hwcur.c
ioblt.c
irq.c
static.c
updtdpy.c
vpdmap.c
vpdmpos.c
vpintes.c
vppos.c
vprestak.c
vpsize.c
vpstate.c

systype.h
MAUI Porting Guide 35

2 Graphics Driver Interface
Step 1. Define and create a source directory. This directory is
referred to in this chapter as SOURCE and assumes the pathname:
MWOS/SRC/DPIO/MFM/DRVR/GX_YOURDRVR
We recommend that the directory name start with “GX_” followed by an
uppercase descriptive name for your driver.

Step 2. Copy all of the files from:
MWOS/SRC/DPIO/MFM/DRVR/GX_SAMP
into your new SOURCE directory. Verify that the following files are now in
your SOURCE directory:

config.h drvr.tpl

dvbkcol.c dvextvid.c

dvtran.c dvvpmix.c

global.h hardware.c

hardware.h hwblt.c

hwcur.c ioblt.c

irq.c static.c

static.h updtdpy.c

vpdmap.c vpdmpos.c

vpintens.c vppos.c

vprestak.c vpsize.c

vpstate.c

Step 3. Define and create a ports directory. This directory is referred to in this
chapter as YOURPORT and assumes the pathname:
MWOS/OS/CPU/PORTS/YOURPORT

Step 4. Define and create a make directory. This directory is referred to in this
chapter as MAKE and assumes the pathname:
MWOS/OS/CPU/PORTS/YOURPORT/MAUI/GX_YOURDRVR

Step 5. Copy or create the following files in your MAKE directory:

desc.mak drvr.mak

makefile mfm_desc.h
36 MAUI Porting Guide

2Graphics Driver Interface
Here are examples of these files:

• makefile Make both MAUI graphics descriptor and driver

Makefile
###
#
Copyright 1996 by Microware Systems Corporation
Copyright 2001 by RadiSys Corporation
All Rights Reserved
Reproduced Under License
#
This software is confidential property of Microware Systems Corporation,
and is provided under license for internal development purposes only.
Reproduction, publication, distribution, or creation of derivative works #
in any form to any party other than the licensee is strictly prohibited,
unless expressly authorized in writing by Microware Systems Corporation.
#
###

#
Conditionally call driver makefile automatically for BSP vs DEVKITS
#
if exists(drvr.mak)
DRVRMAKE = drvr.mak
else
DRVRMAKE =
endif

PORT = ../..
TRGTS = desc.mak $(DRVRMAKE)

include $(PORT)/../makesub.com

$(TRGTS):
-$(MAKESUB) -f=$@

###
MAUI Porting Guide 37

2 Graphics Driver Interface
• desc.mak Make the MAUI graphics
descriptor

Makefile
#***
#* Makefile for MAUI Graphics Descriptors
#***
#* Copyright 1996 by Microware Systems Corporation **
#* Copyright 2001 by RadiSys Corporation **
#* Reproduced Under License **
#* **
#* This source code is the proprietary confidential property of **
#* Microware Systems Corporation, and is provided to licensee **
#* solely for documentation and educational purposes. Reproduction, **
#* publication, or distribution in any form to any party other than **
#* the licensee is strictly prohibited. **
#***
Add New Descriptor Names Here
#
TRGTS = gfx
DRVR = GX_YOURDRVR
USER_OPTS = -oln=gfx
#
###

PORT = ../..
MAKENAME = desc.mak
include $(PORT)/../make.com

RDIR = RELS/DESC
ODIR = $(PORT)/CMDS/BOOTOBJS/MAUI
SDIR = $(MWOS)/SRC/DPIO/MFM/DESC
DESCDIR = .

include $(SDIR)/desc.tpl

_purge _clean:
for TMP in $(TRGTS)

-$(CODO) $(ODIR)/$(TMP)
-$(DEL) $(ODIR)/$(TMP)

endfor

###
38 MAUI Porting Guide

2Graphics Driver Interface
• drvr.mak Make the MAUI graphics driver
Makefile
#***
#* Makefile for MAUI Graphics Driver **
#***
#* Copyright 1996 by Microware Systems Corporation **
#* Copyright 2001 by RadiSys Corporation **
#* Reproduced Under License **
#* **
#* This source code is the proprietary confidential property of **
#* Microware Systems Corporation, and is provided to licensee **
#* solely for documentation and educational purposes. Reproduction, **
#* publication, or distribution in any form to any party other than **
#* the licensee is strictly prohibited. **
#***

Put Driver Names and Options Here
#
TRGTS = gx_yourdrvr
DRVR = GX_YOURDRVR

Definitions, specified by the driver writer, and seen
in driver-specific portion of the driver source code
Any defines, useful as a compile-time option for
controlling the driver configuration.

Example
-d=PWR_AWARE : register driver with power management
subsystem (if applicable)
USR_DEFINES = -dPWR_AWARE -dENABLE_ATTRIBUTE

To turn on the debug option, use: -g
DEBUG =
#DEBUG = -g

#
###

PORT = ../..
MAKENAME = drvr.mak
include $(PORT)/../make.com
ODIR = $(PORT)/CMDS/BOOTOBJS/MAUI
RDIR = RELS/DRVR
IDIR = $(RDIR)/$(HOSTTYPE)
DESCDIR = .

See driver template (drvr.tpl) to understand, how the
following defines can be used to specify compilation rules.
Usually, it is helpful to set them, if driver has additional
source files outside GX_COMMON and GX_YOURDRVR directories.
Example
MAUI Porting Guide 39

2 Graphics Driver Interface
ADDITIONAL_IFILES = $(IDIR)/yourfile.i
ADDITIONAL_IFILES =

List additional libraries, required for the driver
Example
ADDITIONAL_LIBS = -l=$(MWOS_LIBDIR)/yourlib.l
ADDITIONAL_LIBS =

Include driver template
include $(MWOS)/SRC/DPIO/MFM/DRVR/$(DRVR)/drvr.tpl

Additional build rules (required, if ADDITIONAL_IFILES
flag is set
Example
$(IDIR)/yourfile.i: yourfile.c $(DEPENDFILES)
$(COMPILE) yourfile.c

you can use the following to change the revision # of the driver
this is added to the end of the link rule in drvr.tpl
$(ODIR)/$(TRGTS): $(RFILES) $(MAKENAME)
 fixmod -ugua=a001 $@

#
###
40 MAUI Porting Guide

2Graphics Driver Interface
• mfm_desc.h The MAUI graphics driver descriptor header
(modify to reflect your descriptor settings)

/***
**
* FILENAME : mfm_desc.h
*
* DESCRIPTION :
*
* This file contains definitions for the MAUI device descriptors.
*
* COPYRIGHT:
*
* This source code is the proprietary confidential property of Microware
* Systems Corporation, and is provided to licensee solely for documentation
* and educational purposes. Reproduction, publication, or distribution in
* form to any party other than the licensee is strictly prohibited.
*
#ifndef _MFM_DESC_H
#define _MFM_DESC_H

#include “../../systype.h”

/**/
/* Generic VGA Graphic Descriptor */
/**/
#if defined(MFM_DESC_GFX) || defined(gfx)

/***/
/* Descriptor’s common portion (has to be present and set) */
/***/
#define MEM_COLOR 0x80
#define SHARE TRUE /* allow multiple open paths to */

/* the graphics device */
#define LUN 0 /* Logical unit number */
#define PORTADDR 0x00000000 /* Base address of hardware */
#define MODE S_IREAD | S_IWRITE /* Device mode capabilities */
#define DRV_NAME “gx_yourdrvr” /* Driver name */

/*
 * Base IRQ vector for OS-9000 is equal to 0x40. Therefore
 * the resulting IRQ vector number to be set is 0x40 plus
 * physical vector number.
 *
 * Note: if the driver do not support interrupts, both
 * INTERRUPT_ENABLED and GDV_IRQ_EVNAME have to be set to
 * zero (NULL).
 */
#define INTERRUPT_ENABLED 0 /* 0 - vertical interrupts disabled */

 /* 1 - vertical interrupts enabled */

#define GDV_IRQ_NUM 0x40 /* IRQ vector number */
#define GDV_IRQ_PRIORITY 0 /* IRQ priority */
MAUI Porting Guide 41

2 Graphics Driver Interface
#define GDV_IRQ_EVNAME NULL /* IRQ event name (NULL if
none) */

/***/
/* Descriptor’s specific portion (optional and driver-dependent) */
/***/
/* Definitions for the driver static storage (static.h) */
/* Add your own defines here */
#define MEM_BASE_ADDRESS 0xA0000
#define MEM_SIZE 0x10000

/*
 * for following GDV_HW_SUBTYPE definitions, see MFM/DRVR/XXX/static.h’s
 * typedef enum { ... } HW_SUBTYPE;
 */
#define GDV_HW_SUBTYPE VGA /* Hardware sub-type */
#define GDV_HW_SUBNAME “VGA_GENERIC” /* Hardware sub-type name */

#endif /* MFM_DESC_GFX */

#endif /* _MFM_DESC_H_ */

/***/

Step 6. Create the directory YOURPORT/CMDS/BOOTOBJS/MAUI. During the
make process two object files are created and stored in MAUI:

• gfx Descriptor object

• gx_yourdrvr Driver object
This is typically a lower case version of the directory name in step 1.

Step 7. Verify your directory structure contains the correct files as shown in the
figure Directory Structure for Your Graphics Driver Port on page 35.
42 MAUI Porting Guide

2Graphics Driver Interface
Common Source Files

The following files are located in the GX_COMM directory:

defs.h Global definitions file

gdv_blt.c* I/O and H/W Bit-BLT support common
code

gdv_copy.c* I/O Bit-BLT support for copy operations

gdv_cur.c* H/W cursor support common code

gdv_cvt2.c Color conversion functions

gdv_dev.c Common graphics device functions

gdv_draw.c* I/O Bit-BLT support for draw operations

gdv_ep.c Entry point functions

gdv_expd.c* I/O Bit-BLT support for expand
operations

gdv_fe.c* Fast-entry-point functions

gdv_main.c Main function for the driver

gdv_mem.c* Graphics memory management
functions

gdv_priv.h Definitions private to the common code

gdv_vp.c Viewport functions

* Optional files. Do not include in drvr.tpl if your driver does not support these
functions.
MAUI Porting Guide 43

2 Graphics Driver Interface
Device-specific Files

The following files are located in the SOURCE directory:

config.h Configures the capabilities of the driver
and inclusion/exclusion of common code

drvr.tpl os9make “include” file.

dvbkcol.c* Backdrop color function

dvextvid.c* External video function

dvtran.c* Transparent color function

dvvpmix.c* Viewport mixing function

global.h Global definitions

hardware.c Hardware function

hardware.h Definitions for hardware functions

hwblt.c* H/W Bit-BLT support in driver

hwcur.c* H/W cursor support in driver

ioblt.c* I/O Bit-BLT support in driver

irq.c* Interrupt service functions

static.c Code to initialize/terminate static storage
areas

static.h Definitions for static storage areas

updtdpy.c Update display function

vpdmap.c Viewport drawmap function

vpdmpos.c Viewport drawmap position function

vpintens.c* Viewport intensity function

vppos.c Viewport position function

vprestak.c Viewport restack function

vpstate.c Viewport state (active/inactive) function

vpsize.c Viewport size function

* Optional files. Delete these files if not supported by your driver.
44 MAUI Porting Guide

2Graphics Driver Interface
Modify SOURCE Files

Step 1. Construct your drvr.tpl file to include or not include the files marked
* depending on whether your driver supports those functions.

Step 2. Update your drvr.tpl to reflect the changes made in step 1.

Modify the config.h file to reflect your system.

Step 1. Define GDV_INCLUDE_MEM only if your graphics driver must handle
memory management. This must be done if the graphics memory is
pseudo memory or it is not accessible by the CPU at the time the kernel
does a memory search. It also has to be done, if graphics memory
allocation should be on the specific boundary. Review Graphics RAM
for a discussion of memory considerations.

If the CPU can access the graphics memory, it is best to let the kernel
handle memory management. See the OS-9 Porting Guide for more
information about kernel memory management.

Step 2. Set GDV_MEM_PREFIX to the required size in bytes if the hardware
requires a header at the beginning of drawmap memory for display.
GDV_INCLUDE_MEM flag should also be set in this case.

Step 3. Set GDV_MEM_POSTFIX to the required size in bytes if the hardware
requires a trailer at the end of drawmap memory for display.
GDV_INCLUDE_MEM flag should also be set in this case.

Step 4. Define the GDV_INCLUDE_CVT2_* labels that match the color types
required by the hardware. Delete all others.

Step 5. Define GDV_FE_SYSSTATE if fast entry points must execute in system
state. If not, delete GDV_FE_SYSSTATE. This should only be defined if
code in fast entry points perform privileged instructions or require
system-state I/O access. Enabling this option adds the overhead of a
context switch to all fast entry points.
MAUI Porting Guide 45

2 Graphics Driver Interface
Step 6. Define function names for GDV_INIT_HW through
GDV_UPDATE_DPY. All values must be defined, although you normally
use the default values. These are required functions.

Step 7. Define function names for GDV_INIT_IRQS through
GDV_GET_ATTRIBUTE. Only include definitions for functions supported
by your driver. These are optional functions.

Here is a brief description of each function.

• GDV_INIT_IRQS - Initialize interrupts

• GDV_TERM_IRQS - Terminate interrupts

• GDV_INIT_DVATCH - Initialize gfx device attachment

• GDV_TERM_DVATCH - Term gfx device attachment

• GDV_INIT_VPATCH - Initialize viewport attachment

• GDV_TERM_VPATCH - Terminate viewport attachment

• GDV_SET_BKCOL - Set backdrop color

• GDV_SET_EXTVID - Set external video on/off

• GDV_SET_TRANSCOL - Set transparency color

• GDV_SET_VPMIX - Set viewport mixing on/off

• GDV_SET_VPINTEN - Set viewport intensity

• GDV_SET_ATTRIBUTE - Set a device attribute

• GDV_GET_ATTRIBUTE - Get a device attribute

The prototypes for each of the functions may be found in
SRC/DPIO/MFM/DRVR/GX_COMM/defs.h.

Step 8. Define GDV_MEM_TOP_BIT if user-state process can not reference
memory addresses with the most significant bit set (e.g. SuperH
architecture). Every time driver common code allocates memory for the
structure, which will be used by the API in user-state mode, it clears the
most significant bit of the resulting pointer, if GDV_MEM_TOP_BIT is
set. When GDV_MEM_TOP_BIT is not defined, no modification to the
structure pointers is made. The most significant bit is set back when the
driver common code has to deallocate the memory back to the system.
46 MAUI Porting Guide

2Graphics Driver Interface
Step 9. Define GDV_PIXMEM_BNDRY if allocations of and access to the
graphics memory must be on a boundary. The value should indicate the
required boundary size in bytes.

Step 10. Define GDV_INCLUDE_IOBLT if I/O Bit-BLT support is required. If
GDV_INCLUDE_IOBLT is defined, you must define the remaining
entries in steps 10 through 15. If not defined, delete the following up to
the GDV_INCLUDE_IOBLT flag and go to Step 17.

Step 11. Define GDV_IOBLT_WORDSIZ as the size of each word in bytes.
GDV_IOBLT_WORDSIZ is a restriction typically imposed by graphics
hardware. It is the boundary (byte, word, longword, quadword, etc.) at
which video buffer should be accessed. It is also the smallest segment
of graphics RAM that must be read or written through the I/O port.

Step 12. Define GDV_IOBLT_WORDSFT as the shift value derived from the
GDV_IOBLT_WORDSIZ value. For example, if GDV_IOBLT_WORDSIZ is
equal to 8 (video memory has to be accessed on 8-byte boundary),
then GDV_IOBLT_WORDSFT is equal to 3 (1<<3 is 8).

Step 13. Define GDV_IOBLT_LINESIZ as the maximum line size in bytes.
GDV_IOBLT_LINESIZ is the size of the largest video buffer line, which
IOBLT driver can store into internal data structure. This value should be
large enough to hold the content of a video line of any dimention. For
example, if IOBLT operations are to performed on the video drawmap
with the size 640x480x16bits/pixel, then GDV_IOBLT_LINESIZ should
be set to 640 * 16/8.

Step 14. Set GDV_IOBLT_GFXRAM through GDV_IOBLT_WRITE_PIX to the
names of the functions provided by the device-specific code. The
default values are used in most cases.

Step 15. Optionally define GDV_IOBLT_OFFSETS as the function to compute the
odd and even offsets for interlace support.

Step 16. Define GDV_IOBLT_SEP_CHROMA. This enables support of separate
lumina and chroma sections of the drawmap.

Step 17. Define GDV_INCLUDE_HWBLT if H/W Bit-BLT support is implemented. If
GDV_INCLUDE_HWBLT is defined, you must define the remaining
entries in steps 18 through 20.
MAUI Porting Guide 47

2 Graphics Driver Interface
Step 18. Set GDV_HWBLT_DRWMIX through GDV_HWBLT_DST to
the names of the functions provided by the device-specific code. The
default values are used in most cases. These functions are required by
the template.

Step 19. Define GDV_HWBLT_BCATCH and GDV_HWBLT_BCATCH and in case
driver-specific part of Bit-BLT attachment is specified (see also
GDV_BCATCH_SPECIFICS in static.h). These functions are
optional.

Step 20. Set GDV_HWBLT_DRAWBLK through GDV_HWBLT_GETPIXEL to the
names of the functions provided by the device-specific code. The
default values are used in most cases. These functions are
independent and should be set only in the case when the driver wants
to support any of the correspondent Bit-BLT operations in H/W
acceleration mode.

Step 21. Define GDV_HW_CURSOR if H/W cursor is supported by the driver. If
GDV_HW_CURSOR is defined, you must set the remaining entries in step
22. If not defined, delete the following and skip to the section “ Modify
the global.h file to reflect your graphics device capabilities”.

Step 22. Set GDV_CURSOR_CREATE through GDV_CURSOR_SET_POS to the
names of the functions provided by the device-specific code. The
default values are used in most cases. These functions are required by
the template.
48 MAUI Porting Guide

2Graphics Driver Interface
Modify the global.h file to reflect your graphics device
capabilities

Step 1. Modify the gdv_dev_cap data structure. Please note, that two of its
fields depend on the number of entries in the following data structures.

NoteNote
This and the following data structures are documented in the MAUI
Programming Reference as well an example in the Device Capabilities
section of this manual.

Step 2. Modify the gdv_res_info data structure.

Step 3. Modify the gdv_cm_info data structure.

Step 4. Modify the gdv_dev_capexten data structure. Please note, that one
of its fields depends on the number of entries in the following data
structure.

Step 5. Modify the gdv_dev_modes data structure.

Step 6. Prototype the functions you need for device-specific code in the
PROTOTYPE area. This area is used to prototype functions that must be
visible to multiple device-specific files.

Modify the static.h file to define your static storage
areas.

Now it is time to define the device, logical unit and context specific static
storage. You may not be able to completely define all the variables until
you get further along with the port, make an attempt to define what you
can now, and refine this file as the port proceeds. Steps 2 and 3 define
the data per physical device. Step 4 defines the data per logical device.
Step 5 defines the data per viewport. Step 6 defines the data per
Bit-BLT context (define this structure only in case driver is going to
support H/W accelerated Bit-BLT functions).
MAUI Porting Guide 49

2 Graphics Driver Interface
Step 1. Modify HW_SUBTYPE to define all the sub-types known by
the driver. The descriptor determines the sub-type for a specific device.
The driver uses this value to make run-time decisions based on the
sub-type. This could be helpful, if the same driver has to support
several subtypes of graphics controllers, that have a minor differences
among each other (e.q. SVGA cards by the same manufacturer).

Step 2. Modify GDV_LU_SPECIFICS with the variable names needed by the
driver. This file is setup with the values in GDV_LU_SPECIFICS_INIT
when the driver is initialized. Also the fields of this structure can be
used as a global storage containing the current state of the physical
device. This structure should include, but is not limited to the following:

• Address of each bank of graphics memory.

• Address of groups or individual I/O registers.

• Place holders for shadow contents of I/O registers.

Step 3. Modify GDV_LU_SPECIFICS_INIT to include the values from the
descriptor to compute the initializers. Minimize the number of definitions
required in the descriptor to reduce its size.

Step 4. Modify GDV_DVATCH_SPECIFICS to specify the device-specific
members of the graphics device structure. This area is allocated and
initialized when the graphics device is opened. This data structure
should contain enough data to fully define the current state of the
graphics device. The following considerations are important when
modifying this file:

• The normal GFX_DEV and GFX_DEV_SHARED structures define the
queued-up state of the device, not the current visible state. This
allows the application to make any changes to the logical device,
which is not on top and not visible, without affecting the physical
device. All changes to the hardware will happen only after the
device, which is on top, becomes visible and the “update display”
function is called.
50 MAUI Porting Guide

2Graphics Driver Interface
• The driver needs information about the current visible state
whenever this logical device is put on top to set physical device
operating mode properly.

• Each time you open the graphics device, a new path to the device is
established and a new logical device structure is created. Each
logical device maintains its own state so when it is put on top, the
physical device should reflect all changes correctly. It is possible to
use the GDV_LU_SPECIFICS structure to store the current state of
the physical graphics device.

Step 5. Modify GDV_VPATCH_SPECIFICS to specify the device-specific
members of a viewport. This structure is allocated/initialized when the
viewport is created. GDV_VPATCH_SPECIFICS maintains information
about the current visible state of the viewport. This is similar to the
requirements for GDV_DVATCH_SPECIFICS.

Step 6. Modify GDV_BCATCH_SPECIFICS to specify the device-specific
members of a Bit-BLT context. Define this structure only in the case
when the driver is going to support H/W accelerated Bit-BLT functions.
This structure is allocated/initialized when the Bit-BLT context is
created. GDV_BCATCH_SPECIFICS maintains information about the
current state of the H/W acceleration registers and provides additional
storage per Bit-BLT context, which can be useful for implementing the
H/W BLT layer.

Step 7. Modify GDV_CPATCH_SPECIFICS to specify the device-specific
members of a H/W cursor structure. Define this structure only in the
case when the driver is going to support H/W cursors. This structure is
allocated/initialized when the H/W cursor is created.
GDV_CPATCH_SPECIFICS maintains information about the current
state of the H/W cursor registers and provides additional storage per
cursor, which can be useful for implementing H/W cursor.
MAUI Porting Guide 51

2 Graphics Driver Interface
Modify the hardware.h file to reflect your
system hardware definitions

Step 1. Modify hardware.h to include all necessary hardware related
definitions.

Modify the hardware.c file to initialize your hardware

Step 1. Modify the hardware.c file with the following considerations:

• dr_init_hw() is called when the device is initialized. This function
initializes the hardware and calls gdv_create_mem_color() to
create a color of memory for each bank of graphics memory.

• dr_term_hw() is called when the device is terminated. Be sure to
return any resources allocated in dr_init_hw().

• dr_show_topdev() is called when the changes to the logical
device stack have been made (device open/close/restack) in the
common portion of the driver GX_COMM or when the “update
display” function is called. This function updates the physical device
state (operational mode, resolution, CLUT) according to the state of
the top-most visible logical device in the stack (depending on how
many resolutions and pixel depths the driver can support).

• Different logical devices in the stack require different hardware mode
settings. Plus, viewports in the viewport stack can have different
CLUT palette settings. dr_show_topdev() decides what the
current physical device state should be to match it with the top-most
visible logical device and the palette of the top-most visible viewport
associated with this logical device.
52 MAUI Porting Guide

2Graphics Driver Interface
Modify the static.c file to initialize and terminate static
storage areas

Step 1. Define the function dr_init_dvatch(). This function is called when
a device is opened. You do not need to allocate the space for the
GDV_DVATCH_SPECIFICS structure, but you may allocate other
structures and point to them from GDV_DVATCH_SPECIFICS. Be sure
to initialize all members of GDV_DVATCH_SPECIFICS.

If GDV_INCLUDE_MEM is defined in config.h, call
gdv_create_mem_shade() to create a shade of memory for each
color of graphics memory.

If GDV_FE_SYSSTATE is NOT defined in config.h, then permit any
address space, which is used to set the graphics device up (e.q. I/O
registers). Memory will be permitted for the process which called an
“open device” function.

Step 2. Define the function dr_term_dvatch(). This function is called when
a device is terminated. Be sure to de-allocate any resources allocated
by the dr_init_dvatch() function.

If GDV_INCLUDE_MEM is defined, call gdv_destroy_mem_shade() to
destroy any shades created in the dr_init_dvatch() function.

If GDV_FE_SYSSTATE is NOT defined in config.h, make sure you
protect any memory space which was permitted in
dr_init_dvatch(). Memory will be protected from the process
which called an “close device” function.

Step 3. Define the function dr_init_vpatch(). This function is called when
a viewport is created. You do not need to allocate the space for the
GDV_VPATCH_SPECIFICS structure, but you may allocate other
structures and point to them from GDV_VPATCH_SPECIFICS. Be sure
to initialize all of its members.

Step 4. Define the function dr_term_vpatch(). This function is called when
a viewport is terminated. Be sure to deallocate any resources allocated
by the dr_init_vpatch() function.
MAUI Porting Guide 53

2 Graphics Driver Interface
Step 5. If GDV_INCLUDE_HWBLT is defined, implement
dr_init_bcatch() function. This function is called when a Bit-BLT
context is created. You do not need to allocate the space for the
GDV_BCATCH_SPECIFICS structure, but you may allocate other
structures and point to them from GDV_BCATCH_SPECIFICS. Be sure
to initialize all of its members.

Step 6. If GDV_INCLUDE_HWBLT is defined, implement dr_term_vpatch()
function. This function is called when a Bit-BLT context is terminated.
Be sure to deallocate any resources allocated by the
dr_init_bcatch() function.

Modify the remaining display functions

Step 1. Modify the display functions in the following files only if they are
supported by your hardware.

• dvbkcol.c sets the background color for the display.

• dvextvid.c sets external video on and off.

• dvtran.c sets transparent color.

• dvvpmix.c sets viewport mixing on and off.

Modify the remaining viewport functions

Step 1. Modify the viewport functions in the following files. All of these functions
are mandatory, and must be included.

• updtdpy.c updates the display with queued changes and
optionally synchronizes changes with vertical
retrace.
54 MAUI Porting Guide

2Graphics Driver Interface
• vpdmap.c sets the drawmap area to be displayed in a
viewport.

• vpdmpos.c sets the position of the drawmap in the
viewport.

• vppos.c sets the position of the specified viewport.

• vprestak.c restacks a viewport within the viewport stack.

• vpsize.c sets the size of the specified viewport.

• vpstate.c sets the state of the specified viewport to active
or not active.

Step 2. Modify the viewport functions in the following files only if they are
supported by your hardware.

• hwcur.c enables driver-supported H/W cursor.

• irq.c defines interrupt service functions.

• vpintens.c sets the intensity of the specified viewport.

Step 3. Modify the following file only if either I/O BLT functions, or H/W BLT
functions or both are supported by your hardware.

• ioblt.c enables driver-supported Bit-BLT (using I/O
registers).

• hwblt.c enables driver-supported Bit-BLT (using H/W
acceleration).
MAUI Porting Guide 55

2 Graphics Driver Interface
How to Build your Graphics Driver

Step 1. Change directories to MAKE directory:

cd MWOS/OS/CPU/PORTS/YOURPORT/MAUI/GX_YOURDRVR

Step 2. To make both the graphics driver and descriptor, type:

os9make
The makefile invokes desc.mak and
drvr.mak

To make only the graphics descriptor, type:

os9make -f desc.mak

The desc.mak makefile builds the
graphics descriptor and places it in the
directory
YOURPORT/CMDS/BOOTOBJS/MAUI.

To make only the graphics driver, type:

os9make -f drvr.mak

The drvr.mak builds the graphics
driver and places it in the directory
YOURPORT/CMDS/BOOTOBJS/MAUI.
56 MAUI Porting Guide

2Graphics Driver Interface
How to Test Your Driver

Run the demo programs included with MAUI on your target platform to
test your driver. Demo program sources are located below the following
directory:

MWOS/SRC/MAUI/DEMOS

Demo program objects are located in the following directory:

MWOS/OS/CPU/CMDS/MAUIDEMO

NoteNote
These demos are not designed to be a comprehensive test of the
graphics driver.
MAUI Porting Guide 57

2 Graphics Driver Interface
58 MAUI Porting Guide

Chapter 3: Input

The MAUI Input System (MIS) provides an abstraction layer between
the application and the raw serial output from the input hardware and
their drivers. This abstraction layer insulates the applications from many
of the hardware differences between target systems. The MIS provides
key code translation, asynchronous messaging, pointer and key
simulation, and device arbitration. This chapter explains how to build,
modify, and verify MAUI Input Process Protocol modules.
59

3 Input
Overview

The MAUI Input System (MIS) consists of several components; the INP
API, the MAUI Input Process (maui_inp), and the MAUI Input Process
Protocol Modules (MPPMs). The maui_inp components, protocol
modules, and the relationship to other components in a typical MAUI
application are depicted in MAUI Input Process System Diagram.

Figure 3-1 MAUI Input Process System Diagram

Input API
The INP API handles all communication between the application and
the maui_inp process. Although the communication between the API
and maui_inp take place via messaging, this is transparent to the
application. When each application initializes the INP API, the API
creates a uniquely named Reply Mailbox. It then opens the maui_inp
Command Mailbox and sends an init message to inform maui_inp
that it is there. When an application opens an input device, the
pathname specifies both the name of the serial device and protocol
(MPPM) to use.

User
Application

Application
Mailbox

maui_inp
Reply

Mailbox

Protocol
Module

maui_inp
MAUI Input

Process

Serial
Driver

maui_inp
Command

Mailbox
60 MAUI Porting Guide

3Input
MAUI Input Process

maui_inp provides routing, connection management, and message
handling services. The maui_inp process is responsible for managing
multiple applications, simultaneously using multiple input devices, with
many different protocols. maui_inp monitors which applications are
using the INP API and keeps track of which applications have open
paths to which input sources. When data is received, the maui_inp
process applies the appropriate protocol to the appropriate device,
depending on which application has the focus for that device. When
multiple applications open the same device with the same protocol,
maui_inp also provides key reservation.

maui_inp is hardware and protocol independent. It uses MAUI Input
Process Protocol Modules (MPPMs) to insulate it from hardware and
protocol differences between ports.

When maui_inp starts, it creates a single Command Mailbox named
mp_mbox. All messages from the INP API to maui_inp and the
MPPMs are sent to this Command Mailbox. maui_inp replies to these
messages via a Reply Mailbox that is created by the application’s INP
API.

MAUI Input Protocol Modules

The MAUI Input Process Protocol Modules (MPPMs) provide the
command control and response, as well as data interpretation. MPPMs
are generally hardware independent (that is the job of drivers), but
protocol dependent.

MPPMs are implemented as raw subroutine modules. In the interest of
minimizing the overhead of calling MPPM functions, these modules are
called directly without correcting the static or constant storage pointers.
As such, they do not have any memory of their own. They operate
completely on the stack of the process that calls them, in this case
maui_inp. Static and global variables are not allowed in MPPMs.
Use of variables that are not allocated on the stack can severely
damage maui_inp’s internal data structures. If your MPPM requires
persistent memory, include those variables in the PMEM structure.
MAUI Porting Guide 61

3 Input
OEMs are encouraged to take the basic MPPM
examples, and modify them as appropriate for their input devices.

WARNING!
Static and global variables are not allowed in MPPMs.
62 MAUI Porting Guide

3Input
Where the Files are Located

MAUI header files are located in:

MWOS/SRC/DEFS/MAUI

WARNING!
These header files should never be modified by the user.

There are several example source directories of MPPMs. Two basic
MPPMs are:

MWOS/SRC/MAUI/MP/MP_KYBRD
MWOS/SRC/MAUI/MP/MP_MSPTR

MP_KYBRD is example source code for a key device, specifically, a serial
port connected to a VT100 terminal or communications program.
MP_MSPTR is example source code for a pointer device, specifically a
two-button Microsoft®-compatible type M mouse. See your release
notes for a complete list and description of what protocol modules are
included in your package. Depending on the type of your device (key or
pointer), pick one of the example MPPMs as your starting point.

Within the above source directories are the following source files:

• _key.h port-specific header definitions.

• init.c initialize static memory and register processes.

• mppmstrt.a sub-routine entry point table.

• procdata.c interprets device data.

• procmsg.c process commands from maui_inp.

• term.c un-register processes.
MAUI Porting Guide 63

3 Input
How to Port Your Protocol Module

The first step in porting to a new input device is to determine what kind
of device is being ported. MAUI divides input devices into three classes,
key devices, pointer devices and a hybrid (combination pointer and key)
device.

A key device generates key symbol data. Examples include keyboards
and remote controls.

A pointer device generates coordinate information, either absolute or
relative. They may also have buttons. Examples include mice, joysticks,
touchscreens, rollerballs, pens, and tablets.

The third class of device is a hybrid device. This device can generate
both coordinate information and key symbol information.

Porting a Key Device

For key devices, use the MP_KYBRD example located in the following
directory:

MWOS/SRC/MAUI/MP/MP_KYBRD

Create the directory structure for your port

Before beginning to port your protocol module, you must create a
directory structure to store your new files.

Step 1. Define and create a source directory. This directory is referred to in this
chapter as SOURCE and assumes the pathname:
MWOS/SRC/MAUI/MP/SOURCE

Step 2. Copy all of the files from:
MWOS/SRC/MAUI/MP/MP_KYBRD
into your new SOURCE directory. Verify the following files are now in your
SOURCE directory:
64 MAUI Porting Guide

3Input
_key.h port-specific header definitions.

init.c initialize static memory and register
processes.

mppmstrt.a sub-routine entry point table.

procdata.c interprets device data.

procmsg.c process commands from maui_inp.

term.c un-register processes.

Step 3. Define and create a ports directory. This directory is referred to in this
chapter as YOURPORT and assumes the pathname:
MWOS/OS/CPU/PORTS/YOURPORT

Step 4. Define and create a MP_YOURMPPM directory. This directory is
referred to in this chapter as MP_YOURMPPM and assumes the
pathname:
MWOS/OS/CPU/PORTS/YOURPORT/MAUI/MP_YOURMPPM

Step 5. Create the following file in MP_YOURMPPM

makefile Make the MPPM
Makefile
#***
#* This makefile builds a MAUI Input Process Protocol Module
#***
#* Copyright 1995 by Microware Systems Corporation **
#* Copyright 2001 by RadiSys Corporation **
#* Reproduced Under License **
#* **
#* This source code is the proprietary confidential property of **
#* Microware Systems Corporation, and is provided to licensee **
#* solely for documentation and educational purposes. Reproduction, **
#* publication, or distribution in any form to any party other than **
#* the licensee is strictly prohibited. **
#***

PORT = ../..

TRGTS = mp_kybrd

USER_OPTS =
USER_HEADERS =
USER_RFILES =
USER_LIBS =

include $(PORT)/../make.com
MAUI Porting Guide 65

3 Input
ODIR = $(PORT)/CMDS/BOOTOBJS/MAUI
SDIR = $(MWOS)/SRC/MAUI/MP/MP_KYBRD
RDIR = RELS
IDIR = $(RDIR)/$(HOSTTYPE)

include $(SDIR)/../pmod.com

#
Put USER_RFILES rules (if any) here
#

_key.h

This file defines the default settings for the protocol module.

For a key device, you normally only change the DEV_CAP_* definitions.
These definitions are used to fill out the INP_DEV_CAP structure.

The PMEM structure is the static memory for the protocol module. It is
allocated by maui_inp on behalf of the protocol module for each
opened device. Extend this field if you have additional memory
requirements.

init.c

This file has two entry points, mppm_initsize() and mppm_init().
Normally, no changes are required in this file.

mppmstrt.a

This assembly source file contains the subroutine module entry point
table.

WARNING!
Do not modify mppmstrt.a!
66 MAUI Porting Guide

3Input
procdata.c

This file contains the functions necessary to process raw data from the
input device and build key and pointer messages.
mppm_process_data() is this file’s only external entry point. This
function is called whenever there is data to be processed.

For key devices, there is usually only one section to modify in
procdata.c. That section parses the raw input data and translates
that data into standardized key symbol data.

/* fill keybuf */
key = *(*buf)++;
(*buf_size)--;

/* do any required key translation */
switch (key) {
case 0x7f: key= INP_KEY_CLEAR; break;
case 0x80: key= INP_KEY_PLAY; break;
case 0x81: key= INP_KEY_STOP; break;
case 0x82: key= INP_KEY_PAUSE; break;
case 0x85: key= INP_KEY_REWIND; break;
case 0x86: key= INP_KEY_FASTFWD; break;
case 0x88: key= INP_KEY_CUR_U; break;
case 0x89: key= INP_KEY_CUR_D; break;
case 0x8a: key= INP_KEY_CUR_R; break;
case 0x8b: key= INP_KEY_CUR_L; break;
case 0x91: key= INP_KEY_LASTCHAN; break;
case 0x92: key= INP_KEY_EXIT; break;
case 0x94: key= INP_KEY_STORE; break;
case 0x99: key= INP_KEY_CHAN_U; break;
case 0x9a: key= INP_KEY_CHAN_D; break;
case 0x9c: key= INP_KEY_MENU; break;
case 0x9d: key= INP_KEY_VIP; break;
case 0x9e: key= INP_KEY_VDT; break;
case 0xac: key= INP_KEY_VOL_U; break;
case 0xad: key= INP_KEY_VOL_D; break;
case 0xae: key= INP_KEY_MUTE; break;
case 0xed: key= INP_KEY_RECORD; break;
}

MAUI Porting Guide 67

3 Input
Modify this section to parse and translate the data from
your input device. The above example code is based on a remote that
generates single-byte key data. Other remotes may require more
translation. If you have more keys that require translation, you may wish
to use a translation table rather than a switch statement.

If you have a multi-byte input packet, you can find an example of how to
deal with incomplete packets in procdata.c of MP_MSPTR.

procmsg.c

This file contains all the functions necessary for processing messages
from maui_inp.

mppm_process_msg() is this file’s only external entry point.
mppm_process_msg() routes a message to the appropriate function
(listed next) based on the command code found in the
cmd_msg->any.dcom.cmd variable.

static error_code cmd_get_dev_cap();
static error_code cmd_get_dev_status();
static error_code cmd_set_ptr_pos();
static error_code cmd_set_sim_meth();
static error_code cmd_set_ptr_limit();
static error_code cmd_set_msg_callback();
static error_code cmd_set_msg_mask();
static error_code cmd_release_key();
static error_code cmd_reserve_key();
static BOOLEAN cmd_check_keys();

Usually, the only function you need to modify is cmd_check_keys().
Modify this function to return TRUE for key ranges present on the
device.

term.c

This file contains the functions for terminating the use of this protocol
module. The two entry points are mppm_term() and
mppm_detach(). Normally, no changes are required for this file.
68 MAUI Porting Guide

3Input
Porting a Pointer Device

For pointer devices, use the MP_MSPTR example located in the following
directory:

MWOS/SRC/MAUI/MP/MP_MSPTR

Create the directory structure for your port

Before beginning to port your protocol module, you must create a
directory structure to store your new files.

Step 1. Define and create a source directory. This directory is referred to in this
chapter as SOURCE and assumes the pathname:
MWOS/SRC/MAUI/MP/SOURCE

Step 2. Copy all of the files from:
MWOS/SRC/MAUI/MP/MP_MSPTR
into your new SOURCE directory. Verify the following files are now in your
SOURCE directory:

_key.h port-specific header definitions.

init.c initialize static memory and register
processes.

mppmstrt.a sub-routine entry point table.

procdata.c interprets device data.

procmsg.c process commands from maui_inp.

term.c un-register processes.

Step 3. Define and create a ports directory. This directory is referred to in this
chapter as YOURPORT and assumes the pathname:
MWOS/OS/CPU/PORTS/YOURPORT

Step 4. Define and create a MP_YOURMPPM directory. This directory is
referred to in this chapter as MP_YOURMPPM and assumes the
pathname:
MWOS/OS/CPU/PORTS/YOURPORT/MAUI/MP_YOURMPPM
MAUI Porting Guide 69

3 Input
Step 5. Create the following file in MP_YOURMPPM

makefile Make the MPPM
Makefile
#***
#* This makefile builds a MAUI Input Process Protocol Module
#***
#* Copyright 1995 by Microware Systems Corporation **
#* Copyright 2001 by RadiSys Corporation **
#* Reproduced Under License **
#* **
#* This source code is the proprietary confidential property of **
#* Microware Systems Corporation, and is provided to licensee **
#* solely for documentation and educational purposes. Reproduction, **
#* publication, or distribution in any form to any party other than **
#* the licensee is strictly prohibited. **
#***

PORT = ../..

TRGTS = mp_msptr

USER_OPTS =
USER_HEADERS =
USER_RFILES =
USER_LIBS =

include $(PORT)/../make.com

ODIR = $(PORT)/CMDS/BOOTOBJS/MAUI
SDIR = $(MWOS)/SRC/MAUI/MP/MP_MSPTR
RDIR = RELS
IDIR = $(RDIR)/$(HOSTTYPE)

include $(SDIR)/../pmod.com

#
Put USER_RFILES rules (if any) here
#

_key.h

This file defines the default settings for the protocol module. Modify the
DEV_CAP_* definitions to reflect the capabilities of your device. These
definitions are used to fill out the INP_DEV_CAP structure.
70 MAUI Porting Guide

3Input
Modify the PMEM structure if you have additional memory requirements.
The PMEM structure is the static memory for the protocol module. It is
allocated by maui_inp on behalf of the protocol module for each
opened device.

Modify NUM_IMSG based on the number of messages that can be
queued. This is usually (DEV_CAP_PTR_BUTTONS+1).

Modify NUM_PKT_BUF based on the size of a data packet. In the
MP_MSPTR example, this is three bytes because the mouse generates
three byte packets. This definition is used to determine the size of
pktbuf in PMEM.

init.c

This file has two entry points, mppm_initsize() and mppm_init().
Normally, no changes are required in this file.

mppmstrt.a

This assembly source file contains the subroutine module entry point
table.

WARNING!
Do not modify mppmstrt.a!

procdata.c

This file contains all functions necessary to process raw data from the
input device and build key and pointer messages.
mppm_process_data() is this file’s only external entry point. This
function is called whenever there is data to be processed.

First modify the section that builds a complete mouse packet in the
packet buffer. Modify this section to synchronize and packetize the raw
data from your input device.
MAUI Porting Guide 71

3 Input
/***
**
* build a mouse packet in the packet buffer
**/

/* If on 1st byte of packet, advance 1 byte at a time
until we get a good start byte (bit 6 set to 1) */

if (pmem->pktcnt == 0)
{

while (*buf_size && !(*(*buf)&1<<6))
{

(*buf)++;/* advance buffer pointer */
(*buf_size)--;/* decrement buffer counter */

}
}

/* fill pktbuf */
while (*buf_size && pmem->pktcnt < 3)
{

pmem->pktbuf[pmem->pktcnt++] = *(*buf)++;
(*buf_size)--;

}

/* if the packet is not complete, leave until it is */
if (pmem->pktcnt < 3)
{

inp_msg = NULL;/ don’t send a msg yet */
return SUCCESS;

}

The next section decodes the button and coordinates data from the
packet. Modify this section to decode your data packet into button and
coordinate information.

/***
* decode the mouse data packet
**/

/* save off the old position */
old_x = status->ptr_cur.x;
/* compute the new position */
status->ptr_cur.x += (int8)(((pmem->pktbuf[0] << 6)

& 0xc0) | (pmem->pktbuf[1] & 0x3f));
/* keep it in bounds */
72 MAUI Porting Guide

3Input
LIMIT (status->ptr_cur.x, status->ptr_min.x,
status->ptr_max.x);

/* compute the real change */
new_x_delta = status->ptr_cur.x - old_x;

/* save off the old position */
old_y = status->ptr_cur.y;

/* compute the new position */
status->ptr_cur.y += (int8)(((pmem->pktbuf[0] << 4)

& 0xc0) | (pmem->pktbuf[2] & 0x3f));
/* keep it in bounds */
LIMIT (status->ptr_cur.y, status->ptr_min.y,

status->ptr_max.y);
/* compute the real change */
new_y_delta = status->ptr_cur.y - old_y;

/* grab the new button state */
new_button_state = ((pmem->pktbuf[0] >> 5) & 1)

| ((pmem->pktbuf[0] >> 3) & 2);
button_change = status->button_state ^ new_button_state;
status->button_state = new_button_state;
MAUI Porting Guide 73

3 Input
procmsg.c

This file contains all functions necessary for processing messages from
maui_inp.

mppm_process_msg() is this file’s only external entry point.
mppm_process_msg() routes a message to the appropriate function
(listed below) based on the command code found in the
cmd_msg->any.dcom.cmd variable. For pointer devices, functions in
this file usually do not need modification.

static error_code cmd_get_dev_cap();
static error_code cmd_get_dev_status();
static error_code cmd_set_ptr_pos();
static error_code cmd_set_sim_meth();
static error_code cmd_set_ptr_limit();
static error_code cmd_set_msg_callback();
static error_code cmd_set_msg_mask();
static error_code cmd_release_key();
static error_code cmd_reserve_key();
static BOOLEAN cmd_check_keys();

term.c

This file contains functions for terminating the use of this protocol
module. The two entry points are mppm_term() and
mppm_detach(). Normally, no changes are required in this file.
74 MAUI Porting Guide

3Input
How to Build Your Protocol Module

Step 1. Change directories to MP_YOURMPPM directory:

cd MP_YOURMPPM

Step 2. To make the protocol module, type:

os9make
MAUI Porting Guide 75

3 Input
How to Test Your Protocol Module

Use the Input API to exercise the protocol module.

Testing Key Devices

Verify that inp_check_keys() returns true for all keys on the device.
Verify that each key returns the proper key code.

Testing Pointer Devices

Verify the protocol module responds correctly to events such as
simultaneous movement and button presses.
76 MAUI Porting Guide

3Input
Input Protocol Module Entry Points

MAUI Input Process Protocol Modules (MPPMs) have seven entry
points. This section describes each entry point and their
responsibilities.

Summary of MAUI Hardware-Layer Functions

Table 3-1 contains a list of all MAUI hardware-layer functions.

Table 3-1 MPPM Entry Point Functions

Function Description

mppm_attach() attaches a device.

mppm_detach() detaches a device.

mppm_init() initializes a device.

mppm_initsize() gets the protocol module’s static memory
size requirements.

mppm_process_data() interprets device data.

mppm_process_msg() processes command messages.

mppm_term() terminates device.
MAUI Porting Guide 77

3 Input
Location of MAUI Hardware-Layer Functions

MAUI hardware-layer functions are located in the files shown in Table
3-2.

Table 3-2 Location of MPPM Entry Points

Function File Name

mppm_attach() init.c

mppm_detach() term.c

mppm_init() init.c

mppm_initsize() init.c

mppm_process_data() procdata.c

mppm_process_msg() procmsg.c

mppm_term() term.c
78 MAUI Porting Guide

3Input
mppm_attach()

Attaches to a Device

Syntax
#include <mppm.h>
error_code mppm_atttach(MP_DEV *mp_dev);

Description

mppm_attach() notifies a protocol module that a new device has
been opened.

mppm_attach() is called when an application calls
inp_open_dev().

Parameters

mp_dev points to the data structure that
represents an opened input device path.

Direct Errors

SUCCESS(0) if no error occurred.

See Also

inp_open_dev() (See MAUI Programming Reference Manual)

MP_DEV
MAUI Porting Guide 79

3 Input
mppm_detach()

Detaches Device

Syntax
#include <mppm.h>
error_code mppm_detach(MP_DEV *mp_dev);

Description

mppm_detach() notifies the protocol module that an application has
closed the input device. mppm_detach() is called by maui_inp when
an application calls inp_close_dev() or inp_term().

mppm_detach() releases any reserved keys for the calling application
before closing the device.

Parameters

mp_dev points to the data structure that
represents an opened input device path.

Direct Errors

SUCCESS(0) if no error occurred.

See Also
MSG_CLOSE_DEV (See MAUI Programming Reference Manual)
MSG_INP_TERM (See MAUI Programming Reference Manual)
MP_DEV
80 MAUI Porting Guide

3Input
mppm_init()

Initializes Static Memory

Syntax
#include <mppm.h>
error_code mppm_init(MP_MPPM *mppm,

void *mem_buf, size_t mem_size);

Description

mppm_init() initializes the protocol module’s static memory
mem_buf. mppm_init() is called by maui_inp after maui_inp
allocates the amount of memory specified by maui_initsize().

Parameters

mppm points to a data structure that points to
the device and protocol module.

mem_buf points to the protocol module’s static
memory. mem_buf is allocated and
attached to mppm by maui_inp.

mem_size contains the size of the protocol
module’s static memory as returned by
mppm_initsize().

Direct Errors

SUCCESS(0) if no error occurred.

See Also
inp_init()(See MAUI Programming Reference Manual)
mppm_initsize()
MP_MPPM
MAUI Porting Guide 81

3 Input
mppm_initsize()

Gets Static Memory Requirements

Syntax
#include <mppm.h>
error_code mppm_initsize(MP_MPPM *mppm,

size_t *mem_size);

Description

mppm_initsize() returns the protocol module’s static memory size
requirements in mem_size. This call also sets the protocol module’s
compatibility level in the mppm structure.

mppm_initsize() is called by maui_inp upon receipt of a
MSG_INP_INIT message.

Parameters

mppm points to a data structure that contains
information on the static memory space
required.

mem_size contains the size of the protocol
module’s static memory.

Direct Errors

OS-9/OS-9000 error code or SUCCESS(0) if no error occurred.

See Also
mppm_init()
MSG_INP_INIT (See MAUI Programming Reference Manual)
MP_MPPM
82 MAUI Porting Guide

3Input
mppm_process_data()

Interprets Device Data

Syntax
#include <mppm.h>
error_code mppm_process_data(MP_MPPM *reply_mppm,

u_char **buf,
size_t *buf_size,
MSG_MBOX_ID *mbox_id,
INP_MSG **reply_msg);

Description

mppm_process_data() receives raw data from the SCF device in
buf, then returns standardized key and pointer messages in
reply_msg.

Parameters

mppm points to the current device and protocol
module static memory associated with
the data.

buf points to the buffer where the raw data is
stored. buf is updated to the next
unprocessed byte at the conclusion of
this call.

buf_size contains the number of bytes of data
available for processing. buf_size is
updated with the number of unprocessed
bytes remaining at the conclusion of this
call.

mbox_id is set to an alternative mailbox ID if the
message in reply_msg needs to be
redirected (for example, key
reservations).
MAUI Porting Guide 83

3 Input
reply_msg the maui_inp process
forwards the message to the
application’s mailbox if this pointer is not
NULL.

Direct Errors

OS-9/OS-9000 error code or SUCCESS(0) if no error occurred.

EOS_UNFINISHED returned when mppm_process_data() needs to
be recalled to complete a task.

EOS_READ returned when there is an error interpreting incoming data.

See Also
INP_MSG (See MAUI Programming Reference Manual)
MP_MPPM
MSG_MBOX_ID (See MAUI Programming Reference Manual)
84 MAUI Porting Guide

3Input
mppm_process_msg()

Processes Command Messages

Syntax
#include <mppm.h>
error_code mppm_process_msg(MP_MPPM *mppm,

MP_DEV_MSG *cmd_msg,
MP_DEV_MSG **reply_msg);

Description

mppm_process_msg() processes all device command messages.

Parameters

mppm points to the current device and protocol
module static memory associated with
the message.

cmd_msg points to a structure containing the
device command message.

reply_msg if not set to NULL when this function
returns, it points to the reply message.

Direct Errors

OS-9/OS-9000 error code or SUCCESS(0) if no error occurred.

EOS_MAUI_BADACK returned when command code is not understood.

See Also
MSG_GET_DEV_CAP
MSG_GET_DEV_STATUS
MSG_SET_PTR_POS
MSG_SET_SIM_METH
MSG_SET_PTR_LIMIT
MSG_RESERVE_KEY
MSG_RELEASE_KEY
MSG_SET_MSG_MASK
MAUI Porting Guide 85

3 Input
MSG_SET_MSG_CALLBACK
MP_DEV_MSG
MP_MPPM
86 MAUI Porting Guide

3Input
mppm_term()

Terminates Process

Syntax
#include <mppm.h>
error_code mppm_term(MPPM *mppm);

Description

mppm_term() is called by maui_inp upon receipt of a
MSG_INP_TERM message.

Parameters

mppm points to the current device and protocol
module static memory associated with
the data.

Direct Errors

OS-9/OS-9000 error code or SUCCESS(0) if no error occurred.

See Also
MSG_INP_TERM (See MAUI Programming Reference Manual)
MP_MPPM
MAUI Porting Guide 87

3 Input
Functional Data Reference

This section gives a detailed reference for each of the data types in this
interface. These are the only data types defined and recognized by this
interface.

Table 3-3 Data Structures/Data Types

Name Description

MP_DEV Input device path/mailbox data

MP_MPPM Device and protocol module data
88 MAUI Porting Guide

3Input
MP_DEV

Input Device Path/Mailbox Data

Syntax
#include <mppm.h>
typedef struct _MP_DEV
{

u_int32 sync_code;/* syn code - _MP_DEV_SYNC */
MP_PROC *proc;/* owner proc */
MP_DEV *proc_next_dev;/* proc linked list */
MP_MPPM *mppm;/* device and pmod */
MP_DEV *mppm_next_dev;/* mppm linked list */
MSG_MBOX_ID app_mbox_id;/* mbox to send msgs */
INP_DEV_ID device_id;/* ID to return in PTR */

/* and KEY messages */
} MP_DEV;

Description

This data structure represents an opened input device path and is seen
by the Input API as MP_DEV_ID.

See Also
INP_DEV_ID (See MAUI Programming Reference Manual)
MP_DEV_ID
MP_PROC_ID
MSG_MBOX_ID (See MAUI Programming Reference Manual)
MSG_INP_TERM (See MAUI Programming Reference Manual)
MP_MPPM
MAUI Porting Guide 89

3 Input
MP_MPPM

Device and Protocol Module Data

Syntax
#include <mppm.h>
typedef struct _MP_MPPM
{

u_int32 maui_inp_compat_level;/* maui_inp level */

/* owner info */
MP_DEV *mp_dev_head;/* current mbox */
MP_MPPM *next;/* next mbox */
MP_MPPM *prev;/* previous mbox */

/* raw device info */
path_id dev_path;/* device path id */
char dev_type;/* device type */
char dev_name[INP_MAX_DEV_NAME];

/* device name */

/* protocol module info */
u_int32 pmod_compat_level;/* pmod level */
mh_com *pmod_head; /* pmod module header */
char pmod_name[INP_MAX_DEV_NAME];

/* pmod name */
void *pmod_mem;/* pmod static mem */
void *pmod_functable;/* pmod entry points */

} MP_MPPM;

Description

This data structure represents each unique combination of device path
and protocol module. MPPMs use this structure to find their static
memory space (pmod_mem).

See Also
INP_MAX_DEV_NAME (See MAUI Programming Reference Manual)
90 MAUI Porting Guide

3Input
MP_DEV
MAUI Porting Guide 91

3 Input
Message reference

This section provides a complete reference for each of the command
and reply messages handled by mppm_process_msg.

Table 3-4 mppm_process_msg

Command Description

MSG_CHECK_KEYS checks for existence of keys.

MSG_GET_DEV_CAP gets device capabilities.

MSG_GET_DEV_STATUS gets device status.

MSG_RELEASE_KEY releases a reserved key.

MSG_RESERVE_KEY reserves a key for a process.

MSG_RESTACK_DEV restacks an input device.

MSG_SET_SIM_METH sets pointer simulation mode.

MSG_SET_MSG_CALLBACK sets message callback.

MSG_SET_MSG_MASK sets message write mask.

MSG_SET_PTR_LIMIT sets pointer limit.

MSG_SET_PTR_POS sets pointer position.
92 MAUI Porting Guide

3Input
MSG_CHECK_KEYS

Checks if Key Exists

#include <mppm.h>

Syntax Command Structure
typedef struct _MSG_CHECK_KEYS
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_CHECK_KEYS */

wchar_t min_key;/* first key symbol to /*
/* reserve */

wchar_t max_key;/* last key symbol to reserve */
} MSG_CHECK_KEYS;

Syntax Reply Structure
typedef struct _MSG_CHECK_KEYS_REPLY
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_CHECK_KEYS_REPLY */

BOOLEAN present;/* return TRUE if all present */
error_code error;/* return error code */

} MSG_CHECK_KEYS_REPLY;

Description

This message is passed directly to the protocol module via
mppm_process_msg() when an application calls
inp_check_keys().

The protocol module is responsible for formatting the reply.

Direct Errors

None

Indirect Errors
mppm_process_msg()
MAUI Porting Guide 93

3 Input
See Also

inp_check_keys() (See MAUI Programming Reference Manual)

MSG_COMMON_MPCMD

MSG_GET_DEV_CAP

BOOLEAN (See MAUI Programming Reference Manual)
94 MAUI Porting Guide

3Input
MSG_GET_DEV_CAP

Gets Device Capabilities

#include <mppm.h>

Syntax Command Structure
typedef struct _MSG_GET_DEV_CAP
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_GET_DEV_CAP */

} MSG_GET_DEV_CAP;

Syntax Reply Structure
typedef struct _MSG_GET_DEV_CAP_REPLY
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_GET_DEV_CAP_REPLY */

INP_DEV_CAP cap;/* device information */
error_code error;/* return error code */

} MSG_GET_DEV_CAP_REPLY;

Description

This message is passed directly to the protocol module via
mppm_process_msg() when an application calls
inp_get_dev_cap().

The protocol module is responsible for formatting the reply.

Direct Errors

None

Indirect Errors
mppm_process_msg()
MAUI Porting Guide 95

3 Input
See Also

inp_get_dev_cap() (See MAUI Programming Reference
Manual)
INP_DEV_CAP (See MAUI Programming Reference Manual)
MSG_COMMON_MPCMD
96 MAUI Porting Guide

3Input
MSG_GET_DEV_STATUS

Gets Device Status

#include <mppm.h>

Syntax Command Structure
typedef struct _MSG_GET_DEV_STATUS
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_GET_DEV_STATUS */

} MSG_GET_DEV_STATUS;

Syntax Reply Structure
typedef struct _MSG_GET_DEV_STATUS_REPLY
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_GET_DEV_STATUS_REPLY */

INP_DEV_STATUS status;/* device information */
error_code error; /* return error code */

} MSG_GET_DEV_STATUS_REPLY;

Description

This message is passed directly to the protocol module via
mppm_process_msg() when an application calls
inp_get_dev_status().

The protocol module is responsible for formatting the reply.

Direct Errors

None

Indirect Errors
mppm_process_msg()
MAUI Porting Guide 97

3 Input
See Also
inp_get_dev_status() (See MAUI Programming Reference
Manual)
INP_DEV_STATUS (See MAUI Programming Reference Manual)
MSG_TYPE_MPCMD
98 MAUI Porting Guide

3Input
MSG_RELEASE_KEY

Releases a Reserved Key

#include <mppm.h>

Syntax Command Structure
typedef struct _MSG_RELEASE_KEY
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_RELEASE_KEYS */

wchar_t key; /* first key symbol to */
/* release */

} MSG_RELEASE_KEY;

Syntax Reply Structure
typedef struct _MSG_RELEASE_KEY_REPLY
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_RELEASE_KEYS_REPLY */

error_code error;/* return error code */
} MSG_RELEASE_KEY_REPLY;

Description

This message is passed directly to the protocol module via
mppm_process_msg() when an application calls
inp_release_key().

The protocol module is responsible for formatting the reply.

Direct Errors

EOS_MAUI_NOTRESERVED returned when the key is not currently
reserved.

EOS_MAUI_NOHWSUPPORT returned when the specified key is not
supported by the hardware.

Indirect Errors
mppm_process_msg()
MAUI Porting Guide 99

3 Input
See Also
inp_release_key() (See MAUI Programming Reference Manual)
MSG_TYPE_MPCMD
MSG_RESERVE_KEY
100 MAUI Porting Guide

3Input
MSG_RESERVE_KEY

Reserves a Key for a Process

#include <mppm.h>

Syntax Command Structure
typedef struct _MSG_RESERVE_KEY
{

MSG_COMMON_MPCMD dcom;
/* dcom.cmd = CMD_RESERVE_KEY */

wchar_t key; /* key symbol to reserve */
} MSG_RESERVE_KEY;

Syntax Reply Structure
typedef struct _MSG_RESERVE_KEY_REPLY
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_RESERVE_KEYS_REPLY */

error_code error;/* return error code */
} MSG_RESERVE_KEYS_REPLY;

Description

This message is passed directly to the protocol module via
mppm_process_msg() when an application calls
inp_reserve_key().

The protocol module is responsible for formatting the reply.

Direct Errors

EOS_MAUI_ISRESERVED returned when key is already reserved.
EOS_MAUI_NHWSUPPORT returned when the protocol module does not
support key reservation. Most often because the device does not have
keys.

Indirect Errors
mppm_process_msg()
MAUI Porting Guide 101

3 Input
See Also
inp_reserve_key() (See MAUI Programming Reference Manual)
MSG_COMMON_MPCMD
MSG_RELEASE_KEY
102 MAUI Porting Guide

3Input
MSG_RESTACK_DEV

Re-stack an Input Device

#include <mppm.h>

Syntax Command Structure
typedef struct _MSG_RESTACK_DEV {

MSG_COMMON_MPCMD dcom;/*dcom.cmd = CMD_RESTACK_DEV */
INP_DEV_PLACEMENT placement;/*placement in stack of */

/*devices */
MP_DEV_ID ref_dev_id;/* reference device */

} MSG_RESTACK_DEV;

Syntax Reply Structure
typedef struct _MSG_RESTACK_DEV_REPLY {

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_RESTACK_DEV_REPLY /*

error_code error;/* return error code */
} MSG_RESTACK_DEV_REPLY;

Description

This message instructs maui_inp to change the placement of the
logical input device dcom->dev_id within the current stack of logical
devices. The following table shows how placement and ref_dev_id
specify the new position. The Reference Device column indicates when
the ref_dev_id is applicable. If successful, this device returns
SUCCESS.

Table 3-5 Value of Placement in MSG_RESTACK_DEV

Value of Placement Reference Device New Position

INP_DEV_FRONT Not applicable In front of all devices

INP_DEV_BACK Not applicable In back of all devices
MAUI Porting Guide 103

3 Input
Direct Errors

EOS_MAUI_BADID is returned when the ID specified by
dcom->dev_id or ref_dev_id is not valid.
EOS_MAUI_BADVALUE is returned when placement value is not valid.
EOS_MAUI_DAMAGE is returned when maui_inp has detected
inconsistencies in internal data structures.

Indirect Errors

None

See Also
inp_restack_dev() (See MAUI Programming Reference
Manual)
MSG_COMMON_MPCMD

INP_DEV_FRONT_OF MP_DEV_ID
ref_dev_id

In front of device
ref_dev_id

INP_DEV_BACK_OF MP_DEV_ID
ref_dev_id

In back of device
ref_dev_id

Table 3-5 Value of Placement in MSG_RESTACK_DEV (continued)

Value of Placement Reference Device New Position
104 MAUI Porting Guide

3Input
MSG_SET_SIM_METH

Sets Simulation Mode

#include <mppm.h>

Syntax Command Structure
typedef struct _MSG_SET_SIM_METH
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_SET_CURSOR_SIM */

INP_SIM_METH sim_meth;/* simulation mode */
GFX_DELTA speed;/* X/Y speed for simulation */
wchar_t button_map[INP_MAX_BUTTONS];

/* button to key mapping */
} MSG_SET_SIM_METH;

Syntax Reply Structure
typedef struct _MSG_SET_SIM_METH_REPLY
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_SET_CURSOR_SIM_REPLY */

error_code error;/* return error code */
} MSG_SET_SIM_METH_REPLY;

Description

This message is passed directly to the protocol module via
mppm_process_msg() when an application calls
inp_set_sim_meth().

The protocol module is responsible for formatting the reply.

Direct Errors

None

Indirect Errors
mppm_process_msg()
MAUI Porting Guide 105

3 Input
See Also
inp_set_sim_meth() (See MAUI Programming Reference
Manual)
GFX_DELTA (See MAUI Programming Reference Manual)
INP_CUR_SIM (See MAUI Programming Reference Manual)
INP_MAX_BUTTONS (See MAUI Programming Reference Manual)
MSG_COMMON_MPCMD
MSG_GET_DEV_STATUS
106 MAUI Porting Guide

3Input
MSG_SET_MSG_CALLBACK

Sets Message Callback

#include <mppm.h>

Syntax Command Structure
typedef struct _MSG_SET_MSG_CALLBACK
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_SET_MSG_CALLBACK */

void (*callback)(const void *msg);
/* pointer to callback */
/* function */

} MSG_SET_MSG_CALLBACK;

Syntax Reply Structure
typedef struct _MSG_SET_MSG_CALLBACK_REPLY
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd =
/*CMD_SET_MSG_CALLBACK_REPLY */

error_code error;/* return error code */
} MSG_SET_MSG_CALLBACK_REPLY;

Description

This message is passed directly to the protocol module via
mppm_process_msg() when an application calls
inp_set_callback().

The protocol module is responsible for formatting the reply.

Direct Errors

None

Indirect Errors
mppm_process_msg()
MAUI Porting Guide 107

3 Input
See Also
inp_set_callback() (See MAUI Programming Reference
Manual)
MSG_COMMON_MPCMD
108 MAUI Porting Guide

3Input
MSG_SET_MSG_MASK

Sets Message Write Mask

#include <mppm.h>

Syntax Command Structure
typedef struct _MSG_SET_MSG_MASK
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_SET_MSG_MASK */

u_int32 write_mask;/* Message write mask */
} MSG_SET_MSG_MASK;

Syntax Reply Structure
typedef struct _MSG_SET_MSG_MASK_REPLY
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd =
/* CMD_SET_MSG_MASK_REPLY */

error_code error;/* return error code */
} MSG_SET_MSG_MASK_REPLY;

Description

This message sets the message write mask and then passes the
message to the protocol module via mppm_process_msg() when the
application calls inp_set_msg_mask().

Direct Errors

None

Indirect Errors
msg_set_mask() (See MAUI Programming Reference Manual)
mppm_process_msg()
MAUI Porting Guide 109

3 Input
See Also
inp_set_msg_mask() (See MAUI Programming Reference
Manual)
MSG_COMMON_MPCMD
110 MAUI Porting Guide

3Input
MSG_SET_PTR_LIMIT

Sets Pointer Limit

#include <mppm.h>

Syntax Command Structure
typedef struct _MSG_SET_PTR_LIMIT
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_SET_PTR_LIMIT */

GFX_POINT ptr_min;/* minimum position for the */
/* pointer */

GFX_POINT ptr_max;/* maximum position for the */
/* pointer */

} MSG_SET_PTR_LIMIT;

Syntax Reply Structure
typedef struct _MSG_SET_PTR_LIMIT_REPLY
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_SET_PTR_LIMIT_REPLY */

error_code error; /* return error code */
} MSG_SET_PTR_LIMIT_REPLY;

Description

This message is passed directly to the protocol module via
mppm_process_msg() when an application calls
ind_set_ptr_limit().

The protocol module is responsible for formatting the reply.

Direct Errors

None

Indirect Errors
mppm_process_msg()
MAUI Porting Guide 111

3 Input
See Also
inp_set_ptr_limit() (See MAUI Programming Reference
Manual)
GFX_POINT (See MAUI Programming Reference Manual)
MSG_COMMON_MPCMD
MSG_GET_DEV_STATUS
112 MAUI Porting Guide

3Input
MSG_SET_PTR_POS

Sets Pointer Position

#include <mppm.h>

Syntax Command Structure
typedef struct _MSG_SET_PTR_POS
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_SET_PTR_POS */

GFX_POINT position;/* New position */
} MSG_SET_PTR_POS;

Syntax Reply Structure
typedef struct _MSG_SET_PTR_POS_REPLY
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_SET_PTR_POS_REPLY */

error_code error;/* return error code */
} MSG_SET_PTR_POS_REPLY;

Description

This message is passed directly to the protocol module via
mppm_process_msg() when an application calls
inp_set_ptr_pos().

The protocol module is responsible for formatting the reply.

Direct Errors

None

Indirect Errors
mppm_process_msg()
MAUI Porting Guide 113

3 Input
See Also
inp_set_ptr_pos() (See MAUI Programming Reference Manual)
GFX_POINT (See MAUI Programming Reference Manual)
MSG_COMMON_MPCMD
MSG_GET_DEV_STATUS
114 MAUI Porting Guide

3Input
MSG_BADACK_REPLY

Replies to Bad Messages

#include <mppm.h>

Syntax Reply Structure
typedef struct _MSG_BADACK_REPLY
{

MSG_COMMON_MPCMD dcom;/* dcom.cmd = */
/* CMD_BADACK_REPLY */

error_code error;/* return error code */
} MSG_BADACK_REPLY;

Description

This message is returned by a protocol module with an error code of
EOS_MAUI_BADACK when the protocol module does not understand
the command code.

Direct Errors

EOS_MAUI_BADACK returned when a command code was not
understood.

Indirect Errors

None

See Also
MSG_COMMON_MPCMD
MAUI Porting Guide 115

3 Input
Message Data reference

This section gives a detailed reference for each of the data types in
mp.h.

Table 3-6 Message Data Reference Structures

Structure Type Description

MP_DEV_CMD Enumerated Message command
codes

MP_DEV_ID Data Input Device ID

MP_DEV_MSG Data Structure Union of all messages

MP_MBOX_NAME Defined Constant Name of the
maui_inp command
mailbox

MP_MBOX_REPLY_NAME Defined Constant Format string for reply
mailbox

MP_PROC_ID Data Input Process ID

MSG_COMMON_MPCMD Data Structure Common section of all
messages

MSG_TYPE_MPCMD Defined Constant Message type code
116 MAUI Porting Guide

3Input
MP_DEV_CMD

Message Command Codes

Syntax
#include <mppm.h>
typedef enum
{

CMD_INP_INIT, /* Register a process */
CMD_INP_INIT_REPLY, /* Reply to CMD_INP_INIT */
CMD_INP_TERM, /* Un-register a process */
CMD_INP_TERM_REPLY, /* Reply to CMD_INP_TERM */
CMD_OPEN_DEV, /* Open an input device */
CMD_OPEN_DEV_REPLY, /* Reply to CMD_OPEN_DEV */
CMD_CLOSE_DEV, /* Close an input device */
CMD_CLOSE_DEV_REPLY, /* Reply to CMD_CLOSE_DEV */
CMD_RESTACK_DEV, /* Re-stack an input device */
CMD_RESTAC_DEV_REPLY, /* Replay to CMD_RESTACK_DEV */
CMD_SET_MSG_MASK, /* Set message write mask */
CMD_SET_MSG_MASK_REPLY, /* Rply 2CMD_SET_MSG_MASK */
CMD_CHECK_KEYS, /* Check if keys exist */
CMD_CHECK_KEYS_REPLY, /* Reply to CMD_CHECK_KEYS */
CMD_GET_DEV_CAP, /* Get device capabilities */
CMD_GET_DEV_CAP_REPLY, /* Reply 2CMD_GET_DEV_CAP */
CMD_GET_DEV_STATUS, /* Get device status */
CMD_GET_DEV_STATUS_REPLY, /* Reply to CMD_GET_DEV_STATUS */
CMD_RELEASE_KEY, /* Release a reserved key */
CMD_RELEASE_KEY_REPLY, /* Rply 2 CMD_RELEASE_KEY */
CMD_RESERVE_KEY, /* Reserve key for process */
CMD_RESERVE_KEY_REPLY, /* Rply 2 CMD_RESERVE_KEY */
CMD_SET_MSG_CALLBACK, /* Set message callback */
CMD_SET_MSG_CALLBACK_REPLY, /* Reply to CMD_SET_MSG_CALLBACK */
CMD_SET_SIM_METH, /* Set pointer sim mode */
CMD_SET_SIM_METH_REPLY, /* Reply to CMD_SET_CURSOR_SIM */
CMD_SET_PTR_POS, /* Set pointer position */
CMD_SET_PTR_POS_REPLY, /* Reply 2 CMD_SET_PTR_POS */
CMD_SET_PTR_LIMIT, /* Set pointer limit */
CMD_SET_PTR_LIMIT_REPLY, /* Rply CMD_SET_PTR_LIMIT */
CMD_BADACK_REPLY, /* Reply to bad messages */

} MP_DEV_CMD;

Description

This enumerated type defines the device message command codes.
MAUI Porting Guide 117

3 Input
MP_DEV_ID

Input Device ID

Syntax
#include <mppm.h>
typedef void * MP_DEV_ID;

Description

This data type defines a caller process ID and is returned in
MSG_OPEN_DEV_REPLY.

See Also
MSG_OPEN_DEV (See MAUI Programming Reference Manual)
118 MAUI Porting Guide

3Input
MP_DEV_MSG

Union of All Messages

Syntax
#include <mppm.h>
typedef union _DEV_MSG
{

MSG_INP_INIT inp_init;
MSG_INP_INIT_REPLY inp_init_reply;
MSG_INP_TERM inp_term;
MSG_INP_TERM_REPLY inp_term_reply;
MSG_OPEN_DEV open_dev;
MSG_OPEN_DEV_REPLY open_dev_reply;
MSG_CLOSE_DEV close_dev;
MSG_CLOSE_DEV_REPLY close_dev_reply;
MSG_RESTACK_DEV msg_restack_dev;
MSG_RESTACK_DEV_REPLY msg_restack_dev_reply;
MSG_SET_MSG_MASK set_msg_mask;
MSG_SET_MSG_MASK_REPLY set_msg_mask_reply;
MSG_GET_DEV_CAP get_dev_cap;
MSG_GET_DEV_CAP_REPLY get_dev_cap_reply;
MSG_GET_DEV_STATUS get_dev_status;
MSG_GET_DEV_STATUS_REPLY get_dev_status_reply;
MSG_SET_PTR_POS set_ptr_pos;
MSG_SET_PTR_POS_REPLY set_ptr_pos_reply;
MSG_SET_SIM_METH set_cursor_sim;
MSG_SET_SIM_METH_REPLY set_cursor_sim_reply;
MSG_SET_PTR_LIMIT set_ptr_limit;
MSG_SET_PTR_LIMIT_REPLY set_ptr_limit_reply;
MSG_RESERVE_KEY reserve_key;
MSG_RESERVE_KEY_REPLY reserve_key_reply;
MSG_RELEASE_KEY release_key;
MSG_RELEASE_KEY_REPLY release_key_reply;
MSG_CHECK_KEYS check_keys;
MSG_CHECK_KEYS_REPLY check_keys_reply;
MSG_SET_MSG_CALLBACK set_msg_callback;
MSG_SET_MSG_CALLBACK_REPLY set_msg_callback_reply;
MSG_BADACK_REPLY badack_reply;
MSG_COMMON_MPCMD any;

} MP_DEV_MSG;

Description

This union defines a generic reference to all input device command
messages. See the message reference for details of these messages.
MAUI Porting Guide 119

3 Input
MP_MBOX_NAME

Name of maui_inp’s Command Mailbox

Syntax
#include <mppm.h>
MP_MBOX_NAME

Description

This constant defines the name of the maui_inp command mailbox.
120 MAUI Porting Guide

3Input
MP_MBOX_REPLY_NAME

Format String for Reply Mailbox

Syntax
#include <mppm.h>
MP_MBOX_REPLY_NAME

Description

This constant defines the format string for the reply mailbox.
MAUI Porting Guide 121

3 Input
MP_PROC_ID

Inputs Process ID

Syntax
#include <mppm.h>
typedef void * MP_PROC_ID;

Description

This data type defines a caller process ID and is returned in
MSG_INP_INIT_REPLY.

See Also
MSG_INP_INIT (See MAUI Programming Reference Manual)
122 MAUI Porting Guide

3Input
MSG_COMMON_MPCMD

Common Section of
Control Messages

Syntax
#include <mppm.h>
typedef struct _MSG_COMMON_MPCMD
{

MSG_COMMON com; /* common section of all */
/* messages */

MP_DEV_CMD cmd; /* Command code of message */
MP_DEV_ID dev_id; /* ID of device */

} MSG_COMMON_MPCMD;

Description

This data structure defines the common header at the beginning of all
command and reply messages. A message must have this header to be
understood by maui_inp and its protocol modules.

See Also
MP_DEV_CMD
MP_DEV_ID
MSG_COMMON (See MAUI Programming Reference Manual)
MAUI Porting Guide 123

3 Input
MSG_TYPE_MPCMD

Message Type Code

Syntax
#include <mppm.h>
MSG_TYPE_MPCMD

Description

This constant defines the type code for all command messages.
124 MAUI Porting Guide

Chapter 4: Sound Driver

MAUI sound drivers enable applications to operate independent of
hardware differences in target systems. This chapter explains the sound
device capabilities, the relationship between the file manager, sound
driver, and descriptors, and how to build, modify, and verify your drivers.
125

4 Sound Driver
Overview of Sound Driver Interface

The Sound Driver Interface:

• provides a set of primary entry points, GetStat sub-functions, and
SetStat sub-functions through which MAUI applications can control
the sound driver.

• is a dual-ported I/O (DPIO) driver that uses the multimedia file
manager (MFM). This allows the driver to work under both OS-9 and
OS-9000.

The sound driver is sharable (multiple paths may be open to it at the
same time). This enables multiple play and record paths, but not
concurrent play and record. The Sound Driver Interface is accessible by
MAUI applications and directly controls the operation of the sound
driver
126 MAUI Porting Guide

4Sound Driver
MAUI sound drivers interface between the sound device and the MAUI
File Manager. The sound driver contains all device-specific code so that
MAUI applications and the MAUI APIs can operate independent of the
hardware in any system. The following figure shows the relationship
between the file manager, sound driver, and descriptor:

Figure 4-1 MFM, Driver, Descriptor Relationship

The sound device driver consists of a common code layer and a
device-specific code layer. All sound drivers share the same set of
common code, which provides functions and definitions needed by all
drivers. Some of the common code is conditional to allow individual
customization of each port. The device-specific code handles all the
functions and definitions unique to each device. When porting a sound
driver, modify the device-specific code in the example drivers to reflect
the sound device in your system.

The device descriptor is the handle used by applications to reference a
device. The descriptor indicates the file manager, driver, and the driver’s
initialization data required to access the device.

MAUI File Manager (MFM)

Driver Common Code

Driver-specific Code

Code layer that is
common to all graphics
drivers. This layer of code
needs no modification.

Code layer that is specific
to your driver. Modify this
layer of code for each
driver.

Descriptor
MAUI Porting Guide 127

4 Sound Driver
Device Capabilities

One important function of your device driver is identifying the
capabilities of the device. Sounds device capabilities are defined in a
set of data structures within the global.h file. A specification is
particularly valuable when writing your global.h file.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Look in the directory holding the sample drivers for an example of a
written specification for the sample sound driver included with MAUI.
128 MAUI Porting Guide

4Sound Driver
Driver Code

MAUI sound drivers consist of two types of code: common code that is
already written for your driver, and device-specific code that you write.
The common code makes up a large portion of the sound driver.

The simplest and most successful method of developing device-specific
code when porting a sound driver is to modify the device-specific
source code in an existing sample driver. Your modifications reflect the
capabilities and requirements of the sound device in your system.

The device-specific code consists of a number of files, of which some
are required and others are optional, depending on your system. The
following files are required in every sound driver, although it is possible
to change their names:

• abort.c contains hardware specific code, if any, to abort
a play or record.

• config.h contains the definition that controls the
configuration of the driver including the names
of functions defined by the device-specific code.

• cont.c contains hardware specific code to continue a
play or record after a pause.

• drvr.tpl os9make “include” file.

• gain.c contains hardware specific code to modify both
input and output gain.

• global.h contains the global definitions for the driver
including device capabilities and prototypes.

• hardware.c defines functions that deal directly with the
hardware device such as init and term, and
any register modification.

• hardware.h contains hardware-specific definitions.

• irq.c contains interrupt service functions.

• path.c contains hardware specific code, if any, for
opening and closing a device.
MAUI Porting Guide 129

4 Sound Driver
• pause.c contains hardware specific code
to pause a play or record.

• signal.c contains hardware specific code, if any, for the
_os_ss_sendsig() functionality.

• static.h contains the definitions for static storage areas
available to the driver.

The following files may be included or excluded depending on whether
play and/or record functionality is needed. These files are:

• play.c contains hardware specific code to play sound
samples.

• record.c contains hardware specific code to record
sound samples.

When modifying the driver code, you should organize your work to
modify the files in this order:

1. Modify the header files; config.h, global.h, static.h,
hardware.h, and mfm_desc.h.

2. Modify hardware.c to access the device hardware.

3. Modify play.c, record.c, and irq.c as required.

4. Modify gain.c, abort.c, pause.c, and cont.c as required.

5. Update drvr.tpl to reflect any file name changes.

Device-specific Code

This provides specific details for modifying the device-specific code.
Within each of these files, some functions are required and some are
optional.

Sample driver files are located in the directory:

MWOS/SRC/DPIO/MFM/DRVR/SD_SAMP

You can use these files as templates for building your own
device-specific code.
130 MAUI Porting Guide

4Sound Driver
Where the Files are Located

MAUI sound driver source is delivered with one directory of sample files
and one complete example driver. You may either modify the example
driver or the sample files to make your driver. The sample files contain
instructions for building your own .h and .c files.

• MAUI Standard header files are located in
MWOS/SRC/DEFS/MAUI

WARNING!
These header files should never be modified by the user

• MAUI common sound driver code is located in:
MWOS/SRC/DPIO/MFM/DRVR/SD_COMM
This directory is referred to as common throughout this chapter.
Normally you should not need to modify files in this directory. If your
implementation does have special requirements that necessitates
modifying the common code, make a copy of the relevant file(s) to
your driver specific directory and make your modifications there.

• MAUI example driver source is located in:
MWOS/SRC/DPIO/MFM/DRVR/SD_CS

• The sample driver template files are located in:
MWOS/SRC/DPIO/MFM/DRVR/SD_SAMP
MAUI Porting Guide 131

4 Sound Driver
How to Port your Sound Driver

Create the directory structure for your port

Before beginning to port your sound driver, you must create a directory
structure to store your new files. That structure is shown in Figure 4-2
Directory Structure for Your Sound Driver Port
132 MAUI Porting Guide

4Sound Driver
Figure 4-2 Directory Structure for Your Sound Driver Port

/MWOS

/<OS> /SRC

/<CPU> /DPIO

/PORTS /MFM

/<YOURPORT> /DRVR

/CMDS /MAUI /SD_COMM /<SOURCE>

/BOOTOBJS

/MAUI

/<SD_YOURDRVR>

snd

sd_yourdrvr

desc.mak

drvr.mak
makefile

mfm_desc.h

defs.h

sdv_cont.c
sdv_ep.c

sdv_gain.c

sdv_main.c

sdv_pause.c

sdv_play.c

sdv_priv.h

sdv_record.c

abort.c

config.h
cont.c

drvr.tpl

gain.c

global.h

hardware.c

hardware.h

irq.c
mode.c

path.c

pause.c
play.c

record.c

signal.c
static.h

systype.h
MAUI Porting Guide 133

4 Sound Driver
Step 1. Define and create a source directory. This directory is
referred to in this chapter as SOURCE and assumes the pathname:
MWOS/SRC/DPIO/MFM/DRVR/SD_YOURDRVR
It is recommended that the directory name start with “SD_” followed by
an uppercase descriptive name for your driver.

Step 2. Copy all of the files from
MWOS/SRC/DPIO/MFM/DRVR/SD_SAMP
into your new SOURCE directory. Verify that the following files are now in
your SOURCE directory:

abort.c
config.h
cont.c
drvr.tpl
gain.c
global.h
hardware.c
hardware.h
irq.c
path.c
pause.c
play.c
record.c
signal.c
static.h

Step 3. Define and create a ports directory. This directory is referred to in this
chapter as YOURPORT and assumes the pathname:
MWOS/OS/CPU/PORTS/YOURPORT

Step 4. Define and create a make directory. This directory is referred to in this
chapter as MAKE and assumes the pathname:
MWOS/OS/CPU/PORTS/YOURPORT/MAUI/SD_YOURDRVR
We recommend that this name match the one in step 1.

Step 5. Copy or create the following files in SD_YOURDRVR

desc.mak drvr.mak

makefile mfm_desc.h
134 MAUI Porting Guide

4Sound Driver
Here are examples of these files:

• desc.mak Make the MAUI sound descriptor
Makefile
#***
This makefile will make the MAUI Sound descriptors#
#***
#* Copyright 1996 by Microware Systems Corporation **
#* Copyright 2001 by RadiSys Corporation **
#* Reproduced Under License **
#* **
#* This source code is the proprietary confidential property of **
#* Microware Systems Corporation, and is provided to licensee **
#* solely for documentation and educational purposes. Reproduction, **
#* publication, or distribution in any form to any party other than **
#* the licensee is strictly prohibited. **
#***

Add New Descriptor Names Here
#
TRGTS = snd snd10
DRVR = SD_YOURDRVR
#
###

PORT = ../..
MAKENAME=desc.mak
include $(PORT)/../make.com

RDIR = RELS/DESC
ODIR = $(PORT)/CMDS/BOOTOBJS/MAUI
SDIR = $(MWOS)/SRC/DPIO/MFM/DESC
COMMDIR = SD_COMM
DESCDIR = .

include $(SDIR)/snddesc.tpl

_purge _clean: nulltrg
$(CODO) $(ODIR)/snd
-$(DEL) $(ODIR)/snd
$(CODO) $(ODIR)/snd10
-$(DEL) $(ODIR)/snd10

#
###
MAUI Porting Guide 135

4 Sound Driver
• drvr.mak Make the MAUI sound driver
Makefile
#***
#* Makefile for Maui CS4231 Driver
#***
#* Copyright 1996 by Microware Systems Corporation **
#* Copyright 2001 by RadiSys Corporation **
#* Reproduced Under License **
#* **
#* This source code is the proprietary confidential property of **
#* Microware Systems Corporation, and is provided to licensee **
#* solely for documentation and educational purposes. Reproduction, **
#* publication, or distribution in any form to any party other than **
#* the licensee is strictly prohibited. **
#***

Put Driver Names and Options Here
#
TRGTS = sd_yourdrvr
DRVR = SD_YOURDRVR

#DEBUG = -g
DEBUG =

#
###

PORT = ../..
MAKENAME=drvr.mak
include $(PORT)/../make.com

ODIR = $(PORT)/CMDS/BOOTOBJS/MAUI
RDIR = RELS/DRVR
IDIR = $(RDIR)/$(HOSTTYPE)
DESCDIR = .

Place user defines here. See the bottom of config.h in the driver
source directory for the list of defines value for this driver

USR_DEFINES = -dPIO -dXCTL_CONTROL -dPCI_I82378

include $(MWOS)/SRC/DPIO/MFM/DRVR/$(DRVR)/drvr.tpl

#
###
136 MAUI Porting Guide

4Sound Driver
• makefile Make the MAUI sound descriptor and the MAUI
sound driver

Makefile
#***
#* Call makefiles to build sound driver and descriptor
#***
#* Copyright 1997 by Microware Systems Corporation
#* Copyright 2001 by RadiSys Corporation
#* Reproduced Under License
#*
#* This source code is the proprietary confidential property of
#* Microware Systems Corporation, and is provided to licensee
#* solely for documentation and educational purposes. Reproduction,
#* publication, or distribution in any form to any party other than
#* the licensee is strictly prohibited.
#***

MWOS = ../../../../../..
TRGTS = desc.mak drvr.mak
ALL_TRGTS=p603
MAKENAME=makefile
include $(MWOS)/MAKETMPL/makesub.com

$(TRGTS): notarget
$(MAKE) -f $@ $(MAKEOPTS) TARGET=$(TARGET) $(SUBTRGT)

notarget: .
$(COMMENT)

#
###

• mfm_desc.h The MAUI sound descriptor header file
/***
**
* FILENAME : mfm_desc.h
*
* DESCRIPTION :
*
* This file contains definitions for the MAUI device descriptors.
*
* COPYRIGHT:
*
* This source code is the proprietary confidential property of Microware
* Systems Corporation, and is provided to licensee solely for documentation
* and educational purposes. Reproduction, publication, or distribution in
* form to any party other than the licensee is strictly prohibited.
*

MAUI Porting Guide 137

4 Sound Driver
#ifndef _MFM_DESC_H
#define _MFM_DESC_H

#include “../../systype.h”

#define I82378_NCFG_ADDR ISA_IOBASE /* Non-Configured I82378 base */
#define BOARD_CFG_REG_ADDR BOARD_CFG_REG /* Board Configuration register
*/

/***
**
 * CS4231A Sound Descriptor

**
*/
#if defined(MFM_DESC) && (defined(snd) || defined(snd10))

#define SHARE TRUE /* Path sharing flag */
#define LUN 1 /* Logical unit number */
#define PORTADDR (ISA_IOBASE+0x830) /* Base address of hardware */
#define MODE S_IREAD | S_IWRITE

#define DRV_NAME “sd_cs”

/* for SD_COMM/defs.h */
#define SDV_HW_SUBTYPE CS4231A /* Hardware sub-type */
#define SDV_HW_SUBNAME “CS4231A” /* Hardware sub-type name */

#if defined(snd)
#define SDV_IRQ_NUM 5 /* IRQ number */
#else /*snd10 */
#define SDV_IRQ_NUM 10 /* IRQ number */
#endif

#define SDV_IRQ_PRIORITY 5 /* IRQ priority */
#define SDV_DMA_PLAY_CHAN 6 /* DMA Channel for Playback */
#define SDV_DMA_RECORD_CHAN 7 /* DMA Channel for Capture */

/* for SD_CS/static.h */
#define SDV_TRANSFER_SIZE (500*64) /* This is the Maximum transfer size -
make divisable by 16 */

#endif /* MFM_DESC_SND */

#endif /* MFM_DESC_SND */

#endif /* _MFM_DESC_H_ */
138 MAUI Porting Guide

4Sound Driver
Step 6. Define and create the directory YOURPORT/CMDS/BOOTOBJS/MAUI.
During the make process two object files are created and stored in
MAUI:

• snd descriptor object.

• sd_yourdrvr driver object. This is typically a lower case
version of the directory name in step 1.

Step 7. Verify your directory structure contains the correct files as shown in
Figure 4-2 Directory Structure for Your Sound Driver Port.

Common Code Source Files

The following files are located in the SD_COMM directory:

• defs.h primary definition file which ties together all the
other definition files.

• sdv_abort.c common abort functions.

• sdv_cont.c common continue functions.

• sdv_ep.c entry point functions.

• sdv_gain.c common gain functions.

• sdv_main.c main function for the driver.

• sdv_pause.c common pause functions.

• sdv_play.c common play functions.

• sdv_priv.h definitions private to the common code.

• sdv_record.c common record functions.

Device-specific Source Files

The following files are located in the SOURCE directory:

• abort.c abort play or record function.

• config.h configures the capabilities of the driver and
inclusion/exclusion of common code.

• cont.c continue play or record functions.
MAUI Porting Guide 139

4 Sound Driver
• drvr.tpl os9make “include” file.

• gain.c gain control functions.

• global.h global definitions.

• hardware.c hardware function.

• hardware.h* definitions for hardware functions.

• irq.c† interrupt service functions.

• path.c hardware Open and Close functions.

• pause.c pause play or record functions.

• play.c‡ optional hardware play functions.

• record.c** optional hardware record functions.

• signal.c hardware sendsig and release functions.

• static.h fefinitions for static storage areas.

Modify the SOURCE files you need

Step 1. Delete the optional files in your SOURCE directory, if your driver does not
support the corresponding function.

Step 2. Update your drvr.tpl to reflect the deletions, if any, made in step 1.

*.The example sd_cs sound driver has additional hardware definition files that are
not depicted in this list. These could have gone into hardware.h instead, but
were included by hardware.h to preserve their original integrity. If you make
similar extensions, remember to update drvr.tpl.

†.Optional files. Delete these files if not supported by your driver.

‡.Optional files. Delete these files if not supported by your driver.

**.Optional files. Delete these files if not supported by your driver.
140 MAUI Porting Guide

4Sound Driver
Modify the config.h file to reflect your system.

Step 1. Define function names for HW_ABORT_PLAY through HW_TERM. All
values must be defined, although you normally use the default values.
These are required functions.

Step 2. Define function names for HW_INIT_IRQS through
HW_RECORD_SET_MODE. Only include definitions for functions
supported by your driver. These are optional functions.

Modify the global.h file to reflect your system.

Step 1. Modify the initializer for the sdv_gain_cap array to match the gain
capabilities of your driver.

Step 2. Modify the initializer for the sdv_cm_info array. Show the data
structure with a detailed explanation of each member.

Step 3. Modify the initializer for the sdv_sample_rates array to include all
supported sample rates.

Step 4. Modify the initializer for the sdv_channel_info array to include all
supported number of channels.

Step 5. Modify the initializer for the sdv_dev_cap data structure. Show the
data structure with a detailed explanation of each member

Step 6. Modify the initializer for the sdv_status_gain array. Include one
entry for each device that is controllable on your system.

Step 7. Modify the initializer for the sdv_mix_lines array.

Step 8. Prototype the functions you need for device-specific code in the
PROTOTYPE area. This area is used to prototype functions that must be
visible to multiple device-specific files.
MAUI Porting Guide 141

4 Sound Driver
Modify the static.h file to define your static
storage areas.

This task may be difficult to perform at this time because the variables
that must be defined here may not be known yet. Make an attempt to
define them now, and refine this file as the port proceeds.

Step 1. Modify SDV_LU_SPECIFICS with the variable names needed by the
driver. This file is setup with the values in SDV_LU_SPECIFICS_INIT
when the driver is initialized. This structure should include, but is not
limited to the following:

• Address of groups or individual I/O registers.

• Place holders for shadow contents of I/O registers.

Step 2. Modify SDV_LU_SPECIFICS_INIT to include the values from the
descriptor to compute the initializers. Minimize the number of definitions
required in the descriptor. The objective there is to use a few definition
in the descriptor to compute a larger number of entries in the lustat.

Modify the hardware.h file to reflect your system
hardware definitions

Step 1. Modify hardware.h to include all necessary hardware related
definitions.
142 MAUI Porting Guide

4Sound Driver
Modify the hardware.c files to initialize your hardware

Step 1. Modify the hardware.c file with the following considerations:

• hw_init() is called when the device is initialized.

• hw_term() is called when the device is terminated.

• Be sure that hw_term() returns any resources allocated in
hw_init().

Modify the play.c, record.c, and irq.c files to support play
and/or record

Step 1. Modify the play.c file with the following considerations:

• hw_play_enable() is called at the start of a play to enable the
decoding of sound samples.

• hw_play_disable() is called at the conclusion of a play to
disable the decoding of sound samples.

• hw_play_set_mode() is called to set the hardware mode and IRQ
handler for the sound data in the sound map.

Step 2. Modify the record.c file with the following considerations:

• hw_record_enable() is called at the start of a record to enable
the encoding of sound samples.

• hw_record_disable() is called at the conclusion of a record to
disable the encoding of sound samples.

• hw_record_set_mode() is called to set the hardware mode and
IRQ handler for the sound data in the sound map.
MAUI Porting Guide 143

4 Sound Driver
Step 3. Modify the irq.c file with the following considerations:

• hw_init_irqs() must be modified to enable interrupts.

• hw_term_irqs() must be modified to disable interrupts.

• hw_isr() is the entry point for all sound driver interrupts. This
function must be modified to read the appropriate status register, act
on the interrupt, and clear the interrupt.

Modify the remaining control functions

Step 1. Modify the following control functions only if they are supported by your
hardware. If they are not supported, delete the source file and point the
function in config.h at a function that simply returns EOS_UNKSVC.
Make sure that the inclusion or exclusion of these files are represented
in the device capabilities (global.h) and the makefile template
(drvr.tpl).

• abort.c contains the hardware specific code to abort a play or
record.

• cont.c contains the hardware specific code to continue a play or
record after a pause.

• gain.c contains the hardware specific code to modify both input
and output gain.

• pause.c contains the hardware specific code to pause a play or
record. This driver simply stops the timer to pause both play and
record.
144 MAUI Porting Guide

4Sound Driver
Modify the remaining device-specific functions

Step 1. Modify the following device-specific functions only if your hardware has
specific requirements. These functions are normally handled
completely in the sound driver common code. Normally the these
device-specific functions simply return SUCCESS.

• signal.c contains any, if any, hardware specific code for enabling
and disabling “send signal on device idle”. Normally this is not
necessary.

• path.c contains any, if any, hardware specific code to be called
when the device is opened or closed. normally this is not necessary.
MAUI Porting Guide 145

4 Sound Driver
How to Build your Sound Driver

Step 1. Change directories to SD_YOURDRVR directory:

cd MWOS/OS/CPU/PORTS/YOURPORT/MAUI/SD_YOURDRVR

Step 2. To make both the sound driver and descriptor, type

os9make

The makefile invokes .desc.mak and
drvr.mak.

To make the sound descriptor, type:

os9make -f desc.mak

The desc.mak makefile builds the
sound descriptor and places it in the
directory
YOURPORT/CMDS/BOOTOBJS/MAUI.

To make the sound driver, type:

os9make -f drvr.mak

The drvr.mak builds the sound driver
and places it in the directory
YOURPORT/CMDS/BOOTOBJS/MAUI.
146 MAUI Porting Guide

4Sound Driver
How to Test your Driver

Run the sound demo programs included with MAUI to test your driver.
Demo program source is located in the following directory:

MWOS/SRC/MAUI/DEMOS/SND

Demo program objects are located in the following directory:

MWOS/OS/CPU/CMDS/MAUIDEMO

There are two demo programs:

• auplay attempts to play .au and .wav sound files. Success
depends on the capabilities of the sound hardware. auplay has
many options. Execute auplay with a parameter of -? or
-h to get on-line help.

• aurecord attempts to record .au and .wav sound files. Success
depends on the capabilities of the sound hardware. aurecord has
many options. Execute aurecord with a parameter of -? or -h to
get on-line help.

These are not complete tests, but should enable you to verify basic
functions.
MAUI Porting Guide 147

4 Sound Driver
148 MAUI Porting Guide

Chapter 5: How to Configure a System

for MAUI

This chapter describes how to configure a MAUI enabled system. It
includes the following sections:

• Overview of MAUI Object Modules

• Selecting a MAUI System Driver

• Using the Configuration Wizard for MAUI

• Advanced Wizard Configuration
149

5 How to Configure a System for MAUI
Overview of MAUI Object Modules

MAUI is highly modular and configurable, enabling system developers
to make design decisions that trade off between size, speed, and
functionality. This section describes the objects that make up MAUI and
the considerations for configuring a MAUI enabled system.

Common MAUI modules

• MWOS/OS/CPU/CMDS/BOOTOBJS/mfm

MAUI File Manager. Required for the CDB, MSG, SND, and GFX APIs.

• MWOS/OS/CPU/CMDS/BOOTOBJS/mauidev

MAUI Device Descriptor. Required for the CDB and MSG APIs.

• MWOS/OS/CPU/CMDS/BOOTOBJS/mauidrvr,
MWOS/OS/CPU/CMDS/BOOTOBJS/mauidrvr_lock, or
MWOS/OS/CPU/CMDS/BOOTOBJS/mauidrvr_filter

MAUI System Driver. Required for the CDB and MSG APIs. There are
three different versions of this driver. Each has the same module
name but different file names. See the Selecting a MAUI System
Driver section for a full description of each:

mauidrvr - Default/recommended version. The smallest,
fastest, most secure version of the three. The mailbox format is
not run-time compatible with the other two versions.

mauidrvr_lock - Supports queue locks that are compatible
with old statically linked MAUI MSG applications.

mauidrvr_filter - Supports queue locks and the deprecated
msg_set_filter() call. This is the largest, slowest, least
secure version of the three.

• MWOS/OS/CPU/CMDS/BOOTOBJS/maui_inp,
MWOS/OS/CPU/CMDS/BOOTOBJS/MON/maui_inp, or
MWOS/OS/CPU/CMDS/BOOTOBJS/MON/maui_inl
150 MAUI Porting Guide

5How to Configure a System for MAUI
Input daemon. Required by the INP API. Only include this module
on the system if INP or WIN API support is required. The Input
daemon uses the MSG API, so it requires mfm, mauidev, and
mauidrvr. There are three different versions of the Input daemon:

maui_inp - Default version. Requires maui shared library
module

MON/maui_inp - Debug version. Requires maui shared library
module. Includes a command line option to print status and
debug information.

MON/maui_inl - Statically linked debug version. Does not
require the maui shared library module.

• MWOS/OS/CPU/CMDS/BOOTOBJS/maui_win or
MWOS/OS/CPU/CMDS/BOOTOBJS/MON/maui_win

Window daemon. Required by the WIN API. Only include this
module on the system if WIN API support is required. The Window
daemon uses the INP and MSG APIs, so it requires mfm, mauidev,
mauidrvr, and maui_inp. There are two versions of the Window
daemon:

maui_win - Default version. Requires maui Shared Library
module.

MON/maui_win - Debug version. Requires maui Shared Library
module. Includes code to print debug messages.

• MWOS/OS/CPU/CMDS/maui or
MWOS/OS/CPU/CMDS/mt_maui

MAUI Shared Library module. This module is normally present on
MAUI systems, but is not required if all MAUI applications link to the
static MAUI libraries, mauilib.l/mauilib.il, instead of
maui.l/maui.il. While the MAUI Shared Library module is large,
linking all MAUI applications against mauilib.l/mauilib.il
instead of maui.l/maui.il makes each of those applications
larger (including any required daemons such as maui_win and
maui_inp). Sometimes this results in an even larger footprint. In
addition, statically linking MAUI applications does not provide as
MAUI Porting Guide 151

5 How to Configure a System for MAUI
much compatibility with future versions of MAUI.
There are two versions of the MAUI Shared Library. Each has the
same module name but different file names:

maui - Non-Threaded version. This is smaller and faster, but
does not supported “connections” from threaded MAUI
applications.

mt_maui - Threaded version. This version can accept
“connections” from both threaded and non-threaded MAUI
applications.

Port-Specific Objects

The port-specific module names described below are common, but not
absolute or fully inclusive.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Port-specific MAUI modules are described in each appropriate OS-9
Board Guide.

Configuration Description Blocks

There may be one or more Configuration Description Block (CDB)
modules on a system. Via the CDB API, they appear to the application
as a single Configuration Description Block string. CDB modules can
have any name, since what defines them as CDB modules is a module
type/attribute of 0x501. The primary module is usually (but not always)
called cdb. This module contains the CDB_TYPE_SYSTEM entry and
any devices that are in all board configurations.
152 MAUI Porting Guide

5How to Configure a System for MAUI
Other devices can be listed in separate CDB modules so they can be
easily added or removed from a system. For example, you might create
separate CDB entries for the mouse and touch screen, and then
configure the wizard to load these along with the descriptor, drivers, and
protocol modules as appropriate.

Graphics Devices

Graphic device modules typically consist of a descriptor and driver. A
common descriptor name is gfx, but osd, vga and lcd are often used
as well. By convention, graphics drivers have a prefix of gx_, followed
by a name descriptive of the device. Graphic devices use the mfm file
manager.

MAUI supports multiple graphics devices on a system. It is also
possible that more than one descriptor may exist in memory for a
particular graphics device. The various descriptors might select
different default resolutions or specify some other configurable attribute
of the device.

Sound Devices

Sound device modules typically consist of a descriptor and driver. The
most common descriptor name is snd. By convention, sound drivers
have a prefix of sd_, followed by a name descriptive of the device.
Sound devices use the mfm file manager.

MAUI supports multiple sound devices on a system. It is also possible
that more than one descriptor may exist in memory for a particular
sound device. The various descriptors might select different defaults or
specify some other configurable attribute of the device.

Input Devices

Input devices consist of a MAUI Input Protocol Module and an
associated device descriptor and driver. In the configuration wizard,
sometimes the input device descriptor and driver are configured as part
MAUI Porting Guide 153

5 How to Configure a System for MAUI
of the “core OS”, such as with serial ports. For input
devices that are solely used by MAUI (e.g. a touch screen), they are
configured within the MAUI screens of the Wizard.

The MAUI Input devices use the MAUI Input Process (maui_inp) to
read a “normal” OS-9 input source, such as a serial port. maui_inp is
not affected by what file manager or driver supplies the data as long as
it supports _os_open(), _os_close(), _os_gs_ready(),
_os_sendsig(), and _os_read(). Some protocol modules may
require additional setstat/getstat support.

Like MAUI Graphic Drivers, the names of MAUI Input Protocol Modules
are not fixed. By convention, they have a prefix of mp_, followed by a
name indicating the protocol they support. Microware provides the
following standard MAUI Input Protocol Modules.

NoteNote
Not all MAUI Input Protocol Modules are included in all packages.

mp_bsptr Three Button Bus/PS2 Mouse

mp_hamp Hampton Communications Touch
Screen Format

mp_keyptr Example Combination Key/Pointer
Device

mp_kybrd Generic VT100 Serial Keyboard

mp_msptr Two Button Serial Mouse

mp_phptr Touch Screen CD-i Mouse

mp_phrem Philips Remote Control - In some OEM
packages as a source code example.

mp_pskbd Raw PS2 Keyboard

mp_sakpad StrongArm/SideKick 16 Button Numeric
Keypad Example

mp_ssptr SmartSet Touch Screen Controllers by
Elo Touch Systems, Inc.
154 MAUI Porting Guide

5How to Configure a System for MAUI
mp_t328ads Motorola MC68328ADS Touchpad

mp_ucb1200 UCB1200/1300 Touch Screen

mp_usbkbd USB Keyboard

mp_xtkbd Generic XT/Scan Code Keyboard

Demo Objects

Demo objects include examples, demos, and their assets. The demo
objects described below are located in the following directory:

MWOS/OS/CPU/CMDS/MAUIDEMOS

Their sources are located below MWOS/SRC/MAUI/DEMOS. All of these
demos use the MAUI Shared Library module (maui or mt_maui).
Readme files located with the demo sources indicate other
dependencies.

Table 5-1 MAUI Demos

Demo Description

Aloha Text and input demo

Auplay Playback AU and WAV sound files

Aurecord Record AU and WAV sound files

Cdbval CDB validation

Fcopy Graphics copying demo

Fdraw Graphics drawing demo

Gxdevcap Print graphic device information

Hello Graphic text demo
MAUI Porting Guide 155

5 How to Configure a System for MAUI
Inp Input demo

Jview Display JPEG images

Msginfo Displays information about a MAUI
mailbox

Msgwrtr/Msgrdr Messaging demo

Sfont Display a UCM font

Showimg Display IFF image

Windraw Window API block drawing demo

Winink Window pen/inking drawing demo

Winmgr Demo window manager daemon

Table 5-1 MAUI Demos
156 MAUI Porting Guide

5How to Configure a System for MAUI
Aloha Text and input demo

Syntax

aloha [<opts>]

Description

The aloha demo displays a message on the screen.
When a key on the input device is pressed, the
program exits.

Options

-f[=]<filename> filename - select alternate font
file.

Requirements

default.fnt must be loaded into memory unless an
alternative font file is specified, maui_inp must be
running on the system, and gfx and mfm must be in
memory.

Example

$ aloha

$ aloha -f=bold13.fnt
MAUI Porting Guide 157

5 How to Configure a System for MAUI
Auplay Play AU and WAV sound files

Syntax

auplay [<opts>] <file list>

Description

Plays audio files that are in the .wav or the Sun
Microsystems .au formats.

Options

-a Async (play while reading next chunk,
default: Sync)

-al Async with linked soundmaps (not
compatible with -k or -p)

-b[=]<size> size of the two read buffers in K bytes
(default: 375)

-c print device Capabilities and quit

-g[=]<line-1>[,<line-n>]:<l>[,<r>]

Set left and right gain for <line-1...n>. If
<r> is not specified, <l> is used as a
mono specifier. 'R' or <l> resets the
lines. The option may be repeated for
different sets of <line>s. <line> codes
are:

0 VOLUME Master output level

1 BASE Base level of all output lines

2 TREBLE Treble level of all output lines

3 SYNTH Synthesizer input

4 PCM Output level for the audio (CODEC, PCM)
line

5 SPEAKER Output level for the PC speaker

6 LINE Input level for the line in jack
158 MAUI Porting Guide

5How to Configure a System for MAUI
7 MIC Input level for the microphone in jack

8 CD Input level for CD in jack

9 IMIX Recording monitor level (output of rec input)

10 OMIX Loopback of output to input level

11 ALTPCM Output level of alternative codec device

12 RECLEV Global recording level setting

13 IGAIN Input gain control

14 OGAIN Output gain control

15 LINE1 Generic mixer line one

16 LINE2 Generic mixer line two

17LINE3Generic mixer line three

Other special values:

99 ALL Selects all devices

-i just print Info about the audio files, don't
play

-k[=]<ticks> kill/abort play in <ticks> (implies -s but
acts like FINISH, not compatible with -p)
(default: 0=none)

-l[=]<num> number times to loop individual
soundmaps (default 0)

-o[=]<dev> specify alternative Output sound device
(default: /snd)

-p[=]<ticks> pause interval in ticks (implies -s but acts
like FINISH, not compatible with -k)
(default: 0=none)

-r[=]<r> override the files sample Rate (samples
per second)

-s print device Status info

-u force signed 8-bit PCM data to Unsigned

-v verbose - prints more info
MAUI Porting Guide 159

5 How to Configure a System for MAUI
Requirements

A sound descriptor, sound driver, and mfm must in
memory.

NoteNote
The Sound Driver Interface only supports WAV type 0x39 files, it does
not support WAV type 0x11 files.

Example

$ auplay 0.au
Open 0.au
smap->err_code = 000:000
_os_ss_sndsig() generated the correct signal

$ auplay -i 0.au
Open 0.au
smap->coding_method = SND_CM_PCM_ULAW (0x1)
smap->num_channels = 1
smap->sample_size = 8
smap->sample_rate = 8000
time estimate: 0.12 seconds

$ auplay -s

****Device Status****

status->status = 0x0
status->play_pid = 0
status->record_pid = 0
 SND_LINE_MIC
 SND_GAIN_CMD_MONO
 gain->param.mono.m = 0x40
 SND_LINE_VOLUME | SND_LINE_SPEAKER
 SND_GAIN_CMD_MONO
 gain->param.mono.m = 0x7f
160 MAUI Porting Guide

5How to Configure a System for MAUI
$ auplay -g99:127 0.au
Open 0.au
smap->err_code = 000:000
_os_ss_sndsig() generated the correct signal
MAUI Porting Guide 161

5 How to Configure a System for MAUI
Aurecord Record AU and WAV sound files

Syntax

aurecord [<opts>] <filename>

Description

Records audio files to the .wav or the Sun
Microsystems .au formats.

Options

-b[=]<size> size of the two read buffers in K bytes
(default: 375)

-c print device Capabilities and quit

-e[=]<f>[,<r>[,<d>]] encoding Format, Rate, Depth (default
1,8000,8) where <f> is:

1 = SND_CM_PCM_ULAW

2 = SND_CM_PCM_ALAW

3 = SND_CM_PCM_SLINEAR

4 = SND_CM_PCM_ULINEAR

5 = SND_CM_ADPCM_G721

6 = SND_CM_ADPCM_G723

7 = SND_CM_ADPCM_IMA

<r> is the sample rate (samples per
second) and <d> is the bit depth (eg.
8,16,32)

-f[=]<type> format file as <type> (default 0) where
<type> is:

0 = AU_FILE_TYPE_SND

1 = AU_FILE_TYPE_WAVE

-g[=]<line-1>[,<line-n>]:<l>[,<r>]
162 MAUI Porting Guide

5How to Configure a System for MAUI
Set left and right gain for <line-1...n>. If
<r> is not specified, <l> is used as a
mono specifier. 'R' or <l> resets the
lines. The option may be repeated for
different sets of <line>s. <line> codes
are:

0 VOLUME Master output level

1 BASE Base level of all output lines

2 TREBLE Treble level of all output lines

3 SYNTH Synthesizer input

4 PCM Output level for the audio (CODEC, PCM)
line

5 SPEAKER Output level for the PC speaker

6 LINE Input level for the line in jack

7 MIC Input level for the microphone in jack

8 CD Input level for CD in jack

9 IMIX Recording monitor level (output of rec input)

10 OMIX Loopback of output to input level

11 ALTPCM Output level of alternative codec device

12 RECLEV Global recording level setting

13 IGAIN Input gain control

14 OGAIN Output gain control

15 LINE1 Generic mixer line one

16 LINE2 Generic mixer line two

17 LINE3 Generic mixer line three

Other special values:

99 ALL Selects all devices

-i[=]<dev> specify alternative Input sound device
(default: /snd)

-m mono instead of stereo
MAUI Porting Guide 163

5 How to Configure a System for MAUI
-r replace existing file

-s[=]<kbytes> size limit of capture in K bytes (default:
no limit)

-t[=]<seconds> time limit of capture in seconds (default:
no limit) note: -t has precedence over -s

-v verbose - prints more info

Requirements

A sound descriptor, sound driver, and mfm must in
memory. A file system to store the recorded file.

NoteNote
The Sound Driver Interface only supports WAV type 0x39 files, it does
not support WAV type 0x11 files.

Example

$ aurecord -c

****Device Capabilities****

devcap->hw_type = 'UCB1200'
devcap->hw_subtype = 'UCB1200'
devcap->sup_triggers = 0xf
 SND_STATUS_ANY
 SND_TRIG_START
 SND_TRIG_FINISH
devcap->play_lines = 0x21
 SND_LINE_VOLUME | SND_LINE_SPEAKER
…

$ aurecord -t10 -f=1 test.wav

164 MAUI Porting Guide

5How to Configure a System for MAUI
Cdbval CDB validation

Syntax

cdbval [<opts>]

Description

Cdbval checks for errors in CDB modules. If no
options are not specified, cdbval uses the CDB API to
validate each entry in all CDB modules in memory.

Options

-d Dump all CDB data in system memory.
This is useful to see what order the CDB
data will appear in to an application.

-p Print out registered device type
information.

-s=<name> Validate the general structure of the
CDB module <name> in memory
(bypassing the CDB API) and exit. This
test is useful if errors occur when
running cdbval which might be caused
by things like invalid characters or a
missing NULL terminator, etc.

Example

$ cdbval
Total DDRs found : 8
Total warnings found: 0
Total errors found : 0

$ cdbval -s=cdb_pskbd

General structure validation:

Module "cdb_pskbd":
Total DDRs found : 1
Total errors found: 0
MAUI Porting Guide 165

5 How to Configure a System for MAUI
$ cdbval -d=cdb
0:sys:CP="ARMV4":OS="OS9000":RV="1.1":SR#15360,1:
3:/gfx:AI="MAUI":GR#1024,128:
1000:/win:
2:/snd:
9:/pipe:
20:/term:
5:/kx0/mp_pskbd:TY="key":
5:/ucb_touch/mp_ucb1200:TY="ptr":
166 MAUI Porting Guide

5How to Configure a System for MAUI
Fcopy Graphics copying demo

Syntax

fcopy [<opts>]

Description

Fcopy exercises a block copy operation from a source
drawmap to a destination drawmap. A portion of one
image will be copied into the drawmap of another
image. Fcopy expects three image modules to be in
memory:

fun.<CM>
travel.<CM>
mwlogo.<CM>

where <CM> is the supported coding method. The images
can be found in MWOS\<operating system>\<hardware
platform>\ASSETS\IMAGES.

Options

-t[=]<seconds> number of seconds for the demo to run.

Requirements

A working MAUI environment. Gfx and mfm must be in
memory.

Example

$ fcopy
16183 random images in 10 seconds

$ fcopy -t=3
Using timeout of 3 seconds
4930 random images in 3 seconds
MAUI Porting Guide 167

5 How to Configure a System for MAUI
Fdraw Graphics drawing demo

Syntax

fdraw [resolution index] [<opts>]

Description

Draws blocks of random size and random color in a
random location on the screen for about 15 seconds
unless a timeout value is specified.

Options

-t[=]<seconds> number of seconds for the demo to run.

-cm[=]<coding method> coding method index

Requirements

A working MAUI environment. Gfx and mfm must be in
memory.

Example

$ fdraw
10684 boxes of random size and color in 10 seconds

$ fdraw -t=3 -cm=0
Using timeout of 3 seconds
Using coding method index = 0
3213 boxes of random size and color in 3 seconds
168 MAUI Porting Guide

5How to Configure a System for MAUI
Gxdevcap Print graphic device information

Syntax

gxdevcap

Description

Gxdevcap looks in the CDB for each graphics device
name and prints all information about each graphics
device's capabilities, including resolutions and
coding methods supported.

Requirements

A working MAUI environment. Gfx and mfm must be in
memory.

Example

$ gxdevcap

Device number = 1
Device name = /gfx
scavr: SmartIO ID : 0x4017
scavr: Device Type : 0x3585
scavr: Device Version : B(0x42)
scavr: lustat Version : B(0x42)
Hardware type = SA1100 LCD Controller
Hardware subtype = GraphicsClient 8-Bit Color LCD
Supports viewport mixing = FALSE
Supports external video = FALSE
Supports backdrop color = FALSE
Supports viewport transparency = FALSE
Supports viewport intensity = FALSE
Supports retrace synchronization = FALSE
Supports video decoding = FALSE
DAC depth = 12

Resolution 0:
 Size = 640x480
MAUI Porting Guide 169

5 How to Configure a System for MAUI
 Refresh rate = 0
 Interlace mode = GFX_INTL_OFF
 Aspect = 1x1

Coding method 0:
 Name = GFX_CM_8BIT
 ByteOrder = Big
 BitOrder = Little
 Depth = 8
 Align = 16
 X Multiplier = 1
 Y Multiplier = 1
 CLUT based = TRUE
 Num Color Types = 3
 Color Types = (GFX_COLOR_RGB, GFX_COLOR_YUV,
GFX_COLOR_YCBCR)
Extension size = 16
Modes supported = 1
 res_idx: 0 cm_idx 0 NO DESCRIPTION
Viewport complexity = 2 (GFX_VPC_ONE_EXACT)
Viewport Drawmap complexity = 2 (GFX_VPDMC_EXACT)
170 MAUI Porting Guide

5How to Configure a System for MAUI
Hello Graphic text demo

Syntax

hello [<opts>]

Description

"Hello MAUI demo..." is displayed on the graphics
device for ten seconds then exits.

Options

-f[=]<filename> specifies an alternate font file. default.fnt
is used by default

Requirements

A working MAUI environment. Gfx and mfm must be in
memory.

Example

$ hello

$ hello -f=myfont.ucm
MAUI Porting Guide 171

5 How to Configure a System for MAUI
Inp Input demo

Syntax

inp [mboxname] [<opts>]

Description

Inp displays input from an input device on the
standard error path. If no input device is
specified, inp will use the first device of type
CDB_TYPE_REMOTE found in the CDB module.

If a pointer device is used, messages will be
displayed when the cursor position is changed or
buttons are pressed. Select both buttons
simultaneously or press ^C to quit the application.

If a key input devices is specified, messages will be
displayed for each key selected. Press ^C to quit
the application.

Options

-i=<input device name> specifies an alternative input device
name. By default, inp will use the first
device of type CDB_TYPE_REMOTE
found in the CDB module.

Requirements

Maui_inp must be running on the system.

Example

$ inp -i=/ucb_touch/mp_ucb1200
Opening device '/ucb_touch/mp_ucb1200'
Send signal to 'inp' to end test
Expected device id 0xc89df018
+--+
Device type: +++ Pointer +++ Device ID:
0xc89df018
172 MAUI Porting Guide

5How to Configure a System for MAUI
| Sub-type: 0x4
| INP_PTR_MOVE
| Button changed: 0
| Button status 0 (0x0)
| New position (417,176)
| Simulating keysym: INP_KEY_NULL (0x0)
+--+
Device type: +++ Pointer +++ Device ID:
0xc89df018
| Sub-type: 0x1
| INP_PTR_DOWN
| Button changed: 1
| Button status 1 (0x1)
| New position (417,176)
| Simulating keysym: INP_KEY_NULL (0x0)
+--+
Device type: +++ Pointer +++ Device ID:
0xc89df018
| Sub-type: 0x2
| INP_PTR_UP
| Button changed: 1
| Button status 0 (0x0)
| New position (417,176)
| Simulating keysym: INP_KEY_NULL (0x0)
+--+
MAUI Porting Guide 173

5 How to Configure a System for MAUI
Jview Display JPEG images

Syntax

jview <file_name> [<opts>]

Description

Jview uses the MAUI JPEG API to display either a
single or sequential JPEG images found either in the
current directory or the current module directory.

Options

file_name Either a JPEG image file in the current
directory or in the module directory or a
file in the current directory that holds a
list of JPEG image file names specified
one per line.

c<num_colors> Number of desired colors (default is 256)

C<value> Coding method number in dev_cap
(default is 0)

F Use fade-in and fade-out effect (default -
no fade); note that fade effect is only
available in CLUT-based coding
methods.

m Monocrome mode

r<value> Resolution number in dev_cap (default is
0)

q<quality_level> Quality level, 1 thru 3, where 3 is default
and highest quality.

s<numerator><denominator> Scale (1:1, 1:2, 1:4, 1:8 are supported);
for example, s12 means scale 1:2.

S Slide mode (assumes that a file list is
used)

T<value> Display time in seconds (default is 3
seconds)
174 MAUI Porting Guide

5How to Configure a System for MAUI
V Verbose debug mode

x<value> x offset coordinate

y<value> y offset coordinate

Requirements

Working MAUI graphics environment and JPEG images.

NoteNote
This is a user-contributed demo provided due to the high demand for a
JPEG viewer, and has not been verified by RadiSys. There may be
memory leaks or other problems with this code.

Example

$ jview image.jpg q2 s12

$ jview image.jpg m x10 y10 T5

$ list file_list
image.jpg
image2.jpg
$ jview file_list S T6 F
MAUI Porting Guide 175

5 How to Configure a System for MAUI
Msginfo Displays information about a MAUI mailbox

Syntax

msginfo [<opts>] <mboxnames ...>

Description

Msginfo prints information about mailboxes in memory.
It has command line options to either "dump" the
content of the mailbox on the screen or decode
messages stored in the mailbox.

Options

-d Dump contents

-dd Attempt to decode messages

Requirements

A working MAUI environment with mauidev/mauidrvr.

Example

$ msginfo -d app_mbox
Mailbox status for 'app_mbox'
 number of entries : 50
 free entries : 50
 message size : 20
 link count: 3
176 MAUI Porting Guide

5How to Configure a System for MAUI
Msgwrtr/Msgrdr Messaging demo

Syntax

msgwrtr

Description

This demo shows the use of the message functions
using a mailbox. When the write process, 'msgwrtr',
is executed, the process creates a mailbox, then
initiates the read process, 'msgrdr'. The two
processes then pass messages to each other through
the mailbox.

When executed, this demo does the following:
 1. The message write process will write 1001
messages in the mailbox.
 2. While the write process is writing, the read
process will read messages from the mailbox. If the
mailbox becomes full a diagnostic will be printed and
go on.
 3. When the read process receives a message of
type MSG_DONE, it will display the number of messages
read. This should indicate 1001 messages read.
 4. Both the read and write processes then
terminate.

This demo is capable of showing the use of a filter
routine attached to a mailbox. To enable the use of
the filter routine simply define the FILTER
environment variable. The filter will simply print
out the message "filter!" and accept the message. To
enable the installation of the filter do the
following before running msgwrtr:
 $ setenv FILTER x
MAUI Porting Guide 177

5 How to Configure a System for MAUI
Requirements

A working MAUI environment with msgwrtr and msgrdr in
memory.

Example

$ msgwrtr
MAUI Fatal(7|7): 10:28 detected in msg_write.
mbox full retrying
status.name app_mbox
status.num_entries 50
status.free_entries 0
status.entry_size 20
status.link_count 1
status.write_mask 0xffffffff
status.filter 0x0
status.filter_data 0x0
…
Wrote 1001 messages
Waiting for child to finish
Read 1001 messages
178 MAUI Porting Guide

5How to Configure a System for MAUI
Sfont Displays a UCM font

Syntax

sfont <opts>

Description

Sfont displays a UCM font on a graphics device.
Default.fnt will be displayed unless an alternative
font is specified.

Options

-i print information about font.

-f[=]<modulename> reads font from <modulename>
otherwise 'default.fnt' is used.

-a displays ['a',...,'z'] and ['A',...,'z'].

-n displays ['0',...,'9'].

-s displays ['!',...,'~'].

-au displays ['A',...,'Z'].

-al displays ['a',...,'z'].

-r1 or -r2 displays [32,127] or [32,255] range of
chars.

-rs[=]<n> specifies display resolution <n>.

-m[=]<n> specifies coding method <n>.

-x[=]<x_start> display starting at <x_start> coordinate.

-y[=]<y_start> display starting at <y_start> coordinate.

-p[=]<padding> display characters with <padding>.

-ur[=]<start,end> displays characters within <start,end>
range.

-us[=]"string" displays "string" of characters.

-uf[=]<file_on_disk> displays content of the file
<file_on_disk>.
MAUI Porting Guide 179

5 How to Configure a System for MAUI
-cb[=]<index> sets font background color
to <index> value.

-cf[=]<index> sets font foreground color to <index>
value.

Requirements

A working MAUI environment with a graphics device.

Example

$ sfont
Press return to quit.

$ sfont -f=bold13.fnt
Press return to quit.

$ sfont -us="hello" -f=bold13.fnt
Press return to quit.
180 MAUI Porting Guide

5How to Configure a System for MAUI
Showimg Display IFF image

Syntax

showing [filename]

Description

Showimg displays an IFF image file for about 10
seconds. The image filename must be included on the
command line.

Options

filename Specifies an IFF image

Requirements

A working MAUI environment. Gfx and mfm must be in
memory.

Example

$ showimg fun.c8
MAUI Porting Guide 181

5 How to Configure a System for MAUI
Windraw Window API block drawing demo

Syntax

windraw <x> <y> <w> <h> <demo> <mbox>

Description

Windraw is an example of a windowing program. This
program is similar to fdraw except it uses the WIN
API to draw blocks in a window.

Options

x starting x coordinate

y starting y coordinate

w width of window to create

h height of window to create

demo 1 - draws random rectangles

2 - draws random lines

mbox MAUI mailbox name

Requirements

A working MAUI environment. Gfx and mfm must be in
memory. Maui_win must be in memory or in the
execution directory. Maui_inp and winmgrdemo
(filename winmgr) must be running.

NoteNote
On some platforms the priorities of maui_inp and winmgrdemo need to
be higher than the default (128). Set the priority using the '^' character.
e.g.

 $ maui_inp ^255 <>>>/nil &

 $ winmgrdemo ^201 <>>>/nil &
182 MAUI Porting Guide

5How to Configure a System for MAUI
Example

$ windraw 10 10 100 100 2 mbox1

$ windraw 200 200 50 50 1 mbox2
MAUI Porting Guide 183

5 How to Configure a System for MAUI
Winink Window pen/inking drawing demo

Syntax

winink <x> <y> <w> <h> <mbox>

Description

Winink is an example of a windowing program that
opens a window that the user can ink in.

Options

x starting x coordinate

y starting y coordinate

w width of window to create

h height of window to create

mbox MAUI mailbox name

Requirements

A working MAUI environment. Gfx and mfm must be in
memory. Maui_win must be in memory or in the
execution directory. Maui_inp and winmgrdemo
(filename winmgr) must be running.

NoteNote
On some platforms the priorities of maui_inp and winmgrdemo need to
be higher than the default (128). Set the priority using the '^' character.
e.g.

 $ maui_inp ^255 <>>>/nil &

 $ winmgrdemo ^201 <>>>/nil &

Example

$ winink 50 50 100 100 mbox1
184 MAUI Porting Guide

5How to Configure a System for MAUI
Winmgr Demo window manager daemon

Syntax

winmgrdemo [<opts>]

Description

Winmgr is an example of a window manager program.

Options

-b[=]<n> Background color. Valid values for <n>:
0 = black, 1 = white, 2 = medium grey, 3
= dark grey, 4 = dark blue

-c[=]<idx> Coding method index for graphics device

-g[=]<name> Specifies an alternative graphic device
name which overrides the graphics
device specified in the CDB module.

-r[=]<idx> Resolution index for graphics device

-s Draw stipple background pattern

-v Prints verbose more info

NoteNote
To resolve a module name conflict the winmgr module has been
renamed to winmgrdemo, but the filename is still winmgr so the
bootlists would still work.

Requirements

A working MAUI environment. Gfx and mfm must be in
memory. Maui_win must be in memory or in the
execution directory. Maui_inp must be running.
MAUI Porting Guide 185

5 How to Configure a System for MAUI
NoteNote
On some platforms the priorities of maui_inp and
winmgrdemo need to be higher than the default (128). Set the priority
using the '^' character. e.g.

 $ maui_inp ^255 <>>>/nil &

 $ winmgrdemo ^201 <>>>/nil &

Example

$ winmgrdemo ^201 <>>>/nil &
186 MAUI Porting Guide

5How to Configure a System for MAUI
Selecting a MAUI System Driver

MAUI Version 3.1 or greater includes the MAUI System Driver, which
implements the MSG and CDB functionality.

MSG Support

To close a stability hole in the original design of MAUI Messaging (MSG),
MAUI 3.1 re-implemented messaging as a system state service via a
driver. By making messaging part of the OS-9 IO system, MAUI can
now detect abnormal application termination via SS_CLOSE. This
enables automatic cleanup of mailboxes opened by the application. In
addition, the MSG API was extended to enable applications to request
notification when other applications, which use the MSG API, terminate.
For example, maui_inp can now determine if an application using the
INP API, which uses the MSG API, quits without calling inp_term(),
which calls msg_term(). This allows the application to return memory
allocated on behalf of that application.

There is additional overhead to call a driver instead of directly running
the message code. This can be partially offset by the driver making
faster system calls from system state. To do this, however, the driver
must execute entirely in system state, which interferes with the
continued support of the msg_set_filter().

CDB Support

MAUI Version 3.1 moved the CDB from user state application code to
the MAUI System Driver. This corrected a hole in the original design
that allowed small windows where the systems module directory could
change while the application searched for CDB modules. This also
resulted in a speed improvement because of fewer system calls and
less copying of system state structures for accessing in user state.

All versions of the MAUI System Driver have the same CDB
implementations.
MAUI Porting Guide 187

5 How to Configure a System for MAUI
MAUI System Driver Versions

MAUI provides the following versions of the MAUI system driver:

• mauidrvr

• mauidrvr_lock

• mauidrvr_filter

The three versions of the driver allow the selection of different
messaging implementations by installing different versions of the driver.

The mauidrvr Driver

The standard version of the MAUI System Driver, mauidrvr, is the
smallest and fastest of the three. It does not support
msg_set_filter() so it can execute 100% in system state. This
results in a size savings. This also enables the MAUI System Driver to
make accelerated OS calls (speed savings) directly into the kernel as
well as remove the old semaphore calls (speed and size savings) that
protected the message queues.

This version of the MAUI System Driver is not compatible with
pre-MAUI 3.1 statically linked applications, which expect all parties
accessing the message queue to use semaphore queue locking.
Pre-MAUI 3.1 binaries that linked with the MAUI Shared Library
(maui.l/maui.il) are still compatible because those applications will
attach to a current MAUI Shared Library Module (maui), which uses the
MAUI System Driver.

The mauidrvr_lock Driver

The second version of the MAUI System Driver, mauidrvr_lock,
does not support msg_set_filter(), but does provide queue locking
via semaphores. This allows the continued use of old versions of
statically linked MAUI binaries on a system. This version is both larger
and slower than the standard MAUI System Driver because of the
additional semaphore code. This version of the driver is not considered
188 MAUI Porting Guide

5How to Configure a System for MAUI
as “secure” as the standard driver because the message queue
memory is permitted for write access by the old application binaries in
user state.

The mauidrvr_filter Driver

The third version of the MAUI System Driver, mauidrvr_filter, is
the largest, slowest, and least secure of the three versions. However, it
is the most compatible with prior versions of MAUI. This version
supports both msg_set_filter() and queue locking via
semaphores. To maintain compatibility with earlier version of MAUI, the
read, readn, peek, peekn, and flush functions have to execute in
user state when a filter function is active. This required that the
application be permitted both read and write access to the memory
containing the message queues. This leaves the message queues
vulnerable to errant or malicious data accesses by applications, which
could result in lockups and other unpredictable behavior. In addition,
because parts of the driver code now execute in user state, the
accelerated system state OS calls, plus full semaphore locking of the
message queues, is required.

Extreme care should be exercised when implementing filter functions.
Filter functions are intended only for inspection of the message data in
the queue. Activity in the filter function should be kept to a minimum.
The filter function must not attempt to modify the messages in the
queue. Programming errors or abnormal termination of an application
while executing a filter function can cause damage to message queue
and the other processes using that message queue.

The filter function should not make function calls or cause the
application to block or abort. While the filter function is called, MAUI
locks the message queue of the mailbox, blocking all other applications
attempting to access the message queue. Delays or failures in the filter
function can impact the stability of other applications accessing the
message queue.

Unless there is a specific need for compatibility with pre-MAUI 3.1
binaries that were statically linked, it is recommended that you use the
mauidrvr version of the driver.
MAUI Porting Guide 189

5 How to Configure a System for MAUI
Using the Configuration Wizard for
MAUI

This section describes using the OS-9 configuration wizard to configure
your software system for MAUI.

Step 1. Start the configuration wizard by selecting Start -> Programs ->
Microware -> <Product Name> -> Microware Configuration Wizard
from your Windows development system. Select Advanced Mode and
click OK. The configuration wizard executable is located in
mwos\DOC\BIN\os9p.exe on your Windows development system.

Figure 5-1 Configuration Wizard Starting Window
190 MAUI Porting Guide

5How to Configure a System for MAUI
NoteNote
This section assumes that you are familiar with the configuration wizard
and can build an OS-9 system that boots your target hardware to an
OS-9 shell prompt on one of the serial ports. This information is
provided in the appropriate OS-9 Board Guide.

Step 2. Choose your bootfile options by pushing the Configure Systems
Options button on the toolbar shown by arrow 1. Select the Bootfile
Options tab.
MAUI Porting Guide 191

5 How to Configure a System for MAUI
If the target system must support threaded applications,
check the Thread Support box shown by arrow 2. Clear this box if you
do not require thread support. This option selects the appropriate C and
MAUI shared library modules. Thread support has a slightly larger
footprint and some operations may run a little slower.

Figure 5-2 MAUI Bootfile Options

1

2

192 MAUI Porting Guide

5How to Configure a System for MAUI
Step 3. Select the MAUI Options tab shown by arrow 1.

Figure 5-3 MAUI Options

This screen varies depending on the specific port you are working with.
Refer to the object module descriptions in the previous section and the
appropriate OS-9 Board Guide for descriptions of these options. In this
example, you can select the version of the graphics driver to use and
what demos to load.

Some systems (for example the PCAT and Sandpoint) boot by default
with a command console on the VGA/Keyboard rather than a serial
port. An active shell on the same port as used by maui_inp can cause

1

MAUI Porting Guide 193

5 How to Configure a System for MAUI
conflicts. It is recommended that when using MAUI on
these systems, you switch the Console Port to one of the serial ports.
To set the Console Port, select the Define /term Port tab.

Figure 5-4 Setting the Console Port

For instance, the screen dump below has selected COM1 rather than
the default VGA/Keyboard for the command shell. This allows MAUI
applications uncontested access to the scan code keyboard.

Step 4. Click OK and close the window.
194 MAUI Porting Guide

5How to Configure a System for MAUI
Step 5. Select the Build Images button from the toolbar shown by arrow 1.

Figure 5-5 Master Builder Window

The Master Builder window is displayed. Here you select which
components to enable on the system. Select the MAUI Support check
box (shown by arrow 2) as well as any other boxes that may be
appropriate for the device (shown by arrow 3). Again the specific
selections may differ between ports.

Step 6. Click the Build button. For advanced MAUI settings, see the Advanced
Wizard Configuration section.

1

2

3

MAUI Porting Guide 195

5 How to Configure a System for MAUI
Advanced Wizard Configuration

The Advanced Mode of the Wizard provides convenient access to the
file lists used to build the boot images. The MAUI file list is called
maui.ml and can be accessed by selecting Sources -> Port -> Maui
from the configuration window menu.

Figure 5-6 MAUI Advanced Configuration
196 MAUI Porting Guide

5How to Configure a System for MAUI
This selection opens a text editor window for editing the MAUI file list.

Figure 5-7 Editing the MAUI File List

A “*” in the first column denotes a comment, which is ignored.
Comment lines that contain bracketed items such as “*
[BOOTFILE:OPTION1]” are used by the wizard to find and select files
based on the options selected in the Wizard configurations screens.

By removing and adding comment symbols “*”, a developer has
absolute control of what MAUI objects are placed in the boot image.
This includes changing file selections that are not controllable from the
Wizards graphic user interface, such as which mauidrvr or maui_inp
to use.
MAUI Porting Guide 197

5 How to Configure a System for MAUI
198 MAUI Porting Guide

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Index

Symbols
_key.h 63, 65, 66, 69, 70
_MP_DEV 89

Numerics
11223

func.name
Windraw 182

30970
func.name

Inp 172
33218

func.name
Sfont 179

43429
func.name

Gxdevcap 169
71358

func.name
Fdraw 168

71490
func.name

Msgwrtr/Msgrdr 177
71703

func.name
Hello 171

79372
func.name

Msginfo 176
79562

func.name
Fcopy 167
MAUI Porting Guide 199

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
81421
func.name

Winink 184
83330

func.name
Winmgr 185

85459
func.name

Cdbval 165
86044

func.name
Aloha 157

88327
func.name

Aurecord 162
92171

func.name
Auplay 158

92861
func.name

Showimg 181
98641

func.name
Jview 174

A
Attach to a Device 79

C
callback

set messages 107
CDB

building 15
example file 12
modifying 14
testing 16

check for existing keys 93
cmd_check_keys() 68
200 MAUI Porting Guide

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
coding method 24
command codes 117
command messages

processing 85
Common Code Source Files 139
Common Section of Control Messages 123
Common Source Files 43
Configuration Description Block 7
Create directory structure for your port 34, 64, 69, 132

D
Data Structures/Data Types 88
detach device 80
device

attaching to 79
data structure 90
detach graphics 80
get capablilities 95
get status 97
input path/mailbox data structure 89
process control messages 85
receive data 83

Device and Protocol Module Data 90
Device Capabilities 22, 24, 128
Device Resolution 22
Device Types and Names 10
Device Types, Device Names, Device Parameters 10
Device-Specific Code 32
Device-specific Code 130
Device-specific Files 44
Device-specific Source Files 139
Directory Structure for Your Graphics Driver Port 35
Directory Structure for Your Sound Driver Port 133
Driver Code 30, 129

E
end process 87
errors
MAUI Porting Guide 201

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
EOS_MAUI_BADACK 85, 115
EOS_READ 84
EOS_UNFINISHED 84
MSG_BADACK_REPLY 115

Example of the Makefile 13
Example of the Source File 12
Extended Device Capabilities 24

F
Format String for Reply Mailbox 121
Functional Data Reference 88

G
Gets Device Capabilities 95
Gets Device Status 97
Gets Static Memory Requirements 82
GFX_DEV_CAP 22
GFX_DEV_CAP Device Capabilities 22
GFX_DEV_CAP Extneded Device Capabilities 24
GFX_DEV_CAPEXTEN 24
GFX_DEV_CM 24
GFX_DEV_CM Coding Methods 24
GFX_DEV_RES 22
GFX_DEV_RES Device Resolution 23
Graphics Device 20, 21

Logical Device 21
Physical Device 21
Shared Logical Devices 21

Graphics Driver
config.h 33
Make files 56
Where the Files are Located 33

Graphics Driver Code 30
Graphics Driver Interface 17

Overview 18
Graphics RAM 19
202 MAUI Porting Guide

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
H
How to

Build the CDB 15
Build your Graphics Driver 56
Build Your Protocol Module 75
Build your Sound Driver 146
make the CDB 15
Make your Graphics Driver 56
Modify the CDB 14
Port Your Graphics Driver 34
Port Your Protocol Module 64
Port your Sound Driver 132
Test the New CDB 16
test the new CDB 16
Test Your Driver 57
Test your Driver 147
Test Your Protocol Module 76

I
init.c 63, 65, 66, 69, 71
Initialize static memory 63, 65, 69, 81
INP_DEV_CAP structure 70
Input 59
Input Device ID 118
Input Device Path/Mailbox Data 89
Input Protocol Module Entry Points 77
Inputs Process ID 122
Interprets Device Data 83

K
key devices 64
keys

check for existing 93
release reserved 99
releasing reserved 80
reserve 101
MAUI Porting Guide 203

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
L
Location of Graphics Files 33
Location of MAUI Hardware-Layer Functions 78
Location of MPPM Entry Points 78
Logical Device 21

M
masks

set message write 109
MAUI Codes 117
MAUI commands

MSG_CHECK_KEYS 93
MSG_GET_DEV_CAP 95
MSG_GET_DEV_STATUS 97
MSG_RELEASE_KEY 99
MSG_RESERVE_KEY 101
MSG_SET_MSG_CALLBACK 107
MSG_SET_MSG_MASK 109
MSG_SET_PTR_LIMIT 111
MSG_SET_PTR_POS 113
MSG_SET_SIM_METH 105

MAUI data constant
MP_MBOX_NAME 120
MP_MBOX_REPLY_NAME 121
MSG_TYPE_MPCMD 124

MAUI data structures
_MP_DEV 89
MP_DEV_MSG 119
MP_MPPM 90
MSG_COMMON_MPCMD 123

MAUI data type
MP_DEV_ID 118
MP_PROC_ID 122

MAUI error reply commands
MSG_BADACK_REPLY 115

MAUI functions
mppm_attach() 79
mppm_detach() 80
mppm_init() 81
204 MAUI Porting Guide

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
mppm_initsize() 82
mppm_process_data() 83
mppm_process_mag() 85
mppm_term() 87

MAUI Input Process 61
MAUI Input Process System Diagram 60
MAUI Input Protocol Modules 61
memory

get static requirements 82
initialize static 81

Message Command Codes 117
message commands

MSG_BADACK_REPLY 115
MSG_CHECK_KEYS 93
MSG_GET_DEV_CAP 95
MSG_GET_DEV_STATUS 97
MSG_RELEASE_KEY 99
MSG_RESERVE_KEY 101
MSG_SET_MSG_CALLBACK 107
MSG_SET_MSG_MASK 109
MSG_SET_PTR_LIMIT 111
MSG_SET_PTR_POS 113
MSG_SET_SIM_METH 105

Message Data reference 116
Message Data Reference Structures 116
Message reference 92
Message Type Code 124
messages

processing command 85
set callback 107
set write mask 109

messges
union 119

MFM, Driver, Descriptor Relationship 127
MFM-Driver-Descriptor Relationship 18
modes

set simulation 105
Modify

config.h file to reflect your system. 45, 141
global.h file to reflect your graphics device capabilities 49
global.h file to reflect your system. 141
MAUI Porting Guide 205

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
hardware.c file to initialize your hardware 52
hardware.c files to initialize your hardware 143
hardware.h file to reflect your system hardware definitions 52,

142
play.c, record.c, and irq.c files to support play and/or record

143
remaining control functions 144
remaining device-specific functions 145
remaining display functions 54
remaining viewport functions 54
SOURCE Files 45
SOURCE files you need 140
static.c file to initialize and terminate static storage areas 53
static.h file to define your static storage areas. 49, 142

MP_DEV 89
MP_DEV_CMD 117
MP_DEV_ID 118
MP_DEV_MSG 119
MP_MBOX_NAME 120
MP_MBOX_REPLY_NAME 121
MP_MPPM 90
MP_PROC_ID 122
MPPM Entry Point Functions 77
mppm_attach() 79
mppm_detach() 68, 74, 80
mppm_init() 66, 71, 81
mppm_initsize() 66, 71, 82
mppm_process_data() 67, 71, 83
mppm_process_msg 92
mppm_process_msg() 68, 74, 85
mppm_term() 68, 74, 87
mppmstrt.a 63, 65, 66, 69, 71
MSG_BADACK_REPLY 115
MSG_CHECK_KEYS 93
MSG_COMMON_MPCMD 123
MSG_GET_DEV_CAP 95
MSG_GET_DEV_STATUS 97
MSG_RELEASE_KEY 99
MSG_RESERVE_KEY 101
MSG_RESTACK_DEV 103
MSG_SET_MSG_CALLBACK 107
206 MAUI Porting Guide

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
MSG_SET_MSG_MASK 109
MSG_SET_PTR_LIMIT 111
MSG_SET_PTR_POS 113
MSG_SET_SIM_METH 105
MSG_TYPE_MPCMD 124
Msgrdr 177

N
Name of maui_inp’s Command Mailbox 120
Normal RAM 19
Normal RAM and Pseudo RAM 19
NUM_MSG 71
NUM_PKT_BUF 71

O
Overview 60
Overview of Graphics Driver Interface 18
Overview of Sound Driver Interface 126
Overview of the CDB 8

P
PHILMOUS 63
Physical and Logical Graphics Devices 21
Physical Device 21
PMEM structure 71
pointer device 63, 64
pointers

set limits 111
set position 113

Porting a Key Device 64
Porting a Pointer Device 69
procdata.c 63, 65, 67, 69, 71
Processes Command Messages 85
procmsg.c 63, 65, 68, 69, 74
protocol module

data structure 90
Pseudo RAM 19
MAUI Porting Guide 207

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
R
RAM Allocation 20
receive

raw data 83
release

reserved key 99
reserved keys 80

Releases a Reserved Key 99
replies to bad messages 115
reserve

key 101
reserved

release key 99
Reserves a Key for a Process 101
Re-stack an Input Device 103

S
Sets Message Callback 107
Sets Message Write Mask 109
Sets Pointer Limit 111
Sets Pointer Position 113
Sets Simulation Mode 105
Shared Logical Devices 21
simulation mode 105
size

get static memory requirements 82
Sound Driver 125, 149
static memory

get requirements 82
initializing 81

status
get device 97

structures
MP_MPPM 90

Summary of MAUI Hardware-Layer Functions 77
208 MAUI Porting Guide

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
T
term.c 63, 65, 68, 69, 74
terminate process 87
Terminates Process 87
Testing Key Devices 76
Testing Pointer Devices 76

U
union of all messages 119

V
Value of Placement in MSG_RESTACK_DEV 103

W
Where the CDB files are located 12
Where the Files are Located 33, 63, 131
write

set message mask 109
MAUI Porting Guide 209

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
210 MAUI Porting Guide

	MAUI® Porting Guide
	Table of Contents
	Chapter 1: Configuration Description Block
	Overview of the CDB
	Device Types, Device Names, Device Parameters
	Device Types and Names

	Example of the Source File
	Example of the Makefile
	How to Modify the CDB
	How to Build the CDB
	How to Test the New CDB

	Chapter 2: Graphics Driver Interface
	Overview of Graphics Driver Interface
	Graphics RAM

	Graphics Device
	Device Capabilities
	GFX_DEV_CAP Device Capabilities
	GFX_DEV_RES Device Resolution
	GFX_DEV_CM Coding Methods
	GFX_DEV_CAPEXTEN Extended Device Capabilities
	GFX_DEV_MODES Device Modes

	Compile State for Graphics Drivers
	IOBLT and HWBLT Drivers
	IOBLT Driver
	HWBLT Driver

	Driver Code
	Device-Specific Code

	Where the Files are Located
	How to Port Your Graphics Driver
	Create the directory structure for your port
	Common Source Files
	Device-specific Files

	Modify SOURCE Files
	Modify the config.h file to reflect your system.
	Modify the global.h file to reflect your graphics device capabilities
	Modify the static.h file to define your static storage areas.
	Modify the hardware.h file to reflect your system hardware definitions
	Modify the hardware.c file to initialize your hardware
	Modify the static.c file to initialize and terminate static storage areas
	Modify the remaining display functions
	Modify the remaining viewport functions

	How to Build your Graphics Driver
	How to Test Your Driver

	Chapter 3: Input
	Overview
	MAUI Input Process
	MAUI Input Protocol Modules

	Where the Files are Located
	How to Port Your Protocol Module
	Porting a Key Device
	Create the directory structure for your port
	_key.h
	init.c
	mppmstrt.a
	procdata.c
	procmsg.c
	term.c

	Porting a Pointer Device
	Create the directory structure for your port
	_key.h
	init.c
	mppmstrt.a
	procdata.c
	procmsg.c
	term.c

	How to Build Your Protocol Module
	How to Test Your Protocol Module
	Testing Key Devices
	Testing Pointer Devices

	Input Protocol Module Entry Points
	Summary of MAUI Hardware-Layer Functions
	Location of MAUI Hardware-Layer Functions
	mppm_attach()
	mppm_detach()
	mppm_init()
	mppm_initsize()
	mppm_process_data()
	mppm_process_msg()
	mppm_term()

	Functional Data Reference
	MP_DEV
	MP_MPPM

	Message reference
	MSG_CHECK_KEYS
	MSG_GET_DEV_CAP
	MSG_GET_DEV_STATUS
	MSG_RELEASE_KEY
	MSG_RESERVE_KEY
	MSG_RESTACK_DEV
	MSG_SET_SIM_METH
	MSG_SET_MSG_CALLBACK
	MSG_SET_MSG_MASK
	MSG_SET_PTR_LIMIT
	MSG_SET_PTR_POS
	MSG_BADACK_REPLY

	Message Data reference
	MP_DEV_CMD
	MP_DEV_ID
	MP_DEV_MSG
	MP_MBOX_NAME
	MP_MBOX_REPLY_NAME
	MP_PROC_ID
	MSG_COMMON_MPCMD
	MSG_TYPE_MPCMD

	Chapter 4: Sound Driver
	Overview of Sound Driver Interface
	Device Capabilities

	Driver Code
	Device-specific Code

	Where the Files are Located
	How to Port your Sound Driver
	Create the directory structure for your port
	Common Code Source Files
	Device-specific Source Files

	Modify the SOURCE files you need
	Modify the config.h file to reflect your system.
	Modify the global.h file to reflect your system.
	Modify the static.h file to define your static storage areas.
	Modify the hardware.h file to reflect your system hardware definitions
	Modify the hardware.c files to initialize your hardware
	Modify the play.c, record.c, and irq.c files to support play and/or record
	Modify the remaining control functions
	Modify the remaining device-specific functions

	How to Build your Sound Driver
	How to Test your Driver

	Chapter 5: How to Configure a System for MAUI
	Overview of MAUI Object Modules
	Common MAUI modules
	Port-Specific Objects
	Configuration Description Blocks
	Graphics Devices
	Sound Devices
	Input Devices

	Demo Objects
	Aloha
	Auplay
	Aurecord
	Cdbval
	Fcopy
	Fdraw
	Gxdevcap
	Hello
	Inp
	Jview
	Msginfo
	Msgwrtr/Msgrdr
	Sfont
	Showimg
	Windraw
	Winink
	Winmgr

	Selecting a MAUI System Driver
	MSG Support
	CDB Support
	MAUI System Driver Versions
	The mauidrvr Driver
	The mauidrvr_lock Driver
	The mauidrvr_filter Driver

	Using the Configuration Wizard for MAUI
	Advanced Wizard Configuration

	Index

