
w w w. ra d i sy s . co m
Revision A • July 2006

Using the Sound Driver
Interface

Version 3.2

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 3.2 of MAUI.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

Table of Contents

Chapter 1: Sound Concepts 7

8 Overview
9 Entry Points
9 Sound Functions and Data Types
10 Sound Maps
12 Triggers and Status
13 Encoding Parameters
14 Sound Buffer
15 Looping
15 Next Sound Map
16 Preparing to Use Sound
16 Device Capabilities
16 Example 1
17 Example 2
17 SND_DEV_CAP Data Structure
20 Driver Compatibility Level

Chapter 2: Sound Operations 21

22 Preparing the Sound Device for Use
22 Get the Sound Device Name
22 Open
23 Get Device Capabilities
24 Keeping Track of the Sound Device
24 Sound Device Status
25 Status
25 Gain
25 Send Signal
Using the Sound Driver Interface 3

26 Release the Device
27 Playing and Recording Sound Data
27 Play
29 Record
31 Gain Control
35 Pause
35 Continue
36 Abort
37 Completing Sound Operations
37 Close

Chapter 3: Function Reference 39

40 Function Reference
40 Include Files
40 Standard Driver Entry Points
40 Sound Input and Output
41 Device Compatibility, Capability, and Status

Chapter 4: Data Type Reference 71

72 Data Type Reference
72 Defined Constants
72 Enumerated Types
72 Data Types
72 Integers
72 Data Structures
76 OEM
77 BE
78 bE
79 Name
80 SND_CM_UNKNOWN
4 Using the Sound Driver Interface

80 SND_CM_PCM_SLINEAR,
SND_CM_PCM_SLINEAR | SND_CM_LSBYTE1ST
SND_CM_PCM_ULINEAR
SND_CM_PCM_ULINEAR | SND_CM_LSBYTE1ST

84 SND_CM_PCM_ULAW
SND_CM_PCM_ALAW

85 SND_CM_ADPCM_IMA
86 SND_CM_ADPCM_G721
87 SND_CM_ADPCM_G723
87 SND_CM_OEM_*

Appendix A: Sound Hardware Specifications 119

120 Crystal Semiconductor CS4231A
120 Overview
121 Device Capabilities
123 Gain Capabilities Array
134 Sample Rates
134 Number of Channels
135 Encoding and Decoding Formats

 Index 137
Using the Sound Driver Interface 5

6 Using the Sound Driver Interface

Chapter 1: Sound Concepts

The Sound Driver Interface enables your MAUI® application to play and
record sound data. This chapter explains the concepts of using sound in
your applications.
7

1 Sound Concepts
Overview

The Sound Driver Interface:

• provides a set of primary entry points, GetStat sub-functions, and
SetStat sub-functions through which MAUI applications can control
the sound driver.

• is a dual-ported I/O (DPIO) driver that uses the multimedia file
manager (MFM). This allows the driver to work under both OS-9®
and OS-9 for 68K.

The sound driver is sharable (multiple paths may be open to it at the
same time). This enables multiple play and record paths, but not
concurrent play and record.

The Sound Driver Interface is accessible by MAUI applications and
directly controls the operation of the sound driver as shown in the
following figure.

Figure 1-1 Sound Driver Interface Architecture

Sound Encoder/Decoder

MAUI Application

Sound Driver Interface

Entry Points

Sound Driver

Common Code

Hardware-Specific Code
8 Using the Sound Driver Interface

1Sound Concepts
Entry Points

The primary entry points into the sound driver are those found in all
DPIO drivers. They are init, terminate, open, close, getstat,
and setstat. The getstat and setstat entry points are dispatch
functions that call the proper sub-function based on the information in
the parameter block passed to it.

Sound Functions and Data Types

The Sound Driver Interface provides the functions your application
needs to play and record sound. The majority of functions can be
loosely divided into two categories: get status functions and set status
functions.

Get status functions are identified by the _os_gs_* name construction.
These functions are used by the application to get information or status
from the sound driver. Your application uses get status functions to
determine sound device status and capabilities.

Set status functions are identified by the _os_ss_* name
construction. They are used by the application to send control
commands or set the status of the sound driver. Your application uses
set status functions to instruct the sound driver to send signals when
the device is ready, play sound data, record sound, and release the
device when it is no longer needed.

Sound data types comprise constants, enumerated types, and data
structures that provide information to the application and the sound
driver. Data types control how sound drivers operate and are
fundamental to hardware independence.
Using the Sound Driver Interface 9

1 Sound Concepts
Sound Maps

Sound map objects are created by the application to control play and
record operations. Sound maps contain all the information needed by
the sound driver to play and record sound data. Your application may
define one or more sound maps depending on the type of operations
and type of sound data used.

Play and record operations can be synchronous or asynchronous. The
driver generates signals for the application to keep the application
informed about the operation. Since the sound device can be shared by
multiple processes, these signals can also enable your application to
manage multiple play and record requests.

Sound maps used for play operations are built by the application at run
time with the information contained in the headers of the sound data
files. Sound maps used for recording operations are initialized and
defined by the application through standard C syntax.

Sound data is contained in buffers and played from buffers. Sound map
looping enables your application to loop segments of sound data during
play, or play a segment of sound data rather than an entire sequence
from start to finish.

The sound map can also contain a pointer to another sound map. This
pointer enables you to link sound maps together for continuous
operation from a single play or record command or link sound maps of
different formats.
10 Using the Sound Driver Interface

1Sound Concepts
The sound map is defined by the data structure SND_SMAP and
contains the following information:

Triggers and status Trigger signals and status information
are sent to the application to indicate the
current sound device conditions.

Encoding parameters Sound data encoding method, number of
channels, bits per sample, and sample
rate of the sound data.

Sound Buffer Pointer or address of the buffer, buffer
size, and current offset.

Looping Loop start offset, end offset, loop count,
and current loop counter value.

Next sound map Pointer to the next sound map to play or
record.

Each play and record operation is associated with one or more sound
maps. Your application may have a single sound map defined for play
and a single sound map defined for record, or you may have a different
sound map defined for each chunk of sound data your application may
play or record. Since each sound map is associated with a single buffer,
the size of the buffer determines how much sound data can be stored at
any time. If your application uses sound data that is of the same general
size, a single buffer and sound map may be appropriate. If your
application uses sound data of various sizes, or if your application
actively manipulates the sound data by using offsets and looping, you
may want to define a larger number of small buffers.

Sound maps may be linked together to form a chain of sound maps to
play or record. These sound maps do not have to contain data of the
same encoding formats and parameters. When sound maps of different
encoding formats and parameters are linked, you may notice some
delay when transitioning from one encoding format to another as the
driver calibrates to the new parameters. This depends on the
characteristics of the hardware.
Using the Sound Driver Interface 11

1 Sound Concepts
Triggers and Status

The sound map data structure defines the triggers and status used
during the play and recording operations.

Trigger status The variable trig_status indicates
the sound map status. The trigger status
is modified as the status changes. The
data structure SND_TRIGGER describes
each of the possible status values.

Trigger mask The variable trig_mask indicates
which activities prompt the sending of a
trigger signal. If the trigger mask is set to
SND_TRIG_NONE, no signals are sent.

Trigger signal The variable trig_signal defines the
signal to send when the sound operation
completes an activity specified by the
trigger mask. If the trigger signal is set to
zero, no signals are sent.

Error code The variable err_code contains the exit
status for the sound map. If an error
occurs, such as
EOS_MAUI_NOHWSUPPORT or
EOS_MAUI_ABORT, the error code is
placed in errno. Otherwise, the error
code is set to zero at the end of the
sound operation.
12 Using the Sound Driver Interface

1Sound Concepts
Encoding Parameters

The encoding parameters in SND_SMAP define the specifics of the
sound data.

Coding method The variable coding_method defines
the audio encoding method and format
for the sound data attached to the sound
map.

Number of Channels The variable num_channels specifies
the number of audio channels. Mono
data requires one channel, stereo data
requires two channels.

Sample size The variable sample_size indicates
the number of bits per sample. Typically,
this value is 8 or 16 bits per sample.

Sample rate The variable sample_rate indicates
the number of samples per second.
Typical sample rates include 4000, 8000,
11025, 22050, 44100, and 48000
samples per second.

Different sound devices support a variety of encoding parameters.
Sound maps contain the information required by sound devices to
properly calibrate to the parameters of various encoding parameters.

The two parameters that most affect sound quality are the sample size
and the sample rate. Higher sample rates provide a higher density of
information in the sound data. Higher sample sizes provide greater
dynamic range and a more favorable signal to noise ratio. Alternative
coding methods such as ADPCM provide a means to represent the
same audio data in smaller sample sizes.
Using the Sound Driver Interface 13

1 Sound Concepts
Sound Buffer

The actual sound data is stored in a simple buffer.

Buffer Pointer The entry *buf points to the buffer
containing the sound data. The starting
point of the buffer should be on a
multiple of cm_boundary_size.
cm_boundary_size is defined in the
structure SND_DEV_CM.

Buffer size The variable buf_size indicates the
size of the sound data buffer in bytes.
The size of the buffer should be a
multiple of cm_boundary_size.

Current offset The variable cur_offset specifies the
offset in bytes within the buffer for the
current sound operation. The offset is
updated throughout the I/O operation by
the driver. The application should set the
offset to the play or record starting point.
This should be set to a value consistent
with cm_boundary_size.
14 Using the Sound Driver Interface

1Sound Concepts
Looping

Looping entries are used for play operations to specify the area of the
buffer to play and how many times to play the buffer area. These entries
must be set to zero for recording operations.

Loop start The variable loop_start specifies the
start of the loop expressed as an offset
in bytes from the start of the buffer. This
value should be consistent with
cm_boundary_size.

Loop end The variable loop_end specifies the
end of the loop expressed as an offset in
bytes from the start of the buffer. This
value should be consistent with
cm_boundary_size.

Loop count The variable loop_count specifies the
number of times to execute the loop.

Loop counter The variable loop_counter indicates
the current number of times the loop has
executed. This entry is set to zero when
the sound map is accepted by the sound
driver and incremented as the driver
plays the sound data.

Next Sound Map

The final entry in the SND_SMAP data structure, next, is a pointer to
another sound map. next identifies the next sound map that is used
when the current sound map is finished. This entry is NULL if this sound
map is not linked to another sound map.

Linked sound maps may have different encoding parameters from each
other. Since most hardware requires some calibration time to switch to a
different format, there may be some delay before a sound map of a
different format begins to play or record.
Using the Sound Driver Interface 15

1 Sound Concepts
Preparing to Use Sound

MAUI applications are likely to run on a variety of user devices, so the
application must evaluate its environment and adjust its operating
parameters appropriately before actually playing and recording sound.
Three functions enable your application to evaluate the software and
hardware environment. They are:

• Check device capabilities_os_gs_snd_devcap() determines the
capabilities of the sound hardware and driver.

• Check software compatibility_os_gs_snd_compat() determines that
the compatibility level of the sound driver and sound driver interface
are functionally compatible.

• Check the status_os_gs_snd_status() determines the current
status of the sound device.

Device Capabilities

The specific set of sound device capabilities is stored in a data structure
called SND_DEV_CAP. The getstat sub-function
_os_gs_snd_devcap() reads the data structure SND_DEV_CAP and
returns the information to the application. Based on the information
returned, your applications can make adjustments to run correctly on
the target system. Following are two examples of how an application
can deal with differing hardware capabilities at run time.

Example 1

When you design your application you must be flexible since you may
not know which specific sound board and processor are installed in the
user hardware. Consequently, you cannot know which audio file formats
are supported. To deal with this unknown, you can encode your sound
data in several file formats. Give each file the same base name, but
store each set of files in a different directory, such as
PCM8/intro.snd and ADPCM/intro.snd.
16 Using the Sound Driver Interface

1Sound Concepts
When your application plays sound data, it uses a variable as part of the
path name (%s/intro.snd). At run time, in this example, your
application reads the SND_DEVCAP and discovers that the user
hardware supports 8-bit PCM audio. At that time, your application
adjusts to the hardware by setting the %s variable to PCM8. When your
application plays the sound data, it gets the data from the PCM8
directory.

You can use this same technique to adjust to mono and stereo options
and sample rates.

Example 2

An application is designed to play a sound sample that was recorded at
22000 Hz, but that specific sampling rate is not supported on the
playback device. The application can examine the sample rates section
of the SND_DEV_CAP to determine the supported sampling rate that is
closest to 22000 Hz and convert the original sound data to match the
nearest supported sample rate or play the sample back at a supported
rate.

Applications can provide built-in conversion utilities for mono and stereo
options, gain control, sample rates, or coding method.

SND_DEV_CAP Data Structure

SND_DEV_CAP contains the following device capabilities information:

• Hardware type

• Hardware subtype

• Mask of supported triggers

• Gain controls for play operations

• Gain controls for record operations

• Mask of supported gain commands

• Number and pointer to a list of gain capabilities

•

Using the Sound Driver Interface 17

1 Sound Concepts
• Number and pointer to a list of supported sample rates

• Number of channel entries and pointer to a list of supported
channels

• Number and pointer to a list of supported coding methods

The hardware type and subtype describe the specific sound hardware
installed in the user system. Hardware type indicates the general class
of the hardware, such as the type of sound chip. Hardware subtype
typically indicates the specific sound board installed in the system.

The sound triggers entry defines the trigger events in a sound
operation. The following table describes the six trigger events and how
they are generated.

Table 1-1 Trigger Signals

Trigger Description

SND_TRIG_NONE Mask value indicates to send no trigger
signals to the application.

SND_TRIG_ANY Mask value indicates to send all trigger
signals to the application.

SND_TRIG_START Trigger value indicates to send a trigger
signal to the application when the output
device is actively playing or has started
accepting sound input.

SND_TRIG_FINISH Trigger value indicates to send a trigger
signal to the application when the output
device has completed playing or stopped
accepting sound input.
18 Using the Sound Driver Interface

1Sound Concepts
Digital sound data can be classified by coding method and sample rate.
The list that follows presents some commonly supported coding
methods for sound data. For more specific information about these
coding methods, see the data type reference section.

μ-Law Pronounced mu-law. 8-bit companded
format that is a telephony standard for
the United States and Japan.
(Pronounced mu-law)

A-Law 8-bit companded format that is a
telephony standard for Europe.

PCM Linear Pulse-Coded Modulation. 8-bit and
16-bit format that is the most common
method used by sound cards for record
and playback.

ADPCM Adaptive Differential Pulse Code
Modulation is a compressed form of
PCM coding. There are several different
ADPCM standards, each with their own
type code.

SND_TRIG_BUSY Trigger value indicates to send a trigger
signal to the application when the driver has
started consuming the data in the buffer
during play or started filling the buffer during
record operations.

SND_TRIG_READY Trigger value indicates to send a trigger
signal to the application when the driver has
finished consuming the data in the buffer and
is ready to accept the next buffer for play or
has finished filling the buffer and is ready to
use the next buffer for record operations.

Table 1-1 Trigger Signals (continued)

Trigger Description
Using the Sound Driver Interface 19

1 Sound Concepts
Each coding method supports one or more sample rates. Some of the
sample rates may employ different formatting options. For example,
16-bit signed linear PCM is formatted either MSB first
(SND_CM_MSBYTE1ST, big-endian) or LSB first (SND_CM_LSBYTE1ST,
little-endian). Some sound devices accept either format, while other
sound devices support only one format.

Driver Compatibility Level

Typically, the compatibility interface is used by the MAUI APIs to
compare the compatibility level of the driver to the managing API. The
newer entity of the two determines if it can operate with the other entity.
If they are compatible, the application operates without problem. If they
are not compatible, the newer entity either copes with the differences, or
simply rejects the operation by returning an error. Since the sound
driver does not currently have a high-level MAUI Sound API, this call
may be used by an application to cope with compatibility differences
between the Sound Driver Interface and the driver. MAUI applications
may determine their compatibility level by examining the value of
MAUI_COMPAT_LEVEL, which is available when you include
maui_com.h.
20 Using the Sound Driver Interface

Chapter 2: Sound Operations

This chapter provides information about the functions that are available
to your applications and how to play and record sound.
21

2 Sound Operations
Preparing the Sound Device for Use

Before sending to or receiving sound data from the sound device, your
application must get the name of the sound device, open the device for
use, and then make needed adjustments to the specific capabilities of
the sound device.

cdb_get_ddr() Returns the name of the sound device.

_os_open() Opens a path to the sound device.

_os_gs_snd_devcap() Returns the device capabilities of the
sound device.

Get the Sound Device Name

Use the CDB function cdb_get_ddr() with CDB_TYPE_SOUND to get
the name of the sound device.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

cdb_get_ddr() and CDB_TYPE_SOUND are explained in detail in the
MAUI Programming Reference Manual.

Open

The function _os_open() establishes a path ID to the named sound
device for the process that opened the device. All subsequent sound
control commands issued by that process use the path ID to address
the sound device.

The mode parameter in the _os_open() command indicates the
operational mode of the device for this process. For play operations, the
device must be opened for write (mode S_IWRITE). For record
operations, the device must be opened for read (mode S_IREAD).
22 Using the Sound Driver Interface

2Sound Operations
Get Device Capabilities

The function _os_gs_snd_devcap() returns the sound device
capabilities to the application. The device capabilities enable the
application to know which sound operations are supported and what
sound data encoding parameters are valid. With this information the
application can make adjustments to the hardware and software
environment of the target system.
Using the Sound Driver Interface 23

2 Sound Operations
Keeping Track of the Sound Device

Before calling any sound operations, your application should set up the
signals and triggers that it needs to manage sound operations
effectively. There are three functions your application can use to monitor
and control the sound device operational status:

_os_gs_snd_status() Gets the sound device status.

_os_ss_sendsig() Sets up a signal for the driver to send to
a process when the driver is ready for a
new operation.

_os_ss_relea() Removes the signal set by
_os_ss_sendsig().

Sound Device Status

The status of the sound device can be checked at any time by using the
function _os_gs_snd_status(). This function returns a pointer to the
SND_DEV_STATUS structure. The SND_DEV_STATUS structure
provides information about what the sound device is doing and which
process or processes are currently using the sound device.

Status Indicates the general status of the sound
device.

Play PID Process ID of the current Play operation.

Record PID Process ID of the current Record
operation.

Gain Pointer to an array of
num_gain SND_GAIN structures.
These describe the current settings of
each gain control.
24 Using the Sound Driver Interface

2Sound Operations
Status

The status member of SND_DEV_STATUS is of type SND_STATUS. Six
status types are defined in the enumerated type SND_STATUS.

SND_STATUS_NONE This status indicates the sound device is
in the initial state.

SND_STATUS_PLAY This status indicates a play operation is
active.

SND_STATUS_PLAY_PAUSED
This status indicates the current play
operation is paused.

SND_STATUS_RECORD This status indicates a record operation
is active.

SND_STATUS_RECORD_PAUSED
This status indicates a record operation
is paused.

SND_STATUS_BUSY This status indicates the driver is
processing a sound operation.

Gain

The gain member of SND_DEV_STATUS points to an array of SND_GAIN
structures that contain the current settings of the device’s various mixer
lines.

Send Signal

The function _os_ss_sendsig() sets up a signal to send to a
process when the sound device is ready to accept a new sound
operation (play or record). This function is especially useful when
several processes share the sound device, so a process can be
signalled when the sound device becomes idle.

Each time the signal is sent, this function must be reset. If a signal
request is already set when this function is called, the error
EOS_DEVBSY is returned.
Using the Sound Driver Interface 25

2 Sound Operations
Release the Device

When a process no longer needs the signal installed with
_os_ss_sendsig(), the process should call the function
_os_ss_relea(). This function releases the device from any
_os_ss_sendsig() request made by the calling process.
26 Using the Sound Driver Interface

2Sound Operations
Playing and Recording Sound Data

Several functions are available to play and record sound data:

_os_ss_snd_play() Begins playing from a sound map. If the
hardware is not capable of playing
sound, such as a record-only device, the
play function returns the error
EOS_UNKSVC (unknown service
request).

_os_ss_snd_record() Begins recording to a sound map.If the
hardware is not capable of recording
sound, such as a play-only device, the
function returns the error EOS_UNKSVC
(unknown service request).

_os_ss_snd_gain() Controls the output signal level of the
sound decoder.

_os_ss_snd_pause() Pauses the play operation.

_os_ss_snd_cont() Continues the play operation from the
point at which it was paused.

_os_ss_snd_abort() Stops the play operation.

Play

The play command _os_ss_snd_play() sends a request to the
sound decoder to begin playing from a sound map. The sound data and
all parameters the decoder needs to decode the data are contained in
the sound map. This function requires the path ID to the sound device
(established when the device was opened), a pointer to the sound map,
and the blocking type.

When the first sound map is accepted by the driver, the driver sets the
play and busy triggers, clears the loop counter, and sets the current
offset to a value equal to the loop start value. If multiple sound maps are
linked together, these fields are modified in the subsequent sound maps
Using the Sound Driver Interface 27

2 Sound Operations
when the driver begins processing each of these subsequent sound
maps. This enables applications to modify the next pointers in the
sound map even after calling the play function.

The blocking type determines how the play call functions. Blocking
types are described in the data structure SND_BLOCK_TYPE. The play
function may specify one of three blocking types:

SND_NOBLOCK If the driver is busy, it immediately
returns the error EOS_MAUI_BUSY.
Otherwise, it starts the play and returns
immediately.

SND_BLOCK_START The play call waits while the device is
busy and returns immediately when the
sound device begins to play.

SND_BLOCK_FINISH The play call waits to return until all
linked sound maps have been consumed
or the play operation is aborted.

If a fatal signal is received while the call is blocked waiting for access to
the sound device (the play has not started yet and block_type is
equal to SND_BLOCK_START or SND_BLOCK_FINISHED), the call
returns EOS_SIGNAL and the play request is cancelled. If a fatal signal
is received after the play has started and the call is blocked waiting for
the play to finish (block_type is equal to SND_BLOCK_FINISH), the
call returns EOS_SIGNAL, but the play operation continues. Examine
smap->trig_status to determine if the sound map is still being used
by the driver.
28 Using the Sound Driver Interface

2Sound Operations
When the sound decoder completes an activity that satisfies a trigger in
the sound map trigger mask and the sound map trigger signal is not set
to zero, the driver sends the signal smap->trig_signal to the calling
process. The following figure shows the status and trigger points of a
typical play operation

Figure 2-1 Play Operation Status and Trigger Points.

NoteNote
Not all drivers support all triggers. Check the device capabilities to
determine which triggers are supported by your hardware.

Record

The record command _os_ss_snd_record() sends a request to the
sound encoder to begin recording to a sound map. The sound data and
all parameters the encoder needs to encode the data are contained in
the sound map. This function requires the path ID to the sound device
(established when the device was opened), a pointer to the sound map,
and the block type.

Play Operation
STATUS_BUSY

STATUS_PLAY

TRIG_BUSY

TRIG_START

TRIG_READY

TRIG_FINISH
Using the Sound Driver Interface 29

2 Sound Operations
When the first sound map is accepted by the driver, the driver sets the
record and busy triggers. If multiple sound maps are linked together,
these fields are modified in the subsequent sound maps when the driver
begins processing each of these subsequent sound maps. This enables
applications to modify the next pointers in the sound map even after
calling the record function.

Record operations do not support loop operations. The SND_SMAP
fields loop_start, loop_end, loop_count, and loop_counter
must be set to zero by the application before the sound map is accepted
by the driver.

The blocking type determines how the record call functions. Blocking
types are described in the data structure SND_BLOCK_TYPE. The
record function may specify one of three blocking types:

SND_NOBLOCK If the driver is busy, it immediately
returns the error EOS_MAUI_BUSY.
Otherwise, it starts the record and
returns immediately.

SND_BLOCK_START The record call waits while the device is
busy and returns immediately when the
sound device begins to record.

SND_BLOCK_FINISH The record call waits to return until all
linked sound maps have been consumed
or the record operation is aborted.

If a fatal signal is received while the call is blocked waiting for access to
the sound device (the record has not started yet and block_type is
equal to SND_BLOCK_START or SND_BLOCK_FINISH), the call returns
EOS_SIGNAL and the record request is cancelled. If a fatal signal is
received after the record has started and the call is blocked waiting for
the record to finish (block_type is equal to SND_BLOCK_FINISH),
the call returns EOS_SIGNAL, but the record operation continues.
Examine the smap->trig_status to determine if the sound map is
still being used by the driver.
30 Using the Sound Driver Interface

2Sound Operations
When the sound encoder completes an activity that satisfies a trigger in
the sound map trigger mask and the sound map trigger signal is not set
to zero, the driver sends the signal smap->trig_signal to the calling
process. The following figure shows the status and trigger points of a
typical recording operation.

Figure 2-2 Record Operation Status and Trigger Points

NoteNote
Not all drivers support all triggers. Check the device capabilities to
determine which triggers are supported by your hardware.

Gain Control

The output signal gain for play operations and the input signal gain for
record operations is controlled with the function _os_ss_snd_gain().
This function requires the path ID of the sound device, and specifies the
mix lines and the gain operation to perform.

Record Operation
STATUS_RECORD

STATUS_BUSY

TRIG_START

TRIG_BUSY

TRIG_FINISH

TRIG_READY
Using the Sound Driver Interface 31

2 Sound Operations
The gain capabilities of the sound device are stored in a data structure
named SND_GAIN_CAP. This data structure is returned as part of the
SND_DEV_CAP structure when the application calls
_os_gs_snd_devcap(). The SND_GAIN_CAP includes the following
capabilities information:

Gain is controlled by increasing or decreasing gain in increments. The
step size gives you information about the average size of an increment.
However, the incremental increase or decrease may not be linear. The
zero level is the level at which all increases are gain and all decreases
are attenuation. Zero gain does not imply zero dB.

Table 2-1 SND_GAIN_CAP Structure

Types Supported Gain Types

Lines Mask of one or more mix lines that share a
SND_GAIN_CAP description.

Support for Mute Boolean TRUE if muting is supported.

Default Type The driver’s default gain type for the mix lines.

Default Level The driver’s initial gain value for the indicated
mix lines.

Zero Level Level value where the change in dB is zero.

Number of Step Number of actual gain or attenuation values
supported by the hardware.

Step size Average size of each step of gain, expressed
in 100th of a dB.

Minimum dB Change in dB at level SND_GAIN_MIN.

Maximum dB Change in dB at level SND_GAIN_MAX.
32 Using the Sound Driver Interface

2Sound Operations
Levels above zero are represented by positive gain values, and levels
below the zero level are negative gain values. The gain levels are
absolute levels, not relative to the current setting.

For example, if the zero setting correlates to a sound output that is 48
dB, and step size is 6.00 dB, increasing the play gain level to 2
increases the volume of the sound output to roughly 60 dB. To set the
volume back to 48 dB, you set the play gain to zero. Setting the gain to
-2 decreases the volume to 36 dB which is two steps below the 48 dB
zero-level. The following figure illustrates how play gain works.

Figure 2-3 Effects of Play Gain Level on Volume

NoteNote
The hardware specification for the particular driver that is installed
provides more specific information regarding gain capabilities of the
hardware. Contact the hardware manufacturer for the hardware
specification for your driver.

48 dB

60 dB

36 dB

Volume

Sound Data

Play Gain
Setting 0 +2 -2
Using the Sound Driver Interface 33

2 Sound Operations
The function _os_ss_snd_gain() sends a request to the sound
driver to modify one or more mix lines. The following list describes each
of the operations that can be applied with the _os_ss_snd_gain()
function:

SND_GAIN_CMD_UP Specifies the number of steps to
increment the gain level of the mix line.
This has the effect of increasing the
volume or input signal level.

SND_GAIN_CMD_DOWN Specifies the number of steps to
decrement the gain level of the mix line.
This has the effect of decreasing the
volume or input signal level.

SND_GAIN_CMD_RESET
Indicates to reset the gain level to the
default level found in SND_GAIN_CAP.

SND_GAIN_CMD_MUTE Indicates to set or clear the mute bit
according to state in
SND_GAIN_MUTE.

SND_GAIN_CMD_MONO Sets a specific mono gain level.

SND_GAIN_CMD_STEREO
Sets the specific left and right gain levels
for stereo.

SND_GAIN_TYPE_XSTEREO
Sets a specific gain level for the
X-stereo.

Mono is a single channel output. Stereo is a two-channel (left and right)
output. X-stereo is a two-channel output that has the additional
capability of switching the left channel to the right output and the right
channel to the left output.
34 Using the Sound Driver Interface

2Sound Operations
Pause

The pause command _os_ss_snd_pause() sends a request to the
sound driver to pause the active operation. When the operation is
paused, the SND_STATUS_PLAY_PAUSED or
SND_STATUS_RECORD_PAUSED bit in the status field of
SND_DEV_STATUS is set. Only the path that initiated the operation can
pause the operation. If another path attempts to pause an operation, the
error EOS_MAUI_NOTOWNER is returned. If a path is opened for both
read and write, the pause command pauses the play and record
operations that are running.

If the pause command is not supported by the hardware, this function
returns the error EOS_MAUI_NOHWSUPPORT (no hardware support) and
the driver continues to play.

Continue

The continue command _os_ss_snd_cont() sends a request to the
sound driver to continue a currently paused operation. This function
clears the SND_STATUS_PLAY_PAUSED or
SND_STATUS_RECORD_PAUSED bit in the status field of
SND_DEV_STATUS, then begins playing the sound data at the point at
which it was paused.

Only the path that initiated the operation and issued the pause
command can continue the operation. If another path attempts to
continue a paused operation, the error EOS_MAUI_NOTOWNER is
returned.

The sup_play_pause and sup_record_pause fields of
SND_DEV_CAP indicates if the sound driver supports pause and
continue commands. If the command is not supported, this function
returns the error EOS_UNKSVC.
Using the Sound Driver Interface 35

2 Sound Operations
Abort

The abort command _os_ss_snd_abort() sends a request to the
sound driver to synchronously abort the current play or record
operation.

Only the path that initiated the operation can abort the operation. If
another path attempts to abort an operation, the error
EOS_MAUI_NOTOWNER is returned.
36 Using the Sound Driver Interface

2Sound Operations
Completing Sound Operations

One entry point is available for completing sound operations.

_os_close()Closes a sound device.

Close

The entry point _os_close() closes the sound device to the process
that calls the function. When a process has completed all sound
operations, this function should be called.
Using the Sound Driver Interface 37

2 Sound Operations
38 Using the Sound Driver Interface

Chapter 3: Function Reference

This chapter describes each sound driver function.
39

3 Function Reference
Function Reference

Include Files

All applications using the Sound Driver Interface must contain the
following code:

#include <MAUI/mfm_snd.h>

Standard Driver Entry Points

From os_lib.l:

_os_open() Open Sound Device

_os_close() Close Sound Device

_os_ss_sendsig() Send Signal Request

_os_ss_relea() Release Signal Request

Sound Input and Output

From mfm.l:

_os_ss_snd_play() Play Sound to Sound Decoder

_os_ss_snd_record() Record Sound from Sound Encoder

_os_ss_snd_pause() Pause Active Sound Operation

_os_ss_snd_cont() Continue Active Sound Operation

_os_ss_snd_abort() Abort Active Sound Operation

_os_ss_snd_gain() Gain/Mixing Control
40 Using the Sound Driver Interface

3Function Reference
Device Compatibility, Capability, and Status

From mfm.l:

_os_gs_snd_compat() Exchange Compatibility Level

_os_gs_snd_devcap() Get Sound Device Capabilities

_os_gs_snd_status() Get Sound Device Status
Using the Sound Driver Interface 41

3 Function Reference
_os_close()

Close Path to Sound Device

Syntax
error_code
_os_close(path_id path)

Parameter Block
typedef struct i_close_pb {

syscb cb;
path_id path;

} i_close_pb, *I_close_pb;

Description

_os_close() is fully documented in Ultra C Library Reference.

path specifies an open path ID to the sound device.

Direct Errors

EOS_BPNUM Bad path number.

See Also
_os_open()

_os_close in the Ultra C Library Reference
I_CLOSE in the OS-9000 Technical Manual
42 Using the Sound Driver Interface

3Function Reference
_os_gs_snd_compat()

Exchange Compatibility Level

Syntax
error_code
_os_gs_snd_compat(path_id path, u_int32
*ret_sdv_compat, u_int32 api_compat)

Parameter Block
typedef struct {

u_int16 func_code; /* Must be FC_SND_COMPAT */
u_int32 *ret_dev_compat;/* Driver compat level */
u_int32 api_compat; /* API compat level */

} gs_snd_compat_pb, *Gs_snd_compat_pb;

Description

_os_gs_snd_compat() exchanges the compatibility level of the caller
with the compatibility level of the sound driver.

path specifies an open path ID to the sound device.

The compatibility level of the driver must be set by assigning the value
MAUI_COMPAT_LEVEL to the return parameter ret_sdv_compat.

api_compat is the compatibility level of the caller and should be set to
MAUI_COMPAT_LEVEL. If the compatibility level of the caller is less than
the driver level, then the driver must cope with the differences in the
respective levels, or it must return EOS_MAUI_INCOMPATVER if it
cannot cope.

If successful, this function returns SUCCESS. Otherwise, the returned
value is an error code. Error codes unique to the driver are defined
below.

Direct Errors

EOS_BPNUM Bad path number.

EOS_MAUI_BADPTR ret_sdv_compat is NULL.
Using the Sound Driver Interface 43

3 Function Reference
EOS_MAUI_INCOMPATVER The compatibility level of the caller is
less than the driver and the driver cannot
cope with the differences.

See Also

MAUI_COMPAT_LEVEL (See MAUI Programming Reference Manual)
44 Using the Sound Driver Interface

3Function Reference
_os_gs_snd_devcap()

Get Sound Device Capabilities

Syntax
error_code
_os_gs_snd_devcap(path_id path, SND_DEV_CAP
**ret_dev_cap)

Parameter Block
typedef struct {

u_int16 func_code; /* Must be FC_SND_DEVCAP */
SND_DEV_CAP **ret_dev_cap;

/* Device capabilities */
} gs_snd_devcap_pb, *Gs_snd_devcap_pb;

Description

_os_gs_snd_devcap() gets information about the capabilities of the
sound device. This information may be used to adjust the operation of
the application so that it runs properly on different hardware platforms.

path specifies an open path ID to the sound device.

A pointer to the buffer containing the device capabilities structure is
returned in ret_dev_cap. A pointer to this variable should be passed
to _os_gs_snd_devcap().

NoteNote
Because the memory pointed to by ret_dev_cap belongs to the
driver, do not attempt to modify or free this memory. Also, do not
attempt to access this memory after the path is closed.

If successful, this function returns SUCCESS. Otherwise, the returned
value is an error code. Error codes unique to the driver are defined as
follows.
Using the Sound Driver Interface 45

3 Function Reference
Direct Errors

EOS_BPNUM Bad path number.

EOS_MAUI_BADPTR ret_sdv_compat is NULL.

See Also
SND_DEV_CAP
46 Using the Sound Driver Interface

3Function Reference
_os_gs_snd_status()

Get Sound Device Status

Syntax
error_code
_os_gs_snd_status(path_id path, SND_DEV_STATUS
**ret_status)

Parameter Block
typedef struct {

u_int16 func_code; /* Must be FC_SND_DEV_STATUS */
SND_DEV_STATUS **ret_status;

/* Status of device*/
} gs_snd_status_pb, *Gs_snd_status_pb;

Description

_os_gs_snd_status() returns the current status of the sound
hardware. This function may be called by any process at any time.

path specifies an open path ID to the sound device. The
SND_DEV_STATUS for a device is unique for each logical unit, not
necessarily unique per path.

A pointer to the buffer containing the device logical unit status structure
is returned in ret_status. A pointer to this variable should be passed
to _os_gs_snd_status().

NoteNote
Because the memory pointed to by ret_status belongs to the driver,
do not attempt to modify or free this memory. Also do not attempt to
access this memory after the path is closed.

If successful, this function returns SUCCESS. Otherwise, the returned
value is an error code. Error codes unique to the driver are defined
below.
Using the Sound Driver Interface 47

3 Function Reference
Direct Errors

EOS_BPNUM Bad path number.

EOS_MAUI_BADPTR ret_sdv_compat is NULL.

See Also
_os_open()
SND_DEV_STATUS
48 Using the Sound Driver Interface

3Function Reference
_os_open()

Open Path to Sound Device

Syntax
#include <modes.h>
error_code
_os_open(char *name, u_int32 mode, path_id *path)

Parameter Block
#include <srvcb.h>
typedef struct i_open_pb {

syscb cb;
u_char *name;
u_int16 mode;
path_id path; /* output */

} i_open_pb, *I_open_pb;

Description

_os_open() is fully documented in Ultra C Library Reference.

name is a pointer to the path name of the sound device. On CDB
equipped systems, use CDB_TYPE_SOUND in cdb_get_ddr(), to
determine the name of the sound device.

mode must be set to either S_IWRITE to use _os_ss_snd_play(), or
S_IREAD to use _os_ss_snd_record(). To prevent functions such
as _os_ss_snd_abort(), _os_ss_snd_cont(), and
_os_ss_snd_pause() from being ambiguous, both S_IWRITE and
S_IREAD must not be set on the same path. To perform both plays and
records on the same device, simply open another path to the same
device with the appropriate mode. Only 16 bits of mode are used.

path is a pointer to the location where _os_open() stores the
resulting path number. Multiple paths may be open to the same device.
Use _os_close to return the resources to the system.
Using the Sound Driver Interface 49

3 Function Reference
If successful, this function returns SUCCESS. Otherwise, the returned
value is an error code. Error codes unique to the driver are defined
below. This call uses the standard _os_open() binding found in
os_lib.l.

Direct Errors

EOS_BMODE Bad I/O Mode.

EOS_BPNUM Bad path number.

EOS_FNA File not accessible.

EOS_PNNF Path name not found.

EOS_PTHFUL The user’s (or system) path table is full.

EOS_SHARE Non-sharable file/device is busy.

See Also
_os_close()
_os_ss_snd_abort()
_os_ss_snd_cont()
cdb_get_ddr()

CDB_TYPE_SOUND MAUI Programming Reference Manual

_os_open Ultra C Library Reference

I_OPEN, S_IREAD, S_IWRITE OS-9000 Technical Manual
50 Using the Sound Driver Interface

3Function Reference
_os_ss_relea()

Release Signal Request

Syntax
#include <sg_codes.h>
error_code
_os_ss_relea(path_id path)

Parameter Block
#include <srvcb.h>
typedef struct f_clrsigs_pb {

syscb cb;
process_id proc_id;

} f_clrsigs_pb, *F_clrsigs_pb;

Description

_os_ss_relea() releases the device from any _os_ss_sendsig()
request made by the calling process.

path is the path number of the device to release.

If no signal request is active, SUCCESS is returned.

If successful, this function returns SUCCESS. Otherwise, the returned
value is an error code. Error codes unique to the driver are defined
below.

This call uses the standard _os_ss_relea() binding found in
os_lib.l.

Direct Errors

EOS_BPNUM Bad path number.

EOS_PERMIT Caller is not the path that installed the
signal request.

See Also
_os_ss_sendsig()
Using the Sound Driver Interface 51

3 Function Reference
_os_ss_sendsig()

Send Signal Request

Syntax
#include <sg_codes.h>
error_code
_os_ss_sendsig(path_id path, signal_code signal)

Parameter Block
#include <srvcb.h>
typedef struct f_clrsigs_pb {

syscb cb;
process_id proc_id;
signal_code signal;

} f_clrsigs_pb, *F_clrsigs_pb;

Description

_os_ss_sendsig() sets up a signal to send to a process when the
sound device is ready to accept a new sound operation such as
_os_ss_snd_play() and _os_ss_snd_record(). This function is
useful to determine when the sound device becomes idle.
_os_ss_sendsig() must be reset each time the signal is sent.

For example, process A is playing sound data. Process B could issue
an _os_ss_sendsig() to receive a signal when it can submit it’s
sound data without blocking.

path specifies an open path ID to the sound device.

signal specifies the signal to send when the driver clears the
SND_STATUS_BUSY bit in the device status (see
_os_gs_snd_status() on page 47). If the device is ready when
_os_ss_sendsig() is called, signal is sent immediately.

Receipt of signal by a process is not a guarantee that the process will
get access to the device. Another process could take control of the
device between when the signal is sent, and when the receiving
process attempts to use the device.
52 Using the Sound Driver Interface

3Function Reference
If successful, this function returns SUCCESS. Otherwise, the returned
value is an error code. Error codes unique to the driver are defined
below.

This call uses the standard _os_ss_sendsig() binding found in
os_lib.l.

Direct Errors

EOS_BPNUM Bad path number.

EOS_DEVBSY Signal request is already set.

See Also
_os_gs_snd_status()
_os_ss_relea()
SND_DEV_STATUS
SND_STATUS
Using the Sound Driver Interface 53

3 Function Reference
_os_ss_snd_abort()

Abort Active Sound Operation

Syntax
error_code
_os_ss_snd_abort(path_id path)

Parameter Block
typedef struct {

u_int16 func_code;/* Must be FC_SND_ABORT */
} ss_snd_abort_pb, *Ss_snd_abort_pb;

Description

_os_ss_snd_abort() requests the driver to synchronously abort the
currently active sound operation such as _os_ss_snd_play() and
_os_ss_snd_record(). If there is no sound operation active, this
function returns EOS_MAUI_NOTBUSY.

path specifies an open path ID to the sound device.

If a sound operation is currently active, it is aborted, EOS_ABORT is
placed in the err_code member of the SND_SMAP referenced by the
operation and the functions returns when the device is ready for the
next sound operation.

The SND_STATUS_FINISH bit in the trig_status member of
SND_SMAP is set and the signal trig_signal specified in SND_SMAP
is sent to the calling process. If the specified signal is zero, then no
signal is sent.

If this function is called with a path other than the path that initiated
the sound operation, this function returns EOS_MAUI_NOTOWNER. If
successful, this function returns SUCCESS.

Direct Errors

EOS_BPNUM Bad path number.

EOS_MAUI_NOTBUSY The sound hardware is not busy playing
or recording, so there is nothing to abort.
54 Using the Sound Driver Interface

3Function Reference
EOS_MAUI_NOTOWNER Caller is not the path that started the
current sound operation.

See Also
_os_ss_snd_cont()
_os_ss_snd_pause()
_os_ss_snd_play()
_os_ss_snd_record()
SND_SMAP
Using the Sound Driver Interface 55

3 Function Reference
_os_ss_snd_cont()

Continue Active Sound Operation

Syntax
error_code
_os_ss_snd_cont(path_id path)

Parameter Block
typedef struct {

u_int16 func_code;/* Must be FC_SND_CONT */
} ss_snd_cont_pb, *Ss_snd_cont_pb;

Description

_os_ss_snd_cont() requests the driver to continue the current
paused sound operation such as _os_ss_snd_play() or
_os_ss_snd_record(). If there is no sound operation paused, this
function returns EOS_MAUI_NOTPAUSED.

path specifies an open path ID to the sound device.

If a play is currently paused, it is continued and the
SND_STATUS_PLAY_PAUSED bit in status of SND_DEV_STATUS is
cleared. If a record is currently paused, it is continued and the
SND_STATUS_RECORD_PAUSED bit in status of SND_DEV_STATUS is
cleared. No other status bits are affected by the pause.

If the hardware does not support pause or continue,
_os_ss_snd_cont() returns EOS_MAUI_NOHWSUPPORT.

If this function is called with a path other than the path that initiated
the sound operation, this function returns EOS_MAUI_NOTOWNER. If
successful, this function returns SUCCESS.

Direct Errors

EOS_BPNUM Bad path number.

EOS_MAUI_NOHWSUPPORT The hardware does not support pause
and continue.
56 Using the Sound Driver Interface

3Function Reference
EOS_MAUI_NOTBUSY The sound hardware is not busy so there
is no play or record to act on.

EOS_MAUI_NOTOWNER Caller is not the path that started the
current sound operation.

EOS_MAUI_NOTPAUSED The sound hardware is not paused so
there is no play or record to act on.

See Also
_os_ss_snd_abort()
_os_ss_snd_pause()
_os_ss_snd_play()
_os_ss_snd_record()
SND_SMAP
Using the Sound Driver Interface 57

3 Function Reference
_os_ss_snd_gain()

Set Gain

Syntax
error_code
_os_ss_snd_gain(path_id path, SND_GAIN *gain)

Parameter Block
typedef struct {

u_int16 func_code;/* Must be FC_SND_GAIN */
SND_GAIN *gain;/* Gain Setting */

} ss_snd_gain_pb, *Ss_snd_gain_pb;

Description

_os_ss_snd_gain() requests the driver to change the gain level.

path specifies an open path ID to the sound device.

gain is a pointer to a data structure that describes how to change the
gain level and what lines are affected. (See SND_GAIN on page 92.) If
this function is called with a path other than the path that initiated the
current sound operation, this function returns EOS_MAUI_NOTOWNER.

_os_gs_snd_devcap() may be used to determine which mix lines
are supported by the hardware. _os_gs_snd_status() may be used
to determine current gain levels.

If successful, this function returns SUCCESS.

Direct Errors

EOS_BPNUM Bad path number.

EOS_MAUI_BADPTR The pointer gain is NULL.

EOS_MAUI_BADVALUE Unknown gain command in
gain->cmd.

EOS_MAUI_NOHWSUPPORT The value passed in play->cmd is not
supported by the hardware.
58 Using the Sound Driver Interface

3Function Reference
EOS_MAUI_NOTOWNER Caller is not the path that started the
current sound operation.

EOS_UNKSVC The hardware is incapable of supporting
gain control for the specified line.

See Also
_os_gs_snd_devcap()
_os_gs_snd_status()
SND_DEV_CAP
SND_DEV_STATUS
SND_GAIN
Using the Sound Driver Interface 59

3 Function Reference
_os_ss_snd_pause()

Pause Active Sound Operation

Syntax
error_code
_os_ss_snd_pause(path_id path)

Parameter Block
typedef struct {

u_int16 func_code;/* Must be FC_SND_PAUSE */
} ss_snd_pause_pb, *Ss_snd_pause_pb;

Description

_os_ss_snd_pause() requests the driver to pause the current active
sound operation such as _os_ss_snd_play() or
_os_ss_snd_record(). If there is no sound operation active, this
function returns EOS_MAUI_NOTBUSY.

path specifies an open path ID to the sound device.

If a play is currently active, it is paused and the
SND_STATUS_PLAY_PAUSED bit in status of SND_DEV_STATUS is
set. If a record is currently active, it is paused and the
SND_STATUS_RECORD_PAUSED bit in status of SND_DEV_STATUS is
set. No other status bits are affected by the pause.

If the hardware does not support pause and continue,
sup_play_pause returns EOS_MAUI_NOHWSUPPORT.

If this function is called with a path other than the path that initiated
the sound operation, this function returns EOS_MAUI_NOTOWNER.

If successful, this function returns SUCCESS. Otherwise, the returned
value is an error code. Error codes unique to the driver are defined
below.

Direct Errors

EOS_BPNUM Bad path number.
60 Using the Sound Driver Interface

3Function Reference
EOS_MAUI_NOHWSUPPORT The hardware does not support pause
and continue.

EOS_MAUI_NOTOWNER Caller is not the path that started the
current sound operation.

EOS_MAUI_NOTBUSY The sound hardware is not busy playing
or recording so there is no play or record
to act on.

EOS_MAUI_PAUSED The sound hardware is already paused.

See Also
_os_ss_snd_abort()
_os_ss_snd_cont()
_os_ss_snd_play()
_os_ss_snd_record()
SND_DEV_CAP
SND_DEV_STATUS
SND_SMAP
Using the Sound Driver Interface 61

3 Function Reference
_os_ss_snd_play()

Play Sound to Sound Decoder

Syntax
error_code
_os_ss_snd_play(path_id path, SND_SMAP *smap,
SND_BLOCK_TYPE block_type)

Parameter Block
typedef struct {

u_int16 func_code;/* Must be FC_SND_PLAY */
SND_SMAP *smap;/* Sound map */
SND_BLOCK_TYPE block_type;

/* Type of blocking to */
/* perform */

} ss_snd_play_pb, *Ss_snd_play_pb;

Description

_os_ss_snd_play() requests the sound decoder to decode and play
sound data. The sound data and all parameters necessary to decode it,
are stored in the sound map referenced by the pointer smap.

path specifies an open path ID to the sound device. path must be
opened for write access.

The driver only processes one SND_SMAP at a time, following the
smap->next pointers as the sound data is consumed. As each
SND_SMAP is accepted by the driver, it sets the SND_TRIG_BUSY bit in
smap->trig_status, clears
smap->loop_counter, and sets smap->cur_offset equal to
smap->loop_start.

The blocking type determines how the driver functions. One of three
blocking types must be specified:
62 Using the Sound Driver Interface

3Function Reference
SND_NOBLOCK prevents the driver from blocking. If the
driver is busy when called, it immediately
returns the error EOS_MAUI_BUSY.
Otherwise, it starts the play and returns
immediately.

SND_BLOCK_START returns when the play starts (when
SND_TRIG_START is set). The play call
waits while the device is busy and
returns immediately when the sound
device begins to play.

SND_BLOCK_FINISH returns when the play is finished (when
SND_TRIG_FINISHED is set). The play
call waits to return until all linked sound
maps are consumed or the play
operation is aborted.

If a fatal signal is received while the call is blocked waiting for access to
the sound device (the play has not started yet and block_type is
equal to SND_BLOCK_START or SND_BLOCK_FINISH) the call returns
EOS_SIGNAL and the play request is canceled. If a fatal signal is
received after the play has started, and the call is blocked waiting for the
play to finish (block_type is equal to SND_BLOCK_FINISH) the call
returns EOS_SIGNAL, but the play operation continues. Examine
smap->trig_status to determine if the smap is still being used by
the driver.

When the sound decoder completes an activity that satisfies a trigger in
the smap->trig_mask and smap->trig_signal is not zero, the
driver sends the signal smap->trig_signal to the calling process.
Using the Sound Driver Interface 63

3 Function Reference
The following figure shows the status and trigger points of a typical play
operation

Figure 3-1 os_ss_snd_play() Status and Trigger Points

After consuming the data in smap->buf, if the smap->next field is not
NULL, the driver sets the internal smap pointer to smap->next and
continues.

If successful, this function returns SUCCESS. Otherwise, the returned
value is an error code. Error codes unique to the driver are defined
below.

Direct Errors

EOS_BMODE The path is not open for write access.

EOS_BPNUM Bad path number.

EOS_MAUI_BADNUMCHAN The specified smap->num_channels is
not supported by the hardware.

EOS_MAUI_BADPTR The pointer for smap or smap->buf is
NULL.

EOS_MAUI_BADRATE The specified smap->sample_rate is
not supported by the hardware.

EOS_MAUI_BADSIZE The specified smap->sample_size is
not appropriate for the
smap->coding_method or is not
supported by the hardware.

Play Operation
STATUS_BUSY

STATUS_PLAY

TRIG_BUSY

TRIG_START

TRIG_READY

TRIG_FINISH
64 Using the Sound Driver Interface

3Function Reference
EOS_MAUI_BADVALUE The value passed for block_type is
invalid or one or more of the loop fields
are invalid*.

EOS_MAUI_BUSY The sound decoder is busy.

EOS_MAUI_NOHWSUPPORT The specified smap->coding_method
is not supported by the hardware.

EOS_SIGNAL A fatal signal was received while
blocked.

EOS_UNKSVC This function is not supported because
the sound hardware does not contain a
decoder.

* if (smap->loop_count > 0) {
if (smap->loop_start >= smap->loop_end
|| smap->loop_end > smap->buf_size)}
return (smap->err_code = EOS_MAUI_BADVALUE);
}
}

Indirect Errors
_os_ev_anyclr()
_os_send()
_os_ev_setand()
_os_ev_tstset() OS-9 Technical Reference

See Also
_os_ss_snd_abort()
_os_ss_snd_gain()
_os_ss_snd_cont()
_os_ss_snd_pause()
SND_BLOCK_TYPE
SND_SMAP
SND_STATUS
SND_TRIGGER
Using the Sound Driver Interface 65

3 Function Reference
_os_ss_snd_record()

Record Sound

Syntax
error_code
_os_ss_snd_record(path_id path, SND_SMAP *smap,
SND_BLOCK_TYPE block_type)

Parameter Block
typedef struct {

u_int16 func_code; /* Must be FC_SND_RECORD */
SND_SMAP *smap; /* Sound map */
SND_BLOCK_TYPE block_type;

/* Type of blocking to perform */
} ss_snd_record_pb, *Ss_snd_record_pb;

Description

_os_ss_snd_record() requests the sound encoder to record sound
data. The buffer for encoded sound data and all parameters necessary
to encode it, are stored in the sound map referenced by the pointer
smap.

path specifies an open path ID to the sound device. path must be
opened for read access.

The driver only processes one SND_SMAP at a time, following the
smap->next pointers as the sound data fills each
smap->buf. As each SND_SMAP is accepted by the driver, it sets the
SND_TRIG_BUSY bit in smap->trig_status.

_os_ss_snd_record() does not support loop operations. The
SND_SMAP fields loop_start, loop_end, loop_count, and
loop_counter must be set to zero by the application before the sound
map is accepted by the driver. The driver returns
EOS_MAUI_BADVALUE if any of these fields are not zero.

The blocking type determines how the driver functions. One of three
blocking types must be specified:
66 Using the Sound Driver Interface

3Function Reference
SND_NOBLOCK prevents the driver from blocking. If the
driver is busy when called, it immediately
returns the error EOS_MAUI_BUSY.
Otherwise, it starts the record and
returns immediately.

SND_BLOCK_START returns when the recording starts (when
SND_TRIG_STAR is set). The record call
waits while the device is busy and
returns immediately when the sound
device begins to record.

SND_BLOCK_FINISH returns when the record has finished
(when SND_TRIG_FINISH is set). The
record call waits to return until all linked
sound maps are consumed or the record
operation is aborted.

If a fatal signal is received while the call is blocked waiting for access to
the sound device (the record has not started yet and block_type is
equal to SND_BLOCK_START or SND_BLOCK_FINISH) the call returns
EOS_SIGNAL and the record request is canceled. If a fatal signal is
received, after the record has started, and the call is blocked waiting for
the record to finish (block_type is equal to SND_BLOCK_FINISH) the
call returns EOS_SIGNAL, but the record operation continues. Examine
smap->trig_status to determined if the smap is still being used by
the driver.

When the sound encoder completes an activity that satisfies a trigger in
the smap->trig_mask, and smap->trig_signal is not zero, the
driver sends the signal smap->trig_signal to the calling process.
Using the Sound Driver Interface 67

3 Function Reference
The following figure illustrates the status and trigger points of a typical
record operation.

Figure 3-2 _os_ss_snd_record() Status and Trigger Points

After filling the data in smap->buf, if the smap->next field is not
NULL, the driver sets the internal smap pointer to
smap->next and continues.

If successful, this function returns SUCCESS. Otherwise, the returned
value is an error code. Error codes unique to the driver are defined
below.

Direct Errors

EOS_BMODE The path is not open for read access.

EOS_BPNUM Bad path number.

EOS_MAUI_BADNUMCHAN The specified smap->num_channels is
not supported by the hardware.

EOS_MAUI_BADPTR The pointer for smap or smap->buf is
NULL.

EOS_MAUI_BADRATE The specified smap->sample_rate is
not supported by the hardware.

EOS_MAUI_BADSIZE The specified smap->sample_size is
not appropriate for the
smap->coding_method or is not
supported by the hardware.

Record Operation
STATUS_RECORD

STATUS_BUSY

TRIG_START

TRIG_BUSY

TRIG_FINISH

TRIG_READY
68 Using the Sound Driver Interface

3Function Reference
EOS_MAUI_BADVALUE The value passed for block_type is
invalid,
or
one or more of the following smap
entries are not equal to zero:
loop_start, loop_end,
loop_count, loop_counter.

EOS_MAUI_BUSY The sound encoder is busy.

EOS_MAUI_NOHWSUPPORT The coding_method is not supported
by the hardware.

EOS_SIGNAL A fatal signal was received while
blocked.

EOS_UNKSVC This function is not supported because
the sound hardware does not contain an
encoder.

Indirect Errors
_os_ev_anyclr()
_os_send()
_os_ev_setand()
_os_ev_tstset() OS-9 Reference Manual

See Also
_os_ss_snd_abort()
_os_ss_snd_cont()
_os_ss_snd_gain()
_os_ss_snd_pause()
SND_BLOCK_TYPE
SND_SMAP
SND_STATUS
SND_TRIGGER
Using the Sound Driver Interface 69

3 Function Reference
70 Using the Sound Driver Interface

Chapter 4: Data Type Reference

This chapter provides a detailed reference for each data type defined in
the Sound Driver Interface.
71

4 Data Type Reference
Data Type Reference

Defined Constants

SND_LEVEL_* Gain Level Constants

Enumerated Types

SND_BLOCK_TYPE Blocking Types

Data Types

SND_CM Sound Coding Methods

Integers

SND_GAIN_CMD Gain Commands

SND_LINE Gain/Mixer Line Types

SND_STATUS Status

SND_TRIGGER Triggers

Data Structures

SND_DEV_CAP Sound Device Capabilities

SND_DEV_CM Sound Device Coding Method

SND_DEV_STATUS Sound Device Status

SND_GAIN Gain Control

SND_GAIN_UP Gain Up Parameters
72 Using the Sound Driver Interface

4Data Type Reference
SND_GAIN_DOWN Gain Down Parameters

SND_GAIN_MUTE Mute Gain Parameters

SND_GAIN_MONO Mono Gain Parameters

SND_GAIN_STEREO Stereo Gain Parameters

SND_GAIN_XSTEREO Cross-Stereo Gain Parameters

SND_GAIN_CAP Sound Device Gain Capabilities

SND_SMAP Sound Map
Using the Sound Driver Interface 73

4 Data Type Reference
SND_BLOCK_TYPE

Blocking Types

Syntax
typedef enum {

SND_BLOCK_START, /* Block until sound */
/* operation starts */

SND_BLOCK_FINISH, /* Block until sound */
/* operation ends */

SND_NOBLOCK /* Do not block */
} SND_BLOCK_TYPE;

Description

This enumerated type defines the blocking mechanisms that are
available when playing or recording sound samples.

The blocking type determines the behavior of the sound operation
functions _os_ss_snd_play() and _os_ss_snd_record(). These
functions are called with one of three blocking types:

SND_BLOCK_START returns when the sound operation starts.
The function call waits while the device
is busy and returns immediately when
the sound device begins to play or
record.

SND_BLOCK_FINISH returns when the sound operation is
finished. The function call waits to return
until all linked sound maps are
consumed or the sound operation is
aborted.

SND_NOBLOCK prevents the driver from blocking. If the
driver is busy when called, it immediately
returns the error EOS_MAUI_BUSY.
Otherwise, it starts the sound operation
and returns immediately.
74 Using the Sound Driver Interface

4Data Type Reference
See Also
_os_ss_snd_play()
_os_ss_snd_record()
Using the Sound Driver Interface 75

4 Data Type Reference
SND_CM

Sound Coding Methods

Syntax
typedef u_int32 SND_CM;

Description

This data type specifies a sound coding method. In a SND_SMAP, the
SND_CM is used to tell the driver the type of sound data being passed to
it for play operations, or what is required from it during record
operations.

Be aware that not all sound coding methods can be encoded or
decoded by all hardware. Use _os_ss_snd_devcap() to determine
which sound coding methods the driver and hardware support.

The following diagram shows the bit-fields contained in the sound
coding method:

Figure 4-1 Coding Method

OEM

Bits 31 through 25 may be used by OEMs to indicate implementation- or
driver-specific coding method modifiers.
76 Using the Sound Driver Interface

4Data Type Reference
BE

Bit 19 is a coding method modifier that indicates the byte endianess of
the sound data. If this bit is set, the sound data is formatted as least
significant byte first. If this bit is not set, the sound data is formatted as
most significant byte first. This bit is considered a modifier to the sound
coding method name.

Use the macro snd_get_cm_byte_order(cm) to get the byte
endianess in a SND_CM. For example:

byteorder=snd_get_cm_byte_order(cm);

The byteorder variable is equal to MSBFIRST or LSBFIRST.

Use the macro snd_set_cm_byte_order(order) with order equal
to MSBFIRST or LSBFIRST, or use the macros SND_CM_MSBYTE1ST or
SND_CM_LSBYTE1ST to set the byte endianess in a SND_CM.

The following two code segments set least significant byte ordering to
the variable cm:

cm=SND_CM_LSBYTE1ST |
snd_get_cm_name(SND_CM_PCM_SLINEAR);

cm=snd_set_cm_byte_order(LSBFIRST) |
snd_get_cm_name(SND_CM_PCM_SLINEAR);

Most significant byte ordering is the default. You do not need to use
either of these macros, but they are provided for completeness. The
following two code segments set most significant byte ordering to the
variable cm:

cm=SND_CM_MSBYTE1ST |
 snd_get_cm_name(SND_CM_PCM_SLINEAR);

cm=snd_set_cm_byte_order(LSBFIRST) |
snd_get_cm_name(SND_CM_PCM_SLINEAR);
Using the Sound Driver Interface 77

4 Data Type Reference
bE

Bit 18 is a coding method modifier that indicates the bit endianess of
the sound data. If this bit is set, the sound data is formatted as least
significant bit first. If this bit is not set, the sound data is formatted as
most significant bit first. This bit is considered a modifier to the sound
coding method name.

Use the macro snd_get_cm_bit_order(cm) to get the bit
endianess in a SND_CM. For example:

bitorder=snd_get_cm_bit_order(cm);

The bitorder variable is equal to MSBFIRST or LSBFIRST.

Use the macro snd_set_cm_bit_order(order) with order equal
to MSBFIRST or LSBFIRST, or use the macros SND_CM_MSBIT1ST or
SND_CM_LSBIT1ST to set the bit endianess in a SND_CM.

The following two code segments set least significant bit ordering to the
variable cm:

cm=SND_CM_LSBIT1ST |
 snd_get_cm_name(SND_CM_PCM_SLINEAR);

cm=snd_set_cm_bit_order(LSBFIRST) |
snd_get_cm_name(SND_CM_PCM_SLINEAR);

Most significant bit ordering is the default. You do not need to use either
of these macros, but they are provided for completeness. The following
two code segments set most significant bit ordering to the variable cm:

cm=SND_CM_MSBIT1ST |
snd_get_cm_name(SND_CM_PCM_SLINEAR);

cm=snd_set_cm_bit_order(LSBFIRST) |
snd_get_cm_name(SND_CM_PCM_SLINEAR);
78 Using the Sound Driver Interface

4Data Type Reference
Name

Bits 0 through 9 define the name of the coding method. This field is
segmented into the following numeric ranges to indicate the class of
coding method as defined in the following table:

The following standard coding method names are defined:

Table 4-1 Coding Method Classes

Numeric Range Description

0-255 Standard Microware-defined coding methods.

256-767 Reserved.

768-1023 Defined by OEMs.

Table 4-2 Standard Coding Method Names

Value Name Description

0 SND_CM_UNKNOWN Unknown or not yet
determined.

1 SND_CM_PCM_ULAW μLAW encoded PCM.

2 SND_CM_PCM_ALAW ALAW encoded PCM.

3 SND_CM_PCM_SLINEAR Signed Linear encoded
PCM.

4 SND_CM_PCM_ULINEAR Unsigned Linear encoded
PCM.

5 SND_CM_ADPCM_G721 CCITT G.721 ADPCM.
Using the Sound Driver Interface 79

4 Data Type Reference
Use the macro snd_get_cm_name(cm) to extract the coding method
name from a SND_CM. For example:

name=snd_get_cm_name(cm);

Use the macro snd_set_cm_name(name) to set the coding method
name from a SND_CM. For example:

cm=snd_set_cm_name(name);

SND_CM_UNKNOWN

This type value indicates that the sound coding method is unknown or
unspecified.

SND_CM_PCM_SLINEAR,
SND_CM_PCM_SLINEAR | SND_CM_LSBYTE1ST
SND_CM_PCM_ULINEAR
SND_CM_PCM_ULINEAR | SND_CM_LSBYTE1ST

Pulse Coded Modulation (PCM) is one of the most common methods
used by sound cards to record and play back recorded sound.
SND_CM_PCM_SLINEAR is defined as signed (2’s complement) linear
PCM samples. SND_CM_PCM_ULINEAR represents unsigned PCM
data.

Multi-channel samples under SND_CM_PCM_SLINEAR and
SND_CM_PCM_ULINEAR are defined to be interleaved on a
frame-by-frame basis: if there are N channels, the data is a sequence of

6 SND_CM_ADPCM_G723 CCITT G.723 ADPCM.

7 SND_CM_ADPCM_IMA IMA ADPCM.

Table 4-2 Standard Coding Method Names

Value Name Description
80 Using the Sound Driver Interface

4Data Type Reference
frames, where each frame contains N samples, one from each channel
(thus, the sampling rate is really the number of frames per second). For
stereo, the left channel comes first, followed by the right channel.

Mono and stereo 8-bit linear PCM data is depicted in the following two
figures.

Figure 4-2 Mono, 8-bit Data
SND_CM_PCM_SLINEAR, SND_CM_PCM_ULINEAR,
SND_CM_PCM_ULAW, SND_CM_PCM_ALAW

For 16-bit or larger linear PCM data, either the SND_CM_MSBYTE1ST or
the SND_CM_LSBYTE1ST modifiers may be used. Mono and stereo
16-bit SND_CM_PCM_SLINEAR and SND_CM_PCM_ULINEAR are
depicted in the following two figures.

Time

sample 1sample 2sample 3sample 4sample 5sample 6

MONO MONO MONO MONO

 31 24 23 16 15 8 7 0

32-bit Word

Time

sample 1

32-bit Word

sample 1sample 2sample 2sample 3sample 3

RIGHT LEFT RIGHT LEFT

 31 24 23 16 15 8 7 0

Figure 4-3 Stereo 8-bit, Data
SND_CM_PCM_SLINEAR,
SND_CM_PCM_ULINEAR,
SND_CM_PCM_ULAW, SND_CM_PCM_ALAW
Using the Sound Driver Interface 81

4 Data Type Reference

Mono and stereo 16-bit SND_CM_PCM_SLINEAR |
SND_CM_LSBYTE1ST and SND_CM_PCM_ULINEAR |
SND_CM_LSBYTE1ST are depicted in the following two figures.

Time

sample 1sample 1sample 2sample 2sample 3sample 3

MONO LO MONO HI MONO LO MONO HI

 23 16 31 24 7 0 15 8

32-bit Word

sample 4sample 4

Figure 4-5 Mono 16-bit, Big-Endian Data
SND_CM_PCM_SLINEAR
SND_CM_PCM_ULINEAR

Time

sample 1sample 1sample 1sample 1sample 2sample 2

RIGHT LO LEFT HI RIGHT LO LEFT HI

 23 16 31 24 7 0 15 8

32-bit Word

sample 2sample 2

Figure 4-6 Stereo 16-bit, Big-Endian Data
SND_CM_PCM_SLINEAR
SND_CM_PCM_ULINEAR
82 Using the Sound Driver Interface

4Data Type Reference
Time

sample 1sample 2sample 3sample 4sample 5sample 6

MONO MONO

 31 24 23 16 15 8 7 0

32-bit Word

Figure 4-7 Mono 16-bit, Little-Endian Data
SND_CM_PCM_SLINEAR|SND_CM_LSBYTE1ST
SND_CM_PCM_ULINEAR|SND_CM_LSBYTE1ST

Time

sample 1sample 1sample 2sample 2sample 3sample 3

RIGHT LEFT

 31 24 23 16 15 8 7 0

32-bit Word

Figure 4-8 16-bit, Little-Endian Data
SND_CM_PCM_SLINEAR|SND_CM_LSBYTE1ST
SND_CM_PCM_ULINEAR|SND_CM_LSBYTE1ST
Using the Sound Driver Interface 83

4 Data Type Reference
SND_CM_PCM_ULAW
SND_CM_PCM_ALAW

The μ-Law (pronounced mu-law) format is an 8-bit companded format
that is a telephony standard used in the United States and Japan. The
A-Law format is an 8-bit companded format that is a telephony standard
used in Europe. Under these encoding methods, the samples are
logarithmically encoded into 8 bits. The quantization is not uniform (as
in SND_CM_PCM_SLINEAR and SND_CM_PCM_ULINEAR), but is
skewed so that the signal is sampled with greater resolution when the
amplitude is less.

The official definition for μ-Law is contained in the CCITT standard
G.711. SND_CM_PCM_ULAW and SND_CM_PCM_ALAW are depicted in
the two following figures.

Time

sample 1sample 1sample 1sample 1sample 2sample 2

RIGHT LO LEFT HI RIGHT LO LEFT HI

 23 16 31 24 7 0 15 8

32-bit Word

sample 2sample 2

Figure 4-9 Stereo 16-bit, Big-Endian Data
SND_CM_PCM_SLINEAR
SND_CM_PCM_ULINEAR

Time

sample 1

32-bit Word

sample 1sample 2sample 2sample 3sample 3

RIGHT LEFT RIGHT LEFT

 31 24 23 16 15 8 7 0

Figure 4-9 Stereo 8-bit, Data
SND_CM_PCM_SLINEAR, SND_CM_PCM_ULINEAR,
SND_CM_PCM_ULAW, SND_CM_PCM_ALAW
84 Using the Sound Driver Interface

4Data Type Reference
SND_CM_PCM_ALAW is depicted in the following two figures:

No modifiers are appropriate for SND_CM_PCM_ULAW or
SND_CM_PCM_ALAW.

SND_CM_ADPCM_IMA

Adaptive Differential Pulse Code Modulation (ADPCM) is used for
improved performance and compression ratios over μ-Law and A-Law.
The IMA ADPCM format uses the DVI® ADPCM algorithm. It provides a
4-to-1 compression ratio (4 bits are saved for each 16-bit sample
capture). *

For more detailed information on the IMA ADPCM format contact IMA at
(410) 626-1380.

The SND_CM_ADPCM_IMA format is depicted in the following two
figures.

Time

sample 1sample 1sample 1sample 1sample 2sample 2

RIGHT LO LEFT HI RIGHT LO LEFT HI

 23 16 31 24 7 0 15 8

32-bit Word

sample 2sample 2

Figure 4-10 Stereo 16-bit, Big-Endian Data
SND_CM_PCM_SLINEAR
SND_CM_PCM_ULINEAR

Time

sample 1

32-bit Word

sample 1sample 2sample 2sample 3sample 3

RIGHT LEFT RIGHT LEFT

 31 24 23 16 15 8 7 0

Figure 4-10 Stereo 8-bit, Data
SND_CM_PCM_SLINEAR, SND_CM_PCM_ULINEAR,
SND_CM_PCM_ULAW, SND_CM_PCM_ALAW
Using the Sound Driver Interface 85

4 Data Type Reference
SND_CM_ADPCM_G721

ADPCM stands for Adaptive Delta Pulse Code Modulation. G.721 is a
CCITT standard for ADPCM at 32 kbits/second.

*.There are two forms of IMA ADPCM in common use. The most common form found
in WAV audio files is a WAV type 0x11. This is an enhanced definition of the IMA
ADPCM specification that divides the data into autonomous blocks. This form is
usually encoded/decoded in software from/to 16-bit PCM. The second form of IMA
ADPCM found in WAV audio files is a WAV type 0x39. This form follows the original
IMA specification and is not “blocked”. This latter form can be encoded and decoded
directly by several popular CODECs. This second form is represented by the
SND_CM type SND_CM_ADPCM_IMA.

Time

sample 1

32-bit Word

sample 2sample 3sample 4sample 5sample 6sample 7sample 8

MONO MONO MONO MONO MONO MONO MONO MONO

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Figure 4-11 4-bit Mono, IMA ADPCM Data
SND_CM_ADPCM_IMA

Figure 4-12 4-bit Stereo, IMA ADPCM Data
SND_CM_ADPCM_IMA

Time

sample 1

32-bit Word

sample 1sample 2sample 2sample 3sample 3sample 4sample 4

RIGHT LEFT RIGHT LEFT RIGHT LEFT RIGHT LEFT

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
86 Using the Sound Driver Interface

4Data Type Reference
SND_CM_ADPCM_G723

G.723 is a CCITT standard for ADPCM at 24 and 40 kbits/second.

SND_CM_OEM_*

We recommend that if an OEM defines a coding method, that it be
prefixed with SND_CM_OEM_ and that it be in the range 768 through
1023. We also request that OEMs submit a detailed description of their
coding methods to Microware. These coding methods may become part
of the Standard Coding Method Names in future releases.

See Also
_os_gs_snd_devcap()
SND_DEV_CAP
SND_DEV_CM
SND_SMAP

NoteNote
CCITT G.711, G.721, G.723: Sun and Microsoft have placed the source
code of a portable implementation of these algorithms in the public
domain. One place to ftp this source code from is
ftp.cwi.nl:/pub/audio/ccitt-adpcm.tar.Z.
Using the Sound Driver Interface 87

4 Data Type Reference
SND_DEV_CAP

Sound Device Capabilities

Syntax
typedef struct _SND_DEV_CAP {

char *hw_type; /* Hardware type */
char *hw_subtype; /* Hardware subtype */
SND_TRIGGER sup_triggers;/* Supported triggers */
SND_LINE play_lines; /* Play Gain/mix lines */
SND_LINE record_lines; /* Record Gain/mix lines */
SND_GAIN_CMD sup_gain_cmds;

/* Gain cmd mask */
u_int16 num_gain_caps; /* Num gain caps */
SND_GAIN_CAP *gain_caps;/* Ptr to gain cap array */
u_int16 num_rates; /* Num sample rates
u_int32 *sample_rates; /* Ptr to sample rate array */
u_int16 num_chan_info; /* Num channel infos */
u_int16 *channel_info;/* Ptr to channel info array */
u_int16 num_cm; /* Num coding methods */
SND_DEV_CM *cm_info; /* Ptr to coding method array

*/
} SND_DEV_CAP;

Description

This data structure defines the capabilities supported by a sound
device. Appendix A: Sound Hardware Specifications gives detailed
information about the capabilities of some specific MAUI sound drivers.
Use _os_gs_snd_devcap() to retrieve this information from the
driver.

hw_type string indicates the class of hardware.

hw_subtype string indicates the sub-class of hardware.

sup_triggers indicates which triggers are supported by this device.

play_lines indicates which mix lines control the gain level for
_os_ss_snd_play().
88 Using the Sound Driver Interface

4Data Type Reference
record_lines indicates which mix lines control the gain level for
_os_ss_snd_record().

sup_gain_cmds is a mask of the supported gain commands.

gain_caps is a pointer to an array of SND_GAIN_CAP structures, with
num_gain_caps entries. This array has entries for each mixing line
supported by the hardware.

sample_rates is a pointer to an array of the sample rates supported
by the sound hardware, with num_rates entries.

channel_info is a pointer to an array of the various number of
channels supported by the sound hardware, with num_chan_info
entries. The channel_info array is typically one of the following:

mono only one element containing the value 1

stereo only one element containing the value 2

stereo and mono two elements, one containing the value 1
and the other containing the value 2

cm_info is a pointer to an array of SND_DEV_CM structures that
describe coding methods supported by the sound hardware. The array
has num_cm entries.

See Also
_os_gs_snd_devcap()
_os_ss_snd_cont()
_os_ss_snd_pause()
_os_ss_snd_play()
_os_ss_snd_record()
SND_DEV_CM
SND_GAIN_CAP
SND_LINE
SND_TRIGGER
Using the Sound Driver Interface 89

4 Data Type Reference
SND_DEV_CM

Sound Device Coding Method

Syntax
typedef struct _SND_DEV_CM {

SND_CM coding_method; /* Coding method */
u_int32 sample_size;/* Number of bits per sample */
u_int16 boundary_size;/* Boundary limitations */

} SND_DEV_CM;

Description

This data structure defines a coding method supported by a sound
device. An array of sound coding methods supported by a driver is
available via _os_gs_snd_devcap(). Appendix A: Sound Hardware
Specifications gives detailed information about the capabilities of some
specific MAUI drivers.

coding_method is the coding method of the sound data.

sample_size defines the size of each sample in bits.

boundary_size indicates the hardware memory boundary limitations
in bytes. Memory submitted to the driver, via the buf field of a
SND_SMAP, must start on the appropriate memory boundary and be a
multiple of boundary_size. For example, if boundary_size is equal
to 2, then buf should begin on an even byte boundary and buf_size
should also be an even number of bytes. If boundary_size is equal to
zero or 1, then there are no hardware limitations.

See Also
_os_gs_snd_devcap()
SND_CM
SND_DEV_CAP
SND_SMAP
90 Using the Sound Driver Interface

4Data Type Reference
SND_DEV_STATUS

Sound Device Status

Syntax
typedef struct _SND_DEV_STATUS {

SND_STATUS status; /* Current status*/
process_id play_pid;/* Current play PID*/
process_id record_pid;/* Current record PID*/
u_int16 num_gain; /* Num SND_GAIN structures */
SND_GAIN *gain; /* Ptr to SND_GAIN array */

} SND_DEV_STATUS;

Description

This structure returns the current status of the sound device. This
structure indicates what is being performed by which process. A pointer
to this data structure is returned by _os_gs_snd_status().

status indicates the current status of the sound device.

If a play operation is active, the play_pid field contains the process id
of the process that initiated the play. Otherwise, it contains zero.

If a record operation is active, the record_pid field contains the
process id of the process that initiated the record. Otherwise it contains
zero.

gain is a pointer to an array of SND_GAIN structures with num_gain
entries. This array has entries for each mixing line that can be controlled
on this hardware. Each entry indicates the current settings for each line.

See Also
_os_gs_snd_status()
SND_GAIN
SND_STATUS
Using the Sound Driver Interface 91

4 Data Type Reference
SND_GAIN

Gain Control

Syntax
typedef struct _SND_GAIN {

SND_LINE lines; /* Mixer line mask */
SND_GAIN_CMD cmd; /* Type of gain */
union { /* cmd == */
SND_GAIN_UP up; /* SND_GAIN_CMD_UP */

SND_GAIN_DOWN down;/* SND_GAIN_CMD_DOWN */
SND_GAIN_MUTE mute;/* SND_GAIN_CMD_MUTE */
SND_GAIN_MONO mono;/* SND_GAIN_CMD_MONO */
SND_GAIN_STEREO stereo;/* SND_GAIN_CMD_STEREO */
SND_GAIN_XSTEREO xstereo;

/* SND_GAIN_CMD_XSTEREO*/
} param;

} SND_GAIN;

Description

This data structure is passed in _os_ss_snd_gain() to control input
and output gain. The gain information specifies how much of each
signal from the sound decoder/encoder contributes to the final channel
outputs/inputs (such as speakers, headphones, microphones).

lines specifies which mix lines are affected.

cmd specifies how to modify the gain level.

The union param supplies the various parameters dependent on the
value of cmd. The following table identifies which cmd values use which
params:
92 Using the Sound Driver Interface

4Data Type Reference
See Also
_os_ss_snd_gain()
SND_GAIN_CMD
SND_GAIN_DOWN
SND_GAIN_MONO
SND_GAIN_MUTE
SND_GAIN_STEREO
SND_GAIN_UP
SND_GAIN_XSTEREO
SND_LINE

Table 4-3 Relationship Between cmd and param in SND_GAIN

cmd params

SND_GAIN_CMD_UP param.up.levels

SND_GAIN_CMD_DOWN param.down.levels

SND_GAIN_CMD_RESET No params

SND_GAIN_CMD_MUTE para.mute.state

SND_GAIN_CMD_MONO param.mono.m

SND_GAIN_CMD_STEREO param.stereo.ll,
param.stereo.rr

SND_GAIN_CMD_XSTEREO param.xstereo.ll
param.xstereo.rr
param.xstereo.rl
param.xstereo.lr
Using the Sound Driver Interface 93

4 Data Type Reference
SND_GAIN_CAP

Sound Device Gain Capabilities

Syntax
typedef struct _SND_GAIN_CAP {

SND_LINE lines;/* Mask of mix lines */
BOOLEAN sup_mute;/* Supports mute if TRUE */
SND_GAIN_CMD default_type;

/* Default gain type */
u_int16 default_level;/* Default gain level */
u_int16 zero_level;/* Gain setting where dB is */

/* zero */
u_int16 num_steps;/* Number of gain steps*/
int16 step_size;/* Average size of each */

/* step */
int32 mindb;/* dB at SND_GAIN_MIN */
int32 maxdb;/* dB at SND_GAIN_MAX */

} SND_GAIN_CAP;

Description

This data structure defines the gain capabilities of a set of mixer lines of
a sound device. Appendix A: Sound Hardware Specifications gives
detailed information about the capabilities of each specific MAUI sound
driver. A pointer to an array of these data structures is returned as part
of the SND_DEV_CAP structure returned in _os_gs_snd_devcap().

lines is a mask of one or more mix lines that share a SND_DEV_CAP
description. A single SND_GAIN_CAP entry may describe more than
one mixing line.

sup_mute is TRUE if the indicated mix lines support muting.

default_type specifies the default gain type for the indicated mix
lines. This is the SND_GAIN_CMD that the mix lines revert to when
SND_GAIN_CMD_RESET is specified in _os_ss_snd_gain().

default_level contains the driver’s initial gain value for the indicated
mix lines.
94 Using the Sound Driver Interface

4Data Type Reference
zero_level contains the level value where delta dB is zero (no gain or
attenuation is applied to the line). Steps above this step are positive
gain. Steps below this step are negative gain (attenuation).

num_steps is the number of actual gain or attenuation values
supported by the hardware. Applications specify gain in levels between
0 and 127. The driver scales the requested level into the range of steps
supported by the hardware.

step_size is the average size of each step in 100ths of a dB.

mindb is the delta dB in 100ths of a dB at level SND_GAIN_MIN.

maxdb is the delta dB in 100ths of a dB at level SND_GAIN_MAX.

The following two tables show example SND_GAIN_CAPs:

Table 4-4 Example A: SND_GAIN_CAP

Name Value Description

lines SND_LINE_PCM Primary PCM CODEC.

sup_mute TRUE Mute is supported.

default_type SND_GAIN_CMD_STER
EO

Left and Right channels
are supported.

default_leve
l

SND_LEVEL_MAX These lines start at and
reset to level 127.

zero_level SND_LEVEL_MIN No gain applied when
level is 0.

num_steps 64 The hardware supports
64 steps.

step_size 150 The average step size is
1.5 dB.
Using the Sound Driver Interface 95

4 Data Type Reference
mindb -9450 At level 0, an attenuation
of 94.5 dB is applied.

maxdb 0 At level 127, no
attenuation is applied.

Table 4-5 Example B: SND_GAIN_CAP

Name Value Description

lines SND_LINE_CD |
SND_LINE_LINE

The CD and LINE inputs
have the same gain
capabilities.

sup_mute TRUE Mute is supported.

default_ty
pe

SND_GAIN_CMD_STER
EO

Left and Right channels
are supported.

default_le
vel

94 These lines start at and
reset to level 94.

Table 4-4 Example A: SND_GAIN_CAP (continued)

Name Value Description

64 Steps

0 dB at max level 127

-94.5 dB at min level 0
96 Using the Sound Driver Interface

4Data Type Reference
See Also

_os_gs_snd_devcap()

BOOLEAN MAUI Programming Reference Guide
SND_DEV_CAP
SND_LINE

zero_level 94 No gain applied when level
is 94.

num_steps 32 The hardware supports 32
steps.

step_size 150 The average step size is
1.5 dB.

mindb -3450 At level 0, an attenuation
of 34.5 dB is applied.

maxdb 120 At level 127, a gain of 12
dB is applied.

Table 4-5 Example B: SND_GAIN_CAP (continued)

Name Value Description

32 Steps

0 dB at level 94

-34.5 dB at min level 0

12 dB at max level 127
Using the Sound Driver Interface 97

4 Data Type Reference
SND_GAIN_CMD

Gain Commands

Syntax
typedef int {

SND_GAIN_CMD_NONE, /* Gain command unknown */
SND_GAIN_CMD_UP, /* Increment gain n levels */
SND_GAIN_CMD_DOWN, /* Decrement gain n levels */
SND_GAIN_CMD_RESET, /* Reset to default level */
SND_GAIN_CMD_MUTE, /* Set/Unset mute */
SND_GAIN_CMD_MONO, /* Mono gain control */
SND_GAIN_CMD_STEREO,/* Stereo gain control */
SND_GAIN_CMD_XSTEREO/* Cross-stereo gain control */

} SND_GAIN_CMD;

Description

This integer defines the gain commands for modifying the gain level of
the mix lines. The values are powers of two to facilitate the specification
of their use in the sup_gain_cmds field of SND_GAIN_CAP.

SND_GAIN_CMD_NONE usually indicates that the gain command is not
set. A SND_GAIN->cmd of SND_GAIN_UP in _os_ss_snd_gain()
indicates to increase the gain the number of levels specified in
SND_GAIN_UP.

A SND_GAIN->cmd of SND_GAIN_DOWN in _os_ss_snd_gain()
indicates to decrease the gain the number of levels specified in
SND_GAIN_DOWN.

A SND_GAIN->cmd of SND_GAIN_CMD_RESET in
_os_ss_snd_gain() indicates to reset the gain level to the
default_level found in SND_GAIN_CAP.

A SND_GAIN->cmd of SND_GAIN_CMD_MUTE in
_os_ss_snd_gain() indicates to set or clear the mute bit according
to state specified in SND_GAIN_MUTE.
98 Using the Sound Driver Interface

4Data Type Reference
SND_GAIN_CMD_MONO specifies mono gain control. Parameters for
SND_GAIN_CMD_MONO are specified by SND_GAIN_MONO.
SND_GAIN_STEREO specifies stereo gain control. Parameters for
SND_GAIN_CMD_STEREO are specified by SND_GAIN_STEREO.

SND_GAIN_CMD_XTEREO is used for hardware that supports cross-gain
or cross-attenuation. That is the ability to send the audio signal from the
right channel to the left channel, and audio from the left channel to the
right channel. Parameters for SND_GAIN_CMD_XSTEREO are specified
by SND_GAIN_XSTEREO.

See Also
SND_GAIN
SND_GAIN_CAP
SND_GAIN_DOWN
SND_GAIN_MONO
SND_GAIN_MUTE
SND_GAIN_STEREO
SND_GAIN_UP
SND_GAIN_XSTEREO
Using the Sound Driver Interface 99

4 Data Type Reference
SND_GAIN_DOWN

Gain Down Parameters

Syntax
typedef struct _SND_GAIN_DOWN {

u_int8 levels; /* Levels to decrement the */
/* gain */

} SND_GAIN_DOWN;

Description

This data structure specifies how much to decrement the gain level
when cmd of SND_GAIN is SND_GAIN_CMD_DOWN.

levels is the number of levels to decrement the gain level. This has
the effect of decreasing the volume.

If decrementing the gain level by levels causes the gain level to drop
below SND_LEVEL_MIN, the gain level is set to SND_LEVEL_MIN.

See Also
_os_ss_snd_gain()
SND_GAIN
SND_GAIN_CMD
SND_LEVEL_*
100 Using the Sound Driver Interface

4Data Type Reference
SND_GAIN_MONO

Mono Gain Parameters

Syntax
typedef struct _SND_GAIN_MONO {

u_int8 m; /* Gain of mono signal */
} SND_GAIN_MONO;

Description

This data structure specifies a specific mono gain level when cmd of
SND_GAIN is SND_GAIN_CMD_MONO.

The gain level specifies how much of the mono signal from the sound
decoder/encoder contributes to the final output or input (such as
speaker, headphone, microphone).

The range of m is from SND_LEVEL_MIN to SND_LEVEL_MAX, inclusive.
In general, higher m values are louder than lower m values. The
significant values and translation of m to dB varies with the capabilities
of the hardware. Use _os_gs_snd_devcap() and examine the
SND_GAIN_CAP to determine the capabilities of a specific sound
device.

Values in m with SND_LEVEL_MUTE bit set are considered mute. This
allows the setting and clearing of the mute bit to enable and disable
muting, without affecting the gain level of m.

See Also
_os_ss_snd_gain()
SND_GAIN
SND_GAIN_CAP
SND_GAIN_CMD
SND_LEVEL_*
Using the Sound Driver Interface 101

4 Data Type Reference
SND_GAIN_MUTE

Gain Mute Parameters

Syntax
typedef struct _SND_GAIN_MUTE {

BOOLEAN state; /*Mute state*/
} SND_GAIN_MUTE;

Description

This data structure specifies whether to mute or un-mute the line when
cmd of SND_GAIN is SND_GAIN_CMD_MUTE.

If state is equal to FALSE, the line is un-muted. If state is equal to
TRUE, the line is muted.

See Also
_os_ss_snd_gain()
SND_GAIN
SND_GAIN_CMD
SND_LEVEL_*

BOOLEAN (See the MAUI Programming Reference Manual)
102 Using the Sound Driver Interface

4Data Type Reference
SND_GAIN_STEREO

Stereo Gain Parameters

Syntax
typedef struct _SND_GAIN_STEREO {

u_int8 ll; /* Left input to left output */
u_int8 rr; /* Right input to right output */

} SND_GAIN_STEREO;

Description

This data structure specifies a specific stereo gain level when cmd of
SND_GAIN is SND_GAIN_CMD_STEREO.

The gain level specifies how much of each signal from the sound
decoder/encoder contributes to the final left and right outputs or inputs
(such as speaker, headphone, or microphone).

The range of each member (ll and rr) are from SND_LEVEL_MIN to
SND_LEVEL_MAX inclusive. In general, higher values are louder than
lower values. The significant values and translation to dB varies with the
capabilities of the hardware. Use _os_gs_snd_devcap() to examine
the SND_GAIN_CAP and determine the capabilities of a specific sound
device.

Values in ll and rr with the SND_LEVEL_MUTE bit set are considered
mute. This allows the setting and clearing of the mute bit to enable and
disable muting without affecting the original values of ll and rr.

ll specifies the amount of audio to go from the left input to left output.
rr specifies the amount of audio to go from the right input to right
output. These fields allow control of the overall volume as well as
adjusting balance.

See Also
_os_ss_snd_gain()
SND_GAIN
SND_GAIN_CAP
SND_GAIN_CMD
SND_LEVEL_*
Using the Sound Driver Interface 103

4 Data Type Reference
SND_GAIN_UP

Gain Up Parameters

Syntax
typedef struct _SND_GAIN_UP {

u_int8 levels;/*Levels to increment the gain */
} SND_GAIN_UP;

Description

This data structure specifies how much to increment the gain level when
cmd of SND_GAIN is SND_GAIN_CMD_UP.

levels is the number of levels to increment the gain level. This has the
effect of increasing the volume. If incrementing the gain level by
levels causes the gain level rise above SND_LEVEL_MAX, the gain
level is set to SND_LEVEL_MAX.

See Also
_os_ss_snd_gain()
SND_GAIN
SND_GAIN_CMD
SND_LEVEL_*
104 Using the Sound Driver Interface

4Data Type Reference
SND_GAIN_XSTEREO

Cross-Stereo Gain Parameters

Syntax
typedef struct _SND_GAIN_STEREO {

u_int8 ll; /* Left input to left output */
u_int8 rr; /* Right input to right output */
u_int8 rl; /* Right input to left output */
u_int8 lr; /* Left input to right output */

} SND_GAIN_STEREO;

Description

This data structure specifies a specific stereo gain level when cmd of
SND_GAIN is equal to SND_GAIN_CMD_XSTEREO.

The gain level specifies how much of each signal from the sound
decoder/encoder contributes to the final left and right outputs and inputs
(such as speaker, headphone, and microphone).

The range of each member (ll, rr, rl, and lr) is from
SND_LEVEL_MIN to SND_LEVEL_MAX inclusive. In general, higher
values are louder than lower values. The significant values and
translation to dB varies with the capabilities of the hardware. Use
_os_gs_snd_devcap() and examine the SND_GAIN_CAP to
determine the capabilities of a specific sound device.

Values in ll, rr, rl, and lr with the SND_LEVEL_MUTE bit set are
considered mute. This allows the setting and clearing of the mute bit to
enable and disable muting, without affecting the original values of ll,
rr, rl, and lr.

ll specifies the amount of audio going from
the left input to left output.

rr specifies the amount of audio going from
the right input to the right output.

rl specifies the amount of audio going from
the right input to left output.
Using the Sound Driver Interface 105

4 Data Type Reference
lr specifies the amount of audio going from
the left input to right output.

These fields allow control of the overall volume as well as adjusting
balance.

See Also
_os_ss_snd_gain()
SND_GAIN
SND_GAIN_CAP
SND_GAIN_CMD
SND_LEVEL_*
106 Using the Sound Driver Interface

4Data Type Reference
SND_LEVEL_*

Gain Level Constants

Syntax
SND_LEVEL_*

Description

SND_LEVEL_ is a prefix used to define a set of constant values that
may be used to specify gain levels as shown in the following table.
These constants are commonly used in SND_GAIN_DOWN,
SND_GAIN_MONO, SND_GAIN_MUTE, SND_GAIN_STEREO,
SND_GAIN_UP, and SND_GAIN_XSTEREO.

SND_LEVEL_MUTE may be logically or’ed (|) with a gain level to mute
the line without affecting the current gain level. For example:

SN_GAIN in_gain, out_gain;
in_gain.param.mono.m |= SND_LEVEL_MUTE;
out_gain.param.stereo.ll |= SND_LEVEL_MUTE;
out_gain.param.stereo.rr |= SND_LEVEL_MUTE;

The negation (~) of this mask may be logically and’ed (&) with gain to
un-mute the line without affecting the current gain level. For example:

Table 4-6 SND_LEVEL_* Definitions

Define Name Value Description

SND_LEVEL_MIN 0 Defines the minimum (quietest)
gain level.

SND_LEVEL_MAX 127 Defines the maximum (loudest)
gain level.

SND_LEVEL_MUTE 0x80 Mask value used to mute a line.
Using the Sound Driver Interface 107

4 Data Type Reference
SND_GAIN in_gain, out_gain;
in_gain.param.mono.m &= ~SND_LEVEL_MUTE;
out_gain.param.stereo.ll &= ~SND_LEVEL_MUTE;
out_gain.param.stereo.rr &= ~SND_LEVEL_MUTE;

See Also
_os_ss_snd_gain()
SND_GAIN
SND_GAIN_DOWN
SND_GAIN_MONO
SND_GAIN_MUTE
SND_GAIN_STEREO
SND_GAIN_UP
SND_GAIN_XSTEREO
108 Using the Sound Driver Interface

4Data Type Reference
SND_LINE

Gain/Mixer Line Types

Syntax
typedef int {

SND_LINE_VOLUME, /* Master output */
SND_LINE_BASS, /* Bass */
SND_LINE_TREBLE, /* Treble */
SND_LINE_SYNTH, /* Synthesizer input */
SND_LINE_PCM, /* PCM/CODEC */
SND_LINE_SPEAKER, /* PC speaker */
SND_LINE_LINE, /* Line input */
SND_LINE_MIC, /* Microphone input */
SND_LINE_CD, /* CD input */
SND_LINE_IMIX, /* Recording monitor */
SND_LINE_OMIX, /* Loopback */
SND_LINE_ALTPCM, /* Alternative PCM/CODEC */
SND_LINE_RECLEV, /* Encoder level */
SND_LINE_IGAIN, /* Input gain */
SND_LINE_OGAIN, /* Output gain */
SND_LINE_LINE1, /* Lines 1-3 are generic mixer

lines */
SND_LINE_LINE2,
SND_LINE_LINE3,
SND_NUM_LINES /* Number of mixer lines */
SND_MAX_LINES /* Maximum mixer lines */
SND_LINE_MASK_ALL /* Mask to select all mixer

lines */
} SND_LINE;

Description

This integer defines the valid mixer line types. The values are powers of
two. Therefore, you may combine them safely. It is used in
SND_DEV_CAP, SND_GAIN, and SND_GAIN_CAP. These definitions are
similar to LINUX’s SOUND_MIXER_* definitions.
Using the Sound Driver Interface 109

4 Data Type Reference
SND_LINE_VOLUME is the master output level (headphone or line out
volume).

SND_LINE_BASS controls the bass level of all the output lines.

SND_LINE_TREBLE controls the treble level of all the output lines.

SND_LINE_SYNTH controls the synthesizer input (FM, wave table) of
the sound card.

SND_LINE_PCM is the output level for the audio (CODEC, PCM, ADC)
line.

SND_LINE_SPEAKER is the output level of the PC speaker signals. This
is typically mono.

SND_LINE_LINE is the input level for the line-in jack.

SND_LINE_MIC is the input level for the signal coming from the
microphone-in jack.

SND_LINE_CD is the level for signal connected to the CD audio input.

SND_LINE_IMIX is the recording monitor. For example, on PAS16 and
some other cards, this controls the output gain (headphone jack) of the
selected recording sources while recording. This line only has effect
when recording.

SND_LINE_OMIX controls the loopback of output to input.

SND_LINE_ALTPCM controls the alternative CODEC line such as the
SB emulation of the PAS16 board.

SND_LINE_RECLEV is the global record level setting. On the SB16
card, this controls the input gain, which has 4 possible levels.

SND_LINE_IGAIN is the input gain control.

SND_LINE_OGAIN is the output gain control.

SND_LINE_LINE1, SND_LINE_LINE2, and SND_LINE_LINE3 are
generic mixer lines that are used in cases when precise meaning of a
physical mixer line is not known. Actual meaning of these signals are
vendor-defined. Usually these lines are connected to synth, line-in, and
CD inputs of the card, but the order of the assignment is not known to
the driver.

SND_LINE_MASK_ALL is a mask to select all mixer lines.
110 Using the Sound Driver Interface

4Data Type Reference
See Also
SND_DEV_CAP
SND_GAIN
SND_GAIN_CAP
Using the Sound Driver Interface 111

4 Data Type Reference
SND_SMAP

Sound Map

Syntax
typedef struct _SND_SMAP {

SND_TRIGGER trig_status;
/* Current sound map status */

SND_TRIGGER trig_mask;/* Signal trigger mask */
signal_code trig_signal;

/* Signal to send on */
/* triggers */

error_code err_code;/* Error code on termination */
SND_CM coding_method;/* Coding method */
u_int8 num_channels;/* Number of channels */
u_int32 sample_size;/* Number of bits per sample */
u_int32 sample_rate;/* Number of samples per sec */
u_char *buf; /* Sound data buffer */
u_int32 buf_size; /* Size of sound data buffer */
u_int32 cur_offset; /* Current offset into “buf” */
u_int32 loop_start; /* Offset to start of loop */
u_int32 loop_end; /* Offset to end of loop */
u_int32 loop_count; /* Num of times to play loop */
u_int32 loop_counter;/* Num times loop has played */
SND_SMAP *next; /* Link to next SND_SMAP */

} SND_SMAP;

Description

This data structure defines the sound map. This object is created by the
application and is used to control play and record operations.

trig_status indicates the current sound map status. It is modified as
the status changes. See SND_TRIGGER for a description of each value.

The specified trig_signal is sent when the sound operation
(_os_ss_snd_play() or _os_ss_snd_record()) completes an
activity that satisfies a trigger specified by trig_mask. If the specified
trig_mask is equal to SND_TRIG_NONE or trig_signal is equal to
zero, then no signals are sent.
112 Using the Sound Driver Interface

4Data Type Reference
If an error occurs, err_code is set to an appropriate error code. If an
operation is aborted, err_code is set to EOS_MAUI_ABORT.
Otherwise, err_code is set to SUCCESS at the end of the sound
operation.

coding_method defines the audio encoding format for the sound map.

num_channels is the number of channels. Mono data requires one
channel. Stereo data requires two channels. Currently all coding
methods are defined such that the left stereo channel is always ordered
before the right stereo channel.

There are two main parameters that effect the quality of the sound.
First, is the sample_rate which is the number of samples per second.
Typical values include 4000, 8000, 11025, 22050, 44100 and 48000.
The second parameter that affects the quality is sample_size.
sample_size is the number of bits per sample. Typical values are 8 or
16 bits per sample. The number of bits affect the dynamic range of the
sample and the signal to noise ratio.

buf is a pointer to a buffer containing data for a play operation or
sufficient space for a record operation. The memory pointed to by buf
should start on a multiple of SND_DEV_CM->boundary_size. The
size of the buffer, in bytes, is set in buf_size and should also be a
multiple of
SND_DEV_CM->boundary_size.

cur_offset specifies the offset in bytes within buf for the current
sound operation. It is updated throughout the I/O operation by the
sound driver.

loop_start, loop_end, loop_count and loop_counter are used
to specify the area of the buffer to play and how many times to play it.
They are not used in record operations and must be set to zero when
submitted to _os_ss_snd_record().

loop_start specifies the start of the loop as an offset in bytes within
buf.

loop_end specifies the end of the loop as an offset in bytes within buf.

loop_count indicates the desired number of times to execute the loop.
Using the Sound Driver Interface 113

4 Data Type Reference
loop_counter indicates the current number of times the loop has
been executed. This field is set to zero by the sound driver when the
sound map is accepted by the sound driver.

next may point to another sound map. In this case, the sound
operation continues with the next SND_SMAP when the first one is
finished. The trig_mask and trig_signal are consulted regardless
of whether next is set or not. If this SND_SMAP is not linked to another
SND_SMAP, next must be NULL.

Linked sound maps may have different encoding parameters
(coding_method, num_channels, sample_size, sample_rate),
although most hardware requires some calibration time to switch to the
new formats, which may result in a delay.

See Also
_os_ss_snd_play()
_os_ss_snd_record()
SND_CM
SND_DEV_CM
SND_TRIGGER
114 Using the Sound Driver Interface

4Data Type Reference
SND_STATUS

Device Status

Syntax
typedef int {

SND_STATUS_IDLE, /* Device is idle */
SND_STATUS_PLAY, /* Play operation is active */
SND_STATUS_PLAY_PAUSED,/* Play is paused */
SND_STATUS_RECORD, /* Record operation is active */
SND_STATUS_RECORD_PAUSED,/* Record is paused */
SND_STATUS_BUSY /* The buffer is busy */

} SND_STATUS;

Description

This integer defines the valid values for the status field in
SND_DEV_STATUS. SND_DEV_STATUS is returned from
_os_ss_snd_status() and indicates the current state of the sound
hardware. The values are powers of two and may be combined safely.

SND_STATUS_IDLE (no status bits are set) indicates the sound device
is not busy.

The SND_STATUS_PLAY bit is set when a play operation is active. This
bit is set during a play operation from the SND_TRIG_START event to
the SND_TRIG_FINISH event.

The SND_STATUS_PLAY_PAUSED bit is set when a play operation is
paused. This bit is never set if the SND_STATUS_PLAY bit is not set.

The SND_STATUS_RECORD bit is set when a record operation is active.
This bit is set during a record operation from the SND_TRIG_START
event to the SND_TRIG_FINISH event.

The SND_STATUS_RECORD_PAUSED bit is set when a record operation
is paused. This bit is never set if the SND_STATUS_RECORD bit is not
set.

The SND_STATUS_BUSY bit is set when the driver is processing a
sound operation.
Using the Sound Driver Interface 115

4 Data Type Reference
For illustrations of SND_TRIGGER in sound operations see the figure
"Play Operation Status and Trigger Points." on page 29 and "Record
Operation Status and Trigger Points" on page 31, respectively.

See Also
_os_ss_snd_play()
_os_ss_snd_record()
SND_SMAP
116 Using the Sound Driver Interface

4Data Type Reference
SND_TRIGGER

Triggers

Syntax
typedef int {

SND_TRIG_NONE, /* Mask for no triggers */
SND_TRIG_START, /* Audible start */
SND_TRIG_FINISH, /* Audible finish */
SND_TRIG_BUSY, /* Buffer Busy */
SND_TRIG_READY, /* Buffer ready */
SND_TRIG_ANY /* Mask for all triggers */

} SND_TRIGGER;

Description

This integer defines the trigger events in a sound operation
(_os_ss_snd_play() or _os_ss_snd_record()) capable of
generating signals. The values are powers of two and may be combined
safely.

SND_TRIG_NONE is a mask value indicating interest in no triggers.

If the SND_TRIG_START bit is set for a play operation, this indicates
that the output device is actively playing (it can be heard). For a record
operation, this bit indicates that the driver has started accepting sound
input.

If the SND_TRIG_FINISH bit is set for a play operation, this indicates
that the driver has completed the play and no more sound is being
produced. For a record operation, this bit indicates that the driver has
stopped accepting sound input.

If the SND_TRIG_BUSY bit is set for a play operation, this indicates that
the driver has started consuming the data in the buffer. For a record
operation, this bit indicates that the driver has started filling the buffer.

If the SND_TRIG_READY bit is set for a play operation, this indicates
that the driver has finished consuming the data in the buffer and is
ready to accept the next buffer. For a record operation, this bit indicates
that the driver has finished filling the buffer and is ready to use the next
buffer.
Using the Sound Driver Interface 117

4 Data Type Reference
SND_TRIG_ANY is a mask value indicating interest in all triggers.

For illustrations of SND_TRIGGER in sound operations see the figure
"Play Operation Status and Trigger Points." on page 29 and "Record
Operation Status and Trigger Points" on page 31.

See Also
_os_ss_snd_play()
_os_ss_snd_record()
SND_SMAP
118 Using the Sound Driver Interface

Appendix A: Sound Hardware

Specif ications

This appendix contains the hardware specifications for the following
sound device:

Crystal Semiconductor CS4231A
119

A Sound Hardware Specifications
Crystal Semiconductor CS4231A

Specification version: March 27, 1997

Overview

This document describes the hardware specifications for the Crystal
Semiconductor CS4231A driver (named sd_cs). The hardware
sub-type defines the board configuration. This specification should be
used in conjunction with the MAUI Sound Driver Interface.
120 Using the Sound Driver Interface

ASound Hardware Specifications
Device Capabilities

Information about the hardware capabilities is determined by calling
_os_gs_snd_devcap(). This function returns a data structure
formatted as shown in the following table.

Table A-1 Data Returned in SND_DEV_CAP

Member Name Value Description

hw_type “CS4231” Hardware type

hw_subtype “CS4231A” Hardware sub-type

sup_triggers SND_TRIG_ANY Supported triggers

play_lines SND_LINE_SPEAKER|
SND_LINE_VOLUME

Play gain/mix lines

record_lines SND_LINE_MIC|
SND_LINE_LINE3|
SND_LINE_LINE|
SND_LINE_PCM

Record gain/mix
lines

sup_gain_cmds SND_GAIN_CMD_UP|
SND_GAIN_CMD_DOWN|
SND_GAIN_CMD_RESET
|
SND_GAIN_CMD_MONO|
SND_GAIN_CMD_STERE
O

Mask of supported
gain commands

num_gain_caps 7 Number of
SND_GAIN_CAPs
Using the Sound Driver Interface 121

A Sound Hardware Specifications
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See SND_DEV_CAP in chapter 4 for more information regarding this
data structure.

gain_caps See paragraph Gain
Capabilities Array

Pointer to
SAND_GAIN_CAP
array

num_rates 14 Number of sample
rates

sample_rates See paragraph
 Sample Rates

Pointer to sample
rate array

num_chan_info 2 Number of channel
info entries

channel_info See paragraph
 Number of Channels

Pointer to an array of
supported
num_channels

num_cm 6 Number of coding
methods

cm_info See paragraph
 Encoding and Decoding
Formats

Pointer to coding
method array

Table A-1 Data Returned in SND_DEV_CAP (continued)

Member Name Value Description
122 Using the Sound Driver Interface

ASound Hardware Specifications
Gain Capabilities Array

The preceding table shows the various gain capabilities for the Crystal
Semiconductor CS4231A. This information is pointed to by the
gain_cap member of the SND_DEV_CAP data structure. The following
seven tables (Tables 2 through 8) describe the gain capabilities.

Table A-2 L/R DAC Attenuator (I6) L/R DAC Attenuator (I7)

Member Name Value

lines SND_LINE_PCM

sup_mute TRUE

default_type SND_GAIN_CMD_STEREO

default_level SND_LEVEL_MAX

zero_level SND_LEVEL_MIN

num_steps 64

step_size 150

mindb -9450

maxdb 0

Step HW Level Comments

0-1 63 -94.5 dB default_level

2-3 62 -93.0 dB

4-5 61 -91.5 dB

6-7 60 -90.0 dB

...
Using the Sound Driver Interface 123

A Sound Hardware Specifications

120-121 3 -4.5 dB

122-123 2 -3.0 dB

124-125 1 -1.5 dB

126-127 0 0.0 dB zero_level

Step HW Level Comments
124 Using the Sound Driver Interface

ASound Hardware Specifications

Table A-3 L/R Auxiliary #1 (I2, I3), L/R Auxiliary #2 (I4, I5),
L/R Line Mix Gain (I18, I19)

Member Name Value

lines SND_LINE_CD | SND_LINE_LINE |
SND_LINE_SYNTH | SND_LINE_LINE2 |
SND_LINE_LINE | SND_LINE_LINE3

sup_mute TRUE

default_type SND_GAIN_CMD_STEREO

default_level 94

zero_level 94

num_steps 32

step_size 150

mindb -3450

maxdb 120

Step HW Level Comments

0-3 31 -34.5 dB

4-6 30 -33.0 dB

7-10 29 -31.5 dB

11-14 28 -30.5 dB

...

89-92 9 -1.5 dB

93-96 8 0 dB zero_level,
default_level
Using the Sound Driver Interface 125

A Sound Hardware Specifications
97-100 7 1.5 dB

...

113-116 3 7.5 dB

117-120 2 9.0 dB

121-124 1 10.5 dB

125-127 0 12.0 dB

Step HW Level Comments
126 Using the Sound Driver Interface

ASound Hardware Specifications
Table A-4 L/R ADC Gain (I0, I1)

Member Name Value

lines SND_LINE_IGAIN

sup_mute FALSE

default_type SND_GAIN_CMD_STEREO

default_level SND_LEVEL_MIN

zero_level SND_LEVEL_MIN

num_steps 16

step_size 150

mindb 0

maxdb 2250

Step HW Level Comments

0-4 0 0 dB zero_level,
default_level

5-12 1 1.5 dB

13-21 2 3.0 dB

22-30 3 4.5 dB

...
Using the Sound Driver Interface 127

A Sound Hardware Specifications
98-105 12 18.0 dB

106-114 13 19.5 dB

115-122 14 21.0 dB

124-127 15 22.5 dB

Step HW Level Comments
128 Using the Sound Driver Interface

ASound Hardware Specifications
Table A-5 L/R Mic Gain Enable (I0, I1)

Member Name Value

lines SND_LINE_MIC

sup_mute FALSE

default_type SND_GAIN_CMD_STEREO

default_level SND_LEVEL_MAX

zero_level SND_LEVEL_MIN

num_steps 2

step_size 200

mindb 0

maxdb 200

Step HW Level Comments

0-63 0 dB 0 zero_level

64-127 20 dB 1 default_level
Using the Sound Driver Interface 129

A Sound Hardware Specifications
Table A-6 Mono In/Out Speaker (I26)

Member Name Value

lines SND_LINE_SPEAKER

sup_mute TRUE

default_type SND_GAIN_CMD_MONO

default_level SND_LEVEL_MAX | SND_LEVEL_MUTE

zero_level SND_LEVEL_MIN

num_steps 16

step_size 300

mindb -4500

maxdb 0

Step HW Level Comments

0-4 0 0 dB zero_level,
default_level

5-12 1 -3.0 dB

13-21 2 -6.0 dB

22-30 3 -9.0 dB

...
130 Using the Sound Driver Interface

ASound Hardware Specifications
98-105 12 -36.0 dB

106-114 13 -39.0 dB

115-122 14 -42.0 dB

124-127 15 -45.0 dB

Step HW Level Comments
Using the Sound Driver Interface 131

A Sound Hardware Specifications
Table A-7 Loopback Attenuation (I13)

Member Name Value

lines SND_LINE_IMIX

sup_mute TRUE

default_type SND_GAIN_CMD_MONO

default_level SND_LEVEL_MAX | SND_LEVEL_MUTE

zero_level SND_LEVEL_MIN

num_steps 64

step_size 150

mindb -9450

maxdb 0

Step HW Level Comments

0-1 63 -94.5 dB default_level

2-3 62 -93.0 dB

4-5 61 -91.5 dB

6-7 60 -90.0 dB

...

120-121 3 -4.5 dB

122-123 2 -3.0 dB

124-125 1 -1.5 dB

126-127 0 0.0 dB zero_level
132 Using the Sound Driver Interface

ASound Hardware Specifications
\

NoteNote
See SND_GAIN_CAP in Chapter 4: Data Type Reference for more
information about this data structure.

Table A-8 On some boards the I10 register can mute the line out

Member Name Value

lines SND_LINE_VOLUME

sup_mute TRUE

default_type SND_GAIN_CMD_MUTE

default_level 0

zero_level 0

num_steps 0

step_size 0

mindb 0

maxdb 0
Using the Sound Driver Interface 133

A Sound Hardware Specifications
Sample Rates

The following table shows the supported sample rates for the Crystal
Semiconductor CS4231A. This information is pointed to by the
sample_rates member of the SND_DEV_CAP data structure.

Number of Channels

Table 10 shows the different supported number of channels for the
CS4231A. This information is pointed to by the channel_info
member of the SND_DEV_CAP data structure.

Table A-9 Supported Sample Rates

Sample Rate Sample Rate Sample Rate

5510 Hz 11025 Hz 32000 Hz

6620 Hz 16000 Hz 33075 Hz

8000 Hz 18900 Hz 37800 Hz

9600 Hz 22050 Hz 44100 Hz

27420 Hz 48000 Hz

Table A-10 Supported Number of Channels

Channels Description

2 Stereo (default)

1 Mono
134 Using the Sound Driver Interface

ASound Hardware Specifications
Encoding and Decoding Formats

Table 11 shows the supported encoding and decoding formats for the
Crystal Semiconductor CS4231A. The first entry in the table is the
default format. This information is pointed to by the cm_info member
of the SND_DEV_CAP data structure.

Table A-11 Supported Encoding and Decoding Formats

Coding Method
Sample
Size

Bndry
Size Description

SND_CM_PCM_ULAW 8 2 8-bit µLaw
companded

SND_CM_PCM_ALAW 8 2 8-bit ALaw
companded

SND_CM_PCM_ULINEAR 8 2 8-bit Linear unsigned

SND_CM_PCM_SLINEAR
| SND_CM_LSBYTE1ST

16 4 16-bit Linear (two’s
complement)
little-endian

SND_CM_PCM_SLINEAR 16 4 16-bit Linear (two’s
complement)
little-endian

SND_CM_ADPCM_IMA 4 64 4-bit ADPCM IMA
compatible
Using the Sound Driver Interface 135

A Sound Hardware Specifications
136 Using the Sound Driver Interface

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Index

Symbols
_os_close() 42
_os_detach() 43
_os_gs_devcap() 16
_os_gs_snd_compat() 43
_os_gs_snd_devcap() 45
_os_gs_snd_status() 24, 47
_os_open() 22, 51
_os_ss_relea() 51
_os_ss_sendsig() 25, 52
_os_ss_snd_abort() 36
_os_ss_snd_cont() 35, 56
_os_ss_snd_gain() 31, 56
_os_ss_snd_pause() 35, 60
_os_ss_snd_play() 27, 62
_os_ss_snd_record() 29, 66

A
Abort Active Sound Operation 54
ADPCM 19
A-Law 19

B
BLOCK_FINISH 28, 30
BLOCK_START 28, 30
Blocking Types 74
Buffers 11, 14

Current offset 14
ID 14
size 14
Using the Sound Driver Interface 137

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
C
Capabilities

Device 16
Sound Device 45

CD4231A
Gain Capabilities 123

Check
compatibility 16
status 16

Check device capabilities 16
Close 37
Close Path to Sound Device 42
Coding method 13
Coding Methods

Supported formats 19
Compatibility 16
Compatibility Level 43
Continue Active Sound Operation 56
Cross-Stereo Gain Parameters 105
Crystal Semiconductor CS4231A 120
CS4231A 120

Device Capabilities 121
Encoding and Decoding Formats 135
Sample Rates 134

D
Data Type Reference 71
Device Capabilities 16
Device capabilities 16
Device Status 115
Driver

Compatibility 43
Driver Compatibility Level 20

E
Encoding Parameters 13

Coding method 13
138 Using the Sound Driver Interface

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Number of Channel 13
Sample rate 13
Sample size 13

Encoding parameters 11
Entry Points

Primary 9
Setstat 9

Error signal 12

F
Functions 9

G
Gain Down Parameters 100
Gain Up Parameters 104
Get Driver Compatibility Level 43
Get Sound Device Capabilities 45
Get Sound Device Status 47

L
Loop count 15
Loop counter 15
Loop end 15
Loop start 15
Looping 11, 15

M
m-Law 19
Mono Gain Parameters 101

N
Next 11, 15
NOBLOCK 28, 30
Number of Channels 13
Using the Sound Driver Interface 139

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
O
Open 22
Open Path to Sound Device 49
os_ss_snd_abort() 54

P
Pause Active Sound Operation 60
PCM Linear 19
Play

Abort 36
Pause 35

Play command 27
Play PID 24
Play Sound to Sound Decoder 62
Playing a Sound File 27
Preparing the Sound Device for Use 22

R
Record

Gain Control 31
Record command 29
Record PID 24
Record Sound 66
Release 37
Release Device 51

S
Sample rate 13
Sample size 13
Send Signal 24
Send Signal on Device Ready 52
Set Gain 58
SND_BLOCK_TYPE 74
SND_CM 76
SND_CM_ADPCM_G721 86
SND_CM_ADPCM_G723 87
140 Using the Sound Driver Interface

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
SND_CM_ADPCM_IMA 85
SND_CM_PCM_LINEAR 80
SND_CM_PCM_ULAW 84
SND_CM_UNKNOWN 80
SND_DEV_CAP 16
SND_DEV_CM 90
SND_DEV_STATUS 91
SND_GAIN 92
SND_GAIN_DOWN 100
SND_GAIN_MIN 101
SND_GAIN_MONO 101
SND_GAIN_MUTE 103
SND_GAIN_STEREO 103
SND_GAIN_TYPE 104
SND_GAIN_UP 104
SND_GAIN_XSTEREO 105
SND_SMAP 112
SND_STATUS 115
SND_TRIGGER 117
Software compatibility 16
Sound Device

Capabilities 16, 45
Close 37, 42
Play PID 24
Preparing for Use 22
Record PID 24
Release 37, 51
Status 16, 47

Sound Device Coding Methods 90
Sound driver

Compatibility 16
compatibility level 20

Sound Driver Interface
Overview 8

Sound Hardware Specifications 119
Sound Map 112
Sound Maps 10
Specification, CS4231A 120
Status

Sound Device 47
Sound device 16
Using the Sound Driver Interface 141

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Stereo Gain Parameters 103

T
Triggers 11, 12, 117

error signal 12
mask 12
signal 12
status 12
142 Using the Sound Driver Interface

	Using the Sound Driver Interface
	Table of Contents
	Chapter 1: Sound Concepts
	Overview
	Entry Points
	Sound Functions and Data Types

	Sound Maps
	Triggers and Status
	Encoding Parameters
	Sound Buffer
	Looping
	Next Sound Map

	Preparing to Use Sound
	Device Capabilities
	Example 1
	Example 2
	SND_DEV_CAP Data Structure

	Driver Compatibility Level

	Chapter 2: Sound Operations
	Preparing the Sound Device for Use
	Get the Sound Device Name
	Open
	Get Device Capabilities

	Keeping Track of the Sound Device
	Sound Device Status
	Status
	Gain

	Send Signal
	Release the Device

	Playing and Recording Sound Data
	Play
	Record
	Gain Control
	Pause
	Continue
	Abort

	Completing Sound Operations
	Close

	Chapter 3: Function Reference
	Function Reference
	Include Files
	Standard Driver Entry Points
	Sound Input and Output
	Device Compatibility, Capability, and Status
	_os_close()
	_os_gs_snd_compat()
	_os_gs_snd_devcap()
	_os_gs_snd_status()
	_os_open()
	_os_ss_relea()
	_os_ss_sendsig()
	_os_ss_snd_abort()
	_os_ss_snd_cont()
	_os_ss_snd_gain()
	_os_ss_snd_pause()
	_os_ss_snd_play()
	_os_ss_snd_record()

	Chapter 4: Data Type Reference
	Data Type Reference
	Defined Constants
	Enumerated Types
	Data Types
	Integers
	Data Structures
	SND_BLOCK_TYPE
	SND_CM
	OEM
	BE
	bE
	Name
	SND_CM_UNKNOWN
	SND_CM_PCM_SLINEAR, SND_CM_PCM_SLINEAR | SND_CM_LSBYTE1ST SND_CM_PCM_ULINEAR SND_CM_PCM_ULINEAR | SND_CM_LSBYTE1ST
	SND_CM_PCM_ULAW SND_CM_PCM_ALAW
	SND_CM_ADPCM_IMA
	SND_CM_ADPCM_G721
	SND_CM_ADPCM_G723
	SND_CM_OEM_*

	SND_DEV_CAP
	SND_DEV_CM
	SND_DEV_STATUS
	SND_GAIN
	SND_GAIN_CAP
	SND_GAIN_CMD
	SND_GAIN_DOWN
	SND_GAIN_MONO
	SND_GAIN_MUTE
	SND_GAIN_STEREO
	SND_GAIN_UP
	SND_GAIN_XSTEREO
	SND_LEVEL_*
	SND_LINE
	SND_SMAP
	SND_STATUS
	SND_TRIGGER

	Appendix A: Sound Hardware Specifications
	Crystal Semiconductor CS4231A
	Overview
	Device Capabilities
	Gain Capabilities Array
	Sample Rates
	Number of Channels
	Encoding and Decoding Formats

	Index

