
w w w. ra d i sy s . co m
Revision A • July 2006

Using MAUI®

Version 3.2

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 3.2 of MAUI.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

Table of Contents

Chapter 1: Introduction to MAUI 13

14 MAUI System Design
15 MAUI Input Process
15 Device Drivers
16 Application Programming Interfaces
16 MAUI System API
16 Shaded Memory API
16 Configuration Description Block API
17 Graphics Device API
17 Bit-BLT API
17 Drawing API
18 Text API
18 Animation API
18 Messaging API
19 Input API
21 MAUI Application Profile
23 Printing to stderr

Chapter 2: MAUI Concepts 25

26 MAUI Data Structures
26 Public Data Structures
27 Private Data Structures
28 Graphics Device
28 Display Resolutions
28 Coding Methods
29 Graphics Device Capability
33 Drawmaps
Using MAUI 3

35 Viewports
36 Constructing a Display
37 Creating Viewports
37 Displaying Images in Viewports
38 Pixel Size Differences
39 Drawing
39 Block Transfers
40 Shape Drawing
41 Text Drawing
43 Message Loop
45 User Input
46 Pointer Messages
46 Key Symbol Messages

Chapter 3: Writing a MAUI Application 47

48 Analyzing a Typical MAUI Program
48 Include files
48 Color and Palette Definitions
49 Variables
50 Initialize MAUI APIs
50 Open a Graphics Device
50 Create and Configure a Drawmap
51 Create a Drawmap Object
52 Create Viewport and Display Drawmap
53 Create Font Structure and Text Context Objects
53 Draw the Text String
54 Destroy All Objects and Terminate APIs
55 Adding Error Checking
56 Fatal Errors
56 Non-fatal Errors
56 Warnings
57 Input Processing
4 Using MAUI

Chapter 4: Using the MAUI System API 59

60 MAUI System Functions
60 Initialize and Terminate
60 Terminate
61 Setting Error Action

Chapter 5: Using the Shaded Memory API 63

64 Architecture
65 Colors and Shades
66 Using Normal Shades
68 Using Pseudo Shades
69 Shaded Memory Functions
69 Initialize and Terminate
70 Creating and Destroying Shades
71 Allocating and De-allocating Memory Segments
71 Allocating a Segment
72 Reallocating a Segment
72 Deallocating a Segment
72 Status And Debugging
72 Returning Current Status
72 Printing a List of Allocated Segments
73 Printing a List of Shades, Blocks, Segments
73 Printing a List of Overflows/Underflows

Chapter 6: Using the CDB API 75

76 Architecture
77 CDB API Functions
77 Initialize and Terminate Functions
77 Initializing the CDB API
78 Terminating the CDB API
78 Changing The Default Actions on Errors
78 Retrieving Functions
Using MAUI 5

79 Reading Device Description Records
80 Retrieving Information from the CDB

Chapter 7: Using the Graphics Device API 81

82 Architecture
83 Graphics Device API Functions
83 Initialize and Terminate
83 Initializing the Graphics Device API
84 Terminating the Graphics Device API
84 Graphics Device
85 Opening the Device
85 Determining the Device Capabilities
86 Receiving Current Values for Parameters
86 Setting the Parameter Values
86 Drawmap
88 Creating a Drawmap of Known Size (preferred)
88 Creating a Drawmap with Maximum Size
89 Creating Drawmap and Setting Size Later
90 Viewport
91 Creating a Viewport
91 Destroying a Viewport
91 Receiving the Current Value of Viewport Parameters
91 Setting Viewport Parameters and Characteristics
92 Miscellaneous
93 Example Program
93 Load the Image from the Data File
94 Show the Image on the Graphics Display
96 Destroy Viewport

Chapter 8: Using the Bit-BLT API 97

98 Architecture
99 Bit-BLT API Functions
6 Using MAUI

99 Initialize and Terminate
99 Initializing the Bit-BLT API
99 Terminating the Bit-BLT API
100 Bit-BLT Context Object
101 Creating Bit-BLT Context Objects
101 Destroying Bit-BLT Context Objects
101 Modifying Bit-BLT Context Objects
101 Block Transfer Operations
102 Copy Block Operations
102 Fastcopy
103 Expand Block Operations
104 Draw Block Operations
104 Fastdraw

Chapter 9: Using the Drawing API 105

106 Architecture
107 Drawing API Functions
107 Initialize and Terminate
108 Initializing the Drawing API
108 Drawing Context Object
109 Context Parameters
110 Creating Context Objects
110 Destroying Previously Created Context Objects
110 Querying for Context Object Parameters
110 Shape Drawing

Chapter 10: Using the Text API 111

112 Architecture
113 Text API Functions
113 Initialize and Terminate
113 Initializing the Text API
113 Terminating the Text API
Using MAUI 7

114 Text Context Object
114 Creating an Instance of a Text Context Object
114 Destroying Text Context Objects
114 Modifying Members of the Text Context Object
115 Text Font Object
116 Creating a Text Font Object
116 Text Drawing Operations

Chapter 11: Using the Animation API 119

120 Architecture
121 Animation API Functions
121 Initialize and Terminate
121 Initializing the Animation API
122 Terminating the Animation API
122 Sprites
123 Creating a Sprite
123 Destroying a Sprite
123 Animation Groups and Objects
125 Animation Group
125 Creating an Animation Group
125 Destroying the Existing Animation Group
125 Drawing All the Active Objects of a Group on a Screen
125 Processing Objects in a Group
126 Assigning a Background Image or Color
126 Animation Object
126 Setting the Object State
126 Assigning a Sprite to an Object
126 Changing a Current Frame
127 Updating the Position of an Object on the Screen
127 To change the object display order
127 Transparency Checks
127 Defining the Drawing Method
128 Defining a Behavior
8 Using MAUI

Chapter 12: Using the Messaging API 129

130 Architecture
131 Messaging API Functions
131 Initialize and Terminate
132 Initializing the Messaging API
132 Terminating the Messaging API
132 Watch Service
133 Mailboxes
134 Creating a Mailbox
134 Opening an Existing Mailbox
134 Closing a Mailbox
134 Obtaining Status on a Current Mailbox
135 Messages
135 Retrieving a Message from a Mailbox
135 Blocking Mode
136 Returning a Message Back To a Mailbox
136 Checking to See if You Have a Message
136 Using a Less CPU-intensive Approach to Check Message

Arrival
137 Cancelling the Signal Request
137 Deleting Messages Currently Queued
137 Processing Messages Directly after Read
137 Message Types
140 Example Program

Chapter 13: Using the Input API 141

142 Architecture
143 MAUI Input Process and Protocol Modules
144 Input API Functions
144 Initialize and Terminate
144 Initializing the Input API
145 Terminating the Input API
Using MAUI 9

145 Input Device
146 Opening the Device and Associate it with a Mailbox
147 Closing a Device
147 Inquiring About the Device Capabilities
147 Receiving Current Device Status
147 Filtering Messages With a Mask
147 Specifying the Callback Function for Messages
147 Assigning a Simulation Method
148 Key Reservation and Simulation
149 Example Program

Chapter 14: Using the Windowing API 151

152 Windowing Concepts
154 Windowing Applications
154 Window Manager Demonstration
154 Set-up Functions
155 Main() Functions
156 Root Window
157 Message Loop
157 Shut-down Procedure
157 Colormaps
158 Background Pattern Maintenance
158 Message Process
159 Input Functions
160 Architecture
161 The Windowing Device
161 Creating a Windowing Device
162 Colormaps
163 Cursors
165 Managing Windows
165 Create and Destroy
165 Window Setup
166 Window Appearance
10 Using MAUI

166 Ink
167 Drawing
167 Lock and Unlock

 Index 169
Using MAUI 11

12 Using MAUI

Chapter 1: Introduction to MAUI

This chapter is an overview of the Multimedia Application User Interface
(MAUI®) architecture and components. Read this chapter to help you
understand how the MAUI components relate to each other.

Most of this manual deals with the interface between the application and
the MAUI Application Program Interfaces (APIs), but it is important that
you read this chapter to get an overall understanding of the MAUI
components and how they relate to each other.
13

1 Introduction to MAUI
MAUI System Design

The MAUI system is a complete set of multimedia development
libraries that are modular, fast, and hardware independent.

The philosophy used in developing the OS-9® and OS-9 for 68K
operating systems stressed modularity; we designed the MAUI system
in accordance with that philosophy. MAUI APIs are building blocks you
use to design applications that range from very simple to very complex,
depending on your environment and needs. You can adapt MAUI to any
size system, from small ROM-based embedded applications to
large-scale network-based development systems.

The MAUI system enables you to write applications that are portable to
a wide variety of hardware configurations. MAUI is written in the ANSI-C
language so you can port it to any CPU supported by the Microware
Ultra-C compiler. More importantly, the MAUI hardware drivers and
protocol modules insulate applications from problems that arise due to
differences in multimedia hardware.

Figure 1-1 The MAUI System Architecture

maui_inp

GFX
API

BLT
API

mbox

GFX
Driver

Application SND API

SND
Driver
14 Using MAUI

1Introduction to MAUI
As shown in Figure 1-1, the MAUI system comprises several
components. At the heart of the MAUI system is a powerful set of APIs.
These form the application interface to the MAUI system. For simplicity,
the diagram shows most of the APIs in one block. However, this is
actually a hierarchy of APIs. Each API has its own scope and
objectives.

MAUI Input Process

The MAUI Input Process is responsible for insulating the API layers
from differences in pointer and keycode devices. This process reads
raw input from Serial Character File manager (SCF) devices and uses
protocol modules to translate the data into standardized MAUI
messages. These messages are then inserted into the application’s
mailbox so that the application may act on the user input.

Device Drivers

The lowest layers of the MAUI system comprise a set of drivers that
handle all interaction with the multimedia hardware. This includes a
graphics driver and a set of Serial Character File Manager (SCF)
drivers for the pointer and keycode devices.

The graphics driver is responsible for graphics device management.
The interface between the graphics driver and the API is standardized
to insulate the API layer from hardware differences.

In addition to the standard entry points found in all OS-9/OS-9000
drivers, the MAUI graphics driver has a special set of fast entry points.
These fast entry points enable the API code to call hardware-specific
functions to perform operations that would otherwise be performed by
the main CPU. For example, if a graphics chip has built-in support for
Bit-BLT operations, its driver provides a set of fast entry points for the
API’s use.
Using MAUI 15

1 Introduction to MAUI
Application Programming Interfaces

The MAUI APIs form a comprehensive set of functions that enable you
to build your multimedia application. A summary of each API is
presented below.

MAUI System API

Ease of use is important for any technology. The MAUI System API
provides a simple method for applications to initialize and terminate all
of the MAUI APIs in the correct order with a single function call.

Shaded Memory API

Efficient memory management is a requirement for any graphical
environment. Graphical environments tend to be very dynamic when it
comes to allocating and freeing memory segments. Therefore, unless
an application takes specific steps to avoid it, memory fragmentation
can become a serious problem.

The Shaded Memory API provides the facilities applications (and other
APIs) required to manage multiple pools of memory.

Configuration Description Block API

The Configuration Description Block (CDB) API makes it possible for
the application to examine a system configuration and retrieve
information about devices. The source of this information is the
Configuration Description Block module. It consists of individual Device
Description Records that represent a device in the system.
16 Using MAUI

1Introduction to MAUI
Graphics Device API

The Graphics Device API is responsible for insulating applications from
differences in graphics hardware. This is performed primarily through
the use of two high level abstractions, drawmaps and viewports.

A drawmap is an object that defines a rectangular piece of pixel
memory, and a viewport is a mechanism that allows you to make
drawmaps visible on the display.

Bit-BLT API

All pixel manipulation in the MAUI system eventually filters down to the
operations supported by the Bit-BLT API. Therefore, it is of the utmost
importance to have fast Bit-BLT functions. The Bit-BLT API provides
functions that rapidly perform a range of operations, from drawing
individual pixels to copying blocks from one pixel depth to another
(dynamic pixel expansion).

If a hardware Bit-BLT engine is available, the graphics driver supports a
set of fast entry points so the API can take advantage of the hardware
engine. This is transparent to the application.

 Drawing API

The Drawing API provides a suite of functions for drawing to a
drawmap. These functions include points, lines, poly-lines, polygons,
circles, and rectangles.

Shapes can be drawn in outline or solid mode. Attributes such as
patterns and line styles may be applied to these shapes.
Using MAUI 17

1 Introduction to MAUI
Text API

The Text API provides a suite of functions for writing multi-byte and
wide-character strings to a drawmap. These functions provide support
for multiple fonts (mono and proportional spaced), and methods for
controlling the padding between characters.

Animation API

The Animation API makes it possible for the application to move sprites
quickly and smoothly on the display. The sprite mechanism creates the
illusion of continuous movement by changing image frames and
location.

Messaging API

In many cases, one of the most difficult transitions you face when
delving into the world of graphics programming is giving up the ideas of
procedural programming and adopting the philosophy of event-driven
programming. However, you must use and understand event-driven
programming methods if you want to develop applications that allow for
user control.

The MAUI system, like virtually all other popular GUI platforms, is
tailored toward applications that run in an event-driven manner. The
Messaging API is the part of MAUI that enables event-driven
applications. This philosophy is explored in Chapter 3, which guides you
through writing and executing your first MAUI program.
18 Using MAUI

1Introduction to MAUI
Input API

Input in the MAUI system is not limited to a keyboard and a mouse; you
can use any type of input device (for example, remote control, joystick,
game controller). The MAUI system uses protocol modules to convert
the raw SCF input received from the device into standardized pointer
and key symbol messages. Through the MAUI Input Process, an
application can use any number of input devices. This is especially
useful in multi-player game applications.

Table 1-1 API Descriptions and Dependencies

API Prefix Purpose Dependency

MAUI System maui_ Top level
convenience
functions.

All other APIs

Shaded Memory mem_ Manages
memory
dynamics.

None

Configuration
Description Block

cdb_ Enables the
application to
examine a set
top box system
configuration
and retrieve
information
about attached
devices.

mem_

Graphics Device gfx_ Manages the
graphics
devices.

mem_
Using MAUI 19

1 Introduction to MAUI
Bit-Block Transfer
(Bit-BLT)

blt_ Performs block
drawing and
block transfer
operations.

mem_ gfx_

Drawing drw_ Draws
geometric
shapes.

mem_ blt_

Text txt_ Performs
graphical text
output.

mem_ blt_

Animation anm_ Performs sprite
animation.

mem_ blt_

Messaging msg_ Performs inter-
and
intra-process
message
exchanging.

mem_

Input inp_ Manages
pointer device
input.

mem_ msg_

Windowing win_ Performs
windowing
operations

mem_ gfx_
blt_ msg_
inp_

Table 1-1 API Descriptions and Dependencies (continued)

API Prefix Purpose Dependency
20 Using MAUI

1Introduction to MAUI
MAUI Application Profile

Table 1-2 on page 22 defines the contents of the MAUI Application
Profile. The application profile is available in three forms:

• A shared library used to access the shared library module

• An i-code link library

• An o-code link library.

The shared library is the normal way to link MAUI applications. This
library contains small bindings that call into the shared library module.
This is similar in concept to csl.l and csl. Using the MAUI shared
library has the advantage of making individual applications as small as
possible. In addition, applications need not recompile between minor
updates of MAUI as the bulk of the API code is located in the shared
library module. The disadvantage of using the shared library is that
there is a small speed penalty for crossing the application/shared library
boundary. This is a result of having to switch between the application
global and constant pointers to the shared library global and constant
pointers.

The i-code and o-code link libraries are provided to aid debugging and
for some environments where use of the shared library is not feasible.
While every attempt is made to maintain compatibility between MAUI
releases, where the goals of the shared library and link libraries conflict,
the shared library has precedence.
Using MAUI 21

1 Introduction to MAUI
The MAUI application profile consists of all thirteen APIs and is fully
functional. This is the profile required by JAVA.

1 Shared libraries may not be available for all processors.

Table 1-2 The MAUI Application Profile

Shared Library and
Module1 Static Link Libraries

API maui.l maui mauilib.l mauilib.il mfm.l

MAUI
(System)

stub full full full

MEM stub full full full

CDB stub full ull full

GFX stub full full full

BLT stub full ful full

DRW stub full full full

TXT stub full full full

ANM stub full full full

MSG stub full full full

INP stub full +
maui_inp

 full full

WIN stub full +
maui_win

full full

_os_gfx as required full

_os_snd full
22 Using MAUI

1Introduction to MAUI
Printing to stderr

The MAUI shared library can to print to stderr without pulling in the
fprintf() code. This is enabled by using the callbacks
maui_vfprintf() and maui_fflush(). Functions such as
mem_list_segments() and mem_list_overflows() work as
documented in the shared library.

If you do not want the shared library to print or do not want to incur the
code size overhead of the print functions in the binary of the application,
simply define the following functions in the application:

#include <stdio.h>
 int maui_vfprintf(FILE *fp, const char *fmt, va_list ap)
 {
 return 0;
 }
 int maui_fflush(FILE *fp)
 {
 return 0;
 }
Using MAUI 23

1 Introduction to MAUI
24 Using MAUI

Chapter 2: MAUI Concepts

With MAUI, you build your applications on top of a data structure
foundation. Knowledge of the MAUI data structures helps you
understand the information in the example programs.

This chapter introduces you to the types of MAUI data structures and
how they inter-relate.
25

2 MAUI Concepts
MAUI Data Structures

The MAUI system contains two types of data structures: public and
private. Public data structures have a format that is known to the
application. The application may change members of the structure
directly with mechanisms supported by the ANSI-C language. Private
data structure formats are hidden from the application and accessible
only through dedicated API function calls.

Public Data Structures

A public data structure has two distinct advantages over a private data
structure:

• Because the structure members may be accessed directly, function
calls are not required to change them. This allows for more flexibility
when you modify the structure members.

• You may create a public data structure using any mechanism
supported by Ultra-C.

For example, the following code segment defines a drawmap that
represents a bitmap in a public data structure. This data structure
represents a 16x16 pixel checkerboard pattern.

const GFX_PIXEL checker_pixmem =
{

0xf0f0f0f0, 0xf0f0f0f0,/* Lines 0 - 3 */
0x0f0f0f0f, 0x0f0f0f0f,/* Lines 4 - 7 */
0xf0f0f0f0, 0xf0f0f0f0,/* Lines 8 - 11 */
0x0f0f0f0f, 0x0f0f0f0f,/* Lines 12- 15 */

};
const GFX_PALETTE checker_palette = {

0, /* Start entry */
2, /* Number of entries */
GFX_COLOR_RGB; /* color type */
{0xff0000, 0x00ff00}/* Red, green */

};
26 Using MAUI

2MAUI Concepts
const GFX_DMAP checker_board =
{

GFX_CM_1BIT, /* Coding method */
16, 16, /* Width and height */
2, /* Line size */
&checker_pixmem, /* Pixel memory address*/
0, /* Pixmem shade */
2 * 16, /* Pixmem size */
&checker_palette; /* Palette address*/

};

In this example, it is important to note that the entire checkerboard
pattern is defined by initialized data. Furthermore, because this code
uses const, the storage allocated for the pattern is in the code area
rather than the data area.

The above example shows one method of using the C language to
create MAUI objects. You can also use MAUI functions to create and
modify these objects.

Private Data Structures

Private data structures are used when the information must be hidden
from the application. There are several possible reasons for hiding this
information from the application:

• The implementation may be hardware specific. In this case, it is not
wise to burden the application with hardware-specific details. For
example, the implementation of viewports on each hardware
platform can be completely different because of specific hardware
requirements.

• The information may be implementation specific. In this case, we do
not want to burden the application with details that may change in
future releases. An example of this is the Bit-BLT context object (an
object used for drawing).
Using MAUI 27

2 MAUI Concepts
Graphics Device

Regardless of what your graphics program does internally, at some
point you need to make your interface visible to the user. The physical
device that does this is the graphics device. The MAUI component that
allows you to manipulate this device is the Graphics Device API.

The Graphics Device API is not limited to a particular type of graphics
device. MAUI provides your application with the information needed to
adjust to the hardware capabilities. Differences in graphics device
capabilities fall into three general categories:

• display resolutions

• coding methods supported

• viewport complexity

Display Resolutions

Display resolutions vary from one device to another. For example, VGA
devices typically support resolutions such as 640x480, 800x600 or
1024x768, and CD-i resolutions are 384x240 or 768x480. The
resolution is also affected by such factors as whether the output is a
PAL or NTSC format.

Different hardware can also affect the size of pixels. For example, a
VGA monitor has square pixels, while NTSC and PAL devices develop a
pixel that is rectangular (e.g. NTSC 1:1.19). This is referred to as pixel
aspect ratio.

Coding Methods

Coding methods present a challenge for applications that must run on
several devices because all devices do not support the same coding
methods. Common coding methods include RGB (direct color values),
CLUT (Color Look-Up Table), YUV, and Run Length.
28 Using MAUI

2MAUI Concepts
Because pixel depth is a factor in coding methods, MAUI supports 1-,
2-, 4-, 8-, 16- and 32-bit pixels.

Graphics Device Capability

MAUI provides the gfx_get_dev_cap() function to address graphics
device capability issues. This function supplies applications with
information about the host hardware capabilities so adjustments can be
made to run on the target hardware.

The GFX_DEV_CAP structure provides certain information about the
graphics device. However, a complete explanation of the capabilities of
a particular graphics device should be available from the graphics driver
manufacturer that ported MAUI to your hardware. When you design
your application, refer to the graphic driver manufacturer’s specifications
for each device you plan to support.

The following example shows the GFX_DEV_CAP and related data
structures returned by gfx_get_dev_cap() for an potential SVGA
device. This device claims to support three resolutions and three coding
methods:

GFX_DEV_CAP gdv_dev_cap = {
 "SVGA", /* Hardware type */
 "Doc example", /* Hardware sub-type name */
 FALSE, /* Supports viewport mixing */
 FALSE, /* Supports external video */
 TRUE, /* Supports backdrop color */
 FALSE, /* Supports viewport transparency */
 FALSE, /* Supports vport intensity */
 FALSE, /* Supports retrace synchronization */
 sizeof(gdv_res_info)/sizeof(*gdv_res_info),/* Num res_info */
 gdv_res_info, /* Pointer to display resolution information */
 6, /* Depth of DAC in bits */
 sizeof(gdv_cm_info)/sizeof(*gdv_cm_info), /* Num cm_info */
 gdv_cm_info, /* Pointer to coding method information */
 FALSE /* Supports video decoding into a drawmap */
};

The GFX_DEV_CAP structure contains two pointers (res_info and
cm_info) to separate data structures. Both are arrays containing
additional device capability information.
Using MAUI 29

2 MAUI Concepts
The first array indicates the set of resolutions that are supported by this
device. The first entry is considered the default resolution. In the current
example, the device supports three resolutions:

GFX_DEV_RES gdv_res_info[] = {
 {640, 480, 60, GFX_INTL_OFF, 1, 1}, /* Default resolution
640x480*/
 {800, 600, 60, GFX_INTL_OFF, 1, 1},
 {1024, 768, 60, GFX_INTL_OFF, 1, 1}
};

The second array indicates the set of coding methods that are
supported by this device. The first entry is considered the default coding
method. In the current, example the device also supports three coding
methods:

GFX_DEV_CM gdv_cm_info[] = {
 {GFX_CM_8BIT |gfx_set_cm_depth(4),TRUE, 1,1,GDV_NUMCOLORS,
 gdv_valid_colors},
 {GFX_CM_RGB555|gfx_set_cm_depth(5),FALSE,1,1,0, NULL},
 {GFX_CM_RGB888|gfx_set_cm_depth(6),FALSE,1,1,0, NULL}
};

Typically (but not always) the first res_info will work with the first
cm_info.

In MAUI 3.1, a new extensible device capabilities structure,
GFX_DEV_CAPEXTEN, and call, gfx_get_dev_capexten(), were
added to supplement the information in GFX_DEV_CAP.

The following example shows the GFX_DEV_CAPEXTEN and the
GFX_DEV_MODES structure it references, returned by
gfx_get_dev_capexten() for the above device. To make this more
interesting we assume this device only has 2MB of graphic memory and
cannot display all combinations:

GFX_DEV_MODES gdv_dev_modes[] = {
 {0, 0, "640x480x8"},
 {1, 0, "800x600x8"},
 {2, 0, "1024x768x8"},
 {0, 1, "640x480x555"},
 {0, 2, "640x480x888"}
};
30 Using MAUI

2MAUI Concepts
const GFX_DEV_CAPEXTEN gdv_dev_capexten = {
 sizeof(GFX_DEV_CAPEXTEN), /* Version of structure */
 sizeof(gdv_dev_modes)/sizeof(*gdv_dev_modes),
 /* Number of modes */
 gdv_dev_modes, /* Mode info */
 GFX_VPC_ONE_EXACT, /* Supports only one viewport the
 exact size of the display */
 GFX_VPDMC_LARGER /* Can display sub-drawmaps */
};

The new GFX_DEV_CAPEXTEN structure is designed such that it can
easily be updated in future releases, but this places a larger burden on
the application to validate the fields requested are valid.

First, the application must verify that the call returned successfully since
not all MAUI systems implement this call. Systems with a MAUI shared
library prior to version MAUI 3.1 do not know about this call and will
return EOS_ITRAP. If the MAUI shared library knows about the new call
or you are statically linking the application, but the driver is older than
3.1, the call returns EOS_UNKSVC. If the driver was compiled against the
MAUI 3.1 graphic driver common code, but the developer did not supply
the a GFX_DEV_CAPEXTEN structure, the call returns
EOS_MAUI_NODVSUPPORT.

Next, since GFX_DEV_CAPEXTEN is an extensible structure, it is
possible that the driver may have been build with different versions of
the structure than the application. It is assumed that this structure will
always increase in size, that the application may only read this
structure, and that the first member of the structure contains the size of
GFX_DEV_CAPEXTEN as initialized by the driver. Based on these
assumption, the application can validate access to any particular field
using the GFX_DEV_CAPEXTEN_VALIDATE(ptr, member) macro.
For instance, to determine if the vpdm_complexity member was
initialized by the driver, do the following:

 const GFX_DEV_CAPEXTEN *edcap;
 ...
 if (GFX_DEV_CAPEXTEN_VALIDATE(edcap, vpdm_complexity))
 printf("vpdp = %d\n", edcap->vpdm_complexity);

This macro is relatively inexpensive as it is reduced by the compiler to a
simple compare of edcap->version to a constant.
Using MAUI 31

2 MAUI Concepts
NoteNote
You are not required to use the GFX_DEV_CAPEXTEN_VALIDATE()
macro for 3.1 members of the GFX_DEV_CAPEXTEN structure, since
drivers should define at least the 3.1 members if they define the
structure at all. But it is good practice to validate use of all members of
this structure.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 7: Using the Graphics Device API for more information
about display types.
32 Using MAUI

2MAUI Concepts
Drawmaps

Drawmaps are specific allocations of pixel memory that store graphic
images. Drawmaps are not directly displayed on the screen; they are
simply a storage device in which a graphic image is loaded. When a
drawmap is created, it is described in the following structure:

typedef struct _GFX_DMAP {
GFX_CM coding_method;/* Coding method */
GFX_DIMEN width; /* Width in pixels */
GFX_DIMEN height; /* Height in pixels */
size_t line_size; /* Size of line in bytes */
GFX_PIXEL *pixmem; /* Ptr to pixel memory */
u_int32 pixmem_shade;/* Shade used for pixmem */
size_t pixmem_size; /* Pixmem size in bytes */
GFX_PALETTE *palette;/* Ptr to color palette */

} GFX_DMAP;

The coding method defines the image type and can be a CLUT, RGB,
Run Length, or DYUV image type. The width and height parameters
specify the maximum image size stored in the drawmap. The width and
height are limited only by the size of memory allocated by MAUI for pixel
memory, and are not related to the size of the display. After a drawmap
is created, an image can be loaded into the drawmap.

Images stored in drawmaps can be displayed in a number of ways. You
can display the entire image in the drawmap, or define a small portion of
a drawmap for display. The example image in Figure 2-1 shows an
image that is 1440 pixels wide by 240 pixels tall, and contains many
small messages. Each message can be displayed anywhere on the
display screen, or several small messages can be arranged on the
Using MAUI 33

2 MAUI Concepts
display screen. For example, Have a Safe and Happy can be combined
on a display screen with Memorial Day Weekend! to make the single
message display: Have a Safe and Happy Memorial Day Weekend!

Figure 2-1 Drawmap

To display a portion of the image from the drawmap, identify the portion
by the x,y coordinate of the top left corner of the partial image, and
define the area in width and height of the partial. For example, the
message Happy Holidays in the sample image is located at x,y
coordinate 10,200, and occupies an area 350 pixels wide by 40 pixels
high.

When all or part of a drawmap displays, it appears on the screen by way
of a viewport. The next section describes viewports and their
relationship to drawmaps.

width = 1440
x,y = 0,0

height = 240 x,y = 1440,240

♥♥♥♥Happy Valentines Day!♥♥♥♥

Celebrate Freedom!

Happy Halloween!

Happy Thanksgiving!

Thank you for your patronage!

Have a Safe and Happy
Memorial Day Weekend!
Labor Day Weekend!

Don't forget to Vote!

Happy New Year!

Happy Holidays!

34 Using MAUI

2MAUI Concepts
Viewports

Viewports are defined areas of the screen that display still graphic
images. The images displayed in the viewport are loaded from
drawmaps. A display screen may contain a single viewport that is as
large as the screen, or several viewports of various sizes and positions.
The number, size, and transparency capabilities of the viewports are
determined by the hardware in the user’s system. Using the drawmap
example in the previous section, the following illustration constructs a
display screen from two different drawmaps using three viewports.

Figure 2-2 Viewports

Viewports that overlap are stacked from front to back. When viewports
are stacked, they may be opaque so the underlying viewports are
partially or completely covered by the front viewport (as is the case in
the figure Viewports). Viewports may also be mixed so there is some
level of transparency from front to back. The level of transparency is
determined by the intensity level of each viewport. For example, if the
front viewport lies over another viewport, and both have defined
intensities of 100, each viewport contributes 50% to the overlapped
area when mixing is on.

Have a Safe and Happy Weekend!

The first and second
viewports contain words

copied from the same
drawmap and arranged

in the viewports to make
a single, composite

sentence

The third viewport
is the same size as
the display screen

and contains a
single CLUT image

copied from a second
drawmap.
Using MAUI 35

2 MAUI Concepts
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

This technique is covered in detail in Chapter 7: Using the Graphics
Device API.

When an external video signal such as MPEG video or a composite
video signal displays, viewports may be overlaid on the external video
plane. External video does not display in a viewport and always displays
on the background plane behind all active viewports. External video
may be turned on or off. If external video is turned off, the background
will be a single, solid color. While all these features are available with
MAUI, your hardware capabilities determine to what extent you can use
them. The graphics device capabilities are stored in a structure called
GFX_DEV_CAP, and lists all the available features for a particular
system. As MAUI 3.1, there is a secondary, optional
GFX_DEV_CAPEXTEN structure that contains additional device
capabilities information. Your applications can read the device
capabilities and adjust to the hardware environment at run-time.

Constructing a Display

To construct a display like the one in the viewport example requires
several steps. Let’s assume that the two drawmaps have been created
and pictures loaded in the drawmaps. The first step in constructing the
display is to define the size of the display. This is done with the
gfx_set_display_size() function. In this example, the display size
is 720 x 240. The top, left corner is coordinates 0,0. The specific
hardware capabilities of the display can be examined by using the
function gfx_get_dev_cap().

The next step is to create three viewports and specify their size and
position on the display screen. Size and position are specified with
display and viewport coordinates.
36 Using MAUI

2MAUI Concepts
Creating Viewports

A viewport is a private object that defines a rectangular area on the
display screen. Viewports are created with the
gfx_create_vport() function.

The first viewport contains the partial image Have a Safe and Happy. It
is 580 pixels wide by 20 pixels high, and the top, left corner is located at
display coordinates 40, 25.

The second viewport contains the partial image Weekend. It is 200
pixels wide by 20 pixels high, and the top, left corner is located at
display coordinates 620, 25.

The third viewport contains the background image. It is 720 pixels wide
by 240 pixels high, and the top, left corner is located at display
coordinates 0,0.

Now that the viewports have been created and their position defined on
the screen, you can display images from the drawmaps in the
viewports.

Displaying Images in Viewports

The first image displayed is the partial image from our messages
drawmap. Images are assigned to a particular viewport with the function
gfx_set_vport_dmap(). In this function, you define which drawmap
is being used, the drawmap x,y coordinates of the top, left corner of the
image you are displaying, and the width and height of the image.

For example, the partial image Have a Safe and Happy is located at
drawmap coordinates 860,58, and is 580 pixels wide by 20 pixels high.
The location, width, and height of the image being displayed are all
expressed relative to the drawmap coordinates.
Using MAUI 37

2 MAUI Concepts
Pixel Size Differences

Pixel size can vary between display and drawmap coordinate systems
because many graphics devices allow the pixel size to change on
various areas of the display. For example, the VDSC (used in CD-i
systems) supports eight-bit pixels that are twice the physical width as
four-bit pixels. Viewports supporting both of these modes may be visible
on the display at the same time.

To avoid creating a confusing display coordinate system, describe the
system using the smallest (physical size) pixels. This makes it possible
to have pixels within a viewport that take up more than one pixel in the
display coordinate system.
38 Using MAUI

2MAUI Concepts
Drawing

Drawmaps are used for more than just displaying images.You can use
drawmaps to collect blocks of graphic data from other drawmaps, draw
shapes, and store fonts for text manipulation. Drawmaps can be thought
of as working areas where your application can assemble and create
screens behind the scenes before transferring the assembled graphic to
the viewport for display. Drawing operations performed on drawmaps
fall into three general categories:

• Block transfers

• Shape drawing

• Text

Block Transfers

The Bit-BLT API is responsible for all block drawing and block transfer
operations. These include the following operations:

• Draw a solid color block

• Copy a block from a source to a destination drawmap

• Draw a horizontal line (block with a height of one pixel)

• Draw a vertical line (block with a width of one pixel)

• Draw a pixel (block with a width and height of one pixel)

To make these routines as fast as possible, parameters that affect the
block transfer operations are kept in a separate object called a Bit-BLT
context. This context object is configured before calling the block
transfer functions. The Bit-BLT context parameters include:

• Foreground and background colors

• Source and destination drawmaps

• Mixing mode

• Palette offset for color expansion
Using MAUI 39

2 MAUI Concepts
Because these parameters remain the same throughout many block
transfer operations, the API saves you work by dealing with the
parameters only when they change, instead of in every block transfer
function.

The context information is kept in an object so your application may
create as many context objects as it deems necessary.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 8: Using the Bit-BLT API for more information about
block transfer and block drawing operations.

Shape Drawing

The Drawing API is responsible for all shape drawing. The functions in
this API compute points on a shape and call the Bit-BLT API to do the
drawing. The shapes supported by the Drawing API are as follows:

• Straight and diagonal lines

• Polylines and polygons

• Rectangles

• Circles

The drawing API uses parameters set in a drawing context to perform
drawing operations. This context object includes parameters such as
the following:

• Drawing pattern

• Line style

• Bit-BLT context

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 9: Using the Drawing API for more details.
40 Using MAUI

2MAUI Concepts
Text Drawing

The Text API is responsible for all text drawing. At the heart of this API is
the definition of the MAUI font object. You can find this definition in the
maui_txt.h header file. Also, the font object is fully defined in Chapter
10: Using the Text API. The following is a definition of the font object:

typedef struct _TXT_FONT
{

TXT_FONTYPE font_type;/* Font type */
GFX_DIMEN width; /* Maximum cell width */
GFX_DIMEN height; /* Cell height */
GFX_DIMEN ascent; /* Ascent */
GFX_DIMEN descent; /* Descent */
wchar_t default_char;/* Default character */
u_int8 num_ranges; /* Number of ranges */
TXT_RANGTBL *range_tbl;/* Ptr to range table */

} TXT_FONT;

The font_type defines whether the font is mono-spaced or
proportional. Even if it is defined as proportional, it may be used as a
mono-spaced font. This is useful when you are using the TTY emulation
capabilities of the text API. TTY emulation requires mono-spaced
characters, but MAUI allows you to use a proportional font by
automatically adjusting the proportional font to display as a
mono-spaced font.

typedef struct _TXT_RANGTBL
{

wchar_t first_char; /* First character */
wchar_t last_char; /* Last character */
GFX_OFFSET *offset_tbl;/* Ptr to offset table */
GFX_DIMEN *dimen_tbl;/* Ptr to dimension tbl */
GFX_DMAP *bitmap; /* Pointer to bitmap */

} TXT_RANGTBL;

MAUI fonts can have any number of sub-ranges. This is important for
Asian fonts, which require several ranges to encompass the entire
character set.
Using MAUI 41

2 MAUI Concepts
This API uses parameters that are set in a text context for all drawing.
This context object includes parameters such as the following:

• font object

• Bit-BLT context

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 10: Using the Text API for a complete explanation of
the Text functions.
42 Using MAUI

2MAUI Concepts
Message Loop

Like other graphical environments, MAUI assumes the user is driving
the application, rather than the application driving the user. The
mechanism that makes this possible is the message.

MAUI messages are packets of information that tell an application it is
time to do something. The contents of the message determines what
must be done.

Most of the time the application is in a message loop. The following
code segment is an example of a simple message loop.

main()
{

while (1)
{

msg_read(mbox, &msg, MSG_TYPE_ANY, MSG_BLOCK);
msg_dispatch(&msg);

}
}

This is an incomplete example, but it gives you an idea of how a
message loop works. A complete MAUI program, including a message
loop, is presented in Aloha MAUI. The point here is that most of the time
your program sits idle, waiting for the user to do something, or for some
other event to happen.

When your message loop receives a message, the message contains
common information in addition to the information specific to the type of
message. This common information is the only part of the message
defined by the Messaging API. It is defined in maui_msg.h as:

typedef struct _MSG_COMMON
{

u_int32 type; /* Message type */
u_int32 time_queued;/* Time msg was queued */
process_id pid; /* process ID of writer */
void (*callback)(const void *msg);

/* Message callback */
} MSG_COMMON;
Using MAUI 43

2 MAUI Concepts
Every message begins with this common structure. It contains the
message type, the time the message was queued, and a pointer to a
callback function. The callback function is called directly by the
msg_dispatch() function in your message loop.
44 Using MAUI

2MAUI Concepts
User Input

This section provides a summary of user input. Briefly, user input falls
into one of two classes:

• Pointer symbols

• Key symbols

The header file maui_inp.h defines message types for each symbol
type.

typedef struct _MSG_PTR
{

MSG_COMMON com; /* Common section */
INP_PTR_SUBTYPE subtype;/* Type of ptr message */
INP_DEV_ID device_id;/* Device ID */
u_int8 button; /* Button number */
u_int8 button_state;/* State of all buttons */
GFX_POINT position; /* New position */
wchar keysym; /* Keysym if simulation */

/* caused the message */
} MSG_PTR;
typedef struct _MSG_KEY
{

MSG_COMMON com; /* Common section */
INP_KEY_SUBTYPE subtype;/* type of key */

/* symbol message */
INP_DEV_ID device_id;/* Device ID */
wchar_t keysym; /* Key symbol */
INP_KEYMOD key_modifiers;

/* Key modifiers */
} MSG_KEY;
Using MAUI 45

2 MAUI Concepts
Pointer Messages

Pointer messages are generated when the user interacts with a pointer
device. Pointer devices supported by MAUI include, but are not limited
to, the following:

• Mouse

• Tablet

• Touch screen

• Light pen

• Joystick

Key Symbol Messages

Key symbol messages are generated by the user’s interaction with a
device that generates key symbols. MAUI devices that support this type
of input include, but are not limited to, the following:

• Keyboard

• Remote control

• Game controller

The key symbols generated by MAUI-supported devices are
standardized to insulate applications from the protocols of the physical
devices used to generate them.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 13: Using the Input API for detailed function descriptions.
46 Using MAUI

Chapter 3: Writ ing a MAUI Application

This chapter guides you through the typical steps necessary to write a
MAUI program.

NoteNote
Example source code has been included in your MAUI development
package in the directory: MWOS/SRC/MAUI/DEMOS. Each demo is
accompanied by a “read me” or .pdf file describing its use.
47

3 Writing a MAUI Application
Analyzing a Typical MAUI Program

This chapter describes the fundamentals of programming with MAUI
and illustrates some of the most important MAUI concepts and
programming issues.

In the following sections, example code is provided and described to
illustrate the concepts being introduced.

You will notice a lack of error checking in these examples. This was
deliberate. We wanted to keep the examples simple so you could stay
focused on the most important topics. Error handling is covered later in
this chapter.

Include files

The include file <maui.h> is needed by virtually all MAUI programs.
This file contains declarations of structure types and defined constants
used in MAUI functions as well as function prototypes. Many of the
structures and constant definitions are described in this manual with the
functions that are used.

#include <maui.h>

Color and Palette Definitions

GFX_RGB colors[2] =
{

0x1010ef, /* CCIR Blue */
0xefefef, /* CCIR White */

};
48 Using MAUI

3Writing a MAUI Application
GFX_PALETTE palette =
{

0, /* Starting entry */
2, /* Number of colors */
GFX_COLOR_RGB,
colors, /* Colors */

};

For simple drawing, the easiest way to set up a color palette is to use
initialized data as shown in the definitions of palette and colors above.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the MAUI Programming Reference Manual for a detailed
explanation of the MAUI data types GFX_PALETTE and GFX_RGB.

Variables

/* Primary MAUI objects */
GFX_DEV_ID gfxdev; /* Graphics device ID */
GFX_DMAP *dmap; /* Drawmap pointer */
GFX_PIXEL exptbl[] = {0,1};/* Pixel expansion */

/* table */
GFX_VPORT_ID vport; /* Viewport ID */
TXT_CONTEXT_ID txt_ctx;/* Text context ID */
TXT_FONT *font; /* Font */

The variable definition section defines the global variables dmap,
vport, font, blt_ctx, and txt_ctx. These are the primary objects
required to make a drawmap visible on the display and to draw text.
Also, the variable exptbl defines color entries used for the text
background (entry 0) and the foreground (entry 1).

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the MAUI Programming Reference Manual for a detailed
explanation of the MAUI data types.
Using MAUI 49

3 Writing a MAUI Application
Initialize MAUI APIs

maui_init();

The first MAUI function called in any MAUI application is
maui_init(). When you call this function, all APIs within MAUI are
initialized. Until you call maui_init(), all other MAUI functions return
E_MAUI_NOINIT.

Open a Graphics Device

/* Open the graphics device */
{

/* temporary device name */
char devname[CDB_MAX_DNAME];
cdb_get_ddr(CDB_TYPE_GRAPHIC, 1, devname,

NULL);
gfx_open_dev(&gfxdev, devname);

 }

Before you use a graphics device, you should open it. In this example,
we use the CDB API to extract the device name from the Configuration
Description Block. Then, gfx_open_dev() opens the device and
returns the device ID.

Create and Configure a Drawmap

/* Create and configure drawmap */
mem_create_shade(SHADE_PLANEA, MEM_SHADE_NORMAL,

0x80, 4096, 4096,
MEM_OV_ATTACHED, TRUE);

gfx_create_dmap(&dmap, SHADE_PLANEA);
gfx_set_dmap_size(dmap, GFX_CM_8BIT, 360, 240);
gfx_set_dmap_pixmem(dmap, NULL, SHADE_PLANEA, 0);
dmap->palette = &palette;
50 Using MAUI

3Writing a MAUI Application
Although you can use initialized data to create public data structure
drawmaps, that approach is most useful on small drawmaps (for
example, with patterns or cursors). For larger drawmaps, such as those
you plan to use in viewports on the display device, the steps are a bit
more complicated. This is mainly because you may want your
application to adjust itself to the resolution of various display devices.

Step 1. Create a drawmap object.

Step 2. Set the drawmap size.

Step 3. Allocate pixel memory for the drawmap.

This concept is fully explored in the MAUI Programming Reference
Manual.

Create a Drawmap Object

There are three steps in creating a drawmap object.

Step 1. Allocate the drawmap object. The drawmap object is a small C
structure. You may be wondering why we do not code it as shown below
instead of calling gfx_create_dmap():

GFX_DMAP dmap;

The advantage of calling the MAUI create function is that
gfx_create_dmap() automatically sets each member of the
structure to a default value, saving you the trouble of individually setting
each structure member’s value.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See GFX_DMAP in the MAUI Programming Reference Manual for
information about the default values.
Using MAUI 51

3 Writing a MAUI Application
Step 2. Set the drawmap size. Although you could set the members of the
drawmap structure yourself, it is more convenient to use the MAUI
supplied function gfx_set_dmap_size(). The code segment above
sets the width of the drawmap to 360 pixels and height of the drawmap
to 240 pixels.

Step 3. Call gfx_set_dmap_pixmem() to allocate the drawmap’s pixel
memory. The pixmem parameter is set to NULL to indicate that the
graphics driver should allocate the memory. The allocation is done from
shade 0x80.

Create Viewport and Display Drawmap

/* Create viewport and put the drawmap in it */
gfx_create_vport(&vport, gfxdev, 0, 0, 720, 240,

GFX_VPORT_FRONT);
gfx_set_vport_dmap(vport, dmap, 0, 0);

/* Set display parameters and show the viewport */
gfx_set_vport_state(vport, TRUE);
gfx_update_display(gfxdev, FALSE);

Viewports allow you to make the drawmap visible on the display. In this
example we open a 720 x 240 pixel viewport by calling
gfx_create_vport(). This example places this viewport on the
display at screen coordinates 0,0.

To map the drawmap to the viewport, call gfx_set_vport_dmap().
Use an offset of 0,0 because the drawmap is the same size as the
viewport. If the drawmap was larger, we could use the offset to tell MAUI
what portion of the drawmap should be visible in the viewport.

There are still several more concepts to introduce before anything is
visible on the display. MAUI does not display anything until your first call
to gfx_update_display(). Usually, you want to make several
changes to the display, but you do not want to see them happen
sequentially; you want them to accumulate until you are ready to make
them appear simultaneously.
52 Using MAUI

3Writing a MAUI Application
Create Font Structure and Text Context Objects

/* Create font structure from a UCM font module */
get_ucm_font(&font, SHADE_PLANEA, “default.fnt”);

/* Create text context */
txt_create_context(&txt_ctx, gfxdev);
txt_set_context_dst(txt_ctx, dmap);
txt_set_context_font(txt_ctx, font);
txt_set_context_exptbl(txt_ctx, 2, exptbl);

Currently, a viewport is being displayed, and all that is left is to draw into
it. This example is preparing to draw text into the viewport. Drawing in
MAUI is done via context objects.

These objects and their capabilities are explained in the MAUI
Programming Reference Manual but right now all you need to know is
that they are the objects used to set attributes, such as the colors to
draw with and the font required.

The font structure is created by calling get_ucm_font()*. The default
colors are adequate for our example, so the only parameter we need to
set is the destination drawmap to use for Bit-BLT operations.

The text context is created by calling txt_create_context(), and
parameters within it are set with txt_set_context() functions. The
only parameters the text context needs are the Bit-BLT context, the font
to use for text drawing, and the expansion table, which defines the
colors of the text.

Draw the Text String

/* Draw the text string */
{

/* temporary working variables */

*.get_ucm_font() is not a part of the standard MAUI library. It is located in
mauidemo.l and mauidemo.h. Both the library and the header file are
located where the other MAUI libraries and header files are located.
Using MAUI 53

3 Writing a MAUI Application
GFX_DIMEN pwidth; /* Pixel width of a text */
/* string write */

char *string; /* Pointer to text string */
size_t len; /* Length of text string */
string = “Hello MAUI...”;
len = ULONG_MAX; /* draw the whole string */
txt_draw_mbs(&pwidth, txt_ctx, string, &len,

20, 40, NULL);
}

Drawing a multi-byte string to a drawmap is as simple as calling
txt_draw_mbs(). Our example code draws the string “Hello MAUI...”
at the coordinates 20,40 in the drawmap specified by blt_ctx.

Destroy All Objects and Terminate APIs

/* Destroy everything, terminate each API, */
/* and exit */

gfx_set_vport_state(vport, FALSE);
gfx_update_display(gfxdev, TRUE);
txt_destroy_context(txt_ctx);
release_ucm_font(font);
mem_free(dmap->pixmem);
gfx_destroy_vport(vport);
gfx_destroy_dmap(dmap);
gfx_close_dev(gfxdev);
mem_destroy_shade(SHADE_PLANEA);
maui_term();
exit(0);

This example shows how to clean up and exit. Objects are usually
destroyed in the reverse order in which they were created. Therefore,
we perform the following steps in sequence:

Step 1. Destroy the text context object.

Step 2. Destroy the Bit-BLT context object.
54 Using MAUI

3Writing a MAUI Application
Step 3. Destroy the viewport.

Step 4. Destroy the drawmap.

Step 5. Terminate the MAUI APIs.

The call to maui_term() is used to terminate the MAUI APIs. This
should be the last call to MAUI that your application makes. If you call a
MAUI function (besides maui_init()) after calling the terminate
function, MAUI generates the E_MAUI_NOINIT error.

Adding Error Checking

The examples in the previous section are fine as long as the MAUI
functions are able to do their work, but what happens when something
goes wrong? For example, if gfx_set_dmap_pixmem() fails to
allocate the pixel memory because there is insufficient memory,
subsequent calls to MAUI that require pixel memory will also fail. This is
referred to as cascade failure.

The obvious solution to this problem is to check the return value from
each MAUI function to make sure it succeeded. For example, the code
segment in the previous section that creates and configures the
drawmap could be modified as follows:

error_code ec;
if ((ec = gfx_create_dmap(&dmap, 0)) != SUCCESS)

exit(ec);
if ((ec = gfx_set_dmap_size(dmap, GFX_CM_BIT1,
 100,100))

!= SUCCESS)
exit(ec);

if ((ec = gfx_set_dmap_pixmem(dmap, NULL, 0x80, 0))
!= SUCCESS)
exit(ec);

Although this method works, it tends to get a bit messy, especially if you
do this type of checking on every call to a MAUI function. MAUI offers
error handlers as an alternative.
Using MAUI 55

3 Writing a MAUI Application
To understand MAUI error handlers, you must first understand the error
levels that MAUI can generate. MAUI errors fall into the following
categories (or levels):

• Fatal Errors

• Non-fatal Errors

• Warnings

Fatal Errors

Fatal errors restrict operations likely to cause other operations to fail.
This type of error usually sets off a cascade failure. For example, if
gfx_create_dmap() fails because of insufficient memory, this is
considered a fatal error. Attempting to use the drawmap in future calls
only leads to more errors.

Non-fatal Errors

Non-fatal errors indicate the operation you were attempting did not
succeed, however its failure will not cause other functions to fail. For
example, if you call blt_draw_block() with a bit-BLT context that
has no destination drawmap set, you receive a non-fatal error because
it has no context to draw to, but the error will not affect other functions.

Warnings

Warnings indicate something went wrong, but that it was not serious
enough to be considered an error. For example, if you call mem_free()
with a memory segment that was never allocated, you receive a
warning. Warnings alert you to unexpected behavior that may occur in
your program.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

MAUI has several functions that deal with error handling. All are
explained in the MAUI Programming Reference Manual.
56 Using MAUI

3Writing a MAUI Application
Input Processing

The code segments in the previous sections dealt with output. Most
display programs require some type of user input. MAUI uses
messages to deliver user input to the application.

Step 1. To add input processing to a program, add a signal handler function and
register it with OS-9.

/* install signal handler */
intercept (sig_hand);

Step 2. Create a MAUI mailbox to receive messages from the input device, and
then open the input device.

/* create a mailbox */
msg_create_mbo x(&mbox, “mbox”, 1,
sizeof(INP_MSG),

MEM_ANY);

/* open input device */
{

char devname[CDB_MAX_DNAME];
cdb_get_ddr(CDB_TYPE_REMOTE, 1, devname, NULL);
inp_open_dev(&inpdev, mbox, devname);
inp_set_callback(inpdev, mbox, process_keys);

}

All error handling is performed through the mailbox function.
msg_create_mbox()provides a mailbox named mbox to store error
messages. MEM_ANY sets the error level to generate an error message
when an error of any level occurs.

Step 3. Add a section of code called the message loop. This is a common term
used to refer to code that causes you to wait for the next message and
dispatch callback functions to respond to input.
Using MAUI 57

3 Writing a MAUI Application
The message loop for a program should be placed following the
initialization of the environment. The first line of an event loop usually
appears as follows:

done= FALSE; /* defined as a global */
while(done == FALSE){

msg_read(mbox, &inp_msg, MSG_TYPE_ANY,
MSG_BLOCK);

msg_dispatch(&inp_msg);
}

The code for defining the variables and for cleaning up before exiting is
not shown here.

The last parameter to inp_set_callback() is the name of the
callback function to attach to input messages. This is the function that
msg_dispatch() calls to process the message. In this example it is
named process_keys() and appears in the code as follows:

void process_keys(MAUI_MSG *msg)
{ GFX_DIMEN pwidth;

char s[80];
sprintf(s, “You pressed key 0x%4.4x”,

msg->key.keysym);
txt_draw_mbs(&pwidth,txt_ctx, s, 80, 20, 40,

NULL);
if (msg->key.keysym == INP_KEY_EXIT)

done = TRUE;
}

This callback function prints a message to the display indicating which
key was pressed. When the user presses the exit key, it sets the done
flag, causing the message loop to terminate and the program to exit.
58 Using MAUI

Chapter 4: Using the MAUI System

API

The MAUI System API enables applications to initialize, terminate, and
set the error action of all supported MAUI APIs available in the
application environment with a single function call.

This chapter classifies the MAUI System API functions and explains
how they are used.
59

4 Using the MAUI System API
MAUI System Functions

To use any MAUI API it must first be initialized. If an API is dependent
upon another MAUI API, then that API must be initialized first.

The MAUI System API does the following:

• Initializes all the MAUI APIs in the correct order.

• Sets the initial error action for all MAUI APIs.

• Terminates all the MAUI APIs in the correct order.

This provides an easy way for applications to begin initializing their
environment without having to understand the MAUI API dependency
hierarchy.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For detailed function descriptions, refer to the MAUI Programming
Reference Manual.

Initialize and Terminate

maui_init() Initialize all MAUI APIs by calling their
respective *_init() routines in the
correct order.

Terminate

maui_term() Terminate all MAUI APIs by calling their
respective *_term() routines in the
correct order.
60 Using MAUI

4Using the MAUI System API
Setting Error Action

maui_set_error_action()Set the Error Action of all MAUI APIs by
calling their respective
*_set_error_action() routines.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 1, Printing to stderr for more information about printing
with mem_ functions.
Using MAUI 61

4 Using the MAUI System API
62 Using MAUI

Chapter 5: Using the Shaded Memory

API

The Shaded Memory API enables applications to decrease the amount
of memory fragmentation that occurs when applications perform
frequent allocations and de-allocations of memory. The API is based on
the memory management features supported by OS-9 and OS-9000,
but takes the concept a step further by introducing shading as an
additional tool for managing memory partitioning.

This chapter classifies the Shaded Memory API functions and explains
how they are used. An example program is included at the end of this
chapter that demonstrates the basic techniques for using the Shaded
Memory API.
63

5 Using the Shaded Memory API
Architecture

All MAUI APIs rely and depend on the Shaded Memory API for memory
management. See Figure 5-1 for the relationship between the API and
the other components of the MAUI architecture.

Figure 5-1 Shaded Memory API Dependencies

Application

MAUI APIs

S
h

ad
ed

 M
em

o
ry

 A
P

I

MAUI Input Process

Pointer
Devices

Keycode
Devices

Graphics
Devices
64 Using MAUI

5Using the Shaded Memory API
Colors and Shades

The Shaded Memory API:

• Builds on the concept of normal memory, as implemented in the
OS-9/OS-9000 operating systems.

• Partitions memory to minimize memory fragmentation during
frequent memory allocations.

• Subdivides system memory colors into separate shades with
different allocation characteristics.

These characteristics are tied to the block concept. Blocks are pieces of
memory allocated when there is not sufficient memory in the shade to
satisfy an allocation request.

Important block characteristics are the initial size and the grow size. The
initial size is the size of the initial memory block allocated during the
shade creation. If it is equal to 0, no memory is allocated when the
shade is created. The grow size determines the block size that can be
requested from the system memory when the shade is growing.

If the MEM_GROW_MULTIPLE method is used (see Creating and
Destroying Shades), the block size is a multiple of the grow size. In the
case of MEM_GROW_LARGER, the block size is determined by comparing
the grow size and the size requested by an application and using the
highest number. If a grow size is equal to 0, the shade is not allowed to
grow.

Two types of shades are defined by this API:

• Normal shades use a specific color of system memory.

• Pseudo shades control the allocation and de-allocation of memory
from an area not accessible to the CPU. In this case, the operating
system is not able to manage the memory.
Using MAUI 65

5 Using the Shaded Memory API
Refer to Figure 5-2 to see the relationships between normal memory,
pseudo memory, and shades.

Figure 5-2 Relationships Between Normal Memory, Pseudo Memory,
and Shades

In this diagram, the operating system has defined one color of memory
(color 0x01). The application is using this color to define shades 0x01,
0x02, and 0x03.

In addition, the application must provide allocation and de-allocation
functions to support the pseudo memory identified by colors 0x30 and
0x31. The application uses color 0x30 to define shades 0x11 and 0x12,
and uses color 0x31 to define shades 0x21 and 0x22.

Using Normal Shades

Before allocating memory from a normal shade, you must initialize the
shaded memory functions and define the normal shades. The following
code segment defines three shades, numbered 1 through 3.

Shade 0x01

Shade 0x02

Shade 0x03

Shade 0x11

Shade 0x12

Shade 0x21

Shade 0x22

A single memory
color may define
several memory
shades.

Pseudo shades
manage pseudo
memory.

Normal memory
is defined by
the operating
system.

Pseudo memory
is not accessible
to the CPU, but
may still be
partioned using
colors.

Memory
Color 0x01

Memory
Color 0x30

Memory
Color 0x31
66 Using MAUI

5Using the Shaded Memory API
#include <MAUI/maui_mem.h>
main()
{

/* Initialize API and create normal shade */
mem_init();
mem_create_shade(1, MEM_SHADE_NORMAL, 0, 8192,

1024, MEM_OV_SEPARATE, TRUE);
mem_create_shade(2, MEM_SHADE_NORMAL, 0x80, 0, 1,

MEM_OV_SEPARATE, TRUE);
mem_create_shade(3, MEM_SHADE_NORMAL, 0x81, 0,

4096,MEM_OV_SEPARATE, TRUE);

/* Call mem_malloc(), mem_calloc() or */
/* mem_realloc() to allocate each segment. */

/* Call mem_free() to free each segment */

/* Destroy shades and terminate the API */

mem_destroy(1);
mem_destroy(2);
mem_destroy(3);
mem_term();

}

These definitions show the diversity in the way an application may
choose to manage memory. Shade 1 uses color 0, which allows the
system to satisfy the request from any color. The initial size of 8192
bytes forces the initial block to be allocated immediately. This block is
not returned to the system until the shade is destroyed. The grow size of
1K forces the shade to grow by blocks that are at least 1024 bytes in
size. For example, if you try to allocate 50 bytes and there is no free
memory in this shade, a 1K block is allocated from the system and the
first 50 bytes are used. The remaining 974 bytes are put in the free list
and used to satisfy future requests.

Shade 2 forces all allocations to be satisfied from system memory with
color 0x80. Since the initial size is 0, no memory is allocated until a
request is made. Since the grow size is 1, this shade always grows by
the size of the allocations being made by the application.
Using MAUI 67

5 Using the Shaded Memory API
Shade 3 has no initial size, but its grow size is 4096 bytes. This means
that blocks allocated from the system for this shade must always be
multiples of 4K. This shade also requires the memory to come from
color 0x81.

Using Pseudo Shades

Pseudo shades differ from normal shades because memory is not
allocated from the system to satisfy requests from the application.
Instead, allocation and de-allocation functions are provided by the
application.

Applications should use mem_create_shade() to create a pseudo
shade specified as =_PSEUDO. Most functions in this API operate on
both normal shades and pseudo shades. The only significant difference
is that the memory being managed by a pseudo shade is not accessible
by the CPU and is therefore never written to by it.
68 Using MAUI

5Using the Shaded Memory API
Shaded Memory Functions

The Shaded Memory API functions are classified into four categories:
Initialize and Terminate, Create and Destroy Shades, Allocate and
Deallocate Memory Segments, and Status and Debugging.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For detailed function descriptions, refer to the MAUI Programming
Reference Manual.

Initialize and Terminate

mem_init() Initialize Shaded Memory API

mem_term() Terminate Shaded Memory API

mem_set_error_action() Set the Error Action

To initialize the Shaded Memory API, call mem_init(). This
automatically creates the default shade MEM_DEF_SHADE, with an
initial size of 4K and a grow size of 4K using memory color MEM_SYS.
Because several APIs depend on the Shaded Memory API, another
way to initialize the Shaded Memory API is to call maui_init() or
any of the following functions:

anm_init() blt_init()

cdb_init() drw_init()

gfx_init() inp_init()

msg_init() txt_init()

When the Shaded Memory API is not required, it can be deactivated
(terminated) using mem_term() or maui_term().

mem_set_error_action() sets the proper error handler reaction
depending on the severity of the error. You can find the initialization and
termination examples in the mem.c program at the end of this chapter.
Using MAUI 69

5 Using the Shaded Memory API
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 1, Printing to stderr for more information about printing
with mem_ functions.

Creating and Destroying Shades

mem_create_shade() Create a Normal or Pseudo shade

mem_set_grow_method() Set grow method for a shade

mem_destroy_shade() Destroy a shade of memory

mem_set_alloc() Set allocator function for a shade

mem_set_alloc_bndry() Set boundary size for allocation

mem_set_dealloc() Set de-allocator function for a shade

The normal shade is created by calling mem_create_shade(). To
create a normal shade, you must determine:

• Desired shade number

• Memory color for the shade

• Initial and grow sizes

• A method for overhead memory allocation

• Whether the overflow/underflow detection is needed

Pseudo shades are also created using mem_create_shade(). This
call requires pointers to allocation and deallocation functions, provided
by an application and called when the shade needs to grow.

The grow method for the shade is set by mem_set_grow_method().
To destroy a shade, either normal or pseudo:
70 Using MAUI

5Using the Shaded Memory API
Step 1. Call mem_destroy_shade().

Step 2. Deallocate all segments from this shade, otherwise the information in
these segments will be printed on the screen (see
mem_list_segments() in Status And Debugging).

NoteNote
Be aware that the initial block of the shade is not returned to the system
when it does not have segments allocated.

Allocating and De-allocating Memory Segments

mem_malloc() Allocate shaded memory

mem_calloc() Allocate and clear shaded memory
segment

mem_realloc() Reallocate shaded memory

mem_free() Free memory segment from a normal
shade

mem_sfree() Free memory segment from the
specified shade

mem_sfree_all() Free all segments from the specified
shade

Another memory allocation concept is a segment. Segments are pieces
of memory allocated to an application.

Allocating a Segment

To allocate a segment of memory:

• Use mem_calloc() to allocate and clear memory for an array of
data structures.

• Use mem_malloc() to allocate memory of a specified size.
Using MAUI 71

5 Using the Shaded Memory API
Reallocating a Segment

To reallocate the memory segment previously allocated from a normal
shade use mem_realloc(). Although the size of this segment can be
changed (the main goal for calling this function), its contents within the
reallocated part are kept unchanged.

Deallocating a Segment

To deallocate a segment:

• Use mem_free() for normal shades.

• Use mem_sfree() for both normal and pseudo shades.

Status And Debugging

mem_get_shade_status() Get shade status

mem_list_segments() Print a listing of allocated segments

mem_list_tables() Print a listing of memory tables

mem_list_overflows() Print a listing of underflows/overflows

The Shaded Memory API allows an application to request memory
status information and to perform debugging operations related to
memory allocations.

Returning Current Status

To return the current status of the specified shade call
mem_get_shade_status().

Printing a List of Allocated Segments

To print the list of allocated segments call
mem_list_segments().This enables you to keep track of allocations
and deallocations.
72 Using MAUI

5Using the Shaded Memory API
Printing a List of Shades, Blocks, Segments

To print the list of shades, blocks, segments and their properties call
mem_list_tables().

Printing a List of Overflows/Underflows

To print the list of overflows/underflows call mem_list_overflows().
When a shade is created with the check overflows option true, safe
areas are created at the beginning and the end of the segment. If these
safe areas are overwritten, the overflow/underflow situation is reported
by mem_list_overflows().

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 1, Printing to stderr for more information about printing
with mem_ functions.

Using MAUI 73

5 Using the Shaded Memory API
74 Using MAUI

Chapter 6: Using the CDB API

The Configuration Description Block (CDB) API makes it possible for an
application to examine a system configuration and retrieve information
about attached devices. This information is derived from entries in
Device Descriptor Records (DDRs) located in the CDB module.

This chapter classifies the CDB API functions and explains how they
are used.
75

6 Using the CDB API
Architecture

The CDB API relies on the Shaded Memory API for memory allocation.
The following figure shows the relationship between the CDB API and
the other components that comprise the MAUI architecture.

Figure 6-1 Configuration Description Block (CDB) API Dependencies

Pointer
Devices

Key Symbol
Devices

Graphics
Devices

Maui File
Manager

MP Protocol
Modules

Maui Input
Process

Input API Messaging API Graphics API

Bit-BLT APIMaui Windowing Process

Text API Drawing API Animation API Windowing API

Application

Shaded Memory API CDB API
76 Using MAUI

6Using the CDB API
CDB API Functions

The functions provided by the CDB API are classified into two groups:
Initialize and Terminate Functions, and Retrieving Functions.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For detailed function descriptions, refer to the MAUI Programming
Reference Manual.

Initialize and Terminate Functions

cdb_init() Initialize CDB API

cdb_term() Terminate CDB API

cdb_set_error_action() Set error action

The system-wide functions maui_init() and maui_term() initialize
and terminate all the MAUI APIs, including the CDB API. When the CDB
API is initialized, the Shaded Memory API is also initialized.

Initializing the CDB API

To initialize the CDB API separately Call cdb_init(). This function
initializes the API to prepare it for use. No other functions in the CDB
API (excluding cdb_set_error_action()) can be called before
cdb_init(). Any attempt to call CDB API functions prior to the
initialization returns the error EOS_MAUI_NOINIT.
Using MAUI 77

6 Using the CDB API
Terminating the CDB API

To terminate the CDB API call cdb_term(). Use maui_term() to
terminate all APIs. Once this is done, you cannot call any other CDB
function.

Changing The Default Actions on Errors

The CDB API has a built-in error handling mechanism.
cdb_set_error_action() sets the action to take in the error
handler when a function in this API detects an error.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 1, Printing to stderr for more information about printing
with mem_ functions.

Retrieving Functions

cdb_get_ddr() Get device description

cdb_get_size() Get size of the CDB

cdb_get_copy() Get copy of the CDB

cdb_get_ncopy() Get copy of the CDB up to n bytes

The CDB block is a textual description of the system configuration
contained in Device Description Records (DDRs). Each DDR
corresponds to one device and has three parts:

Device Type This is an unsigned integer representing
the device (such as a WAN, graphic
overlay, printer, magnetic disk, pointing
device, or keyboard.)

Device Name The name used to access the device.
78 Using MAUI

6Using the CDB API
Device Parameters Indicates the functionality of the device.
The contents are specific to the
particular device type.

Reading Device Description Records

The following rules apply to DDR syntax and parameters:

• Though you may have several devices of the same type in the
system, each device must have a unique name.

• Parts of the DDR are separated by a colon (:). Within the parameter
part, separate parameters are also delimited by colons.

• If the parameter is boolean (yes/no type), it is represented by two
characters to indicate the particular system capability.

• A numeric parameter consists of a pound sign (#) and the numeric
part. The parameter name must be two characters. For example, in
a graphics device entry, PL#8 means the presence of 8 image
planes for a graphics processor. Optionally, this is followed by a
comma character and another numeric parameter. The value
comprises a variable length string of characters in the range 0x30
through 0x39.

• If the parameter is a string, it consists of a two character mnemonic
part, an equal sign (=), and a string. For example, in a system entry,
OS = “OS9” indicates that the operating system is OS-9.

The following is an example of DDR entries in a CDB:

0:sys:CP=”68340”:OS=”OS9”:RV=”3.0”:DV=”2.0”:SR#2048,
1:VR#512,80:VR#512,81:

3:/gfx:AI=”MAUI”
4:/nvr:
5:/rem/genrem.mpm
9:/pipe:
Using MAUI 79

6 Using the CDB API
Retrieving Information from the CDB

cdb_get_ddr()returns the name and the parameter string for the
device if you specify the device type and its sequential number within
this type.

cdb_get_copy()retrieves the entire CDB. This function copies the
CDB into a buffer that is automatically allocated by the function. If you
use this function, remember to de-allocate this memory with the
mem_free() call. The copy returned is a single, NULL-terminated
character string.

The disadvantage of cdb_get_copy() is that you don’t know how
large of an allocation it will perform nor do you have control over how
this memory is allocated. This was resolved in MAUI 3.1 with the
following two calls.

cdb_get_size()determines the buffer size required to make a copy
of the entire CDB. This size include space for a NULL at the end of the
CDB string.

cdb_get_ncopy()retrieves up to N bytes of the entire CDB. This
function copies the CDB into a caller supplied buffer. The copy returned
is a single, NULL-terminated character string. The size field is updated
to indicate the number of bytes copied including the NULL at the end
(i.e. strlen()+1).
80 Using MAUI

Chapter 7: Using the Graphics Device

API

The Graphics Device API provides a hardware-independent interface to
the graphic device(s) used by your application. Hardware independence
is achieved by requiring the API to reach the hardware through the
MAUI file manager and graphics device drivers.

This chapter classifies the Graphics Device API functions and explains
how they are used.
81

7 Using the Graphics Device API
Architecture

The Graphics Device API relies on the Shaded Memory API for memory
allocation. The following figure shows the relationship between the
Graphics Device API, the file manager, the application, and the Shaded
Memory API.

Figure 7-1 Graphics Device API Dependencies.

An application uses the Graphics Device API to perform
hardware-dependent operations. These operations are transparent to
the application. To make the Graphics Device API
hardware-independent, the API must talk to the hardware through the
MAUI file manager and graphics device drivers.

Application

Graphics Device API

S
h

ad
ed

 M
em

o
ry

 A
P

I

Device
Driver

Device
Driver

Device
Driver

MAUI File Manager
82 Using MAUI

7Using the Graphics Device API
Graphics Device API Functions

The functions provided by the Graphics Device API are classified into
five groups: Initialize and Terminate, Graphics Device, Drawmap,
Viewport, and Miscellaneous.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For detailed function descriptions, refer to the MAUI Programming
Reference Manual.

Initialize and Terminate

gfx_init() Initialize Graphics Device API

gfx_term() Terminate Graphics Device API

gfx_set_error_action() Set action to take in error handler

All MAUI APIs are self-contained APIs. An API can require the presence
of other APIs, but the internal aspects of one API are not affected or
known by any other API.

Initializing the Graphics Device API

To initialize the Graphics Device API call gfx_init(). This function
initializes the API and prepares it for use. No other functions in the
Graphics Device API can be called before gfx_init() except
gfx_set_error_action().
Using MAUI 83

7 Using the Graphics Device API
Terminating the Graphics Device API

To terminate the Graphics Device API Call gfx_term().
gfx_set_error_action() can be called before gfx_init(). Any
attempt to call Graphics Device API functions prior to initialization
returns the EOS_MAUI_NOINIT error. gfx_set_error_action()
sets the action to take in the error handler when a function in the
Graphics Device API detects an error.

You may have noticed that the gfx_init() and gfx_term()
functions were not used in the hello and aloha example programs
in the previous chapters. hello and aloha use the maui_init() and
maui_term() convenience functions to call gfx_init() and
gfx_term(). These convenience functions initialize and terminate all
of the MAUI APIs, rather than an individual API.

If you plan on using all the MAUI APIs, use maui_init() and
maui_term(). If you plan to use only a few of the APIs, call the init
and term functions for each API. maui_init() and maui_term()
are used in examples throughout this chapter.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 1, Printing to stderr for more information about printing
with mem_ functions.

Graphics Device

gfx_open_dev() Open graphics device

gfx_clone_dev() Clone a graphics device

gfx_close_dev() Close graphics device

gfx_restack_dev() Change the position of a graphics device
in the stack

gfx_get_dev_cap() Get device capabilities
84 Using MAUI

7Using the Graphics Device API
gfx_get_dev_status() Get device status

gfx_set_display_size() Set display screen size

gfx_set_display_vpmix()Set viewport mixing on/off

gfx_set_display_extvid()Set external video on/off

gfx_set_display_bkcol()Set backdrop color

gfx_set_display_transcol()Set transparent color

gfx_alloc_mem() Allocate graphics memory

gfx_dealloc_mem() De-allocate graphics memory

gfx_set_decode_dst() Set destination for video decoding

Opening the Device

To open the device call gfx_open_dev(). Although most applications
need to only open one device, you can open as many devices as you
need. To close the device, call gfx_close_dev().

Determining the Device Capabilities

To determine the device capabilities call gfx_get_dev_cap(). This
function provides your application with the information it needs to adjust
to various devices.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The show_img program introduced later in this chapter shows how to
use this information to enable your application to make these
adjustments.
Using MAUI 85

7 Using the Graphics Device API
Receiving Current Values for Parameters

To receive the current values for parameters that affect the device
characteristics call gfx_get_dev_params().

Setting the Parameter Values

To set the parameter values use the following functions:

gfx_set_display_size() Set device size

gfx_set_display_vpmix()Set device mixing mode

gfx_set_display_extvid()Set device external video mode

gfx_set_display_bkcol()Set device backdrop color

gfx_set_display_transcol()Set device transparency color

If you do not set one or more of these parameters, MAUI uses the
default value.When you call any of these functions to change the device
parameters, the changes are not immediately visible on the display.
MAUI queues the changes until you call gfx_update_display().
This enables you to code your application so it can synchronize several
display modifications

Drawmap

gfx_create_dmap() Create drawmap

gfx_destroy_dmap() Destroy drawmap

gfx_set_dmap_size() Set coding method and drawmap size

gfx_set_dmap_pixmem() Set pixel memory pointer in drawmap

A drawmap is an object that defines a rectangular area of pixel memory.
This object can be created by calling gfx_create_dmap() or created
directly by the application using initialized data. The data structure
name for a drawmap is GFX_DMAP.

The following is a drawmap and palette data structure:
86 Using MAUI

7Using the Graphics Device API
typedef struct _GFX_DMAP
{

GFX_CM coding_method;/* Coding method */
GFX_DIMEN width; /* Width in pixels */
GFX_DIMEN height; /* Height in pixels */
size_t line_size; /* Size of line in bytes */
GFX_PIXEL *pixmem; /* Ptr to pixel memory */
u_int32 pixmem_shade;/* Shade used for pixmem */
size_t pixmem_size; /* Size of pixmem */
GFX_PALETTE *palette;/* Ptr to color palette */

} GFX_DMAP;
typedef struct _GFX_PALETTE
{

u_int16 start_entry;/* Starting entry */
u_int16 num_colors; /* Number of colors */
GFX_COLOR_TYPE color_type;/* Type of color table */
union
{

GFX_RGB *colors; /* Array of num_colors RGB */
GFX_YUV * yuv; /* Array of num_colors YUV */
GFX_A1_RGB *a1_rgb; /*Array of num_colors A1_RGB*/

}
} GFX_PALETTE;

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the MAUI Programming Reference Manual for a complete
description of all MAUI data structures.

There are many methods you can use to create and manage
drawmaps. Here are three common approaches that you may find
useful for your applications:

• Create a drawmap of a known size (preferred).

• Create a drawmap with a maximum size.

• Create a drawmap and set the size later.
Using MAUI 87

7 Using the Graphics Device API
Creating a Drawmap of Known Size (preferred)

In most cases, you know the dimensions and coding method for a
drawmap before you open it. To create a drawmap that is the size of the
display:

Step 1. Call gfx_get_dev_cap() to determine the size parameters.

Step 2. Call gfx_create_dmap() to create the drawmap, and pixel memory
shade.

The following code creates a drawmap of the coding method, size, and
palette defined in the data structure GFX_DMAP:

GFX_DMAP *dmap;
gfx_create_dmap(&dmap, 0x81);

The parameter 0x81 tells MAUI to allocate the memory from shade
0x81. Only one allocation is made, and it is the combined size of the
drawmap structure, pixel memory, and palette size.

This example is the preferred method for creating a drawmap because
this method:

• allocates everything you need for the drawmap in one function call

• only allocates one memory segment so it is also the most efficient
way to create a drawmap

Creating a Drawmap with Maximum Size

Unfortunately, it may not always be possible or practical to use the
preferred method previously described. Cases arise when you simply
want to create a drawmap of the maximum size you need, and change
its parameters when required.

This method is similar to the previous method except that you use
maximum values for the size and coding method. For example, if the
largest size you need is 720 x 480 with a coding method of
GFX_CM_RGB555, create your drawmap as follows:
88 Using MAUI

7Using the Graphics Device API
GFX_DMAP *dmap;
gfx_create_dmap(&dmap, 0x81);

Calling the create function with these parameters ensures that the pixel
memory and palette will be large enough. If you decide later to set the
size to 360 x 240 with a coding method of GFX_CM_4BIT, make the
following function call:

gfx_set_dmap_size(&dmap, GFX_CM_4BIT, 360, 240);

You can change the dimensions of this drawmap as often as necessary
in your application, as long as you never try to make it larger than its
original size.

Creating Drawmap and Setting Size Later

In the previous two methods, memory for the pixel memory and the
palette is allocated as part of the drawmap structure. In some cases,
however, you may want to separate this allocation into two steps
because:

• you don’t know the size of the pixel memory you are going to need.

• you are creating the drawmap structure with initialized data. In this
case, you eventually want to allocate the pixel memory.

Use gfx_create_dmap() to create a drawmap structure with no pixel
memory or palette by calling it as follows:

Step 1. GFX_DMAP *dmap;
gfx_create_dmap(&dmap, 0);

Step 2. Set drawmap size and coding method, allocate pixel memory, and set
the palette by calling the following functions:
gfx_set_dmap_size(&dmap, GFX_CM_8BIT, 360, 240);
gfx_set_dmap_pixmem(&dmap, GFX_PIXMEM_CALC, 0x81);
Using MAUI 89

7 Using the Graphics Device API
Be careful when using this method (or similar methods). When you use
gfx_set_dmap_pixmem(), remember that the memory allocation for
this item is separate from the drawmap structure. To avoid a memory
leak, destroy the pixel memory when you no longer need it.

For example:

• If you use gfx_create_dmap() to create a drawmap, call
gfx_destroy_dmap() to destroy it.

• If you use gfx_set_dmap_pixmem() to allocate or assign pixel
memory to a drawmap, use mem_free() or mem_sfree() to
de-allocate it.

NoteNote
To avoid memory problems, be sure to call the corresponding MAUI
function to destroy or de-allocate the function when it is no longer
needed.

Viewport

gfx_create_vport() Create viewport

gfx_clone_vport() Clone a viewport

gfx_destroy_vport() Destroy viewport

gfx_get_vport_status() Get viewport status

gfx_set_vport_position()Set viewport position

gfx_set_vport_size() Set viewport size

gfx_set_vport_dmpos() Set viewport drawmap position

gfx_set_vport_state() Set viewport state

gfx_set_vport_intensity()Set viewport intensity
90 Using MAUI

7Using the Graphics Device API
gfx_set_vport_dmap() Set drawmap for use in a viewport

gfx_restack_vport() Change placement in viewport stack

Viewports are defined areas of the screen that display still graphic
images loaded from drawmaps. A display screen may contain a single
viewport that is as large as the screen, or several viewports of various
sizes and positions. The number, size, and transparency of viewports
are determined by the hardware capabilities. Unlike drawmaps,
viewports are private data structures. This means that applications
cannot directly access the structure members. The structures can only
be examined or changed by using the functions provided in the
Graphics Device API.

Creating a Viewport

To create a viewport call gfx_create_vport().You may create as
many viewports as you wish, but the hardware will limit what you can
activate. A viewport is not visible until it is activated.

Destroying a Viewport

To destroy a viewport call gfx_destroy_vport().

Receiving the Current Value of Viewport Parameters

To receive the current value of viewport parameters call
gfx_get_vport(). Viewports have several parameters or
characteristics.

Setting Viewport Parameters and Characteristics

To set viewport parameters and characteristics use the following
viewport functions:

gfx_set_vport_position()Set viewport position

gfx_set_vport_size() Set viewport size

gfx_set_vport_state() Set viewport state
Using MAUI 91

7 Using the Graphics Device API
gfx_set_vport_intensity()Set viewport intensity

gfx_set_vport_dmap() Set drawmap used in a viewport

gfx_set_vport_dmpos() Set drawmap position

When you call any of the above functions to change viewport
parameters and characteristics, the changes are not immediately visible
on the display. This behaves similar to changes to device parameters
where MAUI queues up viewport changes until you call
gfx_update_display().

This ability to synchronize changes to the display allows applications to
make clean transitions from one arrangement to another.

Miscellaneous

gfx_sync_retrace() Wait for vertical retrace

gfx_update_display() Update display

gfx_calc_pixmem_size() Calculate size of pixel memory

gfx_find_vport() Find the viewport at the specified
position

gfx_cvt_dppos_dmpos() Convert display to drawmap position

gfx_cvt_dmpos_dppos() Convert drawmap to display position

If a vertical retrace capability is present in the hardware, the
gfx_sync_retrace() function synchronizes the changes made by
gfx_update_display() with the vertical retrace.

Use the gfx_sync_retrace() function in other areas of your
application where you want to perform this type of synchronization (for
example, to control the animation speed).
92 Using MAUI

7Using the Graphics Device API
Example Program

The show_img program uses the functions that were explained earlier
in this chapter. In this example, the show_img program loads an image
from a data file into a drawmap and shows the image centered on the
display. The executable source for this program is not included, but is
printed here to illustrate the concepts explained in this chapter.

Load the Image from the Data File

mem_create_shade(SHADE_PLANEA, MEM_SHADE_NORMAL,
0x80,

 1024*4, 1024*4, MEM_OV_ATTACHED, TRUE);

Before loading the image to the memory, create a memory shade in the
graphics memory (color 0x80).

{
error_code ec;
if ((ec = load_image(&dmap, MEM_DEF_SHADE,

SHADE_PLANEA,
(argc != 1) ? argv[1] :

“board.d”))
!= SUCCESS)

{
gfx_term();
exit (ec);

}
}

load_image() creates a drawmap containing the image held in the
board.d file.

The Graphics Device API does not assume a particular module or file
format for your images, so it only defines the format of the drawmap
structure, GFX_DMAP. Therefore, code is required (in this case,
load_image()) that reads an image from a file and creates the
drawmap object to hold it.
Using MAUI 93

7 Using the Graphics Device API
The load_image() function is not part of any MAUI API, but is
presented here so that you can get an idea of what you need to provide
so you can load IFF and other types of images (such as DYUV and
JPEG).

Show the Image on the Graphics Display

{
/* temporary device name */

char devname[CDB_MAX_DNAME];

cdb_init();
cdb_get_ddr(CDB_TYPE_GRAPHIC, 1, devname,

NULL);
cdb_term();
gfx_open_dev(&gfxdev, devname);

}

Before the graphics device is used, it must be opened. To retrieve the
device name from the Configuration Description Block, use CDB API
functions.

gfx_open_dev() opens the graphics device. The first parameter is a
pointer to where the device ID will be written. In this case, it is &dev.
The variable dev is used throughout the program for all operations that
affect the graphics device.

gfx_get_dev_cap(&devcap, gfxdev);
cm_info = devcap->cm_info;
num_cm = devcap->num_cm;
while (cm_info->coding_method !=

dmap->coding_method)
{

if (--num_cm == 0)
{

fprintf (stderr,
“Cannot display coding method %d\n”,
dmap->coding_method);

gfx_term();
exit (EOS_MAUI_BADCODEMETH);

}

94 Using MAUI

7Using the Graphics Device API
cm_info++;
}

/* compute size and centering information */

width = dmap->width*cm_info->dm2dp_xmul;
if (width > devcap->res_info->disp_width)
width = devcap->res_info->disp_width;
x = (devcap->res_info->disp_width - width)/2;

height = dmap->height*cm_info->dm2dp_ymul;
if (height > devcap->res_info->disp_height)

height = devcap->res_info->disp_height;
y = (devcap->res_info->disp_height - height)/2;

fprintf (stderr, “dmap: cm %d w %d h %d\n”,
dmap->coding_method,
dmap->width, dmap->height);

fprintf (stderr, “vport: x %d y %d w %d h %d\n”,
x, y, width, height);

/* Create vport */

gfx_create_vport(&vport, gfxdev, x, y, width,
height, GFX_VPORT_FRONT);

}

/* Map the drawmap to the viewport and show it */

gfx_set_vport_dmap(vport, dmap, 0, 0);
{

GFX_COLOR color = {GFX_COLOR_RGB,0x7f7f7f};
gfx_set_display_bkcol(gfxdev, &color);

}
gfx_set_vport_state(vport, TRUE);
gfx_update_display(gfxdev, TRUE);

Because the capabilities of graphics devices vary,
gfx_get_dev_cap() is called to get information about this device.
The width and height of the first supported (default) resolution is used to
center the viewport upon its creation.

To put the drawmap containing the image into this viewport and make it
visible gfx_set_vport_dmap(), gfx_set_vport_state(), and
gfx_update_display() are called respectively.
Using MAUI 95

7 Using the Graphics Device API
Destroy Viewport

_os9_sleep(20);

/* Destroy everything, terminate each API and exit */

gfx_set_vport_state(vport, FALSE);
gfx_destroy_vport(vport);
mem_free(dmap->pixmem);
gfx_destroy_dmap(dmap);
mem_destroy_shade(SHADE_PLANEA);
gfx_close_dev(gfxdev);
gfx_term();

This code centers the image on the display. After waiting 20 seconds,
the viewport is destroyed and the API is terminated.
96 Using MAUI

Chapter 8: Using the Bit-BLT API

The Bit-Block-Transfer (Bit-BLT) API performs all block transfer and
block drawing operations. It is the foundation for all APIs that perform
drawing, including the Drawing, Text, and Animation APIs.

The Bit-BLT API also interfaces with the graphics driver to take
advantage of hardware Bit-BLT engines or to draw to graphics memory
that is not accessible to the CPU.

This chapter classifies the Bit-BLT API functions and explains how they
are used. Example programs are included for each Block Transfer
Operation (fastcopy and fastdraw). You can execute these
programs to illustrate the effects of the Bit-BLT functions.
97

8 Using the Bit-BLT API
Architecture

The relationship between the Bit-BLT API, Shaded Memory API,
Graphics Device API, and the Graphics Driver Interface is shown in the
figure Figure 8-1.

Figure 8-1 Bit-BLT Dependencies

The Bit-BLT API can perform all block drawing and copy operations to
drawmaps. However, if the CPU cannot access the pixel memory in the
drawmap, the Bit-BLT function calls the driver to perform the operation.

Pointer
Devices

Key Symbol
Devices

Graphics
Devices

Maui File
Manager

MP Protocol
Modules

Maui Input
Process

Input API Messaging API Graphics API

Bit-BLT APIMaui Windowing Process

Text API Drawing API Animation API Windowing API

Application

Shaded Memory API CDB API
98 Using MAUI

8Using the Bit-BLT API
Bit-BLT API Functions

The Bit-BLT API functions are classified into four groups: Initialize and
Terminate, Bit-BLT Context, Block Transfer Operations, and Draw Block
Operations.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For detailed function descriptions, refer to the MAUI Programming
Reference Manual.

Initialize and Terminate

blt_init() Initialize Bit-BLT API

blt_term() Terminate Bit-BLT API

blt_set_error_action() Set action to take in error handler

Initializing the Bit-BLT API

To initialize the Bit-BLT API call the blt_init() function to prepare it
for use. No other functions in this API can be called before
blt_init() except blt_set_error_action().

Terminating the Bit-BLT API

To terminate the Bit-BLT API call blt_term().
Using MAUI 99

8 Using the Bit-BLT API
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 1, Printing to stderr for more information about printing
with mem_ functions.

Bit-BLT Context Object

blt_create_context() Create Bit-BLT context object

blt_destroy_context() Destroy Bit-BLT context object

blt_get_context() Get Bit-BLT context parameters

blt_set_context_cpymix()Set mixing mode for copy operations

blt_set_context_expmix()Set mixing mode for expand
operations

blt_set_context_drawmix()Set mixing mode for draw operations

blt_set_context_pix() Set pixel value for drawing

blt_set_context_exptbl()Set background and foreground pixel
values

blt_set_context_src() Set source drawmap

blt_set_context_trans()Set transparent pixel value

blt_set_context_mask() Set mask drawmap

blt_set_context_ofs() Set offset color

blt_set_context_dst() Set destination drawmap

The Bit-BLT context object is largely responsible for the speed of this
API. It is a private data structure containing the current parameters for
performing block transfer operations. These transfer operations are fast
because:

• The parameters are stored in the context object
100 Using MAUI

8Using the Bit-BLT API
• The functions used to change the parameters also compute many
other variables stored in the context

Computing these values when the context parameters change is more
efficient than doing it on every block transfer operation. This efficiency is
noticeable because applications typically change the parameters in the
context at a much lower frequency than they perform block transfer
operations. Applications are not limited to one context object. You can
create as many context objects as you need.

Creating Bit-BLT Context Objects

To create Bit-BLT context objects call blt_create_context().

Destroying Bit-BLT Context Objects

To destroy Bit-BLT context objects call blt_destroy_context().

Modifying Bit-BLT Context Objects

To modify a Bit-BLT context object call the blt_set_context_*()
functions. There is one function for each parameter (for example,
blt_set_context_dst() sets the destination drawmap).

Block Transfer Operations

The blt_copy_block(), blt_expd_block(), and
blt_draw_block() are the main block transfer functions. All other
block transfer functions are variations of these three. For example,
blt_draw_hline() is the same (yet more efficient) as
blt_draw_block() with a height of 1.

blt_copy_block() Copy pixel block

blt_copy_next_block() Copy next pixel block

blt_expd_block() Expand pixel block

blt_expd_next_block() Expand next pixel block
Using MAUI 101

8 Using the Bit-BLT API
blt_draw_block() Draw pixel block

blt_draw_hline() Draw horizontal line of pixels

blt_draw_vline() Draw vertical line of pixels

blt_draw_pixel() Draw single pixel

blt_get_pixel() Get pixel value

The following sections describe each of these Bit-BLT operations.
Example programs are included to help you understand each function.

Copy Block Operations

The copy block operations include all functions that copy rectangular
blocks of pixels from the source drawmap to the destination drawmap.

blt_copy_block() Copy a block of pixels

blt_copy_next_block() Copy the next block of pixels

These functions use the current mixing mode specified for copy
operations in the Bit-BLT context. The mixing mode is set with the
blt_set_context_cpymix() function.

Fastcopy

The fastcopy program located at MWOS/SRC/MAUI/DEMOS/FCOPY
shows you how quickly MAUI performs copy operations. Print a copy of
the source to understand how fastcopy works.
102 Using MAUI

8Using the Bit-BLT API
Expand Block Operations

Expand block operations include all functions that copy rectangular
blocks of pixels from the source drawmap to the destination drawmap,
while expanding the pixels. This is required when the depth of the
source pixels is less than that of the destination. Functions that expand
pixels as they are copied include the following:

blt_expd_block() Expand pixel block

blt_expd_next_block() Expand next pixel block

These functions use the current mixing mode specified for expand
operations in the Bit-BLT context. This value is set with the function
blt_set_context_expmix().
Using MAUI 103

8 Using the Bit-BLT API
Draw Block Operations

The draw block operations draw rectangular blocks of pixels to the
destination drawmap. Functions that draw blocks include the following.

blt_draw_block() Draw block of pixels

blt_draw_hline() Draw horizontal line of pixels

blt_draw_vline() Draw vertical line of pixels

blt_draw_pixel() Draw a single pixel

These functions use the current mixing mode specified for draw
operations in the Bit-BLT context. This value is set with the function
blt_set_context_drwmix().

Fastdraw

The fastdraw program demonstrates how quickly MAUI performs
draw block operations. The executable source for this program is
located in the directory MWOS/SRC/MAUI/DEMOS/FDRAW.
104 Using MAUI

Chapter 9: Using the Drawing API

The Drawing API contains functions for drawing geometric shapes to a
drawmap. These shapes include lines, polylines, points, circles,
rectangles, and polygons. Shapes can be drawn in outline or solid mode
and attributes such as patterns and line styles can be applied to these
operations.

This chapter classifies the Drawing API functions and explains how they
are used.
105

9 Using the Drawing API
Architecture

The relationship between the Drawing API, Shaded Memory API,
Bit-BLT API, and the Graphics Device API is shown in Figure 9-1. The
Drawing API depends on the Shaded Memory API for memory
allocation, the Bit-BLT API for block transfer operations, and the
Graphics Device API for device capabilities information.

Figure 9-1 Drawing API Dependencies.

Application

Drawing API

S
h

ad
ed

 M
em

o
ry

 A
P

I

Device
Driver

Bit-BLT API
106 Using MAUI

9Using the Drawing API
Drawing API Functions

The Drawing API functions are classified into three groups: Initialize and
Terminate, Drawing Context, and Shape Drawing.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For detailed function descriptions, refer to the MAUI Programming
Reference Manual.

Initialize and Terminate

drw_init() Initialize drawing API

drw_term() Terminate drawing API

drw_set_error_action() Set error action

Like all other MAUI APIs, the Drawing API automatically initializes and
terminates APIs it depends on.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 1, Printing to stderr for more information about printing
with mem_ functions.
Using MAUI 107

9 Using the Drawing API
Initializing the Drawing API

To initialize the Drawing API call drw_init(). After initializing the
drawing API, other steps you might take to prepare for drawing include
(not necessarily in this order):

• setting display parameters

• creating a drawmap and initializing memory for a drawmap

• creating a viewport and assigning a drawmap to the viewport

• activating the viewport

Drawing Context Object

drw_create_context() Create drawing context object

drw_destroy_context() Destroy drawing context object

drw_get_context() Get drawing context parameters

drw_set_context_fm() Set fill mode

drw_set_context_ls() Set line style

drw_set_context_dash() Set dash pattern

drw_set_context_pix() Set pixel value

drw_set_context_ofs() Set offset pixel value

drw_set_context_trans()Set transparent pixel value

drw_set_context_mix() Set mixing mode

drw_set_context_dst() Set destination drawmap

The drawing context object is a set of common data defining current
drawing parameters for the drawing functions. If you use this context
object, you can increase drawing performance.
108 Using MAUI

9Using the Drawing API
Context Parameters

Several parameters are available for controlling the way you draw
shapes. For example, depending on the line style parameter value, the
drw_line() function produces a solid or dashed line.

Applications cannot access context variables directly. However, you can
use the Drawing API function calls to query and modify drawing
contexts.

Following are the drawing parameters and the functions you use to set
them.

Table 9-1 Drawing Parameters

drw_set_context Sets this parameter Default value

_fm() Fill mode (solid or
outline)

outline

_ls() Line style (solid or
dashed)

solid

_dash() Dash pattern and
magnification

0x555555554

_mix() Mix mode (mix the
drawing with the
existing image)

BLT_MIX_REPLAC
E

_pix() Drawing pixel value 1

_trans() Transparent pixel value 0

_ofs() Offset pixel value 0

_dst() Destination drawmap NULL
Using MAUI 109

9 Using the Drawing API
Creating Context Objects

To create context objects call drw_create_context().

Destroying Previously Created Context Objects

To destroy previously created context objects call
drw_destroy_context().

Querying for Context Object Parameters

To query for context object parameters call drw_get_context().

Shape Drawing

The following drawing operations enable you to draw shapes:

drw_point() Draw a point

drw_line() Draw a line

drw_rectangle() Draw a rectangle

drw_circle() Draw a circle

drw_polyline() Draw a polyline

drw_polygon() Draw a polygon

Each of these functions behaves according to the context parameters
set in the appropriate drw_context_*() function. If parameters are
not set, the drawing operations uses the default parameters.

For example, drw_polygon() draws outlined polygons when fill mode
is set to DRW_FM_OUTLINE, and filled polygons when the mode is set to
DRW_FM_SOLID.

Drawing functions check to determine if shapes are located within the
screen and, if necessary, are clipped to the boundaries of the drawmap.
If a shape is clipped, the clipped area remains intact.
110 Using MAUI

Chapter 10: Using the Text API

The Text API contains functions for writing multi-byte and
wide-character strings to any drawmap. These functions support
multiple fonts, (mono and proportionally spaced), and methods for
controlling the padding between characters.

This chapter classifies the Text API functions and explains how they are
used.
111

10 Using the Text API
Architecture

The Text API relies on the Shaded Memory API for memory allocation
and the Bit-BLT API for block transfer operations. Refer to Figure 10-1
Text API Dependencies to see the relationships between these APIs.

Figure 10-1 Text API Dependencies

Application

Text API

S
h

ad
ed

 M
em

o
ry

 A
P

I

Bit-BLT API

Graphics
Device
112 Using MAUI

10Using the Text API
Text API Functions

The functions provided by the Text API are classified into five groups:
Initialize and Terminate, Text Context Object, Text Font Object, Text
Drawing Operations, and Miscellaneous Functions.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For a function list, refer to the MAUI Programming Reference Manual.

Initialize and Terminate

txt_init() Initialize the Text API

txt_term() Terminate the Text API

txt_set_error_action() Set error action

Like all other MAUI APIs, the Text API automatically initializes and
terminates APIs it depends on.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 1 for more information about printing with mem_ functions.

Initializing the Text API

To initialize the Text API call txt_init().

Terminating the Text API

To terminate the Text API call txt_term().
Using MAUI 113

10 Using the Text API
Text Context Object

txt_create_context() Create context object

txt_destroy_context() Destroy context object

txt_get_context() Get text context parameters

txt_set_context_cpad() Set character padding in text context

txt_set_context_dst() Set destination drawmap in text context

txt_set_context_exptbl()Set pixel expansion table

txt_set_context_font() Set font in text context

txt_set_context_mix() Set mixing mode in text context

txt_set_context_ofs() Set offset pixel in text context

txt_set_context_trans()Set Transparent pixel in text context

The behavior of the Text API is defined by the text context object. The
text context object is a private data structure that encapsulates the
properties listed above.

Creating an Instance of a Text Context Object

To create an instance of a text context object call
txt_create_context().

Destroying Text Context Objects

To destroy text context objects call txt_destroy_context().

Modifying Members of the Text Context Object

To modify members of the text context object call the
txt_set_context_*() functions.
114 Using MAUI

10Using the Text API
Text Font Object

txt_create_font() Create a font object

txt_destroy_font() Destroy a font object

The text font object is a public data structure that defines all the
characters in a font. Figure 10-2 details the important character
attributes supported by the MAUI Text API.

Figure 10-2 Character Attributes

ascent the number of pixels in the character cell
above the baseline

descent the number of pixels in the character cell
below the baseline

baseline an imaginary line between pixels that
make up the ascent and the descent

height the sum of ascent pixels and descent
pixels

Below are some additionally important data items for this structure:

font type fixed or proportional

width maximum character width

default character default character in font

number of ranges number of character ranges in font

range table array of character ranges in font
Using MAUI 115

10 Using the Text API
Creating a Text Font Object

To create a text font object call txt_create_font(). An application
can use this function to create a text font object or it can create an
instance directly. After creation, the text font object’s members should
be initialized with data (probably stored in a font module).

Text Drawing Operations

NoteNote
The text API draws from the character’s baseline, not the standard 0,0
coordinates.

txt_draw_mbs() Draw a multi-byte string

txt_draw_wcs() Draw a wide character string

txt_get_mbs_width() Get pixel length of a multi-byte string

txt_get_wcs_width() Get pixel length of a wide character
string

The Text API supports two types of encoding methods for character
strings: multi-byte and wide character. Both types are supported by
ANSI-C and allow the API to support multiple locals.

txt_draw_mbs() and txt_draw_wcs() are two functions in the Text
API you can use to place text of a specified font at x,y coordinates. The
call to these functions can include a parameter that determines the
padding between characters in the output string. This parameter is an
array of values indicating the padding between the first and second
characters, second and third, and so forth. Padding for all strings drawn
with a context can be defined with a call to
txt_set_context_cpad().
116 Using MAUI

10Using the Text API
Any text drawn that does not fit into the destination drawmap is clipped.
You can determine the width in pixels of any string with a call to either
txt_get_mbs_width() or txt_get_wcs_width(). As an option,
these functions can also return the width of each character in the
specified string.
Using MAUI 117

10 Using the Text API
118 Using MAUI

Chapter 11: Using the Animation API

The Animation API makes it possible for the application to move images
quickly and smoothly on the display. The sprite mechanism creates the
illusion of continuous movement by changing image frames and
locations.

This chapter classifies the Animation API functions and explains how
they are used.
119

11 Using the Animation API
Architecture

The Animation API relies on the Shaded Memory API for memory
allocation, the Bit-BLT API for block transfer operations, and the
Graphics Device API for device capabilities information. Where the
Animation API fits into the MAUI API architectural scheme is shown in
Figure 11-1 Animation API Dependencies.

Figure 11-1 Animation API Dependencies

Pointer
Devices

Key Symbol
Devices

Graphics
Devices

Maui File
Manager

MP Protocol
Modules

Maui Input
Process

Input API Messaging API Graphics API

Bit-BLT APIMaui Windowing Process

Text API Drawing API Animation API Windowing API

Application

Shaded Memory API CDB API
120 Using MAUI

11Using the Animation API
Animation API Functions

The functions provided by the Animation API are classified into four
categories: Initialize and Terminate, Sprites, Animation Groups, and
Animation Objects.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

 For detailed function descriptions, refer to the MAUI Programming
Reference Manual.

Initialize and Terminate

anm_init() Initialize Animation API

anm_term() Terminate Animation API

anm_set_error_action() Set error action

The system-wide functions maui_init() and maui_term() initialize
and terminate all the MAUI APIs, including the Animation API.

Initializing the Animation API

To initialize the Animation API call anm_init(). This automatically
initializes the Shaded Memory API, Bit-BLT API, and the Graphics
Device API.
Using MAUI 121

11 Using the Animation API
Terminating the Animation API

To terminate the Animation API call anm_term(). This automatically
terminates the Animation API in addition to the Shaded Memory API,
Bit-BLT API, and the Graphics Device API unless they were initialized
before the Animation API. The three APIs remain initialized in this
situation.

anm_set_error_action() can be called before anm_init(). Any
attempt to call Animation API functions prior to initialization returns the
EOS_MAUI_NOINIT error. anm_set_error_action() sets the
action to take in the error handler when a function in the Animation API
detects an error. You can find the initialization and termination examples
in the animate.c program at the end of the chapter.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 1, Printing to stderr for more information about printing
with mem_ functions.

Sprites

anm_create_sprite() Create a Sprite

anm_destroy_sprite() Destroy a Sprite

Sprites are objects that contain a set of frames which represent different
phases of the image motion. When these frames display in succession
at different screen locations, the illusion of motion appears. Technically,
frames are parts of a source drawmap where images are stored. The
source drawmap pointer is stored in a sprite data structure. In the
simplest case, the motion can be imitated with just one frame changing
its screen locations. But if you want more complex animation (3-D
imitation, morphing, behavioral image changes), multiple frames will do
the job.
122 Using MAUI

11Using the Animation API
Creating a Sprite

To create a Sprite call anm_create_sprite().

Destroying a Sprite

To destroy a sprite call anm_destroy_sprite().

Sprites are part of a more complex entity called an animation object.

Animation Groups and Objects

The animation object represents a separate moving image. You can
group animation objects together in animation groups to simplify their
processing.

To an application developer, an animation object consists of:

• A pointer to a sprite

• Destination drawmap pointer

• A current frame to be displayed

• The position of the object on the screen

• An object drawing method (to be explained below)

• Active/passive state flag
Using MAUI 123

11 Using the Animation API
The relationship between sprites, objects, frames, and source
drawmaps is shown in Figure 11-2 Animation Groups and Objects.
Frames do not necessarily address a contiguous area of a drawmap
(like Frames 1).

Figure 11-2 Animation Groups and Objects

Current
frame

Sprite 1

Object 1

Current
frame

Sprite 2

Object 2

Current
frame

Sprite 3

Object 3

Source Drawmap 1

Source Drawmap 2

1 2 3 4

Frames 1

1 2 3 4 5

Frames 2

1 2 3 4 5
124 Using MAUI

11Using the Animation API
Animation Group

anm_create_group() Create the animation group

anm_get_group() Get animation group parameters

anm_set_group_bkg() Set group background color

anm_set_group_dst() Set group destination drawmap

anm_destroy_group() Destroy an animation group

anm_draw_group() Draw objects in a group

anm_process_group() Process objects in a group

Before any new object is created, you must create a group to which this
object belongs.

Creating an Animation Group

To create an animation group call anm_create_group().

Destroying the Existing Animation Group

To destroy the existing animation group call anm_destroy_group().

Drawing All the Active Objects of a Group on a Screen

To draw all the active objects of a group on a screen call
anm_draw_group().

Processing Objects in a Group

To process objects in a group call anm_process_group(). This calls
a behavior function for every object in a group and the objects on a
screen according to results of these calls. Since all objects within the
same group are drawn to the same drawmap, this drawmap is stored in
a group object and can be set with anm_set_group_dst().
Using MAUI 125

11 Using the Animation API
Assigning a Background Image or Color

To assign a background image or color to an animation group call
anm_set_group_bkg(). This function specifies either a drawmap or a
pixel value for a background within a single graphics memory plane.

Animation Object

anm_create_object() Create an animation object

anm_destroy_object() Destroy an animation object

anm_get_object() Get animation object parameters

anm_restack_object() Re-stack animation objects

anm_set_object_state() Set state for an object

anm_set_object_sprite()Set sprite for an object

anm_set_object_frame() Set frame for an object

anm_set_object_bhv() Set behavior for an object

anm_set_object_pos() Set position for an object

anm_set_object_meth() Set drawing method for an object

Setting the Object State

To set the object state call anm_set_object_state(). This sets an
object state to be either active or passive. Only active objects within a
group are processed and drawn on a screen.

Assigning a Sprite to an Object

To assign a sprite to an object call anm_set_object_sprite().

Changing a Current Frame

To change a current frame call anm_set_object_frame().
126 Using MAUI

11Using the Animation API
Updating the Position of an Object on the Screen

To update the position of an object on the screen call
anm_set_object_pos().

To change the object display order

To change the object display order call anm_restack_object().
Objects on a screen can overlap each other because of the incorrect
order they are displayed.

Transparency Checks

There are two drawing methods for drawing an object on the screen:
with or without a transparency check.

• With a transparency check:
Objects that overlap each other should check for the transparency of
their pixels when drawing. You can choose between two different
transparency check implementations: transparent pixels and
transparency mask. The transparency pixel implementation checks
to see if pixels have a transparent value, and, if yes, ignores them.
In the transparency mask implementation, a bit set to 1 in the mask
transfers corresponding source to the destination.

• Without transparency check:
Ignores the pixel transparency. For each bit in the mask that is 0, the
corresponding bit in the source is ignored.

Defining the Drawing Method

To define what drawing method to use when an object is being drawn on
a screen call anm_set_object_meth().
Using MAUI 127

11 Using the Animation API
Defining a Behavior

The fundamental concept of animation is movement. Since different
images are moving differently, every object has a special function
assigned. This function defines the object’s behavior, such as speed,
acceleration, rotation, and frame change.

To supply a behavior function and tie it with an object call
anm_set_object_bhv().
128 Using MAUI

Chapter 12: Using the Messaging API

The Messaging API enables the application to read and write to
mailboxes that are named and visible to all applications. MAUI uses
mailboxes to pass information between and within application
processes.

This chapter classifies the Messaging API functions and explains how
they are used. An example program at the end of this chapter creates a
mailbox, writes a message to the mailbox, and reads the message.
129

12 Using the Messaging API
Architecture

The Messaging API relies on the Shaded Memory API for memory
allocation. The following figure shows the MAUI architectural scheme
and where the Messaging API fits into it.

Figure 12-1 Messaging API Dependencies

Pointer
Devices

Key Symbol
Devices

Graphics
Devices

Maui File
Manager

MP Protocol
Modules

Maui Input
Process

Input API Messaging API Graphics API

Bit-BLT APIMaui Windowing Process

Text API Drawing API Animation API Windowing API

Application

Shaded Memory API CDB API
130 Using MAUI

12Using the Messaging API
Messaging API Functions

The Messaging API functions are classified into three categories:
Initialize and Terminate, Mailboxes, and Messages.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For detailed function descriptions, refer to the MAUI Programming
Reference Manual.

Initialize and Terminate

msg_init() Initialize Messaging API

msg_term() Terminate Messaging API

msg_set_error_action() Set error action

The Messaging API depends on the shaded memory API. When the
Messaging API is initialized, the shaded memory API is initialized
automatically. Similarly, the shaded memory API is terminated upon the
Messaging API termination. If the shaded memory API was initialized
before, no error situation appears, but after you terminate the
Messaging API, the shaded memory API remains initialized.

There are system-wide functions maui_init() and maui_term()
which, respectively, initialize and terminate all the MAUI APIs, including
the Messaging API.

To activate the Messaging API separately, call msg_init(). This
function initializes the API to prepare it for use. No other functions in the
Messaging API (excluding msg_set_error_action()) may be
called before msg_init(). Any attempt to call Messaging API
functions prior to the initialization returns EOS_MAUI_NOINIT error. To
terminate the use of the Messaging API, call msg_term() or call
Using MAUI 131

12 Using the Messaging API
maui_term() to terminate all APIs together). After this, you cannot call
any other messaging function until you call msg_init() or
maui_init() again.

If, for any reason, you initialize the Messaging API more than once, in
order to deactivate it, you must terminate it the same number of times.

The Messaging API has a built-in error handling mechanism that sets
different actions upon different degrees of error severity.
msg_set_error_action() specifies severity levels for error
message printing, error code returning, and exiting.

Initializing the Messaging API

To initialize the Messaging API call msg_init(). This function
initializes the API and prepares it for use. No other functions in the
Messaging API can be called before msg_init() except
msg_set_error_action().

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 1, Printing to stderr for more information about printing
with mem_ functions.

Terminating the Messaging API

To terminate the Messaging API call msg_term(). After you call
msg_term(), you cannot call any other messaging functions unless
you first call msg_init().

Watch Service

msg_send_watch() Request a watch

msg_release_watch() Release a watch
132 Using MAUI

12Using the Messaging API
The Messaging API’s watch calls allow a process to request a signal
when another process terminates it’s use of the Messaging API. This is
useful when a process is communicating with another process via the
Messaging API and has allocated resources on behalf of that other
process. Even if the other process quits without informing anyone, the
caller of msg_send_watch() can receive a signal and perform any
necessary cleanup. To cancel a watch request, use
msg_release_watch().

Any application that calls msg_init() is eligible for a watch. The
watch signal fires with a “watched” process calls msg_term(). If a
“watched” process exits without calling msg_term(), MAUI detects this
and attempts to clean up any open mailboxes and send any outstanding
watch signals before the processes terminates.

NoteNote
msg_send_watch() and msg_release_watch() are new as of
MAUI 3.1 and require the mauidev and mauidrvr modules in
memory. These calls do not work with statically linked MAUI
applications that are older than MAUI 3.1. Older applications that use
the MAUI shared library (linked with maui.l) will work because they can
dynamically upgrade.

Mailboxes

msg_create_mbox() Create mailbox

msg_open_mbox() Open a mailbox

msg_close_mbox() Close mailbox

msg_get_mbox_status() Get mailbox status
Using MAUI 133

12 Using the Messaging API
Creating a Mailbox

To create a mailbox call msg_create_mbox(). You must supply a
mailbox name (a character string, like a module name), the maximum
number of messages a mailbox is expected to hold, the size of the
largest message, and the color of the memory where a mailbox is to be
created. If the function call is successful, it returns a mailbox ID — a
handle used to address this mailbox in all the Messaging API functions.

NoteNote
After a mailbox is created, you are linked to that mailbox and do not
need to open it.

Opening an Existing Mailbox

To open a mailbox that already exists call msg_open_mbox() using the
mailbox name and message size. On the successful completion, you
receive a mailbox ID.

Closing a Mailbox

To close a mailbox call msg_close(). When a mailbox is closed by all
the application processes that use it, it is automatically destroyed.

Obtaining Status on a Current Mailbox

To obtain status on a current mailbox call msg_get_mbox_status().
This information contains the mailbox name, maximum number of
entries, number of free entries, entry size, number of links to this
mailbox, mask for filtering messages when writing, and mailbox filter
function pointer.
134 Using MAUI

12Using the Messaging API
Messages

msg_peek() Search for next message in queue

msg_peekn() Peek at n bytes of the next message in a
mailbox

msg_read() Read next message from queue

msg_readn() Read n bytes of the next message from
the queue

msg_unread() Remove message from queue and place
in mailbox

msg_unreadn() Unread n bytes of the message

msg_send_sig() Send signal on message ready

msg_release_sig() Release signal on message ready

msg_set_mask() Set mask for queueing messages

msg_write() Write message to the queue

msg_writen() Write n bytes of a message to the queue

msg_flush() Flush messages

msg_dispatch() Dispatch message

Retrieving a Message from a Mailbox

To retrieve a message from a mailbox call msg_read() or
msg_readn() using the mailbox ID, the mask, and the blocking mode.
This call copies a message into the buffer supplied by your application.
After the message is read, it is removed from the mailbox. The mask is
used to retrieve messages of a particular type. If you want to read
messages of several types, form the mask with an OR statement.
msg_readn() allows you to specify the maximum number of bytes to
read, but otherwise works exactly like msg_read().

Blocking Mode

Blocking mode can be MSG_BLOCK or MSG_NOBLOCK:
Using MAUI 135

12 Using the Messaging API
MSG_BLOCK the program waits until the message of
the expected type arrives in the mailbox.

MSG_TYPE_NONE if there are no messages in the mailbox,
the program returns a message of this
type. No error codes are set in this case.

Returning a Message Back To a Mailbox

To return the message back to a mailbox call msg_unread() or
msg_unreadn() to mark a message as unread and make it available
for the next read operation. msg_unreadn() allows you to specify the
maximum number of bytes to unread, but otherwise works exactly like
msg_unread().

Checking to See if You Have a Message

To check to see if you have a message call msg_peek() or
msg_peekn() to read a message but leave it in a mailbox. Finding the
message does not guarantee that it can be read later because there is
always a chance that another reader will read it before you. In this case,
you can get another message or MGS_TYPE_NONE message instead of
what you expected. msg_peekn() allows you to specify the maximum
number of bytes of the message to read, but otherwise works exactly
like msg_peek().

Using a Less CPU-intensive Approach to Check Message
Arrival

To use a less CPU-intensive approach to check message arrival call
msg_send_signal(). This function asks for a specified signal to be
sent when the message of the specified type is queued to the mailbox.
A signal is sent just once per msg_send_signal() call. Again, it is
possible that another process will “snatch” the message before you can
read it.
136 Using MAUI

12Using the Messaging API
Cancelling the Signal Request

To cancel the signal request call msg_release_sig() to release a
pending request for a signal.

Deleting Messages Currently Queued

To delete messages currently queued call msg_flush(). Use this if
you do not need any messages of a particular type that are currently
queued.

Processing Messages Directly after Read

To process messages directly after they are read call
msg_dispatch(). This call uses the callback function that is found in
the common message header.

Message Types

Each message is unique because it carries individual information
structures. Yet, all messages share a common header at the beginning,
similar to the real-life mail letters and parcels that display their
destination addresses in a common, visible place. For MAUI, one of
these common header fields is the message type.

The message type distinguishes and filters out the messages that carry
the type of information a program expects to receive. For example, the
application might process only the keyboard keystrokes and ignore all
mouse input.

The message type value is defined by the 32-bit variable. Every bit in
this variable represents the separate message type, therefore, only 32
primary message types may be defined in MAUI.
Using MAUI 137

12 Using the Messaging API
The Messaging API defines the following message types and ranges:

For multiple message types, you can create an OR statement using any
of these types. Other fields of common message headers are:

• Time when the message is queued

• Process ID of the sender

Table 12-1 Message Types

Bit Set Message Type Description

None MSG_TYPE_NONE This special message type indicates
that no messages should be processed.
If this type of message is retrieved while
reading messages, it means that there
are no messages available for reading.

0 MSG_TYPE_PTR Messages sent by MAUI Input Process
for pointer input. (Refer to Chapter 13:
Using the Input API).

1 MSG_TYPE_KEY Messages sent by MAUI Input Process
for the key symbol input. (Refer to
Chapter 13: Using the Input API).

2 MSG_TYPE_WIN Messages sent by the MAUI Win
Process for window events. (Refer to
Chapter 14: Using the Windowing API).

3-23 Reserved for MAUI use.

24-31 Used by the application to define user
types of messages.

All MSG_TYPE_ANY This type includes all the possible
message types.
138 Using MAUI

12Using the Messaging API
• Pointer to a callback function that is called when the message is
dispatched
Using MAUI 139

12 Using the Messaging API
Example Program

The Message programs illustrate basic principles of the MAUI
Messaging API. It consists of two programs:

• msgwrtr writes a number of messages to a mailbox, ending with
the message of the certain type to indicate the end.

• msgrdr reads these messages until the end message is received.
For clarity, error checking is omitted.

The executable source for these two programs is located in the directory
MWOS/SRC/MAUI/DEMOS/MSG.
140 Using MAUI

Chapter 13: Using the Input API

The Input API supports methods for handling input from pointer and key
symbol devices. It reads raw input from pointer and key symbol devices
and delivers messages to mailboxes. The application may use the Input
API to reserve keys on each key symbol device.

This chapter classifies the Input API functions and explains how they
are used. An example program at the end of this chapter shows how
input can be received from a remote control.
141

13 Using the Input API
Architecture

The relationships between the Input API, the Shaded Memory API, the
Messaging API, and MAUI Input Process are shown in the following
figure. The Input API depends on the Shaded Memory API for memory
allocation, the Messaging API for sending messages to the mailbox,
and MAUI Input Process for message routing

Figure 13-1 Input API Dependencies.

Pointer
Devices

Key Symbol
Devices

Graphics
Devices

Maui File
Manager

MP Protocol
Modules

Maui Input
Process

Input API Messaging API Graphics API

Bit-BLT APIMaui Windowing Process

Text API Drawing API Animation API Windowing API

Application

Shaded Memory API CDB API
142 Using MAUI

13Using the Input API
MAUI Input Process and Protocol Modules

The MAUI Input process, maui_inp processes all the commands sent
by the Input API and translates raw input streams into the sequence of
standardized device-independent messages.

In order to make maui_inp hardware independent, all translation is
performed in separate modules called MAUI Input Process Protocol
Modules (MPPMs). These modules are OS-9 subroutine modules that
maui_inp links to at execution time. Each protocol module is
responsible for one input device type.

You must start maui_inp before initializing inp_init().

To start maui_inp, type:

maui_inp&

You can also include this command in a start-up script.
Using MAUI 143

13 Using the Input API
Input API Functions

The Input API functions are classified into four groups: Initialize and
Terminate, Input Device, Key Symbol Device, and Pointer Device.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For detailed function descriptions, refer to the MAUI Programming
Reference Manual.

Initialize and Terminate

inp_init() Initialize input API

inp_term() Terminate input API

inp_set_error_action() Set error action

Like all other MAUI APIs, the Input API automatically initializes and
terminates APIs it depends on.

Initializing the Input API

To initialize the Input API call inp_init(). This function initializes the
API and prepares it for use. No other functions in the Input API (except
inp_set_error_action()) can be called before inp_init(). Any
attempt to call Input API functions prior to the initialization returns the
EOS_MAUI_NOINIT error.
144 Using MAUI

13Using the Input API
Terminating the Input API

To terminate the Input API call inp_term(). After you call this function,
you cannot call any other input function (excluding
inp_set_error_action()) until you call inp_init() or
maui_init() again.

There are system-wide functions maui_init() and maui_term()
which, respectively, initialize and terminate all the MAUI APIs, including
the Input API.

The Input API has a built-in error handling mechanism that sets different
actions depending on degrees of error severity.
inp_set_error_action() specifies severity levels for printing error
messages, error code returning, and exiting.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Chapter 1, Printing to stderr for more information about printing
with mem_ functions.

Input Device

inp_open_dev() Open input device

inp_close_dev() Close input device

inp_get_dev_cap() Get device capabilities

inp_get_dev_status() Get device status

inp_check_keys() Check key symbol range

inp_restack_dev() Restack an input device

inp_set_ptr_limit() Set pointer limit

inp_set_ptr_pos() Set pointer position

inp_set_msg_mask() Set mask for queueing messages

inp_set_callback() Set callback for queueing messages
Using MAUI 145

13 Using the Input API
The input device is the cornerstone concept of the Input API. The input
device could be a mouse, remote control, joystick, touch screen, or
other type of input device. From the application program side, input
devices are associated with particular mailboxes (see Chapter 12:
Using the Messaging API).

Applications can read messages from these mailboxes and interpret
them accordingly. Though there are a variety of input devices, message
formats are standardized and currently are divided into two groups:
pointer messages and key symbol messages. This is accomplished by
using the MAUI Input Process and protocol modules.

There are some input device operations which are the same for all input
device types.

Opening the Device and Associate it with a Mailbox

To open the device and associate it with a mailbox call
inp_open_dev(). You must supply the mailbox ID of an open or
created mailbox.

The device name format for this call is:
/<dev>/<protocol_module>. <dev>/<protocol_module> is
typically the name supplied by the CDB API (described in Chapter 6:
Using the CDB API). In return you get the input device ID. This ID is the
handle used to refer to the device after it is opened.

The message type associated with a pointer device is MSG_TYPE_PTR.
Along with the common message header (described in Chapter 12:
Using the Messaging API), MSG_TYPE_PTR contains:

• Input device ID (to distinguish between devices if the mailbox is
associated with more than one device)

• Subtype of the message (button pressed, button released, pointer
moved)

• Number of button that changed, if any

• Current state of all buttons

• Current pointer coordinates

• Key symbol that generated the message (if the pointer is simulated
by a key device)
146 Using MAUI

13Using the Input API
Functions that are specific to pointer devices are:

inp_set_ptr_limit() Defines the maximum and minimum
coordinates that the device can return

inp_set_ptr_pos() Assigns new coordinate values to a
pointer device

Closing a Device

To close a device call inp_close_dev().

Inquiring About the Device Capabilities

To inquire about the device capabilities call inp_get_dev_cap().

Receiving Current Device Status

To receive current device status call inp_get_dev_status().

Filtering Messages With a Mask

To filter messages with a mark call inp_set_msg_mask().

Specifying the Callback Function for Messages

To specify the callback function for messages call
inp_set_callback().

Assigning a Simulation Method

The Input API provides a way to simulate pointer devices using key
symbol devices and to simulate key symbol devices using pointer
devices. This means that pointer devices can generate MSG_TYPE_KEY
messages and key symbol devices can generate MSG_TYPE_PTR
messages.

To assign a simulation method call inp_set_sim_meth().
Using MAUI 147

13 Using the Input API
There are certain Input API functions that only work with a particular
input device type.

Key Reservation and Simulation

inp_release_key() Release range of keys

inp_reserve_key() Reserve range of keys

inp_set_sim_meth() Set simulation method

Key symbol devices are used to enter commands and alpha-numeric
information. MSG_TYPE_KEY is the message type generated by key
symbol devices.

Along with the common header and input device ID, key symbol
messages contain the key symbol and the state of key modifiers (Alt,
Ctrl, Meta) at the time the key was pressed or released, if detectable by
the device.

The functions specific to key symbol devices are:

inp_release_key() Releases a reserved key

inp_reserve_key() Reserves a key on a particular device,
so other applications listening to this
device do not receive messages with
those key symbols

inp_set_sim_meth() Sets the simulation method to use for the
specified device
148 Using MAUI

13Using the Input API
Example Program

The example input program illustrates input being received from a
remote control. The executable source for this program is located in the
directory MWOS/SRC/MAUI/DEMOS/INP. To help understand how this
program works, print the source code listing and follow the comments in
the code.
Using MAUI 149

13 Using the Input API
150 Using MAUI

Chapter 14: Using the Windowing API

The MAUI Windowing API manages multiple windows in a windowing
device. A windowing device may display graphics and/or text in
overlapping or nested windows.

This chapter classifies the Windowing API functions and explains how
they are used.
151

14 Using the Windowing API
Windowing Concepts

A window is a rectangular area on the windowing device that displays
graphics and/or text. Applications can display multiple overlapping and
nested windows on one or more windowing devices. The windowing API
provides functions that enable applications to move, resize, and
re-stack windows. The windowing device can be shared by multiple
processes, with each process owning one or more windows. No window
is affected by the activity in another window.

The following figure illustrates the components of the windowing system
and how they relate to other components in a typical MAUI application.

Figure 14-1 MAUI Windowing System

Applications call windowing functions, which are processed by the
Windowing API. The Windowing API returns information to the
application such as device and window IDs. Windowing commands are
processed by the maui_win process.

maui_win

maui_inp

GFX

API
BLT

API

mbox

Application
WIN

API

GFX
Driver
152 Using MAUI

14Using the Windowing API
The maui_win process communicates with the Graphics and Bit-BLT
APIs to control the graphics device, and sends messages to a mailbox
where they are accessed by the application.

Input from pointer or keypad devices are routed to the maui_win
process. The maui_win process routes cursor and ink information
directly to the Graphics and Bit-BLT APIs for fast response on the
windowing device. Other input information is routed from maui_win to
the application mailbox.
Using MAUI 153

14 Using the Windowing API
Windowing Applications

There are two classes of windowing applications. The first type is a
window manager type application that consists of an owner process that
owns the windowing device and sets up the basic operating parameters
for multiple windows. The second type is a single window application
that opens a windowing device and uses the window to draw text and
graphics.

Window Manager Demonstration

Your MAUI software includes a window manager application that
demonstrates how window manager applications are constructed.

The basic operations of a window manager are to create a windowing
device, set up the basic appearance and operation of the windowing
device, and create windows on behalf of other processes that are then
displayed on the windowing device.

Set-up Functions

The first operations performed are the application set-up functions.
These operations include:

Step 1. Define the colors used in the background pattern on the windowing
device.

Step 2. If a background pattern is required, define a function that applies the
pattern to the display screen. This pattern is drawn over the entire
screen.

Step 3. Define globals. There are at least two globals necessary: the graphics
device ID, and the root window ID.
154 Using MAUI

14Using the Windowing API
Main() Functions

The next section of a window manager is main(). This portion of the
application defines the basic functions of the window manager. main()
does the following:

Step 1. Initialize the MAUI APIs used. The APIs initialized by this section of
code include the Messaging API, the Windowing API, and the Drawing
API.

Step 2. Create a message mailbox for the window manager. The mailbox stores
messages for the window manager from the maui_win process
whenever the keyboard or mouse is used.

Step 3. Create and define a windowing device. Creating a windowing device
comprises three functions:

win_create_dev (&windev, &gfxdev, &root, “/win”, “/gfx,
1,0, mbox);

win_set_callback (root, process_winmsg, NULL);
win_set_msg_mask (root, WIN_MASK_CHILD_CONFIG |

WIN_MASK_CHILD_CREATE | WIN_MASK_CHILD_DESTROY);

win_create_dev()creates the windowing device, opens a graphics
device and sets the graphics device resolution and coding method. This
function creates a root window for the windowing device and returns the
ID of the root window.

win_set_callback()sets the callback used when queuing
messages for the root window. The callback in this example is
process_winmsg().

win_set_mask()defines the type of messages that are queued to the
root window. Three message types, CHILD_CONFIG, CHILD_CREATE,
and CHILD_DESTROY are the only message types that need to be
queued for the root window.
Using MAUI 155

14 Using the Windowing API
Root Window

The root window is owned by the creating process (in this case it is our
window manager) and has certain privileges such as determining the
default cursor, determining the input device, and defining the colormap
used by other windows. The colormap is an array of colors used by the
window that is assigned to the colormap. The child windows of the
window assigned to the colormap may inherit the colormap defined for
the root.

/* Create the default colormap, add colors, and assign */
/* it to the root window */
win_create_cmap (&cmap, windev, GFX_COLOR_RGB);
color.rgb = 0x000000; win_alloc_cmap_color

(&pix[COLOR_BLACK], cmap, color);
color.rgb = 0xffffff; win_alloc_cmap_color

(&pix[COLOR_WHITE], cmap, color);
color.rgb = 0xe7e7e7; win_alloc_cmap_color

(&pix[COLOR_LGREY], cmap, color);
color.rgb = 0xc0c0c0; win_alloc_cmap_color

(&pix[COLOR_MGREY], cmap, color);
color.rgb = 0x676767; win_alloc_cmap_color

(&pix[COLOR_DGREY], cmap, color);
win_set_cmap (root, cmap);

/* Clear the root window background */
window_background (root);

/* Create the default cursor and assign it to the */
/* root window */
win_create_cursor (windev, DEMO_ARROW_CURSOR,

&demo_arror_cursor);
win_set_cursor (root, DEMO_ARROW_CURSOR);

/* Open the input devices */
win_open_inpdev (&kdev, windev, “/kx0/mp_xtkbd”);
win_open_inpdev (&kdev, windev, “/m0/mp_bsptr”);
156 Using MAUI

14Using the Windowing API
Attributes of this process include:

• The default colormap contains five colors and is assigned to the root
window.

• The root window is cleared (or a pattern applied) using the function
window_background().

• The default cursor (defined in the data type DEMO_ARROW_CURSOR)
is assigned to the root window.

• Two input devices are opened for the root window: a keyboard and a
pointing device.

Message Loop

After the setup is completed, a message loop is defined that continually
reads the mailbox and dispatches messages. This simple set of
commands reads user input, responds, and reads the next user input.

while(TRUE){
msg_read(mbox, &winmsg, MSG_TYPE_ANY, MSG_BLOCK);
msg_dispatch(&winmsg);

}

Shut-down Procedure

Finally, when the application terminates, a shut-down procedure closes
the input device and mailbox, destroys the cursor, colormap, and
windowing device, and terminates the MAUI APIs that were initialized.

Colormaps

As stated previously, the child windows may inherit the colormap of the
parent window. In some circumstances, you may want to assign a
different colormap to a child process. When the child process has a
different colormap, the display behaves a bit differently than when all
windows share the same colormap. The active window determines the
colors for the entire display, so when the cursor moves to a window
Using MAUI 157

14 Using the Windowing API
assigned to a different colormap, all the windows on the display switch
to the colors defined by the active colormap. When all windows share
the same colormap, no color switching is seen.

Background Pattern Maintenance

The window_background() function is called in main() to initialize
the background by drawing a pattern on the root window. The most
important elements seen in this function are the
win_lock_region() and win_unlock_region() functions. Before
any drawing is performed in the window, the region occupied by the
window is locked. Since multiple windows may be displayed in a
windowing device, locking a region before drawing is critical to ensure
that other processes do not interfere with the drawing. For example, if
drawing is taking place in a window, and another window is moved on
top of the drawing window, the drawing operation can cause both
windows to display incorrectly.

/* Draw the background */
win_get_win_status (&winstat, win);
win_lock_region (win, 0, 0, winstat.width,

winstat.height);
for (h=0; (h*32) < winstat.width; h++) {

for (v = 0; (v*32) < winstat.height; v++) {
drw_expd_block (drwctx, h*32, v*32, 0, 0, 32, 32);

}
}
win_unlock_region (win);

Always lock a region prior to drawing, and unlock the region when the
drawing operation is finished.

Message Process

The message process defined in process_winmsg() defines the
callback function used by the application. A window manager message
process should define a set of actions to taken when specific messages
are received. Here is a minimum set of actions a window manager
should handle:
158 Using MAUI

14Using the Windowing API
• When the user opens a window on the root level, the message
process calls a function in the window manager that creates a child
window for the calling application.

• When the user closes the child window, the window manager is
called to destroy the window.

• When the user wishes to move a window, the window manager is
called to process the move request.

• When the user wishes to resize a window, the window manager is
called to process the resize request.

• When the user wishes to change the stacking order of the windows,
the window manager is called to process the restack request.

• When the user selects a different window to become active (moves
the cursor into another window) the window manager is called to
change the window state.

• When an area of the root window becomes exposed through one of
the above events, the window manager should re-apply the
background pattern to the exposed region.

Input Functions

Several input functions are handled automatically by the maui_win
process and require no intervention on the part of the application.
Cursor movement is processed by maui_win and directly
communicated through the graphics and Bit-BLT APIs to the graphics
device. Keyboard inputs are also echoed to the graphics device
automatically. The application needs to take no action to perform these
functions.
Using MAUI 159

14 Using the Windowing API
Architecture

The relationship between the Windowing API, Messaging API, Bit-BLT
API, and the Graphics Device API is shown in the following figure. The
Windowing API depends on the Shaded Memory API for memory
allocation, the Bit-BLT API for block transfer operations, and the
Graphics Device API for device capabilities. The Messaging API
manages communication between the Windowing API and the
maui_win and maui_inp processes

Figure 14-2 Windowing API Dependencies.

Before the Windowing API is used in an application, the Bit-BLT,
Graphics, and Messaging APIs must be initialized. After the Windowing
API is initialized (win_init()) set the action to take in the error
handler by calling win_set_error_action(). The Windowing API is
terminated when your application calls win_term().

maui_inp

Application

Windowing API

Messaging API

process

G
ra

ph
ic

s
an

d
B

it-
B

LT
 A

P
Is

maui_win
process
160 Using MAUI

14Using the Windowing API
The Windowing Device

The windowing device is a group of devices including one or more
graphics devices and one or more input devices. When a windowing
device is created, several activities take place:

• A graphics device is assigned to the windowing device

• A root window is assigned to the windowing device

• Callback information is set up

• One or more input devices are opened and assigned to the
windowing device

• A colormap is defined and assigned to the root window

• A default cursor is created and assigned to the root window

Creating a Windowing Device

The function win_create_dev() creates the windowing device. The
process that creates the windowing device owns the device. This
function contains parameters that name of the windowing device, open
the graphics device, create the root window, and identify the mailbox.

After the widowing device is created, set the callback information for the
root window. This is accomplished with the function
win_set_callback(). The callback function defines the action to
take when certain messages are received by the application.

One or more input devices can be assigned to the windowing device.
Input devices are assigned to a windowing device by using the function
win_open_inpdev(). This function returns the device ID of the input
device, assigns the device to a window, and provides the name of the
input device. When an input device is no longer needed, use the
function win_close_inpdev() to close the device.

When the input device is a keyboard, the function win_set_focus()
defines which window has the keyboard focus.
Using MAUI 161

14 Using the Windowing API
The windowing device is opened by using the function
win_open_dev(). The windowing device may be opened by any
process, but the opening process does not own the device.

Before or after opening a device, the process may call
win_get_dev_status() for specific information about the device.
This function returns information including the graphics device ID, root
window ID, width and height of root window, device coding method, and
which window has the keyboard focus.

The process that opened the windowing device can close the device by
calling the function win_close_dev(). This function closes the
graphics device and input devices, and destroys all windows, colormaps
and cursors opened by the process.

The process that owns the windowing device can destroy the device.
Windowing devices are destroyed by calling the process
win_destroy_dev(). This function destroys the graphics device and
input devices, and destroys all windows, colormaps and cursors that
were created by the process.

Always use win_close_dev() to close a device that was opened.
Always use win_destroy_dev() to close a device that was created.

Colormaps

A colormap is an array of colors used and owned by the process that
created the colormap. Colormaps are created with the function
win_create_cmap(). The maximum number of cells in a colormap is
determined by the graphics color type assigned to the colormap when it
is created. For example, if the colormap color type is GFX_CM_8BIT, the
colormap contains 256 cells. You can allocate a color to each of the
cells in a colormap up to the maximum number of cells.

Colormaps are assigned to a window or windowing device and inherited
by all the child processes of that window or windowing device.
Colormaps are managed with a set of six functions:
162 Using MAUI

14Using the Windowing API
win_alloc_cmap_color() Assigns a color value to a colormap cell
and returns the color.

win_get_cmap_cells() Returns the colors assigned to the
specified group of cells.

win_get_cmap_free() Returns information about the amount of
free cells in the colormap. The
information includes the total number of
free cells, the largest contiguous block of
free cells, and the number of blocks of
one or more free cells.

win_alloc_cmap_cells() Allocates a group of color cells for the
private use of the calling process.

win_set_cmap_cells() Assigns colors to a specified group of
cells allocated by a process. Only the
process that allocated the group of
colormap cells can set those cells.

win_free_cmap_cells() De-allocates some or all of the cells
previously allocated with
win_alloc_cmap_cells() or
win_alloc_cmap_color().

When a colormap is no longer needed, the owning process can call
win_destroy_cmap() to destroy the colormap.

Cursors

The root window is assigned a default cursor when it is created. Child
windows inherit the default cursor, or you may assign a different cursor
to each window as they are opened. The cursor is owned by the
process that created it. The two cursor functions available are:

win_create_cursor() Creates a cursor and assigns the cursor
to the window specified.

win_destroy_cursor() Destroys the specified cursor.
Using MAUI 163

14 Using the Windowing API
Cursors are defined in a data structure called WIN_CURSOR, that
contains a pointer to the cursor bitmap and specifies the cursor hit
point. The process that owns the cursor is the only process that can
destroy the cursor.

When the input device commands the cursor to move, the movement
commands are routed from the input device and maui_inp process to
the maui_win process. From maui_win, these commands are routed
directly to the Graphics and Bit-BLT APIs for output to the display
screen. By keeping the Windowing API uninvolved with cursor
movement, the display can be faster and more responsive to user input.
164 Using MAUI

14Using the Windowing API
Managing Windows

Windows are managed by a group of functions. Some of the functions
control the how a window operates, and others control the appearance
of the window.

Create and Destroy

Windows can be created on the root context by any process, or can be
created as a child of a window created by the same process. When a
window is created as a child of another window, the new window must
be wholly contained within the parent window. Two functions are
available to create and destroy windows:

win_create_win() Creates a new window as a child of the
window specified.

win_destroy_win() Destroys a window and all its child
window.

Window Setup

When a window is created, it can inherit the characteristics of the parent
window, or you can set the operating parameters for each window
individually. Eight functions are available to define how a window is set
up:

win_get_win_status() Returns information about the parent,
child, and sibling windows, position of
the window, size, inking method,
callback and drawing, text, and colormap
IDs.

win_set_cursor() Defines a cursor to use with the window.
The cursor changes as it enters the
boundary of the window.

win_set_callback() Sets the callback for queuing messages.
Using MAUI 165

14 Using the Windowing API
win_set_msg_mask() Determines which messages will be
queued.

win_set_state() Sets the state of the window to active or
not active.

win_set_cmap() Assigns a colormap to the window.

win_reparent_win() Assigns the window to a new parent
window. Both the old and new parent
must be owned by the calling process.

win_restack_win() Changes the position of the window in
the stack of windows.

Window Appearance

The size and position of a window can change in response to
application needs, or user input.

win_move_win() Moves the window to a new location.

win_resize_win() Changes the height and width of the
window.

Ink

The Windowing API includes inking functions that enable users to draw
in a window using a cursor, pen, or other input device. A single ink point
on a display is 3 pixels wide by 3 pixels high. The center pixel of the
9-pixel grid is the hit point.

win_set_ink_method() Sets the inking method to OFF or
REPLACE.

win_set_ink_pix() Sets the pixel value for the ink. This
value may be a color value, or an index
value in a color table.
166 Using MAUI

14Using the Windowing API
win_erase_ink() Erases all the ink in a window. If
necessary, this function sends a
message to repaint the entire window to
restore the background.

When the input device is used to draw in the window, the ink commands
are routed to the maui_win process, then directly to the Graphics and
Bit-BLT APIs for drawing on the display. The windowing API is not
directly involved in the actual ink drawing process, resulting in a faster
and more responsive display.

Drawing

Drawing text and graphics in a window is very similar to drawing text
and graphics on a graphics device. Since a single display may contain
several windows, text and graphics are assigned to a specific window
rather than a more general graphics device. Two functions are provided
to assign contexts to windows prior to drawing and text operations:

win_set_drw_context() Specifies the drawing context for a
specific window.

win_set_txt_context() Specifies the text context for a specific
window.

The actual drawing is performed by the Drawing API. The Windowing
API maintains the origin, drawing area, and clipping are in the drawing
context, so you must not call drw_set_context_origin(),
drw_set_context_draw(), or drw_set_context_clip().
Likewise, when drawing text you must not call
txt_set_context_origin(), txt_set_context_draw(), or
txt_set_context_clip().

Lock and Unlock

Because several windows may be displayed at the same time, several
processes may be running at any one time. There is always a risk when
drawing text or graphics, that a drawing or text operation may interfere
with another process. Two functions are provided in the Windowing API
to ensure drawing and text operations are completed safely:
Using MAUI 167

14 Using the Windowing API
win_lock_region() Locks a region of a window prior to text
and drawing operations.

win_unlock_region() Unlocks the region previously locked.

Locking a region for an extended length of time can interfere with other
processes. win_lock_region() should be called immediately before
the drawing functions are called, and win_unlock_region() should
be called immediately after the drawing operation is finished.

If the window contains an active cursor, it is turned off when the window
is locked. Unlocking the window enables the cursor.
168 Using MAUI

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Index

A
allocate

pixel memory for drawmap 51
Allocating and De-allocating Memory Segments 71
Animation API 18, 119

Animation Group 125
Animation Groups and Objects 123
Animation Object 126
Architecture 120
Functions 121
Initialize and Terminate 121
Sprites 122

API Descriptions and Dependencies 19
Application Programming Interfaces 16
Applications

Window Manager 154

B
Bit-BLT API 17, 97

Architecture 98
Block Transfer Operations 101
Context Object 100
Functions 99
Initialize and Terminate 99

Block Transfers 39
blt_draw_block() 56

C
cascade failure

defined 55
CDB API 75
Using MAUI 169

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Architecture 76
Functions 77
Initialize and Terminate 77
Retrieving Functions 78

cdb_get_copy() 78, 80
cdb_get_ddr() 78, 80
cdb_get_ncopy(78
cdb_get_ncopy() 80
cdb_get_size(78
cdb_get_size() 80
cdb_init() 77
cdb_set_error_action() 77, 107, 113
cdb_term() 77
character string

encoding 116
clipping 110

text 117
Coding Methods 28
color palette 49
Colormaps 162
Concepts of Windowing 152
Configuration Description Block (CDB) API 75
Configuration Description Block API 16
Constructing a Display 36
context

drawing 108
parameters 109
variables 109

context object 53
text 114

create
bit-BLT object 53
Drawmap 51
public data structure drawmap 51
text context object 53
viewport 52

Creating a Windowing Device 161
Creating Viewports 37
Creating Windows 165
170 Using MAUI

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
D
define

color and palette 49
Demos

Window Manager 154
destination drawmap 53
Destroy Viewport 96
Destroying Windows 165
Device Drivers 15
display

Viewport 52
Display Resolutions 28
draw 53

string to drawmap 54
Drawing 39

Block Transfers 39
Shapes 40
Text 41

drawing
operations 110

Drawing API 17, 105
Architecture 106
Functions 107
Initialize and Terminate 107

drawing context
defined 108

Drawing in a Window 167
Drawmap 33, 86

allocate pixel memory 51
create 51
set size 51

Drawmap object
create 51

E
E_MAUI_NOINIT 50, 55
encoding character string 116
error

E_MAUI_NOINIT 55
Using MAUI 171

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
handlers
defined 55

handling 57
errors

categories 56
E_MAUI_NOINIT 50
MAUI_ERROR_WARNING 57

example
clean up and exit 54
color and palette definitions 49
configure drawmap 51
create drawmap 51
create viewport 52
detroy object 54
display viewport 52
draw text string 54
initialize APIs 50
load and display image 93
message loop 57
set drawmap size 51
source code location 47

F
fatal error

defined 56
Fatal Errors 56
font

object 115
parameter for text drawing 53

functions
text 113

G
gfx_close_dev() 84
gfx_create_dmap() 56
gfx_init() 83
gfx_open_dev() 84
GFX_PALETTE 49
172 Using MAUI

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
GFX_RGB 49
gfx_set_dmap_pixmem() 55
gfx_term() 83
Graphics Device 28
Graphics Device API 17, 81

Architecture 82
Destroy Viewport 96
Drawmaps 86
Functions 83
Initialize and Terminate 83
Load Image 93
Show Image 94
Vertical Retrace 92
Viewport 90

H
handling errors 55
Hello MAUI

Analyzing the Hello MAUI Program 48
Source Code 47

I
initialize

APIs 50
Ink 166
inp_open_dev() 58
Input API 141

K
Key Symbol Messages 46

L
Load Image 93
Using MAUI 173

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
M
map

drawmap to viewport 52
MAUI

errors 56
MAUI Data Structures 26
MAUI Process 15
MAUI System Design 14
MAUI_ERROR_WARNING 57
maui_init() 50, 55
maui_term() 55
mauidev 133
mauidrvr 133
mem_calloc() 71
mem_free() 71
mem_get_shade_status() 72
mem_list tables() 72
mem_list_overflows() 72
mem_list_segments() 72
mem_malloc() 71
mem_realloc() 71
mem_sfree() 71
message

to deliver user input 57
Message Loop 43
message loop

defined 57
example 57

Messaging API 18
MSG_BLOCK 135
msg_close() 134
msg_close_mbox() 133
msg_create_mbox() 133, 134
msg_dispatch() 135, 137
msg_flush() 135, 137
msg_get_mbox_status() 133, 134
msg_init() 131
MSG_NOBLOCK 135
msg_open_mbox() 133, 134
msg_peek() 135, 136
174 Using MAUI

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
msg_peekn() 135, 136
msg_read() 135
msg_readn() 135
msg_release_sig() 135, 137
msg_release_watch() 132
msg_send_sig() 135
msg_send_signal() 136
msg_send_watch() 132
msg_set_error_action() 131
msg_set_mask() 135
msg_term() 131
MSG_TYPE_ANY 138
MSG_TYPE_KEY 138
MSG_TYPE_NONE 138
MSG_TYPE_PTR 138
MSG_TYPE_WIN 138
msg_unread() 135, 136
msg_unreadn() 135, 136
msg_write() 135
msg_writen() 135

N
non-fatal error

defined 56
non-fatal errors 56

O
object

bit-BLT 53
Drawmap 51
text context 53

operations
drawing 110

P
parameters

context 109
Using MAUI 175

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Pixel Size Differences 38
Pointer Messages 46
Private Data Structures 27
Pseudo Shades 68
Public Data Structures 26

S
set

destination drawmap parameter 53
drawmap size 51

Shaded Memory API 16, 63
Allocating and De-allocating Memory Segments 71
Architecture 64
Colors and Shades 65
Creating and Destroying Shades 70
Functions 69
Status And Debugging 72

Shape Drawing 40
shape drawing 110
Show Image 94
smem_free() 56
Source Code 47
Sprites 122

T
terminate

APIs 54
text

context object 114
font object 115
functions 113

Text API 18, 111, 113
Architecture 112
Functions 113
Text Context Object 114
Text Drawing Operations 116
Text Font Object 115

Text Drawing 41
176 Using MAUI

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
TTY
emulation capabilities 41

txt_create_context() 53
txt_draw_mbs() 54
txt_set_context() 53

U
User Input 45

Key Symbol Messages 46
Pointer Messages 46

V
variable

context 109
Vertical Retrace 92
Viewport 90
viewport

create 52
defined 91
display 52

Viewports 35

W
Warnings 56
Window Appearance 166
Window Manager Demonstration 154
Window Setup 165
Windowing 152
Windowing API 152, 160

Architecture 160
Colormaps 162
Create and Destroy 165
Creating a Windowing Device 161
Cursors 163
Drawing 167
Ink 166

Windowing Applications 154
Using MAUI 177

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Windowing concepts 152
Windowing System 152
178 Using MAUI

	Using MAUI®
	Table of Contents
	Chapter 1: Introduction to MAUI
	MAUI System Design
	MAUI Input Process
	Device Drivers

	Application Programming Interfaces
	MAUI System API
	Shaded Memory API
	Configuration Description Block API
	Graphics Device API
	Bit-BLT API
	Drawing API
	Text API
	Animation API
	Messaging API
	Input API

	MAUI Application Profile
	Printing to stderr

	Chapter 2: MAUI Concepts
	MAUI Data Structures
	Public Data Structures
	Private Data Structures

	Graphics Device
	Display Resolutions
	Coding Methods
	Graphics Device Capability

	Drawmaps
	Viewports
	Constructing a Display
	Creating Viewports
	Displaying Images in Viewports
	Pixel Size Differences

	Drawing
	Block Transfers
	Shape Drawing
	Text Drawing

	Message Loop
	User Input
	Pointer Messages
	Key Symbol Messages

	Chapter 3: Writing a MAUI Application
	Analyzing a Typical MAUI Program
	Include files
	Color and Palette Definitions
	Variables
	Initialize MAUI APIs
	Open a Graphics Device
	Create and Configure a Drawmap
	Create a Drawmap Object

	Create Viewport and Display Drawmap
	Create Font Structure and Text Context Objects
	Draw the Text String
	Destroy All Objects and Terminate APIs
	Adding Error Checking
	Fatal Errors
	Non-fatal Errors
	Warnings

	Input Processing

	Chapter 4: Using the MAUI System API
	MAUI System Functions
	Initialize and Terminate
	Terminate
	Setting Error Action

	Chapter 5: Using the Shaded Memory API
	Architecture
	Colors and Shades
	Using Normal Shades
	Using Pseudo Shades

	Shaded Memory Functions
	Initialize and Terminate
	Creating and Destroying Shades
	Allocating and De-allocating Memory Segments
	Allocating a Segment
	Reallocating a Segment
	Deallocating a Segment

	Status And Debugging
	Returning Current Status
	Printing a List of Allocated Segments
	Printing a List of Shades, Blocks, Segments
	Printing a List of Overflows/Underflows

	Chapter 6: Using the CDB API
	Architecture
	CDB API Functions
	Initialize and Terminate Functions
	Initializing the CDB API
	Terminating the CDB API
	Changing The Default Actions on Errors

	Retrieving Functions
	Reading Device Description Records
	Retrieving Information from the CDB

	Chapter 7: Using the Graphics Device API
	Architecture
	Graphics Device API Functions
	Initialize and Terminate
	Initializing the Graphics Device API
	Terminating the Graphics Device API

	Graphics Device
	Opening the Device
	Determining the Device Capabilities
	Receiving Current Values for Parameters
	Setting the Parameter Values

	Drawmap
	Creating a Drawmap of Known Size (preferred)
	Creating a Drawmap with Maximum Size
	Creating Drawmap and Setting Size Later

	Viewport
	Creating a Viewport
	Destroying a Viewport
	Receiving the Current Value of Viewport Parameters
	Setting Viewport Parameters and Characteristics

	Miscellaneous

	Example Program
	Load the Image from the Data File
	Show the Image on the Graphics Display
	Destroy Viewport

	Chapter 8: Using the Bit-BLT API
	Architecture
	Bit-BLT API Functions
	Initialize and Terminate
	Initializing the Bit-BLT API
	Terminating the Bit-BLT API

	Bit-BLT Context Object
	Creating Bit-BLT Context Objects
	Destroying Bit-BLT Context Objects
	Modifying Bit-BLT Context Objects

	Block Transfer Operations
	Copy Block Operations
	Fastcopy

	Expand Block Operations
	Draw Block Operations
	Fastdraw

	Chapter 9: Using the Drawing API
	Architecture
	Drawing API Functions
	Initialize and Terminate
	Initializing the Drawing API

	Drawing Context Object
	Context Parameters
	Creating Context Objects
	Destroying Previously Created Context Objects
	Querying for Context Object Parameters

	Shape Drawing

	Chapter 10: Using the Text API
	Architecture
	Text API Functions
	Initialize and Terminate
	Initializing the Text API
	Terminating the Text API

	Text Context Object
	Creating an Instance of a Text Context Object
	Destroying Text Context Objects
	Modifying Members of the Text Context Object

	Text Font Object
	Creating a Text Font Object

	Text Drawing Operations

	Chapter 11: Using the Animation API
	Architecture
	Animation API Functions
	Initialize and Terminate
	Initializing the Animation API
	Terminating the Animation API

	Sprites
	Creating a Sprite
	Destroying a Sprite

	Animation Groups and Objects
	Animation Group
	Creating an Animation Group
	Destroying the Existing Animation Group
	Drawing All the Active Objects of a Group on a Screen
	Processing Objects in a Group
	Assigning a Background Image or Color

	Animation Object
	Setting the Object State
	Assigning a Sprite to an Object
	Changing a Current Frame
	Updating the Position of an Object on the Screen
	To change the object display order
	Transparency Checks
	Defining the Drawing Method
	Defining a Behavior

	Chapter 12: Using the Messaging API
	Architecture
	Messaging API Functions
	Initialize and Terminate
	Initializing the Messaging API
	Terminating the Messaging API

	Watch Service
	Mailboxes
	Creating a Mailbox
	Opening an Existing Mailbox
	Closing a Mailbox
	Obtaining Status on a Current Mailbox

	Messages
	Retrieving a Message from a Mailbox
	Blocking Mode
	Returning a Message Back To a Mailbox
	Checking to See if You Have a Message
	Using a Less CPU-intensive Approach to Check Message Arrival
	Cancelling the Signal Request
	Deleting Messages Currently Queued
	Processing Messages Directly after Read
	Message Types

	Example Program

	Chapter 13: Using the Input API
	Architecture
	MAUI Input Process and Protocol Modules
	Input API Functions
	Initialize and Terminate
	Initializing the Input API
	Terminating the Input API

	Input Device
	Opening the Device and Associate it with a Mailbox
	Closing a Device
	Inquiring About the Device Capabilities
	Receiving Current Device Status
	Filtering Messages With a Mask
	Specifying the Callback Function for Messages
	Assigning a Simulation Method

	Key Reservation and Simulation

	Example Program

	Chapter 14: Using the Windowing API
	Windowing Concepts
	Windowing Applications
	Window Manager Demonstration
	Set-up Functions
	Main() Functions
	Root Window
	Message Loop
	Shut-down Procedure
	Colormaps
	Background Pattern Maintenance
	Message Process
	Input Functions

	Architecture
	The Windowing Device
	Creating a Windowing Device
	Colormaps
	Cursors

	Managing Windows
	Create and Destroy
	Window Setup
	Window Appearance
	Ink
	Drawing
	Lock and Unlock

	Index

