
w w w. ra d i sy s . co m
Revision A • July 2006

OS-9® for Toshiba
RBHM4x00 Board
Guide

Version 4.7

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.7 of Microware OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

3

Contents

Installing and Configuring OS-9® 5
Development Environment Overview.. 6
Requirements and Compatibility... 7

Host Hardware Requirements (PC Compatible) .. 7
Host Software Requirements (PC Compatible).. 7
Target Hardware Requirements ... 7

Target and Host Setup ... 7
Settings .. 8

Switch Configuration to Run OS-9 or Toshiba HCP5 Boot Monitor... 8
Switch Configuration to Run OS-9... 8
Switch Configuration to Run HCP5 Monitor.. 8

Connecting the Target to the Host.. 8
Attaching the Cables ... 8
Booting to the Boot Menu .. 9

Building the OS-9 ROM Image .. 10
Coreboot ... 10
Bootfile... 10
Starting the Configuration Wizard ... 11
Configuring Coreboot and Bootfile Options ... 12

Ethernet Configuration (Coreboot) ... 12
Ethernet Configuration (Bootfile) .. 13

Building the Coreboot + Bootfile Image.. 14
Transferring the ROM Image to the Target ... 14
Optional Procedures .. 16

Programming a ROM Image with the pflash Utility... 16
Flashed rom Image Issues .. 17

Building with Makefiles .. 18
Makefile Network Option... 18
Using Makefiles .. 18
Making Network Configuration Changes ... 19
Low-Level Network Configuration Changes .. 19

Board Specific Reference 21
Boot Options.. 22

Booting from Flash.. 22
Booting over a Serial Port via kermit .. 22
Restart Booter... 22
Break Booter... 23
Sample Boot Session and Messages... 23

The Fastboot Enhancement.. 24
Overview ... 24
Implementation Overview... 24

B_QUICKVAL.. 24

OS-9® for Toshiba RBHM4x00 Board Guide

4

B_OKROM .. 25
B_1STINIT ... 25
B_NOIRQMASK ... 25
B_NOPARITY .. 25

Implementation Details.. 25
Compile-time Configuration.. 26
Runtime Configuration ... 26

OS-9 Vector Mappings... 27
Port Specific Utilities ... 29

dmppci ... 30
pciv .. 31
pflash .. 32
setpci ... 33

Board Specific Modules 35
Port-Specific Low-Level System Modules .. 36
Common Low-Level System Modules ... 36
Port-Specific High-Level System Modules ... 37
Port-Specific High-Level Utilities .. 38
Common High-Level System Modules .. 38

1

5

Installing and Configuring OS-9®

This chapter describes installing and configuring OS-9® on the Toshiba RBHM4x00
boards. It includes the following sections:

Development Environment Overview

Requirements and Compatibility

Target and Host Setup

Connecting the Target to the Host

Transferring the ROM Image to the Target

Optional Procedures

1

1

OS-9® for Toshiba RBHM4x00 Board Guide

6

1

Development Environment Overview
Figure 1-1 shows a typical development environment for a Toshiba RBHM4x00 board.
The components shown those generally required to develop for OS-9 on the board.

Figure 1-1. Toshiba RBHM4x00 Development Environment

Windows

Ethernet network

N
et

w
or

k
CO

M
1

CO
M

2

Development
Host

CH
1

CH
0

PCI Connector

S2 S3 S4

Optional
Intel Ethernet
Pro 10/100+

PJ
8

DIP Switches

S1

1

Chapter 1: Installing and Configuring OS-9®

7

1

Requirements and Compatibility
Before you begin, install the Microware OS-9 for MIPS64 CD-ROM on your host PC.

Host Hardware Requirements (PC Compatible)

The host PC must have the following minimum hardware characteristics:

• 250MB of free hard disk space

• the recommended amount of RAM for the host operating system

• a CD-ROM drive

• a free serial port

• an Ethernet network card

• access to an Ethernet network

Host Software Requirements (PC Compatible)

• Microware OS-9 for MIPS64

• Windows 95, Windows 98, Windows NT 4.0, Windows 2000, Windows ME, or
Windows XP.

• terminal emulation program

• [Optional] BOOTP and TFTP servers. BOOTP and TFTP servers are required if
Ethernet booting OS-9.

Target Hardware Requirements

Your RBHM4200 or RBHM4400 boards requires the following hardware:

• a power supply

• an RS-232 null modem serial cable (for OS-9 console)

In addition to the above requirements, you may want to have a second RS-232 null
modem serial cable for connecting to the Toshiba HCP5 monitor and an Ethernet cable
and card. (Supported Ethernet card: Intel PRO 10/100.)

Target and Host Setup

The examples in this document use Hyperterminal, a terminal emulation program, which
is included with all Windows operating systems.

Before installing and configuring OS-9 on your RBHM4x00 evaluation board, refer to the
hardware documentation for information on hardware setup.

1

OS-9® for Toshiba RBHM4x00 Board Guide

8

1

Settings

The factory default setting for the DIP switches may not work with OS-9. Initially, the
Toshiba HCP5 boot monitor will be used. Be sure the DIP switches agree with the
following settings:

Switch Configuration to Run OS-9 or Toshiba HCP5 Boot Monitor

S1.1 set to OFF Internal PCI Arbiter

S1.2 set to ON Internal Timer Interrupts Disabled

S1.3-5 set to OFF, OFF, ON Select 200MHz (4200)/300MHz (4400)

S1.6 set to OFF Big Endian

S1.7 set to OFF SYSCLK Divisor 3

S1.8 set to OFF PICMG-compatible

Switch Configuration to Run OS-9

S3.1,2 set to ON, OFF FlashROM1 Connected to CE0

S3.3,4 set to OFF, ON FlashROM2 Connected to CE1

S3.5,6 set to OFF, OFF ROM Emulator Not Connected

S3.7,8 set to ON, OFF 32-bit Boot ROM Bus Width

Switch Configuration to Run HCP5 Monitor

S3.1,2 set to OFF, ON FlashROM1 Connected to CE1

S3.3,4 set to ON, OFF FlashROM2 Connected to CE0

S3.5,6 set to OFF, OFF ROM Emulator Not Connected

S3.7,8 set to OFF, ON 16-bit Boot ROM Bus Width

Connecting the Target to the Host
Connecting the RBHM4x00 board to your host PC involves attaching the power, serial,
and Ethernet cables to the reference board. Once you have the board connected, you
can use the serial console in Hawk to verify the serial connection.

Attaching the Cables

To attach the cables, complete the following steps:

1. Attach the power connector to PJ16.

2. Attach the serial cable to PJ20 (RS-232 CH1). (The HCP5 monitor is on PJ20; it will
be used to load the flash image.)

3. Connect the optional serial cable to PJ19. (The default OS-9 console is on PJ19.) If
you are only using one cable, you will need to switch it from PJ20 after the flash
image is installed.

1

Chapter 1: Installing and Configuring OS-9®

9

1

4. If you are using Ethernet, plug the cable into either the on-board RJ-45 (PJ8) or the
RJ-45 on an Intel Ethernet Pro 10/100 in the PCI slot (PJ2).

Booting to the Boot Menu

It will be necessary to boot to the HCP5 prompt in order to verify that your serial cable
is connected properly. To do this, complete the following steps:

1. From the desktop, click Start and select RadiSys -> Microware OS-9 for
MIPS64 -> Hawk IDE to start Hawk.

2. If the Serial console window is not open, it can be opened from the Toolbar
Customization dialog (shown in Figure 1-2).
(Select from the main menu Customize -> Toolbars to open the Toolbar
Customization dialog.)

Figure 1-2. Toolbar Customization dialog

3. Once the dialog is open, select Serial in the Toolbars list box.

4. Click the Visible check box, then click the Close button. The Serial console
window opens. (The Serial window can be seen in Figure 1-3.)

1

OS-9® for Toshiba RBHM4x00 Board Guide

10

1

Figure 1-3. Hawk Serial Console Window

5. Once you have the Serial Console window open, click the Connect button in the
upper left corner of the window. The Com Port Options dialog box appears.

6. Change the setting to reflect these values: baud = 57,600, word size = 8 bits, parity
= none, stop bits = 1, and XON/XOFF protocol.

7. Click the OK button. The message [Not Connected] should change to [Connected].

8. Apply power to the board. The HCP5 boots the board.

Building the OS-9 ROM Image
The OS-9 ROM Image is a set of files and modules that collectively make up the OS-9
operating system. The specific ROM Image contents can vary from system to system
depending on hardware capabilities and user requirements.

To simplify the process of loading and testing OS-9, the ROM Image is generally divided
into two parts—the low-level image, called coreboot; and the high-level image, called
bootfile.

Coreboot

The coreboot image is generally responsible for initializing hardware devices and
locating the high-level image (AKA bootfile) as specified by its configuration. For
example from a flash part, a harddisk, or Ethernet. It is also responsible for building
basic structures based on the image it finds and passing control to the kernel to bring
up the OS-9 system.

Bootfile

The bootfile image contains the kernel and other high-level modules (initialization
module, file managers, drivers, descriptors, applications). The image is loaded into
memory based on the device you select from the boot menu. The bootfile image

Connect
Disconnect

Terminal Settings

1

Chapter 1: Installing and Configuring OS-9®

11

1

normally brings up an OS-9 shell prompt, but can be configured to automatically start
an application.

RadiSys provides a Configuration Wizard to create a coreboot image, a bootfile image,
or an entire OS-9 ROM Image. The wizard can also be used to modify an existing
image. The Configuration Wizard is automatically installed on your host PC during the
OS-9 installation process.

Starting the Configuration Wizard

The Configuration Wizard is the application used to build the coreboot, bootfile, or ROM
image. To start the Configuration Wizard, perform the following steps:

1. From the Windows desktop, select Start -> RadiSys -> Microware OS-9
for MIPS64 -> Microware Configuration Wizard. You should see
the following opening screen:

Figure 1-4. Configuration Wizard Opening Screen

2. Select your target board from the Select a board pull-down menu.

3. Select the Create new configuration radio button from the Select a
configuration menu and type in the name you want to give your ROM image in the
supplied text box. This names your new configuration, which can later be accessed
by selecting the Use existing configuration pull down menu.

4. Select the Advanced Mode radio button from the Choose Wizard Mode field and
click OK. The Wizard’s main window is displayed. This is the dialog from which you
will proceed to build your image. An example is shown in Figure 1-5.

1

OS-9® for Toshiba RBHM4x00 Board Guide

12

1

Figure 1-5. Configuration Wizard Main Window

Configuring Coreboot and Bootfile Options

The only steps necessary in configuring the coreboot and bootfile options involve filling
in the Ethernet information. All other default settings in the Configuration Wizard are
correct for the RBHM4x00 board.

Ethernet Configuration (Coreboot)

To configure the Ethernet settings from the Configuration Wizard, complete the
following steps:

1. From the Main Configuration window, select Configure -> Coreboot ->
Main configuration.

2. Select the Ethernet tab.

3. Enter the Ethernet address information in the address text boxes. This includes the
following information:

• IP Address

• Subnet Mask

• IP Gateway

If you are uncertain of the values for these text boxes, contact your system
administrator.

4. Select the appropriate Ethernet card in the drop down menu box at the bottom of
the screen. (This should be either NE2000 or PCI Intel PRO 100.)

If you do not have Ethernet installed on your system, you may skip the sections on Ethernet
setup and proceed directly to the Building the Coreboot + Bootfile Image section.

1

Chapter 1: Installing and Configuring OS-9®

13

1

5. Check the Add to Boot Menu check box under the Ethernet Boot Options.

6. Click OK to close the window.

Ethernet Configuration (Bootfile)

To configure the Ethernet settings from the Configuration Wizard, complete the
following steps:

1. If you want to use the target board across a network, you will need to configure the
Ethernet settings within the Configuration Wizard. To do this, select Configure -
> Bootfile -> Network Configuration from the Wizard’s main menu.

2. From the Network Configuration dialog, select the Interface Configuration
tab. From here you can select and enable the interface. For example, you can select
the appropriate Ethernet card from the list of options on the left and specify
whether you would like to enable IPv4 or IPv6 addressing. Figure 1-6 shows an
example of the Interface Configuration tab.

Figure 1-6. Bootfile -> Network Configuration -> Interface Configuration

To learn more about IPv4 and IPv6 functionalities, refer to the
Using LAN Communications manual, included with this product CD.

Contact your system administrator if you do not know the network values for your board.

1

OS-9® for Toshiba RBHM4x00 Board Guide

14

1

3. Select the DNS Configuration and Gateway tabs to specify setting specific to
your site.

4. Select the SoftStax Options tab and select choose any networking options.

5. Click OK to close the dialog box.

Building the Coreboot + Bootfile Image

Once your coreboot and bootfile settings have been properly configured, complete the
following steps to build the ROM image:

1. Select Configure -> Build Image. The Master Builder window is displayed.

2. From the Master Builder window, select the check boxes appropriate for your setup:

• If you are using a RAM disk, ensure the Disk Support and Disk Utilities check
boxes are checked.

• If you have Ethernet setup for your system, select the SoftStax (SPF) Support
and User State Debugging Modules check boxes.

3. Select the Coreboot + Bootfile radio button.

4. Click Build. This builds the ROM image that can later be burned into flash
memory. The name of this ROM image is rom.S. The file containing the image is
in Motorola S-record format.

5. Click Finish.

6. Select File -> Save Settings to save the configuration.

7. Select File -> Exit to quit the Configuration Wizard.

Transferring the ROM Image to the Target
In the previous section, you built a ROM image. To load this ROM image onto the target
board, complete the following steps, using a capable terminal emulation program such
as Hyperterminal:

1. Ensure switch bank 3 is set as specified earlier for running HCP5.

2. The serial cable should be connected to PJ20 (CH1) with a setting of 57,600, 8-bit
words, no parity, and 1 stop bit. Once you apply power, the HCP5 prompt should
appear.

3. At the HCP5 prompt, type o. The screen should display the following information:

HCP for RBTX4937 HCP5 Rev. 1.1.0 (big endian)

HCP5? o
 Option menu
 a: aclc
 b: ether
 c: flash
 d: id
 e: interrupt
 f: led

1

Chapter 1: Installing and Configuring OS-9®

15

1

 g: pcic
 h: rtc
 i: sdram
 j: serial
 k: hcp5_csio_b4
 Option command ?

4. At the Option command, type c. The following message appears:

 Option command ? c 00000002 00007a48 a0020000 bfc2a800 a0020000
--

EBUSC0 adr=1f000000-20000000 EBCCR=01f00000 00203408 bus=16 ENA
EBUSC1 adr=1e000000-1f000000 EBCCR=01e00000 00103418 bus=32 ENA
EBUSC2 adr=1c000000-1c100000 EBCCR=01c00000 0033f018 bus= 8 ENA
EBUSC3 adr=10000000-14000000 EBCCR=01000000 0023f618 bus=16 ENA
EBUSC4 adr=00000000-00100000 EBCCR=00000000 00000000 bus= 0 DIS
EBUSC5 adr=00000000-00100000 EBCCR=00000000 00000000 bus= 0 DIS
EBUSC6 adr=00000000-00100000 EBCCR=00000000 00000000 bus= 0 DIS
EBUSC7 adr=00000000-00100000 EBCCR=00000000 00000000 bus= 0 DIS

HCP for RBTX4937 Flash ROM main menu:

 d. Write boot ROM image to EBUSC1 r. Write ROM image
 4. Copy boot ROM image to EBUSC1 t. Clear flash ROM
 y. Simple access test i. Access test

 x. Exit z. Go to main menu

command>

5. Type d to select the reprogramming of ROMCE1. The following message appears:

command>d

--- Writing S-record image to the ROM on EBUSC1 ---

 convert endian?(say 'y' to write little endian binary)[y/n]

6. Type n to write a big endian binary. The following message appears:

 convert endian?(say 'y' to write little endian binary)[y/n]n

 ROM address be000000-bf000000, Boot Bus-[32bit]
 Flash ROM-[TC58FVM6T2ATG65], [16bit chip] * 2 * 1
 Block size-00020000H count-128 mask-00fe0000H
 total-1000000H bytes (* 1)

 Set Xon/Xoff, Send Srecord file

7. From the Hyperterminal window, transfer the rom.S file from the following
directory to the target:

1

OS-9® for Toshiba RBHM4x00 Board Guide

16

1

MWOS/OS9000/MIPS64/PORTS/RBHM4000/BOOTS/INSTALL/
PORTBOOT

This transfer will take some time to complete. When it is finished the following
messages are displayed:

 Flash Write OK

HCP for RBTX4937 Flash ROM main menu:

 d. Write boot ROM image to EBUSC1 r. Write ROM image
 4. Copy boot ROM image to EBUSC1 t. Clear flash ROM
 y. Simple access test i. Access test

 x. Exit z. Go to main menu

command>

8. Power the system off.

9. Set switch bank 2 as specified earlier to run OS-9.

The serial cable should now be connected to PJ19 (CH0) with a setting of 38,400
baud, 8 bit words, no parity, and 1 stop bit. Once you apply power, the OS-9 system
should boot.

Optional Procedures
The following sections detail procedures you may perform once you have installed and
configured OS-9.

Programming a ROM Image with the pflash Utility

pflash is an OS-9 utility that transfers an image into flash. The following steps detail
how to create a new rom (coreboot + bootfile) image and burn the image into flash
using pflash.

1. If you are no longer running the Configuration Wizard (from the previous steps) on
your Windows desktop, select Start -> Programs -> RadiSys -> Microware OS-9
for MIPS64 -> Microware Configuration Wizard. The Configuration Wizard
opening screen displays. Click on the Use existing configuration radio button in
the Select a configuration group. Ensure that your previous configuration appears
in the drop-down menu and that the Advanced Mode radio button is selected in
the Choose Wizard Mode group. Click OK.

2. Select Configure -> Build Image.. to display the Master Builder screen.

3. Ensure Coreboot + Bootfile is selected and click Build.

4. Once the build is complete, click Save As to save the ROM image to a directory of
your choosing.

1

Chapter 1: Installing and Configuring OS-9®

17

1

5. The default location for the rom file is in the following directory:

\MWOS\OS9000\MIPS64\PORTS\RBHM4000\BOOTS\INSTALL\PORTBOOT

6. Start a DOS shell on the host system.

7. Navigate to the directory in which the OS-9 ROM image, rom, is located.

8. On the target, initialize the large RAM disk (/r1) so it can hold the ROM image by
entering the following command in the Hyperterminal window:

$ iniz /r1

9. On your Windows host, use FTP to transfer the new image to the target system. At
the prompt enter the following command:

ftp <IP address or host name of target>

10. Log in with the username super and the password user.

11. At the ftp> prompt, enter the following command:

ftp> cd /r1

This specifies that the /r1 device ‘s root is the current directory.

12. At the ftp> prompt, enter the following command:

ftp> bin

This designates binary format.

13. At the ftp> prompt, enter the following command:

ftp> put rom

The OS-9 ROM image file is transfered to the target’s RAM disk (/r1).

14. On the target, enter the following command:

$ pflash /r1/rom

The file is programmed into the target system’s flash memory for the next reboot of
the system.

Flashed rom Image Issues

There are a number of issues to keep in mind when programming the flash with binary
images:

If OS-9 fails to boot after using pflash to write the coreboot or rom image, you must
revert back to using HCP5 to program the flash.

If a rom image (coreboot + bootfile) with an uncompressed bootfile is
programmed into the flash, but an Ethernet or kermit boot is used, any modules not
found in the downloaded boot will be found and used from the flash. The “nokrs=1”
option can be used with the Ethernet or kermit booters (e.g. eb nokrs=1 at the ROM
boot menu) to prevent modules in flash from being found.

To erase the bootfile portion of a rom image programmed into flash, erase the
entire part and then reprogram with only coreboot.

1

OS-9® for Toshiba RBHM4x00 Board Guide

18

1

Building with Makefiles

Building boots with makefiles allows you greater control over which modules are
included in the boot. For the Toshiba RBHM4x00 reference board, the directory in
which boots can be made is listed below:

MWOS/OS9000/MIPS64/PORTS/RBHM4000/BOOTS/SYSTEMS/RBHM4<x>00

Makefile Network Option

Networking is not included in a bootfile by default. To include the networking modules
in the bootfile, set the NETWORK macro definition to TRUE in the file named
makefile. In addition, be certain that the IP address for the board is setup correctly;
this helps to avoid network problems.

Using Makefiles

When using a makefile to build boots, three bootlist files are used to include the
modules for booting. These bootlist files can be edited to include or exclude modules
required for the system.

These bootfile lists are located in <PORTS>/BOOTS/SYSTEMS/RBHM4<x>00, and
are defined as follows:

coreboot.ml used to make the low-level boot (called
coreboot)

When using this file, the romcore file must be
input first, followed by the initext file. These
two files are not OS-9 modules. romcore is the
raw code needed to bring the hardware to a known
stable state, while initext is a way for users to
extend the low level sysinit code without
changing sysinit.c or remaking romcore.

The rest of the files included with coreboot.ml
are actual OS-9 modules. Low-level booters and
debuggers can be added or removed. In addition,
the low-level Ethernet, IP stack, and SCSI system
can be uncommented in order to provide bootp
booting and/or SCSI booting. Low-level Ethernet or
low-level SLIP can also provide system state
debugging through Hawk.

bootfile.ml used to create the high-level boot (called
bootfile)

This file contains all of the modules needed to
produce an OS-9 system. This includes the kernel,
system protection, cache control, file managers,
and drivers and descriptors. Also included are
various utilities and application programs.

Not included with this file are networking modules.
Additional modules can be included or excluded
where appropriate.

spf_mods.ml contains the SoftStax modules and network utilities

1

Chapter 1: Installing and Configuring OS-9®

19

1

These modules are simply merged into the end of
the bootfile created from the bootfile.ml
bootlist.

Making Network Configuration Changes

To configure the network parameters for SoftStax and Ethernet, one file needs to be
altered and one makefile needs to be run. To do this, complete the following steps:

1. Navigate to the MWOS\OS9000\MIPS64\PORTS\RBHM4000\SPF\ETC directory
and open the interfaces.conf file.

2. From the interfaces.conf file, fill in the correct IP address, broadcast address,
and netmask values. You can also supply the host name in this area as well.

3. Save the file.

Once you have saved the file, run the makefile in the directory listed in step one. This
makes the appropriate inetdb and inetdb2 modules.

Low-Level Network Configuration Changes

To configure the low-level Ethernet parameters, one file needs to be altered and one
makefile needs to be run. To do this, complete the following steps:

1. Navigate to the MWOS\OS9000\MIPS64\PORTS\RBHM4000\ROM\CNFGDATA
directory and open the config.des file.

2. From the config.des file, you will need to correctly define the macros for the IP
address, broadcast, subnet, and mac.

3. Run the makefile in the directory listed in step one and a new cnfgdata module
will be created. A coreboot can now be created with this configuration.

Because the Configuration Wizard configures the network in its own manner, if you are using
it to configure network parameters, the above changes are not needed. However, if you
choose to make the above changes, the Wizard will remain unaffected.

Because the Configuration Wizard configures the network in its own manner, if you are using
it to configure Ethernet parameters, the above changes are not needed. However, if you
choose to make the above changes, the Wizard will remain unaffected.

1

OS-9® for Toshiba RBHM4x00 Board Guide

20

1

1

21

Board Specific Reference

This chapter contains porting information specific to the Toshiba RBHM4x00 board. It
includes the following sections:

Boot Options

The Fastboot Enhancement

OS-9 Vector Mappings

Port Specific Utilities

2

1

OS-9® for Toshiba RBHM4x00 Board Guide

22

2

Boot Options
Default boot options for the Intel IXDP425 are listed below. The boot options can be
selected by pressing the space bar during system boot when the following message
appears on the serial console:

Press the spacebar for a booter menu

The configuration of these booters can be changed by altering the default.des file,
located in the following directory:

MWOS\OS9000\MIPS64\PORTS\RBHM4000\ROM

Booters can be configured to be either of these:

• Auto booters, which automatically attempt to boot in the same order as listed in the
auto booter array.

• Menu booters, from the defined menu booter array, which are chosen interactively
from the console command line after the boot menu displays.

Booting from Flash

When the rom_cnfg.h file has a defined ROM search list, the options bo and lr
appear in the boot menu. If no ROM search list is defined, N/A appears in the boot
menu. If an OS-9 bootfile is programmed into flash memory in the address range
defined in the port’s default.des file, the system can boot and run from flash.

rom_cnfg.h is located in the following directory:

MWOS\OS9000\MIPS64\PORTS\RBHM4000\ROM\ROMCORE

bo ROM boot: the system runs “in-place”, from the flash. This
makes it impossible to set a breakpoint or trace with the
debugger since the code in flash cannot be modified.

lr load to RAM boot: the system copies the ROM bootfile image
into RAM and runs from there. Thus, breakpoints and tracing will
work as expected.

Booting over a Serial Port via kermit

The system can download a bootfile in binary form over its serial port at speeds up to
38400 using the kermit protocol. Dots on the console indicate download progress.

ker kermit boot: The boot file is sent via kermit protocol into system
RAM and it runs from there.

Restart Booter

The restart booter enables a way to restart the bootstrap sequence.

q quit: Quit and reboot the board to restart the booting process.

1

Chapter 2: Board Specific Reference

23

2

Break Booter

The break booter allows entry to the system level debugger (if one exists). If the
debugger is not in the system the system resets.

break break: Break and enter the system level debugger Rombug.

Sample Boot Session and Messages

Below is a Toshiba RBHM4400 example boot using the bo boot option.

OS-9 Bootstrap for MIPS (Edition 68)

PCI device initialization - Completed

LLPRO100: Intel PCI EtherExpress Pro100 - PCI Device ID 0x1229
LLPRO100: PCI device located @ BUS:DEV [0000:000C]
LLPRO100: IP Address [010.020.003.205] MAC Address
[00:02:b3:09:e4:ce]
LLPRO100: Default Gateway 0x0A140201 Subnet Mask 0xFFFFFE00
LLPRO100: PCI I/O address 0xAFF00000
Now trying to Override autobooters.

Press the spacebar for a booter menu

BOOTING PROCEDURES AVAILABLE ------- <INPUT>

Boot over Ethernet (INTEL PRO100) -- <eb>
Boot embedded OS-9 in-place -------- <bo>
Copy embedded OS-9 to RAM and boot - <lr>
Kermit download -------------------- <ker>
Enter system debugger -------------- <break>
Restart the System ----------------- <q>

Select a boot method from the above menu: bo

Now searching memory ($9fc55000 - $9fffffff) for an OS-9 Kernel...

An OS-9 kernel was found at $9fc55000
A valid OS-9 bootfile was found.
+3
+5
$ mfree
Current total free RAM: 52824.00 K-bytes

1

OS-9® for Toshiba RBHM4x00 Board Guide

24

2

The Fastboot Enhancement
The Fastboot enhancements to OS-9 were added to address the needs of embedded
systems that require faster system bootstrap performance. The Fastboot concept exists
to inform OS-9 that the defined configuration is static and valid. This eliminate the
dynamic search OS-9 usually performs during the bootstrap process. It also allows the
system to perform for a minimal amount of runtime configuration. As a result, a
significant increase in bootstrap speed is achieved.

Overview

The Fastboot enhancement consists of a set of flags that control the bootstrap process.
Each flag informs some portion of the bootstrap code of a particular assumption, and
that the associated bootstrap functionality should be omitted.

One important feature of the Fastboot enhancement is the ability of the flags to
become dynamically altered during the bootstrap process. For example, the bootstrap
code might be configured to query dip switch settings, respond to device interrupts, or
respond to the presence of specific resources that indicate different bootstrap
requirements.

Another important feature of the Fastboot enhancement is its versatility. The
enhancement’s versatility allows for special considerations under a variety of
circumstances. This can be useful in a system in which most resources are known,
static, and functional, but whose additional validation is required during bootstrap for a
particular instance (such as a resource failure).

Implementation Overview

The Fastboot configuration flags have been implemented as a set of bit fields. One 32-
bit field has been dedicated for bootstrap configuration. This four-byte field is contained
within a set of data structures shared by the kernel and the ModRom sub-components.
Hence, the field is available for modification and inspection by the entire set of system
modules (both high-level and low-level).

Currently, there are six-bit flags defined, with eight bits reserved for user-definable
bootstrap functionality. The reserved user-definable bits are the high-order eight bits
(31-24). This leaves bits available for future enhancements. The currently defined bits
and their associated bootstrap functionality are listed in the following sections.

B_QUICKVAL

The B_QUICKVAL bit indicates that only the module headers of modules in ROM are
to be validated during the memory module search phase. Limiting validation in this
manner will omit the CRC check on modules, which may save you a considerable
amount of time. For example, if a system has many modules in ROM, in which access
time is typically longer than it is in RAM, omitting the CRC check will drastically decrease
the bootstrap time. Furthermore, since it is rare that data corruption will occur in ROM,
omitting the CRC check is a safe option.

In addition, the B_OKRAM bit instructs the low-level and high-level systems to accept
their respective RAM definitions without verification. Normally, the system probes

1

Chapter 2: Board Specific Reference

25

2

memory during bootstrap based on the defined RAM parameters. This method allows
system designers to specify a possible range of RAM the system will validate upon
startup; thus, the system can accommodate varying amounts of RAM. However, in an
embedded system (where the RAM limits are usually statically defined and presumed
to be functional) there is no need to validate the defined RAM list. Bootstrap time is
saved by assuming that the RAM definition is accurate.

B_OKROM

The B_OKROM bit causes acceptance of the ROM definition without probing for ROM.
This configuration option behaves similarly to the B_OKRAM option with the exception
that it applies to the acceptance of the ROM definition.

B_1STINIT

The B_1STINIT bit causes acceptance of the first init module found during cold-
start. By default, the kernel searches the entire ROM list passed up by the ModRom for
init modules before it takes the init module with the highest revision number.
Using the B_1STINIT in a statically defined system omits the extended init module
search, which can save a considerable amount of time.

B_NOIRQMASK

The B_NOIRQMASK bit instructs the entire bootstrap system to not mask interrupts for
the duration of the bootstrap process. Normally, the ModRom code and the kernel
cold-start mask interrupts for the duration of the system startup. However, in systems
with a well-defined interrupt system (systems that are calmed by the sysinit
hardware initialization code) and a requirement to respond to an installed interrupt
handler during startup, this option can be used. Its implementation will prevent the
ModRom and kernel cold-start from disabling interrupts. (This is useful in power-
sensitive systems that need to respond to “power-failure” oriented interrupts.)

B_NOPARITY

If the RAM probing operation has not been omitted, the B_NOPARITY bit causes the
system to not perform parity initialization of the RAM. Parity initialization occurs during
the RAM probe phase. The B_NOPARITY option is useful for systems that either
require no parity initialization or only require it for “power-on” reset conditions. Systems
that only require parity initialization for initial power-on reset conditions can dynamically
use this option to prevent parity initialization for subsequent “non-power-on” reset
conditions.

Implementation Details

This section describes the compile-time and runtime methods by which you can
control the bootstrap speed of your system.

Some portions of the system may still mask interrupts for short periods during the execution
of critical sections.

1

OS-9® for Toshiba RBHM4x00 Board Guide

26

2

Compile-time Configuration

The compile-time configuration of the bootstrap is provided by a pre-defined macro,
BOOT_CONFIG, which is used to set the initial bit-field values of the bootstrap flags.
You can redefine the macro for recompilation to create a new bootstrap configuration.
The new, over-riding value of the macro should be established as a redefinition of the
macro in the rom_config.h header file or a macro definition parameter in the
compilation command.

The rom_config.h header file is one of the main files used to configure the
ModRom system. It contains many of the specific configuration details of the low-level
system. Below is an example of how you can redefine the bootstrap configuration of
your system using the BOOT_CONFIG macro in the rom_config.h header file:

#define BOOT_CONFIG (B_OKRAM + B_OKROM + B_QUICKVAL)

Below is an alternate example showing the default definition as a compile switch in the
compilation command in the makefile:

SPEC_COPTS = -dNEWINFO –dNOPARITYINIT –dBOOT_CONFIG=0x7

This redefinition of the BOOT_CONFIG macro results in a bootstrap method, which
accepts the RAM and ROM definitions without verification. It also validates modules
solely on the correctness of their module headers.

Runtime Configuration

The default bootstrap configuration can be overridden at runtime by changing the
rinf->os->boot_config variable from either a low-level P2 module or from the
sysinit2()function of the sysinit.c file. The runtime code can query jumper
or other hardware settings to determine which user-defined bootstrap procedure
should be used. An example P2 module is shown below.

#define NEWINFO
#include <rom.h>
#include <types.h>
#include <const.h>
#include <errno.h>
#include <romerrno.h>
#include <p2lib.h>

error_code p2start(Rominfo rinf, u_char *glbls)
{

/* if switch or jumper setting is set… */
if (switch_or_jumper == SET) {

/* force checking of ROM and RAM lists */
rinf->os->boot_config &= ~(B_OKROM+B_OKRAM);

}
return SUCCESS;

}

If the override is performed in the sysinit2() function, the effect is not realized until
after the low-level system memory searches have been performed. This means that any
runtime override of the default settings pertaining to the memory search must be done from
the code in the P2 module code.

1

Chapter 2: Board Specific Reference

27

2

OS-9 Vector Mappings
This section contains the OS-9 vector mappings for the RBHM4x00 Embedded TX49
boards.

The MIPS64 standard defines exceptions 0x0-0x1f. The OS-9 system maps these one-
to-one. External interrupts from vector 0x0 expand to the virtual vector range shown
below by the vect49xx module.

Table 2-1. OS-9 IRQ Assignment for All MIPS64 Processors

OS-9 IRQ # MIPS64 Vector Description
0x0 Internal/External Interrupt
0x1 TLB Modification Exception
0x2 TLB Load Exception
0x3 TLB Store Exception
0x4 Address Error Exception (Read)
0x5 Address Error Exception (Write)
0x6 BUS Error Exception (Fetch)
0x7 BUS Error Exception (Read/Write)
0x8 Syscall Exception
0x9 Breakpoint Exception
0xa Reserved Instruction Exception
0xb Co-Processor Unusable Exception
0xc Arithmetic Overflow Exception
0xd Trap Exception
0xf Floating-point Exception
0x12 Precise Co-processor 2 Exception
0x16 MDMX Unusable Exception
0x17 Watchpoint Exception
0x18 Machine Check Exception
0x1e Cache Error

Table 2-2. Toshiba RBHM4x00 Specific IRQ Assignments

OS-9 IRQ # RBHM4x00 Specific Vector Description
0x20 User-state TLB Miss Exception
0x50 ECC Error
0x51 TX49 Write Timeout Error
0x52 INT[0] - Serial I/O DSR0
0x53 INT[1] - I/O Controller (FPGA) -- Serial I/O DSR0, PCI INTA/B/C/D
0x54 INT[2] - PCI INTB
0x55 INT[3] - On-board 10MB Ethernet
0x56 INT[4] - PCI INTA

1

OS-9® for Toshiba RBHM4x00 Board Guide

28

2

0x57 INT[5] - PCI INTB
0x58 Serial I/O 0
0x59 Serial I/O 1
0x5a DMA0[0]
0x5b DMA0[1]
0x5c DMA0[2]
0x5d DMA0[3]
0x5e Programmable Interrupt Controller
0x5f PCI DMA Controller
0x60 PCI Controller
0x61 Timer 0
0x62 Timer 1
0x63 Timer 2
0x64 Reserved
0x65 Reserved
0x66 PCI ERR
0x67 PCI PMC
0x68 Reserved
0x69 Reserved
0x6a Reserved
0x6b DMA1[0]
0x6c DMA1[1]
0x6d DMA1[2]
0x6e DMA1[3]
0x6f Reserved

Table 2-2. Toshiba RBHM4x00 Specific IRQ Assignments (Continued)

OS-9 IRQ # RBHM4x00 Specific Vector Description

1

Chapter 2: Board Specific Reference

29

2

Port Specific Utilities
Utilities for the Toshiba RBHM4x00 boards are located in the following directory:

MWOS/OS9000/MIPS64/PORTS/RBHM4000/CMDS

The following port specific utilities are included:

dmppci Shows PCI device information.

pciv Displays board PCI bus information.

pflash Programs On-board flash.

setpci Pokes PCI device settings.

1

OS-9® for Toshiba RBHM4x00 Board Guide

30

2

dmppci
Show PCI Information

Syntax

dmppci <bus_number> <device_number> <function_number> {<size>}

Description

dmppci displays PCI configuration information not normally available by other means,
except programming with the PCI library.

The following is an example display of an Intel Ethernet Pro 10/100 PCI board:

$ dmppci 0 12 0

 PCI DUMP Bus:0 Dev:12 Func:0 Size:64

VID DID CMD STAT CLASS RV CS IL IP LT HT BI MG ML SVID SDID
--- ---- ---- ---- ----- -- -- -- -- -- -- -- -- -- ---- ----
8086 1229 0007 0290 020000 08 08 53 01 20 00 00 08 38 8086 000c

BASE[0] BASE[1] BASE[2] BASE[3] BASE[4] BASE[5] CIS_P EXROM
-------- -------- -------- -------- -------- -------- -------- -----

08100000 0ff00001 08000000 00000000 00000000 00000000 00000000
00000000

Offset 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
--
0000 86 80 29 12 07 00 90 02 08 00 00 02 08 20 00 00
0010 00 00 10 08 01 00 f0 0f 00 00 00 08 00 00 00 00
0020 00 00 00 00 00 00 00 00 00 00 00 00 86 80 0c 00
0030 00 00 00 00 dc 00 00 00 00 00 00 00 53 01 08 38

1

Chapter 2: Board Specific Reference

31

2

pciv
PCI Configuration Space View

Syntax

pciv {[options]}

Options

-a Display base address information and size.

-r Display PCI routing information.

-i Show class information.

Description

The pciv utility allows visual indication of the status of the PCI bus.

The following is an example display:

$ pciv -a

BUS:DV:FU VID DID CMD STAT CLASS RV CS IL IP

000:12:00 8086 1229 0007 0290 020000 08 08 53 01
(C) [32-bit] base_addr[0] = 0x08100000 PCI/MEM 0xa8100000 Size = 0x00001000
(C) [32-bit] base_addr[1] = 0x0ff00001 PCI/IO 0xaff00000 Size = 0x00000040
(C) [32-bit] base_addr[2] = 0x08000000 PCI/MEM 0xa8000000 Size = 0x00100000
Network Controller [S]

1

OS-9® for Toshiba RBHM4x00 Board Guide

32

2

pflash
Program Toshiba Flash

Syntax

pflash {[options]} <filename>

Options

-b[=]addr Specify base address of flash (hex). The default is 0xbfc00000
for RBHM4200 and 0xbf000000 for RBHM4400.

-eu Erase used space only. This is the default mode of operation.

-ew Erase all of flash. This will erase all TrueFFS and/or OS-9 boot
code stored in the flash.

-i Print information about flash.

-ne Do not erase flash.

-nv Do not verify erase or write operations.

-q Do not display progress messages and spinning indicator.

-s[=]addr Specify write address for <filename> in hexadecimal. The
default start address is 0xbfc00000.

-u Leave flash part unlocked upon completion.

-z[[=]<file>] Read additional command line arguments from <file>. The
default <file> is standard input.

Description

The pflash utility allows programming of the Toshiba flash parts. The primary use is in
burning the OS-9 ROM or coreboot image into the on-board flash parts. This allows for
booting using the lr/bo booters.

pflash requires <filename>, -i, and/or -ew.

<filename>’s size need not be a multiple on the flash’s erase block size. pflash will
only reprogram the part of the flash that <filename> will occupy. The remainder of the
flash remains undisturbed. This feature allows for small updates within flash erase
blocks.

For this board, pflash does no locking nor unlocking of the flash parts. Thus, -u has
no effect.

1

Chapter 2: Board Specific Reference

33

2

setpci
Set PCI Value

Syntax

setpci <bus> <dev> <func> <offset> <size> {<value>}

Description

The setpci utility sets PCI configuration information not normally available by other
means, other than programming with the PCI library. The setpci utility can also read
a single location in PCI space. The following parameters are included:

<bus> PCI Bus Number 0..255.

<dev> PCI Device Number 0..32.

<func> PCI Function Number 0..7.

<offset> Offset value (e.g. command register offset = 4).

<size> Size b = byte, w = 16-bit word, or d = 32-bit double word.

<value> An optional value to write. If no <value> is specified, setpci
will read and display the value at the specified offset.

1

OS-9® for Toshiba RBHM4x00 Board Guide

34

2

35

A Board Specific Modules

This chapter describes the modules specifically written for the Toshiba RBHM4x00
board. It includes the following sections:

Port-Specific Low-Level System Modules

Common Low-Level System Modules

Port-Specific High-Level System Modules

Port-Specific High-Level Utilities

Common High-Level System Modules

OS-9® for Toshiba RBHM4x00 Board Guide

36

A

Port-Specific Low-Level System Modules
The following low-level system modules are tailored specifically for the Toshiba
RBHM4x00 board. They are located in the following directory:

MWOS/OS9000/MIPS64/PORTS/RBHM4000/CMDS/BOOTOBJS/ROM

cnfgdata contains low-level configuration data

cnfgfunc provides access services to the cnfgdata

commcnfg inits communication port defined in cnfgdata

conscnfg inits console port defined in cnfgdata

initext user-customizable system initialization module

io4900 low-level serial driver for serial ports

llne2000 low-level Ethernet driver module

llpro100 low-level Ethernet driver module

pciwalk inits devices found on the PCI bus

portmenu inits booters defined in the cnfgdata

romcore_4200 bootstrap code for the RBHM4200

romcore_4400 bootstrap code for the RBHM4400

rpciv low-level booter used to display PCI bus information

tmr4900 low-level timer module for TX49 processors

usedebug debugger configuration module

Common Low-Level System Modules
The following low-level system modules provide generic services for OS-9 Modular
ROM. They are located in the following directory:

MWOS/OS9000/MIPS64/CMDS/BOOTOBJS/ROM

bootsys provides booter registration services

console provides console services

dbgentry inits debugger entry point for system use

dbgserv provides debugger services

excption provides low-level exception services

flshcach provides low-level cache management services

hlproto provides user level code access to protoman

llbootp provides bootp services

llip provides low-level IP services

llkermit provides a booter that uses kermit protocol

Appendix A: Board Specific Modules

37

A

llslip provides low-level SLIP services

lltcp provides low-level TCP services

lludp provides low-level UDP services

notify provides state change information for use with LL and HL drivers

override provides a booter that allows a choice between menu and auto
booters

parser provides argument parsing services

protoman provides a protocol management module

restart provides a booter that causes a soft reboot of the system

romboot provides a booter that allows booting from ROM

rombreak provides a booter that calls the installed debugger

rombug provides a low-level system debugger

sndp provides low-level system debug protocol

srecord provides a booter that accepts S-Records

swtimer provides timer services via software loops

Port-Specific High-Level System Modules
The following OS-9 system modules are tailored specifically for the Toshiba RBHM4x00
board. Unless otherwise specified, each module is located in the following directory:

MWOS/OS9000/MIPS64/PORTS/RBHM4000/CMDS/BOOTOBJS

INIT/nodisk system configuration module for a diskless OS-9 boot

picsub programmable interrupt controller handling module

tk3927 system ticker module

hcsub provides a high speed timer interface used by the HawkEye
profiler (not present if HawkEye is not installed)

rtc1742 battery backed real-time clock module

sc3927 serial port driver. The descriptors for this driver are found in the
DESC/SC3927 sub-directory.

Descriptors /term1 /t1

term1 and t1 are assigned to SIO0. The connector for SIO0 is
labeled as PJ19/CH0.

Driver Name: sc3927

Default Baud Rate: 38,400

Default Parity: None

Default Data Bits: 8

OS-9® for Toshiba RBHM4x00 Board Guide

38

A

Default Stop Bits: 1

To use it: Select SIO0 in the Configuration Wizard.

Descriptors /term2 /t2

term2 and t2 are assigned to the SIO1. The connector for SIO1
is labeled as PJ20/CH1.

Driver Name: sc3927

Default Baud Rate 38,400

Default Parity: None

Default Data Bits: 8

Default Stop Bits: 1

To use it: Select SIO1 in the Configuration Wizard.

Baud Rates

The following baud rates are supported by the sc3927 driver:
75, 110, 150, 300, 600, 1200, 1800, 2000, 2400, 3600,
4800, 7200, 9600, 19200, 31250 and 38400.

vect49xx exception and interrupt handling code for TX49 series
processors.

Port-Specific High-Level Utilities
The following RBHM4x00-specific programs are provided. For more information about
their functions and syntax, enter the -? command-line option. They are located in the
following directory:

MWOS/OS9000/MIPS64/PORTS/RBHM4000/CMDS

dmppci Allows a specific PCI device’s configuration area to display.

pciv Displays configuration information about all available PCI
devices.

pflash_4200 Programs the on-board Toshiba flash devices on the RBHM4200
board. The module name in this file is pflash.

pflash_4400 Programs the on-board Toshiba flash devices on the RBHM4400
board. The module name in this file is pflash.

setpci Allows changes to the PCI configuration of devices.

Common High-Level System Modules
These files are located in the following directory:

MWOS/OS9000/MIPS64/CMDS/BOOTOBJS

kernel Provides all basic services for the OS-9 system.

cach49xx Provides cache control for the CPU cache hardware. The

Appendix A: Board Specific Modules

39

A

module name in this file is cache.

fpu64 Provides handling of the floating-point hardware. The module
name in this file is fpu.

ioman Provides common I/O support for the operating system.

mq Device descriptor for inter-process message queues.

msgman File manager that provides support for inter-process message
queues.

pcf Random block device management functions for MS-DOS FAT
format.

pipeman Memory FIFO buffer management for inter-process
communication.

rbf Generic random block device management functions for the
OS-9 format.

scf Sequential character device management functions.

spf Generic protocol device management function support.

ssm64 System Security Module—provides support for the CPU’s MMU
(Memory Management Unit). The module name in this file is
ssm.

OS-9® for Toshiba RBHM4x00 Board Guide

40

A

	OS-9® for Toshiba RBHM4x00 Board Guide
	Contents
	Installing and Configuring OS-9® Chapter 1
	Development Environment Overview
	Requirements and Compatibility
	Host Hardware Requirements (PC Compatible)
	Host Software Requirements (PC Compatible)
	Target Hardware Requirements

	Target and Host Setup
	Settings
	Switch Configuration to Run OS-9 or Toshiba HCP5 Boot Monitor
	Switch Configuration to Run OS-9
	Switch Configuration to Run HCP5 Monitor

	Connecting the Target to the Host
	Attaching the Cables
	Booting to the Boot Menu

	Building the OS-9 ROM Image
	Coreboot
	Bootfile
	Starting the Configuration Wizard
	Configuring Coreboot and Bootfile Options
	Ethernet Configuration (Coreboot)
	Ethernet Configuration (Bootfile)

	Building the Coreboot + Bootfile Image

	Transferring the ROM Image to the Target
	Optional Procedures
	Programming a ROM Image with the pflash Utility
	Flashed rom Image Issues

	Building with Makefiles
	Makefile Network Option
	Using Makefiles
	Making Network Configuration Changes
	Low-Level Network Configuration Changes

	Board Specific Reference Chapter 2
	Boot Options
	Booting from Flash
	Booting over a Serial Port via kermit
	Restart Booter
	Break Booter
	Sample Boot Session and Messages

	The Fastboot Enhancement
	Overview
	Implementation Overview
	B_QUICKVAL
	B_OKROM
	B_1STINIT
	B_NOIRQMASK
	B_NOPARITY

	Implementation Details
	Compile-time Configuration
	Runtime Configuration

	OS-9 Vector Mappings
	Port Specific Utilities
	Port-Specific Low-Level System Modules
	Common Low-Level System Modules
	Port-Specific High-Level System Modules
	Port-Specific High-Level Utilities
	Common High-Level System Modules

