
w w w. ra d i sy s . co m
Revision A • July 2006

OS-9® for MIPS Atlas TI 4KC
Core Board Guide

Version 4.7

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.7 of Microware OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

3

Contents

Installing and Configuring OS-9® 5
Development Environment Overview.. 6
Requirements and Compatibility... 6

Host Hardware Requirements (PC Compatible) .. 6
Host Software Requirements (PC Compatible).. 7
Target Hardware Requirements ... 7

Target and Host Setup ... 7
Jumper and Switch Settings .. 7
Installing the TFTP Server .. 7

Connecting the Target to the Host.. 8
Attaching the Cables ... 8
Booting to the Boot Menu .. 8

Building the OS-9 ROM Image .. 10
Coreboot ... 10
Bootfile... 10
Starting the Configuration Wizard ... 11

Configuring Coreboot Options ... 12
Configuring Bootfile Options .. 13

Transferring the ROM Image to the Target ... 14
Optional Procedures .. 15

Burning the OS-9 ROM Image into FLASH memory... 15
Building with Makefiles .. 16
romcore vs. romcore_eprom... 16

Makefile Network Option... 16
Using Makefiles .. 16
Making Network Configuration Changes ... 17
Low Level Network Configuration Changes .. 18

Board Specific Reference 19
The Fastboot Enhancement.. 20

Overview ... 20
Implementation Overview... 20

B_QUICKVAL.. 20
B_OKROM .. 21
B_1STINIT ... 21
B_NOIRQMASK ... 21
B_NOPARITY .. 21

Implementation Details.. 21
Compile-time Configuration.. 22
Runtime Configuration ... 22

OS-9 Vector Mappings... 23
Board Specific Modules 25

Low-Level System Modules .. 26

OS-9® for MIPS Atlas TI 4KC Core Board Guide

4

High-Level System Modules ... 26
Common System Modules List.. 26

1

5

Installing and Configuring OS-9®

This chapter describes installing and configuring OS-9® on the MIPS Atlas™ board. It
includes the following sections:

Development Environment Overview

Requirements and Compatibility

Target and Host Setup

Building the OS-9 ROM Image

Transferring the ROM Image to the Target

Optional Procedures

1

1

OS-9® for MIPS Atlas TI 4KC Core Board Guide

6

1

Development Environment Overview
Figure 1-1 shows a typical development environment for the MIPS board. The
components shown include the minimum required to enable OS-9 to run on the MIPS
Atlas™ board.

Figure 1-1. MIPS Atlas™ Development Environment

Requirements and Compatibility

Host Hardware Requirements (PC Compatible)

Your host PC must have the following minimum hardware characteristics:

• 32MB of RAM

• an Ethernet network card

Attach Ethernet cable
to the Ethernet port

Connect one end of serial
cable to DB9 Serial connector

Connect other end
 of serial cable to
COM1 on host PC

Atlas Development Board

U6

Before you begin, install the Microware OS-9 for MIPS CD-ROM on your host PC.

1

Chapter 1: Installing and Configuring OS-9®

7

1

Host Software Requirements (PC Compatible)

Your host PC must have the following software installed:

• Windows 95, 98, ME, 2000, or NT

Target Hardware Requirements

Your MIPS evaluation board requires the following hardware:

• a power supply

• an RS-232 null modem serial cable (for serial console)

• an Ethernet cable (for down-loading programs to the board)

Target and Host Setup

Jumper and Switch Settings

The factory default setting for the DIP switches will work with OS-9. If you need to
change any of the jumper or switch settings, please refer to the Atlas™ Developer’s Kit
Getting Started Manual.

Installing the TFTP Server

This section details the steps involved with setting up the Walusoft TFTP server on your
host machine. If you choose to use another TFTP server in place of the Walusoft TFTP
server, be certain to follow its directions and specifications.

To set up the Walusoft TFTP server on your host machine, complete the following
steps:

1. Load the product CD into the host machine’s CD ROM drive and let the CD
autorun. The installer’s dialog box appears.

2. Select Walusoft TFTPServer32Pro from the installer’s menu and follow the
installer’s directions to load the TFTP server on the host machine.

3. Start TFTPServer32Pro by selecting Start -> Programs -> TFTPServer ->
TFTPServer32. The Walusoft TFTP Server32 Pro splash screen appears. You will
need to set up the path to the outbound folder.

4. Select System -> Setup to display the Server Options dialog box.

5. Click on the Outbound tab and enter the following path in the Outbound file path
text box.
<drive>:\mwos\OS9000\MIPS32\PORTS\ATLAS_4KC\BOOTS\
INSTALL\PORTBOOT\

Before installing and configuring OS-9 on your MIPS evaluation board, refer to the hardware
documentation for information on hardware setup.

1

OS-9® for MIPS Atlas TI 4KC Core Board Guide

8

1

6. Click OK to accept the path. The TFTP server is now configured for use with the
Configuration Wizard and OS-9.

7. Minimize the TFTP server window to let the server run in the background.

Connecting the Target to the Host
Connecting the Atlas™ board to your host PC involves attaching the power, serial, and
Ethernet cables to the reference board. Once you have the board connected, you can
use the serial console in Hawk™ to verify the serial connection.

Attaching the Cables

1. Attach an Ethernet cable to the Ethernet connector on the Atlas™ board.

2. Connect a serial cable to the DB9 serial connector on the Atlas™ board for the
serial console.

3. Connect the other end of the serial cable to COM1 on the host PC. Depending on
your PC system, you may need either a straight or a reversed serial cable to make
this connection.

4. Following the instructions in the Atlas™ Developer’s Kit Getting Started Manual,
attach a PC power supply.

Booting to the Boot Menu

You may want to boot to the MIPS YAMON monitor prompt to verify that your serial
cable is connected properly. By default, the MIPS YAMON monitor runs at a baud rate
of 38400.

1. From the desktop, click Start and select Programs -> Microware -> OS-
9 for MIPS v3.0 -> Microware Hawk IDE to start the Microware Hawk
IDE.

2. If the Serial console window is not open, it can be opened from the Toolbar
Customization dialog (shown in Figure 1-2). (Select Customize ->
Toolbars... to open the Toolbar Customization dialog box.)

A standard null modem cable may not work. You may need a cable that has transmit and
receive swapped. For the Atlas™ board, be sure the hardware signals RTS/CTS, DSR and DTR
are connected correctly. Its default baud rate is 38400.

1

Chapter 1: Installing and Configuring OS-9®

9

1

Figure 1-2. Toolbar Customization dialog box

3. Once the Toolbar Customization dialog box is open, select Serial in the Toolbars
list box.

4. Click the Visible check box, then click the Close button. The Serial console
window opens. (The Serial window can be seen in Figure 1-3.)

Figure 1-3. Hawk Serial Console Window

5. Once you have the serial console window open, click on the Connect button in
the upper left corner of the serial console window. The Com Port Options dialog
box appears.

6. Click on the OK button because the default settings are correct. The message [Not
Connected] should change to [Connected].

7. Apply power to the board. The YAMON monitor boots the board. The display will
look similar to the following figure.

Connect
Disconnect

Terminal Settings

1

OS-9® for MIPS Atlas TI 4KC Core Board Guide

10

1

Figure 1-4. IDT SIM initial screen

Building the OS-9 ROM Image
The OS-9 ROM Image is a set of files and modules that collectively make up the OS-9
operating system. The specific ROM Image contents can vary from system to system
depending on hardware capabilities and user requirements.

To simplify the process of loading and testing OS-9, the ROM Image is generally divided
into two parts—the low-level image, called coreboot; and the high-level image, called
bootfile.

Coreboot

The coreboot image is generally responsible for initializing hardware devices and
locating the high-level (or bootfile) image as specified by its configuration. For example,
from a FLASH part or Ethernet network. It is also responsible for building basic
structures based on the image it finds and passing control to the kernel to bring up the
OS-9 system.

Bootfile

The bootfile image contains the kernel and other high-level modules (initialization
module, file managers, drivers, descriptors, applications). The image is loaded into
memory based on the device you select from the boot menu. The bootfile image
normally brings up an OS-9 shell prompt, but can be configured to automatically start
an application.

Microware provides a Configuration Wizard to create a coreboot image, a bootfile
image, or an entire OS-9 ROM Image. The wizard can also be used to modify an
existing image. The Configuration Wizard is automatically installed on your host PC
during the OS-9 installation process.

YAMON ROM Monitor, Revision 01.01.
Copyright (c) 1999-2000 MIPS Technologies, Inc. - All Rights Reserved.

For a list of available commands, type 'help'.

Compilation time = Jan 31 2000 16:07:08
Board type/revision = 0x00 (Atlas) / 0x00
Core board type/revision = 0x01 (CoreLV) / 0x00
FPGA revision = 0x0007
MAC address = 00.d0.a0.00.00.27
Board S/N = 0000000039
PCI bus frequency = 33 MHz
Processor ID/revision = 0x80 (MIPS 4Kc) / 0x01
Endianness = Big
CPU frequency = 80 MHz
CPU bus frequency = 40 MHz
Flash memory size = 36 MByte
RAM size = 32 MByte
First free RAM address = 0x80066628

YAMON>

1

Chapter 1: Installing and Configuring OS-9®

11

1

Starting the Configuration Wizard

The Configuration Wizard is the application used to build the coreboot, bootfile, or ROM
image. To start the Configuration Wizard, perform the following steps:

1. From the Windows desktop, select Start -> RadiSys -> OS-9 for
<product> -> Configuration Wizard. You should see the following
opening screen:

Figure 1-5. Configuration Wizard Opening Screen

2. Select your target board from the Select a board pull-down menu.

3. Select the Create new configuration radio button from the Select a
configuration menu and type in the name you want to give your ROM image in the
supplied text box. This names your new configuration, which can later be accessed
by selecting the Use existing configuration pull down menu.

4. Select the Advanced Mode radio button from the Choose Wizard Mode field and
click OK. The Wizard’s main window is displayed. This is the dialog from which you
will proceed to build your image. An example is shown in Figure 1-6.

1

OS-9® for MIPS Atlas TI 4KC Core Board Guide

12

1

Figure 1-6. Configuration Wizard Main Window

Configuring Coreboot Options

Most of the default options in the dialogs that control the configuration of the bootfile
are correct. There are a few functions, such as Ethernet, that need additional
information in order to be configured correctly. To set up the coreboot image, complete
the following steps.

1. From the menu bar, select Configure -> Select System Type.

2. Click on the RomCore tab and verify the Boot using YAMON romcore type option
button is selected.

3. Click on the ROM Memory List tab and verify that the Setting Based On drop-down
list box has either default or YAMON boot selected.

4. Click OK to save any changes.

5. To set up the coreboot networking, select Configure -> Coreboot -> Main
Configuration from the menu bar.

6. Click on the Debugger tab. Make sure Ethernet is selected in the Remote Debug
Connection area and Remote is selected in the Select Debugger area. Remote
debugging is enabled so that system-state debugging can be performed in Hawk.

7. Click on the Ethernet tab and enter the Ethernet address information in the
address text boxes. For most situations you will need to fill out the following text
boxes:

• IP Address

• IP Broadcast

1

Chapter 1: Installing and Configuring OS-9®

13

1

• Subnet Mask

• IP Gateway

If you are uncertain of the values for these text boxes, contact your system
administrator.

8. Click OK to close the window.

Configuring Bootfile Options

Most of the default options in the dialogs that control the configuration of the bootfile
are correct. There are a few functions, such as Ethernet, that need additional
information in order to be configured correctly. To configure your bootfile options,
complete the following steps:

1. If you want to use the target board across a network, you will need to configure the
Ethernet settings within the Configuration Wizard. To do this, select Configure -
> Bootfile -> Network Configuration from the Wizard’s main menu.

2. From the Network Configuration dialog, select the Interface Configuration
tab. From here you can select and enable the interface. For example, you can select
the appropriate Ethernet card from the list of options on the left and specify
whether you would like to enable IPv4 or IPv6 addressing. Figure 1-7 shows an
example of the Interface Configuration tab.

Figure 1-7. Bootfile -> Network Configuration -> Interface Configuration

1

OS-9® for MIPS Atlas TI 4KC Core Board Guide

14

1

3. Click on the SoftStax® Setup tab, and select Enable SoftStax.

4. Click OK to close the dialog box.

5. Select Configure -> Bootfile -> Disk Configuration from the menu
bar and verify that the default settings in the dialog box are acceptable to you.

6. Leave the other default settings alone and select Configure -> Build
Image.. from the menu bar to display the Master Builder window.

7. Select the following check boxes as they are appropriate to your setup:

• SoftStax (SPF) Support

• User State Debugging Modules

• If you are using a RAM disk, select Disk Support.

• If you are using a RAM disk, select Disk Utilities.

8. Click Coreboot + Bootfile and click Build. This will build the ROM image
that can be burned into flash memory. The name of the file containing the ROM
image is rom.S. It is in the Motorola S-record format. The file rom.s is located in
mwos\OS9000\MIPS32\PORTS\ATLAS_4KC\BOOTS\INSTALL\PORTBOOT.
This directory was specified as the outgoing directory when the TFTP server was set
up.

9. Click Finish and then select File -> Save Settings to save the
configuration.

10. Select File -> Exit to quit from the Configuration Wizard.

Transferring the ROM Image to the Target
In the previous section, you built a ROM image. To load this ROM image onto the target
board, complete the following steps:

1. The networking environment variables on the Atlas™ board need to be set up
before you use it for the first time. The ipaddr, subnetmask, bootfile, and
bootserver environment variables need to be set with the set command. To
set these variables, type the following commands at the YAMON prompt:
set ipaddr <Atlas™ board’s IP address>
set subnetmask <xxx.xxx.xxx.xxx>
set bootfile rom.S
set bootserver <IP address of the TFTP server>

To learn more about IPv4 and IPv6 functionalities, refer to the
Using LAN Communications manual, included with this product CD.

Contact your system administrator if you do not know the network values for your board.

1

Chapter 1: Installing and Configuring OS-9®

15

1

Download the OS-9 ROM image, rom.S, to the Atlas™ board using the following
load command at the YAMON prompt:
load

2. Enter the following command to start OS-9.
go 80070000

3. To be able to use Hawk to load and debug your applications, you need to start the
debugging daemons. Type the following command to start the debugging
daemons:

spfndpd<>>>/nil&

Optional Procedures
The following sections describe procedures you may perform once you have installed
and configured OS-9.

Burning the OS-9 ROM Image into FLASH memory

The Wizard can be used to build an OS-9 ROM image which is burned into the Atlas™
board’s 4 megabyte of bootable FLASH memory. This is explained in the following
steps.

1. Build a YAMON OS-9 ROM image with networking enabled as explained previously
in Configuring Bootfile Options on page 13.

2. Select Configure -> Bootfile -> Network Configuration.. to display
the networking dialog box. Make sure FTP is included in the boot by clicking on the
SoftStax Options tab and verifying that the ftp check box is selected.

3. Select Configure -> Bootfile->Configure System Options and click
on the Bootfile Options tab. Verify that the pflash button is checked to include the
pflash utility. This will include an 8 megabyte RAM disk called r1.

4. Use YAMON to boot the OS-9 ROM image.

5. Use the Wizard to build a flashable boot. Select Configure -> Select System
Type to display the Select System Type.. window, and check the OS-9 Image
in flash button under the RomCore tab. Under the ROM Memory List tab and
in the Setting Based On box, select OS-9 Image in flash. Click OK. Select
further Wizard options as needed. For example, it would be good to include the lr
option which is found on the Define Other Boot Options tab in the configure-
>coreboot->main configuration dialog box.

It will take about a minute to download the entire image.

If you have trouble with downloading the image, be sure the following items are correct:
• The environment variables on the board are set to correct values.
• The load command was correctly entered (use of spaces is correct).

• The path to the Outbound folder in your TFTP server is correct.
• The Ethernet connector is plugged in and the board has power applied to it.

1

OS-9® for MIPS Atlas TI 4KC Core Board Guide

16

1

6. Build the OS-9 ROM image.

7. In order to transfer the OS-9 ROM image, initialize the r1 descriptor with the iniz
command and change directory to r1 (chd r1). Use ftp to transfer the ROM file
to the Atlas board. To flash the image, type pflash -ri -f=rom. Then wait
until it is finished.

8. Reset the board.

Further OS-9 ROM images can be transferred with FTP and flashed as needed. A
common practice is to flash a coreboot only with the Ethernet boot (eb boot) option.
Then the wizard can be used to build bootfiles only. The bootfiles can be moved to
bootp servers. The Atlas can be booted then using bootp. This allows easy changes to
the bootfile without flashing all the time.

If it is desired to go back to YAMON after OS-9 has been flashed, use the standard
YAMON flashing procedure of transferring the YAMON image over the parallel port.

Building with Makefiles

Building boots with makefiles allows you greater control over which modules are
included in the boot. For the Atlas™ reference board, there is a directory in which boots
can be made. This is shown below:

MWOS\OS9000\MIPS32\PORTS\ATLAS_4KC\BOOTS\SYSTEMS\PORTBOOT

By altering the various .ml files within this directory, specific boots can be made. These
.ml files are described in a following section called Using Makefiles.

romcore vs. romcore_eprom

There are two romcore files for the ATLAS port. The romcore file is used for YAMON
boots, and the romcore_eprom file is used for OS-9 flash boots. The coreboot.ml
file can be changed to select the romcore file for the desired boot method.

Makefile Network Option

By default the makefile in the PORTBOOT directory will not include networking.
However, by setting the NETWORK macro definition to TRUE, the networking modules
will be included in the bootfile. In addition, be sure the IP and MAC addresses for the
board are setup correctly to avoid network problems.

Using Makefiles

When using a makefile to build boots, three bootlist files are used to include the
modules for booting. These bootlist files can be edited in order to include or not
include modules needed for your system. These bootlist files are located in
ATLAS_4KC\BOOTS\SYSTEMS\PORTBOOT. They are defined as follows:

coreboot.ml used to make the low-level boot (called
coreboot)

When using this file, the romcore file must be
input first, followed by the initext file. These
two files are not OS-9 modules. romcore is the

1

Chapter 1: Installing and Configuring OS-9®

17

1

raw code needed to bring the hardware to a known
stable state, while initext is a way for users to
extend the low level sysinit code without
changing sysinit.c or remaking romcore. Use
romcore for YAMON boots and
romcore_eprom for OS-9 FLASH boots.

The rest of the files included with coreboot.ml
are actual OS-9 modules. Low-level booters and
debuggers can be added or removed. In addition,
the low-level Ethernet and IP stack can be
uncommented in order to provide bootp booting.
Low-level Ethernet or low-level SLIP can also
provide system state debugging through Hawk.

bootfile.ml used to create the high-level boot (called
bootfile)

This file contains all of the modules needed to
produce an OS-9 system. This includes the kernel,
system protection, cache control, file managers,
and drivers and descriptors. Also included are
various utilities and application programs.

Not included with this file are networking modules.
Additional modules can be included or excluded
where appropriate.

spf_mods.ml contains the SoftStax modules and network utilities

These modules are simply merged into the end of
the bootfile created from the bootfile.ml
bootlist.

Making Network Configuration Changes

To configure the network parameters for SoftStax and Ethernet, two files need to be
changed and two makefiles need to be run. To do this, complete the following steps:

1. Navigate to MWOS\OS9000\MIPS32\PORTS\ATLAS_4KC\SPF\ETC directory
and open the interfaces.conf file.

2. From the interfaces.conf file, fill in the correct IP address, broadcast address,
and netmask values. You can also supply the host name in this area as well.

3. Save the file.

4. Once you have saved the file, run the makefile in the directory listed in step one.
This will make the appropriate inetdb and inetdb2 modules.

Only OEM licensees have the ability to make romcore. BLS licensees do not have this ability.

1

OS-9® for MIPS Atlas TI 4KC Core Board Guide

18

1

5. Once this is done, go to the
MWOS\OS9000\MIPS32\PORTS\ATLAS_4KC\SPF\SPSA9730 directory and
run the spfdesc.mak makefile. This will create the spsa0 descriptor. At this
point networking is configured for SoftStax.

Low Level Network Configuration Changes

To configure the low-level Ethernet parameters, one file needs to be altered and one
makefile needs to be run. To do this, complete the following steps:

1. Navigate to the MWOS\OS9000\MIPS32\PORTS\ATLAS_4KC\ROM\CNFGDATA
directory and open the config.des file.

2. In the config.des file, you will need to correctly define the macros for the IP,
broadcast, subnet, and MAC addresses.

3. Run the makefile in the directory listed in step one and a new cnfgdata module
will be created. A coreboot can now be created with this configuration.

Because the Configuration Wizard configures the network in its own manner, if you are using
it to configure network parameters, the above changes are not needed. However, if you
choose to make the above changes, the Wizard will remain unaffected.

Because the Configuration Wizard configures the network in its own manner, if you are using
it to configure Ethernet parameters, the above changes are not needed. However, if you
choose to make the above changes, the Wizard will remain unaffected.

1

19

Board Specific Reference

This chapter contains porting information specific to the MIPS board. It includes the
following sections:

The Fastboot Enhancement

OS-9 Vector Mappings

2

1

OS-9® for MIPS Atlas TI 4KC Core Board Guide

20

2

The Fastboot Enhancement
The Fastboot enhancements to OS-9 were added to address the needs of embedded
systems that require faster system bootstrap performance. The Fastboot concept exists
to inform OS-9 that the defined configuration is static and valid. This eliminate the
dynamic search OS-9 usually performs during the bootstrap process. It also allows the
system to perform for a minimal amount of runtime configuration. As a result, a
significant increase in bootstrap speed is achieved.

Overview

The Fastboot enhancement consists of a set of flags that control the bootstrap process.
Each flag informs some portion of the bootstrap code of a particular assumption, and
that the associated bootstrap functionality should be omitted.

One important feature of the Fastboot enhancement is the ability of the flags to
become dynamically altered during the bootstrap process. For example, the bootstrap
code might be configured to query dip switch settings, respond to device interrupts, or
respond to the presence of specific resources that indicate different bootstrap
requirements.

Another important feature of the Fastboot enhancement is its versatility. The
enhancement’s versatility allows for special considerations under a variety of
circumstances. This can be useful in a system in which most resources are known,
static, and functional, but whose additional validation is required during bootstrap for a
particular instance (such as a resource failure).

Implementation Overview

The Fastboot configuration flags have been implemented as a set of bit fields. One 32-
bit field has been dedicated for bootstrap configuration. This four-byte field is contained
within a set of data structures shared by the kernel and the ModRom sub-components.
Hence, the field is available for modification and inspection by the entire set of system
modules (both high-level and low-level).

Currently, there are six-bit flags defined, with eight bits reserved for user-definable
bootstrap functionality. The reserved user-definable bits are the high-order eight bits
(31-24). This leaves bits available for future enhancements. The currently defined bits
and their associated bootstrap functionality are listed in the following sections.

B_QUICKVAL

The B_QUICKVAL bit indicates that only the module headers of modules in ROM are
to be validated during the memory module search phase. Limiting validation in this
manner will omit the CRC check on modules, which may save you a considerable
amount of time. For example, if a system has many modules in ROM, in which access
time is typically longer than it is in RAM, omitting the CRC check will drastically decrease
the bootstrap time. Furthermore, since it is rare that data corruption will occur in ROM,
omitting the CRC check is a safe option.

In addition, the B_OKRAM bit instructs the low-level and high-level systems to accept
their respective RAM definitions without verification. Normally, the system probes

1

Chapter 2: Board Specific Reference

21

2

memory during bootstrap based on the defined RAM parameters. This method allows
system designers to specify a possible range of RAM the system will validate upon
startup; thus, the system can accommodate varying amounts of RAM. However, in an
embedded system (where the RAM limits are usually statically defined and presumed
to be functional) there is no need to validate the defined RAM list. Bootstrap time is
saved by assuming that the RAM definition is accurate.

B_OKROM

The B_OKROM bit causes acceptance of the ROM definition without probing for ROM.
This configuration option behaves similarly to the B_OKRAM option with the exception
that it applies to the acceptance of the ROM definition.

B_1STINIT

The B_1STINIT bit causes acceptance of the first init module found during cold-
start. By default, the kernel searches the entire ROM list passed up by the ModRom for
init modules before it takes the init module with the highest revision number.
Using the B_1STINIT in a statically defined system omits the extended init module
search, which can save a considerable amount of time.

B_NOIRQMASK

The B_NOIRQMASK bit instructs the entire bootstrap system to not mask interrupts for
the duration of the bootstrap process. Normally, the ModRom code and the kernel
cold-start mask interrupts for the duration of the system startup. However, in systems
with a well-defined interrupt system (systems that are calmed by the sysinit
hardware initialization code) and a requirement to respond to an installed interrupt
handler during startup, this option can be used. Its implementation will prevent the
ModRom and kernel cold-start from disabling interrupts. (This is useful in power-
sensitive systems that need to respond to “power-failure” oriented interrupts.)

B_NOPARITY

If the RAM probing operation has not been omitted, the B_NOPARITY bit causes the
system to not perform parity initialization of the RAM. Parity initialization occurs during
the RAM probe phase. The B_NOPARITY option is useful for systems that either
require no parity initialization or only require it for “power-on” reset conditions. Systems
that only require parity initialization for initial power-on reset conditions can dynamically
use this option to prevent parity initialization for subsequent “non-power-on” reset
conditions.

Implementation Details

This section describes the compile-time and runtime methods by which you can
control the bootstrap speed of your system.

Some portions of the system may still mask interrupts for short periods during the execution
of critical sections.

1

OS-9® for MIPS Atlas TI 4KC Core Board Guide

22

2

Compile-time Configuration

The compile-time configuration of the bootstrap is provided by a pre-defined macro,
BOOT_CONFIG, which is used to set the initial bit-field values of the bootstrap flags.
You can redefine the macro for recompilation to create a new bootstrap configuration.
The new, over-riding value of the macro should be established as a redefinition of the
macro in the rom_cnfg.h header file or a macro definition parameter in the
compilation command.

The rom_cnfg.h header file is one of the main files used to configure the ModRom
system. It contains many of the specific configuration details of the low-level system.
Below is an example of how you can redefine the bootstrap configuration of your
system using the BOOT_CONFIG macro in the rom_cnfg.h header file:

#define BOOT_CONFIG (B_OKRAM + B_OKROM + B_QUICKVAL)

Below is an alternate example showing the default definition as a compile switch in the
compilation command in the makefile:

SPEC_COPTS = -dNEWINFO –dNOPARITYINIT –dBOOT_CONFIG=0x7

This redefinition of the BOOT_CONFIG macro results in a bootstrap method, which
accepts the RAM and ROM definitions without verification. It also validates modules
solely on the correctness of their module headers.

Runtime Configuration

The default bootstrap configuration can be overridden at runtime by changing the
rinf->os->boot_config variable from either a low-level P2 module or from the
sysinit2()function of the sysinit.c file. The runtime code can query jumper
or other hardware settings to determine which user-defined bootstrap procedure
should be used. An example P2 module is shown below.

#define NEWINFO
#include <rom.h>
#include <types.h>
#include <const.h>
#include <errno.h>
#include <romerrno.h>
#include <p2lib.h>

error_code p2start(Rominfo rinf, u_char *glbls)
{

/* if switch or jumper setting is set… */
if (switch_or_jumper == SET) {

/* force checking of ROM and RAM lists */
rinf->os->boot_config &= ~(B_OKROM+B_OKRAM);

}
return SUCCESS;

}

If the override is performed in the sysinit2() function, the effect is not realized until
after the low-level system memory searches have been performed. This means that any
runtime override of the default settings pertaining to the memory search must be done from
the code in the P2 module code.

1

Chapter 2: Board Specific Reference

23

2

OS-9 Vector Mappings
This section contains the vector mappings for the Atlas™ board.

Table 2-1 shows the OS9 IRQ assignment for the target board.

Table 2-1. IRQ Assignments

OS9 IRQ # MIPS Function

0x40 On-board interrupt controller

0x45 CPU internal counter

0x48 16550 serial controller

0x49 Timer 0

0x4C Real time Clock

0x4D Core card low priority interrupt

0x4E Core card high priority interrupt

0x50 Compact PCI IntA#

0x51 Compact PCI IntB#

0x52 Compact PCI IntC#

0x53 Compact PCI IntD#

0x54 Enum# signal from PCI backplane

0x55 DEG# signal from PCI backplane

0x56 Indicates ATX PSU about to fail

0x57 Primary PCI INTA# (PCI slot only)

0x58 Primary PCI INTB# (includes all SAA9730 devices)

0x59 Primary PCI INTC# (includes SCSI)

0x5A Primary PCI INTD# (PCI slot only)

0x5B Primary PCI SER R# signal

1

OS-9® for MIPS Atlas TI 4KC Core Board Guide

24

2

25

A Board Specific Modules

This chapter describes the modules specifically written for the MIPS 79S334 boards. It
includes the following sections:

<Bold><links>Low-Level System Modules

<Bold><links>High-Level System Modules

<Bold><links>Common System Modules List

OS-9® for MIPS Atlas TI 4KC Core Board Guide

26

A

Low-Level System Modules
The following low-level system modules are tailored specifically for the Atlas™ board.
They are located in the following directory:

MWOS/OS9000/MIPS32/PORTS/ATLAS_4KC/CMDS/BOOTOBJS/ROM

cnfgdata contains low-level configuration data

cnfgfunc provides access services to the cnfgdata

commcnfg inits communication port defined in cnfgdata

conscnfg inits console port defined in cnfgdata

initext user-customizable system initialization module

io16550 ROM based serial IO driver

llsa9730 Low-level Ethernet ROM driver

portmenu inits booters defined in the cnfgdata

romcore bootstrap code

tmratlas ROM timer services

usedebug debugger configuration module

High-Level System Modules
The following OS-9 system modules are tailored specifically for the MIPS Atlas™ board.
Unless otherwise specified, each module is located in the following directory:

MWOS/OS9000/MIPS32/PORTS/ATLAS_4KC/CMDS/BOOTOBJS

counter Dummy IRQ handler that handles MIPS 32 counter
interrupts

sc16550 Serial driver for the 16550 UART

pcirq Provide interrupt acknowledge and dispatching
support for the 32334 on-chip interrupt controller.

rtc1687 Real time clock module for IC87 real time clock
device

rtcinit Setup module for the real time clock device

sc9730 Serial driver for SAA9730 serial device

tkatlas System clock module

vectmips32 Vector module for MIPS 32

Common System Modules List
The following low-level system modules provide generic services for OS9000 Modular
ROM. Your board port may or may not have these modules depending on your
reference board’s capabilities.They are located in the following directory:

MWOS/OS9000/MIPS32/CMDS/BOOTOBJS/ROM

bootsys provides booter registration services

Appendix A: Board Specific Modules

27

A

console provides console services

dbgentry inits debugger entry point for system use

dbgserv provides debugger services

excption provides low-level exception services

fdc765 provides PC style floppy support

fdman is a target-independent booter support module
providing general booting services for RBF file
systems

flboot is a SCSI floptical drive disk booter

flshcach provides low-level cache management services

fsboot is a SCSI TEAC floppy disk drive booter

hlproto provides user level code access to protoman

hsboot is a SCSI hard disk drive booter

ide provides target-specific standard IDE support,
including PCMCIA ATA PC cards

llbootp provides bootp services

llip provides low-level IP services

llkermit provides a booter that uses kermit protocol

llslip provides low-level SLIP services

lltcp provides low-level TCP services

lludp provides low-level UDP services

notify provides state change information for use with LL
and HL drivers

override provides a booter that allows a choice between
menu and auto booters

parser provides argument parsing services

pcman provides a booter that reads MS-DOS file system

protoman provides a protocol management module

restart provides a booter that causes a soft reboot of the
system

romboot provides a booter that allows booting from ROM

rombreak provides a booter that calls the installed debugger

rombug provides a low-level system debugger

scsiman is a target-independent booter support module
that provides general SCSI command protocol
services

sndp provides low-level system debug protocol

srecord provides a booter that accepts S-Records

swtimer provides timer services via software loops

tsboot is a SCSI TEAC tape drive booter

OS-9® for MIPS Atlas TI 4KC Core Board Guide

28

A

type41 is a primary partition type

vsboot is a SCSI archive viper tape drive booter

	OS-9® for MIPS Atlas TI 4KC Core Board Guide
	Contents
	Development Environment Overview
	Requirements and Compatibility
	Host Hardware Requirements (PC Compatible)
	Host Software Requirements (PC Compatible)
	Target Hardware Requirements

	Target and Host Setup
	Jumper and Switch Settings
	Installing the TFTP Server

	Connecting the Target to the Host
	Attaching the Cables
	Booting to the Boot Menu

	Building the OS-9 ROM Image
	Coreboot
	Bootfile
	Starting the Configuration Wizard
	Configuring Coreboot Options
	Configuring Bootfile Options

	Transferring the ROM Image to the Target
	Optional Procedures
	Burning the OS-9 ROM Image into FLASH memory
	Building with Makefiles
	romcore vs. romcore_eprom
	Makefile Network Option
	Using Makefiles
	Making Network Configuration Changes
	Low Level Network Configuration Changes

	The Fastboot Enhancement
	Overview
	Implementation Overview
	B_QUICKVAL
	B_OKROM
	B_1STINIT
	B_NOIRQMASK
	B_NOPARITY

	Implementation Details
	Compile-time Configuration
	Runtime Configuration

	OS-9 Vector Mappings
	Low-Level System Modules
	High-Level System Modules
	Common System Modules List

