
w w w. ra d i sy s . co m
Revision A • July 2006

OS-9® for IDT 79EB355
Board Guide

Version 4.7

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.7 of Microware OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

3

Contents

Installing and Configuring OS-9® 5
Development Environment Overview.. 6
Requirements and Compatibility... 6

Host Hardware Requirements (PC Compatible) .. 6
Host Software Requirements (PC Compatible).. 7
Target Hardware Requirements ... 7

Target and Host Setup ... 7
Installing the TFTP Server .. 7

Connecting the Target to the Host.. 7
Attaching the Cables ... 8
Booting to the Boot Menu .. 8

Building the OS-9 ROM Image .. 9
Coreboot ... 10
Bootfile... 10
Using the Configuration Wizard... 10
Configuring Coreboot Options... 12
Configuring Bootfile Options.. 13

Transferring the ROM Image to the Target ... 14
Optional Procedures .. 15

Building with Makefiles .. 15
EPROMCORE vs. PORTBOOT... 15
Makefile Network Option... 16
Using Makefiles .. 16
Making Network Configuration Changes ... 17
Low Level Network Configuration Changes .. 17

Board Specific Reference 19
The Fastboot Enhancement.. 20

Overview ... 20
Implementation Overview... 20

B_QUICKVAL.. 20
...
B_OKROM .. 21
...
B_1STINIT ... 21
...
B_NOIRQMASK ... 21
...
B_NOPARITY .. 21

Implementation Details.. 21
Compile-time Configuration.. 22
Runtime Configuration ... 22

OS-9 Vector Mappings... 23

OS-9® for IDT 79EB355 Board Guide

4

Low-Level System Modules .. 30
High-Level System Modules ... 30
Common System Modules List.. 30

1

5

Installing and Configuring OS-9®

This chapter describes installing and configuring OS-9® on the MIPS IDT 79EB355
board. It includes the following sections:

Development Environment Overview

Requirements and Compatibility

Target and Host Setup

Building the OS-9 ROM Image

Transferring the ROM Image to the Target

Optional Procedures

1

1

OS-9® for IDT 79EB355 Board Guide

6

1

Development Environment Overview
Figure 1-1 shows a typical development environment for the IDT 79EB355 board. The
following illustration shows the minimum equipment required for software
development using OS-9 on the MIPS IDT 79EB355 board.

Figure 1-1. IDT79EB355 Development Environment

Requirements and Compatibility

Host Hardware Requirements (PC Compatible)

Your host PC must have the following minimum hardware characteristics:

• 32MB of RAM

• an Ethernet network card

Attach Ethernet
cable to J3

Connect one
end of serial
cable to J1

 LCD

J1 J2

 J3

Host Development System

Target System

Connect other end
 of serial cable to
COM1 on host PC

Before you begin, install the Microware OS-9 for MIPS CD-ROM on your host PC.

1

Chapter 1: Installing and Configuring OS-9®

7

1

Host Software Requirements (PC Compatible)

Your host PC must have the following software installed:

• Windows 95, 98, ME, 2000, or NT

Target Hardware Requirements

Your MIPS evaluation board requires the following hardware:

• a power supply

• an RS-232 null modem serial cable (for serial console)

• an Ethernet cable or a second RS-232 null modem serial cable (for downloading
programs to the board)

Target and Host Setup

Installing the TFTP Server

This section details the steps involved with setting up the Walusoft TFTP server on your
host machine. If you choose to use another TFTP server in place of the Walusoft, be
certain to follow its directions and specifications.

To set up the Walusoft TFTP server on your host machine, complete the following
steps:

1. Load the product CD into the host machine’s CD ROM drive and let the CD
autorun. The installer’s dialog box appears.

2. Select Walusoft TFTPServer32Pro from the installer’s menu and follow the
installer’s directions to load the TFTP server on the host machine.

3. Start TFTPServer32Pro by selecting Start -> Programs -> TFTPServer ->
TFTPServer32. The Walusoft TFTP Server32 Pro splash screen appears. You will
need to set up the path to the outbound folder.

4. Select System -> Setup to display the Server Options dialog box.

5. Click on the Outbound tab and enter the following path in the Outbound file path
text box.
<drive>:\mwos\OS9000\MIPS32\PORTS\IDT_79EB355\BOOTS\INSTA
LL\PORTBOOT\

6. Click OK to accept the path. The TFTP server is now configured for use with the
Configuration Wizard and OS-9.

7. Minimize the TFTP server window to let the server run in the background.

Connecting the Target to the Host
Connecting the IDT 79EB355 to your host PC involves attaching the power, serial, and
Ethernet cables to the reference board. Once you have the board connected, you can
use the serial console in Hawk™ to verify the serial connection.

1

OS-9® for IDT 79EB355 Board Guide

8

1

Attaching the Cables

1. Attach an Ethernet cable to connector J3 on the IDT 79EB355 board.

2. Connect a serial cable to connector J1 on the IDT 79EB355 board. Connector J1 is
used for the serial console.

3. Connect the other end of the serial cable to COM1 on the host PC. Depending on
your PC system, you may need either a straight or a reversed serial cable to make
this connection.

4. Following the instructions in the 79EB355 Evaluation Board Manual, attach a PC
power supply.

Booting to the Boot Menu

You may want to boot to the IDT System Integration Manager prompt to verify that your
serial cable is connected properly.

1. From the desktop, click Start and select Programs -> Microware ->
Microware OS-9 for MIPS v3.0 -> Microware Hawk IDE to start the
Microware Hawk IDE.

2. If the Serial console window is not open, it can be opened from the Toolbar
Customization dialog (shown in Figure 1-2). (Select Tools -> Customize ->
Toolbars to open the Toolbar Customization dialog.)

Figure 1-2. Toolbar Customization dialog box

3. Once the Toolbar Customization dialog box is open, select Serial in the Toolbars
list box.

4. Click the Visible check box, then click the Close button. The Serial console
window opens. (The Serial window can be seen in Figure 1-3.)

1

Chapter 1: Installing and Configuring OS-9®

9

1

Figure 1-3. Hawk Serial Console Window

5. Once you have the serial console window open, click on the Connect button in
the upper left corner of the serial console window. The Com Port Options dialog
box appears.

6. Click on the OK button because the default settings are correct. The message [Not
Connected] should change to [Connected].

7. Apply power to the board. The IDT System Integration Manager boots the board.
The display looks similar to the following figure.

Figure 1-4. IDT SIM initial screen

Building the OS-9 ROM Image
The OS-9 ROM image is a set of files and modules that collectively make up the OS-9
operating system. The specific ROM Image contents can vary from system to system
depending on hardware capabilities and user requirements.

To simplify the process of loading and testing OS-9, the ROM Image is generally divided
into two parts—the low-level image, called coreboot; and the high-level image, called
bootfile.

Connect
Disconnect

Terminal Settings

IDT System Integration Manager Ver. 10.1 April 2001
Copyright 1994-2001 Integrated Device Technology, Inc.

RC32355 CPU, 32-bit, Big Endian, MIPS-II, Write-Back cache
Console: 9600 baud

Used for Ethernet Storage: 0xA1F35000 - 0xA1F75000
Instruction Cache: 8 KB, Data Cache: 2 KB
Memory Configuration: SDRAM only.
Primary User Memory: 0xA008AD78 to 0xA1FBFFFF. Size: 31956 KB

CAUTION: "C" time functions such as clock() depend on the frequency of the

1

OS-9® for IDT 79EB355 Board Guide

10

1

Coreboot

The coreboot image is generally responsible for initializing hardware devices and
locating the high-level (or bootfile) image as specified by its configuration. For example
from a FLASH part or Ethernet network. It is also responsible for building basic
structures based on the image it finds and passing control to the kernel to bring up the
OS-9 system.

Bootfile

The bootfile image contains the kernel and other high-level modules (initialization
module, file managers, drivers, descriptors, applications). The image is loaded into
memory based on the device you select from the boot menu. The bootfile image
normally brings up an OS-9 shell prompt, but can be configured to automatically start
an application.

Microware provides a Configuration Wizard to create a coreboot image, a bootfile
image, or an entire OS-9 ROM image. The wizard can also be used to modify an
existing image. The Configuration Wizard is automatically installed on your host PC
during the OS-9 installation process.

Using the Configuration Wizard

The Configuration Wizard is the application used to build the coreboot, bootfile, or ROM
image. To start the Configuration Wizard, perform the following steps:

1. From the Windows desktop, select Start -> RadiSys -> Microware OS-9
for <product> -> Configuration Wizard. You should see the following
opening screen:

1

Chapter 1: Installing and Configuring OS-9®

11

1

Figure 1-5. Configuration Wizard Opening Screen

2. Select your target board from the Select a board pull-down menu.

3. Select the Create new configuration radio button from the Select a
configuration menu and type in the name you want to give your ROM image in the
supplied text box. This names your new configuration, which can later be accessed
by selecting the Use existing configuration pull down menu.

4. Select the Advanced Mode radio button from the Choose Wizard Mode field and
click OK. The Wizard’s main window is displayed. This is the dialog from which you
will proceed to build your image. An example is shown in Figure 1-6.

1

OS-9® for IDT 79EB355 Board Guide

12

1

Figure 1-6. Configuration Wizard Main Window

Configuring Coreboot Options

Most of the default options in the dialogs that control the configuration of the coreboot
are correct. There are a few functions, such as Ethernet, that need additional
information in order to be configured correctly. To set up the coreboot image, complete
the following steps.

1. From the menu bar, select Configure -> Coreboot -> Main
Configuration.

2. Click on the Debugger tab. Make sure Ethernet is selected in the Remote Debug
Connection area and Remote is selected in the Select Debugger area. Remote
debugging is enabled so that system-state debugging can be performed in Hawk.

3. Click on the Ethernet tab and enter the Ethernet address information in the
address text boxes. For most situations you will need to fill out the following text
boxes:

• IP Address

• IP Broadcast

• Subnet Mask

• IP Gateway

If you are uncertain of the values for these text boxes, contact your system
administrator.

4. Click OK to close the window.

1

Chapter 1: Installing and Configuring OS-9®

13

1

Configuring Bootfile Options

Most of the default options in the dialogs that control the configuration of the bootfile
are correct. There are a few functions, such as Ethernet, that need additional
information in order to be configured correctly. To configure your bootfile options,
complete the following steps:

1. If you want to use the target board across a network, you will need to configure the
Ethernet settings within the Configuration Wizard. To do this, select Configure -
> Bootfile -> Network Configuration from the Wizard’s main menu.

2. From the Network Configuration dialog, select the Interface Configuration
tab. From here you can select and enable the interface. For example, you can select
the appropriate Ethernet card from the list of options on the left and specify
whether you would like to enable IPv4 or IPv6 addressing. Figure 1-7 shows an
example of the Interface Configuration tab.

Figure 1-7. Bootfile -> Network Configuration -> Interface Configuration

To learn more about IPv4 and IPv6 functionalities, refer to the
Using LAN Communications manual, included with this product CD.

Contact your system administrator if you do not know the network values for your board.

1

OS-9® for IDT 79EB355 Board Guide

14

1

3. Click on the SoftStax® Setup tab, and select Enable SoftStax.

4. Click OK to close the dialog box.

5. Select Configure -> Bootfile -> Disk Configuration.. from the menu
bar and verify that the default settings in the dialog box are acceptable to you.

6. Leave the other default settings alone and select Configure -> Build
Image.. from the menu bar to display the Master Builder window.

7. Select the following check boxes as they are appropriate to your setup:

• SoftStax (SPF) Support

• User State Debugging Modules

• If you are using a RAM disk, select Disk Support.

• If you are using a RAM disk, select Disk Utilities.

8. Click Coreboot + Bootfile and click Build. This will build the ROM image
that can be burned into flash memory. The name of the file containing the ROM
image is rom.S. It is in the Motorola S-record format. The file rom.s is located in
mwos\OS9000\MIPS32\PORTS\
IDT_79EB355\BOOTS\INSTALL\PORTBOOT. This directory was specified as
the outgoing directory when the TFTP server was set up.

9. Click Finish and then select File -> Save Settings to save the
configuration.

10. Select File -> Exit to quit from the Configuration Wizard.

Transferring the ROM Image to the Target
In the previous section, you built a ROM image. To load this ROM image onto the target
board, complete the following steps:

1. The networking environment variables on the IDT board needs to be set up before
you use it for the first time. The netaddr, ethaddr, netmask, bootserver,
and bootfile environment variables need to be set with the setenv
command. To set these variables, type the following commands at the IDT SIM
(System Integration Manager) prompt:
setenv netaddr <IDT board’s IP address>
setenv ethaddr <IDT board’s MAC address>
setenv netmask <Your network’s subnet mask>
setenv bootserver <your host machine’s IP address>
setenv bootfile rom.S

1

Chapter 1: Installing and Configuring OS-9®

15

1

Download the OS-9 ROM image, rom.S, to the IDT board using the following load
command at the IDT SIM (System Integration Manager) prompt:
l -t <Host Machine’s IP address>:rom.S

2. Enter the following command to start OS-9.
go 80200000

3. To be able to use Hawk to load and debug your applications, you need to start the
debugging daemons. Type the following command to start the debugging
daemons:

spfndpd<>>>/nil&

Optional Procedures
The following sections detail procedures you may perform once you have installed and
configured OS-9.

Building with Makefiles

Building boots with makefiles allows you greater control over which modules are
included in the boot. For the IDT79EB355 reference board, there are two directories in
which boots can be made. These are shown below:

MWOS/OS9000/MIPS32/PORTS/IDT_79EB355/BOOTS/SYSTEMS/IDTSIM

In the above directory, boots can be made that use the IDT SIM (System Integration
Manager) to load the OS-9 ROM image.

MWOS/OS9000/MIPS32/PORTS/IDT_79EB355/BOOTS/SYSTEMS/PORTBOOT

In the above directory, boots can be made that can be burned into the flash parts on
the 79EB355 reference board. The boots in the flash parts replace the IDT SIM.

EPROMCORE vs. PORTBOOT

The difference between the two boots explained in the previous section is the memory
lists. When using the IDT SIM to boot OS-9, the part of the RAM where the bootfile is
located must be allocated as ROM. When not using the IDT SIM (instead using OS-9 in

It will take six or seven minutes to download the entire image.

Due to the ARP time-out on the host, downloading the OS-9 image to the target may not be
completed successfully. If this should happen, you will need to set the permanent ARP entry
on the host machine. For example, if you are a Windows 98 user, you should go to the MS-
DOS comand prompt and type the following command:
arp -s <target IP address> <target mac address>
If you have trouble with downloading the image, be sure the following items are correct:

• The environment variables on the board are set to correct values.
• The load command was correctly entered (use of spaces is correct).
• The path to the Outbound folder in your TFTP server is correct.

• The Ethernet connector is plugged in and the board has power applied to it.

1

OS-9® for IDT 79EB355 Board Guide

16

1

the flash), the full RAM can be used for system memory. This also gives a wider range
of booting options.

The memory list difference not only shows up in a different romcore, but also in the
different init modules as well. Hence there is a separate set of files for EPROMCORE in
the subsequent PORTBOOT directory. There is also the EPROM macro definition and
condition that selects the appropriate memory list for romcore and the init modules.
This EPROM conditional is set in the systype.h file and the INIT/default.des
file.

Makefile Network Option

By default the makefile in the IDTSIM and PORTBOOT directories will not include
networking. However, by setting the network macro definition to TRUE, the networking
modules will be included in the bootfile. In addition, be sure the IP and MAC addresses
for the board are set up correctly to avoid network problems.

Using Makefiles

When using a makefile to build boots, three bootlist files are used to include the
modules for booting. These bootlist files can be edited in order to include or not
include modules needed for your system. These bootlist files are located in
IDT_79EB355/BOOTS/SYSTEMS/PORTBOOT and are defined as follows:

coreboot.ml used to make the low-level boot (called
coreboot)

When using this file, the romcore file must be
input first, followed by the initext file. These
two files are not OS-9 modules. romcore is the
raw code needed to bring the hardware to a known
stable state, while initext is a way for users to
extend the low level sysinit code without
changing sysinit.c or remaking romcore.

The rest of the files included with coreboot.ml
are actual OS-9 modules. Low-level booters and
debuggers can be added or removed. In addition,
the low-level Ethernet, IP stack, and SCSI system
can be uncommented in order to provide bootp
booting and/or SCSI booting. Low-level Ethernet or
low-level SLIP can also provide system state
debugging through Hawk.

bootfile.ml used to create the high-level boot (called
bootfile)

This file contains all of the modules needed to
produce an OS-9 system. This includes the kernel,
system protection, cache control, file managers,
and drivers and descriptors. Also included are
various utilities and application programs.

Only OEM licensees have the ability to make romcore. BLS licensees do not have this ability.

1

Chapter 1: Installing and Configuring OS-9®

17

1

Not included with this file are networking modules.
Additional modules can be included or excluded
where appropriate.

spf_mods.ml contains the SoftStax modules and network utilities

These modules are simply merged into the end of
the bootfile created from the bootfile.ml
bootlist.

Making Network Configuration Changes

To configure the network parameters for SoftStax and Ethernet, two files need to be
changed and two makefiles need to be run. To do this, complete the following steps:

1. Go to the MWOS/OS9000/MIPS32/PORTS/IDT_79EB355/SPF/ETC directory
and open the interfaces.conf file.

2. On the line in the interfaces.conf file that starts with #enet0, delete the #
and fill in the correct IP address, broadcast address, and netmask values. Similarly,
you can supply the host name in this file.

3. Save the file.

4. Once you have saved the file, run the makefile in the directory listed in step one.
This will make the appropriate inetdb and inetdb2 modules.

5. The next step is to modify the second file. To do this, navigate to the
MWOS/OS9000/MIPS32/PORTS/IDT_79EB355/SPF/SPIDT355/
DEFS directory and open the spf_desc.h file.

6. At the end of spf_desc.h file are the macros EA0, EA1, EA2, EA3, EA4, and
EA5. These are for the MAC address of the board. Check that these are filled in
correctly to avoid any network difficulties.

7. Save the file.

8. Once this file is saved, go to the
MWOS/OS9000/MIPS32/PORTS/IDT_79EB355/SPF/SPIDT355 directory
and run the spfdesc.mak makefile. This will create the spse0 descriptor. At this
point networking is configured for SoftStax.

Low Level Network Configuration Changes

To configure the low-level Ethernet parameters, one file needs to be altered and one
makefile needs to be run. To do this, complete the following steps:

1. Navigate to the
MWOS\OS9000\MIPS32\PORTS\IDT_79EB355\ROM\CNFGDATA directory
and open the config.des file.

2. From the config.des file, you will need to correctly define the macros for the IP
address, broadcast, subnet, and mac addresses.

Because the Configuration Wizard configures the network in its own manner, if you are using
it to configure network parameters, the above changes are not needed. However, if you
choose to make the above changes, the Wizard will remain unaffected.

1

OS-9® for IDT 79EB355 Board Guide

18

1

3. Run the makefile in the directory listed in step one and a new cnfgdata module
will be created. A coreboot can now be created with this configuration.

Because the Configuration Wizard configures the network in its own manner, if you are using
it to configure Ethernet parameters, the above changes are not needed. However, if you
choose to make the above changes, the Wizard will remain unaffected.

1

19

Board Specific Reference

This chapter contains porting information specific to the MIPS board. It includes the
following sections:

The Fastboot Enhancement

OS-9 Vector Mappings

2

1

OS-9® for IDT 79EB355 Board Guide

20

2

The Fastboot Enhancement
The Fastboot enhancements to OS-9 were added to address the needs of embedded
systems that require faster system bootstrap performance. The Fastboot concept exists
to inform OS-9 that the defined configuration is static and valid. This eliminate the
dynamic search OS-9 usually performs during the bootstrap process. It also allows the
system to perform for a minimal amount of runtime configuration. As a result, a
significant increase in bootstrap speed is achieved.

Overview

The Fastboot enhancement consists of a set of flags that control the bootstrap process.
Each flag informs some portion of the bootstrap code of a particular assumption, and
that the associated bootstrap functionality should be omitted.

One important feature of the Fastboot enhancement is the ability of the flags to
become dynamically altered during the bootstrap process. For example, the bootstrap
code might be configured to query dip switch settings, respond to device interrupts, or
respond to the presence of specific resources that indicate different bootstrap
requirements.

Another important feature of the Fastboot enhancement is its versatility. The
enhancement’s versatility allows for special considerations under a variety of
circumstances. This can be useful in a system in which most resources are known,
static, and functional, but whose additional validation is required during bootstrap for a
particular instance (such as a resource failure).

Implementation Overview

The Fastboot configuration flags have been implemented as a set of bit fields. One 32-
bit field has been dedicated for bootstrap configuration. This four-byte field is contained
within a set of data structures shared by the kernel and the ModRom sub-components.
Hence, the field is available for modification and inspection by the entire set of system
modules (both high-level and low-level).

Currently, there are six-bit flags defined, with eight bits reserved for user-definable
bootstrap functionality. The reserved user-definable bits are the high-order eight bits
(31-24). This leaves bits available for future enhancements. The currently defined bits
and their associated bootstrap functionality are listed in the following sections.

B_QUICKVAL

The B_QUICKVAL bit indicates that only the module headers of modules in ROM are
to be validated during the memory module search phase. Limiting validation in this
manner will omit the CRC check on modules, which may save a considerable amount
of time. For example, if a system has many modules in ROM in which access time is
typically longer than it is in RAM, omitting the CRC check will drastically decrease the
bootstrap time. Furthermore, since it is rare that data corruption will occur in ROM,
omitting the CRC check is a safe option.

In addition, the B_OKRAM bit instructs the low-level and high-level systems to accept
their respective RAM definitions without verification. Normally, the system probes

1

Chapter 2: Board Specific Reference

21

2

memory during bootstrap based on the defined RAM parameters. This method allows
system designers to specify a possible range of RAM the system will validate upon
startup; thus, the system can accommodate varying amounts of RAM. However, in an
embedded system (where the RAM limits are usually statically defined and presumed
to be functional) there is no need to validate the defined RAM list. Bootstrap time is
saved by assuming that the RAM definition is accurate.

B_OKROM

The B_OKROM bit causes acceptance of the ROM definition without probing for ROM.
This configuration option behaves similarly to the B_OKRAM option with the exception
that it applies to the acceptance of the ROM definition.

B_1STINIT

The B_1STINIT bit causes acceptance of the first init module found during cold-
start. By default, the kernel searches the entire ROM list passed up by the ModRom for
init modules before it takes the init module with the highest revision number.
Using the B_1STINIT in a statically defined system omits the extended init module
search, which can save a considerable amount of time.

B_NOIRQMASK

The B_NOIRQMASK bit instructs the entire bootstrap system to not mask interrupts for
the duration of the bootstrap process. Normally, the ModRom code and the kernel
cold-start mask interrupts for the duration of the system startup. However, in systems
with a well-defined interrupt system (systems that are calmed by the sysinit
hardware initialization code) and a requirement to respond to an installed interrupt
handler during startup, this option can be used. Its implementation will prevent the
ModRom and kernel cold-start from disabling interrupts. (This is useful in power-
sensitive systems that need to respond to “power-failure” oriented interrupts.)

B_NOPARITY

If the RAM probing operation has not been omitted, the B_NOPARITY bit causes the
system to not perform parity initialization of the RAM. Parity initialization occurs during
the RAM probe phase. The B_NOPARITY option is useful for systems that either
require no parity initialization or only require it for “power-on” reset conditions. Systems
that only require parity initialization for initial power-on reset conditions can dynamically
use this option to prevent parity initialization for subsequent “non-power-on” reset
conditions.

Implementation Details

This section describes the compile-time and runtime methods by which you can
control the bootstrap speed of your system.

Some portions of the system may still mask interrupts for short periods during the execution
of critical sections.

1

OS-9® for IDT 79EB355 Board Guide

22

2

Compile-time Configuration

The compile-time configuration of the bootstrap is provided by a pre-defined macro,
BOOT_CONFIG, which is used to set the initial bit-field values of the bootstrap flags.
You can redefine the macro for recompilation to create a new bootstrap configuration.
The new overriding value of the macro should be established as a redefinition of the
macro in the rom_cnfg.h header file or a macro definition parameter in the
compilation command.

The rom_cnfg.h header file is one of the main files used to configure the ModRom
system. It contains many of the specific configuration details of the low-level system.
Below is an example of how you can redefine the bootstrap configuration of your
system using the BOOT_CONFIG macro in the rom_cnfg.h header file:

#define BOOT_CONFIG (B_OKRAM + B_OKROM + B_QUICKVAL)

Below is an alternate example showing the default definition as a compile switch in the
compilation command in the makefile:

SPEC_COPTS = -dNEWINFO –dNOPARITYINIT –dBOOT_CONFIG=0x7

This redefinition of the BOOT_CONFIG macro results in a bootstrap method, which
accepts the RAM and ROM definitions without verification. It also validates modules
solely on the correctness of their module headers.

Runtime Configuration

The default bootstrap configuration can be overridden at runtime by changing the
rinf->os->boot_config variable from either a low-level P2 module or from the
sysinit2()function of the sysinit.c file. The runtime code can query jumper
or other hardware settings to determine which user-defined bootstrap procedure
should be used. An example P2 module is shown below. Some portions of the system may
still mask interrupts for short periods during the execution of critical sections.

#define NEWINFO
#include <rom.h>
#include <types.h>
#include <const.h>
#include <errno.h>
#include <romerrno.h>
#include <p2lib.h>

error_code p2start(Rominfo rinf, u_char *glbls)
{

/* if switch or jumper setting is set… */
if (switch_or_jumper == SET) {

/* force checking of ROM and RAM lists */
rinf->os->boot_config &= ~(B_OKROM+B_OKRAM);

}

If the override is performed in the sysinit2() function, the effect is not realized until
after the low-level system memory searches have been performed. This means that any
runtime override of the default settings pertaining to the memory search must be done from
the code in the P2 module code.

1

Chapter 2: Board Specific Reference

23

2

return SUCCESS;
}

OS-9 Vector Mappings
Table 2-1 shows the OS9 IRQ assignment for the target board.

Table 2-1. IRQ Assignments

OS9 IRQ # MIPS IDT 335 Function

0x01 TLB modification Exception

0x02 TLB load Exception

0x03 TLB store Exception

0x04 Address error on load/I-fetch Exception

0x05 Address error on store Exception

0x06 Bus error on I-fetch Exception

0x07 Bus error on data load Exception

0x08 System call instruction Exception

0x09 Breakpoint

0x0a Reserved instruction Exception

0x0b Co-processor unusable Exception

0x0c Arithmetic overflow Exception

0x0d Trap exception

0x0f Floating point exception

0x12 Precise Co-processor 2 exceptions

0x17 Watch point

0x18 Machine check Exception

0x1e Cache error Exception

1

OS-9® for IDT 79EB355 Board Guide

24

2

0x20 User TLB Exception

0x30 Processor Interrupt 0

0x31 Processor Interrupt 1

0x32 Processor Interrupt 2

0x33 Processor Interrupt 3

0x34 Processor Interrupt 4

0x35 Counter Interrupt

0x36 Software Interrupt 0

0x37 Software Interrupt 1

0x40 Timer 0

0x41 Timer 1

0x42 Timer 2

0x43 Refresh Timer

0x44 Watchdog Timer time-out

0x45 Undecoded CPU write

0x60 DMA Channel 0 (ATM interface 0/1)

0x61 DMA Channel 1 (ATM VC Cache Entry 1)

0x62 DMA Channel 2 (ATM VC Cache Entry 2)

0x63 DMA Channel 3 (ATM VC Cache Entry 3)

0x64 DMA Channel 4 (ATM VC Cache Entry 4)

0x65 DMA Channel 5 (ATM VC Cache Entry 5)

0x66 DMA Channel 6 (ATM VC Cache Entry 6)

Table 2-1. IRQ Assignments (Continued)

OS9 IRQ # MIPS IDT 335 Function

1

Chapter 2: Board Specific Reference

25

2

0x67 DMA Channel 7 (ATM VC Cache Entry 7)

0x68 DMA Channel 8 (ATM VC Cache Entry 8)

0x69 DMA Channel 9 (Ethernet input)

0x6a DMA Channel 10 (Ethernet output)

0x6b DMA Channel 11 (TDM Bus Input)

0x6c DMA Channel 12 (TDM Bus Output)

0x6d DMA Channel 13 (USB Input)

0x6e DMA Channel 14 (USB Output)

0x6f DMA Channel 15 (External DMA)

0x80 ATM Interface 0 Input

0x81 ATM Interface 1 Input

0x82 ATM Interface 0 Output

0x83 ATM Interface 1 Output

0x84 ATM Interface 0 Overflow

0x85 ATM Interface 1 Overflow

0x86 ATM Interface 0 Underflow

0x87 ATM Interface 1 Underflow

0x88 ATM Interface 0 Cell Discarded

0x89 ATM Interface 1 Cell Discarded

0xa0 TDM Bus Input

0xa1 TDM Bus Output

0xa2 TDM Bus Status

Table 2-1. IRQ Assignments (Continued)

OS9 IRQ # MIPS IDT 335 Function

1

OS-9® for IDT 79EB355 Board Guide

26

2

0xa3 Ethernet Input

0xa4 Ethernet Output

0xa5 Pause Frame Done

0xa6 USB Endpoint A

0xa7 USB Endpoint B

0xa8 USB Endpoint C

0xa9 USB Endpoint D

0xaa USB Endpoint E

0xab USB Endpoint F

0xac USB Endpoint G

0xad USB Status

0xae UART 0 General Interrupt

0xaf UART 0 txrdy interrupt

0xb0 UART 0 rxrdy interrupt

0xb1 UART 1 General Interrupt

0xb2 UART 1 txrdy interrupt

0xb3 UART 1 rxrdy interrupt

0xb4 i2c bus master interface interrupt

0xb5 i2c bus slave interface interrupt

0xb6 Ethernet input overflow

0xb7 Ethernet output overflow

0xc0 GPIO 0

Table 2-1. IRQ Assignments (Continued)

OS9 IRQ # MIPS IDT 335 Function

1

Chapter 2: Board Specific Reference

27

2

0xc1 GPIO 1

0xc2 GPIO 2

0xc3 GPIO 3

0xc4 GPIO 4

0xc5 GPIO 5

0xc6 GPIO 6

0xc7 GPIO 7

0xc8 GPIO 8

0xc9 GPIO 9

0xca GPIO 10

0xcb GPIO 11

0xcc GPIO 12

0xcd GPIO 13

0xce GPIO 14

0xcf GPIO 15

0xd0 GPIO 16

0xd1 GPIO 17

0xd2 GPIO 18

0xd3 GPIO 19

0xd4 GPIO 20

0xd5 GPIO 21

0xd6 GPIO 22

Table 2-1. IRQ Assignments (Continued)

OS9 IRQ # MIPS IDT 335 Function

1

OS-9® for IDT 79EB355 Board Guide

28

2

0xd7 GPIO 23

0xd8 GPIO 24

0xd9 GPIO 25

0xda GPIO 26

0xdb GPIO 27

0xdc GPIO 28

0xdd GPIO 29

0xde GPIO 30

0xdf GPIO 31

Table 2-1. IRQ Assignments (Continued)

OS9 IRQ # MIPS IDT 335 Function

29

A Board Specific Modules

This chapter describes the modules specifically written for the MIPS 79S465 boards. It
includes the following sections:

<Bold><links>Low-Level System Modules

<Bold><links>High-Level System Modules

<Bold><links>Common System Modules List

OS-9® for IDT 79EB355 Board Guide

30

A

Low-Level System Modules
The following low-level system modules are tailored specifically for the IDT 79S465
board. They are located in the following directory:

MWOS/OS9000/MIPS32/PORTS/IDT_79EB355/CMDS/BOOTOBJS/ROM

cnfgdata contains low-level configuration data

cnfgfunc provides access services to the cnfgdata

commcnfg inits communication port defined in cnfgdata

conscnfg inits console port defined in cnfgdata

initext user-customizable system initialization module

io16550 ROM based serial IO driver

lle355 Low-level Ethernet ROM driver

portmenu inits booters defined in the cnfgdata

romcore bootstrap code

tmr355 ROM timer services

usedebug debugger configuration module

High-Level System Modules
The following OS-9 system modules are tailored specifically for the MIPS IDP 79EB355
boards. Unless otherwise specified, each module is located in the following directory:

MWOS/OS9000/MIPS32/PORTS/IDT_79EB355/CMDS/BOOTOBJS

counter Dummy IRQ handler that handles MIPS 64 counter
interrupts

sc16550 Serial driver for the 16550 UART

spe355 Ethernet driver module

tk355 System clock module

vectmips32 Vector module for MIPS 32

Common System Modules List
The following low-level system modules provide generic services for OS9000 Modular
ROM. They are located in the following directory:

MWOS/OS9000/MIPS32/CMDS/BOOTOBJS/ROM

bootsys provides booter registration services

console provides console services

dbgentry inits debugger entry point for system use

Appendix A: Board Specific Modules

31

A

dbgserv provides debugger services

excption provides low-level exception services

flshcach provides low-level cache management services

hlproto provides user level code access to protoman

llbootp provides bootp services

llip provides low-level IP services

llkermit provides a booter that uses kermit protocol

llslip provides low-level SLIP services

lltcp provides low-level TCP services

lludp provides low-level UDP services

notify provides state change information for use with LL
and HL drivers

override provides a booter that allows a choice between
menu and auto booters

parser provides argument parsing services

protoman provides a protocol management module

restart provides a booter that causes a soft reboot of the
system

romboot provides a booter that allows booting from ROM

rombreak provides a booter that calls the installed debugger

rombug provides a low-level system debugger

sndp provides low-level system debug protocol

srecord provides a booter that accepts S-Records

swtimer provides timer services via software loops

OS-9® for IDT 79EB355 Board Guide

32

A

	OS-9® for IDT 79EB355 Board Guide
	Contents
	Installing and Configuring OS-9® Chapter 1
	Development Environment Overview
	Requirements and Compatibility
	Host Hardware Requirements (PC Compatible)
	Host Software Requirements (PC Compatible)
	Target Hardware Requirements

	Target and Host Setup
	Installing the TFTP Server

	Connecting the Target to the Host
	Attaching the Cables
	Booting to the Boot Menu

	Building the OS-9 ROM Image
	Coreboot
	Bootfile
	Using the Configuration Wizard
	Configuring Coreboot Options
	Configuring Bootfile Options

	Transferring the ROM Image to the Target
	Optional Procedures
	Building with Makefiles
	EPROMCORE vs. PORTBOOT
	Makefile Network Option
	Using Makefiles
	Making Network Configuration Changes
	Low Level Network Configuration Changes

	Board Specific Reference Chapter 2
	The Fastboot Enhancement
	Overview
	Implementation Overview
	B_QUICKVAL
	B_OKROM
	B_1STINIT
	B_NOIRQMASK
	B_NOPARITY

	Implementation Details
	Compile-time Configuration
	Runtime Configuration

	OS-9 Vector Mappings
	Low-Level System Modules
	High-Level System Modules
	Common System Modules List

