
w w w. ra d i sy s . co m
Revision A • July 2006

Using Network File
System/Remote Procedure
Call

Version 4.7

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.7 of SoftStax.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

3

Contents

Overview 7
Remote Procedure Call Overview ... 8

Network File System Overview .. 8
Remote Procedure Call .. 9
External Data Representation ... 9
Stateless Servers .. 9
NFS Protocol Definition ... 9
File System Model... 9

NFS/RPC Utilities and Daemon Server Programs 11
NFS/RPC Utilities ... 12
NFS/RPC Daemon Server Programs... 13

exportfs 14
mount 15
mountd 16
nfsd 17
nfsstat 18
pcnfsd 19
portmap 20
rpcdbgen 21
rpcdump 23
rpcgen 24
rpchost 26
rpcinfo 27
rstatd 28
rup 29
rusers 30
rusersd 31
showmount 32

Remote Procedure Calls 33
The RPC Protocol .. 34

RPC Protocol Requirements.. 34
The RPC Language.. 34

The RPC Language Specification.. 35
Syntax Notes... 35
Transport Independence ... 35
RPC Semantics ... 36
Binding... 36
Programs and Procedures ... 36

RPC’s Three Layers ... 37
The Highest Layer.. 38
The Middle Layer... 39
Lowest Layer of RPC ... 46

Using Network File System/Remote Procedure Call

4

Using RPC’s Lowest Layer on the Server Side .. 46
Memory Allocation with XDR and the Lower Layer... 49
The Calling Side of the Lower Layer ... 50

Other RPC Features .. 52
Select on the Server Side... 52
Broadcast RPC .. 53
Broadcast RPC Synopsis... 53
Batching... 54
The RPC Message Protocol ... 57
Record Marking Standard.. 60
 Authentication.. 60

Examples ... 64
Callback Procedures.. 64

Port Mapper 69
Introduction.. 70
Port Mapper Operation ... 70
Port Mapper Protocol Specification
(in RPC Language).. 71

External Data Representation 73
Introduction.. 74
The XDR Library... 74

Writer ... 74
Reader.. 75
Explaining Writer/Reader Examples .. 75
Serializing and Deserializing Data ... 76

XDR Library Primitives.. 77
Number Filters ... 77
Floating Point Filters ... 78
Enumeration Filters... 78
No Data ... 79
Constructed Data Type Filters .. 79
Strings .. 79
Byte Arrays .. 80
Arrays ... 80
Implementing Arrays Example A.. 81
Implementing Arrays Example B.. 82
Implementing Arrays Example C ... 82
Opaque Data.. 83
Fixed-Sized Arrays ... 83
Discriminated Unions... 84
Discriminated Union Example.. 84
Pointers.. 85
Pointer Example... 85
Non-filter Primitives .. 86
XDR Operation Directions ... 87
XDR Stream Access ... 87
Standard I/O Streams... 87
Memory Streams ... 87
Record (TCP/IP) Streams... 88

5

XDR Stream Implementation.. 89
The XDR Object ... 89
Linked Lists ... 90

XDR Data Types... 94
Basic Block Size.. 94
Integer.. 94
Unsigned Integer ... 95
Enumeration... 95
Boolean ... 95
Hyper Integer and Unsigned Hyper Integer.. 95
Floating-Point ... 96
Double-Precision Floating-Point .. 96
Fixed-Length Opaque Data ... 97
Variable-Length Opaque Data.. 98
String .. 98
Fixed-Length Array .. 99
Variable-Length Array ... 99
Structures .. 100
Discriminated Union... 100
Void .. 101
Constant .. 101
Typedef.. 101
Optional-Data... 102

The XDR Language Specification... 103
Notational Conventions ... 103
Lexical Notes... 103
Syntax Information.. 104
Syntax Notes... 105
An Example of an XDR Data Description ... 105

RPCGEN Programming Guide 109
An Overview of rpcgen.. 110

Converting Local Procedures to Remote Procedures ... 110
Generating XDR Routines.. 114
The C Preprocessor .. 117
RPC Language.. 119

Definitions... 119
Structures .. 119
Unions.. 120
Enumerations ... 120
Typedef.. 121
Constants... 121
Programs ... 121
Declarations.. 122

Special Cases.. 123
Booleans.. 123
Strings .. 123
Opaque Data.. 124
Voids... 124

Getting Started With Network File System/Remote Procedure Call 125

Using Network File System/Remote Procedure Call

6

Introduction.. 126
System Components .. 126
System Architecture .. 126

Configuring the NFS Client ... 127
Directory Structure .. 127
Configuration Overview... 127
Step 1: Configure Group and User ID Mapping File for NFS.. 127
Step 2: Build the RPC Data Base Module .. 128
Step 3: Configure the Startup Procedure... 129
Step 4: Verify the Installation .. 132

Configuring NFS Server and RPC Development System ... 133
Directory Structure .. 133
Configuration Overview... 133
Step 1: Configure Group and User ID Mapping Files for NFS .. 134
Step 2: Build the RPC Data Base Module .. 134
Step 3: Configure the Startup Procedures ... 135
Step 4: Export Local File Systems .. 138
Step 5: Verify the Installation .. 138

Index

1

7

Overview

This chapter provides a general overview of Network File System/Remote Procedure
Call (NFS/RPC). It provides a brief description of the NFS/RPC components and lists
the utilities and server programs provided with this package.

Network File System (NFS) is a software component that provides transparent file
access for client applications across local area networks.

Function calls in the RPC C Library and External Data Representation (XDR) C Library are
described in the OS-9® Networking Programming Reference Manual.

1

1

Using Network File System/Remote Procedure Call

8

1

Remote Procedure Call Overview
Remote Procedure Call (RPC) is a protocol for writing distributed network applications.
Each system on the network can provide remote procedures to any number of servers,
which can be dynamically called by client programs on other systems. RPC can:

• initiate remote execution of a program

• return system statistics

• look up network processes

• access and control remote file systems.

RPC applications are easy to implement because they avoid low-level primitives such
as sockets. They can be written and tested on stand-alone systems. You can later split
these applications into client and server procedures.

You call remote procedures in the same manner as a local C language function. When
you call remote procedures, RPC sets up a client to server communications link and
sends a data packet to the server. When the packet arrives, the server performs the
following steps:

1. Calls a dispatch routine

2. Performs service as requested

3. Sends back a reply

4. Returns the procedure call to the client.

RPC can handle arbitrary data structures regardless of different systems’ byte orders or
structure layout conventions. It does so by converting data to a network standard called
eXternal Data Representation (XDR).

RPC provides authentication parameters so that servers, such as NFS, can validate
access to remote data. It provides additional hooks for service-specific security.

RPC includes the rpcgen compiler, a preprocessor for writing RPC applications. It
accepts a remote procedure interface definition and produces C language output
including stubs for client, server, and XDR filter routines.

Network File System Overview

The Network File System (NFS) protocol provides transparent remote access to shared
file systems over local area networks. Like RPC and XDR, the NFS protocol design is
machine, operating system, network architecture, and transport protocol independent.

The mount protocol, in conjunction with the exportfs utility, enables the server to
restrict the set of client machines that are allowed to access each exported file system.
Once mounted, the NFS client and server components convert operating system
specific functions into NFS protocol functions. This enables, for example, an OS-9
system to view and access a remote file system as if it were a local OS-9 device.

For more information about XDR, refer to Chapter 5 External Data Representation. For more
information about Authentication, refer to .

1

Chapter 1: Overview

9

1

Remote Procedure Call

OS-9’s remote procedure call specification provides a procedure-oriented interface to
remote services. Each server supplies a program that is a set of procedures. The
combination of host address, program number, and procedure number specifies one
remote service procedure. RPC does not depend on services provided by specific
protocols. This allows you to use RPC with any underlying transport protocol.

External Data Representation

The eXternal Data Representation (XDR) standard provides a common method of
representing a set of data types over a network. OS-9 provides implementations of XDR
and RPC.

Stateless Servers

NFS is a stateless server. A stateless server does not need to maintain any extra
information about its clients to function correctly. A stateful server maintains this extra
information. This distinction is important in the event of a failure. When a stateless
server does not respond, a client need only retry a request until the server responds.
This enables the client to operate normally when a server is temporarily unavailable.

The client of a stateful server needs to do one of the following:

• Detect a server crash and rebuild its state when it comes back up.

• Cause the client operations to fail.

NFS Protocol Definition

Servers and protocols may change over time. RPC provides a version number with
each request. This manual describes version two of the NFS protocol.

File System Model

NFS assumes a hierarchical file system. Each entry in a directory (file, directory, device,
etc.) has a string name. Different operating systems may have restrictions on the
depth of the tree or the names used. They may also use different syntax to represent
the pathname. Therefore, a pathname is the concatenation of all directory and file
names in the path. A file system is a tree on a single server, usually a single disk or
physical partition, with a specified root. Some operating systems provide a mount
operation to make all file systems appear as a single tree, while other systems maintain
a “forest” of file systems. Files are unstructured streams of uninterpreted bytes.

NFS looks up one component of a pathname at a time. It does this because
pathnames need separators between the directory components, and because different
operating systems may not use the same separators.

Although files and directories are similar, different procedures read directories and files.
This provides a network standard format for representing directories.

Like other RPC services, NFS includes a client and server side.

1

Using Network File System/Remote Procedure Call

10

1

The NFS Server Side

The NFS server on OS-9 is implemented as a daemon (nfsd) program which handles
I/O requests through RBF on behalf of the remote client. This allows a user on a Sun
workstation, for example, to mount and manipulate an OS-9 file system with
commands such as:

mount delta:/h0 /mnt /* mount the remote OS-9/OS-9000 file system */
ls /mnt /* display directory of the OS-9/OS-9000 /h0 device */
cat /mnt/sys/motd /* display the OS-9/OS-9000 motd file */

The following daemons must be running on OS-9:

• portmap

• mountd

• nfsd

The following modules must be loaded on OS-9:

• rpcdb

• exportfs (must be run to export the local hard disk)

The NFS Client Side

The client side of NFS is implemented as a child thread, nfsc, and file manager nfs.
NFS operates with file constructs and network protocols and presents the remote file
system as if it were a local OS-9 file system. This allows an OS-9 user to mount and
manipulate remote file systems. For example, you can use commands such as:

mount mwca:/usr /nf /* mount remote file system to device nf */
dir /nf /* display directory for remote file system */
list /nf/hello.c /* display a C source file */
copy /nf/hello.c /h0/hello.c /* copy remote file onto local device */

The following modules must be loaded to act as a NFS client:

• nfs

• nfsnul

• nfs_devices

• rpcdb

• mount

• nfsc

1

11

NFS/RPC Utilities and Daemon Server
Programs

This chapter describes the NFS/RPC utilities, client and server programs.

2

1

Using Network File System/Remote Procedure Call

12

2

NFS/RPC Utilities
Table 2-1 on page 12 lists the utilities provided with the NFS/RPC software. The utilities
are described further on the following pages.

Utilities can be found in MWOS/<OS>/<CPU>/CMDS.

Table 2-1. NFS/RPC Utilities

Utility Description

exportfs Generate Exports List
Specifies which devices and directories can be remotely mounted.

mount Mount/Unmount Remote File System
Mounts a remote file system and makes it available to OS-9/OS-9000
as a local device managed by NFSRBF.

nfsstat Display RPC and NFS Statistics
Accesses the statistics for RPC and NFS clients and servers and
displays the information.

rpcdbgen Generate RPC Database
Creates the RPC database module and specifies the optional
backup/recovery directory and Group/User ID mapping for NFS.

rpcdump Display RPC Database
Reads the RPC database module and displays its contents.

rpcgen Generate C Code for RPC Protocols
Generates client and server programs from an RPC interface
definition.

rpchost Display Hostname
Returns the name of the host as defined in the inetdb
configuration files.

rpcinfo Display RPC Information
Requests information from an RPC server and displays the results.

rup Display Status of Remote System
Displays a system status for the host.

rusers Display Network Users Information
Displays a list of users logged into a remote system.

showmount Display Remote Mounts
Displays which remote systems are currently mounted to the OS-9
NFS file server.

1

Chapter 2: NFS/RPC Utilities and Daemon Server Programs

13

2

NFS/RPC Daemon Server Programs
Table 2-3 on page 13 lists the NFS/RPC daemon server programs. The server
programs are described further on the following pages.

Table 2-2. NFS Client System Modules

System Module Description

nfs NFS File Manager

nfs_devices NFS Device Descriptor

nfsc NFS Client Auxiliary Process

nfsnul NFS Device Driver

See the daemons mountd, nfsd, and portmap for more information about NFS server
support.

Table 2-3. NFS/RPC Daemon Server Programs

Daemon Description

mountd NFS Mount Server
Answers file system mount requests and determines which file
systems are available to which machines and users.

nfsd NFS Protocol Server
Responds to low-level I/O requests through NFS.

pcnfsd PCNFS login daemon
Runs on a NFS server system to service PC-NFS client
authentication.

portmap Port to RPC Program Number Mapper
Provides a mapping between RPC programs and ports.

rstatd Remote System Statistics Server
Returns performance statistics obtained from the kernel.

rusersd Remote Network Users Server
Provides a list of users logged into the local host.

1

Using Network File System/Remote Procedure Call

14

2

exportfs
Generate Exports List in NFS Database Module

Syntax

exportfs [<opts>]{<dev> {-a <machine_list>}}

Description

exportfs indicates to the NFS server system which devices can be mounted by
remote hosts. If invoked without parameters, exportfs displays the current exports
list.

exportfs generates a data module containing the exports list, and active mount
table. This allows NFS to operate in a ROM-based (diskless) environment. If a
backup/recovery directory is specified with rpcdbgen, all of this exportfs
information is saved across a boot or system reset of the operating system.

A particular device may be exported to a restricted set of machines using the -a option.
For example,

exportfs /h0 -a blue,green.xyz.com

will allow the machines blue and green.xyz.com to mount the local /h0 device.
Multiple devices and access lists may be specifed on a single command line. For
example,

exportfs /h0 -a blue /r0 /h1 -a blue, red

will export /h0 to only the machine blue, the /r0 device to all users, and the /h1
device to only the machines blue and red.

Options

-? Display the help message.

<dev> Add the device to the exports list.

-a <machine_list>
Restrict access to a mount point to a specific list of machines.
Multiple machines may be listed separated by commas and
containing no spaces.

-s Create a new mount table for exported systems.

The machine names specified in an access list must match that returned from
gethostbyaddr(). Normally this includes a fully qualified domain name if it is
resolved using DNS, and just a machine name if it is resolved locally in your inetdb.

• OS-9 exports should be at the device level (/h0 or
/d0, not /h0/cmds).

• File systems up to the RBF maximum of 4 gigabytes are supported.

1

Chapter 2: NFS/RPC Utilities and Daemon Server Programs

15

2

mount
Mount and Dismount NFS File System

Syntax

mount [<opts>] {[<host>:/<path>][/<dev>][<opts>]}

Description

mount indicates to the system that a file system is to be associated with local device
<dev> and accessed via NFS. You can also use it to display the current mounted
device status. The unmount option, -u, indicates that a file system is to be dismouted
and no longer accessed.

Options

-? Display the help message.

-d Display the currently mounted devices.

-m Use group/user ID mapping for this mount.

-r=<rsize> Use read block size of <rsize>.

-w=<wsize> Use write block size of <wsize>.

-u Unmount a specified file system.

• The default read and write block size is 8K. A smaller block size can be specified with the -r
and -w options.

• OS-9 NFS clients can only mount OS-9 NFS servers at the device level (/n0 or /d0, not
/n0 /CMDS).

Use the nfs.map file to specify group/user ID mapping between the OS-9 NFS client
system and the remote file server. Refer to Appendix A Getting Started With Network File
System/Remote Procedure Call for more information.

1

Using Network File System/Remote Procedure Call

16

2

mountd
NFS Mount Request Server

Syntax

mountd [<opts>]

Description

The mountd daemon answers file system mount requests. It determines which file
systems are available to which machines and users. mountd also stores information
as to which clients have file systems mounted. You can also use the showmount
command to display this information. The mount client command calls mountd to
mount the file system.

To place mountd in the background, end the command line with an ampersand (&).
For example, mountd&.

Options

-? Display the help message.

On OS-9 NFS server systems, NFS clients can only mount at the device level (/n0 or /d0,
not /h0 /CMDS).

1

Chapter 2: NFS/RPC Utilities and Daemon Server Programs

17

2

nfsd
NFS Protocol Server

Syntax

nfsd [<opts>]

Description

The nfsd daemon responds to low-level I/O requests through NFS.

To place nfsd in the background, end the command line with an ampersand (&). For
example, nfsd&.

Options

-? Display the help message.

Use the nfsd.map file to specify group/user ID mapping between the remote client
system and the local OS-9 file server. Refer to Appendix A Getting Started With Network File
System/Remote Procedure Call for more information.

1

Using Network File System/Remote Procedure Call

18

2

nfsstat
Display RPC and NFS Statistics

Syntax

nfsstat [<opts>]

Description

nfsstat displays statistics about NFS and RPC. You can also use nfsstat to re-
initialize this information. nfsstat produces a report similar to that shown in Figure
2-1. Sample nfsstat Report.

The rpcdb data module must be created with rpcdgen -s option in order to turn
on statistics

Figure 2-1. Sample nfsstat Report

Options

-? Display the help message.

-r Re-initialize RPC and NFS statistics.

Diag:nfsstat

Server rpc:

calls badcalls nullrecv badlen xdrcall

0 0 0 0 0

Server nfs:

calls badcalls

1294 0

null getattr setattr root lookup readlink read

0 0% 1 0% 1 0% 0 0% 1196 92% 0 0% 0 0%

wrcache write create remove rename link symlink

0 0% 1 0% 2 0% 1 0% 2 0% 0 0% 0 0%

mkdir rmdir readdir fsstat

1 0% 1 0% 87 6% 1 0%

Client rpc:

calls badcalls retrans badxid timeout wait newcred

1

Chapter 2: NFS/RPC Utilities and Daemon Server Programs

19

2

pcnfsd
PC NFS Login Daemon

Syntax

pcnfsd [<opts>]

Description

pcnfsd runs on an NFS server system to service PC-NFS client authentication.

Options

-? Display the help message.

1

Using Network File System/Remote Procedure Call

20

2

portmap
DARPA Port to RPC Program Mapper

Syntax

portmap [<opts>]

Description

The portmap daemon converts RPC program numbers into DARPA protocol port
numbers. portmap must be running in order to run other RPC servers.

When an RPC server is started, the server tells portmap what port number it is
listening to and what RPC program numbers the RPC server is prepared to serve.

When a client wishes to make an RPC call to a given program number, it contacts
portmap on the server machine to determine the port number where RPC packets
should be sent.

To place portmap in the background, end the command line with an ampersand (&).
For example, portmap&.

Options

-? Display the help message.

If portmap is restarted, all servers must be restarted.

1

Chapter 2: NFS/RPC Utilities and Daemon Server Programs

21

2

rpcdbgen
Generate NFS/RPC Database Module

Syntax

rpcdbgen [<opts>]

Description

rpcdbgen generates an OS-9 data module from host information supplied in the
rpcdbgen call. This allows RPC to operate in a ROM-based (diskless) environment.

rpcdbgen also processes group ID and user ID map files for NFS. This allows users
with different group/user IDs between hosts to transparently access their files. There
are two mapping files:

nfs.mapThis is a mapping file for the NFS client. It maps local OS-9 group and user
IDs to remote group and user IDs.

nfsd.mapThis mapping file is used by the NFS server (nfsd) to map remote
requests to local group/user IDs.

Any time you make a change to nfs.map or nfsd.map, use rpcdbgen to generate
a new data module.

Options

-? Display the help message.

-c[=<file>] Specify NFS client map file. Default is nfs.map.

-d[=<file>] Specify NFS server map file. Default is nfsd.map.

-r=<dir> Specify NFS server backup/recovery directory.

-s Specify NFS/RPC to collect internal statistics.

-w=<str> Directory for NFS/RPC database files.

-n=<num> Set module revision to <num>.

-o[=<path>] Specify the name of the file if different from module.

-x Place module in execution directory.

-to[=]<name> Specify target operating system.

The idbgen utility reads the RPC database file (MWOS/SRC/ETC/rpc) and places the
contents in the Internet data module.

1

Using Network File System/Remote Procedure Call

22

2

Target operating systems are shown in Table 2-4.

-tp[=]<name>Specify target processor and options.

Target processors are listed in Table 2-5.

-z[[=]<file>] Read additional command line arguments from <file>.

Table 2-4. Target Operating Systems

<name> Target Operating System

OSK OS-9 for 68K

OS9000 or OS9K OS-9

Table 2-5. Target Processors

<name> Target Processor(s)

68K or 68000 Motorola 68000/68010/68070

CPU32 Motorola 683000 family

020 or 68020 Motorola 68020/68030/68040

040 or 68040 Motorola 68040

386 or 80386 Intel 80386/80486/Pentium™

PPC Generic PowerPC™ Processor

403 PPC 403

601 MPC 601

603 MPC 603

ARM Generic ARMTM Processor

ARMV3 ARMV3 Processor

ARMV4 ARMV4 Processor

1

Chapter 2: NFS/RPC Utilities and Daemon Server Programs

23

2

rpcdump
Display RPC Database Module

Syntax

rpcdump [<opts>]

Description

rpcdump displays information in the RPC database module rpcdb. It produces a
report similar to the output shown below.

Options

-? Display the help message.

-m Dump the rpcdb module in memory. Default is from a file.

By default, rpcdump looks for the rpcdb module from disk. Use the -m option to dump
it from memory.

Diag:rpcdump

Dump of NFS/RPC data module [rpcdb]

recovery dir: MWOS/SRC/ETC

collect stats: yes

use nfs client map: yes

use nfsd server map: yes

NFS Client Mapping

default client uid: 99

default client group: 12

OS-9 uid NFS uid

1

Using Network File System/Remote Procedure Call

24

2

rpcgen
Generate C Programs to Implement RPC Protocol

Syntax

rpcgen [<opts>] <inpath>

Description

rpcgen generates source code to implement an RPC application. rpcgen greatly
simplifies the development process by producing C language source code for client,
server, and XDR filter routines. You can compile and link these to produce the
distributed RPC application.

The input to rpcgen is the RPC language. In the development cycle, rpcgen takes
an input file and generates four output files. If the input file is named proto.x,
rpcgen generates the following:

• A header file in proto.h

• XDR routines in proto_xdr.c

• Server-side stubs in proto_svc.c

• Client-side stubs in proto_clnt.c

The OS-9 C preprocessor (cpp) is run on all input files before the files are actually
interpreted by rpcgen. This ensures that all cpp directives are legal within an
rpcgen input file. For each type of output file, rpcgen defines a special cpp symbol
for you to use as shown in Table 2-6. CPP Symbols.

Any line beginning with an apostrophe (’) passes directly into the output file. It is not
interpreted by rpcgen.

Options

-? Display the help message.

-c Compile into XDR routines.

-h Compile into C data definitions (a header file).

Table 2-6. CPP Symbols

Name Defined When Compiling Into

RPC_HDR Header files.

RPC_XDR XDR routines.

RPC_SVC Server-side stubs.

RPC_CLNT Client-side stubs.

1

Chapter 2: NFS/RPC Utilities and Daemon Server Programs

25

2

-k Use the K&R C preprocessor (cpp)

-l Compile into client-side stubs.

-m Compile into server-side stubs, but do not produce a main()
routine.

-o <path> Specify the name of the output file. If not specified, standard output
is assumed.

-s <tr> Compiles into server-side stubs using the given transport, TCP
(Transmission Control Protocol) or UDP (User Datagram Protocol).
You can invoke this option more than once to compile a server that
serves multiple transports.

1

Using Network File System/Remote Procedure Call

26

2

rpchost
Display Hostname

Syntax

rpchost [<opts>]

Description

rpchost displays the hostname as defined in the inetdb configuration files.

Options

-? Display the help message.

1

Chapter 2: NFS/RPC Utilities and Daemon Server Programs

27

2

rpcinfo
Display RPC Information

Syntax

rpcinfo [<opts>]

Description

rpcinfo makes a call to an RPC server (portmap) and reports the results. The
program parameter <prognum> can either be a name or a number. If you specify a
version, rpcinfo attempts to call that version of the specified program. Otherwise,
rpcinfo attempts to find all registered version numbers for the specified program.

Options

-? Displays the help message.

-p[<host>] Call portmap on <host> and display list of registered programs.
If <host> is not specified, it defaults to the value returned by
gethostname().

-t <host> <prognum>[<version>]

Makes an RPC call to procedure 0 of <program> on <host> using
TCP and reports all versions that are available. If <version> is
specified, report only if the specific version is available.

-u <host> <prognum>[<version>]

The same as the -t option only use UDP instead of TCP when
querying <host>.

-n <port> Use <port> as the port number for the -t and -u options. It must
be placed before the -t or -u option.

1

Using Network File System/Remote Procedure Call

28

2

rstatd
Remote Systems Statistics Server

Syntax

rstatd [<opts>]

Description

The rstatd RPC daemon returns statistics obtained from the kernel. You can use the
rup RPC client program to call rstatd.

To place rstatd in the background, end the command line with an ampersand (&).
For example, rstatd&.

Options

-? Display the help message.

1

Chapter 2: NFS/RPC Utilities and Daemon Server Programs

29

2

rup
Display Status of Remote System

Syntax

rup [<opts>] host

Description

rup RPC client displays a system status for the specified host. The remote system
must be running the rstatd RPC server to respond.

rstatd is the OS-9 RPC server.

Options

-? Display the help message.

1

Using Network File System/Remote Procedure Call

30

2

rusers
Display List of Users Logged into Remote System

Syntax

rusers [<opts>] <host>

Description

rusers RPC client displays a list of users logged into the specified host. The remote
system must be running the rusersd RPC server to respond.

Options

-? Display the help message.

-a Display all processes on <host>.

-n Display number of users logged into <host>.

1

Chapter 2: NFS/RPC Utilities and Daemon Server Programs

31

2

rusersd
Rusers Server

Syntax

rusersd [<opts>]

Description

The rusersd RPC server returns a list of users on the system.

To place rusersd in the background, end the command line with an ampersand (&).
For example, rusersd&.

rusers is the RPC client program.

Options

-? Display the help message.

1

Using Network File System/Remote Procedure Call

32

2

showmount
Display Remote Mounts

Syntax

showmount [<opts>]

Description

showmount displays the remote hosts and the local OS-9 devices mounted to the
OS-9 NFS server.

Options

-? Display the help message.

1

33

Remote Procedure Calls

This chapter describes the RPC protocol.

The RPC C library functions are described in the OS-9 Networking Programming
Reference Manual.

3

1

Using Network File System/Remote Procedure Call

34

3

The RPC Protocol
You can use the RPC protocol to write distributed network applications. Each system
on the network can provide any number of servers that client programs on other
systems can dynamically call. RPC can implement a variety of network services, such
as the following:

• Initiating the remote execution of a program

• Returning system statistics

• Looking up network processes

• Accessing and controlling remote file systems

RPC Protocol Requirements

The RPC protocol provides for the following:

• Unique specification of a called procedure

• Provisions for matching response messages to request messages

• Provisions for authenticating the caller to service and the service to caller

Besides these requirements, features that detect the following are also supported:

• RPC protocol mismatches

• Remote program protocol version mismatches

• Protocol errors (such as mis-specification of a procedure’s parameters)

• Remote authentication failure

• Any other reasons why the desired procedure was not called

The RPC Language
The RPC language describes the procedures that operate on XDR data-types. RPC is an
extension of the XDR language. The following is an example of the specification of a
simple message program. It is shown here to familiarize you with the RPC language.

/* Simple message program */

program MESSAGEPROG {

version MESSAGEVERS {

int PRINTMESSAGE(string) = 1;

} = 1;

} = 99;

MESSAGEVERS is the current version of the program. It has one procedure:

• PRINTMESSAGE

1

Chapter 3: Remote Procedure Calls

35

3

PRINTMESSAGE has one parameter—a string that allows the client to pass the string to
the server, which prints the string to standard output.

The RPC Language Specification

The RPC language is similar to XDR, except for the added program-def definition.

program-def:
"program" identifier "{"

version-def
version-def *

"}" "=" constant ";"

version-def:
"version" identifier "{"

procedure-def
procedure-def *

"}" "=" constant ";"

procedure-def:
type-specifier identifier "(" type-specifier ")"
"=" constant ";"

Syntax Notes

The following are syntax notes concerning RPC:

• program and version are keywords. Do not use them as identifiers.

• A version name and/or version number cannot occur more than once within the
scope of a program definition.

• A procedure name and/or procedure number cannot occur more than once within
the scope of a version definition.

• Program identifiers are located in the same name space as constant and type
identifiers.

• Only unsigned constants can be assigned to programs, versions, and procedures.

Transport Independence

The RPC protocol is independent of transport protocols. RPC does not care how a
message is passed from one process to another. The protocol deals only with the
specification and interpretation of messages.

The application must be aware of the underlying protocol because RPC does not try to
implement any kind of reliability (that is, no retransmission or time-out).

The example RPC source can be found in MWOS/SRC/SPF/RPC/DEMO.

Refer to Chapter 5 External Data Representation for the remaining definitions.

1

Using Network File System/Remote Procedure Call

36

3

• If RPC is running on top of an unreliable transport such as UDP/IP (User Datagram
Protocol/Internet Protocol), the application must implement its own retransmission
and time-out policy.

• If RPC is running on top of a reliable transport such as TCP/IP (Transmission
Control Protocol/Internet Protocol), the transport may handle retransmissions and
time-outs.

RPC Semantics

Specific semantics are not attached to the remote procedures or the execution of the
remote procedures because RPC is transport independent. Although RPC can infer
semantics from the underlying transport protocol, they should be explicitly stated.

For example, if RPC is running on top of an unreliable transport and an application
retransmits RPC messages after short time-outs, RPC can only infer that the procedure
was executed zero or more times if it received no reply. If RPC does receive a reply, it
can infer that the procedure was executed at least once.

A server may not want to regrant a request from a client. Therefore, the server must
remember the transaction ID packaged with every RPC request. The client RPC layer
uses this transaction ID to match replies with requests. Occasionally, a client
application may reuse its previous transaction ID when retransmitting a request.
Knowing this, the server may choose to remember the transaction ID after granting a
request and not regrant requests with the same ID. The server is not allowed to
examine this ID except as a test for equality.

If a reliable transport is used, the application can infer from a reply message that the
procedure was executed exactly once. If it receives no reply message, the application
cannot assume the remote procedure was not executed.

Transports do not have to be datagram-oriented or connection-oriented protocols. For
OS-9, RPC is currently implemented on top of both TCP/IP and UDP/IP transports.

Binding

The act of binding a client to a service is not part of the RPC specification. The higher-
level software that uses RPC must bind a client to a service.

Implementors should think of the RPC protocol as the jump-subroutine instruction
(jsr) of a network. The linker makes jsr useful, and the linker itself uses jsr to
accomplish a task. Likewise, the network uses RPC to accomplish this task.

Programs and Procedures

Each RPC procedure is uniquely defined by the following:

• A program number

• A version number

Even if a connection-oriented protocol like TCP is used, an application still needs a time-out
and reconnection to handle server crashes.

1

Chapter 3: Remote Procedure Calls

37

3

• A procedure number

The program number specifies a group of related remote procedures, each of which
has a different procedure number. Each program has a version number. When a
minor change is made to a remote service, a new program number does not have to
be assigned.

Program numbers are administered by a central authority. A remote program can be
used when its program number is known. Because most new protocols evolve into
stable, mature protocols, a version field of the call message identifies which version of
the protocol the caller is using. Version numbers make it possible for old and new
protocols to speak through the same server process.

The procedure number identifies the procedure to call. These numbers are
documented in the specific program’s protocol specification. For example, a file
service’s protocol specification may state that procedure number 5 is read and
procedure number 12 is write.

The actual RPC message protocol can also change. Therefore, the call message
contains the RPC version number, which is always equal to 2 for the version of RPC
described here.

Reply Message and Error Conditions

A reply message has enough information to distinguish the following error conditions:

• The remote implementation of RPC does not speak protocol version 2. The lowest
and highest supported RPC version numbers are returned.

• The remote program is not available on the remote system.

• The remote program does not support the requested version number. The lowest
and highest supported remote program version numbers are returned.

• The requested procedure number does not exist. This is usually a caller side
protocol or programming error.

• The parameters to the remote procedure are not usable by the server. Again, this is
usually caused by a disagreement about the protocol between the client and the
service.

RPC’s Three Layers
The RPC interface can be divided into a high, middle, and low layer.

• The highest layer is totally transparent to the hardware and software running RPC.

• The middle layer allows you to make remote procedure calls without considering
sockets, OS-9, or low-level implementation mechanisms.

• The lowest layer does deal with sockets, OS-9, and low-level implementation
mechanisms to allow the user to override specific defaults used by the middle
layer’s procedure calls.

Each of these layers is discussed in more detail, and examples are shown to illustrate
how you may use them.

1

Using Network File System/Remote Procedure Call

38

3

The Highest Layer

RPC’s highest layer is totally transparent to the operating system, machine, and network
upon which it is run. It is probably best to think of this level as a way of using RPC,
rather than as a part of RPC.

The following example uses RPC’s highest layer to determine how many users are
logged into a remote machine. The RPC function rmsg is used.

#include <stdio.h>

#include <RPC/rpc.h>

#include "msg.h"

main(argc, argv)

int argc;

char *argv[];

{

int num;

if (argc != 3)

exit(_errmsg(1,"usage: msg host message\n"));

if ((num = rmsg(argv[1],argv[2])) <0) {

fprintf(stderr,"error: rmsg\n");

exit(-1);

}

printf("Message delivered to %s!\n", argv[1]);

exit (0);

}

Following is the code for the rmsg function.

int rmsg(server,message)

char *server;

char *message;

{

CLIENT *cl;

int *result;

cl = clnt_create(server, MESSAGEPROG, MESSAGEVERS, "tcp");

if (cl == NULL) {

clnt_pcreateerror(server);

exit(1);

}

result = printmessage_1(&message, cl);

if (result == NULL) {

clnt_perror(cl, server);

exit (1);

}

else return(0);

}

1

Chapter 3: Remote Procedure Calls

39

3

C programmers can write RPC service routines to implement the high layer RPC
implementation.

The Middle Layer

Most applications can use the middle layer. When using the middle layer, sockets,
OS-9, or low-level implementation mechanisms need not be considered. A remote
procedure call is simply made to routines on other systems. RPC calls are made with
the system routines registerrpc(), callrpc(), and svc_run().

The middle layer does not allow the following:

• time-out specifications

• choice of control

• flexibility in case of errors.

The following program uses RPC’s middle layer to send a message.

#include <stdio.h>

#include <RPC/rpc.h>

#include "msg.h"

main(argc, argv)

int argc;

char *argv[];

{

CLIENT *cl;

int result,result2;

char *server;

char *message;

if (argc != 3)

exit(_errmsg(1,"usage: msg host message\n"));

server = argv[1];

message = argv[2];

if ((result2 = callrpc(argv[1], MESSAGEPROG, MESSAGEVERS,
PRINTMESSAGE,

xdr_string, &message, xdr_int, &result)))

{

fprintf(stderr, "%s: call to message service failed. ",

argv[0]);

clnt_perrno(result);

fprintf(stderr, "\n");

exit(1);

}

1

Using Network File System/Remote Procedure Call

40

3

if (result == 0) {

fprintf(stderr, "%s: %s couldn't print your message\n",

argv[0], server);

exit(1);

}

printf("Message delivered to %s!\n", server);

exit (0);

}

This program uses the function callrpc(). callrpc() is the simplest way of
making remote procedure calls.

Data types may have different representations on different machines. Therefore,
callrpc() requires the type of the RPC parameter and a pointer to the parameter
itself. callrpc() returns xdr_int as its first parameter, and PRINTMESSAGE
returns an integer. Therefore, the result is of type int. &result, a pointer to where
the long result will be placed, is the second parameter returned by callrpc().
PRINTMESSAGE takes a string as an argument, callrpc() is passed xdr_string.

If callrpc() tries to deliver a message several times without receiving an answer, it
returns an error code. Because callrpc() uses UDP as its delivery mechanism,
methods for adjusting the number of retries or for using a different protocol require the
use of RPC’s lower layer.

The following remote server procedure takes a pointer to the input of the remote
procedure call and returns a pointer to the result.

#include <stdio.h>

#include <RPC/rpc.h>

#include "msg.h"

int *

printmessage_1(msg)

char **msg;

{

static int result;

FILE *f;

f = fopen("/term", "w");

if (f == NULL) {

result = 0;

return (&result);

}

fprintf(f, "%s\n", *msg);

fclose(f);

result = 1;

For more information on callrpc(), refer to the description in the RPC C library section.

1

Chapter 3: Remote Procedure Calls

41

3

return (&result);

}

Normally, a server goes into an infinite loop while waiting to service requests after
registering all of the RPC calls it plans to handle. In this example, only a single
procedure needs to be registered:

#include <stdio.h>

#include <RPC/rpc.h>

#include "msg.h"

static void messageprog_1();

main()

{

 SVCXPRT *transp;

 registerrpc(MESSAGEPROG,
MESSAGEVERS,PRINTMESSAGE,printmessage_1,

 xdr_wrapstring,xdr_int);

 svc_run();

 fprintf(stderr, "svc_run returned\n");

 exit(1);

}

registerrpc() registers a C procedure that corresponds to a specific RPC
procedure number. Refer to the RPC C library section of this chapter for information
concerning the parameters that registerrpc() accepts. Multiple parameters or
multiple results are passed as structures. You can only use registerrpc() with the
UDP transport mechanism. Therefore, registerrpc() can always be used with
calls generated by callrpc().

After registering the local procedure, the server program’s main procedure calls
svc_run(), the RPC library’s remote procedure dispatcher. svc_run() calls the
remote procedures in response to RPC call messages. The dispatcher decodes remote
procedure parameters and encodes the results, using the XDR filters specified when
the remote procedure was registered.

The UDP transport mechanism can only deal with parameters and results less than 8K in
length.

1

Using Network File System/Remote Procedure Call

42

3

Assigning Program Numbers

Program numbers are assigned in groups of 0x20000000 according to Table 3-1 on
page 42.

The first group of numbers are assigned by Sun Microsystems and should be the same
for all NFS/RPC systems. The second range is available for RPC services developed on
OS-9. The third group is reserved for applications that generate program numbers
dynamically. Do not use the remaining groups; they are reserved for future use.

Using the Middle Layer to Pass Arbitrary Data Types

RPC can handle arbitrary data structures, regardless of different machines’ byte orders
or structure layout conventions. RPC converts the data structure to XDR before passing
on the structures. The process of converting from a particular machine representation
to XDR format is called serializing. The reverse process is called deserializing. The type
field parameters of callrpc() and registerrpc() can be a built-in procedure
such as xdr_u_long() or a user-supplied procedure.

XDR built-in type routines are shown in Table 3-2 on page 42.

Table 3-1. Program Numbers

Program Number Description

0x00000000 - 0x1fffffff Defined by Sun Microsystems

0x20000000 - 0x3fffffff Defined by OS-9

0x40000000 - 0x5fffffff Transient

0x60000000 - 0x7fffffff Reserved

0x80000000 - 0x9fffffff Reserved

0xa0000000 - 0xbfffffff Reserved

0xc0000000 - 0xdfffffff Reserved

0xe0000000 - 0xffffffff Reserved

Table 3-2. XDR Built-in Type Routines

Name Description

xdr_bool() Translates booleans to/from XDR.

xdr_char() Translates characters to/from XDR.

1

Chapter 3: Remote Procedure Calls

43

3

The following is a user-defined type routine.

struct simple {
int a;
short b;

} simple;

You can send this routine using callrpc() by entering:

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,
 xdr_simple, &simple ...);

You can define the xdr_simple routine as:
#include <RPC/rpc.h>

xdr_simple(xdrsp, simplep)
XDR *xdrsp;
struct simple *simplep;

{
if (!xdr_int(xdrsp, &simplep->a))

return (0);
if (!xdr_short(xdrsp, &simplep->b))

return (0);

xdr_enum() Translates enumerated types to/from XDR.

xdr_int() Translates integers to/from XDR.

xdr_long() Translates long integers to/from XDR.

xdr_short() Translates short integers to/from XDR.

xdr_u_char() Translates unsigned characters to/from XDR.

xdr_u_int() Translates unsigned integers to/from XDR.

xdr_u_long() Translates unsigned long integers to/from XDR.

xdr_u_short() Translates unsigned short integers to/from XDR.

xdr_wrapstring() Packages an RPC message.

The routine xdr_string() exists, but cannot be used with callrpc() and
registerrpc(). callrpc() and registerrpc() only pass two parameters
to their XDR routines. Use xdr_wrapstring() which has only two parameters.
xdr_wrapstring() calls xdr_string().

Table 3-2. XDR Built-in Type Routines (Continued)

Name Description

1

Using Network File System/Remote Procedure Call

44

3

return (1);
}

If an XDR routine completes successfully, it returns a non-zero value. Otherwise, it
returns a zero.

In addition to the built-in primitives, you can use the building blocks shown in
Table 3-3 on page 44.

To send a variable array of integers, create a structure:

struct varintarr {
int *data;
int arrlnth;

} arr;

Then, make an RPC call:

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,
 xdr_varintarr, &arr...);

You can define the xdr_varintarr() routine as follows:

xdr_varintarr(xdrsp, arrp)
XDR *xdrsp;
struct varintarr *arrp;

{
return (xdr_array(xdrsp, &arrp->data, &arrp->arrlnth,

MAXLEN, sizeof(int), xdr_int));

Table 3-3. Building Blocks

Name Description

xdr_array() Translates arrays to/from XDR.

xdr_bytes() Translates counted bytes to/from XDR.

xdr_opaque() Translates opaque data to/from XDR.

xdr_pointer() Translates pointer to/from XDR.

xdr_reference() Translates pointers to/from XDR.

xdr_string() Translates strings to/from XDR.

xdr_union() Translates discriminated union to/from XDR.

xdr_vector() Translates fixed-length arrays to/from XDR.

1

Chapter 3: Remote Procedure Calls

45

3

}

xdr_array() accepts the following:

• an XDR handle

• a pointer to the array

• a pointer to the size of the array

• the maximum allowable array size

• the size of each array element

• an XDR routine for handling each array element as parameters.

If the size of the array is already known, you can use xdr_vector().
xdr_vector() serializes fixed-length arrays:

int intarr[SIZE];

xdr_intarr(xdrsp, intarr)
XDR *xdrsp;
int intarr[];

{
int i;

return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int),
xdr_int));

}

XDR always converts quantities to four-byte multiples when deserializing. This means
that if either of the previous examples involved characters instead of integers, each
character would occupy 32 bits. You can use the XDR routine xdr_bytes() to pack
the characters. xdr_string() can be used to pack null-terminated strings. On
serializing, xdr_string() gets the string length from strlen. On deserializing,
xdr_string() creates a null-terminated string.

The following program calls the built-in functions xdr_string() and
xdr_reference() and the example defined earlier, xdr_simple():

struct finalexample {
char *string;
struct simple *simplep;

} finalexample;

xdr_finalexample(xdrsp, finalp)
XDR *xdrsp;
struct finalexample *finalp;

{

if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))
return (0);

if (!xdr_reference(xdrsp, &finalp->simplep,
 sizeof(struct simple), xdr_simple);

return (0);
return (1);

}

1

Using Network File System/Remote Procedure Call

46

3

Lowest Layer of RPC

In the examples presented so far, RPC automatically handles many details. There may
be occasions when you need to override the defaults. You can use RPC’s lower layer
to change time-out specifications, choice of control, etc.

Use RPC’s lower layer for the following:

• Using TCP to send long streams of data. Both of the higher layers use UDP, which
restricts RPC calls to 8K of data.

• Allocating and freeing memory while serializing or deserializing with XDR routines.
The higher levels have no calls to explicitly free memory.

• Performing authentication on either the client or server side by supplying or
verifying credentials.

Using RPC’s Lowest Layer on the Server Side

The following server is for the rmsg program. It uses the lower layer of RPC instead of
registerrpc().

#include <stdio.h>

#include <stdlib.h>

#include <RPC/rpc.h>

#include "msg.h"

static void messageprog_1();

main()

{

SVCXPRT *transp;

pmap_unset(MESSAGEPROG, MESSAGEVERS);

transp = svcudp_create(RPC_ANYSOCK);

if (transp == NULL) {

fprintf(stderr, "cannot create udp service.\n");

exit(1);

}

if (!svc_register(transp, MESSAGEPROG, MESSAGEVERS,
messageprog_1,

IPPROTO_UDP)){

fprintf(stderr, "unable to register (MESSAGEPROG,
MESSAGEVERS,

udp).\n");

exit(1);

You should be familiar with sockets and the system calls for dealing with sockets before using
the lower layer.

1

Chapter 3: Remote Procedure Calls

47

3

}

transp = svctcp_create(RPC_ANYSOCK, 0, 0);

if (transp == NULL) {

fprintf(stderr, "cannot create tcp service.\n");

exit(1);

}

if (!svc_register(transp, MESSAGEPROG, MESSAGEVERS,
messageprog_1,

IPPROTO_TCP)) {

fprintf(stderr, "unable to register (MESSAGEPROG,
MESSAGEVERS,

tcp).\n");

exit(1);

}

svc_run();

fprintf(stderr, "svc_run returned\n");

exit(1);

}

static void

messageprog_1(rqstp, transp)

struct svc_req *rqstp;

SVCXPRT *transp;

{

union {

char *printmessage_1_arg;

} argument;

char *result;

bool_t (*xdr_argument)(), (*xdr_result)();

char *(*local)();

switch (rqstp->rq_proc) {

case NULLPROC:

svc_sendreply(transp, xdr_void, NULL);

return;

case PRINTMESSAGE:

xdr_argument = xdr_wrapstring;

xdr_result = xdr_int;

local = (char *(*)()) printmessage_1;

break;

default:

svcerr_noproc(transp);

return;

}

bzero(&argument, sizeof(argument));

if (!svc_getargs(transp, xdr_argument, &argument)) {

svcerr_decode(transp);

return;

1

Using Network File System/Remote Procedure Call

48

3

}

result = (*local)(&argument, rqstp);

if (result != NULL && !svc_sendreply(transp, xdr_result,
result)) {

svcerr_systemerr(transp);

}

if (!svc_freeargs(transp, xdr_argument, &argument)) {

fprintf(stderr, "unable to free arguments\n");

exit(1);

}

}

In this program, the server gets a transport handle, which receives RPC messages and
replies to these messages. If registerrpc() had been used, it would have called
svcudp_create() by default to get a UDP handle. svctcp_create() allows a
TCP handle. RPC’s lower layer allows a choice between svcudp_create() and
svctcp_create(). If the parameter is RPC_ANYSOCK, the RPC library creates a
socket on which to receive and reply to RPC calls. Otherwise, svcudp_create() or
svctcp_create() expects the parameter to be a valid socket number. If a user’s
socket is specified, it can be bound or unbound. If it is bound to a port by the user, the
port numbers of svcudp_create() or svctcp_create() and
clntudp_create() or clntcp_create() (the low-level client routine) must
match.

If you specify the RPC_ANYSOCK parameter, the RPC library routines open sockets.
Otherwise, the routines expect the user to open the sockets. The routines
svcudp_create() and clntudp_create() [or svctcp_create() and
clntcp_create()] cause the RPC library routines to bind their socket if it is not
already bound.

A service may choose to register its port number with the local port mapper service. To
do this, specify a non-zero protocol number in svc_register().

Before creating a SVCXPRT, call pmap_unset(). pmap_unset() erases any
existing entries for MESSAGEPROG from the port mapper’s tables.

Finally, the program number is associated with the procedure messageprog_1. The
final parameter to svc_register() is normally the protocol to be used; in this case
either IPPROTO_UDP or IPPROTO_TCP. Unlike registerrpc(), XDR routines
are not involved in the registration process, and registration is performed on the
program level rather than the procedure level.

The user routine messageprog_1 must call and dispatch the appropriate XDR
routines based on the procedure number. registerrpc() automatically handles
two tasks for messageprog_1:

A client can discover the server’s port number by consulting the port mapper on their server’s
machine. Specifying 0 as the port number in clntudp_create() or
clntcp_create() requests this information.

1

Chapter 3: Remote Procedure Calls

49

3

• Procedure NULLPROC returns with no results. This can detect if a remote program
is running.

• Registerrpc() checks for invalid procedure numbers. If an invalid procedure
number is detected, svcerr_noproc() is called to handle the error.

The user service routine serializes the results and returns them to the RPC caller via
svc_sendreply(). The first parameter is the SVCXPRT handle, the second
parameter is the XDR routine, and the third parameter is a pointer to the data to be
returned.

Memory Allocation with XDR and the Lower Layer

XDR routines also perform memory allocation. This is why the second parameter of
xdr_array() is a pointer to an array, rather than the array itself. If the second
parameter is null, xdr_array() allocates space for the array and returns a pointer to
it, placing the size of the array in the third parameter. As an example, consider the
following XDR routine xdr_chararr1() which deals with a fixed array of bytes with
length SIZE.

xdr_chararr1(xdrsp, chararr)
XDR *xdrsp;
char chararr[];

{
char *p;
int len;

p = chararr;
len = SIZE;
return (xdr_bytes(xdrsp, &p, &len, SIZE));

}

It might be called from a server:

char chararr[SIZE];

svc_getargs(transp, xdr_chararr1, chararr);

Space has already been allocated in chararr. If you want XDR to allocate the
memory, rewrite the routine:

xdr_chararr2(xdrsp, chararrp)
XDR *xdrsp;
char **chararrp;

{
int len;

len = SIZE;
return (xdr_bytes(xdrsp, charrarrp, &len, SIZE));

}

The RPC call might look like this:

char *arrptr;

arrptr = NULL;
svc_getargs(transp, xdr_chararr2, &arrptr);

1

Using Network File System/Remote Procedure Call

50

3

/* Use the result here */

svc_freeargs(transp, xdr_chararr2, &arrptr);

To summarize, each XDR routine is responsible for serializing, deserializing, and freeing
memory. When an XDR routine is called from callrpc(), the serializing portion is
used. When called from svc_getargs(), the deserializer is used. When called from
svc_freeargs(), the memory deallocator is used.

The Calling Side of the Lower Layer

When using callrpc(), you have no control over the RPC delivery mechanism or
the socket used to transport the data. To illustrate how the lower layer of RPC allows
you to adjust these parameters, consider the following code to call the nusers
service:

#include <stdio.h>

#include <RPC/rpc.h>

#include "msg.h"

main(argc, argv)

int argc;

char *argv[];

{

CLIENT *cl;

int *result;

char *server;

char *message;

if (argc != 3)

exit(_errmsg(1,"usage: msg host message\n"));

server = argv[1];

message = argv[2];

cl = clnt_create(server, MESSAGEPROG, MESSAGEVERS, "tcp");

if (cl == NULL) {

clnt_pcreateerror(server);

exit(1);

}

result = printmessage_1(&message, cl);

if (result == NULL) {

After being used, you can free the character array with svc_freeargs().
svc_freeargs() does not attempt to free any memory if the variable indicating the
memory is null. For example, in the routine xdr_finalexample() presented earlier,
if finalp->string was null, it would not be freed. The same is true for finalp-
>simplep.

1

Chapter 3: Remote Procedure Calls

51

3

clnt_perror(cl, server);

exit (1);

}

if (*result == 0) {

fprintf(stderr, "%s: %s couldn't print your message\n",

argv[0], server);

exit(1);

}

printf("Message delivered to %s!\n", server);

exit (0);

}

#include <RPC/rpc.h>

#include <time.h>

#include "msg.h"

static struct timeval TIMEOUT = { 25, 0 };

int *

printmessage_1(argp, clnt)

char **argp;

CLIENT *clnt;

{

static int res;

bzero(&res, sizeof(res));

if (clnt_call(clnt, PRINTMESSAGE, xdr_wrapstring, argp,
xdr_int,

&res, TIMEOUT) != RPC_SUCCESS) {

return (NULL);

}

return (&res);

}

The low-level version of callrpc() is clnt_call(). clnt_call() accepts a
CLIENT pointer. The parameters to clnt_call() are:

• A CLIENT pointer

• The procedure number

• The XDR routine for serializing the parameter

• A pointer to the parameter

• The XDR routine for deserializing the return value

1

Using Network File System/Remote Procedure Call

52

3

• A pointer to where the return value will be placed

• The time in seconds to wait for a reply.

The CLIENT pointer is encoded with the transport mechanism. callrpc() uses
UDP. Therefore, it calls clntudp_create() to get a CLIENT pointer. To get TCP,
use clnttcp_create().

The parameters to clntudp_create() are:

• The server address

• The program number

• The version number

• A time-out value (between tries)

• A pointer to a socket

The final parameter to clnt_call() is the total time to wait for a response.
Therefore, the number of tries is the clnt_call() time-out divided by the
clntudp_create() time-out.

To make a stream connection, clntudp_create() is replaced with
clnttcp_create().

clnttcp_create(&server_addr, prognum, versnum, &sock,
 inputsize, outputsize);

There is no time-out parameter. Instead, the receive and send buffer sizes are
specified. When the clnttcp_create() call is made, a TCP connection is
established. All RPC calls using that CLIENT handle use this connection. The server
side of an RPC call using TCP replaces svcudp_create() by svctcp_create().

transp = svctcp_create(RPC_ANYSOCK, 0, 0);

The last two parameters to svctcp_create() are send and receive sizes
respectively. If 0 is specified for either of these, the system chooses a default.

Other RPC Features
This section discusses some other aspects of RPC that are occasionally useful.

Select on the Server Side

If a server process is processing RPC requests while performing an activity that involves
periodically updating a data structure, the process can set an OS-9 alarm before calling
svc_run(). However, if the activity involves waiting for input from a file not managed
by RPC, the svc_run() call does not work.

clnt_destroy() deallocates any space associated with the CLIENT handle.
clnt_destroy() does not close the associated socket, which was passed as a
parameter to clntudp_create(). This makes it possible, in cases where multiple
client handles are using the same socket, to destroy one handle without closing the socket that
other handles are using.

1

Chapter 3: Remote Procedure Calls

53

3

You can bypass svc_run() by calling svc_getreqset(). You need to know the
path numbers of the socket(s) associated with your programs. You can call select()
on both the RPC sockets and other path numbers. svc_fds() is a bit mask of all the
path numbers that RPC uses for services. It can change whenever an RPC library
routine is called because descriptors are constantly being opened and closed.

Broadcast RPC

In broadcast RPC-based protocols, the client sends a broadcast packet to the network
and waits for numerous replies. Broadcast RPC uses unreliable, packet-based protocols
such as UDP as its transports. Servers that support broadcast protocols only respond
when a request is successfully processed. This means that there is no response to
errors.

Broadcast RPC uses the port mapper daemon. The port mapper converts RPC
program numbers into DARPA protocol port numbers. The user cannot perform
broadcast RPC without the port mapper.

Table 3-4 on page 53 shows the main differences between normal RPC calls and
broadcast RPC calls.

Broadcast RPC Synopsis

Following is an example of the clnt_broadcast() call.

#include <RPC/pmap_clnt.h>
. . .

enum clnt_statclnt_stat;
. . .

clnt_stat = clnt_broadcast(prognum, versnum, procnum,
 inproc, in, outproc, out, eachresult)

u_long prognum; /* program number */
u_long versnum; /* version number */
u_long procnum; /* procedure number */
xdrproc_t inproc; /* XDR routine for arguments */
caddr_t in; /* pointer to arguments */
xdrproc_t outproc; /* XDR routine for results */

Table 3-4. Normal RPC calls/Broadcast RPC calls

Normal RPC Broadcast RPC

Expects one answer Expects one answer or more from each
responding machine

Supported on both TCP and UDP protocols Supported only on UDP protocols

Reports unsuccessful responses Does not report unsuccessful responses

Does not require messages to be sent to the
port mapper

All broadcast RPC messages are sent to the
port mapper port

1

Using Network File System/Remote Procedure Call

54

3

caddr_t out; /* pointer to results */
bool_t (*eachresult)();/* call with each result gotten */

The procedure eachresult() is called each time a valid result is obtained. It returns
a boolean value that indicates whether or not the user wants more responses:

bool_t done;
. . .

done = eachresult(resultsp, raddr)
caddr_t resultsp;
struct sockaddr_in *raddr; /* Address of the responding

machine */

If done is TRUE, broadcasting stops and clnt_broadcast() returns successfully.
Otherwise, the routine waits for another response. The request is rebroadcast after a
few seconds of waiting. If no responses come back, the routine returns with
RPC_TIMEDOUT.

Batching

The RPC architecture is designed so that clients send a call message and wait for
servers to reply that the call succeeded. This implies that clients perform no other
functions while servers are processing a call. This is inefficient if the client does not
want or need an acknowledgment for every message sent. Using RPC batch facilities,
clients can continue computing while waiting for a response.

RPC messages can be placed in a “pipeline” of calls to a desired server. This is called
batching. Batching assumes the following:

• Each RPC call in the pipeline requires no response from the server, and the server
does not send a response message.

• The pipeline of calls is transported on a reliable, byte-stream transport such as
TCP/IP.

The client can generate new calls in parallel with the server executing previous calls
because the server does not respond to every call. Further, the TCP implementation
can buffer many call messages and send them to the server in one write system call.
This overlapped execution decreases the interprocess communication overhead of the
client and server processes and the total elapsed time of a series of calls.

Because the batched calls are buffered, the client should eventually perform a
legitimate RPC call to flush the pipeline.

A contrived example of batching follows. Assume a string rendering service has two
similar calls; one renders a string and returns void results, while the other renders a
string and remains silent. Using TCP, the service may look like the following:

#include <stdio.h>
#include <RPC/rpc.h>

void windowdispatch();

main()
{

SVCXPRT *transp;

1

Chapter 3: Remote Procedure Calls

55

3

transp = svctcp_create(RPC_ANYSOCK, 0, 0);
if (transp == NULL){

fprintf(stderr, "cannot create an RPC server\n");
exit(1);

}
pmap_unset(WINDOWPROG, WINDOWVERS);
if (!svc_register(transp, WINDOWPROG, WINDOWVERS,
 windowdispatch, IPPROTO_TCP)) {

fprintf(stderr, "cannot register WINDOW service\n");
exit(1);

}
svc_run(); /* Never returns */
fprintf(stderr, "should never reach this point\n");

}

void
windowdispatch(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
char *s = NULL;

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0))
fprintf(stderr, "cannot reply to RPC call\n");

return;
case RENDERSTRING:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {
fprintf(stderr, "cannot decode arguments\n");

/* Tell caller that there is an error */

svcerr_decode(transp);
break;

}

/* Call here to render the string s */

if (!svc_sendreply(transp, xdr_void, NULL))
fprintf(stderr, "cannot reply to the RPC call\n");

break;
case RENDERSTRING_BATCHED:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {
fprintf(stderr, "cannot decode arguments\n");

/* We are silent in the face of protocol errors */

break;
}

/* Call here to render string s, but send no reply! */

break;
default:

svcerr_noproc(transp);
return;

}

/* Now free string allocated while decoding arguments */

svc_freeargs(transp, xdr_wrapstring, &s);
}

1

Using Network File System/Remote Procedure Call

56

3

The service could have one procedure that takes the string and a boolean to indicate
whether or not the procedure should respond.

In order for a client to take advantage of batching, the client must perform RPC calls on
a TCP-based transport. The actual calls must have the following attributes:

• The result’s XDR routine must be 0 (null).

• The RPC call’s time-out must be 0.

Following is an example of a client that uses batching to render strings. The batching is
flushed when the client gets a null string.

#include <stdio.h>
#include <RPC/rpc.h>
#include <time.h>

main(argc, argv)
int argc;
char **argv;

{
struct hostent *hp;
struct timeval pertry_timeout, total_timeout;
struct sockaddr_in server_addr;
int sock = RPC_ANYSOCK;
register CLIENT *client;
enum clnt_stat clnt_stat;
char buf[1000], *s = buf;

if ((client = clnttcp_create(&server_addr,
 WINDOWPROG, WINDOWVERS, &sock, 0, 0)) == NULL) {

perror("clnttcp_create");
exit(-1);

}
total_timeout.tv_sec = 0;
total_timeout.tv_usec = 0;
while (scanf("%s", s) != EOF) {

clnt_stat = clnt_call(client, RENDERSTRING_BATCHED,
xdr_wrapstring, &s, NULL, NULL, total_timeout);

if (clnt_stat != RPC_SUCCESS) {
clnt_perror(client, "batched RPC");
exit(-1);

}
}

/* Now flush the pipeline */

total_timeout.tv_sec = 20;
clnt_stat = clnt_call(client, NULLPROC, xdr_void, NULL,

xdr_void, NULL, total_timeout);
if (clnt_stat != RPC_SUCCESS) {

clnt_perror(client, "rpc");
exit(-1);

}
clnt_destroy(client);

}

1

Chapter 3: Remote Procedure Calls

57

3

Because the server sends no message, the clients cannot be notified of any failures.
Therefore, clients must handle their own errors.

The RPC Message Protocol

This section defines the RPC message protocol in the XDR data description language.
The message is defined in a top-down style.

enum msg_type {
CALL = 0,
REPLY = 1

};

/* A reply to a call message can either be accepted or rejected */

enum reply_stat {
MSG_ACCEPTED = 0,
MSG_DENIED = 1

};

/*
* Given that a call message was accepted, the following is the
* status of an attempt to call a remote procedure.
*/

enum accept_stat {
SUCCESS = 0, /* RPC executed successfully */
PROG_UNAVAIL = 1, /* Remote has not exported program */
PROG_MISMATCH = 2, /* Remote cannot support version # */
PROC_UNAVAIL = 3, /* Program cannot support procedure */
GARBAGE_ARGS = 4 /* Procedure cannot decode params P*/

};

/* Reasons why a call message was rejected: */

enum reject_stat {
RPC_MISMATCH = 0, /* RPC version number != 2 */
AUTH_ERROR = 1 /* Remote cannot authenticate caller */

};

/* Why authentication failed: */

enum auth_stat {
AUTH_BADCRED = 1, /* Bad credentials (seal broken) */
AUTH_REJECTEDCRED = 2, /* Client must begin new session */
AUTH_BADVERF = 3, /* Bad verifier (seal broken) */
AUTH_REJECTEDVERF = 4, /* Verifier expired or replayed */
AUTH_TOOWEAK = 5 /* Rejected for security reasons */

};

/*
* The RPC message:
* All messages start with a transaction identifier, xid, followed
by a
* two-armed discriminated union. The union’s discriminant is a
msg_type
* which switches to one of the two types of the message. The xid
of a
* REPLY message always matches that of the initiating CALL message.
NB:
* The xid field is only used for clients matching reply messages

1

Using Network File System/Remote Procedure Call

58

3

with
* call messages or for servers detecting retransmissions; the
service
* side cannot treat this ID as any type of sequence number.
*/

struct rpc_msg {
unsigned int xid;
union switch (msg_type mtype) {

case CALL:
call_body cbody;

case REPLY:
reply_body rbody;

} body;
};

/*
* Body of an RPC request call: In version 2 of the RPC protocol
specification,
* rpcvers must be equal to 2. The fields prog, vers, and proc
specify the
* remote program, its version number and the procedure within the
remote
* program to be called. After these fields are two authentication
parameters:
* cred (authentication credentials) and verf (authentication
verifier). The
* two authentication parameters are followed by the parameters to
the remote
* procedure, which are specified by the specific program protocol.
*/

struct call_body {
unsigned int rpcvers; /* must be equal to two (2) */
unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque_auth cred;
opaque_auth verf;
/* procedure specific parameters start here */

};

/*
* Body of a reply to an RPC request:
* The call message was either accepted or rejected.
*/

union reply_body switch (reply_stat stat) {
case MSG_ACCEPTED:

accepted_reply areply;
case MSG_DENIED:

rejected_reply rreply;
} reply;

/*
* Reply to an RPC request that was accepted by the server: There
could be an
* error even though the request was accepted. The first field is

1

Chapter 3: Remote Procedure Calls

59

3

an
* authentication verifier that the server generates to validate
itself to the
* caller. It is followed by a union whose discriminant is an enum
accept_stat.
* The SUCCESS arm of the union is protocol specific. The
PROG_UNAVAIL,
* PROC_UNAVAIL, and GARBAGE_ARGP arms of the union are void. The
PROG_MISMATCH
* arm specifies the lowest and highest version numbers of the
remote program
* supported by the server.
*/

struct accepted_reply {
opaque_auth verf;
union switch (accept_stat stat) {

case SUCCESS:
opaque results[0];
/* procedure-specific results start here */

case PROG_MISMATCH:
struct {

unsigned int low;
unsigned int high;

} mismatch_info;
default:

/*
* Void. Cases include PROG_UNAVAIL, PROC_UNAVAIL,
* and GARBAGE_ARGS.
*/

void;
} reply_data;

};

/*
* Reply to an RPC request that was rejected by the server: The
request can
* be rejected for two reasons: either the server is not running a
compatible
* version of the RPC protocol (RPC_MISMATCH), or the server refuses
to
* authenticate the caller (AUTH_ERROR). In case of an RPC version
mismatch,
* the server returns the lowest and highest supported RPC version
numbers.
* In case of refused authentication, failure status is returned.
*/

union rejected_reply switch (reject_stat stat) {
case RPC_MISMATCH:

struct {
unsigned int low;
unsigned int high;

} mismatch_info;
case AUTH_ERROR:

1

Using Network File System/Remote Procedure Call

60

3

auth_stat stat;
};

Record Marking Standard

When RPC messages are passed on top of a byte stream protocol, messages should
be delimited from one another to detect and possibly recover from user protocol
errors. This is called record marking (RM). OS-9 uses record marking with the TCP/IP
transport for passing RPC messages on TCP streams. One RPC message fits into one
RM record.

A record is composed of one or more record fragments. A record fragment is a four-byte
header followed by 0 to (2**31) - 1 bytes of fragment data. The bytes encode an
unsigned binary number. As with XDR integers, the byte order is from highest to
lowest. The number encodes a boolean value which indicates whether the fragment is
the last fragment of the record (bit value 1 implies the fragment is the last fragment)
and a 31-bit unsigned binary value, which is the length in bytes of the fragment’s data.
The boolean value is the highest-order bit of the header. The length is the 31 low-
order bits.

 Authentication

In the examples presented so far, the caller never identified itself to the server, and the
server never required an ID from the caller. Clearly, some network services, such as a
network file system, require stronger security.

In reality, every RPC call is authenticated by the RPC package on the server. Similarly,
the RPC client package generates and sends authentication parameters. Different
forms of authentication can be associated with RPC clients. A field in the RPC header
indicates which protocol is being used. The default authentication is type none.

Provisions for authentication of caller to service and service to caller are provided as
part of the RPC protocol. The call message has the following two authentication fields:

• the credentials

• the verifier

The reply message has one authentication field, the response verifier. The RPC
protocol specification defines all three fields to be the following opaque type:

enum auth_flavor {
 AUTH_NULL = 0,
 AUTH_UNIX = 1,
 AUTH_SHORT = 2,
 /* and more to be defined */
};

struct opaque_auth {
 auth_flavor flavor;
 opaque body<400>;
};

This record specification is not in XDR standard form.

1

Chapter 3: Remote Procedure Calls

61

3

Any opaque_auth structure is an auth_flavor enumeration followed by bytes
which are opaque to the RPC protocol implementation.

The authentication subsystem of the RPC package is open ended. That is, numerous
types of authentication are easy to support. The following are the types of
authentication currently implemented. You can also create your own authentication
types.

Null Authentication

Often calls must be made where the caller does not know who it is or the server does
not care who the caller is. In this case, the flavor value (the discriminant of the
opaque_auth’s union) of the RPC message’s credentials, verifier, and response
verifier is AUTH_NULL. The bytes of the opaque_auth’s body are undefined. It is
recommended that the opaque length be zero.

OS-9 Authentication

The caller of a remote procedure may wish to have the same identification as on an
OS-9 system. OS-9 uses a UNIX-style of RPC authentication. The value of the
credential’s discriminant of an RPC call message is AUTH_UNIX. The credential’s
opaque body encode the following structure. The verifier accompanying the
credentials should be of AUTH_NULL.

struct auth_unix {
unsigned int stamp; /* an arbitrary ID */
string machinename<255>; /* name of caller’s machine */
unsigned int uid; /* caller’s user ID */
unsigned int gid; /* caller’s group ID */
unsigned int gids<10>; /* this array is not used */

};

The value of the response verifier’s discriminant received in the reply message from the
server may be AUTH_NULL or AUTH_SHORT. In the case of AUTH_SHORT, the bytes
of the response verifier’s string encode an opaque structure. You can pass this new
opaque structure to the server instead of the original AUTH_UNIX flavor credentials.
The server keeps a cache which maps shorthand opaque structures (passed back by
way of an AUTH_SHORT style response verifier) to the original credentials of the caller.
The caller can save network bandwidth and server CPU cycles by using the new
credentials.

The server may flush the shorthand opaque structure at any time. If this happens, the
remote procedure call message is rejected due to an authentication error. The reason
for the failure is AUTH_REJECTEDCRED. At this point, the caller may wish to try the
original AUTH_UNIX style of credentials.

A caller creates a new RPC client handle as follows:

clnt = clntudp_create(address, prognum, versnum,

The interpretation and semantics of the data contained within the authentication fields is
specified by individual, independent authentication protocol specifications. If authentication
parameters were rejected, the response message contains information stating the reason for
the rejection.

1

Using Network File System/Remote Procedure Call

62

3

 wait, sockp)

The appropriate transport instance defaults the associate authentication handle to be:

clnt->cl_auth = authnone_create();

The RPC client can choose to use the OS-9/UNIX style authentication by setting
clnt->cl_auth after creating the RPC client handle:

clnt->cl_auth = authunix_create_default();

This causes each RPC call associated with clnt to carry the following authentication
credentials structure:

/* OS-9/OS-9000/

UNIX style credentials. */

struct authunix_parms {
 u_long aup_time; /* credentials creation time */
 char *aup_machname; /* host name where client is */
 int aup_uid; /* client’s OS-9/OS-9000 user ID */
 int aup_gid; /* client’s OS-9/OS-9000 group ID */
 u_int aup_len; /* element length of aup_gids */
 int *aup_gids; /* array of groups user is in */
};

These fields are set by authunix_create_default. Because the RPC user
created this new style of authentication, the user is responsible for destroying it to
conserve memory:

auth_destroy(clnt->cl_auth);

Server Side Authentication

Authentication issues are more complex for service implementors because RPC
requests passed to the service dispatch routine have an arbitrary authentication style.
Consider the fields of a request handle passed to a service dispatch routine:

/* An RPC Service request */

struct svc_req {
 u_long rq_prog; /* service program number */
 u_long rq_vers; /* service protocol version number
*/
 u_long rq_proc; /* desired procedure number */
 struct opaque_auth rq_cred; /* raw credentials */
 caddr_t rq_clntcred; /* credentials (read only) */
};

The rq_cred structure is opaque except for the style of authentication credentials:

/* Authentication info. Mostly opaque to the programmer. */

struct opaque_auth {
 enum_t oa_flavor; /* style of credentials */
 caddr_t oa_base; /* address of more auth stuff */
 u_int oa_length; /* not to exceed MAX_AUTH_BYTES */
};

The RPC package guarantees that the request’s rq_cred is well formed. Therefore,
the service implementor may inspect the request’s rq_cred.oa_flavor to

1

Chapter 3: Remote Procedure Calls

63

3

determine which style of authentication the caller used. The service implementor may
also wish to inspect the other fields of rq_cred if the style is not one of the
authentication styles supported by the RPC package.

The RPC package also guarantees that the request’s rq_clntcred field is either null
or points to a well-formed structure that corresponds to a supported style of
authentication credentials. Only OS-9/UNIX style is currently supported.
rq_clntcred could be cast to a pointer to an authunix_parms structure. If
rq_clntcred is null, the service implementor may inspect the other opaque fields of
rq_cred to see if the service knows about a new type of authentication that the RPC
package does not know about.

Our remote users service example can be extended so that it computes results for all
users except uid 16:

nuser(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
struct authunix_parms *unix_cred;
int uid;
unsigned long nusers;

/* we do not care about authentication for NULL proc */

if (rqstp->rq_proc == NULLPROC) {
if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "cannot reply to RPC call\n");
exit(1);

 }
 return;

}

/* now get the uid */

switch (rqstp->rq_cred.oa_flavor) {
case AUTH_UNIX:

unix_cred =
(struct authunix_parms *)rqstp->rq_clntcred;

uid = unix_cred->aup_uid;
break;

case AUTH_NULL:
default:

svcerr_weakauth(transp);
return;

}
switch (rqstp->rq_proc) {
case RUSERSPROC_NUM:

/* make sure caller is allowed to call this proc */

if (uid == 16) {
svcerr_systemerr(transp);
return;

}

/*
 * code here to compute the number of users
 * and put in variable nusers

1

Using Network File System/Remote Procedure Call

64

3

 */

if (!svc_sendreply(transp, xdr_u_long, &nusers)) {
fprintf(stderr, "cannot reply to RPC call\n");
exit(1);

}
return;

default:
svcerr_noproc(transp);
return;

}
}

Examples

Callback Procedures

Occasionally, a server may become a client and make an RPC call back to the client
process. Whenever an RPC call is made back to the client, a program number is
required. The program number should be in the transient range (0x40000000 -
05fffffff) because it is dynamically generated.

In the following program, the gettransient() routine returns a valid program
number and registers this number with the port mapper located on the same machine
as the gettransient() routine. The call to pmap_set() is a test and set
operation. It tests whether a program number has already been registered with the
port mapper. pmap_set() reserves the program number if it has not been
registered. On return, the sockp parameter contains a socket so that the
svcudp_create() and svctcp_create() calls can be used as parameters.

#include <stdio.h>
#include <RPC/rpc.h>
#include <sys/types.h>

#include <sys/socket.h>

gettransient(proto, vers, sockp)
int proto, vers, *sockp;

{
static int prognum = 0x40000000;
int s, len, socktype;
struct sockaddr_in addr;

switch(proto) {

It is customary not to check the authentication parameters associated with the NULLPROC.
If the authentication parameter’s type is not suitable for a particular service, call
svcerr_weakauth(). The service protocol itself should return status for denied
access. In this example, the protocol does not have such a status. The
svcerr_systemerr() system primitive is called instead.
RPC deals only with authentication and not with individual services’ “access control.” The
services themselves must implement their own access control policies and reflect these
policies as return statuses in their protocols.

1

Chapter 3: Remote Procedure Calls

65

3

case IPPROTO_UDP:
socktype = SOCK_DGRAM;
break;

case IPPROTO_TCP:
socktype = SOCK_STREAM;
break;

default:
fprintf(stderr, "unknown protocol type\n");
return 0;

}
if (*sockp == RPC_ANYSOCK) {

if ((s = socket(AF_INET, socktype, 0)) < 0) {
perror("socket");
return (0);

}
*sockp = s;

}
else

s = *sockp;
addr.sin_addr.s_addr = 0;
addr.sin_family = AF_INET;
addr.sin_port = 0;
len = sizeof(addr);

/* may be already bound, so do not check for error */

bind(s, &addr, len);
if (getsockname(s, &addr, &len)< 0) {

perror("getsockname");
return (0);

}
while (!pmap_set(prognum++, vers, proto,

ntohs(addr.sin_port))) continue;
return (prognum-1);

}

Remote debugging is an instance where a callback procedure is necessary. For
example, a remote debugger’s client may be a window system program, and the server
may be a debugger running on a remote machine. Normally when a user clicks a
mouse button on the debugging window, it is converted to a debugger command and
an RPC call is made to the server to execute the user’s command. However, when the
debugger hits a breakpoint, the server (which in this example is the debugger) makes
an RPC call to the client process to inform the user that a breakpoint has been reached.

The call to ntohs ensures that the port number in addr.sin_port, which is in
network byte order, is passed in host byte order as pmap_set() expects.

1

Using Network File System/Remote Procedure Call

66

3

The following pair of programs illustrate the gettransient() routine. The client
makes an RPC call to the server, passing the server a transient program number. The
client then waits to receive a call back from the server at the program number. The
server registers the program EXAMPLEPROG to receive the RPC call informing it of the
callback program number. In this example, the server sends a callback RPC call using
the program number it received earlier when the ALRM signal was received.

/* client */

#include <stdio.h>
#include <RPC/rpc.h>

int callback();
char hostname[256];

main()
{

int x, ans, s;
SVCXPRT *xprt;

gethostname(hostname, sizeof(hostname));
s = RPC_ANYSOCK;
x = gettransient(IPPROTO_UDP, 1, &s);
fprintf(stderr, "client gets prognum %d\n", x);
if ((xprt = svcudp_create(s)) == NULL) {
 fprintf(stderr, "rpc_server: svcudp_create\n");

exit(1);
}

/* protocol is 0 - gettransient() does registering */

(void)svc_register(xprt, x, 1, callback, 0);
ans = callrpc(hostname, EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC_CALLBACK, xdr_int, &x, xdr_void, 0);
if ((enum clnt_stat) ans != RPC_SUCCESS) {

fprintf(stderr, "call: ");
clnt_perrno(ans);
fprintf(stderr, "\n");

}
svc_run();
fprintf(stderr, "Error: svc_run should not return\n");

}

callback(rqstp, transp)
register struct svc_req *rqstp;
register SVCXPRT *transp;

{
switch (rqstp->rq_proc) {

case 0:
if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "err: rusersd\n");
exit(1);

}
exit(0);

case 1:
if (!svc_getargs(transp, xdr_void, 0)) {

svcerr_decode(transp);
exit(1);

}

1

Chapter 3: Remote Procedure Calls

67

3

fprintf(stderr, "client got callback\n");
if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "err: rusersd");
exit(1);

}
}

}

/* server */
#include <stdio.h>
#include <RPC/rpc.h>

char *getnewprog();
char hostname[256];
int docallback();
int pnum; /* program number for callback routine */

main()
{

gethostname(hostname, sizeof(hostname));
registerrpc(EXAMPLEPROG, EXAMPLEVERS,
 EXAMPLEPROC_CALLBACK, getnewprog, xdr_int, xdr_void);
fprintf(stderr, "server going into svc_run\n");
intercept(docallback);
alm_set(sigcode, 10);
svc_run();
fprintf(stderr, "Error: svc_run should not return\n");

}

char *
getnewprog(pnump)

char *pnump;
{

pnum = *(int *)pnump;
return NULL;

}

docallback()
{

int ans;

ans = callrpc(hostname, pnum, 1, 1, xdr_void, 0,
xdr_void, 0);

if (ans != 0) {
fprintf(stderr, "server: ");
clnt_perrno(ans);
fprintf(stderr, "\n");

}
}

1

Using Network File System/Remote Procedure Call

68

3

1

69

Port Mapper

This chapter describes the port mapper protocol.

4

1

Using Network File System/Remote Procedure Call

70

4

Introduction
The port mapper protocol maps RPC program and version numbers to transport-
specific port numbers. This program makes dynamic binding of remote programs
possible.

The range of reserved port numbers is small, and the number of potential remote
programs is large. By running only the port mapper on a reserved port, the port
numbers of other remote programs can be determined by querying the port mapper.
The port mapper procedure returns the remote program’s port number.

The port mapper also aids in broadcast RPC. A given RPC program usually has
different port number bindings on different machines, so there is no way to directly
broadcast to all of these programs. The port mapper, however, does have a fixed port
number. To broadcast to a given program, the client actually sends its message to the
port mapper located at the broadcast address. Each port mapper that receives the
broadcast then calls the local service specified by the client. When the port mapper
gets the reply from the local service, it sends the reply back to the client.

Port Mapper Operation
The port mapper program currently supports UDP and TCP. The port mapper is located
on assigned port number 111 on either of these protocols. Following are descriptions
of each of the port mapper procedures.

PMAPPROC_NULL

This procedure performs no work. By convention, procedure zero of any protocol
accepts no parameters and returns no results.

PMAPPROC_SET

When a program becomes available on a machine, it registers with the port mapper
program on the same machine. The program passes its program number prog,
version number vers, transport protocol number prot, and the port port on which
it awaits service requests. The procedure returns a boolean response with value of
TRUE if the procedure successfully established the mapping. Otherwise, it returns
FALSE. The procedure refuses to establish a mapping if one already exists for the
prog, vers, and prot.

PMAPPROC_UNSET

When a program becomes unavailable, it should unregister with the port mapper
program on the same machine. The parameters and results have meanings identical
to those of PMAPPROC_SET. The protocol and port number fields of the parameter
are ignored.

The port mapper procedure sends a response only if the procedure executed successfully.
Otherwise, it does not send a response.

1

Chapter 4: Port Mapper

71

4

PMAPPROC_GETPORT

Given a program number prog, version number vers, and transport protocol number
prot, this procedure returns the port number on which the program is awaiting call
requests. An unregistered program has a 0 filled port value. The port field of the
parameter is ignored.

PMAPPROC_DUMP

This procedure enumerates all entries in the port mapper’s database. The procedure
takes no parameters and returns a list of program, version, protocol, and port values.

PMAPPROC_CALLIT

This procedure allows a caller to call another remote procedure on the same machine
without knowing the remote procedure’s port number. It is intended for supporting
broadcasts to arbitrary remote programs via portmap’s well-known port. The
parameters prog, vers, proc, and the bytes of args are the program number,
version number, procedure number, and parameters of the remote procedure.

Port Mapper Protocol Specification
(in RPC Language)

const PMAP_PORT = 111; /* portmapper port number */

/* A mapping of (program, version, protocol) to port number */

struct mapping {
unsigned int prog;
unsigned int vers;
unsigned int prot;
unsigned int port;

};

/* Supported values for the "prot" field */

const IPPROTO_TCP = 6; /* protocol number for TCP/IP */
const IPPROTO_UDP = 17; /* protocol number for UDP/IP */

/* A list of mappings */

struct *pmaplist {
mapping map;
pmaplist next;

};

/* Arguments to callit */

struct call_args {
unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque args<>;

};

/* Results of callit */

struct call_result {
unsigned int port;
opaque res<>;

};

1

Using Network File System/Remote Procedure Call

72

4

/* Port mapper procedures */

program PMAP_PROG {
version PMAP_VERS {

void
PMAPPROC_NULL(void) = 0;
bool
PMAPPROC_SET(mapping) = 1;
bool
PMAPPROC_UNSET(mapping) = 2;
unsigned int
PMAPPROC_GETPORT(mapping) = 3;
pmaplist
PMAPPROC_DUMP(void) = 4;
call_result
PMAPPROC_CALLIT(call_args) = 5;

} = 2;
} = 100000;

1

73

External Data Representation

This chapter describes the XDR protocol. XDR is the underlying data-exchange standard
used by all RPC services.

The XDR C library functions are described in OS-9 Networking Programming Reference.

5

1

Using Network File System/Remote Procedure Call

74

5

Introduction
The OS-9 NFS/RPC package uses the External Data Representation (XDR) standard for
sending remote procedure calls between such diverse machines as OS-9, UNIX
Workstations, VAX, IBM-PCs, large mainframes, and supercomputers. XDR uses a
language similar to the C language to concisely describe data formats. XDR can only be
used to describe data; it is not a programming language. Use the XDR library routines
whenever data is accessed by more than one type of machine.

As long as a machine can translate its data to and from XDR, it can communicate with
any other system on the network. When a process on a remote machine wants to look
at the data, the remote machine translates the XDR representation of the data to its
own local representation. XDR defines a single byte order (big-endian), a single
floating-point representation (IEEE), etc. This allows any program running on any
machine to use XDR to create portable data. The data is portable because it can be
translated from its local representation to XDR.

On OS-9 systems, C programs that use XDR routines must include the file
<RPC/rpc.h>. This file contains all the necessary interfaces to the XDR system. The C
library rpc.l contains all the XDR routines.

The XDR Library
The XDR library enables you to read and write arbitrary C constructs in a consistent
manner. Therefore, it makes sense to use the library even when the data is not shared
among machines on a network.

The XDR library has filter routines for strings, structures, unions, arrays, etc. Using more
primitive routines, you can write specific XDR routines to describe arbitrary data
structures, including elements of arrays, arms of unions, or objects pointed at from
other structures. The structures themselves may contain arrays of arbitrary elements or
pointers to other structures.

You can make programs data-portable by replacing the read and write calls with calls to
the XDR library routine xdr_long(). xdr_long() is a filter that knows the standard
representation of a long integer in its external form. The following programs use XDR.

Writer

The first program is called writer.

#include <stdio.h>

#include <RPC/rpc.h>

main()

 /* writer.c */

{

XDR xdrs;

long i;

xdrstdio_create(&xdrs, stdout, XDR_ENCODE);

for (i = 0; i < 8; i++) {

if (!xdr_long(&xdrs, &i)) {

1

Chapter 5: External Data Representation

75

5

fprintf(stderr, "failed!\n");

exit(1);

}

}

}

Reader
The second program is called reader.
#include <stdio.h>

#include <RPC/rpc.h>

main()

 /* reader.c */

{

XDR xdrs;

long i, j;

xdrstdio_create(&xdrs, stdin, XDR_DECODE);

for (j = 0; j < 8; j++) {

if (!xdr_long(&xdrs, &i)) {

fprintf(stderr, "failed!\n");

exit(1);

}

printf("%ld ", i);

}

printf("\n");

}

Explaining Writer/Reader Examples

Examine the programs. Members of the XDR stream creation routines treat the stream
of bits differently. In the example programs, data is manipulated using standard I/O
routines. Therefore, xdrstdio_create() is used. The parameters to XDR stream
creation routines vary according to their function. In the example,
xdrstdio_create() takes a pointer to an XDR structure that it initializes, a pointer
to a file that the input or output is performed on, and the operation.

The above operation may be either:

XDR_ENCODE for serializing in the writer program.

XDR_DECODE for deserializing in the reader program.

Arbitrary data structures present portability problems, particularly with respect to alignment
and pointers. Alignment on word boundaries may cause the size of a structure to vary from
machine to machine. Pointers have no meaning outside the machine where they are defined.

1

Using Network File System/Remote Procedure Call

76

5

The xdr_long() primitive is characteristic of most XDR library primitives and all client
XDR routines. The routine returns FALSE (0) if it fails and TRUE (1) if it succeeds. Also,
for each data type, xxx, there is an associated XDR routine of the form:

xdr_xxx(xdrs, xp)

XDR *xdrs;

xxx *xp;

{

}

In this example, xxx is long. The corresponding XDR routine is a primitive,
xdr_long(). The client could define an arbitrary structure xxx. In this case, the client
would also supply the routine xdr_xxx() which describes each field by calling XDR
routines of the appropriate type. In all cases, xdrs can be treated as an opaque handle
and passed to the primitive routines.

Serializing and Deserializing Data

XDR routines are direction independent. That is, the same routine can be called to either
serialize or deserialize data. This almost guarantees that serialized data can also be
deserialized. This is possible because the address of an object is passed rather than the
object itself. Only in the case of deserialization is the object modified.

Assume that a person’s gross assets and liabilities are to be exchanged among
processes. Also assume that these values are important enough to warrant their own
data type:

struct gnumbers {

long g_assets;

long g_liabilities;

};

The corresponding XDR routine describing this structure is:

bool_t /* TRUE is success, FALSE is failure */

xdr_gnumbers(xdrs, gp)

XDR *xdrs;

struct gnumbers *gp;

{

if (xdr_long(xdrs, &gp->g_assets) &&

 xdr_long(xdrs, &gp->g_liabilities))

return(TRUE);

return(FALSE);

}

RPC users never need to create XDR streams. The RPC system creates these streams before
passing them to the users.

1

Chapter 5: External Data Representation

77

5

This example also shows that the type bool_t is declared as an integer in which the
only values are TRUE (1) and FALSE (0). The following definitions are used throughout
this chapter:

#define bool_t int

#define TRUE 1

#define FALSE 0

#define enum_t int/* enum_t used for generic enums */

Keeping these conventions in mind, you can rewrite xdr_gnumbers():
xdr_gnumbers(xdrs, gp)

XDR *xdrs;

struct gnumbers *gp;

{

return(xdr_long(xdrs, &gp->g_assets) &&

xdr_long(xdrs, &gp->g_liabilities));

}

Both coding styles are used.

XDR Library Primitives
This section gives a synopsis for each XDR primitive. It starts with the basic data types
and moves on to constructed data types. It also examines the XDR utilities. The
interface to these primitives and utilities is defined in the include file <RPC/xdr.h>,
which is automatically included by <RPC/rpc.h>.

Number Filters

The XDR library provides primitives to translate between numbers and their
corresponding external representations. Primitives cover the set of numbers in:

[signed, unsigned] * [short, int, long]

Specifically, the eight primitives are:

bool_t xdr_char(xdrs, cp)

XDR *xdrs; /* an XDR stream handle */

char *cp; /* address of character to provide/receive
data */

bool_t xdr_u_char(xdrs, ucp)

XDR *xdrs; /* an XDR stream handle */

unsigned char *ucp; /* address of unsigned character */

The parameter xdrs is never inspected or modified. It is only passed to the subcomponent
routines. It is imperative to inspect the return value of each XDR routine call and to
immediately return FALSE if the subroutine fails.

1

Using Network File System/Remote Procedure Call

78

5

bool_t xdr_int(xdrs, ip)

XDR *xdrs; /* an XDR stream handle */

int *ip; /* address of integer */

bool_t xdr_u_int(xdrs, up)

XDR *xdrs; /* an XDR stream handle */

unsigned *up; /* address of unsigned integer */

bool_t xdr_long(xdrs, lip)

XDR *xdrs; /* an XDR stream handle */

long *lip; /* address of long integer */

bool_t xdr_u_long(xdrs, lup)

XDR *xdrs; /* an XDR stream handle */

u_long *lup; /* address of long unsigned integer */

bool_t xdr_short(xdrs, sip)

XDR *xdrs; /* an XDR stream handle */

short *sip; /* address of short integer */

bool_t xdr_u_short(xdrs, sup)

XDR *xdrs; /* an XDR stream handle */

u_short *sup; /* address of short unsigned integer */

All routines return TRUE if they complete successfully, and FALSE if an error occurs.

Floating Point Filters

The XDR library also provides primitive routines for C’s floating point types:

bool_t xdr_float(xdrs, fp)

XDR *xdrs; /* XDR stream handle */

float *fp; /* address of floating point number */

bool_t xdr_double(xdrs, dp)

XDR *xdrs; /* XDR stream handle */

double *dp; /* address of double */

If successful, all routines return TRUE. Otherwise, they return FALSE.

Enumeration Filters

The XDR library provides a primitive for generic enumerations. The primitive assumes
that a C enumerator has the same representation inside the machine as a C integer.
The boolean type is an important instance of the enumerator. The external
representation of a boolean is always TRUE (1) or FALSE (0).

#define bool_tint

#define FALSE0

#define TRUE 1

#define enum_t int

1

Chapter 5: External Data Representation

79

5

bool_t xdr_enum(xdrs, ep)

XDR *xdrs; /* XDR stream handle */

enum_t *ep; /* address of enumerator */

bool_t xdr_bool(xdrs, bp)

XDR *xdrs; /* XDR stream handle */

bool_t *bp; /* address of boolean */

FALSE is returned if the number of characters exceeds maxlength. Otherwise, TRUE
is returned. The value of maxlength is usually specified by a protocol.

No Data

Occasionally, an XDR routine must be supplied to the RPC system even when no data
is passed or required. The library provides such a routine:

bool_t xdr_void(); /* always returns TRUE */

Constructed Data Type Filters

Constructed or compound data type primitives require more parameters and perform
more complicated functions than the primitives already discussed. This section includes
primitives for the following:

• Strings

• Arrays

• Unions

• Pointers to structures.

You may use constructed data type primitives to aid memory management. In many
cases, memory is allocated when deserializing data with XDR_DECODE. The XDR
operation XDR_FREE provides a way to deallocate memory. The three XDR directional
operations are:

• XDR_ENCODE

• XDR_DECODE

• XDR_FREE

Strings

In C, a string is defined as a sequence of bytes terminated by a null byte. The null byte
is not considered when calculating string length. However, when a string is passed or
manipulated, a pointer to the null byte is used. Therefore, the XDR library defines a
string to be a char and not a sequence of characters. The external representation of a
string is vastly different from the internal representation. xdr_string() converts
between the two representations:

bool_t xdr_string(xdrs, sp, maxlength)

XDR *xdrs; /* XDR stream handle */

The boolean type is an important instance of the enumerator. The external representation of a
boolean is always TRUE (1) or FALSE (0).

1

Using Network File System/Remote Procedure Call

80

5

char **sp; /* pointer to a string */

u_int maxlength; /* max. no. bytes allowed for encoding/decoding
*/

The value of maxlength is usually specified by a protocol. For example, a protocol
specification may limit a file name to 255 characters. xdr_string() returns FALSE if
the number of characters exceeds maxlength. Otherwise, it returns TRUE.

xdr_string() behaves like the other routines discussed in this section. The
direction XDR_ENCODE is easiest to understand. The parameter sp points to a string of
a certain length. If the string does not exceed maxlength, the bytes are serialized.

The effect of deserializing a string is subtle. First, the length of the incoming string is
determined. It must not exceed maxlength. Next, sp is dereferenced. If the the value
is null, a string of the appropriate length is allocated and *sp is set to this string. If the
original value of *sp is non-null, the XDR package assumes that a target area has been
allocated. The target area can hold strings no longer than maxlength. In either case,
the string is decoded in the target area. The routine appends a null character to the
string.

In the XDR_FREE operation, the string is obtained by dereferencing sp. If the string is
not null, it is freed and *sp is set to null. In this operation, xdr_string() ignores
maxlength.

Byte Arrays

Often, variable-length arrays of bytes are preferable to strings. Byte arrays differ from
strings in the following ways:

• The length of the array (the byte count) is explicitly located in an unsigned integer.

• The byte sequence is not terminated by a null character.

• The external representation of the bytes is the same as the internal representation.

The primitive xdr_bytes() converts between the internal and external
representations of byte arrays:

bool_t xdr_bytes(xdrs, bpp, lp, maxlength)

 XDR *xdrs; /* XDR stream handle */

 char **bpp; /* pointer to a string */

 u_int *lp; /* byte length */

 u_int maxlength; /* max. no. of bytes for encoding/decoding
*/

The length of the byte area is obtained by dereferencing lp when serializing. *lp is
set to the byte length when deserializing.

Arrays

The XDR library package provides a primitive for handling arrays of arbitrary elements.
xdr_bytes() treats a subset of generic arrays in which the size of the array elements

1

Chapter 5: External Data Representation

81

5

is known to be 1, and the external description of each element is built-in.
xdr_array() is called to encode or decode each element of the array.

bool_t

xdr_array(xdrs, ap, lp, maxlength, elementsiz, xdr_element)

 XDR *xdrs; /* opaque handle */

 char **ap; /* the address of the pointer to the array */

 u_int *lp; /* length of array after deserialization */

 u_int maxlength; /* maximum number of elements allows in an array
*/

 u_int elementsiz; /* byte size of each element in the array */

 bool_t (*xdr_element)();

If *ap is null when the array is being deserialized, XDR allocates an array of the
appropriate size and sets *ap to that array. The element count of the array is obtained
from *lp when the array is serialized. *lp is set to the array length when the array is
deserialized. The routine xdr_element() serializes, deserializes, or frees each
element of the array.

Before defining more constructed data types, three examples are presented.

Implementing Arrays Example A

You can identify a user on a networked machine by the machine name, the user’s uid,
and the group numbers to which the user belongs. You could code a structure with this
information and its associated XDR routine like this:

struct netuser {

 char *nu_machinename;

 int nu_uid;

 u_int nu_glen;

 int *nu_gids;

};

#define NLEN 255 /* machine names < 256 chars */

#define NGRPS 20 /* user cannot be in > 20 groups */

bool_t

xdr_netuser(xdrs, nup)

 XDR *xdrs;

 struct netuser *nup;

{

 return(xdr_string(xdrs, &nup->nu_machinename, NLEN) &&

 xdr_int(xdrs, &nup->nu_uid) &&

 xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen,

 NGRPS, sizeof (int), xdr_int));

}

1

Using Network File System/Remote Procedure Call

82

5

Implementing Arrays Example B

You could implement a party of network users as an array of netuser structure. The
declaration and the associated XDR routines are as follows:

struct party {

 u_int p_len;

 struct netuser *p_nusers;

};

#define PLEN 500 /* maximum number of users in a party */

bool_t

xdr_party(xdrs, pp)

 XDR *xdrs;

 struct party *pp;

{

 return(xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,

 sizeof (struct netuser), xdr_netuser));

}

Implementing Arrays Example C

You can combine the well-known parameters to main, argc, and argv into a
structure. An array of these structures can make up a history of commands. The
declarations and XDR routines might look like:

struct cmd {

 u_int c_argc;

 char **c_argv;

};

#define ALEN 1000 /* args cannot be > 1000 chars */

#define NARGC 100 /* commands cannot have > 100 args */

struct history {

 u_int h_len;

 struct cmd *h_cmds;

};

#define NCMDS 75 /* history is no more than 75 commands */

bool_t

xdr_wrap_string(xdrs, sp)

 XDR *xdrs;

 char **sp;

{

 return(xdr_string(xdrs, sp, ALEN));

}

bool_t

xdr_cmd(xdrs, cp)

 XDR *xdrs;

 struct cmd *cp;

{

1

Chapter 5: External Data Representation

83

5

 return(xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,

 sizeof (char *), xdr_wrap_string));

}

bool_t

xdr_history(xdrs, hp)

 XDR *xdrs;

 struct history *hp;

{

 return(xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS,

 sizeof (struct cmd), xdr_cmd));

}

The most confusing part of this example is that the routine xdr_wrap_string() is
needed to package the xdr_string() routine. xdr_array() only passes two
parameters to the array element description routine. xdr_wrap_string() supplies
the third parameter to xdr_string().

Opaque Data

In some protocols, handles are passed from a server to a client. The client later passes
the handle back to the server. Handles are never inspected by clients; they are merely
obtained and submitted. That is, handles are opaque. xdr_opaque() describes
fixed-sized, opaque bytes.

bool_t xdr_opaque(xdrs, p, len)

 XDR *xdrs;

 char *p; /* location of the bytes */

 u_int len;/* number of bytes in the opaque object */

By definition, the actual data contained in the opaque object are not machine portable.

Fixed-Sized Arrays

The XDR library provides a primitive, xdr_vector(), for fixed-length arrays.

#define NLEN 255 /* machine names must be less than 256 chars */

#define NGRPS 20 /* user belongs to exactly 20 groups */

struct netuser {

 char *nu_machinename;

 int nu_uid;

 int nu_gids[NGRPS];

};

bool_t

xdr_netuser(xdrs, nup)

 XDR *xdrs;

 struct netuser *nup;

{

 int i;

 if (!xdr_string(xdrs, &nup->nu_machinename, NLEN))

 return(FALSE);

1

Using Network File System/Remote Procedure Call

84

5

 if (!xdr_int(xdrs, &nup->nu_uid))

 return(FALSE);

 if (!xdr_vector(xdrs, nup->nu_gids, NGRPS, sizeof(int),

 xdr_int)) {

 return(FALSE);

 }

 return(TRUE);

}

Discriminated Unions

The XDR library supports discriminated unions. A discriminated union is a C union and an
enum_t value that selects an arm of the union.

struct xdr_discrim {

 enum_t value;

 bool_t (*proc)();

};

bool_t xdr_union(xdrs, dscmp, unp, arms, defaultarm)

 XDR *xdrs;

 enum_t *dscmp;

 char *unp;

 struct xdr_discrim *arms;

 bool_t (*defaultarm)(); /* may equal NULL */

First, the routine translates the discriminant of the union located at *dscmp. The
discriminant is always an enum_t. Next, the union located at *unp is translated. The
parameter arms is a pointer to an array of xdr_discrim() structures. Each structure
contains an ordered pair of [value, proc]. If the union’s discriminant is equal to the
associated value, the proc is called to translate the union. The end of the
xdr_discrim() structure array is denoted by a routine of value null (0). If the
discriminant is not found in the arms array, the defaultarm procedure is called if it
is non-null. Otherwise, the routine returns FALSE.

Discriminated Union Example

Suppose the type of a union may be an integer, a character pointer (a string), or a
gnumbers structure. Also, assume the union and its current type are declared in a
structure. The declaration is:

enum utype { INTEGER=1, STRING=2, GNUMBERS=3 };

struct u_tag {

 enum utype utype; /* the union’s discriminant */

 union {

 int ival;

 char *pval;

 struct gnumbers gn;

 } uval;

};

1

Chapter 5: External Data Representation

85

5

The following constructs and XDR procedure (de)serialize the discriminated union:

struct xdr_discrim u_tag_arms[4] = {

 { INTEGER, xdr_int },

 { GNUMBERS, xdr_gnumbers }

 { STRING, xdr_wrap_string },

 { __dontcare__, NULL }

 /* always terminate arms with a NULL xdr_proc */

}

bool_t

xdr_u_tag(xdrs, utp)

 XDR *xdrs;

 struct u_tag *utp;

{

 return(xdr_union(xdrs, &utp->utype, &utp->uval,

 u_tag_arms, NULL));

}

xdr_gnumbers() was defined in an earlier example. The default arm parameter to
xdr_union() is null in this example. Therefore, the value of the union’s discriminant
may legally take on only values listed in the u_tag_arm array. This example also
demonstrates that you do not need to sort the elements of the arm array.

The values of the discriminant may be sparse, although in this example they are not. It
is always a good practice to assign explicit integer values to each element of the
discriminant’s type. This practice both documents the external representation of the
discriminant and guarantees that different C compilers provide identical discriminant
values.

Pointers

In C, placing pointers to a structure within a structure is often convenient.
xdr_reference() makes it easy to serialize, deserialize, and free these referenced
structures.

bool_t xdr_reference(xdrs, pp, size, proc)

 XDR *xdrs; /* opaque handle */

 char **pp; /* address of the pointer to the structure */

 u_int ssize; /* size in bytes of the structure */

 bool_t (*proc)();/* the XDR routine that describes the structure
*/

When decoding data, storage is allocated if *pp is null.

There is no need for a primitive xdr_struct() to describe structures within
structures because pointers are always sufficient.

Pointer Example

Suppose a structure contains a person’s name and a pointer to a gnumbers structure
containing the person’s gross assets and liabilities. The construct is:

1

Using Network File System/Remote Procedure Call

86

5

struct pgn {

 char *name;

 struct gnumbers *gnp;

};

The corresponding XDR routine for this structure is:

bool_t

xdr_pgn(xdrs, pp)

 XDR *xdrs;

 struct pgn *pp;

{

 if (xdr_string(xdrs, &pp->name, NLEN) &&

 xdr_reference(xdrs, &pp->gnp,

 sizeof(struct gnumbers), xdr_gnumbers))

 return(TRUE);

 return(FALSE);

}

In many applications, C programmers attach double meaning to the values of a pointer.
Typically, the value null (or zero) means data is not needed, yet some application-
specific interpretation applies. In essence, the C programmer is efficiently encoding a
discriminated union by overloading the interpretation of the pointer’s value.

In the preceding example, a null pointer value for gnp could indicate that the person’s
assets and liabilities are unknown. That is, the pointer value encodes whether or not
the data is known and if it is known, where it is located in memory. Linked lists are an
extreme example of the use of application-specific pointer interpretation.

xdr_reference() cannot and does not attach any special meaning to a null-value
pointer during serialization. That is, passing an address of a pointer in which the value is
null to xdr_reference() when serializing data generally causes a bus error.

xdr_pointer() correctly handles null pointers. For more information about its use,
see the section on linked lists.

Non-filter Primitives

You can manipulate XDR streams with the primitives discussed in this section.

u_int xdr_getpos(xdrs)

 XDR *xdrs;

bool_t xdr_setpos(xdrs, pos)

 XDR *xdrs;

 u_int pos;

xdr_destroy(xdrs)

 XDR *xdrs;

1

Chapter 5: External Data Representation

87

5

xdr_getpos() returns an unsigned integer that describes the current position in the
data stream.

xdr_setpos() sets a stream position to pos.

xdr_destroy() destroys the XDR stream. Using the stream after calling this routine
is undefined.

XDR Operation Directions

You may want to optimize XDR routines by taking advantage of the direction of the
operation XDR_ENCODE, XDR_DECODE, or XDR_FREE. The value xdrs->x_op
always contains the direction of the XDR operation.

XDR Stream Access

You obtain an XDR stream by calling the appropriate creation routine. These creation
routines accept parameters that are tailored to the specific properties of the stream.
Streams currently exist for (de)serialization of data to or from standard I/O file streams,
TCP/IP connections, and OS-9 disk and pipe files and memory.

Standard I/O Streams

You can interface XDR streams to standard I/O using the xdrstdio_create()
routine as follows:

#include <stdio.h>

#include <RPC/rpc.h> /* XDR streams part of RPC */

void

xdrstdio_create(xdrs, fp, x_op)

 XDR *xdrs; /* opaque handle */

 FILE *fp; /* open file */

 enum xdr_op x_op; /* an XDR direction */

xdrstdio_create() initializes an XDR stream pointed to by xdrs. The XDR
stream interfaces with the standard I/O library.

Memory Streams

Memory streams allow the streaming of data into or out of a specified area of memory:

#include <RPC/rpc.h>

void

xdrmem_create(xdrs, addr, len, x_op)

In some XDR streams, the returned value of xdr_getpos() is meaningless. The routine
returns a -1 in this case, which should be a legitimate value.

In some XDR streams, setting a position is impossible. In such cases, xdr_setpos()
returns FALSE. This routine also fails if the requested position is out-of-bounds. The definition
of bounds varies from stream to stream.

1

Using Network File System/Remote Procedure Call

88

5

 XDR *xdrs; /* opaque handle */

 char *addr; /* pointer to memory location */

 u_int len; /* length in bytes of the memory */

 enum xdr_op x_op; /* an XDR direction */

xdrmem_create() initializes an XDR stream in local memory. The UDP/IP
implementation of RPC uses xdrmem_create(). Complete call or result messages
are built into memory before calling the sendto system routine.

Record (TCP/IP) Streams

A record stream is an XDR stream built on top of a record marking standard that is built
on top of the TCP/IP connection interface.

#include <RPC/rpc.h> /* xdr streams part of rpc */

xdrrec_create(xdrs,

 sendsize, recvsize, iohandle, readproc, writeproc)

 XDR *xdrs; /* opaque handle */

 u_int sendsize, /* size in bytes of output buffer */

 recvsize; /* size in bytes of input buffer */

 char *iohandle; /* opaque parameter */

 int (*readproc)(), /* fills buffer */

 (*writeproc)(); /* flushes buffer */

xdrrec_create() provides an XDR stream interface that allows for a bi-directional,
arbitrarily long sequence of records. The contents of the records are meant to be data
in XDR form. The stream primarily interfaces RPC to TCP connections. However, it can
stream data into or out of normal OS-9 files.

The stream does its own data buffering similar to that of standard I/O. If the values of
sendsize and recvsize are zero (0), predetermined defaults are used. The
function and behavior of these routines are similar to the OS-9 system calls read and
write. However, the first parameter for both routines is the opaque parameter,
iohandle. The other two parameters buf and nbytes and the results (byte count)
are identical to the system routines. If xxx is readproc or writeproc, it has the
following form:

/* returns the actual number of bytes transferred. -1 is an error. */

int

xxx(iohandle, buf, len)

 char *iohandle;

 char *buf;

 int nbytes;

The XDR stream provides a way to delimit records in the byte stream. The primitives
that are specific to record streams are as follows:

bool_t

xdrrec_endofrecord(xdrs, flushnow)

 XDR *xdrs;

 bool_t flushnow;

bool_t

1

Chapter 5: External Data Representation

89

5

xdrrec_skiprecord(xdrs)

 XDR *xdrs;

bool_t

xdrrec_eof(xdrs)

 XDR *xdrs;

xdrrec_endofrecord() causes the current outgoing data to be marked as a
record. If the parameter flushnow is TRUE, the stream’s writeproc is called.
Otherwise, writeproc is called when the output buffer has been filled.

xdrrec_skiprecord() causes the position of an input stream to move past the
current record boundary and onto the beginning of the next record in the stream.

If the stream’s input buffer contains no more data, xdrrec_eof() returns TRUE.
However, more data may be located beneath the file descriptor.

XDR Stream Implementation
This section provides the abstract data types needed to implement new instances of
XDR streams.

The XDR Object

The following structure defines the interface to an XDR stream:

enum xdr_op { XDR_ENCODE=0, XDR_DECODE=1, XDR_FREE=2 };

typedef struct {

 enum xdr_op x_op; /* operation; fast added parameter */

 struct xdr_ops {

 bool_t (*x_getlong)(); /* get long from stream */

 bool_t (*x_putlong)(); /* put long to stream */

 bool_t (*x_getbytes)(); /* get bytes from stream */

 bool_t (*x_putbytes)(); /* put bytes to stream */

 u_int (*x_getpostn)(); /* return stream offset */

 bool_t (*x_setpostn)(); /* reposition offset */

 caddr_t (*x_inline)(); /* pointer to buffered data */

 VOID (*x_destroy)(); /* free private area */

 } *x_ops;

 caddr_t x_public; /* users’ data */

 caddr_t x_private; /* pointer to private data */

 caddr_t x_base; /* private for position information
*/

 int x_handy; /* extra private word */

} XDR;

The x_op field is the current operation being performed on the stream. This field is
important to the XDR primitives. It should not affect a stream’s implementation, and a
stream’s implementation should not depend on this value. The fields x_private,
x_base, and x_handy are private to the implementation of a particular stream. The

1

Using Network File System/Remote Procedure Call

90

5

field x_public is for the XDR client and should never be used by the XDR stream
implementations or the XDR primitives.

Macros for accessing the operations x_getpostn(), x_setpostn(), and
x_destroy() have already been defined. The operation x_inline() takes an XDR
* and an unsigned integer as parameters. The unsigned integer is a byte count. The
routine returns a pointer to a portion of the stream’s internal buffer. The caller can use
the buffer segment for any purpose. From the stream’s point of view, the bytes in the
buffer segment have been consumed or placed. x_inline() may return null if it
cannot return a buffer segment of the requested size. Use of the resulting buffer is not
data-portable.

x_getbytes() blindly receives sequences of bytes from the underlying stream.
x_putbytes() is the opposite; it blindly places sequences of bytes into the
underlying stream. If successful, these routines return TRUE. Otherwise, they return
FALSE. The routines have identical parameters (replace the xxx):

bool_t

xxxbytes(xdrs, buf, bytecount)

XDR *xdrs;

char *buf;

u_int bytecount;

x_getlong() receives long numbers from the data stream, and x_putlong()
places long numbers to the data stream. These routines translate the numbers
between the machine representation and the standard external representation. The
OS-9 Internet functions htonl and ntohl can be helpful in accomplishing this.

The higher-level XDR implementation assumes that signed and unsigned long integers
contain the same number of bits and that nonnegative integers have the same bit
representations as unsigned integers.

If successful, these routines return TRUE. Otherwise, they return FALSE. They have
identical parameters (replace the xxx):

bool_t

xxxlong(xdrs, lp)

XDR *xdrs;

long *lp;

Implementors of new XDR streams must make an XDR structure with new operation
routines available to clients using some kind of create routine.

Linked Lists

The last example in the section on pointers presented a C data structure and its
associated XDR routines for an individual’s gross assets and liabilities. The example is
duplicated below:

struct gnumbers {

long g_assets;

long g_liabilities;

};

1

Chapter 5: External Data Representation

91

5

bool_t

xdr_gnumbers(xdrs, gp)

XDR *xdrs;

struct gnumbers *gp;

{

if (xdr_long(xdrs, &(gp->g_assets)))

return(xdr_long(xdrs, &(gp->g_liabilities)));

return(FALSE);

}

To implement a linked list of such information, you could construct a data structure:

struct gnumbers_node {

struct gnumbers gn_numbers;

struct gnumbers_node *gn_next;

};

typedef struct gnumbers_node *gnumbers_list;

Think of the head of the linked list as the data object. That is, the head is not merely a
convenient shorthand for a structure. Similarly, the gn_next field indicates whether or
not the object has terminated. Unfortunately, if the object continues, the gn_next
field is also the address of where it continues. The link addresses carry no useful
information when the object is serialized.

The XDR data description of this linked list is described by the recursive declaration of
gnumbers_list:

struct gnumbers {

int g_assets;

int g_liabilities;

};

struct gnumbers_node {

gnumbers gn_numbers;

gnumbers_list gn_next;

};

union gnumbers_list switch (bool more_data) {

case TRUE:

gnumbers_node node;

case FALSE:

void;

};

In this description, the boolean indicates whether more data follows.

• If the boolean is FALSE, it is the last data field of the structure.

1

Using Network File System/Remote Procedure Call

92

5

• If it is TRUE, it is followed by a gnumbers structure and recursively by a
gnumbers_list.

Hints for writing the XDR routines for a gnumbers_list follow easily from the
previous XDR description.

bool_t

xdr_gnumbers_node(xdrs, gn)

XDR *xdrs;

gnumbers_node *gn;

{

return(xdr_gnumbers(xdrs, &gn->gn_numbers) &&

xdr_gnumbers_list(xdrs, &gp->gn_next));

}

bool_t

xdr_gnumbers_list(xdrs, gnp)

XDR *xdrs;

gnumbers_list *gnp;

{

return(xdr_pointer(xdrs, gnp,

sizeof(struct gnumbers_node),

xdr_gnumbers_node));

}

The unfortunate side effect of using XDR on a list with these routines is that the C stack
grows linearly with respect to the number of nodes in the list. This is due to recursion.
The following routine combines the preceding mutually recursive routines into a single,
non-recursive routine.

bool_t

xdr_gnumbers_list(xdrs, gnp)

XDR *xdrs;

gnumbers_list *gnp;

{

bool_t more_data;

gnumbers_list *nextp;

for (;;) {

more_data = (*gnp != NULL);

if (!xdr_bool(xdrs, &more_data)) {

return(FALSE);

}

if (! more_data) {

break;

}

if (xdrs->x_op == XDR_FREE) {

The C declaration has no boolean explicitly declared in it (although the gn_next field
implicitly carries the information), while the XDR data description has no pointer explicitly
declared in it.

1

Chapter 5: External Data Representation

93

5

nextp = &(*gnp)->gn_next;

}

if (!xdr_reference(xdrs, gnp,

sizeof(struct gnumbers_node), xdr_gnumbers)) {

return(FALSE);

}

gnp = (xdrs->x_op == XDR_FREE) ?

nextp : &(*gnp)->gn_next;

}

*gnp = NULL;

return(TRUE);

}

This routine performs the following:

1. Determines if there is more data. This indicates whether this boolean information
can be serialized. This statement is not needed in the XDR_DECODE case because
the value of more_data is not known until it is deserialized in the next statement.

2. The next statement XDRs the more_data field of the XDR union. If there is no
more data, the last pointer is set to null to indicate the end of the list. A value of
TRUE is returned.

3. If the direction is XDR_FREE, nextp indicates the location of the next pointer in
the list. This is performed now so that gnp is not dereferenced to find the location
of the next list item. After the next statement, the pointer gnp will be freed and no
longer valid. This does not work for all directions because gnp is not set until the
next statement in the XDR_DECODE direction.

4. XDR is used on the data in the node via the primitive xdr_reference().
xdr_reference() is similar to xdr_pointer(), but it does not send the
boolean indicating whether there is more data. xdr_reference() is used
because this information is already used by XDR. Notice that the xdr routine
passed is not the same type as an element in the list. The routine passed is
xdr_gnumbers() for use by XDR gnumbers, but each element in the list is
actually of type gnumbers_node. xdr_gnumbers_node is not passed because
it is recursive. Instead, use xdr_gnumbers, which uses XDR on all of the non-
recursive part.

5. gnp is updated to point to the next item in the list.

• If the direction is XDR_FREE, set gnp to the previously saved value.

• Otherwise, dereference gnp to get the proper value.

Setting the pointer to null is only important in the XDR_DECODE case. It is already null in
the XDR_ENCODE and XDR_FREE cases.

This works only if the gn_numbers field is the first item in each element so that their
addresses are identical when passed to xdr_reference.

1

Using Network File System/Remote Procedure Call

94

5

Although harder to understand than the recursive version, this non-recursive
routine never causes the C stack to overflow. It also runs more efficiently because
some of the procedure call overhead has been removed.

XDR Data Types
Each of the following sections describes a data type defined in the XDR standard,
shows how it is declared in the language, and includes a graphic illustration of its
encoding.

For each data type in the language, a general paradigm declaration is shown.

• Angle brackets (< and >) denote variable length sequences of data.

• Square brackets ([and]) denote fixed-length sequences of data.

• n, m, and r denote integers.

For some data types, more specific examples are included.

Basic Block Size

The representation of all items requires a multiple of four bytes (or 32 bits) of data.
The bytes are numbered 0 through n-1. The bytes are read or written to some byte
stream such that byte m always precedes byte m+1. If the n bytes needed to contain
the data are not a multiple of four, they are followed by enough (0 to 3) residual zero
bytes (r) to make the total byte count a multiple of 4.

In the following illustrations, each box depicts one byte. Ellipses (...) between boxes
show zero or more additional bytes where required. For example, Figure 5-1. illustrates
a block.

Figure 5-1. Sample Block

Integer

An XDR signed integer is a 32-bit datum that encodes an integer in the range
[-2147483648,2147483647]. The integer is represented in two’s complement
notation. The most significant byte (MSB) and least significant byte (LSB) are 0 and 3,
respectively. Integers are declared as shown in Figure 5-2..

Figure 5-2. Sampe Integer

byte 0 byte 1 byte n-1 0 0

n bytes r bytes

n+r (where (n+r) mod 4 = 0)

...

...

...

...

...

...

byte 0 byte 1 byte 2 byte 3

32 bits

(MSB) (LSB)

1

Chapter 5: External Data Representation

95

5

Unsigned Integer

An XDR unsigned integer is a 32-bit datum that encodes a non-negative integer in the
range [0,4294967295]. It is represented by an unsigned binary number whose most
and least significant bytes are 0 and 3, respectively. An unsigned integer is declared as
shown in Figure 5-3..

Figure 5-3. Sample Unsigned Integer

Enumeration

Enumerations have the same representation as signed integers. You can use
enumerations to describe subsets of integers. Declare enumerated data as follows:

enum { name-identifier = constant, ... } identifier;

For example, three colors (red, yellow, and blue) could be described by an enumerated
type:

enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

• It is an error to encode as an enum any integer other than those that have been
given assignments in the enum declaration.

Boolean

Booleans occur frequently enough to warrant their own explicit type in the standard.
Booleans are declared as follows:

bool identifier;

This is equivalent to:

enum { FALSE = 0, TRUE = 1 } identifier;

Hyper Integer and Unsigned Hyper Integer

The standard also defines 64-bit (8-byte) numbers called hyper integer and unsigned hyper
integer. Their representations are extensions of the previously defined integer and
unsigned integer. They are represented in two’s complement notation. The most and
least significant bytes are 0 and 7, respectively. Their declaration is shown in Figure 5-4..

Figure 5-4. Sample Hyper Integer and Unsigned Hyper Integer

byte 0 byte 1 byte 2 byte 3

32 bits

(MSB) (LSB)

MSB LSB

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

64 bits

1

Using Network File System/Remote Procedure Call

96

5

Floating-Point

The standard defines the floating-point data type float (32 bits or 4 bytes). The
encoding used is the IEEE standard for normalized single-precision, floating-point
numbers. Table 5-1 on page 96 describes the single-precision, floating-point number.

Therefore, the floating-point number is described by:

(-1)**S * 2**(E-Bias) * 1.F

It is declared as shown in Figure 5-5..

Figure 5-5. Floating-Point Number

The most and least significant bits of a single-precision, floating-point number are 0 and
31, respectively. The beginning, and most significant, bit offsets of S, E, and F are 0, 1,
and 9, respectively.

Double-Precision Floating-Point

The XDR standard defines the encoding for the double-precision, floating-point data
type double (64 bits or 8 bytes). The encoding used is the IEEE standard for
normalized double-precision, floating-point numbers. The standard encodes the

Table 5-1. Single-Precision, Floating-Point Number

Field Description

S The sign of the number. Values 0 and 1 represent positive and negative,
respectively. This field contains 1 bit.

E The exponent of the number, base 2. This field contains 8 bits. The exponent is
biased by 127.

F The fractional part of the number’s mantissa, base 2. This field contains 23 bits.

These numbers refer to the mathematical positions of the bits and NOT to their actual physical
locations. Their actual physical location varies from medium to medium.

byte 0 byte 1 byte 2 byte 3

32 bits

1 8 23 bits

S E F

1

Chapter 5: External Data Representation

97

5

following fields which describe the double-precision, floating-point number. These
fields are shown in Table 5-2 on page 97.

Therefore, the floating-point number is described by:

(-1)**S * 2**(E-Bias) * 1.F

It is declared as shown in Figure 5-6..

Figure 5-6.

The most and least significant bits of a double-precision, floating-point number are 0
and 63, respectively. The beginning, and most significant, bit offsets of S, E, and F are
0, 1, and 12, respectively.

Fixed-Length Opaque Data

At times, fixed-length uninterpreted data needs to be passed between machines. This
data is called opaque and is declared as follows:

opaque identifier[n];

Table 5-2. Double-Precision, Floating-Point Number Fields

Field Description

S The sign of the number. Values 0 and 1 represent positive and negative,
respectively. This field contains 1 bit.

E The exponent of the number, base 2. This field contains 11 bits. The exponent is
biased by 1023.

F The fractional part of the number’s mantissa, base 2. This field contains 52 bits.

Mathematical positions of the bits, NOT their actual physical locations, are represented. The
physical locations vary from medium to medium.

MSB LSB

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

64 bits

111 52

Consult the IEEE specifications concerning the encoding for signed 0, signed infinity
(overflow), and denormalized numbers (underflow). According to IEEE specifications, the
“NaN” (not a number) is system dependent and should not be used externally.

1

Using Network File System/Remote Procedure Call

98

5

The constant n is the (static) number of bytes necessary to contain the opaque data. If
n is not a multiple of four, the n bytes are followed by enough (0 to 3) residual 0
bytes, r, to make the total byte count of the opaque object a multiple of four. An
example of fixed-length opaque data is shown in Figure 5-7..

Figure 5-7. Fixed Length Opaque Data

Variable-Length Opaque Data

The standard also provides for variable-length (counted) opaque data, defined as a
sequence of n (numbered 0 through n-1) arbitrary bytes to be the number n
encoded as an unsigned integer and followed by the n bytes of the sequence.

Byte m of the sequence always precedes byte m+1 of the sequence, and byte 0 of the
sequence always follows the sequence’s length (count). Enough (0 to 3) residual 0
bytes, r, to make the total byte count a multiple of four are added. Declare variable-
length opaque data as follows:

opaque identifier<m>;

The constant m denotes an upper bound of the number of bytes that the sequence
may contain. If m is not specified, it is assumed to be (2**32)-1, the maximum length.
The constant m is normally found in a protocol specification. For example, a filing
protocol may state that the maximum data transfer size is 8192 bytes:

opaque filedata<8192>;

This can be illustrated as shown in Figure 5-8..

Figure 5-8. Variable-Length Opaque Data

It is an error to encode a length greater than the maximum described in the
specification.

String

The XDR standard defines a string of n (numbered 0 through n-1) ASCII bytes as the
number n encoded as an unsigned integer, and followed by the n bytes of the string.
Byte m of the string always precedes byte m+1 of the string, and byte 0 of the string

byte 0 byte 1 byte n-1 0 0

n bytes r bytes

n+r (where (n+r) mod 4 = 0)

...

...

...

...

...

...

0 1 . . .

length n byte 0 byte 1 n-1 0 0

4 bytes

0 1 2 3 4 5 . . .
...
...
...

...

...

...

n bytes r bytes

n+r (where (n+r) mod 4 = 0

1

Chapter 5: External Data Representation

99

5

always follows the string’s length. If n is not a multiple of four, the n bytes are followed
by enough (0 to 3) residual 0 bytes (r) to make the total byte count a multiple of 4.
Declare counted byte strings as follows:

string object<m>;

The constant m denotes an upper bound of the number of bytes that a string may
contain. If m is not specified, it is assumed to be (2**32)-1, the maximum length. The
constant m would normally be found in a protocol specification. For example, a filing
protocol may state that a file name can be no longer than 255 bytes:

string filename<255>;

This is illustrated in Figure 5-9..

Figure 5-9. Sample String

It is an error to encode a length greater than the maximum described in the
specification.

Fixed-Length Array

Declarations for fixed-length arrays of homogeneous elements are in the following
form:

type-name identifier[n];

Fixed-length arrays of elements numbered 0 through n-1 are encoded by individually
encoding the elements of the array in their natural order, 0 through n-1. Each
element’s size is a multiple of four bytes. Although all elements are of the same type,
the elements may have different sizes. For example, in a fixed-length array of strings, all
elements are of type string, yet each element varies in length. This is shown in
Figure 5-10.

Figure 5-10. Fixed Length Array of Strings

Variable-Length Array

Counted arrays provide the ability to encode variable-length arrays of homogeneous
elements. The array is encoded as the element count n (an unsigned integer) followed
by the encoding of each of the array’s elements, starting with element 0 and

length n byte 0 byte 1 n-1 0 0

4 bytes

0 1 2 3 4 5 . . .
...
...
...

...

...

...

n bytes r bytes

n+r (where (n+r) mod 4 = 0

element 0 element 1 element n-1

n elements

...

...

...

1

Using Network File System/Remote Procedure Call

100

5

progressing through element n-1. The declaration for variable-length arrays follows this
form:

type-name identifier<m>;

The constant m specifies the maximum acceptable element count of an array. If m is not
specified, it is assumed to be (2**32)-1. This is shown in Figure 5-11..

Figure 5-11. Acceptable Element Count of an Array

It is an error to encode a value of n that is greater than the maximum described in the
specification.

Structures

Structures are declared as follows:

struct {

component-declaration-A;

component-declaration-B;

} identifier;

The structure’s components are encoded in the order declared in the structure. Each
component’s size is a multiple of four bytes, although the components may be of
different sizes. Structure components are shown in Figure 5-12..

Figure 5-12. Structure Components

Discriminated Union

A discriminated union is composed of a discriminant followed by a type selected from
a set of prearranged types according to the value of the discriminant. The type of
discriminant is either int, unsigned int, or an enumerated type, such as bool.
The component types are called arms of the union and are preceded by the value of
the discriminant which implies their encoding. Discriminated unions are declared as
follows:

union switch (discriminant-declaration) {

case discriminant-value-A:

arm-declaration-A;

case discriminant-value-B:

arm-declaration-B;

element 0 element 1 element n-1

n elements

...

...

...
n

0 1 2 3

4 bytes

Component A Component B
...
...
...

1

Chapter 5: External Data Representation

101

5

default: default-declaration;

} identifier;

Each case keyword is followed by a discriminant’s legal value. If the default arm is not
specified, a valid encoding of the union cannot take on unspecified discriminant values.

The size of the implied arm is always a multiple of 4 bytes. The discriminated union is
encoded as its discriminant followed by the encoding of the implied arm, as shown in
Figure 5-13.

Figure 5-13. Discriminated Union

Void

An XDR void is a 0-byte quantity. Voids are useful for describing operations that accept
no data as input or output. They are also useful in unions, where some arms may
contain data and others may not. The declaration is simply as follows:

void;

Voids are illustrated in Figure 5-14..

Figure 5-14. Void

Constant

The data declaration for a constant follows this form:

const name-identifier = n;

const defines a symbolic name for a constant; it does not declare any data. Use the
symbolic constant anywhere you use a regular constant. This example defines a
symbolic constant DOZEN, which is equal to 12.

const DOZEN = 12;

Typedef

typedef does not declare any data. It serves to define new identifiers for declaring
data. The syntax is:

typedef declaration;

The new type name is actually the variable name in the declaration portion of the
typedef. This example defines a new type called eggbox using an existing type
called egg:

Discriminant Implied Arm
...
...
...

0 1 2 3

4 bytes

0 bytes

1

Using Network File System/Remote Procedure Call

102

5

typedef egg eggbox[DOZEN];

Variables declared using the new type name have the same type as the new type
name would have in the typedef, if it was considered a variable. For example, the
following two declarations are equivalent in declaring the variable fresheggs:

eggbox fresheggs;

egg fresheggs[DOZEN];

When a typedef involves a struct, enum, or union definition, there is another
preferred syntax that may define the same type. In general, you may convert a
typedef of the following form to the alternative form by removing the typedef
portion and placing the identifier after the struct, union, or enum keyword, instead
of at the end.

typedef <<struct, union, or enum definition>> identifier;

For example, two ways to define the type bool are:

typedef enum { /* using typedef */

FALSE = 0,

TRUE = 1

} bool;

enum bool { /* preferred alternative */

FALSE = 0,

TRUE = 1

};

The second syntax is preferred because you do not have to wait until the end of a
declaration to figure out the name of the new type.

Optional-Data

Optional-data is an example of a frequently occurring union with its own declaration
syntax. The declaration is as follows:

type-name *identifier;

This is equivalent to the following union:

union switch (bool opted) {

case TRUE:

type-name element;

case FALSE:

void;

} identifier;

It is also equivalent to the following variable-length array declaration, because the
boolean opted can be interpreted as the length of the array:

type-name identifier<1>;

Optional-data describes recursive data-structures such as linked-lists and trees. For
example, the following defines a type stringlist that encodes lists of arbitrary
length strings:

struct *stringlist {

1

Chapter 5: External Data Representation

103

5

string item<>;

stringlist next;

};

It could have been equivalently declared as the following union:

union stringlist switch (bool opted) {

case TRUE:

struct {

string item<>;

stringlist next;

} element;

case FALSE:

void;

};

It could also have been declared as a variable-length array:

struct stringlist<1> {

string item<>;

stringlist next;

};

Both of these declarations obscure the intention of the stringlist type. Therefore,
the optional-data declaration is preferred. The optional-data type also has a close
correlation to how recursive data structures are represented in high-level languages
such as Pascal or C by using pointers. In fact, the syntax is the same as that of the C
language for pointers.

The XDR Language Specification

Notational Conventions

This specification uses an extended Backus-Naur Form notation for describing the XDR
language. Here is a brief description of the notation:

• The characters |, (,), [,], ", and * are special.

• Terminal symbols are strings of any characters surrounded by double quotes (").

• Non-terminal symbols are strings of non-special characters.

• Alternative items are separated by a vertical bar (|).

• Optional items are enclosed in brackets ([]).

• Items are grouped together by enclosing the items in parentheses (()).

• An asterisk (*) following an item means 0 or more occurrences of that item.

Lexical Notes

• Comments begin with /* and terminate with */.

• White space serves to separate items and is otherwise ignored.

1

Using Network File System/Remote Procedure Call

104

5

• An identifier is a letter followed by an optional sequence of letters, digits, or an
underscore (_). The case of identifiers is not ignored.

• A constant is a sequence of one or more decimal digits, optionally preceded by a
hyphen (-).

Syntax Information
declaration:

type-specifier identifier

| type-specifier identifier "[" value "]"

| type-specifier identifier "<" [value] ">"

| "opaque" identifier "[" value "]"

| "opaque" identifier "<" [value] ">"

| "string" identifier "<" [value] ">"

| type-specifier "*" identifier

| "void"

value:

constant

| identifier

type-specifier:

 ["unsigned"] "int"

| ["unsigned"] "hyper"

| "float"

| "double"

| "bool"

| enum-type-spec

| struct-type-spec

| union-type-spec

| identifier

enum-type-spec:

"enum" enum-body

enum-body:

"{"

(identifier "=" value)

("," identifier "=" value)*

"}"

struct-type-spec:

"struct" struct-body

struct-body:

"{"

(declaration ";")

(declaration ";")*

"}"

union-type-spec:

"union" union-body

union-body:

1

Chapter 5: External Data Representation

105

5

"switch" "(" declaration ")" "{"

("case" value ":" declaration ";")

("case" value ":" declaration ";")*

["default" ":" declaration ";"]

"}"

constant-def:

"const" identifier "=" constant ";"

type-def:

"typedef" declaration ";"

| "enum" identifier enum-body ";"

| "struct" identifier struct-body ";"

| "union" identifier union-body ";"

definition:

type-def

| constant-def

specification:

definition *

Syntax Notes

• Do not use the following keywords as identifiers: bool, case, const, default,
double, enum, float, hyper, opaque, string, struct, switch,
typedef, union, unsigned, and void.

• Only unsigned constants may be used as size specifications for arrays. If an
identifier is used, it must have been declared previously as an unsigned constant in
a const definition.

• Constant and type identifiers within the scope of a specification are in the same
name space and must be declared uniquely within this scope.

• Similarly, variable names must be unique within the scope of struct and union
declarations. Nested struct and union declarations create new scopes.

• The discriminant of a union must be of a type that evaluates to an integer. That is,
int, unsigned int, bool, enum, or any typedef that evaluates to one of
these is legal. Also, the case values must be one of the legal values of the
discriminant. Finally, a case value may not be specified more than once within the
scope of a union declaration.

An Example of an XDR Data Description

Following is a short XDR data description of a procedure called file, which you might
use to transfer files from one machine to another.

const MAXUSERNAME = 32; /* max length of a user name */

const MAXFILELEN = 65535; /* max length of a file */

const MAXNAMELEN = 255; /* max length of a file name */

/* Types of files: */

enum filekind {

TEXT = 0, /* ascii data */

1

Using Network File System/Remote Procedure Call

106

5

DATA = 1, /* raw data */

EXEC = 2 /* executable */

};

/* File information, per kind of file: */

union filetype switch (filekind kind) {

case TEXT:

void; /* no extra information */

case DATA:

string creator<MAXNAMELEN>; /* data creator */

case EXEC:

string interpretor<MAXNAMELEN>; /* program interpretor */

};

/* A complete file: */

struct file {

string filename<MAXNAMELEN>; /* name of file */

filetype type; /* info about file */

string owner<MAXUSERNAME>; /* owner of file */

opaque data<MAXFILELEN>; /* file data */

};

Suppose that a user named john wants to store his lisp program sillyprog that
contains just the data (quit). His file would be encoded as shown in Table 5-3 on
page 106.

Table 5-3. Sample Program

Offset Hex Bytes ASCII Description

0 00 00 00 09 Length of filename = 9

4 73 69 6c 6c sill Filename characters

8 79 70 72 6f ypro ... and more characters ...

12 67 00 00 00 g... ... and 3 zero-bytes of fill

16 00 00 00 02 Filekind is EXEC = 2

20 00 00 00 04 Length of interpretor = 4

24 6c 69 73 70 lisp Interpretor characters

28 00 00 00 04 Length of owner = 4

32 6a 6f 68 6e john Owner characters

36 00 00 00 06 Length of file data = 6

1

Chapter 5: External Data Representation

107

5

40 28 71 75 69 (qui File data bytes ...

44 74 29 00 00 t).. ... and 2 zero-bytes of fill

Table 5-3. Sample Program (Continued)

Offset Hex Bytes ASCII Description

1

Using Network File System/Remote Procedure Call

108

5

1

109

RPCGEN Programming Guide

This chapter describes the rpcgen compiler. rpcgen greatly simplifies implementing
RPC services by automatically generating client and server stub programs as well as all
necessary XDR routines.

There is a version of rpcgen for Hawk™ and resident development.

6

1

Using Network File System/Remote Procedure Call

110

6

An Overview of rpcgen
The rpcgen compiler accepts a remote program interface definition written in RPC.
rpcgen produces a C language output which includes:

• Stub versions of the client routines

• A server skeleton

• XDR filter routines for both parameters and results

• A header file that contains common definitions

The client stubs interface with the RPC library and effectively hide the network from
their callers. The server stub similarly hides the network from the server procedures
that remote clients invoke. You can compile and link rpcgen output files in the usual
way. The developer writes server procedures and links them with the server skeleton
produced by rpcgen to get an executable server program.

To use a remote program, a programmer writes an ordinary C language main program
that makes local procedure calls to the client stubs produced by rpcgen. Linking this
program with rpcgen stubs creates an executable program. You can use rpcgen
options to suppress stub generation and specify the transport to be used by the server
stub.

Converting Local Procedures to Remote Procedures

The following program explains how to convert a local procedure to a remote
procedure.

/* rmsg.c: print a message on the console */

#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];

{
char *message;

if (argc < 2) {
fprintf(stderr, "usage: %s <message>\n", argv[0]);
exit(1);

}
message = argv[1];

if (!printmessage(message)) {
fprintf(stderr, "%s: couldn’t print your message\n",

argv[0]);
exit(1);

}
printf("Message delivered!\n");

}

/*
 * Print a message to the console.
 * Return a boolean indicating whether the message was actually
printed.
 */

1

Chapter 6: RPCGEN Programming Guide

111

6

printmessage(msg)
char *msg;

{
FILE *f;

f = fopen("/term", "w");
if (f == NULL) {

return (0);
}
fprintf(f, "%s\n", msg);
fclose(f);
return(1);

}

By turning printmessage into a remote procedure, it can be called from anywhere
in the network.

In general, it is necessary to figure out what the types are for all procedure inputs and
outputs. In this case, the procedure printmessage takes a string as input and
returns an integer as output. Knowing this, you can write a protocol specification in
RPC language that describes the remote version of printmessage:

/* msg.x: Remote message printing protocol */

program MESSAGEPROG {
version MESSAGEVERS {

int PRINTMESSAGE(string) = 1;
} = 1;

} = 99;

Remote procedures are a part of remote programs. Therefore, this procedure was
declared to be in version 1 of the remote program. No null procedure (procedure 0) is
necessary because rpcgen generates it automatically.

Notice that everything is declared with all capital letters. This is not required, but it is a
good convention to follow.

Notice also that the parameter type is string and not char *. char * in C is
ambiguous. Programmers usually intend it to mean a null-terminated string of
characters. However, it could also represent a pointer to a single character or a pointer
to an array of characters. In RPC, a null-terminated string is unambiguously called a
string.

Two more sections need to be written. First, the remote procedure needs to be
written. Here is the definition of a remote procedure to implement the
PRINTMESSAGE procedure declared above:

/* msg_proc.c: implementation of the remote procedure "printmessage"
*/

#include <stdio.h>
#include <RPC/rpc.h> /* always needed */
#include "msg.h" /* need this too: msg.h will be generated by
rpcgen */

 /* Remote verson of "printmessage" */

int *
printmessage_1(msg)

char **msg;

1

Using Network File System/Remote Procedure Call

112

6

{
static int result; /* must be static! */
FILE *f;

f = fopen("/term", "w");
if (f == NULL) {

result = 0;
return (&result);

}
fprintf(f, "%s\n", *msg);
fclose(f);
result = 1;
return (&result);

}

Notice that the declaration of the remote procedure printmessage_1 differs from
that of the local procedure printmessage in three ways:

1. printmessage_1 takes a pointer to a string instead of a string itself. All remote
procedures take pointers to their parameters rather than the parameters
themselves.

2. printmessage_1 returns a pointer to an integer instead of an integer itself. This
is also generally true of remote procedures.

3. printmessage_1 has an _1 appended to its name. In general, all remote
procedures called by rpcgen are named by the following rule:

• the name in the program definition (here printmessage) is converted to
lower-case letters.

• an underscore (_) is appended to it.

• the version number (here 1) is appended.

Finally, declare the main client program that calls the remote procedure:

/* rmsg.c: remote version of "printmsg.c" */

#include <stdio.h>
#include <RPC/rpc.h> /* always needed */
#include "msg.h" /* need this too: msg.h will be generated by
rpcgen*/

main(argc, argv)
int argc;
char *argv[];

{
CLIENT *cl;
int *result;
char *server;
char *message;

if (argc < 3) {
fprintf(stderr, "usage: %s host message\n", argv[0]);
exit(1);

}

/* Save values of command line arguments */

server = argv[1];
message = argv[2];

1

Chapter 6: RPCGEN Programming Guide

113

6

/*
 * Create client "handle" used for calling MESSAGEPROG on the
 * server designated on the command line. We tell the RPC package
 * to use the "tcp" protocol when contacting the server.
 */

cl = clnt_create(server, MESSAGEPROG, MESSAGEVERS, "tcp");
if (cl == NULL) {

/*
 * Couldn’t establish connection with server.
 * Print error message and die.
 */

clnt_pcreateerror(server);
exit(1);

}

/* Call the remote procedure "printmessage" on the server */

result = printmessage_1(&message, cl);
if (result == NULL) {

/*
 * An error occurred while calling the server.

 * Print error message and die.
 */

clnt_perror(cl, server);
exit(1);

}

/* Okay, we successfully called the remote procedure. */

if (*result == 0) {

/*
 * Server was unable to print message.
 * Print error message and die.
 */

fprintf(stderr, "%s: %s couldn’t print your message\en",
argv[0], server);

exit(1);
}

/* The message got printed on the server’s console */

printf("Message delivered to %s!\n", server);
}

There are two things to note here:

1. A client handle is created using the RPC library routine clnt_create(). This
client handle is passed to the stub routines which call the remote procedure.

2. The remote procedure printmessage_1 is called exactly the same way as it is
declared in msg_proc.c except for the inserted client handle as the first
parameter.

The pieces are put together as follows:

1

Using Network File System/Remote Procedure Call

114

6

$ rpcgen msg.x

The client program printmsg and the server program msg_server were compiled.
rpcgen filled in the missing pieces before the programs were compiled.

Here is what rpcgen did with the input file msg.x:

• rpcgen created a header file called msg.h that contained a #define for
MESSAGEPROG, MESSAGEVERS, and PRINTMESSAGE for use in the other
modules.

• rpcgen created client stub routines in the msg_clnt.c file. In this case there is
only one, the printmessage_1 that was referred to from the rmsg client
program. The name of the output file for client stub routines is always formed in
this way: if the name of the input file is FOO.x, the client stubs output file is called
FOO_clnt.c.

• rpcgen created the server program which calls printmessage_1 in
msg_proc.c. This server program is named msg_svc.c. The rule for naming
the server output file is similar to the previous one—for an input file called FOO.x,
the output server file is named FOO_svc.c.

Copy the server to a remote machine and run it. For this example, the machine is
called moon. Server processes are run in the background.

moon$ msgdd&

Then, on the local machine (earth) you can print a message to moon’s console.

earth$ rmsg moon "Hello, moon."

Generating XDR Routines
The previous example only demonstrated the automatic generation of client and server
RPC code. You can also use rpcgen to generate XDR routines, that is, the routines
necessary to convert local data structures into network format and vice-versa. This
example presents a complete RPC service, a remote directory listing service, which
uses rpcgen not only to generate stub routines, but also to generate the XDR
routines. Here is the protocol description file:

/* dir.x: Remote directory listing protocol */

const MAXNAMELEN = 255;/* maximum length of a directory entry */

typedef string nametype<MAXNAMELEN>;/* a directory entry */

typedef struct namenode *namelist;/* a link in the listing */

/* A node in the directory listing */

struct namenode {
nametype name;/* name of directory entry */
namelist next;/* next entry */

};

Refer to MWOS/SRC/SPF/RPC/DEMO/MSG for example source.

In order for a server to be an RPC server, it must be running portmap.

1

Chapter 6: RPCGEN Programming Guide

115

6

/* The result of a READDIR operation. */

union readdir_res switch (int errno) {
case 0:

namelist list;/* no error: return directory listing */
default:

void; /* error occurred: nothing else to return */
};

/* The directory program definition */

program DIRPROG {
version DIRVERS {

readdir_res
READDIR(nametype) = 1;

} = 1;
} = 76;

Running rpcgen on dir.x creates four output files. Three are the same as before:
header file, client stub routines, and server skeleton. The fourth contains the XDR
routines necessary for converting the data types declared into XDR format and vice-
versa. These are output in the file dir_xdr.c.

The READDIR Procedure

Following is the implementation of the READDIR procedure.

/* dir_proc.c: remote readdir implementation */

#include <RPC/rpc.h>
#include <dir.h>
#include "dir.h"

extern int errno;
extern char *malloc();
extern char *strdup();

readdir_res *
readdir_1(dirname)

nametype *dirname;
{

DIR *dirp;
struct direct *d;
namelist nl;
namelist *nlp;
static readdir_res res; /* must be static! */

dirp = opendir(*dirname); /* open directory */
if (dirp == NULL) {

res.errno = errno;
return (&res);

}

xdr_free(xdr_readdir_res, &res); /* free previous result */

/* Collect directory entries */

nlp = &res.readdir_res_u.list;
while (d = readdir(dirp)) {

Refer to MWOS/SRC/SPF/RPC/DEMO/DIR for source code.

1

Using Network File System/Remote Procedure Call

116

6

nl = *nlp = (namenode *) malloc(sizeof(namenode));
nl->name = strdup(d->d_name);
nlp = &nl->next;

}
*nlp = NULL;

/* Return the result */

res.errno = 0;
closedir(dirp);
return (&res);

}

Client Calling Server

Finally, the client side program calls the server.

/* rdir.c: Remote directory listing client */

#include <stdio.h>
#include <RPC/rpc.h> /* always need this */
#include "dir.h" /* need this too: will be generated by
rpcgen */

extern int errno;

main(argc, argv)
int argc;
char *argv[];

{
CLIENT *cl;
char *server;
char *dir;
readdir_res *result;
namelist nl;

if (argc != 3) {
fprintf(stderr, "usage: %s host directory\n", argv[0]);
exit(1);

}

/* Remember what our command line arguments refer to */

server = argv[1];
dir = argv[2];

/*
 * Create client "handle" used for calling MESSAGEPROG on the
 * server designated on the command line. The RPC package is told
 * to use the "tcp" protocol when contacting the server.
 */

cl = clnt_create(server, DIRPROG, DIRVERS, "tcp");
if (cl == NULL) {

/*
 * Could not establish connection with server.
 * Print error message and die.
 */

clnt_pcreateerror(server);
exit(1);

}

1

Chapter 6: RPCGEN Programming Guide

117

6

/* Call the remote procedure readdir on the server */

result = readdir_1(&dir, cl);
if (result == NULL) {

/*
 * An error occurred while calling the server.

 * Print error message and die.
 */

clnt_perror(cl, server);
exit(1);

}

/* Okay, we successfully called the remote procedure. */

if (result->errno != 0) {

/* A remote system error occurred. Print error message and
die. */

errno = result->errno;
perror(dir);
exit(1);

}

/* Successfully got a directory listing. Print it. */

for (nl = result->readdir_res_u.list; nl != NULL;
 nl = nl->next) {

printf("%s\n", nl->name);
}

}

Compile and run:

earth$ rpcgen dir.x

The C Preprocessor
The C preprocessor is run on all input files before they are compiled. Therefore, all
preprocessor directives are legal within a .x file. Four symbols may be defined,

A sample makefile is located in MWOS/SRC/SPF/RPC/DEMO/DIR.

You may want to comment out calls to RPC library routines and have client-side routines call
server routines directly.

1

Using Network File System/Remote Procedure Call

118

6

depending upon which output file is being generated. The symbols are shown in Table
6-1..

rpcgen also performs some preprocessing. Any line that begins with a percent sign
(%) is passed directly into the output file without any interpretation of the line. Here is
a simple example that demonstrates the preprocessing features:

/* time.x: Remote time protocol */

program TIMEPROG {
 version TIMEVERS {
 unsigned int TIMEGET(void) = 1;
 } = 1;
} = 44;

#ifdef RPC_SVC
%int *
%timeget_1()
%{
% static int thetime;
%
% thetime = time(0);
% return (&thetime);
%}
#endif

If you plan to use a line continuation character at the end of a directive, it is
recommended that you do not place a % symbol on the continued lines.

For example, use the code:

%#define MYNUMBER \

3

instead of:

%#define MYNUMBER \

% 3

If you place a % symbol on the continued lines, compile problems will result in the
generated C file. This behavior occurs for the implementation of rpcgen on multiple

Table 6-1. C Preprocessor Symbols

Symbol Function

RPC_HDR For header-file output

RPC_XDR For XDR routine output

RPC_SVC For server-skeleton output

RPC_CLNT For client stub output

1

Chapter 6: RPCGEN Programming Guide

119

6

operating systems. Moreover, the % feature is not recommended in general, as there is
no guarantee that the Compiler will place the output in the intended location.

RPC Language
RPC language is an extension of XDR language. The sole extension is the addition of
the program type. However, the XDR language is close to C. The syntax of the RPC
language is described here along with a few examples. Various RPC and XDR type
definitions get compiled into C type definitions in the output header file.

Definitions

An RPC language file consists of a series of definitions.

 definition-list:
 definition ";"
 definition ";" definition-list

It recognizes five types of definitions: enum, struct, union, typedef, const, and
program.

Structures

An XDR struct is declared similarly to its C counterpart. It looks like the following:

 struct-definition:
 "struct" struct-ident "{"
 declaration-list
 "}"

 declaration-list:
 declaration ";"
 declaration ";" declaration-list

As an example, the following XDR structure defines a two-dimensional coordinate:

 struct coord {
 int x;
 int y;
 };

This structure gets compiled into the following C structure in the output header file:

 struct coord {
 int x;
 int y;
 };
 typedef struct coord coord;

The output is identical to the input, except for the added typedef at the end of the
output. This allows the user to use coord instead of struct coord when declaring
items.

1

Using Network File System/Remote Procedure Call

120

6

Unions

XDR unions are discriminated unions and look quite different from C unions. They are
more analogous to Pascal variant records than to C unions.

 union-definition:
 "union" union-ident "switch" "(" declaration ")" "{"
 case-list
 "}"

 case-list:
 "case" value ":" declaration ";"
 "default" ":" declaration ";"
 "case" value ":" declaration ";" case-list

Here is an example of a type that might be returned as the result of a read data
operation. If no error occurs, a block of data is returned. Otherwise, nothing is
returned.

 union read_result switch (int errno) {
 case 0:
 opaque data[1024];
 default:
 void;
 };

It gets compiled into the following:

 struct read_result {
 int errno;
 union {
 char data[1024];
 } read_result_u;
 };
 typedef struct read_result read_result;

Notice that the union component of the output structure has the name as the type
name, except for the trailing _u.

Enumerations

XDR enumerations have the same syntax as C enumerations.

 enum-definition:
 "enum" enum-ident "{"
 enum-value-list
 "}"

 enum-value-list:
 enum-value
 enum-value "," enum-value-list

 enum-value:
 enum-value-ident
 enum-value-ident "=" value

Here is a short example of an XDR enum:

1

Chapter 6: RPCGEN Programming Guide

121

6

 enum colortype {
 RED = 0,
 GREEN = 1,
 BLUE = 2
 };

It is compiled into the following C enum:

enum colortype {
 RED = 0,
 GREEN = 1,
 BLUE = 2,
};
typedef enum colortype colortype;

Typedef

An XDR typedef has the same syntax as a C typedef.

 typedef-definition:
 "typedef" declaration

Here is an example that defines an fname_type used for declaring file name strings
that have a maximum length of 255 characters.

 typedef string fname_type<255>; --> typedef char *fname_type;

Constants

XDR constants are symbolic constants that may be used wherever an integer constant
is used, for example, in array size specifications.

 const-definition:
 "const" const-ident "=" integer

For example, the following defines a constant DOZEN equal to 12.

 const DOZEN = 12; --> #define DOZEN 12

Programs

RPC programs are declared using the following syntax:

 program-definition:
 "program" program-ident "{"
 version-list
 "}" "=" value

 version-list:
 version ";"
 version ";" version-list

 version:
 "version" version-ident "{"
 procedure-list
 "}" "=" value

 procedure-list:
 procedure ";"

1

Using Network File System/Remote Procedure Call

122

6

 procedure ";" procedure-list

 procedure:
 type-ident procedure-ident "(" type-ident ")" "=" value

For example, here is the time protocol:

/*
 * time.x: Get or set the time. Time is represented as number of
seconds
 * since 0:00, January 1, 1970.
 */

program TIMEPROG {
 version TIMEVERS {
 unsigned int TIMEGET(void) = 1;
 void TIMESET(unsigned) = 2;
 } = 1;
} = 44;

This file compiles into #define in the output header file:

#define TIMEPROG 44
#define TIMEVERS 1
#define TIMEGET 1
#define TIMESET 2

Declarations

In XDR, the four kinds of declarations are: simple, fixed-array, variable-
array, and pointer.

• Simple declarations are just like simple C declarations.

 simple-declaration:
 type-ident variable-ident

For example:

 colortype color; --> colortype color;

• Fixed-length Array Declarations are just like C array declarations:

 fixed-array-declaration:
 type-ident variable-ident "[" value "]"

For example:

 colortype palette[8]; --> colortype palette[8];

• Variable-Length Array Declarations have no explicit syntax in C. XDR invents its own
using angle-brackets.

 variable-array-declaration:
 type-ident variable-ident "<" value ">"
 type-ident variable-ident "<" ">"

The maximum size is specified between the angle brackets. You may omit the size,
indicating that the array may be of any size.

1

Chapter 6: RPCGEN Programming Guide

123

6

 int heights<12>; /* at most 12 items */
 int widths<>; /* any number of items */

Because variable-length arrays have no explicit syntax in C, these declarations are
actually compiled into structs. For example, the heights declaration gets
compiled into the following:

 struct {
 u_int heights_len; /* number of items in array */
 int *heights_val; /* pointer to array */
 } heights;

The number of items in the array is stored in the _len component and the pointer
to the array is stored in the _val component. The first part of each of these
component names is the same as the name of the declared XDR variable.

• Pointer Declarations are made in XDR exactly as they are in C. Pointers cannot
actually be sent over the network, but the user can use XDR pointers for sending
recursive data types. The type is actually called optional-data, not pointer,
in XDR language.

 pointer-declaration:
 type-ident "*" variable-ident

For example:

 listitem *next; --> listitem *next;

Special Cases
There are a few exceptions to the rules described above.

Booleans

C has no built-in boolean type. However, the RPC library does have a boolean type
called bool_t that is either TRUE or FALSE. Things declared as type bool in the XDR
language are compiled into bool_t in the output header file.

For example:

 bool married; --> bool_t married;

Strings

C has no built-in string type, but instead uses the null-terminated char *
convention. In the XDR language, strings are declared using the string keyword and
compiled into char* in the output header file. The maximum size contained in the
angle brackets specifies the maximum number of characters allowed in the strings (not
counting the null character). The maximum size may be omitted, indicating a string of
arbitrary length.

For example:

 string name<32>; --> char *name;
 string longname<>; --> char *longname;

1

Using Network File System/Remote Procedure Call

124

6

Opaque Data

Opaque data is used in RPC and XDR to describe untyped data. Untyped data are
sequences of arbitrary bytes. Opaque data may be declared either as a fixed or
variable length array.

For example:

 opaque diskblock[512]; --> char diskblock[512];

 opaque filedata<1024>; --> struct {
 u_int filedata_len;
 char *filedata_val;
 } filedata;

Voids

In a void declaration, the variable is not named. The declaration is simply void.
Void declarations can only occur in union definitions and program definitions (as the
parameter or result of a remote procedure).

125

A Getting Started With Network File
System/Remote Procedure Call

This chapter describes how to configure the Network File System/Remote Procedure
Call (NFS/RPC) package on your OS-9 system.

Using Network File System/Remote Procedure Call

126

A

Introduction
Before you start you should understand the OS-9 operating system and have your OS-
9 software installed on your host system.

System Components

NFS/RPC consists of development tools, user applications, and system modules that
facilitate communication between OS-9 and other Internet systems through the RPC
communication protocol or through NFS local and remote directory services.

System Architecture

The following figures show the architecture and organization of the modules provided.
RPC and NFS utilities can be found in MWOS/<OS>/<CPU>/CMDS. The system
modules can be found in MWOS/<OS>/<CPU>/CMDS/BOOTOBJS/SPF.

Figure A-1. NFS Architecture

Figure A-2. RPC Architecture

Your CD-ROM insert has instructions for installing your Microware products on your host
platform.l.

Appendix A: Getting Started With Network File System/Remote Procedure Call

127

A

Configuring the NFS Client
The NFS Client software contains the components to support an OS-9 system as an
NFS client, communicating with a remote NFS File Server System across a network.

Directory Structure

After successful installation, the NFS directory structure is as shown in Table A-1 on
page 127.

Configuration Overview

This section describes the steps for configuring an NFS client on your system. Each step
is described in the following sections:

1. Configure group and user ID mapping files for NFS.

2. Build the RPC database module.

3. Configure the startup procedures.

4. Verify the installation.

Step 1: Configure Group and User ID Mapping File for NFS

NFS supports user permission mapping files that the NFS file manager uses.

For the client side of NFS, the nfs.map file specifies group/user ID mappings
between the local system and the remote server systems.

Refer to the Using LAN Communications for more information about the TCP/UDP/IP
protocol stack.

The NFS/RPC software package is included within the LAN Communications and is installed
automatically.

Table A-1. NFS Directory Structure

Directory Contents

MWOS/<os>/<CPU>/CMDS Objects for all NFS and RPC utilities.

MWOS/<os>/<CPU>/CMDS/BOO
TOBJS/SPF

Objects for file manager, driver, and descriptor.

MWOS/SRC/ETC RPC services file and NFS mapping files.

Using Network File System/Remote Procedure Call

128

A

NFS Client Map File (nfs.map)

The -c option of rpcdbgen specifies the user permission mapping file for the NFS
Client. The map file consists of one-line entries specifying the Client group or user
number, followed by the remote system group or user ID number. For example, the
following entries map the OS-9 group number 10 to the remote system group number
12, and the OS-9 user number 77 to the remote system user ID number 99.

g10 12

u77 99

The g or u prefix specifies whether the field is a group or user number. The remote
system group or user ID number is not checked for validity.

You can use the asterisk (*) wildcard to specify a generic group or user ID number. For
example, the following entries map all local groups and users to group 12 and user 99
respectively:

g* 12

u* 99

If both specific and generic mapping entries are present, specific entries have
precedence. If no entry exists for a specific Client group/user and no generic entries are
present, the group and user are not translated.

Do not access UNIX servers as group 0 or user 0. Files created will be owned by group
-2 or user -2, and will require global read and write permissions for subsequent access.

The nfs.map file is located in MWOS/SRC/ETC.

Step 2: Build the RPC Data Base Module

The RPC data base module contains global information many RPC clients and servers
use, including:

• The local RPC hostname (optional)

• The location of the NFS backup/recovery directory (required for server)

• NFS statistics

• Client user and group mappings

• Other global flags

The rpcdbgen utility builds the RPC database module. All parameters are optional. A
default rpcdb can be generated for all systems.

Not all NFS file server systems allow super user (root) access via NFS. If group/user 0 is not
mapped, the remote NFS server configuration determines the effect of super user access. In
UNIX, for example, the UNIX exportfs utility controls super user access via NFS.
Depending on how the server is configured, super user access via NFS to a UNIX server may
appear as group -2, 0, or another group as specified on exportfs.

Mapping is not enforced unless the -m option for mount is used.

Appendix A: Getting Started With Network File System/Remote Procedure Call

129

A

If you want NFS/RPC to collect internal use statistics, use the -s option to rpcdbgen.
You can use nfsstat to view the data.

Use the -c option for client mapping.

The inetdb data module created by idbgen includes the rpc file contents, which
map a version number to a RPC program.

To build the RPC database module, perform the following steps:

1. Change directory to:

MWOS/SRC/ETC
or
MWOS/<OS>/<CPU>/PORTS/<TARGET>/SPF/ETC

1. Run the following:

os9make

This creates the inetdb and rpcdb modules in
MWOS/<OS>/<CPU>/CMDS/BOOTOBJS/SPF.
or local port directory: CMDS/BOOTOBJS/SPF

The idbdump and rpcdump utilities display the inetdb and rpcdb data modules.
Following is an example of the rpcdb data module.

Diag:rpcdump

Dump of NFS/RPC data module [rpcdb]

recovery dir:

collect stats: yes

use nfs client map: yes

use nfsd server map: no

NFS Client Mapping

default client uid: 99

default client group: 12

OS-9 uid NFS uid

77 99

OS-9 gid NFS gid

10 12

Step 3: Configure the Startup Procedure

Update your bootlist, or for disk-based systems, use loadnfs and startnfs scripts
in MWOS/SRC/SYS to load and initialize the software. LAN Communications and
SoftStax® must be loaded and initialized.

Utilities are described in <links>Chapter 2 NFS/RPC Utilities and Daemon Server Programs

Using Network File System/Remote Procedure Call

130

A

An example bootlist follows. Depending on the version of OS software you are
using,you may need a relative path of:

../../../../../../<CPU> or ../../../<CPU>
*

* NFS protocol file manager, driver and descriptor:

*

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/nfs

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/nfsnul

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/nfs_devices

*

* Local rpcdb data module

*

../../../CMDS/BOOTOBJS/SPF/rpcdb

*

* NFS client process

*

../../../../../../<CPU>/CMDS/nfsc

*

* NFS/RPC utilities:

*

*../../../../../../<CPU>/CMDS/exportfs

../../../../../../<CPU>/CMDS/mount

*../../../../../../<CPU>/CMDS/mountd

*../../../../../../<CPU>/CMDS/nfsd

*../../../../../../<CPU>/CMDS/nfsstat

*../../../../../../<CPU>/CMDS/pcnfsd

*../../../../../../<CPU>/CMDS/portmap

*../../../../../../<CPU>/CMDS/rpcdbgen

*../../../../../../<CPU>/CMDS/rpcdump

*../../../../../../<CPU>/CMDS/rpcgen

*../../../../../../<CPU>/CMDS/rpchost

*../../../../../../<CPU>/CMDS/rpcinfo

*../../../../../../<CPU>/CMDS/rstatd

*../../../../../../<CPU>/CMDS/rup

*../../../../../../<CPU>/CMDS/rusers

*../../../../../../<CPU>/CMDS/rusersd

*../../../../../../<CPU>/CMDS/showmount

*

The example loadnfs located in MWOS/SRC/SYS procedure loads the
nfs_device, nfs, nfsnul, rpcdb, mount, and nfsc modules. Review this file to
verify that NFS is being loaded if you are using a disk-based system.You can specify, in
the startnfs file, which remote file systems to mount. The OS-9 startup file can
call startnfs procedures to automatically mount remote file systems.

Appendix A: Getting Started With Network File System/Remote Procedure Call

131

A

The following example loads the NFS client modules provided with LAN
Communications.

*

* loadnfs for NFS modules provided with LAN Communication Package

*

*

* Load NFS Client Modules

*

chd CMDS/BOOTOBJS/SPF

load -d nfs nfsnul nfs_devices ;* NFS file manager, driver

 * and descriptor

load -d rpcdb ;* RPC services module

*

* Load NFS Client Commands

*

chd ../..

*

load -d nfsc mount ; Client connection handler

load -d rpcdbgen rpcdump nfsstat ; RPC data module utilities

*load -d rpcinfo

*

* Load NFS Server Modules

*

load -d exportfs portmap nfsd mountd ; NFS server required
 * utilities/daemons

*load -d showmount

*

* Load RPC Client Modules

*

*load -d rup rusers

*

* Load RPC Server Modules

*

*load -d rstatd rusersd

*

If you are using a disk-based system, the startnfs script, found in MWOS/SRC/SYS
can be added to the startup file.

The following startnfs script loads and initializes the NFS driver and mounts remote
systems.

* startnfs for NFS provided with LAN Communication Package

*

* Shell Script to Start NFS Client System and mount file systems

Using Network File System/Remote Procedure Call

132

A

*

* NOTE:NFS client modules may be loaded into memory using loadnfs

*

chd /h0 ;* Set default directories for NFS mounts

chx /h0/cmds ;* Programs are located in CMDS directory

SYS/loadnfs

*

* Start NFS client and mount remote file systems

*

iniz nfs_devices ;* attach NFS client devices

*

* Example mount commands to connect to server systems remote
* device

*

mount -m peer:/ /peer ;* mount remote file systems

mount alpha:/h0 /alpha

mount beta:/h0 /beta

*

* Start NFS Server System

*

* Specify file systems to export (Necessary if acting as a NFS
* Server)

*

exportfs -s /h0 ; specify remote mountable devices

*

* start rpc services daemons

* Uncomment portmap, mountd and nfsd if acting as a NFS Server

*

portmap<>>>/nil& ; start portmap server (rpcinfo)

mountd<>>>/nil& ; mount server (mount,*showmount)

nfsd<>>>/nil& ; nfs server (..)

rstatd<>>>/nil& ; remote system statisitcs (rup)

rusersd<>>>/nil& ; network users info (rusers)

Step 4: Verify the Installation

LAN Communications and SoftStax must be loaded and initialized. The modules
rpcdb, mount, nfsc, nfs, nfsnul, and nfs_devices must be loaded in
memory. LAN Communications and SoftStax must be loaded and initialized. To initialize
the NFS Client, run the following:

$iniz nfs_devices

To verify the installation, perform the following steps:

1. Run rpcinfo -p <remote host> specifying a remote system to verify
Internet access.

2. Mount a remote file system.

Appendix A: Getting Started With Network File System/Remote Procedure Call

133

A

3. Enter mount -d to verify mount point.

4. Use dir to view mount point.

Configuring NFS Server and RPC Development System
The NFS/RPC Development software contains all of the components to support an OS-
9 system as an NFS server, as well as several other standard RPC services on the
system. It also contains configuration utilities for the network administrator to use for
NFS/RPC configuration, access control, and backup requirements.

Directory Structure

After successful installation, the NFS directory structure is as shown in Table A-2 on
page 133.

Configuration Overview

This section describes the steps for configuring the NFS/RPC Development software.
Each step is described in the following sections.

• Step 1: Configure group and user ID mapping files for NFS

• Step 2: Build the RPC data base module.

The NFS/RPC software package is included within the LAN Communications and is installed
automatically.

Table A-2. NFS Directory Structure

Directory Contents

MWOS/<OS>/<CPU>/CMDS Objects for all NFS/RPC utilities.

MWOS/<OS>/<CPU>/CMDS/
BOOTOBJS/SPF

Objects for file managers, drivers, and descriptors.

MWOS/SRC/DEFS/SPF/RPC NFS/RPC header (include) files.

/MWOS/<OS>/<CPU>/LIB RPC/XDR C library (rpc.l).

/MWOS/SRC/ETC RPC services file and NFS mapping files.

/MWOS/SRC/SPF/RPC/DEMO Several example RPC services, including rdir,
rmsg, and rsort. Full client and server program
source code and examples of using rpcgen are
provided.

Using Network File System/Remote Procedure Call

134

A

• Step 3: Configure the startup procedures.

• Step 4: Export local file systems.

• Step 5: Verify the installation.

Step 1: Configure Group and User ID Mapping Files for NFS

NFS supports user permission mapping files that the NFS file manager uses. For the
server side of NFS, the nfsd.map file specifies group/user ID mappings between the
local system and the remote server systems.

NFS Server Map File (nfsd.map)

The -d option of rpcdbgen specifies the mapping file the NFS file server uses. The
map file maps remote group/user numbers to local server system groups and users. It
consists of one-line entries specifying the remote system group or user number,
followed by the local server system group or user ID number. For example, the
following entries map remote group numbers 12000 and 64099 to the local server
system group number 10, and the remote user number 12345 to the local server
system user ID number 99.

g12000 10

g64099 10

u12345 99

The g or u prefix to the remote system field specifies whether the field is a group or
user number.

Use the asterisk (*) wildcard to specify a generic group or user ID number. For
example, the following entries map all remote groups and users to group 12 and user
99 on the server system respectively:

g* 12

u* 99

If both specific and generic mapping entries are present, specific entries have
precedence. If no entry exists for a specific remote group/user and no generic entries
are present, the group and user are not translated.

The nfsd.map file can be found in MWOS/SRC/ETC.

Step 2: Build the RPC Data Base Module

The RPC data base module contains global information many RPC clients and servers
use, including:

• The local RPC hostname (optional)

• The location of the NFS backup/recovery directory (required for server)

• NFS statistics

• Client user and group mappings

Appendix A: Getting Started With Network File System/Remote Procedure Call

135

A

• Other global flags

The rpcdbgen utility builds the RPC database module. All parameters are optional. A
default rpcdb can be generated for all systems.

If you want NFS/RPC to collect internal use statistics, use the
-s option to rpcdbgen. You can use nfsstat to view the data.

The rpcdump utilities can be used to verify the contents of the rpcdb data modules.
Following is an example of the rpcdb data module. Use the -d option for server
mapping.

Diag:rpcdump

Dump of NFS/RPC data module [rpcdb]

recovery dir: MWOS/SRC/ETC

collect stats: yes

use nfs client map: yes

use nfsd server map: yes

NFS Client Mapping

default client uid: 99

default client group: 12

OS-9 uid NFS uid

77 99

OS-9 gid NFS gid

10 12

NFS Server Mapping

default server uid: 99

default server group: 12

NFS uid OS-9 uid

12345 99

NFS gid OS-9 gid

64099 10

12000 10

Step 3: Configure the Startup Procedures

Update your bootlist, or for disk-based systems, use loadnfs and startnfs scripts
in MWOS/SRC/SYS to load and initialize the software. LAN Communications and
SoftStax must be loaded and initialized.

An example bootlist for NFS servers follows. Depending on the OS software version
you are using, you may need a relative path of:

../../../../../../<CPU> or ../../../<CPU>
*

* NFS protocol file manager, driver and descriptor:

*

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/nfs

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/nfsnul

Using Network File System/Remote Procedure Call

136

A

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/nfs_devices

*

* Local rpcdb data module

*

../../../CMDS/BOOTOBJS/SPF/rpcdb

*

* NFS client process

*

../../../../../../<CPU>/CMDS/nfsc

*

* NFS/RPC utilities:

*

../../../../../../<CPU>/CMDS/exportfs

../../../../../../<CPU>/CMDS/mount

../../../../../../<CPU>/CMDS/mountd

../../../../../../<CPU>/CMDS/nfsd

*../../../../../../<CPU>/CMDS/nfsstat

*../../../../../../<CPU>/CMDS/on

*../../../../../../<CPU>/CMDS/pcnfsd

../../../../../../<CPU>/CMDS/portmap

*../../../../../../<CPU>/CMDS/rcopy

*../../../../../../<CPU>/CMDS/rpcdbgen

*../../../../../../<CPU>/CMDS/rpcdump

*../../../../../../<CPU>/CMDS/rpcgen

*../../../../../../<CPU>/CMDS/rpchost

*../../../../../../<CPU>/CMDS/rpcinfo

*../../../../../../<CPU>/CMDS/rstatd

*../../../../../../<CPU>/CMDS/rup

*../../../../../../<CPU>/CMDS/rusers

*../../../../../../<CPU>/CMDS/rusersd

*../../../../../../<CPU>/CMDS/showmount

*

The example loadnfs script found in MWOS/SRC/SYS loads the NFS and RPC
modules and the example startnfs script initiates the NFS/RPC server. The
modules rpcdb, mountd, nfsd, and portmap must be loaded into memory.
Other modules can either be loaded into memory or found in the execution path on a
disk-based system.

On disk-based systems, you can use the startnfs file to specify which RPC services
you will support on the local system. The startnfs procedure may start the server
and specify which file systems to export. The OS-9 startup file can call startnfs
to automatically mount remote file systems.

The following example loads the NFS modules provided with LAN Communications.

*

* loadnfs for NFS modules provided with LAN Communication Package

*

Appendix A: Getting Started With Network File System/Remote Procedure Call

137

A

* Load NFS Client Modules

*

chd CMDS/BOOTOBJS/SPF

* load -d nfs nfsnul nfs_devices ;* NFS file manager, driver

 * and descriptor

load -d rpcdb ;* RPC services module

*

* Load NFS Client Commands

*

chd ../..

*

load -d nfsc mount ; Client connection handler

load -d rpcdbgen rpcdump nfsstat ; RPC data module utilities

*load -d rpcinfo

*

* Load NFS Server Modules

*

load -d exportfs portmap nfsd mountd ;* NFS server required
 * utilities/daemons

*load -d showmount

*

* Load RPC Client Modules

*

*load -d rup rusers spray

*

* Load RPC Server Modules

*

*load -d rstatd rusersd sprayd

*

The following startnfs example exports the /h0 drive and starts up the portmap,
mountd, and nfsd daemons. It also lists the daemons that can be started.

*

* startnfs for NFS provided with LAN Communication Package

*

*

* Shell Script to Start NFS Client System and mount file systems

*

* NOTE: NFS client modules may be loaded into memory using loadnfs

*

chd /h0 ;* Set default directories for NFS mounts

chx /h0/cmds ;* Programs are located in CMDS directory

SYS/loadnfs

* Start NFS client and mount remote file systems

*

* iniz nfs_devices ;* attach NFS client devices

Using Network File System/Remote Procedure Call

138

A

*

* Example mount commands to connect to server systems remote
* device

*

mount -m peer:/ /peer ; mount remote file systems

*mount alpha:/h0 /alpha <>>>/nil&

*mount beta:/h0 /beta<>>>/nil&

*

* Start NFS Server System

*

* Specify file systems to export (Necessary if acting as a NFS
* Server)

*

exportfs -s /h0 ;* specify remote mountable devices

*

* start rpc services daemons

* Uncomment portmap, mountd and nfsd if acting as a NFS Server

*

portmap<>>>/nil& ;* start portmap server (rpcinfo)

mountd<>>>/nil& ;* mount server (mount,
* showmount)

nfsd<>>>/nil& ;* nfs server (..)

rstatd<>>>/nil& ; remote system statisitcs (rup)

rusersd<>>>/nil& ; network users info (rusers)

Step 4: Export Local File Systems

To run the NFS file server, you must specify which disk devices can be remotely
mounted. You can specify any local disk device (such as hard, floppy, or RAMdisk).

For example, to allow remote systems to mount and access the local hard disks /h0
and /h1, floppy disks /d0 and /d1, and RAMdisk /r0, enter:

exportfs -s /h0 /h1

exportfs /d0 /d1 /r0

The first time exportfs is run, use the -s option to create a new mount table for
exported file systems.

Step 5: Verify the Installation

After starting the NFS/RPC server, verify the software by performing the following steps:

1. Run rpcinfo -p to verify that everything is installed.

portmap must execute to run any RPC servers. Running the NFS file server requires
portmap, mountd, and nfsd.

OS-9 file systems can only be exported and mounted at the root level: /h0, not
/h0/CMDS/BOOTOBJS.

Appendix A: Getting Started With Network File System/Remote Procedure Call

139

A

rpcinfo -p

You should see a display showing portmap and a number of RPC servers, ready
to serve. It should be similar to the following, depending on which services you
have installed:

program vers proto port

100000 2 tcp 111 portmapper

100000 2 udp 111 portmapper

100005 1 udp 601 mountd

100002 2 udp 606 rusersd

100002 1 udp 606 rusersd

100003 2 udp 2049 nfs

100001 3 udp 607 rstatd

100001 2 udp 607 rstatd

100001 1 udp 607 rstatd

If rpcinfo reports that it cannot contact the remote system, or the RPC servers
report that they cannot contact portmap, you may have named the system
incorrectly, or there is a problem with the network. Run hostname and verify the
hosts file used to create the inetdb module for consistency. If incorrect, set it
with the hostname utility provided with LAN Communications.

2. Run rpcinfo -p on a remote host specifying your NFS server.

3. Mount the server locally to itself.

4. Mount a file system from a remote system and display the directory.

5. If any of these operations fail, try to use telnet and ftp between the systems in
both directions to verify operation of the network.

Using Network File System/Remote Procedure Call

140

A

141

N A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

Symbols
(TCP/IP) Streams, Record 88

A
Acceptable Element Count of an Array 100
access, super user 128
Arbitrary Data Types, Middle Layer to Pass 42
Architecture

NFS 126
RPC 126
System 126

Array, Acceptable Element Count of an 100
Array, Variable-Length 99
Arrays 80
Arrays, Byte 80
Arrays, Fixed-Sized 83
Assigning Program Numbers 42
Authentication 60
Authentication, Null 61
Authentication, OS-9/OS-9000 61
Authentication, Server Side 62

B
Basic Block Size 94
Batching 54
Binding 36
Block Size, Basic 94
Blocks, Building 44
Boolean 95
Booleans 123
Broadcast RPC 53
Broadcast RPC Synopsis 53
Building Blocks 44
Byte Arrays 80

C
C Preprocessor 117
C Preprocessor Symbols 118
C Programs to Implement RPC Protocol 24
Callback Procedures 64
Calling Server, Client 116
Calling Side of the Lower Layer 50
calls, Normal RPC calls/Broadcast RPC 53
Client Calling Server 116
Client Side, NFS 10
Client-only package

description 127
Components

System 126
Components, Structure 100
Configuration

Overview 127 , 133
Configuring

NFS Server and RPC Development System 133
the NFS Client 127

Constant 101
Constants 121
Constructed Data Type Filters 79
Conventions, Notational 103
Converting Local Procedures to Remote Procedures 110
CPP Symbols 24
CPP Symbols 24

D
Daemon, PC NFS Login 19
DARPA Port to RPC Program Mapper 20
Data Representation, External 9 , 73
Data Type Filters, Constructed 79
Data, Opaque 83 , 124
Data, Serializing and Deserializing 76
Data, Variable-Length Opaque 98
Database Module, Exports List in NFS 14
Database Module, NFS/RPC 21
Declarations 122
Definitions 119
Directory Structure 127 , 133
Directory Structure, NFS 127 , 133
Discriminated Union 100 , 101
Discriminated Union Example D 84
Discriminated Unions 84
Dismount NFS File System, Mount and 15
Display

List of Users Logged into Remote System 30
Name of Current Host 26
Remote Mounts 32
RPC and NFS Statistics 18
RPC Database Module 23
RPC Information 27
Status of Remote System 29

Double-Precision Floating-Point 96
Double-Precision, Floating-Point Number Fields 97

Using Network File System/Remote Procedure Call

142

N A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

E
Enumeration Filters 78
Enumerations 120
Error Conditions, Reply Message and 37
Example of an XDR Data Description 105
example RPC services

directory 133
exportfs 14
Exports List in NFS Database Module 14
External Data Representation 9 , 73

F
Features, RPC 52
File System Model 9
File System Overview, Network 8
Filters, Constructed Data Type 79
Filters, Enumeration 78
Filters, Floating Point 78
Filters, Number 77
Fixed Length

Array of Strings 99
Opaque Data 98

Fixed-Length
Array 99
Opaque Data 97

Fixed-Sized Arrays 83
Floating Point Filters 78
Floating-Point 96
Floating-Point Number 96
Floating-Point, Double-Precision 96

G
group/user

generic ID 128
ID mappings 127 , 134

H
Highest Layer 38
Hyper Integer and Unsigned Hyper Integer 95

I
I/O Streams, Standard 87
Implementing Arrays

Example A 81
Example B 82
Example C 82

Independence, Transport 35
Integer 94
Integer, Unsigned 95
internal usage statistics 129 , 135
Introduction 126

L
Language Specification, RPC 35
Language Specification, XDR 103
Language, RPC 34
Layer, Highest 38
Layer, Middle 39
Lexical Notes 103
Library, XDR 74
Linked Lists 90
Lists, Linked 90
Local Procedures to Remote Procedures, Converting 110
Login Daemon, PC NFS 19
Lower Layer, Calling Side of the 50
Lowest Layer of RPC 46
Lowest Layer on the Server Side, RPC 46

M
Mapper, DARPA Port to RPC Program 20
mapping file

specify 134
Marking Standard, Record 60
Memory Allocation

with XDR and the Lower Layer 49
Memory Streams 87
Message Protocol, RPC 57
Middle Layer 39
Middle Layer to Pass Arbitrary Data Types 42
Model, File System 9
Module, NFS/RPC Database 21
mount 15
Mount and Dismount NFS File System 15
mountd 16

N
Network File System Overview 8
NFS

Architecture 126
Client Map File (nfs.map) 128
client support 133
Client, Configuring the 127
Directory Structure 127 , 133
directory structure 127 , 133
Directory Structure 133
Mount Request Server 16
Protocol Definition 9
Protocol Server 17
Server and RPC Development System, Configuring 133
Server Map File (nfsd.map) 134

NFS Client Side 10
NFS Database Module, Exports List in 14
NFS File System, Mount and Dismount 15
NFS Server Side 10

Index

143

N A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

nfs.map, NFS Client Map File 128
NFS/RPC

Daemon Server Programs 13
Daemon Server Programs. 13
Utilities 12
Utilities 12
Utilities and Daemon Server Programs 11

NFS/RPC Database Module 21
NFS/RPC utilities

directory 127 , 133
NFS/RPC, Getting Started With 125
nfsd 17
nfsd.map, NFS Server Map File 134
nfsstat 18
Non-filter Primitives 86
Normal RPC calls/Broadcast RPC calls 53
Notational Conventions 103
Notes, Lexical 103
Null Authentication 61
Number Filters 77
Number, Floating-Point 96
Numbers, Program 42

O
Object, XDR 89
Opaque Data 83 , 124
Opaque Data, Variable-Length 98
Optional-Data 102
OS-9 disk devices

remote mounting 138
OS-9/OS-9000 Authentication 61
Overview of rpcgen 110
Overview, Configuration 133
Overview, Network File System 8
Overview, Remote Procedure Call 8

P
PC NFS Login Daemon 19
pcnfsd 19
PMAPPROC_CALLIT 71
PMAPPROC_DUMP 71
PMAPPROC_GETPORT 71
PMAPPROC_NULL 70
PMAPPROC_SET 70
PMAPPROC_UNSET 70
Pointer Example E 85
Pointers 85
Port Mapper Operation 70
Port Mapper Protocol 69
Port Mapper Protocol Specification (in RPC Language) 71
portmap 20 , 139
Preprocessor Symbols, C 118

Preprocessor, C 117
Primitives, Non-filter 86
Procedure, READDIR 115
Procedures, Callback 64
Procedures, Programs and 36
Program Mapper, DARPA Port to RPC 20
Program Numbers 42
Program Numbers, Assigning 42
Programming Guide, RPCGEN 109
Programs 121
Programs and Procedures 36
Protocol Specification(in RPC Language), Port Mapper 71
Protocol, Port Mapper 69
Protocol, RPC 34
Protocol, RPC Message 57

R
READDIR Procedure 115
Reader 75
Record (TCP/IP) Streams 88
Record Marking Standard 60
Remote Procedure Call 9
Remote Procedure Call Overview 8
Remote Procedure Calls 33
Remote Procedures, Converting Local Procedures to 110
Remote Systems Statistics Server 28
Reply Message and Error Conditions 37
Routines, XDR 114
RPC

Architecture 126
build database module 128 , 134
Development System, Configuring NFS Server and 133
Language 119
Protocol Requirements 34
Semantics 36
Three Layers 37

RPC Features 52
RPC Language 34
RPC Language Specification 35
RPC Lowest Layer on the Server Side 46
RPC Message Protocol 57
RPC Program Mapper, DARPA Port to 20
RPC Protocol 34
RPC Protocol, C Programs to Implement 24
RPC Synopsis, Broadcast 53
RPC, Broadcast 53
RPC, Lowest Layer of 46
rpcdbgen 21 , 128 , 134
rpcdump 23
rpcgen 24
RPCGEN Programming Guide 109
rpcgen, Overview of 110
rpchost 26

Using Network File System/Remote Procedure Call

144

N A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

rpcinfo 27
rpr 28
rstatd 28
rup 29
rusers 30
Rusers Server 31
rusersd 31

S
Sampe

Integer 94
Sample

Block 94
Hyper Integer and Unsigned Hyper Integer 95
nfsstat Report 18
Program 106
String 99
Unsigned Integer 95

Select on the Server Side 52
Serializing and Deserializing Data 76
server

support 133
Server Side Authentication 62
Server Side, NFS 10
Server Side, RPC Lowest Layer on the 46
Server Side, Select on the 52
Server, Client Calling 116
Server, Remote Systems Statistics 28
Server, Rusers 31
Servers, Stateless 9
showmount 32
Single-Precision, Floating-Point Number 96
Specification, RPC Language 35
Specification, XDR Language 103
sprayd 32
Standard I/O Streams 87
Standard, Record Marking 60
Stateless Servers 9
statistics, internal usage 129 , 135
Streams, Memory 87
Streams, Record (TCP/IP) 88
Streams, Standard I/O 87
String 98
Strings 79 , 123
Structure Components 100
Structures 100 , 119
super user access 128
Symbols , CPP 24
Symbols, C Preprocessor 118
Synopsis, Broadcast RPC 53
Syntax

Information 104
Notes 35 , 105

System
Architecture 126
Components 126

System Model, File 9

T
Target

Operating Systems 22
Processors 22

Transport Independence 35
Typedef 101 , 121

U
Union, Discriminated 100 , 101
Unions 120
Unions, Discriminated 84
Unsigned Hyper Integer, Hyper Integer and 95
Unsigned Integer 95
user access, super 128

V
Variable-Length Array 99
Variable-Length Opaque Data 98
Void 101
Voids 124

W
Writer 74
Writer/Reader Examples 75

X
XDR

Built-in Type Routines 42
Data Types 94
Library Primitives 77
Operation Directions 87
Stream Access 87
Stream Implementation 89

XDR Data Description, Example of an 105
XDR Language Specification 103
XDR Library 74
XDR Object 89
XDR Routines 114

	Using Network File System/Remote Procedure Call
	Contents
	Overview Chapter 1
	Remote Procedure Call Overview
	Network File System Overview
	Remote Procedure Call
	External Data Representation
	Stateless Servers
	NFS Protocol Definition
	File System Model
	The NFS Client Side

	NFS/RPC Utilities and Daemon Server Programs Chapter 2
	NFS/RPC Utilities
	NFS/RPC Daemon Server Programs
	exportfs
	mount
	mountd
	nfsd
	nfsstat
	pcnfsd
	portmap
	rpcdbgen
	rpcdump
	rpcgen
	rpchost
	rpcinfo
	rstatd
	rup
	rusers
	rusersd
	showmount

	Remote Procedure Calls Chapter 3
	The RPC Protocol
	RPC Protocol Requirements

	The RPC Language
	The RPC Language Specification
	Syntax Notes
	Transport Independence
	RPC Semantics
	Binding
	Programs and Procedures
	Reply Message and Error Conditions

	RPC’s Three Layers
	The Highest Layer
	The Middle Layer
	Assigning Program Numbers
	Using the Middle Layer to Pass Arbitrary Data Types

	Lowest Layer of RPC
	Using RPC’s Lowest Layer on the Server Side
	Memory Allocation with XDR and the Lower Layer
	The Calling Side of the Lower Layer

	Other RPC Features
	Select on the Server Side
	Broadcast RPC
	Broadcast RPC Synopsis
	Batching
	The RPC Message Protocol
	Record Marking Standard
	Authentication
	Null Authentication
	OS-9 Authentication
	Server Side Authentication

	Examples
	Callback Procedures

	Port Mapper Chapter 4
	Introduction
	Port Mapper Operation
	PMAPPROC_NULL
	PMAPPROC_SET
	PMAPPROC_UNSET
	PMAPPROC_GETPORT
	PMAPPROC_DUMP
	PMAPPROC_CALLIT

	Port Mapper Protocol Specification (in RPC Language)

	External Data Representation Chapter 5
	Introduction
	The XDR Library
	Writer
	Reader
	Explaining Writer/Reader Examples
	Serializing and Deserializing Data

	XDR Library Primitives
	Number Filters
	Floating Point Filters
	Enumeration Filters
	No Data
	Constructed Data Type Filters
	Strings
	Byte Arrays
	Arrays
	Implementing Arrays Example A
	Implementing Arrays Example B
	Implementing Arrays Example C
	Opaque Data
	Fixed-Sized Arrays
	Discriminated Unions
	Discriminated Union Example
	Pointers
	Pointer Example
	Non-filter Primitives
	XDR Operation Directions
	XDR Stream Access
	Standard I/O Streams
	Memory Streams
	Record (TCP/IP) Streams

	XDR Stream Implementation
	The XDR Object
	Linked Lists

	XDR Data Types
	Basic Block Size
	Integer
	Unsigned Integer
	Enumeration
	Boolean
	Hyper Integer and Unsigned Hyper Integer
	Floating-Point
	Double-Precision Floating-Point
	Fixed-Length Opaque Data
	Variable-Length Opaque Data
	String
	Fixed-Length Array
	Variable-Length Array
	Structures
	Discriminated Union
	Void
	Constant
	Typedef
	Optional-Data

	The XDR Language Specification
	Notational Conventions
	Lexical Notes
	Syntax Information
	Syntax Notes
	An Example of an XDR Data Description

	RPCGEN Programming Guide Chapter 6
	An Overview of rpcgen
	Converting Local Procedures to Remote Procedures

	Generating XDR Routines
	The READDIR Procedure
	Client Calling Server

	The C Preprocessor
	RPC Language
	Definitions
	Structures
	Unions
	Enumerations
	Typedef
	Constants
	Programs
	Declarations

	Special Cases
	Booleans
	Strings
	Opaque Data
	Voids

	Introduction
	System Components
	System Architecture

	Configuring the NFS Client
	Directory Structure
	Configuration Overview
	Step 1: Configure Group and User ID Mapping File for NFS
	NFS Client Map File (nfs.map)

	Step 2: Build the RPC Data Base Module
	Step 3: Configure the Startup Procedure
	Step 4: Verify the Installation

	Configuring NFS Server and RPC Development System
	Directory Structure
	Configuration Overview
	Step 1: Configure Group and User ID Mapping Files for NFS
	NFS Server Map File (nfsd.map)

	Step 2: Build the RPC Data Base Module
	Step 3: Configure the Startup Procedures
	Step 4: Export Local File Systems
	Step 5: Verify the Installation

