
w w w. ra d i sy s . co m
Revision A • July 2006

OS-9® Porting Guide

Version 4.7

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.7 of Microware OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

3

Contents

Chapter 1: Porting Overview
Porting Summary .. 10.

Porting Steps... 12.

Phase I: Prepare a Port Directory.. 12.

Phase II - Create the Low-Level System .. 13.

Phase III - Set Up Hawk System-State Debugging (Optional).. 13.

Phase V - Adding Features to the Basic Port ... 14.

OS-9 Boot Code.. 14.

Bootstrap Code (romcore).. 15.

Low-Level System Modules .. 15.

Configuration Modules.. 16.

Boot Modules .. 16.

Serial Communication Modules... 18.

Low-Level Network I/O Modules .. 19.

Timer Modules .. 19.

Debugger Modules... 20.

Notification Module .. 21.

Miscellaneous .. 21.

Low-Level System Configuration ... 21.

OS-9 Boot Process .. 22.

Apply Power to the Debugger Prompt.. 22.

Debugger Prompt to the Kernel Entry Point ... 24.

Kernel Entry Point to the Shell Prompt... 24.

Chapter 2: Port Directories
Ports Directory Structure .. 26.

Creating Target Port Directories ... 27.

Chapter 3: Porting the Boot Code
Porting the Bootstrap Code... 30.

The rom_cnfg.h File ... 31.

Bootstrap Stack Top and Boot Module Memory.. 31.

Bootstrap Memory Lists .. 32.

The RAM Search ... 33.

The Special Memory Search... 34.

The systype.h File... 34.

The sysinit.c File... 34.

The sysinit Entry Point... 35.

The sysinit1() Routine.. 35.

The sysinit2() Routine.. 35.

The sysreset() Routine.. 35.

The initext Module .. 36.

Configuring the Low-Level System Modules... 36.

Contents

OS-9 Porting Guide 4

Adding Configuration Information to systype.h ... 37.

Modifying Low-Level System Module makefiles .. 37.

Modifying coreboot.ml .. 37.

The ROM Image... 38.

Coreboot.. 38.

Bootfile .. 38.

Building the ROM Image ... 38.

Chapter 4: Creating Low-Level Serial I/O Modules
Creating the Low-Level Serial I/O Modules .. 40.

Building the Low-Level Serial I/O Modules .. 41.

The Console Device Record .. 42.

Low-Level Serial I/O Module Services... 43.

cons_check() .. 44
cons_init() ... 45
cons_irq() .. 46
cons_probe().. 47
cons_read() .. 48
cons_stat() ... 49
cons_term() ... 51
cons_write()... 52
notification_handler() .. 53

Starting-up the Low-Level Serial I/O Module.. 54.

Chapter 5: Creating a Low-Level Ethernet Driver
Creating a Low-Level Ethernet Driver .. 58.

Required Ethernet Driver Functions.. 58.

Proto_srvr Structure ... 59.

The Low-Level Ethernet Driver Entry Point Services .. 61.

proto_deinstall() .. 62
proto_iconn() .. 63
proto_install().. 64
proto_read() .. 65
proto_status() .. 66
proto_tconnl() ... 67
proto_timeout() ... 68
proto_upcall().. 69
proto_write() ... 70

Additional Utility Functions.. 71.

find_n_init_mbuf() .. 72
init_eth_mbuf().. 73

Low-Level ARP... 73.

arpinit() ... 74
arpinput() .. 75
arpresolve() ... 76
arptbl_update().. 77
arpwhohas() .. 78
in_arpinput() ... 79

Miscellaneous Functions ... 79.

in_broadcast() ... 80

Contents

OS-9 Porting Guide 5

Chapter 6: Creating a Low-Level Timer Module
Creating the Timer Module .. 82.

The Timer Services Record ... 83.

Low-Level Timer Module Services .. 84.

timer_deinit()... 85
timer_get() ... 86
timer_init() .. 87
timer_set() ... 88

Starting the Low-Level Timer Module .. 89.

Building the Low-Level Timer Module ... 89.

Chapter 7: Creating an Init Module
Creating an init Module.. 92.

Init Macros ... 92.

Optional Macros.. 93.

Chapter 8: Creating PIC Controllers
Reviewing the PowerPC Vector Code ... 98.

Architecture ... 98.

OS-9 Vector Code Service .. 98.

Initialization ... 100.

Interrupt Vector.. 101.

Modifying the Interrupt Vector .. 101.

Interrupt Controller Support .. 102.

Chapter 9: Using Hardware-Independent Drivers
Simplifying the Porting Process ... 106.

SCF Driver (scllio) .. 106.

Virtual Console (iovcons) ... 107.

Configuration... 107.

Chapter 10: Creating a Ticker
Guidelines for Selecting a Tick Interrupt Device ... 110.

Ticker Support ... 110.

OS-9 Tick Time Setup... 111.

Tick Timer Activation... 111.

Debugging the Ticker.. 112.

Chapter 11: Selecting Real-Time Clock Module Support
Real-Time Clock Device Support .. 114.

Real-Time Clock Support... 114.

Automatic System Clock Startup .. 115.

Debugging Disk-Based Clock Modules... 115.

Debugging ROM-Based Clock Modules... 116.

Chapter 12: Creating Booters
Creating Disk Booters... 118.

The Boot Device (bootdev) Record and Services ... 119.

bt_boot() ... 121
bt_init() ... 122
bt_probe() ... 123
bt_read().. 124
bt_term() ... 125

Contents

OS-9 Porting Guide 6

bt_write() .. 126
The parser Module Services .. 127.

getnum() .. 128
parse_field()... 129

The fdman Module Services.. 130.

fdboot() ... 131
get_partition() ... 132
read_bootfile() ... 133

The scsiman Module Services.. 134.

da_execnoxfer() ... 135
da_execute() .. 136
init_tape() .. 137
initsccs() .. 138
ll_install() .. 139
readsccs()... 140
rewind_tape() .. 141
sq_execnoxfer() ... 142
sq_execute()... 143

The SCSI Host-Adapter Module Services .. 144.

llcmd() ... 145
llexec()... 146
llinit() .. 147
llterm() .. 148

Configuration Parameters ... 149.

Appendix A: Core ROM Services
The rominfo Structure .. 152.

Hardware Configuration Structure ... 153.

flush_cache() ... 154
Memory Services... 155.

mem_clear()... 156
rom_free() ... 157
rom_malloc() ... 158

ROM Services... 159.

Module Services.. 160.

goodmodule() .. 162
rom_findmle() ... 163
rom_findmod() .. 164
rom_moddeinit() ... 165
rom_moddel().. 166
rom_modinit() ... 167
rom_modins() .. 168
rom_modscan() ... 169

p2lib Utility Functions .. 170.

getrinf() ... 171
findrinf().. 172
hwprobe().. 173
inttoascii() ... 174
os_getrinf() .. 175
outhex()... 176

Contents

OS-9 Porting Guide 7

out1hex()... 177
out2hex()... 178
out4hex()... 179
out8hex()... 180
rom_udiv() .. 181
setexcpt() ... 182
swap_globals()... 183

Appendix B: Optional ROM Services
Configuration Module Services... 186.

get_config_data() ... 187
Console I/O Module Services .. 189.

rom_fprintf() ... 190
rom_getc() ... 192
rom_getchar() .. 193
rom_gets() ... 194
rom_putc() .. 195
rom_putchar() ... 196
rom_puterr().. 197
rom_puts()... 198

Notification Module Services.. 199.

dereg_hndlr() ... 200
reg_hndlr() .. 201

Compressed Booter Services.. 202.

Compressing the Bootfile ... 203.

Appendix C: piclib.l Functions
Overview .. 206.

Library Types... 206.

_pic_disable() .. 207
_pic_enable() ... 208

Contents

OS-9 Porting Guide 8

9

1 Porting Overview

This chapter walks you through the process of porting OS-9® to custom hardware.
The following sections are included:

• Porting Summary

• Porting Steps

• OS-9 Boot Code

• OS-9 Boot Process

Chapter 1: Porting Overview

OS-9 Porting Guide 10

Porting Summary
The OS-9 manuals use the following terms:

host is the development system used to edit and re-compile OS-9 source files

target is the reference board or system to which you intend to port OS-9

The OS-9 operating system includes the OS-9 kernel, init module, ticker, real time
clock, I/O manager, file managers, device drivers, device descriptors, utilities, and
other system modules.

Before porting to your target, complete the following steps:

Step 1. Obtain all the documentation that came with your board.

Determine the following information:

• the number of communication ports available on the target and host

To complete installation of OS-9, you will most likely need one serial port for
console communication and either one serial or one Ethernet port for debugging
communications.

• the tickers available on the target

You need one high-level, countdown ticker for time-slicing. You need a second
ticker for low-level timing if you are using Hawk™ user-state debugging on the
running system.

Step 2. Test and verify your hardware. You will need the following components:

• a target board

• communication cables

• a power supply cord

• hardware debugging software

Test your hardware before beginning the porting process; this avoids the need to
simultaneously debug the hardware and software. While debugging your hardware,
determine if there are board hardware features to help you in the debugging
process.

Chapter 1: Porting Overview

OS-9 Porting Guide 11

Figure 1-1 shows a typical host and target interconnection.

Figure 1-1. Example Host and Target Interconnection

Step 3. Install the Microware software distribution onto the host system by following the
installation instructions included with your Microware software distribution media.
The distribution media contains all of the files that comprise the OS-9 boot code,
operating system, and related utilities.

Some files are source code text files. Most of the other files are makefiles and object
code files. The files are organized into subdirectories according to major subsystems
(such as ROM, IO, and CMDS) in a master directory known as the MWOS
structure.

During the installation process, the file system is copied into the MWOS directory
structure. You need to use a hard disk based system with sufficient storage capacity
to contain the entire file system.

The files in the distribution package assume this specific file and directory
organization. They do not compile and link correctly if the organization is different.

The file name suffixes shown below are used to identify file types:

Target
System

Host
System

CRT/
Workstation

PROM
Programmer

CRT

Optional
RS-232

RS-232RS-232

Use 9600 baud or the highest possible data rate for RS-232 links to maximize
download speed. The default is 9600 baud.
The X-On/X-Off protocol is used for flow control.

Refer to the OS-9 board guide associated with your target processor for other
examples about setting up hardware.

Table 1-1. File Name Suffixes

Suffix Definition
.a Assembly language source code.
.c C language source code.
.cc C++ language source code.
.d Definitions (defs) source code (for assembly).

Chapter 1: Porting Overview

OS-9 Porting Guide 12

In general, OS-9 does not require file name suffixes. However, certain utilities, such
as µMACS and cc or xcc, require file name suffixes to determine the mode of
operation.

Porting Steps
This section discusses the various phases in the porting process. Before you begin
this section, you should have completed the pre-porting steps.

Phase I: Prepare a Port Directory

To prepare the port directory, complete the following steps:

Step 1. Create a port directory for your board in the following directory:

<MWOS>/OS9000/<CPU Family>/PORTS

where <MWOS> is the tree in which you have installed your OS-9 product(s) and <CPU
Family> is the name of the CPU family to which the CPU on your board belongs.

Step 2. Create a systype.h file by copying it from one of the example ports directories into
your working port directory. This example systype.h file contains comments and
structure that you will use, along with the explanation in Chapter 3, Porting the
Boot Code, to fully define the board specific definitions used throughout the porting
process.

.des EditMod description files.

.edm Editmod generated C header file.

.h C header file source code.

.i RadiSys intermediate code (I-code) files.

.il RadiSys intermediate code libraries.

.l Library files.

.m Macro files.

.ml Module list files, including coreboot.ml and bootfile.ml, which
create the boot images.

.o Assembly language source from the compiler back end.

.r Relocatable object code (for linker input), created by the assembler.

.tpl Makefile templates.
none Object (binary) files.

Table 1-1. File Name Suffixes (Continued)

Suffix Definition

If you want more details about OS-9, the modules involved in the porting
process, or what occurs in OS-9 during the booting process, refer to the OS-9
Boot Code section.

Refer to Chapter 2, Port Directories for a full description of the MWOS tree and
the supported CPU directories.

Chapter 1: Porting Overview

OS-9 Porting Guide 13

Phase II - Create the Low-Level System

Step 3. Copy the bootstrap code sources from one of the example directories into your port
directory and modify for the memory layout of your board. Write customized
startup code to initialize your board’s memory and devices. Chapter 3, Porting the
Boot Code walks you through this process.

Step 4. Create a low-level serial driver appropriate for your board’s serial device, using the
one of the example sources, along with one of the drivers included in the OS-9 for
Embedded Systems source library (optional).

This low-level serial driver provides the basic I/O service to the serial hardware for
displaying the OS-9 bootstrap message, and resident RomBug debugging. Chapter
4, Creating Low-Level Serial I/O Modules discusses the steps required to provide
serial support for the boot code.

This overview assumes that you have a serial device on your target board.

Phase III - Set Up Hawk System-State Debugging (Optional)

If you want to use sndp or Hawk system-state debugging instead of RomBug for the
remainder of your port, proceed directly to step five. If you would rather continue
using RomBug for system-state debugging, proceed directly to step eight.

Step 5. Create a second serial port or an Ethernet port driver to use as the communications
link for debugging.

Step 6. Create a low-level timer module to support Hawk debugging communications.
Chapter 6, Creating a Low-Level Timer Module discusses this issue in detail.

Step 7. Configure and test Hawk by including the following components in the boot
module list and verifying the Hawk connection:

• the Hawk support modules

• the low-level serial or Ethernet driver

• the low-level timer

Step 8. Create an initial Init module and boot image with shell as the first executable
process and term as the system console for debugging purposes.

• To create a low-level serial driver, refer to Chapter 4, Creating Low-Level
Serial I/O Modules.

• To create a low-level Ethernet driver, refer to Chapter 5, Creating a Low-
Level Ethernet Driver.

Refer to the Using Hawk manual for information on configuring Hawk.

Chapter 1: Porting Overview

OS-9 Porting Guide 14

Step 9. (Optional) Create a PIC driver for each programmable interrupt controller on your
board, if your board uses programmable interrupt controllers. Create a library of
calls that access your PIC(s) to provide a transparent way for drivers to
enable/disable interrupts on your board.

Step 10. Write a high-level serial driver for use as your system console.

If you complete the previous steps, you have completed a port to your target board.
The OS-9 shell should run on your target board as a
single-tasking operating system. Complete the following step to add
multi-tasking and time-slicing to the basic port.

Step 11. Create a system ticker to enable time-slicing and multi-processing.

Phase V - Adding Features to the Basic Port

Step 12. Perform any additional porting steps, including those listed below:

1. Create high-level drivers for other serial ports, clocks, and any other available
devices.

2. Create high-level drivers for disk devices. Once the basic port of a board has
been completed (the first two port procedures), a
high-level driver for a floppy drive (or other device) can be developed.

Once you know this driver works, you can format a floppy disk and install an
OS-9 bootfile on the floppy. At this point, you can create the low-level driver
(borrowing heavily from the tested code of the high-level driver) to boot the
system from the floppy disk.

3. Create low-level drivers and port-specific booters to boot from the various
devices available on the target.

OS-9 Boot Code
The process of booting OS-9 requires an OS-9 bootfile and boot code that initializes
the system hardware, locates the OS-9 bootfile, and passes control to the OS-9
kernel.

The bootfile is a collection of the OS-9 system modules merged together into a
single image, with the kernel appearing as the first module. This bootfile can exist in
ROM, RAM, or flash memory. On a disk-based system, the bootfile is on the boot
disk device. Tape devices can also be used as boot devices, with the bootfile on
magnetic tape.

The boot code for OS-9 contains the raw machine-code bootstrap routine and a
collection of separately linked but inter-dependent modules, organized as OS-9
extension modules. These modules compose the low-level system required to boot
the system and provide debugging on the target.

Refer to Chapter 8, Creating PIC Controllers for detailed information on
creating PIC controllers.

Chapter 1: Porting Overview

OS-9 Porting Guide 15

Each low-level system module provides one or more services that may be required
for a particular target. By compiling these services into separate, configurable
modules, the low-level system can be rich and flexible without inflating the memory
requirements for the core bootstrap code. You can build a minimal system by
including only the low-level system modules required for booting.

The file boot.c in <MWOS>\OS9000\SRC\ROM\ contains the following macro:

#define BOOTSTRAP_EDITION 62

In this example, the number "62" corresponds to the last entry in the edition
history of the low-level boot for OS9000. The edition # will be incremented in
future OS releases if/when changes are made to the bootstrap code.

Bootstrap Code (romcore)

The bootstrap code is made from a number of different files that are compiled and
linked together to produce the final binary object code, romcore. Some of the code is
not target platform-specific and is supplied in intermediate code form (files with .i
or .il suffixes) or relocatable object code form (files with .r or .l suffixes).

To create the bootstrap code, you need to edit some of the source files. Next, you
need to use the make command (os9make on Windows) to compile and link these
files with the other intermediate and relocatable files to create the romcore binary
image file.

 The bootcode follows these steps to boot OS-9:

1. Initialize the basic CPU hardware and devices to a known, stable state.

2. Locate and initialize each boot module to make all boot services available.

3. Determine the location and extent of the target's RAM and ROM memory.

4. Call a system debugger if one is configured.

5. Call the configured system booter module to find the OS-9 bootfile.

6. Transfer control to the OS-9 kernel.

Low-Level System Modules

The romcore bootstrap image is merged with several low-level system modules to
produce the final boot image to be burned into PROM, or loaded into RAM,
NVRAM, or flash memory, prior to booting the target system.

Because some of the low-level system modules provide services, they are supplied as
linked memory modules in binary form. For some modules, both target-
independent binary modules and source code are provided so you can make target
specific changes. You should use target-independent modules for your initial port of
OS-9. As more of the port is accomplished, these modules can be rebuilt to more
directly target your system.

romcore is the only part of the system that is not a module.

Chapter 1: Porting Overview

OS-9 Porting Guide 16

For the initial port, you need to ensure that low-level serial driver modules exist to
handle the console I/O port and an auxiliary communications port. You may be
able to use the example drivers for the common serial devices directly. If not, the
example source code provides a guide for creating your own driver.

If you plan to use Hawk tools for downloading and remote system-state debugging,
you need to ensure an appropriate low-level network driver is available. A low-level
SLIP driver was provided for use with your serial port. In addition, example drivers
are provided for some Ethernet devices. You use these drives directly or modify
them to support your network device.

Configuration Modules

You can use the configuration modules to configure the boot system. These modules
provide a way for other low-level system modules to retrieve configuration
parameters describing how they should function. The
low-level system modules are soft-coded to use the configured values retrieved by
calling the configuration module services.

cnfgdata is a target-specific data module containing the configuration parameters.

The definitions of these parameters are set in the systype.h, default.des
(where applicable), and config.des files.

While all the other low-level system modules are organized as OS-9 extension
modules, cnfgdata is an OS-9 data module.

cnfgfunc is a target-independent module that retrieves configuration parameters
from the cnfgdata boot data module.

This module could be modified to return target-specific overrides of the
default information in cnfgdata. For example, you can override cnfgdata
values with NVRAM or switch/jumper settings.

Boot Modules

These are the modules responsible for selecting the appropriate system boot routine
and using it to locate the OS-9 bootfile from the appropriate device.

bootsys

is a target-independent module providing two services: a booter registration
routine and a booter selection/execution routine.
The registration routine installs device specific booter modules onto a list of
available booters as either an auto-booter or menu-booter.
The booter selection/execution routine is called as part of the OS-9 booting
process. It either selects the appropriate auto-booter or prompts you to choose
a booter from the registered menu-booters to use for booting the system.
Next, it calls that booter to retrieve the OS-9 bootfile, passing parameters you
enter and any defaults found for the booter in the cnfgdata module.

Chapter 1: Porting Overview

OS-9 Porting Guide 17

portmenu

is target-independent module that retrieves a list of names of configured auto
and menu booters from the configuration data module.
portmenu checks each named booter against the list of available booters and, if
found, registers it through the bootsys registration service.

<booter>

includes any of the port specific booter modules capable of locating and
loading the OS-9 bootfile from its target device.
During initialization, each booter installs itself onto available booters.

override

is a target-independent booter module that enables override of autobooter.
If the space bar is pressed within three seconds after the bootstrap message
displays, a boot menu is displayed. Otherwise, booting proceeds with the first
autobooter.

srecord

is a target-independent booter module that receives a Motorola S-record
format file from the communications port and loads it into memory.

flashb

is a target-independent booter support module that assists in reprogramming
flash memory.
flashb relocates the console, downloader, and flash programming modules
from flash memory to RAM. This enables a new booter to overwrite that flash
memory location. flashb calls the flash-specific module to program each
sector, and optionally, calls a downloader module to read data for
programming into flash memory.

romboot

is a target-independent booter module that locates the OS-9 bootfile in the
special memory list.
Like all booters, romboot installs itself on the list of available booters when
initialized.

restart

is a target-independent booter module that restarts the boot process, if called.

rombreak

is a target-independent pseudo-booter meant to drop the system into the
configured system-state debugger.

parser

is a target-independent booter support module providing argument-value pair
parsing services.

fdman

is a target-independent booter support module providing general booting
services for RBF file systems.

Chapter 1: Porting Overview

OS-9 Porting Guide 18

pcman

is a target-independent booter support module providing general booting
services for PCF file systems (PC FAT file systems).

scsiman

is a target-independent booter support module providing general SCSI
command protocol services.

<low-level SCSI module>

is a target-specific booter support module providing SCSI host-adaptor access
services.

IDE

is a target-specific standard IDE support including PCMCIA ATA PC cards.

FDC765

provides PC style floppy support.

Serial Communication Modules

Two serial ports are used by the low-level system. The system console displays boot
status messages, error messages, boot menus, and debugger messages from the
target-resident debugger. The auxiliary communications port is a download port for
communicating with a host system.

console

is a target-independent module that provides
high-level I/O hooks into the low-level entry points of the console serial driver.
The available functions include getchar(), getc(), putchar(), putc(),
gets(), and puts().

conscnfg

is a target-independent module that retrieves the name of the low-level driver
to use for the console from the configuration data module.
After finding the driver on a list of available drivers, conscnfg installs it as the
console serial driver. You can modify this module to perform target-specific
console configuration instead of using a cnfgdata module.

commcnfg

is a target-independent module that retrieves the name of the low-level driver
to use for the auxiliary communication port from the configuration module.
After finding the driver on the list of available drivers, commcnfg initializes it as
the communication serial driver. You could modify this module to perform
target-specific communications port configuration instead of using a cnfgdata
module.

io<serial>

includes any of the target-specific low-level serial drivers.
The low-level serial driver services include device initialization and de-
initialization, read a byte, write a byte, and get status. Each low-level serial
driver will, during module initialization, install itself on a list of available
serial drivers.

Chapter 1: Porting Overview

OS-9 Porting Guide 19

iovcons

is a low-level virtual console driver that is hardware independent because it
transfers I/O requests to the low-level network modules (TCP/IP stack).
iovcons provides a telnetd-like interface to the low-level system console. You
can use the telnet command to link to the target processor board to obtain a
TCP/IP connection over which the OS-9 boot messages and RomBug I/O
occurs. This removes the need for a direct serial connection to the target by
providing a remote console.

Low-Level Network I/O Modules

protoman

is a target-independent protocol module manager.
This module provides the initial communication entry points into the protocol
module stack.

lltcp

is a target-independent low-level transmission control protocol module.

llip

is a target-independent low-level internet protocol module.

llslip

is a target-independent low-level serial line internet protocol module.
This module uses the auxiliary communications port driver to perform serial
I/O.

lludp

is a target-independent low-level user datagram protocol module.

llbootp

is a target-independent low-level BOOTP protocol booter module.

ll<ether>

is a target-specific low-level Ethernet driver module.

hlproto

is a high-level hook into the protocol manager of the low-level system.
This module is used when the low-level system is to be used for user-state
debugging through FasTrak.

Timer Modules

The timer modules are port specific modules that use some counter/timer device of
the target to provide a polling time-out mechanism for other low-level system
modules. The services provided are listed below:

• Initialization: Perform any required timer initialization.

• De-initialization: Deinitialize timer.

• Set time-out value: Set a time-out value from the time of the call.

• Get time-out value: Get the time remaining until the time-out expires.

Chapter 1: Porting Overview

OS-9 Porting Guide 20

Debugger Modules

The OS-9 configuration provides for either target-resident or remote system-state
debugging, depending on the debugging method and tool you select.

dbgentry

is a target-independent module that provides a hook from the boot code and
OS-9 kernel’s _os_sysdbg() system call to the low-level debug server.
dbgentry must be present in the low-level system for debugging capability.

dbgserv

is a target-independent debug server module.
The debug server contains services providing the following debugging
facilities:
• monitoring exception vectors

• setting breakpoints

• setting watchpoints

• executing at full speed (until it encounters a breakpoint, watchpoint, or
exception)

• tracing by single instruction

• tracing by multiple instructions

The debug server must also be present in the low-level system if any system-state
debugging is required prior to the OS-9 kernel being executed.

usedebug

is a target-independent module that retrieves the flag from the configuration
data module indicating whether the debugger is called during system startup.
You can modify this module to perform target-specific debugger configuration
instead of using a cnfgdata module.

RomBug

is a target-independent debugger client module that provides interactive,
target-resident debugging using the serial console device for the user interface.
RomBug uses the I/O services available through the console module to read
commands and display output, and uses the services of dbgserv to perform the
required debugging tasks.
The use of RomBug requires a low-level serial device to be available as the
system console.

sndp

is a target-independent system-state network debugging protocol module.
This module acts as a debugging client on the target, invoking the services of
dbgserv to perform debug tasks. Its user interface, however, is a low-level
network connection to a Hawk client on the development host. That is, sndp
is viewed as a debug server from the standpoint of the remote, host-resident
Hawk debugger.
The use of sndp requires the appropriate low-level network driver and
protocol modules for the communication link.

Chapter 1: Porting Overview

OS-9 Porting Guide 21

Notification Module

Hawk relies on the low-level communication modules and a network driver for
remote system-state debugging both before and after OS-9 is up and running. Once
the OS-9 system has booted, you can use either high-level networking drivers and
protocols (SPF, for example) or low-level communications to perform remote user-
state debugging on the target. The high-level drivers and protocols do not use the
same communications path as the low-level communications. Regardless of the
communications path, if the system drops into system-state the low-level
drivers/protocols must be used to communicate with the host.

Some low-level system modules require that they be informed when a transition
takes place between high and low-level states in order to do special maintenance.
The notify module provides the following services:

Miscellaneous

flshcache

is a target-specific boot module that provides cache flushing routines
appropriate for the target hardware.

Low-Level System Configuration

For each example target platform, the file coreboot.ml contains a list of the low-
level system modules along with romcore to create the boot image. For your initial
port, use the configuration given in the example ports. You will need to change the
coreboot.ml file to use the appropriate low-level serial device drivers for your
console and communications ports, and the appropriate booters and low-level
communications drivers that apply to your target.

You may also want to replace the target-resident RomBug debugger with the modules
appropriate for use with sndp and the remote Hawk Debugger.

Table 1-2. notify Module Services

Service Description
Registration includes any low-level system module requiring notification of

a state change can call notify.
The calling module passes the address of a routine to be
called in the event of such a state change, and the registration
routine includes it on a list of such routines to be called.

De-registration a low-level system module can call notify to cause its routine
to be removed from the list of routines to be called in the
event of a state change.

Notification is the debugger calls notify when a state change takes place.
notify passes over its list of routines requiring notification,
and calls each in turn.

Chapter 1: Porting Overview

OS-9 Porting Guide 22

OS-9 Boot Process
The booting process occurs in three phases, and are similar to the steps you take in
porting OS-9. The following sections provide background information on porting
and the phases of the boot process.

Apply Power to the Debugger Prompt

When power is supplied to the processor, or when a reset occurs, the processor
begins executing from a fixed address. The initial value in the OS-9 boot code is a
label, cold:. This label is defined in the bootstrap source code file btfuncs.a.

Once btfuncs.a starts executing, it performs the following tasks:

1. Branch to the label sysinit: in the source file sysinit.c. sysinit initializes any
port specific hardware devices and then branches back to the label sysreturn in
btfuncs.a.

2. Initialize the stack pointer. This relies on the memory lists defined in the
bootstrap source file rom_cnfg.h to determine the first available RAM memory
area, as well as the top-of-stack offset into it.

3. Call the sysinit1() routine in sysinit.c. The sysinit1() routine completes the
initialization of target-specific hardware devices. Before returning control back
to btfuncs.a, it calls rompak1() to determine if an initext module is present for
further hardware initialization.

4. Initialize the bootstrap global data pointer and stack pointer. This relies on the
memory lists defined in the bootstrap source file rom_cnfg.h to determine the
first available RAM memory area.

5. Initialize the bootstrap global data. The callidata() routine in p2privte.l is
called to initialize the global data for the bootstrap code.

6. Transfer control to hard_reset() in the boot.c source file.

If control is returned, which only happens if it is impossible to boot the system,
control is transferred back to the cold: label, and the process repeats.

When boot.c gets control in hard_reset() it performs the following tasks:

1. Initialize the vector table for the processor. This is done through a call to the
initvects() routine in the cbtfuncs.c file.

2. Determine the processor type and floating point unit (fpu) type. These are calls
to getfpu() and getcpu() in btfuncs.a.

3. Search for and initializes the low-level system modules through a call to
rominfo_control() in romsys.l. The rominfo record structure is initialized,
then the memory immediately following the bootstrap code is searched for
valid, contiguous low-level system modules, and each one that is found is
initialized. During initialization, the low-level system modules add tables and
pointers to their services onto the rominfo record structure.

Refer to Chapter 3, Porting the Boot Code for information on creating the
sysinit.c file and the rom_cnfg.h header file for your port.

Chapter 1: Porting Overview

OS-9 Porting Guide 23

4. Perform RAM and special memory searches, and if needed, enable memory
parity checking. The memory search routines use both bus errors and pattern
matching to determine the sizes of valid RAM and ROM memory segments
available on the system. This relies on the memory list defined in rom_cnfg.h to
determine the memory areas to search.

5. Insert the bootstrap global data area and stack area into the consumed memory
list.

6. Call the sysinit2() routine in sysinit.c. The sysinit2() routine performs
target-specific initializations that rely on completion of the previous steps. There
may not be any, but before sysinit2() returns, it calls rompak2() to determine if
an initext module is present for further target-specific initialization.

7. Initiate the configured low-level debugger by calling the sysboot_control()
routine from romsys.l. If a low-level debugger is configured, enabled, and
available, it is called at this point by the sysboot_control() function. The
debugger displays a processor register display, and a prompt. The major steps of
this phase are shown in Figure 1-2.

Figure 1-2. Files and Subroutines

sysinit.cbtfuncs.a low-level
system-state

debugger
module

cold:
…

bsysinit
sysreturn
…
bl sysinit1()

…
bl
hard_reset

sysinit:
b sysreturn

sysinit1()
...
rompak1()
return()

sysinit2()
rompak2()
return()

initext.c
(if present)

rompak1()
return()

rompak2()
return()

boot.c

hard_reset()

…
sysinit2()

...
sysboot_control{} at Debugger

prompt

Chapter 1: Porting Overview

OS-9 Porting Guide 24

Debugger Prompt to the Kernel Entry Point

On return from the debugger (once you have requested booting be continued) the
bootstrap code performs the following tasks:

1. Call the boot system to find the OS-9 bootfile. sysboot_control() invokes the
boot service provided by the bootsys module to oversee the location of the OS-
9 bootfile by the configured booter(s). This boot service calls each registered
auto-booter in turn until one is successful in locating a valid OS-9 bootfile. If
there are no auto-booters, or if all fail to find a bootfile, you are presented with
a menu listing of all registered menu-booters and prompted to select one. The
specified booter is called and the process is repeated until a selected booter is
successful in locating an OS-9 bootfile.

2. Transfer control to the OS-9 kernel. The coldstart entry point of the kernel
module is calculated and control is transferred to the kernel for completion of
the boot.

Kernel Entry Point to the Shell Prompt

The kernel's coldstart routine finishes the task of booting OS-9. It reads the OS-9
configuration module, init, and using the system configuration data stored within
the kernel, performs the following tasks:

1. Initialize system global data (commonly referred to as the system globals).

2. Add the colored memory list to the memory lists found by the bootstrap code.

3. Build the kernel's RAM memory from the RAM memory list.

4. Build the module directory by searching for modules in the special memory list.

5. Execute all configured extension modules from the PREIO extensions list.

6. Initialize system data tables such as the path table and process table.

7. Open the system console.

8. Change directories to the system device.

9. Execute all configured extension modules from the EXTENS extension list.

10. Create the first process to be executed.

11. Transfer control to the system execution loop to begin process scheduling.

The OS-9 system is now booted and executing as expected.

25

2 Port Directories

 This chapter includes the following topics:

• Ports Directory Structure

• Creating Target Port Directories

Chapter 2: Port Directories

OS-9 Porting Guide 26

Ports Directory Structure
The following figure shows only the directories referred to in this guide. The
MWOS structure includes other directories and files.

Figure 2-1. <MWOS>/OS9000 Porting Directories and Files

SYSTEMS
EXAMPLES

(optional)

TESTBOOT
(optional)

PORTBOOT<others>EMBEDDED

makefile
coreboot.ml
bootfile.ml
readme.txt
config.des (where applicable)

<Target>

UTILSBOOTS SCFINIT RBFPICLIB

SYSMODSROMPIPELIBCMDS

ROM

BOOTOBJS

RTC

TICKERIRQS

USEDEBUGROMCORELL<nnnn>INITEXTCOMMCNFGCNFGDATA

TMR<nnnn>PORTMENUIO<nnnn>COMSCNFGCNFGFUNC

Chapter 2: Port Directories

OS-9 Porting Guide 27

Creating Target Port Directories
The OS-9 boot code sources, driver sources, and system modules (such as the
kernel) consist of many files when installed on your system.

Example source files for several different types of device drivers are provided,
including serial, tickers, and real-time clocks. You only need support for the
hardware platform your target has available.

Step 1. Answer the following questions about your hardware before beginning the porting
procedure:

• What I/O devices will you use?

• How are these devices mapped into memory?

• How is the memory organized?

• What does the memory map of the entire system look like?

Step 2. Create your own working directory structure in which to design and build your
port. Start by creating a subdirectory in MWOS/OS9000/<CPU Family>/PORTS. (<CPU
Family> is a specific processor family directory like PPC or 80386.) This is the root
of your target platform's directory structure. If your target platform is based on a
processor for which there already exists a processor-specific ports directory, then
your target directory can be created there instead. For example, if your target
system is built on a PowerPC 603 CPU, you could choose to develop your port in
MWOS/OS9000/603/PORTS.

Step 3. Create the necessary directories for your target and copy the following files from the
corresponding directories in on the example ports as a starting point. Each target
port directory structure is somewhat different depending upon the configuration of
the target platform.

• BOOTS/SYSTEMS/PORTBOOT

• CMDS/BOOTOBJS/ROM

• ROM/CONSCNFG/makefile

• ROM/COMMCNFG/makefile

• ROM/PORTMENU/makefile

• ROM/USEDEBUG/makefile

• ROM/ROMCORE/RELS

• ROM/ROMCORE/makefile

• ROM/makefile

The BOOTS/SYSTEMS/PORTBOOT/coreboot.ml file contains the list of names of
modules to be merged with rom when building the boot image.

The makefile in ROM invokes the makefiles in each of its appropriate subdirectories
to build the bootstrap code and low-level system modules. Some of the
subdirectories are disabled by default. For the initial target port, uncomment the
values for the CONSCNFG, COMMCNFG, PORTMENU, and USEDEBUG macros.

Once this target port directory structure is in place, the bootstrap code can be
ported.

Chapter 2: Port Directories

OS-9 Porting Guide 28

29

3 Porting the Boot Code

This chapter includes the following topics:

• Porting the Bootstrap Code

• Configuring the Low-Level System Modules

• The ROM Image

Chapter 3: Porting the Boot Code

OS-9 Porting Guide 30

Porting the Bootstrap Code
The source files, boot.c and all of the files in the <CPU Family> subdirectory of the
ROM directory, are used to build the bootstrap code.

Figure 3-1. <MWOS>/OS9000 Bootstrap Source Code Directories

These files, and the port-specific sysinit.c source file, are compiled and linked
together with the distributed libraries to build the bootstrap code. The distributed
libraries include the following files:

• p2privte.l

• p2lib.l

• romsys.l

To port the boot code, you must create additional files to support the source files
and libraries. The sample target port directories contain examples of these files that
you can use as a guide.

MWOS <TARGET>OS9000 PORTS
<CPU

FAMILY>

<CPU
FAMILY>

ROM

SRC

boot.c

LIB

ROM

p2lib.l
p2private.l
romsys.l

ROMCORE

ROM

systype.h

sysinit.c
 rom_cnfg.h

Refer to Appendix A, Core ROM Services, for more information about the
distribution libraries.

File Name Content Summary
systype.h Target system, hardware-dependent definitions.
rom_cnfg.h The bootstrap memory list and stack definitions. ROM console

and boot device record definitions and the ROM memory lists.
sysinit.c Target specific hardware initialization your system may require

following a system reset.

Do not modify the other bootstrap source code files. If you alter these files, the
port code may not function correctly.

Chapter 3: Porting the Boot Code

OS-9 Porting Guide 31

The rom_cnfg.h File

The rom_cnfg.h header file contains the target system definitions only used for the
bootstrap code. This includes patchable memory locations containing the following
information:

• top of the bootstrap stack

• size of memory reserved for low-level system modules

• bootstrap memory lists

Bootstrap Stack Top and Boot Module Memory

The bootstrap code allocates memory from the first RAM memory segment of the
system into three parts, as shown in Figure 3-1. The bootstrap code allocates the
global data area and the stack area for its own use. It reserves the special memory
pool for the low-level system modules to use.

The definitions for the size of the bootstrap stack area (ROMStackSz) and the boot
module memory pool (ResvMemSz) are given in rom_cnfg.h as shown in the
following example:

_asm("

ROMStackSz equ $4000 KB

ResvMemSz equ $20000 128KB

romstack:

 dc.l _dsize+ResvMemSz+ROMStackSz

 dc.l ROMStackSz size of ROM stack

");

The linker produces a link map for the romcore bootstrap image when it is built.
Using this map, the offset of romstack can be found. Once this address is known, a
32-bit value at that address can be patched to change the size of the memory area
reserved for low-level system modules. Additionally, by patching in the proper 32-
bit values at that address, and the following address, the size of the bootstrap stack
area can be changed.

Some processors may require additional steps. Refer to your board guide for
processor-specific porting information.

Chapter 3: Porting the Boot Code

OS-9 Porting Guide 32

Figure 3-2 shows the memory diagram of this first RAM segment allocated by the
bootstrap code.

Figure 3-2. First Memory Segment

Bootstrap Memory Lists

The ROM memory list is made of pairs of 32-bit integers specifying start and end
boundaries for memory lists. The first list is used to map the system’s available
RAM memory. The second list is used to map special memory regions treated as
ROM memory and searched in a non-destructive fashion. Special memory areas
may include ROM, flash, or NVRAM memory. For example, consider the following
code:

/*

*memory search list

*/

_asm(

memlist

dc.l $4000,$80000 first memory segment includes

ROM data area and stack

dc.l $400000, $1000000 second memory segment

dc.l 0

dc.l $fff40000, $fff80000 ROM search area

dc.l 0,0,0,0,0 extra fields for patching lists

);

In the example above, the bootstrap code performs the following tasks:

1. uses RAM from the beginning of the first memory segment for its data area and
stack (The PowerPC vectors are initialized at $0-$4000.)

2. searches for RAM memory following its stack to $80000

3. searches for RAM memory in the range $400000 to $1000000

The next zero word terminates the RAM search list.

The ROM search list follows the RAM search list. In this example, the ROM search
list causes the bootstrap code to search for ROM memory between $FFF40000 and
$FFF80000.

bootstrap global data

low-level system module
reserved memory

bootstrap stack

_dsize

ResvMemSz

ROMStackSz

Initial Bootstrap Stack Top

Chapter 3: Porting the Boot Code

OS-9 Porting Guide 33

These memory lists are used by the boot.c source file when it builds a table of
available memory. Each list is searched for valid memory segments, and each valid
segment is added to the memory table.

The RAM Search

The first part of the search list defines the areas of the address space where the
bootstrap code should normally search for RAM memory. This reduces the time it
takes for the system to perform the search. It also prevents the search (and also
OS-9) from accessing special use or reserved memory areas such as I/O controller
addresses or graphics display RAM.

The first entry, or bank, in this list must point to a block of RAM large enough for
storing:

• bootstrap global data

• memory required by the low-level system modules

• start-up bootstrap stack

• system global data

If the system boots from a disk or another device, the first bank needs to be large
enough to also hold the size of the bootfile loaded from that device, as well as any
buffers required by the boot drivers.

The RAM memory search is performed on each area in the search list by performing
the following tasks:

1. reading the first four bytes of every 8K memory block of the area

2. writing a test pattern sequence. Memory is initialized to repetitions of the
pattern, Dude (0x44756465)

3. reading the area again for comparison

If the read matches what was written, the search assumes this was a valid RAM
block and is added to the system free RAM list.

The 32-bit integer in memlist represents “start” and “end” boundaries for
memory lists. As a general rule, avoid using all zeros or all “f’s” for these
boundaries.
Avoid inserting unnecessary spaces in your rom_cnfg.h file. Though the
compilation may complete error-free with extra spaces, it may still cause build
errors unnoticed until boot time.

Chapter 3: Porting the Boot Code

OS-9 Porting Guide 34

The Special Memory Search

The second part, or the special memory part of the search list, is strictly a non-
destructive memory search. This is necessary so that the memory search does not
overwrite modules downloaded into RAM or NVRAM.

During the porting process, you should temporarily include enough RAM (at least
256K) in the special memory list to download parts of the boot file. If this
download area has parity memory, you may need to do one of the following:

• Manually initialize it.

• Disable the CPU’s parity, if possible.

• Include a temporary routine in the sysinit.c file.

The RAM and special memory searches are performed by boot.c during the
booting process.

The systype.h File

The systype.h file is an include file used in building several of the
low-level system modules and OS-9 system modules. This file should be viewed as
the common location for all port specific hardware definitions and configuration
parameters.

The main sections of the systype.h file include the following definitions:

• ticker and real time clock

• low-level system module configuration

• hardware specific macros

For support of the bootstrap code, it is important to include in the systype.h
header file any target-specific hardware definitions you want to use as you write the
hardware initialization routines in the sysinit.c source file. Such definitions might
include hardware specific bit layouts, address offsets, or initial values.

The sysinit.c File

The sysinit.c file should contain all special hardware initialization your system
requires after a reset or system reboot. The sysinit.c file consists of these different
sections, or entry points:

• sysinit

• sysinit1

• sysinit2

• sysreset

Chapter 3: Porting the Boot Code

OS-9 Porting Guide 35

The sysinit Entry Point

The first entry point, sysinit, is called almost immediately after a reset by
btfuncs.a. sysinit performs the minimum hardware actions the system may
require to enable memory or initialize necessary devices during start up.

This routine does not return through the typical return machine instruction. The
return to btfuncs.a is made directly by a branch to the sysreturn: label.

The sysinit routine is always a complete embedded assembly routine. At this
point, the stack register has not been initialized to point to a stack area.The sysinit
code must be written assuming no stack exists.

The sysinit1() Routine

The first C-routine, sysinit1() completes any necessary hardware initialization
that was not required to be done by the sysinit assembly routine. In addition, it
makes the call to rompak1() to activate any initialization routines in the initext
module (described later in this section). While a stack is present during sysinit1()
execution, no static storage is available.

The sysinit2() Routine

The second C-routine, sysinit2(), is used for any system initialization required
after calling sysinit1(). Often, this routine consists of a routine that calls
rompak2() and returns, as most systems can perform all their required initialization
during the first call to sysinit and sysinit1(). sysinit2() is called after funcs.a
and boot.c have completed the following tasks:

• initialized the vector table (for vectors in RAM) and the exception jump table

• performed the memory searches

The sysreset() Routine

The third C-routine, sysreset(), is installed as a service to enable the low-level
system modules, in particular the low-level debugger, a way of initiating a software
reset on the target. sysreset() performs any special hardware actions the system
requires before attempting a software reset, for example a cache flush. It then
initiates the proper instructions to reset the system, or if such a reset is not
supported by the target, branches back to the Cold: entry point in btfuncs.a to
initiate the reboot sequence.

Chapter 3: Porting the Boot Code

OS-9 Porting Guide 36

The initext Module

The initext module is a separately linked portion of hardware initialization code
providing a modular functional extension to the sysinit1() and sysinit2()
routines described previously.

It is provided in source form, enabling an end-user to add hardware initialization
routines specific to a target configuration that would be inappropriate to include in
the base romcore module because of hardware modularity requirements. For
example, a peripheral device implemented on a card plugged into the host bus may
require specific initialization immediately following a CPU reset in the case where a
bus reset could not be asserted by the processor in the sysreset() routine described
above. This initialization code might be appropriately implemented in the initext
module rather than a romcore module, since the end-user may have obtained the
port from an OEM providing the base target platform.

There are two entry points to the initext module, rompak1() and rompak2(). When
the initext module is present in the system immediately following the romcore
module, rompak1() would be executed by sysinit1(), and rompak2() would be
executed by sysinit2(), provided those routines attempt to call the rompak
routines.

Note the following information:
• rompak1() is executed prior to ROM module scan.

• rompak2() is executed after ROM module scan and all ROM modules have been
painted.

• No static storage is available for the initext module.

The initext module is built in a ROM/INITEXT subdirectory within the target port
directory. You should defer implementation of your base initext module until after
your initial port is completed. When you decide to start on your initext module,
use the sources and makefile from an example port as a reference.

Configuring the Low-Level System Modules
Once the bootstrap code is ported and your low-level serial I/O drivers are ready,
you need to provide some configuration data to define what your initial port looks
like.

The OS-9 booting process relies on the use of a configuration data module
(cnfgdata) to define certain default parameters used in the boot. The configuration
data module provides for great flexibility in designing your system, but is not
required for a simple port. We recommend you keep your initial port as simple as
possible.

If you are planning to use the Hawk remote debugger during the porting process,
you must use the configuration data module. Read carefully about the configuration
module and the low level network configuration before attempting such a port.

Chapter 3: Porting the Boot Code

OS-9 Porting Guide 37

For the simple port using the target resident RomBug debugger, you do not need a
configuration module. Configuring the simple port involves the following steps:

1. Add to systype.h the definitions the low-level system modules use as default
configuration values for system console and communications ports.

2. Modify the boot module makefiles to disable use of the configuration data
module for the first port stage.

3. Modify the boot module list found in coreboot.ml to reflect the
low-level system modules required for your system.

Adding Configuration Information to systype.h

systype.h should be modified to include definitions for the symbols CONSNAME and
COMMNAME. The symbol CONSNAME gives the name of the console device record that the
console configuration module (conscnfg) will, by default, select for use as the
system console. Similarly, COMMNAME is used by commcnfg as the default for the
communication port. For example:

#define CONSNAME COMM1NAME

#define COMMNAME "MVME1603:com2"

Modifying Low-Level System Module makefiles

For your initial port, disable use of the configuration data module. Later chapters
discuss how to build and use this module. Modify each of the following makefiles
copied earlier from an example port.

<Target>/ROM/COMMCNFG

<Target>/ROM/CONSCNFG

<Target>/ROM/PORTMENU

<Target>/ROM/USEDEBUG

These makefiles contain the definition of a macro called SPEC_COPTS that is defined
to include the C option -dUSECNFGDATA. Comment this option out of the macro
definition. For example, change the first line into the second line:

SPEC_COPTS = -d<option1> -d<option2> -dUSECNFGDATA

SPEC_COPTS = -d<option1> -d<option2> #-dUSECNFGDATA

Modifying coreboot.ml

The file coreboot.ml, copied from an example port, contains a list of low-level
system modules included in the boot image when it is built.

To finish the configuration of your initial port, use the asterisk (*) to comment out
the use of the configuration modules cnfgdata and cnfgfunc, and replace the low
level I/O modules names in this list with the ones appropriate for your target. The
I/O modules used in the example ports are usually named io<device>.

Chapter 3: Porting the Boot Code

OS-9 Porting Guide 38

Do not remove the console, conscnfg, or commcnfg module names, and be sure to
add the appropriate low-level serial I/O module names after console, but before the
conscnfg or commcnfg module names. Once the new port is proven, the console and
communication ports can be removed if desired.

The ROM Image
The OS-9 ROM image is a set of files and modules that collectively make up the
operating system. The specific ROM image contents can vary depending on
hardware capabilities and user requirements of the system in use. To simplify the
process of loading and testing OS-9, the ROM image is divided into two parts: the
low-level image, called coreboot, and the high-level image, called bootfile.

Coreboot

The coreboot image is generally responsible for initializing hardware devices and
locating the high-level (or bootfile) image as specified by its configuration. It is also
responsible for building basic structures based on the image it finds and passing
control to the kernel to bring up the OS-9 system.

Bootfile

The bootfile image contains the kernel and other high-level modules (initialization
module, file managers, drivers, descriptors, applications). The image is loaded into
memory based on the device you select from the boot menu. The bootfile image
normally brings up an OS-9 shell prompt, but can be configured to automatically
start an application.

Building the ROM Image

Once you have ported the bootstrap code, written (or copied) the sources and
makefile for your low level serial I/O modules, and configured your system, you are
ready to build the ROM image:

Step 1. Use the makefile <Target>/ROM/makefile to build your low-level system modules.
This makefile forces a make within each of the subdirectories included in its TRGTS
macro to build the low-level system modules.

Step 2. Use the makefile <Target>/BOOTS/SYSTEMS/PORTBOOT/ makefile to build your boot
image. This makefile not only creates the rom file, but also oversees the creation of
the coreboot and bootfile.

There must be at least four bytes of padding between the coreboot and bootfile
images in the merged rom file.

You may get errors when running make. If these problems are not related to low-
level system modules, you can ignore the errors. This is because you only need the
coreboot file for testing and it is created before the make exits with errors while
trying to build the rom file.

Do not change the order of the low-level system module names or the system
may not boot.

39

4 Creating Low-Level Serial I/O
Modules

This chapter includes the following topics:

• Creating the Low-Level Serial I/O Modules

• The Console Device Record

• Low-Level Serial I/O Module Services

• Starting-up the Low-Level Serial I/O Module

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 40

Creating the Low-Level Serial I/O Modules
While it is not absolutely necessary to have a serial I/O console device on your
system, it is strongly recommended that your initial port include both a console
device and an auxiliary serial I/O communications device.

The console I/O routines are used by the bootstrap code and low-level system
modules for error messages, and by the debugger and menu-booters for interactive
I/O. The communications port is used by the debuggers as a download and talk-
through port. The communications port can also be used as the SLIP device for low
level network communications with the Hawk remote debugger.

Source code is provided for several low-level serial modules that you can configure
and use in your system without modification. If your target has a serial device for
which no I/O module already exists, use the example sources as a guide to write
your own. If both the console port and communications port use the same type of
hardware interface, you only need to build one low-level I/O module.

Create a subdirectory for your own source code if you are building your own I/O
module.

Figure 4-1. Low-Level Serial I/O Source Code Directories

In addition to the directories listed earlier, each example port directory contains
<Target>/ROM/IO<nnnn> directories containing makefiles used to build the low-level
I/O module used in the port. You need to create such a directory and makefile for
your serial devices in your ports directory. Use the example makefiles as a guide.

Device specific include files (<xxxx>.h) are normally kept in the MWOS/SRC/DEFS/HW
directory. These are typically chip-specific definitions and are to be shared by both
low-level (ROM) and high-level (OS) drivers.

If you are writing your own low-level serial driver, be advised that in order to use
Hawk’s module download feature you will need to implement the polled
interrupt service routine, cons_irq(). The distributed low-level serial I/O
module sources are in the following directory: MWOS/SRC/ROM/SERIAL.

MWOS <TARGET>OS9000 PORTS
<CPU

FAMILY>

ROM

SRC

IO<nnnn>

ROM

SERIALHW

DEFS

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 41

Building the Low-Level Serial I/O Modules

The makefile for your I/O module should be created in a properly named
subdirectory of your ports ROM directory. (Consider, for example,
<Target>/ROM/IO<nnnn>.) Use the makefiles from the example ports as a guide.

Figure 4-2. Low-Level Serial I/O Source Code Directories

To add your low-level serial I/O module to the system, complete the following steps:

Step 1. Edit the makefile, <Target>/ROM/makefile.

Step 2. Add your device directory name to the list of targets used to define the TRGTS macro.

Step 3. Add the low-level serial I/O module name into the corboot.ml file in the PORTBOOT
directory.

By doing this, your low level I/O module is rebuilt along with the bootstrap code
and the rest of the low-level system modules when:

• <Target>/ROM/makefile is invoked and included in the rom file,

• and, <Target>/BOOTS/SYSTEMS/PORTBOOT/makefile is invoked creating the boot
image coreboot.

MWOS <TARGET>OS9000 PORTS
<CPU

FAMILY>

SERIAL

ROM

SRC

ROM

makefile

IO<nnnn>

BOOTS

PORTBOOT

SYSTEM

makefile
coreboot.ml
bootfile.ml
config.des (where applicable)

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 42

The Console Device Record
A console device (consdev) record is maintained for each low level serial I/O device
included with the low-level system modules. This record is used to access the
services of the I/O module, and to maintain lists of such devices. The definition of
consdev appears in the header file, rom.h, and appears below for illustration.

Figure 4-3. Console Device Record Directory

struct consdev {

idver infoid; /* structure version tag */

void *cons_addr; /* port address of I/O device*/

u_int32 (*cons_probe)(Rominfo, Consdev), /* h/w probe service */

(*cons_init)(Rominfo, Consdev), /* initialization service */

 (*cons_term)(Rominfo, Consdev); /* de-initialization service*/

u_char (*cons_read)(Rominfo, Consdev); /* read service */

u_int32 (*cons_write)(char, Rominfo, Consdev), /* write service */

 (*cons_check)(Rominfo, Consdev); /* character check service */

u_int32 (*cons_stat)(Rominfo, Consdev, u_int32),

 (*cons_irq)(Rominfo, Consdev),

 (*proto_upcall)(Rominfo, void*, char*);

u_int32 cons_flags; /* device flags */

u_char cons_csave, /* read ahead stash */

cons_baudrate, /* communication baud rate */

cons_parsize, /* parity, data bits, stop bits */

cons_flow; /* flow control */

u_int32 cons_vector, /* interrupt vector */

cons_priority, /* interrupt priority */

 poll_timeout;

u_char *cons_abname, /* abreviated name */

cons_name; / full name and description */

void *cons_data; /* device specific data */

void *upcall_data;

Consdev cons_next; /* next serial device in list*/

u_int32 cons_level; /* interrupt level */

int reserved;

};

MWOS SRC ROM
<DEFS

FAMILY>
rom.h

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 43

Low-Level Serial I/O Module Services
The following entry points describe the services required of each low-level serial I/O
module to support the booting process.

Table 4-1.

Function Description
cons_check() Check I/O Port
cons_init() Initialize Port
cons_irq() Polled Interrupt Service Routine for I/O Device
cons_probe() Probe for Port
cons_read() Read Character from I/O Port
cons_stat() Set Status on Console I/O Device
cons_term() De-initialize Port
cons_write() Write Character to Output Port
notification_handler() Handle Callback from Notification Services

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 44

cons_check()
Check I/O Port

Syntax

u_int32 cons_check(

Rominfo rinf,

Consdev cdev);

Description

cons_check() interrogates the port to determine if an input character is present and
returns the appropriate status.

Parameters

rinf

points to the rominfo record structure.

cdev

points to the console device record for the device.

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 45

cons_init()
Initialize Port

Syntax

u_int32 cons_init(

Rominfo rinf,

Consdev cdev);

Description

cons_init() initializes the port. It resets the device port, sets up for transmit and
receive, and sets up baud rate, parity, bits per type, and number of stop bits.
cons_init() also registers a notification handler described below, with the
notification services.

Parameters

rinf

points to the rominfo record structure.

cdev

points to the console device record for the device.

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 46

cons_irq()
Polled Interrupt Service Routine for I/O Device

Syntax

u_int32 cons_irq(

Rominfo rinf,

Consdev cdev);

Description

cons_irq() is an interrupt service routine. It is installed for the device that performs
the following polling interrupt service on receipt of a device interrupt:

1. Disable further interrupts on the device.

2. Clear the interrupt from the device.

3. Initialize the low-level polling timer.

4. Set the polling time-out value and loops through the process of checking the
device and timer until either a character is received or the time-out occurs.

5. Send a character that is received up the protocol stack by calling the uplink
routine installed in the console device structure.

6. Repeat steps two through five until a time-out occurs.

7. Re-enable device interrupts and returns.

Parameters

rinf

points to the rominfo record structure.

cdev

points to the console device record for the device.

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 47

cons_probe()
Probe For Port

Syntax

u_int32 cons_probe(

Rominfo rinf,

Consdev cdev);

Description

cons_probe() tests to see if the hardware described by the console device record
cdev is present. This could be a read of an I/O register based on the value of
cons_addr in the console device record.

Parameters

rinf

points to the rominfo record structure.

cdev

points to the console device record for the device.

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 48

cons_read()
Read Character From I/O Port

Syntax

u_char cons_read(

Rominfo rinf,

Consdev cdev);

Description

cons_read() returns a character from the device’s input port. cons_read()
repeatedly calls cons_check() until a character is present. cons_read() should not
echo the character. The only special character handling it might perform is XON-
XOFF processing if the CONS_SWSHAKE flag is set in the cons_flow field of the console
device structure.

Parameters

rinf

points to the rominfo record structure.

cdev

points to the console device record for the device.

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 49

cons_stat()
Set Status on Console I/O Device

Syntax

u_int32 cons_stat(

Rominfo rinf,

Consdev cdev,

u_int32 code);

Description

cons_stat() changes the operational mode of the I/O module.

Parameters

rinf

points to the rominfo record structure.

cdev

points to the console device record for the device.

code

is the low-level setstat code indicating operational mode change.
The supported setstat codes are defined in MWOS/SRC/DEFS/ROM/rom.h and
described as follows:

CONS_SETSTAT_POLINT_OFF

Indication

Issue when hlproto no longer requires the services of the communications
port.

Operation

Disable receive interrupts on port.

CONS_SETSTAT_POLINT_ON

Indication

Issue when hlproto requires the services of the communications port for user-
state connections.

Operation

Verify configuration of low-level timer, enable receive interrupts on port.

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 50

CONS_SETSTAT_ROMBUG_OFF

Indication

Issue indirectly through notification services when the RomBug debug client
returns control from any breakpoint, exception, or d_sysdebug entry.

Operation

Restore any applicable port- or chip-specific configuration (including
interrupts).

CONS_SETSTAT_ROMBUG_ON

Indication

Issue indirectly through notification services when the RomBug debug client
gets control on any breakpoint, exception, or d_sysdebug entry.

Operation

Save any applicable port- or chip-specific configuration (including interrupts).
Disable any receive interrupts on port.

CONS_SETSTAT_RXFLOW_OFF

Indication

Issue when a driver user (such as llslip) needs to restrict the flow of received
data.

Operation

If hardware handshaking is configured, assert hardware flow control (on),
otherwise if software handshaking is configured, send an X-OFF.

CONS_SETSTAT_RXFLOW_ON

Indication

Issue when a driver user (such as llslip) needs to restore the flow of received
data.

Operation

If hardware handshaking is configured, turn off hardware flow control,
otherwise if software handshaking is configured, send an X-ON.

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 51

cons_term()
De-initialize Port

Syntax

u_int32 cons_term(

Rominfo rinf,

Consdev cdev);

Description

cons_term() shuts the port down by disabling transmit and receive.

Parameters

rinf

points to the rominfo record structure.

cdev

points to the console device record for the device.

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 52

cons_write()
Write Character To Output Port

Syntax

u_int32 cons_write (

char c,

Rominfo rinf,

Consdev cdev);

Description

cons_write() writes a character to the output port with no special character
processing (for a low-level serial driver that does not use software handshaking).

The sample sources also contain the following serial I/O module entry points to
support the user state Hawk remote debugger. For the initial port, it is not necessary
to include these entry points because the previous functions are sufficient for
support of system-state operation at the low-level. The following entry points
support the use of low-level serial I/O module while in user state after the system is
booted. This functionality is required for use of the I/O module by the user-state
Hawk debugger.

Parameters

c

is the character written to the output port.

rinf

points to the rominfo record structure.

cdev

points to the console device record for the device.

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 53

notification_handler()
Handle Callback from Notification Services

Syntax

u_void notification_handler(

u_int32 direction,

void *cdev);

Description

notification_handler issues calls to cons_stat() with the
CONS_SETSTAT_ROMBUG_ON and CONS_SETSTAT_ROMBUG_OFF codes.

Parameters

direction

is the direction value provided from the notification services: the
NTFY_DIR_TOROM value indicates a transition into the ROM from the operating
system; the NTFY_DIR_TOSYS values indicates a transition to the operating
system from the ROM.

cdev

points to the console device structure for the device.

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 54

Starting-up the Low-Level Serial I/O Module
During the early stages of system bootup, the bootstrap code searches for and
initializes all low-level system modules included in the boot image. The initialization
entry point for the low-level system modules is supplied in a relocatable (.r) file.
This entry point branches to the C function p2start() which you need to provide
for each of your low-level I/O modules. The initialization routine performs these
tasks:

• allocates/initializes the console device record for the device.

• makes the entry points for its services available through the consdev record.

• initializes configuration data for the I/O device.

• installs its consdev record on the list of I/O devices in the console services
record.

An example p2start() routine for a low level I/O module follows. (The console
device record is allocated in the module’s static data area.)

consdev cons_r; /* allocate console device record */

error_code p2start(

Rominfo rinf, /* bootstrap services record structure pointer */

u_char *glbls) /* bootstrap global data pointer */

{

Cons_svcs console = rinf->cons;

 /* get the console services record pointer*/

Consdev cdev;

 /* local console device structure pointer */

/* verify that a console services module has been initialized */

if (console == NULL)

return (EOS_NOCONS);

/*cannot install w/o the console services record*/

/* initialize device record for our device */

cdev = &cons_r; /* point to our console device record */

cdev->struct_id = CONSDEVID; /* id and version tags */

cdev->struct_ver = CDV_VER_MAX;

/* export our service routine entry points */

cdev->cons_probe = &io16450_probe;

cdev->cons_init = &io16450_init;

cdev->cons_term = &io16450_term;

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 55

cdev->cons_read = &io16450_read;

cdev->cons_write = &io16450_write;

cdev->cons_check = &io16450_check;

/* The following services are not required for the initial port */

/*

cdev->cons_stat = &io16450_stat;

cdev->cons_irq = &io16450_irq;*/

/* initialize the device configuration data */

cdev->cons_addr = (void *)COMM2ADDR;

/* base address of I/O port */

cdev->cons_baudrate = CONS_BAUDRATE_9600;

/* communication baud rate */

cdev->cons_vector = COMMVECTOR; /* interrupt vector */

cdev->cons_priority = COMMPRIORITY; /* interrupt priority */

cdev->poll_timeout = 2000;

/* polling routine timout value*/

cdev->cons_abname = (u_char *)COMM2ABNAME;

/* abreviated device name */

cdev->cons_name = (u_char *)COMM2NAME; /* device name */

/* install the record structure on the list of available I/O modules */

cdev->cons_next = console->rom_conslist;

console->rom_conslist = cdev;

return (SUCCESS);

}

The default value definitions used to initialize the device configuration data should
be placed in the target-specific systype.h header file, leaving the I/O module source
code portable across platforms.

If the same I/O module is used with the console and communications ports, an
additional console device record, (for example, comm_r) should be allocated and
initialized with the proper data for the communications port. Both console device
records should be added to the list of available devices.

The console and communications port configuration modules (conscnfg and
commcnfg), using the configuration data module (cnfgdata), determine which
console device record is selected as console and communications port.

Chapter 4: Creating Low-Level Serial I/O Modules

OS-9 Porting Guide 56

57

5 Creating a Low-Level Ethernet
Driver

Low-level Ethernet drivers enable communications between the target and the host.
Ethernet drivers support boot device and debugger operations, and can provide
other functionality, such as console services.

Low-level Ethernet drivers communicate to low-level IP (llip), receiving and
sending data as required. llip also communicates with the low-level TCP (lltcp)
and low-level UDP (lludp) protocols, forwarding datagrams up to the appropriate
protocol and receiving datagrams to be delivered to the low-level driver. lltcp and
lludp communicate with the protoman module handling the protocol services to
communicate with network booters, virtual consoles, and debugger modules.

This chapter includes the following topics:

• Creating a Low-Level Ethernet Driver

• Required Ethernet Driver Functions

• Additional Utility Functions

• Low-Level ARP

• Miscellaneous Functions

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 58

Creating a Low-Level Ethernet Driver
Use the following steps to create a low-level Ethernet driver.

Step 1. Obtain information about the Ethernet chip on the target board.

• Get data book from the manufacturer.

• Obtain packet drivers for the chip to test out on a PC. Several packet driver
collections are available on the World Wide Web, on FTP sites, and by mail.

• Obtain a reference board with the supported chip.

• Determine the chip’s memory management map for mbufs.

• Determine how the information is transmitted, for example in a circular buffer
or FIFO buffer.

Step 2. Review the supplied example Ethernet drivers to find the one that most closely fits
the capabilities and requirements of the Ethernet chip on your target board. For an
example Ethernet driver, see the ll21040 file in the <MWOS>/SRC/ROM/PROTOCOLS
directory.

Step 3. Edit the example you selected to include the information specific to the target
Ethernet chip.

Step 4. Add the driver to your boot code.

Step 5. Remake the boot code.

Step 6. Test communications using the Ethernet driver you created.

Required Ethernet Driver Functions
The following sections define the required functions for implementing a low-level
Ethernet driver.

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 59

Proto_srvr Structure

This structure, defined in rom.h, is common to all protocols and drivers and
identifies the modules in the low-level protoman protocol list.

struct proto_srvr {

idver infoid; /* id/version for proto_srvr */

#if defined(NEWINFO)

Proto_srvr next; /* next protocol stack in list */

u_int32 proto_type_id; /* protocol id */

error_code (*proto_install)(Rominfo, u_char *),

/* Installation */

(*proto_iconn)(Llpm_conn, u_int32),

/* initiate conn */

 (*proto_read)(Llpm_conn, u_int32, LlMbuf *),

/* read conn */

 (*proto_write)(Llpm_conn, u_int32),

/* write conn */

 (*proto_status)(Llpm_conn, u_int32, void *),

/* get status */

 (*proto_tconn)(Llpm_conn, u_int32),

/* terminate conn */

 (*proto_deinstall)(Rominfo),

/* De-installation */

 (*proto_timeout)(Rominfo, Proto_srvr),

/*timeout processing*/

 (*proto_upcall)(Rominfo, Proto_srvr, void*);

/* LL ISR upcall */

void *proto_data; /* server local data */

/* structure ptr */

u_int32 proto_data_size, /* protocol’s data area size */

proto_conn_cnt; /* number of active connections */

Consdev proto_cons_drvr; /* llvl serial comm console */

/* (slip) */

u_int16 proto_mtu, /* Max Xmission Unit for protocol*/

proto_hdr_len, /* Space requirements for header*/

 proto_tlr_len; /* Space requirements for 8 trailer*/

u_char proto_flags; /* Protocol status & type flags*/

u_char proto_rsv1; /* align on longword boundary */

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 60

u_int32 proto_addr; /* V1 only - IP address, null */

 /* except drivers */

u_char *proto_globs; /* Pointer to protocol srvr */

 /* globals */

u_int32 proto_vector, /* vector for lldrivers */

proto_priority; /* llisr priority */

void *proto_port_addr; /* lldriver port address */

/* fields added at V2 */

u_char proto_ipaddr[16]; /* Extended IP address */

u_char proto_hwaddr[16]; /* Physical (MAC) address */

u_int32 proto_irqlevel; /* IRQ level for low-level */

 /* (drivers */

char *proto_drv_name; /* name identifier of protocol */

 /* /driver */

u_int32 proto_rsv2[6]; /* reserved for emergency */

 /* expansion */

#else

 int reserved;

#endif

};

/* values for proto_flags */

#define PVR_RELIABLE 0x01 /* reliable protocol */

#define PVR_LLISR_REG_REQ 0x02 /* request LLISR registration */

#define PVR_LLISR_REG_ERR 0x04 /* the LLISR reg req failed */

/* The following flag is to be used to indicate which driver to use, if

* the interface IP address does not match that specified during the bind.
*/

#define PVR_DRV_USEME 0x08

#define PVR_BOOTDEV 0x10 /* To indicate interface */

 /* booted from */

#define PVR_MWRSV0 0x20

/* We might use these for distinguishing protocols/drivers at some point
*/

#define PVR_DRIVER 0x40

#define PVR_PROTOCOL 0x80

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 61

/* Reserved Flags for Microware for proto_rsv1 field of proto_srvr */

#define PVR_MWRSV1 0x01

#define PVR_MWRSV2 0x02

#define PVR_MWRSV3 0x04

#define PVR_MWRSV4 0x08

/* For OEM User use */

#define PVR_OEM1 0x10

#define PVR_OEM2 0x20

#define PVR_OEM3 0x40

#define PVR_OEM4 0x80

/* subcodes for implementation by proto_status() */

#define SS_IntEnable 0x01

#define SS_IntDisable 0x02

#define SS_RombugOn 0x03

#define SS_RombugOff 0x04

The Low-Level Ethernet Driver Entry Point Services

In each of the entry points of the driver module, complete the following steps:

Step 1. Save the current global variables pointer.

Step 2. Set the global variables pointer to the driver’s variables when it is called (before
accessing them).

Step 3. Restore the original global variables pointer at all exit points.

This can be done using the swap_globals function provided in the p2lib library.

Table 5-1. Entry Points

Function Description
proto_deinstall() Low-level driver de-installation entry point
proto_iconn() Low-level driver initiate connection entry point
proto_install() Installs the low-level ethernet driver
proto_read() Low-level driver polled read entry point
proto_status() Low-level driver status entry point
proto_tconnl() Low-level driver terminate connection entry point
proto_timeout() Low-level driver timeout entry point
proto_upcall() Low-level driver upcall for interrupt processing
proto_write() Low-level driver write entry point

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 62

proto_deinstall()
Low-Level Driver De-installation Entry Point

Syntax

error_code (*proto_deinstall)(Rominfo rinf);

Description

proto_deinstall() is the low-level driver de-installation entry point. It takes the
driver proto_srvr off the protoman protocols/driver list. The service de-initializes
the chip and frees the memory allocated for the buffers. It also removes its name
from the notification services list.

Parameters

rinf

points to the rominfo structure.

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 63

proto_iconn()
Low-Level Driver Initiate Connection Entry Point

Syntax

error_code (*proto_iconn)(

Llpm_conn conn_entry,

u_int32 index);

Description

proto_iconn() is the low-level driver initiate connection entry point. This service
performs the driver related connection specific initialization.

Parameters

conn_entry

is not used in the drivers but is present because the protocols also use the same
prototypes. This entry point is called by hlproto, to turn on/off the interrupts.
It is also called by the notification handler routine.

index

points to the appropriate proto_srvr (tcp, ip, udp, slip).

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 64

proto_install()
Installs the Low-Level Ethernet Driver

Syntax

error_code (*proto_install)(

Rominfo rinf,

u_char *globs);

Description

proto_install() installs the low-level Ethernet driver module. The service initializes
the chip and masks the interrupts. It initializes the proto_srvr structure, sets all the
entry points, and installs itself on the protocol list in the low-level protocol manager
structure. Each driver must allocate the memory for the receive buffers and save the
pointer.

Each driver has to allocate its own pool of mbufs. Set the PVR_LLISR_REG_REQ and
PRM_LLISR_REG_REQ bits so hlprotoman can register the LLISRs to run in interrupt
driven mode. The PVR_DRIVER flag in proto_flags indicates the module is a driver
module. If the service knows the IP address, it sends a gratuitous ARP.

Parameters

rinf

points to the rominfo structure.

globs

points to the module global variables. You should save this pointer in the
proto_globs field of the proto_srvr structure so you can access the module
global variables.

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 65

proto_read()
Low-Level Driver Polled Read Entry Point

Syntax

error_code (*proto_read)(

Llpm_conn conn_entry,

u_int32 index,

LlMbuf *rmb);

Description

proto_read() is the low-level driver polled read entry point. It polls the chip and
returns if it has a good packet or if it was called with the low-level connection entry
flag set to indicate nonblocking read, and the timer expires.

The suggested algorithm, while waiting for a packet, is to periodically check the
timer routine if a nonblocking read is specified and returns if the timer reaches a
value of zero, or if it receives a valid packet. In the latter case, the service processes
the Ethernet packet before passing it up the stack.

Parameters

conn_entry

is not used in the drivers but is present because the protocols also use the same
prototypes. This entry point is called by hlproto, to turn on/off the interrupts.
It is also called by the notification handler routine.

index

points to the appropriate proto_srvr (tcp, ip, udp, slip).

rmb

points to the global mbuf pool.

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 66

proto_status()
Low-Level Driver Status Entry Point

Syntax

error_code (*proto_status)(

Llpm_conn conn_entry,

u_int32 code,

void *ps);

Description

proto_status() is the low-level driver status entry point.

Parameters

conn_entry

is not used in the drivers but is present because the protocols also use the same
prototypes. This entry point is called by hlproto, to turn on/off the interrupts.
It is also called by the notification handler routine.

code

specifies what the caller expects to be done. It can have the following values:
• SS_IntEnable to enable interrupts (called by hlproto).

• SS_IntDisable to disable interrupts (called by hlproto).

• SS_RombugOn to indicate a change from user to system state (called by the
notification handler).

• SS_RombugOff to indicate a change from system to user state (called by the
notification handler).

ps

points to the proto_srvr structure.

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 67

proto_tconnl()
Low-Level Driver Terminate Connection Entry Point

Syntax

error_code (*proto_tconn)(

Llpm_conn conn_entry,

u_int32 index);

Description

proto_tconn() is the low-level driver terminate connection entry point. This service
does the driver related connection specific termination (converse of proto_iconn()).

Parameters

conn_entryis not used in the drivers but is present because the protocols
also use t

he same prototypes. This entry point is called by hlproto, to turn on/off the
interrupts. It is also called by the notification handler routine.

index

points to the appropriate proto_srvr (tcp, ip, udp, slip).

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 68

proto_timeout()
Low-Level Driver Timeout Entry Point

Syntax

error_code (*proto_timeout)(

Rominfo rinf,

Proto_srvr ps);

Description

proto_timeout() is the low-level driver time-out entry point. This entry point is
called by the hlproto thread to provide for any kind of time-out needed. The
sample drivers do not use this and, therefore, it is nulled out in proto_install().

Parameters

rinf

points to the rominfo structure.

ps

points to the proto_srvr structure.

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 69

proto_upcall()
Low-Level Driver Upcall For Interrupt Processing

Syntax

error_code (*proto_upcall)(

Rominfo rinf,

Proto_srvr pd,

void* c);

Description

proto_upcall() is the low-level driver upcall routine for interrupt processing. It is
called on the interrupt context from the commonIRqEntry point in hlproto.

This service is used primarily with receive interrupts. If the service receives a valid IP
packet, it updates the ARP table to eliminate sending out an ARP packet. If it is an
ARP packet, the service processes it, replies to it if proto_upcall() is the destination
address, and also saves the sender’s hardware address. The arp_tblupdate()
function updates the tables, if needed. If the service receives an IP packet, it calls the
proto_upcall() entry point of the next protocol on the stack (IP for now).

Before doing any interrupt processing, this service restores the interrupt status
register and the mask register so it does not miss other packets while processing
one.

Parameters

rinf

points to the rominfo structure.

pd

points to the proto_srvr structure.

cdata

(packet, character) being passed. This is typecast void because each level
typecasts it.

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 70

proto_write()
Low-Level Driver Write Entry Point

Syntax

error_code (*proto_write)(

Llpm_conn conn_entry,

u_int32 index);

Description

proto_write() is the low-level driver write entry point.

When called from the next upper layer protocol module on the stack, (IP for now),
the service puts the Ethernet headers in place and hands them to the chip to send
out on the wire. The service masks the interrupts during the entire processing time
and does not return until the packet has been sent out on the wire.

Parameters

conn_entry

is not used in the drivers but is present because the protocols also use the same
prototypes. This entry point is called by hlproto, to turn on/off the interrupts.
It is also called by the notification handler routine.

index

points to the appropriate proto_srvr (tcp, ip, udp, slip).

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 71

Additional Utility Functions
The following utility functions are used with mbufs:

Table 5-2. Utility Functions

Function Description
find_n_init_mbuf() Find and initialize an mbuf
init_eth_mbuf() Initialize an mbuf

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 72

find_n_init_mbuf()
Find and Initialize an mbuf

Syntax

error_code find_n_init_mbuf(

u_char *rmb,

LlMbuf *mb);

Description

find_n_init_mbuf() finds and initializes an mbuf.

This function returns an ENOBUF error if it cannot find an mbuf.

Parameters

rmb

points to the global mbuf pool.

mb

points to the returned mbuf so it can be used.

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 73

init_eth_mbuf()
Initialize an mbuf

Syntax

void init_eth_mbuf();

Description

The init_eth_mbuf() function is called from proto_install() to initialize an mbuf
after allocating memory for the mbuf pool.

Low-Level ARP
The ARP included with the low-level Ethernet driver has minimal functionality.

Low-level Ethernet drivers do not avoid sent ARP requests. Whenever a driver
receives an ARP/IP packet, it saves the sender’s hardware address (if the packet is
directed to this driver), assuming the driver has sent a request, since it wants to
communicate with the driver. The low-level Ethernet driver processes the ARP
request and replies to the sender. The driver also updates an ARP table without
removing any entries.

Table 5-3. Low-Level ARP Functions

Function Description
arpinit() Low-level ARP init function
arpinput() ARP input processing routine
arpresolve() Resolves hardware addresses
arptbl_update() Update ARP table
arpwhohas() ARP packet request for hardware address
in_arpinput() ARP input processing and replying function

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 74

arpinit()
Low-Level ARP init Function

Syntax

error_code arpinit(Rominfo rinf);

Description

arpinit() function allocates memory for the ARP table and ARP buffer and
initializes the buffer.

Parameters

rinf

points to the rominfo structure.

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 75

arpinput()
ARP Input Processing Routine

Syntax

void arpinput(

Proto_srvr psrvr,

LlMbuf mb,

Rominfo rinf);

Description

arpinput() is the ARP input processing routine. The routine checks for common
length and type. Only IP protocol packets are processes when in_arpinput() is
called.

Parameters

psrvr

points to the proto_srvr structure.

mb

points to the received packet.

rinf

points to the rominfo structure.

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 76

arpresolve()
Resolves Hardware Addresses

Syntax

error_code arpresolve(

Llpm_conn conn_entry,

u_char *desten);

Description

arpresolve() looks into the ARP table and, if successful in finding the entry for the
destination address in the Llpm_conn conn_entry, copies the hardware address to
that destination address, desten. If arpresolve() cannot find the entry, it returns a
non-zero value. This service is called from the proto_write() routine, and assumes
it is always able to resolve the address without ever having to send an ARP request.
If however, it does have to send requests, it calls arpwhohas() to broadcast the
request. In this case the proto_write() function would have to be suspended until
arpresolve() gets a response and is able to resolve the hardware address.

Parameters

conn_entry

is not used in the drivers but it is present because the protocols also use the
same prototypes. This entry point is called by hlproto, to turn on/off the
interrupts. It is also called by the notification handler routine.

desten

is the destination address.

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 77

arptbl_update()
Update ARP Table

Syntax

error_code arptbl_update(

Proto_srvr psrvr,

LlMbuf mb,

Eth_header eth);

Description

The ARP table update function is called from the driver’s proto_read() and
proto_upcall() routines. It performs ARP table updates if the sender included this
service’s Ethernet address (through this service’s gratuitous ARP or other means)
and did not make an ARP request. This prevents this service from having to make
ARP requests. This service compares this address to its own address to determine if
the packet was directed to it.

In addition, packets that are not directed to this service are filtered by returning
ERROR, preventing the service from searching the stack in the interrupt context.

Parameters

psrvr

points to the proto_srvr structure.

mb

points to the packet received.

eth

points to the Ethernet address of the packet received.

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 78

arpwhohas()
ARP Packet Request For Hardware Address

Syntax

error_code arpwhohas(

Proto_srvr psrvr,

struct in_addr* addr,

Rominfo rinf);

Description

arpwhohas() broadcasts an ARP packet and asks for the hardware address of the
machine with the supplied IP address, addr.

This is used only in proto_install() when the driver does a gratuitous ARP
informing the world of its hardware address. This function can be used in the future
for sending ARP requests.

Parameters

psrvr

points to the proto_srvr structure.

addr

is the IP address.

rinf

points to the rominfo structure.

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 79

in_arpinput()
ARP Input Processing and Replying Function

Syntax

void in_arpinput(

Proto_srvr psrvr,

LlMbuf mb,

Rominfo rinf);

Description

in_arpinput() is called by arpinput(). If the ARP request is directed to this
function, it caches the sender’s hardware address and replies to the request with its
hardware address. If the ARP table is full, the request is discarded.

Currently, there is no mechanism to reuse the stale entries. This means requests may
be discarded if the table is full.

Parameters

psrvr

points to the proto_srvr structure.

mb

points to the packet received.

rinf

points to the rominfo structure.

Miscellaneous Functions

Table 5-4. Additional Functions

Function Description
in_broadcast() Determines if Address is a Broadcast Address

Chapter 5: Creating a Low-Level Ethernet Driver

OS-9 Porting Guide 80

in_broadcast()
Determines If Address Is a Broadcast Address

Syntax

int in_broadcast(LLpm_conn conn_entry);

Description

in_broadcast() determines if the destination address in the Llpm_conn pointed to by
conn_entry is a broadcast address. This does not handle subnetting, however. The
function returns a non-zero value if the address is a broadcast address, and a zero
value (SUCCESS) if not.

Parameters

conn_entry

is not used in the drivers but is present because the protocols also use the same
prototypes. This entry point is called by hlproto, to turn on/off the interrupts.
It is also called by the notification handler routine.

81

6 Creating a Low-Level Timer
Module

This chapter includes the following topics:

• Creating the Timer Module

• The Timer Services Record

• Low-Level Timer Module Services

• Starting the Low-Level Timer Module

Chapter 6: Creating a Low-Level Timer Module

OS-9 Porting Guide 82

Creating the Timer Module
A timer module is required whenever timing services are required. The following list
includes examples of when you should use a timer module:

• Low-level network protocols are being used for booting.

• An autobooter has been configured with a specified delay.

• User-state Hawk debugging must be done using low-level communications.

• The high-level driver is scllio and it is operating in interrupt driven mode.

Low-level timers are polled instead of interrupt driven. A simple programmable
counter is usually adequate. The timer services values are in terms of microseconds,
though the counter resolution for a timer does not need to be that small. If the
counter resolution is greater than a microsecond, the timer services would have to
guarantee at least the specified time had elapsed, perhaps rounding up to the next
value given the counter resolution.

It is not generally advisable to use the same device for the system ticker as for the
low-level timer. However, under some circumstances, it may be done.

An example of a software timer can be found in the following directory:

MWOS/SRC/ROM/ TIMERS/SWTIMER

This example needs to be calibrated to the target platform, given a fixed CPU speed
and caching configuration. The software timers have no upper bound on elapsed
time, but the specified time must have elapsed. You may be able to configure and
use the source code for one of the included example low-level timer modules
without modification. If your target has a counter/timer for which no timer module
already exists, use the example sources as a guide to write your own timer module.

Refer to Chapter 10, Creating a Ticker for more information about tickers.

Chapter 6: Creating a Low-Level Timer Module

OS-9 Porting Guide 83

The low-level timer module sources are in the MWOS/SRC/ROM/TIMERS directory.
Create a subdirectory for your own source code if you are writing your own timer
module. Try to keep your source specific to the particular counter device and not
introduce target-specific constants.

Figure 6-1. Creating a New Low-Level Timer Module Directory

In addition to the source directories, each example port directory contains
<Target>/ROM/LL<nnnn> directories containing makefiles used to build the low-level
timer module used in the port. You need to create such a directory and makefile for
your timer module in your ports directory. Use the example makefiles as a guide.

The Timer Services Record
A timer module establishes a single timer services record for the system. This record
is used to access the services of the timer module and to maintain any necessary
state information. The definition of the tim_svcs record is in the header file,
MWOS/SRC/DEFS/ROM/rom.h as follows:

Timer Services Record Example

typedef struct tim_svcs {

idver infoid; /* id/version for tim_svcs */

error_code (*timer_init)(Rominfo); /* initialize the timer */

void (*timer_set)(Rominfo, u_int32);

 /* set timeout value & start */

u_int32 (*timer_get)(Rominfo);

 /* get time left, zero = expired*/

void (*timer_deinit)(Rominfo);

 /* de-initialize timer */

void *timer_data; /* local data structure */

u_int32 rom_delay; /* delay loop counter, 1us delay */

int reserved; /* reserved for emergency expansion*/

} tim_svcs, *Tim_svcs;

ROM

MWOS OS9000

ROM

<CPU
FAMILY>

rom.h

<TARGET>PORTS

LL<nnnn>

LL<nnnn>

SRC

DEFS

TIMERS

ROM

Chapter 6: Creating a Low-Level Timer Module

OS-9 Porting Guide 84

Low-Level Timer Module Services
The following entry points describe the services required of each low-level timer
module.

Table 6-1. Timer Module Entry Points

Function Description
timer_deinit() De-initialize timer
timer_get() Get the Time remaining
timer_init() Initialize the timer
timer_set() Arm the timer

Chapter 6: Creating a Low-Level Timer Module

OS-9 Porting Guide 85

timer_deinit()
De-initialize Timer

Syntax

void timer_deinit(Rominfo rinf);

Description

Deactivate the timer.

Parameters

rinf

points to the rominfo structure.

Chapter 6: Creating a Low-Level Timer Module

OS-9 Porting Guide 86

timer_get()
Get the Time Remaining

Syntax

u_int32 timer_get(Rominfo rinf);

Description

Determine the amount of time remaining. If the time-out has elapsed, stop the
counter and return a zero value.

Parameters

rinf

points to the rominfo structure.

Chapter 6: Creating a Low-Level Timer Module

OS-9 Porting Guide 87

timer_init()
Initialize Timer

Syntax

error_code timer_init(Rominfo rinf);

Description

Initialize the hardware for operation. Ensure the timer is not already initialized.

Parameters

rinf

points to the rominfo structure.

Chapter 6: Creating a Low-Level Timer Module

OS-9 Porting Guide 88

timer_set()
Arm the Timer

Syntax

void timer_set(

Rominfo rinf,

u_int32 timeout);

Description

Begin timing with the timeout value specified. Set the counter to the corresponding
value.

Parameters

rinf

points to the rominfo structure.

timeout

is the value at which to begin the countdown.

Chapter 6: Creating a Low-Level Timer Module

OS-9 Porting Guide 89

Starting the Low-Level Timer Module
During the early stages of system bootup, the bootstrap code searches for and starts
low-level system modules included in the boot image. The
start-up entry point for the low-level system modules is supplied in a relocatable (.r)
file in the distribution. This entry point branches to the C function p2start() you
need to provide for your timer module. The
start-up routine should perform these tasks:

1. Ensure no other timer module has been installed.

2. Allocate and initialize the timer services record. Allocation may be done
passively by defining the timer services record as a module global variable.

3. Make the entry points for its services available through the timer services
record.

4. Allocate and initialize any device-specific data structure.

5. Install the timer services structure into the rominfo record.

Building the Low-Level Timer Module

Create the makefile for your timer module in a properly named subdirectory of your
port’s ROM directory. Use the makefiles from the example ports as a guide.

Complete the following steps to add your low-level timer module to the system:

Step 1. Edit the makefile file in <Target>/ROM.

Step 2. Add your timer directory name to the list of directory names used to define the
TRGTS macro.

Step 3. Add the timer module name into the coreboot.ml file in

<Target>/BOOTS/SYSTEMS/PORTBOOT.

By doing this, you ensure your timer module is rebuilt along with the bootstrap
code and the rest of the low-level system modules when:

• <Target>/ROM/makefile is invoked and included in the rom file

• <Target>/BOOTS/SYSTEMS/PORTBOOT/makefile is invoked creating the boot
image coreboot.

Chapter 6: Creating a Low-Level Timer Module

OS-9 Porting Guide 90

91

7 Creating an Init Module

This chapter includes the following topics:

• Creating an init Module

• Init Macros

Chapter 7: Creating an Init Module

OS-9 Porting Guide 92

Creating an init Module
Init modules are non-executable modules of type MT_SYSTEM. An init module
contains a table of system start-up parameters. During start-up, init specifies the
initial table sizes and system device names, but init is always available to determine
system limits. It must be in memory when the system is booting and usually resides
in the sysboot file or in ROM.

An init module begins with a standard module header. The module header’s m_exec
offset is a pointer to the system’s constant table. The fields of this table are shown
here and defined in the init.h header file. Within the INIT/default.des file is a
section for the init module variables that need to be modified for a particular
system.

Init Macros
The macros defined here override the default macros contained in the file
/MWOS/OS9000/SRC/DESC/init.des.

The following macros must be set in the INIT/default.des file and do not have
defaults in the init.des file.

Refer to the OS-9 Device Descriptor and Configuration Module Reference for
a list of the init fields and the procedures for configuring the init module. See
your target’s board guide for the init modules specific to your board.

Table 7-1. Init Module Override Macros

Name Description and Example
INSTALNAME A processor-specific character string used by programs such as login

to identify the system type.
#define INSTALNAME “Motorola MVME1603”
#define INSTALNAME “PC-AT Compatible 80386”

TICK_NAME A processor-specific character string identifying the tick module name.
The tick module handles the periodic interrupts for OS-9`s time slicing
and internal timings.
#define TICK_NAME “tk1603”
#define TICK_NAME “tk8253”

RTC_NAME A character string identifying the real time clock module name.
#define RTC_NAME “tk8253”

SYS_START A character string identifying the name of the first process to start after
the system boots.
#define SYS_START “CMDS/shell”

SYS_PARAMS A character string containing the parameters to be passed to the first
process.
#define SYS_PARAMS “\n”

Chapter 7: Creating an Init Module

OS-9 Porting Guide 93

Optional Macros

The following describes macros that can be modified. These macros do not have to
be included in the INIT/default.des file because they have default values defined in
init.des. However, if your first port does not include a ticker (explained in Chapter
10, Creating a Ticker and
Chapter 11, Selecting Real-Time Clock Module Support) then you should define the
COMPAT macro with a value made up of at least the B_NOCLOCK flag.

CONS_NAME A character string identifying the console terminal descriptor module
name.
#define CONS_NAME “/term”

SYS_DEVICE A character string identifying the initial mass storage device descriptor
module name. This must be defined, but can be a null string if none
exists.
#define SYS_DEVICE

Table 7-1. Init Module Override Macros (Continued)

Name Description and Example

Table 7-2. Init Module Optional Macros with Default Values

Name Description and Example
MPUCHIP A processor-specific number identifying the MPU chip; for example,

403, 603 or 80386.
#define MPUCHIP 603

#define MPUCHIP 80386

OS_VERSION A number defining the version of the operating system. Default value
is the currently shipped version.
#define OS_VERSION 2 /* version 2.x */

OS_REVISION A number defining the revision of the operating system. Default value
is the currently shipped revision.
#define OS_REVISION 0 /*rev. x.0*/

OS9K_REVSTR A processor-specific character string identifying the operating system.
#define OS9K_REVSTR “OS-9000/PowerPC(tm)”
#define OS9K_REVSTR “OS-9000 V2.1 for Intel x86”

SITE A customer defined number. An example of the use of this number
would be to denote the location where the operating system was
installed. Default value is 0.
#define SITE 0

PROCS A number specifying the initial number of entries in the process table.
Must be divisible by 64. Default value is 64.
#define PROCS 64

PATHS A number specifying the initial path table size. Must be divisible by 64.
Default value is 64.
#define PATHS 64

Chapter 7: Creating an Init Module

OS-9 Porting Guide 94

SLICE Is the number of clock ticks for each process’ time slice. The actual
duration for a time slice is this number times the tick rate. Default
value is 2.
#define SLICE 2

SYS_PRIOR A number defining the priority of the initial process. Default value is
128.
#define SYS_PRIOR 128

MINPTY A number defining the system minimum executable priority. Default
value is 0.
#define MINPTY 0

Refer to the OS-9 Technical Manual for a explanation of priority.
MAXAGE A number defining the system maximum age.

Default value is 0.
#define MAXAGE 0

EVENTS A number specifying the initial event table size. Must be divisible by 8.
Default value is 32.
#define EVENTS 32

Refer to the OS-9 Technical Manual for an explanation of priority.
COMPAT The compat word contains bit flags that are configuration parameters

for the operating system. Default value is 0.
The init.h file defines the flags that can be used:
B_GHOST

Do not retain ghost (sticky) modules if set

B_WIPEMEM
Patternize allocated and returned memory if set

B_NOCLOCK
Do not automatically set system clock

B_EXPTBL
Do not automatically expand system tables

B_UDATMOD
Align user-state data modules to MMU page boundary,
if SSM is currently in use

B_NOCRC
Disable the validation of the CRC for new modules.

#define COMPAT B_WIPEMEM | B_GHOST

Table 7-2. Init Module Optional Macros with Default Values (Continued)

Name Description and Example

Chapter 7: Creating an Init Module

OS-9 Porting Guide 95

EXTENSIONS A character string containing the names of OS-9 extension modules
executed as the system is booting and after the OS-9 I/O system has
been initialized. These modules do not need to be present in the boot
file but are executed if present. OS-9 system modules provided are:
cache provides cache enabling and flushing.

fpu provides software floating point math, if necessary.

ssm provides memory protection.

#define EXTENSIONS "OS9P2 ssm"

PREIOS A character string containing the names of the OS-9 extension
modules to be executed prior to the initialization of the OS-9 I/O
system.
#define PREIO “picirq”

IOMAN_NAME A character string identifying the name of the module handling I/O
system calls.
#define IOMAN_NAME “ioman”

SYS_TIMEZONE A number specifying the local time zone in minutes from Greenwich
Mean Time. Default value is 0.
#define SYS_TIMEZONE 0

MAX_SIGS A number specifying the maximum number of signals that can be
queued for a process at any given time. Default value is 32.
#define MAX_SIGS 32

MEMLIST The offset to “colored” memory list.
#define MEMLIST memlist

MEMTBL The colored memory list.
#define MEMTBL

Table 7-2. Init Module Optional Macros with Default Values (Continued)

Name Description and Example

Chapter 7: Creating an Init Module

OS-9 Porting Guide 96

97

8 Creating PIC Controllers

This chapter includes the following topics:

• Reviewing the PowerPC Vector Code

• Initialization

• Interrupt Vector

Chapter 8: Creating PIC Controllers

OS-9 Porting Guide 98

Reviewing the PowerPC Vector Code
The vector code information discussed in this section relates to PowerPC processors
only.

Architecture

The PowerPC vector code consists of a table of 256- byte entries, one for each
vector. Each entry contains the exception handling code for that vector. When an
exception occurs, the processor saves the current program counter (PC) and the
current machine state register (MSR), then transfers control to the appropriate
vector. The PC is loaded with the address of the vector and the MSR has the same
value as before except that the applicable exception and address translation enable
bits are cleared. Consult the user manual for your hardware platform for specific
exception processing information.

OS-9 Vector Code Service

The standard OS-9 PowerPC vector code is located in the following directory:

MWOS/OS9000/SRC/SYSMODS/VECTORS

This directory is divided into two categories of service, the external interrupt code
and the general exception code. The main difference in the two sets of vector code is
the software stack used when the high-level C code exception handler is called.

The IRQ vector code saves the current state on the current process system stack and
then switches to a dedicated IRQ service stack. If the system was already in an IRQ
context, the dedicated IRQ stack and the current system stack are the same and the
vector code does not change the stack. The interrupt service code continues to use
the IRQ stack. The general exception code uses the current process system stack
throughout the context of the exception.

The standard exception handlers save registers r0-r14, lr, ccr, ctr, xer, srr0, and
srr1. Both exception handlers use the same registers to save the context of the
system and dispatch to the appropriate high-level handler. The vector code
associated with the system call vector functions similar to the general exception
vector code, except the system call vector code does not change the value of r3 (as
stated in the r3 definition in this section) prior to calling the high-level exception
handler.

The following list describes the important register usage in the handlers:

sprg0 Prior to the exception, the sprg0 register contains a pointer to the kernel's
global static storage area. The software IRQ stack is located just below
the kernel’s globals.

sprg1 Prior to the exception, the sprg1 register contains a pointer to the top of
the current processes system state stack.

sprg2 This register is used by both categories of handlers as a temporary register
for preserving the state of the current process condition codes register.

sprg3 This register is also used by both categories of handlers as a temporary
register for saving the current stack pointer.

Chapter 8: Creating PIC Controllers

OS-9 Porting Guide 99

r1 Upon calling the high-level C code exception handler, r1 contains the
stack pointer for use for the duration of the exception handling. It is also
pre-decremented by eight bytes to account for the stack space required by
the C code handler to save the content of the link register and the current
value of the stack pointer. The Ultra C/C++ compiler normally allocates
these eight bytes for subroutine calls.

r2 Upon calling the high-level C code exception handler, r2 points to the
static storage area associated with the handler. This is the same static
storage pointer specified in the F_IRQ service request used to install the
exception handler.

r3 This register, like r2, also contains the pointer to the exception handler’s
static storage area specified in the F_IRQ service request. This is true for
all of the exception handlers except the system call vector code. This
handler leaves r3 unchanged because it is assumed to hold a pointer to
the service requestor's parameter block.

r4 This register, for all of the exception handlers, contains a pointer to the
short stack generated by the vector table code. It contains the partially
saved state of the processor at the time of the exception. The complete
content of this stack is described in the regppc.h header file (located in
the MWOS/OS9000/PPC/DEFS directory).

This stack image is passed as a parameter to the target C code exception
handler to allow handlers to gain access to the conditions of the
exception if necessary. If additional registers other than the ones saved in
the short stack are to be modified by the exception handler, then the
handler must save the content of those registers prior to modification.
However, the format of the short stack cannot be modified.

r5 This register contains the vector number of the exception that just
occurred. It is passed as a parameter to the exception handler, which may
be useful to the handler.

lr The link register is used by the exception handlers to dispatch to the
target C code exception handler. The C code handler is called using the
blrl instruction so the link register is updated with the return address to
the vector exception handler. The C code handler then saves the current
link register value on the stack in the eight-byte location allocated by the
vector code. The return code of the handler restores the link register and
returns to the vector code.

The C compiler, by default, generates code to save registers r14-r31, if
the code generated uses any of the registers.

The OS-9 operating system assumes the r1 register points to
software stack. If the exception is coming from user-state, r1 is
assumed to point to the current process user-state stack. If the
exception is coming from system state, then r1 is assumed to point
into either the IRQ stack or the current process system-state stack.

Chapter 8: Creating PIC Controllers

OS-9 Porting Guide 100

Initialization
The vectors are initialized twice during the full booting sequence. The first
initialization occurs during the low-level or bootstrap booting process.

The OS-9 low-level boot code initializes the vectors so it can catch any exceptions
that may occur during this portion of the booting sequence. The second and final
initialization occurs during the high-level or kernel’s boot stage. Here the kernel
links to the vectors module and calls its execution offset entry point (where the
vectors initialization code resides). The vectors are initialized by copying the
exception code from the vectors module into each 256-byte vector table entry.
Each block of the vectors code has a unique label associated with the first and last
instruction of the code. These labels are used by the initialization code to copy the
vectors code into the vector table entries requiring that block of code.

In addition to copying the vector code into the tables, there are usually three other
operations the initialization code must perform for most of the vectors. There may
be other initialization requirements dictated by the complexity of the hardware
platform. This description assumes the simplest case and describes what is required
of the vector code.

1. The first additional operation is to patch the instruction loading the vector
number of the associated vector with an immediate effective address mode. The
target instruction is identified with a specific label the installation code can use
to calculate the offset to use for the patch operation. The immediate value of the
target instruction is modified to contain the vector number passed to the C code
handler.

2. Another immediate form load instruction must be patched to contain the value
of the offset of the exception table entry structure within the kernel's exception
service routine table (also known as the interrupt polling table) for the target
vector. Each entry in the exception service routine table is a four-byte pointer to
the first of a list of exception table structures associated with the vector as
defined by the excpt.h header file (in the MWOS/OS9000/SRC/DEFS directory).

The patch value is calculated by adding the offset of the beginning of the
kernel's exception service routine table to the vector number multiplied by four.
This offset to the exception service routine list for the vector is patched into the
vector code in order to save execution time and vector code space in dispatching
to the target service routines. Again, each of these patchable instructions can be
located within the vector table entry by using the instruction's label to calculate
the offset of the instruction within the vector code.

3. The last four-byte word of each vector table is patched with the offset into the
associated vector, the location where the OS-9 low-level debugger is allowed to
take over the vector. In most cases, this is the location of the actual blrl
instruction dispatching to the C code handler. The low-level debugger uses this
offset value to dynamically patch the vector code to allow itself to monitor
exception and breakpoints as instructed.

Chapter 8: Creating PIC Controllers

OS-9 Porting Guide 101

Interrupt Vector
The vector code for the interrupt vector is typically unique from the code for the
other vectors. Since many boards have different external interrupt control
mechanisms, the code handling the specifics of the interrupt control is located in an
OS-9 extension module specific to the port. In this case the interrupt vector entry
contains the usual portion of vector code that switches to the current process’
system stack, and saves the current state of all of the volatile CPU registers on the
stack. The interrupt code then switches to the system's interrupt stack prior to
dispatching to the specialized interrupt controller support code.

Modifying the Interrupt Vector

The standard exception code for each of the vectors performs the same series of
state-saving operations. A defined set of registers is preserved on the exception stack
prior to calling the C code handler for the given exception. The set of general
registers saved is defined by the subroutine calling conventions used by the Ultra
C/C++ compiler. The compiler always treats registers r0, r3-r13, xer, ctr, lr, and
ccr as volatile registers and register r1 and r2 as dedicated registers. The compiler
also uses a caller register-save algorithm for subroutine calls.

The calling block must save the current value of any of the volatile registers it wants
to preserve because the called subroutine is always allowed to destroy the content of
the set of volatile registers. This is why the vector exception handlers preserve these
registers. The exception code must be written to assume that the content of all of
the volatile registers will be destroyed by the C code handlers.

Because of these conventions, the vector exception handlers are not coded to
maximize efficiency but rather to maintain the integrity of the process context state.
If for some reason a dedicated application requires a decrease in exception latency
from what the standard exception handlers provide, it is possible to modify the
vector exception handlers and the C code handlers to achieve these requirements.

The Ultra C/C++ compiler is capable of generating code using a callee register-save
subroutine calling convention. In this case, the code is generated to preserve the
contents of any of the registers it expects to destroy. This allows the C code
exception handlers to be compiled to preserve the content of the registers it uses,
making it possible to reduce the burden of context saving required by the vector
exception handler.

The vector exception handler can be written to use a bare minimum of registers to
dispatch to the C code handler, thus reducing its context save operation to only the
set of registers it modifies in getting to the C code handler. While this makes it
possible to reduce the latency in servicing an exception, this callee-save convention
is not more efficient in the case where many C code handlers reside on the same
vector and have to be polled to locate the target handler.

In this case, each of the C code handlers being compiled for the callee-save mode
saves and restores all of the registers used in the body of the handler. As each C code
handler is called by the dispatcher, it saves and restores multiple registers in
determining the need to service the exception.

Chapter 8: Creating PIC Controllers

OS-9 Porting Guide 102

By the time the target C code handler is located, many more context preservation
and restoration operations may have been performed than in the more general caller
register-save compiler convention. This reduced context saving scheme for the
vectors code should only be used under controlled circumstances where latency can
be kept to a minimum and only one or two C code handlers are associated with a
given exception or interrupt.

If this technique is used, there are certain restrictions on kernel and debugger usage,
because a short stack frame is expected to be present under these circumstances.
These are:

1. The debugger cannot be used to monitor the interrupt exception. However,
breakpoints can still be processed within the interrupt service routine because
they cause their own exceptions that create the short stack for debugger
operations.

2. The interrupt vector code, after receiving control back from the interrupt service
routine, would directly return control back to the interrupted thread of
execution itself, instead of calling the kernel exit routine.

An exception to this would be if the interrupt service routine changed a task state
that would require a task switch (for example, sent a signal). Then the interrupt
vector code would have to build a short stack after the interrupt service routine
completed, and call the kernel exit routine to cause the task switch to occur.

Interrupt Controller Support

Since the PowerPC architecture defines only one vector entry for interrupt
processing, it is typical for a target platform to implement one or more external
interrupt controller(s) to control and prioritize multiple interrupts external to the
processor. OS-9 allows controlling code for this
target-dependent interrupt controller structure to be modularized independently of
the standard vector dispatching code and the device drivers.

The controlling code can be divided into two classes, interrupt enable/disable, and
interrupt acknowledge/ dispatch. Example interrupt enable/disable functions are
implemented in library functions accessible to device drivers.

The interrupt acknowledge and dispatch functions are implemented as system
extension modules that install themselves as an interrupt handler on the interrupt
vector. An example picirq module implements the acknowledge and dispatching
code for “8259-like” interrupt controllers.

The dispatching code in an interrupt controller module maps the interrupt line to a
“logical interrupt vector” and then searches the interrupt polling table associated
with the logical vector for handlers to execute until one of them returns a value
other than EOS_NOTME in register r3. Device drivers would then register the interrupt
service routine on the logical interrupt vector (during device initialization) instead
of the physical vector.

Chapter 8: Creating PIC Controllers

OS-9 Porting Guide 103

Another example vmeirq module implements the acknowledge and dispatching code
for a VMEchip2/vmepci bridge chip set used on the MVME1603 reference target.
The interrupts from the VMEchip2 are run through the bridge chip and cascaded
into the main interrupt controller. As a result, the vmeirq module installs its
acknowledge and dispatching handler on one of picirq’s logical interrupt vectors.
Device drivers servicing the VME interrupts then install their handlers on the logical
vectors serviced by vmeirq. This demonstrates how cascaded interrupt controllers of
differing types can be supported. The interrupt controller module required for your
port should be added to the PREIO extension list of the init module.

Chapter 8: Creating PIC Controllers

OS-9 Porting Guide 104

105

9 Using Hardware-Independent
Drivers

This chapter includes the following topics:

• Simplifying the Porting Process

• SCF Driver (scllio)

• Virtual Console (iovcons)

Chapter 9: Using Hardware-Independent Drivers

OS-9 Porting Guide 106

Simplifying the Porting Process
An OS-9 driver module is required for your console device. If the Microware-
supplied serial drivers include a driver based on the same device your target
platform uses, you only need to set up the proper configuration labels for the device
within the systype.h file. The Microware-supplied driver and driver-specific
descriptor sources are located in the following direcotry:

MWOS/OS9000/SRC/IO/SCF/DRVR

SCF Driver (scllio)
scllio is defined as having all of the following characteristics:

• a high-level OS-9 SCF driver satisfying I/O requests by calling into a low-level
serial driver

• not associated with any particular hardware device

• a port-independent module

In addition, all hardware specific operations are performed by the low-level driver
called by scllio.

scllio can be in polled input or interrupt driven input modes. The v_pollin flag in
the device descriptor controls the input mode. Output is always polled. As a result,
it is not intended that scllio replace a high-level serial driver targeting the specific
serial port. Instead, scllio is designed to be a useful tool in the porting process.

Once the low-level driver has been written, and a RomBug prompt achieved, scllio
can be configured as the high-level console to bring the system up to a shell prompt
before a proper high-level driver is completed. scllio is also useful for initial testing
of the polled-interrupt mode of a low-level driver. Polled interrupt support is
necessary if the low-level driver is to be used to support Hawk communication. This
mode is also used by scllio when in interrupt driven mode. This is a less complex
use of the polled interrupt mode of the low-level driver. scllio can be used to test
this mode without involving the various network layers of the TCP/IP
communications stack.

The low-level device driver called by scllio is specified in the device descriptor used
with scllio. The device descriptor field v_llconsname points to a string containing
the abbreviated name (the cons_abname field of the console device record) of the
low-level console you want scllio to communicate through. Two special name
strings, consdev and commdev, can be used in this field to specify, respectively, the
configured system console device and communication port. These allow generic
specification of a high-level console and communication port based strictly on low-
level configuration. The reference platform in OS-9 for Embedded Systems contains
an example device descriptor for use with scllio.

Chapter 9: Using Hardware-Independent Drivers

OS-9 Porting Guide 107

Virtual Console (iovcons)
The low-level virtual console driver, iovcons, appears to the caller to be a standard
low-level serial driver. Unlike standard serial-drivers, however, iovcons does not
communicate with a serial hardware device. Instead iovcons transfers I/O requests
to the low-level communication modules (TCP/IP stack) in the same way daemons
supporting the Hawk debugger do. The configuration of the low-level
communication system determines whether the output device used is an Ethernet
port or SLIP operating over a serial device.

iovcons provides a telnetd-like interface to the low-level system console. You can
telnet to the target processor board to obtain a TCP/IP connection over which the
OS-9 boot messages and RomBug input/output occurs. This removes the need for a
direct serial connection to the target by providing a remote console.

Configuration
Since iovcons relies on the low-level networking modules, it must be initialized after
these modules in the boot sequence. As a result, the low-level module list used to
build the system must be ordered so references to iovcons and conscnfg appear
after the references to the networking modules. The following excerpt from an
example bootfile.ml file illustrates the required ordering.

* Console modules

../../../PPC/CMDS/BOOTOBJS/ROM/console

CMDS/BOOTOBJS/ROM/iosmc

CMDS/BOOTOBJS/ROM/commcnfg

*

* Communications protocol modules

../../../PPC/CMDS/BOOTOBJS/ROM/protoman

../../../PPC/CMDS/BOOTOBJS/ROM/lltcp

../../../PPC/CMDS/BOOTOBJS/ROM/llip

../../../PPC/CMDS/BOOTOBJS/ROM/llslip

*

* Virtual Console

../../../PPC/CMDS/BOOTOBJS/ROM/iovcons

CMDS/BOOTOBJS/ROM/conscnfg

Chapter 9: Using Hardware-Independent Drivers

OS-9 Porting Guide 108

The conscnfg module looks to the console record in the cnfgdata module to
determine which low-level driver should be installed as the system console driver. To
configure iovcons as your system console, declare VirtualConsole as the name of
your console device in the console port declarations section of config.des.

Figure 9-1. scllio and iovcons Directories and Files

The console device record name is specified in the config.des (or default.des,
where applicable) file in the CNFGDATA directory. All other fields of the console
record are ignored by iovcons. The following excerpt from config.des provides an
example of how to declare a macro:

/* Console port */

#define CONS_NAME VirtualConsole

MWOS <TARGET>OS9000 PORTS
<CPU

FAMILY>
systype.h

EMBEDDED VCONSLIP TESTBOOT
(optional)

PORTBOOT

SYSTEMS
EXAMPLES

(optional)

BOOTS

CONSCNFGCNFGDATA

ROM

default.des
(where applicable)

makefileconfig.des
makefile

bootfile.ml
coreboot.ml

makefile
readme.txt

109

10 Creating a Ticker

This chapter includes the following topics:

• Guidelines for Selecting a Tick Interrupt Device

• OS-9 Tick Time Setup

• Tick Timer Activation

• Debugging the Ticker

Chapter 10: Creating a Ticker

OS-9 Porting Guide 110

Guidelines for Selecting a Tick Interrupt Device
The interrupt level associated with the timer should be as high as possible. A high
interrupt level prevents ticks from being delayed and/or lost due to interrupt activity
from other peripherals. Lost ticks cause the kernel’s time-keeping functions to lose
track of real-time. This can cause a variety of problems in processes requiring
precise time scheduling.

The interrupt service routine associated with the timer should be able to determine
the source of the interrupt and service the request as quickly as possible.

Figure 10-1. Ticker Setup Directories and Files

Ticker Support

The tick functions for various hardware timers are in the TICKER directory.

There are two ticker routines:

• tick initialization entry routine

This routine is called by the kernel and enables the timer to produce interrupts
at the desired rate.

• tick interrupt service routine

This routine services the tick timer interrupt and calls the kernel’s clock service
routine.

MWOS <TARGET>OS9000 PORTS
<CPU

FAMILY>

BOOTS INIT SYSMODS

TICKERRTCIRQS

SYSTEMS
EXAMPLES

(optional)

EMBEDDED

TESTBOOT
(optional)

<OTHERS>

PORTBOOT

default.des

bootfile.ml
coreboot.ml

makefile
readme.txt
config.des

(where applicable)

The ticker module name is user-defined and should be included in the init
module.

Chapter 10: Creating a Ticker

OS-9 Porting Guide 111

OS-9 Tick Time Setup
You can set the tick timer rate to suit the requirements of the target system. You
should define the following variables:

• Ticks per Second
This value is derived from the count value placed in the tick timer’s hardware
counter. It reflects the number of tick timer interrupts occurring each second.
Most systems set the tick timer to generate 100 ticks per second, but you can
vary it. A slower tick rate makes processes receive longer time slices, making
multitasking appear sluggish. A faster rate may burden the kernel with extra
task-switching overhead due to increased rate for swapping of active tasks.

• Ticks per Time Slice
This parameter is stored in the init module’s m_slice field. It specifies the
number of ticks occurring before the kernel suspends an active process. The
kernel checks the active process queue and activates the highest priority active
task. The init.des module sets this parameter to a default value of 2, but this
can be modified by defining the SLICE macro in the default.des file to the
desired value.

#define SLICE 2 /* ticks per time slice */

• Tick Timer Module Name
The name of the tick timer module is specified in the init module. Use the
TICK_NAME macro in the default.des file in the INIT directory to define this
name.

For example: #define TICK_NAME "tk8253"

Tick Timer Activation
You must start the tick timer to allow the kernel to begin multitasking. This is
usually performed by the setime utility or by an _os_setime() system call during
the system startup procedures.

When _os_setime() is called, it attempts to link to the tick-timer module name
specified in the init module. If the tick-timer module is found, the module’s entry
point is called to initialize the tick timer hardware.

An alternative is to clear the B_NOCLOCK bit of the compatibility flag in the init
module. If this bit is cleared, the kernel automatically starts the tick timer during the
kernel’s cold start routine. This is equivalent to a
setime -s.

Refer to the Utilities Reference manual for information about using setime or
the OS-9 Technical Manual for information about _os_setime().

Chapter 10: Creating a Ticker

OS-9 Porting Guide 112

Debugging the Ticker
The kernel can automatically start the system clock during its coldstart
initialization. The kernel checks the init module’s m_compat word at coldstart. If
the B_NOCLOCK bit is clear, the kernel performs an _os_setime() system call to start
the tick timer and set the real time.

This automatic starting of the clock can pose a problem during clock driver
development, depending on the state of the real-time clock hardware and the
modules associated with the tick timer and real-time clock. If the system software is
fully debugged, you should not encounter any problems.

If your system has a working tick module, but no real-time clock support, and the
B_NOCLOCK bit in the init module’s m_compat byte is clear, the kernel will perform the
_os_setime() call. The tick timer code will be executed to start the tick timer, but
the tick module will return an error because it lacks real-time clock hardware.

The system time will be invalid and time slicing will occur. You can correctly set the
real-time once the system is up. For example, you can run setime from the startup
file or a shell command line.

For more information about debugging the ticker in a system with a real-time
clock, refer to Chapter 11, Selecting Real-Time Clock Module Support.

113

11 Selecting Real-Time Clock Module
Support

This chapter includes the following topics:

• Real-Time Clock Device Support

• Automatic System Clock Startup

Chapter 11: Selecting Real-Time Clock Module Support

OS-9 Porting Guide 114

Real-Time Clock Device Support
Real-time clock devices (especially those equipped with battery backup) enable the
real time to be set without operator input. OS-9 does not directly support the real-
time functions of these devices, although the system tick generator can be a real-
time clock device.

The real-time functions of these devices are used with the tick timer initialization. If
the system supports a real-time clock, write the tick timer code so the real-time
clock is accessed to read the current time or set the time after the ticker is initialized.

Real-Time Clock Support

The real-time clock functions for various real-time clock devices are in the
MWOS/OS9000/SRC/SYSMODS/RTC directory. The two real-time clock routines are listed
below:

• get time

This routine reads the current time from the real-time clock device.

• set time

This routine sets the current time in the real-time clock device.

Refer to Figure 10-1 for an illustration of the ticker setup directory structure.

Chapter 11: Selecting Real-Time Clock Module Support

OS-9 Porting Guide 115

Automatic System Clock Startup
The kernel can automatically start the system clock during its coldstart
initialization. The kernel checks the init module’s m_compat word at coldstart. If
the B_NOCLOCK bit is clear, the kernel performs an _os_setime() system call to start
the tick timer and set the real time.

This automatic starting of the clock can pose a problem during clock driver
development, depending on the state of the real-time clock hardware and the
modules associated with the tick timer and real-time clock. If the system software is
fully debugged, you should not encounter any problems.

Below are common scenarios and their implications:

1. The system has a working tick module and real-time clock support.
If the B_NOCLOCK bit in the init module’s m_compat byte is clear, the kernel
performs the _os_setime() call. The tick timer code is executed to start the tick
timer running and the real time clock code is executed to read the current time
from the device.

If the time read from the real-time clock is valid, no errors occur and system
time slicing and time keeping functions correctly. You do not need to set the
system time.

If the time read from the real-time clock is not valid, the real-time clock code
returns an error. This can occur if the battery back-up malfunctions. The system
time is invalid, but time slicing occurs. You can correctly set the real time once
the system is up.

2. The system does not have a fully functional/debugged tick timer module and/or
real-time clock module.

In this situation, executing the tick and/or real-time clock code has unknown
and potentially fatal effects on the system. To debug the modules, prevent the
kernel from performing an _os_setime() call during coldstart by setting the
B_NOCLOCK flag in the init module’s m_compat word. This enables the system to
come up without the clock running. Once the system is up, you can debug the
clock modules as required.

Debugging Disk-Based Clock Modules

Do not include clock modules in the bootfile until they are completely debugged.
Use the following steps to debug the clock modules:

Step 1. Make the init module with the B_NOCLOCK flag in the m_compat byte set.

Step 2. Exclude the modules to be tested from the bootfile.

Step 3. Apply power to the system.

Step 4. Load the tick/real-time clock modules explicitly.

Step 5. Use the system-state debugger or a ROM debugger to set breakpoints at
appropriate places in the clock modules.

Step 6. Run the setime utility to access the clock modules.

Chapter 11: Selecting Real-Time Clock Module Support

OS-9 Porting Guide 116

Step 7. Repeat steps three through six until the clock modules are operational.

Use the following steps to include the clock modules when they are operational:

1. Remake the init module so the B_NOCLOCK flag is clear.

2. Remake the bootfile to include the new init module and the desired clock
modules.

3. Reboot the system.

Debugging ROM-Based Clock Modules

There are two possible scenarios for ROM-based systems:

• If the system boots from ROM and has disk support, exclude clock modules
from the ROMs until they are fully debugged. They can be debugged in the
same manner as for disk-based systems.

• If the system boots from ROM and does not have disk support, exclude the
clock modules from the ROMs and download them into special RAM until they
are fully debugged. Downloading into RAM is required so you can set
breakpoints in the modules.

To debug the clock modules, complete the following steps:

Step 1. Make the init module with the B_NOCLOCK flag in the m_compat byte set.

Step 2. Program the ROMs with enough modules to bring the system up, but do not
include the clock modules under test.

Step 3. Apply power to the system so that it enters the ROM debugger.

Step 4. Download the modules to test into the special RAM area.

Step 5. Bring up the system.

Step 6. Use the system-state debugger or ROM debugger to set breakpoints at appropriate
places in the clock modules.

Step 7. Run the setime utility to access the clock modules.

Step 8. Repeat steps 3 through 7 until the clock modules are operational.

When the clock modules are operational, complete the following steps:

Step 1. Remake the init module so the B_NOCLOCK flag is clear.

Step 2. Remake the bootfile to include the new init module and the desired clock modules.

Step 3. Reboot the system.

117

12 Creating Booters

This chapter includes the following topics:

• Creating Disk Booters

• The Boot Device (bootdev) Record and Services

• The parser Module Services

• The fdman Module Services

• The scsiman Module Services

• The SCSI Host-Adapter Module Services

• Configuration Parameters

Chapter 12: Creating Booters

OS-9 Porting Guide 118

Creating Disk Booters
After creating and debugging the basic disk driver, you can create a disk booter for
the same device. You can use the example disk booters as prototypes.

The basic function of the disk boot routine is to provide the device-specific routines
needed to load a bootfile containing the OS-9 system modules.

1. The boot file is established on the disk as a special file by the bootgen utility.

2. A target-independent module, fdman, is aware of the standard RBF file system
layout and is called by the disk boot routine to find the boot file and initiate the
transfer.

3. fdman then calls back the disk boot routines to accomplish the transfer of
specific blocks of data from the disk.

If the device is a SCSI device:

1. The disk boot data transfer routines call the services of a target-independent
scsiman module to manage the SCSI command protocol.

2. scsiman uses the services of a target-specific low-level host-adapter module to
manage the transfer across the SCSI bus.

If your target requires a SCSI boot implementation, you need to create a host-
adapter module specific to your target, using the example modules as prototypes.

Since the boot system can pass both configured and user parameters to booters, a
parser module is provided to process the argument lists and place the values in
parameter structures accessible from the C language.

The parser, fdman, scsiman, and the host-adapter modules are implemented as
pseudo-booters. During module startup, they build up a standard boot device
record (bootdev) with null service pointers and install it onto the list of available
booters. Instead of using the bt_data field to point to module globals, it points to a
pseudo-booter-specific record structure holding pointers to the pseudo-booter’s
services and any applicable data. The services of fdman and scsiman, and those
required of any SCSI host-adapter are listed in the following sections.

Chapter 12: Creating Booters

OS-9 Porting Guide 119

The Boot Device (bootdev) Record and Services
Each booter module establishes one or more boot device records on the list of
available boot devices in the Boot Services (boot_svcs) record. The definition of the
bootdev record appears in the header file, MWOS/SRC/DEFS/ROM/rom.h, and appears
below for illustration.

typedef struct bootdev bootdev, *Bootdev;

struct bootdev {

idver infoid;

void *bt_addr; /* the port address */

/* check for device existence */

u_int32 (*bt_probe) (Bootdev bdev, Rominfo rinf),

/* initialize boot device */

(*bt_init) (Bootdev bdev, Rominfo rinf),

/* read data from boot device */

(*bt_read) (u_int32 blks, u_int32 blkaddr, u_char *buff,
Bootdev bdev, Rominfo rinf),

/* write data from boot device */

(*bt_write) (u_int32 blks, u_int32 blkaddr, u_char *buff,
Bootdev bdev, Rominfo rinf),

/* terminate the boot device */

(*bt_term) (Bootdev bdev, Rominfo rinf),

/* bring boot in from device */

(*bt_boot) (Bootdev bdev, Rominfo rinf);

u_int32 bt_flags; /* misc. flags */

u_char *bt_abname, /* abreviated name */

bt_name; / full name and description */

void *bt_data; /* special data for boot device */

Bootdev bt_next; /* next device in the list */

Bootdev bt_subdev; /* sub-device record */

u_char **user_params; /* user parameter array */

u_char **config_params; /* configuration parameter array */

u_char *config_string; /* configuration parameter string */

u_int32 autoboot_delay; /* autoboot delay time */

u_int32 bt_reserved[4]; /* reserved for emergency expansion */

};

Chapter 12: Creating Booters

OS-9 Porting Guide 120

The following entry points describe the services required of each boot device.
Pseudo-booters provide none of these services.

Table 12-1. Boot Device Entry Points

Function Description
bt_boot() Boot from device
bt_init() Initialize device
bt_probe() Probe/verify device
bt_read() Read data from device
bt_term() De-initialize device
bt_write() Write data to device

Chapter 12: Creating Booters

OS-9 Porting Guide 121

bt_boot()
Boot From Device

Syntax

u_int32 bt_boot(

Bootdev bdev,

Rominfo rinf);

Description

This is the main entry point called by the boot system when this boot device is
selected. At this time any parameters can be parsed, and the bt_init() service is
called. SCSI device booters are likely to call scsiman’s ll_install() routine to
install the host adapter module. Disk booters are likely to follow with a call to
fdman’s read_bootfile() routine described later. Finally, bt_term() is be called
before returning control back to the boot system.

Parameters

bdev

points to the disk booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 122

bt_init()
Initialize Device

Syntax

u_int32 bt_init(

Bootdev bdev,

Rominfo rinf);

Description

This routine initializes the device as necessary.

Parameters

bdev

points to the disk booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 123

bt_probe()
Probe/Verify Device

Syntax

u_int32 bt_probe(

Bootdev bdev,

Rominfo rinf);

Description

The boot system calls bt_probe() to determine if the device is available. Usually,
this routine at least confirms a boot area can be returned back to the boot system.
Devices with fixed configuration can also be probed to determine if they exist.
Devices that can be reconfigured by the user probably cannot determine this at this
time, since the return value is used when presenting the boot menu to determine if
the device should be marked as available. SCSI device booters are likely to
determine if the scsiman module is available as part of the probe.

Parameters

bdev

points to the disk booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 124

bt_read()
Read Data From Device

Syntax

u_int32 bt_read(

u_int32 blks,

u_int32 blkaddr,

u_char *buff,

Bootdev bdev,

Rominfo rinf);

Description

This routine causes block reads to occur. For disk booters, it is likely to be called
from fdman or scsiman routines. Otherwise, it would be called from the booter’s
own bt_boot() routine.

Parameters

blks

is the number of blocks to read.

blkaddr

is the address of the block on the media.

buff

points to the buffer in which to store the data.

bdev

points to the disk booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 125

bt_term()
De-initialize Device

Syntax

u_int32 bt_term(

Bootdev bdev,

Rominfo rinf);

Description

This routine deinitializes the device as necessary.

Parameters

bdev

points to the disk booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 126

bt_write()
Write Data To Device

Syntax

u_int32 bt_write(

u_int32 blks,

u_int32 blkaddr,

u_char *buff,

Bootdev bdev,

Rominfo rinf);

Description

This optional routine causes block writes to occur. Currently, it is never called, but
the service was defined in case some custom low-level utility required the function
of a custom booter.

As with the low-level serial and timer modules, the booter modules are started at a
p2start() entry point. This entry is responsible for building the necessary bootdev
records and installing them on the list of available booters. Remember the portmenu
module services discussed earlier are still required to configure the appropriate
booters for autobooting or menu presentation.

Parameters

blks

is the number of blocks to read.

blkaddr

is the address of the block on the media.

buff

points to the buffer in which to store the data.

bdev

points to the disk booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 127

The parser Module Services
Access to the parser module services are through the paman_svcs structure defined
in MWOS/SRC/DEFS/ROM/parse.h.

Table 12-2. paman_svcs Functions

Function Description
getnum() Convert numeric string to value
parse_field() Parse keyword equals value string from key table entry

Chapter 12: Creating Booters

OS-9 Porting Guide 128

getnum()
Convert Numeric String To Value

Syntax

u_int32 getnum(char *p);

Description

getnum() converts the numeric string pointed to by the p parameter into a value and
returns it.

Parameters

p

points to the numeric string.

Chapter 12: Creating Booters

OS-9 Porting Guide 129

parse_field()
Parse Keyword Equals Value String From Key Table Entry

Syntax

u_int32 parse_field(

char *argv,

u_int32 *s,

char *kf,

int ktflag,

int j,

Rominfo rinf);

Description

parse_field() compares the string pointed to by the kf parameter and the keyword
portion of the string (before the equal sign) pointed to by argv. If the two are not
equal, the service returns FALSE. If they are equal and the ktflag value is 1, the
service places the pointer of the value portion of the string (after the equal sign) into
s[j]. If they are equal and the ktflag is zero, parse_field places the converted
numeric value of the value portion of the string (after the equal sign) into s[j].
Generally, this service is called within a booter’s loop, incrementing through each
potential parameter that a booter can recognize.

Parameters

argv

points to the keyword.

s

points to the value portion of the string.

kf

points to the compare string.

ktflag

is a flag.

j

is an incrementer.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 130

The fdman Module Services
Access to the fdman module services are through the fdman_svcs structure defined in
MWOS/SRC/DEFS/ROM/fdman.h.

Table 12-3. fdman_svcs Functions

Function Description
fdboot() Validate bootfile
get_partition() Locate bootable partition
read_bootfile() Read bootfile from device

Chapter 12: Creating Booters

OS-9 Porting Guide 131

fdboot()
Validate Bootfile

Syntax

error_code fdboot(

u_char *addr,

u_int32 size,

Bootdev bdev,

Rominfo rinf);

Description

fdboot() scans a loaded image to determine the validity of a bootfile.

Parameters

addr

is the address of the loaded image.

size

is the address of the loaded image.

bdev

points to the disk booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 132

get_partition()
Locate Bootable Partition

Syntax

error_code get_partition(

u_int32 lsnoffs,

u_int8 pari_start,

u_int8 pari_end,

u_char *sect0,

u_int32 *offs,

Bootdev bdev,

Rominfo rinf);

 Description

get_partition() finds the first bootable partition on the disk within the specified
partition range.

Parameters

lsnoffs

is the original logical sector offset of the drive.

pari_start

is the starting partition number to scan.

pari_end

is the ending partition number to scan.

sect0

points to the sector zero buffer.

offs

points to the partition offset pointer.

bdev

points to the disk booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 133

read_bootfile()
Read Bootfile From Device

Syntax

error_code read_bootfile(

u_int32 ssize,

u_int32 lsnoffs,

u_int8 pari_start,

u_int8 pari_end,

Bootdev bdev,

Rominfo rinf);

Description

read_bootfile() attempts to read in the first bootfile found on the disk within the
specified partition range.

Parameters

ssize

is the sector size of the disk.

lsnoffs

is the original logical sector offset of the drive.

pari_start

is the starting partition number to scan.

pari_end

is the ending partition number to scan.

bdev

points to the disk booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 134

The scsiman Module Services
Access to the scsiman module services are through the scsi_svcs structure defined
in MWOS/SRC/DEFS/ROM/scsiman.h.

Table 12-4. scsi_svcs Functions

Function Description
da_execnoxfer() Execute a SCSI command without data transfer
da_execute() Execute a SCSI command with data transfer
init_tape() Initializes a sequential device
initsccs() Initializes a direct access device
ll_install() Install a low-level SCSI host adapter module
readsccs() Reads a direct access device
rewind_tape() Rewinds a sequential device
sq_execnoxfer() Execute a SCSI command without data transfer
sq_execute() Execute a SCSI command with data transfer

Chapter 12: Creating Booters

OS-9 Porting Guide 135

da_execnoxfer()
Execute a SCSI Command Without Data Transfer

Syntax

error_code da_execnoxfer (

u_int32 opcode,

u_int32 blkaddr,

u_int32 bytcnt,

u_int32 cmdopts,

u_int32 cmdtype,

Bootdev bdev,

Rominfo rinf);

 Description

da_execnoxfer() issues a command to direct access devices.

Parameters

opcode

is the SCSI command code.

blkaddr

is the direct access device block address.

bytcnt

is the size of the data transfer in bytes.

cmdopts

are option flags (booters should use 0).

cmdtype

indicates the type of command, standard or extended (CDB_STD or CDB_EXT).

bdev

points to the booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 136

da_execute()
Execute a SCSI Command With Data Transfer

Syntax

error_code da_execute (

u_int32 opcode,

u_int32 blkaddr,

u_int32 bytcnt,

u_int32 cmdopts,

u_char *buff,

u_int32 xferflags,

u_int32 cmdtype,

Bootdev bdev,

Rominfo rinf);

Description

da_execute() issues a command to direct access devices and manages the
subsequent data transfer.

Parameters

opcode

is the SCSI command code.

blkaddr

is the direct access device block address.

bytcnt

is the size of the data transfer in bytes.

cmdopts

are option flags (booters should use 0).

buff

points to the data buffer.

xferflags

specifies the data transfer direction (INPUT or OUTPUT).

cmdtype

indicates the type of command, standard or extended (CDB_STD or CDB_EXT).

bdev

points to the booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 137

init_tape()
Initializes a Sequential Device

Syntax

error_code init_tape(

Bootdev bdev,

Rominfo rinf);

 Description

init_tape() initializes a sequential device for subsequent access.

Parameters

bdev

points to the booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 138

initsccs()
Initializes a Direct Access Device

Syntax

u_int32 initsccs(

Bootdev bdev,

Rominfo rinf);

Description

initsccs() initializes a direct access device for subsequent access.

Parameters

bdev

points to the booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 139

ll_install()
Install a Low-Level SCSI Host Adapter Module

Syntax

error_code ll_install(

char *name,

u_int8 *portaddr,

u_int8 selfid,

u_int8 reset,

Bootdev bdev,

Rominfo rinf);

Description

ll_install() installs the low-level SCSI host-adapter module. The port address,
selfid and reset values are placed into the appropriate llscsi_svcs record and the
host-adapter’s ll_init() routine is called.

Parameters

name

points to the name of the host-adapter module.

portaddr

is the address of the SCSI port.

selfid

is the host adapter’s SCSI identification

reset

is a flag to indicate if the host adapter should reset the SCSI bus or not.

bdev

points to the booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 140

readsccs()
Reads a Direct Access Device

Syntax

u_int32 readsccs(

u_int32 numsects,

u_int32 blkaddr,

u_char *buff,

Bootdev bdev,

Rominfo rinf);

Description

readsccs() reads data from a direct access device.

Parameters

numsects

is the number of blocks to transfer.

blkaddr

is the direct access device block address.

buff

points to the data buffer.

bdev

points to the booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 141

rewind_tape()
Rewinds a Sequential Device

Syntax

error_code rewind_tape(

Bootdev bdev,

Rominfo rinf);

 Description

rewind_tape() positions a sequential device to the beginning of information.

Parameters

bdev

points to the booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 142

sq_execnoxfer()
Execute a SCSI Command Without Data Transfer

Syntax

error_code sq_execnoxfer(

u_int32 opcode,

u_int32 blkcount,

u_int32 opts,

u_int32 action,

Bootdev bdev,

Rominfo rinf);

 Description

sq_execnoxfer() issues a command to sequential devices.

Parameters

opcode

is the SCSI command code.

count

is the size of the data transfer in blocks or bytes.

opts

are option flags (booters should use 0).

action

is the immediate state flag.

bdev

points to the booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 143

sq_execute()
Execute a SCSI Command With Data Transfer

Syntax

error_code sq_execute(

u_int32 opcode,

u_int32 count,

u_int32 opts,

u_int32 action,

u_char *buff,

u_int32 xferflags,

u_int32 bytemode,

Bootdev bdev,

Rominfo rinf);

 Description

sq_execute() issues a command to sequential devices and manages the subsequent
data transfer.

Parameters

opcode

is the SCSI command code.

count

is the size of the data transfer in blocks or bytes.

opts

are option flags (booters should use 0).

action

is the immediate state flag.

buff

points to the data buffer.

xferflags

specifies the data transfer direction (INPUT or OUTPUT).

bytemode

indicates if the count is a block or byte count.

bdev

points to the booter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 144

The SCSI Host-Adapter Module Services
Access to the host-adapter services are through the llscsi_svcs structure defined
in MWOS/SRC/DEFS/ROM/scsiman.h. If a host adapter module requires global
variables, a pointer can be kept in the reserved2 field of the llscsi_svcs structure.
Each of the following services would need to make swap_globals() calls to set the
module globals for the duration of the service.

Table 12-5. llscsi_svcs Functions

Function Description
llcmd() Execute a raw SCSI command
llexec() Execute specified SCSI command
llinit() Initializes host adapter interface
llterm() Terminate host adapter interface

Chapter 12: Creating Booters

OS-9 Porting Guide 145

llcmd()
Execute a Raw SCSI Command

Syntax

error_code llcmd(

u_int8 *cmd,

u_int8 *dat,

u_int32 drive_id,

Bootdev bdev,

Rominfo rinf);

Description

llcmd() executes the specified SCSI command.

Parameters

cmd

points to a raw SCSI command block.

dat

points to the data buffer.

drive_id

is the target SCSI identification.

bdev

points to the host adapter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 146

llexec()
Execute Specified SCSI Command

Syntax

error_code llexec(

Scsicmdblk cmd,

u_int32 atn,

u_int32 llmode,

Bootdev bdev,

Rominfo rinf);

Description

llexec() executes the SCSI command contained in cmd. The adn and llmode fields
are passed down to the host adapter module from scsiman. However, the host
adapter does not need to honor these fields since using SCSI attention or
synchronized transfers during boot is not required.

Parameters

cmd

points to the SCSI command block.

atn

is the attention flag.

llmode

is the mode flag.

bdev

points to the host adapter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 147

llinit()
Initializes Host Adapter Interface

Syntax

error_code llinit(

Bootdev bdev,

Rominfo rinf);

 Description

llinit() initializes the low level SCSI controller for usage. Normally llinit() is
called by the scsiman module through the ll_install() service.

Parameters

bdev

points to the host adapter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 148

llterm()
Terminate Host Adapter Interface

Syntax

error_code llterm(

Bootdev bdev,

Rominfo rinf);

Description

llterm() terminates usage of the host adapter module. Any memory explicitly
allocated for driver usage can be returned at this time.

Parameters

bdev

points to the host adapter’s bootdev record.

rinf

points to the rominfo structure.

Chapter 12: Creating Booters

OS-9 Porting Guide 149

Configuration Parameters
Some of the standard configuration parameters recognized by the example booter
modules follow. Not all booters support all parameters.

Table 12-6. Standard Configuration Parameters

Keyword
Description Port Address of Interface

port Address of interface (coded as 0xFF00<bus#> <device/unit#> for
autoconfigured PCI devices)

si Starting partition index number
ei Ending partition index number
device Name of low-level SCSI host adaptor module
reset SCSI reset flag
aux_device Name of secondary interface
aux_port Address of secondary interface
debug Debugging flags for SCSI booters - bit values are:

SCSI_DEBUG_CMD 1
SCSI_DEBUG_DATIN 2
SCSI_DEBUG_DATOUT 4
SCSI_DEBUG_MSGIN 8
SCSI_DEBUG_MSGOUT 0x10
SCSI_DEBUG_STATUS 0x20
SCSI_DEBUG_INFO 0x40

When SCSI debug options are employed it is recommended that
the SCSI_DEBUG_INFO option be used. This displays useful
information as debug information is processed. Debug phases are
displayed in the following form:
Data Out Phase: {}
Data IN Phase: ()
Command Phase: []

When the SCSI_DEBUG_INFO flag is used, the following message is
display at the start of each SCSI command:
SCSI Debug Enabled. DO={} DI=() CMD=[] Drive ID: 0

Chapter 12: Creating Booters

OS-9 Porting Guide 150

151

A Core ROM Services

The modularity of the boot code is accomplished by grouping the services into
subsets and providing access to these subsets through record structures. This
appendix describes the core structures and their services for all target systems, along
with the library services available to all modules. The following sections are
included:

• The rominfo Structure

• Hardware Configuration Structure

• Memory Services

• ROM Services

• Module Services

• p2lib Utility Functions

Appendix A: Core ROM Services

OS-9 Porting Guide 152

The rominfo Structure
The rominfo structure is the focal point of all modularized boot code services. It
consists of pointers to all the sub-structures, organized by the type of service
provided. The definition of the rominfo structure resides in the include file,
MWOS/SRC/DEFS/ROM/rom.h, and appears below (simplified) for illustration.

typedef struct rominfo {

idver infoid; /* id_version for rominfo */

Hw_config hardware; /* hardware config struct ptr */

Mem_svcs memory; /* memory services struct ptr */

Rom_svcs rom; /* rom services struct ptr */

Mod_svcs modules; /* module services struct ptr */

Tim_svcs timer; /* timer services struct ptr */

Cons_svcs cons; /* console services struct ptr */

Proto_man protoman; /* protocol manager struct ptr */

Dbg_svcs dbg; /* debugger services struct ptr */

Boot_svcs boots; /* boot services struct ptr */

Os_svcs os; /* OS services struct ptr */

Cnfg_svcs config; /* configuration services struct ptr */

Notify_svcs notify; /* notification services struct ptr */

u_int32 reserved;

} rominfo, *Rominfo;

The rominfo structure and all its substructures have an infoid field defined as the
type idver:

 typedef struct idver {

 u_int16 struct_id, /* structure identifier */

 struct_ver; /* structure version */

 u_int32 struct_size; /* allocated structure size */

 } idver, *Idver;

The infoid field provides identification and version information about the
structure. Modules explicitly allocating structures through a rom_malloc call can
also use the struct_size subfield to save the actual size of the memory segment
allocated. This is useful when actual size differs from the size requested, and for
later explicit freeing, where the actual size needs to be known. The version
information can be used to determine the existence of added fields as the structures
mature from release to release.

Appendix A: Core ROM Services

OS-9 Porting Guide 153

Hardware Configuration Structure
The definition of the hw_config structure resides in the include file,
MWOS/SRC/DEFS/ROM/rom.h, and appears below for illustration.

typedef struct {

union hw_config {

struct cpu68k_config {

idver infoid; /* id/version for hw_config */

u_int32cc_cputype, /* specific cpu type */

cc_fputype, /* specific fpu type */

cc_mmutype, /* specific mmu type */

cc_intctrltype; /* interrupt controller type */

} cpu68k;

struct cpu386_config {

idver infoid; /* id/version for hw_config */

u_int32cc_cputype, /* specific cpu type */

cc_fputype, /* specific fpu type */

cc_intctrltype; /* interrupt controller type */

} cpu386;

struct cpuppc_config {

idver infoid; /* id/version for hw_config */

u_int32cc_cputype, /* specific cpu type */

cc_fputype, /* specific fpu type */

cc_intctrltype; /* interrupt controller type */

} cpuppc;

} cpu;

/* cache flushing routine */

void (*flush_cache)(u_int32 *addr, u_int32 size, u_int8 type,
Rominfo rinf);

int reserved; /* reserved for emergency expansion */

} hw_config, *Hw_config;

Of the CPU-specific configuration fields, only cputype and fputype are currently
used. The other fields are provided for future use.

The flush_cache() service is provided by a separate module (flshcach) that only
needs to be installed if caching is available and expected to be active. The debugger
and other modules that build code segments at runtime require this service.

Appendix A: Core ROM Services

OS-9 Porting Guide 154

flush_cache()
Flush the Caches

Syntax

u_int32 flush_cache(

u_int32 *addr,

u_int32 size,

u_int8 type,

Rominfo rinf);

Description

Flush the specified cache region.

Parameters

addr

points to the region of memory to flush.

size

is the size of the region of memory to flush. If zero, all cache tables are to be
flushed.

type

is the type of cache to be flushed (if applicable). The available values are:

• HW_CACHETYPE_INST - instruction cache

• HW_CACHETYPE_DATA - data cache

rinf

points to the rominfo structure.

Appendix A: Core ROM Services

OS-9 Porting Guide 155

Memory Services
The definition of the mem_svcs structure is in the include file,
MWOS/SRC/DEFS/ROM/rom.h.

typedef struct mem_svcs {

idver infoid; /* id/version for mem_svcs */

Dumb_mem rom_memlist; /* the limited memory list */

Rom_list rom_romlist; /* rom memory list */

Rom_list rom_bootlist; /* boot memory list */

Rom_list rom_consumed; /* memory consumed by roms */

Rom_list consumed_next; /* next free consumed list entry */

Rom_list consumed_end; /* last entry in consumed list */

u_char *rom_ramlimit; /* RAM limit (highest address */

u_int32 rom_totram; /* total ram found */

 /* get memory */

u_int32 (*rom_malloc)(u_int32 *size, char **addr, Rominfo),

 /* free memory */

 (*rom_free)(u_int32 size, char *addr, Rominfo);

 /* clear memory */

void (*mem_clear)(u_int32 size, char *addr);

u_char *rom_dmabuff; /* 64k DMA buffer for >16MB systems */

int reserved; /* reserved for emergency expansion */

} mem_svcs, *Mem_svcs;

Most of the fields in the mem_svcs structure are for internal bookeeping within the
raw romcore module and the rom_malloc() and rom_free() services. The
rom_bootlist entry pointer is used by booters to communicate the location and size
of a boot image.

Table A-1.mem_svcs Functions

Function Description
mem_clear() Clear memory
rom_free() Free allocated memory
rom_malloc() Allocate memory

Appendix A: Core ROM Services

OS-9 Porting Guide 156

mem_clear()
Clear Memory

Syntax

void mem_clear(

u_int32 size,

char *addr);

Description

mem_clear() clears memory. Memory allocated from boot memory pools is always
cleared.

Parameters

size

is the size of the memory region in bytes to clear.

addr

is the address of the memory region to clear.

Appendix A: Core ROM Services

OS-9 Porting Guide 157

rom_free()
Free Allocated Memory

Syntax

u_int32 rom_free(

u_int32 size,

char *addr,

char Rominfo);

Description

rom_free() returns memory to memory pool. If the request is being made after the
operating system is up, an _os_srtmem() call is made on behalf of the caller.

Parameters

size

is the size of the memory region in bytes being returned.

addr

is the address of the memory region being returned.

Rominfo

is the rominfo pointer.

Appendix A: Core ROM Services

OS-9 Porting Guide 158

rom_malloc()
Allocate Memory

Syntax

u_int32 rom_malloc(

u_int32 *size,

char **addr,

Rominfo rinf);

Description

rom_malloc() allocates memory from the memory pool. If the request is being made
after the operating system is up, an _os_srqmem() call is made on behalf of the
caller.

Parameters

size

points to the size of the memory being requested in bytes. If the size is rounded
up to some block size multiple during allocation, the value is adjusted to
reflect the actual block size allocated.

addr

points to where the address of memory allocated is returned.

rinf

is the Rominfo pointer.

Appendix A: Core ROM Services

OS-9 Porting Guide 159

ROM Services
The definition of the rom_svcs structure resides in the include file,
MWOS/SRC/DEFS/ROM/rom.h, and appears below for illustration.

typedef struct rom_svcs {

idver infoid; /* id/version for rom_svcs */

void *rom_glbldata, /* global data pointer */

rom_excptjt, / exception jump table */

rom_initsp; / initial stack pointer */

u_int32 *rom_vectors; /* the vector table */

void (*rom_start)(); /* reset pc */

u_char *kernel_extnd; /* the kernel extension */

u_char *debug_extnd; /* the debugger extension */

u_char *rom_extnd; /* the ROM extension */

u_int32 (*use_debug)(Rominfo rinf); /* debugger enable routine */

char *rom_hellomsg; /* hello message pointer */

int reserved; /* reserved for emergency expansion */

} rom_svcs, *Rom_svcs;

Most of the rom_svcs fields are informational. The rom_hellomsg field enables
runtime customization of the first bootstrap message printed to the console. The
use_debug() services is provided by the usedebug module to indicate if the debugger
should be activated just prior to the boot system starting the boot process.

Appendix A: Core ROM Services

OS-9 Porting Guide 160

Module Services
The definition of the mod_svcs structure resides in the include file,
MWOS/SRC/DEFS/ROM/rom.h, and appears here for illustration.

typedef struct mod_svcs {

idver infoid; /* id/version for mod_svcs */

 /* init module as P2 */

u_int32 (*rom_modinit)(u_char *modptr, Rominfo rinf),

 /* deinit module */

 (*rom_moddeinit)(),

 /* insert into list */

 (*rom_modins)(u_char *modptr, Mod_list *mleptr, Rominfo rinf),

 /* delete module from list */

 (*rom_moddel)(u_char *modptr, Rominfo rinf);

 /* find module start ptr */

void (*rom_findmod)(u_char *codeptr, u_char **modptr);

 /* find module list entry */

u_int32 (*rom_findmle)(u_char *modptr, Mod_list *mleptr,
Rominfo rinf);

 /* scan for modules */

void (*rom_modscan)(u_char *modptr, u_int32 hdrchk, Rominfo
rinf);

Mod_list rom_modlist; /* low-level module list */

char *kernel_name; /* pointer to kernel name string */

 /* validate module */

u_int32 (*goodmodule)(u_char *modptr, u_int32 bootsize,

 u_int32 *modsize, u_int32 kerchk, Rominfo rinf);

int reserved[4]; /* reserved for emergen expansion */

 } mod_svcs, *Mod_svcs;

Appendix A: Core ROM Services

OS-9 Porting Guide 161

The most commonly used services are goodmodule() and rom_modscan().

The goodmodule() service is used by most booters to validate the loadfile image. The
rom_modscan() service is used to extend the runtime configurability of the low-level
system modules.

Table A-2. Module Service Functions

Function Description
goodmodule() Validate bootfile modules
rom_findmle() Find module list entry
rom_findmod() Find beginning of module
rom_moddeinit() De-initialize low-level system modules
rom_moddel() Delete module from module list
rom_modinit() Initialize low-level system modules
rom_modins() Insert module into module list
rom_modscan() Scan for modules

Appendix A: Core ROM Services

OS-9 Porting Guide 162

goodmodule()
Validate Bootfile Modules

Syntax

u_int32 goodmodule(

u_char *modptr,

u_int32 bootsize,

u_int32 *modsize,

u_int32 kerchk,

Rominfo rinf);

Description

This service validates a bootfile module, optionally checking if the module is the
kernel.

Parameters

modptr

is the address of the module.

bootsize

is the size of all modules within the boot image.

modsize

is a pointer to the returned size of the module in bytes (if it is good).

kerchk

is a flag specifying if the module should be checked as the kernel. A non-zero
value indicates the module’s name must match the kernel name for the service
to succeed.

rinf

is a pointer to the rominfo structure.

Appendix A: Core ROM Services

OS-9 Porting Guide 163

rom_findmle()
Find Module List Entry

Syntax

u_int32 rom_findmle(

u_char *modptr,

Mod_list *mleptr,

Rominfo rinf);

Description

This service returns the module list entry for the specified module.

Parameters

modptr

points to the low-level system module.

mleptr

points to the returned module list entry pointer.

rinf

points to the rominfo structure.

Appendix A: Core ROM Services

OS-9 Porting Guide 164

rom_findmod()
Find Beginning Of Module

Syntax

void rom_findmod(

u_char *codeptr,

u_char **modptr);

Description

This service scans back from the specified code pointer until it finds a module
header.

Parameters

codeptr

points to code within the module.

*modptr

points to the returned address of the module header.

Appendix A: Core ROM Services

OS-9 Porting Guide 165

rom_moddeinit()
De-initialize Low-Level System Modules

Syntax

u_int32 rom_moddeinit();

Description

This service is currently not implemented.

Appendix A: Core ROM Services

OS-9 Porting Guide 166

rom_moddel()
Delete Module From Module List

Syntax

u_int32 rom_moddel(

u_char *modptr,

Rominfo rinf);

Description

This service deletes a module list entry from the module list and frees it.

Parameters

modptr

points to the low-level system module.

rinf

points to the rominfo structure.

Appendix A: Core ROM Services

OS-9 Porting Guide 167

rom_modinit()
Initialize Low-Level System Modules

Syntax

u_int32 rom_modinit(

u_char *modptr,

Rominfo rinf);

Description

This routine starts the low-level system module.

Parameters

modptr

points to a low-level system module.

rinf

points to the rominfo structure.

Appendix A: Core ROM Services

OS-9 Porting Guide 168

rom_modins()
Insert Module Into Module List

Syntax

u_int32 rom_modins(

u_char *modptr,

Mod_list *mleptr,

Rominfo rinf);

Description

This service allocates a module list entry and inserts it onto the module list.

Parameters

modptr

points to the low-level system module.

mleptr

points to the returned module list entry pointer.

rinf

points to the rominfo structure.

Appendix A: Core ROM Services

OS-9 Porting Guide 169

rom_modscan()
Scan For Modules

Syntax

void rom_modscan(

u_char *modptr,

u_int32 hdrchk,

Rominfo rinf);

Description

This service scans for contiguous modules starting at the specified address and starts
them in order of occurrence. When a module is not found, the scan terminates.

rom_modscan() enables low-level system modules to be found in memory regions
other than the base ROM area (for example, external ROM or flash, on PCMCIA,
Industry Pak, or other bus carriers), and enables them to be configured depending
on the presence or absence of that memory region.

Parameters

modptr

is the base address to scan for modules.

hdrchk

is a flag to specify if the module header parity should be checked. If the value
is non-zero, the header parity is validated.

rinf

points to the rominfo structure.

Appendix A: Core ROM Services

OS-9 Porting Guide 170

p2lib Utility Functions
Three libraries are shipped as part of this distribution:

• p2privat.l

• romsys.l

• p2lib.l

The p2privte.l and romsys.l libraries are only used by the bootstrap code
(romcore). The p2lib.l library contains functions you can use to customize your
own low-level system modules. The p2lib.l functions are explained in this
appendix.

Table A-3.p2lib.l Functions

Function Description
getrinf() Get the rominfo structure pointer
findrinf() Returns or converts a rominfo structure pointer
hwprobe() Check a system hardware address
inttoascii() Convert an integer to ASCII
os_getrinf() Get pointer to rominfo structure after boot
outhex() Display one hexidecimal digit
out1hex() Display a hexidecimal byte
out2hex() Display a hexidecimal word
out4hex() Display a hexidecimal longword
rom_udiv() Unsigned integer division
setexcpt() Install exception handler
swap_globals() Exchange current globals pointer

Appendix A: Core ROM Services

OS-9 Porting Guide 171

getrinf()
Get the Rominfo Structure Pointer

Syntax

error_code getrinf(Rominfo *rinf_p);

Description

getrinf() finds and returns the pointer to the rominfo structure from the system
globals.

Parameters

rinf_p

is the address where getrinf()stores the pointer to the rominfo structure.
(Output)

The current globals register needs to be set to point at the system globals when
the service is invoked.

Appendix A: Core ROM Services

OS-9 Porting Guide 172

findrinf()
Returns or Converts a Rominfo Structure Pointer

Syntax

error_code findrinf(Rominfo *rinf_p);

Description

findrinf() returns a pointer to the rominfo structure. If an old (original) style
rominfo structure is passed in, findrinf() will convert it to a new style rominfo
structure.

Parameters

rinf_p

is the address where findrinf()updates the pointer to the rominfo structure.
(Input/Output)

Possible Errors

EOS_NOROMINFO missing or invalid rominfo pointer specified

If using the d_sysrom system global, findrinf() can be used to convert it to a
new style rominfo structure pointer. Alternatively, os_getrinf() could be used.

Appendix A: Core ROM Services

OS-9 Porting Guide 173

hwprobe()
Check a System Hardware Address

Syntax

error_code hwprobe(

void *addr,

u_int32 ptype,

Rominfo rinf);

Description

hwprobe() sets up the appropriate handlers to catch machine check exceptions, and
probes the system memory at the specified address, attempting to read either a byte,
word, or long. In the event of a machine check, an error is returned. SUCCESS is
returned if the read is successful.

Parameters

addr

is the specific memory address you want probed. (Input)

ptype

is the probe type, either byte, word, or long.

rinf

points to the rominfo structure.

Appendix A: Core ROM Services

OS-9 Porting Guide 174

inttoascii()
Convert an Integer To ASCII

Syntax

char *inttoascii(

u_int32 value,

char *bufptr);

Description

inttoascii() converts its input value to its base 10 ASCII representation stored in
bufptr. The caller must ensure bufptr points to a sufficient storage space for the
ASCII representation. inttoascii() returns bufptr.

Parameters

value

is the integer value to be converted.

bufptr

points to the location where the ASCII value is stored. (Output)

For ARM users:
If you are using the ARMv4 platform, you must link inttoascii() with
os_lib.l in order for the function to work properly.

Appendix A: Core ROM Services

OS-9 Porting Guide 175

os_getrinf()
Get Pointer to Rominfo Structure After Boot

Syntax

error_code os_getrinf(Rominfo *rinf_p);

Description

os_getrinf() returns a pointer to the rominfo structure. It will only work correctly
if the OS-9 kernel system globals have been initialized, otherwise an error is
returned.

Parameters

rinf_p

is the address where os_getrinf()stores the pointer to the rominfo structure.
(Output)

Possible Errors

EOS_NOROMINFO the d_sysrom system global is not initialized

Appendix A: Core ROM Services

OS-9 Porting Guide 176

outhex()
Display One Hexidecimal Digit

Syntax

void outhex(

u_char n,

Rominfo rinf);

Description

outhex() displays one hexidecimal digit on the system console. The lower 4 bits of
the character n are displayed using the putchar() service of the system console
device.

Parameters

n

is the character for which the hex value is to be displayed.

rinf

points to the rominfo structure. (Input)

Appendix A: Core ROM Services

OS-9 Porting Guide 177

out1hex()
Display a Hexidecimal Byte

Syntax

void out1hex(

u_char byte,

Rominfo rinf);

Description

out1hex() displays the hexidecimal representation of a byte on the system console
device.

Parameters

byte

is the byte for which the hex value is to be displayed.

rinf

points to the rominfo structure. (Input)

Appendix A: Core ROM Services

OS-9 Porting Guide 178

out2hex()
Display a Hexidecimal Word

Syntax

void out2hex(

u_init16 word,

Rominfo rinf);

Description

out2hex() displays the hexidecimal representation of a word on the system console
device.

Parameters

word

is the word for which the hex value is to be displayed.

rinf

points to the rominfo structure. (Input)

Appendix A: Core ROM Services

OS-9 Porting Guide 179

out4hex()
Display a Hexidecimal Longword

Syntax

void out4hex(

u_int32 longword,

Rominfo rinf);

Description

out4hex() displays the hexidecimal representation of a longword on the system
console device.

Parameters

longword

is the longword for which the hex value is to be displayed.

rinf

points to the rominfo structure. (Input)

Appendix A: Core ROM Services

OS-9 Porting Guide 180

out8hex()
Display Hexidecimal Quadword

Syntax

void out8hex(unsigned long long quadword,

 Rominfo rinf);

Description

out8hex() displays the hexidecimal representation of a quadword
(64 bits) on the system console device

Parameters

quadword

is the quadword for which the hex value is to be displayed.

rinf

points to the rominfo structure. (Input)

Appendix A: Core ROM Services

OS-9 Porting Guide 181

rom_udiv()
Unsigned Integer Division

Syntax

unsigned rom_udiv(

unsigned dividend,

unsigned divisor);

Description

rom_udiv() provides an integer division routine that does not rely on the presence
of a built-in hardware division instruction.

Parameters

dividend

is the number to be divided.

divisor

is the number by which the dividend is to be divided.

Appendix A: Core ROM Services

OS-9 Porting Guide 182

setexcpt()
Install Exception Handler

Syntax

u_int32 setexcpt(

u_int32 vector,

u_int32 irqsvc,

Rominfo rinf);

Description

setexcpt() installs an exception handler on the system exception vector table for
the specified exception. This is usually used with the setjmp() and longjmp() C
functions to provide a bus fault recovery mechanism prior to polling hardware.

Parameters

vector

is the number of the exception for which the handler should be installed.

irqsvc

points to the exception handling code you want installed.

rinf

points to the rominfo structure. (Input)

Appendix A: Core ROM Services

OS-9 Porting Guide 183

swap_globals()
Exchange Current Globals Pointer

Syntax

u_char *swap_globals(u_char *new_globals);

Description

swap_globals() replaces the caller’s global data pointer with a new value and
returns the old value.

Parameters

new_globals

is the value to be assigned to the global data pointer. (Input)

Appendix A: Core ROM Services

OS-9 Porting Guide 184

185

B Optional ROM Services

There are several optional categories of service for a final production boot ROM,
which can be implemented according to your desired configuration. Since these
services are modularized, they may be left out to conserve required ROM and RAM
space, or be included to meet a functional requirement.

This appendix includes the following topics:

• Configuration Module Services

• Console I/O Module Services

• Notification Module Services

• Compressed Booter Services

Appendix B: Optional ROM Services

OS-9 Porting Guide 186

Configuration Module Services
The configuration services module, cnfgfunc, provides access to data built into the
configuration data module. The definition of the cnfg_svcs structure resides in the
include file, MWOS/SRC/DEFS/ROM/rom.h, and appears below for illustration.

typedef struct cnfg_svcs {

idver infoid; /* id/version for cnfg_svcs */

/* configuration service */

error_code (*get_config_data)(enum config_element_id id,
 u_int32 index, Rominfo rinf, void *buf);

/* pointer to configuration data module */

void *config_data;

int reserved; /* reserved for emergency expansion */

} cnfg_svcs, *Cnfg_svcs;

If no low-level system modules require the configuration services, the cnfgfunc and
cnfgdata modules can be omitted.

Appendix B: Optional ROM Services

OS-9 Porting Guide 187

get_config_data()
Obtain Configuration Data Element

Syntax

error_code(

enum config_element_id id,

u_int32 index,

Rominfo rinf,

void *buf);

Description

get_config_data() returns the value of the configuration element identified by id in
the caller supplied location specified by buf. The following tables list the available
identifiers, their definition, and field type/size.

Table B-1.Console Configuration Elements

Configuration Elements Description Type/Size
CONS_REVS structure version u_int16

CONS_NAME console name char *

CONS_VECTOR interrupt vector number u_int32

CONS_PRIORITY interrupt priority u_int32

CONS_LEVEL interrupt level u_int32

CONS_TIMEOUT polling timeout u_int32

CONS_PARITY parity size u_int8

CONS_BAUDRATE baud rate u_int8

CONS_WORDSIZE Character size u_int8

CONS_STOPBITS Stop bit u_int8

CONS_FLOW Flow control u_int8

Table B-2.Debugger Configuration Elements

Configuration Elements Description Type/Size
DEBUG_REVS Structure version u_int16

DEBUG_NAME Default debugger client name char *

DEBUG_COLD_FLAG Flag the client should be called at cold
start, or not

u_int32

Table B-3.Protoman Configuration Elements

Configuration Elements Description Type/Size
LLPM_REVS Structure version u_int16

LLPM_MAXLLPMPROTOS Max. # of protocols on protocol
stack

u_int16

Appendix B: Optional ROM Services

OS-9 Porting Guide 188

LLPM_MAXRCVMBUFS Number of maximum receive
mbuffs

u_int16

LLPM_MAXLLPMCONNS Max. # of low level protoman
connections

u_int16

LLPM_IFCOUNT Number of hardware config
entries

u_int32

Table B-4.Low-Level Network Interface Config Elements

Configuration Elements Description Type/Size
LLPM_IF_IP_ADDRESS IP address u_int8[16]

LLPM_IF_SUBNET_MASK Subnet mask u_int8[16]

LLPM_IF_BRDCST_ADDRESS Broadcast address u_int8[16]

LLPM_IF_GW_ADDRESS Gateway address u_int8[16]

LLPM_IF_MAC_ADDRESS MAC (Ethernet) address u_int8[16]

LLPM_IF_TYPE Type of hardware interface u_int8

LLPM_IF_ALT_PARITY Alternate serial port parity u_int8

LLPM_IF_ALT_BAUDRATE Alternate serial port baud rate u_int8

LLPM_IF_ALT_WORDSIZE Alternate serial port word size u_int8

LLPM_IF_ALT_STOPBITS Alternate serial port stop bits u_int8

LLPM_IF_ALT_FLOW Alternate serial port flow control u_int8

LLPM_IF_FLAGS Interface flags u_int16

LLPM_IF_NAME Name of hardware interface char *

LLPM_IF_PORT_ADDRESS Replacement HW interface address u_int32

LLPM_IF_VECTOR Interrupt vector number u_int32

LLPM_IF_PRIORITY Interrupt priority u_int32

LLPM_IF_LEVEL Interrupt level u_int32

LLPM_IF_ALT_TIMEOUT Alternate serial port timeout u_int32

LLPM_IF_USE_ALT Alternate usage flags u_int32

Table B-5.Boot System Configuration Elements

Configuration Elements Description Type/Size
BOOT_REVS Structure version u_int16

BOOT_COUNT Number of boot system
configuration entries

u_int32

BOOT_CMDSIZE Maximum size of user input string u_int32

Table B-6.Booter Configuration Elements

Configuration Elements Description Type/Size
BOOTER_ABNAME Abbreviated booter name char *

BOOTER_NEWAB Replacement abbreviated name char *

BOOTER_NEWNAME Replacement full name char *

Table B-3.Protoman Configuration Elements (Continued)

Configuration Elements Description Type/Size

Appendix B: Optional ROM Services

OS-9 Porting Guide 189

Console I/O Module Services
The console module provides a high level I/O interface to the entry points of the
low-level serial device driver configured as the system console. These services are
made available through the console services field of the rominfo structure.
Assuming the variable rinf points to the rominfo structure, rinf->cons can be used
to reference the console services record.

The header file MWOS/SRC/DEFS/ROM/rom.h contains the structure definitions for the
rominfo structure and the console services record, cons_svcs.

The console services are required when any of the following conditions are met:

1. Console dialog is required to boot the system (for example, using a boot menu
or menus).

2. Local system-state debugging with RomBug is required.

3. The communications port is required to support downloading or remote
debugging.

If none of these are required in the final system, the console module, the
corresponding low-level serial modules, and the console and communications port
configuration modules can be omitted.

The following services are available through the console services record.

BOOTER_AUTOMENU Auto/Menu registration flag u_int8

BOOTER_PARAMS Parameter string char *

BOOTER_AUTODELAY Autoboot delay time (in microseconds) u_int32

Table B-7.Notification Services Configuration Elements

Configuration Elements Description Type/Size
NTFY_REVS Structure version u_int16

NTFY_MAX_NOTIFIERS Maximum number of registered notifiers u_int32

Table B-6.Booter Configuration Elements (Continued)

Configuration Elements Description Type/Size

Table B-8.Console Services

Function Description
rom_fprintf() Write a printf-style string to the system console
rom_getc() Read the first character
rom_getchar() Read the first character from the system console
rom_gets() Read a null-terminated string from the system console
rom_putc() Output one character
rom_putchar() Output a character to the system console
rom_puterr() Write error code to the system console
rom_puts() Write a null-terminated string to the system console

Appendix B: Optional ROM Services

OS-9 Porting Guide 190

rom_fprintf()
Write a Printf-style String to the System Console

Syntax

void rom_fprintf(Rominfo rinf, char *fmt, ...);

Description

rom_fprintf() calls the low-level write routine of the console device record
configured for use as the system console. rom_fprintf() writes the specified printf-
style format string to the console device after replacing the printf escapes with the
specified variable arguments. The following escapes are recognized:

%% a single '%' character

%b bit-field value. This escape consumes two variable arguments: a 32-bit
unsigned integer value and a character pointer. The character pointer
controls how the integer value is printed. The first character of the string
contains the base for printing the integer value. Bases 2 through 16 are
supported. The remainder of the string is a series of “bit records” where
the first character of the record has a value from 1 to 32 indicating a bit
number and the remainder of the record is the mnemonic for the bit. Bits
are numbered from least significant (1) to most significant (32).
Mnemonics may contain any printable ASCII character except space (‘ ‘).
If the specified bit number in the integer value is set the mnemonic is
printed. For example,
 cons->rom_fprintf(rinf, “reg = %b\n”, reg, “\2\1bit1\2bit2”);
might print:
 reg = 1011<bit1,bit2>

%c 8-bit ASCII character

%d, %i 32-bit signed decimal integer*

%o 32-bit unsigned octal integer*

%p pointer value. Pointer values are printed in base 16 with a leading “0x”.*

%s NUL terminated character string. If the value of the character pointer is
NULL, “(null)” is printed in its place.

%u 32-bit unsigned decimal integer*

%x, %X 32-bit unsigned hexadecimal integer (always prints lower-case)*

* This escape may also include a field width, using space or zero padding. The field
width is specified by the decimal number that appears between the % and format
letter. If the first digit of this number is 0, zero padding is enabled. Otherwise, space
padding is used. Use zero padding with %p since the 0x is printed and does not
count as part of the field.

Illegal escapes are simply printed as part of the output and do not consume any of
the variable arguments.

Appendix B: Optional ROM Services

OS-9 Porting Guide 191

rom_fprintf() can also be used like vprintf(). If fmt is NULL, then the first variable
argument is assumed to be the format string and the second variable argument is
assumed to be an already started va_list. This allows calling modules to provide a
printf()-like wrapper around rom_fprintf(). For example, if a module had a global
variable for the ROM info structure (rinf) then the following wrapper could be
used to conveniently wrap the call to rom_fprintf(), allowing callers to use the
same syntax as printf().

#include <ROM/rom.h>
#include <stdarg.h>

extern Rominfo rinf;

void lprintf(char *fmt, ...)
{

if (rinf->cons && rinf->cons->rom_fprintf) {
va_list vp;

va_start(vp, fmt);
rinf->console->rom_fprintf(rinf, NULL, fmt, vp);
va_end(vp);

}
}

Parameters

rinf

points to the rominfo structure.

fmt

points to the first character of the printf-style string to output.

Example

rinf->cons->rom_fprintf(rinf, "value = %x\n", value);

Appendix B: Optional ROM Services

OS-9 Porting Guide 192

rom_getc()
Read the First Character

Syntax

char rom_getc(

Rominfo rinf,

Consdev cdev);

Description

rom_getc() calls the low-level read routine of the specified console device record to
read a single input character from the associated console device.

rom_getc() returns the character read.

Parameters

rinf

points to the rominfo structure.

cdev

points to the console device record for the console device to be used.

Example

char ch;

ch = rinf->cons->rom_getc(rinf, cdev);

Appendix B: Optional ROM Services

OS-9 Porting Guide 193

rom_getchar()
Read First Character From the System Console

Syntax

char rom_getchar(Rominfo rinf);

Description

rom_getchar() calls the low-level read routine of the console device record
configured for use as the system console. rom_getchar() reads a character from the
console. XON or XOFF characters not processed by the low-level read are ignored.

If echoing is enabled for the console, rom_getchar() calls putchar() to echo this
character. The character is then returned by rom_getchar().

Parameters

rinf

points to the rominfo structure.

Example

ch = rinf->cons->rom_getchar(rinf);

Appendix B: Optional ROM Services

OS-9 Porting Guide 194

rom_gets()
Read a Null-Terminated String From the System Console

Syntax

char *rom_gets(

char *buff,

u_int32 count,

Rominfo rinf);

Description

rom_gets() calls the low-level read routine of the console device record configured
for use as the system console. rom_gets() reads a null-terminated string from the
console into the buffer designated by the pointer buff. The rudimentary line editing
feature of <backspace> is supported by rom_gets().

rom_gets() returns to the caller when it receives a carriage return character (0x0d),
or when the number of characters designated by count has been read.

Parameters

buff

points to the input buffer into which the string is read.

count

is the integer used as the size of the input buffer including the null
termination.

rinf

points to the rominfo structure.

Example

str = rinf->cons->rom_gets(buffer, count, rinf);

Appendix B: Optional ROM Services

OS-9 Porting Guide 195

rom_putc()
Output One Character

Syntax

void rom_putc(

char c,

Rominfo rinf,

Consdev cdev);

Description

rom_putc() calls the low-level write routine of the specified console device record to
output a single character to the associated console device.

Parameters

c

is the character to output.

rinf

points to the rominfo structure.

cdev

points to the console device record for the console device to be used.

Example

rinf->cons->rom_putc(ch, rinf, cdev);

Appendix B: Optional ROM Services

OS-9 Porting Guide 196

rom_putchar()
Output a Character To the System Console

Syntax

void rom_putchar(

char c,

Rominfo rinf);

Description

rom_putchar() calls the low-level write routine of the console device record
configured for use as the system console. rom_putchar() writes the specified
character to the console. If the character is a carriage return character (0x0d),
rom_putchar() also writes a line feed character (0x0a) to the console.

Parameters

c

is the character to output.

rinf

points to the rominfo structure.

Example

rinf->cons->rom_putchar(ch, rinf);

Appendix B: Optional ROM Services

OS-9 Porting Guide 197

rom_puterr()
Write Error Code To the System Console

Syntax

void rom_puterr(

error_code stat,

Rominfo rinf);

Description

rom_puterr() converts the specified error code to a null terminated ASCII string
representation of the form AAA:BBB:CCC:DDD and outputs this string to the system
console using the rom_putc() service.

Parameters

stat

is the value of the error code to be displayed

rinf

points to the rominfo structure.

Example

rinf->cons->rom_getchar(status, rinf);

Appendix B: Optional ROM Services

OS-9 Porting Guide 198

rom_puts()
Write a Null-Terminated String To the System Console

Syntax

void rom_puts(

char *buff,

Rominfo rinf);

Description

rom_puts() calls the low-level write routine of the console device record configured
for use as the system console. rom_puts() writes a null terminated string to the
console device.

Parameters

buff

points to the first character of the string to output.

rinf

points to the rominfo structure.

Example

rinf->cons->rom_puts(buffer, rinf);

Appendix B: Optional ROM Services

OS-9 Porting Guide 199

Notification Module Services
The definition of the notify_svcs structure resides in the include file
MWOS/SRC/DEFS/ROM/rom.h.

typedef struct notify_svcs {

idver infoid; /* id/version for notify_svcs */

/* handler registration service */

error_code (*reg_hndlr)(Rominfo rinf, u_int32 priority,

 void (*handler)(u_int32 direction, void *parameter),

 void *parameter, u_int32 *hndlr_id);

/* handler deregistration service */

error_code (*dereg_hndlr)(Rominfo rinf, u_int32 hndlr_id);

/* notification service */

error_code (*rom_notify)(Rominfo rinf, u_int32 direction);

Notify_hndlr torom_list, /* ordered lists of handlers */

 tosys_list,

empty_list; /* empty list of available records */

u_int32 last_direction; /* direction of last notification call */

int reserved; /* reserved for emergency expansion */

} notify_svcs, *Notify_svcs;

The notification services, reg_hndlr() and dereg_hndlr(), are commonly used from
a low-level driver requiring notification to preserve and restore the state of a
hardware interface shared between high-level drivers under the control of the
operating system and low-level drivers required for remote debugging
communications or local console support.

If no low-level drivers require the notification services, then the notify module may
be omitted.

Table B-9.Notification Services

Function Description
dereg_hndlr() Remove registration for notification handler
reg_hndlr() Register notification handler

Appendix B: Optional ROM Services

OS-9 Porting Guide 200

dereg_hndlr()
Remove Registration For Notification Handler

Syntax

error_code dereg_hndlr(

Rominfo rinf,

u_int32 hndlr_id);

 Description

This service deregisters a notification handler.

Parameters

rinf

points to the rominfo structure.

hndlr_id

is the handler ID returned when the handler was registered.

Appendix B: Optional ROM Services

OS-9 Porting Guide 201

reg_hndlr()
Register Notification Handler

Syntax

error_code reg_hndlr(

Rominfo rinf,

u_int32 priority,

void (*handler)(

u_int32 direction,

void *parameter),

void *parameter,

u_int32 *hndlr_id);

Description

This service registers a notification handler.

Parameters

rinf

points to the rominfo structure.

priority

specifies the priority of execution relative to the other registered handlers.
Lower numbers are executed prior to higher numbers when transitioning from
the operating system to the ROM. When transitioning back, the handlers are
executed in the opposite order.

handler

points to the actual handler being registered. Its parameters are the transition
direction and a local parameter pointer.

parameter

specifies the parameter value to be passed to the handler on its activation. This
typically points to a data structure defined by the handler.

hndlr_id

specifies the address where the handler identification is to be returned.

Appendix B: Optional ROM Services

OS-9 Porting Guide 202

Compressed Booter Services
The definition of the compressed booter resides in the include file
MWOS/SRC/DEFS/ROM/rom.h.

#define COMPRSVCID 0xA8E0

#define COMPR_VER_MIN 1

#define COMPR_VER_MAX 1

 /* defined service types are */

#define COMPR_INFLATE 1 /* zip/gzip/zlib inflate method */

#define COMPR_DEFLATE 2 /* zip/gzip/zlib deflate method */

typedef struct compr_svcs {

idver infoid;/* id/version for excpt_svcs */

/* compress/uncompress call */

error_code(*work)(u_int32 type, u_int8 *dest, u_int32 *dest_len,

 CONST_ROM_H u_int8 *source, u_int32 source_len, Rominfo
rinf);

u_int32*compr_ll; /* compression modules linked list*/

u_int32reserved1;/* reserved for emergency expansion */

u_int32reserved2;/* reserved for emergency expansion */

} compr_svcs, *Compr_svcs;

Compression services are routinely used by booters to handle the uncompression of
a bootfile. The only currently supported service is a zlib inflate provided in the
uncompress module. Other compression and decompression services can be chained
to the compression services structure. The zlib deflate service is defined; however, a
module that supports it is not provided.

For more information on zlib, refer to http://www.gzip.org/zlib/, which is the
canonical web site for zlib. The zlib sources provided with OS-9 are slightly
modified from the standard distribution.

The uncompress module may be omitted if compressed bootfiles or other
compressed data are not used.

Appendix B: Optional ROM Services

OS-9 Porting Guide 203

Compressing the Bootfile

When creating a bootfile, you can specify to compress the module you are creating.
If you are using the Configuration Wizard to build your bootfile, simply check the
Compress Bootfile check box in the Wizard’s Master Builder window before
building the image; this will automatically compress the bootfile.

If you are not using the Wizard to build your OS-9 image, you can compress the
bootfile by completing the following steps from your chosen application:

Step 1. Open the makefile in which you want to include a compressed bootfile.

Step 2. Edit the makefile by typing the following command in an appropriate location:

$(ODIR)/os9kboot.z: $(ODIR)/os9kboot

-$(DEL) $(ODIR)/os9kboot.z

mbc $(ODIR)/os9kboot -o=$(ODIR)/os9kboot.z

The above command implements the mbc utility, which replaces the uncompressed
bootfile with one that is compressed.

Step 3. Edit the ROM target to use os9kboot.z instead of os9kboot.

Step 4. Run the makefile.

Step 5. Transfer the ROM image to your board, performing all necessary steps.

Step 6. Boot the target board. The following boot menu appears:

Press the spacebar for a booter menu

BOOTING PROCEDURES AVAILABLE ------------ <INPUT>

Boot embedded OS-9 in-place ------------- <bo>

Copy embedded OS-9 to RAM and boot ------ <lr>

Boot over Ethernet (Intel Enet Pro 100) - <eb>

Load bootfile via kermit Download ------- <ker>

Enter system debugger ------------------- <break>

Restart the System ---------------------- <q>

Select a boot method from the above menu: lr

Compressed bootfile found at $00300000

A valid OS-9 bootfile was found.

$

In order to add compression, you must add the compress module to the
coreboot when performing or updating a board port.

For more information on the mbc utility, refer to the
Utilities Reference manual, included with this product CD.

Appendix B: Optional ROM Services

OS-9 Porting Guide 204

205

C piclib.l Functions

This appendix discusses the piclib.l functions.

Appendix C: piclib.l Functions

OS-9 Porting Guide 206

Overview
The functions to enable and disable interrupts on programmable interrupt
controllers (PICs) have been externalized into libraries to minimize the platform
dependency on driver sources and binaries. There are three types of libraries
available for different driver requirements. Examples of them for “8259-like” (PC)
PICs are supplied in your OS-9 Embedded release.

Library Types

The first two types of libraries are for drivers that are to be specialized for a
particular target platform. The example libraries are piclib.il (for I-code linking
and inlined code optimization) and piclib.l (for linking with driver relocatable
assembler output files during debugging). These libraries are built to be target
platform-specific, since the target determines the I/O location of the PIC and
mapping of interrupt numbers to vectors is established by the port to the target.

The third type of library is a subroutine module that can be accessed through a
helper library linked with the driver. This enables drivers to be distributed in object
form with plug-in cards for bus-based systems and remain portable across target
platforms with possibly differing interrupt controllers or mappings. The example
picsub module is built from a special root psect and the piclib.l library mentioned
above.

For CPU boards that do not employ an interrupt controller, the distribution
provides the nopiclib.il and nopiclib.l libraries, and the nopicsub subroutine
modules. These libraries do nothing but return a SUCCESS status.

The services available to drivers are _pic_enable() and _pic_disable().

Table C-1.PIC Services

Function Description
_pic_disable() Disable interrupt on PIC hardware
_pic_enable() Enable interrupt on PIC hardware

Appendix C: piclib.l Functions

OS-9 Porting Guide 207

_pic_disable()
Disable Interrupt On PIC Hardware

Syntax

error_code _pic_disable(u_int32 irqno);

Description

_pic_disable() disables the appropriate vector on the interrupt controller
hardware. Generally, this function is called just before a system module uninstalls
the interrupt handler on the specified vector.

Parameters

irqno

is the OS-9 vector number to disable on the PIC.

Appendix C: piclib.l Functions

OS-9 Porting Guide 208

_pic_enable()
Enable Interrupt On PIC Hardware

Syntax

error_code _pic_enable(u_int32 irqno);

Description

_pic_enable() enables the appropriate vector on the interrupt controller hardware.
Generally, this function is called after a system module has installed an interrupt
handler on the specified vector.

Parameters

irqno

is the OS-9 vector number to enable on the PIC.

	OS-9® Porting Guide
	Contents
	Porting Overview Chapter 1
	Porting Summary
	Porting Steps
	Phase I: Prepare a Port Directory
	Phase II - Create the Low-Level System
	Phase III - Set Up Hawk System-State Debugging (Optional)
	Phase V - Adding Features to the Basic Port

	OS-9 Boot Code
	Bootstrap Code (romcore)
	Low-Level System Modules
	Configuration Modules
	Boot Modules
	Serial Communication Modules
	Low-Level Network I/O Modules
	Timer Modules
	Debugger Modules
	Notification Module
	Miscellaneous

	Low-Level System Configuration

	OS-9 Boot Process
	Apply Power to the Debugger Prompt
	Debugger Prompt to the Kernel Entry Point
	Kernel Entry Point to the Shell Prompt

	Port Directories Chapter 2
	Ports Directory Structure
	Creating Target Port Directories

	Porting the Boot Code Chapter 3
	Porting the Bootstrap Code
	The rom_cnfg.h File
	Bootstrap Stack Top and Boot Module Memory
	Bootstrap Memory Lists
	The RAM Search
	The Special Memory Search

	The systype.h File
	The sysinit.c File
	The sysinit Entry Point
	The sysinit1() Routine
	The sysinit2() Routine
	The sysreset() Routine
	The initext Module

	Configuring the Low-Level System Modules
	Adding Configuration Information to systype.h
	Modifying Low-Level System Module makefiles
	Modifying coreboot.ml

	The ROM Image
	Coreboot
	Bootfile
	Building the ROM Image

	Creating Low-Level Serial I/O Modules Chapter 4
	Creating the Low-Level Serial I/O Modules
	Building the Low-Level Serial I/O Modules

	The Console Device Record
	Low-Level Serial I/O Module Services
	cons_check()
	cons_init()
	cons_irq()
	cons_probe()
	cons_read()
	cons_stat()
	cons_term()
	cons_write()
	notification_handler()

	Starting-up the Low-Level Serial I/O Module

	Creating a Low-Level Ethernet Driver Chapter 5
	Creating a Low-Level Ethernet Driver
	Required Ethernet Driver Functions
	Proto_srvr Structure
	The Low-Level Ethernet Driver Entry Point Services
	proto_deinstall()
	proto_iconn()
	proto_install()
	proto_read()
	proto_status()
	proto_tconnl()
	proto_timeout()
	proto_upcall()
	proto_write()

	Additional Utility Functions
	find_n_init_mbuf()
	init_eth_mbuf()

	Low-Level ARP
	arpinit()
	arpinput()
	arpresolve()
	arptbl_update()
	arpwhohas()
	in_arpinput()

	Miscellaneous Functions
	in_broadcast()

	Creating a Low-Level Timer Module Chapter 6
	Creating the Timer Module
	The Timer Services Record
	Low-Level Timer Module Services
	timer_deinit()
	timer_get()
	timer_init()
	timer_set()

	Starting the Low-Level Timer Module
	Building the Low-Level Timer Module

	Creating an Init Module Chapter 7
	Creating an init Module
	Init Macros
	Optional Macros

	Creating PIC Controllers Chapter 8
	Reviewing the PowerPC Vector Code
	Architecture
	OS-9 Vector Code Service

	Initialization
	Interrupt Vector
	Modifying the Interrupt Vector
	Interrupt Controller Support

	Using Hardware-Independent Drivers Chapter 9
	Simplifying the Porting Process
	SCF Driver (scllio)
	Virtual Console (iovcons)
	Configuration

	Creating a Ticker Chapter 10
	Guidelines for Selecting a Tick Interrupt Device
	Ticker Support

	OS-9 Tick Time Setup
	Tick Timer Activation
	Debugging the Ticker

	Selecting Real-Time Clock Module Support Chapter 11
	Real-Time Clock Device Support
	Real-Time Clock Support

	Automatic System Clock Startup
	Debugging Disk-Based Clock Modules
	Debugging ROM-Based Clock Modules

	Creating Booters Chapter 12
	Creating Disk Booters
	The Boot Device (bootdev) Record and Services
	bt_boot()
	bt_init()
	bt_probe()
	bt_read()
	bt_term()
	bt_write()

	The parser Module Services
	getnum()
	parse_field()

	The fdman Module Services
	fdboot()
	get_partition()
	read_bootfile()

	The scsiman Module Services
	da_execnoxfer()
	da_execute()
	init_tape()
	initsccs()
	ll_install()
	readsccs()
	rewind_tape()
	sq_execnoxfer()
	sq_execute()

	The SCSI Host-Adapter Module Services
	llcmd()
	llexec()
	llinit()
	llterm()

	Configuration Parameters

	Core ROM Services Appendix A
	The rominfo Structure
	Hardware Configuration Structure
	flush_cache()

	Memory Services
	mem_clear()
	rom_free()
	rom_malloc()

	ROM Services
	Module Services
	goodmodule()
	rom_findmle()
	rom_findmod()
	rom_moddeinit()
	rom_moddel()
	rom_modinit()
	rom_modins()
	rom_modscan()

	p2lib Utility Functions
	getrinf()
	findrinf()
	hwprobe()
	inttoascii()
	os_getrinf()
	outhex()
	out1hex()
	out2hex()
	out4hex()
	out8hex()
	rom_udiv()
	setexcpt()
	swap_globals()

	Optional ROM Services Appendix B
	Configuration Module Services
	get_config_data()

	Console I/O Module Services
	rom_fprintf()
	rom_getc()
	rom_getchar()
	rom_gets()
	rom_putc()
	rom_putchar()
	rom_puterr()
	rom_puts()

	Notification Module Services
	dereg_hndlr()
	reg_hndlr()

	Compressed Booter Services
	Compressing the Bootfile

	piclib.l Functions Appendix C
	Overview
	Library Types
	_pic_disable()
	_pic_enable()

