
w w w. ra d i sy s . co m
Revision C • July 2006

Using JavaCodeCompact for
OS-9®

Version 3.1

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 3.1 of PersonalJava™ Solution for
OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

Using JavaCodeCompact for OS-9 3

Table of Contents

Chapter 1: Pre-loading Classes with JavaCodeCompact 5

6 Pre-Loading Class Files Overview
6 libclasses.so Module
8 The Java Pre-loader Application
8 Syntax
8 Description
9 Java Options
9 Options
13 Building a Shared Class Library Using JavaCodeCompact
13 Stage 1. Compiling the Java Classes
13 Stage 2. Pre-loading the Java Class Files
14 Stage 3. Assemble and Link the Pre-loader Output
16 Using the Pre-loaded Classes
16 Using Pre-loaded Classes from the Boot File
17 Using Pre-loaded Classes from RAM

4 Using JavaCodeCompact for OS-9

5

Chapter 1: Pre-loading Classes with

JavaCodeCompact

PersonalJava™ Solution for OS-9® enables Java class files to be
pre-loaded—converted from the class file format into data structures
used by the Java Virtual Machine (JVM).

This chapter explains how to generate pre-loaded classes using the
host-based JavaCodeCompact (JCC) tool. It includes the following
sections:

• Pre-Loading Class Files Overview

• The Java Pre-loader Application

• Building a Shared Class Library Using JavaCodeCompact

• Using the Pre-loaded Classes

6 Using JavaCodeCompact for OS-9

1 Pre-loading Classes with JavaCodeCompact

Pre-Loading Class Files Overview

Pre-loaded Java class files can be used in PersonalJava™ Solution for
OS-9. Pre-loading enables class file information to be loaded into
memory in a ready-to-use modular format instead of having to be
loaded from a disk or over a network. In addition, using pre-loaded
classes offers benefits for size and speed.

Pre-loaded classes are usually about the same size as classes in an
uncompressed .zip file. Normally, when classes are loaded from a .zip
file into the JVM, they expand roughly by a factor of two. Therefore,
using pre-loaded classes results in about a fifty percent memory
savings. Also, because pre-loaded classes can reside in ROM memory,
the total system RAM requirement is reduced.

Loading and verifying classes takes a significant amount of processing
time. Since pre-loaded classes do not require this operation, JVM start
time is reduced.

libclasses.so Module

Pre-loaded classes on OS-9 systems are contained in a module called
libclasses.so.

At start-up, the JVM searches the module directory and disk directories
specified in your LD_LIBRARY_PATH environment variable for a
module with this name. The debug version of the JVM (pjava_g) looks
for libclasses_g.so (see -g option). If the file is found and in the
proper format, the JVM uses the pre-loaded classes found in that
module. Because libclasses.so contains data structures with
absolute pointers, it must be created to exist at a fixed address. During
the pre-load process, the address of the libclasses.so module is
given to the pre-loader tool as one of its parameters.

In order for the pre-loader to create a ROMable image, it must be able
to resolve all references made in the class files being processed. If the
pre-loader does not find a referenced class among the list of classes

1Pre-loading Classes with JavaCodeCompact

Using JavaCodeCompact for OS-9 7

being operated on, it prints a warning message. You must modify the list
of classes being operated on by the pre-loader to eliminate these
warning messages.

8 Using JavaCodeCompact for OS-9

1 Pre-loading Classes with JavaCodeCompact

The Java Pre-loader Application

This section describes the JavaCodeCompact pre-loader tool and the
options you can use when running it.

Syntax

java [Java options] JavaCodeCompact [options]
filename ...

Description

JavaCodeCompact combines one or more Java class files and
produces a target-system dependent assembly source file. This file
contains the given classes in a preloaded format that can be assembled
and linked into a shared library. All of these operations are performed
on the host development system.

Linking Java Programs

Here is an outline of the conventional mechanism for class loading:

• use javac to compile Java source files into Java class files

• load the class files into a Java system, either individually or as part
of jar archive files

• resolve references to other class definitions upon demand

JavaCodeCompact provides an alternate means of program linking and
symbol resolution—one that provides a less-flexible model of program
building, but which helps minimize the initialization time and memory
requirements of the JVM.

1Pre-loading Classes with JavaCodeCompact

Using JavaCodeCompact for OS-9 9

JavaCodeCompact can perform the following functions:

• combine multiple input files by combining much of their symbolic
information into a shared string and constant pool and
concatenating other parts of the classes’ definitions

• determine an object instance’s layout and size

• determine the layout of an object's method table

• change the representation of some Java byte codes to their quick
forms

Java Options

-mx20M Increases the heap to 20MB

This program often has to be run with an
increased maximum heap size.

Options

filename designates the name of a file used as input

The contents should be included in the output.
File names are not modified by any pathname
calculus. File names with a .class suffix are
read as single class files. File names with .jar
or .zip suffixes read as Zip files. These Zip
files must contain only class files as elements.

-o outfilename designates the name of the output file to be
produced

Conventionally, the file name ends with a suffix
of .a for assembly-language output. This is not
critical to the operation of the program. In the
absence of this option, a file is produced with a
name based on the name of the first input file.
The name is stripped of pathname prefix and
any suffix and has .a appended.

10 Using JavaCodeCompact for OS-9

1 Pre-loading Classes with JavaCodeCompact

-q enables transformation of method code to its
quickened form

Quickened refers to an optimization
implemented in Sun's version of the JVM. Refer
to The Java Virtual Machine Specification for
a complete discussion of this optimization.

Many Java bytecode instructions refer to
symbolic quantities such as the offset of a field
or of a method, or simply to the name of a type.
Normally, the JVM resolves these references
when it first executes the instruction. It then
re-writes the instruction in place. This
procedure yields code that cannot be placed in
ROM.

Java bytecodes that are resolved and
quickened at link time are read-only and can be
placed in ROM. Any instructions that refer to
symbols that are not resolved are not
quickened.

NoteNote
The -q option should only be used on the final link step.

-qlossless identical to -q, but leaves the resulting
bytecode amenable to Just-In-Time (JIT)
compilation

-c cumulative linking

Classes unresolved by the linking of class files
explicitly listed as linker arguments are
searched for using the -classpath option,
and linked as they are found. File names are
formed by concatenating a path prefix, the

1Pre-loading Classes with JavaCodeCompact

Using JavaCodeCompact for OS-9 11

character java.io.File.separatorChar
(on Windows, a \), the name of the class being
sought, and the suffix .class.

-classpath path specifies the path JCC uses to look up classes

Directories and Zip files are separated by
java.io.File.pathSeparatorChar, which
on Windows is a semi-colon. Multiple classpath
options are cumulative, and searched
left-to-right. This option is only used in
conjunction with the -c cumulative-linking
option.

-v turns up the verbosity of the linking process

This option is cumulative. Currently up to three
levels of verbosity are understood. This option
is typically used as a debugging aid.

-f filename read options and class file names from the
specified file

-g enables the writing of line-number tables,
source files names in the output, and a local
variable table

The information must be available in the input
data, as it is with normal class files. These
tables are not written by default. This option
also suppresses the code inlining optimization.

This options should be used if pre-loaded
classes are desired when using the debug
version of the JVM, pjava_g. The debug version
of the JVM can not use pre-loaded classes that
were built without -g, nor can the optimized
version of the JVM use pre-loaded classes that
were built with -g.

-jniClass class specifies that the data structures pre-loaded for
class should use the Java Native Interface
(JNI) method interface

12 Using JavaCodeCompact for OS-9

1 Pre-loading Classes with JavaCodeCompact

-arch targetarchitecture
Designates the assembly language used in
writing the output

The argument is case insensitive. Use only
when an assembly language output file is to be
produced. The currently supported options
include the following:

• ARM—generate StrongARM assembly code
files

• PPC—generate PowerPC assembly code
files.

• SH—generate SuperH-3/SuperH-4
assembly code files.

• X86—generate x86 assembly code files.

-imageAttribute moduleBase=<module address>
specifies the address where the resulting
shared library is loaded

In order for the pre-loaded classes to be used
by the JVM, the shared library must be located
at the address specified by this option. Unlike
most OS-9 modules, the pre-loaded classes
shared library is not position independent. The
address can be specified in either hexadecimal
(0x prefix) or decimal form.

1Pre-loading Classes with JavaCodeCompact

Using JavaCodeCompact for OS-9 13

Building a Shared Class Library Using
JavaCodeCompact

Following is the procedure for building libclasses.so, the
pre-loaded classes file. libclasses.so can be used from ROM or
RAM.

Stage 1. Compiling the Java Classes

Step 1. Use the javac command to convert Java program source files into
Java class files.

The standard file name convention is as follows:

<classname>.class

Step 2. Load the class files, either individually or as part of .zip or .jar archive
files into a Java system.

Their references to other class definitions are resolved upon demand by
the class loading and resolving mechanism specified as part of the Java
language semantics.

Stage 2. Pre-loading the Java Class Files

Step 1. From your Windows host development system, pre-load the classes
that you compiled in Stage 1 using the following:

• The -q option builds an image of the Java Development Kit (JDK)
internal data structures representing all the included classes in the
form of an assembler input file.

• The -imageAttribute moduleBase=<module address>
option indicates where the resulting shared library object is loaded.

14 Using JavaCodeCompact for OS-9

1 Pre-loading Classes with JavaCodeCompact

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Using the Pre-loaded Classes section for more
information about the module address.

• The -arch <ARCH> option specifies the target processor
architecture to be used. The following definitions of <ARCH> are
currently supported: ARM for StrongARM, PPC for PowerPC, SH for
SH-3/SH-4, and X86 for Intel x86.

• The -c option specifies cumulative linking.

• The -classpath option specifies the path for JavaCodeCompact
to look up classes during cumulative linking.

Example

Following is a typical class file pre-loading command line:

java -mx20m JavaCodeCompact -q -imageAttribute
moduleBase=0x30000000 -arch ARM -c -jniClass
java.lang.SecurityManager -jniClass java.lang.Thread
-jniClass java.security.AccessController -classpath
c:\MWOS\SRC\PJAVA\LIB\classes.zip
-f classes.lst -o classes.a

Stage 3. Assemble and Link the Pre-loader Output

Step 1. Assemble and link the pre-loader output to produce an OS-9 shared
library named either libclasses.so or libclasses_g.so.

The name depends on whether you are using the debugging or
non-debugging version of the JVM.

1Pre-loading Classes with JavaCodeCompact

Using JavaCodeCompact for OS-9 15

Example

Following is a typical assemble and link command line:

xcc -olg -tp=armv4 -r -l=libsm.l -l=cpu.l -cs=smstart.r
classes.a -fd=libclasses.so

In this example, classes.a is the assembly output from
JavaCodeCompact.

16 Using JavaCodeCompact for OS-9

1 Pre-loading Classes with JavaCodeCompact

Using the Pre-loaded Classes

Once libclasses.so is created with JavaCodeCompact, you can
use the pre-loaded classes either from ROM or RAM. The following
procedures describe how to use the libclasses.so file in each
particular situation.

Using Pre-loaded Classes from the Boot File

Complete the following steps to use your pre-loaded classes from boot
file:

Step 1. Build libclasses.so from MWOS\OS9000\<portproc>\PORTS\
<portname>\PJAVA\JCC with the default module address in the
make file.

Step 2. Put this version of libclasses.so in your boot image as a
placeholder. This placeholder will help you determine the correct start
address for the libclasses.so module.

Step 3. Create the boot image and use it to boot the system.

Note the address of libclasses.so in memory with mdir -e, you
will need this information in the next step.

Step 4. Edit the make file in the JCC directory and change the address to match
the address recorded from the previous step.

Invoke the make file again to rebuild libclasses.so with the correct
address.

Step 5. Copy the libclasses.so module into your boot-build location, and
build a new boot image. The result is a libclasses.so that will be
found at the correct address.

1Pre-loading Classes with JavaCodeCompact

Using JavaCodeCompact for OS-9 17

Using Pre-loaded Classes from RAM

Complete the following steps to use your pre-loaded classes from RAM:

Step 1. Create a 2.5MB plane of colored memory on the target machine by
adding an entry in the colored memory definition list. This becomes part
of your init module.

NoteNote
For a one-time change, use editmod. For a permanent change, modify
the configuration source files and rebuild the init module.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the OS-9 Configuration Reference manual for information
about colored memory in OS-9.

Step 2. Build a shared class library using JavaCodeCompact.

These steps are described in the Building a Shared Class Library
Using JavaCodeCompact section. Use the address of your colored
memory plane as the base address for the library. You can proceed
through the steps manually or invoke a makefile for this purpose.

Step 3. Pad the libclasses.so file to 2.5Mb so the module begins exactly at
the start of the colored region. For example, type the following on your
Windows host system: padrom 0x280000 libclasses.so.

Step 4. Move the library to your target machine, once it has been created, and
load it into RAM using a command such as the following:

load -ldc=0x90 libclasses.so

18 Using JavaCodeCompact for OS-9

1 Pre-loading Classes with JavaCodeCompact

In this example, 0x90 specifies the memory color you created. The
result is a pre-loaded class library found at a known address.

	Using JavaCodeCompact for OS-9®
	Table of Contents
	Chapter 1: Pre-loading Classes with JavaCodeCompact
	Pre-Loading Class Files Overview
	libclasses.so Module

	The Java Pre-loader Application
	Syntax
	Description
	Linking Java Programs

	Java Options
	Options

	Building a Shared Class Library Using JavaCodeCompact
	Stage 1. Compiling the Java Classes
	Stage 2. Pre-loading the Java Class Files
	Stage 3. Assemble and Link the Pre-loader Output

	Using the Pre-loaded Classes
	Using Pre-loaded Classes from the Boot File
	Using Pre-loaded Classes from RAM

