
w w w. ra d i sy s . co m
Revision F • July 2006

Using PersonalJava™
Solution for OS-9®

Version 3.1

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 3.1 of PersonalJava™ Solution for
OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

Table of Contents

Chapter 1: PersonalJava™ Solution for OS-9® Overview 11

12 What is Java?
12 PersonalJava™ Solution and EmbeddedJava Technology
13 Why Java for OS-9?
14 PersonalJava™ Solution for OS-9
14 Enhancements to Java
15 Loading Classes from JAR Files
16 Threading and Processing
16 Implementing Threads
17 Preempting a Thread
17 Communicating With OS-9 Processes
18 Memory Management
19 Security

Chapter 2: PersonalJava™ Solution for OS-9 Environment 21

22 Host System Architecture
28 PersonalJava Environment
28 The Java Virtual Machine
29 Native Methods and OS-9
29 I/O
29 Support Files
31 Command Line Arguments
36 Environment Variables

Chapter 3: Creating Java Applications for OS-9 39

41 The Hello World Application (non-AWT Version)
Using PersonalJava Solution for OS-9 3

41 Creating a Java Source File
41 Compiling the Source File
42 Running the Application on the Windows 95/98/NT Development

Host
42 Transferring the Class to the Target OS-9 System
43 Starting the Java Application On the OS-9 System
45 The Hello World Application (AWT Version)
47 Tips for Running Your Application or Applet

Chapter 4: Choosing a PersonalJava Diskless Strategy 49

50 Introduction
51 Source Files
52 Strategy 1: Adding Your Java Application to libclasses.so
52 The Diskless PersonalJava Makefiles
55 Running the Diskless PersonalJava Makefiles
61 Strategy 2: Making the zip Files Into Data Modules
61 The Diskless PersonalJava Makefiles
62 Running the Diskless PersonalJava Makefiles
63 Creating the Data Modules For Your Application

Chapter 5: Additional Considerations for Choosing a PersonalJava
Diskless Strategy 69

70 Diskless Target Requirements
70 Java Requirements
72 Window Manager Requirements
73 Diskless Target Implementation Strategy
73 Class Storage Options
75 Properties vs. Environment Variables
76 Using the modman File Manager
76 Generating the modman Archive
76 Adding the modman Archive to the Boot
77 Initializing modman
4 Using PersonalJava Solution for OS-9

77 Setting the JAVA_HOME Environment Variable
77 Using the mar Utility
79 Diskless Target Example
79 Building the modman Archive

Chapter 6: Creating Native Methods for OS-9 81

83 Using Native Methods on OS-9
83 Overview
83 Requirements
84 Objective
85 Write the Application
85 Add the Native Methods
85 Run the Example Application on the OS-9 System
85 Debug the Native Methods
86 Using JNI Native Methods
86 Environment
87 Writing the Application
87 The TimeApp class
90 The SetTimeDialog class
92 The SysTime class
94 Compiling the Classes
95 Running the Example Program
96 Adding Native Methods
96 Step 1: Add Declarations
97 Step 2: Generate the Header File
98 Step 3: Generate the Stub File
99 Step 4: Generate the Export Tables
100 Step 5: Write the Native Method Functions
102 Step 6: Compile and Link the Native Method Shared Library
102 Creating a New Project Space and Project
103 Creating a New Component
103 Adding Units To the Component
103 Configuring the Project Properties
Using PersonalJava Solution for OS-9 5

105 Specifying Component Properties
105 Step 7: Call the Native Methods from the SysTime Class
108 Step 8: Add Calls to the Native Methods
108 Step 9: Add a Static Initialization Block to Load the Shared Library
109 Step 10: Compiling and Linking
110 Running the TimeApp Application on the Target
110 Step 1: Transfer the Class Files
112 Step 2: Start the Java Application on the OS-9 System
112 Starting Telnet Session
113 Setting Variables
115 Debugging Native Methods
115 Debugging with Hawk
116 Identifying Source and Object Code
116 Setting Up Hawk Target Environment
117 Forking the Java Process
118 Loading the Shared Library
119 Linking to the Shared Library
120 Setting Breakpoints
121 Using JNI Native Methods
121 Introduction to JNI Native Methods
122 Generating the JNI Header Files
123 Generating the JNI Stub File
123 Generating the JNI Export Tables
124 Writing the JNI Native Method Functions
126 Compiling and Linking the JNI Native Method Shared Library

Chapter 7: Using the Window Manager 127

128 Window Manager Process
129 Window Managers
129 Simple Window Manager
129 Standard Window Manager
130 Debugging Window Manager
131 Sample Window Manager
6 Using PersonalJava Solution for OS-9

132 Using the Window Manager
134 Window Manager Preference File
134 Example Preference File
135 Preference File Location
135 Disk-based System
135 Diskless System
136 Editing the Preference File
137 Disk-based System
137 Diskless System
137 Running MAUI Applications with PersonalJava Applications
138 Window Manager Error Codes

Chapter 8: Enhancing the Properties Files 145

146 Microtype Fonts
148 Modifying font.properties
148 Mapping Fonts
150 Creating Font Data Modules from Font Files
152 Localizing Your PersonalJava™ Solution for OS-9
155 Modifying awt.properties
155 Setting colorMode
155 Syntax
155 Options
155 Setting AGFA Font Engine Memory Consumption
156 Using Multiple Windows
157 Using Scrollbars

Chapter 9: Monitoring PersonalJava Applications 159

160 Memory Usage Monitoring
160 Introduction
161 Stopwatch Java API
188 The MemStopWatch Example Java Program
193 Using the MemStopWatch Example Java Program
Using PersonalJava Solution for OS-9 7

193 The MemStopWatch Example Java Source File
193 Compiling the Source File
194 Transferring the Class to the Target OS-9 System
195 Starting the Java Application on the OS-9 System
196 Native Stack Usage Monitoring
196 Introduction
196 Using StackWatch
197 Interpreting the Results
199 AWT Activities Monitoring
199 The appdbg Environment
200 appdbg Files
201 Using appdbg
201 appdbg Environment Variables
205 The adump Utility
205 adump Modes
207 adump Miscellaneous Functions

Chapter 10: Working with Remote Classes 209

210 What is Remote Class Loading?
211 Configuring Remote Class Loading
215 Building Remote Class Zip Files

Appendix A: Running PersonalJava Applets 217

218 Overview
218 Example Code
220 Data Structure
222 Functions

Appendix B: Running MAUI Applications in Java Windows 235

236 Getting the MAUI Window ID
8 Using PersonalJava Solution for OS-9

Appendix C: Mouse Move Events 237

238 Introduction
239 Contents of this Appendix
240 The SimpleEventQueue Example Java Program
244 Using the SimpleEventQueue Example Java classes
244 The SimpleEventQueue Example Java Source File
244 Compiling the Source File
245 Enhancing the awt.properties file
245 Diskless System
246 Disk-Based System
246 Transferring the SimpleEventQueue Classes to the Target OS-9

System
246 Diskless System
247 Disk-Based System

Appendix D: Microware Archive Tool 249

250 Usage
250 Archive Creation
250 Archive Contents Listing
250 Archive Extraction
251 Command-line
254 Examples

Appendix E: Sources of Information 255

256 Sources
Using PersonalJava Solution for OS-9 9

10 Using PersonalJava Solution for OS-9

Chapter 1: PersonalJava™ Solution

for OS-9® Overview

This chapter describes PersonalJava™ Solution technology within an
OS-9® system. It includes the following topics:

• What is Java?

• PersonalJava™ Solution for OS-9

• Loading Classes from JAR Files

• Threading and Processing

• Memory Management

• Security

What is Java?

In the early 1990s, programmers at Sun Microsystems realized the need for
providing small, platform independent, secure, and reliable code for smart
consumer electronics and settop boxes. Out of this need, the Java
programming language was created.

To create the Java language, the designers began from the ground up.
They borrowed some features from the most common languages used
today, including C, C++, SmallTalk, and Common Lisp. The designers then
added features like garbage collection and multithreading and threw out
features like multiple inheritance, operator overloading, and pointers. What
they created is an interpreted, object-oriented programming language
portable to most network-based platforms including Windows®,
Macintosh®, Unix®, and OS-9®, as well as an increasing number of settop
boxes and electronic devices.

Java’s features were selected because they were originally designed for the
settop box market, which requires security and the ability to run code from
untrusted hosts. In addition, Java has become the language of the Internet
because these same features are important when downloading an
application off the Internet.

PersonalJava™ Solution and EmbeddedJava Technology

In 1997, Sun Microsystems created two subsets of Java to allow it to run
more efficiently on devices with memory restrictions. PersonalJava™
Solution Technology was created to work primarily on settop boxes (STB),
PDAs (Personal Digital Assistant), screen phones, mid-range mobile
phones, and web TVs. On the other hand, EmbeddedJava Technology was
created to work in an even more limited working environment such as in
industrial controllers/instrumentation, printers, pagers, and low-end mobile
phones.

This manual documents the Microware implementation of PersonalJava™
Solution Technology.
12 Using PersonalJava Solution for OS-9

1PersonalJava™ Solution for OS-9® Overview
Why Java for OS-9?

OS-9 provides an ideal platform for Java because it is built around a robust
process model and provides memory management and interprocess
communication.

Many customers in the STB, network computer (NC), and wireless markets
are looking for a real-time operating system (RTOS) that supports Java.
Because of this, semiconductor manufacturers view Java as a way to
differentiate their product and compete directly with the PC market.

Sun has defined subsets of Java for the embedded and personal computer.
These subsets provide Microware with the means to make OS-9 the best
software platform for Java-enabled devices.
Using PersonalJava Solution for OS-9 13

PersonalJava™ Solution for OS-9

Microware has performed a variety of enhancements to Java to produce a
PersonalJava™ Solution for OS-9 systems.

Enhancements to Java

The following changes have been made to improve Java’s integration with
OS-9:

• Java classes can be executed from a ROM module.

• The use of optional graphics features is user selectable.

• The Java Virtual Machine (JVM) runs as a process on OS-9. Multiple
JVMs can be run simultaneously.

• A Java-enabled device can run completely diskless.

• The memory usage footprint can be computed exactly; this ensures that
there are no out-of-memory errors after deployment.

• MAUI® Applications can execute PersonalJava™ Solution Applets in a
window.

• Java Applications can execute MAUI applications in a window.
14 Using PersonalJava Solution for OS-9

1PersonalJava™ Solution for OS-9® Overview
Loading Classes from JAR Files

PersonalJava™ Solution for OS-9 supports the use of Java Archive (JAR)
files as defined in the Java Development Kit 1.1 documentation. These JAR
files are useful because, like Java classes, they can combine other
resources, such as HTML files and images. This enables all of the
resources needed by a Java applet or application to be combined into a
single JAR file.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Sun web page at http://java.sun.com for more information
about the Java Development Kit 1.1.
Using PersonalJava Solution for OS-9 15

Threading and Processing

Java is a multi-threaded application environment. Multi-threaded
applications have the ability to interleave instructions from multiple
independent execution threads (minimal processes).

Multi-threading also allows applications to perform multiple activities
simultaneously such as processing input or loading graphics. If you have
used a standard web browser, you are already acquainted with
multi-threading. When you access a web page, you will notice that you can
begin to scroll the page and read the text well before all the graphics have
loaded. This is an example of multi-threading.

The Java API (Application Program Interface) provides a Thread class that
supports a collection of methods to start, run, or stop a thread, as well as
check on the status of a thread.

When writing Java applications, be sure to implement your classes and
methods so they are thread-safe. If you want your objects to be
thread-safe, any methods that may change the values of an instance
variable should be declared synchronized. This ensures only one method
can change the state of an object at any time.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the book Concurrent Programming in Java by Doug Lea for
more information on this subject.

Implementing Threads

OS-9 implements the JVM as a process. Java threads exist inside the
process as native OS-9 threads. Thus, Java threads are scheduled right
along with other OS-9 threads and processes.
16 Using PersonalJava Solution for OS-9

1PersonalJava™ Solution for OS-9® Overview
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the OS-9 Technical Manual for more information on
process/thread scheduling.

Preempting a Thread

Java’s threads are preemptive. This means that if a lower priority thread
performs an action that wakes up a higher priority thread, the higher priority
thread will execute instead of the lower priority thread.

Communicating With OS-9 Processes

A Java thread communicates with OS-9 processes including other JVMs
either through named pipes and sockets or through native methods.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the OS-9 Technical Manual for more information on using
named pipes. Refer to Using LAN Communications for more
information on using sockets. Refer to The Java Programming
Language by Ken Arnold and James Gosling or to
http://java.sun.com for more information about native methods.
Using PersonalJava Solution for OS-9 17

Memory Management

The OS-9 implementation of the JVM allocates memory from two basic
areas: the Java heap and system RAM. The Java heap is allocated from
system RAM when the JVM is first started; the maximum heap is allocated
at that time. The maximum size of the Java heap is set using the -mx
option. While the JVM is running, addition memory is allocated from
system RAM as needed for such things as native thread stacks, GUI
objects, class information, etc. The -ss command line option is used to set
the size of the native thread stack.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Java help option for more information about the Java
options available. Java help is available from the OS-9 command
prompt by typing pjava -help.

Storage that is no longer being used in the Java heap is reclaimed using a
mechanism called garbage collection. The JVM collects garbage when
there is insufficient heap space to allocate an object or, if asynchronous
garbage collection is enabled, at periodic intervals. The garbage collection
mechanism does not affect or interact directly with the operating system.
18 Using PersonalJava Solution for OS-9

1PersonalJava™ Solution for OS-9® Overview
Security

PersonalJava™ Solution for OS-9 V3.1 contains the security classes from
JDK 1.2. These provide for the fine-grained security model so that an OEM
can allow or disallow operations on an operation-by-operation basis.

Even though security functionality has been added, there are some
security issues to keep in mind when developing Java applications for OS-9
once security functionality has been added. The JVM must be run with
super-user privileges. This allows Java applications unlimited access to
disk drives and other sensitive resources. This should be considered when
allowing non-trusted applications to run or before removing restrictions
from applets.

NoteNote
The security property file that Microware ships is different that the
default Sun version. Microware’s version allows all operations. All
operations are allowed to provide backward compatibility with previous
versions of PersonalJava™ Solution for OS-9. Change the file
\MWOS\SRC\PJAVA\LIB\security\java.policy to enforce a
different policy. Refer to Sun JDK 1.2 documentation for the format of
this file.
Using PersonalJava Solution for OS-9 19

20 Using PersonalJava Solution for OS-9

Chapter 2: PersonalJava™ Solution

for OS-9 Environment

This chapter provides an overview of the PersonalJava™ Solution for
OS-9 Environment.

This chapter includes the following topics:

• Host System Architecture

• PersonalJava Environment

• Command Line Arguments

• Environment Variables

Host System Architecture

The source and example code and makefiles for Java on the Windows
(DOS)-based host are located in the directories as shown in Figure 2-1.
<proc> indicates your processor family. <portproc> indicates the
specific family member your port supports. <proc> and <portproc> may
be the same. <port> indicates the board or family of boards your port
supports.

Figure 2-1 Source File Directories for PersonalJava™ Solution for OS-9
on the Host

MWOS\DOS\BIN
MWOS\DOS\jdk1.1.8
MWOS\DOS\jdk1.1.8\bin
MWOS\DOS\jdk1.1.8\demo
MWOS\DOS\jdk1.1.8\include
MWOS\DOS\jdk1.1.8\lib
MWOS\SRC\AFW\WINMGR
MWOS\SRC\ASSETS\FONTS\AGFA
MWOS\SRC\DEFS
MWOS\SRC\PJAVA\DOC
MWOS\SRC\PJAVA\EXAMPLES
MWOS\SRC\PJAVA\LIB
MWOS\OS9000\SRC\DEFS
MWOS\OS9000\SRC\DEFS\JAVA
MWOS\OS9000\SRC\IO\MODMAN\FM\DESC
MWOS\OS9000\<proc>\ASSETS\FONTS\AGFA
MWOS\OS9000\<proc>\CMDS
MWOS\OS9000\<proc>\CMDS\BOOTOBJS
MWOS\OS9000\<proc>\LIB
MWOS\OS9000\<proc>\LIB\SHARED
MWOS\OS9000\<portproc>\PORTS\<port>\BOOTS\INSTALL\INI
MWOS\OS9000\<portproc>\PORTS\<port>\BOOTS\INSTALL\PORTBOOT
MWOS\OS9000\<portproc>\PORTS\<port>\CMDS
MWOS\OS9000\<portproc>\PORTS\<port>\CMDS\BOOTOBJS\PJAVA
MWOS\OS9000\<portproc>\PORTS\<port>\LIB\SHARED
MWOS\OS9000\<portproc>\PORTS\<port>\PJAVA
MWOS\OS9000\<portproc>\PORTS\<port>\PJAVA\JCC
MWOS\OS9000\<portproc>\PORTS\<port>\PJAVA\MODMAN
MWOS\OS9000\<portproc>\PORTS\<port>\PJAVA\RUNTIME
MWOS\OS9000\<portproc>\PORTS\<port>\PJAVA\TARGET
22 Using PersonalJava Solution for OS-9

2PersonalJava™ Solution for OS-9 Environment
The directories contain the following files:

MWOS\DOS\BIN contains module and file archive building
tools related to Java

MWOS\DOS\jdk1.1.8 contains the Windows JDK (Java
Development Kit) 1.1.8 from Sun with a
Microware-specific version of some files

MWOS\DOS\jdk1.1.8\bin
contains Java binary .exe and .dll files
for the Windows host

NoteNote
The original javah.exe and javah_g.exe found in JDK 1.1.8 have
been replaced by versions that generate OS-9 headers.

MWOS\DOS\jdk1.1.8\demo
contains the JDK 1.1 demos from Sun for
the Windows host

NoteNote
The demo applets are provided as-is by Sun and may contain
dependencies on sound assets. Also included, for historical purposes,
are examples from JDK v1.0.2.

MWOS\DOS\jdk1.1.8\include
contains the Java 1.1 header files for the
Windows host

MWOS\DOS\jdk1.1.8\lib
contains original files from Sun for JDK
1.1.8 with a Microware enhanced jcc.zip
file for the Windows host
Using PersonalJava Solution for OS-9 23

MWOS\SRC\AFW\WINMGR contains a text version of the window
manager settings file

MWOS\SRC\ASSETS\FONTS\AGFA
contains the raw TrueType (.ttf) and
MicroType (.fco) files shipped with
Microware’s PersonalJava™ Solution.
These files are converted into loadable data
modules by the os9make file in this
directory.

MWOS\SRC\DEFS contains code required for compiling
Microware shared libraries on the Windows
host

MWOS\SRC\PJAVA\DOC contains various documentation files

MWOS\SRC\PJAVA\EXAMPLES
contains the Non-JNI (Java Native Interface)
and JNI native methods examples as well as
other examples from Microware

MWOS\SRC\PJAVA\LIB contains the JVM (Java Virtual Machine)
properties files and class library zip files for
the OS-9 target

classes.zip should be used with the
optimized VM (pjava) and classes_g.zip
should be used with the debug VM
(pjava_g).

MWOS\OS9000\SRC\DEFS contains the modman header file

MWOS\OS9000\SRC\DEFS\JAVA
contains OS-9 specific header files for Java

MWOS\OS9000\SRC\IO\MODMAN\FM\DESC
contains the modman editmod description
file

MWOS\OS9000\<proc>\ASSETS
contains font assets for the OS-9 target
24 Using PersonalJava Solution for OS-9

2PersonalJava™ Solution for OS-9 Environment
MWOS\OS9000\<proc>\CMDS
contains JVM, window manager, and other
support binaries for the OS-9 target

MWOS\OS9000\<proc>\CMDS\BOOTOBJS
contains the modman file manager and
device descriptor

MWOS\OS9000\<proc>\LIB
contains code required for compiling shared
libraries on the Windows host

MWOS\OS9000\<proc>\LIB\SHARED
contains shared PersonalJava™ Solution
objects for the OS-9 target

MWOS\OS9000\<portproc>\PORTS\<port name>\
BOOTS\INSTALL\INI
contains JavaDemo.ini, the
demonstration Configuration Wizard
configuration file

MWOS\OS9000\<portproc>\PORTS\<port name>\
BOOTS\INSTALL\PORTBOOT
contains java.ml, the module list used
when Java support is enabled in the
Configuration Wizard

MWOS\OS9000\<portproc>\PORTS\<port>\CMDS
contains the window manager stock image
resources

stock_8.res—8-bit bitmap and cursor
support (default)

stock_9.res—16-bit bitmap and cursor
support
Using PersonalJava Solution for OS-9 25

NoteNote
The filenames for the stock modules are in the following format:

stock_<coding method>{_swapped}.res

where <coding method> is the decimal value for the MAUI coding
method used for the graphics device (8 = 8-bit CLUT, 9 = RGB555, etc.)

See maui_gfx.h for these values. maui_gfx.h is located in the
following directory: MWOS\SRC\DEFS\MAUI.

The suffix _swapped is appended to stock files that have drawmaps
nybble or byte swapped with respect to the target processor. For
example, on a big-endian processor the file called
stock_9_swapped.res would contain images in 16-bit RGB555 that
are byte swapped on 16-bit boundaries to be placed into little-endian
graphics memory.

MWOS\OS9000\<portproc>\PORTS\<port>\
CMDS\BOOTOBJS\PJAVA
contains the various port-specific files
related to Java support

MWOS\OS9000\<portproc>\PORTS\<port>\LIB\SHARED
contains a pre-generated color cube module
for the Java libmawt.so shared library

MWOS\OS9000\<portproc>\PORTS\<port>\PJAVA
contains the makefile to run the makefiles in
the sub-directories

These makefiles produce the files
necessary to install Java on both disk-based
or ROM-based systems.
26 Using PersonalJava Solution for OS-9

2PersonalJava™ Solution for OS-9 Environment
MWOS\OS9000\<portproc>\PORTS\<port>\PJAVA\JCC
contains the makefile to build
libclasses.so, a pre-loaded version of
classes.zip and classes from
classes.lst.

MWOS\OS9000\<portproc>\PORTS\<port>\PJAVA\MODMAN
contains the makefile used to build the
modman archive of the properties files listed
in pjava_home.ml and
pjava_home_g.ml.

MWOS\OS9000\<portproc>\PORTS\<port>\PJAVA\RUNTIME
contains the makefile used to build the
merged module file suitable for adding to a
boot, burning into Flash, or loading at
run-time to get Java support

MWOS\OS9000\<portproc>\PORTS\<port>\PJAVA\TARGET
contains the makefile used to build an
archive suitable for transferring to a
disk-based target and unarchiving to get
Java support
Using PersonalJava Solution for OS-9 27

PersonalJava Environment

Figure 2-2 shows how the modules and files representing the
PersonalJava environment interact at runtime on an OS-9 based device.

Figure 2-2 The PersonalJava Environment

The Java Virtual Machine

The central component of the PersonalJava environment is the JVM
contained in the libjavai.so shared library module. It reads Java class
files that make up user applets and applications, third party applications,
and classes that make up the standard Java Application Programming
Interface (typically stored in the classes.zip file).

OS-9

SoftStax
(SPF and LAN

Communications PAK)

MAUI
(Multimedia Application

User Interface)

Java Application
Standard
Classes

(classes.zip)

User Applets
and Applications

Remote Classes

Native Methods for AWT
Java Virtual Machine (JVM) and Native
Methods for JAVA API (pjava module)
28 Using PersonalJava Solution for OS-9

2PersonalJava™ Solution for OS-9 Environment
Native Methods and OS-9

Native Methods are methods for Java classes that are written in a native
language, such as C or C++.

In the course of executing the methods of the Java classes, the JVM can be
instructed to call Native Methods residing either within the JVM itself or in a
user-defined shared library. These Native Methods can then make calls into
one of the OS-9 File Managers (such as SoftStax®), an OS-9 API support
module (MAUI), or the OS-9 Kernel.

All native methods needed by the PersonalJava API (Application Program
Interface) are contained in the libjavai.so and other shared library
modules. These native methods make calls into SoftStax (for networking
support), MAUI (for graphics, windowing, and audio), and the Random
Block File Manager (RBF) and the Sequential Character File Manager
(SCF) (for basic I/O). The core JVM makes calls directly into the OS-9
Kernel for such things as thread support and spawning processes.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 6:Creating Native Methods for OS-9 for more
information about Native Methods.

I/O

PersonalJava™ Solution for OS-9 uses the standard input, output, and
error paths of the process to implement the Java System.in,
System.out, and System.err objects. The System.in object has
special behavior, once I/O begins on that path the JVM is blocked until a
carriage return character is encountered.

Support Files

libmawt_0.dat contains information about the color lookup table (CLUT)
that is normally recalculated each time the Java graphics package is
started. The recomputation is memory and CPU intensive and includes
Using PersonalJava Solution for OS-9 29

floating-point arithmetic. For systems that have only software floating-point,
it can be very time consuming. For this reason, we have captured the
output of the computations and included them in this module. The presence
of this module in memory when pjava starts is optional, but it can
decrease the start time and RAM usage dramatically.

This package includes a version of libmawt_0.dat, created for your
package at the time it was developed. Due to circumstances outside the
realm of Java, there may come a time when this module becomes
out-of-date. There may be a time when Java starts up and it ignores
libmawt_0.dat and creates libmawt_1.dat. This is not a bug; it
simply indicates that your libmawt_0.dat module has become
out-of-date.

If this occurs, follow these steps:

Step 1. Run Java and wait for it to create and finish the libmawt_1.dat
module. When the module is complete it will have a correct CRC.

Step 2. Save the libmawt_1.dat module from memory using the save utility
to a disk-based device and copy it to MWOS/OS9000/<portproc>/
PORTS/<portname>/LIB/SHARED.

Step 3. Change the loadjava script located in /h0/SYS on your target to
load libmawt_1.dat instead of libmawt_0.dat.

NoteNote
Your .dat module only becomes out-of-date if other modules on the
system are updated in such a way that the color profile of the system
changes. In other words, if you do not update the MAUI or Java
software in your system, the module may never become out-of-date.
30 Using PersonalJava Solution for OS-9

2PersonalJava™ Solution for OS-9 Environment
Command Line Arguments

The following are the command line arguments and options for the pjava
and pjava_g executables. <number> is a decimal number followed by ‘k’
to indicate kilobytes or ‘m’ to indicate megabytes or nothing to indicate
bytes.

-help or -? shows the summary of the command line
options for your reference

Print this message.

-bootclasspath <directories> specifies the list of places to look for core
classes.

This specifies the set of directories, .zip,
and/or .jar files in which to search for core
class references. The directory names are
colon delimited from each other. The boot
class path defaults to
$JAVA_HOME\lib\classes.zip or
classes_g.zip when pjava_g is used.

-classpath <directories> specifies the list of places to look for
application classes

This specifies the set of directories, .zip,
and/or .jar files in which to search for
application class references. The directory
names are colon delimited from each other.

See -bootclasspath for setting the
location of the core classes
(classes[_g].zip).

-D<name>=<value> sets a system property

This sets the name and value of a system
property. These can be used instead of
environment variables in many cases.

-debug enables remote JAVA debugging
Using PersonalJava Solution for OS-9 31

The VM will print a password for the debug
agent so a remote debugger can be
attached.

-debugport<port> specifies the debugger TCP/IP port number

This specifies that a specific port be used
for debugger communications. By default, a
free port will be chosen automatically.

-fullversion prints out the verbose build version

This makes pjava print a verbose version
string that reflects the implementation
version and PersonalJava application
environment version of Microware’s
PersonalJava™ Solution. Nothing more
than printing the message happens.

-l<number> sets the logging level

This sets the verbosity of the logging
messages printed by the VM. The higher the
number, the more messages printed. The
messages are printed using appdbg
technology and can be viewed using adump.
[Debug VM only]

-mr<number> sets the red heap reserve size

This sets the amount of memory remaining
that indicates that the VM is critically low on
Java heap memory. By default, heap
reserves are disabled. Specify -mr and/or
-my to enable heap reserves. See
sun.misc.VM for using this value.

-ms<number> sets the initial Java heap size

This option is not supported in Microware’s
VM. -mx controls the size of the Java heap.

-mx<number> sets the maximum Java heap size
32 Using PersonalJava Solution for OS-9

2PersonalJava™ Solution for OS-9 Environment
This is also the minimum Java heap size.
The entire Java heap is allocated when the
VM initializes so this value must be as large
as the application will ever want it to be.

-my<number> sets the yellow heap reserve size

This sets the amount of memory remaining
that indicates that the VM is running low on
Java heap memory. By default, heap
reserves are disabled. Specify -my and/or
-mr to enable heap reserves. See
sun.misc.VM for using this value.

-nm<number> sets the number of extra monitors to expand
monitor cache

This sets the increment in number of cached
monitors when the monitor cache
underflows.

-noagent suppresses use of libagent_g.so

This option is not currently supported by
Microware’s VM.

-noasyncgc disables asynchronous garbage collection

The periodic automatic collection of
garbage is suppressed. Use this option for
the most fluid animations.

-noclassgc disables class garbage collection

Garbage collection of unusable class
information is suppressed. This is for
compatibility with VMs that don’t garbage
collect classes.

-noverify does not verify any class

This disables the act of class verification.
This can pose a serious security risk if used.

-oss<number> sets the maximum Java stack size for any
thread
Using PersonalJava Solution for OS-9 33

This sets the Java stack size for threads
within the VM.

-ss<number> sets the maximum native stack size for any
thread

This sets the native (C) stack size for
threads within the VM. See stackwatch for
more information about determining native
stack usage.

-t turns on instruction tracing

Information about each executed bytecode
is printed. [Debug VM only]

-tm turns on method tracing

Information about each entered and exited
method is printed. [Debug VM only]

-verbose or -v turns on verbose mode

Information on each class loaded and
initialized is printed.

-version prints out the build version

This makes pjava print a terse version string
that reflects the implementation version of
Microware’s PersonalJava™ Solution.
Nothing more than printing the message
happens.

-verbosegc prints messages when garbage collection
occurs

Information about the amount of collected
garbage and the amount of time it took to
collect it is printed while the VM runs.

-verify verifies all classes when read in

This option enables the class verifier for all
classes used by the VM.

-verifyremote verifies classes read in over the network
[default]
34 Using PersonalJava Solution for OS-9

2PersonalJava™ Solution for OS-9 Environment
This option enables the class verifier for only
those classes that are loaded from remote
network machines.

-Xrun<library>:<options> execute a JVM extension module.
Microware’s PersonalJava currently has no
supported JVM extension modules.
Using PersonalJava Solution for OS-9 35

Environment Variables

The following environment variables are recognized by the JVM and its
components:

CLASSPATH specifies the location of the .class, JAR
(Java Archive), or zip files used as
application Java libraries.

PJava loads core classes (those found in
classes[_g].zip) from the directories
specified with -bootclasspath. Adding a
classes.zip to the CLASSPATH environment
variable will have no effect. Use
-bootclasspath or change the value of
JAVA_HOME to change which classes.zip
gets used.

This can also be specified (and overridden)
using the -classpath command line
option.

The locations are separated from one
another with colons.

HOME sets the user.home system property

JAVA_HOME specifies the location of the Java properties
files. This directory is also used as a basis
for building the pathlist to the core class
library .zip file. classes.zip should reside
at $JAVA_HOME\lib\classes.zip.
classes_g.zip should reside at
$JAVA_HOME\lib\classes_g.zip.
pjava uses classes.zip. pjava_g uses
classes_g.zip.

LD_LIBRARY_PATH specifies the locations of the shared library
modules

The locations are separated from one
another with colons.
36 Using PersonalJava Solution for OS-9

2PersonalJava™ Solution for OS-9 Environment
For diskless systems, the library modules
can reside in memory and this variable need
not be set.

MEMWATCH if set, the debugging version of the JVM
emits memory use information when it
terminates, or when <cntl> C is typed

The set value is not important. Refer to
Chapter 9:Monitoring PersonalJava
Applications for more information.

The set value is not important.

MWOS specifies the location of the MWOS
directory on the platform

PATH specifies the locations to search for
executable modules

The locations are separated from one
another with colons.

PORT specifies the name of the terminal device

SNDDEV specifies the name of the sound device
used by the JVM

STACKWATCH if set, the debugging version of the JVM
emits stack usage information when it
terminates or when <cntl> C is typed

The set value is not important.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 9:Monitoring PersonalJava Applications for more
information.

TZ sets the user.timezone system property

TZ is also used by Java’s native time and
date functions.
Using PersonalJava Solution for OS-9 37

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Ultra C Library Reference manual for acceptable values
for the TZ variable.

USER sets the user.name system property

NoteNote
Refer to the Getting Started with PersonalJava™ Solution for OS-9
manual for examples on how to set these variables for your target
platform.
38 Using PersonalJava Solution for OS-9

Chapter 3: Creating Java Applications

for OS-9

This chapter provides an overview of PersonalJava™ Solution for OS-9
application development. It uses relatively simple exercises to describe
development of Java applications and applets for an OS-9 target, with
or without using AWT (Abstract Windowing Toolkit). More complicated
Java application development, specifically Native Methods, is discussed
in later chapters.

This chapter includes the following topics:

• The Hello World Application (non-AWT Version)

• The Hello World Application (AWT Version)

• Tips for Running Your Application or Applet

NoteNote
During the installation process, the Sun JDK (Java Development Kit)
1.1.8 for Windows was installed in \MWOS\DOS\jdk1.1.8 on your
host. You must be using this version of the JDK while completing this
tutorial. These examples use the E:\ directory. This location may vary
depending on where you chose to install your PersonalJava™ Solution
for OS-9 package).

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Make sure you have read the document Getting Started With
PersonalJava™ Solution for OS-9 and completed the exercises for
the demos before beginning these exercises.
40 Using PersonalJava Solution for OS-9

3Creating Java Applications for OS-9
The Hello World Application (non-AWT
Version)

Completing the exercise below will enable you to do the following:

• create a stand-alone Java application on your Windows 95/98/NT
development host

• run the Java application on your Windows 95/98/NT development host

• run the same Java application on your OS-9 target system

Creating a Java Source File

The following example uses the non-AWT version of the Hello World
application. The source is found in E:\MWOS\SRC\PJAVA\
EXAMPLES\HELLO\HelloWorldApp.java on your host machine.
/**
* The HelloWorldApp class implements an application that simply displays "Hello
* World!" to the standard output.
*/
class HelloWorldApp {
 public static void main(String[] args) {
 System.out.println("Hello World!"); //Display the string.
 }
}

Compiling the Source File

In a DOS shell on a Windows 95/98/NT development machine, compile the
source file using the Java compiler.

> cd \MWOS\SRC\PJAVA\EXAMPLES\HELLO
> javac HelloWorldApp.java

When the compilation finishes, you will have a file named
HelloWorldApp.class in the same directory as the Java source file.
Using PersonalJava Solution for OS-9 41

NoteNote
If the compilation failed, make sure you typed in and named the
program exactly as shown in the example; it is case sensitive.

Running the Application on the Windows 95/98/NT
Development Host

In a DOS shell on a Windows 95/98/NT development machine, run the
program using the Java interpreter.

java HelloWorldApp

Hello World! is displayed to the standard output on the host machine.

Transferring the Class to the Target OS-9 System

In the below example, transferring the class to the target is done by using
FTP. The transfer could also be done using NFS. To transfer your class to
the target OS-9 system using FTP, complete the following steps:

Step 1. Choose Start->Run on the Windows desktop.

Step 2. In the Run dialog box, type ftp <target machine name> then click
the OK button.

Step 3. Log on to the OS-9 machine by typing the user name and password in
the FTP (MS-DOS Shell) window. The default user name and password
for OS-9 machines are super and user.
42 Using PersonalJava Solution for OS-9

3Creating Java Applications for OS-9
Step 4. Change to the directory containing the application classes on the
Windows machine by typing the following in the FTP window:

lcd MWOS\SRC\PJAVA\EXAMPLES\HELLO

Step 5. Change to the Java sources directory on the OS-9 machine by typing
the following in the FTP window. Create the necessary directories if
they do not exist. Your root disk device (/h0 in the example) may vary:

cd /h0/MWOS/SRC/PJAVA/EXAMPLES/HELLO

Step 6. Change to binary transfer by typing the following in the FTP window:

bin

Step 7. Transfer the class file by typing the following in the FTP window:

put HelloWorldApp.class

Step 8. Quit the FTP session once the transfer is complete:

quit

Starting the Java Application On the OS-9 System

To start the Java Application on your target using telnet to communicate
with the OS-9 system, complete the following steps:

Step 1. Choose Start->Run from the Windows desktop.

Step 2. In the Run window text field enter telnet <target machine name>
and click the OK button.

Step 3. Log onto the OS-9 system by typing the user name and password.
super and user are the defaults for OS-9 systems.

Step 4. Change to the demo directory on the OS-9 machine by typing

chd /h0/MWOS/SRC/PJAVA/EXAMPLES/HELLO

Step 5. Run the application on the OS-9 target system using the Java
interpreter:
Using PersonalJava Solution for OS-9 43

pjava HelloWorldApp

Hello World! is displayed to the standard output on the target machine.
44 Using PersonalJava Solution for OS-9

3Creating Java Applications for OS-9
The Hello World Application (AWT Version)

The following example uses the AWT version of the Hello World
application. The source is found in MWOS\SRC\PJAVA\EXAMPLES\
HELLO_AWT on your host machine.
/**
 * The HelloWorldAppAWT class implements an application that displays "Hello
 * World!" using the AWT
 */
import java.awt.*;
import java.awt.event.*;

public class HelloWorldAppAWT extends Frame {
 Label statusBar = new Label();
 String status = "Hello World! ";
 WindowEventHandler weh = new WindowEventHandler();

HelloWorldAppAWT() {
 super("Hello (AWT) Example");
 add("North", statusBar);

 addWindowListener(weh);
 setSize(300, 200);

 statusBar.setText(status);
 show();

 }

 public class WindowEventHandler extends WindowAdapter {

 public void windowClosing(WindowEvent evt)
 {
 System.exit(0);

 }
 }

 static public void main(String[] args) {
 new HelloWorldAppAWT();

}
}

Follow the same steps as you did in The Hello World Application
(non-AWT Version) on page 41 regarding compiling the source file; run
the application on the windows host and transfer and run the application on
your OS-9 target system with the following exceptions:

• replace the source file name HelloWorldApp.java with
HelloWorldAppAWT.java

• replace the directory name HELLO with HELLO_AWT
Using PersonalJava Solution for OS-9 45

• transfer the HelloWorlAppAWT.class and
HelloWorldAppAWT$WindowEventHandler.class files to the
target using FTP.

When the application is executed, a window appears containing the text
Hello World! and a button to quit the Java application.
46 Using PersonalJava Solution for OS-9

3Creating Java Applications for OS-9
Tips for Running Your Application or Applet

Keep the following tips in mind after you have written your Java application
or applet. Completing the steps below will help to assure that the applet or
application will run on your target:

• Edit any class files that reference image (GIF and JPG) files, so that
they reference the correct directory when loaded on your target. Below
is an example:
imageViewer1.setURL(new java.net.URL("file:/h0/DEMO/img0001.gif"));

• Using FTP, transfer all class files, image files, and any other files
needed to properly execute the application to the application’s directory
on the target. If you are running an applet, transfer any HTML files
necessary to support the applet as well.

If you are using a Java development tool such as Visual Cafe®, you may
need to include additional .zip files that include class definitions for
use with their tools. For example, Symantec’s VisualCafe® has an
additional .zip file called Symclass.zip. This can be found in the
same directory as the classes.zip file.

NoteNote
You cannot use Hawk™ to transfer these files because class files are
not OS-9 modules.

• Update the CLASSPATH environment variable on the target to include
the directory of your new application or applet or additional .zip files.
This tells the JVM where to find classes it needs to run. Below is an
example:

setenv CLASSPATH /h0/DEMO:$CLASSPATH
Using PersonalJava Solution for OS-9 47

48 Using PersonalJava Solution for OS-9

Chapter 4: Choosing a PersonalJava

Diskless Strategy

This chapter continues the overview of PersonalJava application
development for OS-9; it discusses two strategies for running your
application on a diskless OS-9 target. The chapter also provides a
practical example for each of the two strategies.

The following sections are included in this chapter:

• Introduction

• Source Files

• Strategy 1: Adding Your Java Application to libclasses.so

• Strategy 2: Making the zip Files Into Data Modules

Introduction

During the implementation and debugging stages, the development
scenario is similar to the one described in Chapter 3: Creating Java
Applications for OS-9. This scenario is shown below:

Step 1. Create a Java source file.

Step 2. Compile the Java source file on the Windows host machine.

Step 3. Run and debug the Java application on the Windows host machine.

Step 4. Transfer the class or classes to the target OS-9 system.

Step 5. Run the Java application on the target OS-9 system.

Step 6. Debug/optimize how the Java application runs on the target OS-9
system.

After completing the above steps, it is time to select a diskless strategy for
your diskless OS-9 target. The strategies you can pick from include the
following:

• Strategy 1: Adding Your Java Application to libclasses.so

• Strategy 2: Making the zip Files Into Data Modules

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 5: Additional Considerations for Choosing a
PersonalJava Diskless Strategy for an in-depth discussion of the pros
and cons of both diskless target implementation strategies.
50 Using PersonalJava Solution for OS-9

4Choosing a PersonalJava Diskless Strategy
Source Files

The source files used to create Java applications for a diskless OS-9 target
are shown below. Specific files are discussed on the following pages.

Figure 4-1 Source Files Used to Create Java Applications on a Diskless
OS-9 Target

MWOS\DOS\jdk1.1.8\lib
jcc.zip

MWOS\SRC\PJAVA\LIB
classes.zip
*.properties
security*

MWOS\OS9000\<portproc>\PORTS\<portname>\CMDS\BOOTOBJS\PJAVA
libclasses.so
pjava_home.mar
pjava_home_g.mar
pjruntime
pjruntime_g

MWOS\OS9000\<portproc>\PORTS\<portname>\PJAVA\JCC
classes.lst
makefile

MWOS\OS9000\<portproc>\PORTS\<portname>\PJAVA\MODMAN
pjava_home.ml
pjava_home_g.ml

MWOS\OS9000\<portproc>\PORTS\<portname>\BOOTS
Using PersonalJava Solution for OS-9 51

Strategy 1: Adding Your Java Application to
libclasses.so

Listed below is information about building the merged module file
pjruntime. Once built, this module contains the modules necessary to run
PersonalJava™ Solution for OS-9 on a diskless system.

The Diskless PersonalJava Makefiles

The files below are included on the Windows host machine, in the directory
MWOS\OS9000\<portproc>\PORTS\<portname>\PJAVA. All relative
pathlists shown below are relative to this directory.

makefile calls the makefiles in the sub-directories

JCC\makefile preloads the classes listed in
JCC\classes.lst and the classes in
E:\MWOS\SRC\PJAVA\LIB\classes.zip

After pre-loading the classes, makefile calls
the assembler and linker to produce the
shared class library: . .
\CMDS\BOOTOBJS\PJAVA\
libclasses.so

Make changes in the JCC
(JavaCodeCompact) directory if you want to
change Java options, JCC options, or
compiler options.

If you choose to use pre-loaded classes, be
sure to remove classes[_g].zip from
MODMAN\pjava_home[_g].ml. This will avoid
having two copies of the classes in memory.

JCC\classes.lst contains no class files, as shipped
52 Using PersonalJava Solution for OS-9

4Choosing a PersonalJava Diskless Strategy
Edit this list if you want to add your Java
application classes, zip archives, or jar
archives to libclasses.so. For example:

..\..\..\..\..\..\SRC\PJAVA\MY_APP\project1\demo1.class

..\..\..\..\..\..\SRC\PJAVA\MY_APP\project1\demo2.class

..\..\..\..\..\..\SRC\PJAVA\MY_APP\project1\demo3.class

JCC\jccargs shows a list of arguments to JCC

You should not have to edit this file.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the document Using JavaCodeCompact for OS-9 for an
in-depth discussion of building a shared class library using
JavaCodeCompact.

MODMAN\makefile generates the modman archive of the
PersonalJava™ Solution for OS-9
properties files and class zip archives listed
in MODMAN\pjava_home.ml and
MODMAN\pjava_home_g.ml

After running the mar utility, the makefile
produces ..\CMDS\BOOTOBJS\
PJAVA\pjava_home.mar and
pjava_home_g.mar.

MODMAN\pjava_home.ml
MODMAN\pjava_home_g.ml

list the files to convert into modman archives

Edit these if you want to add or change
which files are put into the archives.
Remove classes.zip if pre-loaded classes
are being used.
Using PersonalJava Solution for OS-9 53

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 5: Additional Considerations for Choosing a
PersonalJava Diskless Strategy for an in-depth discussion of how to
use the mar utility and the modman file manager.

RUNTIME\makefile generates pjruntime and pjruntime_g, the
merged module files containing complete
PersonalJava support. This file can be very
useful for diskless targets.

After merging the modules the makefile
produces ..\CMDS\BOOTOBJS\PJAVA\
pjruntime and pjruntime_g.

Edit pjruntime.ml or pjruntime_g.ml to
change to contents of these files.

TARGET\makefile generates pjava.mat, the Microware
Archive Tool archive containing all the files
comprising PersonalJava support on a
target machine. This file can be very useful
for disk-based targets.

After running mat (Microware Archive Tool)
the makefile produces pjava.mat in the
current directory.

This file is then downloaded to a disk-based
target and extracted with mat in the MWOS
directory at the root of the system disk
device. Refer to Appendix D: Microware
Archive Tool for more information about
using mat.

Once installed, the target is capable of
running PersonalJava applets or
applications with modules and related files
located on disk.
54 Using PersonalJava Solution for OS-9

4Choosing a PersonalJava Diskless Strategy
Running the Diskless PersonalJava Makefiles

Complete the following steps to run the diskless PersonalJava makefiles:

Step 1. Build a bootfile using the Configuration Wizard.

Step 2. Boot the target machine using this bootfile.

Step 3. Find the memory address of the kernel. At the OS-9 prompt, type the
following:
$ mdir -e kernel

You should see something similar to the following:
 Current Module Directory

 Addr Size Owner Perm Type Revs Ed # Lnk Module name
-------- -------- ----------- ---- ---- ---- ----- ----- --------------
c002c520 83296 0.0 0555 Sys a000 66 1 kernel

Take note of the memory address.

Step 4. Find the size of the bootfile.

Example: At the PC command prompt, type the following:
>cd E:\MWOS\OS9000\<portproc>\PORTS\<portname>\BOOTS\INSTALL\PORTBOOT
>dir os9kboot

You should see something similar to the following:
 Volume in drive E has no label.
 Volume Serial Number is 07CE-0507

 Directory of E:\MWOS\OS9000\ARMV4\PORTS\BRUTUS\BOOTS\INSTALL\PORTBOOT

08/12/98 09:54a 2,324,820 os9kboot
 1 File(s) 2,324,820 bytes
 954,138,624 bytes free

Step 5. Convert the size of the bootfile to hexadecimal.

Example: 2324820 converts to 237954 in hex.

Step 6. Compute the memory address where libclasses.so will be placed.
Use the following formula: kernel’s address + size of bootfile = address
for libclasses.so.

Example: c002c520 + 237954 = c0263e74
Using PersonalJava Solution for OS-9 55

Step 7. Edit the line listed below in E:\MWOS\OS9000\<portproc>\
PORTS\<portname>\PJAVA\JCC\makefile.

Must be set to location where libclasses.so will be
in memory!
#
for this example, libclasses.so is the 1st module
loaded at address 0x30000000
#
MODULEBASE = 0x30000000

MODULEBASE is the address at which libclasses.so resides. Change
this value to the new address of libclasses.so.

Example: MODULEBASE = 0xc0263e80

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Using JavaCodeCompact for OS-9 for an in-depth discussion
of using the JavaCodeCompact.

Step 8. Set the Windows CLASSPATH environment variable so jcc.zip can be
located and the PATH environment variable so the Windows JDK Java
executables can be found. This is done on the Windows host machine
by completing the following:

1. Right click on My Computer

2. Select Properties

3. Click on the Environment tab in the System Properties window

4. Select the CLASSPATH environment variable in either the System
Variables or User Variable area

5. Enhance the value of CLASSPATH so it contains the path
%MWOS%\DOS\jdk1.1.8\lib\jcc.zip

6. Click the Set button.

7. Click the Apply button.
56 Using PersonalJava Solution for OS-9

4Choosing a PersonalJava Diskless Strategy
8. Select the PATH environment variable in either the System Variables or
User Variable area

9. Enhance the value of PATH so it contains the path
%MWOS%\DOS\jdk1.1.8\bin

10.Click the Set button.

11. Click the Apply button.

12.Click the Ok button.

Your class path should look like the following:
%MWOS%\DOS\jdk1.1.8\lib\classes.zip;.;%MWOS%\DOS\jdk1.1.8\lib\jcc.zip

where %MWOS% is the MWOS directory in which you installed
PersonalJava™ Solution for OS-9.

NoteNote
If the application(s) you plan to run requires multiple windows, multiple
frames, non-modal dialogs, menus or scroll bars, refer to Chapter 8:
Enhancing the Properties Files, Using Multiple Windows.

Step 9. Run the PersonalJava makefiles. Type the following commands on the
Windows host machine:

cd MWOS\OS9000\<portproc>\PORTS\<portname>\PJAVA
os9make
Using PersonalJava Solution for OS-9 57

NoteNote
In the pre-loading stage on the Windows host machine, the Java
process loads all of the classes listed in JCC\classes.lst and
classes.zip into memory. You may need to allocate more heap
space for the Java process. To do this, edit the line listed below in
JCC\makefile:

$(RDIR)/classes.a: nulltrg ./$(MAKENAME)
-$(DEL) $(RDIR)/classes.a
java -mx48m JavaCodeCompact -f jccargs ...

Step 10. Paste a copy of libclasses.so into the directory containing os9kboot.
Use the Windows Explorer to copy the following:

E:\MWOS\OS9000\<portproc>\PORTS\<portname>\CMDS\BOOTOBJS\PJAVA\libclasses.so

to
E:\MWOS\OS9000\<portproc>\PORTS\<portname>\BOOTS\INSTALL\PORTBOOT.

Step 11. Merge the bootfile file with libclasses.so.

Type the following command:
cd MWOS\OS9000\<portproc>\PORTS\<portname>\BOOTS\INSTALL\PORTBOOT

os9merge os9kboot libclasses.so > os9kboot_libclasses

Step 12. Transfer the bootfile merged with libclasses.so to the OS-9 target
machine.

Rename the bootfile if necessary so it is the same name it had before
libclasses.so was merged with it.

Example: copy os9kboot_libclasses G:\os9kboot
58 Using PersonalJava Solution for OS-9

4Choosing a PersonalJava Diskless Strategy
NoteNote
If your target does not have a flashcard, add libclasses.so to your boot
by adding it to user.ml. Refer to the Configuration Wizard help file for
more information.

Step 13. Boot your target and type the following at the command prompt:

$ mdir -e libclasses.so

You should see something displayed similar to the following:
 Current Module Directory

 Addr Size Owner Perm Type Revs Ed # Lnk Module name
-------- -------- ----------- ---- ---- ---- ----- ----- --------------
c0263e80 1501600 1.0 0555 Subr 8001 7 2 libclasses.so

Step 14. Compare the memory address to the address you found in step 12. If
they are the same, you have successfully loaded the romized classes.

NoteNote
If any modules are added to the bootfile with the Configuration Wizard,
you must repeat this process. Adding modules to the bootfile affects the
address where libclasses.so is loaded.

NoteNote
At the end of Getting Started with PersonalJava™ Solution for
OS-9, we introduced you to the go.demo script. You are welcome to
add any or all of the following steps to this script.

For example, you can perform the following:

• enhance CLASSPATH for your application
Using PersonalJava Solution for OS-9 59

• change the step to fork pjava so it runs your application instead of
LaunchPad.

Example

The following example uses FTP to transfer pjruntime to the OS-9 target.
Complete the following steps:

Step 1. FTP pjruntime from the PC to the OS-9 target.

Step 2. Load pjruntime by typing the following:

load -ld pjruntime

Step 3. Verify everything was loaded into memory by typing the following:

mdir

Step 4. Initialize the keyboard, mouse, and modman by typing (the device
names for the keyboard or mouse may vary for your system)

iniz k0 m0 mm

Step 5. Set the JAVA_HOME environment variable by typing the following:

setenv JAVA_HOME /mm

Step 6. Start MAUI by typing the following:

maui_inp ^256 &

Step 7. Start the window manager by typing the following:

winmgr ^250 &

Step 8. Start your application by typing the following:

pjava <your application> &
60 Using PersonalJava Solution for OS-9

4Choosing a PersonalJava Diskless Strategy
Strategy 2: Making the zip Files Into Data
Modules

If you choose not to build a shared class library using JavaCodeCompact
you can use the properties files and the zip files containing the classes as
data modules.

Listed below is information about building the mar archives
pjava_home.mar and pjava_home_g.mar and making the zip files into
data modules. After this process, you will have the modules needed to run
PersonalJava technology on a diskless system.

The Diskless PersonalJava Makefiles

The files below can be found on the Windows host machine, in the directory
MWOS\OS9000\<portproc>\PORTS\<portname>\
PJAVA. All relative paths shown below are relative to this directory.

MODMAN\makefile generates modman archives of the
PersonalJava properties files and
classes.zip listed in
MODMAN\pjava_home.ml and
MODMAN\pjava_home_g.ml.

After running the mar utility, makefile
produces ..\CMDS\BOOTOBJS\PJAVA\
pjava_home.mar and pjava_home_g.mar.

MODMAN\pjava_home.ml
MODMAN\pjava_home_g.ml

list the files to convert into modman
archives. Edit these files if you want to add
or change which files are put into the
archives.

RUNTIME\makefile generates pjruntime and pjruntime_g,
the merged module files containing
complete PersonalJava support. This file
can be very useful for diskless targets.
Using PersonalJava Solution for OS-9 61

After merging the modules the makefile
produces ..\CMDS\BOOTOBJS\PJAVA\
pjruntime and pjruntime_g.

Edit pjruntime.ml or pjruntime_g.ml
to change to contents of these files.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 5: Additional Considerations for Choosing a
PersonalJava Diskless Strategy for an in-depth discussion of how to
use the mar utility and the modman file manager.

Running the Diskless PersonalJava Makefiles

NoteNote
If the application(s) you plan to run requires multiple windows, multiple
frames, non-modal dialogs, menus, or scroll bars refer to Chapter 8:
Enhancing the Properties Files, Using Multiple Windows.

Step 1. Run the PersonalJava makefile. Type the following commands on the
Windows host machine:

cd MWOS\OS9000\<portproc>\PORTS\<portname>\PJAVA\MODMAN
os9make

This makefile uses the Windows utility mar to make the file
pjava_home.mar and pjava_home_g.mar, module archives of the
PersonalJava properties files and classes.zip.

Step 2. Examine the resulting archive pjava_home.mar once the os9make
finishes. Type the following on the Windows host machine:
62 Using PersonalJava Solution for OS-9

4Choosing a PersonalJava Diskless Strategy
ident -q ..\..\CMDS\BOOTOBJS\PJAVA\pjava_home.mar

The following modules are the properties files and classes.zip listed in
MODMAN\pjava_home.ml that have been converted into a modman
archive:
mm_tree size #352 owner 0.0 ed #1 good crc #626274
mm_tree7 size #1718784 owner 0.0 ed #1 good crc #CD95B9
mm_tree6 size #2368 owner 0.0 ed #1 good crc #13263B
mm_tree5 size #8880 owner 0.0 ed #1 good crc #9B1B67
mm_tree4 size #5616 owner 0.0 ed #1 good crc #1F915B
mm_tree3 size #6032 owner 0.0 ed #1 good crc #194B0D
mm_tree2 size #1872 owner 0.0 ed #1 good crc #D2FE8E
mm_tree1 size #1712 owner 0.0 ed #1 good crc #CF9C7F

Creating the Data Modules For Your Application

Step 1. Go to the directory on the Windows development host containing your
zip or JAR file. For this example, we will assume it’s called java_app.zip

cd MWOS\SRC\PJAVA\JAVA_APP

Step 2. Run the mkdatamod utility by typing the following:

mkdatmod java_app.zip -to=os9000 -tp=<proc>
java_app.zip.mod -n=java_app.zip

Step 3. Run the Microware ident utility by typing the following:

ident java_app.zip.mod
Using PersonalJava Solution for OS-9 63

Step 4. Examine the module information for java_app.zip.mod. It looks similar
to the following:

 Header for: java_app.zip
 Module size: $b0b0 #45232
 Owner: 1.0
 Module CRC: $E10C02 Good CRC
 Header parity: $9175 Good parity
 Edition: $1 #1
 Ty/La At/Rev $400 $8000
 Permission: $111 -------r---r---r
 Data Mod, Sharable

NoteNote
The file name java_app.zip.mod was used in this example. Note
that java_app.zip.mod contains the java_app.zip data module
which is different than the original java_app.zip file that contains
your application’s zipped classes.

Step 5. Add the data module names that contain your zipped classes to
MWOS\OS9000\<portproc>\PORTS\<portname>\PJAVA\
RUNTIME\pjruntime.ml. See the below example:

..\..\..\..\OS9000\SH3\ASSETS\FONTS\AGFA\MT\mwp_java.fco

..\..\..\..\OS9000\SH3\ASSETS\FONTS\AGFA\TT\utt.ss
CMDS\BOOTOBJS\PJAVA\pjava_home.mar
* java_app.zip.mod - data module containing the classes for my Java
* application
*
..\..\..\..\SRC\PJAVA\JAVA_APP\java_app.zip.mod

Step 6. Run the make file to merge the modules needed to run PersonalJava™
Solution on a diskless system into the file pjruntime.

Type the following commands on the Windows host machine:

cd MWOS\OS9000\<portproc>\PORTS\<portname>
 \PJAVA\RUNTIME

os9make

Step 7. After the make finishes, examine the resulting file pjruntime. Type the
following on the Windows host machine:

ident -q ..\..\CMDS\BOOTOBJS\PJAVA\pjruntime
64 Using PersonalJava Solution for OS-9

4Choosing a PersonalJava Diskless Strategy
The following modules needed to run PersonalJava™ Solution on a
diskless system are printed out:
stock_8.res size #18432 owner 1.0 ed #1 good crc #5FA254
winmgr size #397648 owner 0.0 ed #13 good crc #469219
winmgr.dat size #2896 owner 0.0 ed #1 good crc #88030B
pjava size #34128 owner 1.0 ed #30 good crc #9F84BF
libjavai.so size #651848 owner 1.0 ed #30 good crc #A4C20B
libjavafile.so size #23112 owner 1.0 ed #30 good crc #770146
libmawt.so size #1317832 owner 1.0 ed #30 good crc #323166
libmawt_0.dat size #33600 owner 0.0 ed #1 good crc #5AB16B
libnet.so size #55064 owner 1.0 ed #30 good crc #E4E0F6
libzip.so size #48152 owner 1.0 ed #30 good crc #FE64B1
mm size #200 owner 0.0 ed #1 good crc #86EFE3
modman size #9032 owner 1.0 ed #12 good crc #6EC6CF
umt.ss size #608 owner 0.0 ed #1 good crc #78E4C6
mw_java.fco size #117136 owner 0.0 ed #1 good crc #C6E3D4
mwp_java.fco size #4512 owner 0.0 ed #1 good crc #671DDE
utt.ss size #608 owner 0.0 ed #1 good crc #5E46CD
mm_tree size #352 owner 0.0 ed #1 good crc #626274
mm_tree7 size #1718784 owner 0.0 ed #1 good crc #CD95B9
mm_tree6 size #2368 owner 0.0 ed #1 good crc #13263B
mm_tree5 size #8880 owner 0.0 ed #1 good crc #9B1B67
mm_tree4 size #5616 owner 0.0 ed #1 good crc #1F915B
mm_tree3 size #6032 owner 0.0 ed #1 good crc #194B0D
mm_tree2 size #1872 owner 0.0 ed #1 good crc #D2FE8E
mm_tree1 size #1712 owner 0.0 ed #1 good crc #CF9C7F
java_app.zip size #45232 owner 0.0 ed #1 good crc #E10C02

Step 8. Put the pjruntime file on your diskless OS-9 target by whatever
means are appropriate for your target. For example, the pjruntime
can be put into a bootfile, transferred using FTP to a RAM disk, loaded
from the network using NFS, or burned into the FLASH EPROM by
third-party tools.
Using PersonalJava Solution for OS-9 65

NoteNote
At the end of Getting Started with PersonalJava™ Solution for
OS-9, we introduced you to the go.demo script. You are welcome to
add any or all of the following steps to this script.

For example, you can perform the following:

• enhance CLASSPATH for your application

• change the step to fork pjava so it runs your application instead of
Launchpad.
66 Using PersonalJava Solution for OS-9

4Choosing a PersonalJava Diskless Strategy
Example

The following example uses FTP to transfer pjruntime to the OS-9 target.
Complete the following steps:

Step 1. FTP pjruntime from the PC to the OS-9 target.

Step 2. Load pjruntime by typing the following:

load -ld pjruntime

Step 3. Verify everything was loaded into memory by typing the following:

mdir

Step 4. Initialize the keyboard, mouse, and modman by typing the following:

iniz k0 m0 mm

Step 5. Set the JAVA_HOME environment variable by typing the following:

setenv JAVA_HOME /mm

Step 6. Set the CLASSPATH environment variable by typing the following:

setenv CLASSPATH /mm/java_app.zip:.

Step 7. Start MAUI (Multimedia Application User Interface) by typing the
following:

maui_inp ^256 &

Step 8. Start the window manager by typing the following:

winmgr ^250 &

Step 9. Start your application by typing the following:

pjava <your application> &
Using PersonalJava Solution for OS-9 67

68 Using PersonalJava Solution for OS-9

Chapter 5: Addit ional Considerations

for Choosing a PersonalJava Diskless

Strategy

The Java Development Kit (JDK), as shipped from Sun, is targeted
strictly at desktop environments. Even the new PersonalJava
technology aimed at consumer devices like cell phones and PDAs
(Personal Digital Assistant), requires a file system for items such as the
properties files and copyright information. Because OS-9 developers
are typically building devices with no file system, Microware has
developed a mechanism for simulating a file system in ROM. The
mechanism uses ROM to implement the file system since RAM memory
is usually limited on consumer devices.

This chapter discusses the requirements for running Microware’s
PersonalJava™ Solution on a diskless target, the items to consider
when choosing a diskless strategy, and the use of the modman file
manager. It also provides an example of using PersonalJava technology
on a diskless target.

The following sections are included with this chapter:

• Diskless Target Requirements

• Diskless Target Implementation Strategy

• Using the modman File Manager

• Diskless Target Example

Diskless Target Requirements

Below is a list of requirements for using Java on a diskless target.

Java Requirements

This section describes the files Java expects to find in a file system at
runtime. These files contain definitions of Java properties which are similar
in use to environment variables.

LIB/appletviewer.properties
contains definitions of various strings and
settings used by the AppletViewer

LIB/awt.properties
specifies various keys used to provide AWT
(Abstract Windowing Toolkit) functionality

LIB/content_type.properties
specifies various file content types,
extensions for files containing such content
and any applications that deal with those
files

LIB/font.properties
specifies which platform specific font
resources to use to implement a particular
Java font

LIB/remote_classes.properties
specifies parameters for loading classes
from a remote server

LIB/security/java.security
contains settings used by the
java.security package

LIB/security/java.policy
contains the enforced security policy. Refer
to JDK1.2 documentation for the format of
this file.
70 Using PersonalJava Solution for OS-9

5Additional Considerations for Choosing a PersonalJava Diskless Strategy
LIB/classes.zip is a zip archive of the Java class files
making up the PersonalJava API
(Application Programming Interface)

This file can be customized to contain a
subset of the complete PersonalJava API
and can also be customized to contain OEM
application code.

NoteNote
The classes.zip file is not required if a rommed class module
containing all needed classes is present. Refer to Using
JavaCodeCompact for OS-9 for more information about rommed class
modules. The location of the classes.zip file is specified by the
CLASSPATH environment variable.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 10: Working with Remote Classes for more
information on using remote classes.

All of the previous items should be located in the subdirectory LIB relative
to the directory specified by the environment variable JAVA_HOME or the
java.home property.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Properties vs. Environment Variables on page 75 of this
chapter for more information about this subject.
Using PersonalJava Solution for OS-9 71

Window Manager Requirements

The Microware window managers require the data module winmgr.dat
that contains settings for the window managers. This data module should
be included in your bootfile.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 7: Using the Window Manager for more information
about the window managers.
72 Using PersonalJava Solution for OS-9

5Additional Considerations for Choosing a PersonalJava Diskless Strategy
Diskless Target Implementation Strategy

In order to meet the requirements of Java and the window manager, it is
necessary to provide a disk-like interface to objects located in ROM. The
modman file manager provides such an interface. Using the module
archive utility (mar), a directory hierarchy, existing on a development
system, can be converted to a number of OS-9 modules. These modules
can be added to the target system's bootfile where they can be treated as
members of a normal file system by way of the modman file manager.
Details of using modman and the mar utility are given below along with
example packaging scenarios.

Class Storage Options

When using PersonalJava™ Solution on a diskless system, there are
several ways you can provide the Java classes that comprise the Java API.
The three most attractive alternatives include 1) converting the Java class
files into an OS-9 module by a process called prelinking that can then be
loaded into ROM or RAM, 2) including a classes.zip file in the modman
archive, or 3) using remote class loading.

For systems where RAM power requirements and costs are prohibitive, the
rommed class approach makes the most sense. Since romized classes can
be used directly from ROM, no RAM is needed to store the class
information. Prelinking the entire PersonalJava class set results in a RAM
savings of approximately one megabyte.

When ROM memory space is limited and RAM space is relatively plentiful,
or in situations where ROM access times are slow, it is suggested to use a
classes.zip file stored in the modman archive. A compressed
classes.zip file is approximately one-half the size of a corresponding
set of romized classes. Classes loaded from a classes.zip file are
placed into RAM memory. This allows the JVM (Java Virtual Machine) to
access the class data faster than it could if the class data were in ROM.

For applications with access to a remote server, classes can be loaded
over the network. Having classes on a server system simplifies application
updates because only the classes on the server need to be updated.
Using PersonalJava Solution for OS-9 73

However, the basic Java packages java.lang, java.io and
java.util cannot be loaded remotely. They must reside on the system
either as rommed classes, a .zip file, or from unzipped class files.

NoteNote
Classes loaded from a remote server require as much RAM as those
loaded from a .zip file.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Using JavaCodeCompact for more information about
rommed class modules. Refer to Chapter 10: Working with Remote
Classes for more information on working with remote classes.
74 Using PersonalJava Solution for OS-9

5Additional Considerations for Choosing a PersonalJava Diskless Strategy
Properties vs. Environment Variables

On a disk-based system, several parameters to the JVM are passed by way
of environment variables. These include the CLASSPATH and JAVA_HOME
environment variables. On a diskless system, however, environment
variables can be inconvenient since they typically need to be set by a shell.
Java properties are a useful alternative to environment variables. Java
properties can be specified on the command line that invokes the JVM; this
is done using the syntax -D<var-name>=<value>.

The classpath is a special case. The command line option, -classpath,
is used to specify the classpath. As an example, consider the following two
sets of commands:

setenv CLASSPATH /mm/LIB/java_app.zip
setenv JAVA_HOME /mm
pjava com.company.MyApp

The above is equivalent to the command line below:

pjava -Djava.home=/mm -classpath /mm/LIB/java_app.zip
com.company.MyApp

The latter form is useful since it can be used as the initial process for the
system to run. The form using environment variables could only be used in
conjunction with a shell.
Using PersonalJava Solution for OS-9 75

Using the modman File Manager

The following section provides instructions for using the modman file
manager.

Generating the modman Archive

In order to successfully execute Java in a diskless environment, a series of
modules must be put into the bootfile for the target system. This series of
modules is generated into a single loadable file called, pjava_home.mar
by the utility mar (module archive) on the PC. The command line that
generates the archive should be executed in the following directory:

 E:\MWOS\SRC\PJAVA:

 mar -tp=<proc> -o=E:\MWOS\OS9000\<port_proc>\PORTS\
<port_name>\CMDS\BOOTOBJS\PJAVA\pjava_home.mar

 -z=E:\MWOS\OS9000\<port_proc>\PORTS\<port_name>\
PJAVA\MODMAN\pjava_home.ml

Adding the modman Archive to the Boot

The modman archive (MWOS\OS9000\<proc>\PORTS\
<port_name>\CMDS\BOOTOBJS\PJAVA\pjava_home.mar) as well as
the modman file manager (modman) and device descriptor (mm) should be
added to the bootfile for the diskless device in whatever manner other
modules are added to the boot. For disk-based devices, they can be loaded
after the system is started.
76 Using PersonalJava Solution for OS-9

5Additional Considerations for Choosing a PersonalJava Diskless Strategy
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to your target system’s Board Guide for more information about
creating boot options for your target.

Initializing modman

We recommend that modman be initialized prior to executing Java
applications. This can be done either by using the iniz utility or
programmatically by using the _os_attach() system call. Although this
initialization is not absolutely necessary, performance may suffer if it is not
done.

Example: Type iniz mm at the OS-9 prompt.

Setting the JAVA_HOME Environment Variable

The JAVA_HOME environment variable should be set to /mm before
executing the JVM on a diskless target. This can be accomplished by using
the setenv shell command or programmatically by using putenv().

Using the mar Utility

Part of building the bootstrap for an embedded system requires using a tool
that converts directories along with all their subdirectories and files into a
single output file. This output file can be included in an OS-9 bootstrap file.
The file also contains modules for each file in the directory and its
subdirectories, as well as an additional module that contains information on
how to create a directory structure to match the original in the module
directory. This last module is linked by modman’s file manager initialization
code. The name of the module is specified in the device descriptor. Any
number of these conversion modules may be specified.
Using PersonalJava Solution for OS-9 77

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the mar utility, refer to the Utilities Reference
Manual.
78 Using PersonalJava Solution for OS-9

5Additional Considerations for Choosing a PersonalJava Diskless Strategy
Diskless Target Example

This example configures PersonalJava™ Solution to run on a StrongARM
machine without a disk.

Building the modman Archive

For this example, you need to build a modman archive containing the
properties files required by PersonalJava™ Solution for OS-9. The package
supplies the properties files in the directory MWOS\SRC\PJAVA\LIB.
Because the PersonalJava runtime, pjava, expects to find the properties
files in the directory LIB relative to the Java home directory, it is important
to include the LIB directory as part of the archive. The property files to be
included in the archive are listed in a file called pjava_home.ml. The
contents of this file are listed below:

* Edit this file as appropriate to include/exclude
* files in/from ROMable image
LIB/appletviewer.properties
LIB/awt.properties
LIB/content_types.properties
LIB/font.properties
LIB/remote_classes.properties
LIB/security/java.security
LIB/security/java.policy
LIB/classes.zip
*LIB/javamath.zip
*LIB/javasql.zip
*LIB/javarmi.zip
*LIB/sunrmi.zip
*LIB/JCCMessage.properties
*LIB/JDCMessage.properties

The file pjava_home.ml is located in the directory
E:\MWOS\OS9000\<proc>\PORTS\<port_name>\PJAVA\MODMAN on
your Windows host.
Using PersonalJava Solution for OS-9 79

The following command line command generates the following archive:
MWOS\OS9000\<portproc>\PORTS\<port>\PJAVA> mar -tp=<proc> -o=..\CMDS\

BOOTOBS\PJAVA\pjava_home.mar -z=MODMAN\pjava_home.ml
80 Using PersonalJava Solution for OS-9

Chapter 6: Creating Native Methods

for OS-9

This chapter provides an overview of native methods. It includes the
following topics:

• Using Native Methods on OS-9

• Writing the Application

• Adding Native Methods

• Running the TimeApp Application on the Target

• Debugging Native Methods

• Using JNI Native Methods

NoteNote
During the installation process, Sun’s JDK (Java Development Kit) 1.1.8
for Windows was installed in \MWOS\DOS\JDK1.1.8 on your host. You
must be using this version of the JDK while completing this tutorial.
These examples use the E:\ directory. The location may vary
depending on where you chose to install your PersonalJava™ Solution
for OS-9 package).

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Be sure to read the document Getting Started With PersonalJava™
Solution for OS-9 and complete the exercises for the demos before
beginning this tutorial. In addition, you may wish to read Chapter 3:
Creating Java Applications for OS-9 and complete that tutorial before
proceeding.
82 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
Using Native Methods on OS-9

Overview

This tutorial describes how to implement and debug native methods on the
OS-9 operating system. The example given here implements a Java
application to display and set the system time on an OS-9 machine.

NoteNote
You will go through this tutorial twice. The first pass uses non-JNI (Java
Native Interface) Native Methods. The second pass uses JNI Native
Methods.

The subject of native methods is a very broad topic. This tutorial does not
attempt to cover all the issues involved in implementing native methods but
instead covers only those aspects of the process unique to OS-9.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For a more complete discussion of the topic of Native Methods, please
refer to The Java Programming Language.

Requirements

You should have a basic understanding of the Microsoft Windows interface.
You should already know how to navigate Explorer, how to select items
using the mouse, and how to use drag and drop. In addition, you should
also have a fundamental understanding of the Java programming language
including the Abstract Windowing Toolkit (AWT) and native methods.
Using PersonalJava Solution for OS-9 83

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Appendix E: Sources of Information for a list of references
on these subjects.

Finally, you should be familiar with the Microware Hawk development
environment.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

You must use Hawk for this example. Refer to Using Hawk.

Objective

The objective of this tutorial is to show how to implement native methods on
OS-9 and how to debug native methods using the Hawk development
environment. To achieve this objective, complete the following:

• Write the Application

• Add the Native Methods

• Run the Example Application on the OS-9 System

• Debug the Native Methods
84 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
Write the Application

Write a Java application using native methods to perform certain functions.

Add the Native Methods

To add native methods, complete the following:

• add the declarations for the native methods

• generate the header file for the class containing the native methods

• generate the stub file used to create the native method shared library

• generate the export table source file used to create the native method
shared library

• add the native method code

• compile and link the native method shared library

• add calls to the native methods into the Java class

• add a static initializer to load the shared library

Run the Example Application on the OS-9 System

To run the example application, complete the following:

• transfer the class files to the OS-9 system

• start the Java application

Debug the Native Methods

To debug the native method, complete the following:

• attach to the Java process

• attach to the shared library

• set breakpoints in the native methods
Using PersonalJava Solution for OS-9 85

Using JNI Native Methods

Once you have completed the non-JNI native method tutorial, repeat the
tutorial for JNI native methods:

• generate the JNI header file for the class containing the native methods

• generate the export table source file used to create the JNI native
method shared library

• add the native method code

• compile and link the native method shared library

Environment

Windows 95, 98 or NT 4.0 is the host operating system. The source files for
the example are in the Windows MWOS\SRC\PJAVA\EXAMPLES\ NATIVE
directory on the distribution CD-ROM. If the PersonalJava™ Solution for
OS-9 package has been installed, the source files are in the
E:\MWOS\SRC\PJAVA\EXAMPLES\NATIVE directory on a Windows disk
device.
86 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
Writing the Application

The first step in implementing this example Java application is to write the
Java classes used in this application. This can be done by using a text
editor, but it can also be done by using a Java development environment.
You will find four source files in your E:\MWOS\SRC\
PJAVA\EXAMPLES\NATIVE\nonJNI directory. They comprise the
example program. Before moving on, read through the code listings and
descriptions below.

The TimeApp class

The first class is the application called TimeApp and is located in
E:\MWOS\SRC\PJAVA\EXAMPLES\NATIVE\nonJNI. The application
extends the Java Frame class. The source for the TimeApp class is shown
below:
// TimeApp - example Java application using native methods to display and
// set the system time on an OS-9/OS-9000 system.
//
package time;
import java.awt.*;
class TimeApp extends Frame
{
 // constructor for TimeApp class
 //
 public TimeApp()
 {

 super("Time Application");

 setLayout(null);
 resize(insets().left + insets().right + 220, insets().top + insets().bottom +

95);
 timeDisplay = new TextField(20);
 getTimeButton = new Button("Update");
 setTimeButton = new Button("Set...");
 quitButton = new Button("Quit");
 add(timeDisplay);
 timeDisplay.reshape(10, 30, 190, 24);
 add(getTimeButton);
 getTimeButton.reshape(10, 60, 50, 20);
 add(setTimeButton);
 setTimeButton.reshape(70, 60, 50, 20);
 add(quitButton);
 quitButton.reshape(130, 60, 50, 20);
Using PersonalJava Solution for OS-9 87

 crntTime = new SysTime();
 timeDisplay.setText(crntTime.toString());

 }

 // event handler for TimeApp class
 //
 public boolean handleEvent(Event event)
 {

 // look for possible button events
 //
 if (event.id == Event.ACTION_EVENT) {
 if (event.target == getTimeButton) {

 clickedGetTime();
 return true;

 }
 else if (event.target == setTimeButton) {

 clickedSetTime();
 return true;

 }
 else if (event.target == quitButton)

 System.exit(0);
 }
 return false;

 }

 // handle updating the display
 //
 private void clickedGetTime()
 {

 timeDisplay.setText(crntTime.toString());
 repaint();

 }

 // handle setting the time
 //
 private void clickedSetTime()
 {

 (new SetTimeDialog(this, crntTime)).show();
 }

 public static void main(String args[])
 {

 (new TimeApp()).show();
 }

 // class local objects
 //
 TextField timeDisplay; // display the time here
 Button getTimeButton;
 Button setTimeButton;
 Button quitButton;
 SysTime crntTime; // representation of the system time

}

88 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
NoteNote
Note this class is part of the time package.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the Frame class see The Java Class
Libraries and for information on using packages see The Java
Programming Language.
Using PersonalJava Solution for OS-9 89

The SetTimeDialog class

To set the time, use a class that extends dialog called SetTimeDialog
and whose source is located in E:\MWOS\SRC\
PJAVA\EXAMPLES\NATIVE\nonJNI. Below is the code implementing
this class:
package time;
import java.awt.*;
import time.SysTime;
/*
*
* SetTimeDialog
*
*/
public class SetTimeDialog extends Dialog
{
 public SetTimeDialog(Frame parent, SysTime crntTime)
 {

 super(parent, "Set Time Dialog", true);

 resize((6 * (FIELD_WIDTH + 5)) + 40, 100);
 // create the six text fields that we need for the time
 //
 timeFields = new TextField[6];
 timeLabels = new Label[6];
 Integer date[] = crntTime.getTime();
 for (int i = 0; i < 6; i++) {
 timeFields[i] = new TextField(date[i].toString(), 2);
 add(timeFields[i]);
 timeFields[i].reshape(10 + (i * (FIELD_WIDTH + 5 + ((i >= 3) ? 5 : 0))), 24,

 FIELD_WIDTH, FIELD_HEIGHT);
 timeLabels[i] = new Label(labels[i]);
 add(timeLabels[i]);
 timeLabels[i].reshape(10 + (i * (FIELD_WIDTH + 5 + ((i >= 3) ? 5 : 0))),

FIELD_HEIGHT
 + 22, FIELD_WIDTH, FIELD_HEIGHT);

 }
 setButton = new Button("Set");
 add(setButton);
 setButton.reshape(10, (FIELD_HEIGHT * 2) + 22, 50, 20);
 cancelButton = new Button("Cancel");
 add(cancelButton);
 cancelButton.reshape((6 * (FIELD_WIDTH + 5)) - 20, (FIELD_HEIGHT * 2) + 22, 50,

20);
 sysTime = crntTime;

 }

 // handle events for the dialog
 //
 public boolean action(Event event, Object arg)
90 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
 {
 if (event.target == cancelButton) {
 hide();
 return true;

 }
 else if (event.target == setButton) {
 timeVals = new Integer[6];
 for (int i = 0; i < 6; i++) {

if ((timeFields[i].getText()).length() == 0)
 timeVals[i] = new Integer(0);

else
 timeVals[i] = new Integer(timeFields[i].getText());

 }
 sysTime.setTime(timeVals);
 hide();
 return true;

 }
 return false;

 }

 // objects local to this class
 TextField timeFields[];
 Label timeLabels[];
 Integer timeVals[];
 Button setButton;
 Button cancelButton;
 SysTime sysTime;
 private static final int FIELD_WIDTH = 35;
 private static final int FIELD_HEIGHT = 24;
 private static final String labels[] = {"Year", "Mon", "Day", "Hour", "Min",

"Sec"};
}

Using PersonalJava Solution for OS-9 91

The SysTime class

The core of the TimeApp application is the SysTime class. The source of
SysTime is located in E:\MWOS\SRC\PJAVA\EXAMPLES\
NATIVE\nonJNI. This class is a representation of the system time that
supports reading and setting the system time. This class uses two native
methods in order to read and set the system time. When first developing
the application, these native methods are left out and their behavior is
simulated so it is easier to test the Java portion of the application. Below is
the source for the SysTime class without the native methods:
// SysTime - representation of the system time
//
package time;
class SysTime extends Object
{
 // Adding Native Methods - Adding a Static Initialization Block
 // Uncomment this line
 //
 // static {
 // System.loadLibrary("time");
 // }

 // the default constructor
 //
 SysTime()
 {

 // as a default, set the time to an important moment in history
 // Adding Native Methods: Comment out this line
 //
 y = 97; m = 1; d = 15; h = 14; mn = 30; s = 0;
 // Adding Native Methods - Calling the Native Methods
 // Uncomment this line and comment out the line above regarding
 // default assigment to y, m, d, h, mn, and s
 //
 // getSystemTime();

 }

 // construct using an array of Integers
 //
 SysTime(Integer timeVals[])
 {

 if (timeVals.length != 6)
 return;

 y = timeVals[0].intValue();
 m = timeVals[1].intValue();
 d = timeVals[2].intValue();
 h = timeVals[3].intValue();
 mn = timeVals[4].intValue();
 s = timeVals[5].intValue();
92 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
 // Adding Native Methods: - Calling the Native Methods
 // Uncomment this line
 //
 // setSystemTime();

 }

 // Adding Native Methods - Adding Declarations
 // Uncomment these when you are ready to add native method declarations
 //
 // private native void getSystemTime();
 // private native void setSystemTime();

 // return the time as an array of integers
 //
 Integer[] getTime()
 {

 Integer result[] = new Integer[6];

 // Adding Native Methods - Calling the Native Methods
 // Uncomment this line
 //
 // getSystemTime();
 result[0] = new Integer(y);
 result[1] = new Integer(m);
 result[2] = new Integer(d);
 result[3] = new Integer(h);
 result[4] = new Integer(mn);
 result[5] = new Integer(s);
 return result;

 }

 // set the time using an array of Integers
 //
 void setTime(Integer timeVals[])
 {

 if (timeVals.length != 6)
 return;

 y = timeVals[0].intValue();
 m = timeVals[1].intValue();
 d = timeVals[2].intValue();
 h = timeVals[3].intValue();
 mn = timeVals[4].intValue();
 s = timeVals[5].intValue();
 // Adding Native Methods - Calling the Native Methods
 // Uncomment this line
 //
 // setSystemTime();

 }

 // convert the date to a string
 //
 public String toString()
 {

 String result;
Using PersonalJava Solution for OS-9 93

 // Adding Native Methods - Calling the Native Methods
 // Uncomment this line
 //
 // getSystemTime();
 result = new String(padInt(y % 100) + "/" + padInt(m) + "/" + padInt(d) +

" " + padInt(h) + ":" + padInt(mn) + ":" + padInt(s));
 return result;

 }

 // pad ints with zeros
 //
 private String padInt(int num)
 {

 String result;

 if (num < 10)
 result = new String("0" + num);

 else
 result = (new Integer(num)).toString();

 return result;
 }

 // objects local to this class
 //
 int y, m, d, h, mn, s;

}

Compiling the Classes

Now that you have read through the examples, compile them using the
following command from the E:\MWOS\SRC\PJAVA\EXAMPLES\
NATIVE\nonJNI directory:

javac -d . *.java
94 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
Running the Example Program

Because TimeApp is in the package time, the classes for the application
need to be in a directory called time located on the class search path
(specified by either the CLASSPATH environment variable or by the
-classpath command line argument to the Java interpreter). The
following is the command line to run the application:

java time.TimeApp

When run, this application appears as follows on the Windows platform:

When the Set button is clicked in the main application window, an object of
the class SetTimeDialog is created. When run on the Windows platform
this dialog should look similar to the following:
Using PersonalJava Solution for OS-9 95

Adding Native Methods

Now that the Java portion of the application is complete, you can implement
the native methods and add calls to them in your application.

Step 1: Add Declarations

The first step in this process is to add the method declarations for our
native methods. These declarations are added to the SysTime.java file
and look like the following:

private native void getSystemTime();
private native void setSystemTime();

These methods receive no parameters since they operate only on the
SysTime class data.

To add these declarations, search in the E:\MWOS\SRC\PJAVA\
EXAMPLES\NATIVE\nonJNI\SysTime.java file for these declarations
and uncomment them.

NoteNote
At this point, recompile the files as you did earlier so the javah tool can
find the native method declarations. With this completed, you can begin
to generate the header and stub files necessary to implement the native
methods.
96 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
Step 2: Generate the Header File

As a part of the PersonalJava™ Solution for OS-9 package, Microware
supplies a special version of the javah utility. This utility produces header,
stub, and table files used to make a shared library module implementing
native methods. Make sure you use the javah executable found in
E:\MWOS\DOS\jdk1.1.8\bin.

NoteNote
If you notice contention with another version of javah, copy the supplied
version of javah to the nonJNI directory.

The header file for the SysTime class can be generated with the following
command line (run from a DOS window):

javah -classpath MWOS\DOS\jdk1.1.8\LIB\classes.zip;. time.SysTime

This generates a header file called time_SysTime.h as follows:
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <native.h>
/* Header for class time_SysTime */

#ifndef _Included_time_SysTime
#define _Included_time_SysTime

typedef struct Classtime_SysTime {
 long y;
 long m;
 long d;
 long h;
 long mn;
 long s;
} Classtime_SysTime;
HandleTo(time_SysTime);

#ifdef __cplusplus
extern “C” {
#endif
extern void time_SysTime_getSystemTime(struct Htime_SysTime *);
extern void time_SysTime_setSystemTime(struct Htime_SysTime *);
#ifdef __cplusplus
}
#endif
#endif
Using PersonalJava Solution for OS-9 97

Notice the two prototypes generated for the functions
time_SysTime_setSystemTime and
time_SysTime_getSystemTime. These are the names of the two C
functions you need to write to implement the native methods.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Step 5: Write the Native Method Functions on page 100 for
instructions on writing these functions.

Step 3: Generate the Stub File

Next, it is necessary to generate the stub .c file containing the glue code
that takes the Java representation of the SysTime object and converts it to
a form usable by C functions. This stub file is generated using the following
command line:
javah -stubs -classpath E:\MWOS\DOS\jdk1.1.8\LIB\classes.zip;. time.SysTime

This command generates the file time_SysTime.c as follows:
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <StubPreamble.h>
#include <slib.h>

/* Stubs for class time_SysTime */
/* SYMBOL: “time_SysTime/getSystemTime()V”, Java_time_SysTime_getSystemTime_stub */
 stack_item *Java_time_SysTime_getSystemTime_stub(stack_item *_P_,struct execenv
*_EE_) {

extern void time_SysTime_getSystemTime(void *);
(void) time_SysTime_getSystemTime(_P_[0].p);
return _P_;

}
/* SYMBOL: “time_SysTime/setSystemTime()V”, Java_time_SysTime_setSystemTime_stub */
 stack_item *Java_time_SysTime_setSystemTime_stub(stack_item *_P_,struct execenv
*_EE_) {

extern void time_SysTime_setSystemTime(void *);
(void) time_SysTime_setSystemTime(_P_[0].p);
return _P_;

}

98 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
Step 4: Generate the Export Tables

The last source file to create with javah contains the table of functions
exported by the shared library module. This table is used by the shared
library code to perform dynamic runtime linking. To generate the table
source file, use the following command line:
javah -table -o table.c -classpath E:\MWOS\DOS\jdk1.1.8\LIB\classes.zip;. time.SysTime

This command generates the file table.c (specified by the -o option) as
shown below:
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <slib.h>
#if defined(NATIVE)
include<DEFS/threads.h>
#endif
#include <errno.h>
#include <module.h>

/* these three lines will eliminate the effects of stack checking */
#if (defined(_MPFPOWERPC) || defined(_MPFARM) || defined(_MPF386) ||
defined(_MPFSH)) && !defined(JAVAMAIN)
void*_stbot = (void *) 0, *_fcbs = (void *) 0;
#if defined(_MPFARM)
_asm(“_stkhandler: mov pc,lr”); /* ARM needs a version that doesn’t corrupt r11 */
#else
void_stkhandler(void) {}
#endif
u_int32_stklimit = 512*1024;
#endif

externJava_time_SysTime_getSystemTime_stub();
externJava_time_SysTime_setSystemTime_stub();

/* Ptr/Name table for class time_SysTime */
local_function_table_entry sm_local_functions[] = {

{“Java_time_SysTime_getSystemTime_stub”, Java_time_SysTime_getSystemTime_stub},
{“Java_time_SysTime_setSystemTime_stub”, Java_time_SysTime_setSystemTime_stub},
{NULL, NULL}};

local_ptr_table_entry sm_local_ptrs[] = {
{NULL, NULL}};
Using PersonalJava Solution for OS-9 99

Step 5: Write the Native Method Functions

Now that all the necessary header, stub, and table files have been created,
you can write the two C functions needed to implement the native methods.
For this example, two functions are put in a file called systime.c although
any name making sense to you can be used. Below is the source for
systime.c:
/*
/*
 * systime.c - native method implementation for the SysTime class
 */

#include "time_SysTime.h"
#include <time.h>
#include <module.h>

/* _sm_bind_main and _sm_unbind_main are pointers to functions. If these
 * are set to NULL, nothing is done. If they are initialized to pointers
 * to functions with no parameters, returning void, that function will be
 * called after all module initialization is done in the _sm_bind_main case
 * and before any unbind operations are performed in the _sm_unbind_main case.
 */
void (*_sm_bind_main)(void) = NULL;
void (*_sm_unbind_main)(void) = NULL;

 /* time_SysTime_setSystemTime - set system time using class data */

void time_SysTime_setSystemTime(struct Htime_SysTime *this)
{
 Classtime_SysTime *tptr = unhand(this);
 struct sgtbuf tbuf;

 tbuf.t_year = tptr->y;
 tbuf.t_month = tptr->m;
 tbuf.t_day = tptr->d;
 tbuf.t_hour = tptr->h;
 tbuf.t_minute = tptr->mn;
 tbuf.t_second = tptr->s;
 if (setime(&tbuf) == -1) {
 SignalError(0, JAVAPKG "InternalError", "error setting system time");
 }
}

 /* SysTime_getSystemTime - use system time to set class data */

void time_SysTime_getSystemTime(struct Htime_SysTime *this)
{
 Classtime_SysTime *tptr = unhand(this);
 struct sgtbuf tbuf;
100 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
 if (getime(&tbuf) == -1) {
 SignalError(0, JAVAPKG "InternalError", "error getting system time");
 return;
 }
 tptr->y = tbuf.t_year;
 tptr->m = tbuf.t_month;
 tptr->d = tbuf.t_day;
 tptr->h = tbuf.t_hour;
 tptr->mn = tbuf.t_minute;
 tptr->s = tbuf.t_second;
}

NoteNote
The _sm_bind_main and _sm_unbind_main pointers are set to
NULL since this shared library does not require any special
initialization. If special setup was required, these pointers would be set
to point to the initialization and deinitialization functions.

The time_SysTime_getSystemTime and
time_SysTime_setSystemTime functions use the OS-9 getime and
setime functions respectively to get and set the system time. The fields of
the SysTime object are referenced by the passed this pointers that point
to the data members of the SysTime object (called struct
Htime_SysTime in the C functions). All the source files required to
implement the native methods are now complete.
Using PersonalJava Solution for OS-9 101

Step 6: Compile and Link the Native Method Shared
Library

Use Hawk to compile and link the shared library.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Using Hawk for more information about the following
procedures.

Creating a New Project Space and Project

Step 1. To start Hawk on Windows 95/98/Windows NT 4.0, choose Start->
Programs-> <your OS-9 package> ->Hawk.

Step 2. Create a new project by selecting Project -> Project
Space->New from the pull-down menu.

Step 3. Browse to MWOS\SRC\PJAVA\EXAMPLES\NATIVE\NonJNI and
choose pjava as the project space name. Click OK.

Step 4. The Project Properties dialog appears. Click OK to exit.

Step 5. In the Hawk window choose Project -> Project Space -> Add
New Project.

Step 6. In the Create New Project dialog, enter libtime for the project name.

Step 7. Enter E:\MWOS\SRC\PJAVA\EXAMPLES\NATIVE\nonJNI for the
project folder.

Step 8. Select the processor from the list.

Example: Generic PowerPC

Step 9. Click Next to create a new component for your project.
102 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
Creating a New Component

Step 1. Enter libtime_g for the component name.

Step 2. Select the processor from the list.

Example: Generic PowerPC

Step 3. Select User State Program for the component attributes.

Step 4. Enter E:\MWOS\OS9000\<proc>\LIB\mt_smstart.r for the Psect
file.

Step 5. Click Next to add units to the component.

Adding Units To the Component

Step 1. Enter systime.c, table.c, time_SysTime.c,
time_SysTime.h for the units of this component.

Step 2. Click Finish to set the Project and Component Properties.

Configuring the Project Properties

Step 1. To open the Properties window select Project->Properties.

Step 2. Select the Folders tab.

Step 3. Enter E:\MWOS\OS9000\SRC\DEFS\JAVA;MWOS\SRC\DEFS\SPF\BSD;E:\MWOS\SRC\DEFS\UNIX
in the Include field.

Step 4. Select the Source tab.

Step 5. Select Code Generation for Category.

Step 6. Select Source Level for Debug Support.
Using PersonalJava Solution for OS-9 103

Step 7. Select Multi-Threading for Category.

Step 8. Click the check box to enable multi-threading.

Step 9. Make sure "Thread-save libraries with fallback" and "Display warnings
given incompatible code" are selected.

NoteNote
If you are not using the debugging version of the shared library (you are
using libtime.so instead of libtime_g.so), you must set Debug Support
to None instead of Source Level. If you choose this method, you will not
be able to debug your code using Hawk.

Step 10. Select the Link tab.

Step 11. Select General for Category.

Step 12. Enter libbinding.l;sys_clib.l;libsm.l;cpu.l into the
O-Code Library field. Though these all appear to be non-threading
libraries, the compiler automatically chooses the threading version of
them, if available.

NoteNote
Order is important in this field.

Step 13. Select Customization for Category.

Step 14. Enter E:\MWOS\OS9000\<proc>\LIB\mt_smstart.r into Psect.

NoteNote
Step 14 was optional, though recommended. If you decide to add
components later, the Psect will already be defined.
104 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
Step 15. Select the Debug tab.

Step 16. Enter the target name or target IP address into the Address field.

Step 17. Click Close.

Specifying Component Properties

Step 1. With your mouse, right click on the libtime_g component.

Step 2. Click on properties.

Step 3. Select the General tab.

Step 4. Change the output file name to libtime_g.so.

Step 5. Click Close.

Step 6. To save your project, select Project->Save.

Step 7: Call the Native Methods from the SysTime Class

Use the Editor in Hawk to add the calls to the native methods to the
E:\MWOS\SRC\PJAVA\EXAMPLES\NATIVE\nonJNI\SysTime.java file. The calls
you need to add are highlighted in the source file below:
// SysTime - representation of the system time
//
package time;
class SysTime extends Object
{
 // Adding Native Methods - Adding a Static Initialization Block
 // Uncomment this line
 //
 // static {
 // System.loadLibrary("time");
 // }

 // the default constructor
 //
 SysTime()
Using PersonalJava Solution for OS-9 105

 {
 // as a default, set the time to an important moment in history
 // Adding Native Methods: Comment out this line
 //
 y = 97; m = 1; d = 15; h = 14; mn = 30; s = 0;
 // Adding Native Methods - Calling the Native Methods
 // Uncomment this line and comment out the line above regarding
 // default assignment to y, m, d, h, mn, and s
 // getSystemTime();
 }

 // construct using an array of Integers
 //
 SysTime(Integer timeVals[])
 {
 if (timeVals.length != 6)
 return;
 y = timeVals[0].intValue();
 m = timeVals[1].intValue();
 d = timeVals[2].intValue();
 h = timeVals[3].intValue();
 mn = timeVals[4].intValue();
 s = timeVals[5].intValue();

 // Adding Native Methods: - Calling the Native Methods
 // Uncomment this line
 //
 // setSystemTime();
 }

 // Adding Native Methods - Adding Declarations
 // Uncomment these when you are ready to add native method declarations
 //
 private native void getSystemTime();
 private native void setSystemTime();

 // return the time as an array of integers
 //
 Integer[] getTime()
 {
 Integer result[] = new Integer[6];

 // Adding Native Methods - Calling the Native Methods
 // Uncomment this line
 //
 // getSystemTime();
 result[0] = new Integer(y);
 result[1] = new Integer(m);
 result[2] = new Integer(d);
 result[3] = new Integer(h);
 result[4] = new Integer(mn);
 result[5] = new Integer(s);
 return result;
 }
106 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
 // set the time using an array of Integers
 //
 void setTime(Integer timeVals[])
 {
 if (timeVals.length != 6)
 return;
 y = timeVals[0].intValue();
 m = timeVals[1].intValue();
 d = timeVals[2].intValue();
 h = timeVals[3].intValue();
 mn = timeVals[4].intValue();
 s = timeVals[5].intValue();
 // Adding Native Methods - Calling the Native Methods
 // Uncomment this line
 //
 // setSystemTime();
 }

 // convert the date to a string
 //
 public String toString()
 {
 String result;

 // Adding Native Methods - Calling the Native Methods
 // Uncomment this line
 //
 // getSystemTime();
 result = new String((y) + "/" + padInt(m) + "/" + padInt(d) + " " + padInt(h) +
":
 " + padInt(mn) + ":" + padInt(s));
 return result;
 }

 // pad ints with zeros
 //
 private String padInt(int num)
 {
 String result;

 if (num < 10)
 result = new String("0" + num);
 else
 result = (new Integer(num)).toString();
 return result;
 }

 // objects local to this class
 //
 int y, m, d, h, mn, s;
}

Using PersonalJava Solution for OS-9 107

Step 8: Add Calls to the Native Methods

To add calls to the native methods from SysTime complete the steps
below:

Step 1. Search in SysTime.java for Calling the Native Methods and
uncomment the line getSystemTime().

Step 2. Continue searching in SysTime.java for Calling the Native
Methods and uncomment the line setSystemTime().

Step 3. Continue searching in SysTime.java for Calling the Native
Methods and uncomment the line getSystemTime().

Step 4. Continue searching in SysTime.java for Calling the Native
Methods and uncomment the line setSystemTime().

Step 5. Continue searching in SysTime.java for Calling the Native
Methods and uncomment the line getSystemTime().

Step 9: Add a Static Initialization Block to Load the
Shared Library

The final addition needed to the SysTime.java file is the static
initialization block. The static initialization block for the SysTime is called
only once so this is a convenient place to load the shared library. The code
for this block is as follows:

static {
System.loadLibrary("time");

}

The library name passed to System.loadLibrary is time. When the
Java interpreter attempts to load the library, it prepends lib to the name
and appends either _g.so or .so depending on whether the pjava_g
(debugging) or pjava interpreter is being used.
108 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
To add the static initialization block, search in systime.java for Adding
a Static Initialization Block and uncomment these lines.

At this point, recompile the java classes to generate the enhanced .class
files.

Step 10: Compiling and Linking

From Hawk, select Project->Build to build the component.

Ignore the warning about libbinding.l having a thread incompatibility. It
is a completely thread-safe library.

Three files are generated in the directory: libtime_g.so,
libtime_g.so.dbg, and libtime_g.so.stb.

The shared library is now complete and ready to test.
Using PersonalJava Solution for OS-9 109

Running the TimeApp Application on the
Target

To run the TimeApp application on your target, complete the following
steps:

Step 1: Transfer the Class Files

NoteNote
These steps assume that you have a system disk on your target
machine. Use these steps as a guide for transferring the class files and
shared libraries to the OS-9 target machine.

Now that the application is complete and compiled (including the shared
library), it is time to transfer the class and shared library code to the target
OS-9 system. This is done in this example using FTP. This could also be
done using NFS. The steps to transfer using FTP are as follows:

Step 1. Choose Start->Run on the Windows desktop.
110 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
Step 2. In the Run dialog box, type ftp <machine name> then click OK. The
machine name in this example is kramer.

Step 3. Log on to the OS-9 machine by typing the user name and password in
the FTP (MS-DOS Shell) window. The default user name and password
for OS-9 machines is super and user.

Step 4. Change to the directory containing the application classes on the
windows machine by typing the following in the FTP window:

lcd E:\MWOS\SRC\PJAVA\EXAMPLES\NATIVE\nonJNI\time

Step 5. Change to the demo directory on the OS-9 machine by typing the
following in the FTP window:

cd /h0/MWOS/SRC/PJAVA

Step 6. Create the time directory on the OS-9 machine by typing the following
FTP commands:

mkdir EXAMPLES

mkdir EXAMPLES/NATIVE

mkdir EXAMPLES/NATIVE/nonJNI

mkdir EXAMPLES/NATIVE/nonJNI/time

Step 7. Change to the time directory on the OS-9 machine by typing the
following in the FTP window:

cd EXAMPLES/NATIVE/nonJNI/time

Step 8. Change to binary transfer by typing the following in the FTP window:

bin
Using PersonalJava Solution for OS-9 111

Step 9. Turn off FTP interactive mode by typing the following in the FTP
window:

prompt

Step 10. Transfer the class files by typing the following in the FTP window:

mput *.class

Now transfer the shared library to the OS-9 system.

Step 11. Move up one directory on the Windows machine by typing the following
in the FTP window:

lcd ..

Step 12. Change to the shared library directory on the OS-9 system by typing
the following in the FTP window:

cd /h0/MWOS/OS9000/<proc>/LIB/SHARED

Step 13. Transfer the shared libraries to the OS-9 system by typing the following
in the FTP window:

mput libtime_g*

Step 14. Quit the FTP session.

Now that all the object code needed to run the application has been
transferred to the OS-9 machine, you are ready to test and debug the
application.

Step 2: Start the Java Application on the OS-9 System

In the below example, telnet is used to communicate with the OS-9 system.

Starting Telnet Session

To start a telnet session perform the following steps:

Step 1. Choose Start->Run from the Windows desktop.
112 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
Step 2. In the Run window text field enter

telnet <target system>

and click OK.

Step 3. Log onto the OS-9 system by typing the user name and password.
Super and User are the defaults for OS-9 systems.

NoteNote
Before running the application, the permissions must be correctly set
on the shared library module so it can be loaded by the OS-9 system at
run time.

In the telnet window, type the following command:

chd /h0/MWOS/OS9000/<proc>/LIB/SHARED
attr -pegeeprgrr libtime_g*

This sets the public execute and public read permissions for all the
libtime_g files previously transferred from the Windows machine.

Setting Variables

In order for the Java interpreter to find the class files and shared libraries,
certain environment variables must be set. Follow these steps to set the
variables:

Step 1. Set the CLASSPATH environment variable so the interpreter can find the
classes for the TimeApp application by typing the following command
in the telnet window:

setenv CLASSPATH /h0/MWOS/SRC/PJAVA/EXAMPLES/NATIVE/nonJNI:$CLASSPATH

Step 2. Set the LD_LIBRARY_PATH environment variable with this command:
Using PersonalJava Solution for OS-9 113

setenv LD_LIBRARY_PATH /h0/MWOS/OS9000/<proc>/LIB/SHARED:$LD_LIBRARY_PATH

Step 3. Run the application by typing the following command in the telnet
window:

pjava_g time.TimeApp &

NoteNote
Be sure that you are using pjava_g. This is the debugging version of the
PJava virtual machine.

The TimeApp application window now appears on the graphic device
connected to the target OS-9 system. Try setting and updating the time, or
entering date into the console, to make sure the application is working.
114 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
Debugging Native Methods

The next steps in this example deal with using the Hawk debugger to
examine the behavior of the code in the native method shared library.

Debugging with Hawk

Follow the steps below to debug with Hawk:

Step 1. Reboot the target.

Step 2. Make sure the Hawk SPF daemon is running before proceeding by
typing the procs command with the -e option as follows:

$ procs -e
 Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O

 2 0 0.0 128 24.00k 0 s 0.00 2:00 spfndpd <>>>nil <--SPF daemon
 3 12 0.88 128 56.00k 0 * 0.04 0:00 procs <>>>pks01

If the daemon is not running, complete the following on your OS-9 target at
the OS-9 prompt:
$ load -d /h0/CMDS/spfndpd
$ load -d /h0/CMDS/spfndpdc
$ spfndpd <>>>/nil &
Using PersonalJava Solution for OS-9 115

Identifying Source and Object Code

Step 1. Start Hawk.

Step 2. Select Debug->Option->Folders.

Step 3. Enter E:\MWOS\SRC\PJAVA\EXAMPLES\NATIVE\nonJNI in the
Source Code field.

Enter E:\MWOS\OS9000\<proc>\CMDS and E:\MWOS\SRC\PJAVA\EXAMPLES\NATIVE\nonJNI in
the Object Code field.

Step 4. Click OK

Setting Up Hawk Target Environment

Step 1. Select Debug->Option->Environment.

Step 2. Set the values for CLASSPATH, and JAVA_HOME, PATH, and
LD_LIBRARY_PATH variables to the following:

CLASSPATH=/h0/MWOS/SRC/PJAVA/EXAMPLES/NATIVE/nonJNI
JAVA_HOME=/h0/MWOS/SRC/PJAVA
PATH=/h0/MWOS/OS9000/<proc>/CMDS:/h0/CMDS
LD_LIBRARY_PATH=/h0/MWOS/OS9000/<proc>/LIB/SHARED
116 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
Forking the Java Process

Fork the Java process by completing the steps below:

Step 1. Choose Debug->Connect.

Step 2. Enter the target name.

Step 3. Enter pjava_g in the Program text field in the Fork dialog box.

Step 4. Enter time.TimeApp in the Parameters text field.

Step 5. Notice the values in the Target Environment Variables area.

Step 6. Click OK in the Fork dialog box.
Using PersonalJava Solution for OS-9 117

NoteNote
The debugger displays warning dialog boxes because it cannot find
debugging information for the pjava_g module. This is not a problem
and the dialog boxes can be dismissed by clicking OK.

Loading the Shared Library

Before attaching to the shared library, it must be loaded into memory. From
the OS-9 prompt on the target system enter the following:

load -ld /h0/MWOS/OS9000/<proc>/LIB/SHARED/libtime_g.so
118 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
Linking to the Shared Library

At this point the search paths have been set. Use the following steps to link
to the libtime_g.so shared library:

Step 1. Choose Debug->Connect from the Debugger menu.

Step 2. Select the Attach tab.

Step 3. Choose System for the type.

Step 4. Enter the target name.

Step 5. Choose Module.

Step 6. Enter libtime_g.so in the Module field.

Step 7. Click OK.

NoteNote
You may receive a warning that Hawk cannot open a path to the server.
This is not a problem. Ignore the warning by clicking OK.
Using PersonalJava Solution for OS-9 119

Setting Breakpoints

To set breakpoints on the Native Method functions, complete the steps
below:

Step 1. Chose Debug->View->Browse Symbol... from the debugger
menu.

Step 2. Click on the + symbol for libtime_g.so in the browser window to
expand all the symbols in the shared module.

Step 3. Click on the + symbol for systime.c to see all the functions in the
source code.

Step 4. Right click on the function time_SysTime_getSystemTime.

Step 5. Choose Toggle Breakpoint in the browser window.

Step 6. Right click on the function time_SysTime_setSystemTime.

Step 7. Choose Toggle Breakpoint in the browser window.

Step 8. Close the browser window.

Step 9. Click on the Run button in the debugger’s toolbar to run the Java
process.

The Java interpreter stops when the break points are hit. To run the
interpreter again, click on Run until the Time Application is displayed.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For information about debugging on OS-9 systems see Using Hawk.

Ja
120 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
Using JNI Native Methods

Introduction to JNI Native Methods

With the 1.1 version of the Java Development Kit, a new native method
calling mechanism called Java Native Interface was added.

The JNI specification describes the advantage of using JNI as follows:

“The most important benefit of the JNI is it imposes no restrictions on the
implementation of the underlying JVM. Therefore, JVM vendors can add
the support for the JNI without affecting other parts of the JVM.
Programmers can write one version of native application or library and
expect it to work with all JVMs supporting the JNI.”

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The specification for the JNI can be found at the following location:
http://java.sun.com/

This example shows how to implement the TimeApp application using JNI
Native Methods in place of the older Native Method mechanism. Only the
steps that differ from those described for the first pass through this tutorial
are described here. Otherwise follow the same process, except where
these differences are noted.
Using PersonalJava Solution for OS-9 121

NoteNote
While completing the JNI Native Methods example, insert JNI in the
place of nonJNI wherever it appears in the directory listings in the
tutorial.

Repeat the Compiling the Classes and step one of Add the Native
Methods from the nonJNI directions.

Generating the JNI Header Files

The same javah tool used to generate the header files for the previous
example is used to generate header files for JNI Native Methods. The
command line that generates the JNI header file (run from a MS-DOS
window with the current directory set to E:\MWOS\SRC\PJAVA\
EXAMPLES\NATIVE\JNI) for the SysTime class is shown below:
javah -jni -classpath E:\MWOS\DOS\jdk1.1.8\LIB\classes.zip;. time.SysTime

This generates a header file called time_SysTime.h as follows:
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class time_SysTime */

#ifndef _Included_time_SysTime
#define _Included_time_SysTime
#ifdef __cplusplus
extern “C” {
#endif
/*
 * Class: time_SysTime
 * Method: getSystemTime
 * Signature: ()V
 */
JNIEXPORT void JNICALL Java_time_SysTime_getSystemTime
 (JNIEnv *, jobject);

/*
 * Class: time_SysTime
 * Method: setSystemTime
 * Signature: ()V
122 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
 */
JNIEXPORT void JNICALL Java_time_SysTime_setSystemTime
 (JNIEnv *, jobject);

#ifdef __cplusplus
}
#endif
#endif

Note the two function prototypes for the functions
Java_time_SysTime_setSystemTime and
Java_time_SysTime_getSystemTime. These are the functions you
need to write. The source for these functions is provided in the following
section.

Generating the JNI Stub File

Due to the nature of the JNI, no stub functions are needed to interface the
JVM to JNI native methods. The JVM is able to call them directly.

Generating the JNI Export Tables

To generate the JNI export table source file, use the following command
line:
javah -jni -table -o table.c -classpath E:\MWOS\DOS\jdk1.1.8\LIB\classes.zip;.
time.SysTime

This command generates the file table.c (specified by the -o option) as
follows:
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <slib.h>
#if defined(NATIVE)
include<DEFS/threads.h>
#endif
#include <errno.h>
#include <module.h>

/* these three lines will eliminate the effects of stack checking */
#if (defined(_MPFPOWERPC) || defined(_MPFARM) || defined(_MPF386) ||
defined(_MPFSH)) && !defined(JAVAMAIN)
void*_stbot = (void *) 0, *_fcbs = (void *) 0;
#if defined(_MPFARM)
Using PersonalJava Solution for OS-9 123

_asm(“_stkhandler: mov pc,lr”); /* ARM needs a version that doesn’t corrupt r11 */
#else
void_stkhandler(void) {}
#endif
u_int32_stklimit = 512*1024;
#endif

externJava_time_SysTime_getSystemTime();
externJava_time_SysTime_setSystemTime();

/* Ptr/Name table for class time_SysTime */
local_function_table_entry sm_local_functions[] = {

{“Java_time_SysTime_getSystemTime”, Java_time_SysTime_getSystemTime},
{“Java_time_SysTime_setSystemTime”, Java_time_SysTime_setSystemTime},
{NULL, NULL}};

local_ptr_table_entry sm_local_ptrs[] = {
{NULL, NULL}};

Writing the JNI Native Method Functions

Below is the source for the JNI version of systime.c.
/*
 * systime.c - native method implementation for the SysTime class
 */

#include "time_SysTime.h"
#include <time.h>
#include <module.h>

/* _sm_bind_main and _sm_unbind_main are pointers to functions. If these
 * are set to NULL, nothing is done. If they are initialized to pointers
 * to functions with no parameters, returning void, that function will be
 * called after all module initialization is done in the _sm_bind_main case
 * and before any unbind operations are performed in the _sm_unbind_main case.
 */
void (*_sm_bind_main)(void) = NULL;
void (*_sm_unbind_main)(void) = NULL;

 /* time_SysTime_setSystemTime - set system time using class data
 */
void Java_time_SysTime_setSystemTime(JNIEnv *envptr, jobject obj)
{
 struct sgtbuf tbuf;
 jclass clazz;
 JNIEnv env = *envptr;

 clazz = env->GetObjectClass(envptr, obj);

 tbuf.t_year = env->GetIntField(envptr, obj,
124 Using PersonalJava Solution for OS-9

6Creating Native Methods for OS-9
 env->GetFieldID(envptr, clazz, "y", "I"));
 tbuf.t_month = env->GetIntField(envptr, obj,
 env->GetFieldID(envptr, clazz, "m", "I"));
 tbuf.t_day = env->GetIntField(envptr, obj,
 env->GetFieldID(envptr, clazz, "d", "I"));
 tbuf.t_hour = env->GetIntField(envptr, obj,
 env->GetFieldID(envptr, clazz, "h", "I"));
 tbuf.t_minute = env->GetIntField(envptr, obj,
 env->GetFieldID(envptr, clazz, "mn", "I"));
 tbuf.t_second = env->GetIntField(envptr, obj,
 env->GetFieldID(envptr, clazz, "s", "I"));
 if (setime(&tbuf) == -1) {
 env->ThrowNew(envptr, env->FindClass(envptr,
 "java/lang/InternalError"),"error setting system time");
 }
}

 /* SysTime_getSystemTime - use system time to set class data
 */
void Java_time_SysTime_getSystemTime(JNIEnv *envptr, jobject obj)
{
 struct sgtbuf tbuf;
 jclass clazz;
 JNIEnv env = *envptr;

 clazz = env->GetObjectClass(envptr, obj);
 if (getime(&tbuf) == -1) {
 env->ThrowNew(envptr, env->FindClass(envptr,
 "java/lang/InternalError"),"error getting system time");
 return;
 }

 env->SetIntField(envptr, obj,
 env->GetFieldID(envptr, clazz, "y", "I"), tbuf.t_year);
 env->SetIntField(envptr, obj,
 env->GetFieldID(envptr, clazz, "m", "I"), tbuf.t_month);
 env->SetIntField(envptr, obj,
 env->GetFieldID(envptr, clazz, "d", "I"), tbuf.t_day);
 env->SetIntField(envptr, obj,
 env->GetFieldID(envptr, clazz, "h", "I"), tbuf.t_hour);
 env->SetIntField(envptr, obj,
 env->GetFieldID(envptr, clazz, "mn", "I"), tbuf.t_minute);
 env->SetIntField(envptr, obj,
 env->GetFieldID(envptr, clazz, "s", "I"), tbuf.t_second);
}

Using PersonalJava Solution for OS-9 125

Compiling and Linking the JNI Native Method Shared
Library

Now that the source files are ready, use Hawk again to build the
component.

Follow the directions found in Step 6: Compile and Link the Native
Method Shared Library on page 102. The only difference is in the section
Adding Units To the Component on page 103. Only the files systime.c
and table.c need to be added to the project for the JNI example.

As in the previous example, three files are generated in the current
directory: libtime_g.so, libtime_g.so.dbg, and
libtime_g.so.stb.

The JNI shared library is now complete and ready to test. Refer to the
section Running the TimeApp Application on the Target on page 110 for
instructions on transferring the class files and shared library to the test
machine and subsequent debugging of the application.
126 Using PersonalJava Solution for OS-9

Chapter 7: Using the Window Manager

The window manager is a MAUI (Multimedia Application User Interface)
application that must be running before you run any Java applications or
applets that display graphics. This chapter describes how to use the
window manager. It includes the following topics:

• Window Manager Process

• Window Managers

• Sample Window Manager

• Using the Window Manager

• Window Manager Preference File

• Window Manager Error Codes

NoteNote
These examples use the E:\ directory. The location of your MWOS tree
may vary depending on where you chose to install your PersonalJava™
Solution for OS-9 package).

Window Manager Process

To determine if the window manager is running, type procs -e from the
command line on your target. You should see a listing similar to the
following:
$ procs -e
 Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 2 0 0.148 128 48.50k 0 w 0.10 0:00 mshell <>>>term
 3 0 0.0 128 66.50k 0 s 0.00 0:01 telnetd <>>>nil
 4 0 0.0 128 16.25k 0 e 0.02 0:01 spf_rx
 5 0 0.0 128 50.75k 0 s 0.01 0:01 ftpd <>>>nil
 6 2 0.148 128 11.50k 0 s 0.01 0:00 spfndpd <>>>nil
 7 2 0.148 128 48.00k 0 * 0.00 0:00 procs <>>>term
 8 0 0.148 256 26.75k 0 s 0.01 0:00 maui_inp <>>>nil
 9 0 0.148 250 159.25k 0 s 0.58 0:00 winmgr <>>>nil
 10 9 0.148 256 47.25k 0 s 0.46 0:00 maui_win <>>>nil

The process noted by process ID 9 in the listing above indicates the
window manager is running.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For an example of forking the window manager, refer to Running the
Demos in the Getting Started With PersonalJava™ Solution for
OS-9 manual.
128 Using PersonalJava Solution for OS-9

7Using the Window Manager
Window Managers

There are three window managers for the PersonalJava™ Solution for
OS-9 installation. To choose one, read the following descriptions:

Simple Window Manager

The base window manager performs the following:

• Parses the settings file

• Opens devices designated in the Configuration Description Block

• Allocates colors designated in settings file

• Assigns arrow cursor to root window

• Sets system keys designated in settings file

Standard Window Manager

The standard window manager performs the following:

• performs the Simple Window Manager activities

• reparents client application windows

• drags/resizes client application windows

• monitors client applications

• uses cursors and icons from Resource module

• uses a root menu (activated by button 3 click on root window) with the
following options:

• refresh root window

• refresh all

• shutdown

• arrange icons
Using PersonalJava Solution for OS-9 129

• lowers/raises client application windows

• draws the frame, title bar, and other title bar items for client application
windows

 The buttons on the title bar include (left-to-right):

•kill the application

•window management options pull-down menu that includes:

•move

•resize

•raise

•lower

•minimize

•maximize

•minimize the client application window to an icon

•maximize/Minimize the client application

Debugging Window Manager

The debugging window manager performs the following:

• performs the Standard Window Manager activities

• adds the following options to the root menu:

•send shutdown message

•dump window tree

• prints memory usage information upon termination if the MEMWATCH
environment variable is set
130 Using PersonalJava Solution for OS-9

7Using the Window Manager
Sample Window Manager

Below is an example of the Standard Window Manager:
Using PersonalJava Solution for OS-9 131

Using the Window Manager

The window manager is command-line driven using the command below:

NoteNote
The window manager must have a higher priority than any client
application. Any application that creates, destroys, moves, or resizes a
window frame frequently can cause the window manager to get behind.
This may result in the system failing. When forking the window
manager, use winmgr ^250 &.

Command

winmgr [<args>]

Arguments

-font=<fontName> specifies the font file name

-fontsize=<fontSize>
specifies the size of the font in points

-fontfamily=<family>
specifies the below font family:

•MT is Micro Type (default).

•MTPLUG is a set of glyphs common to a number of
fonts (and includes items such as squares and
arrows). These items do not change with the
rest of the type face.

•TT is True Type.

•PS is postscript.

-focusPointer [-focusRaise] [-focusButton]
specifies how the window gets focus.
132 Using PersonalJava Solution for OS-9

7Using the Window Manager
•focusPointer: The window gets focus when the
mouse crosses the window border.

•focusRaise: The window gets focus when the
mouse crosses the window border and the
window is brought to the front of the other
windows.

•focusButton: The window gets focus when the
mouse clicks on the window.

-gfxdev=<graphicDevice>
specifies the graphic device id

-windev=<winDevice>
specifies the window device id

-dev=<settingsDevName>
specifies which settings to use in the
resource file

 The default is dev1. Refer to the Example
Preference File on page 134 in this
chapter.

-ntsc specifies an NTSC display

-queue=<minimum queueSize>]
specifies the number of messages the
mailbox can hold

-settings=<settingsModule>]
specifies the name of the window manager
resource file/module
Using PersonalJava Solution for OS-9 133

Window Manager Preference File

Example Preference File

Below is an example window manager preference file:
#
Sample settings file for AFW window managers
#

#
winmgr application settings
#
queuesize=300 # Suggested minimum queue size for use with Java
frameicon=0 # Determines if icons are framed (0 = noframe, 1 = frame)

winmgrfont=mw_java.fco,MT # Font used by window manager for frame titles, icon labeling
 # (Micro Type fonts only through this mechanism: for PS or TT
 # fonts, use command-line specification and appropriate flags)

#
Numeric setting controls
#
poll=10000 # Interval between client app "pings", in MS
clickTime=40 # Maximum interval for multi-click, in MS
focus=2 # Focus policy (0 = pointer, 1 = pointer&raise, 2 = button)

#
Colors are now Device specific
dev1 is the default device
#
dev1.resIndex=0
dev1.cmIndex=0
dev1.white=255,255,255 # RGB value for stock white color
dev1.black=0,0,0 # RGB value for stock black color
dev1.light=101,142,220 # RGB value for stock light color
dev1.dark=82,116,179 # RGB value for stock dark color
dev1.grey1=227,227,227 # RGB value for stock grey1 color
dev1.grey2=205,205,205 # RGB value for stock grey2 color
dev1.grey3=189,189,189 # RGB value for stock grey3 color
dev1.grey4=172,172,172 # RGB value for stock grey4 color
dev1.grey5=156,156,156 # RGB value for stock grey5 color
dev1.grey6=128,128,128 # RGB value for stock grey6 color
dev1.screen=25,25,112 # RGB value for screen background color (midnight blue)

#
Various key bindings
- Key specification may be by either quoted characters (e.g., 'x')
or by MAUI keycode values (hex numbers only, please)
- Supported modifiers are ALT, CTRL, and SHIFT
#

SysMenuKey=' ' + ALT # Activates system menu
RootMenuKey='+'+ALT+CTRL+SHIFT # Activates root window menu (not fully supported)
SwitchKey=0x9 + ALT # Switches between windows (future use)

LeftKey=0xff51 # Binding for signaling "right" direction on frames
RightKey=0xff53 # Binding for signaling "left" direction on frames
UpKey=0xff52 # Binding for signaling "up" direction on frames
134 Using PersonalJava Solution for OS-9

7Using the Window Manager
DownKey=0xff54 # Binding for signaling "down" direction on frames

AcceptKey=0x0d # Binding for signaling acceptance of position/size
CancelKey=0x1b # Binding for canceling reposition/resize

CutKey='x' + CTRL # Binding for 'cut' operations
CopyKey='c' + CTRL # Binding for 'copy' operations
PasteKey='p' + CTRL # Binding for 'paste' operations

Preference File Location

The window manager preferences are located in a data module named
winmgr.dat, on your Windows host machine in the
E:\MWOS/OS9000/<target>/CMDS directory.

Disk-based System

If your target has a system disk, the preferences data module winmgr.dat
will be loaded by the loadjava script from
E:\MWOS/OS9000/<target>/CMDS.

Diskless System

If your target does not have a hard drive, the winmgr.dat data module
should be added to the list of modules that is transferred to the OS-9 target
machine.

NoteNote
A text version of the Window Manager preference file is in the directory
E:\MWOS\SRC\AFW\WINMGR on the Windows host machine. The
name of the text file is winmgr.txt.
Using PersonalJava Solution for OS-9 135

Editing the Preference File

If you want to edit the preference file for your target requirements, you can
modify any of the lines in this file to values supported by your target. To edit
the preference file, complete the following steps:

Step 1. On the Windows host machine, change to the directory where the
Window Manager preference file is located by typing the following:

cd MWOS\SRC\AFW\WINMGR

Step 2. Copy the text version of the Window Manager preference file as a back
up of its original state.

copy winmgr.txt winmgr.org

NoteNote
The copy of the text version of the Window Manager preference file,
winmgr.org, has DOS line endings.

Step 3. Use the Windows editor of your choice to edit and save the file
winmgr.txt.

Step 4. Use the OS-9 utility cudo on your Windows machine to change the line
endings from DOS to OS-9 in the file winmgr.txt by typing the
following:

cudo -cdo winmgr.txt

Step 5. Use the OS-9 utility mkdatmod on your Windows machine to package
the file winmgr.txt into an OS-9 data module by typing the following:

mkdatmod winmgr.txt -to=os9000 -tp=<port_proc> winmgr.dat -n=winmgr.dat

From this point, if you are using a disk-based system, complete steps six
and seven. However, if you are using a diskless system, skip steps six and
seven and complete step eight.
136 Using PersonalJava Solution for OS-9

7Using the Window Manager
Disk-based System

Step 6. Transfer your Window Manager preferences data module
(winmgr.dat) from the Windows host machine to the /h0/MWOS/
OS9000/<proc>/CMDS directory on the OS-9 target machine. It
should replace the Window Manager preferences data module that was
created when you installed the PersonalJava™ Solution for OS-9 on
your target machine. Your data module should be transferred to the
OS-9 target machine in binary mode.

Step 7. Reboot the OS-9 target machine. Executing the loadjava script loads
your data module (winmgr.dat) from the directory /h0/MWOS/
OS9000/<proc>/CMDS into the module directory.

Diskless System

Step 8. Copy your new Window Manager preferences data module to
E:\MWOS\OS9000\<proc>\CMDS on the Windows host machine. The
new Window Manager preferences data module is then ready to be
included in the next build of pjruntime.

Running MAUI Applications with PersonalJava
Applications

Standard MAUI applications can be executed at the same time as graphical
PersonalJava applications as long as the MAUI windowing API (Application
Programming Interface) is used to access the screen. PersonalJava™
Solution’s window manager only pays attention to PersonalJava
applications. Other MAUI applications can be executed and will overlap
suitably with PersonalJava applications.
Using PersonalJava Solution for OS-9 137

Window Manager Error Codes

Table 7-1 lists and defines all possible Window Manager errors codes.

Table 7-1 Window Manager Error Codes

Error Code Name Definition

012:000 EAFW_NOTIMPLEMENTED

012:001 EAFW_NOTDEFINED No drawing method defined at
object instantiation.

012:002 EAFW_DEFINED Object already defined. This
pertains to the application or
color manager object. There
can only be one of each of
these per process.

012:003 EAFW_BADPOS Either the scroll position or the
insertion position is not valid
for the object.

012:004 EAFW_BADPENCOUNT The number of pens set must
be 0 if pixels is NULL. Or, if
pixels is not NULL, the number
of pens set must be greater
than 0.

012:005 EAFW_BADCM Not used.
138 Using PersonalJava Solution for OS-9

7Using the Window Manager
012:006 EAFW_INUSE This error can mean one of
three things:

1) An attempt was made to
register a MAUI message
converter function to an event
that already has a converter
function registered.

2) The same signal is
monitored in more than one
handler.

3) An application is either
re-opening a MAUI window
device or it is attempting to
open another window device.
(The AFW is designed to allow
only one window device per
application.)

Table 7-1 Window Manager Error Codes

Error Code Name Definition
Using PersonalJava Solution for OS-9 139

012:007 EAFW_NOTFOUND This error can mean one of
three things:

1) The AGFA font module is
not present in the module
directory.

2) An attempt was made to
ignore an unknown signal.

3) In a text object, this error
means there has been a
search through the text buffer,
an occurrence of the specified
text starting at the specified
position in the buffer.

012:008 EAFW_BADMSGTYPE An attempt was made to
register a message type that
has no MAUI message
converter function specified.

012:009 EAFW_QEMPTY Not used.

012:010 EAFW_NOGFXDEV No graphics device name was
specified for the owner window
device instantiation
(MOwnerWinDev).

Table 7-1 Window Manager Error Codes

Error Code Name Definition
140 Using PersonalJava Solution for OS-9

7Using the Window Manager
012:011 EAFW_NOWINDEV The application is unable to
access the MAUI window
device--it was either not
instantiated or it has been
destroyed for some reason.

The MAUI windowing device
name must be specified for the
owner window device
instantiation
(MOwnerWinDev).

012:012 EAFW_NOCOLORMGR One color manager
(MColorManager) must be
defined to draw anything. This
manager should be defined
after the windowing device is
instantiated.

This error occurs when the
color manager is not defined.

012:013 EAFW_NOAPP Exactly one application object
(MApplication) can be
instantiated. For some reason,
the application can not be
found.

Table 7-1 Window Manager Error Codes

Error Code Name Definition
Using PersonalJava Solution for OS-9 141

012:014 EAFW_BADWINID The MAUI window ID of the
child window is invalid. (The
MAUI window being framed is
called the child window or
client window.)

This can also occur when an
attempt is made to find the
active menu, when no menu is
defined or when a GUI widget
is realized before a root
window is initialized.

012:015 EAFW_BADMODULE MAUI text is instantiated with a
bad font module name.

Table 7-1 Window Manager Error Codes

Error Code Name Definition
142 Using PersonalJava Solution for OS-9

7Using the Window Manager
012:016 EAFW_BADCOLOR The color encoding type
specified upon creation of the
window device
(MOwnerWinDev) was
GFX_COLOR_NONE. The
options are listed below:

GFX_COLOR_NONE: No color
encoding

GFX_COLOR_RGB: RGB color(s)

GFX_COLOR_YUV: YUV color(s)

GFX_COLOR_A1_RGB: RGB with
alpha flag

GFX_COLOR_YCBCR: YCbCr color(s)

GFX_COLOR_1A7_RGB:
RGBalpha flag & value

GFX_COLOR_1A7_YCBCR:
YCbCr alpha flag & value

GFX_COLOR_A8_RGB:
RGB with 8-bit alpha value

012:017 EAFW_BADCONTEXT Not used.

012:018 EAFW_MEMFAIL Not used.

012:019 EAFW_BADFONT Not used.

012:020 EAFW_BADTEXTCONTEXT Not used.

Table 7-1 Window Manager Error Codes

Error Code Name Definition
Using PersonalJava Solution for OS-9 143

012:021 EAFW_NOTINITIALIZED Not used.

012:022 EAFW_BADPARAM Not used.

012:023 EAFW_BADRESOURCE Not used.

012:024 EAFW_NODEVICES Not used.

012:025 EAFW_BADSIZE Not used.

012:026 EAFW_BADATTRIBS Not used.

012:027 EAFW_INVALIDOP Not used.

012:028 EAFW_BADSTYLE Not used.

012:029 EAFW_NOCREATECHILD Not used.

012:030 EAFW_NULL Not used.

012:031 EAFW_AWFNULL Not used.

012:032 EAFW_DAWFNULL Not used.

012:033 EAFW_DAWOFNULL Not used.

012:034 EAFW_DEFSIZE Not used.

012:035 EAFW_IMAGENULL Not used.

012:036 EAFW_MBOXLONGNAME Not used.

012:037 EAFW_INTERNALERR Not used.

Table 7-1 Window Manager Error Codes

Error Code Name Definition
144 Using PersonalJava Solution for OS-9

Chapter 8: Enhancing the Properties

Files

PersonalJava™ Solution for OS-9 offers several ways to customize how
the JVM (Java Virtual Machine) runs on the OS-9 target machine. This
chapter provides information about the Microtype fonts provided with
this version of PersonalJava™ Solution for OS-9, and instructions for
modifying font.properties and awt.properties to change the
behavior of the JVM on the OS-9 target machine.

This chapter includes the following topics:

• Microtype Fonts

• Modifying font.properties

• Localizing Your PersonalJava™ Solution for OS-9

• Modifying awt.properties

Microtype Fonts

The Microtype fonts can be found on your Windows development host at
E:\MWOS\OS9000\<target>\ASSETS\FONTS\AGFA and your OS-9
target machine at /h0/MWOS/OS9000/<proc>/ASSETS/FONTS/ AGFA.
The modules include the following:

mw_java.fco PersonalJava™ Solution for OS-9 font data
module

mwp_java.fco PersonalJava™ Solution for OS-9 font
plug-in module.

mt.ss PersonalJava™ Solution for OS-9 font
symbol set data module

Table 8-1 describes the fonts included in PersonalJava™ Solution for
OS-9:

Table 8-1 Microtype Fonts

Family Name Style
Index Entry For
the Family

Serif plain

italic

bold

bold italic

8

9

10

11

Sans-serif plain

italic

bold

bold italic

0

1

2

3

146 Using PersonalJava Solution for OS-9

8Enhancing the Properties Files
NoteNote
The fonts listed in the preceding table were supplied to Microware by
Agfa (a division of Bayer Corporation). They are only for developmental
use by our customers and are not for redistribution. Contact Agfa to
obtain font sets for your distribution.

monospaced plain

italic

bold

bold italic

4

5

6

7

dialog plain

italic

bold

bold italic

0

1

2

3

dialog input plain

italic

bold

bold italic

0

1

2

3

Table 8-1 Microtype Fonts (continued)

Family Name Style
Index Entry For
the Family
Using PersonalJava Solution for OS-9 147

Modifying font.properties

PersonalJava™ Solution for OS-9 uses the file font.properties to map
logical Java font names (Serif, Dialog...) to the native font names on a
particular system. The file font.properties is found on your Windows
development host at MWOS\SRC\PJAVA\LIB

Most of the syntax used in font.properties is specified by Sun. There
is, however, a portion that can be modified for a particular port of Java. The
purpose of this section is to explain the modifications made for the
PersonalJava port to OS-9.

Mapping Fonts

Only the mapping between logical and native fonts has been extended.

Syntax

The extended syntax parsed by Java is as follows:

<family name>[.<style>].<index>=[+<font plug-in
name>][:],

Parameters

<family name> is the logical font name that can be used by
an applet or application

[.<style>] is the font style (optional)

.<index> is the index of this entry for this <family
name>

= separates the logical description from the
native description

 is the name of the OS-9 module containing
the font. The module name and the module
file name must be identical
148 Using PersonalJava Solution for OS-9

8Enhancing the Properties Files
[+]
allows the specification of a MicroType
plug-in font to be used in conjunction with
 (optional)

[:] allows the specification of a MicroType font
index indicating the index of the font inside
of to use

If not specified, the index is assumed to be
zero (optional)

, indicates the type of font stored in <font
module name>

The current valid values for
include the following:

FONTTYPE_MT (MicroType)

FONTTYPE_TT (TrueType)

Example 1
sansserif.plain.0=mw_java.fco+mwp_java.fco:0,FONTTYPE_MT
sansserif.italic.0=mw_java.fco+mwp_java.fco:1,FONTTYPE_MT
sansserif.bold.0=mw_java.fco+mwp_java.fco:2,FONTTYPE_MT
sansserif.bolditalic.0=mw_java.fco+mwp_java.fco:3,FONTTYPE_MT

In the above example, the font is Microtype sans-serif. Microtype fonts are
a compressed format in which several fonts are stored in the same module.
Therefore, when specifying them, you need to name the index of the font
within the module you wish to use. In this example, index 2 is used for
sans-serif bold.

The example also specifies a Microtype Plug-in font (mwp_java.fco)
containing glyphs that do not change between fonts or font styles. A
separate entry is not used for the plug-in because it is handled
transparently from Java’s perspective.
Using PersonalJava Solution for OS-9 149

Example 2
serif.plain.0=Times.ttf,FONTTYPE_TT
serif.italic.0=TimesI.ttf,FONTTYPE_TT
serif.bold.0=TimesBD.ttf,FONTTYPE_TT
serif.bolditalic.0=TimesBI.ttf,FONTTYPE_TT
serif.1=Dingbats.ttf,FONTTYPE_TT

It is also possible to use True Type fonts. In this example for TrueType fonts,
each of the available serif font styles are mapped to a specific native font
module. This example also specifies that for any style, Dingbats.ttf is
used for any character above the glyph range of the Times fonts.

Creating Font Data Modules from Font Files

This section describes the procedure for converting a file to a loadable
module for OS-9. This procedure is important in relation to font support for
OS-9. The font support files that would normally reside on disk are
converted into modules and used directly from memory. To use the files as
modules they must be converted from files to modules.

An important concept to understand before performing this conversion is
the difference between a file name and a module name. A file name is the
name of a file as recorded in the host operating system's directory
structure. A module name is the name by which OS-9 will recognize the
entity after it has been loaded from disk. Generally, the module name and
file name are identical. This, of course, makes it easier to keep track of your
OS-9 modules. The file name and module name can differ. For example,
you could have a file called kernel.new that contains the module called
kernel. The Microware utility ident is used to determine the module
contents of a file. For example, an ident of kernel.new might show:

$ ident kernel.new
Header for: kernel
Module size: $F310 #62224
Owner: 0.0
Module CRC: $AD8BC8 Good CRC
Header parity: $C028 Good parity
Edition: $55 #85
Ty/La At/Rev $C01 $A000
Permission: $555 -----e-r-e-r-e-r
150 Using PersonalJava Solution for OS-9

8Enhancing the Properties Files
Exec off: $A8 #168
Data size: $1960 #6496
Stack size: $C00 #3072
Init. data off: $D5E0 #54752
Data ref. off: $EF48 #61256
80386 System Mod, Object Code, Sharable, System State
Process

Note the module named kernel located in a file called kernel.new.

This concept of differing file name vs. module name will be employed to
create modules for font files. The mkdatmod utility is used to wrap the OS-9
module structure around a file. Refer to the Utilities Reference manual for
more information about mkdatmod.

Assume you had a file, called testfile, that you wanted converted into a
module with the same name. The mkdatmod command line would be:

mkdatmod testfile testfile.mod -tp=arm

This creates an ARM module called testfile in a file called
testfile.mod. Running ident on testfile.mod shows:

Header for: testfile
Module size: $F390 #62352
Owner: 0.0
Module CRC: $F720AF Good CRC
Header parity: $C3A1 Good parity
Edition: $1 #1
Ty/La At/Rev $400 $8000
Permission: $111 -------r---r---r
Exec off: $78 #120
ARM Data Mod, Sharable

Note the module named testfile located in a file called
testfile.mod.
Using PersonalJava Solution for OS-9 151

 Localizing Your PersonalJava™ Solution for
OS-9

The PersonalJava™ Solution package you have installed is localized for the
U.S. and Europe. It can be modified after installation for the following
languages:

• Japanese

• Korean

• Traditional Chinese

• Chinese

• Thai

• Russian

• Hebrew

• Arabic

To localize the package for one of these locales, the font.properties
file must be modified to match the version required for the language.
Complete the following steps:

Step 1. Go to the directory E:\MWOS\DOS\jdk1.1.8\lib on your Windows
host. Locate the following files from the Windows hosted JDK:

Table 8-2 Localizing Files

Region File

English font.properties

Japanese font.properties.ja

Korean font.properties.ko
152 Using PersonalJava Solution for OS-9

8Enhancing the Properties Files
Step 2. Use a text file difference tool to determine the differences between your
localization choice and font.properties:

cd \E:\MWOS\DOS\jdk1.1.8\lib
diff font.properties font.properties.ja

Step 3. Copy Microware’s original font.properties for safe keeping.
Consider the following example:

cd E:\MWOS\SRC\PJAVA\LIB
copy font.properties font.properties.en

Step 4. Edit font.properties and make similar changes reported in step 2
by the difference tool. Presumably, you have already purchased the
correct font modules from AGFA.

Step 5. Make sure you are using a disk-based system that loads the JVM and
its resources from a MWOS directory on a system disk.

• If using a disk-based configuration, FTP the new font.properties
file to the OS-9 target machine and place it in
/h0/MWOS/SRC/PJAVA/LIB.

Traditional Chinese font.properties.zh_TW

Chinese font.properties.zh

Thai font.properties.th

Russian font.properties.ru

Hebrew font.properties.iw

Arabic font.properties.ar

Table 8-2 Localizing Files

Region File
Using PersonalJava Solution for OS-9 153

• If using a diskless configuration, The new font.properties for the
locale you have selected is added to pjava_home.mar the next time
pjruntime is generated.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For a complete discussion of pjruntime, refer to Chapter 4:
Choosing a PersonalJava Diskless Strategy.
154 Using PersonalJava Solution for OS-9

8Enhancing the Properties Files
Modifying awt.properties

PersonalJava™ Solution for OS-9 uses the file awt.properties to
control the way the font is used on your device. It is also used to control
whether multiple windows are allowed. The file awt.properties is found
on your Windows development host at E:\MWOS\SRC\PJAVA\LIB

Setting colorMode

The colorMode property in the awt.properties file gives the AWT
(Abstract Windowing Toolkit) more information about the way color is
implemented on a device.

Syntax

AWT.colorMode={color|gray|mono}

Options

color the platform has a color display

This is the default value if the property is not
present.

gray the platform has multiple gray shade that
simulates a color display

mono the platform has only two colors

Setting AGFA Font Engine Memory Consumption

The AGFA Font Engine is used by Microware’s AWT to render Java text. It
has a cache for remembering previous renders and also a buffer space for
rendering a specific character. The size of these areas can be customized.
Using PersonalJava Solution for OS-9 155

The reason you may change these values is that there always exists a
speed and memory trade off. The larger the cache and buffer size the more
renderings the engine can store, but inversely, you can save roughly 300K
of RAM for the cache size and 20K for the buffer size if you use the
minimum sizes.

In the awt.properties file, two lines can be added to control the size of
the cache and buffer that the AGFA Font Engine uses to render text.
Suggested values for highest performance include the following:

AWT.agfacachesize=320000
AWT.agfabuffersize=60000

To set the values to their lowest recommended size of 25000 and 40000
respectively, change the lines to the following. These are the defaults:

AWT.agfacachesize=0
AWT.agfabuffersize=0

Using Multiple Windows

PersonalJava™ Solution for OS-9 provides the ability to use multiple
windows and related features.

In the file awt.properties, the property AWT.multiwindow controls
whether or not multiple windows are allowed.

Allow multiple windows
AWT.multiwindow=yes

The legal values for AWT.multiwindow are yes and no. Default is yes.

If AWT.multiwindow is set to no, the classes
java.awt.CheckboxMenuItem, java.awt.Dialog (modeless),
java.awt.Frame, java.awt.Menu, java.awt.MenuBar,
java.awt.MenuShortcut, and java.awt.Window throw an
UnsupportedOperationException as defined in the PersonalJava
specification.
156 Using PersonalJava Solution for OS-9

8Enhancing the Properties Files
If the value for AWT.multiwindow is set to yes,
java.awt.CheckboxMenuItem, java.awt.Dialog (modeless and
modal), java.awt.Frame, java.awt.Menu, java.awt.MenuBar,
java.awt.MenuShortcut, and java.awt.Window all work as they do
for the JDK.

Using Scrollbars

PersonalJava™ Solution for OS-9 provides the ability to use the optional
Scrollbar class from AWT.

In the file awt.properties, the property AWT.scrollbar controls
whether or not Scrollbar is allowed.

Allow/disallow Scrollbar class
AWT.scrollbar=yes

The legal values for AWT.scrollbar are yes and no. Default is yes.

If AWT.scrollbar is set to no, any attempt to instantiate a Scrollbar
object results in the throwing of UnsupportedOperationException as
allowed by the PersonalJava specification.
Using PersonalJava Solution for OS-9 157

158 Using PersonalJava Solution for OS-9

Chapter 9: Monitoring PersonalJava

Applications

PersonalJava™ Solution for OS-9 offers a number of ways to monitor
the activities and resource usage of your PersonalJava applications.
Details on these various monitoring technologies follow in this chapter,
including the following:

• Memory Usage Monitoring

• Native Stack Usage Monitoring

• AWT Activities Monitoring

Memory Usage Monitoring

PersonalJava™ Solution for OS-9 gives you two ways to instrument the
memory usage of your PersonalJava applications:

• MEMWATCH environment variable
The debug version of the JVM (Java Virtual Machine), pjava_g, and
the debug version of the window manager, winmgrg, both print
memory usage statistics when they exit if the MEMWATCH environment
variable is set prior to their start.

• Memory Stopwatch class
Microware ships a class that allows RAM usage of PersonalJava
applications to be monitored. The remainder of this section contains
details about this class and an example application to monitor the
amount of RAM particular GUI elements consume.

A memory stopwatch gives you the ability to monitor memory activity over a
period of time. It works much like a conventional stopwatch as it starts
before the activity being watched starts and it is stopped after the activity
finishes. The following sections describes the memory stopwatch included
in your PersonalJava™ Solution for OS-9 package.

• Stopwatch Java API lists all the Java methods included in the
MemStopWatch class.

• The MemStopWatch Example Java Program provides sample code
of a Java program using MemStopWatch.

• Using the MemStopWatch Example Java Program is a tutorial for
using the MemStopWatch example.

Introduction

The MemStopWatch class is implemented largely with native methods that
monitor activity on the C heap. The C heap is used by the JVM to allocate
class-related data structures. It is also heavily used by native methods. For
example, the AWT (Abstract Windowing Toolkit) native methods use a
combination of C heap (such as malloc(), calloc(), and free()) calls
and _os_srqmem().
160 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
MemStopWatch monitors the changes in the following items:

• RAM allocated from the C heap via malloc, calloc, and realloc
and RAM allocated with _os_srqmem

• Total count of the number of bytes allocated by the allocation functions

• RAM allocated to the processes by OS-9

• Number of segments (separate calls to allocation functions) outstanding

• Number of calls to the various allocation and deallocation functions

• RAM allocated from the Java heap

The stopwatch also keeps track of a number of maximums that are tallied
regardless of whether or not the stopwatch is running. These maximums
are listed below:

• Maximum RAM allocated from the C heap and via _os_srqmem

• Maximum RAM allocated to the process by OS-9

• Maximum request made of the C heap or _os_srqmem

• Maximum number of segments outstanding at any one time

Stopwatch Java API

The MemStopWatch class is included in the package
com.microware.support. It is a subclass of java.lang.Object and
it has no class data members. The Stopwatch Java API methods are
described on the following pages.

Table 9-1 Constructor

Function Description

MemStopWatch() Construct a new MemStopWatch instance
Using PersonalJava Solution for OS-9 161

Table 9-2 Stopwatch Methods

Function Description

isRunning() Check if the stopwatch is running

start() Start monitoring memory activity

stop() Stop monitoring memory activity

Table 9-3 Stopwatch Information Methods

Function Description

clear() Reset information to zero

getAddReallocs() Return number of enlarging realloc()
calls

getAllocTotal() Return total number of bytes allocated

getCallocs() Return number of calls to calloc()

getCurrJavaRAM() Return current Java heap RAM usage

getCurrJavaRAM() Return current RAM usage

getCurrSegs() Return number of segments currently in use

getCurrSysRAM() Return current system RAM usage

getFrees() Return number of free() calls
162 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
Stopwatch information methods retrieve the various pieces of information
from the stopwatch object. If the stopwatch is running, these methods
return information from the last time the stopwatch was stopped.

Three types of fields are returned when calling these stopwatch information
methods:

Delta fields reflect changes in an item occurring while the
stopwatch is running

They can have negative values. For example, if
more memory is freed while the stopwatch is
running than was allocated, getCurrRAM would
have a negative value.

Counter fields reflect changes in an item occurring while the
stopwatch is running

getMallocs() Return number of calls to malloc()

getMaxAlloc() Return maximum single allocation

getMaxRAM() Return maximum RAM usage

getMaxSegs() Return maximum number of segments in
use

getMaxSysRAM() Return maximum system RAM usage

getSrqmems() Return number of _os_srqmem() calls

getSrtmems() Return number of _os_srtmem() calls

getSubReallocs() Return number of shrinking realloc()
calls

Table 9-3 Stopwatch Information Methods (continued)

Function Description
Using PersonalJava Solution for OS-9 163

Unlike delta fields, they cannot have negative
values as they are counters of the number of items
that have occurred.

Maximum fields show the highest value that an item reaches
regardless of whether or not the stopwatch is
running at the time the value is reached

Maximums are always positive.

Table 9-4 Debugging Methods

Function Description

toString() Generate a string representation of
the MemStopWatch

toString(String title) Generate a string representation of
the MemStopWatch with an
optional title
164 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
clear()

Reset Information to Zero

Syntax
void clear()

Description

clear() clears the stopwatch object to zero. If the stopwatch is running, it
is stopped.

Exceptions

None

See Also

start()

stop()
Using PersonalJava Solution for OS-9 165

getAddReallocs()

Return Number of Enlarging realloc() Calls

Syntax
public int getAddReallocs();

Description

getAddReallocs is a counter field that returns the number of calls to
realloc or _lrealloc where the new amount of memory was more than
was already allocated.

Exceptions

None

See Also

clear()

getSubReallocs()

start()

stop()
166 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
getAllocTotal()

Return Total Number of Bytes Allocated

Syntax
public int getAllocTotal();

Description

getAllocTotal is a counter field that returns the total count of the
number of bytes allocated from the C heap or via _os_srqmem.

Exceptions

None

See Also

clear()

getMaxAlloc()

start()

stop()
Using PersonalJava Solution for OS-9 167

getCallocs()

Return Number of Calls to calloc()

Syntax
public int getCallocs();

Description

getCallocs is a counter field that returns the number of calls to calloc
or _lcalloc.

Exceptions

None

See Also

clear()

getFrees()

getMallocs()

start()

stop()
168 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
getCurrJavaRAM()

Return Current Java Heap RAM Usage

Syntax
public int getCurrJavaRAM();

Description

getCurrJavaRAM is a delta field that returns the amount of RAM currently
outstanding from the Java heap.

Exceptions

None

See Also

clear()

start()

stop()
Using PersonalJava Solution for OS-9 169

getCurrRAM()

Return Current RAM Usage

Syntax
public int getCurrRAM();

Description

getCurrRAM is a delta field that returns the amount of RAM currently
outstanding from the C heap and _os_srqmem calls.

Exceptions

None

See Also

clear()

getCurrSysRAM()

getMaxRAM()

start()

stop()
170 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
getCurrSegs()

Return Number of Segments Currently in Use

Syntax
public int getCurrSegs();

Description

getCurrSegs is a delta field that returns the number of discrete memory
allocations currently outstanding.

Exceptions

None

See Also

clear()

getMaxSegs()

start()

stop()
Using PersonalJava Solution for OS-9 171

getCurrSysRAM()

Return Current System RAM Usage

Syntax
public int getCurrSysRAM();

Description

getCurrSysRAM is a delta field that returns the amount of RAM currently
allocated to the process by OS-9.

Exceptions

None

See Also

clear()

getCurrJavaRAM()

getMaxSysRAM()

start()

stop()
172 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
getFrees()

Return Number of free() Calls

Syntax
public int getFrees();

Description

getFrees is a counter field that returns the number of calls to free or
_lfree.

Exceptions

None

See Also

clear()

getCallocs()

getMallocs()

start()

stop()
Using PersonalJava Solution for OS-9 173

getMallocs()

Return Number of Calls to malloc()

Syntax
public int getMallocs();

Description

getMallocs is a counter field that returns the number of calls to malloc
or _lmalloc.

Exceptions

None

See Also

clear()

getCallocs()

getFrees()

start()

stop()
174 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
getMaxAlloc()

Return Maximum Single Allocation

Syntax
public int getMaxAlloc();

Description

getMaxAlloc is a maximum field that returns the largest single request of
the C heap or via _os_srqmem.

Exceptions

None

See Also

clear()

getAllocTotal()

start()

stop()
Using PersonalJava Solution for OS-9 175

getMaxRAM()

Return Maximum RAM Usage

Syntax
public int getMaxRAM();

Description

getMaxRAM is a maximum field that returns the maximum amount of RAM
outstanding from the C heap and _os_srqmem calls.

Exceptions

None

See Also

clear()

getCurrJavaRAM()

getMaxSysRAM()

start()

stop()
176 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
getMaxSegs()

Return Maximum Number of Segments in Use

Syntax
public int getMaxSegs();

Description

getMaxSegs is a maximum field that returns the maximum number of
allocations outstanding at one time.

Exceptions

None

See Also

clear()

getCurrSegs()

start()

stop()
Using PersonalJava Solution for OS-9 177

getMaxSysRAM()

Return Maximum System RAM Usage

Syntax
public int getMaxSysRAM();

Description

getMaxSysRAM is a maximum field that returns the maximum amount of
RAM ever allocated to the process by OS-9.

Exceptions

None

See Also

clear()

getCurrJavaRAM()

getCurrSysRAM()

start()

stop()
178 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
getSrqmems()

Return Number of _os_srqmem() Calls

Syntax
public int getSrqmems();

Description

getSrqmems is a counter field that returns the number of calls to
_os_srqmem.

Exceptions

None

See Also

clear()

getSrtmems()

start()

stop()
Using PersonalJava Solution for OS-9 179

getSrtmems()

Return Number of _os_srtmem() Calls

Syntax
public int getSrtmems();

Description

getSrtmems is a counter field that returns the number of calls to
_os_srtmem.

Exceptions

None

See Also

clear()

getSrqmems()

start()

stop()
180 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
getSubReallocs()

Return Number of Shrinking realloc() Calls

Syntax
public int getSubReallocs();

Description

getSubReallocs is a counter field that returns the number of calls to
realloc or _lrealloc where the new amount of memory was less than
was already allocated.

Exceptions

None

See Also

clear()

getAddReallocs()

start()

stop()
Using PersonalJava Solution for OS-9 181

isRunning()

Check If the Stopwatch is Running

Syntax
boolean isRunning()

Description

isRunning() returns whether or not the stopwatch object is currently
running.

Exceptions

None

See Also

start()

stop()
182 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
MemStopWatch()

Construct a New MemStopWatch Instance

Syntax
public MemStopWatch()

Description

MemStopWatch() is the constructor for the object.

Exceptions

java.lang.OutOfMemory insufficient memory to allocate the
stopwatch.
Using PersonalJava Solution for OS-9 183

start()

Start Monitoring Memory Activity

Syntax
public void start()

Description

start() starts the monitoring of memory activity for this stopwatch. If the
stopwatch is already started, it continues to run.

Exceptions

None

See Also

stop()
184 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
stop()

Stop Monitoring Memory Activity

Syntax
public void stop()

Description

stop() stops monitoring memory activity for this stopwatch. If the
stopwatch is already stopped, it remains stopped.

Exceptions

None

See Also

start()
Using PersonalJava Solution for OS-9 185

toString()

Generate a string representation of the MemStopWatch

Syntax
public String toString();

Description

toString() converts the stopwatch object into an ASCII representation.
If the stopwatch is running, the statistics from the last time it was stopped
are used.

An example string might be:

Stopped MemStopWatch:
CurrRAM = 1364382 MaxRAM = 8908704
CurrSysRAM = 1392640 MaxSysRAM = 9527296
CurrSegs = 1290 MaxSegs = 4936
MaxAlloc = 6291464 AllocTotal = 2386336
Mallocs = 1474 Callocs = 7903 AddReallocs = 1 Srqmems = 13
Frees = 8099 SubReallocs = 0 Srtmems = 2
CurrJavaRAM = 28478

Exceptions

None

See Also

toString(String title)
186 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
toString(String title)

Generate a string representation of the MemStopWatch With an Optional
Title

Syntax
public String toString(String title);

Description

toString(String title) converts the stopwatch object into an ASCII
representation with a title. If the stopwatch is running, the statistics from the
last time it was stopped are used.

For example, if title was After instantiation, then the string might be:

After instantiation:
CurrRAM = 1364382 MaxRAM = 8908704
CurrSysRAM = 1392640 MaxSysRAM = 9527296
CurrSegs = 1290 MaxSegs = 4936
MaxAlloc = 6291464 AllocTotal = 2386336
Mallocs = 1474 Callocs = 7903 AddReallocs = 1 Srqmems = 13
Frees = 8099 SubReallocs = 0 Srtmems = 2
CurrJavaRAM = 24878

Exceptions

None

See Also

toString()
Using PersonalJava Solution for OS-9 187

The MemStopWatch Example Java Program

This example Java source uses the MemStopWatch class to gather
memory statistics during the creation and drawing of a user selected Java
AWT component:
import java.lang.*;
import java.awt.*;
import java.awt.event.*;
import com.microware.support.*;

// this version of MemStopWatch is the same as the enterprise version except
// anything that creates a frame has been removed and the unsupported
// Scrollbar class has been removed from the options list

class Main extends Frame implements ActionListener
{
 String options[] = {"Button", "Canvas", "Checkbox", "Choice", "Label",
 "List", "Panel", "ScrollPane", "TextArea", "TextField"};

 String separator = "---";

 // reference to the current component displayed on the screen
 Component currentComponent;

 // main panel where the components are displayed
 Panel displayPanel = new Panel();

 // our stop watch
 MemStopWatch stopWatch;

 // TextArea for displaying statistics
 TextArea ta;

 // choice for choosing which widget to display
 Choice choice;

 // show button
 Button showButton;

 Main()
 {
 super("MemStopWatch Test");
 Panel widgetPanel;
 WindowEventHandler wl;

 // create everything
 try
 {
 widgetPanel = new Panel();
 choice = new Choice();
 showButton = new Button("Show");
 wl = new WindowEventHandler();
188 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
 ta = new TextArea();
 stopWatch = new MemStopWatch();
 } catch (Throwable e) {
 System.out.println(e);
 return;
 }

 // fill out the choice widget
 for (int i = 0; i < options.length; i++)
 {
 choice.add(options[i]);
 }

 // set up the show button and add it to the widget panel
 showButton.addActionListener(this);

 widgetPanel.setLayout(new GridLayout(1, 0));
 widgetPanel.add(choice);
 widgetPanel.add(showButton);
 add("North", widgetPanel);

 displayPanel.setBackground(Color.gray);
 add("Center", displayPanel);

 // set up the text area
 ta.setRows(10);
 ta.setEditable(false);
 add("South", ta);

 addWindowListener(wl);

 setSize(400, 350);
 show();
 }

 public boolean changeComponents(String name)
 {
 if (name == null)
 return false;

 // if we are viewing a component hide it, remove it and set the
 // reference to null
 if (currentComponent != null)
 {
 currentComponent.setVisible(false);
 displayPanel.remove(currentComponent);
 currentComponent = null;
 }

 showButton.setEnabled(false);

 // wait for any other threads to finish running
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {};
Using PersonalJava Solution for OS-9 189

 // clear the stopwatch and then start it
 stopWatch.clear();
 stopWatch.start();

 // create the new component under the supervision of the stopwatch
 try {
 if (name.equals("Button"))
 currentComponent = new Button("TestButton");
 else if (name.equals("Canvas"))
 currentComponent = new mswCanvas();
 else if (name.equals("Checkbox"))
 currentComponent = new Checkbox("Checkbox Example");
 else if (name.equals("Choice"))
 {
 Choice newChoice = new Choice();
 newChoice.addItem("Item 1");
 newChoice.addItem("Item 2");
 currentComponent = newChoice;
 }
 else if (name.equals("Label"))
 currentComponent = new Label("Label text");
 else if (name.equals("List"))
 {
 List newList = new List(2);
 newList.addItem("First Item");
 newList.addItem("Second Item");
 newList.addItem("Third Item");
 currentComponent = newList;
 }
 else if (name.equals("Panel"))
 {
 currentComponent = new Panel();
 currentComponent.setBackground(Color.blue);
 currentComponent.setSize(100,100);
 }
 else if (name.equals("ScrollPane"))
 {
 currentComponent = new ScrollPane(ScrollPane.SCROLLBARS_ALWAYS);
 currentComponent.setSize(100,100);
 }
 else if (name.equals("TextArea"))
 currentComponent = new TextArea("TextArea", 7, 10,

TextArea.SCROLLBARS_BOTH);
 else if (name.equals("TextField"))
 currentComponent = new TextField("TextField", 10);

 } catch (Throwable e) {
 System.out.println("The following exception occurred: "+e);
 stopWatch.stop();
 currentComponent = null;
 showButton.setEnabled(true);
 return false;
 }
190 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
 // set the current component name so we can recognize it again
 currentComponent.setName(name);

 // do not add a window derivative to the container
 if (!(currentComponent instanceof java.awt.Window))
 displayPanel.add("Center", currentComponent);

 // arrange the panel and show the current component
 displayPanel.doLayout();
 currentComponent.setVisible(true);

 // wait for any other threads to finish running
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {};

 // if the watch is running stop it
 if (stopWatch.isRunning())
 {
 stopWatch.stop();
 }

 showButton.setEnabled(true);
 return true;
 }

 public void actionPerformed(ActionEvent evt)
 {
 // see which button was pressed

 if ("Show".equals(evt.getActionCommand()))
 {
 // create the newly selected component
 if (changeComponents(choice.getSelectedItem()))
 {
 ta.append(separator + "\n");
 ta.append(stopWatch.toString("Memory usage since creation of " +
 currentComponent.getName()));
 }
 }
 }

 public static void main(String args[])
 {
 new Main();
 }

 public class WindowEventHandler extends WindowAdapter
 {
 public void windowClosing(WindowEvent evt)
 {
 System.exit(0);
 }
 }

Using PersonalJava Solution for OS-9 191

 // canvas used in the Canvas test
 public class mswCanvas extends Canvas
 {
 mswCanvas()
 {
 super();
 setSize(100, 100);
 setBackground(Color.blue);
 }
 public void paint(Graphics g)
 {
 g.drawRect(0, 0, getSize().width-1, getSize().height-1);
 }
 }
}

192 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
Using the MemStopWatch Example Java Program

In this example, you can select an AWT component from the choice widget
in the upper left corner of the frame. When the user presses the Show
button, the stopwatch is started and a Java AWT component is created.
After the component has been drawn, the stopwatch is stopped and the
collected memory statistics are printed in the text area.

The MemStopWatch Example Java Source File

The source for this example has been installed on the Windows
development machine in the E:\MWOS\SRC\PJAVA\EXAMPLES\
MEMORY_SW directory.

Compiling the Source File

In a DOS shell on a Windows 95/NT development machine, compile the
source file using the Java compiler.

> cd \MWOS\SRC\PJAVA\EXAMPLES\MEMORY_SW
> javac -classpath \MWOS\SRC\PJAVA\LIB\classes.zip Main.java

Once the compilation succeeds, the following class files are placed in the
same directory as the Java source file:

Main$WindowEventHandler.class
Main$mswCanvas.class
Main.class

NoteNote
If the compilation fails, make sure you typed in and named the program
exactly as shown above. Capitalization is important.
Using PersonalJava Solution for OS-9 193

Transferring the Class to the Target OS-9 System

In this example, files are transferred using FTP. You can also use NFS. The
steps to transfer using FTP are shown below:

Step 1. Choose Start->Run on the Windows desktop.

Step 2. In the Run dialog box, enter ftp <machine name> then click OK.

Step 3. Log on to the OS-9 machine by typing the user name and password in
the FTP (MS-DOS Shell) window. The default user name and password
for OS-9 machines is super and user.

Step 4. Change to the directory containing the application classes on the
Windows machine by entering the following in the FTP window:

lcd \MWOS\SRC\PJAVA\EXAMPLES\MEMORY_SW

Step 5. Change to the demo directory on the OS-9 machine by entering the
following in the FTP window:

cd /h0/MWOS/SRC/PJAVA

Step 6. Create the MEMORY_SW directory on the OS-9 machine by entering
the following in the FTP window:

mkdir EXAMPLES
mkdir EXAMPLES/MEMORY_SW

Step 7. Change to the MEMORY_SW directory on the OS-9 machine by
entering the following in the FTP window:

cd EXAMPLES/MEMORY_SW

Step 8. Change to binary transfer by entering the following in the FTP window:

bin

Step 9. Transfer the class files by entering the following in the FTP window:

mput *.class

Answer yes to each prompt.

Step 10. Quit the FTP session.
194 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
Starting the Java Application on the OS-9 System

Start the Java application by using telnet to communicate with the OS-9
system:

Step 1. Choose Start->Run from the Windows desktop.

Step 2. In the Run window text field enter telnet <target system> and
click OK.

Step 3. Log onto the OS-9 system by entering the user name and password.
super and user are the defaults for OS-9 systems.

Step 4. Change to the demo directory on the OS-9 machine by entering

cd /h0/MWOS/SRC/PJAVA/EXAMPLES/MEMORY_SW

Step 5. Run the application on the OS-9 target system using the debug version
of the Java interpreter, pjava_g. Only the debug version of the JVM
includes the code necessary to monitor memory usage with the
MemStopWatch class.

pjava_g Main &

A window appears containing the following:

• a Choice widget in the upper left corner of the frame

• a Show button in the upper right corner of the frame

• a Panel in the middle of the frame

• a TextArea at the bottom of the frame

To use the application to retrieve memory statistics, select a widget name
from the Choice widget and press Show.
Using PersonalJava Solution for OS-9 195

Native Stack Usage Monitoring

The Microware PersonalJava Virtual Machine incorporates the StackWatch
feature to measure the amount of native stack used by threads within a
particular application. Using this technique enables developers to minimize
the amount of memory used by their Java programs.

This section includes the following parts:

• Introduction

• Using StackWatch

• Interpreting the Results

Introduction

StackWatch is a diagnostic utility built into the debug version of Microware’s
PersonalJava VM (pjava_g). StackWatch tells you how much memory
each VM thread is using in its native (or C) stack.

This information helps optimize memory use in the following two ways:

• If the application is using inordinate amounts of memory in its native
stack, it may require tuning to use less memory.

• If the application never uses more than a fraction of the memory
allocated to its native stacks, the size of those stacks can be reduced.

Using StackWatch

Use the debug version of the PersonalJava VM to use StackWatch. This
executable is called pjava_g in PersonalJava™ Solution for OS-9.

To enable StackWatch, define an environment variable called STACKWATCH
before starting the VM. When the VM starts the Java application it will
notice the STACKWATCH environment variable and enable the StackWatch
feature.
196 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
The Java application can then be run and exited normally. When the VM
shuts down, the StackWatch feature prints out a summary of the stacks that
were created for each thread that existed during the run of the application.
Following is a typical scenario:

$ setenv STACKWATCH 1
$ pjava_g ThreadTest

 C-Stack usage by threads
 Free Used Size Status Name
 -------- -------- -------- ------- ------------------------
 126164 4076 130240 dead "2"
 126540 3700 130240 dead "1"
 126540 3700 130240 dead "0"
 129208 1032 130240 running "Idle thread"
 129756 484 130240 running "Async Garbage Collector"
 129768 472 130240 running "Finalizer thread"
 129804 436 130240 running "Clock"

For each thread started during execution of the application, StackWatch
prints out the following information:

• Free - amount of stack not used by the thread

• Used - largest amount of stack ever used by the thread

• Size - total amount of memory allocated for the thread’s stack

• Status - current status of the thread

• Name - name assigned by your application or the VM to the thread

Interpreting the Results

From the previous example, it can be seen that no thread used more than
5K (where 1K is 1024 bytes) of native stack. The StackWatch summary in
Figure 9-1 shows the PersonalJava VM started with a stack size of 5K
(where 1K is 1024 bytes) for each stack. If this run represents a worst-case
scenario for stack usage, the stack size for each thread in the application
could be reduced from 128K to 5K, saving roughly 850K of RAM.
Using PersonalJava Solution for OS-9 197

Figure 9-1 StackWatch Sample Summary

$ setenv STACKWATCH 1
$ pjava_g -ss5k ThreadTest

 C-Stack usage by threads
 Free Used Size Status Name
 -------- -------- -------- ------- --------------------------
 212 4076 4288 dead "2"
 588 3700 4288 dead "1"
 588 3700 4288 dead "0"
 3256 1032 4288 running "Idle thread"
 3804 484 4288 running "Async Garbage Collector"
 3816 472 4288 running "Finalizer thread"
 3844 444 4288 running "Clock"
198 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
AWT Activities Monitoring

The activities of AWT and Microware’s AFW class libraries can be
monitored by using the appdbg facility.

The application debugging (appdbg) environment provides support for
applications to convey debugging information to the user. This debugging
information is invaluable in determining the order in which events took
place.

This chapter includes the following topics:

• The appdbg Environment

• appdbg Files

• Using appdbg

• The adump Utility

The appdbg Environment

appdbg has the following attributes:

• fast appdbg is very efficient at writing messages. This is
important when timing is an issue. For example, if the
debugging version of an application runs several times
slower than the non-debug version, its behavior in
relation to other applications can be different. Writing a
message does introduce overhead, but Microware
worked to reduce this overhead.

• thread-safe appdbg is written with no static information so it can
be called by different threads at the same time. For
example, if the main-line code is in the process of
printing a message when a signal arrives, the signal
handler is free to emit debugging information. In
addition, appdbg is non-blocking. This is important for
user-state cooperative threading.
Using PersonalJava Solution for OS-9 199

• multi-module, multi-process
appdbg supports the emitting of debug information by
any number of applications at the same time All the
information is gathered in a common place so you can
examine the actual order of events in different
programs. This can be very helpful in the presence of
inter-process communication. Each message can be
prepended with the module name and/or process ID of
the application emitting the information.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to appdbg Environment Variables on page 201 for more
information about these messages.

• unbuffered appdbg does not buffer information. This
allows for an accurate log in the presence of
application failures.

• non-intrusive You can c hoose appdbg to always be enabled.
This enables you to examine the tail end of the debug
information written without having to consciously
enable debugging at the beginning of the run.

appdbg Files

The following files are used with appdbg:

<os>/<proc>/CMDS/appdbg_trap
system-state trap handler that must be
present on the target system

<os>/<proc>/CMDS/adump
utility used to display debug information
200 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
Using appdbg

This section describes how to enable the debug information and choose
the type of information you want to see. This section assumes you have an
application that was compiled with appdbg information. Prior to executing
any applications containing appdbg there are several environment
variables you can set to control appdbg.

appdbg Environment Variables

APPDBG_MOD <name>[,<size>]
is set to the name of the module to use for
debugging information and, optionally, the
size of the module

The size determines how much historical
information is available at any given time.

<name> is the name of the module to use

<size> is the optional decimal size of the
module in K bytes

For example, setenv APPDBG_MOD
dbglog would set the module name used to
dbglog and setenv APPDBG_MOD
runlog,256 would set the module name
used to runlog and the size to 256K bytes.
The default module name is appdbg_mod
and the default module size is 512K. The
minimum module size is 16K.

APPDBG_LVL <level> is used to set the level of debug information
you want to view

Generally, the higher the level, the more
detailed and verbose information you see.
The extra amount of information seen varies
from application to application. The format
of the string used to set APPDBG_LVL is a
decimal number For example, setenv
Using PersonalJava Solution for OS-9 201

APPDBG_LVL 2 would set the information
level to two. If APPDBG_LVL is not set or is
set to 0, no debug information is emitted.

APPDBG_OPS <opts> is set to indicate options about how the
information is emitted

The format is a sequence of characters
representing options. The following two
options are valid:

m - prepend each line of each message with
the name of the module emitting the
message. This is useful when multiple
applications are running that emit debug
information from the same library.

p - prepend each line of each message with
the process ID of the application emitting
the message This is useful
when multiple copies of the same
application are running simultaneously.
Either option can be used alone or together.
For example, setenv APPDBG_OPS m
causes the module name to be prepended
and setenv APPDBG_OPS mp causes both
the module name and process ID to be
prepended.

XXXX_MASK <value> Every separate sub-system or library has a
mask environment variable to filter the
nature of information emitted

See the documentation for the object to
determine the values of the bits and the
name of the environment variable.

For example, if your OAHU and XPRESO
packages have debug information you might
set the environment variables:

setenv OAHU_MASK 0x86

setenv XPRESO_MASK 0xc001c0de
202 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
All the emitted information is written to a
memory module. The contents of the
memory module are interpreted by the
adump (appdbg dump) utility.

AFW_MASK specifies the message mask for the appdbg
information emitted by the debugging
version of the Application Framework library
(linked to pjava_g)

The following are the valid bits:

0x001 position and dimension information

0x002 event handling/generation

0x004 object construction and destruction

0x008 draw related operations

0x010 message transmission and reception

0x020 focus related functions and events

0x040 signal subsystem and related
functions

0x080 mailbox and internal queue
subsystems

0x100 font technology specific functions

0x200 window manager related functions

0x400 information setting or getting
functions

0x800 clipboard related functions

MAWT_MASK specifies the message mask for the appdbg
information emitted by debugging version of
the Microware AWT peer implementation
(pjava_g)

The following are the valid bits:

0x0001 position and dimension information

0x0002 event handling/generation
Using PersonalJava Solution for OS-9 203

0x0004 object construction and destruction

0x0008 draw related operations

0x0010 message transmission and
reception

0x0020 focus related functions and events

0x1000 trace information, function entry
and exit

0x2000 color operations

0x4000 image operations
204 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
The adump Utility

There are several modes in which the adump utility can run. These are
illustrated below.

adump Modes

Default Mode
You can examine the end of all the messages written. By default, adump
writes all the information currently available in the module to standard
output. This is used, for example, after the application has terminated to
see what it did last. The command line to show the information is one of the
following:

adump

or

adump -t

If you want the information written to a file so it can be viewed with an
editor, use:

adump >log.file

Then display log.file in an editor to scan through the information.

Background Run Mode
You can keep a continuous log of all the messages written. adump can be
run in the background, periodically reading the new information from the
module and writing it to standard output (generally redirected to a file).
Each time the module contains ¼ new information, adump runs and writes
the new quarter of the module out. The command line used might include
the following:

adump -r >log &

Then, run the application(s) containing appdbg information.
Using PersonalJava Solution for OS-9 205

NoteNote
Due to the OS-9 EOF lock mechanism, adump must be killed before the
file can be edited. After the applications generating information have
terminated, kill adump with the shell kill command (see the section
adump Miscellaneous Functions on page 207 for more information).
Only then can the log file be examined.

Polling Mode
Show the debug information as it is written. adump can be run such that it
reads new information from the debug module when it becomes available
and writes it to standard output. This allows debug information to be seen
at about the same time it is written (adump polls the module 25 times per
second). Generally, this mode is used with adump running in the
foreground. The application is started, then adump is run in the polling
mode:

adump -p

This gives the impression that the applications are writing messages to
standard output. The advantage is that the output can be stopped without
stopping the applications.

Any combination of these scenarios can be used together. For example,
you can look at the tail first to decide if you want a continuous log from that
point on.
206 Using PersonalJava Solution for OS-9

9Monitoring PersonalJava Applications
adump Miscellaneous Functions

Adump has two other miscellaneous functions it can perform: it can clear
the module and flushing the information.

Clearing the Module
The following command line clears the contents of the module:

adump -c=reset

This clearing is very useful when debugging event-driven applications. The
module is cleared at convenient times to avoid having to examine a great
deal of old information.

Flushing the Information
The command line:

adump -c=flush

signals any adump running in the background with the -r option to write all
the information available.

NoteNote
It is important to do this before killing a background adump. This
ensures the file it is writing to contains all the debug messages written
before it was killed.
Using PersonalJava Solution for OS-9 207

208 Using PersonalJava Solution for OS-9

Chapter 10: Working with Remote

Classes

This chapter describes how to use the remote class loading feature of
PersonalJava™ Solution 3.1. It includes the following topics:

• What is Remote Class Loading?

• Configuring Remote Class Loading

• Building Remote Class Zip Files

What is Remote Class Loading?

PersonalJava™ Solution 3.1 enables you to load classes from an HTTP
server. This allows applications on remote devices to access a large
amount of Java code without requiring the code to reside on the device. In
addition, remote class loading enables application code to be updated on
the server only. This eliminates the necessity of updating the code on each
device.
210 Using PersonalJava Solution for OS-9

1Working with Remote Classes
Configuring Remote Class Loading

Use the remote_classes.properties file to set up remote class
loading. The file is found in the E:\MWOS/SRC/PJAVA/LIB directory. This
file specifies the base URL where the classes reside and then defines the
particular file that contains a particular class. Following is an excerpt of the
remote-classes.properties file as shipped by Sun.
@(#)remote-classes.properties1.1 98/02/11
#
Copyright (c) 1998 by Sun Microsystems Inc
#
Properties for defining the location of remote classes
#

codebase is the URL where files containing the
remote clases are located.
#
codebase=http://wombat/JavaKin/pjavaRemoteClasses/

One entry is needed for each remote class and specifies the name of the class
and the name of the file that the class is in. The file is located using
the codebase URL set above.
#
Classes should be packaged intelligently so unnecessary classes are not
pulled in. The packaging below is just an example and is not very effecient.
You can package the classes into smaller packages. For example, RMI should
be separated into a server package, a client package, and a core package
(needed by both servers and clients).

java.rmi.* classes are in javarmi.zip
#
java/rmi/AccessException=javarmi.zip
java/rmi/AlreadyBoundException=javarmi.zip
java/rmi/ConnectException=javarmi.zip
java/rmi/ConnectIOException=javarmi.zip
java/rmi/MarshalException=javarmi.zip
java/rmi/Naming=javarmi.zip
java/rmi/NoSuchObjectException=javarmi.zip
java/rmi/NotBoundException=javarmi.zip
java/rmi/RMISecurityException=javarmi.zip
java/rmi/RMISecurityManager=javarmi.zip
java/rmi/Remote=javarmi.zip
java/rmi/RemoteException=javarmi.zip
java/rmi/ServerError=javarmi.zip
java/rmi/ServerException=javarmi.zip
java/rmi/ServerRuntimeException=javarmi.zip
java/rmi/StubNotFoundException=javarmi.zip
java/rmi/UnexpectedException=javarmi.zip
java/rmi/UnknownHostException=javarmi.zip
java/rmi/UnmarshalException=javarmi.zip
java/rmi/dgc/DGC=javarmi.zip
java/rmi/dgc/Lease=javarmi.zip
java/rmi/dgc/VMID=javarmi.zip
java/rmi/registry/LocateRegistry=javarmi.zip
java/rmi/registry/Registry=javarmi.zip
java/rmi/registry/RegistryHandler=javarmi.zip
java/rmi/server/ExportException=javarmi.zip
java/rmi/server/LoaderHandler=javarmi.zip
Using PersonalJava Solution for OS-9 211

java/rmi/server/LogStream=javarmi.zip
java/rmi/server/ObjID=javarmi.zip
java/rmi/server/Operation=javarmi.zip
java/rmi/server/RMLoader=javarmi.zip
java/rmi/server/RMIFailureHandler=javarmi.zip
java/rmi/server/RMISocketFactory=javarmi.zip
java/rmi/server/RemoteCall=javarmi.zip
java/rmi/server/RemoteObject=javarmi.zip
java/rmi/server/RemoteRef=javarmi.zip
java/rmi/server/RemoteServer=javarmi.zip
java/rmi/server/RemoteStub=javarmi.zip
java/rmi/server/ServerCloneException=javarmi.zip
java/rmi/server/ServerNotActiveException=javarmi.zip
java/rmi/server/ServerRef=javarmi.zip
java/rmi/server/Skeleton=javarmi.zip
java/rmi/server/SkeletonMismatchException=javarmi.zip
java/rmi/server/SkeletonNotFoundException=javarmi.zip
java/rmi/server/SocketSecurityException=javarmi.zip
java/rmi/server/UID=javarmi.zip
java/rmi/server/UnicastRemoteObject=javarmi.zip
java/rmi/server/Unreferenced=javarmi.zip

sun.rmi.* classes are in sunrmi.zip
#
sun/rmi/registry/RegistryHandler=sunrmi.zip
sun/rmi/registry/RegistryImpl=sunrmi.zip
sun/rmi/registry/RegistryImpl_Stub=sunrmi.zip
sun/rmi/registry/RegistryImpl_Skel=sunrmi.zip
sun/rmi/server/Dispatcher=sunrmi.zip
sun/rmi/server/LoaderHandler=sunrmi.zip
sun/rmi/server/MarshalInputStream=sunrmi.zip
sun/rmi/server/MarshalOutputStream=sunrmi.zip
sun/rmi/server/RemoteProxy=sunrmi.zip
sun/rmi/server/RMLoader=sunrmi.zip
sun/rmi/server/UnicastRef=sunrmi.zip
sun/rmi/server/UnicastServerRef=sunrmi.zip
sun/rmi/transport/Channel=sunrmi.zip
sun/rmi/transport/Connection=sunrmi.zip
sun/rmi/transport/ConnectionInputStream=sunrmi.zip
sun/rmi/transport/IncomingRefTableEntry=sunrmi.zip
sun/rmi/transport/ConnectionOutputStream=sunrmi.zip
sun/rmi/transport/DGCAckHandler=sunrmi.zip
sun/rmi/transport/DGCClient=sunrmi.zip
sun/rmi/transport/DGCClient$CountTableEntry=sunrmi.zip
sun/rmi/transport/DGCClient$CleanRequest=sunrmi.zip
sun/rmi/transport/DGCClient$LeaseTableEntry=sunrmi.zip
sun/rmi/transport/DGCClient$LeaseRenewer=sunrmi.zip
sun/rmi/transport/DGCImpl=sunrmi.zip
sun/rmi/transport/DGCImpl$LeaseChecker=sunrmi.zip
sun/rmi/transport/DGCImpl$LeaseInfo=sunrmi.zip
sun/rmi/transport/Utils=sunrmi.zip
sun/rmi/transport/Endpoint=sunrmi.zip
sun/rmi/transport/LiveRef=sunrmi.zip
sun/rmi/transport/LocateDGC=sunrmi.zip
sun/rmi/transport/Notifiable=sunrmi.zip
sun/rmi/transport/Notifier=sunrmi.zip
sun/rmi/transport/ObjectTable=sunrmi.zip
sun/rmi/transport/KeepAlive=sunrmi.zip
sun/rmi/transport/Reaper=sunrmi.zip
sun/rmi/transport/RMIThread=sunrmi.zip
sun/rmi/transport/StreamRemoteCall=sunrmi.zip
sun/rmi/transport/Target=sunrmi.zip
sun/rmi/transport/SequenceEntry=sunrmi.zip
sun/rmi/transport/UnreferencedObj=sunrmi.zip
sun/rmi/transport/Transport=sunrmi.zip
sun/rmi/transport/TransportConstants=sunrmi.zip
sun/rmi/transport/WeakRef=sunrmi.zip
212 Using PersonalJava Solution for OS-9

1Working with Remote Classes
sun/rmi/transport/proxy/CGIClientException=sunrmi.zip
sun/rmi/transport/proxy/CGIServerException=sunrmi.zip
sun/rmi/transport/proxy/CGICommandHandler=sunrmi.zip
sun/rmi/transport/proxy/CGIHandler=sunrmi.zip
sun/rmi/transport/proxy/CGIForwardCommand=sunrmi.zip
sun/rmi/transport/proxy/CGIGethostnameCommand=sunrmi.zip
sun/rmi/transport/proxy/CGIPingCommand=sunrmi.zip
sun/rmi/transport/proxy/CGITryHostnameCommand=sunrmi.zip
sun/rmi/transport/proxy/HttpAwareServerSocket=sunrmi.zip
sun/rmi/transport/proxy/HttpInputStream=sunrmi.zip
sun/rmi/transport/proxy/HttpOutputStream=sunrmi.zip
sun/rmi/transport/proxy/HttpReceiveSocket=sunrmi.zip
sun/rmi/transport/proxy/HttpSendInputStream=sunrmi.zip
sun/rmi/transport/proxy/HttpSendOutputStream=sunrmi.zip
sun/rmi/transport/proxy/HttpSendSocket=sunrmi.zip
sun/rmi/transport/proxy/RMIDirectSocketFactory=sunrmi.zip
sun/rmi/transport/proxy/RMIHttpToCGISocketFactory=sunrmi.zip
sun/rmi/transport/proxy/RMIHttpToPortSocketFactory=sunrmi.zip
sun/rmi/transport/proxy/RMIMasterSocketFactory=sunrmi.zip
sun/rmi/transport/proxy/AsyncConnector=sunrmi.zip
sun/rmi/transport/proxy/RMISocketInfo=sunrmi.zip
sun/rmi/transport/proxy/WrappedSocket=sunrmi.zip
sun/rmi/transport/tcp/ConnectionMultiplexer=sunrmi.zip
sun/rmi/transport/tcp/MultiplexConnectionInfo=sunrmi.zip
sun/rmi/transport/tcp/MultiplexInputStream=sunrmi.zip
sun/rmi/transport/tcp/MultiplexOutputStream=sunrmi.zip
sun/rmi/transport/tcp/InEntry=sunrmi.zip
sun/rmi/transport/tcp/TCPChannel=sunrmi.zip
sun/rmi/transport/tcp/ConnectionAcceptor=sunrmi.zip
sun/rmi/transport/tcp/TCPConnection=sunrmi.zip
sun/rmi/transport/tcp/TCPEndpoint=sunrmi.zip
sun/rmi/transport/tcp/Pinger=sunrmi.zip
sun/rmi/transport/tcp/TCPTransport=sunrmi.zip
sun/rmi/transport/DGCImpl_Stub=sunrmi.zip
sun/rmi/transport/DGCImpl_Skel=sunrmi.zip

java.sql.* classes are in javasql.zip
#
java/sql/CallableStatement=javasql.zip
java/sql/Connection=javasql.zip
java/sql/DataTruncation=javasql.zip
java/sql/DatabaseMetaData=javasql.zip
java/sql/Date=javasql.zip
java/sql/Driver=javasql.zip
java/sql/DriverInfo=javasql.zip
java/sql/DriverManager=javasql.zip
java/sql/DriverPropertyInfo=javasql.zip
java/sql/PreparedStatement=javasql.zip
java/sql/ResultSet=javasql.zip
java/sql/ResultSetMetaData=javasql.zip
java/sql/SQLException=javasql.zip
java/sql/SQLWarning=javasql.zip
java/sql/Statement=javasql.zip
java/sql/Time=javasql.zip
java/sql/Timestamp=javasql.zip
java/sql/Types=javasql.zip

java.math.* classes are in javamath.zip
#
java/math/BigDecimal=javamath.zip
java/math/BigInteger=javamath.zip

sun.tools.debug.* and sun.tools.java.* classes are in debugagent.zip
#
sun/tools/debug/MainThread=debugagent.zip
sun/tools/debug/ThreadList=debugagent.zip
sun/tools/debug/Agent=debugagent.zip
Using PersonalJava Solution for OS-9 213

sun/tools/debug/CommandThread=debugagent.zip
sun/tools/debug/AgentConstants=debugagent.zip
sun/tools/debug/BreakpointHandler=debugagent.zip
sun/tools/debug/BreakpointQueue=debugagent.zip
sun/tools/debug/Field=debugagent.zip
sun/tools/debug/LineNumber=debugagent.zip
sun/tools/debug/LocalVariable=debugagent.zip
sun/tools/debug/StackFrame=debugagent.zip
sun/tools/debug/StepHandler=debugagent.zip
sun/tools/debug/StepConstants=debugagent.zip
sun/tools/debug/StepRequest=debugagent.zip
sun/tools/debug/AgentOutputStream=debugagent.zip
sun/tools/debug/ResponseStream=debugagent.zip
sun/tools/debug/BreakpointSet=debugagent.zip
sun/tools/java/RuntimeConstants=debugagent.zip
sun/tools/java/Constants=debugagent.zip
sun/tools/java/Package=debugagent.zip
sun/tools/java/ClassPath=debugagent.zip
sun/tools/java/ClassPathEntry=debugagent.zip
sun/tools/java/ClassFile=debugagent.zip
sun/tools/java/Identifier=debugagent.zip
sun/tools/java/Type=debugagent.zip
sun/tools/java/ArrayType=debugagent.zip
sun/tools/java/CompilerError=debugagent.zip
sun/tools/java/ClassType=debugagent.zip
sun/tools/java/MethodType=debugagent.zip

The URL used as the base location for loading remote classes is specified
by the codebase key word. As described in the property file comments,
classes can be broken into Zip files at the user’s discretion. The next
section describes how to construct different Zip files.
214 Using PersonalJava Solution for OS-9

1Working with Remote Classes
Building Remote Class Zip Files

Class zip files are distributed with the PersonalJava™ Solution package in
the MWOS/SRC/PJAVA/LIB directory. These zip files include:

• classes.zip contains classes for the standard Java
packages

• javamath.zip contains classes for the java.math
package

• javarmi.zip contains classes for the java.rmi
package

• javasql.zip contains classes for the java.sql
package

• sunrmi.zip contains classes for the sun.rmi
package

To reorganize classes into different Zip files, unzip the provided Zip files
into a temporary directory. Then recombine classes as desired by putting
them into new zip files.
Using PersonalJava Solution for OS-9 215

216 Using PersonalJava Solution for OS-9

Appendix A: Running PersonalJava

Applets

This appendix includes the following topics:

• Overview

• Data Structure

• Functions

Overview

Microware's PersonalJava™ Solution for OS-9 includes support for
executing PersonalJava applets in a MAUI window, under a MAUI
application. This feature is useful for native browser applications, though it
is not limited to them. In addition, general purpose legacy MAUI windowing
applications can be extended to include windows that contain PersonalJava
applets.

Support for executing PersonalJava applets comes in the form of a header
file (\mwos\SRC\DEFS\LIB\mwas.h) and a library
(\mwos\OS9000\<proc>\LIB\mwas.l). The header file contains all of
the necessary structure definitions and function prototypes. The library
resolves the external functions prototyped in the header file.

Example Code

Once you have created a MAUI window ID for the window in which you
would like an applet displayed, you may use the example code below to
start and destroy an applet. (Error checking code has been eliminated in
this example to improve readability.)

char *args[] = {

 "code", "CaffeineMarkApplet",

 "width", "200",

 "height", "200",

 NULL

};

mwas_applet_t applet_handle;

void start_applet(WIN_ID window)

{

 mwas_init(NULL, NULL);

 mwas_applet_load(&applet_handle, window,
218 Using PersonalJava Solution for OS-9

ARunning PersonalJava Applets
"http://www.pendragon-software.com/pendragon/cm3/runtes
t.html", args);

 mwas_applet_init(&applet_handle);

 mwas_applet_start(&applet_handle);

}

void destroy_applet(void)

{

 mwas_applet_stop(&applet_handle);

 mwas_applet_destroy(&applet_handle);

 mwas_applet_dispose(&applet_handle);

}

Using PersonalJava Solution for OS-9 219

Data Structure

The following data structure is located in the header file mwas.h, found in
the following location:

\mwos\SRC\DEFS\LIB\mwas.h
220 Using PersonalJava Solution for OS-9

ARunning PersonalJava Applets
mwas_applet_t Maintain applet state

typedef struct mwas_applet_t {

u_int32 sync; /* sync code for handle */

u_int32 flags; /* various flags */

u_int32 appletid; /* applet ID returned from load
request */

} mwas_applet_t;

Description

mwas_applet_t is used internally by mwas.l to maintain the state of the
applet. The application must not modify the contents of this structure. A
structure of this format is initialized by the mwas_applet_load() call; the
storage for the initialized structure must stay intact until
mwas_applet_dispose() is called.
Using PersonalJava Solution for OS-9 221

Functions

The following function calls are located in the mwas.h header file, found in
the following location:

\mwos\SRC\DEFS\LIB\mwas.h
222 Using PersonalJava Solution for OS-9

ARunning PersonalJava Applets
mwas_init() Initialize applet support

Syntax

mwas_init (char **argvs, char **envps)

Description

mwas_init() initializes applet support for the calling application.

NoteNote
This call must be made before any other applet support calls can be
executed.

argvs a NULL terminated array of pointers to
strings

These command line arguments are added
to the command line for the executed pjava
process. argvs may be NULL if no
additional command line arguments are
provided.

envps a NULL terminated array of pointers to
strings

The strings should be in the format,
<name>=<value>, where <name> is the
name of the environment variable and
<value> is the value for the environment
variable. envps may be NULL if no
additional environment variables are
provided.
Using PersonalJava Solution for OS-9 223

Returns

If the call is successful, SUCCESS is returned.

If the call is not successful, an error number is returned.

Possible Errors

• EALREADY: mwas_init was called without an intervening call to
mwas_term

• indirect errors from malloc, socket, bind, listen, accept, or
_os_exec
224 Using PersonalJava Solution for OS-9

ARunning PersonalJava Applets
mwas_applet_load() Create an instance of an applet

Syntax

mwas_applet_load(mwas_applet_t *handle,

WIN_ID parent, char *URL, char **attributes);

Description

mwas_applet_load() is used to create an instance of a PersonalJava
applet. Upon successful return, the handle is initialized and the applet
moves into the "loaded" state, though the user's applet code is not yet
called. The applet will appear in the windows specified by parent as a
gray rectangle.

handle a pointer to a mwas_applet_t data
structure

The contents of the memory pointed to by
handle should never be modified by the
calling application.

parent a MAUI window ID for the window in which
the applet should be rendered

parent must be the correct size for the
applet (as specified by the "width" and
"height" attributes of the <applet> tag).

URL the fully qualified URL for the page that
contained the applet

attributes a NULL terminated array of pointers to
strings

The strings are the attributes as they appear
in the <applet> and <param> tags. The
strings are interpreted as pairs, the even
numbered strings are names of attributes,
and the odd numbered strings are values for
the corresponding name. An even number
of strings must appear in the array.
<param> tags are expressed with "param"
Using PersonalJava Solution for OS-9 225

as the even numbered string and
"<name>=<value>" are expressed as the
odd numbered string. The required
attributes include code, height, and width.

Returns

If the call is sucessful, SUCCESS will be returned.

If the call is not successful, an error number will be returned.

Possible Errors

• EOS_PARAM: handle is NULL, no attributes are specified, an odd
number of attributes is specified, or the '=' is missing from the value of a
"param" attribute

• EALREADY: the handle already appears to refer to an executing applet

• indirect errors from malloc, _os_read, _os_write, or _os_exec

mwas_applet_init() Set an applet to the initialized state
226 Using PersonalJava Solution for OS-9

ARunning PersonalJava Applets
Syntax

mwas_applet_init(mwas_applet_t *handle);

Description

mwas_applet_init() is used to set an applet to the initialized state. The
applet writer's init() method will be called. The applet must either be in
the loaded or destroyed state. Upon successful return, the applet moves
into the initialized state.

handle a pointer to a mwas_applet_t data
structure

The contents of the memory pointed to by
handle should never be modified by the
calling application.

Returns

If the call is sucessful, SUCCESS will be returned.

If the call is not successful, an error number will be returned.

Possible Errors

• EOS_PARAM: handle is NULL or does not appear to be a valid applet
handle

• EALREADY: the applet is not in a valid state for this call

• indirect errors from malloc and _os_write

mwas_applet_start() Set an applet to started state
Using PersonalJava Solution for OS-9 227

Syntax

error_code mwas_applet_start(mwas_applet_t *handle);

Description

mwas_applet_start() is used to set an applet to the started state. The
applet writer's start() method will be called. The applet must either be in
the initialized or stopped state. Upon successful return, the applet moves
into the started state.

handle a pointer to a mwas_applet_t data
structure

The contents of the memory pointed to by
handle should never be modified by the
calling application.

Returns

If the call is sucessful, SUCCESS will be returned.

If the call is not successful, an error number will be returned.

Possible Errors

• EOS_PARAM: handle is NULL or does not appear to be a valid applet
handle

• EALREADY: the applet is not in a valid state for this call

• indirect errors from malloc and _os_write

mwas_applet_stop() Set an applet to stopped state
228 Using PersonalJava Solution for OS-9

ARunning PersonalJava Applets
Syntax

mwas_applet_stop(mwas_applet_t *handle);

Description

mwas_applet_stop() is used to set an applet to the stopped state. The
applet writer's stop() method will be called. The applet must be in the
started state. Upon successful return, the applet moves into the stopped
state.

handle a pointer to a mwas_applet_t data
structure

The contents of the memory pointed to by
handle should never be modified by the
calling application.

Returns

If the call is sucessful, SUCCESS will be returned.

If the call is not successful, an error number will be returned.

Possible Errors

• EOS_PARAM: handle is NULL or does not appear to be a valid applet
handle

• EALREADY: the applet is not in a valid state for this call

• indirect errors from malloc and _os_write

mwas_applet_destroy() Set an applet to destroyed state
Using PersonalJava Solution for OS-9 229

Syntax

error_code mwas_applet_destroy(mwas_applet_t *handle);

Description

mwas_applet_destroy() is used to set an applet to the destroyed state.
The applet writer's destroy() method will be called. The applet must be
in the stopped state. Upon successful return, the applet moves into the
destroyed state.

handle a pointer to a mwas_applet_t data
structure

The contents of the memory pointed to by
handle should never be modified by the
calling application.

Returns

If the call is sucessful, SUCCESS will be returned.

If the call is not successful, an error number will be returned.

Possible Errors

• EOS_PARAM: handle is NULL or doesn't appear to be a valid applet
handle

• EALREADY: the applet is not in a valid state for this call.

• indirect errors from malloc and _os_write

mwas_applet_dispose() Dispose of an applet
230 Using PersonalJava Solution for OS-9

ARunning PersonalJava Applets
Syntax

mwas_applet_dispose(mwas_applet_t *handle);

Description

mwas_applet_dispose() is used to dispose of an applet. The applet
must be in the destroyed state. Upon successful return, the applet will no
longer be displayed and the handle can be reused or freed by the calling
application.

handle a pointer to a mwas_applet_t data
structure

The contents of the memory pointed to by
handle should never be modified by the
calling application.

Returns

If the call is sucessful, SUCCESS will be returned.

If the call is not successful, an error number will be returned.

Possible Errors

• EOS_PARAM: handle is NULL or doesn't appear to be a valid applet
handle

• EALREADY: the applet is not in a valid state for this call.

• indirect errors from malloc and _os_write

mwas_urlpoll() Check Applets for Request to Visit Web Page
Using PersonalJava Solution for OS-9 231

Syntax

mwas_urlpoll (char **url, char **target);

Description

mwas_urlpoll() checks the applets for a request to visit a web page
(URL). If any applet has called the showDocument() method, the
specified URL and optional target is returned to the calling application.

The strings pointed to by *url and *target should be used before a
subsequent call to mwas)urlpoll(). Undefined behavior results if valued
returned by an old call are used.

This function automatically governs the calls to PJava to ensure that no
more than three requests per second are issued. This prevents consuming
a lot of system resources needlessly.

url pointer to a pointer to set at the URL string

If no URL has been requested by an applet,
the pointer at url is set to NULL.

target pointer to a pointer to set to point at the
optional target

If no target was specified by the applet, the
pointer at target is set to NULL.

Returns

If the call is sucessful, SUCCESS will be returned.

If the call is not successful, an error number will be returned.

Possible Errors

• EALREADY if applet support is not initialized

• indirect errors from malloc, _os_read, _os_write, or _os_getsys

mwas_term() Terminates applet support
232 Using PersonalJava Solution for OS-9

ARunning PersonalJava Applets
Syntax

mwas_term(void);

Description

mwas_term() terminates applet support for the calling application. No
further calls to applet support functions can be made. mwas_init() may
be called again to reinitialize support.

Returns

If the call is sucessful, SUCCESS will be returned.

If the call is not successful, an error number will be returned.

Possible Errors

• EALREADY: mwas_init has not been called

• indirect errors from _os_write or _os_send
Using PersonalJava Solution for OS-9 233

234 Using PersonalJava Solution for OS-9

Appendix B: Running MAUI

Applications in Java Windows

Getting the MAUI Window ID

PersonalJava Solution for OS-9 allows you to get the MAUI window ID for a
Java component. This allows the writing of MAUI applications that can
reparent themselves into the window and exist under control of the Java
application.

For example, if you have a legacy windowing MAUI application, such as a
map renderer, it can appear in a Java window, under Java's control. In
addition, the window can be easily moved or hidden by the Java
application.

One way to communicate the window ID to the MAUI process is via a
command line parameter, such as -w. The Java code necessary to support
this facility might look similar to the code below (assuming panel3 is the
location in which you would like the legacy MAUI application to display):

// get the window ID of panel3

 MAWTComponentPeer peer =
(MAWTComponentPeer)panel3.getPeer();

int winid = peer.getWinID();

// start the map renderer with additional command
line parameter

Process child = Runtime.getRuntime().exec("drawmap
-w=" +

Integer.toHexString(winid));

The Java application and MAUI process can now coexist on the same
display device. Furthermore, the Java process can control the MAUI
process display window via panel3.
236 Using PersonalJava Solution for OS-9

Appendix C: Mouse Move Events

An application may need to retain all mouse move events received from
the system. This appendix describes why retaining all mouse move
events may be necessary. It also discusses how to use the example
Java source file SimpleEventQueue.java included in your
PersonalJava™ Solution for OS-9 package.

This appendix includes the following topics:

• Introduction

• Contents of this Appendix

• The SimpleEventQueue Example Java Program

• Using the SimpleEventQueue Example Java classes

Introduction

The standard behavior of EventQueue.java is to compress mouse move
events. This means only the last position is posted if multiple mouse moves
occur. This behavior may not be appropriate if your application requires all
mouse move events. Handwriting recognition software is an example of
this.

Included in your PersonalJava™ Solution for OS-9 package is the example
Java source file SimpleEventQueue.java. When compiled, this source
file produces two classes, SimpleEventQueue.class and
circularEventArray.class. These classes override the default
behavior of EventQueue for posting mouse events. All mouse events are
posted in the system.

NoteNote
There are two difficulties in overriding EventQueue. First, the queue
data member is private. This prevents an application from appending
events to the queue. Second, overriding all member functions does not
work unless this class is in the package java.awt. The methods
removeSourceEvents() and changeKeyEventFocus() are not
public or protected, so they can only be overridden within the same
package. This class stores all mouse events after one is posted into the
super class. Therefore, no mouse movement data is lost from the
system.
238 Using PersonalJava Solution for OS-9

CMouse Move Events
Contents of this Appendix

This appendix is made up of the following sections:

• The SimpleEventQueue Example Java Program provides sample
code to produce the SimpleEventQueue and
CircularEventArray classes.

• Using the SimpleEventQueue Example Java classes is a tutorial for
using the SimpleEventQueue and CircularEventArray classes.
Using PersonalJava Solution for OS-9 239

The SimpleEventQueue Example Java
Program

When compiled, this example Java source code produces the
SimpleEventQueue and CircularEventArray classes. The source for
this example has been installed on the Windows development machine in
the E:\MWOS\SRC\PJAVA\EXAMPLES\ MOUSEMOVE directory.
/*
** Overrides default behavior of EventQueue for posting mouse events. In
** this class, all mouse events are posted into the system. (EventQueue.java
** compresses mouse events where the last position is posted if multiple
** moves occur.)
**
** Note: There were two difficulties in overriding EventQueue. First, the
** queue data member is private, so we were unable to append all mouse events
** to the queue ourselves. Second, overriding all member functions won't work
** unless this class is in the package java.awt. (The methods
** removeSourceEvents() and changeKeyEventFocus() are not public or protected,
** so they can only be overridden within the same package.)
**
** This class will store all mouse events after one is posted into the super
** class. Thus, no mouse movement data is lost from the system.
**
*/

import java.awt.Event;
import java.awt.AWTEvent;
import java.awt.EventQueue;

public class SimpleEventQueue extends EventQueue {

 CircularEventArray _savedEvents;
 boolean _inList; /* true if mouse event in super().queue */

 public SimpleEventQueue()
 {
 super();

 _savedEvents = new CircularEventArray();
 _inList = false;

 /* System.out.println("SimpleEventQueue"); */
 }

 /* overridden from EventQueue */
 public synchronized void postEvent(AWTEvent ev)
 {
240 Using PersonalJava Solution for OS-9

CMouse Move Events
 int id;
 id = ev.getID();

 if ((id == Event.MOUSE_MOVE) ||
 (id == Event.MOUSE_DRAG))
 {
 if (_inList == true)
 {
 /* save event for later */
 _savedEvents.add(ev);
 }
 else
 {
 /* no events in super, so post it */
 _inList = true;
 super.postEvent(ev);
 }
 }
 else
 /* not a mouse event, post it */
 super.postEvent(ev);
 }

 /* overridden from EventQueue */
 public synchronized AWTEvent getNextEvent() throws InterruptedException
 {
 AWTEvent ev = super.getNextEvent();
 int id = ev.getID();

 if ((id == Event.MOUSE_MOVE) ||
 (id == Event.MOUSE_DRAG))
 {
 AWTEvent nextEvent = _savedEvents.remove();

 if (nextEvent != null)
 /* post next event */
 super.postEvent(nextEvent);
 else
 /* no new events to post */
 _inList = false;
 }

 return ev;
 }
}

/* this is a simple circular-array implementation of a queue. This will
** minimize memory requirements as compared to a linked list (since
** the garbage collector must run to reclaim nodes). Also, this is
** more efficient than Vector since a removal from the front won't
** move any other items in the array. */
class CircularEventArray {
 protected AWTEvent[] _data;
Using PersonalJava Solution for OS-9 241

 protected int _size; /* number of slots in data */
 protected int _front; /* front index */
 protected int _back; /* back index */

 /* NOTE:
 ** list is empty if front = back
 ** list is full if (back + 1) = front
 ** (one dead cell is maintained to avoid confusion
 ** between empty and full list)
 ** back points to the next unused cell
 ** front points to first valid cell (if not empty)
 */

 protected final int _allocIncrement=20;

 public CircularEventArray()
 {
 _data = new AWTEvent[_allocIncrement];
 _size = _allocIncrement;
 _front = 0;
 _back = 0;
 }

 protected boolean full()
 {
 int backAdj = _back + 1;

 if (backAdj >= _size)
 backAdj = 0;

 /* full? */
 if (backAdj == _front)
 return true;
 else
 return false;
 }

 public void add(AWTEvent ev)
 {
 if (full())
 upsize();

 /* add item to back */
 _data[_back] = ev;

 _back++;
 if (_back >= _size)
 _back = 0;
 }

 public AWTEvent remove()
 {
 AWTEvent ev;
242 Using PersonalJava Solution for OS-9

CMouse Move Events
 /* check for empty list */
 if (_back == _front)
 ev = null;
 else
 {
 /* remove front item */
 ev = _data[_front];
 _data[_front] = null;

 _front ++;
 if (_front >= _size)
 _front = 0;
 }

 return ev;
 }

 protected void upsize()
 {
 int src=_front;
 int dest=0;
 AWTEvent[] newArray = new AWTEvent[_size + _allocIncrement];
 AWTEvent cur;

 /* copy items from original array to newArray */
 cur = _data[src];
 while (cur != null)
 {
 /* copy data */
 newArray[dest] = cur;
 _data[src] = null;

 /* setup for next iteration */
 dest++;
 src++;
 if (src >= _size)
 src = 0;

 cur = _data[src];
 }

 _data = newArray;
 _front = 0;
 _back = dest;
 _size = _size + _allocIncrement;

 /* System.out.println("CircularArray upsize to " + _size); */
 }
}

Using PersonalJava Solution for OS-9 243

Using the SimpleEventQueue Example Java
classes

The following Java source file can be compiled to generate the
SimpleEventQueue and CircularEventArray classes. These classes
can be used to retain all mouse move messages received from the system.

The SimpleEventQueue Example Java Source File

The source for this example has been installed on the Windows
development machine in the E:\MóWOS\SRC\PJAVA\EXAMPLES\
MOUSEMOVE directory.

Compiling the Source File

In a DOS shell on a Windows development machine, compile the source
file using the Java compiler:

> cd \MWOS\SRC\PJAVA\EXAMPLES\MOUSEMOVE
> javac SimpleEventQueue.java

Once the compilation succeeds, the following class files are created in the
same directory as the Java source file:

SimpleEventQueue.class
CircularEventArray.class

NoteNote
If the compilation fails, make sure you typed in and named the program
exactly as shown above. Capitalization is important.
244 Using PersonalJava Solution for OS-9

CMouse Move Events
Enhancing the awt.properties file

To make the JVM (Java Virtual Machine) use the SimpleEventQueue and
CircularEventArray classes, you must enhance the
awt.properties file.

Diskless System

If your OS-9 target machine is a diskless system complete the following
steps:

Step 1. Change to the properties files directory on the Windows machine:

cd \MWOS\SRC\PJAVA\LIB

Step 2. Add the following line to the awt.properties file:

AWT.EventQueueClass=SimpleEventQueue

The new awt.properties specifying the SimpleEventQueue as the
EventQueueClass is added to pjava_home.mar the next time
pjruntime is generated.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For a complete discussion of pjavamods, refer to Chapter 4:
Choosing a PersonalJava Diskless Strategy.
Using PersonalJava Solution for OS-9 245

Disk-Based System

If your OS-9 target machine is a disk-based system and loads the JVM and
its resources from a MWOS directory on a system disk, complete the
following steps:

Step 1. Change to the properties files directory on the OS-9 machine:

cd /h0/MWOS/SRC/PJAVA/LIB

Step 2. Add the following line to the awt.properties file:

AWT.EventQueueClass=SimpleEventQueue

Transferring the SimpleEventQueue Classes to the
Target OS-9 System

The SimpleEventQueue.class and CircularEventArray.class
must be put in your classpath on the Target OS-9 System.

Diskless System

If your OS-9 target machine is a diskless system, the SimpleEventQueue
and CircularEventArray classes can either be pre-loaded into
libclasses.so using the JCC (JavaCodeCompact) or changed into data
modules.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 4: Choosing a PersonalJava Diskless Strategy for
a complete discussion on adding your classes to a diskless OS-9
Target.
246 Using PersonalJava Solution for OS-9

CMouse Move Events
Disk-Based System

If your OS-9 target machine is a disk-based system and loads the JVM
from a MWOS directory on a system disk, the SimpleEventQueue and
CircularEventArray classes can be transferred to the OS-9 target
machine using FTP.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the section Tips for Running Your Application or Applet in
Chapter 3: Creating Java Applications for OS-9 regarding
enhancing the CLASSPATH environment variable so the JVM can find
additional classes.
Using PersonalJava Solution for OS-9 247

248 Using PersonalJava Solution for OS-9

Appendix D: Microware Archive Tool

PersonalJava™ Solution for OS-9 includes a new utility for creating and
extracting archives: Microware Archive Tool (MAT). MAT is shipped as a
Windows hosted utility (MWOS\DOS\BIN\mat.exe) and an OS-9 hosted
utility (MWOS\OS9000\<proc>\CMDS\mat).

The port-specific makefile in MWOS\OS9000\<portproc>\PORTS\
<port>\PJAVA\TARGET uses MAT to create an archive that can be
extracted on your target. MAT automatically handles the line ending
translations necessary when moving text files from Windows to OS-9.

This appendix includes the full documentation for MAT.

Usage

MAT’s operations are very similar to Unix’s tar command. It can create, list
the contents of, and extract archives. It is generally used to create archives
on the development host for extraction on the development target.

Archive Creation

MAT walks the directories specified on the command line and adds each
file they contain to the archive. Empty directories are also stored in the MAT
archive and will be re-created upon extraction. Text files are stored in the
archive in an line ending independent format. Multiple MAT archives can be
merged (e.g. os9merge) together to form a larger MAT archive.

Archive Contents Listing

MAT can list the contents of a MAT archive. The pathlist of each file is
printed. If needed, the permissions, modification date, and file size can also
be printed.

Archive Extraction

MAT extracts each file and empty directory from MAT archives to the same
relative location that it appeared during archive creation. The modification
date and, optionally, the permissions of each file are restored.

During extraction, text files’ line endings are written appropriately for the
default host platform. The default host platform is the platform on which
MAT is currently running. That is, an extraction done on Windows will yield
Windows’ line endings (CR LF). The default line endings can be
over-ridden (see -t).
250 Using PersonalJava Solution for OS-9

DMicroware Archive Tool
Command-line

The MAT command line consists of options and arguments. Options begin
with minus (‘-’) and control how MAT uses the arguments. The options and
arguments can appear in any order. See the option descriptions for what
the arguments mean in the various modes.

The following are the command line options available for MAT:

-? print usage information

specifies MAT should print the usage and
command-line option summary and exit

-a extract file names as contained in the archive

specifies that the extracted file name should be
exactly as specified in the archive. MAT normally
translates illegal pathname characters and shortens
pathnames that are too long. [OS-9 resident version
only]

-b[=]<size>[k|K]
specify the I/O buffer size (default = 128K)

specifies the number of kilobytes of RAM that MAT
should use when copying files into or out of the
archive

-c create mat archive (default directory = .)

specifies MAT should create archives for all the
directories specified in the arguments

If no arguments are used, the default directory to
archive will be ‘.’, the current directory.

-e extended listing or extended verbose
information

specifies additional information is desired

When creating, listing, or extracting an archive (see
-c, -l, -x) the permissions, modification date, and
size are printed for each file.
Using PersonalJava Solution for OS-9 251

-f force overwrite on read-only files

specifies that MAT should overwrite existing
destination files, adding write permission to
read-only files if necessary

-k disable compression

specifies that MAT should create uncompressed
format 1 archives. By default, MAT creates format 2
compressed archives.

-l list contents of mat archive

specifies that MAT should display the contents of all
the archives specified in the arguments. Use -e for
extended information.

-o[=]<file> specify output file for create operation

specifies the file that MAT should store the archive in

This option is required when -c is used. If <file>
exists, it is truncated and overwritten.

-p preserve permissions during extract

specifies that MAT should preserve the original file
permissions during extraction

By default, MAT will add write permission for all users
that have read permission.

-r overwrite existing destination files

specifies that MAT should overwrite existing
destination files

Use -f to force overwrite of read-only files.

-s[=]<n>[K|k|M|m]
specify spanning archive size

specifies the maximum number of kilobytes or
megabytes allowed for the individual files of an
archive that spans multiple storage media (floppy
disks, CD-ROM, etc.).

-t[=]<d|o|u> translate ASCII file EOLs to (D)OS, (O)S-9, or
(U)nix when extracting (default = DOS)

specifies the desired line ending for text files.
252 Using PersonalJava Solution for OS-9

DMicroware Archive Tool
-t only needs to be used when the desired line
ending differs from the normal line ending on the
host.

-v verbose create or extract operation

specifies that MAT should print information about its
progress

If -v is used during creation or extraction MAT will
print each directory and file encountered. -e can be
used to get extended information.

-w generate only warnings applying file
characteristics during extraction

specifies that MAT shouldn’t exit if it has trouble
setting the permissions or modification dates on
created files

-x extract contents of mat archive

specifies that MAT should extract the contents of
each MAT archive specified as command-line
arguments

-z[[=]<file>] read additional command line arguments from
<file> (default = standard input)

specifies that MAT should read additional command
line arguments and/or options from the specified file
or standard input if no file is specified
Using PersonalJava Solution for OS-9 253

Examples

To create an archive of everything below the current directory:
$ mat -cvo=../simple.mat
OBJ
OBJ/libjckjni.so
OBJ/STB
OBJ/STB/libjckjni.so.map
OBJ/STB/libjckjni.so.stb
RELS
RELS/cmp.r
RELS/cvt.r
RELS/jckjni.r
RELS/libtable.r

To list the extended contents of an archive, complete the following:
$ mat -le simple.mat
 Perms Modified Size Name
--------- ----------------- ------ --
 OBJ
xwrxwrxwr 99/10/21 09:37:36 743312 OBJ/libjckjni.so
 OBJ/STB
xwrxwrxwr 99/10/21 09:37:36 82531 OBJ/STB/libjckjni.so.map
xwrxwrxwr 99/10/21 09:37:36 67696 OBJ/STB/libjckjni.so.stb
 RELS
xwrxwrxwr 99/10/21 09:30:07 806 RELS/cmp.r
xwrxwrxwr 99/10/21 09:30:08 414 RELS/cvt.r
xwrxwrxwr 99/10/21 09:37:28 744951 RELS/jckjni.r
xwrxwrxwr 99/10/21 09:37:33 134902 RELS/libtable.r

To extract an archive, complete the following:
$ mat -xv simple.mat
OBJ
OBJ/libjckjni.so
OBJ/STB
OBJ/STB/libjckjni.so.map
OBJ/STB/libjckjni.so.stb
RELS
RELS/cmp.r
RELS/cvt.r
RELS/jckjni.r
RELS/libtable.r
254 Using PersonalJava Solution for OS-9

Appendix E: Sources of Information

This appendix provides a bibliography of sources available for
programming in Java.

Sources

Arnold, Ken, and James Gosling. The Java Programming Language.
Addison-Wesley Pub Co. 1996.

Chan, Patrick, and Rosanna Lee. The Java Class Libraries: An Annotated
Reference. Addison-Wesley Pub Co. 1997.

Flanagan, David. Java in a Nutshell. O’Reilly & Associates, Inc. 1996.

Gosling, James, Bill Joy, and Guy L. Steele. The Java Language
Specification. Addison-Wesley Pub Co. 1996.

Gosling, James, and Frank Yellin. The Java Application Programming
Interface, Volume 1. Longman Pub Group. 1996.

Gosling, James, and Frank Yellin. The Java Application Programming
Interface, Volume 2: Window Toolkit and Applets. Addison-Wesley Pub Co.
1996.

Jackson, Jerry R., and Alan L. McClellan. JAVA by Example. SunSoft
Press. 1996

Lea, Doug. Concurrent Programming in Java. Addison-Wesley Pub Co.
1996.

Lindholm, Tim, and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley Pub Co. 1997.
256 Using PersonalJava Solution for OS-9

	Using PersonalJava™ Solution for OS-9®
	Table of Contents
	Chapter 1: PersonalJava™ Solution for OS-9® Overview
	What is Java?
	PersonalJava™ Solution and EmbeddedJava Technology
	Why Java for OS-9?

	PersonalJava™ Solution for OS-9
	Enhancements to Java

	Loading Classes from JAR Files
	Threading and Processing
	Implementing Threads
	Preempting a Thread
	Communicating With OS-9 Processes

	Memory Management
	Security

	Chapter 2: PersonalJava™ Solution for OS-9 Environment
	Host System Architecture
	PersonalJava Environment
	The Java Virtual Machine
	Native Methods and OS-9
	I/O
	Support Files

	Command Line Arguments
	Environment Variables

	Chapter 3: Creating Java Applications for OS-9
	The Hello World Application (non-AWT Version)
	Creating a Java Source File
	Compiling the Source File
	Running the Application on the Windows 95/98/NT Development Host
	Transferring the Class to the Target OS-9 System
	Starting the Java Application On the OS-9 System

	The Hello World Application (AWT Version)
	Tips for Running Your Application or Applet

	Chapter 4: Choosing a PersonalJava Diskless Strategy
	Introduction
	Source Files
	Strategy 1: Adding Your Java Application to libclasses.so
	The Diskless PersonalJava Makefiles
	Running the Diskless PersonalJava Makefiles

	Strategy 2: Making the zip Files Into Data Modules
	The Diskless PersonalJava Makefiles
	Running the Diskless PersonalJava Makefiles
	Creating the Data Modules For Your Application

	Chapter 5: Additional Considerations for Choosing a PersonalJava Diskless Strategy
	Diskless Target Requirements
	Java Requirements
	Window Manager Requirements

	Diskless Target Implementation Strategy
	Class Storage Options
	Properties vs. Environment Variables

	Using the modman File Manager
	Generating the modman Archive
	Adding the modman Archive to the Boot
	Initializing modman
	Setting the JAVA_HOME Environment Variable
	Using the mar Utility

	Diskless Target Example
	Building the modman Archive

	Chapter 6: Creating Native Methods for OS-9
	Using Native Methods on OS-9
	Overview
	Requirements
	Objective
	Write the Application
	Add the Native Methods
	Run the Example Application on the OS-9 System
	Debug the Native Methods

	Using JNI Native Methods
	Environment

	Writing the Application
	The TimeApp class
	The SetTimeDialog class
	The SysTime class
	Compiling the Classes
	Running the Example Program

	Adding Native Methods
	Step 1: Add Declarations
	Step 2: Generate the Header File
	Step 3: Generate the Stub File
	Step 4: Generate the Export Tables
	Step 5: Write the Native Method Functions
	Step 6: Compile and Link the Native Method Shared Library
	Creating a New Project Space and Project
	Creating a New Component
	Adding Units To the Component
	Configuring the Project Properties
	Specifying Component Properties

	Step 7: Call the Native Methods from the SysTime Class
	Step 8: Add Calls to the Native Methods
	Step 9: Add a Static Initialization Block to Load the Shared Library
	Step 10: Compiling and Linking

	Running the TimeApp Application on the Target
	Step 1: Transfer the Class Files
	Step 2: Start the Java Application on the OS-9 System
	Starting Telnet Session
	Setting Variables

	Debugging Native Methods
	Debugging with Hawk
	Identifying Source and Object Code
	Setting Up Hawk Target Environment
	Forking the Java Process
	Loading the Shared Library
	Linking to the Shared Library
	Setting Breakpoints

	Using JNI Native Methods
	Introduction to JNI Native Methods
	Generating the JNI Header Files
	Generating the JNI Stub File
	Generating the JNI Export Tables
	Writing the JNI Native Method Functions
	Compiling and Linking the JNI Native Method Shared Library

	Chapter 7: Using the Window Manager
	Window Manager Process
	Window Managers
	Simple Window Manager
	Standard Window Manager
	Debugging Window Manager

	Sample Window Manager
	Using the Window Manager
	Window Manager Preference File
	Example Preference File
	Preference File Location
	Disk-based System
	Diskless System

	Editing the Preference File
	Disk-based System
	Diskless System

	Running MAUI Applications with PersonalJava Applications

	Window Manager Error Codes

	Chapter 8: Enhancing the Properties Files
	Microtype Fonts
	Modifying font.properties
	Mapping Fonts
	Creating Font Data Modules from Font Files

	Localizing Your PersonalJava™ Solution for OS-9
	Modifying awt.properties
	Setting colorMode
	Syntax
	Options

	Setting AGFA Font Engine Memory Consumption
	Using Multiple Windows
	Using Scrollbars

	Chapter 9: Monitoring PersonalJava Applications
	Memory Usage Monitoring
	Introduction
	Stopwatch Java API
	clear()
	getAddReallocs()
	getAllocTotal()
	getCallocs()
	getCurrJavaRAM()
	getCurrRAM()
	getCurrSegs()
	getCurrSysRAM()
	getFrees()
	getMallocs()
	getMaxAlloc()
	getMaxRAM()
	getMaxSegs()
	getMaxSysRAM()
	getSrqmems()
	getSrtmems()
	getSubReallocs()
	isRunning()
	MemStopWatch()
	start()
	stop()
	toString()
	toString(String title)
	The MemStopWatch Example Java Program
	Using the MemStopWatch Example Java Program
	The MemStopWatch Example Java Source File
	Compiling the Source File
	Transferring the Class to the Target OS-9 System
	Starting the Java Application on the OS-9 System

	Native Stack Usage Monitoring
	Introduction
	Using StackWatch
	Interpreting the Results

	AWT Activities Monitoring
	The appdbg Environment
	appdbg Files
	Using appdbg
	appdbg Environment Variables

	The adump Utility
	adump Modes
	adump Miscellaneous Functions

	Chapter 10: Working with Remote Classes
	What is Remote Class Loading?
	Configuring Remote Class Loading
	Building Remote Class Zip Files

	Appendix A: Running PersonalJava Applets
	Overview
	Example Code

	Data Structure
	Functions
	mwas_init()

	Appendix B: Running MAUI Applications in Java Windows
	Getting the MAUI Window ID

	Appendix C: Mouse Move Events
	Introduction
	Contents of this Appendix
	The SimpleEventQueue Example Java Program
	Using the SimpleEventQueue Example Java classes
	The SimpleEventQueue Example Java Source File
	Compiling the Source File
	Enhancing the awt.properties file
	Diskless System
	Disk-Based System

	Transferring the SimpleEventQueue Classes to the Target OS-9 System
	Diskless System
	Disk-Based System

	Appendix D: Microware Archive Tool
	Usage
	Archive Creation
	Archive Contents Listing
	Archive Extraction

	Command-line
	Examples

	Appendix E: Sources of Information
	Sources

