Power Management
Subsystem Specification

Version 4.7

RadiSys.

www.radisys.com
Revision A * July 2006



Copyright and publication information

This manual reflects version 4.7 of Microware OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the 0S-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Jul

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

2006

Copyright ©2006 by RadiSys Corporation
Al rights reserved.

EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are

trademarks of RadiSys Corporation.

DAVID, MAUI, 0S-9, 0S-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are

trademarks of RadiSys Corporation.

T All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.



Contents

Overview 5

DIAINIEIONS ..o sssss s ssssse s s 5851588855888 6
POWET UNGWATE ... oeeetieseseeseseeeesseeeeeeesesss e 6
POWET AVVATE ......oooiieereeeeeeseeseeesssssssssssses e ssss st 588840555 R8RSR 6
SUPPOIt MECNANISIIS...ccoveveeeeeeeesesrssesseeese s sssssss s sssssssss s ssssssss st sss s sssssss s 6

A POWET MANAZEA SYSTEIM ..o ssssssess s sssss s sssss s 55858 585 s 6
POWET AWATE APPICALIONS....oveere oo seeseessveeeeeeeeseessssss e sssss e s sssssss s ssssssss s seeesse s sssseeesssssssssnse 7
POWET MANAZEMENE SUDSYSIEIM ...occcccs oo ssssseessssssssssssssss s sssssssssssssssssssssssssssssssss s ssssssesssssssssssssssssessassssssessssssssesssos 8
POWET AWAIE DEVICE DIIVETS ......vvocscvvveeessnsssessssssssesssssssssessssssssssssssssssssssssssssessassssssssssssssseesssssssssssssssssssssssssssessassssssesssssssoessses 8

Power Management SUDSYStEM COMPONENLS........ccooiuveeerrriieeiersisseasssssssessssssssssessssssssssssssss s ssss s ssssssssssssssesssssssssssssssssesssos 8
PUWIIVIAN........oooveetvesmses s sessssssss st 88045 R 8
PUVTPICY .11 ssse s s 8 8 5 88 8588 9
PUTEXE ettt 9
S Sl st ts s R 9

Interaction in the POWEr MANAZEA SYSIEM .........oooccvvveeesceeeseeessssseessssssssesssssssssssssssssess s sssss s ssssssesssssssesssssssssssssssssssessssssssoe 9

PwrMan 11

PUIIVIAN TADIES ..oooe e sesmsssss s mssssss s s s s8R R 12
DEVICE REGISITY TADIE ..o s s s s 12
POWET SEALE TADIE.....vvooo e ssss s sssss s s sss s s s s s s s 13

POWET StUCEUTES AN DEFINITIONS......oooccevvecs e sssssss s ssssss s ssssssss s s 15
DEVICE ENEIY COMAITION w.oovrrvveeerieeeee e ssssssssssss s sssssse sk 16

LOCAI POWET MOAE ... s sssssss s sssssss s s s 17
POWET EVEN... .o eeeeessseeessesssss e sassss e ssssss s ssss s sssss s e s Rt 17
PWITNAN_GIODAIS SEUCKUIE ...vooooevve e sssssssssssss s ssss s s s s s 18
PUWEIVIAN LIDTATY ....oooeecece e eseveeesees s ssssssssse s ssssssssssse s s ssssssssssse s sssssssssese s sssssssos s sssseessssssssssssssssesssssssssssssones 20
ZOS_PWI_AAAQ) corsieeeeeeeeeeesseesesseeeeeeseesssesssssesesssees s ssssssssseees s sssssssssseees s sssssssss s s ssssssssss s e 24
_0S_PWI_CAIIDACK() ovvvveeeeeeeseeeeeeeeeeese s sssmsssssss s ssssmsssss s ssssssss s ssssssss s 25
_OS_PWI_CNANEE() w.oovveveeeveeeesesissssse e ssssssssssssessssssssssssssss s sssssssssss s sssssssss s ssssssssssssses s sss s sssssssssssseesssessssssssoses 26
ZOS_PWI_CNECK() orroveeeeeeeeesesessseseseeee s sssssssss s sssnsssss s ssssssssss s ssssssssssss s ssssssssss s s s sssssssssssessssessssssssses 27
_OS_PWE_COPYEIODQ) oovvveeeseee e sssss s st oo s 28
ZOS_PWE_AEDUG() ovvvvvvveesssee e sssss s ssmss s sss s s s s s s 29
_OS_PWI_EY_NOLTY() woveeeeeeeeeeeeeeeeeeeeceseesscseeeseeeeeeesssssssssseseeessssssssssseeeessssssssssssseeesessssssssss s sssssssessseessesssssssssssesessessssssssssoee 30
_OS_PWE_EBV_TEQUEST() wvvvrrreeerereeeseee s sssssssssssssssssssssssssssssssssssssss s s s 31
_OS_PWI_IINK_EXE() 1ovvvvvveeeeesscsisssssssseeessssssssssssssssessssssssssssssssseessssssssssssssssessssssssssssssssessssssssssssssssessssesssssssssssessssssssssssssssseessssssssssssssss 32
_os_pwr_link_plcy() 33
_05_pWI_eg() coonneen 34
_os_pwr_remove() ........ 35
_os_pwr_unlink_ext() 36
_0S_PWI_UNNNK_PICY() worrrieeeeeveeeeeeessessmssssee e sssssss s s sssssssssssssss s ssssssssssssssessssssssssssssssessssesssssssssssesssssssssssssssseesssssssssssssses 37
OS_PWE_UNTEE() wovvvvvveeeeeeeeeeeeeesesseseessssssssssssssssssssssssssssssssssssssssssssssssssssssssesss s s 00 38
DWESTAE UITIEY .evvoee e seseese s s 58585588558 38
PWWISTAL .ot eets et et ees e s es e85 5888881558858 85888 39



. Power Management Subsystem Specification

PwrPlcy 43

DEAUIE IAIE LOOP .o seeveereeeeeseseciees e ssssess s sssss s 88585855 44

Customizing the Idle FUNCHON FOF OS-9 ....vovoiiveeeioieeeeessseevees s s ssssssssssssssssssssssssssssssssse s sssssses s s ssssseee 44

Customizing the Idle Function for OS-9 for 68K 44

PWIPICY EXAMPIE ..o 45

[o1) (o X O — 48
PwrExt 57

PWWEEKE.C oo reveeeessse e eessesesee e sesss e ss s s8R 888 RER R R£REr 58
SysIF 63

CPULC ettt eessseeesss e ess e sss st e84 4585884555842 5585558805581 8 4488158858558 64

TECIOCK.C.vrrrre v esssss e ssssss s s ss s 2888855288855 588888 78
Programming Guidelines 85

BOOE COUE...ocoeveee v ssss s 2288888 858858 58 86

AADPIICAIONS ...ooee oo eseeeseee e esssss s sssses s 2R 89

DIBVICE DITIVETS.......vovoeeeeseesssssveesees s ssssssssssssees s ssssssssssseses s ssssssssssss e ssssssssss s sssssssss s s ssssessssssssssssssssesessssssssssssees 89

FILE VIAMAZETS....orrr e siseees s ssss s 88588 585588 5 s 89
OS-9 for 68K 91

68328 (0S-9/68000) HATAWATE INEEITACE ...vvvore oo seseeeesssssssssssseseeesssssssssssseessessssssnsssssseesssssssssnsssssseeessssssssssoee 92
PowerPC 93

PPC821 (0S-9/ PPC) HArAWAIE INEEHACE. ...ooosoceeeeeeveeeees s sesssssssss s ssmssssssseesssssssssssssssessssssssssssssssesssssssssssssssssesssssssssssssones 94
Assembly Interface for OS-9 for 68K 97

FSPWIIVIAN ... isessseeeese s sssssss s ssssss 558585858888 88 98

SUD-COUES ..ovrrevv e esssss s s 258888558888 88580 s 98

IEEINAI SETUCHUTES...vvvee e evveeeveeees s sssssssseeess s sssssssss s sssssssss s s s RS 8RR RRRRR0 99

PArAMELET BIOCK DEfINITIONS ....vvvece s ceveeveveeeeessesomsssssseee s ssssmsssssssse s sssmsssssssssessssssssssssss s sssssssssssessssassssssssssessssasssssssssssessssesssssssssses 100
SuperH 103

SH7709 (0S-9/ SH-3) HArAWAIE INTEITACE ...ovvoreos oot ssseseeeesessssssssesseessssssssssssseessesssssssssssseessssssssssssssseesssessssssssones 104
Index



Overview

Power management is crucial to enabling long life from small and inexpensive batteries
in personal communications devices. As an addition to the core OS-9® operating
system, the Power Management Subsystem aids an embedded system, especially a
portable battery-powered system, in conserving energy (and thus, extending battery
life) via customizable power management policy.

As opposed to communications and human-interface (and most other interfaces an
application deals with), the Power Management Subsystem provides a system-level
interface to the kernel and a set of conventions used to write device drivers and
applications.



n Power Management Subsystem Specification

Definitions

Power Management Subsystem terminology used in this manual is defined in this
section.

Power Unaware

Power unaware device drivers and applications are those not managed by the Power
Management Subsystem.

Power Aware

Power aware device drivers and applications are those managed by the Power
Management Subsystem.

A power aware application may provide useful hints to a power management support
mechanism (such as giving an initialized device a hint to power down due to
anticipated non-use for a long interval).

Support Mechanisms

Low-level support mechanisms are used by the Power Management Subsystem to
implement power management strategies. Support mechanisms include:

»  Power aware device drivers
« Power aware file managers
+  Power aware system modules

Different levels of power management may be implemented. For example, a liquid
crystal display (LCD) screen driver may implement an internal timer to blank the screen
upon a predefined period of non-use, or a hard disk driver may implement a similar
internal timer to turn off the hard disk motor upon a predefined period of non-access
to the disk. In both of these cases, power management is implemented totally in local
device drivers. But in cases where power management crosses subsystem boundaries,
such as turning off the system clock, the Power Management Subsystem, based upon
entries in the Power Policy Table, implement this power management.

A Power Managed System
A Power Managed system commonly includes:
« Kernel and Power Management Subsystem
« Applications
+  Device Drivers
+  File Managers

«  System Modules



Chapter 1: Overview n

The Power Management Subsystem is customizable. Documentation and example
sources enabling development of power aware device drivers and applications and
power management policy are provided in this manual.

Applications, device drivers, file managers, and system modules in a power managed
system may be either power-aware or -unaware.

Figure 1-1. A Power Managed System

Applications Applications
Kernel
and Kernel Power Management

Power Management Subsystem Subsystem

i File
File Managers Manager

Device Drivers

and Device System
System Modules Driver Module

By implementing various levels of the distributed power management support
mechanisms depicted in Figure 1-1, a system designer can be as aggressive as
necessary in conserving power in a portable communications device.

Power Aware Applications

The highest power management level — power aware applications —implements
power-down of devices consuming high power (or even medium- to low-power
consumption devices if aggressively conserving power) when the device is not in use.
For example, a serial port is powered-up when initialized since the serial driver must be
ready to receive or transmit data. The application, however, knows the characteristics of
data transmitted and should power down the serial driver when it determines that
transmission is not expected for a long period of time.



n Power Management Subsystem Specification

Power Management Subsystem

The Power Management Subsystem supports power management at the operating
system. Upon recognizing the absence of active processes (all processes are either
sleeping or waiting for an external event) the Power Management Subsystem can place
the system into a very low powered state by turning off the system clock and powering
down unnecessary chips and devices.

Power Aware Device Drivers

The lowest power management level — power aware device drivers —enables software
that interfaces with hardware (e.g., device driver) to be aware of the power
consumption characteristics of its local subsystem. For example, an audio module
subsystem can be initialized yet powered down until it is actually in use. In this
example, the audio module subsystem would be powered up before playing the first
note of a song and then powered back down after playing the last note.

Power Management Subsystem Components

PwrMan

The Power Management Subsystem components identified following are described in
this section:

«  Power Management Module (PwrMan™)
«  Power Policy Module (PwrPlcy™)

«  Power Extension Module (PwrExt™)

+ System Interface Module (SysIF™)

Figure 1-2. Power Management Subsystem Components

PwrPley [ 3| PwrMan {«—»| PwrExt SysIF

B 5

<+— direct link
< — —» logical link

PwrMan, a generic object code module available across all supported OS-9 processor
platforms, provides a consistent system level interface including library functions,
device and power information tables, and a status utility. PwrMan is designed to
support a wide variety of power management policies by providing a generic, system-
level interface for:

+ Establishing, implementing, and maintaining policy



Chapter 1: Overview n

« Maintaining and transitioning between power states

w For more information, see Chapter 2 PwrMan.

PwrPlcy

pwrPlcy is provided as generic source code that is customizable by original
equipment manufacturers (OEMs). It is highly dependent on target system hardware
configurations and the specific power management strategy chosen for that system.
PwrPlcy is the high level mechanism responsible for:

«  Decision making for power state changes

+ Initializing PwrMan power states

+ Instigating power state transitions, based upon past and current system states, via
library functions

@ For more information, see Chapter 3 PwrPlcy.

PwrExt

PwrExt IS a system-state subroutine module used to override the PwrMan system
call. At initialization, PwrMan looks for both PwrExt and PwrP1lcy and if either or
both are in memory, PwrMan links first to PwrExt and then PwrPlcy.

@ For more information, see Chapter 4 PwrExt.

SysIF

SysIF is a special system module providing a system-specific interface for the
microprocessor and other hardware components without device driver interfaces.

SysIF enables PwrP1lcy to reference the power levels of the CPU (such as normal
operation, throttled, and deep-sleep) just as it references other device-driver
components (such as a serial or ethernet drivers).

For larger power managed systems, several SysIF type modules may be needed. For
example, the system could have a CPU system module that controls all CPU-specific
operations and a separate battery system module that controls a smart battery.

w For more information, see Chapter 5 SysIF.

Interaction in the Power Managed System

Figure 1-3 depicts logical and direct links between components in a power managed
system.



n Power Management Subsystem Specification

All power-aware and -unaware device drivers and applications communicate with the
kernel. Power aware device drivers and applications may communicate directly with the
Power Management Subsystem for power management requests. Power unaware
device drivers may request power management via the kernel to the Power
Management Subsystem if a SysIF exists in the system to power manage that

device.

Figure 1-3. Interaction in the Power Managed System

User State

Application
Power Unaware

Application
Power Aware

. Applications
System State v

PwrP|Cy PwrMan PwrExt
System Subroutine ) ) Subroutine
Globals € ?] Module E PWRMAN » Module
(F_PWRMAN) (k- ) (F_PWRMAN)
Kernel ‘ ‘
A Kernel and

Device Device Device
Driver Driver Driver
Power Power Power

Unaware Unaware Aware

Device
Driver
Power

Aware

Rower Manager

v
————

SyslF

— )
Device Drivers and

logical links:

<----- » direct links:

+—>

System Modules

10



PwrMan

PwrMan, a system module kernel extension, provides a consistent system level
interface for power management. PwrMan includes library functions, device and power
information tables, and a status utility, available across all supported processor
platforms. PwrMan is designed to support a wide variety of power management
policies by providing a generic, system-level interface for:

+ Establishing, implementing, and maintaining policy

« Transitioning between power states

This chapter covers the following system level interface information:
+  Device Registry Table

+  Power State Table

+  Power Structures

+ PwrMan GClobals Structure

*  PwrMan Library

« pwrstat Utility

@ See Appendix C Assembly Interface for OS-9 for 68K.

11



Power Management Subsystem Specification

PwrMan Tables

PwrMan comprises two table types:

+  Device Registry

+ Power State

The Device Registry Table identifies power aware devices to be power managed and
device driver or SysIF callback functions and parameters.

@ See the Device Registry Table and Power State Table subsections in this chapter.

-% Callback functions provide hardware specific power management interfaces..

The Power State Table identifies device power control.

To power manage a device identified in the Device Registry Table, a corresponding
entry must exist in the Power State Table. The common field between the two tables is
the device name (or id). To create a unique entry (based upon ID) in a table and a
corresponding entry in the other table, the os pwr reg() and os pwr add()
library functions must be used.

Updates to entries (state additions, device or state deletions, or device or state
changes), not creation of unique entries, to either of the tables causes PwrMan to
dynamically update the other table.

The pwrPlcy module initializes and manages entries in the Power State Table. By
using two tables, the order of PwrMan table initialization is irrelevant; devices may
register with PwrMan (via the Device Registry Table) before the Power State Table is
initialized, or vise-versa..

‘% To view table entries, use the pwrstat utility described in this chapter.

Device Registry Table

12

An example Device Registry Table is shown in Table 2-1.. An initial allocation of 16
Device Registry Table entries is made by PwrMan. If an attempt is made to register
more than sixteen entries, PwrMan allocates additional entries in 16 block increments.

Table 2-1. Example Device Registry Table

id func funcparam devpwrdef
“2" <t2 function> <t2 parameter> <pointer>
“cpu” <cpu function> <cpu parameter> <pointer>



Chapter 2: PwrMan

Table 2-1. Example Device Registry Table (Continued)

id func funcparam devpwrdef
“t1" <t1 function> <t1 parameter> <pointer>
null null null null

Device Registry Table data is formulated from device drivers and sysIF calls
to_os pwr reg() and os pwr unreg/() library functions.

_os_pwr_reg()adds an entry to the Device Registry Table and checks the Power
State Table to determine if the same id exists in both tables. If so, the function and
parameter fields for the entry in the Power State Table are set to the callback function
and parameters identified in the Device Registry Table. If not, the Power State Table is
not updated.

_os_pwr_unreg () removes an entry from the Device Registry Table.

id is the name of the table entry. This is the common link between the Device Registry
Table and the Power State Table. This field is a case-sensitive ASCII string.

func is a pointer to the callback power management registered by the driver or
system module.

funcparam is a device-specific parameter, usually consisting of a device static pointer
or device entry pointer.

devpwrdef is a pointer back to the local device energy condition structure.

Power State Table

The main goal of PwrMan is to maintain the Power State Table. The initialization of this
table is left to PwrPlcy.

An example Power State Table is shown in Figure 2-1.. An initial allocation of 32 Power
State Table entries is made by PwrMan. If more than 32 entries are added, PwrMan
allocates additional entries in 32-block increments.

13



Power Management Subsystem Specification

14

|
|
|
| SysLevel
|
|
h

Figure 2-1. Example Power State Table

id
devlevel
priority
devpb
func

funcparam
~

re - - - - T T— T m————— = il
l:t1 ” l:t2n “Cpu"
| 0x10 0x10 0x03 |
1 5 10
| Full-Power wo [ e [ v |
| <t1 function> <t2 function> <cpu function> |
<t1 parameter> <t2 parameter> <cpu parameter>
| |
L - - - - e _ _
r HE BN BN BN BN BN BN BN B B B B BE B BE B B B B BE B B B . 1
Current State 2 “”
| 0x50 0x05 I
I 1 10 I
void* -4 void*
| Throttled <t2 function> <t1 function> |
<t2 parameter> <t1 parameter>
| |
L HE =HI IN BN BN BN BN BN BN BN BN B B BN B B B B B B B B B . ‘
r- - - - - - = = = — — — — = = — — — — — — ll
| “opu” |
0x02
1
| Light-Sleep void* |
| <cpu function> |
<cpu parameter>
L - - - - - - |
re - - - = = = = T T T T = = - l
| 12 “t1” cpu |
Oxff 0x01 0x01
Deep-Sleep void* <> void* <> void*
| <t2 function> <t1 function> <cpu function> |
<t2 parameter> <t1 parameter> <cpu parameter>
| |
L - - - - = @ |

_os_pwr_add () adds an entry to the Power State Table and determines if the same
ID is in the Device Registry Table. If not, the function and parameter fields for the entry
in the Power State Table are set to NULL.

_os_pwr_remove () removes an entry from the Power State Table.

id is the name of the entry. This is the common link between the Device Registry Table
and the Power State Table. This field is a case-sensitive ASCII string.

syslevel is the power state name.

devlevel is a parameter for the callback function that specifies which part of the
callback function is executed. For example, the same callback function may be used for
several power states of a device. devlevel can indicate which power state
(syslevel) is used.



Chapter 2: PwrMan

priority designates the order in which the callback function devlevels specified
in the syslevel execute upon a state change. The lower the value, the higher the

priority (e.g, 1 is highest priority).

devpb is an optional parameter block for the callback function. devpb may specify
additional details concerning which part of the callback function is executed. For
example, when using a PCMCIA card, this parameter may be used for whatever device
is plugged into the card at that time. If devpb is not in use, devpb must be filled with
NULL.

func is a pointer to the callback function registered by the driver or system module.

funcparam is a device-specific parameter, usually consisting of a device static pointer
or device entry pointer..

-% The devlevel andthe devpb Power State Table entries are device specific. Power
state entries for the same power state can (and probably will) have different power parameter
values between them. This implies that PwrMan should be aware of all the devices that are
in the system as well as their power characteristics (via the Power State Table and Device
Registry Table)..

-% devpb can be used for anything needed by the driver. For example, it could be used for a
parameter block to change a system clock rate independent of the current system state..

Power Management Power State Table Flow

In addition to the Power State Table, PwrMan maintains a pointer to the current power
state, currlevel, in the pwrman_globals structure.

Requests to change power states are made by PwrPlcy to PwrMan. When changing
states, PwrMan:

1. Changes the current state pointer to the new syslevel

2. Calls each power state entry callback function in the syslevel with devpb and
funcparam

If errors are returned from these callback functions and the ret _on_err global flagis
not set, PwrMan continues to process the remaining entries in that power state but
returns the first error encountered to PwrP1cy. Upon notification of an error during
state change, PwrP1lcy determines whether to return to the previous power state or
remain in the current one. If an error occurs while trying to change states and

ret _on_err isset, PwrMan restores the previous state and immediately returns an
error.

Power Structures and Definitions

Power Management Subsystem power structures are defined in this section. Structures
are:

+  Device Energy Condition

15



Power Management Subsystem Specification

» Local Power Mode

* Power Event

Device Energy Condition

16

The pwr_ devcond structure resides in the
<MWOS/SRC/DEFS/PWRMAN/pwrman . h> header file. This structure may be used
to describe the current energy/power condition of a device. The data represents the
device's current power condition. PwrExt may use the information in calculating the
entire system'’s energy condition or in determining if there is a need to generate a
power event (pwr_event). A device driver or SysIF may update the

pwr devcond structure without generating a pwr_event..

‘% Power events are unrelated to OS-9 or OS-9 for 68K events used in interprocess
communication.

@ For a definition of pwr event, reference the Power Event subsection in this chapter.

The pwr_devcond structure may be part of a Device Registry Table entry if used as
the last parameter of the os pwr reg() and os pwr unreg() calls. The
writer of PwrExt determines whether to use or ignore the information.

typedef struct pwr_devcond {
Pwr localmode lpm;/* ptr to array of local power modes */
u_int32 num lpm;/* # of local power modes */
pwr_devtype dev_type;/* device type */
pwr_level pres level;/* present power level */
int32 pres energy;/* present energy level (mW) */
int32 pres_drain;/* present energy drain (mW/hr) =*/
u_int8 rsvl[24];/* reserved */
} pwr devcond, *Pwr devcond;

1pmis a pointer to the local power mode of the device.

num_1lpm is the number of local power modes for the device.

dev_type describes the type of device in terms of energy or power.
pres_level is the present local power mode level of the device.
pres_energy is the present energy level of the device.

pres_drain represents the device's present energy drain or load on the system.

w For information about local power mode, reference the Local Power Mode subsection in
this chapter.



Chapter 2: PwrMan

Local Power Mode

The loc_pwr mode structure resides in the <MWOS/SRC/
DEFS/PWRMAN/pwrman . h> header file. loc_pwr mode is a structure used to
represent local power modes of devices. This is a suggested way of abstracting how
power or energy may be defined in a system, making the power management system
more portable.

typedef struct pwr localmode {
pwr level level;/* Local power mode level */
int32 maxload;/* max energy load or drain (mW) */
int32 minload;/* min energy load or drain (mW) */
u_int32 entrytime;/* worst-case device entry time (ms) */
u_int32 exittime;/* worst-case device exit time (ms) */
char lpm name [PWR IDLEN];/* local power-mode name */
u_int8 context pres;/* device context preserved flag */
u_int8 rsvl[11l];/* reserved */

} pwr_localmode, *Pwr_ localmode;

level is the local power mode level.

max_load and min load are the maximum and minimum energy loads the
device may put on the system.

entrytime and exittime are the worst-case times the device takes to power-up
and down respectively.

1pm name is the local power mode name.

context pres indicates whether the context of the device is preserved. An
example where this may be used is to indicate whether a device is plugged into a
PCMCIA card.

Power Event

The pwr_event structure resides in the <MWOS/SRC/DEFS/
PWRMAN/pwrman .h> header file. os pwr ev notify() and
_os_pwr_ev_request () are calls that use the pwr_event structure.

Power events are used to pass information from the device driver/SysIF level to
pwrPlcy. For example, a new device is added to the system that may need a
substantial amount of power or a device suddenly becomes active, such as a fax
machine, and is going to consume more power as a result. Power events may be used
to pass such vital information to PwrP1cy enabling PwrP1cy to make the appropriate
changes in the system, if necessary.

Power events are also meant for situations that cause the system'’s power condition to
change. Thus, power events should be used when something that causes a substantial
change in power within the system occurs. As the system’s power level hits lower and
lower thresholds, the criteria for a substantial change of power in the system may

change. In other words, as the energy left in a battery gets lower, more circumstances

17



Power Management Subsystem Specification

may cause a substantial change of power in the system to occur, thus requiring a
power event to occur.

Since there is overhead involved with using power events, a system is not required to
use them. A simpler system may use interprocess communication mechanisms already
built into the operating system, such as signals and events, to indicate that something
has changed in the system.

-% Power events are unrelated to OS-9 or OS-9 for 68K events used in interprocess
communication..

typedef struct pwr event {
char* devid;/* ptr to device identifier */
Pwr_devcond devcond;/* ptr to device condition struct */
pwr level old lpm;/* ptr to old local power mode */
pwr_level new lpm;/* ptr to new local power mode */
int32 old energy;/* old energy level (mW) */
int32 new _energy;/* new energy level (mW) */
int32 old drain;/* old drain/[supply] (mW/hr) */
int32 new drain;/* new drain/[supply] (mW/hr) */
u_int8 rsvl[1l6];/* reserved */

} pwr_event, *Pwr_ event;

dev_id is a pointer to the device identifier.

dev_cond is a pointer to the overall device power condition structure.

old lpmis the local power mode before the power event takes place.

new_1pmis the local power mode that the device just entered (via _os pwr ev notify ()
or is requesting to enter (via _os_pwr_ev_request ()).

old energyand new_energy (used by suppliers only) represent the change in the
amount of energy stored. The associated unit is energy-based (e.g., milliwatt-hours
(mw-hour)).

old drain and new drain represent the change, in mw-hour, in the rate of
use/supply of energy. Based on the nature of the device being either a consumer or
supplier of energy, the o1d_drain and new_drain fields may represent positive or
negative values, respectively.

pwrman_globals Structure

18

pwrman_globals resides in <MWOS/SRC/DEFS/PWRMAN/pwrman .h>. The
structure comprises addresses of callback functions of fields in the Power State Table
and is known by all Power Management Subsystem modules: PwrP1lcy, PwrMan,
PwrExt, and SysIF.

/* Global Variables to PwrMan, pwrplcy, and pwrext */
struct pwrman _globals {



Chapter 2: PwrMan

Sysglobs sglobptr;/* system globals pointer */

Pwr state phead;/* head of the Power State table */
Pwr state pfree;/* power state table free pool */

Pwr devreg dthead;/* head of the device registry table */
Pwr devreg dtfree;/* device registry table free pool */

pwr level currlevel;/* current system power level */

void* pwrplcy mem;/* PwrPlcy-specific memory pointer */
error code (*pwrplcy func) (F_pwrman pb pb, Pwrman globals ldptr);
/* PwrPlcy entry point function */
void* pwrext mem;/* PwrExt-specific memory pointer */
error code (*pwrext func) (F_pwrman pb pb, Pwrman globals ldptr);
/* PwrExt entry point function */
u_int8 from usrstate;/* usr state flag */
#define FROM_ SYSSTATE 0x00
#define FROM_USRSTATE 0x01

u_int8 from super;/*super user flag */
#define FROM_NONSUPER 0x00
#define FROM_SUPER 0x01

u_int8 ret on err;/* return on state-change err flag */
u_int8 rsvl[l];/* reserved */

error_code (*pwrman func) (F_pwrman pb pb, Pwrman globals ldptr);
/* PwrMan entry point function */

Mh com pwrplcy modhead;/* pointer to PwrPlcy module head */
Mh com pwrext modhead;/* pointer to PwrExt module head */

u_int8 rsv2[1l2];/* reserved */

Vi

sysglob is a pointer to the system globals.

phead and dthead are pointers to the heads of the Power State and Device Registry
tables respectively.

pfree and dtfree are pointers to the Power State and Device Registry tables free
entry pools, respectively.

currlevel is the current power state.
pwrplcy memis a pointer to PwrP1lcy allocated local memory.

pwrplcy func is a pointer to the PwrP1lcy entry point.

19



Power Management Subsystem Specification

pwrext mem is a pointer to PwrExt allocated local memory.

pwrext func is a pointer to the PwrExt entry point.

from usrstate is a flag indicating run a process from user state.

from_ super is a flag indicating that super user is required to run the process.

ret_on_err is a flag error handling when one of the callback functions error during
an _os pwr change (). lf ret on erris setand a callback function errors, the
previous state is restored and the error is returned immediately. If ret _on_err is not
set and a callback function errors, os pwr change () continues to call the
remaining callback functions for that state and then returns the first error.

pwrman_func is the pointer to the default entry point of the F$PwrMan system call.
pwrplcy modhead holds a pointer to a module head for unlinking.

pwrext modhead holds a pointer to a module head for unlinking.

PwrMan Library

Power Management C library function bindings reside in
MWOS/<0S>/<CPU>/LIB/pwrman.1.

<0S>=059
0S9000
<CPU>=68000
PPC

80386

This library provides an interface for all PwrMan operations. All power management
macro, structure, and type definitions reside in MWOS /SRC/DEFS/pwrman.h.

pPwrMan library information for assembly language users is provided in  Appendix C
Assembly Interface for OS-9 for 68K.

Table 2-2. PwrMan System Level Function Functions

Syntax Description

error_code _os_pwr_add(char id[PWR_IDLEN], pwr_level syslevel, ~ Adds an entry in the Power

u_int32 priority, pwr_level devlevel, void *devpb) State Table.
error_code _os_pwr_callback(char id[PWR_IDLEN], pwr_level Calls either the SysIF or
devlevel, void *devpb) driver callback function

without changing states.

error_code _os_pwr_change(pwr_level syslevel) Changes the current power
state to the one indicated as
syslevel.

20



Chapter 2: PwrMan

Table 2-2. PwrMan System Level Function Functions (Continued)

Syntax Description

error_code _os_pwr_check(char version[PWR_VERS_LEN]) Checks to see if PwrMan is
active in the system.

error_code _os_pwr_copyglob(pwrman_globals *pwrglob) Retrieves a copy of the
internal PwrMan globals
(for debugging use only).

error_code _os_pwr_debug(const pwrman_globals **pwrglob) Retrieves a pointer to the
internal PwrMan globals
(for debugging use only).

error_code _os_pwr_ev_request(Pwr_event pwrevent) Sends PwrP1cy a power
event requesting a change in
state.

error_code _os_pwr_link_ext(char id[PWR_IDLEN]) Link to a PwrExt module.

error_code _os_pwr_link_plcy(char id[PWR_IDLEN]) Link to a PwrP1cy module.

error_code _os_pwr_ev_notify(Pwr_event pwrevent) Sends PwrP1cy a power

event indicating that a change
of state must occur.

error_code _os_pwr_reg(char id[PWR_IDLEN], error_code Adds an entry in the Device
(*func)(void *funcparam, pwr_level devlevel, void *devpb),void Registry Table.
*funcparam, Pwr_devcond devpwrdef)

error_code _os_pwr_remove(char id[PWR_IDLEN], pwr_level Removes an entry from the
syslevel, u_int32 priority, pwr_level devlevel, void *devpb) Power State Table.
error_code _os_pwr_unlink_ext(void) Unlink from the attached

PwrExt module.

error_code _os_pwr_unlink_plcy(void) Unlink from the attached
PwrP1cy module.

error_code _os_pwr_unreg(char id[PWR_IDLEN], error_code Removes an entry from the
(*func)(void *funcparam, pwr_levl devlevel, void *devpb), void Device Registry Table.
*funcparam, Pwr_devcond devpwrdef)

21



Power Management Subsystem Specification

22

Table 2-3. PwrMan Function Overview

Processor State

Group

Permissions *

Typical Calling Entity/Use

i e 7 |
System | User |Super |User |PwrPlcy | Driver/ Applica Test
SysIF tion
_os_pwr_add() X X X X X
_os_pwr_callback() X X X X X
_os_pwr_change() X X X X X
_os_pwr_check() X X X X X
_os_pwr_copyglob() | X X X X X
_os_pwr_debug() X X X
_os_pwr_ev_notify() | X X X X
_os_pwr_link_ext() X X X
_os_pwr_link_plcy() | X X X
_os_pwr_reg() X X X
_os_pwr_remove() X X X X X
_os_pwr_ev_request() | X X X X
_os_pwr_unlink_ext() |X X X
_os_pwr_unlink_plcy() | X X X
_os_pwr_unreg() X X X

* Permissions are not relevant to system state.




Chapter 2: PwrMan

Table 2-4. PwrMan System Level Function Errors

Number Error Functions Resolution

208 EOS_UNKSVC All P2init PwrMan prior to
using PwrMan library
functions.

221 EOS_MNF _os_pwr_link_ext() The module specified by id in

_os_pwr_link_plcy() the function syntax does not

exist.

231 EOS_KWNMOD _os_pwr_unlink_ext() Unlink from attached

pPwrExt module using
_os_pwr_unlink <mo
dule> () before linking to
the named module.

_os_pwr_unlink_plcy()

23



Power Management Subsystem Specification

24

_os_pwr_add()
Add an Entry in the Power State Table

Syntax

#include <PWRMAN/pwrman.h>

error code _os pwr_add(char id[PWR_IDLEN], pwr level syslevel,
u_int32 priority, pwr level devlevel, void *devpb) ;

Description

_os_pwr_add () creates an entry to the Power State Table for PwrMan and
determines if the same ID is in the Device Registry Table. If so, the function and
parameter fields for the entry in the Power State Table are set to the callback function
and parameters identified in the Device Registry Table. If not, the function and
parameter fields for the entry in the Power State Table are set to NULL.

id is the name of the entry. This is the common link between the Device Registry Table
and the Power State Table. This field is a case-sensitive ASCII string.

syslevel is the power state level used for defining the state in which the entry is to
be placed.

priority designates the order in which the callback function devlevels within the
syslevel execute upon a state change. The lower the value, the higher the priority
(e.g, 1 is highest priority).

devlevel is a parameter for the callback function that specifies which part of the
callback function is executed. For example, the same callback function may be used for
several power states of a device. devlevel can indicate which power state
(syslevel) is used.

devpb is an optional parameter block for the callback function. devpb may specify
additional details concerning which part of the callback function is executed. For
example, when using a PCMCIA card, this parameter may be used for whatever device
is plugged into the card at that time. If devpb is not in use, devpb must be filled with
NULL.

Library

pwrman. 1l

See Also

_0s_pwr_remove ()



Chapter 2: PwrMan

_os_pwr_callback()
Call the callback Function Directly
Syntax

#include <PWRMAN/pwrman.h>

error code _os pwr callback(char id[PWR _IDLEN], pwr_ level devlevel,
void *devpb) ;

Description
_os_pwr_callback () calls a callback function without doing a power state change.

id is the name of the entry. This is the common link between the Device Registry Table
and the Power State Table. This field is a case-sensitive ASCII string.

devlevel is a parameter for the callback function that specifies which part of the
callback function is executed. For example, the same callback function may be used for
several power states of a device. devlevel can indicate which power state
(syslevel) is used.

devpb is an optional parameter block for the callback function. devpb may specify
additional details concerning which part of the callback function is executed. For
example, when using a PCMCIA card, this parameter may be used for whatever device
is plugged into the card at that time. If devpb is not in use, devpb must be filled with
NULL.

Library

pwrman. 1l

25



Power Management Subsystem Specification

26

_os_pwr_change()
Change Power State
Syntax

#include <PWRMAN/pwrman.h>

error code _os pwr_ change (pwr_ level syslevel);

Description

_os_pwr_change () changes the current power state pointer, currlevel, tothe
specified syslevel and calls the callback functions of each of the Power State Table
entries in that syslevel.

If the global flag, ret on_err withinthe pwrman globals structure is set, then
os_pwr_change () returns upon the first error and restores the previous power
state. If ret _on_err is not set, os_pwr change () returns the first error and
continues with the power state change.

syslevel is the name of power state to which to transition.

Library

pwrman. 1l



Chapter 2: PwrMan

_os_pwr_check()
Determine if PwrMan is Enabled
Syntax

#include <PWRMAN/pwrman.h>

error_code _os pwr_ check(char version[PWR VERS LEN]) ;

Description

_os_pwr_check () determines if PwrMan is installed in the system and, if so,
returns the version number.

version is the version number of PwrMan upon returning SUCCESS. version is a
character array buffer allocated by the caller and filled by PwrMan. If the version is
NULL, then the buffer is not filled but the function returns successfully.

Library

pwrman. 1l

27



Power Management Subsystem Specification

_os_pwr_copyglob()

Retrieves a Copy of the
Internal PwrMan Globals

Syntax

#include <PWRMAN/pwrman.h>

error_code _os pwr_copyglob (pwrman globals *pwrglob) ;

Description

_os_pwr_copyglob () retrieves a copy of the internal PwrMan globals.

Library

pwrman. 1l

See Also

_os_pwr_debug/()

28



Chapter 2: PwrMan

_os_pwr_debug()

Retrieves a Pointer to the
Internal PwrMan Globals

Syntax

#include <PWRMAN/pwrman.h>

error code _os pwr debug(const pwrman globals **pwrglob) ;

Description

_os_pwr_debug () passes a pointer to the PwrMan globals. This call is useful for
debugging.

+ pwrglob is a read-only pointer to PwrMan globals. .

'% pwrglob s constant structure. The fields in this structure should not be changed.

Library

pwrman. 1l

See Also

_0os_pwr_ copyglob()

29



Power Management Subsystem Specification

30

_os_pwr_ev_notify()
Send a Notification Power Event
Syntax

#include <PWRMAN/pwrman.h>

error code _os pwr ev notify(Pwr_ event pwrevent) ;

Description

_os_pwr_ev_notify () enables a driver or SysIF to pass information to
pwrPlcy about a power state change that occurred or that needs to occur. For
example, if a new device is plugged into the system, the driver could use
_os_pwr_ev_notify () to notify PwrPlcy of the change in the system.

pwrevent is a parameter block of type pwr_event that holds vital information
(such as how much power a device needs) for passing to PwrPlcy. PwrPlcy Uses
pwrevent to determine if additional changes must occur in the system. For example,
if a new device drains a lot of power from the system, PwrP1cy may need to turn off
another device or put some devices in lower power states.

Library

pwrman. 1l

See Also

_0s_pwr_ev_request ()



Chapter 2: PwrMan

_os_pwr_ev_request()
Send Request Power Event
Syntax

#include <PWRMAN/pwrman.h>

error code _os pwr_ ev_request (Pwr_event pwrevent) ;

Description

_os_pwr_ev_request () enables a driver or SysIF to pass information to
PwrPlcy to request a change of power state. A state change occurs if PwrPlcy
approves the request.

pwrevent is a parameter block of type pwr_event that holds vital information
(such as how much power a device needs) for passing to PwrPlcy. PwrPlcy USES
pwrevent to determine if additional changes must occur in the system. For example,
if a new device drains a lot of power from the system, PwrP1cy may need to turn off
another device or put some devices in lower power states.

Library

pwrman. 1l

See Also

_os_pwr_ev _notify()

3



Power Management Subsystem Specification

_os_pwr_link_ext()
Link to a PwrExt Module

Syntax

#include <PWRMAN/pwrman.h>

error code _os pwr_ link ext (char id[PWR_IDLEN]) ;

Description
_os_pwr_link ext () links to the PwrExt module specified by id.

id is the name of the module to which to link.

Library

pwrman. 1l

See Also

_os_pwr_unlink ext ()

32



Chapter 2: PwrMan

_os_pwr_link_plcy()
Link to a PwrPlcy Module

Syntax

#include <PWRMAN/pwrman.h>

error code _os pwr link plcy(char id[PWR_IDLEN]) ;

Description
_os_pwr_link plcy () links to the PwrP1lcy module specified by id.

id is the name of the module to which to link.

Library

pwrman. 1l

See Also

_os_pwr_unlink plcy ()

33



Power Management Subsystem Specification

34

_os_pwr_reg()
Add an Entry in the Device Registry Table

Syntax

#include <PWRMAN/pwrman.h>

error code os pwr_reg( char id[PWR_IDLEN], error code (*func) (void
*funcparam, pwr_level devlevel, void *devpb), void *funcparam,
Pwr devcond devpwrdef) ;

Description

_os_pwr_reg () creates an entry in the Power State Table for PwrMan and
determines if the same ID is in the Device Registry Table. If so, function and parameter
fields for the entry in the Power State Table are set to the callback function and
parameters identified in the Device Registry Table. If not, the function and parameter
fields for the entry in the Power State Table are set to NULL.

id is the name of the entry. This is the common link between the Device Registry Table
and the Power State Table. This field is a case-sensitive ASCII string.

error_code (*func) (void *funcparam, pwr level devlevel, void* devpb)

func is the callback function that PwrMan calls when changing states.
funcparam is the parameter (or parameter block) for func.

devlevel is a parameter for the callback function that specifies which part of the
callback function is executed. For example, the same callback function may be used
for several power states of a device. devlevel can indicate which power state
(syslevel) is used.

devpb is an optional parameter block for the callback function. devpb may specify
additional details concerning which part of the callback function is executed. For
example, when using a PCMCIA card, this parameter may be used for whatever
device is plugged into the card at that time. If devpb is not in use, devpb must be
filled with NULL.

funcparam is used for any device specific parameters that may be needed in the
callback function, such as a device table entry pointer or a device static storage pointer.

devpwrdef is the pointer to a structure which defines the present energy condition of
a device.

Library

pwrman. 1l

See Also

_os_pwr_ev_unreg (), pwr devcond structure



Chapter 2: PwrMan

_os_pwr_remove()
Delete an Entry in the Power State Table
Syntax

#include<PWRMAN/pwrman.h>

error code _os pwr remove (char id[PWR_IDLEN], pwr_ level syslevel,
u_int32 priority, pwr level devlevel, void *devpb) ;

Description

_os_pwr_remove () removes an entry from the Power State Table for PwrMan and
determines if the same ID is in the Device Registry Table. If so the function and
parameter fields for the entry in the Device Registry Table are set to NULL.

id is the name of the entry. This is the common link between the Device Registry Table
and the Power State Table. This field is a case-sensitive ASCII string.

syslevel is the name of power state from which to remove the entry.
priority of the entry as specified in _os_pwr add().
devlevel of the entry as specified in _os_pwr_add ().

devpb of the entry as specified in _os _pwr _add ().

Library

pwrman. 1l

See Also

_os_pwr_add()

35



Power Management Subsystem Specification

36

_os_pwr_unlink_ext()

Unlink from the Attached
PwrExt Module

Syntax

#include <PWRMAN/pwrman.h>

error code _os pwr_unlink ext (void);

Description

_os_pwr_unlink_ext () unlinks from the attached PwrExt module

Library

pwrman. 1l

See Also

_os_pwr link ext()

Errors

EOS_MNF There is not a PwrExt module attached to unlink.



Chapter 2: PwrMan

_os_pwr_unlink_plcy()
Unlink from the Attached
PwrPlcy Module

Syntax

#include <PWRMAN/pwrman.h>

error code _os pwr_unlink plcy(void) ;

Description

_os_pwr_unlink plcy () unlinks from the attached PwrP1cy module

Library

pwrman. 1l

See Also

_os_pwr_ev_reg()

Errors

EOS_MNF There is not a PwrP1lcy module attached to unlink.

37



Power Management Subsystem Specification

_os_pwr_unreg()
Delete an Entry in the Device Registry Table
Syntax

#include <PWRMAN/pwrman.h>

error _code _os_pwr unreg(char id[PWR_IDLEN], error code (*func) (void
*funcparam, pwr_level devlevel, void *devpb), void *funcparam,
Pwr devcond devpwrdef) ;

Description

_os_pwr_unreg () removes an entry from the Device Registry Table for PwrMan
and checks to determine if the same ID is in the Power State Table. If so, the function
and parameter fields for the entry in the Power State Table are set to NULL.

id is the name of the entry. This is the common link between the Device Registry Table
and the Power State Table. This field is a case-sensitive ASCII string.

error code (*func) (void *funcparam, pwr_ level devlevel, void *devpb)

func of the entry as specified in _os pwr reg().
funcparam of the entry as specified in _os pwr reg().
devlevel of the entry as specified in _os_pwr_reg().
devpb of the entry as specified in _os pwr reg().

funcparam is used for any device specific parameters that may be needed in the
callback function, such as a Device Registry Table entry pointer or a device static storage
pointer.

devpwrdef is a pointer to a structure which defines the present energy condition of a
device.

Library

pwrman. 1l

See Also

_os_pwr_ev_reg(), pwr_devcond structure

pwrstat Utility

38

The pwrstat utility enables viewing of some internal PwrMan structures, such as
version label, Device Registry Table entries, and Power State Table entries. A
description of the pwrstat utility and example dumps from the utility are provided in
this section.



Chapter 2: PwrMan

pwrstat
Enables Command Line, Pseudo Power Policy Control
Syntax

pwrstat [<opts>]

Description

pwrstat displays the Device Registry Table and Power State Table. pwrstat can
also add or remove states from the Power State Table.

Options

-? Display the options, function, and command syntax of
pwrstat.

-a=<id> <syslevel> <devlevel> <priority>
Add a power state entry.

-c=<syslevels> Change to system level.

-d Display the Device Registry Table.
-1 pP2init the PwrMan module.
-le[=<module>] Link to the PwrExt module.
-1lp[=<modules>] Link to PwrP1lcy module

-p Display the Power State Table.

-r=<id> <syslevel> <devlevel> <priority>
Remove a power state entry.

-v Print out PwrMan version.
-ue Unlink from PwrExt module.
-up Unlink from PwrPlcy module.

The -a and -r dynamically add or remove respectively a state from the Power State
Table. Parameters to the -a and -r options are the same.

The -c option enables change of power state.

The -d option displays the Device Registry Table entries for devices registered with
PwrMan.

The -1 initializes the PwrMan module.

The -1e [=<module>] option links to the PwrExt module specified by
<modules. If only one PwrExt module exists in the Power Management Subsystem,
the module name need not be specified. If a PwrExt module is linked in the Power
Management Subsystem, it must be unlinked using the -ue option prior to linking a
different PwrExt module.

The -1p [=<module>] option links to the PwrP1lcy module specified by
<modules. If only one PwrPlcy module exists in the Power Management
Subsystem, the module name need not be specified. If a PwrP1lcy module is linked

39



Power Management Subsystem Specification

40

in the Power Management Subsystem, it must be unlinked using the -up option prior
to linking a different PwrP1cy module.

The -p option displays the Power State Table entries for power states of the power
aware system.

‘% pwrstat does not display information for unregistered devices..

The -r option removes, from the Power State Table, the power state entry specified
by <id>, <syslevels, <devlevels, and <prioritys in the option.

The -v option displays the PwrMan version number.

Option Variables

id is the name of the entry. This is the common link between the Device Registry Table
and the Power State Table. This field is a case-sensitive ASCII string.

syslevel indicates the current power state level.

devlevel is a parameter for the callback function that specifies which part of the
callback function is executed. For example, the same callback function may be used for
several power states of a device. devlevel can indicate which power state
(syslevel) is used.

priority designates the order in which the callback function devlevels within the
syslevel execute upon a state change. The lower the value, the higher the priority
(e.g, 1 is highest priority).

The pwrstat display header lists the system name and the OS-9 version number.
Examples
This first example displays the Device Registry Table entries.

$ pwrstat -d

Motorola VME147 0S-9/68K V3.0

Id (/B Pir Data Addr Device Param
devi $004f048e $004ed9co $00000000
dev2 $004f04d8 $004ed9co $00000000
dev3 50040520 $004ed9co $00000000
devs $004f056a $004ed9co $00000000

The following example displays Power State Table entries.



Chapter 2: PwrMan

$ pwrstat -p

Motorola VME147 OS-9/68K V3.0

Id Call Back Ptr Call Back Param

cpu $00f203b0 (0x00000010

The following example adds an entry to the Power State Table.
$ pwrstat -a=cpu 0x10 0x10 1 or pwrstat -acpu 0x10 0x10 1
The following example removes an entry from the Power State Table.

$ pwrstat -r=cpu 0x10 0x10 1 or pwrstat -rcpu 0x10 0x10 1

4



Power Management Subsystem Specification

42



PwrPlcy

PwrPlcy is provided as generic source code that is customizable by OEMs as it is
highly dependent on the target system hardware configuration as well as the specific
type of power management strategy chosen for that system or project. As such,
pPwrPlcy, after establishing specific rules for state changing, is relatively static. Power
aware applications communicate with PwrP1cy to interactively modify power
management policy.

pwrPlcy is the high level mechanism responsible for:
+  Power state change decision making

+ Initialization of PwrMan power states
 Information in this chapter includes:

« Default Idle Loop

+  Customizing the Idle Loop (OS-9)

+  Customizing the Idle Loop (OS-9 for 68K)

*  PwrPlcy Example

All PwrP1cy definitions, types, and function prototypes reside in the
MWOS/SRC/SYSMODS/PWRMAN/PWRPLCY/<port> directory.

43



Power Management Subsystem Specification

Default Idle Loop

To support low-overhead power management, OS-9 for 68K and OS-9 kernels have
two system globals data areas: a context switch count area and an idle callout function
area.

The context switch count is initialized to zero during kernel boot-up and incremented
(to its maximum allowable value) during every context switch (in the kernel
currproc () routine). A power policy provider may reset this field to zero, wait for an
interval, then check it again to determine if context switches occurred (and thus the
system wasn't entirely idle) during that interval.

The idle callout function area consists of a function pointer and function parameter.
Both the idle callout function pointer and parameter are required. The idle callout
function may consist of just a return and enter into a busy-wait loop. A power policy
provider may use this idle callout function to prompt power state changes.

Customizing the Idle Function for 0S-9

pPwrMan may replace the kernel default idle function. Requirements of the idle loop
are:

« Idle function called with interrupts masked
+ Idle function called as a subroutine
+ The following registers passed to the idle function:
(a6) = system global data pointer
(sr) = interrupts are masked
(a7) = active system stack
« Upon returning to the kernel, the following register settings are required:
(a7) = intact
(sr) = interrupts are unmasked

All other registers must be intact. The active system stack must not be switched if
the system has an MSP/ISP stack set.

« Idle function must
«  Honor the B NoStop flag

« Ifa sTOP/LPSTOP is performed, ensure that an accidental stack switch does not
occur if the system is using the MSP/ISP stack set

Customizing the Idle Function for OS-9 for 68K

The following are requirements for an OS-9 for 68K idle loop.
« Idle function called with interrupts masked

« Idle function must return with interrupts enabled

44



Chapter 3: PwrPlcy

PwrPlcy Example

Our example system, shown in Figure 3-1 consists of an MC68341, ROM, and RAM.
This system comprises the following:

+ SysIF module to interface with the MC68341 microprocessor core and real-time
clock

+  SCFDRVR SCF device driver to interface with the MC68341 serial I/O subsystem

+ SPFDRVR SPF device driver to interface with the MC68341 SPI communications
subsystem

« RAMDISK NRF device driver to provide a RAM disk

Figure 3-1. Example System

MC68341
CPU32 Microprocessor
Serial 1/0O Subsystem

Read Only Memory ) Gndom Access Memory

After determining the hardware configuration and device interface configuration for the
target system, the power policy writer must gather all device power management
characteristics information, Figure 3-2. These device power management characteristics
help determine the possible types of power management policies and are used to
determine PwrMan Power State Table initialization.

45



Power Management Subsystem Specification

Figure 3-2. Example System Characteristics

CPU (microprocessor interface)
0x10: on
0x20: sleep (LPSTOP w/ clocks on)

SCFDRVR (serial controller interface)
0x10: powered up

SPFDRVR (SPI-bus interface)
Oxff: powered up

RAMDISK (RAM-disk interface)

(no power management interface because this is a software driver)

The overall power management strategy chosen for this example is a simple, three-
state policy, Figure 3-3. This policy consists of three power states: on, idle, and suspend
as identified in Table 3-1..

Table 3-1. State/Strategy Example

State Strategy

on All devices are powered up and the CPU (and all associated clock
signals) is running.

idle All devices are powered up but the CPU is in a low-powered stop
(LPSTOP) state with clock signals activated.

suspend All devices are powered down and the CPU is in LPSTOP with clock
signals deactivated.

‘% The RAM-disk driver is not specified anywhere in the power management state diagram; Since
the RAM-disk is a software-only device, it does not need a power management interface in this
system..

46



Chapter 3: PwrPlcy

From the derived power state diagram and device power management characteristics,
a designer can begin to implement the PwrP1cy module. First, PwrP1lcy initializes
pwrMan with a Power State Table which implements the desired power management
policy, Figure 3-3.. This table specifies the order and the power option to pass to
registered devices whenever the corresponding power state is entered.

pwrPlcy then places an idle intercept routine into the system globals to determine
(by the kernel calling this idle routine) when the system is idle (when no active
processes are running). Finally, PwrP1cy calls PwrMan to change to the current
(initial) power state, ON.

Figure 3-3. Example Power State Table

r—— - - - - - - - - - - - - - - - - - - — — — al
| |
| ON “scfdrvr’ “spfdrvr” cpu |
| 0x10 [ Oxff < 0x10 |
| |
L - - |
r——— - - - - - - " - " - - - " - - — — 1
| |
| » |
| IDLE cpu |
0x20
| |
L - - - - |
r——— - - - - - - - - - - - - - - - - - - - -/ —/ al
| |
| “ ” |
“scfdrvr’ “spfdrvr” cpu
| SUSPEND %20 <«»| o000 || 0x30 l
| |

From this point on, the power management policy is being applied to this system. The
kernel calls the idle intercept routine when it detects that no applications are running in
the system. PwrPlcy registers a timed alarm, say one minute, with the OS. If the
alarm goes off and applications were not activated in the interim, a transition to the
SUSPEND state occurs and PwrP1cy calls PwrMan to change the current power state
to IDLE. PwrMan then calls the CPU registered callback routine with “0x20" which
indicates that the CPU should be placed into a SLEEP state. The CPU module must
also set a real-time clock interrupt prior to the next OS timed event (as found in the
d_elapse field in the OS-9 system globals) and disable the ticker interrupt.

Finally, the CPU performs an LpSTOP with system clocks still running. At this point, the
CPU blocks until the next interrupt. When the CPU comes out of the LPSTOB, it checks
the system active process queue to determine if any active processes are pending. If
there are no active processes pending, the CPU simply reenters LPSTOP, updating the
real-time clock interrupt if needed. Otherwise, the CPU returns control back to PwrMan
and then back to PwrPlcy. PwrPlcy calls PwrMan to change the current power
state to ON and then returns control back to the kernel.

47



Power Management Subsystem Specification

pwrplcy.c

48

If the SUSPEND timed alarm goes off while still in the IDLE state, PwrP1cy changes
the current power state to SUSPEND. This causes PwrMan to call SCFDRVR with 0x20
indicating that the SCF driver should power down, then SPFDRVR with 0x00 indicating
that the SPF driver should power down, then CPU with 0x30 indicating that the CPU
should be turned off. The CPU module acts similarly to the IDLE state except that it
performs an LPSTOP with the system clocks turned off. Also similar to the IDLE state,
any activated process causes PwrP1lcy to change the current power state back to ON
and returns control to the kernel.

In contrast to the previous simple example, a more complicated power management
policy may require additional states, transitional states, or even dynamically changing
states depending upon the power management strategy for the target system and the
implementation of the PwrP1cy module. In a very complicated system, the PwrPlcy
implementor must choose between a straightforward, but large, Power State Table
encompassing every possible power state of the target system and a smaller, more
complex, Power State Table dynamically updated by Pwrplcy.

Source code for pwrplcy. c follows.

/************'k'k***'k'k**'k'k***'k'k**'k'k**'k'k'k**'k'k*************************'k
*kkkkkkkkhk*
** Power Manager Policy subroutine module guts

* %
kkkkkkkhkhkhkhkhkhkhhhkhkhkhhhhkkhhhkhhddkhkhkhkhkhkkhkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhkkhhkkkhkk,k**k***x*
*kkkkkkkk*x

** Copyright 1995 by Microware Systems Corporation
* %

** Copyright 2001 by RadiSys Corporation

* %

** Reproduced Under License
* %

* %
* %

**x Thig source code is the proprietary confidential property of
* %

** Microware Systems Corporation, and is provided to licensee
* %

**x golely for documentation and educational purposes. Reproduction,
* %

** publication, or distribution in any form to any party other than
* %

** the licensee is strictly prohibited.
* %

Rk R R Rk kR R R R R e e R R i ko kR R R R R R R R R R R

*khkkkkkkkkx

**x Edition History:
* %



Chapter 3: PwrPlcy

** #  Date Comments By

* %

K o o e e e e e e e e e e e - -
_______ * %

* % 1 06/14/95 creation bat
* %

*% 5 12/21/95 ported to PwrMan (for 68328 board) rmm
* %

*% 6 01/05/96 added in the subroutine module stuff rmm
* %

*% 7 01/10/96 changed subroutine module interface to P2 rmm
* %

*% 8 01/15/96 split into 3 files & modules rmm
* %

*% 9 05/30/96 modified for PwrMan v1.0.Beta structures bat
* %

*% 10 09/11/96 updated cast’s for new sysglob structure bat
* %

*% 11 01/12/97 modified INIT and added DEINIT to pwrplcy ecm
* %

* % 01/17/97 <--=---=---------- PwrMan v2.1 --------------- >

* %

kkkkkkkhkhkhkhkhkhkhhhkhhkhhhhkdhhhkhkhddkhkhkhkhkhkkhkhkkhkkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhhhkhkhkhkkhkk,k**k,**x*

*********/

/*

** Header Files

*/

#define _SYSEDIT
#include <defs.h>

/*

** Constants

*/

/* power state table initialization array */

const

/*

/*

devreg init pwrstates[] = {
SystemPowerStateIDLocalPowerStatePrioirty

ON state */
PWRPLCY STATE ON, “gfx”,MPC821 PWR LCD ON,1},

PWRPLCY_STATE_ON,“cpu",MPC821_PWR_CPU_NRMLHIGH,Oxffffffff},

IDLE state */

49



Power Management Subsystem Specification

50

{ PWRPLCY STATE IDLE, “cpu”,MPC821 PWR CPU NRMLLOW, Oxffffffff},
/* SUSPEND state */

{ PWRPLCY STATE SUSPEND, “gfx”,MPC821 PWR LCD OFF,1},
{ PWRPLCY STATE SUSPEND, “cpu”,MPC821 PWR CPU DOZELOW, Oxffffffff

/* end-of-1list */
{0,0,0,0},
}i

** System-Call Entry Point

** Trying to do the following setup:

*%* fpb = parameter block containing subcode and version number
*% ldptr = Pwrman'’s global structure
*/

error code PwrPlcy entry(F pwrman pb pb, Pwrman globals ldptr)

{

error_code err;

Localdata plcyptr = ldptr->pwrplcy mem;
switch (pb->subcode) {

/* Initialize the power state table, set up system globals,

and
** go through power states
*/
case PWRPLCY INIT:
status_reg oldirg;
Devreg init pwrstates ptr;
/* get & initialize power policy globals */
u_int32 size = sizeof (localdata) ;
u_int32 color = 0;
/* allocate some memory for power policy use */
if ((err=_os_srgmem(&size, (void**) &plcyptr,color)) !=
SUCCESS) {

return (err) ;

/* initialize the newly acquired memory */



Chapter 3: PwrPlcy

ldptr->pwrplcy mem = plcyptr;

/* load up the power state table */
{
int 1i;
for (i=0; (pwrstates[i].id[0] != 0); i++)
if ((err = pwr_ add(ldptr,
(char*)pwrstates[i] . 1id,
pwrstates[i] .syslevel,
pwrstates[i] .priority,
pwrstates[i] .devlevel,
NULL)) != SUCCESS) ({

return (err) ;

}

/* change to our initial power state */
if ((err = pwr change (ldptr, START STATE)) != SUCCESS) {
return (err) ;

/* setup ourselves to be the kernel’s idle function */
oldirg = irqg save(); irg disable() ;
{
/* save old, and set d _switches to 0 so we can see if
**x it increments indicating there’s active processes
** in the system
*/
plcyptr->o0ld d switches = ldptr->sglobptr->d switches;
ldptr->sglobptr->d switches = 0;

/* get the current tick count to see if we can go idle */
plcyptr->d ticks = ldptr->sglobptr->d ticks;

/* save old, replace kernel’s idle function parameters
with our own */

plcyptr->o0ld d idledata = ldptr->sglobptr->d idledata;

ldptr->sglobptr->d idledata = ldptr;

/* save o0ld, and replace kernel’s idle function with our
own */

plcyptr->o0ld d idle = ldptr->sglobptr->d idle;

ldptr->sglobptr->d_idle = idle;

51



Power Management Subsystem Specification

irg_restore (oldirq) ;
return (SUCCESS) ;
} /* PWRPLCY INIT */

case PWRPLCY DEINIT:
status_reg oldirg;
Devreg init pwrstates ptr;

u_int32 size;

/* do our best to remove the pwrplcy-loaded state table */
{
int i;
for (i=0; (pwrstates[i].id[0] != 0); i++) {
if ((err = pwr remove (ldptr,
(char*)pwrstates[i] .id,
pwrstates[i] .syslevel,
pwrstates[i] .priority,
pwrstates[i] .devlevel,
NULL)) != SUCCESS) ({
/* throw away errors */
return (SUCCESS) ;

}

/* change to the startup power state */
if ((err = pwr change(ldptr, 0x00)) != SUCCESS) {

return (err) ;

/* put the kernel’s idle function back */
oldirg = irqg_save(); irg disable() ;

{

/* put d_switches back */
ldptr->sglobptr->d switches = plcyptr->o0ld d switches;

/* put kernels idle function parameters back */
ldptr->sglobptr->d idledata = plcyptr->o0ld d idledata;

/* put kernel’s idle function back */
ldptr->sglobptr->d _idle = plcyptr->old d idle;

52



Chapter 3: PwrPlcy

}

irqg restore (oldirq) ;

/* get size of memory */
size = sizeof (localdata) ;

/* deinitialize the pwrplcy memory */
ldptr->pwrplcy mem = NULL;

/* deallocate memory from power policy use */
if ((err= os srtmem(size, (void*)plcyptr)) != SUCCESS) {

return (err) ;

}

return (SUCCESS) ;
} /* PWRPLCY DEINIT */

/* go to the ON state */
case PWRPLCY STATE_ON:

{

/* change to ON state */
return (pwr_change (1dptr, PNRPLCY STATE ON)) ;

} /* PWRPLCY STATE ON */

/* go to the IDLE state */
case PWRPLCY STATE IDLE:

{

/* change to IDLE state */
return (pwr_change (1ldptr, PWRPLCY STATE IDLE)) ;

} /* PWRPLCY STATE IDLE */

/* go to the SUSPEND state */
case PWRPLCY STATE SUSPEND:

{

/* change to SUSPEND state */
return (pwr_ change (1dptr, PNRPLCY STATE SUSPEND) ) ;

} /* PWRPLCY STATE SUSPEND */

} /* switch */

53



Power Management Subsystem Specification

/* if the call is not “switched” out, return unknown service code
*/
return (EOS_UNKSVC) ;

} /* PwrPlcy entry */

/* Own idle routine that will replace the kernel’s idle routine.
Assume that

** the kernel has masked interrupts.
*/
void idle (void)
{
Sysglobs sglobptr;
Pwrman _globals ldptr;
Localdata plcyptr;

/* get global pointers */

sglobptr = get static();

ldptr = (void*) (sglobptr->d_idledata) ;
plcyptr = ldptr->pwrplcy mem;

/* check if the correct amount of time has gone by before going
idle */
if (sglobptr->d ticks >= (plcyptr->d ticks+IDLE DELAY)) {

/* if d_switches is 0, we’'re going idle */
if ((sglobptr->d _switches) == 0) {

/* change to SUSPEND state

** This change will place the CPU in a “freeze” mode; An
** interrupt or real-time clock alarm will wake it up

** gnd finally return from this call; Thus, we need to
** change back to ON after this call returns.

*/

(void) pwr_change (1dptr, PWRPLCY STATE SUSPEND) ;

(void) pwr_change (1dptr, PWRPLCY STATE ON) ;

/* set d_switches to 0 so we can see if it increments
** indicating there’s active processes in the system
*/

ldptr->sglobptr->d switches = 0;

/* get the current tick count to see if we can go idle */

54



Chapter 3: PwrPlcy

plcyptr->d ticks

= ldptr->sglobptr->d ticks;

/* re-enable interrupts before leaving back to kernel */

irg_enable() ;

return;

/*

** Local “ os pwr_add()” binding w/ direct access to PwrMan

** (eg, no system call)

*/

error _code pwr_add(Pwrman globals ldptr, char id[PWR_IDLEN],
pwr_level syslevel, u_ int32 priority, pwr_ level devlevel, void*

devpb)

{

f pwrman add pb pb;

/* set-up parameter block */

pb.pwrcom. subcode =

pb.pwrcom.edition =

pb.id = id;
pb.syslevel
pb.priority
pb.devlevel
pb.devpb =

PWRMAN STATEADD;
PWR_PB EDITION;

syslevel;

priority;

devlevel;

devpb;

/* call PwrMan directly to perform “system call” */
return ( (*1dptr->pwrman_func) ( (F_pwrman pb) (&pb) ,1ldptr)) ;

/-k

** TLocal “ os pwr remove ()” binding w/ direct access to PwrMan

** (eg, no system call)

*/

error code pwr_remove (Pwrman globals ldptr, char id[PWR_IDLEN],
pwr_level syslevel, u_int32 priority, pwr_ level devlevel, void*

devpb)

{

f pwrman remove pb pb;

/* set-up parameter block */

pb.pwrcom. subcode
pb.pwrcom.edition

pb.id = id;

PWRMAN STATEREMOVE ;
PWR_PB EDITION;

55



Power Management Subsystem Specification

56

/*
* %

* %

*/

pb.syslevel = syslevel;
pb.priority = priority;
pb.devlevel = devlevel;
pb.devpb = devpb;

/* call PwrMan directly to perform “system call” */
return( (*ldptr->pwrman_ func) ( (F_pwrman pb) (&pb) , ldptr)) ;

Local “_os_pwr change()” binding w/ direct access to PwrMan

(eg, no system call)

error code pwr_change (Pwrman globals ldptr, pwr level syslev)

{

f pwrman change pb pb;

/* set-up parameter block */
pb.pwrcom. subcode PWRMAN CHANGE;
pb.pwrcom.edition = PWR_PB EDITION;
pb.syslevel = syslev;

/* call PwrMan directly to perform “system call” */
return( (*ldptr->pwrman_ func) ( (F_pwrman pb) (&pb) , ldptr)) ;



PwrExt

PwrExt IS a system-state subroutine that may override PwrMan. During initialization,
PwrMan looks for both PwrExt and PwrPlcy. If either or both are in memory during
initialization, PwrMan links to PwrExt first and PwrP1cy second.

w For more information, see Chapter 2 PwrMan.

PWREXT INIT and PWRPLCY INIT run at initialization. These should contain an
initialization code to run. If an initialization code is not necessary, return (SUCCESS).

Furthermore, if PwrExt is found in the system upon initializing PwrMan,

pwrext func inthe pwrman globals structure is initialized to the address of the
PwrExt entry point. If a PwrExt module is not in the system upon initializing
PwrMan, pwrext func is null. When an F$PwrMan call occurs, the function held in
pwrman_globals pwrman_ func is called. Thus, if PwrExt is in the system and its
entry point is in pwrman_func, any PwrMan call can be replaced by a PwrExt call.

Figure 4-1 and Figure 4-2 illustrate flow diagrams with and without PwrExt in the
system, respectively.

In the PwrExt initialization routine (PWREXT INIT), the following occurs:

« The PwrMan entry point (pwrman_entry) is saved in PwrExt static storage
(pwrext mem) and is replaced by pwrext entry.

To customize the os pwr change () system call, the PWRMAN CHANGE subcode
in PwrExt is used to override the PwrMan PWRMAN CHANGE subcode. PwrExt
should save the PwrMan entry point and call it as a default case for calls that are not
replaced within PwrExt.

error code Pwrext entry(F pwrman pb pb) {
switch (pb->subcode) {
case PWREXT INIT:
SavePwrmanEntry (pb) ;
ReplacePwrmanEntry (pb) ;

}

case PWRMAN_ CHANGE:

{

MyCustomPwrChange (pb) ;

}

default:

{

CallPwrmanEntry (pb) ;

57



n Power Management Subsystem Specification

Figure 4-1. Flow Diagram with PwrExt

PwrPlcy
* subrtn module
System
Globals
Kernel - Pwrman Entry(pbl
pwrman_globals — ‘
data struct PwrMan I |

phead PwrExt

dthead Globals

currlevel

pwrext_gunc Purext Entry (p Pwrman Entry

F DPWRMAN pwrman func
— = PwrExt
subrtn module
Figure 4-2. Flow Diagram Without PwrExt
System PwrPlcy
e E—
Globals subrtn module
/ i pwrman_globals
Kernel data struct
phead
dthead
currlevel
pwrext_fung Pwrman_ Entry (pb)
pwrman_ fung —
F PWRMAN PwrMan

pwrext.c

/*******************************************************************

*khkkkkkkkkx

** Power Manager Extensions entry points
* %

Rk R Rk Sk kR R R R R e R R I kR R R R Rk R R R AR S

*khkkkkkkkkx

** Copyright 1995 by Microware Systems Corporation
* %

** Copyright 2001 by RadiSys Corporation
* %

** Reproduced Under License
* %

58



Chapter 4: PwrExt n

* %

* %

**x Thig source code is the proprietary confidential property of
* %

** Microware Systems Corporation, and is provided to licensee
* %

** gsolely for documentation and educational purposes. Reproduction,
* %

** publication, or distribution in any form to any party other than
* *

** the licensee is strictly prohibited.
* %

Rk R Rk Sk kR R R R R e R R o ko R R R R R Rk R R R R

*khkkkkkkkkx

**x Edition History:

* %

** #  Date Comments By

* %

K o e e e e e e e e e e e e - - - —
_______ * %

** 1 06/14/95 creation bat
* %

*% 5 12/21/95 ported to PwrMan (for 68328 board) rmm
* %

** 6 01/05/96 added in the subroutine module stuff rmm
* %

*% 7 01/10/96 changed subroutine module interface to P2 rmm
* %

*% 8 01/15/96 split into 3 files & modules rmm
* %

*% 9 05/31/96 updated for PwrMan v1.0.Beta structures bat
* %

*% 10 09/11/96 updated cast’s for new sysglob structure bat
* %

*% 11 01/12/97 added DEINIT routine for pwrman detach ecm
* %

* % 01/17/97 <--=--=-=--------- PwrMan v2.1 --------------- >

* %

Rk R Rk Sk kR R R R R R e I R IRk o kS R R R R Rk R R R AR

*********/

/*
** Header Files

*/

#define SYSEDIT
#include <defs.h>

59



n Power Management Subsystem Specification

/* Trying to do the following setup:

* %

fpb

* %

*/

/*

* %

*/

ldptr =

= parameter block containing subcode and version number
Pwrman’s global structure

System-Call Entry Point

error code PwrExt entry(F _pwrman pb pb, Pwrman globals ldptr)

{

error code err;

Localdata extptr =

ldptr->pwrext mem;

switch (pb->subcode) {

/* Initialize pwrext module - srgmem() some memory for globals

** to be stored in.

** be

*/

Store Pwrman’s entry point in this area to
called as a default case.

case PWREXT INIT:

{

u_int32 size =

u_int32 color =

/-k
variables,

* %

*/

/*
* %
* %
*/
if
SUCCESS) {

/-k
* %

* %

*/

extptr->pwrman_ func =
ldptr->pwrext _mem =
ldptr->pwrman_func =

60

sizeof (localdata) ;
0;

if we need more than 4 bytes for local “global”

then we’ll need to srgmem some memory for PwrExt use

assume that the current value in entrycb is PwrMan’s

entry point. srgmem() some memory and grab it to use

as a default case for any calls not customized by PwrExt

((err=_os_srgmem(&size, (void**) &extptr, color)) !=

return (err) ;

initialize the newly acquired memory & install ourselves
as the default PwrMan entry point, saving the previous

default in our globals

ldptr->pwrman_func;
extptr;
PwrExt_entry;



Chapter 4: PwrExt n

return (SUCCESS) ;

} /* PWREXT INIT */

case PWREXT DEINIT:

u_int32 size = sizeof (localdata) ;

/* reinstall the saved pointer as the default PwrMan */
/* entry point, and null the pwrext mem pointer out */

ldptr->pwrman_func = extptr-spwrman_ func;
ldptr->pwrext mem = NULL;

/* return memory to system */

if ((err=_os srtmem(size, (void*)extptr)) != SUCCESS) ({
return (err) ;

return (SUCCESS) ;

} /* PWREXT DEINIT */

#if 0

/* This is where the customized change function will go. I'm
just

** passing back a bogus error to make sure I hit the function.

*/

case PWRMAN CHANGE:

{

return (999) ;

} /* PWRMAN CHANGE */

#endif

} /* switch */

/* if the call is not “switched” out, call PwrMan’s entry point,

*/

61



Power Management Subsystem Specification

/* and have him deal with it */
return( (*extptr->pwrman func) (pb, ldptr));

} /* PwrExt entry */

62



SyslF

SysIF is provided as generic source code by processor family. SysIF can be
customized by OEM's as it is a system-specific interface for the microprocessor and
other hardware components without device driver interfaces.

SysIF implements power management functions and provides feedback to
pwrPlcy about a device's tactical power management issues (e.g, it can't shut down
right now) in the absence of a power aware device driver. SysIF enables PwrPlcy to
reference the power levels of the CPU (such as normal operation, throttled, and deep-
sleep) just as it references other device-driver components (such as a serial driver or
ethernet driver).

During SysIF initialization, SysIF registers a power callback routine with PwrMan
which PwrP1cy may then reference in its Power State Table initialization. SysIF does
not install any system calls by default. However, a user-defined system call may be
used if system components other than PwrMan or PwrP1lcy require access to data in
SysTF.

For larger power managed systems, several SysIF types may be needed. For example,
the system could have a cPU P2 module that controls all the CPU-specific operations
and another SysIF module that controls a smart battery.

Custom header files may be defined. Examples reside in
MWOS/SRC/SYSMODS/SYSIF/<boards.

CPU and real time clock functions of a sample SysIF, based on an MPC821, follows.

63



Power Management Subsystem Specification

Cpu.c

64

/********'k'k**'k'k***'k'k**'k'k***'k'k**'k'k**'k'k'k**'k'k**************************

*khkkkkkkkkx

** ADS821 System Module
* %

kkkkkkkhkhkhkhkhkhkhhhkhhkhhhhkdhhkhkhhddkhkhkhkhkhkkhkkkhkkhkkhkkhkdkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkkkhkk,k**k,**x*

*kkkkkkkk*x

** Copyright 1995-1997 by Microware Systems Corporation
* %

**x Copyright 2001 by RadiSys Corporation

* %

** Reproduced Under License
* %

* %

* %

** This source code is the proprietary confidential property of
* %

** Microware Systems Corporation, and is provided to licensee
* %

** golely for documentation and educational purposes. Reproduction,
* %

** publication, or distribution in any form to any party other than
* %

** the licensee is strictly prohibited.
* %

Rk R Rk kR R R R R e e R Ik kS R R R R R Rk R R R R

*khkkkkkkkkx

** Edition History:

* %

** #  Date Comments By

* %

Kk e D e e e e — - - -
_______ * *

*% 1 02/01/96 Creation jgm
* %

*% 2 04/02/96 Ported to use with the ADS821 PPC board jgm
* %

** 3 06/04/96 Cleaned up to ship out with the Beta release jgm
* %

*% 4 01/16/97 Modified to work with MPC821 Rev A chip ecm
* %

*%  01/17/97 <--mmmmmmmmm - PwrMan v2.1 -—-------------- >

* %

Rk R Rk kR R R R R e e R R i kS R Rk R R R Rk R R R R AR

*********/

/*



Chapter 5: SysIF

** Header Files

*/
#include <defs.h>

/*
** Definitions

*/

#define CSRCBIT (1<<10) /* it is actually bit 21, but going in
reverse logic */

/* it is the CSRC bit in the PLPCRC register */

/-k
**x Tnitialize the CPU
*/
error code cpu_init (Localdata ldptr)

char device [PWR_IDLEN] = “cpu”; /* name of the device to
register */

error codeerr; /* error code temp variable */

Pwr devconddevpwrdef=NULL; /* Device Energy Condition Definition,
NULL for this Example */

/* initialize the hardware */
/* ldptr-s>regs = REGBASE; /* Set the actual port address */

/* Tell PwrMan to call us on power-down */

err = os_pwr reg(device,dr pwrman, ldptr,devpwrdef) ;
if (err == SUCCESS) {

/* PwrMan in system and successful -- continue */
}
else if (err == EOS UNKSVC) ({

/* no PwrMan in system -- continue */
} else {

/* PwrMan in system and unsuccessful -- return */

return (err) ;

}

return (SUCCESS) ;

/-k
** De-Initialize the CPU
*/

error code cpu_term(Localdata ldptr)

65



Power Management Subsystem Specification

66

char device [PWR_IDLEN] = “cpu”; /* name of the device to
register */

Pwr_ devconddevpwrdef=NULL; /* Device Energy Condition Definition,
NULL for this Example */

/* Tell PwrMan to forget our previous registration */
(void) os pwr unreg(device,dr pwrman, ldptr,devpwrdef) ;
return (SUCCESS) ;

/*
** Function to switch the CPU to the ON state (Normal High)
*/
error code cpu_nrmlhigh(Localdata ldptr)
{
status_reg oldirg;
u_intl6 state = MPC821 PWR CPU NRMLHIGH; /* normal high mode */

oldirg = irqg maskget(); /* mask irgs */
{
ldptr->regs->irg regs.simask &= ~SIMASK RTC; /* disable the
RTC interrupt */
LOW (ldptr->regs->pll regs.plprcr,CSRCBIT); /* clear the CSRC
bit */
}

irq restore(oldirqg);/* unmask irgs */

return (SUCCESS); /* Return a success */

/*
** Function to switch the CPU to the ON(LOW) state(Normal Low)
*/
error code cpu nrmllow(Localdata ldptr)
status_reg oldirg;
u_intlé state = MPC821 PWR CPU NRMLLOW; /* normal low mode */

oldirg = irqg maskget(); /* mask irgs */
{
ldptr->regs->irg regs.simask |= SIMASK RTC; /* unmask the RTC
bit to enable the RTC interrupt */
ldptr->regs->pll regs.sccr |= (DFNLSET | POW_ENABLE); /* Set



Chapter 5: SysIF

to divide by 4 */

/* call common function */ /* and set the PRQEN bit to
switch to */

(void) common (ldptr, state); /* the high frequency(as defined
by the */

/* DFNH bits) after an interrupt */

}

irg restore(oldirq); /* unmask irgs */

LOW (ldptr->regs->pll regs.plprcr,CSRCBIT); /* clear the CSRC bit,
go back to DFNH */

ldptr-s>regs->pll regs.sccr &= ~DFNLSET; /* Return to the default
*/

ldptr->regs->irg _regs.simask &= ~SIMASK RTC; /* disable the RTC
interrupt */

return (SUCCESS); /* Return a success */

/-k
** Function to switch the CPU to the DOZE HIGH state
*/
error code cpu_dozehigh(Localdata ldptr)
{
status_regoldirg;
u_intléstate = MPC821 PWR_CPU DOZEHIGH; /* doze high mode */

oldirg = irqg maskget () ; /* mask irgs */
{
ldptr->regs->irg regs.simask |= SIMASK RTC; /* unmask the RTC
bit to enable the RTC interrupt */
ldptr->regs->pll regs.sccr |= (DFNHSET | POW _ENABLE); /* Set
to divide by 2 */
/* call common function */ /* and
set the PRQEN bit to switch to */
(void) common (1dptr, state); /* the high frequency(as defined
by the */

/* DFNH bits) after an interrupt */

}

irqg restore(oldirqg); /* unmask irgs */

ldptr->regs->pll regs.sccr &= ~DFNHSET; /* Return to the default
*/

ldptr->regs->irg _regs.simask &= ~SIMASK RTC; /* disable the RTC
interrupt */

67



Power Management Subsystem Specification

68

return (SUCCESS); /* Return a success */

/-k
** Function to switch the CPU to the DOZE LOW state
*/
error code cpu_dozelow(Localdata ldptr)
status_reg oldirgqg;
u_intl6 state = MPC821 PWR CPU DOZELOW; /* doze low mode */

oldirg = irg maskget () ; /* mask irgs */
{
ldptr->regs->irqg regs.simask |= SIMASK RTC; /* unmask the RTC
bit to enable the RTC interrupt */
ldptr->regs->pll regs.sccr |= (DFNLSET | POW_ENABLE); /* Set

to divide by 4 */
/* call common function */ /* and set the PRQEN bit to switch
to */
(void) common (ldptr, state); /* the high frequency(as defined
by the */
/* DFNH bits) after an interrupt */

}

irqg restore(oldirqg); /* unmask irgs */

LOW (ldptr->regs->pll regs.plprcr,CSRCBIT); /* clear the CSRC bit,
go back to DFNH */

ldptr->regs->pll regs.sccr &= ~DFNLSET; /* Return to the default
*/

ldptr->regs->irg _regs.simask &= ~SIMASK RTC; /* disable the RTC
interrupt */

return (SUCCESS); /* Return a success */

Only use the sleep mode if you have SRAM or you can refresh DRAM when
you

power down because sleep, deep sleep, and power down modes shut off
the memory

controller, which means you will lose what you have in memory if you
don't

refresh it somehow. These next three functions are optional only if
you have

a way to keep memory alive and go to one of these states.



Chapter 5: SysIF

*/

/*
** Function to switch the CPU to the SLEEP state
** This is only here if you have some method of preserving memory!
*/
error _code cpu_sleep(Localdata ldptr)
#if 0
{
status_regoldirg;
u_intléstate = MPC821 PWR CPU SLEEP; /* sleep mode */

oldirg = irg maskget ();/* mask irgs */

{

ldptr->regs->irg regs.simask |= SIMASK RTC; /* unmask the RTC
bit to enable the RTC interrupt */

/* Add your code here! */

/* call common routine */
(void) common (1dptr, state) ;

}

irqg restore(oldirqg); /* unmask irgs */

ldptr->regs->irg _regs.simask &= ~SIMASK RTC; /* disable the RTC
interrupt */

return (SUCCESS) ;

}

#else

{

return (EOS_UNKSVC) ;

}

#endif

/*
** Function to switch the CPU to the DEEP SLEEP state
** This is only here if you have some method of preserving memory!
*/
error code cpu_deep sleep(Localdata ldptr)
#if 0
{
status_reg oldirg;
u_intl6 state = MPC821 PWR_CPU DEEP SLEEP; /* deep sleep mode */

69



Power Management Subsystem Specification

70

oldirg = irq maskget(); /* mask irgs */

{

ldptr->regs->irq regs.simask |= SIMASK RTC; /* unmask the RTC
bit to enable the RTC interrupt */

/* Add your code here! */

/* call common routine */

(void) common (1dptr, state) ;

}

irqg restore(oldirqg); /* unmask irgs */

ldptr->regs->irg _regs.simask &= ~SIMASK RTC; /* disable the RTC
interrupt */

return (SUCCESS) ;

}

#else

{

return (EOS_UNKSVC) ;

}

#endif

/*
** Function to switch the CPU to the POWER DOWN state
** This is only here if you have some method of preserving memory!
*/
error code cpu_pwrdwn (Localdata ldptr)
#if ©
{
status_reg oldirg;
u_intl6 state = MPC821 PWR_CPU PWRDWN; /* power down mode */

oldirg = irqg maskget(); /* mask irgs */

{

ldptr->regs->irq regs.simask |= SIMASK RTC; /* unmask the RTC
bit to enable the RTC interrupt */

/* Add your code here! */

/* call common routine */
(void) common (1dptr, state) ;

}

irqg restore(oldirqg); /* unmask irgs */



Chapter 5: SysIF

ldptr->regs->irg _regs.simask &= ~SIMASK RTC; /* disable the RTC
interrupt */

return (SUCCESS) ;

}

#else

{

return (EOS_UNKSVC) ;

}

#endif

/*

** Entry point for the call back function

*/

error code dr pwrman(void *1ldptr, pwr level pwrlvl, void *devpb)

{

switch (pwrlvl){ /* switch to the level requested */

/* cpu to normal high state */
case MPC821 PWR CPU NRMLHIGH:

{

return (cpu nrmlhigh((Localdata) ldptr)) ;

/* cpu to normal low state */
case MPC821 PWR CPU NRMLLOW:

{

return (cpu nrmllow( (Localdata)ldptr)) ;

/* cpu to doze high state */
case MPC821 PWR CPU DOZEHIGH:

{

return (cpu_dozehigh( (Localdata) ldptr)) ;

/* cpu to doze low state */
case MPC821 PWR CPU DOZELOW:

{

return (cpu_dozelow ( (Localdata)ldptr)) ;

/* cpu to sleep state */
case MPC821 PWR CPU SLEEP:

71



Power Management Subsystem Specification

return (cpu_sleep((Localdata)ldptr)) ;

/* cpu to deep sleep state */
case MPC821 PWR CPU DEEP SLEEP:

{

return (cpu_deep_ sleep((Localdata)ldptr)) ;

/* cpu to power down state */
case MPC821 PWR_CPU PWRDWN:

{

return (cpu_pwrdwn ( (Localdata) 1dptr) ) ;

/* cpu driver to terminate */
case MPC821 PWR_CPU TERM:

{

return (cpu_term((Localdata) ldptr)) ;

}

return (EOS_UNKSVC) ;

/*
** CPU-Management common routine

* %

** ASSUME: interrupts are masked up to maximum level before calling
common () !

*/
void common (Localdata ldptr, u intlé state)
{
u_int32 sec = ldptr->sysglob->d elapse / ldptr->sysglob-
>d_tcksec; /* compute the # */
u_int32 active;/* of seconds to sleep for. d elapase */
u_int32 statereg;/* is the shortest timed sleep in the */
status_reg svirqg;/* sleep queue & is stored as ticks */

/* check for minimum sleep period */
if ((ldptr->sysglob->d elapse == 0) || (sec > MINSLEEP)) ({

/* set real-time clock alarm interrupt for any timed sleeps */
if (ldptr-s>sysglob->d elapse > 0) {

72



Chapter 5: SysIF

/* compute real-time clock wake-up time */
sec -= (MINSLEEP-1);

(void) currentime (1dptr); /* get the current time from the
hardware */

/* Sleep for a maximum of one day */
if (sec >= MAXSEC) {
sec = ((MAXSEC-1) + ldptr->sec);

/* start real-time clock alarm interrupt */
if (rtc_alarm set (1ldptr,sec) != SUCCESS) ({
/* can’'t start alarm interrupt */
return;
}
} else {

sec += ldptr-s>sec;

/* start real-time clock alarm interrupt */
if (rtc_alarm set (1ldptr,sec) != SUCCESS) ({
/* can’t start alarm interrupt */

return;

/* turn off ticker (TB and DEC) and PIT module if it is running
*/

ldptr->regs->tbr regs.tbscr &= ~TBR_ENABLE; /* this will be
running because this is our ticker module */

ldptr->regs->pit regs.piscr &= ~PIT ENABLE; /* need to only
shut off if it is running, OPTIONAL */

/* only power down for a maximum of 24 hours */
if (ldptr-s>sysglob->d elapse == 0) {

/* Get the current time and save it in static storage */
(void) currentime (1ldptr) ;

/* power down for a Maximum of 24 hours */

sec = ((MAXSEC-1) + ldptr->sec);

/* wake up after 24 hours */

if (rtc alarm set (ldptr,sec) != SUCCESS) {
/* can’t start alarm interrupt */

return;

73



Power Management Subsystem Specification

74

/* call the check routine to see if there are any active
processes */

if ((active = check(ldptr)) == 0){

/* Check to see if the status bits are set or not and
clear them if they are */

if (((ldptr->regs->pll regs.plprcr & PLL TEXPS) != 0) &&
((ldptr->regs->pll regs.plprcr & PLL TMIST) != 0)) {
ldptr->regs->pll regs.plprcr |= (PLL TEXPS |

PLL TMIST);

/* save the mask level and then enable interrupts */
svirg = irqg save(); irg enable() ;

{

/* When using the DFNL, there are several issues which need
addressed. One is

when you divide by 2 through divide by 32, the cpu acts as normal.
When you go

to one of the LOW modes, the serial port (keyboard) interrupt will
wake you up. When

you divide by 64, you cannot wakeup from the serial port
interrupt (can only assume some

hardware problem). When you use the divide by 256, it will not wake
up from a serial

port interrupt and it will also give a 244 error, which means a read
error from the

serial port. So there seems to be a problem with trying to use the
64 or 256 values.

Example, use only 2,4,8,16&32.
*/

if (state == MPC821 PWR CPU NRMLLOW) {

HIGH (ldptr->regs->pll regs.plprcr,CSRCBIT); /* set
the CSRC bit */

}

if (state == MPC821 PWR CPU DOZEHIGH) {

ldptr->regs->pll regs.plprcr |= PLL HIDOZE; /* go to
a high doze mode */

}

if (state == MPC821 PWR CPU DOZELOW) {

ldptr->regs->pll regs.plprcr |= (PLL_LODOZE |
PLL CSRC); /* go to a low doze mode */

}



Chapter 5: SysIF

/**x*x%x% OPTIONAL for the sleep, deep sleep, power down modes
********/

if (state == MPC821 PWR_CPU SLEEP) {

ldptr->regs->pll regs.plprcr |= PLL SLEEP; /* go to a
sleep mode */

}

if (state == MPC821 PWR_CPU DEEP SLEEP) {

ldptr->regs-»>pll regs.plprcr |= PLL DEEP SLEEP; /* go
to a deep sleep mode */

}

if (state == MPC821 PWR_CPU PWRDWN) {

ldptr->regs->pll regs.plprcr |= PLL PWRDWN; /* Power
down */

}

/*x%x%x%x% OPTIONAL for the sleep, deep sleep, power down modes
********/

}

irqg restore(svirqg); /* restore mask */
}
} else {
/* call the check routine to see if there are any active
processes */
if ((active = check(ldptr)) == 0){

/* Check to see if the status bits are set or not and
clear them if they are */

if (((ldptr->regs->pll regs.plprcr & PLL TEXPS) != 0) &&
((ldptr->regs->pll regs.plprcr & PLL TMIST) != 0)) {
ldptr->regs->pll regs.plprcr |= (PLL_TEXPS |

PLL_TMIST) ;

/* save the mask level and then enable interrupts */
svirg = irqg save(); irg enable() ;

{

/* When using the DFNL, there are several issues which need
addressed. One is

when you divide by 2 through divide by 32, the cpu acts as normal.
When you go

to one of the LOW modes, the serial port (keyboard) interrupt will
wake you up. When

you divide by 64, you cannot wakeup from the serial port
interrupt (can only assume some

hardware problem). When you use the divide by 256, it will not wake
up from a serial

75



Power Management Subsystem Specification

76

port interrupt and it will also give a 244 error, which means a read
error from the

serial port. So there seems to be a problem with trying to use the
64 or 256 values.

Example, use only 2,4,8,16&32.
*/

if (state == MPC821 PWR CPU NRMLLOW) ({

HIGH (ldptr->regs->pll regs.plprcr,CSRCBIT); /* set
the CSRC bit */

}

if (state == MPC821 PWR CPU DOZEHIGH) {

ldptr->regs->pll regs.plprcr |= PLL HIDOZE; /* go to
high doze mode */

}

if (state == MPC821 PWR_CPU DOZELOW) {

ldptr->regs->pll regs.plprcr |= (PLL_LODOZE |
PLL CSRC); /* go to low doze mode */

}

/*x*x%x%x%* OPTIONAL for the sleep, deep sleep, power down modes
********/

if (state == MPC821 PWR_CPU SLEEP) {

ldptr->regs->pll regs.plprcr |= PLL SLEEP; /* go to
sleep mode */

}

if (state == MPC821 PWR_CPU DEEP SLEEP) {

ldptr->regs->pll regs.plprcr |= PLL DEEP SLEEP; /* go
to deep sleep mode */

}

if (state == MPC821 PWR_CPU PWRDWN) {

ldptr->regs->pll regs.plprcr |= PLL PWRDWN; /* go to
power down mode */

}

/*x*x%x%x% OPTIONAL for the sleep, deep sleep, power down modes
********/

}

irqg restore(svirqg); /* restore mask */

/* turn off real-time clock alarm interrupt */
(void) rtc_alarm stop (ldptr) ;

/* calculate the time we were not at full power */
(void) downtime (1dptr) ;



Chapter 5: SysIF

/* turn on ticker and PIT(if needed) */

ldptr->regs->tbr regs.tbscr |= TBR ENABLE; /* Turn on
ticker (DEC) */
ldptr->regs->pit regs.piscr |= PIT ENABLE; /* OPTIONAL,

depending on if you use it or not */

}

return;

/* This section sets up the current time. It also calculates the
time we */
/* were down!!!!!l */
void downtime (Localdata ldptr)
{
/* update system globals */
u_int32 sc;
u_int32 ticks;

/* This next section is to calculate the time we were not at full
power */

/* and to generate the updated time (current time). We get the
secs */

/* from the RTC hardware. This will give me the current time.
*/

/* We then take the time we kept in the globals, which is the time
we */

/* stored before we went to a lower power state, and calculate the
time */

/* we were not at full power and update it to the current time.*/

/* get current time */
sc = ldptr->regs->rtc_regs.rtc; /* get the seconds value */

/* compute # of ticks we were asleep */
ticks = (sc - ldptr-s>sec);

ticks *= ldptr->sysglob->d_ tcksec;

/* update system global fields */
ldptr->sysglob->d ticks += ticks;

ldptr->sysglob->d slice = 0;

/* force 0OS sleep/alarm recomputation */
ldptr->sysglob->d _elapse = 1;

/* reset clock from real-time clock */

77



Power Management Subsystem Specification

rtclock.c

78

(void) os setime(sc) ;

return;

/* This function just stores the time before we power down to a state
other than */

/* full power!!!illlll %/

void currentime (Localdata ldptr)
/* get current time and save the time in static storage */
ldptr->sec = ldptr->regs->rtc_regs.rtc;

return;

/* check to see if there are any active processes pending */
u_int32 check(Localdata ldptr)
{
Sysglobs sysglob = ldptr->sysglob;
pr desc* aproc = FAKEHD (pr desc*,sysglob->d _activg[0],p queuen) ;
status_reg oldirg;

oldirg = irg maskget () ; /* mask irgs */

{

/* check for empty active process queue (head pointing to
itself) */
if (aproc->p queuen == aproc) {
irg_restore (oldirq) ;
return(0); /* Go ahead and power down because there are no
active process */

irg restore(oldirq) ; /* unmask irgs */
return(l); /* Can’'t power down because there is an active process
*/

/'k**'k'k'k**'k'k**'k'k************'k'k**'k'k**'k'k'k**'k'k**'k'k'k*********************
*khkkkkkkkkx

** ADS821 System Module
* %



Chapter 5: SysIF

kkkkkkkhkhkhkhkhkhkhhhhhhhhhkdhhkhkhhddkhhkhkhkhkkhkhkkhkkhkkhkkhkhkhkkhkhkhkkhkhkhkhkhhhhhkkhkkkk,k**k,**x*

*kkkkkkkk*x

** Copyright 1995-1997 by Microware Systems Corporation
* %

** Copyright 2001 by RadiSys Corporation
* %

** Reproduced Under License
* %

* %

* %

** This source code is the proprietary confidential property of
* %

**x Microware Systems Corporation, and is provided to licensee
* %

**x golely for documentation and educational purposes. Reproduction,
* %

** publication, or distribution in any form to any party other than
* %

** the licensee is strictly prohibited.
* %

khhkhkhkdhdhhkhkhkhhhdhhhhhdhhdhhdhdhhddhdddhdhdddddddddddhhdhdddhdhdhhhhdhdhdhdhhddddddhrdx

*khkkkkkkkkx

** Edition History:
* %

** # Date Comments By
* %

*% 1 03/25/96 Creation jgm**
*% 2 04/10/96 Added 0S9000 support for the ADS821 PPC board jgm

* %

** 3 06/04/96 Cleaned up to ship out with the Beta release jgm
* %
*% 4 01/16/97 Modified to work with MPC821 Rev A chip ecm
* %

khhkhkhkdhdhhkhkhhhhdhhdhhhdhhdhhdhdhhddhdddhdhddddhdhddddhhdhdhddhdhdhhhhdhdhhdhhddddddhrd*x

*********/

/*
** Header Files

*/

#include <regs.h>
#include <types.h>
#include <defs.h>

/*

79



Power Management Subsystem Specification

** Tnitialize Real-Time Clock Sub-System
*/
error _code rtc_init (Localdata ldptr)

{

error_code err;
u_int32 old rtcsck;

/* set up RTC isr */
if ((err =
_os_irg(RTC_IRQ VECTOR,RTC IRQ PRIORITY,rtc isr,ldptr)) != SUCCESS)

{

return (err) ;

/* save the old, and set the RTCSCK register */
old rtcsck = ldptr-s>regs-skey regs.rtcsck;
ldptr->regs->key regs.rtcsck = 0x55ccaa33;

{

/* make sure the RTC is enabled */
ldptr->regs->rtc _regs.rtcsc |= RTC ENABLE;

}

/* restore the RTCSCK register with the old value */
/* ldptr-sregs->key regs.rtcsck = old rtecsck; */

/* make sure everything is cleared */
(void)rtc_alarm stop (ldptr);

return (SUCCESS) ;

/*

** De-Initialize Real-Time Clock Sub-System
*/

error code rtc_term(Localdata ldptr)

{

/* make sure everything is cleared */
(void)rtc_alarm stop (ldptr) ;

/* remove RTC isr */
(void) os_irg(RTC_IRQ VECTOR,RTC IRQ PRIORITY,NULL,1ldptr) ;

return (SUCCESS) ;

/-k

** Set Real-Time Clock Alarm Interrupt

80



Chapter 5: SysIF

*/

error code rtc_alarm set (Localdata ldptr,u_int32 sec)
u_int32 old rtcsck;
u_int32 old rtcalk;

/* make sure the interrupts are shut off */

(void)rtc_alarm stop (ldptr) ;

/* save the old, and set the RTCALK register */
old rtcalk = ldptr-s>regs-s>key regs.rtcalk;
ldptr->regs->key regs.rtcalk = 0x55ccaa33;
{
/* set up the alarm register to wake up at this time */
ldptr-s>regs->rtc _regs.rtcal = sec; /* set the RTC alarm time
register */
}
/* restore the RTCALK register with the old value */
/* ldptr-sregs->key regs.rtcalk = old rtcalk;*/

/* save the old, and set the RTCSCK register */
old rtcsck = ldptr-s>regs->key regs.rtcsck;
ldptr->regs->key regs.rtcsck = 0x55ccaal33;

{

/* turn on rtclock alarm interrupts */

ldptr->regs->rtc_regs.rtcsc |= RTCIRQ LVL; /* set the RTC IRQ
level */
ldptr->regs->rtc_regs.rtcsc |= ALM ENABLE; /* enable the RTC

alarm interrupt */

}

/* restore the RTCSCK register with the old value */
/* ldptr-s>regs->key regs.rtcsck = old rtecsck; */

return (SUCCESS) ;

/*

** Stop Real-Time Clock Alarm Interrupt
*/

error code rtc_alarm stop(Localdata ldptr)

{

status_reg oldsr;
u_int32 old rtcsck;
u_int32 old rtcalk;

/* turn off interrupts */

81



Power Management Subsystem Specification

oldsr = irg maskget () ;
{
/* save the old, and set the RTCSCK register */
old rtcsck = ldptr-s>regs->key regs.rtcsck;
ldptr->regs->key regs.rtcsck = 0x55ccaal33;
{
/* turn off rtclock interrupts */
ldptr->regs->rtc_regs.rtcsc &= ~(ALM ENABLE); /* disable
alarm interrupt */

oyl
Il

ldptr->regs->rtc_regs.rtcsc ~(SEC_ENABLE) ; /* disable

seconds interrupt */

/* clear any pending alarms */
ldptr->regs->rtc _regs.rtecsc |= (ALM STATUS | SEC STATUS) ;
}
/* restore the RTCSCK register with the old value */
/* ldptr->regs->key regs.rtcsck = old rtecsck; */

/* save the old, and set the RTCALK register */
old rtcalk = ldptr-s>regs->key regs.rtcalk;
ldptr->regs->key regs.rtcalk = 0x55ccaa33;

{

/* clear alarm register */
ldptr->regs->rtc_regs.rtcal = 0x00000000; /* set the time
to 0 */

}

/* restore the RTCALK register with the old value */
/* ldptr->regs->key regs.rtcalk = old rtcalk;*/

}

irqg restore(oldsr); /* enable interrupts */

return (SUCCESS) ;

/*

* %k Real-Time Clock Interrupt Service Routine
*/

error _code rtc_isr(Localdata ldptr)

{

status_reg oldsr;
/* 1s this us? */

if ((ldptr->regs->rtc_regs.rtcsc & ALM STATUS) == 0) ({
return (EOS_NOTME); /* this is not a RTC alarm interrupt */

82



Chapter 5: SysIF

/* woke up from the alarm interrup */
(void)rtc_alarm stop (ldptr) ;

return (SUCCESS) ;

83



Power Management Subsystem Specification

84



Programming Guidelines

This chapter provides power management programming guidelines for the various OS-
9 for 68K and OS-9 sub-systems. These guidelines must be followed to produce a
working power managed system.

General compatibility guidelines for development of components in a power managed
system involve:

«  Boot Code
«  Applications
«  Device Drivers

+  File Managers

85



n Power Management Subsystem Specification

Boot Code

+ The boot-code should leave hardware subsystems (except the CPU) in a powered-
down state when control is passed to the kernel. The appropriate high-level device
driver (or other hardware-specific module) is then responsible for powering-up the
corresponding hardware subsystem. The idea here is to keep idle subsystems
powered down whenever possible.

+  For consistency, use the “PWR_AWARE” #1i fdef macro in sources (when needed)
to indicate code sections used only in power aware systems. If the power aware
code also works in non-power aware system, then #ifdef is not required.

« PwrMan should be in the M$Pre10 list of the init module within systype.d
since it should be initialized prior to I0. SysIF should go in the M$Extens list.
Following is the section of systype . d that configures the initialization module for
0S-9.

+ Reference the OS-9 for 68K Technical Manual for information on the initialization
module and the PreI0 and Extens lists. Reference the 0S-9 Technical Manual
for information on the initialization module and the m_preio and m_extens list.

CONFIG macro

* gpecific defs for the Eval Board
MainFram dc.b "Motorola Mé68328ADS Board", 0

ifdef SYSGO

* name of initial module to execute
SysStart dc.b "sysgo", 0

* parameters to pass to initial module
SysParam dc.b "",0

else
* name of initial module to execute

SysStart dc.b "shell",0
* parameters to pass to initial module

SysParam dc.b "",0
endc
SysDev dc.b "/dd", o0 * default disk
ConsolNm dc.b "/term", 0 * console terminal pathlist
ClockNm dc.b "tke68328",0 * clock module name

PreIO dc.b "OS9PreIO "
ifdef PWRMAN

86



Chapter 6: Programming Guidelines n

dc.b "pwrman "
endc
dc.b 0

Extens dc.b "OS9p2 "
dc.b "fpu "
ifdef SYSMBUF
dc.b "SysMbuf "
endc
ifdef PWRMAN
dc.b "gysif "
endc
dc.b 0

«  Similarly, for 0S-9, PwrMan should be in the PREIOS list of the initialization
module for OS-9. SysIF should be in the EXTENSIONS list. Following is an
example OS-9 initialization module definition within systype . h.

/*
* Init Module variable definitions
*/

#ifdef INITMOD

#include <init.h>

#define INSTALNAME "MPC821ADS" /* installation
name string */
#define OS9K REVSTR "0S-9000 for the PowerPC (tm)" /*

revision string */

#ifdef INIT DD
/* name of initial module to execute */

#define SYS START "shell™

/* params to pass to initial module */

#define SYS PARAMS "chd /dd; mbinstall; ex shell"

/* #define SYS PARAMS "mbinstall; undpd -s <>>>/nil* ex
shell" */

/* initial system disk pathlist */
#define SYS DEVICE v/da"
#endif /* INIT DD */

87



n Power Management Subsystem Specification

88

#ifdef INIT VCONS
/* name of initial module to execute */

#define SYS START "shell™

/* params to pass to initial module */

#define SYS PARAMS "mbinstall; ex shell"

/* #define SYS PARAMS "mbinstall; undpd -s <>>>/nil* ex
shell" */

/* initial system disk pathlist */
#define SYS DEVICE "
#endif /* INIT VCONS */

#ifdef INIT NODISK
/* name of initial module to execute */

#define SYS START "shell"

/* params to pass to initial module */

#define SYS PARAMS "mbinstall; ex shell"

/* #define SYS PARAMS "mbinstall; undpd -s <>>>/nil* ex
shell" */

/* initial system disk pathlist */
#define SYS DEVICE "
#endif /* INIT NODISK */

#ifdef INIT VCONS

#define CONS_NAME " /vcons" /* console terminal
pathlist */

#else

#define CONS_NAME "/term" /* console terminal
pathlist */

#endif

#define TICK NAME "tkdec" /* clock ticker module
name */

#define RTC NAME "rtc82l" /* real time clock

module name */

/* The order of the following list is important. Please see release
notes. */

#define PREIOS "siuirg cpicirg ssm cache pwrman" /* pre-I1/0
extension module list */

#define IOMAN NAME "Ioman" /* I/0 manager name */



Chapter 6: Programming Guidelines n

#define COMPAT B WIPEMEM /* Debug memory flag */
#define EXTENSIONS "0S9P2 fpu abort sysif" /* extension
modules */

Applications

Guidelines for application development are necessary to ensure integration of power
management services.

+  Applications should be interrupt driven; polling loops should be avoided. This will
cause idle applications to sleep or wait outside the active process queue, providing
PwrPlcy with an easy indication when the entire system is idle.

«  For consistency, use the PWR_AWARE #ifdef macro in sources (when needed)
to indicate code sections used only in power aware systems. If the power aware
code also works in non-power aware system, then the #ifdef macro is not
needed.

Device Drivers

« To remain compatible with systems not power managed by the Power
Management Subsystem, a device driver must default to a powered-up state during
initialization.

«  Deuvice drivers should keep hardware subsystems powered down when possible to
conserve power (e.g., during deiniz or when the hardware is not in use even
though it has been initialized). Care must be taken to share information when
powering down a shared device (such as a 2-port 68681 UART).

+  Pending operations (I/0 or other) must be completed before committing to a
power state change (via the PwrMan callback routine). For example, an SPI-bus
transfer must be completed before a driver can successfully be placed into a low
power state.

+  For consistency, use the “PWR_AWARE” #1i fdef macro in sources (when needed)
to indicate code sections used only in power aware systems. If the power aware
code also works in non-power aware system, then the #ifdef macro is not
needed.

File Managers

+ Pending I/O operations must be completed before committing to a power state
change request operation. For example, the RBF file manager must install a
PwrMan power management callback routine to postpone any power state
changes if RBF file activities are pending but not completed. This ensures disk data
integrity.

+  For consistency, use the “PWR_AWARE” #1i fdef macro in sources (when needed)
to indicate code sections used only in power aware systems. If the power aware

89



Power Management Subsystem Specification

code also works in non-power aware system, then the #ifdef macro is not
needed.

90



0S-9 for 68K

-

91



Power Management Subsystem Specification

68328 (0S-9/68000) Hardware Interface

92

Table A-1. 68328 State/Characteristics

Operation Characteristics
Normal Phase lock loop (PLL) enabled
(defautt) CPU clock enabled (100% duty cycle)
LCD clock enabled
System clock enabled
Interrupts wake up CPU immediately and disable power controller
(interrupt service routines (ISRs) must reset power-controller if
lower duty cycle is desired)
Gear PLL enabled
CPU clock at 39%-979% [3% increment] duty cycle
LCD clock enabled
System clock enabled
Interrupts wake up CPU immediately and disable power controller
(ISRs must reset power controller if lower duty cycle is desired)
Doze PLL enabled
CPU clock disabled (0% duty cycle)
LCD clock enabled
System clock enabled
Interrupts wake up CPU immediately
Sleep PLL disabled
CPU clock disabled
LCD clock disabled

System clock disabled
Interrupts wake up CPU within 2ms (maximum PLL synch latency)




PowerPC

93



n Power Management Subsystem Specification

PPC821 (0S-9/ PPC) Hardware Interface

94

Table B-1. PPC821 State/Characteristics

Operation

Characteristics

Normal

(default)

Gear

Doze

Sleep

Phase Lock Loop (PLL) enabled

CPU clock enabled (1009% duty cycle)
System clock enabled

LCD enabled

Interrupts wake up CPU immediately (within 4 maximum system
clocks)

PLL enabled

CPU clock at [Full/(2 ~ DivisionFactor)]% duty cycle
System clock enabled

LCD enabled

Interrupts wake up CPU immediately (within 4 maximum system
clocks)

PLL enabled

CPU dlock disabled (0% duty cycle)
System clock enabled

LCD enabled

Interrupts wake up CPU immediately (within 4 maximum system
clocks)

PLL enabled

CPU clock disabled
System clock disabled
LCD disabled

DRAM refresh disabled

Interrupts wake up CPU immediately (within 4 maximum system
clocks)



Appendix B: PowerPC n

Table B-1. PPC821 State/Characteristics (Continued)

Operation Characteristics

Deep Sleep PLL disabled
CPU clock disabled
System clock disabled
LCD disabled
DRAM refresh disabled

Interrupts wake up CPU within 500 PLL input frequency clock (15.6
ms @ 32KHz / 125 us @ 4MHz)

Power Down PLL disabled
CPU clock disabled
System clock disabled
LCD disabled
DRAM refresh disabled

Reset wakes up CPU within 500 PLL input frequency clock + power
supply wake-up

95



Power Management Subsystem Specification

96



C Assembly Interface for 0S-9 for 68K

This appendix defines the F$PwrMan assembly interface for OS-9 for 68K.

97



Power Management Subsystem Specification

F$PwrMan
Invoke Power Management
ASM Call

0S9 Fs$PwrMan

Input

(a0).l = Subcode parameter

(a3).I = Private static storage

(ad).l = Process descriptor pointer
(ab).| = Caller's registers

(a6).I = System global data pointer
Output

(cc).w = Carry clear

Error Output

(d1).w = Error code

(cc).w = Carry set

Description

F$PwrMan performs various operations depending on the subcode passed in.

Operations include registering and unregistering a device in the Device Registry Table,
adding and removing an entry from the Power State Table, and changing power states.

Subcode values are defined in the following section of this document.

Sub-Codes

PwrMan sub-codes defined in assembly language follow.

* PwrMan Sub-Codes *

PWRMAN MIN: equ 0x00 * minimum PwrMan subcode *

PWRMAN CHECK: equ 0x00* check if PwrMan is going *

PWRMAN REGISTER:equ 0x01 * register pwr-routine *

PWRMAN UNREGISTER:equ 0x02 * unregister pwr-routine *

PWRMAN STATEADD:equ 0x03 * add power state *

PWRMAN STATEREMOVE:equ 0x04 * remove power state *

PWRMAN DEBUG: equ 0x05 * get pwrman globals for testing *
PWRMAN CHANGE: equ 0x06 * change power states *
PWRMAN_CALLBACK: equ 0x07 * call call-back function directly *
PWRMAN LINK PLCY equ 0x08 * link to pwrplcy module *

PWRMAN UNLINK PLCY equ 0x09 * unlink from pwrplcy module *

PWRMAN COPYGLOB equ 0x0a * get a copy of pwrman globals *
PWRMAN_ LINK EXT equ 0x0b * link to pwrext module *
PWRMAN UNLINK EXT equ 0xOc * unlink from pwrext module *

98



Appendix C: Assembly Interface for 0S-9 for 68K

PWRMAN MAX: equ 0x3F * maximum PwrMan subcode *

PWRPLCY MIN: equ 0x40
PWRPLCY MW MIN: equ 0x40
PWRPLCY INIT: equ 0x40
PWRPLCY DEINIT: equ 0x41
PWRPLCY EV NOTIFY: equ 0x42
PWRPLCY EV REQUEST: equ 0x43
PWRPLCY STATE OFF: equ 0x6C
PWRPLCY STATE_SUSPEND:equ 0x6D
PWRPLCY STATE IDLE:equ Ox6E

PWRPLCY STATE_ON:equ O0x6F * System
PWRPLCY MW _MAX: equ 0x6F *
PWRPLCY USR_MIN: equ 0x70 *
PWRPLCY_ USR_MAX: equ 0x9F *

PWRPLCY_ MAX: equ 0x9F *

PWREXT MIN:equ O0xAO0 * min PwrExt subcode *

PWREXT MW MIN: equ 0xA0 *
PWREXT INIT: equ 0xA0 *
PWREXT DEINIT: equ OxAl *
PWREXT MW_MAX: equ 0xCf *
PWREXT USR MIN: equ 0xDO *
PWREXT USR MAX: equ OXFF *
PWREXT MAX: equ OxFF *

Internal Structures

* min PwrPlcy subcode *

ON state *

max
min
max
max

PwrPlcy Microware subcode *

* PwrPlcy initialization *

* request power-event *
* System OFF state *
* System SUSPEND state *
* System IDLE state *

* min PwrPlcy Microware subcode *

* PwrPlcy deinitialization *
* notification power-event *

PwrPlcy user subcode *

PwrPlcy user subcode *

PwrPlcy subcode *

min PwrExt Microware subcode *

PwrExt initialization *

PwrExt deinitialization *

max
min
max
max

PwrExt
PwrExt
PwrExt
PwrExt

Microware subcode *

user subcode *

user subcode *

subcode *

pwrMan internal structures defined in assembly language follow.

* type of device (with respect to power consumption/generation) *
yp p p 1Y) g

pwr_devtype consumer: equ 0
pwr_devtype supplier: equ 1
pwr_devtype neutral: equ 2
pwr_devtype other: equ 3

* local power-mode structure for a power-aware device *

org 0
pwr_localmode level: do.1 1
pwr_ localmode maxload: do.1 1
pwr_localmode minload: do.1 1 *
pwr_localmode entrytime: do.1 1
pwr_localmode exittime: do.1 1
pwr localmode lpm name: do.b
pwr_ localmode context pres: do.b
pwr_localmode rsvl: do.b
pwr_localmode size: equ

11 * reserved *

* Local power mode level *
* max energy load or drain
min energy load or drain

* energy condition structure for a power-aware device *

org 0
pwr_devcond localpwrmd:

pwr_devcond localpwrmd num: do.l 1 * # of local power modes *

(mw) *
(mw) *

* worst-case device entry time (ms)
* worst-case device exit time (ms)
PWR_IDLEN * local power-mode name *
1 * device context preserved flag *

do.1 1 * ptr to local power mode array *

*

*

99



Power Management Subsystem Specification

pwr_devcond dev_type: do.1l 1 * device type *

pwr_devcond pres_level: do.l 1 * present power level *
pwr_devcond pres_load: do.l 1 * present energy level (mW) *
pwr_devcond pres_drain: do.l 1 * present energy drain (mW/hr) *
pwr_devcond rsvl: do.b 28 * reserved *

pwr_devcond_size: equ

* power-event structure *

org 0
pwr_event_devcond: do.l 1 * ptr to device condition struct *
pwr_event old_lpm: do.l 1 * ptr to old local power mode *
pwr_event new_lpm: do.l 1 * ptr to new local power mode *
pwr_event old energy: do.1 1 * old energy level (mwW) *
pwr_event new_energy: do.l1 1 * new energy level (mW) *
pwr_event old drain: do.l1 1 * old drain/I[supply]l (mW/hr) *
pwr_event new drain: do.l 1 * new drain/[supply] (mW/hr) *
pwr_event rsvl: do.b 20 * reserved *

pwr_event_size: equ

Parameter Block Definitions

Parameter block definitions for calls into PwrMan follow.

* PwrMan System-Call Parameter-Block Types *

org 0
f pwrman pb edition: do.b 1 * current PwrMan version number *
f pwrman pb subcode: do.b 1 * PwrMan sub-code *
f pwrman pb rsv: do.b 3 * reserved *
f pwrman pb size: equ

* F_PWRMAN/PWRMAN CHECK *

org £ pwrman pb size
f pwrman check pb version: do.1 1 * version string buffer ptr *
f pwrman check pb size: equ

* F_PWRMANPWRMAN ADD *
org £ pwrman pb size

f pwrman add pb syslevel: do.1 1 * state level *

f pwrman add pb priority: do.1l 1 * priority of entry *

f pwrman add pb devlevel: do.1 1 * device level *

f pwrman add pb d: do.1 1 * additional device param block *
f pwrman add pb id: do.1 1 * entry id ptr *

f pwrman add pb size: equ

* F_PWRMANPWRMAN REMOVE *
org £ pwrman pb size

f pwrman remove pb syslevel: do.1 1 * state level *

f pwrman remove pb priority: do.l 1 * priority of entry *

f pwrman remove pb devlevel: do.1 1 * device level *

f pwrman remove pb devpb: do.1 1 * additional device param block *
f pwrman remove pb id: do.1 1 * entry id ptr *

f pwrman remove pb size: equ

100



Appendix C: Assembly Interface for 0S-9 for 68K

* F_PWRMANPWRMAN COPYGLOB *

org £ pwrman pb size
f pwrman copyglob pb pwrglob: do.1 1 * copy of powerman globals *
f pwrman copyglob pb size: equ

* F_PWRMANPWRMAN DEBUG *

org £ pwrman pb size
f _pwrman_debug pb_pwrglob: do.l 1 * pointer to powerman globals *
f pwrman debug pb size: equ

* F_PWRMANPWRMAN CHANGE *

org £ pwrman pb size
f pwrman change pb syslevel: do.1l 1 * PwrMan’s state level to check *
f pwrman change pb size: equ

* F_PWRMANPWRMAN CALLBACK *
org £ pwrman pb size
f_pwrman_callback pb _devlevel: do.l 1 * device level *

f_pwrman_callback pb_devpb: do.l 1 * additional device param block *
f _pwrman_callback pb_id: do.1 1 * entry id ptr *
f_pwrman_callback pb_size: equ

* F_PWRMANPWRMAN LINK PLCY *

org £ pwrman pb size
f pwrman link plcy mname: do.1 1 * *
f pwrman_link plcy pb_size: equ

* F_PWRMANPWRMAN UNLINK PLCY *
org £ pwrman pb size
f pwrman unlink plcy pb size: equ

* F_PWRMANPWRMAN LINK EXT *

org £ pwrman pb size
f pwrman link ext mname: do.1 1 * *
f pwrman_link ext pb size: equ

* F_PWRMANPWRMAN UNLINK EXT *
org £ pwrman pb size
f pwrman_unlink ext pb_size: equ

* F_PWRMANPWRMAN REG *
org £ pwrman pb size

f_pwrman_reg_pb func do.1l 1 * call-back function*

f pwrman reg pb funcparam: do.l1 1 * call-back parameter *
f_pwrman_reg pb devpwrdef: do.1l 1 * device power definition *
f pwrman_reg pb_ id: do.1 1 * entry id ptr *

101



Power Management Subsystem Specification

102

f_pwrman_reg pb_size: equ

* F_PWRMANPWRMAN UNREG *
org £ pwrman pb size

f pwrman_unreg pb_func do.1l 1 * call-back function *

f pwrman_unreg pb_funcparam: do.l 1 * call-back parameter *
f_pwrman_unreg pb_devpwrdef: do.1l 1 * device power definition *
f_pwrman_unreg pb_id: do.1 1 * entry id ptr *

f pwrman unreg pb size: equ

* F_PWRMANPWRPLCY INIT *
org £ pwrman pb size
f pwrplcy init pb size: equ

* F_PWRMANPWRPLCY TERM *
org £ pwrman pb size
f pwrplcy term pb size: equ

* F_PWRMANPWRPLCY EV REQUEST *

org £ pwrman pb size
f pwrplcy ev_request pb pwrevent:do.l 1 * Ptr to power-event structure *
f pwrplcy ev _request pb size: equ

* F_PWRMANPWRPLCY EV NOTIFY *

org £ pwrman pb size
f pwrplcy ev notify pb pwrevent: do.l 1 * Ptr to pwrevent structure *
f pwrplcy ev notify pb size: equ

* F_PWRMANPWREXT INIT *
org £ pwrman pb size
f pwrext_init_pb size: equ

* F_PWRMANPWREXT TERM *
org £ pwrman pb size
f pwrext term pb size: equ



SuperH

103



n Power Management Subsystem Specification

SH7709 (0S-9/ SH-3) Hardware Interface

104

Table 6-1. SH7709 State/Characteristics

Operation

Characteristics

Normal
(default)

Sleep

Standby

Clock Pulse Generator (CPG) is operating
CPU, bus and peripheral clocks are enabled
On-Chip supporting modules are operating
External memory refreshing is on

Graphics and serial (SCI, SCIF) devices are on
Interrupts are served immediately

Clock Pulse Generator (CPG) is operating
CPU is halted (registers held)

Bus and peripheral clocks are enabled
On-Chip supporting modules are operating
External memory refreshing is on

Graphics device is off

Serial (SCI, SCIF) devices are on

System wakes up by interrupt or reset

Clock Pulse Generator (CPG) is halted

CPU is halted (registers held)

Bus and peripheral clocks are halted

Most on-chip modules (except RTC) are halted

External memory is in self-refresh mode and needs external clock
source to hold content

Graphics device are off
Serial (SCI, SCIF) devices are off

System wakes up by NMI, IRL or RTC interrupt or by reset and
executes some initialization code in ROM to put external memory in
auto-refresh mode before serving interrupts




Index

NABCDEFGHTI JKLMNOPQQRSTUVWIXY!Z

Symbols
_os_pwr_add() 14, 22
_os_pwr_callback() 22
_os_pwr_change() 22

customizing function example 57
_os_pwr_check() 22
_os_pwr_copyglob() 22, 29
_os_pwr_debug() 22, 28
_os_pwr_ev_notify() 17, 22
_os_pwr_ev_request() 17, 18, 22
_os_pwr_link_ext() 22, 23
_os_pwr_link_plcy() 22, 23, 37
_os_pwr_reg() 22, 36, 38
_os_pwr_remove() 22
_os_pwr_unlink() 22
_os_pwr_unlink_ext() 22, 23
_os_pwr_unlink_plcy() 22, 23, 33
_os_pwr_unreg() 22, 34

A

application
power aware 10
power unaware 10

assembly programming
FSPwrMan 97
structures 98

B
B_NoStop 44

C
callback function
all 25
devlevel 14, 15, 24,25, 34,35, 38, 40
devpb 15, 24,25, 34,35, 38
func 13, 15, 34, 38
priority 40
context_pres 17
current power state 26
currlevel 26

D

debug

_os_pwr_debug() 29
dev_cond 18
dev_id 18

dev_type
energy 16
device
context 17
display 39
drain 18
driver 6
energy 18
devpwrdef 34, 38
level 16
load 16
structure 16
identifier 18
power
aware 39
condition 18
max_load 17
min_load 17
mode
structure 17
registry
table
id 13
registry table 12
display 39
entry
add 34
delete 38
free entry pool pointer 19
id12,14,24,25,34, 35, 38, 40
os_pwr_reg() 16
os_pwr_unreg() 16
pointer
dthead 19
pwr_devcond structure 16
device registry table 12
display 39
entry
add 34
delete 38
free pool pointer 19
id12,13,14,24,25, 34,35, 38, 40
os_pwr_reg() 16
os_pwr_unreg() 16
pointer 19
pwr_devcond structure 16

devlevel 24 , 25, 34, 35, 38, 40



. Power Management Subsystem Specification

NABCDTETFGH

devpb 15, 24,25, 34,35, 38
devpwrdef
pointer
device energy 13, 34, 38
dtfree 19
dthead 19
device registry table
pointer 19

E

energy
device
level 16
load 16
type 16
entry point
pwrplcy
pointer 19
entrytime 17
error
ret_on_err 15, 26
ret_on_error 20
event
generate 16
power
structure 17
example
pwrplcy 43
exittime 17

F

FSPwrMan

assembly programming 97
file manager 6
func

callback function

state change 13, 15, 34, 38

funcparam

parameter block 13, 15, 34, 38
function binding 20

G

globals
pointer 29
pwrman 11

guidelines
programming 85

H

header files
custom 63

106

J

K LMNOPQRSTUVWXYZ

|
id 13, 14,24,25,34, 35, 38, 40
module 32, 33
idle
function
B_NoStop 44
interrupt 44
STOP/LPSTOP 44
loop 43
idle loop
customize
05943, 44
0S-9000 43, 44
interrupts 44
initialize
power state 43
pwrext_init 57

pwrplcy_init 57
sysif 63
interrupt
idle function 44
interrupts
idle loop 44
L
level 17
library
assembly language 20
load 17
maximum 17
minimum 17

loc_pwr_mode 17
context_pres 17
entrytime 17
exittime 17
level 17
Ipm_name 17
max_load 17
min_load 17

local
memory

pwrext
pointer 20
pwrpley
pointer 19
power mode 18

local power mode 18

Ipm 16

Ipm_name 17

M

macro 20



Index .

NABCDTETFGH

max_load 17
microprocessor interface
sysif 63
min_load 17
module
id32,33

N

new_drain 18
new_energy 18
new_lpm 18
newlink pwrext 57
num_lpm 16

0
old_drain 18
old_energy 18
old_lpm 18
0S-9
idle loop
customize 43 , 44
0S-9000
idle loop
customize 43 , 44

P

parameter block
funcparam 13, 15, 34, 38
pfree 19
phead
power state table
pointer 19
pointer
globals 29
power
state 26
power
aware 6
application 10
device driver 8
definition 15
device
maximum energy load 17
minimum energy load 17
down 17
event 16, 17, 20
extension module 8
management subsystem
components 8
interaction in 9
policy module 8
state 26

J

K LMNOPQRSTUVWXYZ

change 30, 31, 43
initialize 43
level 24, 26, 35, 40
pointer 26
state table 12
add
entry 24
display 39
entry
add 39
delete 35
free pool pointer 19
remove 39
free entry pool pointer 19
id12,24,25,34,35, 38, 40
pointer
phead 19
structure 15
unaware 6
application 10
device driver 10
up 17
power management module 8
power policy module 9
PowerPC
PPC821
hardware interface 94
PPC821
hardware interface 94
pres_drain 16
pres_energy 16
prespwrlev 16
print
version 39
priority 40
programming
guidelines 85
pwr_devcond 16
dev_type 16
Ipm 16
num_lpm 16
pres_drain 16
pres_energy 16
prespwrlev 16
structure 34, 38
pwr_event 17, 20, 30, 31
_os_pwr_ev_notify() 17
_0s_pwr_ev_request() 17
dev_cond 18
dev_id 18
generate 16
local power mode 18
new_drain 18

107



. Power Management Subsystem Specification

NABCDTETFGH

new_energy 18
new_lpm 18
old_drain 18
old_energy 18
old_Ipm 18
pwrevent 30, 31
pwrext 8
initialize 57
pwrman_change 57
pwrext_func
entry point
pwrext
pointer 20
pwrext_mem 20
pwrglob 29
pwrman 8
event
generate 16
globals
structure 11
install 27
overriding 57
table
device registry 12
power state 12
pwrman_change 57
pwrman_globals 15
pwrplcy 8, 9
definition 43
example 43
function prototype 43
initialize 57
pwrplcy.c 48
type 43
pwrplcy.c
pwrplcy 48
pwrplcy_func 19
pwrplcy_mem 19

R

ret_on_err 26
ret_on_error
error 20

S
SH-3

hardware interface 104
SH7709

hardware interface 104
state

change 30

func 13, 15, 34, 38

108

J

K LMNOPQRSTUVWXYZ

STOP/LPSTOP 44
structure 20
device
energy 16
power mode 17
loc_pwr_mode 17
power
event 17
pwr_devcond 34, 38
pwr_event 17
structures
assembly programming 98
support mechanism
device driver 6
file manager 6
system module 6
sysglob 19
SysIF 9
sysif 8,9, 63
initialize 63
syslevel 24 , 26, 35, 39, 40
system
global
data pointer 44
pointer
sysglob 19
interface module 8, 9
level 39
module 6

I

type
definition 20

vV

version 27
pwrman 39



	Power Management Subsystem Specification
	Contents
	Definitions
	Power Unaware
	Power Aware
	Support Mechanisms

	A Power Managed System
	Power Aware Applications
	Power Management Subsystem
	Power Aware Device Drivers

	Power Management Subsystem Components
	PwrMan
	PwrPlcy
	PwrExt
	SysIF

	Interaction in the Power Managed System
	PwrMan Tables
	Device Registry Table
	Power State Table
	Power Management Power State Table Flow


	Power Structures and Definitions
	Device Energy Condition
	Local Power Mode
	Power Event

	pwrman_globals Structure
	PwrMan Library
	pwrstat Utility
	Default Idle Loop
	Customizing the Idle Function for OS-9
	Customizing the Idle Function for OS-9 for 68K
	PwrPlcy Example
	pwrplcy.c
	pwrext.c
	cpu.c
	rtclock.c
	Boot Code
	Applications
	Device Drivers
	File Managers
	68328 (OS-9/68000) Hardware Interface
	PPC821 (OS-9/ PPC) Hardware Interface
	Sub-Codes
	Internal Structures
	Parameter Block Definitions
	SH7709 (OS-9/ SH-3) Hardware Interface



