
Copyright  1996 Rogue Wave Software, Inc. All rights reserved. i

Rogue Wave

 Standard C++ Library
 User's Guide,
 Tutorial, and

 Class Reference

 Rogue Wave Software

 Corvallis, Oregon USA

Copyright  1996 Rogue Wave Software, Inc. All rights reserved. ii

Rogue Wave Standard C++ Library User's Guide and Tutorial

for

Rogue Wave's implementation of the Standard C++ Library.

Based on ANSI's Working Paper for Draft Proposed International Standard for
Information Systems--Programming Language C++.

User's Guide and Tutorial Author: Timothy A. Budd

Class Reference Authors: Wendi Minne, Tom Pearson, and Randy Smithey

Product Team:

Development: Anna Dahan, Philippe Le Mouel, Randy Smithey

Quality Engineering: Kevin Djang, Randall Robinson

Manuals: Elaine Cull, Wendi Minne, Julie Prince, Randy Smithey

Support: North Krimsley

Significant contributions by: Joe Delaney

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.

Printed in the United States of America.

Part # RW81-01-100096

Printing Date: October, 1996

Rogue Wave Software, Inc., 850 SW 35th St., Corvallis, Oregon, 97333 USA

Product Information: (541) 754-3010

(800) 487-3217

Technical Support: (541) 754-2311

FAX: (541) 757-6650

World Wide Web: http://www.roguewave.com

Copyright  1996 Rogue Wave Software, Inc. All rights reserved. ii

Table of Contents

1. Introduction... 1
1.1 What is the Standard C++ Library?.. 2
1.2 Does the Standard C++ Library Differ From Other Libraries? .. 2
1.3 What are the Effects of Non-Object-Oriented Design? .. 3
1.4 How Should I Use the Standard C++ Library?... 5
1.5 Reading This Manual.. 6
1.6 Conventions ... 6
1.7 Using the Standard Library ... 6
1.8 Running the Tutorial Programs .. 7

2. Iterators.. 9
2.1 Introduction to Iterators ... 10
2.2 Varieties of Iterators.. 11

2.2.1 Input Iterators ... 12
2.2.2 Output Iterators .. 14
2.2.3 Forward Iterators ... 15
2.2.4 Bidirectional Iterators .. 15
2.2.5 Random Access Iterators... 16
2.2.6 Reverse Iterators ... 17

2.3 Stream Iterators ... 17
2.3.1 Input Stream Iterators.. 18
2.3.2 Output Stream Iterators... 18

2.4 Insert Iterators.. 19
2.5 Iterator Operations.. 20

3. Functions and Predicates .. 23
3.1 Functions .. 24
3.2 Predicates.. 24
3.3 Function Objects .. 25
3.4 Function Adaptors .. 28
3.5 Negators and Binders ... 30

Copyright  1996 Rogue Wave Software, Inc. All rights reserved. ii

4. Container Classes... 33
4.1 Overview .. 34
4.2 Selecting a Container .. 34
4.3 Memory Management Issues... 36
4.4 Container Types Not Found in the Standard Library.. 37

5. vector and vector<bool> .. 39
5.1 The vector Data Abstraction .. 40

5.1.1 Include Files .. 40
5.2 Vector Operations ... 40

5.2.1 Declaration and Initialization of Vectors .. 41
5.2.2 Type Definitions ... 42
5.2.3 Subscripting a Vector... 43
5.2.4 Extent and Size-Changing Operations .. 43
5.2.5 Inserting and Removing Elements... 44
5.2.6 Iteration.. 46
5.2.7 Test for Inclusion.. 46
5.2.8 Sorting and Sorted Vector Operations .. 46
5.2.9 Useful Generic Algorithms ... 47

5.3 Boolean Vectors ... 48
5.4 Example Program − Sieve of Eratosthenes .. 49

6. list ... 51
6.1 The list Data Abstraction.. 52

6.1.1 Include files ... 52
6.2 List Operations .. 52

6.2.1 Declaration and Initialization of Lists ... 53
6.2.2 Type Definitions ... 54
6.2.3 Placing Elements into a List .. 55
6.2.4 Removing Elements ... 57
6.2.5 Extent and Size-Changing Operations .. 58
6.2.6 Access and Iteration... 58
6.2.7 Test for Inclusion.. 59
6.2.8 Sorting and Sorted List Operations ... 59
6.2.9 Searching Operations... 59
6.2.10 In Place Transformations... 60
6.2.11 Other Operations.. 60

6.3 Example Program − An Inventory System.. 61

7. deque .. 63
7.1 The deque Data Abstraction .. 64

7.1.1 Include Files .. 64
7.2 Deque Operations ... 64
7.3 Example Program − Radix Sort ... 65

8. set, multiset, and bitset .. 69
8.1 The set Data Abstraction .. 70

8.1.1 Include Files .. 70
8.2 set and multiset Operations... 70

8.2.1 Declaration and Initialization of Set .. 70

Copyright  1996 Rogue Wave Software, Inc. All rights reserved. ii

8.2.2 Type Definitions ... 71
8.2.3 Insertion... 72
8.2.4 Removal of Elements from a Set .. 73
8.2.5 Searching and Counting.. 73
8.2.6 Iterators.. 74
8.2.7 Set Operations... 74
8.2.8 Other Generic Algorithms... 76

8.3 Example Program: − A Spelling Checker .. 76
8.4 The bitset Abstraction... 77

8.4.1 Include Files .. 77
8.4.2 Declaration and Initialization of bitset .. 77
8.4.3 Accessing and Testing Elements .. 78
8.4.4 Set operations.. 78
8.4.5 Conversions... 79

9. map and multimap .. 81
9.1 The map Data Abstraction ... 82

9.1.1 Include files ... 82
9.2 Map and Multimap Operations .. 82

9.2.1 Declaration and Initialization of map.. 82
9.2.2 Type Definitions ... 83
9.2.3 Insertion and Access .. 84
9.2.4 Removal of Values ... 84
9.2.5 Iterators.. 85
9.2.6 Searching and Counting.. 85
9.2.7 Element Comparisons.. 86
9.2.8 Other Map Operations... 86

9.3 Example Programs .. 86
9.3.1 A Telephone Database... 86
9.3.2 Graphs.. 88
9.3.3 A Concordance ... 90

10. stack and queue .. 93
10.1 Overview .. 94
10.2 The stack Data Abstraction .. 94

10.2.1 Include Files .. 95
10.2.2 Declaration and Initialization of stack .. 95
10.2.3 Example Program − A RPN Calculator... 95

10.3 The queue Data Abstraction .. 97
10.3.1 Include Files .. 97
10.3.2 Declaration and Initialization of queue... 97
10.3.3 Example Program − Bank Teller Simulation .. 98

11. priority_queue... 101
11.1 The priority queue Data Abstraction.. 102

11.1.1 Include Files .. 102
11.2 The Priority Queue Operations ... 103

11.2.1 Declaration and Initialization of priority queue.. 103
11.3 Application − Event-Driven Simulation .. 104

11.3.1 An Ice Cream Store Simulation .. 106

Copyright  1996 Rogue Wave Software, Inc. All rights reserved. ii

12. String .. 109
12.1 The string Abstraction .. 110

12.1.1 Include Files .. 110
12.2 String Operations .. 110

12.2.1 Declaration and Initialization of string ... 111
12.2.2 Resetting Size and Capacity.. 111
12.2.3 Assignment, Append and Swap .. 112
12.2.4 Character Access .. 112
12.2.5 Iterators.. 113
12.2.6 Insertion, Removal and Replacement.. 113
12.2.7 Copy and Substring ... 113
12.2.8 String Comparisons ... 114
12.2.9 Searching Operations... 114

12.3 An Example Function − Split a Line into Words .. 115

13. Generic Algorithms .. 117
13.1 Overview .. 118

13.1.1 Include Files .. 120
13.2 Initialization Algorithms.. 120

13.2.1 Fill a Sequence with An Initial Value .. 120
13.2.2 Copy One Sequence Into Another Sequence.. 122
13.2.3 Initialize a Sequence with Generated Values ... 123
13.2.4 Swap Values from Two Parallel Ranges ... 125

13.3 Searching Operations.. 126
13.3.1 Find an Element Satisfying a Condition ... 127
13.3.2 Find Consecutive Duplicate Elements .. 128
13.3.3 Find the first occurrence of any value from a sequence .. 129
13.3.4 Find a Sub-sequence within a Sequence ... 129
13.3.5 Find the last occurrence of a Sub-sequence .. 130
13.3.6 Locate Maximum or Minimum Element... 131
13.3.7 Locate the First Mismatched Elements in Parallel Sequences ... 132

13.4 In-Place Transformations ... 134
13.4.1 Reverse Elements in a Sequence... 134
13.4.2 Replace Certain Elements With Fixed Value.. 135
13.4.3 Rotate Elements Around a Midpoint .. 136
13.4.4 Partition a Sequence into Two Groups.. 137
13.4.5 Generate Permutations in Sequence .. 138
13.4.6 Merge Two Adjacent Sequences into One .. 139
13.4.7 Randomly Rearrange Elements in a Sequence... 139

13.5 Removal Algorithms... 141
13.5.1 Remove Unwanted Elements ... 141
13.5.2 Remove Runs of Similar Values ... 142

13.6 Scalar-Producing Algorithms .. 143
13.6.1 Count the Number of Elements that Satisfy a Condition... 143
13.6.2 Reduce Sequence to a Single Value ... 144
13.6.3 Generalized Inner Product.. 145
13.6.4 Test Two Sequences for Pairwise Equality... 146
13.6.5 Lexical Comparison ... 147

13.7 Sequence-Generating Algorithms... 148
13.7.1 Transform One or Two Sequences... 148
13.7.2 Partial Sums .. 149
13.7.3 Adjacent Differences .. 150

Copyright  1996 Rogue Wave Software, Inc. All rights reserved. ii

13.8 Miscellaneous Algorithms ... 151
13.8.1 Apply a Function to All Elements in a Collection ... 151

14. Ordered Collection Algorithms... 153
14.1 Overview .. 154

14.1.1 Include Files .. 155
14.2 Sorting Algorithms.. 156
14.3 Partial Sort .. 156
14.4 nth Element .. 157
14.5 Binary Search ... 158
14.6 Merge Ordered Sequences ... 160
14.7 Set Operations.. 161
14.8 Heap Operations ... 162

15. Using Allocators .. 165
15.1 An Overview of the Standard Library Allocators .. 166
15.2 Using Allocators with Existing Standard Library Containers.. 166
15.3 Building Your Own Allocators.. 167

15.3.1 Using the Standard Allocator Interface... 167
15.3.2 Using Rogue Wave's Alternative Interface... 169
15.3.3 How to Support Both Interfaces... 171

16. Building Containers & Generic Algorithms .. 173
16.1 Extending the Library... 174
16.2 Building on the Standard Containers... 174

16.2.1 Inheritance... 175
16.2.2 Generic Inheritance .. 176
16.2.3 Generic Composition ... 176

16.3 Creating Your Own Containers .. 177
16.3.1 Meeting the Container Requirements ... 177
16.3.2 Meeting the Allocator Interface Requirements .. 178
16.3.3 Iterator Requirements.. 180

16.4 Tips and Techniques for Building Algorithms ... 180
16.4.1 The iterator_category Primitive ... 181
16.4.2 The distance and advance Primitives.. 182

17. The Traits Parameter ... 183
17.1 Using the Traits Technique .. 184

18. Exception Handling .. 187
18.1 Overview .. 188

18.1.1 Include Files .. 188
18.2 The Standard Exception Hierarchy .. 188
18.3 Using Exceptions ... 189
18.4 Example Program.. 190

19. auto_ptr.. 191
19.1 Overview .. 192

19.1.1 Include File .. 192

Copyright  1996 Rogue Wave Software, Inc. All rights reserved. ii

19.2 Declaration and Initialization of Auto Pointers.. 192
19.3 Example Program.. 193

20.Complex... 195
20.1 Overview .. 196

20.1.1 Include Files .. 196
20.2 Creating and Using Complex Numbers .. 196

20.2.1 Declaring Complex Numbers... 196
20.2.2 Accessing Complex Number Values ... 197
20.2.3 Arithmetic Operations... 197
20.2.4 Comparing Complex Values .. 197
20.2.5 Stream Input and Output.. 197
20.2.6 Norm and Absolute Value .. 198
20.2.7 Trigonometric Functions ... 198
20.2.8 Transcendental Functions ... 198

20.3 Example Program − Roots of a Polynomial... 198

21. Numeric Limits... 201
21.1 Overview .. 202
21.2 Fundamental Data Types ... 202
21.3 Numeric Limit Members.. 203

21.3.1 Members Common to All Types .. 203
21.3.2 Members Specific to Floating Point Values .. 204

22. Run Time Support .. 221
22.1 Overview .. 222
22.2 Header <new> synopsis... 222
22.3 Single-object forms of operators new and delete.. 223
22.4 Array forms of operators new and delete.. 224
22.5 Placement forms of operators new and delete.. 225
22.6 Storage allocation errors... 226

22.6.1 Class bad_alloc ... 226
22.6.2 Type new_handler ... 226
22.6.3 set_new_handler... 227

22.7 Run-time type identification (RTTI) ... 227
22.7.1 class type_info... 228
22.7.2 class bad_cast .. 228
22.7.3 class bad_typeid ... 229

23. Glossary... 230

24. Index .. 233

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved .
Introduction

1

S e c t i o n 1.
Introduction

1.1

What is the Standard C++ Library?

1.2
Does the Standard C++ Library Differ From Other Libraries?

1.3
What are the Effects of Non-Object-Oriented Design?

1.4
How Should I Use the Standard C++ Library?

1.5
Reading this Manual

1.6

Conventions

1.7

Using the Standard Library

1.8

Running the Tutorial Programs

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved .
Introduction

2

1.1 What is the Standard C++ Library?
The International Standards Organization (ISO) and the American National
Standards Institute (ANSI) are completing the process of standardizing the
C++ programming language. A major result of this standardization process
is the “Standard C++ Library,” a large and comprehensive collection of
classes and functions. This product is Rogue Wave's implementation of the
ANSI/ISO Standard Library.

The ANSI/ISO Standard C++ Library includes the following parts:

• A large set of data structures and algorithms formerly known as the
Standard Template Library (STL).

• An IOStream facility.

• A locale facility.

• A templatized string class.

• A templatized class for representing complex numbers.

• A uniform framework for describing the execution environment,
through the use of a template class named numeric_limits and
specializations for each fundamental data type.

• Memory management features.

• Language support features.

• Exception handling features.

• A valarray class optimized for handling numeric arrays

1.2 Does the Standard C++ Library Differ From Other
Libraries?
A major portion of the Standard C++ Library is a collection of class
definitions for standard data structures and a collection of algorithms
commonly used to manipulate such structures. This part of the library was
formerly known as the Standard Template Library or STL. The organization
and design of the STL differs in almost all respects from the design of most
other C++ libraries, because it avoids encapsulation and uses almost no
inheritance.

An emphasis on encapsulation is a key hallmark of object-oriented
programming. The emphasis on combining data and functionality into an
object is a powerful organizational principle in software development;
indeed it is the primary organizational technique. Through the proper use of

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved .
Introduction

3

encapsulation, even exceedingly complex software systems can be divided
into manageable units and assigned to various members of a team of
programmers for development.

Inheritance is a powerful technique for permitting code sharing and software
reuse, but it is most applicable when two or more classes share a common set
of basic features. For example, in a graphical user interface, two types of
windows may inherit from a common base window class, and the individual
subclasses will provide any required unique features. In another use of
inheritance, object-oriented container classes may ensure common behavior
and support code reuse by inheriting from a more general class, and
factoring out common member functions.

The designers of the STL decided against using an entirely object-oriented
approach, and separated the tasks to be performed using common data
structures from the representation of the structures themselves. This is why
the STL is properly viewed as a collection of algorithms and, separate from
these, a collection of data structures that can be manipulated using the
algorithms.

1.3 What are the Effects of Non-Object-Oriented
Design?
The STL portion of the Standard C++ Library was purposely designed with
an architecture that is not object-oriented. This design has side effects, some
advantageous, and some not, that developers must be aware of as they
investigate how to most effectively use the library. We'll discuss a few of
them here.

• Smaller Source Code

 There are approximately fifty different algorithms in the STL, and about
a dozen major data structures. This separation has the effect of reducing
the size of source code, and decreasing some of the risk that similar
activities will have dissimilar interfaces. Were it not for this separation,
for example, each of the algorithms would have to be re-implemented in
each of the different data structures, requiring several hundred more
member functions than are found in the present scheme.

• Flexibility

 One advantage of the separation of algorithms from data structures is
that such algorithms can be used with conventional C++ pointers and
arrays. Because C++ arrays are not objects, algorithms encapsulated
within a class hierarchy seldom have this ability.

• Efficiency

 The STL in particular, and the Standard C++ Library in general, provide
a low-level, "nuts and bolts" approach to developing C++ applications.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved .
Introduction

4

This low-level approach can be useful when specific programs require an
emphasis on efficient coding and speed of execution.

• Iterators: Mismatches and Invalidations

 The Standard C++ Library data structures use pointer-like objects called
iterators to describe the contents of a container. (These are described in
detail in Section 2.) Given the library's architecture, it is not possible to
verify that these iterator elements are matched; i.e., that they are derived
from the same container. Using (either intentionally or by accident) a
beginning iterator from one container with an ending iterator from
another is a recipe for certain disaster.

 It is very important to know that iterators can become invalidated as a
result of a subsequent insertion or deletion from the underlying
container class. This invalidation is not checked, and use of an invalid
iterator can produce unexpected results.

 Familiarity with the Standard C++ Library will help reduce the number
of errors related to iterators.

• Templates: Errors and "Code Bloat"

 The flexibility and power of templatized algorithms are, with most
compilers, purchased at a loss of precision in diagnostics. Errors in the
parameter lists to generic algorithms will sometimes show up only as
obscure compiler errors for internal functions that are defined many
levels deep in template expansions. Again, familiarity with the
algorithms and their requirements is a key to successful use of the
standard library.

 Because of its heavy reliance on templates, the STL can cause programs
to grow larger than expected. You can minimize this problem by
learning to recognize the cost of instantiating a particular template class,
and by making appropriate design decisions. Be aware that as compilers
become more and more fluent in templates, this will become less of a
problem.

• Multithreading Problems

 The Standard C++ Library must be used carefully in a multithreaded
environment. Iterators, because they exist independently of the
containers they operate on, cannot be safely passed between threads.
Since iterators can be used to modify a non const container, there is no
way to protect such a container if it spawns iterators in multiple threads.
Use "thread-safe" wrappers, such as those provided by Tools.h++, if you
need to access a container from multiple threads.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved .
Introduction

5

1.4 How Should I Use the Standard C++ Library?
Within a few years the Standard C++ Library will be the standard set of
classes and libraries delivered with all ANSI-conforming C++ compilers. We
have noted that the design of a large portion of the Standard C++ Library is
in many ways not object-oriented. On the other hand, C++ excels as a
language for manipulating objects. How do we integrate the Standard
Library's non-object-oriented architecture with C++'s strengths as a language
for manipulating objects?

The key is to use the right tool for each task. Object-oriented design methods
and programming techniques are almost without peer as guideposts in the
development of large, complex software. For the large majority of
programming tasks, object-oriented techniques will remain the preferred
approach. And products such as Rogue Wave's Tools.h++ 7.0, which
encapsulates the Standard C++ Library with a familiar object-oriented
interface, will provide you with the power of the Library and the advantages
of object-orientation.

Use Standard C++ Library components directly when you need flexibility
and/or highly efficient code. Use the more traditional approaches to object-
oriented design, such as encapsulation and inheritance, when you need to
model larger problem domains, and knit all the pieces into a full solution.
When you need to devise an architecture for your application, always
consider the use of encapsulation and inheritance to compartmentalize the
problem. But if you discover that you need an efficient data structure or
algorithm for a compact problem, such as data stream manipulation in
drivers (the kind of problem that often resolves to a single class), look to the
Standard C++ Library. The Standard C++ Library excels in the creation of
reusable classes, where low-level constructs are needed, while traditional
OOP techniques really shine when those classes are combined to solve a
larger problem.

In the future, most libraries will use the Standard C++ Library as their
foundation. By using the Standard C++ Library, either directly or through
an encapsulation such as Tools.h++ 7.0, you help ensure interoperability.
This is especially important in large projects that may rely on communication
between several libraries. A good rule of thumb is to use the highest
encapsulation level available to you, but make sure that the Standard C++
Library is available as the base for interlibrary communication and operation.

The C++ language supports a wide range of programming approaches
because the problems we need to solve require that range. The language,
and now the Standard C++ library that supports it, are designed to give you
the power to approach each unique problem from the best possible angle.
The Standard C++ Library, when combined with more traditional OOP
techniques, puts a very flexible tool into the hands of anyone building a
collection of C++ classes, whether those classes are intended to stand alone
as a library or are tailored to a specific task.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved .
Introduction

6

1.5 Reading This Manual
This manual is an introduction to the Rogue Wave implementation of the
Standard C++ Library. It assumes that you are already familiar with the
basics features of the C++ programming language. If you are new to C++
you may wish to examine an introductory text, such as the book The C++
Programming Language, by Bjarne Stroustrup (Addison-Wesley, 1991).

There is a classic “chicken-and-egg” problem associated with the container
class portion of the standard library. The heart of the container class library
is the definition of the containers themselves, but you can't really appreciate
the utility of these structures without an understanding of the algorithms
that so greatly extend their functionality. On the other hand, you can't really
understand the algorithms without some appreciation of the containers.

Ideally, after reading sections 2, 3 and 4 carefully, sections 5 through 11
should be read simultaneously with sections 12 and 13. Since that’s not
possible, simply skim over sections 5 through 11 and sections 12 and 13 to
gain a superficial understanding of the overall structure, then go back and
read these sections again in more detail.

1.6 Conventions
We use distinctive fonts for class_names and function_names() When we
wish to refer to a function name or algorithm name but not draw attention to
the arguments, we will follow the function name with an empty pair of
parentheses. We do this even when the actual function invocation requires
additional arguments. We have used the term algorithm to refer to the
functions in the generic algorithms portion of the standard library, so as to
avoid confusion with member functions, argument functions, and functions
defined by the programmer. Note that both class names and function names
in the standard library follow the convention of using an underline character
as a separator. Throughout the text, examples and file names are printed in
the same courier font used for function names.

In the text, it is common to omit printing the class name in the distinctive
font after it has been introduced. This is intended to make the appearance of
the text less visually disruptive. However, we return to the distinctive font
to make a distinction between several different possibilities, as for example
between the classes vector and list used as containers in constructing a
stack.

1.7 Using the Standard Library
Because the Standard C++ Library consists largely of template declarations,
on most platforms it is only necessary to include in your programs the
appropriate header files. These header files will be noted in the text that
describes how to use each algorithm or class.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved .
Introduction

7

1.8 Running the Tutorial Programs
All the tutorial programs described in this text have been gathered together
and are available as part of the distribution package. You can compile and
run these programs, and use them as models for your own programming
problems. Many of these example programs have been extended with
additional output commands that are not reproduced here in the text. The
expected output from each program is also included as part of the
distribution.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Iterators

9

S e c t i o n 2.
Iterators

2.1

Introduction to Iterators

2.2

Varieties of Iterators

2.3

Stream Iterators

2.4

Insert Iterators

2.5

Iterator Operations

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Iterators

10

2.1 Introduction to Iterators
Fundamental to the use of the container classes and the associated algorithms
provided by the standard library is the concept of an iterator. Abstractly, an
iterator is simply a pointer-like object used to cycle through all the elements
stored in a container. Because different algorithms need to traverse
containers in a variety of fashions, there are different forms of iterator. Each
container class in the standard library can generate an iterator with
functionality appropriate to the storage technique used in implementing the
container. It is the category of iterators required as arguments that chiefly
distinguishes which algorithms in the standard library can be used with
which container classes.

Just as pointers can be used in a variety of ways in traditional programming,
iterators are also used for a number of different purposes. An iterator can be
used to denote a specific value, just as a pointer can be used to reference a
specific memory location. On the other hand, a pair of iterators can be used
to describe a range of values, just as two pointers can be used to describe a
contiguous region of memory. In the case of iterators, however, the values
being described are not necessarily physically in sequence, but are rather
logically in sequence, because they are derived from the same container, and
the second follows the first in the order in which the elements are maintained
by the container.

Conventional pointers can sometimes be null, meaning they point at nothing.
Iterators, as well, can fail to denote any specific value. Just as it is a logical
error to dereference a null pointer, it is an error to dereference an iterator that
is not denoting a value.

When two pointers that describe a region in memory are used in a C++
program, it is conventional that the ending pointer is not considered to be
part of the region. For example, an array named x of length ten is sometimes
described as extending from x to x+10 , even though the element at x+10 is not
part of the array. Instead, the pointer value x+10 is the past-the-end value –
the element that is the next value after the end of the range being described.
Iterators are used similarly to describe a range. The second value is not
considered to be part of the range being denoted. Instead, the second value
is a past-the-end element, describing the next value in sequence after the final
value of the range. Sometimes, as with pointers to memory, this will be an
actual value in the container. Other times it may be a special value,
specifically constructed for the purpose. In either case, it is not proper to
dereference an iterator that is being used to specify the end of a range.

Just as with conventional pointers, the fundamental operation used to
modify an iterator is the increment operator (operator ++). When the
increment operator is applied to an iterator that denotes the final value in a
sequence, it will be changed to the “past the end” value. An iterator j is said

✍
Iterators
Iterators are
pointer-like
objects, used to
cycle through the
elements stored in
a container.

✍
Range
A range is a
sequence of
values held in a
container. The
range is described
by a pair of
iterators, which
define the
beginning and
end of the
sequence.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Iterators

11

to be reachable from an iterator i if, after a finite sequence of applications of
the expression ++i , the iterator i becomes equal to j .

Ranges can be used to describe the entire contents of a container, by
constructing an iterator to the initial element and a special “ending” iterator.
Ranges can also be used to describe sub-sequences within a single container,
by employing two iterators to specific values. Whenever two iterators are
used to describe a range it is assumed, but not verified, that the second
iterator is reachable from the first. Errors can occur if this expectation is not
satisfied.

In the remainder of this section we will describe the different forms of
iterators used by the standard library, as well as various other iterator-
related functions.

2.2 Varieties of Iterators
There are five basic forms of iterators used in the standard library:

input iterator read only, forward moving

output iterator write only, forward moving

forward iterator both read and write, forward moving

bidirectional iterator read and write, forward and
backward moving

random access iterator read and write, random access

Iterator categories are hierarchical. Forward iterators can be used wherever
input or output iterators are required, bidirectional iterators can be used in
place of forward iterators, and random access iterators can be used in
situations requiring bidirectionality.

A second characteristic of iterators is whether or not they can be used to
modify the values held by their associated container. A constant iterator is
one that can be used for access only, and cannot be used for modification.
Output iterators are never constant, and input iterators always are. Other
iterators may or may not be constant, depending upon how they are created.
There are both constant and non-constant bidirectional iterators, both
constant and non-constant random access iterators, and so on.

The following table summarizes specific ways that various categories of
iterators are generated by the containers in the standard library.

Iterator Form Produced By
input iterator istream_iterator

✍
Iterator Ranges
When iterators are
used to describe
a range of values
in a container, it is
assumed (but not
verified) that the
second iterator is
reachable from
the first. Errors will
occur if this is not
true.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Iterators

12

Iterator Form Produced By
output iterator ostream_iterator

inserter

front_inserter

back_inserter

bidirectional iterator list

set and multiset

map and multimap

random access iterator ordinary pointers

vector

deque

In the following sections we will describe the capabilities and construction of
each form of iterator.

2.2.1 Input Iterators

Input iterators are the simplest form of iterator. To understand their
capabilities, consider an example program. The find() generic algorithm (to
be described in more detail in Section 13.3.1), performs a simple linear
search, looking for a specific value being held within a container. The
contents of the container are described using two iterators, here called first

and last . While first is not equal to last the element denoted by first is
compared to the test value. If equal, the iterator, which now denotes the
located element, is returned. If not equal, the first iterator is incremented,
and the loop cycles once more. If the entire region of memory is examined
without finding the desired value, then the algorithm returns the end-of-
range iterator.

template <class InputIterator, class T>
InputIterator
 find (InputIterator first, InputIterator last, const T& value)
{
 while (first != last && *first != value)
 ++first;
 return first;
}

This algorithm illustrates three requirements for an input iterator:

• An iterator can be compared for equality to another iterator. They are
equal when they point to the same position, and are otherwise not equal.

• An iterator can be dereferenced using the * operator, to obtain the value
being denoted by the iterator.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Iterators

13

• An iterator can be incremented, so that it refers to the next element in
sequence, using the operator ++.

Notice that these characteristics can all be provided with new meanings in a
C++ program, since the behavior of the given functions can all be modified
by overloading the appropriate operators. Because of this overloading,
iterators are possible. There are three main varieties of input iterators:

Ordinary pointers. Ordinary pointers can be used as input iterators. In fact,
since we can subscript and add to ordinary pointers, they are random access
values, and thus can be used either as input or output iterators. The end-of-
range pointer describes the end of a contiguous region of memory, and the
deference and increment operators have their conventional meanings. For
example, the following searches for the value 7 in an array of integers:

int data[100];
 ...
int * where = find(data, data+100, 7);

Note that constant pointers, pointers which do not permit the underlying
array to be modified, can be created by simply placing the keyword const in
a declaration.

const int * first = data;
const int * last = data + 100;
 // can't modify location returned by the following
const int * where = find(first, last, 7);

Container iterators. All of the iterators constructed for the various
containers provided by the standard library are at least as general as input
iterators. The iterator for the first element in a collection is always
constructed by the member function begin(), while the iterator that denotes
the “past-the-end” location is generated by the member function end(). For
example, the following searches for the value 7 in a list of integers:

list<int>::iterator where = find(aList.begin(), aList.end(), 7);

Each container that supports iterators provides a type within the class
declaration with the name iterator . Using this, iterators can uniformly be
declared in the fashion shown. If the container being accessed is constant, or
if the description const_iterator is used, then the iterator is a constant
iterator.

Input stream iterators. The standard library provides a mechanism to
operate on an input stream using an input iterator. This ability is provided
by the class istream_iterator , and will be described in more detail in
Section 2.3.1.

2.2.2 Output Iterators

An output iterator has the opposite function from an input iterator. Output
iterators can be used to assign values in a sequence, but cannot be used to

✍
Ordinary Pointers
as Iterators
Because ordinary
pointers have the
same functionality
as random access
iterators, most of
the generic
algorithms in the
standard library
can be used with
conventional C++
arrays, as well as
with the
containers
provided by the
standard library.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Iterators

14

access values. For example, we can use an output iterator in a generic
algorithm that copies values from one sequence into another:

template <class InputIterator, class OutputIterator>
OutputIterator copy
 (InputIterator first, InputIterator last, OutputIterator result)
{
 while (first != last)
 *result++ = *first++;
 return result;
}

Two ranges are being manipulated here; the range of source values specified
by a pair of input iterators, and the destination range. The latter, however, is
specified by only a single argument. It is assumed that the destination is
large enough to include all values, and errors will ensue if this is not the case.

As illustrated by this algorithm, an output iterator can modify the element to
which it points, by being used as the target for an assignment. Output
iterators can use the dereference operator only in this fashion, and cannot be
used to return or access the elements they denote.

As we noted earlier, ordinary pointers, as well as all the iterators constructed
by containers in the standard library, can be used as examples of output
iterators. (Ordinary pointers are random access iterators, which are a
superset of output iterators.) So, for example, the following code fragment
copies elements from an ordinary C-style array into a standard library
vector:

int data[100];
vector<int> newdata(100);
 ...
copy (data, data+100, newdata.begin());

Just as the istream_iterator provided a way to operate on an input stream
using the input iterator mechanism, the standard library provides a data
type, ostream_iterator , that permits values to be written to an output
stream in an iterator-like fashion. These will be described in Section 2.3.2.

Yet another form of output iterator is an insert iterator. An insert iterator
changes the output iterator operations of dereferencing/assignment and
increment into insertions into a container. This permits operations such as
copy() to be used with variable length containers, such as lists and sets.
Insert iterators will be described in more detail in Section 2.4.

2.2.3 Forward Iterators

A forward iterator combines the features of an input iterator and an output
iterator. It permits values to both be accessed and modified. One function
that uses forward iterators is the replace() generic algorithm, which
replaces occurrences of specific values with other values. This algorithm is
written as follows:

template <class ForwardIterator, class T>

✍
Parallel
Sequences
A number of the
generic algorithms
manipulate two
parallel
sequences.
Frequently the
second sequence
is described using
only a beginning
iterator, rather
than an iterator
pair. It is
assumed, but not
checked, that the
second sequence
has at least as
many elements as
the first.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Iterators

15

void
 replace (ForwardIterator first, ForwardIterator last,
 const T& old_value, const T& new_value)
{
 while (first != last)
 {
 if (*first == old_value)
 *first = new_value;
 ++first;
 }
}

Ordinary pointers, as well as any of the iterators produced by containers in
the standard library, can be used as forward iterators. The following, for
example, replaces instances of the value 7 with the value 11 in a vector of
integers.

 replace (aVec.begin(), aVec.end(), 7, 11);

2.2.4 Bidirectional Iterators

A bidirectional iterator is similar to a forward iterator, except that
bidirectional iterators support the decrement operator (operator --),
permitting movement in either a forward or a backward direction through
the elements of a container. For example, we can use bidirectional iterators
in a function that reverses the values of a container, placing the results into a
new container.

template <class BidirectionalIterator, class OutputIterator>
OutputIterator
 reverse_copy (BidirectionalIterator first,
 BidirectionalIterator last,
 OutputIterator result)
{
 while (first != last)
 *result++ = *--last;
 return result;
}

As always, the value initially denoted by the last argument is not
considered to be part of the collection.

The reverse_copy() function could be used, for example, to reverse the
values of a linked list, and place the result into a vector:

 list<int> aList;

 vector<int> aVec (aList.size());
 reverse_copy (aList.begin(), aList.end(), aVec.begin());

2.2.5 Random Access Iterators

Some algorithms require more functionality than the ability to access values
in either a forward or backward direction. Random access iterators permit
values to be accessed by subscript, subtracted one from another (to yield the

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Iterators

16

number of elements between their respective values) or modified by
arithmetic operations, all in a manner similar to conventional pointers.

When using conventional pointers, arithmetic operations can be related to
the underlying memory; that is, x+10 is the memory ten elements after the
beginning of x. With iterators the logical meaning is preserved (x+10 is the
tenth element after x), however the physical addresses being described may
be different.

Algorithms that use random access iterators include generic operations such
as sorting and binary search. For example, the following algorithm
randomly shuffles the elements of a container. This is similar to, although
simpler than, the function random_shuffle() provided by the standard
library.

template <class RandomAccessIterator>
void
 mixup (RandomAccessIterator first, RandomAccessIterator last)
{
 while (first < last)
 {
 iter_swap(first, first + randomInteger(last - first));
 ++first;
 }
}

The program will cycle as long as first is denoting a position that occurs
earlier in the sequence than the one denoted by last . Only random access
iterators can be compared using relational operators; all other iterators can be
compared only for equality or inequality. On each cycle through the loop,
the expression last - first yields the number of elements between the two
limits. The function randomInteger() is assumed to generate a random
number between 0 and the argument. Using the standard random number
generator, this function could be written as follows:

unsigned int randomInteger (unsigned int n)
 // return random integer greater than
 // or equal to 0 and less than n
{
 return rand() % n;
}

This random value is added to the iterator first , resulting in an iterator to a
randomly selected value in the container. This value is then swapped with
the element denoted by the iterator first .

2.2.6 Reverse Iterators

An iterator naturally imposes an order on an underlying container of values.
For a vector or a map the order is given by increasing index values. For a
set it is the increasing order of the elements held in the container. For a list
the order is explicitly derived from the way values are inserted.

✍
randomInteger()
The function
randomInteger
described here is
used in a number
of the example
programs
presented in later
sections.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Iterators

17

A reverse iterator will yield values in exactly the reverse order of those given
by the standard iterators. That is, for a vector or a list, a reverse iterator will
generate the last element first, and the first element last. For a set it will
generate the largest element first, and the smallest element last. Strictly
speaking, reverse iterators are not themselves a new category of iterator.
Rather, there are reverse bidirectional iterators, reverse random access
iterators, and so on.

The list, set and map data types provide a pair of member functions that
produce reverse bidirectional iterators. The functions rbegin() and rend()

generate iterators that cycle through the underlying container in reverse
order. Increments to such iterators move backward, and decrements move
forward through the sequence.

Similarly, the vector and deque data types provide functions (also named
rbegin() and rend()) that produce reverse random access iterators.
Subscript and addition operators, as well as increments to such iterators
move backward within the sequence.

2.3 Stream Iterators
Stream iterators are used to access an existing input or output stream using
iterator operations.

2.3.1 Input Stream Iterators

As we noted in the discussion of input iterators, the standard library
provides a mechanism to turn an input stream into an input iterator. This
ability is provided by the class istream_iterator . When declared, the four
template arguments are the element type, the stream character type, the
character traits type, and a type that measures the distance between
elements. The latter two default to char_traits<charT > and ptrdiff_t.

This is almost always the appropriate behavior. The single argument
provided to the constructor for an istream_iterator is the stream to be
accessed. Each time the ++ operator is invoked on an input stream iterator a
new value from the stream is read (using the >> operator) and stored. This
value is then available through the use of the dereference operator (operator
*). The value constructed by istream_iterator when no arguments are
provided to the constructor can be used as an ending iterator value. The
following, for example, finds the first value 7 in a file of integer values.

istream_iterator<int, char> intstream(cin), eof;
istream_iterator<int, char>::iterator where =
 find(intstream, eof, 7);

The element denoted by an iterator for an input stream is valid only until the
next element in the stream is requested. Also, since an input stream iterator
is an input iterator, elements can only be accessed, they cannot be modified
by assignment. Finally, elements can be accessed only once, and only in a

✍
Stream Iterators
An input stream
iterator permits an
input stream to be
read using iterator
operations. An
output stream
iterator similarly
writes to an
output stream
when iterator
operations are
executed.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Iterators

18

forward moving direction. If you want to read the contents of a stream more
than one time, you must create a separate iterator for each pass.

2.3.2 Output Stream Iterators

The output stream iterator mechanism is analogous to the input stream
iterator. Each time a value is assigned to the iterator, it will be written on the
associated output stream, using the >> operator. To create an output stream
iterator you must specify, as an argument with the constructor, the
associated output stream. Values written to the output stream must
recognize the stream >> operation. An optional second argument to the
constructor is a string that will be used as a separator between each pair of
values. The following, for example, copies all the values from a vector into
the standard output, and separates each value by a space:

copy (newdata.begin(), newdata.end(),
 ostream_iterator<int,char> (cout, " "));

Simple file transformation algorithms can be created by combining input and
output stream iterators and the various algorithms provided by the standard
library. The following short program reads a file of integers from the
standard input, removes all occurrences of the value 7, and copies the
remainder to the standard output, separating each value by a new line:

void main()
{
 istream_iterator<int, char> input (cin), eof;
 ostream_iterator<int, char> output (cout, "\n");

 remove_copy (input, eof, output, 7);
}

2.4 Insert Iterators
Assignment to the dereferenced value of an output iterator is normally used
to overwrite the contents of an existing location. For example, the following
invocation of the function copy() transfers values from one vector to
another, although the space for the second vector was already set aside (and
even initialized) by the declaration statement:

vector<int> a(10);
vector<int> b(10);
 ...
copy (a.begin(), a.end(), b.begin());

Even structures such as lists can be overwritten in this fashion. The
following assumes that the list named c has at least ten elements. The initial
ten locations in the list will be replaced by the contents of the vector a.

list<int> c;
 ...
copy (a.begin(), a.end(), c.begin());

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Iterators

19

With structures such as lists and sets, which are dynamically enlarged as
new elements are added, it is frequently more appropriate to insert new
values into the structure, rather than to overwrite existing locations. A type of
adaptor called an insert iterator allows us to use algorithms such as copy() to
insert into the associated container, rather than overwrite elements in the
container. The output operations of the iterator are changed into insertions
into the associated container. The following, for example, inserts the values
of the vector a into an initially empty list:

list<int> d;

copy (a.begin(), a.end(), front_inserter(d));

There are three forms of insert iterators, all of which can be used to change a
copy operation into an insert operation. The iterator generated using
front_inserter , shown above, inserts values into the front of the container.
The iterator generated by back_inserter places elements into the back of the
container. Both forms can be used with lists and deques, but not with sets
or maps. back_inserter , but not front_inserter , can be used with vector.

The third, and most general form, is inserter , which takes two arguments; a
container and an iterator within the container. This form copies elements
into the specified location in the container. (For a list, this means elements
are copied immediately before the specified location). This form can be used
with all the structures for which the previous two forms work, as well as
with sets and maps.

The following simple program illustrates the use of all three forms of insert
iterators. First, the values 3, 2 and 1 are inserted into the front of an initially
empty list. Note that as it is inserted, each value becomes the new front, so
that the resultant list is ordered 1, 2, 3. Next, the values 7, 8 and 9 are inserted
into the end of the list. Finally, the find() operation is used to locate an
iterator that denotes the 7 value, and the numbers 4, 5 and 6 are inserted
immediately prior. The result is the list of numbers from 1 to 9 in order.

void main() {
 int threeToOne [] = {3, 2, 1};
 int fourToSix [] = {4, 5, 6};
 int sevenToNine [] = {7, 8, 9};

 list<int> aList;

 // first insert into the front
 // note that each value becomes new front
 copy (threeToOne, threeToOne+3, front_inserter(aList));

 // then insert into the back
 copy (sevenToNine, sevenToNine+3, back_inserter(aList));

 // find the seven, and insert into middle
 list<int>::iterator seven = find(aList.begin(), aList.end(), 7);
 copy (fourToSix, fourToSix+3, inserter(aList, seven));

 // copy result to output
 copy (aList.begin(), aList.end(),

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Iterators

20

 ostream_iterator<int,char>(cout, " "));
 cout << endl;
}

Observe that there is an important and subtle difference between the
iterators created by inserter(aList, aList.begin()) and
front_inserter(aList). The call on inserter(aList, aList.begin())

copies values in sequence, adding each one to the front of a list, whereas
front_inserter(aList) copies values making each value the new front. The
result is that front_inserter(aList) reverses the order of the original
sequence, while inserter(aList, aList.begin()) retains the original order.

2.5 Iterator Operations
The standard library provides two functions that can be used to manipulate
iterators. The function advance() takes an iterator and a numeric value as
argument, and modifies the iterator by moving the given amount.

void advance (InputIterator & iter, Distance & n);

For random access iterators this is the same as iter + n; however, the
function is useful because it is designed to operate with all forms of iterator.
For forward iterators the numeric distance must be positive, whereas for
bidirectional or random access iterators the value can be either positive or
negative. The operation is efficient (constant time) only for random access
iterators. In all other cases it is implemented as a loop that invokes either the
operators ++ or -- on the iterator, and therefore takes time proportional to
the distance traveled. The advance() function does not check to ensure the
validity of the operations on the underlying iterator.

The second function, distance(), returns the number of iterator operations
necessary to move from one element in a sequence to another. The
description of this function is as follows:

void distance (InputIterator first, InputIterator last,
 Distance &n);

The result is returned in the third argument, which is passed by reference.
Distance will increment this value by the number of times the operator ++

must be executed to move from first to last . Always be sure that the
variable passed through this argument is properly initialized before invoking
the function.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Functions and Predicates

21

S e c t i o n 3.
Functions and Predicates

3.1

Functions

3.2

Predicates

3.3

Function Objects

3.4

Function Adaptors

3.5

Negators and Binders

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Functions and Predicates

22

3.1 Functions
A number of algorithms provided in the standard library require functions
as arguments. A simple example is the algorithm for_each(), which
invokes a function, passed as an argument, on each value held in a container.
The following, for example, applies the printElement() function to produce
output describing each element in a list of integer values:

void printElement (int value)
{
 cout << "The list contains " << value << endl;
}

main ()
{
 list<int> aList;
 ...
 for_each (aList.begin(), aList.end(), printElement);
}

Binary functions take two arguments, and are often applied to values from
two different sequences. For example, suppose we have a list of strings and
a list of integers. For each element in the first list we wish to replicate the
string the number of times given by the corresponding value in the second
list. We could perform this easily using the function transform() from the
standard library. First, we define a binary function with the desired
characteristics:

string stringRepeat (const string & base, int number)
 // replicate base the given number of times
{
 string result; // initially the result is empty
 while (number--) result += base;
 return result;
}

The following call on transform() then produces the desired effect:

list<string> words;
list<int> counts;
 ...
transform (words.begin(), words.end(),
 counts.begin(), words.begin(), stringRepeat);

Transforming the words one, two, three with the values 3, 2, 3 would yield
the result oneoneone, twotwo, threethreethree .

3.2 Predicates
A predicate is simply a function that returns either a boolean (true/false)
value or an integer value. Following the normal C convention, an integer
value is assumed to be true if non-zero, and false otherwise. An example

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Functions and Predicates

23

function might be the following, which takes as argument an integer and
returns true if the number represents a leap year, and false otherwise:

bool isLeapYear (unsigned int year)
 // return true if year is leap year
{
 // millennia are leap years
 if (0 == year % 1000) return true;
 // every fourth century is
 if (0 == year % 400) return true;
 // every fourth year is
 if (0 == year % 4) return true;
 // otherwise not
 return false;
}

A predicate is used as an argument, for example, in the generic algorithm
named find_if() . This algorithm returns the first value that satisfies the
predicate, returning the end-of-range value if no such element is found.
Using this algorithm, the following locates the first leap year in a list of years:

list<int>::iterator firstLeap =
 find_if(aList.begin(), aList.end(), isLeapYear);

3.3 Function Objects
A function object is an instance of a class that defines the parenthesis operator
as a member function. There are a number of situations where it is
convenient to substitute function objects in place of functions. When a
function object is used as a function, the parenthesis operator is invoked
whenever the function is called.

To illustrate, consider the following class definition:

class biggerThanThree
 {
 public:
 bool operator () (int val)
 { return val > 3; }
};

If we create an instance of class biggerThanThree, every time we reference
this object using the function call syntax, the parenthesis operator member
function will be invoked. The next step is to generalize this class, by adding
a constructor and a constant data field, which is set by the constructor.

class biggerThan {
 public:
 const int testValue;
 biggerThan (int x) : testValue(x) { }

 bool operator () (int val)
 { return val > testValue; }
};

The result is a general “bigger than X” function, where the value of X is
determined when we create an instance of the class. We can do so, for

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Functions and Predicates

24

example, as an argument to one of the generic functions that require a
predicate. In this manner the following will find the first value in a list that
is larger than 12:

list<int>::iterator firstBig =
 find_if (aList.begin(), aList.end(), biggerThan(12));

Three of the most common reasons to use function objects in place of
ordinary functions are to employ an existing function object provided by the
standard library instead of a new function, to improve execution by using
inline function calls, or to allow a function object to access or set state
information that is held by an object. We will give examples of each.

The following table illustrates the function objects provided by the standard
library.

Name Implemented operations
arithmetic functions

plus

minus

multiplies

divides

modulus

negate

 addition x + y

subtraction x - y

multiplication x * y

division x / y

remainder x % y

negation - x

comparison functions

equal_to

not_equal_to

greater

less

greater_equal

less_equal

 equality test x == y

inequality test x != y

greater comparison x > y

less-than comparison x < y

greater than or equal comparison x >= y

less than or equal comparison x <= y

logical functions

logical_and

logical_or

logical_not

 logical conjunction x && y

logical disjunction x || y

logical negation ! x

Let's look at a couple of examples that show how these might be used. The
first example uses plus() to compute the by-element addition of two lists of
integer values, placing the result back into the first list. This can be
performed by the following:

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Functions and Predicates

25

transform (listOne.begin(), listOne.end(), listTwo.begin(),
 listOne.begin(), plus<int>());

The second example negates every element in a vector of boolean values:

transform (aVec.begin(), aVec.end(), aVec.begin(),
 logical_not<bool>());

The base classes used by the standard library in the definition of the
functions shown in the preceding table are available for the creation of new
unary and binary function objects. These base classes are defined as follows:

template <class Arg, class Result>
struct unary_function {
 typedef Arg argument_type;
 typedef Result result_type;
};

template <class Arg1, class Arg2, class Result>
struct binary_function {
 typedef Arg1 first_argument_type;
 typedef Arg2 second_argument_type;
 typedef Result result_type;
};

An example of the use of these functions is found in Section 6.3. Here we
want to take a binary function of type “Widget” and an argument of type
integer, and compare the widget identification number against the integer
value. A function to do this is written in the following manner:

struct WidgetTester : binary_function<Widget, int, bool> {
public:
 bool operator () (const Widget & wid, int testid) const
 { return wid.id == testid; }
};

A second reason to consider using function objects instead of functions is
faster code. In many cases an invocation of a function object, such as the
examples given in the calls on transform() presented earlier, can be
expanded in-line, eliminating the overhead of a function call.

✍
Location of the
Class Definitions
The class
definitions for
unary_function
and
binary_function
can be
incorporated by
#including
functional .

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Functions and Predicates

26

The third major reason to use a function object in place of a function is when
each invocation of the function must remember some state set by earlier
invocations. An example of this occurs in the creation of a generator, to be
used with the generic algorithm generate(). A generator is simply a
function that returns a different value each time it is invoked. The most
commonly used form of generator is a random number generator, but there
are other uses for the concept. A sequence generator simply returns the
values of an increasing sequence of natural numbers (1, 2, 3, 4 and so on).
We can call this object iotaGen after the similar operation in the
programming language APL, and define it as follows:

class iotaGen {
public:
 iotaGen (int start = 0) : current(start) { }
 int operator () () { return current++; }
private:
 int current;
};

An iota object maintains a current value, which can be set by the constructor,
or defaults to zero. Each time the function-call operator is invoked, the
current value is returned, and also incremented. Using this object, the
following call on the standard library function generate() will initialize a
vector of 20 elements with the values 1 through 20:

vector<int> aVec(20);
generate (aVec.begin(), aVec.end(), iotaGen(1));

3.4 Function Adaptors
A function adaptor is an instance of a class that adapts a global or member
function so that the function can be used as a function object (a function
adaptor may also be used to alter the behavior of a function or function
object, as is the case in the next section). Each function adaptor provides a
constructor that takes a global or member function. The adaptor also
provides a parenthesis operator that forwards its call to that associated
global or member function.

The pointer_to_unary_functoin and pointer_to_binary_function templates
adapt global functions of one or two arguments. These adaptors can be
applied directly, or you can use the ptr_fun function template to construct
the appropriate adaptor automatically. For instance, I can adapt a simple
times3 function and apply it to a vector of integers as follows:

int times3(int x) {
 return 3*x;
}

int a{} {1,2,3,4,5};
vector<int> v(a,a+5), v2;

transform(v.begin(),v.end(),v2.end(),ptr_fun(times3));

✍
Using Function
Objects to Store
References
A more complex
illustration of the
use of a function
object occurs in
the radix sorting
example program
given as an
illustration of the
use of the list data
type in Section
6.3. In this
program
references are
initialized in the
function object,
so that during the
sequence of
invocations the
function object
can access and
modify local
values in the
calling program.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Functions and Predicates

27

Alternatively, I could have applied the adaptor, and then passed the new,
adapted, function object to my vector.

pointer_to_unary_function<int,int> pf(times3);
transform(v.begin(),v.end(),v2.end(),pf);

Here you can see the advantage of allowing the compiler to deduce the types
needed by pointer_to_unary_function through the use of ptr_fun.

The mem_fun family of templates adapts member functions, rather than
global functions. For instance, if I have a set of lists, and I want to sort each
list in the set, I can use mem_fun_t (or more simply mem_fun) to apply the list
sort member function to each element in the set.

set<list<int>* > s;

// Initialize the set with lists
…
// Sort each list in the set.
for_each(s.begin(),s.end(),mem_fun(&list<int>::sort));

// Now each list in the set is sorted

This is necessary because the generic sort algorithm cannot be used on a list.
This is also the simplest way to access any polymorphic characteristics of an
object held in a standard container. For instance I might invoke a virtual
draw function on a collection of objects that are all part of the canonical
‘shape’ hierarchy like this:

// shape hierarchy
class shape {
 virtual void draw();
};

class circle : public shape {
 void draw();
};

class square : public shape {
 void draw();
};

// Assemble a vector of shapes
circle c;
square s;
vector<shape*> v;
v.push_back(&s);
v.push_back(&c);

// Call draw on each one
for_each(v.begin(),v.end(), mem_fun(&shape::draw));

Similarly to the global function adaptors, each member function adaptor
consists of a class template and an associated function template. The class is
the actual adaptor, while the function simplifies the use of the class by
constructing instances of that class on the fly. For instance, in the above

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Functions and Predicates

28

example I could have constructed a mem_fun_t myself, and then passed that
to the for_each algorithm:

mem_fun_t<shape> mf(&shape::draw);
for_each(v.begin(),v.end(),mf);

Again, you can see that the mem_fun function template simplifies the use of
the mem_fun_t adaptor by allowing the compiler to deduce the type needed
by mem_fun_t .

The library provides member function adaptors for functions with zero
arguments (as above) and one argument. This can be easily extended to
member functions with more arguments.

3.5 Negators and Binders
Negators and binders are function adaptors that are used to build new
function objects out of existing function objects. Almost always, these are
applied to functions as part of the process of building an argument list prior
to invoking yet another function or generic algorithm.

The negators not1() and not2() take a unary and a binary predicate function
object, respectively, and create a new function object that will yield the
complement of the original. For example, using the widget tester function
object defined in the previous section, the function object

 not2(WidgetTester())

yields a binary predicate which takes exactly the same arguments as the
widget tester, and which is true when the corresponding widget tester would
be false, and false otherwise. Negators work only with function objects
defined as subclasses of the classes unary_function and binary_function ,
given earlier.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Functions and Predicates

29

A binder takes a two-argument function, and binds either the first or second
argument to a specific value, thereby yielding a one-argument function. The
underlying function must be a subclass of class binary_function . The
binder bind1st() binds the first argument, while the binder bind2nd() binds
the second.

For example, the binder bind2nd(greater<int>(), 5) creates a function
object that tests for being larger than 5. This could be used in the following,
which yields an iterator representing the first value in a list larger than 5:

list<int>::iterator where = find_if(aList.begin(), aList.end(),
 bind2nd(greater<int>(), 5));

Combining a binder and a negator, we can create a function that is true if the
argument is divisible by 3, and false otherwise. This can be used to remove
all the multiples of 3 from a list.

list<int>::iterator where = remove_if (aList.begin(), aList.end(),
 not1(bind2nd(modulus<int>(), 3)));

A binder is used to tie the widget number of a call to the binary function
WidgetTester(), yielding a one-argument function that takes only a widget
as argument. This is used to find the first widget that matches the given
widget type:

list<Widget>::iterator wehave =
 find_if(on_hand.begin(), on_hand.end(),
 bind2nd(WidgetTester(), wid));

✍
A Hot Idea
The idea
described here by
the term binder is
in other contexts
often described
by the term curry.
This is not, as some
people think,
because it is a hot
idea. Instead, it is
named after the
computer scientist
Haskell P. Curry,
who used the
concept
extensively in an
influential book on
the theory of
computation in
the 1930’s. Curry
himself attributed
the idea to Moses
Schönfinkel,
leaving one to
wonder why we
don’t instead refer
to binders as
“Schönfinkels.”

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Container Classes

31

S e c t i o n 4.
Container Classes

4.1

Overview

4.2

Selecting a Container

4.3

Memory Management Issues

4.4

Container Types not Found in the Standard Library

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Container Classes

32

4.1 Overview
The standard library provides no fewer than ten alternative forms of
container. In this section we will briefly describe the varieties, considering
the characteristics of each, and discuss how you might go about selecting
which container to use in solving a particular problem. Subsequent sections
will then go over each of the different containers in more detail.

The following chart shows the ten container types provided by the standard
library, and gives a short description of the most significant characteristic for
each.

Name Characteristic
vector random access to elements, efficient insertions at end
list efficient insertion and removal throughout
deque random access, efficient insertion at front or back
set elements maintained in order, efficient test for inclusion,

insertion and removal
multiset set with repeated copies
map access to values via keys, efficient insertion and removal
multimap map permitting duplicate keys
stack insertions and removals only from top
queue insertion at back, removal from front
priority queue efficient access and removal of largest value

4.2 Selecting a Container
The following series of questions can help you determine which type of
container is best suited for solving a particular problem.

How are values going to be accessed?

If random access is important, than a vector or a deque should be used. If
sequential access is sufficient, then one of the other structures may be
suitable.

Is the order in which values are maintained in the collection important?

There are a number of different ways values can be sequenced. If a strict
ordering is important throughout the life of the container, then the set data
structure is an obvious choice, as insertions into a set are automatically
placed in order. On the other hand, if this ordering is important only at one
point (for example, at the end of a long series of insertions), then it might be
easier to place the values into a list or vector, then sort the resulting
structure at the appropriate time. If the order that values are held in the

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Container Classes

33

structure is related to the order of insertion, then a stack, queue, or list may
be the best choice.

Will the size of the structure vary widely over the course of execution?

If true, then a list or set might be the best choice. A vector or deque will
continue to maintain a large buffer even after elements have been removed
from the collection. Conversely, if the size of the collection remains relatively
fixed, than a vector or deque will use less memory than will a list or set
holding the same number of elements.

Is it possible to estimate the size of the collection?

The vector data structure provides a way to pre-allocate a block of memory
of a given size (using the reserve() member function). This ability is not
provided by the other containers.

Is testing to see whether a value is contained in the collection a frequent operation?

If so, then the set or map containers would be a good choice. Testing to see
whether a value is contained in a set or map can be performed in a very
small number of steps (logarithmic in the size of the container), whereas
testing to see if a value is contained in one of the other types of collections
might require comparing the value against every element being stored by the
container.

Is the collection indexed? That is, can the collection be viewed as a series of
key/value pairs?

If the keys are integers between 0 and some upper limit, a vector or deque
should be employed. If, on the other hand, the key values are some other
ordered data type (such as characters, strings, or a user-defined type), the
map container can be used.

Can values be related to each other?

All values stored in any container provided by the standard library must be
able to test for equality against another similar value, but not all need to
recognize the relational less-than operator. However, if values cannot be
ordered using the relational less-than operator, they cannot be stored in a set
or a map.

Is finding and removing the largest value from the collection a frequent operation?

If the answer is “yes,” the priority queue is the best data structure to use.

At what positions are values inserted into or removed from the structure?

If values are inserted into or removed from the middle, then a list is the best
choice. If values are inserted only at the beginning, a deque or a list is the
preferred choice. If values are inserted or removed only at the end, a stack
or queue may be a logical choice.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Container Classes

34

Is a frequent operation the merging of two or more sequences into one?

If so, a set or a list would seem to be the best choice, depending whether the
collection is maintained in order. Merging two sets is a very efficient
operation. If the collections are not ordered, but the efficient splice()

member function from class list can be used, then the list data type is to be
preferred, since this operation is not provided in the other containers.

In many situations any number of different containers may be applicable to a
given problem. In such cases one possibility is to compare actual execution
timings to determine which alternative is best.

4.3 Memory Management Issues
Containers in the standard library can maintain a variety of different types of
elements. These include the fundamental data types (integer , char , and so
on), pointers, or user-defined types. Containers cannot hold references. In
general, memory management is handled automatically by the standard
container classes, with little interaction by the programmer.

Values are placed into a container using the copy constructor. For most
container classes, the element type held by the container must also define a
default constructor. Generic algorithms that copy into a container (such as
copy()) use the assignment operator.

When an entire container is duplicated (for example, through invoking a
copy constructor or as the result of an assignment), every value is copied into
the new structure using (depending on the structure) either the assignment
operator or a copy constructor. Whether such a result is a “deep copy” or a
“shallow copy,” it is controlled by the programmer, who can provide the
assignment operator with whatever meaning is desired. Memory for
structures used internally by the various container classes is allocated and
released automatically and efficiently.

If a destructor is defined for the element type, this destructor will be invoked
when values are removed from a container. When an entire collection is
destroyed, the destructor will be invoked for each remaining value being
held by the container.

A few words should be said about containers that hold pointer values. Such
collections are not uncommon. For example, a collection of pointers is the
only way to store values that can potentially represent either instances of a
class or instances of a subclass. Such a collection is encountered in an
example problem discussed in Section 11.3.

In these cases the container is responsible only for maintaining the pointer
values themselves. It is the responsibility of the programmer to manage the
memory for the values being referenced by the pointers. This includes
making certain the memory values are properly allocated (usually by
invoking the new operator), that they are not released while the container

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Container Classes

35

holds references to them, and that they are properly released once they have
been removed from the container.

4.4 Container Types Not Found in the Standard Library
There are a number of “classic” container types that are not found in the
standard library. In most cases, the reason is that the containers that have
been provided can easily be adapted to a wide variety of uses, including
those traditionally solved by these alternative collections.

There is no tree collection that is described as such. However, the set data
type is internally implemented using a form of binary search tree. For most
problems that would be solved using trees, the set data type is an adequate
substitute.

The set data type is specifically ordered, and there is no provision for
performing set operations (union, intersection, and so on) on a collection of
values that cannot be ordered (for example, a set of complex numbers). In
such cases a list can be used as a substitute, although it is still necessary to
write special set operation functions, as the generic algorithms cannot be
used in this case.

There are no multidimensional arrays. However, vectors can hold other
vectors as elements, so such structures can be easily constructed.

There are no graphs. However, one representation for graphs can be easily
constructed as a map that holds other maps. This type of structure is
described in the sample problem discussed in Section 9.3.2.

There are no sparse arrays. A novel solution to this problem is to use the
graph representation discussed in Section 9.3.2.

There are no hash tables. A hash table provides amortized constant time
access, insertion and removal of elements, by converting access and removal
operations into indexing operations. However, hash tables can be easily
constructed as a vector (or deque) that holds lists (or even sets) as elements.
A similar structure is described in the radix sort sample problem discussed
in Section 7.3, although this example does not include invoking the hash
function to convert a value into an index.

In short, while not providing every conceivable container type, the
containers in the standard library represent those used in the solution of
most problems, and a solid foundation from which further structures can be
constructed.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
vector and vector<bool>

37

S e c t i o n 5.
vector and vector<bool>

5.1
The vector Data Abstraction

5.2
Vector Operations

5.3
Boolean Vectors

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
vector and vector<bool>

38

5.1 The vector Data Abstraction
The vector container class generalizes the concept of an ordinary C array.
Like an array, a vector is an indexed data structure, with index values that
range from 0 to one less than the number of elements contained in the
structure. Also like an array, values are most commonly assigned to and
extracted from the vector using the subscript operator. However, the vector
differs from an array in the following important respects:

• A vector has more “self-knowledge” than an ordinary array. In
particular, a vector can be queried about its size, about the number of
elements it can potentially hold (which may be different from its current
size), and so on.

• The size of the vector can change dynamically. New elements can be
inserted on to the end of a vector, or into the middle. Storage
management is handled efficiently and automatically. It is important to
note, however, that while these abilities are provided, insertion into the
middle of a vector is not as efficient as insertion into the middle of a list
(Section 6). If many insertion operations are to be performed, the list
container should be used instead of the vector data type.

The vector container class in the standard library should be compared and
contrasted to the deque container class we will describe in more detail in
Section 7. Like a vector, a deque (pronounced “deck”) is an indexed data
structure. The major difference between the two is that a deque provides
efficient insertion at either the beginning or the end of the container, while a
vector provides efficient insertion only at the end. In many situations, either
structure can be used. Use of a vector generally results in a smaller
executable file, while, depending upon the particular set of operations being
performed, use of a deque may result in a slightly faster program.

5.1.1 Include Files

Whenever you use a vector, you must include the vector header file.

 # include <vector>

5.2 Vector Operations
Each of the member functions provided by the vector data type will shortly
be described in more detail. Note that while member functions provide basic
operations, the utility of the data structure is greatly extended through the
use of the generic algorithms described in Sections 12 and 14.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
vector and vector<bool>

39

5.2.1 Declaration and Initialization of Vectors

Because it is a template class, the declaration of a vector must include a
designation of the component type. This can be a primitive language type
(such as integer or double), a pointer type, or a user-defined type. In the
latter case, the user-defined type must implement a default constructor, as
this constructor is used to initialize newly created elements. A copy
constructor, either explicitly or implicitly defined, must also exist for the
container element type. Like an array, a vector is most commonly declared
with an integer argument that describes the number of elements the vector
will hold:

 vector<int> vec_one(10);

The constructor used to create the vector in this situation is declared as
explicit , which prevents it being used as a conversion operator. (This is
generally a good idea, since otherwise an integer might unintentionally be
converted into a vector in certain situations.)

There are a variety of other forms of constructor that can also be used to
create vectors. In addition to a size, the constructor can provide a constant
value that will be used to initialize each new vector location. If no size is
provided, the vector initially contains no elements, and increases in size
automatically as elements are added. The copy constructor creates a clone of
a vector from another vector.

vector<int> vec_two(5, 3); // copy constructor
vector<int> vec_three;
vector<int> vec_four(vec_two); // initialization by assignment

A vector can also be initialized using elements from another collection, by
means of a beginning and ending iterator pair. The arguments can be any
form of iterator; thus collections can be initialized with values drawn from
any of the container classes in the standard library that support iterators.

vector <int> vec_five (aList.begin(), aList.end());

✍
Requirements of
an Element Type
Elements that are
held by a vector
must define a
default
constructor
(constructor with
no arguments), as
well as a copy
constructor.
Although not used
by functions in the
vector class, some
of the generic
algorithms also
require vector
elements to
recognize either
the equivalence
operator
(operator ==) or
the relational less-
than operator
(operator <) .

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
vector and vector<bool>

40

A vector can be assigned the values of another vector, in which case the
target receives a copy of the argument vector.

vec_three = vec_five;

The assign() member function is similar to an assignment, but is more
versatile and, in some cases, requires more arguments. Like an assignment,
the existing values in the container are deleted, and replaced with the values
specified by the arguments. There are two forms of assign(). The first
takes two iterator arguments that specify a sub-sequence of an existing
container. The values from this sub-sequence then become the new elements
in the receiver. The second version of assign() takes a count and an
optional value of the container element type. After the call the container will
hold only the number of elements specified by the count, which are equal to
either the default value for the container type or the initial value specified.

vec_six.assign(list_ten.begin(), list_ten.end());
vec_four.assign(3, 7); // three copies of the value 7
vec_five.assign(12); // twelve copies of value zero

If a destructor is defined for the container element type, the destructor will
be called for each value removed from the collection.

Finally, two vectors can exchange their entire contents by means of the
swap() operation. The argument container will take on the values of the
receiver, while the receiver will assume those of the argument. A swap is
very efficient, and should be used, where appropriate, in preference to an
explicit element-by-element transfer.

 vec_three.swap(vec_four);

5.2.2 Type Definitions

The class vector includes a number of type definitions. These are most
commonly used in declaration statements. For example, an iterator for a
vector of integers can be declared in the following fashion:

vector<int>::iterator location;

In addition to iterator , the following types are defined:

value_type The type associated with the elements the
vector maintains.

const_iterator An iterator that does not allow modification of
the underlying sequence.

reverse_iterator An iterator that moves in a backward direction.

const_reverse_iterator A combination constant and reverse iterator.

reference A reference to an underlying element.

✍
Constructors and
Iterators
Because it
requires the ability
to define a
method with a
template
argument
different from the
class template,
some compilers
may not yet
support the
initialization of
containers using
iterators. In the
mean time, while
compiler
technology
catches up with
the standard
library definition,
the Rogue Wave
version of the
standard library
will support
conventional
pointers and
vector iterators in
this manner.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
vector and vector<bool>

41

const_reference A reference to an underlying element that will
not permit the element to be modified.

size_type An unsigned integer type, used to refer to the
size of containers.

difference_type A signed integer type, used to describe
distances between iterators.

allocator_type The type of allocator used to manage memory
for the vector.

5.2.3 Subscripting a Vector

The value being maintained by a vector at a specific index can be accessed or
modified using the subscript operator, just like an ordinary array. And, like
arrays, there currently are no attempts to verify the validity of the index
values (although this may change in future releases). Indexing a constant
vector yields a constant reference. Attempts to index a vector outside the
range of legal values will generate unpredictable and spurious results:

 cout << vec_five[1] << endl;
 vec_five[1] = 17;

The member function at() can be used in place of the subscript operator. It
takes exactly the same arguments as the subscript operator, and returns
exactly the same values.

The member function front() returns the first element in the vector, while
the member function back() yields the last. Both also return constant
references when applied to constant vectors.

cout << vec_five.front() << " ... " << vec_five.back() << endl;

5.2.4 Extent and Size-Changing Operations

There are, in general, three different “sizes” associated with any vector. The
first is the number of elements currently being held by the vector. The
second is the maximum size to which the vector can be expanded without
requiring that new storage be allocated. The third is the upper limit on the
size of any vector. These three values are yielded by the member functions
size(), capacity(), and max_size(), respectively.

cout << "size: " << vec_five.size() << endl;
cout << "capacity: " << vec_five.capacity() << endl;
cout << "max_size: " << vec_five.max_size() << endl;

The maximum size is usually limited only by the amount of available
memory, or the largest value that can be described by the data type
size_type . The current size and capacity are more difficult to characterize.
As we will note in the next section, elements can be added to or removed
from a vector in a variety of ways. When elements are removed from a

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
vector and vector<bool>

42

vector, the memory for the vector is generally not reallocated, and thus the
size is decreased but the capacity remains the same. A subsequent insertion
does not force a reallocation of new memory if the original capacity is not
exceeded.

An insertion that causes the size to exceed the capacity generally results in a
new block of memory being allocated to hold the vector elements. Values are
then copied into this new memory using the assignment operator
appropriate to the element type, and the old memory is deleted. Because this
can be a potentially costly operation, the vector data type provides a means
for the programmer to specify a value for the capacity of a vector. The
member function reserve() is a directive to the vector, indicating that the
vector is expected to grow to at least the given size. If the argument used
with reserve() is larger than the current capacity, then a reallocation occurs
and the argument value becomes the new capacity. (It may subsequently
grow even larger; the value given as the argument need not be a bound, just
a guess.) If the capacity is already in excess of the argument, then no
reallocation takes place. Invoking reserve() does not change the size of the
vector, nor the element values themselves (with the exception that they may
potentially be moved should reallocation take place).

vec_five.reserve(20);

A reallocation invalidates all references, pointers, and iterators referring to
elements being held by a vector.

The member function empty() returns true if the vector currently has a size
of zero (regardless of the capacity of the vector). Using this function is
generally more efficient than comparing the result returned by size() to
zero.

cout << "empty is " << vec_five.empty() << endl;

The member function resize() changes the size of the vector to the value
specified by the argument. Values are either added to or erased from the end
of the collection as necessary. An optional second argument can be used to
provide the initial value for any new elements added to the collection. If a
destructor is defined for the element type, the destructor will be called for
any values that are removed from the collection.

 // become size 12, adding values of 17 if necessary
 vec_five.resize (12, 17);

5.2.5 Inserting and Removing Elements

As we noted earlier, the class vector differs from an ordinary array in that a
vector can, in certain circumstances, increase or decrease in size. When an
insertion causes the number of elements being held in a vector to exceed the
capacity of the current block of memory being used to hold the values, then a
new block is allocated and the elements are copied to the new storage.

✍
Memory
Management
A vector stores
values in a single
large block of
memory. A
deque, on the
other hand,
employs a
number of smaller
blocks. This
difference may
be important on
machines that
limit the size of
any single block
of memory,
because in such
cases a deque will
be able to hold
much larger
collections than
are possible with a
vector.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
vector and vector<bool>

43

A new element can be added to the back of a vector using the function
push_back(). If there is space in the current allocation, this operation is very
efficient (constant time).

 vec_five.push_back(21); // add element 21 to end of collection

The corresponding removal operation is pop_back(), which decreases the
size of the vector, but does not change its capacity. If the container type
defines a destructor, the destructor will be called on the value being
eliminated. Again, this operation is very efficient. (The class deque permits
values to be added and removed from both the back and the front of the
collection. These functions are described in Section 7, which discusses
deques in more detail.)

More general insertion operations can be performed using the insert()

member function. The location of the insertion is described by an iterator;
insertion takes place immediately preceding the location denoted. A fixed
number of constant elements can be inserted by a single function call. It is
much more efficient to insert a block of elements in a single call, than to
perform a sequence of individual insertions, because with a single call at
most one allocation will be performed.

 // find the location of the 7
 vector<int>::iterator where =
 find(vec_five.begin(), vec_five.end(), 7);
 // then insert the 12 before the 7
 vec_five.insert(where, 12);
 vec_five.insert(where, 6, 14); // insert six copies of 14

The most general form of the insert() member function takes a position and
a pair of iterators that denote a sub-sequence from another container. The
range of values described by the sequence is inserted into the vector. Again,
because at most a single allocation is performed, using this function is
preferable to using a sequence of individual insertions.

 vec_five.insert (where, vec_three.begin(), vec_three.end());

✍
Costly Insertions
Even adding a
single element to
a vector can, in
the worst case,
require time
proportional to
the number of
elements in the
vector, as each
element is moved
to a new location.
If insertions are a
prominent feature
of your current
problem, then you
should explore the
possibility of using
containers, such
as lists or sets,
which are
optimized for
insert operations.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
vector and vector<bool>

44

In addition to the pop_back() member function, which removes elements
from the end of a vector, a function exists that removes elements from the
middle of a vector, using an iterator to denote the location. The member
function that performs this task is erase(). There are two forms; the first
takes a single iterator and removes an individual value, while the second
takes a pair of iterators and removes all values in the given range. The size
of the vector is reduced, but the capacity is unchanged. If the container type
defines a destructor, the destructor will be invoked on the eliminated values.

 vec_five.erase(where);
 // erase from the 12 to the end
 where = find(vec_five.begin(), vec_five.end(), 12);
 vec_five.erase(where, vec_five.end());

5.2.6 Iteration

The member functions begin() and end() yield random access iterators for
the container. Again, we note that the iterators yielded by these operations
can become invalidated after insertions or removals of elements. The
member functions rbegin() and rend() return similar iterators, however
these access the underlying elements in reverse order. Constant iterators are
returned if the original container is declared as constant, or if the target of the
assignment or parameter is constant.

5.2.7 Test for Inclusion

A vector does not directly provide any method that can be used to
determine if a specific value is contained in the collection. However, the
generic algorithms find() or count() (Section 13.3.1 and 13.6.1) can be used
for this purpose. The following statement, for example, tests to see whether
an integer vector contains the element 17.

int num = 0;
count (vec_five.begin(), vec_five.end(), 17, num);

if (num)
 cout << "contains a 17" << endl;
else
 cout << "does not contain a 17" << endl;

5.2.8 Sorting and Sorted Vector Operations

A vector does not automatically maintain its values in sequence. However, a
vector can be placed in order using the generic algorithm sort() (Section
14.2). The simplest form of sort uses for its comparisons the less-than
operator for the element type. An alternative version of the generic
algorithm permits the programmer to specify the comparison operator
explicitly. This can be used, for example, to place the elements in descending
rather than ascending order:

✍
Iterator
Invalidation
Once more, it is
important to
remember that
should
reallocation occur
as a result of an
insertion, all
references,
pointers, and
iterators that
denoted a
location in the
now-deleted
memory block
that held the
values before
reallocation
become invalid.

✍
Initializing Count
Note that count()
returns its result
through an
argument that is
passed by
reference. It is
important that this
value be properly
initialized before
invoking this
function.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
vector and vector<bool>

45

 // sort ascending
sort (aVec.begin(), aVec.end());

 // sort descending, specifying the ordering function explicitly
sort (aVec.begin(), aVec.end(), greater<int>());

 // alternate way to sort descending
sort (aVec.rbegin(), aVec.rend());

A number of the operations described in Section 14 can be applied to a vector
holding an ordered collection. For example, two vectors can be merged
using the generic algorithm merge() (Section 14.6).

 // merge two vectors, printing output
merge (vecOne.begin(), vecOne.end(), vecTwo.begin(), vecTwo.end(),
 ostream_iterator<int,char> (cout, " "));

Sorting a vector also lets us use the more efficient binary search algorithms
(Section 14.5), instead of a linear traversal algorithm such as find().

5.2.9 Useful Generic Algorithms

Most of the algorithms described in Section 13 can be used with vectors. The
following table summarizes a few of the more useful of these. For example,
the maximum value in a vector can be determined as follows:

vector<int>::iterator where =
 max_element (vec_five.begin(), vec_five.end());
cout << "maximum is " << *where << endl;

Purpose Name
Fill a vector with a given initial value fill

Copy one sequence into another copy

Copy values from a generator into a
vector

generate

Find an element that matches a condition find

Find consecutive duplicate elements adjacent_find

Find a sub-sequence within a vector search

Locate maximum or minimum element max_element, min_element

Reverse order of elements reverse

Replace elements with new values replace

Rotate elements around a midpoint rotate

Partition elements into two groups partition

Generate permutations next_permutation

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
vector and vector<bool>

46

Purpose Name
Inplace merge within a vector inplace_merge

Randomly shuffle elements in vector random_shuffle

Count number of elements that satisfy
condition

count

Reduce vector to a single value accumulate

Inner product of two vectors inner_product

Test two vectors for pair-wise equality equal

Lexical comparison lexicographical_compare

Apply transformation to a vector transform

Partial sums of values partial_sum

Adjacent differences of value adjacent_difference

Execute function on each element for_each

5.3 Boolean Vectors
Vectors of bit values (boolean 1/0 values) are handled as a special case by the
standard library, so that the values can be efficiently packed (several
elements to a word). The operations for a boolean vector , vector<bool>,
are a superset of those for an ordinary vector, only the implementation is
more efficient.

One new member function added to the boolean vector data type is flip().

When invoked, this function inverts all the bits of the vector. Boolean vectors
also return as reference an internal value that also supports the flip()

member function.

 vector<bool> bvec(27);
 bvec.flip(); // flip all values
 bvec[17].flip(); // flip bit 17

vector<bool> also supports an additional swap() member function that
allows you to swap the values indicated by a pair of references.

 bvec.swap(bvec [17], bvec [16]);

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
vector and vector<bool>

47

5.4 Example Program −− Sieve of Eratosthenes
An example program that illustrates the use of vectors is the classic
algorithm, called the sieve of Eratosthenes, used to discover prime numbers. A
list of all the numbers up to some bound is represented by an integer vector.
The basic idea is to strike out (set to zero) all those values that cannot be
primes; thus all the remaining values will be the prime numbers. To do this,
a loop examines each value in turn, and for those that are set to one (and thus
have not yet been excluded from the set of candidate primes) strikes out all
multiples of the number. When the outermost loop is finished, all remaining
prime values have been discovered. The program is as follows:

void main() {
 // create a sieve of integers, initially set
 const int sievesize = 100;
 vector<int> sieve(sievesize, 1);

 // now search for 1 bit positions
 for (int i = 2; i * i < sievesize; i++)
 if (sieve[i])
 for (int j = i + i; j < sievesize; j += i)
 sieve[j] = 0;

 // finally, output the values that are set
 for (int j = 2; j < sievesize; j++)
 if (sieve[j])
 cout << j << " ";
 cout << endl;
}

✍
Obtaining the
Source
Source for this
program is found
in the file
sieve.cpp .

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
list

49

S e c t i o n 6.
list

6.1

The List Data Abstraction

6.2

List Operations

6.3

Example Programs

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
list

50

6.1 The list Data Abstraction
The vector data structure is a container of relatively fixed size. While the
standard library provides facilities for dynamically changing the size of a
vector, such operations are costly and should be used only rarely. Yet in
many problems, the size of a collection may be difficult to predict in advance,
or may vary widely during the course of execution. In such cases an
alternative data structure should be employed. In this section we will
examine an alternative data structure that can be used in these
circumstances, the list data type.

A list corresponds to the intuitive idea of holding elements in a linear
(although not necessarily ordered) sequence. New values can be added or
removed either to or from the front of the list, or to or from the back. By
using an iterator to denote a position, elements can also be added or
removed to or from the middle of a list. In all cases the insertion or removal
operations are efficient; they are performed in a constant amount of time that
is independent of the number of elements being maintained in the collection.
Finally, a list is a linear structure. The contents of the list cannot be accessed
by subscript, and, in general, elements can only be accessed by a linear
traversal of all values.

6.1.1 Include files

Whenever you use a list, you must include the list header file.

 # include <list>

6.2 List Operations
The member functions provided by the list data type are described in more
detail below. Note that while member functions provide basic operations,
the utility of the data structure is greatly extended through the use of the
generic algorithms described in Sections 13 and 14.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
list

51

6.2.1 Declaration and Initialization of Lists

There are a variety of ways to declare a list. In the simplest form, a list is
declared by simply stating the type of element the collection will maintain.
This can be a primitive language type (such as integer or double), a pointer
type, or a user-defined type. In the latter case, the user-defined type must
implement a default constructor (a constructor with no arguments), as this
constructor is in some cases used to initialize newly created elements. A
collection declared in this fashion will initially not contain any elements.

 list <int> list_one;
 list <Widget *> list_two;
 list <Widget> list_three;

An alternative form of declaration creates a collection that initially contains
some number of equal elements. The constructor for this form is declared as
explicit , meaning it cannot be used as a conversion operator. This prevents
integers from inadvertently being converted into lists. The constructor for
this form takes two arguments, a size and an initial value. The second
argument is optional. If only the number of initial elements to be created is
given, these values will be initialized with the default constructor; otherwise
the elements will be initialized with the value of the second argument:

 list <int> list_four (5); // five elements, initialized to zero
 list <double> list_five (4, 3.14); // 4 values, initially 3.14
 list <Widget> wlist_six (4); // default constructor, 4 elements
 list <Widget> list_six (3, Widget(7)); // 3 copies of Widget(7)

Lists can also be initialized using elements from another collection, using a
beginning and ending iterator pair. The arguments can be any form of
iterator, thus collections can be initialized with values drawn from any of the
container classes in the standard library that support iterators. Because this
requires the ability to specialize a member function using a template, some
compilers may not yet support this feature. In these cases an alternative
technique using the copy() generic algorithm can be employed. When a list
is initialized using copy(), an insert iterator must be constructed to convert
the output operations performed by the copy operation into list insertions.
(See Section 2.4.) The inserter requires two arguments; the list into which the
value is to be inserted, and an iterator indicating the location at which values
will be placed. Insert iterators can also be used to copy elements into an
arbitrary location in an existing list.

 list <double> list_seven (aVector.begin(), aVector.end());

 // the following is equivalent to the above
 list <double> list_eight;
 copy (aVector.begin(), aVector.end(),
 inserter(list_eight, list_eight.begin()));

The insert() operation, to be described in Section 6.2.3, can also be used to
place values denoted by an iterator into a list. Insert iterators can be used to
initialize a list with a sequence of values produced by a generator (see Section
13.2.3). This is illustrated by the following:

✍
Memory
Management
Note that if you
declare a
container as
holding pointers,
you are
responsible for
managing the
memory for the
objects pointed
to. The container
classes will not, for
example,
automatically free
memory for these
objects when an
item is erased
from the
container.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
list

52

 list <int> list_nine;
 // initialize list 1 2 3 ... 7
 generate_n (inserter(list_nine, list_nine.begin()),
 7, iotaGen(1));

A copy constructor can be used to initialize a list with values drawn from
another list. The assignment operator performs the same actions. In both
cases the assignment operator for the element type is used to copy each new
value.

 list <int> list_ten (list_nine); // copy constructor
 list <Widget> list_eleven;
 list_eleven = list_six; // values copied by assignment

The assign() member function is similar to the assignment operator, but is
more versatile and, in some cases, requires more arguments. Like an
assignment, the existing values in the container are deleted, and replaced
with the values specified by the arguments. If a destructor is provided for
the container element type, it will be invoked for the elements being
removed. There are two forms of assign(). The first takes two iterator
arguments that specify a sub-sequence of an existing container. The values
from this sub-sequence then become the new elements in the receiver. The
second version of assign takes a count and an optional value of the container
element type. After the call the container will hold the number of elements
specified by the count, which will be equal to either the default value for the
container type or the initial value specified.

 list_six.assign(list_ten.begin(), list_ten.end());
 list_four.assign(3, 7); // three copies of value seven
 list_five.assign(12); // twelve copies of value zero

Finally, two lists can exchange their entire contents by means of the
operation swap(). The argument container will take on the values of the
receiver, while the receiver will assume those of the argument. A swap is
very efficient, and should be used, where appropriate, in preference to an
explicit element-by-element transfer.

 list_ten.swap(list_nine); // exchange lists nine and ten

6.2.2 Type Definitions

The class list includes a number of type definitions. The most common use
for these is in declaration statements. For example, an iterator for a list of
integers can be declared as follows:

list<int>::iterator location;

In addition to iterator , the following types are defined:

value_type The type associated with the elements the list
maintains.

const_iterator An iterator that does not allow modification of

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
list

53

the underlying sequence.

reverse_iterator An iterator that moves in a backward
direction.

const_reverse_iterator A combination constant and reverse iterator.

reference A reference to an underlying element.

const_reference A reference to an underlying element that will
not permit the element to be modified.

size_type An unsigned integer type, used to refer to the
size of containers.

difference_type A signed integer type, used to describe
distances between iterators.

allocator_type The allocator type used for all storage
management by the list.

6.2.3 Placing Elements into a List

Values can be inserted into a list in a variety of ways. Elements are most
commonly added to the front or back of a list. These tasks are provided by
the push_front() and push_back() operations, respectively. These
operations are efficient (constant time) for both types of containers.

 list_seven.push_front(1.2);
 list_eleven.push_back (Widget(6));

In a previous discussion (Section 6.2.1) we noted how, with the aid of an
insert iterator and the copy() or generate() generic algorithm, values can be
placed into a list at a location denoted by an iterator. There is also a member
function, named insert(), that avoids the need to construct the inserter. As
we will describe shortly, the values returned by the iterator generating
functions begin() and end() denote the beginning and end of a list,
respectively. An insert using one of these is equivalent to push_front() or
push_back(), respectively. If we specify only one iterator, the default
element value is inserted.

// insert default type at beginning of list
list_eleven.insert(list_eleven.begin());
// insert widget 8 at end of list
list_eleven.insert(list_eleven.end(), Widget(8));

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
list

54

An iterator can denote a location in the middle of a list. There are several
ways to produce this iterator. For example, we can use the result of any of
the searching operations described in Section 13.3, such as an invocation of
the find() generic algorithm. The new value is inserted immediately prior to
the location denoted by the iterator. The insert() operation itself returns an
iterator denoting the location of the inserted value. This result value was
ignored in the invocations shown above.

 // find the location of the first occurrence of the
 // value 5 in list
 list<int>::iterator location =
 find(list_nine.begin(), list_nine.end(), 5);
 // and insert an 11 immediate before it
 location = list_nine.insert(location, 11);

It is also possible to insert a fixed number of copies of an argument value.
This form of insert() does not yield the location of the values.

 line_nine.insert (location, 5, 12); // insert five twelves

Finally, an entire sequence denoted by an iterator pair can be inserted into a
list. Again, no useful value is returned as a result of the insert().

 // insert entire contents of list_ten into list_nine
 list_nine.insert (location, list_ten.begin(), list_ten.end());

There are a variety of ways to splice one list into another. A splice differs
from an insertion in that the item is simultaneously added to the receiver list
and removed from the argument list. For this reason, a splice can be
performed very efficiently, and should be used whenever appropriate. As
with an insertion, the member function splice() uses an iterator to indicate
the location in the receiver list where the splice should be made. The
argument is either an entire list, a single element in a list (denoted by an
iterator), or a sub-sequence of a list (denoted by a pair of iterators).

 // splice the last element of list ten
 list_nine.splice (location, list_ten, list_ten.end());
 // splice all of list ten
 list_nine.splice (location, list_ten);
 // splice list 9 back into list 10
 list_ten.splice (list_ten.begin(), list_nine,
 list_nine.begin(), location);

Two ordered lists can be combined into one using the merge() operation.
Values from the argument list are merged into the ordered list, leaving the
argument list empty. The merge is stable; that is, elements retain their
relative ordering from the original lists. As with the generic algorithm of the
same name (Section 14.6), two forms are supported. The second form uses
the binary function supplied as argument to order values. Not all compilers
support the second form. If the second form is desired and not supported,
the more general generic algorithm can be used, although this is slightly less
efficient.

 // merge with explicit compare function
 list_eleven.merge(list_six, widgetCompare);

✍
Iteration
Invalidation
Unlike a vector or
deque, insertions
or removals from
the middle of a list
will not invalidate
references or
pointers to other
elements in the
container. This
property can be
important if two or
more iterators are
being used to
refer to the same
container.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
list

55

 //the following is similar to the above
 list<Widget> list_twelve;
 merge (list_eleven.begin(), list_eleven.end(),
 list_six.begin(), list_six.end(),
 inserter(list_twelve, list_twelve.begin()), widgetCompare);
 list_eleven.swap(list_twelve);

6.2.4 Removing Elements

Just as there are a number of different ways to insert an element into a list,
there are a variety of ways to remove values from a list. The most common
operations used to remove a value are pop_front() or pop_back(), which
delete the single element from the front or the back of the list, respectively.
These member functions simply remove the given element, and do not
themselves yield any useful result. If a destructor is defined for the element
type it will be invoked as the element is removed. To look at the values
before deletion, use the member functions front() or back().

The erase() operation can be used to remove a value denoted by an iterator.
For a list, the argument iterator, and any other iterators that denote the same
location, become invalid after the removal, but iterators denoting other
locations are unaffected. We can also use erase() to remove an entire sub-
sequence, denoted by a pair of iterators. The values beginning at the initial
iterator and up to, but not including, the final iterator are removed from the
list. Erasing elements from the middle of a list is an efficient operation,
unlike erasing elements from the middle of a vector or a deque.

 list_nine.erase (location);

 // erase values between the first occurrence of 5
 // and the following occurrence of 7
list<int>::iterator
 location = find(list_nine.begin(), list_nine.end(), 5);
 list<int>::iterator location2 =
 find(location, list_nine.end(), 7);
 list_nine.erase (location, location2);

The remove() member function removes all occurrences of a given value
from a list. A variation, remove_if(), removes all values that satisfy a given
predicate. An alternative to the use of either of these is to use the remove()

or remove_if() generic algorithms (Section 13.5.1). The generic algorithms
do not reduce the size of the list, instead they move the elements to be
retained to the front of the list, leave the remainder of the list unchanged, and
return an iterator denoting the location of the first unmodified element. This
value can be used in conjunction with the erase() member function to
remove the remaining values.

 list_nine.remove(4); // remove all fours
 list_nine.remove_if(divisibleByThree); //remove any div by 3

 // the following is equivalent to the above
 list<int>::iterator location3 =
 remove_if(list_nine.begin(), list_nine.end(),
 divisibleByThree);

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
list

56

 list_nine.erase(location3, list_nine.end());

The operation unique() will erase all but the first element from every
consecutive group of equal elements in a list. The list need not be ordered.
An alternative version takes a binary function, and compares adjacent
elements using the function, removing the second value in those situations
were the function yields a true value. As with remove_if(), not all
compilers support the second form of unique(). In this case the more
general unique() generic algorithm can be used (see Section 13.5.2). In the
following example the binary function is the greater-than operator, which
will remove all elements smaller than a preceding element.

 // remove first from consecutive equal elements
 list_nine.unique();

 // explicitly give comparison function
 list_nine.unique(greater<int>());

 // the following is equivalent to the above
 location3 =
 unique(list_nine.begin(), list_nine.end(), greater<int>());
 list_nine.erase(location3, list_nine.end());

6.2.5 Extent and Size-Changing Operations

The member function size() will return the number of elements being held
by a container. The function empty() will return true if the container is
empty, and is more efficient than comparing the size against the value zero .

 cout << "Number of elements: " << list_nine.size () << endl;
 if (list_nine.empty ())
 cout << "list is empty " << endl;
 else
 cout << "list is not empty " << endl;

The member function resize() changes the size of the list to the value
specified by the argument. Values are either added or erased from the end of
the collection as necessary. An optional second argument can be used to
provide the initial value for any new elements added to the collection.

 // become size 12, adding values of 17 if necessary
 list_nine.resize (12, 17);

6.2.6 Access and Iteration

The member functions front() and back() return, but do not remove, the
first and last items in the container, respectively. For a list, access to other
elements is possible only by removing elements (until the desired element
becomes the front or back) or through the use of iterators.

There are three types of iterators that can be constructed for lists. The
functions begin() and end() construct iterators that traverse the list in
forward order. For the list data type begin() and end() create bidirectional

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
list

57

iterators. The alternative functions rbegin() and rend() construct iterators
that traverse in reverse order, moving from the end of the list to the front.

6.2.7 Test for Inclusion

The list data types do not directly provide any method that can be used to
determine if a specific value is contained in the collection. However, either
the generic algorithms find() or count() (Sections 13.3.1 and 13.6.1) can be
used for this purpose. The following statements, for example, test to see
whether an integer list contains the element 17.

int num = 0;
count(list_five.begin(), list_five.end(), 17, num);
if (num > 0)
 cout << "contains a 17" << endl;
else
 cout << "does not contain a 17" << endl;

if (find(list_five.begin(), list_five.end(), 17) != list_five.end())
 cout << "contains a 17" << endl;
else
 cout << "does not contain a 17" << endl;

6.2.8 Sorting and Sorted List Operations

The member function sort() places elements into ascending order. If a
comparison operator other than < is desired, it can be supplied as an
argument.

list_ten.sort (); // place elements into sequence
list_twelve.sort (widgetCompare); // sort with widget compare
 // function

Once a list has been sorted, a number of the generic algorithms for ordered
collections can be used with lists. These are described in detail in Section 14.

6.2.9 Searching Operations

The various forms of searching functions described in Section 13.3, namely
find(), find_if(), adjacent find(), mismatch(), max_element() ,
min_element() or search() can be applied to list. In all cases the result is an
iterator, which can be dereferenced to discover the denoted element, or used
as an argument in a subsequent operation.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
list

58

6.2.10 In Place Transformations

A number of operations can be applied to lists in order to transform them in
place. Some of these are provided as member functions. Others make use of
some of the generic functions described in Section 13.

For a list, the member function reverse() reverses the order of elements in
the list.

 list_ten.reverse(); // elements are now reversed

The generic algorithm transform() (Section 13.7.1) can be used to modify
every value in a container, by simply using the same container as both input
and as result for the operation. The following, for example, increments each
element of a list by one. To construct the necessary unary function, the first
argument of the binary integer addition function is bound to the value one.
The version of transform() that manipulates two parallel sequences can be
used in a similar fashion.

 transform(list_ten.begin(), list_ten.end(),
 list_ten.begin(), bind1st(plus<int>(), 1));

Similarly, the functions replace() and replace_if() (Section 13.4.2) can be
used to replace elements of a list with specific values. Rotations (Section
13.4.3) and partitions (Section 13.4.4), can also be performed with lists.

 // find the location of the value 5, and rotate around it
 location = find(list_ten.begin(), list_ten.end(), 5);
 rotate(list_ten.begin(), location, list_ten.end());
 // now partition using values greater than 7
 partition(list_ten.begin(), list_ten.end(),
 bind2nd(greater<int>(), 7));

The functions next_permutation() and prev_permutation() (Section 13.4.5)
can be used to generate the next permutation (or previous permutation) of a
collection of values.

 next_permutation (list_ten.begin(), list_ten.end());

6.2.11 Other Operations

The algorithm for_each() (Section 13.8.1) will apply a function to every
element of a collection. An illustration of this use will be given in the radix
sort example program in the section on the deque data structure.

The accumulate() generic algorithm reduces a collection to a scalar value
(see Section 13.6.2). This can be used, for example, to compute the sum of a
list of numbers. A more unusual use of accumulate() will be illustrated in
the radix sort example.

 cout << "Sum of list is: " <<
 accumulate(list_ten.begin(), list_ten.end(), 0) << endl;

✍
Verify Search
Results
The searching
algorithms in the
standard library
will always return
the end of range
iterator if no
element
matching the
search condition
is found. Unless
the result is
guaranteed to be
valid, it is a good
idea to check for
the end of range
condition.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
list

59

Two lists can be compared against each other. They are equal if they are the
same size and all corresponding elements are equal. A list is less than
another list if it is lexicographically smaller (see Section 13.6.5).

6.3 Example Program −− An Inventory System
We will use a simple inventory management system to illustrate the use of
several list operations. Assume a business, named WorldWideWidgetWorks,
requires a software system to manage their supply of widgets. Widgets are
simple devices, distinguished by different identification numbers:

class Widget {
public:
 Widget(int a = 0) : id(a) { }
 void operator = (const Widget& rhs) { id = rhs.id; }
 int id;
 friend ostream & operator << (ostream & out,const Widget & w)
 { return out << "Widget " << w.id; }
 friend bool operator == (const Widget& lhs, const Widget& rhs)
 { return lhs.id == rhs.id; }
 friend bool operator< (const Widget& lhs, const Widget& rhs)
 { return lhs.id < rhs.id; }
};

The state of the inventory is represented by two lists. One list represents the
stock of widgets on hand, while the second represents the type of widgets
that customers have backordered. The first is a list of widgets, while the
second is a list of widget identification types. To handle our inventory we
have two commands; the first, order() , processes orders, while the second,
receive(), processes the shipment of a new widget.

class inventory {
public:
 void order (int wid); // process order for widget type wid
 void receive (int wid); // receive widget of type wid in
shipment
private:
 list<Widget> on_hand;
 list<int> on_order;
};

When a new widget arrives in shipment, we compare the widget
identification number with the list of widget types on backorder. We use
find() to search the backorder list, immediately shipping the widget if
necessary. Otherwise it is added to the stock on hand.

✍
Obtaining the
Sample Program
The executable
version of the
widget works
program is
contained in file
widwork.cpp on
the distribution
disk.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
list

60

void inventory::receive (int wid)
{
 cout << "Received shipment of widget type " << wid << endl;
 list<int>::iterator weneed =
 find (on_order.begin(), on_order.end(), wid);
 if (weneed != on_order.end())
 {
 cout << "Ship " << Widget(wid)
 << " to fill back order" << endl;
 on_order.erase(weneed);
 }
 else
 on_hand.push_front(Widget(wid));
}

When a customer orders a new widget, we scan the list of widgets in stock to
determine if the order can be processed immediately. We can use the
function find_if() to search the list. To do so we need a binary function
that takes as its argument a widget and determines whether the widget
matches the type requested. We can do this by taking a general binary
widget-testing function, and binding the second argument to the specific
widget type. To use the function bind2nd(), however, requires that the
binary function be an instance of the class binary_function. The general
widget-testing function is written as follows:

class WidgetTester : public binary_function<Widget, int, bool> {
public:
 bool operator () (const Widget & wid, int testid) const
 { return wid.id == testid; }
};

The widget order function is then written as follows:

void inventory::order (int wid)
{
 cout << "Received order for widget type " << wid << endl;
 list<Widget>::iterator wehave =
 find_if (on_hand.begin(), on_hand.end(),
 bind2nd(WidgetTester(), wid));
 if (wehave != on_hand.end())
 {
 cout << "Ship " << *wehave << endl;
 on_hand.erase(wehave);
 }
 else
 {
 cout << "Back order widget of type " << wid << endl;
 on_order.push_front(wid);
 }
}

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
deque

61

S e c t i o nS e c t i o n 7.
deque

7.1

The deque Data Abstraction

7.2

Deque Operations

7.3

An Example Program − Radix Sort

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
deque

62

7.1 The deque Data Abstraction
The name “deque” is short for “double-ended queue,” and is pronounced
like “deck.” Traditionally, the term is used to describe any data structure
that permits both insertions and removals from either the front or the back of
a collection. The deque container class permits this, as well as much more.
In fact, the capabilities of the deque data structure are almost a union of
those provided by the vector and list classes.

• Like a vector, the deque is an indexed collection. Values can be accessed
by subscript, using the position within the collection as a key. (A
capability not provided by the list class).

• Like a list, values can be efficiently added either to the front or to the
back of a deque. (A capability provided only in part by the vector class).

• As with both the list and vector classes, insertions can be made into the
middle of the sequence held by a deque. Such insertion operations are
not as efficient as with a list, but slightly more efficient that they are in a
vector.

In short, a deque can often be used both in situations that require a vector
and in those that call for a list. Often, the use of a deque in place of either a
vector or a list will result in faster programs. To determine which data
structure should be used, you can refer to the set of questions described in
Section 4.2

7.1.1 Include Files

The deque header file must appear in all programs that use the deque data
type.

include <deque>

7.2 Deque Operations
A deque is declared in the same fashion as a vector, and includes within
the class the same type definitions as vector.

The begin() and end() member functions return random access iterators,
rather than bidirectional iterators, as they do for lists.

An insertion (either insert(), push_front(), or push_back()) can
potentially invalidate all outstanding iterators and references to elements in
the deque. As with the vector data type, this is a much more restrictive
condition than insertions into a list.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
deque

63

If the underlying element type provides a destructor, then the destructor will
be invoked when a value is erased from a deque.

Since the deque data type provides random access iterators, all the generic
algorithms that operate with vectors can also be used with deques.

A vector holds elements in a single large block of memory. A deque, on the
other hand, uses a number of smaller blocks. This may be important on
systems that restrict the size of memory blocks, as it will permit a deque to
hold many more elements than a vector.

As values are inserted, the index associated with any particular element in
the collection will change. For example, if a value is inserted into position 3,
then the value formerly indexed by 3 will now be found at index location 4,
the value formerly at 4 will be found at index location 5, and so on.

7.3 Example Program −− Radix Sort
The radix sort algorithm is a good illustration of how lists and deques can be
combined with other containers. In the case of radix sort, a vector of deques
is manipulated, much like a hash table.

Radix sorting is a technique for ordering a list of positive integer values. The
values are successively ordered on digit positions, from right to left. This is
accomplished by copying the values into “buckets,” where the index for the
bucket is given by the position of the digit being sorted. Once all digit
positions have been examined, the list must be sorted.

The following table shows the sequences of values found in each bucket
during the four steps involved in sorting the list 624 852 426 987 269 146
415 301 730 78 593. During pass 1 the ones place digits are ordered.
During pass 2 the tens place digits are ordered, retaining the relative
positions of values set by the earlier pass. On pass 3 the hundreds place
digits are ordered, again retaining the previous relative ordering. After three
passes the result is an ordered list.

✍
Obtaining the
Sample Program
The complete
radix sort program
is found in the file
radix.cpp in the
tutorial distribution
disk.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
deque

64

bucket pass 1 pass 2 pass 3

0 730 301 78

1 301 415 146

2 852 624, 426 269

3 593 730 301

4 624 146 415, 426

5 415 852 593

6 426, 146 269 624

7 987 78 730

8 78 987 852

9 269 593 987

The radix sorting algorithm is simple. A while loop is used to cycle through
the various passes. The value of the variable divisor indicates which digit is
currently being examined. A boolean flag is used to determine when
execution should halt. Each time the while loop is executed a vector of
deques is declared. By placing the declaration of this structure inside the
while loop, it is reinitialized to empty each step. Each time the loop is
executed, the values in the list are copied into the appropriate bucket by
executing the function copyIntoBuckets() on each value. Once distributed
into the buckets, the values are gathered back into the list by means of an
accumulation.

void radixSort(list<unsigned int> & values)
{
 bool flag = true;
 int divisor = 1;

 while (flag) {
 vector< deque<unsigned int> > buckets(10);
 flag = false;
 for_each(values.begin(), values.end(),
 copyIntoBuckets(...));
 accumulate(buckets.begin(), buckets.end(),
 values.begin(), listCopy);
 divisor *= 10;
 }
}

The use of the function accumulate() here is slightly unusual. The “scalar”
value being constructed is the list itself. The initial value for the
accumulation is the iterator denoting the beginning of the list. Each bucket is
processed by the following binary function:

list<unsigned int>::iterator
 listCopy(list<unsigned int>::iterator c,
 deque<unsigned int> & lst)
{
 // copy list back into original list, returning end

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
deque

65

 return copy(lst.begin(), lst.end(), c);
}

The only difficulty remaining is defining the function copyIntoBuckets().

The problem here is that the function must take as its argument only the
element being inserted, but it must also have access to the three values
buckets, divisor and flag . In languages that permit functions to be defined
within other functions the solution would be to define copyIntoBuckets()

as a local function within the while loop. But C++ has no such facilities.
Instead, we must create a class definition, which can be initialized with
references to the appropriate values. The parenthesis operator for this class
is then used as the function for the for_each() invocation in the radix sort
program.

class copyIntoBuckets {
public:
 copyIntoBuckets
 (int d, vector< deque<unsigned int> > & b, bool & f)
 : divisor(d), buckets(b), flag(f) {}

 int divisor;
 vector<deque<unsigned int> > & buckets;
 bool & flag;

 void operator () (unsigned int v)
 { int index = (v / divisor) % 10;
 // flag is set to true if any bucket
 // other than zeroth is used
 if (index) flag = true;
 buckets[index].push_back(v);
 }
};

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
set, multiset, and bitset

67

S e c t i o n 8.
set, multiset, and bitset

8.1

The set Data Abstraction

8.2

set and multiset Operations

8.3

Example Program: A Spelling Checker

8.4
The Class bitset

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
set, multiset, and bitset

68

8.1 The set Data Abstraction
A set is a collection of values. Because the container used to implement the
set data structure maintains values in an ordered representation, sets are
optimized for insertion and removal of elements, and for testing to see
whether a particular value is contained in the collection. Each of these
operations can be performed in a logarithmic number of steps, whereas for a
list, vector, or deque, each operation requires in the worst case an
examination of every element held by the container. For this reason, sets
should be the data structure of choice in any problem that emphasizes
insertion, removal, and test for inclusion of values. Like a list, a set is not
limited in size, but rather expands and contracts as elements are added to or
removed from the collection.

There are two varieties of sets provided by the standard library. In the set
container, every element is unique. Insertions of values that are already
contained in the set are ignored. In the multiset container, on the other hand,
multiple occurrences of the same value are permitted.

8.1.1 Include Files

Whenever you use a set or a multiset, you must include the set header file.

 # include <set>

8.2 set and multiset Operations
The member functions provided by the set and multiset data types will
shortly be described in more detail. Note that while member functions
provide basic operations, the utility of these data structures is greatly
extended through the use of the generic algorithms described in Sections 13
and 14.

8.2.1 Declaration and Initialization of Set

A set is a template data structure, specialized by the type of the elements it
contains, and the operator used to compare keys. The latter argument is
optional, and, if it is not provided, the less than operator for the key type will
be assumed. The element type can be a primitive language type (such as
integer or double), a pointer type, or a user-defined type. The element type
must recognize both the equality testing operator (operator ==) and the less
than comparison operator (operator <).

✍
Sets, Ordered and
Not
Although the
abstract concept
of a set does not
necessarily imply
an ordered

collection, the set
data type is
always ordered. If
necessary, a
collection of
values that
cannot be
ordered can be
maintained in, for

example, a list.

✍
Sets and Bags
In other
programming
languages, a
multiset is
sometimes
referred to as a
bag.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
set, multiset, and bitset

69

Sets can be declared with no initial elements, or they can be initialized from
another container by providing a pair of iterators. An optional argument in
both cases is an alternative comparison function; this value overrides the
value provided by the template parameter. This mechanism is useful if a
program contains two or more sets with the same values but different
orderings, as it prevents more than one copy of the set member function
from being instantiated. The copy constructor can be used to form a new set
that is a clone, or copy, of an existing set.

 set <int> set_one;

 set <int, greater<int> > set_two;
 set <int> set_three(greater<int>());

 set <gadget, less<gadget> > gset;
 set <gadget> gset(less<gadget>());

 set <int> set_four (aList.begin(), aList.end());
 set <int> set_five
 (aList.begin(), aList.end(), greater<int>());

 set <int> set_six (set_four); // copy constructor

A set can be assigned to another set, and two sets can exchange their values
using the swap() operation (in a manner analogous to other standard library
containers).

 set_one = set_five;
 set_six.swap(set_two);

8.2.2 Type Definitions

The classes set and multiset include a number of type definitions. The most
common use for these is in a declaration statement. For example, an iterator
for a set of integers can be declared in the following fashion:

 set<int>::iterator location;

In addition to iterator , the following types are defined:

value_type The type associated with the elements the set
maintains.

const_iterator An iterator that does not allow modification of
the underlying sequence.

reverse_iterator An iterator that moves in a backward direction.

const_reverse_iterator A combination constant and reverse iterator.

reference A reference to an underlying element.

const_reference A reference to an underlying element that will
not permit modification.

size_type An unsigned integer type, used to refer to the

✍
Initializing Sets
with Iterators
As we noted in
the earlier
discussion on
vectors and lists,
the initialization of
containers using a
pair of iterators
requires a
mechanism that is
still not widely
supported by
compilers. If not
provided, the
equivalent effect
can be produced
by declaring an
empty set and
then using the
copy() generic
algorithm to copy
values into the set.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
set, multiset, and bitset

70

size of containers.

value_compare A function that can be used to compare two
elements.

difference_type A signed integer type, used to describe the
distance between iterators.

allocator_type An allocator used by the container or all storage
management.

8.2.3 Insertion

Unlike a list or vector, there is only one way to add a new element to a set. A
value can be inserted into a set or a multiset using the insert() member
function. With a multiset, the function returns an iterator that denotes the
value just inserted. Insert operations into a set return a pair of values, in
which the first field contains an iterator, and the second field contains a
boolean value that is true if the element was inserted, and false otherwise.
Recall that in a set, an element will not be inserted if it matches an element
already contained in the collection.

 set_one.insert (18);

 if (set_one.insert(18).second)
 cout << “element was inserted” << endl;
 else
 cout << “element was not inserted “ << endl;

Insertions of several elements from another container can also be performed
using an iterator pair:

 set_one.insert (set_three.begin(), set_three.end());

The pair data structure is a tuple of values. The first value is accessed
through the field name first , while the second is, naturally, named second .
A function named make_pair() simplifies the task of producing an instance
of class pair.

template <class T1, class T2>
struct pair {
 T1 first;
 T2 second;
 pair (const T1 & x, const T2 & y) : first(x), second(y) { }
};

template <class T1, class T2>
inline pair<T1, T2> make_pair(const T1& x, const T2& y)
 { return pair<T1, T2>(x, y); }

In determining the equivalence of keys, for example, to determine if the key
portion of a new element matches any existing key, the comparison function
for keys is used, and not the equivalence (==) operator. Two keys are
deemed equivalent if the comparison function used to order key values

✍
The Pair Data Type
If you want to use
the pair data type
without using
maps, you should
include the
header file
named utility .

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
set, multiset, and bitset

71

yields false in both directions. That is, if Compare(key1, key2) is false, and if
Compare(key2, key1) is false, then key1 and key2 are considered equivalent.

8.2.4 Removal of Elements from a Set

Values are removed from a set using the member function erase(). The
argument can be either a specific value, an iterator that denotes a single
value, or a pair of iterators that denote a range of values. When the first form
is used on a multiset, all arguments matching the argument value are
removed, and the return value indicates the number of elements that have
been erased.

 // erase element equal to 4
 set_three.erase(4);

 // erase element five
 set<int>::iterator five = set_three.find(5);
 set_three.erase(five);

 // erase all values between seven and eleven
 set<int>::iterator seven = set_three.find(7);
 set<int>::iterator eleven = set_three.find(11);
 set_three.erase (seven, eleven);

If the underlying element type provides a destructor, then the destructor will
be invoked prior to removing the element from the collection.

8.2.5 Searching and Counting

The member function size() will yield the number of elements held by a
container. The member function empty() will return a boolean true value if
the container is empty, and is generally faster than testing the size against
zero.

The member function find() takes an element value, and returns an iterator
denoting the location of the value in the set if it is present, or a value
matching the end-of-set (the value yielded by the function end()) if it is not.
If a multiset contains more than one matching element, the value returned
can be any appropriate value.

 set<int>::iterator five = set_three.find(5);
 if (five != set_three.end())
 cout << “set contains a five” << endl;

The member functions lower_bound() and upper_bound() are most useful
with multisets, as with sets they simply mimic the function find(). The
member function lower_bound() yields the first entry that matches the
argument key, while the member function upper_bound() returns the first
value past the last entry matching the argument. Finally, the member
function equal_range() returns a pair of iterators, holding the lower and
upper bounds.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
set, multiset, and bitset

72

The member function count() returns the number of elements that match
the argument. For a set this value is either zero or one, whereas for a
multiset it can be any nonnegative value. Since a non-zero integer value is
treated as true, the count() function can be used to test for inclusion of an
element, if all that is desired is to determine whether or not the element is
present in the set. The alternative, using find(), requires testing the result
returned by find() against the end-of-collection iterator.

 if (set_three.count(5))
 cout << “set contains a five” << endl;

8.2.6 Iterators

The member functions begin() and end() produce iterators for both sets and
multisets. The iterators produced by these functions are constant to ensure
that the ordering relation for the set is not inadvertently or intentionally
destroyed by assigning a new value to a set element. Elements are generated
by the iterators in sequence, ordered by the comparison operator provided
when the set was declared. The member functions rbegin() and rend()

produce iterators that yield the elements in reverse order.

8.2.7 Set Operations

The traditional set operations of subset test , set union , set intersection ,
and set difference are not provided as member functions, but are instead
implemented as generic algorithms that will work with any ordered
structure. These functions are described in more detail in Section 14.7. The
following summary describes how these functions can be used with the set
and multiset container classes.

8.2.7.1 Subset test

The function includes() can be used to determine if one set is a subset of
another; that is, if all elements from the first are contained in the second. In
the case of multisets the number of matching elements in the second set must
exceed the number of elements in the first. The four arguments are a pair of
iterators representing the (presumably) smaller set, and a pair of iterators
representing the (potentially) larger set.

 if (includes(set_one.begin(), set_one.end(),
 set_two.begin(), set_two.end()))
 cout << “set_one is a subset of set_two” << endl;

The less than operator (operator <) will be used for the comparison of
elements, regardless of the operator used in the declaration of the set. Where
this is inappropriate, an alternative version of the includes() function is
provided. This form takes a fifth argument, which is the comparison
function used to order the elements in the two sets.

✍
No Iterator
Invalidation
Unlike a vector or
deque, the
insertion or
removal of values
from a set does
not invalidate
iterators or
references to
other elements in
the collection.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
set, multiset, and bitset

73

8.2.7.2 Set Union or Intersection

The function set_union() can be used to construct a union of two sets. The
two sets are specified by iterator pairs, and the union is copied into an output
iterator that is supplied as a fifth argument. To form the result as a set, an
insert iterator must be used to form the output iterator. (See Section 2.4 for a
discussion of insert iterators.) If the desired outcome is a union of one set
with another, then a temporary set can be constructed, and the results
swapped with the argument set prior to deletion of the temporary set.

 // union two sets, copying result into a vector
 vector<int> v_one (set_one.size() + set_two.size());

 set_union(set_one.begin(), set_one.end(),
 set_two.begin(), set_two.end(), v_one.begin());

 // form union in place
 set<int> temp_set;
 set_union(set_one.begin(), set_one.end(),
 set_two.begin(), set_two.end(),
 inserter(temp_set, temp_set.begin()));
 set_one.swap(temp_set); // temp_set will be deleted

The function set_intersection() is similar, and forms the intersection of the
two sets.

As with the includes() function, the less than operator (operator <) is used
to compare elements in the two argument sets, regardless of the operator
provided in the declaration of the sets. Should this be inappropriate,
alternative versions of both the set_union() or set_intersection()

functions permit the comparison operator used to form the set to be given as
a sixth argument.

The operation of taking the union of two multisets should be distinguished
from the operation of merging two sets. Imagine that one argument set
contains three instances of the element 7, and the second set contains two
instances of the same value. The union will contain only three such values,
while the merge will contain five. To form the merge, the function merge()

can be used (see Section 14.6). The arguments to this function exactly match
those of the set_union() function.

8.2.7.3 Set Difference

There are two forms of set difference. A simple set difference represents the
elements in the first set that are not contained in the second. A symmetric set
difference is the union of the elements in the first set that are not contained in
the second, with the elements in the second that are not contained in the first.
These two values are constructed by the functions set_difference() and
set_symmetric_difference(), respectively. The use of these functions is
similar to the use of the set_union() function described earlier.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
set, multiset, and bitset

74

8.2.8 Other Generic Algorithms

Because sets are ordered and have constant iterators, a number of the generic
functions described in Sections 13 and 14 either are not applicable to sets or
are not particularly useful. However, the following table gives a few of the
functions that can be used in conjunction with the set data type.

Purpose Name Section
Copy one sequence into another copy 13.2.2

Find an element that matches a condition find_if 13.3.1

Find a sub-sequence within a set search 13.3.3

Count number of elements that satisfy
condition

count_if 13.6.1

Reduce set to a single value accumulate 13.6.2

Execute function on each element for_each 13.8.1

8.3 Example Program: −− A Spelling Checker
A simple example program that uses a set is a spelling checker. The checker
takes as arguments two input streams; the first representing a stream of
correctly spelled words (that is, a dictionary), and the second a text file.
First, the dictionary is read into a set. This is performed using a copy() and
an input stream iterator, copying the values into an inserter for the
dictionary. Next, words from the text are examined one by one, to see if they
are in the dictionary. If they are not, then they are added to a set of
misspelled words. After the entire text has been examined, the program
outputs the list of misspelled words.

void spellCheck (istream & dictionary, istream & text)
{
 typedef set <string, less<string> > stringset;
 stringset words, misspellings;
 string word;
 istream_iterator<string, ptrdiff_t> dstream(dictionary), eof;

 // first read the dictionary
 copy (dstream, eof, inserter(words, words.begin()));

 // next read the text
 while (text >> word)
 if (! words.count(word))
 misspellings.insert(word);

 // finally, output all misspellings
 cout << “Misspelled words:” << endl;
 copy (misspellings.begin(), misspellings.end(),
 ostream_iterator<string>(cout, “\n”));
}

✍
Obtaining the
Sample Program
This program can
be found in the
file spell.cpp in
the tutorial
distribution.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
set, multiset, and bitset

75

An improvement would be to suggest alternative words for each misspelling.
There are various heuristics that can be used to discover alternatives. The
technique we will use here is to simply exchange adjacent letters. To find
these, a call on the following function is inserted into the loop that displays
the misspellings.

void findMisspell(stringset & words, string & word)
{
 for (int I = 1; I < word.length(); I++) {
 swap(word[I-1], word[I]);
 if (words.count(word))
 cout << “Suggestion: “ << word << endl;
 // put word back as before
 swap(word[I-1], word[I]);
 }
}

8.4 The bitset Abstraction
A bitset is really a cross between a set and a vector. Like the vector
abstraction vector<bool>, the abstraction represents a set of binary (0/1 bit)
values. However, set operations can be performed on bitsets using the
logical bit-wise operators. The class bitset does not provide any iterators for
accessing elements.

8.4.1 Include Files
#include <bitset>

8.4.2 Declaration and Initialization of bitset

A bitset is a template class abstraction. The template argument is not,
however, a type, but an integer value. The value represents the number of
bits the set will contains.

bitset<126> bset_one; // create a set of 126 bits

An alternative technique permits the size of the set to be specified as an
argument to the constructor. The actual size will be the smaller of the value
used as the template argument and the constructor argument. This
technique is useful when a program contains two or more bit vectors of
differing sizes. Consistently using the larger size for the template argument
means that only one set of methods for the class will be generated. The
actual size, however, will be determined by the constructor.

bitset<126> bset_two(100); // this set has only 100 elements

A third form of constructor takes as argument a string of 0 and 1 characters.
A bitset is created that has as many elements as are characters in the string,
and is initialized with the values from the string.

bitset<126> small_set(“10101010”); // this set has 8 elements

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
set, multiset, and bitset

76

8.4.3 Accessing and Testing Elements

An individual bit in the bitset can be accessed using the subscript operation.
Whether the bit is one or not can be determined using the member function
test(). Whether any bit in the bitset is “on” is tested using the member
function any(), which yields a boolean value. The inverse of any() is
returned by the member function none().

 bset_one[3] = 1;
 if (bset_one.test(4))
 cout << “bit position 4 is set” << endl;
 if (bset_one.any())
 cout << “some bit position is set” << endl;
 if (bset_one.none()) cout << “no bit position is set” << endl;

The function set() can be used to set a specific bit. bset_one.set(I) is
equivalent to bset_one[I] = true . Invoking the function without any
arguments sets all bit positions to true. The function reset() is similar, and
sets the indicated positions to false (sets all positions to false if invoked with
no argument). The function flip() flips either the indicated position, or all
positions if no argument is provided. The function flip() is also provided
as a member function for the individual bit references.

 bset_one.flip(); // flip the entire set
 bset_one.flip(12); // flip only bit 12
 bset_one[12].flip(); // reflip bit 12

The member function size() returns the size of the bitset, while the member
function count() yields the number of bits that are set.

8.4.4 Set operations

Set operations on bitsets are implemented using the bit-wise operators, in a
manner analogous to the way in which the same operators act on integer
arguments.

The negation operator (operator ~) applied to a bitset returns a new bitset
containing the inverse of elements in the argument set.

The intersection of two bitsets is formed using the and operator (operator &).
The assignment form of the operator can be used. In the assignment form,
the target becomes the disjunction of the two sets.

 bset_three = bset_two & bset_four;
 bset_five &= bset_three;

The union of two sets is formed in a similar manner using the or operator
(operator |). The exclusive-or is formed using the bit-wise exclusive or
operator (operator ^).

The left and right shift operators (operator << and >>) can be used to shift a
bitset left or right, in a manner analogous to the use of these operators on
integer arguments. If a bit is shifted left by an integer value n, then the new
bit position I is the value of the former I-n. Zeros are shifted into the new
positions.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
set, multiset, and bitset

77

8.4.5 Conversions

The member function to_ulong() converts a bitset into an unsigned long . It
is an error to perform this operation on a bitset containing more elements
than will fit into this representation.

The member function to_string() converts a bitset into an object of type
string. The string will have as many characters as the bitset. Each zero bit
will correspond to the character 0, while each one bit will be represented by
the character 1.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
map and multimap

79

S e c t i o n 9.
map and multimap

9.1

The map Data Abstraction

9.2

map and multimap Operations

9.3

Example Programs

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
map and multimap

80

9.1 The map Data Abstraction
A map is an indexed data structure, similar to a vector or a deque.
However, maps differ from vectors or deques in two important respects.
First, in a map, unlike a vector or deque, the index values (called the key
values) need not be integer, but can be any ordered data type. For example,
maps can be indexed by real numbers, or by strings. Any data type for which
a comparison operator can be defined can be used as a key. As with a vector
or deque, elements can be accessed through the use of the subscript
operator (although there are other techniques). The second important
difference is that a map is an ordered data structure. This means that
elements are maintained in sequence, the ordering being determined by key
values. Because they maintain values in order, maps can very rapidly find
the element specified by any given key (searching is performed in
logarithmic time). Like a list, maps are not limited in size, but expand or
contract as necessary as new elements are added or removed. In large part, a
map can simply be considered to be a set that maintains a collection of pairs.

There are two varieties of maps provided by the standard library. The map
data structure demands unique keys. That is, there is a one-to-one
association between key elements and their corresponding value. In a map,
the insertion of a new value that uses an existing key is ignored. A
multimap, on the other hand, permits multiple different entries to be
indexed by the same key. Both data structures provide relatively fast
(logarithmic time) insertion, deletion, and access operations.

9.1.1 Include files

Whenever you use a map or a multimap, you must include the map header
file.

 # include <map>

9.2 Map and Multimap Operations
The member functions provided by the map and multimap data types will
shortly be described in more detail. Note that while member functions
provide basic operations, the utility of the data structure is greatly extended
through the use of the generic algorithms described in Sections 13 and 14.

9.2.1 Declaration and Initialization of map

The declaration of a map follows the pattern we have seen repeatedly in the
standard library. A map is a template data structure, specialized by the type
of the key elements, the type of the associated values, and the operator to be
used in comparing keys. If your compiler supports default template types (a

✍
Other Names for
Maps
In other
programming
languages, a
map-like data
structure is
sometimes
referred to as a
dictionary, a
table, or an
associative array.

✍
Pairs
See the discussion
of insertion in
Section 8 for a
description of the
pair data type.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
map and multimap

81

relatively new feature in C++ not yet supported by all vendors), then the last
of these is optional, and if not provided, the less than operator for the key
type will be assumed. Maps can be declared with no initial elements, or
initialized from another container by providing a pair of iterators. In the
latter case the iterators must denote values of type pair; the first field in each
pair is taken to be a key, while the second field is a value. A copy
constructor also permits maps to be created as copies of other maps.

 // map indexed by doubles containing strings
 map<double, string, less<double> > map_one;
 // map indexed by integers, containing integers
 map<int, int> map_two(aContainer.begin(), aContainer.end());
 // create a new map, initializing it from map two
 map<int, int> map_three (map_two); // copy constructor

A map can be assigned to another map, and two maps can exchange their
values using the swap() operation (in a manner analogous to other standard
library containers).

9.2.2 Type Definitions

The classes map and multimap include a number of type definitions. These
are most commonly used in declaration statements. For example, an iterator
for a map of strings to integers can be declared in the following fashion:

map<string, int>::iterator location;

In addition to iterator , the following types are defined:

key_type The type associated with the keys used to index
the map.

value_type The type held by the container, a key/value
pair.

const_iterator An iterator that does not allow modification of
the underlying sequence.

reverse_iterator An iterator that moves in a backward direction.

const_reverse_iterator A combination constant and reverse iterator.

reference A reference to an underlying value.

const_reference A reference to an underlying value that will not
permit the element to be modified.

size_type An unsigned integer type, used to refer to the
size of containers.

key_compare A function object that can be used to compare
two keys.

value_compare A function object that can be used to compare
two elements.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
map and multimap

82

difference_type A signed integer type, used to describe the
distances between iterators.

allocator_type An allocator used by the container for all
storage management.

9.2.3 Insertion and Access

Values can be inserted into a map or a multimap using the insert()

operation. Note that the argument must be a key-value pair. This pair is
often constructed using the data type value_type associated with the map.

 map_three.insert (map<int>::value_type(5, 7));

Insertions can also be performed using an iterator pair, for example as
generated by another map.

 map_two.insert (map_three.begin(), map_three.end());

With a map (but not a multimap), values can be accessed and inserted using
the subscript operator. Simply using a key as a subscript creates an entry −
the default element is used as the associated value. Assigning to the result of
the subscript changes the associated binding.

 cout << "Index value 7 is " << map_three[7] << endl;
 // now change the associated value
 map_three[7] = 5;
 cout << "Index value 7 is " << map_three[7] << endl;

9.2.4 Removal of Values

Values can be removed from a map or a multimap by naming the key value.
In a multimap the erasure removes all elements with the associated key. An
element to be removed can also be denoted by an iterator; as, for example,
the iterator yielded by a find() operation. A pair of iterators can be used to
erase an entire range of elements.

 // erase the 4th element 4
 map_three.erase(4);
 // erase the 5th element
 mtesttype::iterator five = map_three.find(5);
 map_three.erase(five);

 // erase all values between the 7th and 11th elements
 mtesttype::iterator seven = map_three.find(7);
 mtesttype::iterator eleven = map_three.find(11);
 map_three.erase (seven, eleven);

If the underlying element type provides a destructor, then the destructor will
be invoked prior to removing the key and value pair from the collection.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
map and multimap

83

9.2.5 Iterators

The member functions begin() and end() produce bidirectional iterators for
both maps and multimaps. Dereferencing an iterator for either a map or a
multimap will yield a pair of key/value elements. The field names first

and second can be applied to these values to access the individual fields.
The first field is constant, and cannot be modified. The second field,
however, can be used to change the value being held in association with a
given key. Elements will be generated in sequence, based on the ordering of
the key fields.

The member functions rbegin() and rend() produce iterators that yield the
elements in reverse order.

9.2.6 Searching and Counting

The member function size() will yield the number of elements held by a
container. The member function empty() will return a boolean true value if
the container is empty, and is generally faster than testing the size against
zero.

The member function find() takes a key argument, and returns an iterator
denoting the associated key/value pair. In the case of multimaps, the first
such value is returned. In both cases the past-the-end iterator is returned if
no such value is found.

 if (map_one.find(4) != map_one.end())
 cout << "contains a 4th element" << endl;

The member function lower_bound() yields the first entry that matches the
argument key, while the member function upper_bound() returns the first
value past the last entry matching the argument. Finally, the member
function equal_range() returns a pair of iterators, holding the lower and
upper bounds. An example showing the use of these procedures will be
presented later in this section.

The member function count() returns the number of elements that match the
key value supplied as the argument. For a map, this value is always either
zero or one, whereas for a multimap it can be any nonnegative value. If you
simply want to determine whether or not a collection contains an element
indexed by a given key, using count() is often easier than using the find()

function and testing the result against the end-of-sequence iterator.

 if (map_one.count(4))
 cout << "contains a 4th element" << endl;

9.2.7 Element Comparisons

The member functions key_comp() and value_comp(), which take no
arguments, return function objects that can be used to compare elements of
the key or value types. Values used in these comparisons need not be

✍
No Iterator
Invalidation
Unlike a vector or
deque, the
insertion or
removal of
elements from a
map does not
invalidate iterators
which may be
referencing other
portions of the
container.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
map and multimap

84

contained in the collection, and neither function will have any effect on the
container.

if (map_two.key_comp (i, j))
 cout << "element i is less than j" << endl;

9.2.8 Other Map Operations

Because maps and multimaps are ordered collections, and because the
iterators for maps return pairs, many of the functions described in Sections
13 and 14 are meaningless or difficult to use. However, there are a few
notable exceptions. The functions for_each() , adjacent_find() , and
accumulate() each have their own uses. In all cases it is important to
remember that the functions supplied as arguments should take a key/value
pair as arguments.

9.3 Example Programs
We present three example programs that illustrate the use of maps and
multimaps. These are a telephone database, graphs, and a concordance.

9.3.1 A Telephone Database

A maintenance program for a simple telephone database is a good
application for a map. The database is simply an indexed structure, where
the name of the person or business (a string) is the key value, and the
telephone number (a long) is the associated entry. We might write such a
class as follows:

typedef map<string, long, less<string> > friendMap;
typedef friendMap::value_type entry_type;

class telephoneDirectory {
public:
 void addEntry (string name, long number) // add new entry to
 // database
 { database[name] = number; }

 void remove (string name) // remove entry from database
 { database.erase(name); }

 void update (string name, long number) // update entry
 { remove(name); addEntry(name, number); }

 void displayDatabase() // display entire database
 { for_each(database.begin(), database.end(), printEntry); }

 void displayPrefix(int); // display entries that match prefix

 void displayByPrefix(); // display database sorted by prefix

private:
 friendMap database;
};

✍
Obtaining the
Sample Program
The complete
example program
is included in the
file tutorial
tele.cpp in the
distribution.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
map and multimap

85

Simple operations on our database are directly implemented by map
commands. Adding an element to the database is simply an insert ,
removing an element is an erase , and updating is a combination of the two.
To print all the entries in the database we can use the for_each() algorithm,
and apply the following simple utility routine to each entry:

void printEntry(const entry_type & entry)
 { cout << entry.first << ":" << entry.second << endl; }

We will use a pair of slightly more complex operations to illustrate how a
few of the algorithms described in Section 13 can be used with maps.
Suppose we wanted to display all the phone numbers with a certain three
digit initial prefix1 . We will use the find_if() function (which is different
from the find() member function in class map) to locate the first entry.
Starting from this location, subsequent calls on find_if() will uncover each
successive entry.

void telephoneDirectory::displayPrefix(int prefix)
{
 cout << "Listing for prefix " << prefix << endl;
 friendMap::iterator where;
 where =
 find_if (database.begin(), database.end(),
 checkPrefix(prefix));
 while (where != database.end()) {
 printEntry(*where);
 where = find_if (++where, database.end(),
 checkPrefix(prefix));
 }
 cout << "end of prefix listing" << endl;
}

For the predicate to this operation, we require a boolean function that takes
only a single argument (the pair representing a database entry), and tells us
whether or not it is in the given prefix. There is no obvious candidate
function, and in any case the test prefix is not being passed as an argument to
the comparison function. The solution to this problem is to employ a
technique that is commonly used with the standard library, defining the
predicate function as an instance of a class, and storing the test predicate as
an instance variable in the class, initialized when the class is constructed.
The desired function is then defined as the function call operator for the
class:

int prefix(const entry_type & entry)
 { return entry.second / 10000; }

class checkPrefix {
public:
 checkPrefix (int p) : testPrefix(p) { }
 int testPrefix;

1 We apologize to international readers for this obviously North-
American-centric example.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
map and multimap

86

 bool operator () (const entry_type & entry)
 { return prefix(entry) == testPrefix; }
};

Our final example will be to display the directory sorted by prefix. It is not
possible to alter the order of the maps themselves. So instead, we create a
new map with the element types reversed, then copy the values into the new
map, which will order the values by prefix. Once the new map is created, it
is then printed.

typedef map<long, string, less<long> > sortedMap;
typedef sortedMap::value_type sorted_entry_type;

void telephoneDirectory::displayByPrefix()
{
 cout << "Display by prefix" << endl;
 sortedMap sortedData;
 friendMap::iterator itr;
 for (itr = database.begin(); itr != database.end(); itr++)
 sortedData.insert(sortedMap::value_type((*itr).second,
 (*itr).first));
 for_each(sortedData.begin(), sortedData.end(),
 printSortedEntry);
}

The function used to print the sorted entries is the following:

void printSortedEntry (const sorted_entry_type & entry)
 { cout << entry.first << ":" << entry.second << endl; }

9.3.2 Graphs

A map whose elements are themselves maps are a natural representation
for a directed graph. For example, suppose we use strings to encode the
names of cities, and we wish to construct a map where the value associated
with an edge is the distance between two connected cities. We could create
such a graph as follows:

typedef map<string, int> stringVector;
typedef map<string, stringVector> graph;

const string pendleton("Pendleton"); // define strings for
 // city names
const string pensacola("Pensacola");
const string peoria("Peoria");
const string phoenix("Phoenix");
const string pierre("Pierre");
const string pittsburgh("Pittsburgh");
const string princeton("Princeton");
const string pueblo("Pueblo");

graph cityMap; // declare the graph that holds the map

cityMap[pendleton][phoenix] = 4; // add edges to the graph
cityMap[pendleton][pueblo] = 8;
cityMap[pensacola][phoenix] = 5;
cityMap[peoria][pittsburgh] = 5;
cityMap[peoria][pueblo] = 3;
cityMap[phoenix][peoria] = 4;

✍
Obtaining the
Sample Program
The executable
version of this
program is found
in the file
graph.cpp on
the tutorial
distribution disk.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
map and multimap

87

cityMap[phoenix][pittsburgh] = 10;
cityMap[phoenix][pueblo] = 3;
cityMap[pierre][pendleton] = 2;
cityMap[pittsburgh][pensacola] = 4;
cityMap[princeton][pittsburgh] = 2;
cityMap[pueblo][pierre] = 3;

The type stringVector is a map of integers indexed by strings. The type
graph is, in effect, a two-dimensional sparse array, indexed by strings and
holding integer values. A sequence of assignment statements initializes the
graph.

A number of classic algorithms can be used to manipulate graphs
represented in this form. One example is Dijkstra's shortest-path algorithm.
Dijkstra's algorithm begins from a specific city given as an initial location. A
priority_queue of distance/city pairs is then constructed, and initialized
with the distance from the starting city to itself (namely, zero). The
definition for the distance pair data type is as follows:

struct DistancePair {
 unsigned int first;
 string second;
 DistancePair() : first(0) { }
 DistancePair(unsigned int f, const string & s)
 : first(f), second(s) { }
};

bool operator < (const DistancePair & lhs, const DistancePair & rhs)
 { return lhs.first < rhs.first; }

In the algorithm that follows, note how the conditional test is reversed on the
priority queue, because at each step we wish to pull the smallest, and not the
largest, value from the collection. On each iteration around the loop we pull
a city from the queue. If we have not yet found a shorter path to the city, the
current distance is recorded, and by examining the graph we can compute
the distance from this city to each of its adjacent cities. This process
continues until the priority queue becomes exhausted.

void shortestDistance(graph & cityMap,
 const string & start, stringVector & distances)
{
 // process a priority queue of distances to cities
 priority_queue<DistancePair, vector<DistancePair>,
 greater<DistancePair> > que;
 que.push(DistancePair(0, start));

 while (! que.empty()) {
 // pull nearest city from queue
 int distance = que.top().first;
 string city = que.top().second;
 que.pop();
 // if we haven't seen it already, process it
 if (0 == distances.count(city)) {
 // then add it to shortest distance map
 distances[city] = distance;
 // and put values into queue
 const stringVector & cities = cityMap[city];
 stringVector::const_iterator start = cities.begin();

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
map and multimap

88

 stringVector::const_iterator stop = cities.end();
 for (; start != stop; ++start)
 que.push(DistancePair(distance + (*start).second,
 (*start).first));
 }
 }
}

Notice that this relatively simple algorithm makes use of vectors, maps,
strings and priority_queues. priority_queues are described in greater detail
in Section 11.

9.3.3 A Concordance

A concordance is an alphabetical listing of words in a text, that shows the
line numbers on which each word occurs. We develop a concordance to
illustrate the use of the map and multimap container classes. The data
values will be maintained in the concordance by a multimap, indexed by
strings (the words) and will hold integers (the line numbers). A multimap is
employed because the same word will often appear on multiple different
lines; indeed, discovering such connections is one of the primary purposes of
a concordance. Another possibility would have been to use a map and use a
set of integer elements as the associated values.

class concordance {
 typedef multimap<string, int less <string> > wordDictType;
public:
 void addWord (string, int);
 void readText (istream &);
 void printConcordance (ostream &);

private:
 wordDictType wordMap;
};

The creation of the concordance is divided into two steps: first the program
generates the concordance (by reading lines from an input stream), and then
the program prints the result on the output stream. This is reflected in the
two member functions readText() and printConcordance(). The first of
these, readText(), is written as follows:

void concordance::readText (istream & in)
{
 string line;
 for (int i = 1; getline(in, line, ‘\n’); i++) {
 allLower(line);
 list<string> words;
 split (line, " ,.;:", words);
 list<string>::iterator wptr;
 for (wptr = words.begin(); wptr != words.end(); ++wptr)
 addWord(*wptr, i);
 }
}

Lines are read from the input stream one by one. The text of the line is first
converted into lower case, then the line is split into words, using the function

✍
Obtaining the
Sample Program
An executable
version of the
concordance
program is found
on the tutorial
distribution file
under the name
concord.cpp .

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
map and multimap

89

split() described in Section 12.3. Each word is then entered into the
concordance. The method used to enter a value into the concordance is as
follows:

void concordance::addWord (string word, int line)
{
 // see if word occurs in list
 // first get range of entries with same key
 wordDictType::iterator low = wordMap.lower_bound(word);
 wordDictType::iterator high = wordMap.upper_bound(word);
 // loop over entries, see if any match current line
 for (; low != high; ++low)
 if ((*low).second == line)
 return;
 // didn't occur, add now
 wordMap.insert(wordDictType::value_type(word, line));
}

The major portion of addWord() is concerned with ensuring values are not
duplicated in the word map if the same word occurs twice on the same line.
To assure this, the range of values matching the key is examined, each value
is tested, and if any match the line number then no insertion is performed. It
is only if the loop terminates without discovering the line number that the
new word/line number pair is inserted.

The final step is to print the concordance. This is performed in the following
fashion:

void concordance::printConcordance (ostream & out)
{
 string lastword("");
 wordDictType::iterator pairPtr;
 wordDictType::iterator stop = wordMap.end();
 for (pairPtr = wordMap.begin(); pairPtr != stop; ++pairPtr)
 // if word is same as previous, just print line number
 if (lastword == (*pairPtr).first)
 out << " " << (*pairPtr).second;
 else { // first entry of word
 lastword = (*pairPtr).first;
 cout << endl << lastword << ": " << (*pairPtr).second;
 }
 cout << endl; // terminate last line
}

An iterator loop is used to cycle over the elements being maintained by the
word list. Each new word generates a new line of output − thereafter line
numbers appear separated by spaces. If, for example, the input was the text:

It was the best of times,

it was the worst of times.

The output, from best to worst, would be:

 best: 1

 it: 1 2

 of: 1 2

 the: 1 2

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
map and multimap

90

 times: 1 2

 was: 1 2

 worst: 1

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
stack and queue

91

S e c t i o n 10.
stack and queue

10.1

Overview

10.2

The stack Data Abstraction

10.3

The queue Data Abstraction

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
stack and queue

92

10.1 Overview
Most people have a good intuitive understanding of the stack and queue
data abstractions, based on experience with everyday objects. An excellent
example of a stack is a pile of papers on a desk, or a stack of dishes in a
cupboard. In both cases the important characteristic is that it is the item on
the top that is most easily accessed. The easiest way to add a new item to the
collection is to place it above all the current items in the stack. In this
manner, an item removed from a stack is the item that has been most recently
inserted into the stack; for example, the top piece of paper in the pile, or the
top dish in the stack.

An everyday example of a queue, on the other hand, is a bank teller line, or a
line of people waiting to enter a theater. Here new additions are made to the
back of the queue, as new people enter the line, while items are removed
from the front of the structure, as patrons enter the theater. The removal
order for a queue is the opposite of that for a stack. In a queue, the item that
is removed is the element that has been present in the queue for the longest
period of time.

In the standard library, both stacks and queues are adaptors, built on top of
other containers which are used to actually hold the values. A stack can be
built out of a vector, a list, or a deque, while a queue can be built on top of
either a list or a deque. Elements held by either a stack or queue must
recognize both the operators < and == .

Because neither stacks nor queues define iterators, it is not possible to
examine the elements of the collection except by removing the values one by
one. The fact that these structures do not implement iterators also implies
that most of the generic algorithms described in Sections 12 and 13 cannot be
used with either data structure.

10.2 The stack Data Abstraction
As a data abstraction, a stack is traditionally defined as any object that
implements the following operations:

empty() return true if the collection is empty
size() return number of elements in collection
top() return (but do not remove) the topmost element in

the stack
push(newElement) push a new element onto the stack
pop() remove (but do not return) the topmost element from

the stack

✍
LIFO and FIFO
A stack is
sometimes
referred to as a
LIFO structure,
and a queue is
called a FIFO
structure. The
abbreviation LIFO
stands for Last In,
First Out. This
means the first
entry removed
from a stack is the
last entry that was
inserted. The term
FIFO, on the other
hand, is short for
First In, First Out.
This means the first
element removed
from a queue is
the first element
that was inserted
into the queue.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
stack and queue

93

10.2.1 Include Files

Note that accessing the front element and removing the front element are
separate operations. Programs that use the stack data abstraction should
include the file stack , as well as the include file for the container type (e.g.,
vector).

 # include <stack>
 # include <vector>

10.2.2 Declaration and Initialization of stack

A declaration for a stack must specify two arguments; the underlying
element type, and the container that will hold the elements. For a stack, the
most common container is a vector or a deque, however a list can also be
used. The vector version is generally smaller, while the deque version may
be slightly faster. The following are sample declarations for a stack.

 stack< int, vector<int> > stackOne;
 stack< double, deque<double> > stackTwo;
 stack< Part *, list<Part * > > stackThree;
 stack< Customer, list<Customer> > stackFour;

The last example creates a stack of a programmer-defined type named
Customer.

10.2.3 Example Program − A RPN Calculator

A classic application of a stack is in the implementation of calculator. Input
to the calculator consists of a text string that represents an expression written
in reverse polish notation (RPN). Operands, that is, integer constants, are
pushed on a stack of values. As operators are encountered, the appropriate
number of operands are popped off the stack, the operation is performed,
and the result is pushed back on the stack.

We can divide the development of our stack simulation into two parts, a
calculator engine and a calculator program. A calculator engine is concerned
with the actual work involved in the simulation, but does not perform any
input or output operations. The name is intended to suggest an analogy to a
car engine, or a computer processor – the mechanism performs the actual
work, but the user of the mechanism does not normally directly interact with
it. Wrapped around this is the calculator program, which interacts with the
user, and passes appropriate instructions to the calculator engine.

We can use the following class definition for our calculator engine. Inside
the class declaration we define an enumerated list of values to represent each
of the possible operators that the calculator is prepared to accept. We have
made two simplifying assumptions: all operands will be integer values, and
we will handle only binary operators.

class calculatorEngine {
public:
 enum binaryOperator {plus, minus, times, divide};

✍
Right Angle
Brackets
Note that on most
compilers it is
important to
leave a space
between the two
right angle
brackets in the
declaration of a
stack; otherwise
they are
interpreted by the
compiler as a right
shift operator.

✍
Obtaining the
Sample Program
This program is
found in the file
calc.cpp in the
distribution
package.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
stack and queue

94

 int currentMemory () // return current top of stack
 { return data.top(); }

 void pushOperand (int value) // push operand value on to stack
 { data.push (value); }

 void doOperator (binaryOperator); // pop stack and perform
 // operator

protected:
 stack< int, vector<int> > data;
};

The member function doOperator() performs the actual work. It pops
values from the stack, performs the operation, then pushes the result back
onto the stack.

void calculatorEngine::doOperator (binaryOperator theOp)
{
 int right = data.top(); // read top element
 data.pop(); // pop it from stack
 int left = data.top(); // read next top element
 data.pop(); // pop it from stack
 switch (theOp) {
 case plus: data.push(left + right); break;
 case minus: data.push(left - right); break;
 case times: data.push(left * right); break;
 case divide: data.push(left / right); break;
 }
}

The main program reads values in reverse polish notation, invoking the
calculator engine to do the actual work:

void main() {
 int intval;
 calculatorEngine calc;
 char c;

 while (cin >> c)
 switch (c) {
 case '0': case '1': case '2': case '3': case '4':
 case '5': case '6': case '7': case '8': case '9':
 cin.putback(c);
 cin >> intval;
 calc.pushOperand(intval);
 break;

 case '+': calc.doOperator(calculatorEngine::plus);
 break;

 case '-': calc.doOperator(calculatorEngine::minus);
 break;

 case '*': calc.doOperator(calculatorEngine::times);
 break;

 case '/': calc.doOperator(calculatorEngine::divide);
 break;

 case 'p': cout << calc.currentMemory() << endl;

✍
Defensive
Programming
A more robust
program would
check to see if the
stack was empty
before attempting
to perform the
pop() operation.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
stack and queue

95

 break;

 case 'q': return; // quit program
 }
}

10.3 The queue Data Abstraction
As a data abstraction, a queue is traditionally defined as any object that
implements the following operations:

empty() return true if the collection is empty

size() return number of elements in collection

front() return (but do not remove) the element at the front
of the queue

back() return the element at the end of the queue

push(newElement) push a new element on to the end of the queue

pop() remove (but do not return) the element at the front
of the queue

10.3.1 Include Files

Note that the operations of accessing and of removing the front elements are
performed separately. Programs that use the queue data abstraction should
include the file queue , as well as the include file for the container type (e.g.,
list).

 # include <queue>
 # include <list>

10.3.2 Declaration and Initialization of queue

A declaration for a queue must specify both the element type as well as the
container that will hold the values. For a queue the most common containers
are a list or a deque. The list version is generally smaller, while the deque
version may be slightly faster. The following are sample declarations for a
queue.

 queue< int, list<int> > queueOne;
 queue< double, deque<double> > queueTwo;
 queue< Part *, list<Part * > > queueThree;
 queue< Customer, list<Customer> > queueFour;

The last example creates a queue of a programmer-defined type named
Customer. As with the stack container, all objects stored in a queue must
understand the operators < and ==.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
stack and queue

96

Because the queue does not implement an iterator, none of the generic
algorithms described in Sections 12 or 13 apply to queues.

10.3.3 Example Program − Bank Teller Simulation

Queues are often found in businesses, such as supermarkets or banks.
Suppose you are the manager of a bank, and you need to determine how
many tellers to have working during certain hours. You decide to create a
computer simulation, basing your simulation on certain observed behavior.
For example, you note that during peak hours there is a ninety percent
chance that a customer will arrive every minute.

We create a simulation by first defining objects to represent both customers
and tellers. For customers, the information we wish to know is the average
amount of time they spend waiting in line. Thus, customer objects simply
maintain two integer data fields: the time they arrive in line, and the time
they will spend at the counter. The latter is a value randomly selected
between 2 and 8. (See Section 2.2.5 for a discussion of the randomInteger()

function.)

class Customer {
public:
 Customer (int at = 0) : arrival_Time(at),
 processTime(2 + randomInteger(6)) {}
 int arrival_Time;
 int processTime;

 bool done() // are we done with our transaction?
 { return --processTime < 0; }

 operator < (const Customer & c) // order by arrival time
 { return arrival_Time < c.arrival_Time; }

 operator == (const Customer & c) // no two customers are alike
 { return false; }
};

Because objects can only be stored in standard library containers if they can
be compared for equality and ordering, it is necessary to define the < and ==

operators for customers. Customers can also tell us when they are done with
their transactions.

Tellers are either busy servicing customers, or they are free. Thus, each teller
value holds two data fields; a customer, and a boolean flag. Tellers define a
member function to answer whether they are free or not, as well as a member
function that is invoked when they start servicing a customer.

class Teller {
public:
 Teller() { free = true; }

 bool isFree() // are we free to service new customer?
 { if (free) return true;
 if (customer.done())
 free = true;
 return free;

✍
Obtaining the
Sample Program
The complete
version of the
bank teller
simulation
program is found
in file
teller.cpp on
the distribution
disk.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
stack and queue

97

 }

 void addCustomer(Customer c) // start serving new customer
 { customer = c;
 free = false;
 }

private:
 bool free;
 Customer customer;
};

The main program is then a large loop, cycling once each simulated minute.
Each minute a new customer is, with probability 0.9, entered into the queue
of waiting customers. Each teller is polled, and if any are free they take the
next customer from the queue. Counts are maintained of the number of
customers serviced and the total time they spent in queue. From these two
values we can determine, following the simulation, the average time a
customer spent waiting in the line.

void main() {
 int numberOfTellers = 5;
 int numberOfMinutes = 60;
 double totalWait = 0;
 int numberOfCustomers = 0;
 vector<Teller> teller(numberOfTellers);
 queue< Customer, deque<Customer> > line;

 for (int time = 0; time < numberOfMinutes; time++) {
 if (randomInteger(10) < 9)
 line.push(Customer(time));
 for (int i = 0; i < numberOfTellers; i++) {
 if (teller[i].isFree() & ! line.empty()) {
 Customer & frontCustomer = line.front();
 numberOfCustomers++;
 totalWait += (time - frontCustomer.arrival_Time);
 teller[i].addCustomer(frontCustomer);
 line.pop();
 }
 }
 }
 cout << "average wait:" <<
 (totalWait / numberOfCustomers) << endl;
}

By executing the program several times, using various values for the number
of tellers, the manager can determine the smallest number of tellers that can
service the customers while maintaining the average waiting time at an
acceptable amount.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
priority_queue

99

S e c t i o n 11.
priority_queue

11.1

The priority queue Data Abstraction

11.2

priority queue Operations

11.3

Application − Event Driven Simulation

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
priority_queue

100

11.1 The priority queue Data Abstraction
A priority queue is a data structure useful in problems where you need to
rapidly and repeatedly find and remove the largest element from a collection
of values. An everyday example of a priority queue is the “to do” list of
tasks waiting to be performed that most of us maintain to keep ourselves
organized. Some jobs, such as “clean desktop,” are not imperative and can
be postponed arbitrarily. Other tasks, such as “finish report by Monday” or
“buy flowers for anniversary,” are time-crucial and must be addressed more
rapidly. Thus, we sort the tasks waiting to be accomplished in order of their
importance (or perhaps based on a combination of their critical importance,
their long term benefit, and the fun we will have doing them) and choose the
most pressing.

A more computer-related example of a priority queue is that used by an
operating system to maintain a list of pending processes, where the value
associated with each element is the priority of the job. For example, it may
be necessary to respond rapidly to a key pressed at a terminal, before the
data is lost when the next key is pressed. On the other hand, the process of
copying a listing to a queue of output waiting to be handled by a printer is
something that can be postponed for a short period, as long as it is handled
eventually. By maintaining processes in a priority queue, those jobs with
urgent priority will be executed prior to any jobs with less urgent
requirements.

Simulation programs use a priority queue of “future events.” The simulation
maintains a virtual “clock,” and each event has an associated time when the
event will take place. In such a collection, the element with the smallest time
value is the next event that should be simulated. These are only a few
instances of the types of problems for which a priority queue is a useful tool.
You probably have, or will, encounter others.

11.1.1 Include Files

Programs that use the priority queue data abstraction should include the file
queue , as well as the include file for the container type (e.g., vector).

 # include <queue>
 # include <vector>

✍
A Queue That is
Not a Queue
The term priority
queue is a
misnomer, in that
the data structure
is not a queue, in
the sense that we
used the term in
Section 10, since it
does not return
elements in a strict
first-in, first-out
sequence.
Nevertheless, the
name is now firmly
associated with
this particular
data type.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
priority_queue

101

11.2 The Priority Queue Operations
A priority queue is a data structure that can hold elements of type T and that
implements the following five operations:

push(T) add a new value to the collection being maintained

top() return a reference to the smallest element in collection

pop() delete the smallest element from the collection

size() return the number of elements in the collection

empty() return true if the collection is empty

Elements of type T must be comparable to each other, either through the use
of the default less than operator (the < operator), or through a comparison
function passed either as a template argument or as an optional argument on
the constructor. The latter form will be illustrated in the example program
provided later in this section. As with all the containers in the Standard
Library, there are two constructors. The default constructor requires either
no arguments or the optional comparison function. An alternative
constructor takes an iterator pair, and initializes the values in the container
from the argument sequence. Once more, an optional third argument can be
used to define the comparison function.

The priority queue data type is built on top of a container class, which is the
structure actually used to maintain the values in the collection. There are
two containers in the standard library that can be used to construct priority
queues: vectors or deques.

11.2.1 Declaration and Initialization of priority queue

The following illustrates the declaration of several priority queues:

priority_queue< int, vector<int> > queue_one;
priority_queue< int, vector<int>, greater<int> > queue_two;
priority_queue< double, deque<double> >
 queue_three(aList.begin(), aList.end());
priority_queue< eventStruct, vector<eventStruct> >
 queue_four(eventComparison);
priority_queue< eventStruct, deque<eventStruct> >
 queue_five(aVector.begin(), aVector.end(), eventComparison);

Queues constructed out of vectors tend to be somewhat smaller, while
queues constructed out of deques can be somewhat faster, particularly if the
number of elements in the queue varies widely over the course of execution.
However, these differences are slight, and either form will generally work in
most circumstances.

Because the priority queue data structure does not itself know how to
construct iterators, very few of the algorithms noted in Section 13 can be

✍
Initializing Queues
from other
containers
As we noted in
earlier sections,
support for
initializing
containers using a
pair of iterators
requires a feature
that is not yet
widely supported
by compilers.
While we
document this
form of
constructor, it may
not yet be
available on your
system.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
priority_queue

102

used with priority queues. Instead of iterating over values, a typical
algorithm that uses a priority queue constructs a loop, which repeatedly
pulls values from the structure (using the top() and pop() operations) until
the collection becomes empty (tested using the empty() operation). The
example program described in the next section will illustrate this use.

Priority queues are implemented by internally building a data structure
called a heap. Abstractly, a heap is a binary tree in which every node
possesses the property that the value associated with the node is smaller than
or equal to the value associated with either child node.

11.3 Application −− Event-Driven Simulation
An extended example will illustrate the use of priority queues. The example
illustrates one of the more common uses for priority queues, which is to
support the construction of a simulation model.

A discrete event-driven simulation is a popular simulation technique. Objects
in the simulation model objects in the real world, and are programmed to
react as much as possible as the real objects would react. A priority queue is
used to store a representation of “events” that are waiting to happen. This
queue is stored in order, based on the time the event should occur, so the
smallest element will always be the next event to be modeled. As an event
occurs, it can spawn other events. These subsequent events are placed into
the queue as well. Execution continues until all events have been processed.

✍
Information on
Heaps. Details of
the algorithms
used in
manipulating
heaps will not be
discussed here,
however such
information is
readily available
in almost any
textbook on data
structures.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
priority_queue

103

Events can be represented as subclasses of a base class, which we will call
event. The base class simply records the time at which the event will take
place. A pure virtual function named processEvent will be invoked to
execute the event.

class event {
public:
 event (unsigned int t) : time(t) { }
 const unsigned int time;
 virtual void processEvent() = 0;
};

The simulation queue will need to maintain a collection of different types of
events. Each different form of event will be represented by a different
subclass of class event. Not all events will have the same exact type,
although they will all be subclasses of class event. (This is sometimes called a
heterogeneous collection.) For this reason the collection must store pointers to
events, instead of the events themselves. (In theory one could store
references, instead of pointers, however the standard library containers
cannot hold references).

Since comparison of pointers cannot be specialized on the basis of the pointer
types, we must instead define a new comparison function for pointers to
events. In the standard library this is accomplished by defining a new
structure, the sole purpose of which is to define the function invocation
operator (the () operator) in the appropriate fashion. Since in this particular
example we wish to use the priority queue to return the smallest element each
time, rather than the largest, the order of the comparison is reversed, as
follows:

struct eventComparison {
 bool operator () (event * left, event * right) const
 { return left->time > right->time; }
};

We are now ready to define the class simulation, which provides the
structure for the simulation activities. The class simulation provides two
functions. The first is used to insert a new event into the queue, while the
second runs the simulation. A data field is also provided to hold the current
simulation “time.”

✍
Finding Smallest
Elements
We describe the
priority queue as a
structure for
quickly
discovering the
largest element in
a sequence. If,
instead, your
problem requires
the discovery of
the smallest
element, there
are various
possibilities. One is
to supply the
inverse operator
as either a
template
argument or the
optional
comparison
function
argument to the
constructor. If you
are defining the
comparison
argument as a
function, as in the
example problem,
another solution is
to simply invert
the comparison
test.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
priority_queue

104

class simulation {
public:
 simulation () : eventQueue(), time(0) { }

 void scheduleEvent (event * newEvent)
 { eventQueue.push (newEvent); }

 void run();

 unsigned int time;

protected:
 priority_queue<event *, vector<event *>, eventComparison>
eventQueue;
};

Notice the declaration of the priority queue used to hold the pending events.
In this case we are using a vector as the underlying container. We could just
as easily have used a deque.

The heart of the simulation is the member function run(), which defines the
event loop. This procedure makes use of three of the five priority queue
operations, namely top(), pop(), and empty(). It is implemented as
follows:

void simulation::run()
{
 while (! eventQueue.empty()) {
 event * nextEvent = eventQueue.top();
 eventQueue.pop();
 time = nextEvent->time;
 nextEvent->processEvent();
 delete nextEvent; // free memory used by event
 }
}

11.3.1 An Ice Cream Store Simulation

To illustrate the use of our simulation framework, this example program
gives a simple simulation of an ice cream store. Such a simulation might be
used, for example, to determine the optimal number of chairs that should be
provided, based on assumptions such as the frequency that customers will
arrive, the length of time they will stay, and so on.

Our store simulation will be based around a subclass of class simulation,
defined as follows:

class storeSimulation : public simulation {
public:
 storeSimulation()
 : freeChairs(35), profit(0.0), simulation() { }

 bool canSeat (unsigned int numberOfPeople);
 void order(unsigned int numberOfScoops);
 void leave(unsigned int numberOfPeople);

private:
 unsigned int freeChairs;

✍
Storing Pointers
versus Storing
Values
Other example
programs in this
tutorial have all
used containers to
store values. In
this example the
container will
maintain pointers
to values, not the
values them-
selves. Note that
a consequence of
this is that the
programmer is
then responsible
for managing the
memory for the
objects being
manipulated.

✍
Obtaining the
sample program
The complete
event simulation is
found in the file
icecream.cpp
on the distribution
disk.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
priority_queue

105

 double profit;
} theSimulation;

There are three basic activities associated with the store. These are arrival,
ordering and eating, and leaving. This is reflected not only in the three
member functions defined in the simulation class, but in three separate
subclasses of event.

The member functions associated with the store simply record the activities
taking place, producing a log that can later be studied to evaluate the
simulation.

bool storeSimulation::canSeat (unsigned int numberOfPeople)
 // if sufficient room, then seat customers
{
 cout << "Time: " << time;
 cout << " group of " << numberOfPeople << " customers arrives";
 if (numberOfPeople < freeChairs) {
 cout << " is seated" << endl;
 freeChairs -= numberOfPeople;
 return true;
 }
 else {
 cout << " no room, they leave" << endl;
 return false;
 }
}

void storeSimulation::order (unsigned int numberOfScoops)
 // serve icecream, compute profits
{
 cout << "Time: " << time;
 cout << " serviced order for " << numberOfScoops << endl;
 profit += 0.35 * numberOfScoops;
}

void storeSimulation::leave (unsigned int numberOfPeople)
 // people leave, free up chairs
{
 cout << "Time: " << time;
 cout << " group of size " << numberOfPeople <<
 " leaves" << endl;
 freeChairs += numberOfPeople;
}

As we noted already, each activity is matched by a subclass of event. Each
subclass of event includes an integer data field, which represents the size of
a group of customers. The arrival event occurs when a group enters. When
executed, the arrival event creates and installs a new instance of order event.
The function randomInteger() (see Section 2.2.5) is used to compute a
random integer between 1 and the argument value.

class arriveEvent : public event {
public:
 arriveEvent (unsigned int time, unsigned int groupSize)
 : event(time), size(groupSize) { }
 virtual void processEvent ();
private:
 unsigned int size;
};

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
priority_queue

106

void arriveEvent::processEvent()
{ // see if everybody can be seated
 if (theSimulation.canSeat(size))
 theSimulation.scheduleEvent
 (new orderEvent(time + 1 + randomInteger(4), size));
}

An order event similarly spawns a leave event.

class orderEvent : public event {
public:
 orderEvent (unsigned int time, unsigned int groupSize)
 : event(time), size(groupSize) { }
 virtual void processEvent ();
private:
 unsigned int size;
};

void orderEvent::processEvent()
{ // each person orders some number of scoops
 for (int i = 0; i < size; i++)
 theSimulation.order(1 + rand(3));
 theSimulation.scheduleEvent
 (new leaveEvent(time + 1 + randomInteger(10), size));
};

Finally, leave events free up chairs, but do not spawn any new events.

class leaveEvent : public event {
public:
 leaveEvent (unsigned int time, unsigned int groupSize)
 : event(time), size(groupSize) { }
 virtual void processEvent ();
private:
 unsigned int size;
};

void leaveEvent::processEvent ()
{ // leave and free up chairs
 theSimulation.leave(size);
}

To run the simulation we simply create some number of initial events (say,
30 minutes worth), then invoke the run() member function.

void main() {
 // load queue with some number of initial events
 unsigned int t = 0;
 while (t < 30) {
 t += rand(6);
 theSimulation.scheduleEvent(
 new arriveEvent(t, 1 + randomInteger(4)));
 }

 // then run simulation and print profits
 theSimulation.run();
 cout << "Total profits " << theSimulation.profit << endl;
}

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
String

107

S e c t i o n 12.
String

12.1

The string Abstraction

12.2

string Operations

12.3

An Example Function – Split a Line into Words

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
String

108

12.1 The string Abstraction
A string is basically an indexable sequence of characters. In fact, although a
string is not declared as a subclass of vector, almost all of the vector
operators discussed in Section 5 can be applied to string values. However, a
string is also a much more abstract quantity, and, in addition to simple
vector operators, the string data type provides a number of useful and
powerful high level operations.

In the standard library, a string is actually a template class, named
basic_string. The template argument represents the type of character that
will be held by the string container. By defining strings in this fashion, the
standard library not only provides facilities for manipulating sequences of
normal 8-bit ASCII characters, but also for manipulating other types of
character-like sequences, such as 16-bit wide characters. The data types
string and wstring (for wide string) are simply typedefs of basic_string,
defined as follows:

 typedef basic_string<char> string;
 typedef basic_string<wchar_t> wstring;

As we have already noted, a string is similar in many ways to a vector of
characters. Like the vector data type, there are two sizes associated with a
string. The first represents the number of characters currently being stored
in the string. The second is the capacity, the maximum number of characters
that can potentially be stored into a string without reallocation of a new
internal buffer. As it is in the vector data type, the capacity of a string is a
dynamic quantity. When string operations cause the number of characters
being stored in a string value to exceed the capacity of the string, a new
internal buffer is allocated and initialized with the string values, and the
capacity of the string is increased. All this occurs behind the scenes,
requiring no interaction with the programmer.

12.1.1 Include Files

Programs that use strings must include the string header file:

 # include <string>

12.2 String Operations
In the following sections, we'll examine the standard library operations used
to create and manipulate strings.

✍
Strings and Wide
Strings
In the remainder
of this section we
will refer to the
string data type,
however all the
operations we will
introduce are
equally
applicable to
wide strings.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
String

109

12.2.1 Declaration and Initialization of string

The simplest form of declaration for a string simply names a new variable, or
names a variable along with the initial value for the string. This form was
used extensively in the example graph program given in Section 9.3.2. A
copy constructor also permits a string to be declared that takes its value from
a previously defined string.

 string s1;
 string s2 ("a string");
 string s3 = "initial value";
 string s4 (s3);

In these simple cases the capacity is initially exactly the same as the number
of characters being stored. Alternative constructors let you explicitly set the
initial capacity. Yet another form allows you to set the capacity and initialize
the string with repeated copies of a single character value.

 string s6 ("small value", 100);// holds 11 values, can hold 100
 string s7 (10, '\n'); // holds ten newline characters

Finally, like all the container classes in the standard library, a string can be
initialized using a pair of iterators. The sequence being denoted by the
iterators must have the appropriate type of elements.

 string s8 (aList.begin(), aList.end());

12.2.2 Resetting Size and Capacity

As with the vector data type, the current size of a string is yielded by the
size() member function, while the current capacity is returned by
capacity(). The latter can be changed by a call on the reserve() member
function, which (if necessary) adjusts the capacity so that the string can hold
at least as many elements as specified by the argument. The member
function max_size() returns the maximum string size that can be allocated.
Usually this value is limited only by the amount of available memory.

 cout << s6.size() << endl;
 cout << s6.capacity() << endl;
 s6.reserve(200); // change capacity to 200
 cout << s6.capacity() << endl;
 cout << s6.max_size() << endl;

The member function length() is simply a synonym for size(). The
member function resize() changes the size of a string, either truncating
characters from the end or inserting new characters. The optional second
argument for resize() can be used to specify the character inserted into the
newly created character positions.

 s7.resize(15, '\t'); // add tab characters at end
 cout << s7.length() << endl; // size should now be 15

✍
Initializing from
Iterators
Remember, the
ability to initialize
a container using
a pair of iterators
requires the ability
to declare a
template member
function using
template
arguments
independent of
those used to
declare the
container. At
present not all
compilers support
this feature.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
String

110

The member function empty() returns true if the string contains no
characters, and is generally faster than testing the length against a zero
constant.

 if (s7.empty())
 cout << "string is empty" << endl;

12.2.3 Assignment, Append and Swap

A string variable can be assigned the value of either another string, a literal
C-style character array, or an individual character.

 s1 = s2;
 s2 = "a new value";
 s3 = 'x';

The operator += can also be used with any of these three forms of argument,
and specifies that the value on the right hand side should be appended to the
end of the current string value.

 s3 += "yz"; // s3 is now xyz

The more general assign() and append() member functions let you specify a
subset of the right hand side to be assigned to or appended to the receiver
two arguments, pos and n, indicate that the n values following position pos

should be assigned/appended.

 s4.assign (s2, 0, 3); // assign first three characters
 s4.append (s5, 2, 3); // append characters 2, 3 and 4

The addition operator + is used to form the catenation of two strings. The +
operator creates a copy of the left argument, then appends the right
argument to this value.

 cout << (s2 + s3) << endl; // output catenation of s2 and s3

As with all the containers in the standard library, the contents of two strings
can be exchanged using the swap() member function.

 s5.swap (s4); // exchange s4 and s5

12.2.4 Character Access

An individual character from a string can be accessed or assigned using the
subscript operator. The member function at() is almost a synonym for this
operation except an out_of_range exception will be thrown if the requested
location is greater than or equal to size() .

 cout << s4[2] << endl; // output position 2 of s4
 s4[2] = 'x'; // change position 2
 cout << s4.at(2) << endl; // output updated value

The member function c_str() returns a pointer to a null terminated
character array, whose elements are the same as those contained in the string.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
String

111

This lets you use strings with functions that require a pointer to a
conventional C-style character array. The resulting pointer is declared as
constant, which means that you cannot use c_str() to modify the string. In
addition, the value returned by c_str() might not be valid after any
operation that may cause reallocation (such as append() or insert()). The
member function data() returns a pointer to the underlying character buffer.

 char d[256];
 strcpy(d, s4.c_str()); // copy s4 into array d

12.2.5 Iterators

The member functions begin() and end() return beginning and ending
random-access iterators for the string. The values denoted by the iterators
will be individual string elements. The functions rbegin() and rend()

return backwards iterators.

12.2.6 Insertion, Removal and Replacement

The string member functions insert() and erase() are similar to the vector
functions insert() and erase(). Like the vector versions, they can take
iterators as arguments, and specify the insertion or removal of the ranges
specified by the arguments. The function replace() is a combination of
erase and insert, in effect replacing the specified range with new values.

 s2.insert(s2.begin()+2, aList.begin(), aList.end());
 s2.erase(s2.begin()+3, s2.begin()+5);
 s2.replace(s2.begin()+3, s2.begin()+6, s3.begin(), s3.end());

In addition, the functions also have non-iterator implementations. The
insert() member function takes as argument a position and a string, and
inserts the string into the given position. The erase function takes two
integer arguments, a position and a length, and removes the characters
specified. And the replace function takes two similar integer arguments as
well as a string and an optional length, and replaces the indicated range with
the string (or an initial portion of a string, if the length has been explicitly
specified).

 s3.insert (3, "abc"); // insert abc after position 3
 s3.erase (4, 2); // remove positions 4 and 5
 s3.replace (4, 2, "pqr"); // replace positions 4 and 5 with pqr

12.2.7 Copy and Substring

The member function copy() generates a substring then assigns this
substring to the char* target given as the first argument. The range of values
for the substring is specified either by an initial position, or a position and a
length.

 s3.copy (s4, 2); // assign to s4 positions 2 to end of s3
 s5.copy (s4, 2, 3); // assign to s4 positions 2 to 4 of s5

✍
Invalidating
Iterators
Note that the
contents of an
iterator are not
guaranteed to be
valid after any
operation that
might force a
reallocation of the
internal string
buffer, such as an
append or an
insertion.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
String

112

The member function substr() returns a string that represents a portion of
the current string. The range is specified by either an initial position, or a
position and a length.

 cout << s4.substr(3) << endl; // output 3 to end
 cout << s4.substr(3, 2) << endl; // output positions 3 and 4

12.2.8 String Comparisons

The member function compare() is used to perform a lexical comparison
between the receiver and an argument string. Optional arguments permit
the specification of a different starting position or a starting position and
length of the argument string. See Section 13.6.5 for a description of lexical
ordering. The function returns a negative value if the receiver is
lexicographically smaller than the argument, a zero value if they are equal
and a positive value if the receiver is larger than the argument.

The relational and equality operators (<, <=, ==, !=, >= and >) are all
defined using the comparison member function. Comparisons can be made
either between two strings, or between strings and ordinary C-style character
literals.

12.2.9 Searching Operations

The member function find() determines the first occurrence of the
argument string in the current string. An optional integer argument lets you
specify the starting position for the search. (Remember that string index
positions begin at zero.) If the function can locate such a match, it returns the
starting index of the match in the current string. Otherwise, it returns a
value out of the range of the set of legal subscripts for the string. The
function rfind() is similar, but scans the string from the end, moving
backwards.

 s1 = "mississippi";
 cout << s1.find("ss") << endl; // returns 2
 cout << s1.find("ss", 3) << endl; // returns 5
 cout << s1.rfind("ss") << endl; // returns 5
 cout << s1.rfind("ss", 4) << endl; // returns 2

The functions find_first_of(), find_last_of(), find_first_not_of(),

and find_last_not_of() treat the argument string as a set of characters. As
with many of the other functions, one or two optional integer arguments can
be used to specify a subset of the current string. These functions find the first
(or last) character that is either present (or absent) from the argument set.
The position of the given character, if located, is returned. If no such
character exists then a value out of the range of any legal subscript is
returned.

 i = s2.find_first_of ("aeiou"); // find first vowel
 j = s2.find_first_not_of ("aeiou", i); // next non-vowel

✍
Comparing Strings
Although the
function is
accessible, users
will seldom invoke
the member
function
compare()
directly. Instead,
comparisons of
strings are usually
performed using
the conventional
comparison
operators, which
in turn make use
of the function
compare() .

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
String

113

12.3 An Example Function −− Split a Line into Words
In this section we will illustrate the use of some of the string functions by
defining a function to split a line of text into individual words. We have
already made use of this function in the concordance example program in
Section 9.3.3.

There are three arguments to the function. The first two are strings,
describing the line of text and the separators to be used to differentiate
words, respectively. The third argument is a list of strings, used to return the
individual words in the line.

void split
 (string & text, string & separators, list<string> & words)
{
 int n = text.length();
 int start, stop;

 start = text.find_first_not_of(separators);
 while ((start >= 0) && (start < n)) {
 stop = text.find_first_of(separators, start);
 if ((stop < 0) || (stop > n)) stop = n;
 words.push_back(text.substr(start, stop - start));
 start = text.find_first_not_of(separators, stop+1);
 }
}

The program begins by finding the first character that is not a separator. The
loop then looks for the next following character that is a separator, or uses
the end of the string if no such value is found. The difference between these
two is then a word, and is copied out of the text using a substring operation
and inserted into the list of words. A search is then made to discover the
start of the next word, and the loop continues. When the index value exceeds
the limits of the string, execution stops.

✍
Obtaining the
Sample Program
The split function
can be found in
the concordance
program in file
concord.cpp .

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

115

S e c t i o n 13.
Generic Algorithms

13.1

Overview

13.2

Initialization Algorithms

13.3

Searching Algorithms

13.4

In-Place Transformations

13.5

Removal Algorithms

13.6

Scalar-Producing Algorithms

13.7

Sequence-Generating Algorithms

13.8

Miscellaneous Algorithms

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

116

13.1 Overview
In this section and in section 14 we will examine and illustrate each of the
generic algorithms provided by the standard library. The names and a short
description of each of the algorithms in this section are given in the following
table. We have divided the algorithms into several categories, based on how
they are typically used. This division differs from the categories used in the
C++ standard definition, which is based upon which algorithms modify their
arguments and which do not.

Name Purpose
algorithms used to initialize a sequence Ð Section 13.2

fill fill a sequence with an initial value
fill_n fill n positions with an initial value
copy copy sequence into another sequence
copy_backward copy sequence into another sequence
generate initialize a sequence using a generator
generate_n initialize n positions using a generator
swap_ranges swap values from two parallel sequences

searching algorithms Ð Section 13.3

find find an element matching the argument
find_if find an element satisfying a condition
adjacent_find find consecutive duplicate elements
find_first_of find the first occurrence of one member of a

sequence in another sequence
find_end find the last occurrence of a sub-sequence in a

sequence
search match a sub-sequence within a sequence
max_element find the maximum value in a sequence
min_element find the minimum value in a sequence
mismatch find first mismatch in parallel sequences

in-place transformations Ð Section 13.4

reverse reverse the elements in a sequence
replace replace specific values with new value
replace_if replace elements matching predicate
rotate rotate elements in a sequence around a point
partition partition elements into two groups

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

117

Name Purpose
stable_partition partition preserving original ordering
next_permutation generate permutations in sequence
prev_permutation generate permutations in reverse sequence
inplace_merge merge two adjacent sequences into one
random_shuffle randomly rearrange elements in a sequence

removal algorithms Ð Section 13.5
remove remove elements that match condition
unique remove all but first of duplicate values in

sequences
scalar generating algorithms ÐÊSection 13.6

count count number of elements matching value
count_if count elements matching predicate
accumulate reduce sequence to a scalar value
inner_product inner product of two parallel sequences
equal check two sequences for equality
lexicographical_compare compare two sequences

sequence generating algorithms ÐÊSection 13.7

transform transform each element
partial_sum generate sequence of partial sums
adjacent_difference generate sequence of adjacent differences

miscellaneous operations Ð Section 13.8

for_each apply a function to each element of collection

In this section we will illustrate the use of each algorithm with a series of
short examples. Many of the algorithms are also used in the sample
programs provided in the sections on the various container classes. These
cross references have been noted where appropriate.

All of the short example programs described in this section have been
collected in a number of files, named alg1.cpp through alg6.cpp . In the
files, the example programs have been augmented with output statements
describing the test programs and illustrating the results of executing the
algorithms. In order to not confuse the reader with unnecessary detail, we
have generally omitted these output statements from the descriptions here.
If you wish to see the text programs complete with output statements, you
can compile and execute these test files. The expected output from these
programs is also included in the distribution.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

118

13.1.1 Include Files

To use any of the generic algorithms you must first include the appropriate
header file. The majority of the functions are defined in the header file
algorithm . The functions accumulate(), inner_product(), partial_sum(),

and adjacent_difference() are defined in the header file numeric .

 # include <algorithm>
 # include <numeric>

13.2 Initialization Algorithms
The first set of algorithms we will cover are those that are chiefly, although
not exclusively, used to initialize a newly created sequence with certain
values. The standard library provides several initialization algorithms. In
our discussion we'll provide examples of how to apply these algorithms, and
suggest how to choose one algorithm over another.

13.2.1 Fill a Sequence with An Initial Value

The fill() and fill_n() algorithms are used to initialize or reinitialize a
sequence with a fixed value. Their declarations are as follows:

void fill (ForwardIterator first, ForwardIterator last, const T&);
void fill_n (OutputIterator, Size, const T&);

✍
Obtaining the
source
The sample
programs
described in this
section can be
found in the file
alg1.cpp .

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

119

The example program illustrates several uses of the algorithm:

void fill_example ()
 // illustrate the use of the fill algorithm
{
 // example 1, fill an array with initial values
 char buffer[100], * bufferp = buffer;
 fill (bufferp, bufferp + 100, '\0');
 fill_n (bufferp, 10, 'x');

 // example 2, use fill to initialize a list
 list<string> aList(5, "nothing");
 fill_n (inserter(aList, aList.begin()), 10, "empty");

 // example 3, use fill to overwrite values in list
 fill (aList.begin(), aList.end(), "full");

 // example 4, fill in a portion of a collection
 vector<int> iVec(10);
 generate (iVec.begin(), iVec.end(), iotaGen(1));
 vector<int>::iterator & seven =
 find(iVec.begin(), iVec.end(), 7);
 fill (iVec.begin(), seven, 0);
}

In example 1, an array of character values is declared. The fill() algorithm
is invoked to initialize each location in this array with a null character value.
The first 10 positions are then replaced with the character 'x' by using the
algorithm fill_n(). Note that the fill() algorithm requires both starting
and past-end iterators as arguments, whereas the fill_n() algorithm uses a
starting iterator and a count.

Example 2 illustrates how, by using an insert iterator (see Section 2.4), the
fill_n() algorithm can be used to initialize a variable length container, such
as a list. In this case the list initially contains five elements, all holding the
text "nothing". The call on fill_n() then inserts ten instances of the string
"empty". The resulting list contains fifteen elements.

The third and fourth examples illustrate how fill() can be used to change
the values in an existing container. In the third example each of the fifteen
elements in the list created in example 2 is replaced by the string "full".

Example 4 overwrites only a portion of a list. Using the algorithm
generate() and the function object iotaGen, which we will describe in the
next section, a vector is initialized to the values 1 2 3 ... 10. The find()

algorithm (Section 13.3.1) is then used to locate the position of the element 7,
saving the location in an iterator appropriate for the vector data type. The
fill() call then replaces all values up to, but not including, the 7 entry with
the value 0. The resulting vector has six zero fields, followed by the values 7,
8, 9 and 10.

The fill() and fill_n() algorithm can be used with all the container
classes contained in the standard library, although insert iterators must be
used with ordered containers, such as a set.

✍
Different
Initialization
Algorithms
The initialization
algorithms all
overwrite every
element in a
container. The
difference
between the
algorithms is the
source for the
values used in
initialization. The
fill() algorithm
repeats a single
value, the copy()
algorithm reads
values from a
second container,
and the
generate()
algorithm invokes
a function for
each new value.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

120

13.2.2 Copy One Sequence Into Another Sequence

The algorithms copy() and copy_backward() are versatile functions that can
be used for a number of different purposes, and are probably the most
commonly executed algorithms in the standard library. The declarations for
these algorithms are as follows:

OutputIterator copy (InputIterator first, InputIterator last,
 OutputIterator result);

BidirectionalIterator copy_backward
 (BidirectionalIterator first, BidirectionalIterator last,
 BidirectionalIterator result);

Uses of the copy algorithm include:

• Duplicating an entire sequence by copying into a new sequence

• Creating sub-sequences of an existing sequence

• Adding elements into a sequence

• Copying a sequence from input or to output

• Converting a sequence from one form into another

These are illustrated in the following sample program.

void copy_example()
 // illustrate the use of the copy algorithm
{
 char * source = "reprise";
 char * surpass = "surpass";
 char buffer[120], * bufferp = buffer;

 // example 1, a simple copy
 copy (source, source + strlen(source) + 1, bufferp);

 // example 2, self copies
 copy (bufferp + 2, bufferp + strlen(buffer) + 1, bufferp);
 int buflen = strlen(buffer) + 1;
 copy_backward (bufferp, bufferp + buflen, bufferp + buflen + 3);
 copy (surpass, surpass + 3, bufferp);

 // example 3, copy to output
 copy (bufferp, bufferp + strlen(buffer),
 ostream_iterator<char,char>(cout));
 cout << endl;

 // example 4, use copy to convert type
 list<char> char_list;
 copy (bufferp, bufferp + strlen(buffer),
 inserter(char_list, char_list.end()));
 char * big = "big ";
 copy (big, big + 4, inserter(char_list, char_list.begin()));

 char buffer2 [120], * buffer2p = buffer2;
 * copy (char_list.begin(), char_list.end(), buffer2p) = '\0';
 cout << buffer2 << endl;
}

✍
Appending
Several Copies
The result returned
by the copy()
function is a
pointer to the end
of the copied
sequence. To
make a
catenation of
values, the result
of one copy()
operation can be
used as a starting
iterator in a
subsequent
copy().

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

121

The first call on copy(), in example 1, simply copies the string pointed to by
the variable source into a buffer, resulting in the buffer containing the text
"reprise". Note that the ending position for the copy is one past the
terminating null character, thus ensuring the null character is included in the
copy operation.

The copy() operation is specifically designed to permit self-copies, i.e.,
copies of a sequence onto itself, as long as the destination iterator does not
fall within the range formed by the source iterators. This is illustrated by
example 2. Here the copy begins at position 2 of the buffer and extends to
the end, copying characters into the beginning of the buffer. This results in
the buffer holding the value "prise".

The second half of example 2 illustrates the use of the copy_backward()

algorithm. This function performs the same task as the copy() algorithm,
but moves elements from the end of the sequence first, progressing to the
front of the sequence. (If you think of the argument as a string, characters
are moved starting from the right and progressing to the left.) In this case
the result will be that buffer will be assigned the value "priprise". The first
three characters are then modified by another copy() operation to the values
"sur", resulting in buffer holding the value "surprise".

Example 3 illustrates copy() being used to move values to an output stream.
(See Section 2.3.2). The target in this case is an ostream_iterator generated
for the output stream cout . A similar mechanism can be used for input
values. For example, a simple mechanism to copy every word in the input
stream into a list is the following call on copy():

list<string> words;
istream_iterator<string, char> in_stream(cin), eof;

copy(in_stream, eof, inserter(words, words.begin()));

This technique is used in the spell checking program described in Section 8.3.

Copy can also be used to convert from one type of stream to another. For
example, the call in example 4 of the sample program copies the characters
held in the buffer one by one into a list of characters. The call on inserter()

creates an insert iterator, used to insert values into the list. The first call on
copy() places the string surprise , created in example 2, into the list. The
second call on copy() inserts the values from the string Òbig Ò onto the front
of the list, resulting in the list containing the characters big surprise . The
final call on copy() illustrates the reverse process, copying characters from a
list back into a character buffer.

13.2.3 Initialize a Sequence with Generated Values

A generator is a function that will return a series of values on successive
invocations. Probably the generator you are most familiar with is a random
number generator. However, generators can be constructed for a variety of
different purposes, including initializing sequences.

✍
copy_backwards
In the
copy_backwards
algorithm, note
that it is the order
of transfer, and
not the elements
themselves that is
“backwards”; the
relative
placement of
moved values in
the target is the
same as in the
source.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

122

Like fill() and fill_n(), the algorithms generate() and generate_n() are
used to initialize or reinitialize a sequence. However, instead of a fixed
argument, these algorithms draw their values from a generator. The
declarations of these algorithms are as follows:

void generate (ForwardIterator, ForwardIterator, Generator);
void generate_n (OutputIterator, Size, Generator);

Our example program shows several uses of the generate algorithm to
initialize a sequence.

string generateLabel () {
 // generate a unique label string of the form L_ddd
 static int lastLabel = 0;
 char labelBuffer[80];
 ostrstream ost(labelBuffer, 80);
 ost << "L_" << lastLabel++ << '\0';
 return string(labelBuffer);
}

void generate_example ()
 // illustrate the use of the generate and generate_n algorithms
{
 // example 1, generate a list of label values
 list<string> labelList;
 generate_n (inserter(labelList, labelList.begin()),
 4, generateLabel);

 // example 2, generate an arithmetic progression
 vector<int> iVec(10);
 generate (iVec.begin(), iVec.end(), iotaGen(2));
 generate_n (iVec.begin(), 5, iotaGen(7));
 }

A generator can be constructed as a simple function that “remembers”
information about its previous history in one or more static variables. An
example is shown in the beginning of the example program, where the
function generateLabel() is described. This function creates a sequence of
unique string labels, such as might be needed by a compiler. Each invocation
on the function generateLabel() results in a new string of the form L_ddd ,
each with a unique digit value. Because the variable named lastLabel is
declared as static , its value is remembered from one invocation to the next.
The first example of the sample program illustrates how this function might
be used in combination with the generate_n() algorithm to initialize a list of
four label values.

As we described in Section 3, in the Standard Library a function is any object
that will respond to the function call operator. Using this fact, classes can
easily be constructed as functions. The class iotaGen, which we described in
Section 3.3, is an example. The iotaGen function object creates a generator
for an integer arithmetic sequence. In the second example in the sample
program, this sequence is used to initialize a vector with the integer values 2
through 11. A call on generate_n() is then used to overwrite the first 5
positions of the vector with the values 7 through 11, resulting in the vector 7
8 9 10 11 7 8 9 10 11.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

123

13.2.4 Swap Values from Two Parallel Ranges

The template function swap() can be used to exchange the values of two
objects of the same type. It has the following definition:

template <class T> void swap (T& a, T& b)
{
 T temp(a);
 a = b;
 b = temp;
}

The function is generalized to iterators in the function named iter_swap().

The algorithm swap_ranges() then extends this to entire sequences. The
values denoted by the first sequence are exchanged with the values denoted
by a second, parallel sequence. The description of the swap_ranges()

algorithm is as follows:

ForwardIterator swap_ranges
 (ForwardIterator first, ForwardIterator last,
 ForwardIterator first2);

The second range is described only by a starting iterator. It is assumed (but
not verified) that the second range has at least as many elements as the first
range. We use both functions alone and in combination in the example
program.

void swap_example ()
 // illustrate the use of the algorithm swap_ranges
{
 // first make two parallel sequences
 int data[] = {12, 27, 14, 64}, *datap = data;
 vector<int> aVec(4);
 generate(aVec.begin(), aVec.end(), iotaGen(1));

 // illustrate swap and iter_swap
 swap(data[0], data[2]);
 vector<int>::iterator last = aVec.end(); last--;
 iter_swap(aVec.begin(), last);

 // now swap the entire sequence
 swap_ranges (aVec.begin(), aVec.end(), datap);
}

13.3 Searching Operations
The next category of algorithms we will describe are those that are used to
locate elements within a sequence that satisfy certain properties. Most
commonly the result of a search is then used as an argument to a further
operation, such as a copy (Section 13.4.4), a partition (Section 13.2.2) or an
in-place merge (Section 13.4.6.)

✍
Parallel
Sequences
A number of
algorithms
operate on two
parallel
sequences. In
most cases the
second sequence
is identified using
only a starting
iterator, not a
starting and
ending iterator
pair. It is
assumed, but
never verified,
that the second
sequence is at
least as large as
the first. Errors will
occur if this
condition is not
satisfied.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

124

The searching routines described in this section return an iterator that
identifies the first element that satisfies the search condition. It is common to
store this value in an iterator variable, as follows:

 list<int>::iterator where;
 where = find(aList.begin(), aList.end(), 7);

If you want to locate all the elements that satisfy the search conditions you
must write a loop. In that loop, the value yielded by a previous search is first
advanced (since otherwise the value yielded by the previous search would
once again be returned), and the resulting value is used as a starting point for
the new search. For example, the following loop from the adjacent_find()

example program (Section 13.3.2) will print the value of all repeated
characters in a string argument.

 while ((where = adjacent_find(where, stop)) != stop) {
 cout << "double " << *where << " in position "
 << where - start << endl;
 ++where;
 }

Many of the searching algorithms have an optional argument that can specify
a function to be used to compare elements, in place of the equality operator
for the container element type (operator ==). In the descriptions of the
algorithms we write these optional arguments inside a square bracket, to
indicate they need not be specified if the standard equality operator is
acceptable.

13.3.1 Find an Element Satisfying a Condition

There are two algorithms, find() and find_if(), that are used to find the
first element that satisfies a condition. The declarations of these two
algorithms are as follows:

InputIterator find_if (InputIterator first, InputIterator last,
 Predicate);

InputIterator find (InputIterator first, InputIterator last,
 const T&);

The algorithm find_if() takes as argument a predicate function, which can
be any function that returns a boolean value (see Section 3.2). The find_if()

algorithm returns a new iterator that designates the first element in the
sequence that satisfies the predicate. The second argument, the past-the-end
iterator, is returned if no element is found that matches the requirement.
Because the resulting value is an iterator, the dereference operator (the *
operator) must be used to obtain the matching value. This is illustrated in
the example program.

The second form of the algorithm, find(), replaces the predicate function
with a specific value, and returns the first element in the sequence that tests

✍
Obtaining the
Source
The example
functions
described in this
section can be
found in the file
alg2.cpp .

✍
Check Search
Results
The searching
algorithms in the
standard library all
return the end-of-
sequence iterator
if no value is
found that
matches the
search condition.
As it is generally
illegal to
dereference the
end-of-sequence
value, it is
important to
check for this
condition before
proceeding to use
the result of a
search.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

125

equal to this value, using the appropriate equality operator (the == operator)
for the given data type.

The following example program illustrates the use of these algorithms:

void find_test ()
 // illustrate the use of the find algorithm
{
 int vintageYears[] = {1967, 1972, 1974, 1980, 1995};
 int * start = vintageYears;
 int * stop = start + 5;
 int * where = find_if (start, stop, isLeapYear);

 if (where != stop)
 cout << "first vintage leap year is " << *where << endl;
 else
 cout << "no vintage leap years" << endl;

 where = find(start, stop, 1995);

 if (where != stop)
 cout << "1995 is position " << where - start
 << " in sequence" << endl;
 else
 cout "1995 does not occur in sequence" << endl;
}

13.3.2 Find Consecutive Duplicate Elements

The adjacent_find() algorithm is used to discover the first element in a
sequence equal to the next immediately following element. For example, if a
sequence contained the values 1 4 2 5 6 6 7 5, the algorithm would return an
iterator corresponding to the first 6 value. If no value satisfying the
condition is found, then the end-of-sequence iterator is returned. The
declaration of the algorithm is as follows:

ForwardIterator adjacent_find (ForwardIterator first,
 ForwardIterator last [, BinaryPredicate]);

The first two arguments specify the sequence to be examined. The optional
third argument must be a binary predicate (a binary function returning a
boolean value). If present, the binary function is used to test adjacent
elements, otherwise the equality operator (operator ==) is used.

The example program searches a text string for adjacent letters. In the
example text these are found in positions 5, 7, 9, 21 and 37. The increment is
necessary inside the loop in order to avoid the same position being
discovered repeatedly.

void adjacent_find_example ()
 // illustrate the use of the adjacent_find instruction
{
 char * text = "The bookkeeper carefully opened the door.";

 char * start = text;
 char * stop = text + strlen(text);
 char * where = start;

 cout << "In the text: " << text << endl;
 while ((where = adjacent_find(where, stop)) != stop) {
 cout << "double " << *where
 << " in position " << where - start << endl;

✍
Searching Sets
and Maps
These algorithms
perform a linear
sequential search
through the
associated
structures. The set
and map data
structures, which
are ordered,
provide their own
find() member
functions, which
are more efficient.
Because of this,
the generic
find() algorithm
should not be
used with set and
map.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

126

 ++where;
 }
}

13.3.3 Find the first occurrence of any value from a sequence

The algorithm find_first_of() is used to find the first occurrence of some
element from one sequence that is also contained in another sequence.

ForwardIterator1 find_first_of
 (ForwardIterator1 first1, ForwardIterator1 last1,
 ForwardIterator2 first2, ForwardIterator2 last2
 [, BinaryPredicate pred]);

The algorithm returns a new iterator that designates the first element found
in [first1,last1) that is also contained in [first2,last2) . If no match is
found then the second argument is returned . Because the resulting value is
an iterator, the dereference operator (the * operator) must be used to obtain
the matching value. This is illustrated in the example program.

The following example program illustrates the use of this algorithm:

void find_test ()
 // illustrate the use of the find algorithm
{
 int vintageYears[] = {1967, 1972, 1974, 1980, 1995};
 int requestedYears[] = [1923, 1970, 1980, 1974 };
 int * start = vintageYears;
 int * stop = start + 5;
 int * where = find_first_of (start, stop,
 requestedyears,requestedyears+4);

 if (where != stop)
 cout << "first requested vintage year is " << *where << endl;
 else
 cout << "no requested vintage years" << endl;

}

// The output would indicate 1974.

Note that this algorithm, unlike many that manipulate two sequences, uses a
starting and ending iterator pair for both sequences, not just the first
sequence.

Like the algorithms equal() and mismatch(), an alternative version of
find_first_of() takes an optional binary predicate that is used to compare
elements from the two sequences.

13.3.4 Find a Sub-sequence within a Sequence

The algorithms search() and search_n() are used to locate the beginning of
a particular sub-sequence within a larger sequence. The easiest example to
understand is the problem of looking for a particular substring within a
larger string, although the algorithm can be generalized to other uses. The
arguments are assumed to have at least the capabilities of forward iterators.

✍
Searching Sets
and Maps
The basic_string
class provides its
own versions of
the find_first_of
and find_end
algorithms,
including several
convience
overloads of the
basic pattern
indicated here.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

127

ForwardIterator search
 (ForwardIterator first1, ForwardIterator last1,
 ForwardIterator first2, ForwardIterator last2
 [, BinaryPredicate]);

Suppose, for example, that we wish to discover the location of the string
"ration" in the string "dreams and aspirations". The solution to this
problem is shown in the example program. If no appropriate match is found,
the value returned is the past-the-end iterator for the first sequence.

void search_example ()
 // illustrate the use of the search algorithm
{
 char * base = "dreams and aspirations";
 char * text = "ration";

 char * where = search(base, base + strlen(base),
 text, text + strlen(text));

 if (*where != '\0')
 cout << "substring position: " << where - base << endl;
 else
 cout << "substring does not occur in text" << endl;
}

Note that this algorithm, unlike many that manipulate two sequences, uses a
starting and ending iterator pair for both sequences, not just the first
sequence.

Like the algorithms equal() and mismatch(), an alternative version of
search() takes an optional binary predicate that is used to compare elements
from the two sequences.

13.3.5 Find the last occurrence of a Sub-sequence

The algorithm find_end() is used to locate the beginning of a the last
occurrence of a particular sub-sequence within a larger sequence. The easiest
example to understand is the problem of looking for a particular substring
within a larger string, although the algorithm can be generalized to other
uses. The arguments are assumed to have at least the capabilities of forward
iterators.

ForwardIterator find_end
 (ForwardIterator first1, ForwardIterator last1,
 ForwardIterator first2, ForwardIterator last2
 [, BinaryPredicate]);

✍
Speed of Search
In the worst case,
the number of
comparisons
performed by the
algorithm
search() is the
product of the
number of
elements in the
two sequences.
Except in rare
cases, however,
this worst case
behavior is highly
unlikely.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

128

Suppose, for example, that we wish to discover the location of the last
occurrence of the string "le" in the string "The road less traveled". The
solution to this problem is shown in the example program. If no appropriate
match is found, the value returned is the past-the-end iterator for the first
sequence.

void find_end_example ()
 // illustrate the use of the find_end algorithm
{
 char * base = "The road less traveled";
 char * text = "le";

 char * where = find(base, base + strlen(base),
 text, text + strlen(text));

 if (*where != '\0')
 cout << "substring position: " << where - base << endl;
 else
 cout << "substring does not occur in text" << endl;
}

Note that this algorithm, unlike many that manipulate two sequences, uses a
starting and ending iterator pair for both sequences, not just the first
sequence.

Like the algorithms find_first_of() and search(), an alternative version
of find_end() takes an optional binary predicate that is used to compare
elements from the two sequences.

13.3.6 Locate Maximum or Minimum Element

The functions max() and min() can be used to find the maximum and
minimum of a pair of values. These can optionally take a third argument
that defines the comparison function to use in place of the less-than operator
(operator <). The arguments are values, not iterators:

template <class T>
 const T& max(const T& a, const T& b [, Compare]);
template <class T>
 const T& min(const T& a, const T& b [, Compare]);

The maximum and minimum functions are generalized to entire sequences
by the generic algorithms max_element() and min_element(). For these
functions the arguments are input iterators.

ForwardIterator max_element (ForwardIterator first,
 ForwardIterator last [, Compare]);
ForwardIterator min_element (ForwardIterator first,
 ForwardIterator last [, Compare]);

✍
Speed of Find_end
As with search, n
the worst case,
the number of
comparisons
performed by the
algorithm
find_end() is
the product of the
number of
elements in the
two sequences.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

129

These algorithms return an iterator that denotes the largest or smallest of the
values in a sequence, respectively. Should more than one value satisfy the
requirement, the result yielded is the first satisfactory value. Both algorithms
can optionally take a third argument, which is the function to be used as the
comparison operator in place of the default operator.

The example program illustrates several uses of these algorithms. The
function named split() used to divide a string into words in the string
example is described in Section 12.3. The function randomInteger() is
described in Section 2.2.5.

void max_min_example ()
 // illustrate use of max_element and min_element algorithms
{
 // make a vector of random numbers between 0 and 99
 vector<int> numbers(25);
 for (int i = 0; i < 25; i++)
 numbers[i] = randomInteger(100);

 // print the maximum
 vector<int>::iterator max =
 max_element(numbers.begin(), numbers.end());
 cout << "largest value was " << * max << endl;

 // example using strings
 string text =
 "It was the best of times, it was the worst of times.";
 list<string> words;
 split (text, " .,!:;", words);
 cout << "The smallest word is "
 << * min_element(words.begin(), words.end())
 << " and the largest word is "
 << * max_element(words.begin(), words.end())
 << endl;
}

13.3.7 Locate the First Mismatched Elements in Parallel
Sequences

The name mismatch() might lead you to think this algorithm was the
inverse of the equal() algorithm, which determines if two sequences are
equal (see Section 13.6.4). Instead, the mismatch() algorithm returns a pair
of iterators that together indicate the first positions where two parallel
sequences have differing elements. (The structure pair is described in
Section 9.1). The second sequence is denoted only by a starting position,
without an ending position. It is assumed (but not checked) that the second
sequence contains at least as many elements as the first. The arguments and
return type for mismatch() can be described as follows:

pair<InputIterator, InputIterator> mismatch
 (InputIterator first1, InputIterator last1,
 InputIterator first2 [, BinaryPredicate]);

The elements of the two sequences are examined in parallel, element by
element. When a mismatch is found, that is, a point where the two
sequences differ, then a pair containing iterators denoting the locations of the

✍
Largest and
Smallest Elements
of a Set
The maximum and
minimum
algorithms can be
used with all the
data types
provided by the
standard library.
However, for the
ordered data
types, set and
map, the
maximum or
minimum values
are more easily
accessed as the
first or last
elements in the
structure.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

130

two differing elements is constructed and returned. If the first sequence
becomes exhausted before discovering any mismatched elements, then the
resulting pair contains the ending value for the first sequence, and the last
value examined in the second sequence. (The second sequence need not yet
be exhausted).

The example program illustrates the use of this procedure. The function
mismatch_test() takes as arguments two string values. These are
lexicographically compared and a message printed indicating their relative
ordering. (This is similar to the analysis performed by the
lexicographic_compare() algorithm, although that function simply returns
a boolean value.) Because the mismatch() algorithm assumes the second
sequence is at least as long as the first, a comparison of the two string lengths
is performed first, and the arguments are reversed if the second string is
shorter than the first. After the call on mismatch() the elements of the
resulting pair are separated into their component parts. These parts are then
tested to determine the appropriate ordering.

 void mismatch_test (char * a, char * b)
 // illustrate the use of the mismatch algorithm
 {
 pair<char *, char *> differPositions(0, 0);
 char * aDiffPosition;
 char * bDiffPosition;

 if (strlen(a) < strlen(b)) {
 // make sure longer string is second
 differPositions = mismatch(a, a + strlen(a), b);
 aDiffPosition = differPositions.first;
 bDiffPosition = differPositions.second;
 }
 else {
 differPositions = mismatch(b, b + strlen(b), a);
 // note following reverse ordering
 aDiffPosition = differPositions.second;
 bDiffPosition = differPositions.first;
 }

 // compare resulting values
 cout << "string " << a;
 if (*aDiffPosition == *bDiffPosition)
 cout << " is equal to ";
 else if (*aDiffPosition < *bDiffPosition)
 cout << " is less than ";
 else
 cout << " is greater than ";
 cout << b << endl;
 }

A second form of the mismatch() algorithm is similar to the one illustrated,
except it accepts a binary predicate as a fourth argument. This binary
function is used to compare elements, in place of the == operator.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

131

13.4 In-Place Transformations
The next category of algorithms in the standard library that we examine are
those used to modify and transform sequences without moving them from
their original storage locations. A few of these routines, such as replace(),

include a copy version as well as the original in-place transformation
algorithms. For the others, should it be necessary to preserve the original, a
copy of the sequence should be created before the transformations are
applied. For example, the following illustrates how one can place the
reversal of one vector into another newly allocated vector.

 vector<int> newVec(aVec.size());
 copy (aVec.begin(), aVec.end(), newVec.begin()); // first copy
 reverse (newVec.begin(), newVec.end()); // then reverse

Many of the algorithms described as sequence generating operations, such as
transform() (Section 13.7.1), or partial_sum() (Section 13.7.2), can also be
used to modify a value in place by simply using the same iterator as both
input and output specification.

13.4.1 Reverse Elements in a Sequence

The algorithm reverse() reverses the elements in a sequence, so that the last
element becomes the new first, and the first element the new last. The
arguments are assumed to be bidirectional iterators, and no value is
returned.

 void reverse (BidirectionalIterator first,
 BidirectionalIterator last);

The example program illustrates two uses of this algorithm. In the first, an
array of characters values is reversed. The algorithm reverse() can also be
used with list values, as shown in the second example. In this example, a list
is initialized with the values 2 to 11 in increasing order. (This is
accomplished using the iotaGen function object introduced in Section 3.3).
The list is then reversed, which results in the list holding the values 11 to 2 in
decreasing order. Note, however, that the list data structure also provides its
own reverse() member function.

void reverse_example ()
 // illustrate the use of the reverse algorithm
{
 // example 1, reversing a string
char * text = "Rats live on no evil star";
reverse (text, text + strlen(text));
cout << text << endl;

 // example 2, reversing a list
list<int> iList;
generate_n (inserter(iList, iList.begin()), 10, iotaGen(2));
reverse (iList.begin(), iList.end());
}

✍
Obtaining the
Source
The example
functions
described in this
section can be
found in the file
alg3.cpp .

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

132

13.4.2 Replace Certain Elements With Fixed Value

The algorithms replace() and replace_if() are used to replace occurrences
of certain elements with a new value. In both cases the new value is the
same, no matter how many replacements are performed. Using the
algorithm replace(), all occurrences of a particular test value are replaced
with the new value. In the case of replace_if(), all elements that satisfy a
predicate function are replaced by a new value. The iterator arguments must
be forward iterators.

The algorithms replace_copy() and replace_copy_if() are similar to
replace() and replace_if() , however they leave the original sequence
intact and place the revised values into a new sequence, which may be a
different type.

void replace (ForwardIterator first, ForwardIterator last,
 const T&, const T&);

void replace_if (ForwardIterator first, ForwardIterator last,
 Predicate, const T&);

OutputIterator replace_copy (InputIterator, InputIterator,
 OutputIterator, const T&, const T&);

OutputIterator replace_copy (InputIterator, InputIterator,
 OutputIterator, Predicate, const T&);

In the example program, a vector is initially assigned the values 0 1 2 3 4 5 4 3
2 1 0. A call on replace() replaces the value 3 with the value 7, resulting in
the vector 0 1 2 7 4 5 4 7 2 1 0. The invocation of replace_if() replaces all
even numbers with the value 9, resulting in the vector 9 1 9 7 9 5 9 7 9 1 9.

void replace_example ()
 // illustrate the use of the replace algorithm
{
 // make vector 0 1 2 3 4 5 4 3 2 1 0
 vector<int> numbers(11);
 for (int i = 0; i < 11; i++)
 numbers[i] = i < 5 ? i : 10 - i;

 // replace 3 by 7
 replace (numbers.begin(), numbers.end(), 3, 7);

 // replace even numbers by 9
 replace_if (numbers.begin(), numbers.end(), isEven, 9);

 // illustrate copy versions of replace
 int aList[] = {2, 1, 4, 3, 2, 5};
 int bList[6], cList[6], j;
 replace_copy (aList, aList+6, &bList[0], 2, 7);
 replace_copy_if (bList, bList+6, &cList[0],
 bind2nd(greater<int>(), 3), 8);
}

The example program also illustrates the use of the replace_copy

algorithms. First, an array containing the values 2 1 4 3 2 5 is created. This is
modified by replacing the 2 values with 7, resulting in the array 7 1 4 3 7 5.
Next, all values larger than 3 are replaced with the value 8, resulting in the
array values 8 1 8 3 8 8. In the latter case the bind2nd() adaptor is used, to

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

133

modify the binary greater-than function by binding the 2nd argument to the
constant value 3, thereby creating the unary function x > 3 .

13.4.3 Rotate Elements Around a Midpoint

A rotation of a sequence divides the sequence into two sections, then swaps
the order of the sections, maintaining the relative ordering of the elements
within the two sections. Suppose, for example, that we have the values 1 to
10 in sequence.

1 2 3 4 5 6 7 8 9 10

If we were to rotate around the element 7, the values 7 to 10 would be moved
to the beginning, while the elements 1 to 6 would be moved to the end. This
would result in the following sequence.

7 8 9 10 1 2 3 4 5 6

When you invoke the algorithm rotate() , the starting point, midpoint, and
past-the-end location are all denoted by forward iterators:

void rotate (ForwardIterator first, ForwardIterator middle,
 ForwardIterator last);

The prefix portion, the set of elements following the start and not including
the midpoint, is swapped with the suffix, the set of elements between the
midpoint and the past-the-end location. Note, as in the illustration presented
earlier, that these two segments need not be the same length.

void rotate_example()
 // illustrate the use of the rotate algorithm
{
 // create the list 1 2 3 ... 10
 list<int> iList;
 generate_n(inserter(iList, iList.begin()), 10, iotaGen(1));

 // find the location of the seven
 list<int>::iterator & middle =
 find(iList.begin(), iList.end(), 7);

 // now rotate around that location
 rotate (iList.begin(), middle, iList.end());

 // rotate again around the same location
 list<int> cList;
 rotate_copy (iList.begin(), middle, iList.end(),
 inserter(cList, cList.begin()));
}

The example program first creates a list of the integers in order from 1 to 10.
Next, the find() algorithm (Section 13.3.1) is used to find the location of the
element 7. This is used as the midpoint for the rotation.

A second form of rotate() copies the elements into a new sequence, rather
than rotating the values in place. This is also shown in the example program,
which once again rotates around the middle position (now containing a 3).

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

134

The resulting list is 3 4 5 6 7 8 9 10 1 2. The values held in iList remain
unchanged.

13.4.4 Partition a Sequence into Two Groups

A partition is formed by moving all the elements that satisfy a predicate to
one end of a sequence, and all the elements that fail to satisfy the predicate to
the other end. Partitioning elements is a fundamental step in certain sorting
algorithms, such as “quicksort.”

BidirectionalIterator partition
 (BidirectionalIterator, BidirectionalIterator, Predicate);

BidirectionalIterator stable_partition
 (BidirectionalIterator, BidirectionalIterator, Predicate);

There are two forms of partition supported in the standard library. The first,
provided by the algorithm partition(), guarantees only that the elements
will be divided into two groups. The result value is an iterator that describes
the final midpoint between the two groups; it is one past the end of the first
group.

In the example program the initial vector contains the values 1 to 10 in order.
The partition moves the even elements to the front, and the odd elements to
the end. This results in the vector holding the values 10 2 8 4 6 5 7 3 9 1, and
the midpoint iterator pointing to the element 5.

void partition_example ()
 // illustrate the use of the partition algorithm
{
 // first make the vector 1 2 3 ... 10
 vector<int> numbers(10);
 generate(numbers.begin(), numbers.end(), iotaGen(1));

 // now put the even values low, odd high
 vector<int>::iterator result =
 partition(numbers.begin(), numbers.end(), isEven);
 cout << "middle location " << result - numbers.begin() << endl;

 // now do a stable partition
 generate (numbers.begin(), numbers.end(), iotaGen(1));
 stable_partition (numbers.begin(), numbers.end(), isEven);
}

The relative order of the elements within a partition in the resulting vector
may not be the same as the values in the original vector. For example, the
value 4 preceded the element 8 in the original, yet in the result it may follow
the element 8. A second version of partition, named stable_partition(),

guarantees the ordering of the resulting values. For the sample input shown
in the example, the stable partition would result in the sequence 2 4 6 8 10 1 3
5 7 9. The stable_partition() algorithm is slightly slower and uses more
memory than the partition() algorithm, so when the order of elements is
not important you should use partition().

✍
Partitions
While there is a
unique stable_
partition() for
any sequence,
the partition()
algorithm can
return any number
of values. The
following, for
example, are all
legal partitions of
the example
problem.

2 4 6 8 10 1 3 5 7 9

10 8 6 4 2 5 7 9 3 1

2 6 4 8 10 3 5 7 9 1

6 4 2 10 8 5 3 7 9 1.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

135

13.4.5 Generate Permutations in Sequence

A permutation is a rearrangement of values. If values can be compared
against each other (such as integers, characters, or words) then it is possible
to systematically construct all permutations of a sequence. There are 2
permutations of two values, for example, and six permutations of three
values, and 24 permutations of four values.

The permutation generating algorithms have the following definition:

bool next_permutation (BidirectionalIterator first,
 BidirectionalIterator last, [Compare]);

bool prev_permutation (BidirectionalIterator first,
 BidirectionalIterator last, [Compare]);

The second example in the sample program illustrates the same idea, only
using pointers to character arrays instead of integers. In this case a different
comparison function must be supplied, since the default operator would
simply compare pointer addresses.

bool nameCompare (char * a, char * b) { return strcmp(a, b) <= 0; }

void permutation_example ()
 // illustrate the use of the next_permutation algorithm
{
 // example 1, permute the values 1 2 3
 int start [] = { 1, 2, 3};
 do
 copy (start, start + 3,
 ostream_iterator<int,char> (cout, " ")), cout << endl;
 while (next_permutation(start, start + 3));

 // example 2, permute words
 char * words = {"Alpha", "Beta", "Gamma"};
 do
 copy (words, words + 3,
 ostream_iterator<char *,char> (cout, " ")), cout << endl;
 while (next_permutation(words, words + 3, nameCompare));

 // example 3, permute characters backwards
 char * word = "bela";
 do
 cout << word << ' ';
 while (prev_permutation (word, &word[4]));
 cout << endl;
}

Example 3 in the sample program illustrates the use of the reverse
permutation algorithm, which generates values in reverse sequence. This
example also begins in the middle of a sequence, rather than at the
beginning. The remaining permutations of the word “bela,” are beal, bale,

bael, aleb, albe, aelb, aebl, able , and finally, abel.

✍
Ordering
Permutations
Permutations can
be ordered, with
the smallest
permutation
being the one in
which values are
listed smallest to
largest, and the
largest being the
sequence that lists
values largest to
smallest.
Consider, for
example, the
permutations of
the integers 1 2 3.
The six
permutations of
these values are,
in order:

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

Notice that in the
first permutation
the values are all
ascending, while
in the last
permutation they
are all
descending.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

136

13.4.6 Merge Two Adjacent Sequences into One

A merge takes two ordered sequences and combines them into a single
ordered sequence, interleaving elements from each collection as necessary to
generate the new list. The inplace_merge() algorithm assumes a sequence is
divided into two adjacent sections, each of which is ordered. The merge
combines the two sections into one, moving elements as necessary. (The
alternative merge() algorithm, described elsewhere, can be used to merge
two separate sequences into one.) The arguments to inplace_merge() must
be bidirectional iterators.

void inplace_merge (BidirectionalIterator first,
 BidirectionalIterator middle,
 BidirectionalIterator last [, BinaryFunction]);

The example program illustrates the use of the inplace_merge() algorithm
with a vector and with a list. The sequence 0 2 4 6 8 1 3 5 7 9 is placed into a
vector. A find() call (Section 13.3.1) is used to locate the beginning of the
odd number sequence. The two calls on inplace_merge() then combine the
two sequences into one.

void inplace_merge_example ()
 // illustrate the use of the inplace_merge algorithm
{
 // first generate the sequence 0 2 4 6 8 1 3 5 7 9
 vector<int> numbers(10);
 for (int i = 0; i < 10; i++)
 numbers[i] = i < 5 ? 2 * i : 2 * (i - 5) + 1;

 // then find the middle location
 vector<int>::iterator midvec =
 find(numbers.begin(), numbers.end(), 1);

 // copy them into a list
 list<int> numList;
 copy (numbers.begin(), numbers.end(),
 inserter (numList, numList.begin()));
 list<int>::iterator midList =
 find(numList.begin(), numList.end, 1);

 // now merge the lists into one
 inplace_merge (numbers.begin(), midvec, numbers.end());
 inplace_merge (numList.begin(), midList, numList.end());
}

13.4.7 Randomly Rearrange Elements in a Sequence

The algorithm random_shuffle() randomly rearranges the elements in a
sequence. Exactly n swaps are performed, where n represents the number of
elements in the sequence. The results are, of course, unpredictable. Because
the arguments must be random access iterators, this algorithm can only be
used with vectors, deques, or ordinary pointers. It cannot be used with lists,
sets, or maps.

void random_shuffle (RandomAccessIterator first,
 RandomAccessIterator last [, Generator]);

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

137

An alternative version of the algorithm uses the optional third argument.
This value must be a random number generator. This generator must take as
an argument a positive value m and return a value between 0 and m-1. As
with the generate() algorithm, this random number function can be any
type of object that will respond to the function invocation operator.

void random_shuffle_example ()
 // illustrate the use of the random_shuffle algorithm
{
 // first make the vector containing 1 2 3 ... 10
 vector<int> numbers;
 generate(numbers.begin(), numbers.end(), iotaGen(1));

 // then randomly shuffle the elements
 random_shuffle (numbers.begin(), numbers.end());

 // do it again, with explicit random number generator
 struct RandomInteger {
 {
 operator() (int m) { return rand() % m; }
 } random;

 random_shuffle (numbers.begin(), numbers.end(), random);
}

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

138

13.5 Removal Algorithms
The following two algorithms can be somewhat confusing the first time they
are encountered. Both claim to remove certain values from a sequence. But,
in fact, neither one reduces the size of the sequence. Both operate by moving
the values that are to be retained to the front of the sequence, and returning
an iterator that describes where this sequence ends. Elements after this
iterator are simply the original sequence values, left unchanged. This is
necessary because the generic algorithm has no knowledge of the container it
is working on. It only has a generic iterator. This is part of the price we pay
for generic algorithms. In most cases the user will want to use this iterator
result as an argument to the erase() member function for the container,
removing the values from the iterator to the end of the sequence.

Let us illustrate this with a simple example. Suppose we want to remove the
even numbers from the sequence 1 2 3 4 5 6 7 8 9 10, something we could do
with the remove_if() algorithm. The algorithm remove_if() would leave us
with the following sequence:

1 3 5 7 9 | 6 7 8 9 10

The vertical bar here represents the position of the iterator returned by the
remove_if() algorithm. Notice that the five elements before the bar
represent the result we want, while the five values after the bar are simply
the original contents of those locations. Using this iterator value along with
the end-of-sequence iterator as arguments to erase(), we can eliminate the
unwanted values, and obtained the desired result.

Both the algorithms described here have an alternative copy version. The
copy version of the algorithms leaves the original unchanged, and places the
preserved elements into an output sequence.

13.5.1 Remove Unwanted Elements

The algorithm remove() eliminates unwanted values from a sequence. As
with the find() algorithm, these can either be values that match a specific
constant, or values that satisfy a given predicate. The declaration of the
argument types is as follows:

ForwardIterator remove
 (ForwardIterator first, ForwardIterator last, const T &);
ForwardIterator remove_if
 (ForwardIterator first, ForwardIterator last, Predicate);

The algorithm remove() copies values to the front of the sequence,
overwriting the location of the removed elements. All elements not removed
remain in their relative order. Once all values have been examined, the
remainder of the sequence is left unchanged. The iterator returned as the
result of the operation provides the end of the new sequence. For example,
eliminating the element 2 from the sequence 1 2 4 3 2 results in the sequence

✍
What is a Name?
The algorithms in
this section set up
a sequence so
that the desired
elements are
moved to the
front. The
remaining values
are not actually
removed, but the
starting location
for these values is
returned, making
it possible to
remove these
values by means
of a subsequent
call on erase() .
Remember, the
remove algorithms
do not actually
remove the
unwanted
elements.

✍
Obtaining the
Source
The example
functions
described in this
section can be
found in the file
alg4.cpp .

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

139

1 4 3 3 2, with the iterator returned as the result pointing at the second 3. This
value can be used as argument to erase() in order to eliminate the
remaining elements (the 3 and the 2), as illustrated in the example program.

A copy version of the algorithms copies values to an output sequence, rather
than making transformations in place.

OutputIterator remove_copy
 (InputIterator first, InputIterator last,
 OutputIterator result, const T &);

OutputIterator remove_copy_if
 (InputIterator first, InputIterator last,
 OutputIterator result, Predicate);

The use of remove() is shown in the following program.

void remove_example ()
 // illustrate the use of the remove algorithm
{
 // create a list of numbers
 int data[] = {1, 2, 4, 3, 1, 4, 2};
 list<int> aList;
 copy (data, data+7, inserter(aList, aList.begin()));

 // remove 2's, copy into new list
 list<int> newList;
 remove_copy (aList.begin(), aList.end(),
 back_inserter(newList), 2);

 // remove 2's in place
 list<int>::iterator where;
 where = remove (aList.begin(), aList.end(), 2);
 aList.erase(where, aList.end());

 // remove all even values
 where = remove_if (aList.begin(), aList.end(), isEven);
 aList.erase(where, aList.end());
}

13.5.2 Remove Runs of Similar Values

The algorithm unique() moves through a linear sequence, eliminating all but
the first element from every consecutive group of equal elements. The
argument sequence is described by forward iterators.

ForwardIterator unique (ForwardIterator first,
 ForwardIterator last [, BinaryPredicate]);

As the algorithm moves through the collection, elements are moved to the
front of the sequence, overwriting the existing elements. Once all unique
values have been identified, the remainder of the sequence is left unchanged.

For example, a sequence such as 1 3 3 2 2 2 4 will be changed into 1 3 2 4 | 2
2 4. We have used a vertical bar to indicate the location returned by the
iterator result value. This location marks the end of the unique sequence,
and the beginning of the left-over elements. With most containers the value
returned by the algorithm can be used as an argument in a subsequent call

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

140

on erase() to remove the undesired elements from the collection. This is
illustrated in the example program.

A copy version of the algorithm moves the unique values to an output
iterator, rather than making modifications in place. In transforming a list or
multiset, an insert iterator can be used to change the copy operations of the
output iterator into insertions.

OutputIterator unique_copy
 (InputIterator first, InputIterator last,
 OutputIterator result [, BinaryPredicate]);

These are illustrated in the sample program:

void unique_example ()
 // illustrate use of the unique algorithm
{
 // first make a list of values
 int data[] = {1, 3, 3, 2, 2, 4};
 list<int> aList;
 set<int> aSet;
 copy (data, data+6, inserter(aList, aList.begin()));

 // copy unique elements into a set
 unique_copy (aList.begin(), aList.end(),
 inserter(aSet, aSet.begin()));

 // copy unique elements in place
 list<int>::iterator where;
 where = unique(aList.begin(), aList.end());

 // remove trailing values
 aList.erase(where, aList.end());
}

13.6 Scalar-Producing Algorithms
The next category of algorithms are those that reduce an entire sequence to a
single scalar value.

Remember that two of these algorithms, accumulate() and
inner_product(), are declared in the numeric header file, not the algorithm

header file as are the other generic algorithms.

13.6.1 Count the Number of Elements that Satisfy a Condition

The algorithms count() and count_if() are used to discover the number of
elements that match a given value or that satisfy a given predicate,
respectively. Each algorithm comes in two flavors. The newer form returns
the number of matches found, while the older one takes as argument a
reference to a counting value (typically an integer), and increments this value
(in this case he count() function itself yields no value).

The newer form of these functions is the one currently mandated by the
standard. The older form is retained for two reasons: First, for backward
compatibility, since older versions of the standard contained it, and second,

✍
Obtaining the
Source
The example
functions
described in this
section can be
found in the file
alg5.cpp .

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

141

because the newer form requires that a compiler support partial
specialization, which as of this writing is a rare thing indeed.

iterator_traits<InputIterator>::distance_type
count (InputIterator first, InputIterator last, const T& value);

iterator_traits<InputIterator>::distance_type
count_if (InputIterator first, InputIterator last, Predicate pred);

void count (InputIterator first, InputIterator last,
 const T&, Size &);
void count_if (InputIterator first, InputIterator last,
 Predicate, Size &);

The example code fragment illustrates the use of the older form of these
algorithms. The call on count() will count the number of occurrences of the
letter e in a sample string, while the invocation of count_if() will count the
number of vowels.

void count_example ()
 // illustrate the use of the count algorithm
{
 int eCount = 0;
 int vowelCount = 0;

 char * text = "Now is the time to begin";

 count (text, text + strlen(text), 'e', eCount);
 count_if (text, text + strlen(text), isVowel, vowelCount);

 cout << "There are " << eCount << " letter e's " << endl
 << "and " << vowelCount << " vowels in the text:"
 << text << endl;
}

13.6.2 Reduce Sequence to a Single Value

The result generated by the accumulate() algorithm is the value produced
by placing a binary operator between each element of a sequence, and
evaluating the result. By default the operator is the addition operator, +,
however this can be replaced by any binary function. An initial value (an
identity) must be provided. This value is returned for empty sequences, and
is otherwise used as the left argument for the first calculation.

ContainerType accumulate (InputIterator first, InputIterator last,
 ContainerType initial [, BinaryFunction]);

The example program illustrates the use of accumulate() to produce the sum
and product of a vector of integer values. In the first case the identity is zero,
and the default operator + is used. In the second invocation the identity is 1,
and the multiplication operator (named times) is explicitly passed as the
fourth argument.

void accumulate_example ()
// illustrate the use of the accumulate algorithm
{
 int numbers[] = {1, 2, 3, 4, 5};

// first example, simple accumulation
 int sum = accumulate (numbers, numbers + 5, 0);
 int product =

✍
The Resulting
Count
Note that if your
compiler does not
support partial
specialization
then you will not
have the versions
of the count()
algorithms that
return the sum as
a function result,
but instead only
the versions that
add to the last
argument in their
parameter list,
which is passed
by reference. This
means successive
calls on these
functions can be
used to produce
a cumulative sum.
This also means
that you must
initialize the
variable passed to
this last argument
location prior to
calling one of
these algorithms.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

142

 accumulate (numbers, numbers + 5, 1, times<int>());

 cout << "The sum of the first five integers is " << sum << endl;
 cout << "The product is " << product << endl;

// second example, with different types for initial value
 list<int> nums;
 nums = accumulate (numbers, numbers+5, nums, intReplicate);
}

list<int>& intReplicate (list<int>& nums, int n)
 // add sequence n to 1 to end of list
{
 while (n) nums.push_back(n--);
 return nums;
}

Neither the identity value nor the result of the binary function are required
to match the container type. This is illustrated in the example program by
the invocation of accumulate() shown in the second example above. Here
the identity is an empty list. The function (shown after the example
program) takes as argument a list and an integer value, and repeatedly
inserts values into the list. The values inserted represent a decreasing
sequence from the argument down to 1. For the example input (the same
vector as in the first example), the resulting list contains the 15 values 1 2 1 3
2 1 4 3 2 1 5 4 3 2 1.

13.6.3 Generalized Inner Product

Assume we have two sequences of n elements each; a1, a2, ... an and b1, b2, ...
bn. The inner product of the sequences is the sum of the parallel products,
that is the value a1 * b1 + a2 * b2 + ... + an * bn. Inner products occur in a
number of scientific calculations. For example, the inner product of a row
times a column is the heart of the traditional matrix multiplication algorithm.
A generalized inner product uses the same structure, but permits the
addition and multiplication operators to be replaced by arbitrary binary
functions. The standard library includes the following algorithm for
computing an inner product:

ContainerType inner_product
 (InputIterator first1, InputIterator last1,
 InputIterator first2, ContainerType initialValue
 [, BinaryFunction add, BinaryFunction times]);

The first three arguments to the inner_product() algorithm define the two
input sequences. The second sequence is specified only by the beginning
iterator, and is assumed to contain at least as many elements as the first
sequence. The next argument is an initial value, or identity, used for the
summation operator. This is similar to the identity used in the accumulate()

algorithm. In the generalized inner product function the last two arguments
are the binary functions that are used in place of the addition operator, and
in place of the multiplication operator, respectively.

In the example program the second invocation illustrates the use of
alternative functions as arguments. The multiplication is replaced by an

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

143

equality test, while the addition is replaced by a logical or. The result is true
if any of the pairs are equal, and false otherwise. Using an and in place of the
or would have resulted in a test which was true only if all pairs were equal; in
effect the same as the equal() algorithm described in the next section.

void inner_product_example ()
 // illustrate the use of the inner_product algorithm
{
 int a[] = {4, 3, -2};
 int b[] = {7, 3, 2};

 // example 1, a simple inner product
 int in1 = inner_product(a, a+3, b, 0);
 cout << "Inner product is " << in1 << endl;

 // example 2, user defined operations
 bool anyequal = inner_product(a, a+3, b, true,
 logical_or<bool>(), equal_to<int>());
 cout << "any equal? " << anyequal << endl;
}

13.6.4 Test Two Sequences for Pairwise Equality

The equal() algorithm tests two sequences for pairwise equality. By using
an alternative binary predicate, it can also be used for a wide variety of other
pair-wise tests of parallel sequences. The arguments are simple input
iterators:

bool equal (InputIterator first, InputIterator last,
 InputIterator first2 [, BinaryPredicate]);

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

144

The equal() algorithm assumes, but does not verify, that the second
sequence contains at least as many elements as the first. A true result is
generated if all values test equal to their corresponding element. The
alternative version of the algorithm substitutes an arbitrary boolean function
for the equality test, and returns true if all pair-wise elements satisfy the
predicate. In the sample program this is illustrated by replacing the
predicate with the greater_equal() function, and in this fashion true will be
returned only if all values in the first sequence are greater than or equal to
their corresponding value in the second sequence.

void equal_example ()
 // illustrate the use of the equal algorithm
{
 int a[] = {4, 5, 3};
 int b[] = {4, 3, 3};
 int c[] = {4, 5, 3};

 cout << "a = b is: " << equal(a, a+3, b) << endl;
 cout << "a = c is: " << equal(a, a+3, c) << endl;
 cout << "a pair-wise greater-equal b is: "
 << equal(a, a+3, b, greater_equal<int>()) << endl;
}

13.6.5 Lexical Comparison

A lexical comparison of two sequences can be described by noting the
features of the most common example, namely the comparison of two words
for the purposes of placing them in “dictionary order.” When comparing
two words, the elements (that is, the characters) of the two sequences are
compared in a pair-wise fashion. As long as they match, the algorithm
advances to the next character. If two corresponding characters fail to match,
the earlier character determines the smaller word. So, for example,
everybody is smaller than everything , since the b in the former word
alphabetically precedes the t in the latter word. Should one or the other
sequence terminate before the other, than the terminated sequence is
considered to be smaller than the other. So, for example, every precedes
both everybody and everything , but comes after eve . Finally, if both
sequences terminate at the same time and, in all cases, pair-wise characters
match, then the two words are considered to be equal.

The lexicographical_compare() algorithm implements this idea, returning
true if the first sequence is smaller than the second, and false otherwise.
The algorithm has been generalized to any sequence. Thus the
lexicographical_compare() algorithm can be used with arrays, strings,
vectors, lists, or any of the other data structures used in the standard library.

bool lexicographical_compare
 (InputIterator first1, InputIterator last1,
 InputIterator first2, InputIterator last2 [, BinaryFunction]);

Unlike most of the other algorithms that take two sequences as argument, the
lexicographical_compare() algorithm uses a first and a past-end iterator for
both sequences. A variation on the algorithm also takes a fifth argument,

✍
Equal and
Mismatch
By substituting
another function
for the binary
predicate, the
equal and
mismatch
algorithms can be
put to a variety of
different uses. Use
the equal()
algorithm if you
want a pairwise
test that returns a
boolean result.
Use the
mismatch()
algorithm if you
want to discover
the location of
elements that fail
the test.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

145

which is the binary function used to compare corresponding elements from
the two sequences.

The example program illustrates the use of this algorithm with character
sequences, and with arrays of integer values.

void lexicographical_compare_example()
 // illustrate the use of the lexicographical_compare algorithm
{
 char * wordOne = "everything";
 char * wordTwo = "everybody";

 cout << "compare everybody to everything " <<
 lexicographical_compare(wordTwo, wordTwo + strlen(wordTwo),
 wordOne, wordOne + strlen(wordOne)) << endl;

 int a[] = {3, 4, 5, 2};
 int b[] = {3, 4, 5};
 int c[] = {3, 5};

 cout << "compare a to b:" <<
 lexicographical_compare(a, a+4, b, b+3) << endl;
 cout << "compare a to c:" <<
 lexicographical_compare(a, a+4, c, c+2) << endl;
}

13.7 Sequence-Generating Algorithms
The algorithms described in this section are all used to generate a new
sequence from an existing sequence by performing some type of
transformation. In most cases, the output sequence is described by an output
iterator. This means these algorithms can be used to overwrite an existing
structure (such as a vector). Alternatively, by using an insert iterator (see
Section 2.4), the algorithms can insert the new elements into a variable length
structure, such as a set or list. Finally, in some cases which we will note, the
output iterator can be the same as one of the sequences specified by an input
iterator, thereby providing the ability to make an in-place transformation.

The functions partial_sum() and adjacent_difference() are declared in
the header file numeric , while the other functions are described in the header
file algorithm .

13.7.1 Transform One or Two Sequences

The algorithm transform() is used either to make a general transformation
of a single sequence, or to produce a new sequence by applying a binary
function in a pair-wise fashion to corresponding elements from two different
sequences. The general definition of the argument and result types are as
follows:

OutputIterator transform (InputIterator first, InputIterator last,
 OutputIterator result, UnaryFunction);

OutputIterator transform
 (InputIterator first1, InputIterator last1,

✍
Obtaining the
Source
The example
functions
described in this
section can be
found in the file
alg6.cpp .

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

146

 InputIterator first2, OutputIterator result, BinaryFunction);

The first form applies a unary function to each element of a sequence. In the
example program given below, this is used to produce a vector of integer
values that hold the arithmetic negation of the values in a linked list. The
input and output iterators can be the same, in which case the transformation
is applied in-place, as shown in the example program.

The second form takes two sequences and applies the binary function in a
pair-wise fashion to corresponding elements. The transaction assumes, but
does not verify, that the second sequence has at least as many elements as the
first sequence. Once more, the result can either be a third sequence, or either
of the two input sequences.

int square(int n) { return n * n; }

void transform_example ()
// illustrate the use of the transform algorithm
{
// generate a list of value 1 to 6
 list<int> aList;
 generate_n (inserter(aList, aList.begin()), 6, iotaGen(1));

// transform elements by squaring, copy into vector
 vector<int> aVec(6);
 transform (aList.begin(), aList.end(), aVec.begin(), square);

// transform vector again, in place, yielding 4th powers
 transform (aVec.begin(), aVec.end(), aVec.begin(), square);

// transform in parallel, yielding cubes
 vector<int> cubes(6);
 transform (aVec.begin(), aVec.end(), aList.begin(),
 cubes.begin(), divides<int>());
}

13.7.2 Partial Sums

A partial sum of a sequence is a new sequence in which every element is
formed by adding the values of all prior elements. For example, the partial
sum of the vector 1 3 2 4 5 is the new vector 1 4 6 10 15. The element 4 is
formed from the sum 1 + 3, the element 6 from the sum 1 + 3 + 2, and so on.
Although the term “sum” is used in describing the operation, the binary
function can, in fact, be any arbitrary function. The example program
illustrates this by computing partial products. The arguments to the partial
sum function are described as follows:

OutputIterator partial_sum
 (InputIterator first, InputIterator last,
 OutputIterator result [, BinaryFunction]);

By using the same value for both the input iterator and the result the partial
sum can be changed into an in-place transformation.

void partial_sum_example ()
// illustrate the use of the partial sum algorithm

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

147

{
// generate values 1 to 5
 vector<int> aVec(5);
 generate (aVec.begin(), aVec.end(), iotaGen(1));

// output partial sums
 partial_sum (aVec.begin(), aVec.end(),
 ostream_iterator<int> (cout, " ")), cout << endl;

// output partial products
 partial_sum (aVec.begin(), aVec.end(),
 ostream_iterator<int> (cout, " "),
 times<int>());
}

13.7.3 Adjacent Differences

An adjacent difference of a sequence is a new sequence formed by replacing
every element with the difference between the element and the immediately
preceding element. The first value in the new sequence remains unchanged.
For example, a sequence such as (1, 3, 2, 4, 5) is transformed into (1, 3-1, 2-3,
4-2, 5-4), and in this manner becomes the sequence (1, 2, -1, 2, 1).

As with the algorithm partial_sum() , the term “difference” is not
necessarily accurate, as an arbitrary binary function can be employed. The
adjacent sums for this sequence are (1, 4, 5, 6, 9), for example. The adjacent
difference algorithm has the following declaration:

OutputIterator adjacent_difference (InputIterator first,
 InputIterator last, OutputIterator result [, BinaryFunction]);

By using the same iterator as both input and output iterator, the adjacent
difference operation can be performed in place.

void adjacent_difference_example ()
// illustrate the use of the adjacent difference algorithm
{
// generate values 1 to 5
 vector<int> aVec(5);
 generate (aVec.begin(), aVec.end(), iotaGen(1));

// output adjacent differences
 adjacent_difference (aVec.begin(), aVec.end(),
 ostream_iterator<int,char> (cout, " ")), cout << endl;

// output adjacent sums
 adjacent_difference (aVec.begin(), aVec.end(),
 ostream_iterator<int,char> (cout, " "),
 plus<int>());
}

13.8 Miscellaneous Algorithms
In the final section we describe the remaining algorithms found in the
standard library.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Generic Algorithms

148

13.8.1 Apply a Function to All Elements in a Collection

The algorithm for_each() takes three arguments. The first two provide the
iterators that describe the sequence to be evaluated. The third is a one-
argument function. The for_each() algorithm applies the function to each
value of the sequence, passing the value as an argument.

Function for_each
 (InputIterator first, InputIterator last, Function);

For example, the following code fragment, which uses the print_if_leap()

function, will print a list of the leap years that occur between 1900 and 1997:

 cout << "leap years between 1990 and 1997 are: ";
 for_each (1990, 1997, print_if_leap);
 cout << endl;

The argument function is guaranteed to be invoked only once for each
element in the sequence. The for_each() algorithm itself returns the value
of the third argument, although this, too, is usually ignored.

The following example searches an array of integer values representing
dates, to determine which vintage wine years were also leap years:

 int vintageYears[] = {1947, 1955, 1960, 1967, 1994};
 ...

 cout << "vintage years which were also leap years are: ";
 for_each (vintageYears, vintageYears + 5, print_if_leap);
 cout << endl;

Side effects need not be restricted to printing. Assume we have a function
countCaps() that counts the occurrence of capital letters:

int capCount = 0;

void countCaps(char c) { if (isupper(c)) capCount++; }

The following example counts the number of capital letters in a string value:

 string advice = "Never Trust Anybody Over 30!";
 for_each(advice.begin(), advice.end(),countCaps);
 cout << "upper-case letter count is " << capCount << endl;

✍
Results Produced
by Side Effect
The function
passed as the
third argument is
not permitted to
make any
modifications to
the sequence, so
it can only
achieve any result
by means of a
side effect, such
as printing,
assigning a value
to a global or
static variable, or
invoking another
function that
produces a side
effect. If the
argument
function returns
any result, it is
ignored.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Ordered Collection Algorithms

149

S e c t i o n 14.
Ordered Collection Algorithms

14.1

Overview

14.2

Sorting Algorithms

14.3

Partial Sort

14.4

Nth Element

14.5

Binary Search

14.6

Merge Ordered Sequences

14.7

Set Operations

14.8

Heap Operations

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Ordered Collection Algorithms

150

14.1 Overview
In this section we will describe the generic algorithms in the standard library
that are specific to ordered collections. These are summarized by the
following table:

Name Purpose
Sorting Algorithms Ð Sections 14.2 and 14.3

sort rearrange sequence, place in order

stable_sort sort, retaining original order of equal
elements

partial_sort sort only part of sequence

partial_sort_copy partial sort into copy

Find Nth largest Element Ð Section 14.4

nth_element locate nth largest element

Binary Search Ð Section 14.5

binary_search search, returning boolean

lower_bound search, returning first position

upper_bound search, returning last position

equal_range search, returning both positions

Merge Ordered Sequences Ð Section 14.6

merge combine two ordered sequences

Set Operations Ð Section 14.7

set_union form union of two sets

set_intersection form intersection of two sets

set_difference form difference of two sets

set_symmetric_difference form symmetric difference of two
sets

includes see if one set is a subset of another

Heap operations Ð Section 14.8

make_heap turn a sequence into a heap

push_heap add a new value to the heap

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Ordered Collection Algorithms

151

Name Purpose
pop_heap remove largest value from the heap

sort_heap turn heap into sorted collection

Ordered collections can be created using the standard library in a variety of
ways. For example:

• The containers set, multiset, map and multimap are ordered collections
by definition.

• A list can be ordered by invoking the sort() member function.

• A vector, deque or ordinary C++ array can be ordered by using one of
the sorting algorithms described later in this section.

Like the generic algorithms described in the previous section, the algorithms
described here are not specific to any particular container class. This means
they can be used with a wide variety of types. Many of them do, however,
require the use of random-access iterators. For this reason they are most
easily used with vectors, deques, or ordinary arrays.

Almost all the algorithms described in this section have two versions. The
first version uses the less than operator (operator <) for comparisons
appropriate to the container element type. The second, and more general,
version uses an explicit comparison function object, which we will write as
Compare. This function object must be a binary predicate (see Section 3.2).
Since this argument is optional, we will write it within square brackets in the
description of the argument types.

A sequence is considered to be ordered if for every valid (that is, denotable)
iterator i with a denotable successor j , it is the case that the comparison
Compare(*j, *i) is false. Note that this does not necessarily imply that
Compare(*i, *j) is true. It is assumed that the relation imposed by Compare

is transitive, and induces a total ordering on the values.

In the descriptions that follow, two values x and y are said to be equivalent if
both Compare(x, y) and Compare(y, x) are false. Note that this need not
imply that x == y .

14.1.1 Include Files

As with the algorithms described in Section 13, before you can use any of the
algorithms described in this section in a program you must include the
algorithm header file:

 # include <algorithm>

✍
Obtaining the
Sample Programs
The example
programs
described in this
section have
been combined
and are included
in the file
alg7.cpp in the
tutorial
distribution. As we
did in Section 13,
we will generally
omit output
statements from
the descriptions of
the programs
provided here,
although they are
included in the
executable
versions.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Ordered Collection Algorithms

152

14.2 Sorting Algorithms
There are two fundamental sorting algorithms provided by the standard
library, described as follows:

void sort (RandomAccessIterator first,
 RandomAccessIterator last [, Compare]);

void stable_sort (RandomAccessIterator first,
 RandomAccessIterator last [, Compare]);

The sort() algorithm is slightly faster, but it does not guarantee that equal
elements in the original sequence will retain their relative orderings in the
final result. If order is important, then use the stable_sort() version.

Because these algorithms require random access iterators, they can be used
only with vectors, deques, and ordinary C pointers. Note, however, that the
list container provides its own sort() member function.

The comparison operator can be explicitly provided when the default
operator < is not appropriate. This is used in the example program to sort a
list into descending, rather than ascending order. An alternative technique
for sorting an entire collection in the inverse direction is to describe the
sequence using reverse iterators.

The following example program illustrates the sort() algorithm being
applied to a vector, and the sort() algorithm with an explicit comparison
operator being used with a deque.

void sort_example ()
 // illustrate the use of the sort algorithm
{
 // fill both a vector and a deque
 // with random integers
 vector<int> aVec(15);
 deque<int> aDec(15);
 generate (aVec.begin(), aVec.end(), randomValue);
 generate (aDec.begin(), aDec.end(), randomValue);

 // sort the vector ascending
 sort (aVec.begin(), aVec.end());

 // sort the deque descending
 sort (aDec.begin(), aDec.end(), greater<int>());

 // alternative way to sort descending
 sort (aVec.rbegin(), aVec.rend());
}

14.3 Partial Sort
The generic algorithm partial_sort() sorts only a portion of a sequence. In
the first version of the algorithm, three iterators are used to describe the
beginning, middle, and end of a sequence. If n represents the number of
elements between the start and middle, then the smallest n elements will be

✍
More Sorts
Yet another
sorting algorithm is
provided by the
heap operations,
to be described in
Section 14.8.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Ordered Collection Algorithms

153

moved into this range in order. The remaining elements are moved into the
second region. The order of the elements in this second region is undefined.

void partial_sort (RandomAccessIterator first,
 RandomAccessIterator middle,
 RandomAccessIterator last [, Compare]);

A second version of the algorithm leaves the input unchanged. The output
area is described by a pair of random access iterators. If n represents the size
of this area, then the smallest n elements in the input are moved into the
output in order. If n is larger than the input, then the entire input is sorted
and placed in the first n locations in the output. In either case the end of the
output sequence is returned as the result of the operation.

RandomAccessIterator partial_sort_copy
 (InputIterator first, InputIterator last,
 RandomAccessIterator result_first,
 RandomAccessIterator result_last [, Compare]);

Because the input to this version of the algorithm is specified only as a pair of
input iterators, the partial_sort_copy() algorithm can be used with any of
the containers in the standard library. In the example program it is used
with a list.

void partial_sort_example ()
 // illustrate the use of the partial sort algorithm
{
 // make a vector of 15 random integers
 vector<int> aVec(15);
 generate (aVec.begin(), aVec.end(), randomValue);

 // partial sort the first seven positions
 partial_sort (aVec.begin(), aVec.begin() + 7, aVec.end());

 // make a list of random integers
 list<int> aList(15, 0);
 generate (aList.begin(), aList.end(), randomValue);

 // sort only the first seven elements
 vector<int> start(7);
 partial_sort_copy (aList.begin(), aList.end(),
 start.begin(), start.end(), greater<int>());
}

14.4 nth Element
Imagine we have the sequence 2 5 3 4 7, and we want to discover the median,
or middle element. We could do this with the function nth_element(). One
result might be the following sequence:

3 2 | 4 | 7 5

The vertical bars are used to describe the separation of the result into three
parts; the elements before the requested value, the requested value, and the
values after the requested value. Note that the values in the first and third
sequences are unordered; in fact, they can appear in the result in any order.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Ordered Collection Algorithms

154

The only requirement is that the values in the first part are no larger than the
value we are seeking, and the elements in the third part are no smaller than
this value.

The three iterators provided as arguments to the algorithm nth_element()

divide the argument sequence into the three sections we just described.
These are the section prior to the middle iterator, the single value denoted by
the middle iterator, and the region between the middle iterator and the end.
Either the first or third of these may be empty.

The arguments to the algorithm can be described as follows:

void nth_element (RandomAccessIterator first,
 RandomAccessIterator nth,
 RandomAccessIterator last [, Compare]);

Following the call on nth_element(), the nth largest value will be copied
into the position denoted by the middle iterator. The region between the first
iterator and the middle iterator will have values no larger than the nth
element, while the region between the middle iterator and the end will hold
values no smaller than the nth element.

The example program illustrates finding the fifth largest value in a vector of
random numbers.

void nth_element_example ()
 // illustrate the use of the nth_element algorithm
{
 // make a vector of random integers
 vector<int> aVec(10);
 generate (aVec.begin(), aVec.end(), randomValue);

 // now find the 5th largest
 vector<int>::iterator nth = aVec.begin() + 4;
 nth_element (aVec.begin(), nth, aVec.end());

 cout << "fifth largest is " << *nth << endl;
}

14.5 Binary Search
The standard library provides a number of different variations on binary
search algorithms. All will perform only approximately log n comparisons,
where n is the number of elements in the range described by the arguments.
The algorithms work best with random access iterators, such as those
generated by vectors or deques, when they will also perform approximately
log n operations in total. However, they will also work with non-random
access iterators, such as those generated by lists, in which case they will
perform a linear number of steps. Although legal, it is not necessary to
perform a binary search on a set or multiset data structure, since those
container classes provide their own search methods, which are more
efficient.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Ordered Collection Algorithms

155

The generic algorithm binary_search() returns true if the sequence
contains a value that is equivalent to the argument. Recall that to be
equivalent means that both Compare(value, arg) and Compare(arg, value)

are false. The algorithm is declared as follows:

bool binary_search (ForwardIterator first, ForwardIterator last,
 const T & value [, Compare]);

In other situations it is important to know the position of the matching value.
This information is returned by a collection of algorithms, defined as follows:

 ForwardIterator lower_bound (ForwardIterator first,
 ForwardIterator last, const T& value [, Compare]);

 ForwardIterator upper_bound (ForwardIterator first,
 ForwardIterator last, const T& value [, Compare]);

 pair<ForwardIterator, ForwardIterator> equal_range
 (ForwardIterator first, ForwardIterator last,
 const T& value [, Compare]);

The algorithm lower_bound() returns, as an iterator, the first position into
which the argument could be inserted without violating the ordering,
whereas the algorithm upper_bound() finds the last such position. These will
match only when the element is not currently found in the sequence. Both
can be executed together in the algorithm equal_range(), which returns a
pair of iterators.

Our example program shows these functions being used with a vector of
random integers.

void binary_search_example ()
 // illustrate the use of the binary search algorithm
{
 // make an ordered vector of 15 random integers
 vector<int> aVec(15);
 generate (aVec.begin(), aVec.end(), randomValue);
 sort (aVec.begin(), aVec.end());

 // see if it contains an eleven
 if (binary_search (aVec.begin(), aVec.end(), 11))
 cout << "contains an 11" << endl;
 else
 cout << "does not contain an 11" << endl;

 // insert an 11 and a 14
 vector<int>::iterator where;
 where = lower_bound (aVec.begin(), aVec.end(), 11);
 aVec.insert (where, 11);

 where = upper_bound (aVec.begin(), aVec.end(), 14);
 aVec.insert (where, 14);

}

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Ordered Collection Algorithms

156

14.6 Merge Ordered Sequences
The algorithm merge() combines two ordered sequences to form a new
ordered sequence. The size of the result is the sum of the sizes of the two
argument sequences. This should be contrasted with the set_union()

operation, which eliminates elements that are duplicated in both sets. The
set_union() function will be described later in this section.

The merge operation is stable. This means, for equal elements in the two
ranges, not only is the relative ordering of values from each range preserved,
but the values from the first range always precede the elements from the
second. The two ranges are described by a pair of iterators, whereas the
result is defined by a single output iterator. The arguments are shown in the
following declaration:

OutputIterator merge (InputIterator first1, InputIterator last1,
 InputIterator first2, InputIterator last2,
 OutputIterator result [, Compare]);

The example program illustrates a simple merge, the use of a merge with an
inserter, and the use of a merge with an output stream iterator.

void merge_example ()
 // illustrate the use of the merge algorithm
{
 // make a list and vector of 10 random integers
 vector<int> aVec(10);
 list<int> aList(10, 0);
 generate (aVec.begin(), aVec.end(), randomValue);
 sort (aVec.begin(), aVec.end());
 generate_n (aList.begin(), 10, randomValue);
 aList.sort();

 // merge into a vector
 vector<int> vResult (aVec.size() + aList.size());
 merge (aVec.begin(), aVec.end(), aList.begin(), aList.end(),
 vResult.begin());

 // merge into a list
 list<int> lResult;
 merge (aVec.begin(), aVec.end(), aList.begin(), aList.end(),
 inserter(lResult, lResult.begin()));

 // merge into the output
 merge (aVec.begin(), aVec.end(), aList.begin(), aList.end(),
 ostream_iterator<int,char> (cout, " "));
 cout << endl;

}

The algorithm inplace_merge() (Section 13.4.6) can be used to merge two
sections of a single sequence into one sequence.

14.7 Set Operations
The operations of set union, set intersection, and set difference were all
described in Section 8.2.7 when we discussed the set container class.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Ordered Collection Algorithms

157

However, the algorithms that implement these operations are generic, and
applicable to any ordered data structure. The algorithms assume the input
ranges are ordered collections that represent multisets ; that is, elements can
be repeated. However, if the inputs represent sets , then the result will
always be a set. That is, unlike the merge() algorithm, none of the set
algorithms will produce repeated elements in the output that were not
present in the input sets.

The set operations all have the same format. The two input sets are specified
by pairs of input iterators. The output set is specified by an input iterator,
and the end of this range is returned as the result value. An optional
comparison operator is the final argument. In all cases it is required that the
output sequence not overlap in any manner with either of the input
sequences.

OutputIterator set_union
 (InputIterator first1, InputIterator last1,
 InputIterator first2, InputIterator last2,
 OutputIterator result [, Compare]);

The example program illustrates the use of the four set algorithms,
set_union, set_intersection, set_difference and
set_symmetric_difference. It also shows a call on merge() in order to
contrast the merge and the set union operations. The algorithm includes() is
slightly different. Again the two input sets are specified by pairs of input
iterators, and the comparison operator is an optional fifth argument. The
return value for the algorithm is true if the first set is entirely included in the
second, and false otherwise.

void set_example ()
 // illustrate the use of the generic set algorithms
{
 ostream_iterator<int> intOut (cout, " ");

 // make a couple of ordered lists
 list<int> listOne, listTwo;
 generate_n (inserter(listOne, listOne.begin()), 5, iotaGen(1));
 generate_n (inserter(listTwo, listTwo.begin()), 5, iotaGen(3));

 // now do the set operations
 // union - 1 2 3 4 5 6 7
 set_union (listOne.begin(), listOne.end(),
 listTwo.begin(), listTwo.end(), intOut), cout << endl;
 // merge - 1 2 3 3 4 4 5 5 6 7
 merge (listOne.begin(), listOne.end(),
 listTwo.begin(), listTwo.end(), intOut), cout << endl;
 // intersection - 3 4 5
 set_intersection (listOne.begin(), listOne.end(),
 listTwo.begin(), listTwo.end(), intOut), cout << endl;
 // difference - 1 2
 set_difference (listOne.begin(), listOne.end(),
 listTwo.begin(), listTwo.end(), intOut), cout << endl;
 // symmetric difference - 1 2 6 7
 set_symmetric_difference (listOne.begin(), listOne.end(),
 listTwo.begin(), listTwo.end(), intOut), cout << endl;

 if (includes (listOne.begin(), listOne.end(),

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Ordered Collection Algorithms

158

 listTwo.begin(), listTwo.end()))
 cout << "set is subset" << endl;
 else
 cout << "set is not subset" << endl;
}

14.8 Heap Operations
A heap is a binary tree in which every node is larger than the values
associated with either child. A heap (and, for that matter, a binary tree) can
be very efficiently stored in a vector, by placing the children of node i in
positions 2 * i + 1 and 2 * i + 2 .

Using this encoding, the largest value in the heap will always be located in
the initial position, and can therefore be very efficiently retrieved. In
addition, efficient (logarithmic) algorithms exist that both permit a new
element to be added to a heap and the largest element removed from a heap.
For these reasons, a heap is a natural representation for the priority_queue
data type, described in Section 11.

The default operator is the less-than operator (operator <) appropriate to the
element type. If desired, an alternative operator can be specified. For
example, by using the greater-than operator (operator >), one can construct a
heap that will locate the smallest element in the first location, instead of the
largest.

The algorithm make_heap() takes a range, specified by random access
iterators, and converts it into a heap. The number of steps required is a
linear function of the number of elements in the range.

void make_heap (RandomAccessIterator first,
 RandomAccessIterator last [, Compare]);

A new element is added to a heap by inserting it at the end of a range (using
the push_back() member function of a vector or deque, for example),
followed by an invocation of the algorithm push_heap(). The push_heap()

algorithm restores the heap property, performing at most a logarithmic
number of operations.

void push_heap (RandomAccessIterator first,
 RandomAccessIterator last [, Compare]);

The algorithm pop_heap() swaps the first and final elements in a range, then
restores to a heap the collection without the final element. The largest value
of the original collection is therefore still available as the last element in the
range (accessible, for example, using the back() member function in a vector,
and removable using the pop_back() member function), while the remainder
of the collection continues to have the heap property. The pop_heap()

algorithm performs at most a logarithmic number of operations.

void pop_heap (RandomAccessIterator first,
 RandomAccessIterator last [, Compare]);

✍
Heaps and
Ordered
Collections
Note that an
ordered collection
is a heap, but a
heap need not
necessarily be an
ordered
collection. In fact,
a heap can be
constructed in a
sequence much
more quickly than
the sequence
can be sorted.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved
Ordered Collection Algorithms

159

Finally, the algorithm sort_heap() converts a heap into a ordered (sorted)
collection. Note that a sorted collection is still a heap, although the reverse is
not the case. The sort is performed using approximately n log n operations,
where n represents the number of elements in the range. The sort_heap()

algorithm is not stable.

void sort_heap (RandomAccessIterator first,
 RandomAccessIterator last [, Compare]);

Here is an example program that illustrates the use of these functions.

void heap_example ()
 // illustrate the use of the heap algorithms
{
 // make a heap of 15 random integers
 vector<int> aVec(15);
 generate (aVec.begin(), aVec.end(), randomValue);
 make_heap (aVec.begin(), aVec.end());
 cout << "Largest value " << aVec.front() << endl;

 // remove largest and reheap
 pop_heap (aVec.begin(), aVec.end());
 aVec.pop_back();

 // add a 97 to the heap
 aVec.push_back (97);
 push_heap (aVec.begin(), aVec.end());

 // finally, make into a sorted collection
 sort_heap (aVec.begin(), aVec.end());
}

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Using Allocators

161

S e c t i o n 15.
Using Allocators

15.1
An Overview of Standard Library Allocators

15.2
Using Allocators with Existing Standard Library Containers

15.3
Building Your Own Allocators

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Using Allocators

162

15.1 An Overview of the Standard Library Allocators
The Standard C++ allocator interface encapsulates the types and functions
needed to manage the storage of data in a generic way. The interface
provides:

• pointer and reference types;

• the type of the difference between pointers;

• the type for any object's size ;

• storage allocation and deallocation primitives;

• object construction and destruction primitives.

The allocator interface wraps the mechanism for managing data storage, and
separates this mechanism from the classes and functions used to maintain
associations between data elements. This eliminates the need to rewrite
containers and algorithms to suit different storage mechanisms. The
interface lets you encapsulate all the storage mechanism details in an
allocator, then provide that allocator to an existing container when
appropriate.

The Standard C++ Library provides a default allocator class, allocator, that
implements this interface using the Standard new and delete operators for all
storage management.

This section briefly describes how to use allocators with existing containers,
then discusses what you need to consider when designing your own
allocators. The later section of this guide, entitled "Building Containers and
Generic Algorithms" describes what you must consider when designing
containers that use allocators.

15.2 Using Allocators with Existing Standard Library
Containers
Using allocators with existing Standard C++ Library container classes is a
simple process. Merely provide an allocator type when you instantiate a
container, and provide an actual allocator object when you construct a
container object:

my_allocator alloc<int>; // Construct an allocator
// Use the allocator
vector<int,my_allocator<int> > v(alloc);

All standard containers default the allocator template parameter type to
allocator<T> and the object to Allocator() , where Allocator is the
template parameter type. This means that the simplest use of allocators is to
ignore them entirely. When you do not specify an allocator, the default
allocator will be used for all storage management.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Using Allocators

163

If you do provide a different allocator type as a template parameter, then the
type of object that you provide must match the template type. For example,
the following code will cause an compiler error because the types in the
template signature and the call to the allocator constructor don't match:

template <class T> class my_alloc;
list <int, allocator<int> > my_list(my_alloc()); \\ Wrong!

The following call to the allocator constructor does match the template
signature:

list <int, my_alloc<int> > my_list(my_alloc());

Note that the container always holds a copy of the allocator object that is
passed to the constructor. If you need a single allocator object to manage all
storage for a number of containers, you must provide an allocator that
maintains a reference to some shared implementation.

15.3 Building Your Own Allocators
Defining your own allocator is a relatively simple process. The Standard
C++ Library describes a particular interface, consisting of types and
functions. An allocator that conforms to the Standard must match the
syntactic requirements for these member functions and types. The Standard
C++ Library also specifies a portion of the semantics for the allocator type.

The Standard C++ Library allocator interface relies heavily on member
templates. As of this writing, many compilers do not yet support both
member function templates and member class templates. This makes it
impossible to implement a standard allocator. Rogue Wave's
implementation of the Standard C++ Library provides an alternative
allocator interface that provides most of the power of the standard interface,
without requiring unavailable compiler features. This interface differs
significantly from the standard interface, and will not work with other
vendors' versions of the Standard C++ Library.

We recommend that when you define an allocator and implement containers,
you provide both the standard interface and the Rogue Wave interface. This
will allow you to use allocators now, and to take advantage of the standard
once it becomes available on your compiler.

The remainder of this section describes the requirements for the Standard
C++ Library allocator, the requirements for Rogue Wave's alternative
allocator, and some techniques that specify how to support both interfaces in
the same code base.

15.3.1 Using the Standard Allocator Interface

An allocator that conforms to the Standard C++ Library allocator
specification must have the following interface. The example uses
my_allocator as a place holder for your own allocator name:

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Using Allocators

164

template <class T>
class my_allocator
{
 typedef implementation_defined size_type;
 typedef implementation_defined difference_type
 typedef implementation_defined pointer;
 typedef implementation_defined const_pointer;
 typedef implementation_defined reference;
 typedef implementation_defined const_reference;
 typedef implementation_defined value_type;

 template <class U>
 struct rebind { typedef allocator<U> other; };

Each of the pointer types in this interface must have a conversion to void* . It
must be possible to use the resulting void* as a this value in a constructor or
destructor and in conversions to B<void>::pointer (for appropriate B) for
use by B::deallocate() .

The rebind member allows a container to construct an allocator for some
arbitrary type out of the allocator type provided as a template parameter.
For instance, the list container gets an allocator<T> by default, but a list may
well need to allocate list_nodes as well as T’s. The container can construct an
allocator for list_nodes out of the allocator for T’s (the template parameter,
Allocator, in this case) as follows:

Allocator::rebind<list_node>::other list_node_allocator;

Here is a description of the member functions that a Standard C++ Library
allocator must provide:

my_allocator ();
template <class U>
my_allocator (const my_allocator<U>&);
template <class U>
operator= (const my_allocator<U>&);

~my_allocator ();
Constructors and destructor.

pointer address (reference r) const;
Returns the address of r as a pointer type. This function and the
following function are used to convert references to pointers.

const_pointer address (const_reference r)
 const;

Returns the address of r as a const_pointer type.

pointer allocate (size_type n);
Allocate storage for n values of T .

template <class T, class U>
types<T>::pointer allocate (size_type n,
 typename my_allocator<void>::const_pointer hint = 0);

Allocate storage for hint values of T, using the value of u as an
implementation-defined hint for determining the best storage placement.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Using Allocators

165

void
deallocate (pointer);

Deallocate storage obtained by a call to allocate .

size_type
max_size ();

Return the largest possible storage available through a call to allocate .

void
construct (pointer p, const T& val);

Construct an object of type T at the location of p, using the value of u in the
call to the constructor for T. The effect is:
 new((void*)p) T(u);

void
destroy (pointer p);

Call the destructor on the value pointed to by p. The effect is:
 ((T*)p)->~T()

Here is a description of the non-member functions that a Standard C++
Library allocator must provide:

template <class T>
my_allocator ::pointer
operator new (my_allocator ::size_type, my_allocator&);

Allocate space for a single object of type T using my_allocator::allocate .
The effect is:
 new((void*)x.template allocate<T>(1)) T;

template <class T, class U>
bool
operator== (const my_allocator<T> & a,
 const my_allocator<U> & b);

Return true if allocators b and a can be safely interchanged. "Safely
interchanged" means that b could be used to deallocate storage obtained
through a and vice versa.

template <class T, class U>
bool
operator!= (const my_allocator<T> & a,
 const my_allocator<U> & b);

Return !(a == b) .

15.3.2 Using Rogue Wave's Alternative Interface

Rogue Wave provides an alternative allocator interface for those compilers
that do not support both class templates and member function templates.

In this interface, the class allocator_interface provides all types and typed
functions. Memory is allocated as raw bytes using the class provide by the

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Using Allocators

166

Allocator template parameter. Functions within allocator_interface cast
appropriately before returning pointer values. Because multiple
allocator_interface objects can attach to a single allocator, one allocator can
allocate all storage for a container, regardless of how many types are
involved. The one real restriction is that pointers and references are hard-
coded as type T* and T&. (Note that in the standard interface they are
implementation_defined .). If your compiler supports partial specialization
instead of member templates you can use it to get around even this
restriction by specializing allocator_interface on just the allocator type.

To implement an allocator based on the alternative interface, supply the class
labeled my_allocator below.

//
// Alternative allocator uses an interface class
// (allocator_interface)
// to get type safety.
//
template <class T>
class my_allocator
{
 public:
 typedef implementation_defined size_type;
 typedef implementation_defined difference_type;
 typedef implementation_defined pointer;
 typedef implementation_defined const_pointer;
 typedef implementation_defined reference;
 typedef implementation_defined const_reference;
 typedef implementation_defined value_type;

 my_allocator ();
 ~ my_allocator ();

 void * allocate (size_type n, void * = 0);
 void deallocate (void* p);
 size_type max_size (size_type size) const
};

We've also included a listing of the full implementation of the
allocator_interface class, to show how a standard container will use your
class. The section entitled "Building Containers & Generic Algorithms"
provides a full description of how the containers use the alternative interface.

template <class Allocator,class T>
class allocator_interface
{
public:
 typedef Allocator allocator_type;
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T& reference;
 typedef const T& const_reference;
 typedef T value_type;
 typedef typename Allocator::size_type size_type;
 typedef typename Allocator::difference_type difference_type;

protected:
 allocator_type* alloc_;

public:
 allocator_interface() : alloc_(0) { ; }

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Using Allocators

167

 allocator_interface(Allocator* a) : alloc_(a) { ; }

 void alloc(Allocator* a)
 {
 alloc_ = a;
 }

 pointer address (T& x)
 {
 return static_cast<pointer>(&x);
 }

 size_type max_size () const
 {
 return alloc_->max_size(sizeof(T));
 }

 pointer allocate(size_type n, pointer = 0)
 {
 return static_cast<pointer>(alloc_->allocate(n*sizeof(T)));
 }

 void deallocate(pointer p)
 {
 alloc_->deallocate(p);
 }

 void construct(pointer p, const T& val)
 {
 new (p) T(val);
 }

 void destroy(T* p)
 {
 ((T*)p)->~T();
 }

};

class allocator_interface< my_allocator ,void>
{
 public:
 typedef void* pointer;
 typedef const void* const_pointer;
};

//
// allocator globals
//
void * operator new(size_t N, my_allocator & a);
inline void * operator new[](size_t N, my_allocator & a);
inline bool operator==(const my_allocator &, const my_allocator &);

15.3.3 How to Support Both Interfaces

Rogue Wave strongly recommends that you implement containers that
support both the Standard C++ Library allocator interface, and our
alternative interface. By supporting both interfaces, you can use allocators
now, and take advantage of the standard once it becomes available on your
compiler.

In order to implement both versions of the allocator interface, your
containers must have some mechanism for determining whether the
standard interface is available. Rogue Wave provides the macro
_RWSTD_ALLOCATOR in stdcomp.h to define whether or not the standard

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Using Allocators

168

allocator is available. If _RWSTD_ALLOCATOR evaluates to true, your compiler is
capable of handling Standard C++ Library allocators, otherwise you must
use the alternative.

The first place that you use _RWSTD_ALLOCATOR is when determining which
typenames the container must use to reflect the interface. To do this, place
the equivalent of the following code in your container class definition:

#ifdef RWSTD_ALLOCATOR
 typedef typename Allocator::rebind<T>::other::reference
 reference;
 typedef typename
 Allocator::rebind<T>::other::const_reference
 const_reference;
 typedef typename Allocator::rebind<node>::other::pointer
 link_type;

 typedef Allocator::rebind<T>::other value_allocator;
 typedef Allocator::rebind<node>::other node_allocator;
#else
 typedef typename
 allocator_interface<Allocator,T>::reference reference;
 typedef typename
 allocator_interface<Allocator,T>::const_reference
 const_reference;
 typedef typename
 allocator_interface<Allocator,node>::pointer link_type;

 Allocator alloc;
 typedef allocator_interface<Allocator,T> value_allocator;
 typedef allocator_interface<Allocator,node>
 node_allocator;
#endif

Notice that we use rebind even for the types associated with T. This is safest
since it ensures that the container will work even if the allocator is
instantiated with a different type for the allocator template parameter(say
vector<int, allocator<void> >. This makes our containers more robust. Note
also that we provide two allocator types: value_allocator and
node_allocator . You will need to assemble actual allocators inside your
container, probably as they’re needed. In our example, the mechanism for
calling allocator::allocate for T’s looks like this (regardless which interface is
being used):

value_allocator(alloc)::allocate(…);

In this call we are constructing an appropriate allocator using its template
copy constructor and then we call allocate on that allocator. One result of
this use of the allocator is that any state held by an allocator had better be
passed through the copy constructor by reference, so that it is maintained in
the one allocator object that we keep around (the one passed into the
constructor for the container).

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Building Containers & Generic Algorithms

169

S e c t i o n 16.
Building Containers & Generic Algorithms

16.1
Extending the Library

16.2
Building on the Standard Containers

16.3
Creating Your Own Containers

16.4
Tips and Techniques for Building Algorithms

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Building Containers & Generic Algorithms

170

16.1 Extending the Library
The adoption of the Standard Library for C++ marks a very important
development for users of the C++ programming language. Although the
library is written in an OOP language and provides plenty of objects, it also
employs an entirely different paradigm. This other approach, called “generic
programming,” provides a flexible way to apply generic algorithms to a
wide variety of different data structures. The flexibility of C++ in
combination with this synthesis of two advanced design paradigms results in
an unusual and highly-extensible library.

The clearest example of this synthesis is the ability to extend the library with
user-defined containers and algorithms. This extension is possible because
the definition of data structures has been separated from the definition of
generic operations on those structures. The library defines very specific
parameters for these two broad groups, giving users some confidence that
containers and algorithms from different sources will work together as long
as they all meet the specifications of the standard. At the same time,
containers encapsulate data and a limited range of operations on that data in
classic OOP fashion.

Each standard container is categorized as one of two types: a sequence or an
associative container. A user-defined container need not fit into either of
these two groups since the standard also defines rudimentary requirements
for a container, but the categorization can be very useful for determining
which algorithms will work with a particular container and how efficiently
those algorithms will work. In determining the category of a container, the
most important characteristics are the iterator category and element ordering.
(The Tutorial and Reference Guide sections on each container describe the
container types and iterator categories.)

Standard algorithms can be grouped into categories using a number of
different criteria. The most important of these are: 1) whether or not the
algorithm modifies the contents of a container; 2) the type of iterator
required by the algorithm; and 3) whether or not the algorithm requires a
container to be sorted. An algorithm may also require further state
conditions from any container it's applied to. For instance, all the standard
set algorithms not only require that a container be in sorted order, but also
that the order of elements was determined using the same compare function
or object that will be used by the algorithm.

16.2 Building on the Standard Containers
Let's examine a few of the ways you can use existing Standard C++ Library
containers to create your own containers. For example, say you want to
implement a set container that enforces unique values that are not inherently
sorted. You also want a group of algorithms to operate on that set. The
container is certainly a sequence, but not an associative container, since an

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Building Containers & Generic Algorithms

171

associative container is, by definition, sorted. The algorithms will
presumably work on other sequences, assuming those sequences provide
appropriate iterator types, since the iterator required by a set of algorithms
determines the range of containers those algorithms can be applied to. The
algorithms will be universally available if they only require forward
iterators. On the other hand, they’ll be most restrictive if they require
random access iterators.

Simple implementations of this set container could make use existing
Standard Library containers for much of their mechanics. Three possible
ways of achieving this code re-use are:

• Inheritance;

• Generic inheritance;

• Generic composition.

Let's take a look at each of these approaches.

16.2.1 Inheritance

The new container could derive from an existing standard container, then
override certain functions to get the desired behavior. One approach would
be to derive from the vector container, as shown here:

#include <vector>

// note the use of a namespace to avoid conflicts with standard //
or global names

namespace my_namespace {

template <class T, class Allocator = std::allocator>
class set : public std::vector<T,Allocator>
{
public:
// override functions such as insert
 iterator insert (iterator position, const T& x)
 {
 if (find(begin(),end(),x) == end())
 return vector<T,Allocator>::insert(position,x);
 else
 return end(); // This value already present!
 }
…

};

} // End of my_namespace

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Building Containers & Generic Algorithms

172

16.2.2 Generic Inheritance

A second approach is to create a generic adaptor, rather than specifying
vector. You do this by providing the underlying container through a
template parameter:

namespace my_namespace {

template <class T, class Container = std::vector<T> >
class set : public Container
{
public:
// Provide typedefs (iterator only for illustration)
 typedef typename Container::iterator iterator;

// override functions such as insert
 iterator insert (iterator position, const T& x)
 {
 if (find(begin(),end(),x) == end())
 return Container::insert(position,x);
 else
 return end(); // This value already present!
 }
…

};

} // End of my_namespace

If you use generic inheritance through an adaptor, the adaptor and users of
the adaptor cannot expect more than default capabilities and behavior from
any container used to instantiate it. If the adaptor or its users expect
functionality beyond what is required of a basic container, the
documentation must specify precisely what is expected.

16.2.3 Generic Composition

The third approach uses composition rather than inheritance. (You can see the
spirit of this approach in the Standard adaptors queue, priority_queue and
stack.) When you use generic composition, you have to implement all of
the desired interface. This option is most useful when you want to limit the
behavior of an adaptor by providing only a subset of the interface provided
by the container.

namespace my_namespace {

template <class T, class Container = std::vector<T> >
class set
{
protected:
 Container c;
public:
// Provide needed typedefs
 typedef typename Container::iterator iterator;

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Building Containers & Generic Algorithms

173

// provide all necessary functions such as insert
 iterator insert (iterator position, const T& x)
 {
 if (find(c.begin(),c.end(),x) == c.end())
 return c.insert(position,x);
 else
 return c.end(); // This value already present!
 }
…

};

} // End of my_namespace

The advantages of adapting existing containers are numerous. For instance,
you get to reuse the implementation and reuse the specifications of the
container that you're adapting.

16.3 Creating Your Own Containers
All of the options that build on existing Standard C++ Library containers
incur a certain amount of overhead. When performance demands are
critical, or the container requirements very specific, there may be no choice
but to implement a container from scratch.

When building from scratch, there are three sets of design requirements that
you must meet:

• Container interface requirements;

• Allocator interface requirements;

• Iterator requirements.

We'll talk about each of these below.

16.3.1 Meeting the Container Requirements

The Standard C++ Library defines general interface requirements for
containers, and specific requirements for specialized containers. When you
create a container, the first part of your task is making sure that the basic
interface requirements for a container are met. In addition, if your container
will be a sequence or an associative container, you need to provide all
additional pieces specified for those categories. For anything but the
simplest container, this is definitely not a task for the faint of heart.

It’s very important to meet the requirements so that users of the container
will know exactly what capabilities to expect without having to read the code
directly. Review the sections on individual containers for information about
the container requirements.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Building Containers & Generic Algorithms

174

16.3.2 Meeting the Allocator Interface Requirements

A user-defined container will make use of the allocator interface for all
storage management. (An exception to this is a container that will exist in a
completely self-contained environment where there will be no need for
substitute allocators.)

The basic interface of an allocator class consists of a set of typedefs, a pair of
allocation functions, allocate and deallocate , and a pair of
construction/destruction members, construct and destroy . The typedefs
are used by a container to determine what pointers, references, sizes and
differences look like. (A difference is a distance between two pointers.) The
functions are used to do the actual management of data storage.

To use the allocator interface, a container must meet the following three
requirements.

1. A container needs to have a set of typedefs that look like the following:

 typedef Allocator allocator_type;
 typedef typename Allocator::size_type size_type;
 typedef typename Allocator::difference_type difference_type;
 typedef typename Allocator::reference reference;
 typedef typename Allocator::const_reference
 const_reference;
 typedef implementation_defined iterator;
 typedef implementation_defined iterator;

2. A container also needs to have an Allocator member that will contain a
copy the allocator argument provided by the constructors.

 protected:
 Allocator the_allocator;

3. A container needs to use that Allocator member for all storage
management. For instance, our set container might have a naïve
implementation that simply allocates a large buffer and then constructs
values on that buffer. Note that this not a very efficient mechanism, but
it serves as a simple example. We’re also going to avoid the issue of
Allocator::allocate throwing an exception, in the interest of brevity.

An abbreviated version of the set class appears below. The class interface
shows the required typedefs and the Allocator member for this class.

#include <memory>

namespace my_namespace {

template <class T, class Allocator = std::allocator<T> >
class set
{
public:
 // typedefs and allocator member as above
 typedef Allocator allocator_type;
 typedef typename Allocator::size_type size_type;
 typedef typename Allocator::difference_type
 difference_type;
 typedef typename Allocator::reference reference;

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Building Containers & Generic Algorithms

175

 typedef typename Allocator::const_reference
 const_reference;

 // Our iterator will be a simple pointer
 typedef Allocator::pointer iterator;
 typedef Allocator::const_pointer iterator;

protected:
 Allocator the_allocator; // copy of the allocator

private:
 size_type buffer_size;
 iterator buffer_start;
 iterator current_end;
 iterator end_of_buffer;

public:
 // A constructor that initializes the set using a range
 // from some other container or array
 template <class Iterator>
 set(Iterator start, Iterator finish,
 Allocator alloc = Allocator());

 iterator begin() { return buffer_start; }
 iterator end() { return current_end; }
};

Given this class interface, here's a definition of a possible constructor that
uses the allocator. The numbered comments following this code briefly
describe the allocator's role. For a fuller treatment of allocators take a look at
the Tutorial and Class Reference sections for allocators.

template <class T, class Allocator>
template <class Iterator>
set<T,Allocator>::set(Iterator start, Iterator finish,
 Allocator alloc)
 : buffer_size(finish-start + DEFAULT_CUSHION),
 buffer_start(0),
 current_end(0), end_of_buffer(0)
{
 // copy the argument to our internal object
 the_allocator = alloc; // 1

 // Create an initial buffer
 buffer_start = the_allocator.allocate(buffer_size); // 2
 end_of_buffer = buffer_start + buffer_size;

 // construct new values from iterator range on the buffer
 for (current_end = buffer_start;
 start != finish;
 current_end++, start++)
 the_allocator.construct(current_end,*start); // 3

 // Now let’s remove duplicates using a standard algorithm
 std::unique(begin(),end());
}

} // End of my_namespace

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Building Containers & Generic Algorithms

176

//1 The allocator parameter is copied into a protected member of the
container. This private copy can then be used for all subsequent
storage management.

//2 An initial buffer is allocated using the allocator’s allocate function.

//3 The contents of the buffer are initialized using the values from the
iterator range supplied to the constructor by the start and finish

parameters. The construct function constructs an object at a particular
location. In this case the location is at an index in the container’s buffer.

16.3.3 Iterator Requirements

Every container must define an iterator type. Iterators allow algorithms to
iterate over the container's contents. Although iterators can range from
simple to very complex, it is the iterator category, not the complexity, that
most affects an algorithm. The iterator category describes capabilities of the
iterator, such as which direction it can traverse. The "Tips and Techniques"
section below, and the iterator entries in the reference provides additional
information about iterator categories.

The example in the previous section shows the implementation of a container
that uses a simple pointer. A simple pointer is actually an example of the
most powerful type of iterator: a random access iterator. If an iterator
supports random access, we can add to or subtract from it as easily as we can
increment it.

Some iterators have much less capability. For example , consider an iterator
attached to a singly-linked list. Since each node in the list has links leading
forward only, a naïve iterator can advance through the container in only one
direction. An iterator with this limitation falls into the category of forward
iterator.

Certain member functions such as begin() and end() produce iterators for a
container. A container’s description should always describe the category of
iterator that its member functions produce. That way, a user of the container
can see immediately which algorithms can operate successfully on the
container.

16.4 Tips and Techniques for Building Algorithms
This sections describes some techniques that use features of iterators to
increase the flexibility and efficiency of your algorithms.

16.4.1 The iterator_category Primitive

Sometimes an algorithm that can be implemented most efficiently with a
random access iterator can also work with less powerful iterators. The
Standard C++ Library includes primitives that allow a single algorithm to

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Building Containers & Generic Algorithms

177

provide several different implementations, depending upon the power of the
iterator passed into it. The following example demonstrates the usual
technique for setting up multiple versions of the same algorithm.

// Note, this requires that the iterators be derived from
// Standard base types, unless the iterators are simple pointers.

namespace my_namespace {

template <class Iterator>
Iterator union(Iterator first1, Iterator last1,
 Iterator first2, Iterator last2,
 Iterator Result)
{
 return union_aux(first1,last1,first2,last2,Result,
 iterator_category(first1));
}

template <class Iterator>
Iterator union_aux(Iterator first1, Iterator last1,
 Iterator first2, Iterator last2,
 Iterator Result, forward_iterator_tag)
{
 // General but less efficient implementation
}

template <class Iterator>
Iterator union_aux(Iterator first1, Iterator last1,
 Iterator first2, Iterator last2,
 Iterator Result,
 random_access_iterator_tag)
{
 // More efficient implementation
}

} // End of my_namespace

The iterator primitive iterator_category() returns a tag that selects and
uses the best available implementation of the algorithm. In order for
iterator_category() to work, the iterator provided to the algorithm must
be either a simple pointer type, or derived from one of the basic Standard
C++ Library iterator types. When you use the iterator_category()

primitive, the default implementation of the algorithm should expect at most
a forward iterator. This default version will be used if the algorithm
encounters an iterator that is not a simple pointer or derived from a basic
standard iterator. (Note that input and output iterators are less capable than
forward iterators, but that the requirements of an algorithms generally
mandate read/write capabilities.)

16.4.2 The distance and advance Primitives

The value_type primitive lets you determine the type of value pointed to by
an iterator. Similarly, you can use the distance_type primitive to get a type
that represents distances between iterators.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Building Containers & Generic Algorithms

178

In order to efficiently find the distance between two iterators, regardless of
their capabilities, you can use the distance primitive. The distance

primitive uses the technique shown above to send a calling program to one
of four different implementations. This offers a considerable gain in
efficiency, since an implementation for a forward iterator must step through
the range defined by the two iterators:

Distance d = 0;
while (start++ != end)
 d++;

whereas an implementation for a random access iterator can simply subtract
the start iterator from the end iterator:

Distance d = end - start;

Similar gains are available with the advance primitive, which allows you to
step forward (or backward) an arbitrary number of steps as efficiently as
possible for a particular iterator.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
The Traits Parameter

179

S e c t i o n 17. T
he Traits Parameter

17.1
Using the Traits Technique

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
The Traits Parameter

180

Consider the following problem. You have a matrix that must work for all
types of numbers, but the behavior of the matrix depends, in at least some
measure, on the type of number . This means your matrix can’t handle all
numbers in the same way.

Except for the behavioral difference, it sounds like the perfect problem for a
template. But you can’t hang extra information on the number type because
it’s often just a built-in type, so you can’t use a single template. The template
will do the same thing for every number type, which is just what we can’t do
in this case. You could specialize, but then you have to re-implement the
entire matrix class for every type of number. It may well be that most of the
class is the same. Worse yet, if you want to leave your interface open for use
with some unknown future type, you’re requiring that future user to
reimplement the entire class as well.

What you really want is to put everything that doesn’t change in one place,
and repeatedly specify only the small part that does change with the type.
The technique for doing this is generally referred to as using a traits
parameter.

17.1 Using the Traits Technique
To implement a traits parameter for a class, you add it as an extra template
parameter to your class. You then supply a class for this parameter that
encapsulates all the specific operations. Usually that class is itself a template.

As an example, let's look at the matrix problem described above. By using
the traits technique, when you want to add a new type to the matrix you
simply specialize the traits class, not the entire matrix. You do no more work
than you have to and retain the ability to use the matrix on any reasonable
number.

Here's how the matrix traits template and specializations for long and int

might look. The example also includes a skeleton of the matrix class that
uses the traits template.

template <class Num>
class matrix_traits
{
 // traits functions and literals
};

template <class Num, class traits>
class matrix
{
 // matrix
}

class matrix_traits<long>
{
 // traits functions and literals specific to long
};

class matrix_traits<int>
{

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
The Traits Parameter

181

 // traits functions and literals specific to int
};

… etc.

matrix<int, matrix_traits<int> > int_matrix;
matrix<long, matrix_traits<long> > long_matrix;

Of course you don’t even have to specialize on matrix_traits . You just
have to make sure you provide the interface that matrix expects from its
traits template parameter.

Most of the time, the operations contained in a traits class will be static
functions so that there’s no need to actually instantiate a traits object.

The Standard Library uses this technique to give the string class maximum
flexibility and efficiency across a wide range of types. The char_traits traits
class provides elementary operations on character arrays. In the simplest
case, this means providing string a wstring with access to the ‘C’ library
functions for skinny and wide characters, for example Strcpy and wcstrcpy .

See the char_traits reference entry for a complete description of the traits
class.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Exception Handling

183

S e c t i o n 18.
Exception Handling

18.1
Overview

18.2
The Standard Exception Hierarchy

18.3
Using Exceptions

18.4
Example Program

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Exception Handling

184

18.1 Overview
The Standard C++ Library provides a set of classes for reporting errors.
These classes use the exception handling facility of the language. The library
implements a particular error model, which divides errors in two broad
categories: logic errors and runtime errors.

Logic errors are errors caused by problems in the internal logic of the
program. They are generally preventable.

Runtime errors, on the other hand, are generally not preventable, or at least
not predictable. These are errors generated by circumstances outside the
control of the program, such as peripheral hardware faults.

18.1.1 Include Files
#include <stdexcept>

18.2 The Standard Exception Hierarchy
The library implements the two-category error model described above with a
set of classes. These classes are defined in the stdexcept header file. They
can be used to catch exceptions thrown by the library and to throw
exceptions from your own code.

The classes are related through inheritance. The inheritance hierarchy looks
like this:

exception

 logic_error

 domain_error

 invalid_argument

 length_error

 out_of_range

 runtime_error

 range_error

 overflow_error

 underflow_error

Classes logic_error and runtime_error inherit from class exception. All
other exception classes inherit from either logic_error or runtime_error.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Exception Handling

185

18.3 Using Exceptions
All exceptions thrown explicitly by any element of the library are guaranteed
to be part of the standard exception hierarchy. Review the reference for
these classes to determine which functions throw which exceptions. You can
then choose to catch particular exceptions, or catch any that might be thrown
(by specifying the base class exception).

For instance, if you are going to call the insert function on string with a
position value that could at some point be invalid, then you should use code
like this:

string s;
int n;
...
try
{
s.insert(n,"Howdy");
}
catch (const exception& e)
{
 // deal with the exception
}

To throw your own exceptions, simply construct an exception of an
appropriate type, assign it an appropriate message and throw it. For
example:

...
if (n > max)
 throw out_of_range("Your past the end, bud");

The class exception serves as the base class for all other exception classes.
As such it defines a standard interface. This interface includes the what()

member function, which returns a null-terminated string that represents the
message that was thrown with the exception. This function is likely to be
most useful in a catch clause, as demonstrated in the example program at the
end of this section.

The class exception does not contain a constructor that takes a message
string, although it can be thrown without a message. Calling what() on an
exception object will return a default message. All classes derived from
exception do provide a constructor that allows you to specify a particular
message.

To throw a base exception you would use the following code:

throw exception;

This is generally not very useful, since whatever catches this exception will
have no idea what kind of error has occurred. Instead of a base exception,
you will usually throw a derived class such as logic_error or one of its
derivations (such as out_of_range as shown in the example above). Better
still, you can extend the hierarchy by deriving your own classes. This allows

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Exception Handling

186

you to provide error reporting specific to your particular problem. For
instance:

class bad_packet_error : public runtime_error
{
 public:
 bad_packet_error(const string& what);
};

if (bad_packet())
 throw bad_packet_error("Packet size incorrect");

This demonstrates how the Standard C++ exception classes provide you with
a basic error model. From this foundation you can build the right error
detection and reporting methods required for your particular application.

18.4 Example Program
This following example program demonstrates the use of exceptions.

#include <stdexcept>
#include <string>

static void f() { throw runtime_error("a runtime error"); }

int main ()
{
 string s;

 // First we'll try to incite then catch an exception from
 // the standard library string class.
 // We'll try to replace at a position that is non-existent.
 //
 // By wrapping the body of main in a try-catch block we can be
 // assured that we'll catch all exceptions in the exception
 // hierarchy. You can simply catch exception as is done below,
 // or you can catch each of the exceptions in which you have an
 // interest.
 try
 {
 s.replace(100,1,1,'c');
 }
 catch (const exception& e)
 {
 cout << "Got an exception: " << e.what() << endl;
 }

 // Now we'll throw our own exception using the function
 // defined above.
 try
 {
 f();
 }
 catch (const exception& e)
 { cout << "Got an exception: " << e.what() << endl;
 }

 return 0;
}

✍
Obtaining the
Sample Program.
This program can
be found in the
file
exceptn.cpp in
your code
distribution.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
auto_ptr

187

S e c t i o n 19.
auto_ptr

19.1

Overview

19.2

Creating and Using Auto Pointers

19.3

Example Program

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
auto_ptr

188

19.1 Overview
The auto_ptr class wraps any pointer obtained through new and provides
automatic deletion of that pointer. The pointer wrapped by an auto_ptr
object is deleted when the auto_ptr itself is destroyed.

19.1.1 Include File

Include the memory header file to access the auto_ptr class.

#include <memory>

19.2 Declaration and Initialization of Auto Pointers
You attach an auto_ptr object to a pointer either by using one of the
constructors for auto_ptr, by assigning one auto_ptr object to another, or by
using the reset member function. Only one auto_ptr "owns" a particular
pointer at any one time, except for the NULL pointer (which all auto_ptrs
own by default). Any use of auto_ptr ' s copy constructor or assignment
operator transfers ownership from one auto_ptr object to another. For
instance, suppose we create auto_ptr a like this:

auto_ptr<string> a(new string);

The auto_ptr object a now "owns" the newly created pointer. When a is
destroyed (such as when it goes out of scope) the pointer will be deleted.
But, if we assign a to b, using the assignment operator:

auto_ptr<string> b = a;

b now owns the pointer. Use of the assignment operator causes a to release
ownership of the pointer. Now if a goes out of scope the pointer will not be
affected. However, the pointer will be deleted when b goes out of scope.

The use of new within the constructor for a may seem a little odd. Normally
we avoid constructs like this since it puts the responsibility for deletion on a
different entity than the one responsible for allocation. But in this case, the
auto_ptr ' s sole responsibility is to manage the deletion. This syntax is
actually preferable since it prevents us from accidentally deleting the pointer
ourselves.

Use operator* , operator-> , or the member function get() to access the
pointer held by an auto_ptr. For instance, we can use any of the three
following statements to assign "What's up Doc" to the string now pointed to
by the auto_ptr b.

*b = "What's up Doc";
*(b.get()) = "What's up Doc";
 b->assign("What's up Doc");

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
auto_ptr

189

auto_ptr also provides a release member function that releases ownership of
a pointer. Any auto_ptr that does not own a specific pointer is assumed to
point to the NULL pointer, so calling release on an auto_ptr will set it to the
NULL pointer. In the example above, when a is assigned to b, the pointer
held by a is released and a is set to the NULL pointer.

19.3 Example Program
This program illustrates the use of auto_ptr to ensure that pointers held in a
vector are deleted when they are removed. Often, we might want to hold
pointers to strings, since the strings themselves may be quite large and we'll
be copying them when we put them into the vector. Particularly in contrast
to a string, an auto_ptr is quite small: hardly bigger than a pointer. (Note
that the program runs as is because the vector includes memory.)

#include <vector>
#include <memory>
#include <string>

int main()
{
 {
 // First the wrong way
 vector<string*> v;
 v.insert(v.begin(), new string("Florence"));
 v.insert(v.begin(), new string("Milan"));
 v.insert(v.begin(), new string("Venice"));

 // Now remove the first element

 v.erase(v.begin());

 // Whoops, memory leak
 // string("Venice") was removed, but not deleted
 // We were supposed to handle that ourselves
 }
 {
 // Now the right way
 vector<auto_ptr<string> > v;
 v.insert(v.begin(),
 auto_ptr<string>(new string("Florence")));
 v.insert(v.begin(), auto_ptr<string>(new string("Milan")));
 v.insert(v.begin(), auto_ptr<string>(new string("Venice")));

 // Everything is fine since auto_ptrs transfer ownership of
 // their pointers when copied

 // Now remove the first element
 v.erase(v.begin());
 // Success
 // When auto_ptr(string("Venice")) is erased (and destroyed)
 // string("Venice") is deleted
 }

 return 0;
}

✍
Obtaining the
Sample Program.
You can find this
program in the file
autoptr.cpp in the
turorial
distribution.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Complex

191

S e c t i o n 20. C
omplex

20.1

Overview

20.2

Creating and Using Complex Numbers

20.3

Example Program

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Complex

192

20.1 Overview
The class complex is a template class, used to create objects for representing
and manipulating complex numbers. The operations defined on complex
numbers allow them to be freely intermixed with the other numeric types
available in the C++ language, thereby permitting numeric software to be
easily and naturally expressed.

20.1.1 Include Files

Programs that use complex numbers must include the complex header file.

 # include <complex>

20.2 Creating and Using Complex Numbers
In the following sections we will describe the operations used to create and
manipulate complex numbers.

20.2.1 Declaring Complex Numbers

The template argument is used to define the types associated with the real
and imaginary fields. This argument must be one of the floating point
number data types available in the C++ language, either float , double , or
long double .

There are several constructors associated with the class. A constructor with
no arguments initializes both the real and imaginary fields to zero. A
constructor with a single argument initializes the real field to the given value,
and the imaginary value to zero. A constructor with two arguments
initializes both real and imaginary fields. Finally, a copy constructor can be
used to initialize a complex number with values derived from another
complex number.

 complex<double> com_one; // value 0 + 0i
 complex<double> com_two(3.14); // value 3.14 + 0i
 complex<double> com_three(1.5, 3.14) // value 1.5 + 3.14i
 complex<double> com_four(com_two); // value is also 3.14 + 0i

A complex number can be assigned the value of another complex number.
Since the one-argument constructor is also used for a conversion operator, a
complex number can also be assigned the value of a real number. The real
field is changed to the right hand side, while the imaginary field is set to
zero.

 com_one = com_three; // becomes 1.5 + 3.14i
 com_three = 2.17; // becomes 2.17 + 0i

The function polar() can be used to construct a complex number with the
given magnitude and phase angle.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Complex

193

 com_four = polar(5.6, 1.8);

The conjugate of a complex number is formed using the function conj(). If
a complex number represents x + iy , then the conjugate is the value x-iy .

 complex<double> com_five = conj(com_four);

20.2.2 Accessing Complex Number Values

The member functions real() and imag() return the real and imaginary
fields of a complex number, respectively. These functions can also be
invoked as ordinary functions with complex number arguments.

 // the following should be the same
 cout << com_one.real() << "+" << com_one.imag() << "i" << endl;
 cout << real(com_one) << "+" << imag(com_one) << "i" << endl;

20.2.3 Arithmetic Operations

The arithmetic operators +, -, *, and / can be used to perform addition,
subtraction, multiplication and division of complex numbers. All four work
either with two complex numbers, or with a complex number and a real
value. Assignment operators are also defined for all four.

 cout << com_one + com_two << endl;
 cout << com_one - 3.14 << endl;
 cout << 2.75 * com_two << endl;
 com_one += com_three / 2.0;

The unary operators + and - can also be applied to complex numbers.

20.2.4 Comparing Complex Values

Two complex numbers can be compared for equality or inequality, using the
operators == and !=. Two values are equal if their corresponding fields are
equal. Complex numbers are not well-ordered, and thus cannot be
compared using any other relational operator.

20.2.5 Stream Input and Output

Complex numbers can be written to an output stream, or read from an input
stream, using the normal stream I/O conventions. A value is written in
parentheses, either as (u) or (u,v), depending upon whether or not the
imaginary value is zero. A value is read as a set of parentheses surrounding
two numeric values.

20.2.6 Norm and Absolute Value

The function norm() returns the norm of the complex number. This is the
sum of the squares of the real and imaginary parts. The function abs()

✍
Functions and
Member Functions
Note that, with
the exception of
the member
functions real()
and imag(),
most operations
on complex
numbers are
performed using
ordinary functions,
not member
functions.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Complex

194

returns the absolute value, which is the square root of the norm. Note that
both are ordinary functions that take the complex value as an argument, not
member functions.

 cout << norm(com_two) << endl;
 cout << abs(com_two) << endl;

The directed phase angle of a complex number is yielded by the function
arg().

 cout << com_four << " in polar coordinates is "
 << arg(com_four) << " and " << norm(com_four) << endl;

20.2.7 Trigonometric Functions

The trigonometric functions defined for floating point values (namely,
sin(), cos(), tan(), sinh(), cosh(), and tanh()), have all been
extended to complex number arguments. Each takes a single complex
number as argument and returns a complex number as result.

20.2.8 Transcendental Functions

The transcendental functions exp(), log(), log10() and sqrt() have been
extended to complex arguments. Each takes a single complex number as
argument, and returns a complex number as result.

The standard library defines several variations of the exponential function
pow(). Versions exist to raise a complex number to an integer power, to
raise a complex number to a complex power or to a real power, or to raise a
real value to a complex power.

20.3 Example Program −− Roots of a Polynomial
The roots of a polynomial a x 2 + b x + c = 0 are given by the formula:

x = (-b ± sqrt(b 2 - 4ac))/2a

The following program takes as input three double precision numbers, and
returns the complex roots as a pair of values.

typedef complex<double> dcomplex;

pair<dcomplex, dcomplex> quadratic
 (dcomplex a, dcomplex b, dcomplex c)
 // return the roots of a quadratic equation
{
 dcomplex root = sqrt(b * b - 4.0 * a * c);
 a *= 2.0;
 return make_pair(
 (-b + root)/a,
 (-b - root)/a);
}

✍
Obtaining the
Sample Program
This program is
found in the file
complx.cpp in
the distribution.

CoCopyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Numeric Limits

195

S e c t i o nS e c t i o n 21.
Numeric Limits

21.1

Overview

21.2

Fundamental Data Types

21.3

Numeric Limit Members

CoCopyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Numeric Limits

196

21.1 Overview
A new feature of the C++ Standard Library is an organized mechanism for
describing the characteristics of the fundamental types provided in the
execution environment. In older C and C++ libraries, these characteristics
were often described by large collections of symbolic constants. For
example, the smallest representable value that could be maintained in a
character would be found in the constant named CHAR_MIN, while the similar
constant for a short would be known as SHRT_MIN, for a float FLT_MIN, and so
on.

The template class numeric_limits provides a new and uniform way of
representing this information for all numeric types. Instead of using a
different symbolic name for each new data type, the class defines a single
static function, named min(), which returns the appropriate values.
Specializations of this class then provide the exact value for each supported
type. The smallest character value is in this fashion yielded as the result of
invoking the function numeric_limits<char>::min(), while the smallest
floating point value is found by invoking numeric_limits<float>::min(),

and so on.

Solving this problem by using a template class not only greatly reduces the
number of symbolic names that need to be defined to describe the operating
environment, but it also ensures consistency between the descriptions of the
various types.

21.2 Fundamental Data Types
The standard library describes a specific type by providing a specialized
implementation of the numeric_limits class for the type. Static functions
and static constant data members then provide information specific to the
type. The standard library includes descriptions of the following
fundamental data types.

bool char int float

signed char short double

unsigned char long long double

wchar_t unsigned short

unsigned int

unsigned long

Certain implementations may also provide information on other data types.
Whether or not an implementation is described can be discovered using the
static data member field is_specialized . For example, the following is

✍
Two Mechanisms,
One Purpose
For reasons of
compatibility, the
numeric_limits
mechanism is
used as an
addition to the
symbolic
constants used in
older C++ libraries,
rather than a strict
replacement.
Thus both
mechanisms will,
for the present,
exist in parallel.
However, as the
numeric_limits
technique is more
uniform and
extensible, it
should be
expected that
over time the
older symbolic
constants will
become
outmoded.

CoCopyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Numeric Limits

197

legal, and will indicate that the string data type is not described by this
mechanism.

cout << "are strings described " <<
 numeric_limits<string>::is_specialized << endl;

For data types that do not have a specialization, the values yielded by the
functions and data fields in numeric_limits are generally zero or false.

21.3 Numeric Limit Members
Since a number of the fields in the numeric_limits structure are meaningful
only for floating point values, it is useful to separate the description of the
members into common fields and floating-point specific fields.

21.3.1 Members Common to All Types

The following table summarizes the information available through the
numeric_limits static member data fields and functions.

Type Name Meaning
bool is_specialized true if a specialization exists, false

otherwise

T min() smallest finite value

T max() largest finite value

int radix the base of the representation

int digits number of radix digits that can be
represented without change

int digits10 number of base-10 digits that can be
represented without change

bool is_signed true if the type is signed

bool is_integer true if the type is integer

bool is_exact true if the representation is exact

bool is_bounded true if representation is finite

bool is_modulo true if type is modulo

bool traps true if trapping is implemented for the
type

Radix represents the internal base for the representation. For example, most
machines use a base 2 radix for integer data values, however some may also
support a representation, such as BCD, that uses a different base. The digits

CoCopyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Numeric Limits

198

field then represents the number of such radix values that can be held in a
value. For an integer type, this would be the number of non-sign bits in the
representation.

All fundamental types are bounded. However, an implementation might
choose to include, for example, an infinite precision integer package that
would not be bounded.

A type is modulo if the value resulting from the addition of two values can
wrap around, that is, be smaller than either argument. The fundamental
unsigned integer types are all modulo.

21.3.2 Members Specific to Floating Point Values

The following members are either specific to floating point values, or have a
meaning slightly different for floating point values than the one described
earlier for non-floating data types.

Type Name Meaning
T min() the minimum positive normalized

value
int digits the number of digits in the

mantissa
int radix the base (or radix) of the exponent

representation
T epsilon() the difference between 1 and the

least representable value greater
than 1

T round_error() a measurement of the rounding
error

int min_exponent minimum negative exponent
int min_exponent10 minimum value such that 10 raised

to that power is in range
int max_exponent maximum positive exponent
int max_exponent10 maximum value such that 10

raised to that power is in range
bool has_infinity true if the type has a

representation of positive infinity
T infinity() representation of infinity, if

available
bool has_quiet_NaN true if there is a representation of a

quiet ``Not a Number”
T quiet_NaN() representation of quiet NaN, if

available
bool has_signaling_NaN true if there is a representation for

CoCopyright © 1996 Rogue Wave Software, Inc. All rights reserved.
Numeric Limits

cxcix

Type Name Meaning
a signaling NaN

T signaling_NaN() representation of signaling NaN, if
available

bool has_denorm true if the representation allows
denormalized values

T denorm_min() Minimum positive denormalized
value

bool is_iec559 true if representation adheres to
IEC 559 standard.

bool tinyness_before true if tinyness is detected before
rounding

round_style rounding style for type

For the float data type, the value in field radix , which represents the base
of the exponential representation, is equivalent to the symbolic constant
FLT_RADIX.

For the types float, double and long double the value of epsilon is also
available as FLT_EPSILON, DBL_EPSILON , and LDBL_EPSILON.

A NaN is a “Not a Number.” It is a representable value that nevertheless
does not correspond to any numeric quantity. Many numeric algorithms
manipulate such values.

The IEC 559 standard is a standard approved by the International
Electrotechnical Commission. It is the same as the IEEE standard 754.

Value returned by the function round_style() is one of the following:
round_indeterminate, round_toward_zero, round_to_nearest,
round_toward_infinity , or round_toward_neg_infinity.

Copyright  1996 Rogue Wave Software, Inc. All rights reserve.
Run-Time

221

S e c t i o n 22.
Run Time Support

22.1

Overview

22.2

Header <new> synopsis

22.3

Single-object forms of operators new and delete

22.4

Array forms of operators new and delete

22.5

Placement forms of operators new and delete

22.6

Storage allocation errors

22.7

Run-time type identification (RTTI)

Copyright  1996 Rogue Wave Software, Inc. All rights reserve.
Run-Time

222

22.1 Overview
The C++ Standard Library headers <new> and <typeinfo> define the
interface to the run-time support needed by C++ programs in addition to
that provided by the Standard C library. Header <new> provides prototypes
for the storage allocation and deallocation operators as well as the exception
class bad_alloc used to report storage allocation errors. Header <typeinfo>

forms the interface to the new run-time type identification (RTTI)
mechanism. It defines the type_info class along with exception classes
bad_typeid and bad_cast used to report run-time type violation errors.

22.2 Header <new> synopsis
Programs that intend to use the new storage allocation and deallocation
operators or handle storage allocation errors via exceptions must include the
<new> header file

 #include <new>

Header <new> contains the following:

 namespace std {

 class bad_alloc;

 struct nothrow_t { };

 extern const nothrow_t nothrow;

 typedef void (*new_handler)();

 new_handler set_new_handler(new_handler) throw();

 }

Class bad_alloc is used to report storage allocation errors. The type
nothrow_t and the predefined constant nothrow of this type is used to call the
non-exception throwing versions of the allocation functions. Function type
new_handler and the function set_new_handler are provided for handling
storage allocation errors. In addition the following global operators are
provided:

1 void* operator new(size_t) throw(std::bad_alloc)

2 void* operator new(size_t, const std::nothrow_t&) throw()

3 void* operator new[](size_t) throw(std::bad_alloc)

4 void* operator new[](size_t, const std::nothrow_t&) throw()

5 void* operator new(size_t, void*) throw();

6 void* operator new[](size_t, void*) throw()

7 void delete(void*) throw();

8 void delete(void*, const std::nothrow_t&) throw();

9 void delete[](void*) throw();

10 void delete[](void*, const std::nothrow_t&) throw();

Copyright  1996 Rogue Wave Software, Inc. All rights reserve.
Run-Time

223

11 void delete(void*, void*) throw();

12 void delete[](void*, void*) throw();

All of the above function signatures are in the global namespace, i.e., no
using directive or namespace qualification is necessary. Nos. 1, 3, 7 and 9
will be familiar are the "old" versions of new and delete except that the new

allocation functions now throw bad_alloc exceptions on failure. Any of
these functions may be replaced by the user except 11 and 12 (placement
delete), which have been left unimplemented. Since these cannot be
replaced according to the ANSI C++ Draft Standard, their implementation is
left up to the user though the Draft Standard says that these intentionally do
not perform any action and are only provided to complement Nos. 5 and 6.

22.3 Single-object forms of operators new and delete
void* operator new(size_t size) throw(bad_alloc)

Effects: This is the allocation function called by a new expression to allocate
size bytes of storage suitably aligned to represent any object of that size.

Default behavior:

• Execute a loop: within the loop the function first attempts to allocate the
requested storage.

• Return a pointer to the allocated storage if the attempt is successful.
Otherwise, if the last argument to set_new_handler() was a null pointer,
throw bad_alloc .

• Otherwise, the function calls the current new_handler . If the called
function returns, the loop repeats.

• The loop terminates when an attempt to allocate the requested storage is
successful or when a called new_handler function does not return.

void* operator new(size_t, const std::nothrow_t&) throw()

Effects: Same as above, except that it is called by a placement version of a
new-expression when a C++ program wants a null pointer result as an error
indication, instead of a bad_alloc exception.

Default behavior:

• Execute a loop: within the loop the function first attempts to allocate the
requested storage.

• Return a pointer to the allocated storage if the attempt is successful.
Otherwise, if the last argument to set_new_handler() was a null pointer,
return a null pointer.

• The loop terminates when an attempt to allocate the requested storage is
successful or when a called new_handler function does not return. If the

Copyright  1996 Rogue Wave Software, Inc. All rights reserve.
Run-Time

224

called new_handler function terminates by throwing a bad_alloc

exception, the function returns a null pointer.

Examples:

T* ptr;
try {
 ptr = new T; // can throw bad_alloc if allocation fails
}
catch(const bad_alloc& err) {
 //...
}

If error reporting is to be done via a null pointer then the following code can
be used:

T* ptr;
ptr = new (nothrow) T;
if (ptr == 0)
 //...

void operator delete(void* ptr) throw();

void operator delete(void* ptr, const std::nothrow_t&) throw();

Effects: The deallocation function is called by a delete expression to render
the value of ptr invalid and return the allocated storage back to where it was
obtained from.

Default behavior:

• For a null value of ptr do nothing

• Any other value of ptr shall be a value returned earlier by a call to the
default operator new which was not invalidated by an intervening call
to operator delete(void*) . For such a non-null value of ptr , reclaims
storage allocated earlier by the call to the default operator new .

Examples:

T* ptr = new T;
delete ptr;

T* ptr = new T;
delete (nothrow) ptr;

22.4 Array forms of operators new and delete
void* operator new[](size_t size) throw(bad_alloc);

Effects: The allocation function called by the array form of a new-expression
to allocate size bytes of storage suitably aligned to represent any array object
of that size or smaller. Note that it is not the direct responsibility of operator

new[](size_t) to record the repetition count or element size of the array;
that is done elsewhere in the array new- and array delete-expressions. The

Copyright  1996 Rogue Wave Software, Inc. All rights reserve.
Run-Time

225

array new-expression may however increase the size argument to obtain
space for storing supplemental information. The allocation function need
only return the exact size of storage requested.

Default behavior: returns operator new(size) .

void* operator new[](size_t, const std::nothrow_t&) throw();

Effects: Same as above except that it is called by a placement version of a
new-expression when a C++ program prefers a null pointer result as an error
indication, instead of a bad_alloc exception.

Default behavior: returns operator new(size, nothrow).

void operator delete[](void* ptr) throw();

void operator delete[](void* ptr, const std::nothrow_t&) throw();

Effects: The deallocation function called by the array form of a delete-
expression to render the value of ptr invalid.

Default behavior: the same as operator delete(void*) and operator

delete(void*, const std::nothrow_t&) except that ptr should have been
obtained from a prior call to operator new[] and not been invalidated by an
intervening call to operator delete[](void*).

Examples:

T* ptr;
try {
 ptr = new T[100]; // array new-expression
 delete[] ptr; // array delete-expression
}
catch (const bad_alloc& err) {
 //...
}

T* ptr = new (nothrow) T[100]; // nothrow version
if (ptr)
 //...
delete (nothrow)[] ptr;

Note that in the above example, the new-expression may ask for more than
100*sizeof(T) bytes of storage, but the called allocation function returns only
what is requested.

22.5 Placement forms of operators new and delete
These functions are reserved: a C++ program may not define functions that
displace the versions in the standard C++ library.

void* operator new(size_t size, void* ptr) throw();

void* operator new[](size_t size, void* ptr) throw();

Effects: both return ptr and perform no other action.

Copyright  1996 Rogue Wave Software, Inc. All rights reserve.
Run-Time

226

Example: The placement new function is useful for construction of an object
at a known address:

long mem[128]; // long is usually the most restrictive type
AThing* ptr; // assume size of(AThing) <= 128*sizeof(long)

ptr = new (&mem[0]) AThing; // use mem[] as storage
 or, if mem[] is big enough:
ptr = new (&mem[0]) AThing[8]; // allocate array[8] of Athing
 starting at mem[0]

void delete(void* ptr, void*) throw();

void delete[](void* ptr, void*) throw();

Effects: Performs no action according to the ANSI C++ Draft Standard.
However, in this implementation of the standard, these are left
unimplemented. Ordinarily, there should be no need for using these two
functions.

22.6 Storage allocation errors
Storage allocation errors in allocation functions are handled via two
mechanisms: throwing exceptions and calling handler functions. These
methods may used together or exclusively depending on the allocation
function being called (22.3, 22.4) and the current handler function (22.6.2,
22.6.3).

22.6.1 Class bad_alloc
#include <exception>

namespace std {

 class bad_alloc : public exception {
 public:
 bad_alloc() throw();
 bad_alloc(const bad_alloc&) throw();
 bad_alloc& operator=(const bad_alloc&) throw();
 virtual ~bad_alloc() throw();
 virtual const char* what() const throw();
 };
}

The class bad_alloc defines the type of objects thrown as exceptions by the
implementation to report a failure to obtain storage.

The member function what() returns the string "bad_alloc".

22.6.2 Type new_handler
typedef void (*new_handler)();

Copyright  1996 Rogue Wave Software, Inc. All rights reserve.
Run-Time

227

The type of a (possibly user supplied) handler function used when the
allocation functions cannot satisfy a request for additional storage. A user
supplied new handler has the following behavior required of it:

• make more storage available for allocation and then return;

• otherwise throw an exception of type bad_alloc or a class derived from
bad_alloc

• or else call either abort() or exit()

Default behavior: throws an exception of type bad_alloc .

22.6.3 set_new_handler
new_handler set_new_handler(new_handler new_p) throw();

Effects: Establishes the function designated by new_p as the current handler
function.
Returns: the previous handler function.

Example:

#include <new>

void out_of_memory()
{
 int status = expand_storage(); // some system function
 if (status == FAILED)throw bad_alloc(); // or call abort() or exit()
 else return; // success
}

//...

void f()
{
 new_handler prev_new_handler = set_new_handler(out_of_memory);
 T* ptr;

 try {
 ptr = new T; // out_of_memory may be called on failure
 }
 catch(...) {
 }
 // ...
 set_new_handler(prev_new_handler); // restore old handler
}

In general, if the handler function throws an exception on failure to obtain
more storage, the call to new must be wrapped in a try block and a catch
handler defined for the exception, unless a nothrow version of new is being
used, which catches any exceptions thrown from the handler function
internally and just returns a null pointer.

22.7 Run-time type identification (RTTI)
C++ implements RTTI via the operator typeid and the class type_info

defined in the header <typeinfo> . The result of applying the operator typeid

Copyright  1996 Rogue Wave Software, Inc. All rights reserve.
Run-Time

228

to an expression or a type name is an object of type std::type_info . An
object of this type cannot be constructed explicitly; the only way to do this is
to use the typeid operator.

The synopsis of header <typeinfo> is

namespace std {
 class type_info;
 class bad_cast;
 class bad_typeid;
}

22.7.1 class type_info
namespace std {
 class type_info {
 public:
 virtual ~type_info();
 bool operator==(const type_info&) const;
 bool operator!=(const type_info&) const;
 bool before(const type_info&) const;
 const char* name() const;
 };
}

The class type_info describes type of the object representing information
generated by the typeid operator. The name() member function returns a
pointer to a null terminated string representing the C++-style type name of
the object. The operators == and != provide means to compare type
information from different types or objects. The member function
before(const type_info&) provides means for collating type_information,
such as may be needed for storing it in an ordered container such as a binary
tree. This implementation does not do a lexicographical comparison of the
strings returned by name() ; instead an internally generated address
comparison is used. RTTI can be used for implementing persistent objects.

22.7.2 class bad_cast
#include <exception>

namespace std {
 class bad_cast : public exception {
 public:
 bad_cast() throw();
 bad_cast(const bad_cast&) throw();
 bad_cast& operator=(const bad_cast&) throw();
 virtual ~bad_cast() throw();
 virtual const char* what() const throw();
 };
}

The class bad_cast defines the type of the objects thrown as exceptions by
the implementation to report the execution of an invalid dynamic-cast
expression. The member function what() returns the string "bad_cast" for
identification.

Copyright  1996 Rogue Wave Software, Inc. All rights reserve.
Run-Time

229

Example:

void f(base_class& base_ref)
{
 derived_class& ref;
 try {
 ref = dynamic_cast<derived_class&>(base_ref);
 // OK; use ref now
 }
 catch (const bad_cast& cast_err) {
 // base_ref was not a ref to derived_class
 }
}

The dynamic_cast operator together with the class bad_cast provides more
robustness when using polymorphism than was previously available.

22.7.3 class bad_typeid
#include<exception>

namespace std {
 class bad_typeid : public exception {
 public:
 bad_typeid() throw();
 bad_typeid(const bad_typeid&) throw();
 bad_typeid& operator=(const bad_typeid&) throw();
 virtual ~bad_typeid() throw();
 virtual const char* what() const throw();
 };
}

The class bad_typeid defines the type of objects thrown as exceptions by the
implementation to report null pointer in a typeid expression. The member
function what() returns the string "bad_typeid".

Copyright  1996 Rogue Wave Software, Inc. All rights reserved.
Glossary

230

23.
Glossary

bidirectional iterator An iterator that can be used for reading and writing,
and which can move in either a forward or backward direction.

binary function A function that requires two arguments.

binder A function adaptor that is used to convert a two-argument binary
function object into a one-argument unary function object, by binding one of
the argument values to a specific constant.

constant iterator An iterator that can be used only for reading values, which
cannot be used to modify the values in a sequence.

container class A class used to hold a collection of similarly typed values.
The container classes provided by the standard library include vector, list,
deque, set, map, stack, queue, and priority_queue.

deque An indexable container class. Elements can be accessed by their
position in the container. Provides fast random access to elements.
Additions to either the front or the back of a deque are efficient. Insertions
into the middle are not efficient.

forward iterator An iterator that can be used either for reading or writing,
but which moves only forward through a collection.

function object An instance of a class that defines the parenthesis operator
as one of its member functions. When a function object is used in place of a
function, the parenthesis member function will be executed when the
function would normally be invoked.

generic algorithm A templated algorithm that is not specialized to any
specific container type. Because of this, generic algorithms can be used with
a wide variety of different forms of container.

heap A way of organizing a collection so as to permit rapid insertion of new
values, and rapid access to and removal of the largest value of the collection.

heterogeneous collection A collection of values that are not all of the same
type. In the standard library a heterogeneous collection can only be
maintained by storing pointers to objects, rather than objects themselves.

Copyright  1996 Rogue Wave Software, Inc. All rights reserved.
Glossary

231

insert iterator An adaptor used to convert iterator write operations into
insertions into a container.

iterator A generalization of the idea of a pointer. An iterator denotes a
specific element in a container, and can be used to cycle through the elements
being held by a container.

generator A function that can potentially return a different value each time
it is invoked. A random number generator is one example.

input iterator An iterator that can be used to read values in sequence, but
cannot be used for writing.

list A linear container class. Elements are maintained in sequence.
Provides fast access only to the first and last elements. Insertions into the
middle of a list are efficient.

map An indexed and ordered container class. Unlike a vector or deque, the
index values for a map can be any ordered data type (such as a string or
character). Values are maintained in sequence, and can be efficiently
inserted, accessed or removed in any order.

multimap A form of map that permits multiple elements to be indexed
using the same value.

multiset A form of set that permits multiple instances of the same value to
be maintained in the collection.

negator An adaptor that converts a predicate function object, producing a
new function object that when invoked yields the opposite value.

ordered collection A collection in which all values are ordered according to
some binary comparison operator. The set data type automatically maintains
an ordered collection. Other collections (vector, deque, list) can be converted
into an ordered collection.

output iterator An iterator that can be used only to write elements into a
container, it cannot be used to read values.

past the end iterator An iterator that marks the end of a range of values,
such as the end of the set of values maintained by a container.

predicate A function or function object that when invoked returns a boolean
(true/false) value or an integer value.

predicate function A predicate.

priority_queue An adaptor container class, usually built on top of a vector
or deque. The priority queue is designed for rapidly accessing and removing
the largest element in the collection.

queue An adaptor container class, usually built on top of a list or deque.
The queue provides rapid access to the topmost element. Elements are
removed from a queue in the same order they are inserted into the queue.

Copyright  1996 Rogue Wave Software, Inc. All rights reserved.
Glossary

232

random access iterator An iterator that can be subscripted, so as to access
the values in a container in any order.

range A subset of the elements held by a container. A range is typically
specified by two iterators.

reverse iterator An iterator that moves over a sequence of values in reverse
order, such as back to front.

sequence A portion or all of the elements held by a container. A sequence
is usually described by a range.

set A ordered container class. The set container is optimized for insertions,
removals, and tests for inclusion.

stack An adaptor container class, built usually on top of a vector or deque.
The stack provides rapid access to the topmost element. Elements are
removed from a stack in the reverse of the order they are inserted into the
stack.

stream iterator An adaptor that converts iterator operations into stream
operations. Can be use to either read from or write to an iostream.

unary function A function that requires only one argument. Applying a
binder to a binary function results in a unary function.

vector An indexable container class. Elements are accessed using a key that
represents their position in the container. Provides fast random access to
elements. Addition to the end of a vector is efficient. Insertion into the
middle is not efficient.

wide string A string with 16-bit characters. Wide strings are necessary for
many non-roman alphabets, i.e., Japanese.

Copyright  1996 Rogue Wave Software, Inc. All rights reserved.
Index

233

24.
Index

abs(), 210

accumulate(), 152

adaptor

function, 30

priority queue, 107

queue, 101

stack, 98

adaptors, 186

adjacent_difference(), 158

adjacent_find(), 134

advance, 192

advance(), 21

algorithm, 6

algorithms

building, 191

categories, 184

tips and techniques, 191

user-defined, 184

allocator, 174

alternate interface, 178

alternative interface, 180

conforming, 176

defining, 175

required member functions,
176, 177

standard interface, 180

supporting both interfaces,
180

allocator interface, 174

basic interface, 188

requirements, 188

allocator_interface, 178

American National Standards
Institute, 2

any(), 80

append(), 118

arg(), 210

assign(), 42, 54, 118

at(), 43, 118

auto_ptr class, 204

back(), 43, 59

back_inserter, 20

basic_string, 116

begin(), 13, 46, 76, 87

bidirectional iterator, 15

binary search tree, 37

binary_function, 27, 62

binary_search(), 167

Copyright  1996 Rogue Wave Software, Inc. All rights reserved.
Index

234

binder, 30

bitset, 79

bit-wise operators, 79

c_str(), 119

capacity(), 43, 117

catenation, 128

characteristics, of containers, 34

code re-use

composition, 186

generic inheritance, 186

inheritance, 185

compare(), 120

complex numbers, 208

composition, 186

conj(), 209

conjugate, complex, 209

constant iterator, 11

containers

creating your own, 187

design requirements, 187

designing, 174

designing your own, 190

iterator requirements, 190

user-defined, 184, 188

containers not in standard library,
37

conventions, presentation, 6

copy(), 53, 120, 128

copy_backward(), 128

count(), 76, 87, 151

count_if(), 151

Curry, Haskell P., 31

data(), 119

deep copy, 36

default constructor, 41

design requirements

containers, 187

designing your own containers

iterators, 190

distance, 192

distance(), 21

empty(), 44, 58, 75, 87, 118

end(), 13, 46, 76, 87

equal(), 139, 154

equal_range(), 76, 87, 167

erase(), 46, 57, 75, 86, 119

Eratosthenes, 49

errors, 198

event driven simulation, 108

exception classes, 198

exceptions

using, 199

exponential function, 210

fill(), 126

fill_n(), 126

find(), 75, 87, 120, 133, 135

find_first_not_of(), 121

find_first_of(), 121

find_if(), 133, 135

find_last_not_of(), 121

find_last_of(), 121

flip(), 48, 80

for_each(), 159

forward iterator, 15

Copyright  1996 Rogue Wave Software, Inc. All rights reserved.
Index

235

front(), 43, 59

front_inserter, 19

function object, 25, 28

functions as arguments, 24

future of OOP, 5

generate(), 130

generate_n(), 130

generator, 28, 131

generic adaptor, 186

generic algorithms, 124

generic composition, 186

generic programming, 184

graph, 37

hash table, 37

heap, 108, 170

heterogeneous collection, 109

imag(), 209

in place transformations, 140

includes(), 77, 169

initialization algorithms, 126

inner_product(), 153

inplace_merge(), 146, 169

input iterator, 12

insert iterator, 19, 53, 127, 130, 156

insert(), 45, 55, 74, 86, 119

inserter, 20

International Standards
Organization, 2

intersection, bit, 81

iotaGen, 28, 131

istream_iterator, 18

iter_swap(), 132

iterator, 10

bidirectional, 15

constant, 11

forward, 15

input, 12

insert, 19

output, 14

random access, 16

reverse, 17

stream, 18

iterator_category

primitive, 191

iterators, 190

iterator requirements, 190

key_comp(), 88

length(), 117

lexicographical_compare(), 155

list, 52

logic_error, 198

logical operators, 79

lower_bound(), 76, 87, 167

make_heap(), 171

map, 84

max(), 137

max_element(), 138

max_size(), 43, 117

memory management, 37

merge(), 56, 146, 168

min(), 137

min_element(), 138

mismatch(), 139, 154

multidimensional array, 37

Copyright  1996 Rogue Wave Software, Inc. All rights reserved.
Index

236

negation operator, 81

negator, 30

new operator, 37

next_permutation(), 145

none(), 80

norm(), 210

nth_element(), 166

numeric_limits, 214

ordered collections, 162

ostream_iterator, 18

output iterator, 14

pairwise equality, 154

parallel Sequences, 132

partial_sort(), 165

partial_sum(), 158

partition(), 144

permutations, 145

phase angle, complex, 210

pointers, as container values, 37,
109

polar(), 209

pop_back(), 45

pop_heap(), 171

predicate, 25

prev_permutation(), 145

priority queue, 91, 106

push_back(), 45, 55

push_front(), 55

push_heap(), 171

queue, 98

radix sort, 67

random access iterators, 16

random_shuffle(), 147

randomInteger(), 17, 112

rbegin(), 46, 76, 87

reachable iterator, 11

real(), 209

reduction. See accumulate()

removal algorithms, 148

remove(), 57, 119, 148

remove_copy(), 148

remove_copy_if(), 148

remove_if(), 57, 148

rend(), 46, 76, 87

replace(), 141

replace_copy(), 141

replace_copy_if(), 141

replace_if(), 141

reserve(), 44, 117

reset(), 80

resize(), 44, 58, 117

reverse iterator, 17

reverse(), 60, 140

rfind(), 120

rotate(), 143

running the tutorial programs, 7

runtime_error, 198

scalar producing algorithms, 151

Schonfinkel, Moses, 31

search(), 136, 137

searching algorithms, 132

selecting a container, 34

sequence generating algorithms,
156

Copyright  1996 Rogue Wave Software, Inc. All rights reserved.
Index

237

set, 72

iterator category, 12

set operations, 169

set(), 80

set_difference(), 78, 169

set_intersection(), 77, 169

set_symmetric_difference(), 78,
169

set_union(), 77, 168

shallow copy, 36

shift operators, 81

sieve of Eratosthenes, 49

simulation programs, 106

size(), 43, 58, 75, 87, 117

sort(), 164

sort_heap(), 171

sparse array, 37

splice(), 56

stable_sort(), 164

stack, 98

Standard Template Library, 2

stream iterator, 18

string, 116

string traits class, 195

string_char_trait, 195

subscript operator, 43, 86, 118

substr(), 120

swap(), 42, 54, 73, 85, 118, 131

swap_ranges(), 132

symbolic constants, 214

test(), 80

to_string(), 81

to_ulong(), 81

traits, 195

traits template, 194

transcendental functions, 210

transform(), 157

transformation algorithms, 140

tree, 37

trigonometric functions, 210

two-category error model, 198

unary_function, 27

unique(), 58, 149

unique_copy(), 150

unordered sets, 37

upper_bound(), 76, 87, 167

user-defined algorithms, 184

user-defined containers, 184

using exceptions, 199

using the standard library, 7

value_comp(), 88

value_type, 192

vector, 40

wstring, 116

Copyright  1996 Rogue Wave Software, Inc. All rights reserved.
Index

238

	HOME
	Rogue Wave Standard C++ Library User's Guide, Tutorial, and Class Reference
	Table of Contents
	Introduction
	What is the Standard C++ Library?
	Does the Standard C++ Library Differ From Other Libraries?
	What are the Effects of Non-Object-Oriented Design?
	How Should I Use the Standard C++ Library?
	Reading This Manual
	Conventions
	Using the Standard Library
	Running the Tutorial Programs

	Iterators
	Introduction to Iterators
	Varieties of Iterators
	Input Iterators
	Output Iterators
	Forward Iterators
	Bidirectional Iterators
	Random Access Iterators
	Reverse Iterators

	Stream Iterators
	Input Stream Iterators
	Output Stream Iterators

	Insert Iterators
	Iterator Operations

	Functions and Predicates
	Functions
	Predicates
	Function Objects
	Function Adaptors
	Negators and Binders

	Container Classes
	Overview
	NameCharacteristic

	Selecting a Container
	Memory Management Issues
	Container Types Not Found in the Standard Library

	vector and vector<bool>
	The vector Data Abstraction
	Include Files

	Vector Operations
	Declaration and Initialization of Vectors
	Type Definitions
	Subscripting a Vector
	Extent and Size-Changing Operations
	Inserting and Removing Elements
	Iteration
	Test for Inclusion
	Sorting and Sorted Vector Operations
	Useful Generic Algorithms

	Boolean Vectors
	Example Program Sieve of Eratosthenes

	list
	The list Data Abstraction
	Include files

	List Operations
	Declaration and Initialization of Lists
	Type Definitions
	Placing Elements into a List
	Removing Elements
	Extent and Size-Changing Operations
	Access and Iteration
	Test for Inclusion
	Sorting and Sorted List Operations
	Searching Operations
	In Place Transformations
	Other Operations

	Example Program An Inventory System

	deque
	The deque Data Abstraction
	Include Files

	Deque Operations
	Example Program Radix Sort

	set multiset, and bitset
	The set Data Abstraction
	Include Files

	set and multiset Operations
	Declaration and Initialization of Set
	Type Definitions
	Insertion
	Removal of Elements from a Set
	Searching and Counting
	Iterators
	Set Operations
	Other Generic Algorithms

	Example Program: A Spelling Checker
	The bitset Abstraction
	Include Files
	Declaration and Initialization of bitset
	Accessing and Testing Elements
	Set operations
	Conversions

	map and multimap
	The map Data Abstraction
	Include files

	Map and Multimap Operations
	Declaration and Initialization of map
	Type Definitions
	Insertion and Access
	Removal of Values
	Iterators
	Searching and Counting
	Element Comparisons
	Other Map Operations

	Example Programs
	A Telephone Database
	Graphs
	A Concordance

	stack and queue
	Overview
	The stack Data Abstraction
	Include Files
	Declaration and Initialization of stack
	Example Program A RPN Calculator

	The queue Data Abstraction
	Include Files
	Declaration and Initialization of queue
	Example Program Bank Teller Simulation

	priority_queue
	The priority queue Data Abstraction
	Include Files

	The Priority Queue Operations
	Declaration and Initialization of priority queue

	Application Event-Driven Simulation
	An Ice Cream Store Simulation

	String
	The string Abstraction
	Include Files

	String Operations
	Declaration and Initialization of string
	Resetting Size and Capacity
	Assignment, Append and Swap
	Character Access
	Iterators
	Insertion, Removal and Replacement
	Copy and Substring
	String Comparisons
	Searching Operations

	An Example Function Split a Line into Words

	Generic Algorithms
	Overview
	Include Files

	Initialization Algorithms
	Fill a Sequence with An Initial Value
	Copy One Sequence Into Another Sequence
	Initialize a Sequence with Generated Values
	Swap Values from Two Parallel Ranges

	Searching Operations
	Find an Element Satisfying a Condition
	Find Consecutive Duplicate Elements
	Find the first occurrence of any value from a sequence
	Find a Sub-sequence within a Sequence
	Find the last occurrence of a Sub-sequence
	Locate Maximum or Minimum Element
	Locate the First Mismatched Elements in Parallel Sequences

	In-Place Transformations
	Reverse Elements in a Sequence
	Replace Certain Elements With Fixed Value
	Rotate Elements Around a Midpoint
	Partition a Sequence into Two Groups
	Generate Permutations in Sequence
	Merge Two Adjacent Sequences into One
	Randomly Rearrange Elements in a Sequence

	Removal Algorithms
	Remove Unwanted Elements
	Remove Runs of Similar Values

	Scalar-Producing Algorithms
	Count the Number of Elements that Satisfy a Condition
	Reduce Sequence to a Single Value
	Generalized Inner Product
	Test Two Sequences for Pairwise Equality
	Lexical Comparison

	Sequence-Generating Algorithms
	Transform One or Two Sequences
	Partial Sums
	Adjacent Differences

	Miscellaneous Algorithms
	Apply a Function to All Elements in a Collection

	Overview
	NamePurpose
	NamePurpose
	Include Files

	Sorting Algorithms
	Partial Sort
	nth Element
	Binary Search
	Merge Ordered Sequences
	Set Operations
	Heap Operations

	Using Allocators
	An Overview of the Standard Library Allocators
	Using Allocators with Existing Standard Library Containers
	Building Your Own Allocators
	Using the Standard Allocator Interface
	Using Rogue Wave's Alternative Interface
	How to Support Both Interfaces

	Extending the Library
	Building on the Standard Containers
	Inheritance
	Generic Inheritance
	Generic Composition

	Creating Your Own Containers
	Meeting the Container Requirements
	Meeting the Allocator Interface Requirements
	Iterator Requirements

	Tips and Techniques for Building Algorithms
	The iterator_category Primitive
	The distance and advance Primitives

	T he Traits Parameter
	Using the Traits Technique

	Exception Handling
	Overview
	Include Files

	The Standard Exception Hierarchy
	Using Exceptions
	Example Program

	auto_ptr
	Overview
	Include File

	Declaration and Initialization of Auto Pointers
	Example Program

	C omplex
	Overview
	Include Files

	Creating and Using Complex Numbers
	Declaring Complex Numbers
	Accessing Complex Number Values
	Arithmetic Operations
	Comparing Complex Values
	Stream Input and Output
	Norm and Absolute Value
	Trigonometric Functions
	Transcendental Functions

	Example Program Roots of a Polynomial

	Numeric Limits
	Overview
	Fundamental Data Types
	Numeric Limit Members
	Members Common to All Types
	TypeNameMeaning
	Members Specific to Floating Point Values
	TypeNameMeaning
	TypeNameMeaning

	Run Time Support
	Overview
	Header <new> synopsis
	Single-object forms of operators new and delete
	Array forms of operators new and delete
	Placement forms of operators new and delete
	Storage allocation errors
	Class bad_alloc
	Type new_handler
	set_new_handler

	Run-time type identification (RTTI)
	class type_info
	class bad_cast
	class bad_typeid

	Glossary
	Index

