Rogue Wave

Standard C++ Library
lostreams and
Locale User’s Guide

(Part A)

Rogue Wave Software
Corvallis, Oregon USA

X

Rogue Wave Standard C++ Library lostreams and Locale User's Guide and Reference
for
Rogue Wave's implementation of the Standard C++ Library.

Based on ANSI's Working Paper for Draft Proposed International Standard for
Information Systems--Programming Language C++.

User's Guide and Tutorial Author: Timothy A. Budd

Internationalization and Locale User's Guide Author:
Angelika Langer, with Elaine Cull

Class Reference Authors: Wendi Minne, Tom Pearson, and Randy Smithey

Product Team:

Development; Anna Dahan, Angelika Langer, Philippe Le Mouel, Randy
Smithey

Quality Engineering: Kevin Djang, Randall Robinson

Manuals: Elaine Cull, Wendi Minne, Julie Prince, Randy Smithey

Support: North Krimsley

Significant contributions by: Joe Delaney
Copyright © 1996 Rogue Wave Software, Inc. All rights reserved.

Printed in the United States of America.

Part # RW81-01-100096
Printing Date: October, 1996

Rogue Wave Software, Inc., 850 SW 35th St., Corvallis, Oregon, 97333 USA

Product Information: (541) 754-3010
(800) 487-3217
Technical Support: (541) 754-2311
FAX: (541) 757-6650
World Wide Web: http://www.roguewave.com

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. ii

Table of Contents

1. Internationalizationccooevviiiiiiie e 1
1.1 How to Read this SECHIONcc.coveiiieiiiecceeee e 2
1.2 Internationalization and Localization.............ccccocevvviennieneiesienieiene e, 2

1.2.1 Localizing Cultural CONVENtIONScoveriireiniisenecseeseeseees 3
1.2.2 Character Encodings for Localizing Alphabetsccccooiviiiinnns 7
G B0 [0] T U Y SRS 13
1.3 The Standard C Locale and the Standard C++ Localesc.ccccoevnene. 13
1.3 1 THE C LOCAIE ...t 13
1.3.2The CH+ LOCAIES ...ovveeeeciece et 16
1.3 FACETS ..ttt nre e 17
1.3.4 Differences between the C Locale and the C++ Locales................... 19
1.3.5 Relationship between the C Locale and the C++ Locale................... 23
LA TRE LOCAIE......ciiiiecit ettt 23
L5 TRE FACELS ..oveeiciececeec et nes 26
1.5.1 Creating a Facet ODJECtcccoiiiiicie e 26
1.5.2 Accessing a Locale’s FACeLScovereeneiiiense e 27
1.5.3USIiNg @ Stream’s FACELccccueiiiiieeeee e 28
1.5.4 Creating a Facet Class for Replacement in a Localecc.ccccvvuenene 31
155 The FACEE 1A ..oviiiiiiec e 34
1.5.6 Creating a Facet Class for Additionto a Locale..........c..cccovevverennnnenn, 35
1.6 User-Defined Facets: An EXample ... 37
1.6.1 A Phone NUMDBEE CIaSScovceieirieiieiise et 37
1.6.2 A Phone Number Formatting Facet Classccocoovvvirvinninennennns 38
1.6.3 An Inserter for Phone NUMDErsS ..o 39
1.6.4 The Phone Number Facet Class Revisitedcc.cooverviniiiinnnnnns 39
1.6.5 An Example of a Concrete Facet Class........ccococveiireninennieneiisenen, 42
1.6.6 Using Phone NUmMber Facets.........cccocovvviieiiiiie e 43
1.6.7 Formatting Phone NUMDErS ..o 43
1.6.8 Improving the Inserter FUNCLION ..ot 44

2. Stream INPUt/OULPUL.........oooviiiiii e 49

2.1 How to Read ThiS SECLIONceoveieieicee e 50
2.1.1 Code EXAMPIES ...cceeiieiiieee e 50

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.

2.1.2TermMiNOIOgYcceiiiiiiiie et 51

2.2 The Architecture of I0Streamsccccevvieieiiiencee e 51
2.2.1 What Are the Standard 10Streams?..........cccooereveneienene e 51
2.2.2 How Do the Standard lostreams Work?ccocoovviienneinineinnn, 53
2.2.3 How Do the Standard lostreams Help Solve Problems?.................. 56
2.2.4 The Internal Structure of the lostreams Layers........c.ccocveevvenenenenne. 57

2.3 Formatted INPULZOULPULoviieecee e 64
2.3.1 The Predefined Streams.........ccocoiiiiiiiineiieeieeee e 64
2.3.2 Input and OULPUL OPEratorsS.........ccccvveieiiereeiierieriene e seese e see s 65
2.3.3 Format Control Using the Stream’s Format State............cc.ccocevvenenne. 67
2.3.4 Localization Using the Stream’s Locale...........ccccocvvvniviinesininiesnnnn, 74
2.3.5 FOrmatted INPUL........cooiiiiiiii e 75

2.4 Error State Of SIreAMSccoiiiiiiieicre e 77
2.4.1 Checking the Stream State.........cccccvcvvivvieviinin v 79
2.4.2 Catching EXCEPLIONS.....c.cciiiiiiieeiiiiisieee s 80

2.5 File INPULZOULPUL ... 81
2.5.1 The Difference between Predefined File Streams (cin, cout, cerr, and clog) and File
SEFBAIMIS ... b ettt r e ae e 82
2.5.2 Code Conversion in Wide Character Streams..........ccoccccveeveniennne, 82
2.5.3 FlE STrEAMS ...c.eiiiiiieitieie et 82
2.5.4 The OPEN MOAEocviviiiircice e 85
2.5.5Binary and TexXt MOAEcccviiiiniiiieiie e 88

2.6 IN-Memory INPULZ/OULPUL..........cceiieiiee e 88
2.6.1 The Internal BUFfer ... 89
2.6.2 The OPEN MOAES.......cciiiiiiieieeeee e 90

2.7 Input/Output of User-Defined TYPES......cccovireirinneneeseseseeseeeen 90
2.7.1 An Example Using a User-Defined TYpPe.......ccocvvrnniniinieninienenns 90
2.7.2 A Simple Extractor and Inserter for the Example........ccccccccevvvvennen. 91
2.7.3 Improved Extractors and INSErtersccouereiineiieneeneese e 92
2.7.4 More Improved Extractors and INSErters..........ccocoevviviveieniesvesiesieannns 94
2.7.5 Patterns for Extractors and Inserters of User-Defined Types.......... 99

2.8 MaANIPUIATOTS ...t 100
2.8.1 Manipulators without Parameters............ccocvvevvivvivnnninnesn s e 101
2.8.2 Manipulators with Parameters..........c.ccoveivieriineineinc e 103

2.9 Streams and Stream BUFfers.........ccocooviriiiiiinces e 113
2.9.1 Copying and Assigning Stream ODJectS..........cccovivveriinniencieienas 113
2.9.2 Sharing a Stream Buffer Among Streamsc.cccccvcvviereiennieneneas 119
2.9.3 Copies of the Stream BUFfer ..., 123

2.10 SYNChroNiZing STFEAMScuiiiiiiie et e e 125
2.10.1 Explicit Synchronization............ccccvevviviivienie s 126
2.10.2 Implicit Synchronization Using the unitbuf Format Flag............. 128
2.10.3 Implicit Synchronization by Tying Streamscc.ccocevevevicnenns 129
2.10.4 Synchronizing the Predefined Standard Streams.............cccccoeenee 130
2.10.5 Synchronization with the C Standard 1/0..........ccccocvvivvivnninnn, 131

2.11 Stream Storage for Private Use: iword, pword, and xalloc................. 131
2.11.1 An Example: Storing a Date Format Stringcccccoeevvnieninnnnenn 131
2.11.2 Another Look at the Date Format String.........c.ccoceveveveeiveivcinnnnnnns 132

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.

2.11.3 CAVEAL ..ot 134

2.12 Creating New Stream Classes by Derivationcccccoevvevvivnivinnnnnnn, 135
2.12.1 Choosing @ Base Class..........cccooeviieriineieieise e 136
2.12.2 Construction and Initialization...........cccccooeieviiiiinineinese e 137
2.12.3 The EXAMPIE...c.oiiii e 139
2.12.4 Using iword/pword for RTTI in Derived Streamsc.cccccee... 144

2.13 Defining A Code Conversion Facetccccocvvvvievevenn v 146
2.13.1 Categories of Code CONVEISIONScccoeiuiriereiinieninieseseeeeiesieas 147
2.13.2 Example 1. Defining a Tiny Character Code Conversion (ASCII <-> EBCDIC) 148
2.13.3 Error Indication in Code Conversion Facetsccccecvvevrvnnnnenn 150
2.13.4 Example 2: Defining a Multibyte Character Code Conversion (JIS <-> Unicode)
.. 151

2.14 Differences between Standard and Traditional lostreams................... 154
2.14.1 The Character TYPE ...ccccoviiiereii et 154
2.14.2 Internationalizationc.cooiiiiniiii 155
2. 143 FIle SLrEAMS ..ottt 155
2.14.4 STFING STIEAMISeeviiviiciiiieisie ettt 155
2.14.5 Streams With ASSIGN.......cccvieiieieeieiese e 156

2.15 Differences between Standard and Rogue Wave 10Streams.............. 156
2.15.1 EXEENSIONS ...ttt sttt sttt sttt sttt sttt et ne e ane e 156
2.15.2 RESEFICHIONScviieiiiieeie e e 157
2.15.3 Deprecated FEAtUIES.coeiierieerieere et 157

APPENAIX ¢t 167

NOTE: See Part B for the Locale & lostreams Reference Section (listed alphabetically)

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 5

section 1.

Internationalization

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.

1.1 How to Read this Section

This section of the User's Guide deals with locales in the Standard C++ Library.
Since the focus here is on concepts rather than details, you will want to consult the
Class Reference for more complete information.

We begin the section with an introduction to internationalization in general. Itis
intended to explain why and how locales are useful for the benefit of readers with no
experience in this area. Eventually it will include a reference for the standard facets,
but not in this first version of the User's Guide. Hence, the section may look a bit
unbalanced for the time being.

Following the introduction, we describe the facilities in C that are currently available
for internationalizing software. Users with a background in C will want to
understand how the C locale differs from the C++ locale. Some developers may
even need to know how the two locales interact.

For their benefit, we then contrast the concept of the C++ locale with the C locale.
We learn what a C++ locale is, what facets are, how locales are created and
composed, and how facets are used, replaced, and defined. The standard facets are
only briefly described here, but details are available in the Class Reference.

For the advanced user, we conclude the internationalization section with a rather
complex example of a user-defined facet, which demonstrates how facets can be built
and used in conjunction with iostreams.

1.2 Internationalization and Localization

Computer users all over the world prefer to interact with their systems using

their own local languages and cultural conventions. As a developer aiming for high
international acceptanad your products, you need to provide users the

flexibility for modifying output conventions to comply with local

requirements, such as different currency and numeric representations. You

must also provide the capability for translating interfaces and messages

without necessitating many different language versions of your software.

Two processes that enhance software for worldwide use are
internationalization and localization. Internationalization is the process of
building into software the potential for worldwide use. It is the result of
efforts by programmers and software designers during software
development.

Internationalization requires that developers consciously design and
implement software for adaptation to various languages and cultural
conventions, and avoid hard-coding elements that can be localized, like
screen positions and file names. For example, developers should never
embed in their code any messages, prompts, or other kind of displayed text,
but rather store the messages externally, so they can be translated and
exchanged. A developer of internationalized software should never assume

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 2
Internationalization

specific conventions for formatting numeric or monetary values, or for
displaying date and time.

Localization is the process of actually adapting internationalized software to
the needs of users in a particular geographical or cultural area. It includes
translation of messages by software translators. It requires the creation and
availabity of appropriate tables containing relevant local data for use in a
given system. This typically is the function of system administrators, who
build facilities for these functions into their operating systems . Users of
internationalized software are involved in the process of localization in that
they select the local conventions they prefer.

The Standard C++ Library offers a number of classes that support
internationalization of your programs. We will describe them in detail in
this chapter. Before we do, however, we would like to define some of the
cultural conventions that impact software internationalization, and are
supported by the programming languages C and C++ and their respective
standard libraries. Of course, there are many issues outside our list that need
to be addressed, like orientation, sizing and positioning of screen displays,
vertical writing and printing, selection of font tables, handling international
keyboards, and so on. But let us begin here.

1.2.1 Localizing Cultural Conventions

The need for localizing software arises from differences in cultural
conventions. These differences involve: language itself; representation of
numbers and currency; display of time and date; and ordering or sorting of
characters and strings.

1.2.1.1 Language

Of course, language itself varies from country to country, and even within a
country. Your program may require output messages in English, Deutsch,
Francais, Italiano, or any number of languages commonly used in the world
today.

Languages may also differ in the alphabet they use. Examples of different
languages with their respective alphabets are given below:

American English: a-zA-Z and punctuation
German: azA-Z and punctuation and &5t AOU R

Greek: o-w-A-Q and punctuation

1.2.1.2 Numbers

The representation of numbers depends on local customs, which vary from
country to country. For example, consider the radix character, the symbol
used to separate the integer portion of a number from the fractional portion.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 3
Internationalization

In American English, this character is a period; in much of Europe, itis a
comma. Conversely, the thousands separator that separates numbers larger
than three digits is a comma in American English, and a period in much of
Europe.

The convention for grouping digits also varies. In American English, digits
are grouped by threes, but there are many other possibilities. In the example
below, the same number is written as it would be locally in three different
countries:

1,000,000.55 us
1.000.000,55 Germany
10,00,000.55 Nepal

1.2.1.3 Currency

We are all aware that countries use different currencies. However, not
everyone realizes the many different ways we can represent units of
currency. For example, the symbol for a currency can vary. Here are two
different ways of representing the same amount in US dollars:

$24.99 us
USD 24.99 International currency symbol for the US

The placement of the currency symbol varies for different currencies, too,
appearing before, after, or even within the numeric value:

¥ 155 Japan
13,50 DM Germany
£14 19s. 6d. England before decimalization

The format of negative currency values differs:
6S1,1 -0S1,1 Austria
1,1 DM -1,1 DM Germany
SFr.1.1 SFr.-1.1 Switzerland
HK$1.1 (HK$1.1) HongKong

1.2.1.4 Time and Date

Local conventions also determine how time and date are displayed. Some
countries use a 24-hour clock; others use a 12-hour clock. Names and
abbreviations for days of the week and months of the year vary by language.

Customs dictate the ordering of the year, month, and day, as well as the
separating delimiters for their numeric representation. To designate years,

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 4
Internationalization

some regions use seasonal, astronomical, or historical criteria, instead of the
Western Gregorian calendar system. For example, the official Japanese
calendar is based on the year of reign of the current Emperor.

The following example shows short and long representations of the same
date in different countries:

10/29/96 Tuesday, October 29, 1996 us
1996. 10. 29. 1996. oktober 29. Hungary
29/10/96 martedi 29 ottobre 1996 Italy

2971071996 Tpt1n, 29 OktwBpIov 1996 Greece
29.10.96 Dienstag, 29. Oktober 1996 Germany

The following example shows different representations of the same time:
4:55 pm US time
16:55 Uhr German time

And the following example shows different representations of the same time:
11:45:15 Digital representation, US
11:45:15 yp Digital representation, Greece

1.2.1.5 Ordering

Languages may vary regarding collating sequence; that is, their rules for
ordering or sorting characters or strings. The following example shows the
same list of words ordered alphabetically by different collating sequences:

Sorted by LASCII rules | Sorted by German rules
Airplane Airplane
Zebra ahnlich
bird bird
car car
ahnlich Zebra

The ASCII collation orders elements according to the numeric value of bytes,
which does not meet the requirements of English language dictionary

1 Ascll stands for American Standard Code for Information
Interchange. A 7-bit code is used in the US.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved..

Internationalization

sorting. This is because lexicographical order sorts a after Aand before B,
whereas ASCIlI-based order sorts a after the entire set of uppercase letters.

The German alphabet sorts & before b, whereas the ASCII order sorts an
umlaut after all other letters.

In addition to specifying the ordering of individual characters, some
languages specify that certain groups of characters should be clustered and
treated as a single character. The following example shows the difference
this can make in an ordering:

Sorted by ASCII rules | Sorted by Spanish rules
chaleco cuna
cuna chaleco
dia dia
llava loro
loro llava
maiz maiz

The word llava is sorted after loro and before maiz, because in Spanish Il is

adigraph?, i.e., it is treated as a single character that is sorted after | and
before m Similarly, the digraph ch in Spanish is treated as a single character
to be sorted after c, but before d. Two characters that are paired and treated
as a single character are referred to as a two-to-one character code pair.

In other cases, one character is treated as if it were actually two characters.
The German single character B, called the sharp s, is treated as ss. This
treatment makes a difference in the ordering, as shown in the example
below:

Sorted by ASCII rules

Sorted by German rules

Rosselenker

Rosselenker

Rostbratwurst

RoRhaar

RoRhaar

Rostbratwurst

2 Generally, a digraph is a combination of characters that is written

separately, but forms a single lexical unit.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved..
Internationalization

1.2.2 Character Encodings for Localizing Alphabets

We know that different languages can have different alphabets. The first
step in localizing an alphabet is to find a way to represent, or encode, all its
characters. In general, alphabets may have different character encodings.

The 7-bit ASCII codeset is the traditional code on UNIX systems.

The 8-bit codesets permit the processing of many Eastern and Western
European, Middle Eastern, and Asian Languages. Some are strictly
extensions of the 7-bit ASCII codeset; these include the 7-bit ASCII codes and
additionally support 128-character codes beyond those of ASCII. Such
extensions meet the needs of Western European users. To support languages
that have completely different alphabets, such as Arabic and Greek, larger 8-
bit codesets have been designed.

Multibyte character codes are required for alphabets of more than 256
characters, such as kanji, which consists of Japanese ideographs based on
Chinese characters. Kanji has tens of thousands of characters, each of which
is represented by two bytes. To ensure backward compatibility with ASCII,
a multibyte codeset is a superset of the ASCII codeset and consists of a
mixture of one- and two-byte characters.

For such languages, several encoding schemes have been defined. These
encoding schemes provide a set of rules for parsing a byte stream into a
group of coded characters.

1.2.2.1 Multibyte Encodings

Handling multibyte character encodings is a challenging task. It involves
parsing multibyte character sequences, and in many cases requires
conversions between multibyte characters and wide characters.

Understanding multibyte encoding schemes is easier when explained by
means of a typical example. One of the earliest and probably biggest
markets for multibyte character support is in Japan. Therefore, the following
examples are based on encoding schemes for Japanese text processing.

In Japan, a single text message can be composed of characters from four
different writing systems. Kanji has tens of thousands of characters, which
are represented by pictures. Hiragana and katakana are syllabaries, each
containing about 80 sounds, which are also represented as ideographs. The
Roman characters include some 95 letters, digits, and punctuation marks.

Figure 1 gives an example of an encoded Japanese sentence composed of
these four writing systems:

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 7
Internationalization

i i11H 1 B

‘Romon characters . hiragana

u katakana ‘ kanji

Figure 1. A Japanese sentence mixing four writing systems

The sentence means: “Encoding methods such as JIS can support texts that
mix Japanese and English.”
A number of Japanese character sets are common:

JIS C 6226-1978 JIS X 0208-1983

JIS X 0208-1990 JIS X 0212-1990

JIS-ROMAN ASCII
There is no universally recognized multibyte encoding scheme for Japanese.

Instead, we deal with the three common multibyte encoding schemes
defined below:

JIS (Japanese Industrial Standard)
Shift-JIS
EUC (Extended UNIX Code)

1.2.2.1.1 JIS Encoding

The JIS, or Japanese Industrial Standard, supports a number of standard
Japanese character sets, some requiring one byte, others two. Escape
sequences are required to shift between one- and two-byte modes.

Escape sequences, also referred to as shift sequences, are sequences of control
characters. Control characters do not belong to any of the alphabets. They are
artificial characters that do not have a visual representation. However, they
are part of the encoding scheme, where they serve as separators between
different character sets, and indicate a switch in the way a character sequence
is interpreted. The use of the shift sequence is demonstrated in Figure 2.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 8
Internationalization

InJapan <ESC>$B # % # % <ESC>(B means “kana & kanji".

4 L

JIS X 0208-1983 ASCII
two-byte characters one-byte characters
shift to Kanji shift to ASCII

Figure 2. An example of a Japanese text encoded in JIS

For encoding schemes containing shift sequences, like JIS, it is necessary to
maintain a shift state while parsing a character sequence. In the example
above, we are in some initial shift state at the start of the sequence. Here itis
ASCII. Therefore, characters are assumed to be one-byte ASCII codes until
the shift sequence <ESC>$Bis seen. This switches us to two-byte mode, as
defined by JIS X 0208-1983. The shift sequence <ESC>(B then switches us
back to ASCII mode.

Encoding schemes that use shift state are not very efficient for internal
storage or processing. Sometimes shift sequences require up to six bytes.
Frequent switching between character sets in a file of strings could cause the
number of bytes used in shift sequences to exceed the number of bytes used
to represent the actual data!

Encodings containing shift sequences are used primarily as an external code,
which allows information interchange between a program and the outside
world.

1.2.2.1.2 Shift-JIS Encoding

Despite its name, Shift-JIS has nothing to do with shift sequences and states.
In this encoding scheme, each byte is inspected to see if it is a one-byte
character or the first byte of a two-byte character. This is determined by
reserving a set of byte values for certain purposes. For example:

1. Any byte having a value in the range 0x21-7E is assumed to be a one-
byte ASCII/JIS Roman character.

2. Any byte having a value in the range 0xA1-DF is assumed to be a one-
byte half-width katakana character.

3. Any byte having a value in the range 0x81-9F or OXEO-EF is assumed to
be the first byte of a two-byte character from the set JIS X 0208-1990. The
second byte must have a value in the range 0x40-7E or 0x80-FC.

While this encoding is more compact than JIS, it cannot represent as many
characters as JIS. In fact, Shift-JIS cannot represent any characters in the
supplemental character set JIS X 0212-1990, which contains more than 6,000
characters.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 9
Internationalization

1.2.2.1.3 EUC Encoding

EUC is not peculiar to Japanese encoding. It was developed as a method for
handling multiple character sets, Japanese or otherwise, within a single text
stream.

The EUC encoding is much more extensible than Shift-JIS since it allows for
characters containing more than two bytes. The encoding scheme used for
Japanese characters is as follows:

1. Any byte having a value in the range 0x21-7E is assumed to be a one-
byte ASCII/JIS Roman character.

2. Any byte having a value in the range 0xA1-FE is assumed to be the first
byte of a two-byte character from the set JIS X0208-1990. The second
byte must also have a value in that range.

3. Any byte having a value in the range 0x8E is assumed to be followed by
a second byte with a value in the range OxAl-DF, which represents a
half-width katakana character.

4. Any byte having the value 0x8F is assumed to be followed by two more
bytes with values in the range 0xA1-FE, which together represent a
character from the set JIS X0212-1990.

The last two cases involve a prefix byte with values 0x8E and 0x8F,
respectively. These bytes are somewhat like shift sequences in that they
introduce a change in subsequent byte interpretation. However, unlike the
shift sequences in JIS which introduce a sequence, these prefix bytes must
precede every multibyte character, not just the first in a sequence. For this
reason, each multibyte character encoded in this manner stands alone and
EUC is not considered to involve shift states.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 10
Internationalization

1.2.2.1.4 Uses of the Three Multibyte Encodings

The three multibyte encodings just described are typically used in separate
areas:

« JISis the primary encoding method used for electronic transmission
such as e-mail because it uses only 7 bits of each byte. This is required
because some network paths strip the eighth bit from characters. Escape
sequences are used to switch between one- and two-byte modes, as well
as between different character sets.

e Shift-JIS was invented by Microsoft and is used on MS-DOS-based
machines. Each byte is inspected to see if it is a one-byte character or the
first byte of a two-byte character. Shift-JIS does not support as many
characters as JIS and EUC do.

e EUC encoding is implemented as the internal code for most UNIX-based
platforms. It allows for characters containing more than two bytes, and
is much more extensible that Shift-JIS. EUC is a general method for
handling multiple character sets. It is not peculiar to Japanese encoding.

1.2.2.2 Wide Characters

Multibyte encoding provides an efficient way to move characters around
outside programs, and between programs and the outside world. Once
inside a program, however, it is easier and more efficient to deal with
characters that have the same size and format. We call these wide characters.

An example will illustrate how wide characters make text processing inside a
program easier. Consider a filename string containing a directory path with
adjacent names separated by a slash, like /CC/include/locale.h . To find the
actual filename in a single-byte character string, we can start at the back of
the string. When we find the first separator, we know where the filename
starts. If the string contains multibyte characters, we scan from the front so
we don’t inspect bytes out of context. If the string contains wide characters,
however, we can treat it like a single-byte character and scan from the back.

Conceptually, you can think of wide character sets as being extended ASCI|I

or EBCDICS3; each unique character is assigned a distinct value. Since they
are used as the counterpart to a multibyte encoding, wide character sets must
allow representation of all characters that can be represented in a multibyte
encoding as wide characters. As multibyte encodings support thousands of
characters, wide characters are usually larger that one byte—typically two or
four bytes. All characters in a wide character set are of equal size. The size
of a wide character is not universally fixed, although this depends on the
particular wide character set.

3 EBCDIC stands for "extended binary coded decimal interchange
code. It is a single-byte character set developed by IBM.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 11
Internationalization

There are many wide character standards, including those shown below:

I1SO 10646.UCS-24 16-bit characters
I1SO 10646.UCS-4 32-bit characters

Unicode® 16-bit characters

The programming language C++ supports wide characters; their native type
in C++ is called whar_t . The syntax for wide character constants and wide
character strings is similar to that for ordinary, tiny character constants and
strings:

L'a’ is awide character constant, and

L"abc” is a wide character string.

1.2.2.3 Conversion between Multibytes and Wide Characters

Since wide characters are usually used for internal representation of
characters in a progam, and multibyte encodings are used for external
representation, converting multibytes to wide characters is a common task
during input/output operations. Input to and output from files is a typical
example. The file will usually contain multibyte characters. When you read
such afile, you convert these multibyte characters into wide characters that
you store in an internal wide character buffer for further processing. When
you write to a multibyte file, you have to convert the wide characters held
internally into multibytes for storage on a external file. Figure 3
demonstrates graphically how this conversion during file input is done:

external file
[J[a[p[afn [[={$[B] [[|
JIS
internal bulter
e[af nf [[|
Unicode

41S0O 10646 is the encoding of the International Standards
Organization.

S Unicode was developed by the Unicode Consortium. It is code-
for-code equivalent to the 16-bit ISO 10646 encoding.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 12
Internationalization

Figure 3. Conversion from a multibyte to a wide character encoding

The conversion from a multibyte sequence into a wide character sequence
requires expansion of one-byte characters into two- or four-byte wide
characters. Escape sequences are eliminated. Multibytes that consist of two
or more bytes are translated into their wide character equivalents.

1.2.3 Summary

In this section, we discussed a variety of issues involved in developing
software for worldwide use. For all of these areas in which cultural
conventions differ from one region to another, the Standard C++ Library
provides services that enable you to easily internationalize your C++
programs. These services include:

e Formatting and parsing of numbers, currency unit, dates, and time;

« Handling different alphabets, their character classification, and collation
sequences;

« Converting codesets, including multibyte to wide character conversion;

« Handling messages in different languages.

1.3 The Standard C Locale and the Standard C++
Locales

As a software developer, you may already have some background in the C
programming language, and the internationalization services provided by
the C library. You may even be facing the problem of integrating
internationalized software written in C with software in C++. If so, we
recommend that you study this section. Here we give a short recap of the
internationalization services provided by the C library, and its relationship to
C++ locales. We then describe the C++ locales in terms of the C locale.

1.3.1 The C Locale

All the culture and language dependencies discussed in the previous section
need to be represented in an operating system. This information is usually
represented in a kind of language table, called a locale.

The X/0Open consortium has standardized a variety of services for Native
Language Support (NLS) in the programming language C. This standard is
commonly known as XPG4. The X/Open’s Native Language Support includes

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 13
Internationalization

internationalization services as well as localization support. 8 The
description below is based on this standard.

According to XPG4, the C locale is composed of several categories:

Table 1. Categories of the C locale

Category Content
LC_NUMERIC Rules and symbols for numbers
LC_TIME Values for date and time information
LC_MONETARY Rules and symbols for monetary
information
LC_CTYPE Character classification and case conversion
LC_COLLATE Collation sequence
LC_MESSAGE Formats and values of messages
C Library
LC_NUMERIC Services
LC_MONETARY] struct lconv / m' “()
@ setiocale () decimal point printf0
M thousand separator mbtowd()
currency symbol idigit()
N negative sign prr—
external
represenation
of a locale
6150 C also defines internationalization services in the
programming language C. The respective ISO standard is
ISO/IEC 9899 and its Amendment 1. The ISO C standard
is identical to the POSIX standard for the programming
language C. The internationalization services defined by
ISO C are part of XPG4. However, XPG4 offers more
services than ISO C, such as localization support.
Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 14

Internationalization

The external representation of a C locale is usually as a file in UNIX. Other
operating systems may choose other representations. The external
representation is transformed into an internal memory representation by
calling the function setlocale() , as shown in Figure 4 below:

Figure 4. Transformation of a C locale from external to internal representation

Inside a program, the C locale is represented by one or more global data
structures. The C library provides a set of functions that use information from
those global data structures to adapt their behavior to local conventions.
Examples of these functions and the information they cover are listed in
Table 2:

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 15
Internationalization

Table 2. C locale functions and the information they cover

C locale function Information covered

setlocale(), Locale initialization and
language information

isalpha() , isupper() , isdigit() , ... | Character classification

strftime() e Date and time functions

strfmon() Monetary functions

printf() , scanf() ... Number parsing and
formatting

strcoll() ,wescoll) ... String collation

mblen() , mbtowc() , wctomb() ... Multibyte functions

cat open() ,catgets() ,cat close() Message retrieval

1.3.2 The C++ Locales

In C++, a locale is a class called locale provided by the Standard C++
Library. The C++ class locale differs from the C locale because it is more
than a language table, or data representation of the various culture and
language dependencies. It also includes the internationalization services,
which in C are global functions.

In C++, internationalization semantics are broken out into separate classes
called facets. Each facet handles a set of internationalization services; for
example, the formatting of monetary values. Facets may also represent a set
of culture and language dependencies, such as the rules and symbols for
monetary information.

Each locale object maintains a set of facet objects. In fact, you can think of a
C++ locale as a container of facets, as illustrated in Figure 5 below:

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 16
Internationalization

time_get<>

Locale

time_put<>

codecvi<>

convert()

C++ Library

Figure 5. A C++ locale is a container of facets

1.3.3 Facets

Facet classes encapsulate data that represents a set of culture and language
dependencies, and offer a set of related internationalization services. Facet
classes are very flexible. They can contain just about any internationalization
service you can invent. The Standard C++ Library offers a number of
predefined standard facets, which provide services similar to those contained
in the C library. However, you could bundle additional internationalization
services into a new facet class, or purchase a facet library.

1.3.3.1 The Standard Facets

As listed in Table 1, the C locale is composed of six categories of locale-
dependent information: LC_NUMERIQrules and symbols for numbers),
LC_TIME (values for date and time information), LC_MONETAR({fules and
symbols for monetary information), LC_CTYPE(character classification and
conversion), LC_COLLATE(collation sequence), and LC_MESSAGKformats and
values of messages).

Similarly, there are six groups of standard facet classes. A detailed
description of these facets is contained in the Class Reference, but a brief
overview is given below. Note that an abbreviation like num_get
<charT,Inputiterator> means that num_get is a class template taking two
template arguments, a character type, and an input iterator type. The groups
of the standard facets are:

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 17
Internationalization

* Numeric. The facet classes num_get<charT,Inputiterator> and
num_put<charT, Outputlterator> handle numeric formatting and
parsing. The facet classes provide get() and put) member functions
for values of type long , double , etc.

The facet class numpunct<charT> specifies numeric punctuation. It
provides functions like decimal_point() , thousands_sep() , etc.

e Monetary. The facet classes money_get<charT,bool,Inputlterator>
and money_put<charT, bool, Outputlterator> handle formatting and
parsing of monetary values. They provide get() and put() member
functions that parse or produce a sequence of digits, representing a count
of the smallest unit of the currency. For example, the sequence $1,056.23
in a common US locale would yield 105623 units, or the character
sequence “105623”.

The facet class moneypunct <charT, bool International> handles
monetary punctuation like the facet numpunct<charT> handles numeric
punctuation. It comes with functions like curr_symbol() , etc.

e Time. The facet classees time_get<charT,Inputlterator> and
time_put<charT, Outputlterator> handle date and time formatting and
parsing. They provide functions like get_time() , get_date()
get_weekday() ,etc.

* Ctype. The facet class ctype<charT> encapsulates the Standard C++
Library ctype features for character classification, like tolower()
toupper() , isspace() , isprint() , etc.

* Collate. The facet class collate<charT> provides features for string
collation, including a compare() function used for string comparison.

e Code Conversion. The facet class codecvt<fromT,toT,stateT> is used
when converting from one encoding scheme to another, such as from the
multibyte encoding JIS to the wide-character encoding Unicode.
Instances of this facet are typically used in pairs. The main member
function is convert() . There are template specializations <char,
wchar_t, mbstate_t> and <wchar _t, char, mbstate_t> for multibyte to
wide character conversions.

» Messages. The facet class messages<charT> implements the X/Open
message retrieval. It provides facilities to access message catalogues via
open() and close(catalog) , and to retrieve messages via get(..., int
msgid,...)

The names of the standard facets obey certain naming rules. The get facet
classes, like num_get and time_get , handle parsing. The put facet classes
handle formatting. The punct facet classes, like numpunct and moneypunct |,
represent rules and symbols.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 18
Internationalization

1.3.4 Differences between the C Locale and the C++ Locales

As we have seen so far, the C locale and the C++ locale offer similar services.
However, the semantics of the C++ locale are different from the semantics of
the C locale:

» The Standard C locale is a global resource: there is only one locale for the
entire application. This makes it hard to build an application that has to
handle several locales at a time.

e The Standard C++ locale is a class. Numerous instances of class locale
can be created at will, so you can have as many locale objects as you
need.

To explore this difference in further detail, let us see how locales are typically
used.

1.3.4.1 Common Uses of the C locale

The C locale is commonly used as a default locale, a native locale, or in
multiple locale applications.

Default locale. As a developer, you may never require internationalization
features, and thus never set a locale. If you can safely assume that users of
your applications are accommodated by the classic US English ASCII
behavior, you have no need for localization. Without even knowing it, you
will always use the default locale, which is the US English ASCII locale.

Native locale. If you do plan on localizing your program, the appropriate
strategy may be to retrieve the native locale once at the beginning of your
program, and never, ever change this setting again. This way your
application will adapt itself to one particular locale, and use this throughout
its entire run time. Users of such applications can explicitly set their favorite
locale before starting the application. Usually the system’s default settings
will automatically activate the native locale.

Multiple locales. It may well happen that you do have to work with
multiple locales. For example, to implement an application for Switzerland,
you might want to output messages in Italian, French, and German. Asthe C
locale is a global data structure, you will have to switch locales several times.

Let's look at an example of an application that works with multiple locales.
Imagine an application that prints invoices to be sent to customers all over
the world. Of course, the invoices must be printed in the customer’s native
language, so the application must write output in multiple languages. Prices
to be included in the invoice are taken from a single price list. If we assume
the application is used by a US company, the price list will be in US English.

The application reads input (the product price list) in US English, and writes
output (the invoice) in the customer’s native language, say German. Since
there is only one global locale in C that affects both input and output, the

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 19
Internationalization

global locale must change between input and output operations. Before a
price is read from the English price list, the locale must be switched from the
German locale used for printing the invoice to a US English locale. Before
inserting the price into the invoice, the global locale must be switched back to
the German locale. To read the next input from the price list, the locale must
be switched back to English, and so forth. Figure 6 summarizes this activity:

price lisk

(4ol . To[ol/]1]2]0J0]. To[o /]

US English

.
_

German

invoice

[o[™[_T7[3[. To[871 0[] [a].T7]7]6[.To[o7]

Figure 6. Multiple locales in C

Here is the C code that corresponds to the previous example”:

double price;

char buf[SZ];

while (...) // processing the German invoice

{ setlocale(LC_ALL, “En_US");
fscanf(priceFile,"%fl"&price);
Il convert $ to DM according to the current exchange rate
setlocale(LC_ALL,"De_DE”);
fprintf(invoiceFile,"%f" price);

Using C++ locale objects dramatically simplifies the task of communicating
between multiple locales. The iostreams in the Standard C++ Library are
internationalized so that streams can be imbued with separate locale objects.
For example, the input stream can be imbued with an English locale object,
and the output stream can be imbued with a German locale object. In this
way, switching locales becomes unnecessary, as demonstrated in Figure 7:

7 The example is oversimplified. One would certainly use the
strfmon() function for formatting monetary values like
prices. We will consider more realistic examples in
section 1.5.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 20
Internationalization

price list

[4]of.[ofo] J1]2]0f0]. [o]o]]

| Geman focale. |
invoice

[o[m] [7]3].

o[8[[om[[1].[7[7]6[.[ofo] |

Figure 7. Multiple locales in C++

Here is the C++ code corresponding to the previous example:

priceFile.imbue(locale(“En_US"));
invoiceFile.imbue(locale(“De_DE");
double price;
while (...) // processing the German invoice
{ priceFile >> price;
/I convert $ to DM according to the current exchange rate
invoiceFile << price;

Because the examples given above are brief, switching locales might look like
a minor inconvenience. However, it is a major problem once code
conversions are involved.

To underscore the point, let us revisit the JIS encoding scheme using the shift
sequence described in Figure 2, and repeated below. With these encodings,
you will recall that you must maintain a shift state while parsing a character
sequence, as shown in Figure 8:

InJapan <ESC>$B # # # % <ESC>(Bmeans “kana & kanji".

) A 1

JIS X 0208-1983 ASCII
two-byte characters one-byte characters
shift to Kanji shift to ASCII

Figure 8. The Japanese text encoded in JIS from Figure 2

Suppose you are parsing input from a multibyte file which contains text that
is encoded in JIS, as shown in Figure 9. While you parse this file, you have to
keep track of the current shift state so you know how to interpret the
characters you read, and how to transform them into the appropriate internal
wide character representation.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 21
Internationalization

external file

[J]apla] o [=[s[B] | [|

Japanese
usingJIS

the g|o|)a| locale I

internal bulter

[ol af o [[|

Figure 9. Parsing input from a multibyte file using the global C locale

The global C locale can be switched during parsing; for example, from a
locale object specifying the input to be in JIS encoding, to a locale object using
EUC encoding instead. The current shift state becomes invalid each time the
locale is switched, and you have to carefully maintain the shift state in an
application that switches locales.

As long as the locale switches are intentional, this problem can presumably
be solved. However, in multithreaded environments, the global C locale
may impose a severe problem, as it can be switched inadvertently by another
otherwise unrelated thread of execution. For this reason, internationalizing a
C program for a multithreaded environment is difficult.

If you use C++ locales, on the other hand, the problem simply goes away.
You can imbue each stream with a separate locale object, making inadvertent
switches impossible.

Let us now see how C++ locales are intended to be used.

1.3.4.2 Common Uses of C++Locales

The C++ locale is commonly used as a default locale, with multiple locales,
and as a global locale.

Default locale. If you are not involved with internationalizing programs,
you won't need C++ locales any more than you need C locales. If you can
safely assume that users of your applications are accommodated by classic
US English ASCII behavior, you will not require localization features. For
you, the Standard C++ Library provides a predefined locale object,
locale::classic() , that represents the US English ASCII locale.

Multiple locales. Working with many different locales becomes easy when
you use C++ locales. Switching locales, as you did in C, is no longer
necessary in C++. You can imbue each stream with a different locale object.
You can pass locale objects around and use them in multiple places.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 22
Internationalization

Global locale. There is a global locale in C++, as there is in C. You can make
a given locale object global by calling locale::global() . You can create
snapshots of the current global locale by calling the default constructor for a
locale locale::locale() . Snapshots are immutable locale objects and are
not affected by any subsequent changes to the global locale.

Internationalized components like iostreams use it as a default. If you do not
explicitly imbue your streams with any particular locale object, a snapshot of
the global locale is used.

Using the global C++ locale, you can work much as you did in C. You
activate the native locale once at program start—in other words, you make it
global—and use snapshots of it thereafter for all tasks that are locale-
dependent. The following code demonstrates this procedure:

locale::global(locale(*™)); n
.s.t.ring t = print_date(today, locale()); 12
locale::global(locale(“Fr_CH")): I3
E:But << something; 14

/I1 Make the native locale global.

/12 Use snapshots of the global locale whenever you need a locale object.
Assume that print_date() is a function that formats dates. You would
provide the function with a snapshot of the global locale in order to do
the formatting.

/I3 Switch the global locale; make a French locale global.

/l4 Note that you need not explicitly imbue any streams with the global
locale. They use a snapshot of the global locale by default.

1.3.5 Relationship between the C Locale and the C++ Locale

The C locale and the C++ locales are mostly unrelated. However, making a
C++ locale object global via locale::global() affects the global C locale and
results in a call to setlocale() . When this happens, locale-sensitive C
functions called from within a C++ program will use the global C++ locale.

There is no way to affect the C++ locale from within a C program.

1.4 The Locale

A C++ locale object is a container of facet objects which encapsulate
internationalization services, and represent culture and language
dependencies. Here are some functions of class locale which allow you to
create locales:

class locale {

public:
/I construct/copy/destroy:

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 23
Internationalization

explicit locale(const char* std_name); \\1
// global locale objects:
static const locale& classic(); \2

//1 You can create a locale object from a C locale’s external representation.
The constructor locale::locale(const char* std_name) takes the
name of a C locale. This locale name is like the one you would use for a
call to the C library function setlocale()

/I2 You can also use a predefined locale object, locale :: classic() :
which represents the US English ASCII environment.

For a comprehensive description of the constructors described above, see the
Class Reference.

It's important to understand that locales are immutable objects: once a locale
object is created, it cannot be modified. This makes locales reliable and easy
to use. As a programmer, you know that whenever you use pointers or
references to elements held in a container, you have to worry about the
validity of the pointers and references. If the container changes, pointers and
references to its elements might not be valid any longer.

A locale object is a container, too. However, it is an immutable container;
that is, it does not change. Therefore, you can take a reference to a locale’s
facet object and pass the reference around without worrying about the
validity of this reference. The related locale object will never be modified; no
facets can be silently replaced.

At some time, you will most likely need locale objects other than the US
classic locale or a snapshot of the global locale. Since locales are immutable
objects, however, you cannot take one of these and replace its facet objects.
You have to say at construction time how they shall be built.

Here are some constructors of class locale which allow you to build a locale
object by composition; in other words, you construct it by copying an
existing locale object, and replacing one or several facet objects.
class locale {
public:
locale(const locale& other, const char* std_name, category);
template <class Facet> locale(const locale& other, Facet* f);
template <class Facet> locale(const locale& other

,const locale& one);
locale(const locale& other, const locale& one, category);

1

The following example shows how you can construct a locale object as a
copy of the classic locale object, and take the numeric facet objects from a
German locale object:

locale loc (locale::classic(), locale(“De_DE"), LC_NUMERIC);

For a comprehensive description of the constructors described above, see the
Class Reference.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 24
Internationalization

Copying a locale object is a cheap operation. You should have no hesitation
about passing locale objects around by value. You may copy locale objects
for composing new locale objects; you may pass copies of locale objects as
arguments to functions, etc.

Locales are implemented using reference counting and the handle-body-

idiom8: When a locale object is copied, only its handle is duplicatedO a fast
and inexpensive action. Similarly, constructing a locale object with the
default constructor is cheap—this is equivalent to copying the global locale
object. All other locale constructors that take a second locale as an argument
are moderately more expensive, because they require cloning the body of the
locale object. However, the facets are not all copied. The byname
constructor is the most expensive, because it requires creating the locale from
an external locale representation.

Figure 10 describes an overview of the locale architecture. It is a handle to a
body that maintains a vector of pointers of facets. The facets are reference-
counted, too.

locale 11(“de”)

; time_get<>
g, get_time ()
3 . vector<facet*> / get—di‘e 0
= uul
: 7 _} time_put<>
locale 12(11) ° put()
5
— g
codecvt<>
convert()
imp time_get<>
locale I3 P get_time ()
(I2.I0ca|e(”fr") vector<facet "~ get_date ()
,LC_TIME) 9]
_ o ’<
o > g/ \ time_put<>
5 put()
Figure 10. The locale architecture
8 A good reference for an explanation of the handle-body idiom is:
“Advanced C++ Programming Styles and Idioms,” James
O. Coplien, Addison-Wesley, 1992, ISBN 0-201-54855-0.
Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 25

Internationalization

1.5 The Facets

A facet is a nested class inside class locale ; it is called locale::facet . Facet
objects encapsulate internationalization services, and represent culture and
language dependencies.

1.5.1 Creating a Facet Object

There are several ways to create facet objects:

e Buy afacet library, which provides you with facet classes and objects.
e Build your own facet classes and construct facet objects.

» Build facet objects from the external representation of a C locale. This is
done via the constructor of one of the byname? facet classes from the

time_get_byname<>
get_time()
get_date() I w
time_put_byname<> Q()iﬁ_my
codecvt_byname<>
%I v
Locale
external
Standard represenation of a
C++ Library C locale
ASCII-EBCDIC phone number
code conversion formatting
convert() put()
get_area_code(

C++ Library

facet library

Standard C++ Library, as shown in Figure 11:

Figure 11. Creating facet objects

Facets are interdependent. For example, the num_get and num_put facet
objects rely on a numpunct facet object. In most cases, facet objects are not

9A byname facet creates a facet from the external representation of
a C locale. See section 1.3.3.1 for the naming conventions
of facet names.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 26
Internationalization

used independently of each other, but grouped together in a locale object.
For this reason, facet objects are usually constructed along with the locale
object that maintains them.

On rare occasions, however, you may need to construct a single facet for
stand-alone use. You will then find that you cannot construct a facet directly,

because the facet class has a protected destructor. 10 The example below
demonstrates how to write the code to construct and use a single facet object.
This code demonstrates a locale-sensitive string comparison, which you
would perform in C using the strcoll() function.

template <class charT>
class Collate : public collate_byname<charT>

{

public:
Collate(const char* name, size_t refs=0)
: collate_byname<charT>(name,refs) {}
~Collate() {

string namel(“Peter Gartner”);
string name2 (“Peter Gartner”);
Collate<char> collFacet(“De_DE"); \\1
if (collFacet.compare
(namel.begin(), namel.end(), name2.begin(), name2.end())

== _]_)
{...}
/I1 A collation facet object is constructed from a German C locale’s external
representation.

/12 The member function compare() of this facet object is used for string
comparison.

The string class in the Standard C++ Library does not provide any service for
locale-sensitive string comparisons. Hence, you will generally use a collate
facet’s compare service, as demonstrated above, or the locale's function call
operator instead:

string namel(“Peter Gartner”);

string name2 (“Peter Gartner”);

locale loc(“De_DE™);

if (loc(hamel, name2))

{.}

1.5.2 Accessing a Locale’s Facets

A locale object is like a container—or a map, to be more precise—but it is
indexed by type at compile time. The indexing operator, therefore, is not
operator[] , but rather the template operator <>. Access to the facet objects

10 The destructor is inaccessible to the public because it is assumed
that a locale owns its facets and manages their storage.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 27
Internationalization

of a locale object is via two member function templates, use_facet and
has_facet

template <class Facet> const Facet& use_facet(const locale&);
template <class Facet> bool has_facet(const locale&);

The code below demonstrates how they are used. It is an example of the
ctype facet’s usage; all upper case letters of a string read from the standard
input stream are converted to lower case letters and written to the standard
output stream.

string in;

cin>>in;

if (has_facet< ctype<char> >(locale::locale())) \\1

{ cout << use_facet< ctype<char> >(locale::locale()) \\2
.tolower(in.begin(),in.end()); \3

/11 Inthe call to has_facet<...>() , the template argument chooses a facet
class. If no object of the named facet class is present in a locale object,
has_facet returns false

/12 The function template use_facet<...>() returns a reference to a locale’s
facet object. As locale objects are immutable, the reference to a facet
object obtained via use facet() stays valid throughout the lifetime of
the locale object.

/I3 The facet object’s member function tolower() is called. It has the
functionality of the C function tolower() ; it converts all upper case
letters into lower case letters.

In most situations, you do not have to check whether a locale has a standard
facet object like ctype . Most locale objects are created by composition,
starting with a locale object constructed from a C locale’s external
representation. Locale objects created this way, that is, via a byname
constructor, always have all of the standard facet objects. Because you can
only add or replace facet objects in a locale object, you cannot compose a
locale that misses one of the standard facets.

A call to has_facet() is useful, however, when you expect that a certain non-
standard facet object should be present in a locale object.

1.5.3 Using a Stream’s Facet

Here is a more advanced example that uses a time facet for printing a date.
Let us assume we have a date and want to print it this way:
struct tm aDate; n

aDate.tm_year =1989;
aDate.tm_mon =9;

aDate.tm_mday = 1; 12
cout.imbue(locale::locale(“De_CH")); I3
cout << aDate; A
Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 28

Internationalization

/I1 A date object is created. It is of type tm, which is the time structure
defined in the standard C library.

/I2 The date object is initialized with a particular date, September 1, 1989.

/I3 Let’s assume our program is supposed to run in a German-speaking
canton of Switzerland. Hence, a Swiss locale is attached to the standard
output stream.

/l4 The date is printed in German to the standard output stream.
The output will be: 1. September 1989

As there is no operator<<() defined in the Standard C++ Library for the
time structure tm from the C library, we have to provide this inserter
ourselves. The following code suggests a way this can be done. If you are
not familiar with iostreams, you will want to refer to the iostreams section of
this User's Guide for more information.

To keep it simple, the handling of exceptions thrown during the formatting is
omitted.

template<class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT traits>& 0s, const tm& date) \1

locale loc = os.getloc(); \\2

typedef ostreambuf_iterator<charT traits> outlter_t; \3

const time_put<charT,outlter_t>& fac; \!

fac = use_facet <time_put<charT, buflter_t>> (loc); \\5

outlter_t nxtpos; \\6

nextpos = fac.put(os,os,os fill(),&date, x); \\7

if (nxtpos.failed()) \\
os.setstate(ios_base::badbit); \\9

return os;

}

/L Thisis a typical signature of a stream inserter; it takes a reference to an
output stream and a constant reference to the object to be printed, and
returns a reference to the same stream.

/2 The stream’s locale object is obtained via the stream’s member function
getloc() . This is the locale object where we expect to find a time-
formatting facet object.

/I3 We define a type for an output iterator to a stream buffer.

Time formatting facet objects write the formatted output via an iterator
into an output container (see the sections on containers and iterators in
the User's Guide). In principle, this can be an arbitrary container that
has an output iterator, such as a string or a C++ array.

Here we want the time-formatting facet object to bypass the stream’s
formatting layer and write directly to the output stream’s underlying
stream buffer. Therefore, the output container shall be a stream buffer.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 29
Internationalization

/l4 We define a variable that will hold a reference to the locale object’s
time_put facet object. The time formatting facet class time_put has two
template parameters:

The first template parameter is the character type used for output. Here
we provide the stream’s character type as the template argument.

The second template parameter is the output iterator type. Here we
provide the stream buffer iterator type outlter t that we had defined
as before.

/I5 Here we get the time-formatting facet object from the stream’s locale via
use_facet()

/16 We define a variable to hold the output iterator returned by the facet
object’s formatting service.

/I7 The facet object’s formatting service put() is called. Let us see what
arguments it takes. Here is the function’s interface:

iter_type put (iter_type @
jos_base& (b)
.char_type (©
,const tm* (d)
,char) (e)

The types iter_type and char_type stand for the types that
were provided as template arguments when the facet class was
instantiated. In this case, they are

ostreambuf_iterator<charT,traits> and charT , where charT and
traits are the respective streams template arguments.

Here is the actual call:
nextpos = fac.put(os,0s,0s.fill(),&date,'x’);

Now let’s see what the arguments mean:

a) The first parameter is supposed to be an output iterator. We
provide an iterator to the stream’s underlying stream buffer. The
reference os to the output stream is converted to an output iterator,
because output stream buffer iterators have a constructor taking an
output stream, that is, basic_ostream<charT traits>&

b) The second parameter is of type ios_base&, which is one of the
stream base classes. The class ios_base contains data for format
control (see the section on iostreams for details). The facet object
uses this formatting information. We provide the output stream’s
ios_base part here, using the automatic cast from a reference to an
output stream, to a reference to its base class.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 30
Internationalization

¢) The third parameter is the fill character. It is used when the output
has to be adjusted and blank characters have to be filled in. We
provide the stream’s fill character, which one can get by calling the
stream’s fill() function.

d) The fourth parameter is a pointer to a time structure tm from the C
library.

e) The fifth parameter is a format character as in the C function
strftime() ; the x stands for the locale’s appropriate date
representation.

f) The value returned is an output iterator that points to the position
immediately after the last inserted character.

/18 As we work with output stream buffer iterators, we can even check for
errors happening during the time formatting. Output stream buffer
iterators are the only iterators that have a member function failed()

for error indication. 11

/19 If there was an error, we set the stream’s state accordingly. See the

section on iostreams for details on the setstate() function and the state
bits.

1.5.4 Creating a Facet Class for Replacement in a Locale

At times you may need to replace a facet object in a locale by another kind of
facet object. In the following example, let us derive from one of the standard
facet classes, numpunct , and create a locale object in which the standard
numpunct facet object is replaced by an instance of our new, derived facet
class.

Here is the problem we want to solve. When you print boolean values, you
can choose between the numeric representation of the values "true" and
“false” , or their alphanumeric representation.

int main(int argc, char** argv)

bool any_arguments = (argc > 1); \1
cout.setf(ios_base::boolalpha); \2
cout << any_arguments << \n’; \3
...

}

11 Note that the use of the put() function of a formatting facet is
inherently unsafe, if you work with output iterators other
than output stream buffer iterators. It is especially
dangerous if you work with output iterators that refer to
fixed-size containers, like a C++ array for example. There
is no way to check whether the facet does not write
beyond the containers end.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 31
Internationalization

/I1 A variable of type bool is defined. Its initial value is the boolean value
of the logical expression (argc>1) , so the variable any_arguments
contains the information, whether the program was called with or
without arguments.

/12 The format flag ios_base:: boolalpha is set in the predefined output
stream cout . The effect is that the string representation of boolean
values is printed, instead of their numerical representation 0 or 1, which
is the default representation.

/I3 Here either the string "true" or the string "false” will be printed.

Of course, the string representation depends on the language. Hence, the
alphanumeric representation of boolean values is provided by a locale. Itis
the numpunct facet of a locale that describes the cultural conventions for
numerical formatting. It has a service that provides the string representation

of the boolean values true and false .12

This is the interface of facet numpunct :

template <class charT>

class numpunct : public locale::facet {

public:
typedef charT char_type;
typedef basic_string<charT> string_type;
explicit numpunct(size_t refs = 0);
string_type decimal_point() const;
string_type thousands_sep() const;
vector<char>grouping() const;
string_type truename () const;
string_type falsename () const;
static locale::id id;

h

Now let us replace this facet. To make it more exciting, let's use not only a
different language, but also different words for true and false , such as Yes!
and No!. For just using another language, we would not need a new facet;
we would simply use the right native locale, and it would contain the right
facet.

template <class charT, charT* True, charT* False> n
class CustomizedBooleanNames
: public numpunct_byname<charT>{ 12
typedef basic_string<charT> string;
protected:
string do_truename() {return True;} 113
string do_falsename() {retumn False;}
~CustomizedBooleanNames() {
public:
explicit CustomizedBooleanNames(const char* LocName) /4

12 you might be surprised to find the string representation of
boolean values in the numpunct facet, because bool
values are not numerical values. However, that’s the way
the facets are organized.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 32
Internationalization

: numpunct_byname<charT>(LocName) {}

/IL The new facet is a class template that takes the character type as a
template parameter, and the string representation for true and false as
non-type template parameters.

/I2 The new facet is derived from the numpunct_byname<charT> facet.

The byname facets read the respective locale information from the
external representation of a C locale. The name provided to construct a
byname facet is the name of a locale, as you would use it in a call to
setlocale()

/I3 The virtual member functions do_truename() and do_falsename() are
reimplemented. They are called by the public member functions
truename() and falsename() . See the Class Reference for further details.

/14 A constructor is provided that takes a locale name. This locale’s
numpunct facet will be the basis for our new facet.

Now let’s replace the numpunct facet object in a given locale object, as shown
in Figure 12:

Id Facet
Locale g

num_put<>

wﬂe@ CustomizedBooleanNames
moneypunct<>

time_get<>

time_put<>

ctype<>
codecvt<>

message<>

Figure 12. Replacing the numpunct facet object

The code looks like this:

char Yes[] ="Ja.";
char Nof] = "Nein.";

void main(int argc, char* argv)

locale loc(locale('de_DE"), \\1

new CustomizedBooleanNames<char,Yes,No>("de_DE"); \2
cout.imbue(loc); \3
cout << “Argumente vorhanden? ” //Any arguments?

<< boolalpha << (argc > 1) << end]; \%)

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 33
Internationalization

/I1 A locale object is constructed with an instance of the new facet class.
The locale object will have all facet objects from a German locale object,
except that the new facet object CustomizedBooleanNames ~ will substitute
for the numpunct facet object.

/12 The new facet object takes all information from a German numpunct
facet object, and replaces the default native names true and false with
the provided strings “Ja.” (“Yes.”) and “Nein.” (“No.”).

Note that the facet object is created on the heap. That's because the
locale class by default manages installation, reference-counting, and
destruction of all its facet objects.

/I3 The standard output stream cout is imbued with the newly created
locale object.

/l4 The expression (argc>1) Yyields a boolean value, which indicates
whether the program was called with arguments. This boolean value’s
alphanumeric representation is printed to the standard output stream.
The output might be:

Argument vorhanden? Ja.

1.5.5 The Facet Id

In the example discussed above, we derived a new facet class from one of the
standard facet classes, then replaced an object of base class type by one of
derived class type. The inheritance relationship of the facet classes is
essential if you plan on replacing facet objects. Let us see why this is true.

A locale object maintains a set of facet objects. Each facet object has an
identification that serves as an index to the set of facet objects. This
identification, called id, is a static data member of the respective facet class.
Whether or not a facet object will replace another facet, or be an actual
addition to the locale object’s set of facet objects, solely depends on the facet’s
identification.

The base class of all facets, class locale::facet , does not have a facet
identification. The class locale::facet performs the function of an abstract
base class; there will never be any facet object of the base class type.
However, all concrete facet classes have to define a facet identification. In
the example above, we inherited the facet identification from the base class
we derived from, that is, the standard facet class numpunct . Every object of
our facet class CustomizedBooleanNames has a facet identification that
identifies it as a numpunct facet. As the facet identification serves as an index
to the locale object’s set of facets, our facet object replaced the current
numpunct facet object in the locale object’s set of facet objects.

If you do not want to replace a facet object, but want to add a new kind of
facet object, we have to provide it with a facet identification different from all

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 34
Internationalization

existing facet identifications. The following example will demonstrate how
this can be achieved.

1.5.6 Creating a Facet Class for Addition to a Locale

At times you may need to add a facet object to a locale. This facet object
must have a facet identification that distinguishes it from all existing kinds of
facets.

Here is an example of a new facet class like that. It is a facet that checks

whether a given character is a German umlautl3, that is, one of the special
characters 46UAOU.
class Umlaut : public locale::facet { \\1
public:
static locale::id id; \\2
bool is_umlaut(char c); \3
Umlaut() {}
protected:
~Umlaut() {

/11 All facet classes have to be derived from class locale::facet

/12 Here we define the static data member id . It is of type locale::id . The
default constructor of the facet identification class locale::id assigns
the next unused identification to each object it creates. Hence, it is not
necessary, nor even possible, to explicitly assign a value to the static
facetid object. In other words, this definition does the whole trick; our
facet class will have a facet identification that distinguishes it from all
other facet classes.

/I3 A member function is_umlaut() is declared that returns true if the
character is a German umlaut.

13Generally, an umlaut is a composed character consisting of a
vowel as the base character and a diaeresis, that is, two
dots placed over a vowel, as the diacritic. The diaeresis is
used in German and other European languages to indicate
a change in the pronunciation of the vowel.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 35
Internationalization

Now let’s add the new facet object to a given locale object, as shown in

Id Facet
Locale hum_get<>
num_put<>
numpunct<>
noneypunct<>
time_get<>
time_put<>

ctype<>
codecvt<>
nessage<>
Umlaut

Figure 13:
Figure 13. Adding a new facet to a locale

The code for this procedure is given below:

locale loc(locale(*), // native locale
new Umlaut); / the new facet n

charc,d;
while (cin >> c){
d = use_facet<ctype<char> >(loc).tolower(c); 12
if (has_facet<Umlaut>(loc)) 113
{if (use_facet<Umlaut>(loc).is_umlaut(d)) /!

cout << ¢ << “belongs to the German alphabet!” << \n’;

/11 Alocale object is constructed with an instance of the new facet class.
The locale object will have all facet objects from the native locale object,
plus an instance of the new facet class Umlaut .

/12 Let's assume our new umlaut facet class is somewhat limited; it can
handle only lower case characters. Thus we have to convert each
character to a lower case character before we hand it over to the umlaut
facet object. This is done by using a ctype facet object’s service function
tolower()

/I3 Before we use the umlaut facet object, we check whether such an object
is present in the locale. In a toy example like this it is obvious, but in a
real application it is advisable to check for the existence of a facet object,
especially if it is a non-standard facet object we are looking for.

/14 The umlaut facet object is used, and its member function is_umlaut() is
called. Note that the syntax for using this newly contrived facet object
is exactly like the syntax for using the standard ctype facet.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 36
Internationalization

1.6 User-Defined Facets: An Example

The previous sections explained how to use locales and the standard facet
classes, and how you can build new facet classes. This section introduces
you to the technique of building your own facet class and using it in
conjunction with the input/output streams of the Standard C++ Library, the
iostreams. This material is rather advanced, and requires some knowledge
of standard iostreams.

In the following pages, we will work through a complete example on
formatting telephone numbers. Formatting telephone numbers involves
local conventions that vary from culture to culture. For example, the same
US phone number can have all of the formats listed below:

754-3010 Local

(541) 754-3010 Domestic
+1-541-754-3010 International
1-541-754-3010 Dialed in the US
001-541-754-3010 Dialed from Germany
191 541 754 3010 Dialed from France

Now consider a German phone number. Although a German phone number
consists of an area code and an extension like a US number, the format is
different. Here is the same German phone number in a variety of formats:

636-48018 Local
(089) / 636-48018 Domestic
+49-89-636-48018 International

19-49-89-636-48018 Dialed from France

Note the difference in formatting domestic numbers. In the US, the
convention is 1 (area code) extension , While in Germany it is (0 area
code)/extension

1.6.1 A Phone Number Class

An application that has to handle phone numbers will probably have a class
that represents a phone number. We will also want to read and write
telephone numbers via iostreams, and therefore define suitable extractor and
inserter functions. For the sake of simplicity, we will focus on the inserter
function in our example.

To begin, here is the complete class declaration for the telephone number
class phoneNo:

class phoneNo
{
public:

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 37
Internationalization

typedef basic_ostream<char> outStream _t;
typedef string string_t;

phoneNo(const string_t& cc,const string_t& ac,const string_t& ex)
: countryCode(cc), areaCode(ac), extension(ex) {}

private:
string_t countryCode; /l'de"
string_t areaCode; /'89"
string_t extension; /I'636-48018"

friend phoneNo::outStream_t& operator<<
(phoneNo::outStream_t&, const phoneNo&);

1.6.2 A Phone Number Formatting Facet Class

Now that we have locales and facets in C++, we can encapsulate the locale-
dependent parsing and formatting of telephone numbers into a new facet
class. Let’s focus on formatting in this example. We will call the new facet
class phone_put , analogous to time_put , money_put , etc.

The phone_put facet class serves solely as a base class for facet classes that
actually implement the locale-dependent formatting. The relationship of
class phone_put to the other facet classes is illustrated in Figure 14:

phone_put
4 AV

Figure 14. The relationship of the phone_put facet to the implementing facets

Here is a first tentative declaration of the new facet class phone_put :

class phone_put: public locale::facet n

public:
static locale::id id; 12
phone_put(size_trefs =0) : locale::facet(refs) {} /I3

string_t put(const string_t& ext
,const string_t& area
,const string_t& cnt) const; /z

h

/IL Derive from the base class locale::facet , S0 that a locale object will be
able to maintain instances of our new phone facet class.

/12 New facet classes need to define a static data memberid of type
locale::id

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 38

Internationalization

/13 Define a constructor that takes the reference count that will be handed
over to the base class.

/14 Define a function put() that does the actual formatting.

1.6.3 An Inserter for Phone Numbers

Now let’s take a look at the implementation of the inserter for our phone
number class:

ostream& operator<<(ostream& o0s, const phoneNo& pn)

locale loc = os.getloc(); n

const phone_put& ppFacet = use_facet<phone_put> (loc); /12
0s << ppFacet.put(pn.extension, pn.areaCode, pn.countryCode);//3
return (0s);

/I1 The inserter function will use the output stream’s locale object (obtained
via getioc()),

/12 use the locale’s phone number facet object,

/13 and call the facet object’s formatting service put()

1.6.4 The Phone Number Facet Class Revisited

Let us now try to implement the phone number facet class. What does this
facet need to know?

« A facet needs to know its own locality, because a phone number is
formatted differently for domestic and international use; for example, a
German number looks like (089) / 636-48018 when used in Germany, but
it looks like +1-49-89-636-48018 when used internationally.

» A facet needs information about the prefix for dialing international
numbers; for example, 011 for dialing foreign numbers from the US, or
00 from Germany, or 19 from France.

e A facet needs access to a table of all country codes, so that one can enter
a mnemonic for the country instead of looking up the respective country
code. For example, | would like to say: “This is a phone number
somewhere in Japan” without having to know what the country code for
Japan is.

1.6.4.1 Adding Data Members

The following class declaration for the telephone number formatting facet
class is enhanced with data members for the facet object's own locality, and
its prefix for international calls (see /2 and //3 in the code below). Adding
a table of country codes is omitted for the time being.

class phone_put: public locale::facet {

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 39
Internationalization

public:
typedef string string_t;
static locale::id id;
phone_put(size_trefs = 0) : locale::facet(refs)
, myCountryCode_(")
,intlPrefix_(") {}
string_t put(const string_t& ext,
const string_t& area,
const string_t& cnt) const;
protected:
phone_put(const string_t& myC n
, const string_t& intlP
, Size_trefs =0)
: locale::facet(refs)
, myCountryCode_(myC)
, intlPrefix_(intP) { }
const string_t myCountryCode_; 2
const string_t intlPrefix_; I3

Note how this class serves as a base class for the facet classes that really
implement a locale-dependent phone number formatting. Hence, the public
constructor does not need to be extended, and a protected constructor is
added instead (see /1 above).

1.6.4.2 Adding Country Codes

Let us now deal with the problem of adding the international country codes
that were omitted from the previous class declaration. These country codes
can be held as a map of strings that associates the country code with a
mnemonic for the country’s name, as shown in Figure 15:

phone_put prefixMap_t
myCountryCode_ ‘ust 1
intlPrefix_ / “Fr’ 33"
country_codes_ o ‘UK 44"
“De” “49"
“Jp” “gL”

Figure 15. Map associating country codes with mnemonics for countries* names

In the following code, we add the table of country codes:

class phone_put: public locale::facet

public:
class prefixMap_t : public map<string,string> J/An

public:
prefixMap_t() { insert(tab_t(string("US"),string("1")));

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved..
Internationalization

40

insert(tab_t(string("De"),string("49")));
..

}
static const prefixMap_t* std_codes() 12
{return &stdCodes _; }
protected:
static const prefixMap_t stdCodes_; /I3

As the table of country codes is a constant table that is valid for all telephone
number facet objects, it is added as a static data member stdCodes_ (see //3).
The initialization of this data member is encapsulated in a class, prefixMap_t
(see /i1). For convenience, a function std_codes() is added to give access to
the table (see /2).

Despite its appealing simplicity, however, having just one static country code
table might prove too inflexible. Consider that mnemonics might vary from
one locale to another due to different languages. Maybe mnemonics are not
called for, and you really need more extended names associated with the
actual country code.

In order to provide more flexibility, we can build in the ability to work with
an arbitrary table. A pointer to the respective country code table can be
provided when a facet object is constructed. The static table, shown in Figure
16 below, will serve as a default:

phone_put prefixMap_t
myCountryCode_ “Etats Unis” 5
intIPrefix_ “France” “33"
country_codes_ “Grande Bretagne” “44”
“Allemagne” “49"
“Japon” “81”

Figure 16. Map associating country codes with country names

Since we hold the table as a pointer, we need to pay attention to memory
management for the table pointed to. We will use a flag for determining
whether the provided table needs to be deleted when the facet is destroyed.
The following code demonstrates use of the table and its associated flag:

class phone_put: public locale::facet {
public:

typedef string string_t;

class prefixMap_t;

static locale::id id;

phone_put(const prefixMap_t* tab=0 1
, bool del = false

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 41
Internationalization

, Size_trefs =0)

: locale::facet(refs)

, countryCodes_(tab), delete_it_(del)

, myCountryCode_ (™), intlPrefix_("")

{if (tab) { countryCodes_ =tab;
delete_it_=del; }
else { countryCodes_ = &stdCodes_; 2

delete it =false; }

}

string_t put(const string_t& ext,
const string_t& area,
const string_t& cnt) const;

const prefixMap_t* country_codes() const I3
{return countryCodes_; }

static const prefixMap_t* std_codes() {return &stdCodes_; }
protected:
phone_put(const string_t& myC, const string_t& intIP
, const prefixMap_t* tab=0, bool del =false
, Size_trefs =0)
- locale::facet(refs)
, countryCodes_(tab), delete_it_(del)
, myCountryCode_(myC), intlPrefix_(intlP)

virtual ~phone_put()
{if(delete_it_)
countryCodes_->prefixMap_t::~prefixMap_t(); 1A

const prefixMap_t* countryCodes_; 15
bool delete_it_;

static const prefixMap_t stdCodes_;

const string_t myCountryCode_;

const string_tintlPrefix_;

i

/IL The constructor is enhanced to take a pointer to the country code table,
together with the flag for memory management of the provided table.

/12 If no table is provided, the static table is installed as a default.

/I3 For convenience, a function that returns a pointer to the current table is
added.

/l4 The table is deleted if the memory management flags says so.

/I5 Protected data members are added to hold the pointer to the current
country code table, as well as the associated memory management flag.

1.6.5 An Example of a Concrete Facet Class

As mentioned previously, the phone number facet class is intended to serve
as a base class. Let's now present an example of a concrete facet class, the US
phone number formatting facet. It works by default with the static country
code table and “US” as its own locality. It also knows the prefix for dialing
foreign numbers from the US. Here is the class declaration for the facet:

class US_phone_put : public phone_put {

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 42
Internationalization

public:
US_phone_put(const prefixMap_t* tab=0
, const string_t& myCod = "US"
, bool del = false
, Size_trefs =0)
: phone_put(myCod,"011" tab,del,refs)

Other concrete facet classes are built similarly.

1.6.6 Using Phone Number Facets

Now that we have laid the groundwork, we will soon be ready to format
phone numbers. Here is an example of how instances of the new facet class
can be used:

ostream ofstr("/tmp/out”);

ostr.imbue(locale(locale::classic(),new US_phone_put)); /1

ostr << phoneNo("Fr","1","60 17 07 16") << endl;
ostr << phoneNo("US","541","711-PARK") << end;

ostr.imbue(locale(locale(“Fr") 2
,new Fr_phone_put (&myTab,"France")));
ostr << phoneNo("Allemagne”,"89","636-40938") << endl; //3

/I1 Imbue an output stream with a locale object that has a phone humber
facet object. In the example above, it is the US English ASCII locale
with a US phone number facet, and

/12 aFrench locale using a French phone number facet with a particular
country code table.

/I3 Output phone numbers using the inserter function.
The output will be: 011-33-1-60170716
(541) 711-PARK
19 49 89 636 40938

1.6.7 Formatting Phone Numbers

Even now, however, the implementation of our facet class is incomplete. We
still need to mention how the actual formatting of a phone number will be
implemented. In the example below, it is done by calling two virtual
functions, put_country_code() and put_domestic_area_code()

class phone_put: public locale::facet {
public:
...
string put(const string& ext,
const string& area,
const string& cnt) const;
protected:

virtual string_t put_country_code
Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 43
Internationalization

(const string_t& country) const = 0;
virtual string_t put_domestic_area_code
(const string_t& area) const = 0;

Note that the functions put_country _code() and put_domestic_area_code()

are purely virtual in the base class, and thus must be provided by the
derived facet classes. For the sake of brevity, we spare you here the details of
the functions of the derived classes. For more information, please consult the
directory of sample code delivered on disk with this product.

1.6.8 Improving the Inserter Function

Let’s turn here to improving our inserter function. Consider that the country
code table might be huge, and access to a country code might turn out to be a
time-consuming operation. We can optimize the inserter function’s
performance by caching the country code table, so that we can access it
directly and thus reduce performance overhead.

1.6.8.1 Primitive Caching

The code below does some primitive caching. It takes the phone facet object
from the stream’s locale object and copies the country code table into a static
variable.

ostreamé& operator<<(ostreamé& 0s, const phoneNo& pn)

locale loc = os.getloc();
const phone_put& ppFacet = use_facet<phone_put> (loc);

/I primitive caching
static prefixMap_t codes = *(ppFacet.country_codes());

/I some sophisticated output using the cached codes

retum (0s);

}

Now consider that the locale object imbued on a stream might change, but
the cached static country code table does not. The cache is filled once, and all
changes to the stream’s locale object have no effect on this inserter function’s
cache. That’s probably not what we want. What we do need is some kind of
notification each time a new locale object is imbued, so that we can update
the cache.

1.6.8.2 Registration of a Callback Function

In the following example, notification is provided by a callback function.
The iostreams allow registration of callback functions. Class ios_base
declares:

enum event { erase_event, imbue_event, copyfmt_event};, /1

typedef void (*event_callback) (event, ios_base&, intindex);
void register_callback (event_callback fn, int index); 112

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved..
Internationalization

44

/Il Registered callback functions are called for three events:

« Destruction of a stream,
- Imbuing a new locale, and
« Copying the stream state.

/12 The register_callback() function registers a callback function and an
index to the stream’s parray . During calls to imbue() , copyfmt() or
~ios_base() , the function fn is called with argument index . Functions
registered are called when an event occurs, in opposite order of
registration.

The parray is a static array in base class ios_base . One can obtain an
index to this array via xalloc() , and access the array via pword(index)
or iword(index) , as shown in Figure 17 below:

parray

________________________ xalloc() prefixMap_t
index *— > g4 » [USTT
R : pword() TEp w337
UK 447
“De” “49”
Jp’ gL

Figure 17. The static array parray

In order to install a callback function that updates our cache, we implement a
class that retrieves an index to parray and creates the cache, then registers
the callback function in its constructor. The procedure is shown in the code

below:

class registerCallback_t {

public:

registerCallback_t(ostreamé& os
Jjos_base::event_callback fct
JprefixMap_t* codes)

int index = os.xalloc(); n
os.pword(index) = codes; 2
os.register_callback(fct,index); I3

I3

/L Anindex to the array is obtained via xalloc()

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 45

Internationalization

/I2 The pointer to the code table is stored in the array via pword()
/I3 The callback function and the index are registered.

The actual callback function will later have access to the cache via the index
to parray .

At this point, we still need a callback function that updates the cache each
time the stream’s locale is replaced. Such a callback function could look like
this:
void cacheCountryCodes(ios_base::event event
,i0s_base& str,int cache)
{ if (event == ios_base:iimbue_event) /11
locale loc = str.getloc();
const phone_put<char>& ppFacet =
use_facet<phone_put<char> > (loc); 12

((phone_put::prefixMap_t) str. pword(cache)) =
*(ppFacet.country_codes()); 113

/11 It checks whether the event was a change of the imbued locale,
/12 retrieves the phone number facet from the stream’s locale, and

/I3 stores the country code table in the cache. The cache is accessible via
the stream’s parray .

1.6.8.3 Improving the Inserter

We now have everything we need to improve our inserter. It registers a
callback function that will update the cache whenever necessary.
Registration is done only once, by declaring a static variable of class
registerCallback_t

ostreamé& operator<<(ostreamé& 0s, const phoneNo& pn)

static phone_put::prefixMap_t codes =
*(use_facet<phone_put>(os.getloc()).country_codes()); /1

static registerCallback_t cache(os,cacheCountryCodes,&codes);//2
/I some sophisticated output using the cached codes
}...
/1 The current country code table is cached.

/12 The callback function cacheCountryCodes is registered.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.. 46
Internationalization

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved..
Internationalization

47

F Section 2
L Stream Input/Output

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.

2.1 How to Read This Section

This section is an introduction to C++ stream input and output. Section 2.2
explains the iostreams facility, how it works in principle, and how it should
be used. This section should be read by anyone who needs basic information
on iostreams. For readers who require deeper understanding, the section
also gives an overview of the iostream architecture, its components, and class
hierarchy.

It is not necessary to read Section 2.2 in order to start using predefined
iostreams as explained in Section 2.3. However, we do recommend that you
read the Users Guide's section on internationalization first, because iostreams
is internationalized using standard C++ locales. The explanations in this
section assume that you are familiar with locales and facets, and you will
find countless references to the section on internationalization.

Sections 2.3 to 2.6 explain the basic operation of iostreams. These sections
can be read sequentially, or used as a reference for certain topics. Read
sequentially, they provide you with basic knowledge for working with
iostreams. Used as a reference, they provide answers to questions like: How
do I check for iostreams errors? and, How do | work with file streams?

Sections 2.7 to 2.11 explain simple techniques for extending the iostreams
framework, such as defining input and output operators for user-defined
types, and adding manipulators. These sections also cover more advanced
features of iostreams, such as synchronization of streams.

Sections 2.12 and 2.13 explain advanced techniques for extending iostreams,
such as creating new types of streams by derivation and defining a code
conversion facet.

Section 2.14 describes the main differences between the Standard C++
Library iostreams and traditional iostreams.

Section 2.15 describes the main differences between the Standard C++
Library iostreams and the Rogue Wave implementation of iostreams in its
own Standard C++ Library. It points out features that are specific to the
Rogue Wave implementation.

The Appendix describes standardization issues that are still open at the time
of this writing and influence the content of this document.

2.1.1 Code Examples

Please note that the examples in this User's Guide might not compile in your
particular environment due to incompatibilities with the particular release of
your compiler or your library. This is because few compilers available at the
time of this printing are capable of understanding the whole range of
language features defined by the ISO/ANSI C++ standard. It is likely that at

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 50
Stream Input/Output

least a few of these features will not be supported by your own compiler.
The consequence is that some techniques demonstrated and explained in this
User's Guide will not work with your compiler either.

We include examples that might not compile, rather than omitting certain
techniques entirely, to demonstrate the full range of techniques the Standard
C++ language will support. This User's Guide was written with an eye to the
C++ of the future. Compilers will catch up, and techniques that don't work
with your current compiler will work once your compiler can understand
Standard C++. Hopefully, including these techniques will extend the
usefulness of this User's Guide to you.

Also, the code examples are simplified in that the necessary #include <...>
statements and the using directive for the standard namespace ::std are
omitted. The intent is to make the examples as readable and focused as
possible rather than ceaselessly repeating the same code fragments.

2.1.2 Terminology

The Standard C++ Library consists mostly of class and function templates.
Abbreviations for these templates are used throughout this User's Guide. For
example, fstream stands for template <class charT, class traits> class

basic_fstream . A slightly more succinct notation for a class template is also
frequently used: basic_fstream <charT, traits>

In addition to abbreviations, you will find certain contrived technical terms.
For example, file stream stands for the abstract notion of the file stream class
template; badbit stands for the state flag ios_base::badbit

2.2 The Architecture of lostreams

This section will introduce you to iostreams: what they are, how they work,
what kinds of problems they help solve, and how they are structured.
Section 2.2.4 provides an overview of the class templates in iostreams. If you
want to skip over the software architecture of iostreams, please go on to
Section 2.3 on formatted input/output.

2.2.1 What Are the Standard lostreams?

The Standard C++ Library includes classes for text stream input/output.
Before the current ANSI/ZISO standard, most C++ compilers were delivered
with a class library commonly known as the iostreams library. In this section,
we refer to this library as the traditional iostreams, in contrast to the standard
iostreams that are now part of the ANSI/ISO Standard C++ Library. The
standard iostreams are to some extent compatible with the traditional
iostreams, in that the overall architecture and the most commonly used
interfaces are retained. Section 2.14 describes the incompatibilities in greater
detail.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 51
Stream Input/Output

We can compare the standard iostreams not only with the traditional C++
iostreams library, but also with the 1/0 support in the Standard C Library.
Many former C programmers still prefer the input/output functions offered
by the C library, often referred to as C stdio. Their familiarity with the C
library is justification enough for using the C stdio instead of C++ iostreams,
but there are other reasons as well. For example, calls to the C functions
printf() and scanf() are admittedly more concise with C stdio. However,
C stdio has drawbacks, too, such as type insecurity and inability to extend
consistently for user-defined classes. We'll discuss these in more detail in the
following sections.

2.2.1.1 Type Safety

Let us compare a call to stdio functions with the use of standard iostreams.
The stdio call reads as follows:

inti=25;

char name[50] = “Janakiraman”;

fprintf(stdout, “%d %s”, i, name);

It correctly prints: 25 Janakiraman

But what if we inadvertently switch the arguments to fprintf ? The error
will be detected no sooner than run time. Anything can happen, from
peculiar output to a system crash. This is not the case with the standard
iostreams:

cout << j<<‘‘<<name << \n’;
Since there are overloaded versions of the shift operator operator<<() , the
right operator will always be called. The function cout <<i calls

operator<<(int) ,and cout << name calls operator<<(const char*)
Hence, the standard iostreams are typesafe.

2.2.1.2 Extensibilityo New Types

Another advantage of the standard iostreams is that user-defined types can
be made to fit in seamlessly. Consider a type Pair that we want to print:

struct Pair { int x; string y; }
All we need to do is overload operator<<() for this new type Pair, and we
can output pairs this way:

Pair p(5, “May”);
cout << p;

The corresponding operator<<() can be implemented as:

basic_ostream<char>&
operator<<(basic_ostream<char>& o, const Pair& p)
{retumo<<px<<‘‘<<py;}

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 52
Stream Input/Output

2.2.2 How Do the Standard lostreams Work?

The main purpose of the standard iostreams is to serve as a tool for input
and output of text. Generally, input and output are the transfer of data
between a program and any kind of external device, as illustrated in Figure
18 below:

program

(communication channel >

——

e [T T0]
[———
display

I0Streams supports data transfer between a program and external devices.

Figure 18. Data transfer supported by iostreams

The internal representation of such data is meant to be convenient for data
processing in a program. On the other hand, the external representation can
vary quite a bit: it might be a display in human-readable form, or a portable
data exchange format. The intent of a representation, such as conserving
space for storage, can also influence the representation.

Text 1/0 involves the external representation of a sequence of characters;
every other case involves binary I/O. Traditionally, iostreams are used for
text processing. Such text processing through iostreams involves two
processes: formatting and code conversion.

Formatting is the transformation from a byte sequence representing internal
data into a human-readable character sequence; for example, from a floating
point number, or an integer value held in a variable, into a sequence of digits.
Figure 19 below illustrates the formatting process:

1001 1110
el 0 158 Hello world!

program data human-readable external representation

Figure 19. Formatting program data

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 53
Stream Input/Output

Code conversion is the process of translating one character representation into
another; for example, from wide characters held internally to a sequence of
multibyte characters for external use. Wide characters are all the same size,
and thus are convenient for internal data processing. Multibyte characters
have different sizes and are stored more compactly. They are typically used
for data transfer, or for storage on external devices such as files. Figure 20
below illustrates the conversion process:

external File
[Jalplaln] I=[s$IB] | | |
JIS
internal hbulfer
ol al L
Unicode

Figure 20. Code conversion between multibytes and wide characters

2.2.2.1 The lostream Layers

The iostreams facility has two layers: one that handles formatting, and
another that handles code conversion and transport of characters to and from
the external device. The layers communicate through a buffer, as illustrated
in Figure 21 below:

code conversion & external

program formatting & buffering buffer transport e

Figure 21. The iostreams layers
Let's take a look at the function of each layer in more detail:

* The Formatting Layer. Here the transformation between a program’s
internal data representation and a readable representation as a character
sequence takes place. This formatting and parsing may involve, among
other things:

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 54
Stream Input/Output

« Precision and notation of floating point numbers;

« Hexadecimal, octal, or decimal representation of integers;
. Skipping of white space in the input;

« Field width for output;

« Adapting of number formatting to local conventions.

e The Transport Layer. This layer is responsible for producing and
consuming characters. It encapsulates knowledge about the properties
of a specific external device. Among other things, this involves:

- Block-wise output to files through system calls;
. Code conversion to multibyte encodings.

To reduce the number of accesses to the external device, a buffer is used.
For output, the formatting layer sends sequences of characters to the
transport layer, which stores them in a stream buffer. The actual transport
to the external device happens only when the buffer is full. For input,
the transport layer reads from the external device and fills the buffer.
The formatting layer receives characters from the buffer. When the
buffer is empty, the transport layer is responsible for refilling it.

» Locales. Both the formatting and the transport layers use the stream’s
locale. (See the section on internationalization and locales.) The
formatting layer delegates the handling of numeric entities to the locale’s
numeric facets. The transport layer uses the locale’s code conversion
facet for character-wise transformation between the buffer content and
characters transported to and from the external device. Figure 22 below
shows how locales are used with iostreams:

. . code conversion & external
program formatting & buffering buffer }
transport device
locale: locale:
numeric facets code conversion facet

Figure 22. Use of locales in iostreams

2.2.2.2 File and In-Memory 1/O
lostreams support two kinds of 1/0: file I/0 and in-memory 1/O.

File 170 involves the transfer of data to and from an external device. The
device need not necessarily be a file in the usual sense of the word. It could

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 55
Stream Input/Output

just as well be a communication channel, or another construct that conforms
to the file abstraction.

In contrast, in-memory 1/0 involves no external device. Thus code
conversion and transport are not necessary; only formatting is performed.
The result of such formatting is maintained in memory, and can be retrieved
in the form of a character string.

2.2.3 How Do the Standard lostreams Help Solve Problems?

There are many situations in which iostreams are useful:

File 1/0. lostreams can still be used for input and output to files,
although file 170 has lost some of it former importance. In the past,
alpha-numeric user-interfaces were often built using file input/output to
the standard input and output channels. Today almost all applications
have graphical user interfaces.

Nevertheless, iostreams are still useful for input and output to files other
than the standard input and output channels, and to all other kinds of
external media that fit into the file abstraction. For example, the Rogue
Wave class library for network communications programming, Net.h++,
uses iostreams for input and output to various kinds of communication
streams like sockets and pipes.

In-Memory 1/O. lostreams can perform in-memory formatting and
parsing. Even with a graphical user interface, you have to format the
text you want to display. The standard iostreams offer internationalized
in-memory 1/0, which is a great help for text processing tasks like
formatting. The formatting of numeric values, for example, depends on
cultural conventions. The formatting layer uses a locale’s numeric facets
to adapt its formatting and parsing to cultural conventions.

Internationalized Text Processing. This function is actively supported
by iostreams.

lostreams use locales. As locales are extensible, any kind of facet can be
carried by a locale, and thus used by a stream. By default, iostreams use
only the numeric and the code conversion facets of a locale. However,
date , time, and monetary facets are available in the Standard C++
Library. Other cultural dependencies can be encapsulated in unique
facets and made accessible to a stream. You can easily internationalize
your use of iostreams to meet your needs.

Binary 1/0. The traditional iostreams suffer from a number of
limitations. The biggest is the lack of conversion abilities: if you insert a
double into a stream, for example, you do not know what format will be
used to represent this double on the external device. There is no portable
way to insert it as binary.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 56
Stream Input/Output

Standard iostreams are by far more flexible. The code conversion
performed on transfer of internal data to external devices can be
customized: the transport layer delegates the task of converting to a
code conversion facet. To provide a stream with a suitable code
conversion facet for binary output, you can insert a double into a file
stream in a portable binary data exchange format. No such code
conversion facets are provided by the Standard Library, however, and
implementing such a facet is not trivial. As an alternative, you might
consider implementing an entire stream buffer layer that can handle
binary I/70.

« Extending lostreams. In away, you can think of iostreams as a
framework that can be extended and customized. You can add input
and output operators for user-defined types, or create your own
formatting elements, the manipulators. You can specialize entire
streams, usually in conjunction with specialized stream buffers. You can
provide different locales to represent different cultural conventions, or to
contain special purpose facets. You can instantiate iostreams classes for
new character types, other than char or wchar t .

2.2.4 The Internal Structure of the lostreams Layers

As explained earlier, iostreams have two layers, one for formatting, and
another for code conversion and transport of characters to and from the
external device. For convenience, let’s repeat here in Figure 23 the illustration
of the iostreams layers given in Figure 21 of Section 2.2.2:

code conversion & external

program formatting & buffering buffer transport -

Figure 23. The iostreams layers

This section will give a more detailed description of the iostreams software
architecture, including the classes and their inheritance relationship and
respective responsibilities. If you would rather start using iostreams directly,
go on to Section 2.3.

2.2.4.1 The Internal Structure of the Formatting Layer

Classes that belong to the formatting layer are often referred to as the stream
classes. Figure 24 illustrates the class hierarchy of all the stream classes:

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 57
Stream Input/Output

ios_base

basic_ios<charT:class,traits:class>

basic_istream<charT:class,traits:class> basic_ostream<charT:class,traits:class>

v

basic_iostream<charT:class, traits:class>

basic_istringstream
<charT:class, traits:class>

basic_stringstream
<charT:class, traits:class>

basic_ostringstream
<charT:class, traits:class>

basic_ifstream
<charT:class, traits:class,
Allocator:class>

basic_fstream
<charT:class, traits:class,
Allocator:class>

basic_ofstream
<charT:class, traits:class,
Allocator:class>

Figure 24. Internal class hierarchy of the formatting layer 14

14 The classes strstream , istrstream , and ostrstream are
described in the Class Reference, but not this User's Guide.
These classes are sometimes called deprecated features in
the standard; i.e., they are provided solely for the sake of
compatibility with the traditional iostreams, and will not
be supported in future versions of the standard iostreams.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 58
Stream Input/Output

Let us discuss in more detail the components and characteristics of the class
hierarchy given in the figure:

» The lostreams Base Class ios_base. This class is the base class of all
stream classes. Independent of character type, it encapsulates
information that is needed by all streams. This information includes:

« Control information for parsing and formatting;

- Additional information for the user’s special needs (a way to extend
iostreams, as we will see later on);

« The locale imbued on the stream;

Additionally, ios_base defines several types that are used by all stream
classes, such as format flags, status bits, open mode, exception class, etc.

e The lostreams Character Type-Dependent Base Class. Here is the
virtual base class for the stream classes:

basic_ios<class charT, class traits=char_traits<charT> >

« Theclass holds a pointer to the stream buffer, and
« State information that reflects the integrity of the stream buffer;

Note that basic_ios<> is a class template taking two parameters, the
type of character handled by the stream, and the character traits.

The type of character can be type char for single-byte characters, or type
wchar_t for wide characters, or any other user-defined character type.
There are instantiations for char and wchar_t provided by the Standard
C++ Library.

For convenience, there are typedefs for these instantiations:
typedef basic_ios<char> ios and typedef basic_ios<wchar_t> wios

Note that ios is not a class anymore, as it was in the traditional iostreams.
If you have existing programs that use the old iostreams, they may no
longer be compilable with the standard iostreams. (See list of
incompatibilities in section 2.14)

e Character Traits. These describe the properties of a character type.
Many things change with the character type, such as:

« The end-of-file value. For type char, the end-of file value is
represented by an integral constant called EOF For type wchar t
there is a constant defined that is called WEOF For an arbitrary user-
defined character type, the associated character traits define what the
end-of-file value for this particular character type is.

« The type of the EOFvalue. This needs to be a type that can hold the
EOFvalue. For example, for single-byte characters, this type isint ,
different from the actual character type char .

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 59
Stream Input/Output

- The equality of two characters. For an exotic user-defined character
type, the equality of two characters might mean something different
from just bit-wise equality. Here you can define it.

A complete list of character traits is given in the string section that
explains character traits.

There are specializations defined for type char and wchar_t . In general,
this class template is not meant to be instantiated for a character type.
You should always define class template specializations.

Fortunately, the Standard C++ Library is designed to make the most
common cases the easiest. The traits template parameter has a sensible
default value, so usually you don't have to bother with character traits at
all.

e The Input and Output Streams. The three stream classes for input and
output are:

basic_istream <class charT, class traits=char_traits<charT> >
basic_ostream <class charT, class traits=char_traits<charT> >
basic_iostream<class charT, class traits=char_traits<charT> >

Class istream handles input, class ostream is for output. Class iostream
deals with input and output; such a stream is called a bidirectional stream.

The three stream classes define functions for parsing and formatting,
which are overloaded versions of operator>>() for input, called
extractors, and overloaded versions of operator<<() for output, called
inserters.

Additionally, there are member functions for unformatted input and
output, like get() , put() , etc.

e The File Streams. The file stream classes support input and output to
and from files. They are:
basic_ifstream<class charT, class traits=char_traits<charT> >

basic_ofstream<class charT, class traits=char_traits<charT> >
basic_fstream<class charT, class traits=char_traits<charT> >

There are functions for opening and closing files, similar to the C
functions fopen() and fclose() . Internally they use a special kind of
stream buffer, called a file buffer, to control the transport of characters
to/from the associated file. The function of the file streams is illustrated
in Figure 25:

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 60
Stream Input/Output

basic_filebuf

basic_ofstream ;
<charT:class,traits:class>

<charT:class,traits:class>

program s open() external
open() close() file
close() overflow()

underflow()

formatting transport destination

Figure 25. File I/O

e The String Streams. The string stream classes support in-memory 1/0;
that is, reading and writing to a string held in memory. They are:
basic_istringstream<class charT, class traits=char_traits<charT> >
basic_ostringstream<class charT, class traits=char_traits<charT> >
basic_stringstream<class charT, class traits=char_traits<charT> >
There are functions for getting and setting the string to be used as a
buffer. Internally a specialized stream buffer is used. In this particular
case, the buffer and the external device are the same. Figure 26 below
illustrates how the string stream classes work:

basic_stringbuf

basic_ostringstream <charT:class,traits:class>
<charT:class, traits:class>
str()
rogram »>
prog str) str(basic_string<charT>&)
str(basic_string<charT>&) overflow()

underflow()

formatting transport == destination

Figure 26. In-memory 1/O

2.2.4.2 The Transport Layer’s Internal Structure

basic_streambuf
<charT:class,traits:class>

basic_stringbuf basic_rilepur
<charT:class,traits:class <charT:class,traits:class,
Allocator:class> Allocator:class>
Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 61

Stream Input/Output

Classes of the transport layer are often referred to as the stream buffer
classes. Figure 27 gives the class hierarchy of all stream buffer classes:

Figure 27. Hierarchy of the transport layer

The stream buffer classes are responsible for transfer of characters from and
to external devices.

e The Stream Buffer. This class represents an abstract stream buffer:

basic_streambuf<class charT, class traits=char_traits<charT> >

It does not have any knowledge about the external device. Instead, it
defines two virtual functions, overflow() ~ and underflow() , to perform
the actual transport. These two functions have knowledge of the
peculiarities of the external device they are connected to. They have to
be overwritten by all concrete stream buffer classes, like file and string
buffers.

The stream buffer class maintains two character sequences: the get area,
which represents the input sequence read from an external device, and
the put area, which is the output sequence to be written to the device.
There are functions for providing the next character from the buffer, such
as sgetc() , etc. They are typically called by the formatting layer in order
to receive characters for parsing. Accordingly, there are also functions
for placing the next character into the buffer, such as sputc() , etc.

A stream buffer also carries a locale object.

e The File Buffer. The file buffer classes associate the input and output
sequences with afile. A file buffer takes the form:

basic_filebuf<class charT, class traits=char_traits<charT> >

The file buffer has functions like open() and close() . The file buffer
class inherits a locale object from its stream buffer base class. It uses the
locale’s code conversion facet for transforming the external character
encoding to the encoding used internally. Figure 28 shows how the file

L T

I~ external file

buffer (wide characters)

(multi-byte characters)

buffer works:

Figure 28. Character code conversion performed by the file buffer

e The String Stream Buffer. These classes implement the in-memory 1/0:

basic_stringbuf<class charT, class traits=char_traits<charT> >

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 62
Stream Input/Output

With string buffers, the internal buffer and the external device are one
and the same. The internal buffer is dynamic, in that it is extended if
necessary to hold all the characters written to it. You can obtain copies of
the internally held buffer, and you can provide a string to be copied into
the internal buffer.

2.2.4.3 Collaboration of Streams and Stream Buffers

The base class basic_ios<> holds a pointer to a stream buffer. The derived
stream classes, like file and string streams, contain a file or string buffer
object. The stream buffer pointer of the base class refers to this embedded
object. This architecture is illustrated in Figure 29 below:

basic_streambuf<charT,traits> *

basic_ios<charT,traits>

basic_filebuf<charT,traits>

A

\—basic_ifstream<charT,traits> L

Figure 29. How an input file stream uses a file buffer

Stream buffers can be used independently of streams, as for unformatted
170, for example. However, streams always need a stream buffer.

2.2.4.4 Collaboration of Locales and lostreams

The base class ios_base contains a locale object. The formatting and parsing
functions defined by the derived stream classes use the numeric facets of that
locale.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 63
Stream Input/Output

The class basic_ios<charT> holds a pointer to the stream buffer. This
stream buffer has a locale object, too, usually a copy of the same locale object
used by the functions of the stream classes. The stream buffer’s input and
output functions use the code conversion facet of the attached locale. Figure 30
below illustrates the architecture:

locale I

locale I B

basic_filebuf<charT,traits>

basic_ifstream<charT,traits>

Figure 30. How an input file stream uses locales

2.3 Formatted Input/Output

This section describes the formatting facilities of iostreams. Here we begin
using the predefined streams, and see how to do simple input and output.
We then explore in detail how to control parsing and formatting.

2.3.1 The Predefined Streams

There are eight predefined standard streams that are automatically created
and initialized at program start. These standard streams are associated with
the C standard files stdin , stdout , and stderr , as shown in Table 3:

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 64
Stream Input/Output

Table 3. Predefined standard streams with their associated C standard files

Narrow Wide Associated
character character C standard
stream stream files
cin wcin stdin
cout wcout stdout
cerr weerr siderr
clog clog qtderr

Like the C standard files, these streams are all associated by default with the
terminal.

The difference between clog and cerr is that clog is fully buffered, whereas
output to cerr is written to the external device after each formatting. With a
fully buffered stream, output to the actual external device is written only
when the buffer is full. Thus clog is more efficient for redirecting output to a
file, while cerr is mainly useful for terminal 1/0. Writing to the external
device after every formatting, to the terminal in the case of cerr , serves the
purpose of synchronizing output to and input from the terminal.

The standard streams are initialized in such a way that they can be used in
constructors and destructors of static objects. Also, the predefined streams
are synchronized with their associated C standard files. See Section 2.10.5 for
details.

2.3.2 Input and Output Operators

Now let’s try to do some simple input and output to the predefined streams.
The iostreams facility defines shift operators for formatted stream input and
output. The output operator is the shift operator operator<<() , also called
the inserter (defined in Section 2.2.4.1):

cout << “result: “ << x << \n’;

Input is done through another shift operator operator>>() , often referred to
as the extractor (also defined in Section 2.2.4.1):

cin>>x>>y;

Both operators are overloaded for all built-in types in C++, as well as for
some of the types defined in the Standard C++ Library; for example, there
are inserters and extractors for bool , char , int , long , float , double , string
etc. When you insert or extract a value to or from a stream, the C++ function
overload resolution chooses the correct extractor operator, based on the
value’s type. This is what makes C++ iostreams type-safe and better than C
stdio (see Section 2.2.1.1).

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 65
Stream Input/Output

It is possible to print several units in one expression. For example:

cout << “result: “ << x;

is equivalent to:

(cout.operator<<(“‘result: “)).operator<<(x);

This is possible because each shift operator returns a reference to the
respective stream. Almost all shift operators for built-in types are member

functions of their respective stream class.1® They are defined according to
the following patterns:
template<class charT, class traits>

basic_istream<charT, traits>&
basic_istream<charT, traits>::operator>>(type& X)

/l read x
return *this;

}

and:

template<class charT, class traits>
basic_ostream<charT, traits>&
basic_ostream<charT, traits>::operator<<(type x)

Il write X
return *this;

Simple input and output of units as shown above is useful, yet not sufficient
in many cases. For example, you may want to vary the way output is
formatted, or input is parsed. lostreams allow you to control the formatting
features of its input and output operators in many ways. With iostreams,
you can specify:

e The width of an output field and the adjustment of the output within this
field;

* The precision and format of floating point numbers, and whether or not
the decimal point should always be included;

* Whether you want to skip white spaces when reading from an input
stream,;

* Whether integral values are displayed in decimal, octal or hexadecimal
format,

and many other formatting options.

15 The shift operators for the character types, like char and
wchar_t , are an exception to this rule; they are global
functions in the standard library namespace ::std

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 66
Stream Input/Output

There are two mechanisms that have an impact on formatting:
» Formatting control through a stream’s format state, and

» Localization through a stream’s locale.

The stream’s format state is the main means of format control, as we will
demonstrate in the next section.

2.3.3 Format Control Using the Stream’s Format State

2.3.3.1 Format Parameters

Associated with each stream are a number of format state variables that control
the details of formatting and parsing. Format state variables are classes
inherited from a stream's base class, either ios_base or
basic_ios<charT,traits>. There are two kinds of format parameters:

e Parameters that can have an arbitrary value. The value is stored as a
private data member in one of the base classes, and set and retrieved
through public member functions inherited from that base class. There
are three such parameters, described in Table 4 below:

Table 4. Format parameters with arbitrary values

Access Defined in Effect Default
function

base class
width() ios_base Minimal field width | O
precision() ios_base Precision of floating | 6

point values
fill) basic_ios Fill character for The space
. padding character
<charT,traits>

» Parameters that can have only a few different values, typically two or
three. They are represented by one or more bits in a data member of
type fmtflags in class ios_base. These are usually called format flags.
You can set format flags using the setf() function in class ios_base,
clear them using unsetf() , and retrieve them through the flags()
function.

Some format flags are grouped because they are mutually exclusive; for
example, output within an output field can be adjusted to the left or to
the right, or to an internally specified adjustment. One and only one of

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 67
Stream Input/Output

the corresponding three format flags, left ,right , orinternal , can be

set.16 If you want to set one of these bits to 1, you need to set the other
two to 0. To make this easier, there are bit groups whose main function is
to reset all bits in one group. The bit group for adjustment is

adjustfield , defined as left | right | internal

Table 5 below gives an overview of all format flags and their effects on input
and output operators. (For details on how the format flags affect input and
output operations, see the Class Reference entry for ios_base.) The first
column below, format flag, lists the flag names; for example, showpos stands
for ios_base::showpos . The group column lists the name of the group for
flags that are mutually exclusive. The third column gives a brief description
of the effect of setting the flag. The stdio column refers to format characters
used by the C functions scanf() or printf() that have the same or similar
effect. The last column, default, lists the setting that is used if you do not
explicitly set the flag.

Table 5: Flags and their effects on operators

Format flag | Group Effect stdio | Default
adjustfield Adds fill characters to left 17
certain generated output
for adjustment:
left left -
right right 0
internal .
adds fill characters at
designated internal point
basefield Converts integer input or | %i dec
generates integer output
in:
dec decimal base %d,%u
oct octal base %o
hex hexadecimal base %x

16 |ostreams does not prevent you from setting other invalid
combinations of these flags, however.

17 Initially, none of the bits is set. This is more or less equivalent to
left

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 68
Stream Input/Output

fixed

scientific

floatfield

Generates floating point
output:

in fixed-point notation

in scientific notation

%0, %G

%f

%e,%E

fixed

boolalpha

Inserts and extracts bool
values in alphabetic
format

showpos

Generates a + sign in
non-negative generated
numeric output

showpoint

Always generates a
decimal-point in
generated floating-point
output

showbase

Generates a prefix
indicating the numeric
base of a generated
integer output

skipws

Skips leading white
space before certain
input operations

unitbuf

Flushes output after each
formatting operation

uppercase

Replaces certain
lowercase letters with
their uppercase
equivalents in generated
output

%X
%E
%G

The effect of setting a format parameter is usually permanent; that is, the
parameter setting is in effect until the setting is explicitly changed. The only
exception to this rule is the field width. The width is automatically reset to
its default value 0 after each input or output operation that uses the field

width.18 Here is an example:

18 The details of exactly when width is reset to zero are not

specified in the standard at this time.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.
Stream Input/Output

69

int i; char* s[11];
cin >> setw(10) >>i>>s; \\1
cout << setw(10) <<i<<s; \2

/I1 Extracting an integer is independent of the specified field width. The
extractor for integers always reads as many digits as belong to the
integer. As extraction of integers does not use the field width setting,
the field width of 10 is still in effect when a character sequence is
subsequently extracted. Only 10 characters will be extracted in this
case. After the extraction, the field width is reset to 0.

/12 The inserter for integers uses the specified field width and fills the field
with padding characters if necessary. After the insertion, it resets the
field width to 0. Hence, the subsequent insertion of the string will not
fill the field with padding characters for a string with less than 10
characters.

Please note: With the exception of the field width, all format parameter
settings are permanent. The field width parameter is reset after each use.

The following code sample shows how you can control formatting by using
some of the parameters:

#include <iostream>
using namespace ::std;
Ik

ios_base::fmtflags original_flags = cout.flags(); \\1
cout<< 812<<'[;
cout.setf(ios_base::left,ios_base::adjustfield); \\2
cout.width(10); \3
cout<< 813 << 815 << '\n;
cout.unsetf(ios_base::adjustfield); \\"4
cout.precision(2);
cout.setf(ios_base::uppercaselios_base::scientific); \5
cout<<831.0<<'‘<<8e2;

cout.flags(original_flags); \\6

/I1 Store the current format flag setting, in order to restore it later on.
/2 Change the adjustment from the default setting right to left

/I3 Set the field width from its default 0 to 10. A field width of 0 means
that no padding characters are inserted, and this is the default behavior
of all insertions.

/14 Clear the adjustment flags.

/I5 Change the precision for floating-point values from its default 6 to 2,
and set yet another couple of format flags that affect floating-point
values.

/I6 Restore the original flags.

The output is:
812|813 815
8.31E+02 8.00E+02

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.
Stream Input/Output

70

2.3.3.2 Manipulators

Format control requires calling a stream’s member functions. Each such call
interrupts the respective shift expression. But what if you need to change
formats within a shift expression? This is possible in iostreams. Instead of
writing:

cout<< 812 << [

cout.setf(ios_base:left,ios_base::adjustfield);

cout.width(10);
cout<< 813 << 815 << '\n;

you can write:

cout<< 812 << '|' << left << setw(10) << 813 << 815 << end;
In this example, objects like left , setw , and endl are called manipulators. A
manipulator is an object of a certain type; let’s call the type manip for the time
being. There are overloaded versions of basic_istream <charT traits>::
operator>>() and basic_ostream <charT,traits>:: operator<<() for
type manip . Hence a manipulator can be extracted from or inserted into a
stream together with other objects that have the shift operators defined.

(Section 2.8 explains in greater detail how manipulators work and how you
can implement your own manipulators.)

The effect of a manipulator need not be an actual input to or output from the
stream. Most manipulators set just one of the above described format flags,
or do some other kind of stream manipulation. For example, an expression
like:

cout << left;
is equivalent to:

cout.setf (ios_base::left, ios_base::adjustfield);.
Nothing is inserted into the stream. The only effect is that the format flag for
adjusting the output to the left is set.

On the other hand, the manipulator endl inserts the newline character to the
stream, and flushes to the underlying stream buffer. The expression:

cout << endl;

is equivalent to:

cout << ‘\n’; cout.flush();
Some manipulators take arguments, like setw(int) . The setw manipulator
sets the field width. The expression;

cout << setw(10);

is equivalent to:
cout.width(10);

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 71
Stream Input/Output

In general, you can think of a manipulator as an object you can insert into or
extract from a stream, in order to manipulate that stream.

Some manipulators can be applied only to output streams, others only to
input streams. Most manipulators change format bits only in one of the
stream base classes, ios_base or basic_ios<charT,traits>. These can be
applied to input and output streams.

Table 6 below gives an overview of all manipulators defined by iostreams.
The first column, Manipulator, lists its name. All manipulators are classes
defined in the namespace :std . The second column, Use, indicates whether
the manipulator is intended to be used with istreams (i), ostreams (o), or
both (io). The third column, Effect, summarizes the effect of the
manipulator. The last column, Equivalent, lists the corresponding call to the
stream’s member function.

Note that the second column indicates only the intended use of a manipulator.
In many cases, it is possible to apply an output manipulator to an input
stream, and vice versa. Generally, this kind of non-intended manipulation is
harmless in that it has no effect. For instance, if you apply the output
manipulator showpoint to an input stream, the manipulation will simply be
ignored. However, if you use an output manipulator on a bidirectional
stream during input, the manipulation will affect not current input
operations, but subsequent output operations.

Table 6: Manipulators

Manipulator Use | Effect Equivalent

boolalpha

i Puts bool values in io.setf(ios_base::boolalpha)
alphabetic format

dec io Converts integers io.setf(ios_base::dec,
. ios_base::basefield)

to/from decimal
notation

end 0 Inserts newline and o.put(o.widen(\n));
flushes buffer o.fiush()

ends o] Inserts end of string o.put(o.widen(\0"))
character

fixed (i i o.setf(ios_base::fixed,
Puts flo_atlr_19 pOIn'F ios_base::floatfield)
values in fixed-point
notation

flush Flushes stream buffer | o-flushQ

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 72
Stream Input/Output

hex io Converts integers io.setf(ios_base:hex,
. ios_base::basefield)
to/from hexadecimal
notation
internal o Adds fill characters at | 0-setf(ios_base::internal,
a designated internal los,_baseradjustield)
point
left g Adds fill characters o.seff(ios_base:left,
. ios_base::adjustfield)
for adjustment to the
left
noboolalpha i Resets the above io.unsetf(ios_base::boolalpha)
noshowbase o Resets the above o.unsetf (ios_base::showbase)
noshowpoint q Resets the above o.unsetf (ios_base::showpoint)
noshowpos o} Resets the above o.unsetf (ios_base::showpos)
noskipws Resets the above i.unsetf(ios_base::skipws)
nounitbuf 0 Resets the above o.unsetf(ios_base::unitbuf)
nouppercase Resets the above o.unsetf (ios_base::uppercase)
oct io Converts to/from io.setf(ios_base::oct,
octal notation ios_base::basefield)
resetiosflags io Clears ios flags io.setf((ios_base::fmtflags)0,
(ios_base::fmtflag mask)
s mask)
right g Adds fill characters 0.seff(los_baseright,
. ios_base::adjustfield)
for adjustment to the
right
scientific i i o.setf(ios_base::scientific,
s teangpont |
notation
setbase io Sets base for integer io.setf (base ==
intb . 87ios_base::oct: base == 10 ?
(int base) notation (base =8, 10, | ios_base:dec : base == 16 ?

16)

ios_base::hex :
ios_base::fmtflags(0),
ios_base::basefield)

seffill(charT c)

io

Sets fill character for
padding

io fill(c)

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.

Stream Input/Output

73

setiosflags io Sets ios flags io.setf(mask)

(ios_base::fmtflag

s mask)

setprecision io Sets precision of io.precision(n)

(intn) floating point values

setw(int n) io Sets minimal field io.width(n)
width

showbase 0 Generates a prefix o.setf(ios_base::showbase)
indicating the
numeric base of an
integer

ShOWpOint q Always generates a o.setf(ios_base::showpoint)
decimal-point for
floating-point values

showpos o] Generates a + sign for o.setf(ios_base::showpos)
non-negative numeric
values

skipws i Skips leading white i.setf(ios_base::skipws)
space

unitbuf 0 Flushes output after o.setf(ios_base::unitbuf)
each formatting
operation

uppercase D Rep|aces certain o.setf(ios_base::uppercase)
lowercase letters with
their uppercase
equivalents

ws i Skips white spaces

2.3.4 Localization Using the Stream’s Locale

Associated with each stream is a locale that impacts the parsing and
formatting of numeric values. This is how localization of software takes
place. As discussed in the section on locale, the representation of numbers
often depends on cultural conventions. In particular, the decimal point need
not be a period, as in the following example:

cout.imbue(locale(“De_DE"));
cout << 1000000.50 << endl;

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 74
Stream Input/Output

The output will be:
1000000,50

Other cultural conventions, like the grouping of digits, are irrelevant. There
is no formatting of numeric values that involves grouping.19

2.3.5 Formatted Input

In principle, input and output operators behave symmetrically. There is only
one important difference: for output you control the precise format of the
inserted character sequence, while for input the format of an extracted
character sequence is never exactly described.

This is for practical reasons. You may want to extract the next floating point
value from a stream, for example, without necessarily knowing its exact
format. You want it whether it is signed or not, or in exponential notation
with a small or capital E for the exponent, etc. Hence, extractors in general
accept an item in any format permitted for its type.

Formatted input is handled as follows:

1. Extractors automatically ignore all white space characters (blanks,
tabulators, newlines 20) that precede the item to be extracted.

2. When the first relevant character is found, they extract characters from
the input stream until they find a separator; that is, a character that does
not belong to the item. White space characters in particular are
separators.

3. The separator remains in the input stream and becomes the first
character extracted in a subsequent extraction.

Several format parameters, which control insertion, are irrelevant for
extraction. The format parameter fill character, fill() , and the adjustment
flags, left ,right ,andinternal , have no effect on extraction. The field
width is relevant only for extraction of strings, and ignored otherwise.

2.3.5.1 Skipping Characters

19 The standard does not specify whether the grouping
information, that is contained in a stream's locale's
numpunct facet, is ignored or taken into account if
present. In any case, there are no manipulators that allow
to switch on and off the grouping.

20 The classification of a character as a white space character
depends on the character set used. The extractor takes the
information from the locale’s ctype facet.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 75
Stream Input/Output

You can use the manipulator noskipws to switch off the automatic skipping
of white space characters. For example, extracting white space characters
may be necessary if you expect the input has a certain format, and you need
to check for violations of the format requirements. This procedure is shown
in the following code:

cin >> noskipws;

charc;
do
{float fl;
c="%cin>>fl>>c; // extract number and separator
if c=="||c=="") // nextcharis ", or newline ?
process(fl); Il yes: use the number
while (c=="");

if (=) errér(); /I no: error!

If you have to skip a sequence of characters other than white spaces, you can
use the istream’s member function ignore() . The call:
basic_ifstream<myChar,myTraits> InputStream(“file-name”);

InputStream.ignore(numeric_limits<streamsize>::max()
,myChar(\n"));

or, for ordinary tiny characters of type char :

ifstream InputStream(“file-name”);
InputStream.ignore(INT_MAX,\n’);

ignores all characters until the end of the line. This example uses a file
stream that is not predefined. File streams are described in Section 2.5.3.

2.3.5.2 Input of Strings

When you extract strings or character arrays from an input stream,
characters are read until:

e A white space character is found, or
e The end of the input is reached, or

« A certain number of characters are extracted, if width() =0 . In case of
a string this number is the field width width(). In case of a character
array this number is width()-1.

Note that the field width will be reset to 0 after the extraction of a string.

There are subtle differences between extracting a character sequence into a
character array and extracting it into a string object. For example:

char buf[SZ];
cin >> buf;

is different from:

string s;
cin>>s;

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 76
Stream Input/Output

Extraction into a string is safe, because strings automatically extend their
capacity as necessary. You can extract as many characters as you want since
the string always adjusts its size accordingly. Character arrays, on the other
hand, have fixed size and cannot dynamically extend their capacity. If you
extract more characters than the character array can take, the extractor writes
beyond the end of the array. To prevent this, you must set the field width as
follows each time you extract characters into a character array:

char buf[SZ];
cin >>width(SZ) >> buf;

2.4 Error State of Streams

It probably comes as no surprise that streams have an error state. Our
examples have avoided it to this point, so we'll deal with it now. When an
error occurs, flags are set in the state according to the general category of the
error. Flags and their error categories are summarized in Table 7 below:

Table 7: Flags and corresponding error categories

iostate flag Error category

ios_base::goodbit Everything’s fine

ios_base::eofbit An input operation reached the end of an input
sequence

ios_base::failbit An input operation failed to read the expected

character, or

An output operation failed to generate the desired
characters

ios_base::badbit Indicates the loss of integrity of the underlying
input or output sequence

Note that the flag ios_base::goodbit is not really a flag; its value, zero,
indicates the absence of any error flag. It means the stream is OK. By
convention, all input and output operations have no effect once the stream
state is different than zero.

There are several situations when both eofbit and failbit are set; however,
the two have different meanings and do not always occur in conjunction.
The flag ios_base::eofbit is set when there is an attempt to read past the
end of an input sequence. This occurs in the following two typical examples:

1. Assume the extraction happens character-wise. Once the last character is
read, the stream is still in good state; eofbit is not yet set. Any
subsequent extraction, however, will be considered an attempt to read
past the end of the input sequence. Thus, eofbit ~ will be set.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 7
Stream Input/Output

If you do not read character-wise, but extract an integer or a string, for
example, you will always read past the end of the input sequence. This
is because the input operators read characters until they find a separator,
or hit the end of the input sequence. If the input contains the sequence

... 912749<eof> and an integer is extracted, eofbit will be set.

The flag ios_base:failbit is set as the result of a read or write operation
that fails. For example, if you try to extract an integer from an input
sequence containing only white spaces, the extraction fails, and the failbit

is set. Let's see whether failbit would be set in the previous examples:

1.

After reading the last available character, the extraction not only reads
past the end of the input sequence; it also fails to extract the requested
character. Hence, failbit is set in addition to eofbit

Here it is different. Although the end of the input sequence is reached
by extracting the integer, the input operation does not fail and the
desired integer will indeed be read. Hence, in this situation only the
eofbit will be set.

In addition to these input and output operations, there are other situations
that can trigger failure. For example, file streams set failbit if the
associated file cannot be opened (see Section 2.5).

The flag ios_base::badbit indicates problems with the underlying stream
buffer. These problems could be:

Memory shortage. There is no memory available to create the buffer, or
the buffer has size zero for other reasons?!, or the stream cannot allocate
memory for its own internal data?2, as with iword and pword .

The underlying stream buffer throws an exception. The stream buffer
might lose its integrity, as in memory shortage, or code conversion
failure, or an unrecoverable read error from the external device. The
stream buffer can indicate this loss of integrity by throwing an exception,
which is caught by the stream and results in setting the badbit in the
stream’s state.

Generally, you should keep in mind that badbit indicates an error situation
that is likely to be unrecoverable, whereas failbit indicates a situation that

21 The stream buffer can be created as the stream’s responsibility,
or the buffer can be provided from outside the stream, so
inadvertently the buffer could have zero size.

22 The standard does not yet specify whether the inability to
allocate memory for the stream’s internal data will result
in a badbit setorabad_alloc orios_base::failure
thrown.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 78
Stream Input/Output

might allow you to retry the failed operation. The flag eofbit simply
indicates the end of the input sequence.

What can you do to check for such errors? You have two possibilities for
detecting stream errors:

* You can declare that you want to have an exception raised once an error
occurs in any input or output operation, or

e You can actively check the stream state after each input or output
operation.

We will explore these possibilities in the next two sections.

2.4.1 Checking the Stream State

Let’s first examine how you can check for errors using the stream state. A
stream has several member functions for this purpose, which are
summarized with their effects in the Table 8:

Table 8. Stream member functions for error checking

ios_base member function Effect

bool good() True if no error flag is set

bool eof() True if eofbit is set

bool fail() True if failbit or badbit is set

bool bad() True if badbit is set

bool operator!() As fail()

operator void*() Null pointer if fail) and
non-null value otherwise

iostate rdstate() Value of stream state

It is a good idea to check the stream state in some central place, for example:
if (‘cout) error();

The state of cout is examined with operator!() , which will return true if the
stream state indicates an error has occurred.

An ostream can also appear in a boolean position to be tested as follows:

if (cout << x) // okay!

The magic here is the operator void*() that returns a non-zero value when
the stream state is hon-zero.

Finally, the explicit member functions can also be used:

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 79
Stream Input/Output

if (cout << x, cout.good()) // okay!;

Note that there is a difference between good() and operator!() . The
function good() takes all flags into account; operator!() and fail() ignore
eofbit

2.4.2 Catching Exceptions

By default a stream does not throw any exceptions.23 You have to explicitly
activate an exception because a stream contains an exception mask. Each flag
in this mask corresponds to one of the error flags. For example, once the
badbit flag is set in the exception mask, an exception will be thrown each
time the badbit flag gets set in the stream state. The following code
demonstrates how to activate an exception on an input stream InStr
try { o . o

InStr.exceptions(ios_base::badbit | ios_base:failbit); W1

in>>x;

/I do lots of other stream i/o

catch(ios_base::failure& exc) \\2
{ cerr << exc.what() << end]
throw;

}

/Il In calling the exceptions() ~ function, you indicate what flags in the
stream’s state shall cause an exception to be thrown.24

23 Actually, the standard does not yet specify how memory
allocation errors are to be handled in iostreams. Basically,
the two models are:

- Abad_alloc exception is thrown, regardless of whether
or not any bits in the exception mask are set.

- The streams layer catches bad_alloc exceptions thrown
during allocation of its internal resources, iword and
pword . It would then set badbit or failbit . An
exception would be thrown only if the respective bit in
the exception mask asks for it. It must be specified
whether the exception thrown in such a case would be
ios_failure or the original bad_alloc

Moreover, the streams layer must catch all exceptions
thrown by the stream buffer layer. It sets badbit and
rethrows the original exception if the exception mask
permits it.

24Note that each change of either the stream state or the exception
mask can result in an exception thrown. This is because

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 80
Stream Input/Output

/I2 Objects thrown by the stream’s operations are of types derived from
ios_base::failure . Hence this catch clause will catch all stream
exceptions in principle. We qualify this generalization because a stream
might fail to catch certain exceptions, e.g., bad alloc , so that exceptions
other than ios_base::failure might be raised. That's how exception
handling in C+ works: you never know what exceptions will be raised.

Generally, it is a good idea to activate the badbit exception and suppress the
eofbit and failbit exceptions, because the latter do not represent
exceptional states. A badbit situation, however, is likely to be a serious error
condition similar to the memory shortage indicated by a bad_alloc

exception. Unless you want to suppress exceptions thrown by iostreams
altogether, we would recommend that you switch on the badbit exception
and turn off eofbit and failbit

2.5 File Input/Output

File streams allow input and output to files. Unlike the C stdio functions for
file 1/0, however, file streams follow Stroustrup's idiom: “Resource
acquisition is initialization.”25 In other words, file streams provide an
advantage in that you can open a file on construction of a stream, and the file
will be closed automatically on destruction of the stream. Consider the
following code:

void use_file(const char* fleName)

{
FILE* f = fopen(“fileName”, “w");
Il use file
fclose(f);

If an exception is thrown while the file is in use here, the file will never be
closed. With a file stream, however, the file will be closed whenever the file
stream goes out of scope, as in the following example:

void use_file(const char* fleName)

ofstream f(“fleName”);
Il use file

}

Here the file will be closed even if an exception occurs during use of the open
file.

There are three class templates that implement file streams: basic_ifstream
<charT,traits>, basic_ofstream <chaurT,traits>, and basic_fstream

the functions steatite() and exception() raise an
exception in case the exception mask requires it.

25 gee Bjarne Stroustrup, The C++ Programming Language, p.308ff.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 81
Stream Input/Output

<charT,traits>. These templates are derived from the stream base class
basic_ios <charT, traits>. Therefore, they inherit all the functions for
formatted input and output described in Section 2.3, as well as the stream
state. They also have functions for opening and closing files, and a
constructor that allows opening a file and connecting it to the stream. For
convenience, there are the regular typedefs ifstream , ofstream , and
fstream , with wifstream , wofstream , and wfstream for the respective tiny
and wide character file streams.

The buffering is done through a specialized stream buffer class,
basic_filebuf <charT,traits>.

2.5.1 The Difference between Predefined File Streams (cin, cout,
cerr, and clog) and File Streams

The main differences between a predefined standard stream and a file stream
are:

» Afile stream needs to be connected to a file before it can be used. The
predefined streams can be used right away, even in static constructors
that are executed before the main() function is called.

* You can reposition a file stream to arbitrary file positions. This usually
does not make any sense with the predefined streams, as they are
connected to the terminal by default.

2.5.2 Code Conversion in Wide Character Streams

In a large character set environment, a file is assumed to contain multibyte
characters. To provide the contents of a such a file as a wide character
sequence for internal processing, wifstream and wofstream perform
corresponding conversions. The actual conversion is delegated to the file
buffer, which relays the task to the imbued locale’s code conversion facet.

2.5.3 File Streams

2.5.3.1 Creating and Opening File Stream Objects

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 82
Stream Input/Output

There are two ways to create a file stream?28: you can create an empty file
stream, open a file, and connect it to the stream later on; or you can open the
file and connect it to a stream at construction time. These two procedures are
demonstrated in the two following examples, respectively:

ifst.ream file; \\1
ﬁié.open(argv[l]); \2
if (file) // error: unable to open file for input
or:
ifstream source(“src.cpp”); \3

if ('source) // error: unable to open src.cpp for input

/11 Afile stream is created that is not connected to any file. Any operation
on the file stream will fail.

/12 Here afile is opened and connected to the file stream. If the file cannot
be opened, ios_base: failbit will be set; otherwise, the file stream is
now ready for use.

/I3 Here the file is both opened and connected to the stream.

2.5.3.2 Checking a File Stream’s Status

Generally you can check whether the attempt to open a file was successful by
examining the stream state afterwards; failbit will be set in case of failure.

There is also a function called is_open() that indicates whether a file stream
is connected to an open file. This function does not mean that a previous call
to open() was successful. To understand the subtle difference, consider the
case of a file stream that is already connected to a file. Any subsequent call
to open() will fail, butis_open() will still return true, as shown in the
following code:

26 The traditional iostreams supported a constructor, taking a file
descriptor, that allowed connection of a file stream to an
already open file. This is not available in the standard
iostreams. However, Rogue Wave’s implementation of
the standard iostreams provides a corresponding
extension (see section 2.15.1 for reference).

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 83
Stream Input/Output

void main(int argc, char* argv[])

if (argc > 2)

{ ofstream il n
fil.open(argv[1]);
...

fil.open(argv(2]); 12
if (fil.fail()) 113

{ I/ open failed }

if (fil.is_open()) /!
{ I/ connected to an open file }

}

/I1 Open afile and connect the file stream to it.
/12 Any subsequent open on this stream will fail.
/I3 Hence the failbit will be set.

/l4 However, is_open() still returns true, because the file stream still is
connected to an open file.

2.5.3.3 Closing a File Stream

In the example above, it would be advisable to close the file stream before
you try to connect it to another file. This is done implicitly by the file streams
destructor in the following:

void main(int argc, char* argv(])

if (argc > 2)

{ ofstream fil;
fil.open(argv[1]);
...

} n
{ ofstream fil;

fil.open(argv[2]);

...

}
}

/11 Here the file stream fil goes out of scope and the file it is connected to
will be closed automatically.

You can explicitly close the connected file. The file stream is then empty,
until it is reconnected to another file:

ifstream f; n
for (inti=1; i<argc; ++i)
f.open(argv(i]); 2
if (f) 3
process(f); /!
f.close(); 115
else
cerr << “file “ << argv[i] << *“ cannot be opened.\n”;
}
Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 84

Stream Input/Output

/Il An empty file stream is created.
/12 Afile is opened and connected to the file stream.

/13 Here we check whether the file was successfully opened. If the file
could not be opened, the failbit would be set.

/14 Now the file stream is usable, and the file’s content can be read and
processed.

/I5 Close the file again. The file stream is empty again.

2.5.4 The Open Mode

There may be times when you want to modify the way in which afile is
opened or used in a program. For example, in some cases it is desirable that
writes append to the end of a file rather than overwriting the existing values.
The file stream constructor takes a second argument, the open mode, that
allows such variations to be specified. Here is an example:

fstream Str(“inout.txt”,
ios_base::injios_base::outlios_base::app);

2.5.4.1 The Open Mode Flags

The open mode argument is of type ios_base::openmode , which is a bitmask
type like the format flags and the stream state. The following bits are
defined in Table 9:

Table 9. Flag names and effects

Flag Names Effects

ios_base:in Open file for reading

ios_base::out Open file for writing

ios_base::ate Start position is at file end

ios_base::app Append file; i.e., always writes to the
end of the file

ios_base::trunc Truncate file; i.e., delete file content

ios_base::binary Binary mode

2.5.4.1.1 Then andout Open Modes

Input (and output) file streams always have the in (or out) open mode flag
set implicitly. An output file stream, for instance, knows that it is in output
mode and you do not have to set the output mode explicitly. Instead of
writing:

ofstream Str(“out.txt”ios_base::outlios_base::app);

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 85
Stream Input/Output

you can simply say:

ofstream Str(“out.txt”ios_base::app);

Bidirectional file streams, on the other hand, do not have the flag set
implicitly. This is because a bidirectional stream does not have to be in both
input and output mode in all cases. You might want to open a bidirectional
stream for reading only or writing only. Bidirectional file streams therefore
have no implicit input or output mode. You always have to set a
bidirectional file stream's open mode explicitly.

2.5.4.1.2 The Open modes , app, andtrunc

Each file maintains a file position that indicates the position in the file where
the next byte will be read or written. When a file is opened, the initial file
position is usually at the beginning of the file. The open modes ate (meaning
at end) and app (meaning append) change this default to the end of the file.

There is a subtle difference between ate and app mode. If the file is opened
in append mode, all output to the file is done at the current end of the file,
regardless of intervening repositioning. Even if you modify the file position
to a position before the file’s end, you cannot write there. With at-end mode,
you can navigate to a position before the end of file and write to it.

If you open an already existing file for writing, you usually want to
overwrite the content of the output file. The open mode trunc (meaning
truncate) has the effect of discarding the file content, in which case the initial
file length is set to zero. Therefore, if you want to replace a file’s content
rather than extend the file, you have to open the file in outjrunc .27 Note
that the file position will be at the beginning of the file in this case, which is
exactly what you expect for overwriting an output file.

If you want to extend an output file, you open it in at-end or append mode.
In this case, the file content is retained because the trunc flag is not set, and
the initial file position is at the file’s end. However, you may additionally set
the trunc flag; the file content will be discarded and the output will be done
at the end of an empty file.

27 For output file streams the open mode out is equivalent to
outjtrunc , i.e. you can omit the trunc flag. For
bidirectional file streams, however, trunc must always be
explicitly specified.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 86
Stream Input/Output

Input mode only works for files that already exist. Otherwise, the stream
construction will fail, as indicated by failbit set in the stream state. Files
that are opened for writing will be created if they do not yet exist. The
constructor only fails if the file cannot be created.

2.5.4.1.3 Theinay Open Mode

The binary open mode is explained in section 2.5.4.3.

2.5.4.2 Combining Open Modes

The effect of combining these open modes is similar to the mode argument of
the C library function fopen(name,mode) . Table 10 gives an overview of all
permitted combinations of open modes for text files and their counterparts in
C stdio. Combinations of modes that are not listed in the table (such as both
trunc and app) are invalid, and the attempted open() operation will fail.

Table 10: Open modes and their C stdio counterparts

Open Mode C stdio Effect
Equivalent

in r Open text file for reading only

outjtrunc w Truncate to zero length, if existent, or create

out text file for writing only

outjapp Iy Append; open or create text file only for
writing at end of file

infout " Open text file for update (reading and
writing)

infoutltrunc “w+{ Truncate to zero length, if existent, or create

text file for update

“

T

injout|app a Append; open or create text file for update,

writing at end of file

2.5.4.3 Default Open Modes

The open mode parameter in constructors and open() functions of file stream
classes have a default value. The default open modes are listed in Table 11.
Note that abbreviations are used; e.g., ifstream stands for basic_ifstream
<charT traits>

Table 11. Default open modes

File Stream | Default Open Mode

ifstream in
ofstream ut
Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 87

Stream Input/Output

fstream i}wlout

2.5.5 Binary and Text Mode

The representation of text files varies among operating systems. For
example, the end of a line in a UNIX environment is represented by the
linefeed character \n' . On PC-based systems, the end of the line consists of
two characters, carriage return \r and linefeed \n* . The end of the file
differs as well on these two operating systems. Peculiarities on other
operating systems are also conceivable.

To make programs more portable among operating systems, an automatic
conversion can be done on input and output. The carriage return or linefeed
sequence, for example, can be converted to a single \n’ character on input;
the \n can be expanded to “\\nn” on output. This conversion mode is
called text mode, as opposed to binary mode. In binary mode, no such
conversions are performed.

The mode flag ios_base::binary has the effect of opening a file in binary
mode. This has the effect described above; in other words, all automatic

conversions, such as converting ‘i’ to \w, will be suppressed. 28

If you have to process a binary file you should always set the binary mode
flag, because most likely you will not want any kind of implicit, system-
specific conversion being performed.

The effect of the binary open mode is frequently misunderstood. It does not
put the inserters and extractors into a binary mode, and hence suppress the
formatting they usually perform. Binary input and output is done solely by
basic_istream <charT> ::read() and basic_ostream <charT> ::write()

2.6 In-Memory Input/Output

The iostreams facility supports not only input and output to external devices
like files. It also allows in-memory parsing and formatting. Source and sink
of the characters read or written becomes a string held somewhere in
memory. You use in-memory I/0 if the information to be read is already
available in the form of a string, or if the formatted result will be processed
as a string. For example, to interpret the contents of the string argv[1] as an
integer value, the code might look like this:

inti;
if (istringstream(argv[1]) >> i) n
28 Basically the binary mode flag is passed on to the respective
operating system's service function, which means that in
principle all system-specific conversions will be
suppressed, not only the carriage return/ linefeed
handling.
Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 88

Stream Input/Output

// use the value of i

/1 The parameter of the input string stream constructor is a string; here a
character array, namely argv[1l] , is provided as an argument and is
implicitly converted to a string. From this newly constructed input
string stream, which contains argv[1], an integer value is extracted.

The inverse operation, taking a value and converting it to characters that are
stored in a string, might look like this:
struct date {
int day,month,year;
} today = {8,4,1996};
ostringstream ostr; J/An
ostr << today.month << '-' << today.day <<'-' << today.year; //2
if (ostr)
display(ostr.str()); 13

/1 An output string stream is allocated.
/I2 Values are inserted into the output string stream.

/I3 The result of the formatting can be retrieved in the form of a string,
which is returned by str()

As with file streams, there are three class templates that implement string
streams: basic_istringstream <charT,traits,Allocator>,
basic_ostringstream <chaurT,traits,Allocator>, and basic_stringstream
<chaurT,traits,Allocator>. These are derived from the stream base classes,
basic_istream <charT, traits>, basic_ostream <charT, traits>, and
basic_iostream <charT, traits>. Therefore they inherit all the functions for
formatted input and output described in Section 2.3, as well as the stream
state. They also have functions for setting and retrieving the string that
serves as source or sink, and constructors that allow you to set the string
before construction time. For convenience, there are the regular typedefs
istringstream , ostringstream , and stringstream, with wistringstream ,
wostringstream , and wstringstream for the respective tiny and wide
character string streams.

The buffering is done through a specialized stream buffer class,
basic_stringbuf <charT,traits,Allocator>.

2.6.1 The Internal Buffer

String streams can take a string, provided either as an argument to the
constructor, or set later through the str(const basic_string <charT,

traits, Allocator>&) function. This string is copied into an internal buffer,
and serves as source or sink of characters to subsequent insertions or
extractions. Each time the string is retrieved through the str() function, a
copy of the internal buffer is created and returned.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 89
Stream Input/Output

Output string streams are dynamic.2® The internal buffer is allocated once an
output string stream is constructed. The buffer is automatically extended
during insertion each time the internal buffer is full.

Input string streams are always static. You can extract as many items as are
available in the string you provided the string stream.

2.6.2 The Open Modes

The only open modes that have an effect on string streams are in , out , ate ,
and app. They have more or less the same meaning that they have with file
streams (see section 2.5.4).

The binary open mode is irrelevant, because there is no conversion to and
from the dependent file format of the operating system. The trunc open
mode is simply ignored.

2.7 Input/Output of User-Defined Types

One of the major advantages of the iostreams facility is extensibility. Just as
you have inserters and extractors for almost all types defined by the C++
language and library, you can implement extractors and inserters for all your
own user-defined types. To avoid surprises, the input and output of user-
defined types should follow the same conventions used for insertion and
extraction of built-in types. In this section, you will find guidelines for
building a typical extractor and inserter for a user-defined type.

2.7.1 An Example Using a User-Defined Type

Let us work through a complete example with the following date class as the
user-defined type:

class date {
public:

date(intd, int m, int y);

date(const tmé& t);

date();

/I more constructors and useful member functions
private:

tm tm_date;

This class has private data members of type tm, which is the time structure
defined in the C library (in header file <ctime>).

29 This was different in the old iostreams, where you could have
dynamic and static output streams. See section 2.14.4 for
further details.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 90
Stream Input/Output

2.7.2 A Simple Extractor and Inserter for the Example

Following the read and write conventions of iostreams, we would insert and

extract the date object like this:

date birthday(2,6,1952);
cout << birthday << \n;

or

date aDate;

cout << '\n' << "Please, enter a date (day month year)" <<'\n';
cin >> aDate;
cout << aDate << '\n’;

For the next step, we would implement shift operators as inserters and
extractors for date objects. Here is an extractor for class date :

template<class charT, class Traits>

basic_istream<charT, Traits>& n

operator>> (basic_istream<charT, Traits>& is, 12
date& dat) I3

IS >> dat.tm_date.tm_mday; 1

is >>dat.tm_date.tm_mon;
is >> dat.tm_date.tm_year;
return is; 15

/I1 The returned value for extractors (and inserters) is a reference to the
stream, so that several extractions can be done in one expression.

/I2 The first parameter usually is the stream from which the data shall be

extracted.

/I3 The second parameter is a reference, or alternatively a pointer, to an
object of the user-defined type.

/14 In order to allow access to private data of the date class, the extractor

must be declared as a friend function in class date .
/15 The return value is the stream from which the data was extracted.

As the extractor accesses private data members of class date, it must be

declared as a friend function to class date. The same holds for the inserter.

Here's a more complete version of class date :

class date {
public:
date(intd, int m, inty);
date(tmt);
date();
/I more constructors and useful member functions

private:
tm tm_date;

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.
Stream Input/Output

91

template<class charT, Traits>
friend basic_istream<charT, Traits> &operator >>
(basic_istream<charT, Traits >& is, date& dat);

template<class charT, Traits>
friend basic_ostream<charT, Traits> &operator <<
(basic_ostream<charT, Traits >& 0s, const date& dat);

13

The inserter can be built analogously, as shown in the following code. The

only difference is that you would hand over a constant reference to a date

object, because the inserter is not supposed to modify the object it prints.
template<class charT, class Traits>

basic_ostream<charT, Traits>&
operator << (basic_ostream<charT, Traits >& 0s, const date& dat)

0s << dat.tm_date.tm_mon <<
0s << dat.tm_date.tm_mday <<'-;
0s << dat.tm_date.tm_year ;
return os;

2.7.3 Improved Extractors and Inserters

The format of dates depends on local and cultural conventions. Naturally,
we want our extractor and inserter to parse and format the date according to
such conventions. To add this functionality to them, we use the time facet
contained in the respective stream's locale as follows:

template<class charT, class Traits>

basic_istream<charT, Traits>&
operator >> (basic_istream<charT, Traits >& is, date& dat)

i0s_base::iostate err = 0;

use_facet<time_get<charT,Traits> >(is.getloc()) n
.get_date(is, istreambuf_iterator<charT, Traits>() 12
Jis, err, &dat.tm_date); 13
returnis;

/Il Use the time_get facet of the input stream's locale to handle parsing of
dates according to cultural conventions defined by the locale. The
locale in question is obtained through the stream's getioc() ~ function.
Its time_get facet is accessed through a call to the global
use_facet<..>() function. The type argument to the use_facet
function template is the facet type. (See the chapter on
internationalization for more details on locales and facets.).

/I2 The facet's member function get date() s called. It takes a number of
arguments, including:

A range of input iterators. For the sake of performance and efficiency,
facets directly operate on a stream's buffer. They access the stream
buffer through stream buffer iterators. (See the section on stream buffer
iterators in the Standard C++ Library User's Guide.) Following the

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 92
Stream Input/Output

113

philosophy of iterators in the Standard C++ Library, we must provide a
range of iterators. The range extends from the iterator pointing to the
first character to be accessed, to the character past the last character to
be accessed (the past-the-end-position).

The beginning of the input sequence is provided as a reference to the
stream. The istreambuf_iterator class has a constructor taking a
reference to an input stream. Therefore, the reference to the stream is
automatically converted into an istreambuf_iterator that points to the
current position in the stream. As end of the input sequence, an end-of-
stream iterator is provided. Itis created by the default constructor of
class istreambuf_iterator . With these two stream buffer iterators, the
input is parsed from the current position in the input stream until a
date or an invalid character is found, or the end of the input stream is
reached.

The other parameters are:

Formatting flags. A reference to the ios_base part of the stream is
provided here, so that the facet can use the stream's formatting
information through the stream's members flags() , precision() ,and
width()

An iostream state. It is used for reporting errors while parsing the date.

A pointer to a time object. It has to be a pointer to an object of type tm,
which is the time structure defined by the C library. Our date class
maintains such a time structure, so we hand over a pointer to the
respective data member tm_date .

The inserter is built analogously:

template<class charT, class Traits>
basic_ostream<charT, Traits>& operator <<

/11

112

(basic_ostream<charT, Traits >& 0s, const date& dat)

use_facet
<time_put<charT,ostreambuf_iterator<charT,Traits>>> //1
(0s.getloc())

.put(0s,0s,0s.ill(),&dat.tm_date,'x); 2

return os;

Here we use the time_put facet of the stream’s locale to handle
formatting of dates.

The facet's put() function takes the following arguments;

An output iterator. We use the automatic conversion from a reference to
an output stream to an ostreambuf_iterator . This way the output will
be inserted into the output stream, starting at the current write position.

The formatting flags. Again we provide a reference to the ios_base part
of the stream to be used by the facet for retrieving the stream's
formatting information.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 93
Stream Input/Output

The fill character. We would use the stream’s fill character here.
Naturally, we could use any other fill character; however, the stream's
settings are normally preferred.

A pointer to a time structure. This structure will be filled with the result
of the parsing.

A format specifier. This can be a character, like 'x' in our example here,
or alternatively, a character sequence containing format specifiers, each
consisting of a %followed by a character. An example of such a format
specifier string is "%A, %B %d, %Y" . It has the same effect as the format
specifiers for the strftime() function in the C library; it produces a
date like: Tuesday, June 11, 1996 . We don't use a format specifier
string here, but simply the character 'x' , which specifies that the
locale's appropriate date representation shall be used.

Note how these versions of the inserter and extractor differ from previous
simple versions: we no longer rely on existing inserters and extractors for
built-in types, as we did when we used operator<<(int) to insert the date
object's data members individually. Instead, we use a low-level service like
the time facet's get date() service. The consequence is that we give away
all the functionality that high-level services like the inserters and extractors
already provide, such as format control, error handling, etc.

The same happens if you decide to access the stream's buffer directly,
perhaps for optimizing your program's runtime efficiency. The stream
buffer's services, too, are low-level services that leave to you the tasks of
format control, error handling, etc.

In the following sections, we will explain how you can improve and
complete your inserter or extractor if it directly uses low-level components
like locales or stream buffers.

2.7.4 More Improved Extractors and Inserters

Insertion and extraction still do not fit seamlessly into the iostream
framework. The inserters and extractors for built-in types can be controlled
through formatting flags that our operators thus far ignore. Our operators
don't observe a field width while inserting, or skip whitespaces while
extracting, and so on.

They don't care about error indication either. So what if the extracted date is
February 31? So what if the insertion fails because the underlying buffer
can't access the external device for some obscure reason? So what if a facet
throws an exception? We should certainly set some state bits in the
respective stream's state and throw or rethrow exceptions, if the exception
mask says so.

However, the more general question here is: what are inserters and
extractors supposed to do? Some recommendations follow.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 94
Stream Input/Output

» Regarding format flags, inserters and extractors should:

- Create a sentry object right at the beginning of every inserter and
extractor. In its constructor and destructor, the sentry performs
certain standard tasks, like skipping white characters, flushing tied
streams, etc. See the Class Reference for a detailed explanation.

« Reset the width after each usage.

e Regarding state bits, inserters and extractors should:
« Setbadbit for all problems with the stream buffer.
« Set failbit if the formatting or parsing itself fails.
« Seteofbit when the end of the input sequence is reached.

e Regarding the exception mask, inserters and extractors should:

« Use the setstate() function for setting the stream's error state. It
automatically throws the ios_base::failure exception according to
the exceptions switch in the stream's exception mask.

« Catch exceptions thrown during the parsing or formatting, set
failbit or badbit , and rethrow the original exception.

¢ Regarding locales, inserters and extractors should:

« Use the stream's locale, not the stream buffer's locale. The stream
buffer's locale is supposed to be used solely for code conversion.
Hence, imbuing a stream with a new locale will only affect the

stream's locale and never the stream buffer's locale.30

e Regarding the stream buffer:

- If you use a sentry object in your extractor or inserter, you should
not call any functions from the formatting layer. This would cause a
dead-lock in a multithreading situation, since the sentry object locks
the stream through the stream's mutex (= mutual exclusive lock). A
nested call to one of the stream's member functions would again
create a sentry object, which would wait for the same mutually
exclusive lock and, voila, you have deadlock. Use the stream buffer's
functions instead. They do not use the stream's mutex, and are more
efficient anyway.

Please note: Do not call the stream's input or output functions after
creating a sentry object in your inserter or extractor. Use the stream
buffer's functions instead.

30 This, however, is still subject to change. At the time of this
writing, a call to the stream's imbue() function modifies
both locales.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 95
Stream Input/Output

2.

7.4.1 Applying the Recommendations to the Example

Let us now go back and apply the recommendations to the extractor and
inserter for class date in the example we have been constructing. Here is an
improved version of the extractor:

111

112

template<class charT, class Traits>
basic_istream<charT, Traits>& operator >>
(basic_istream<charT, Traits >& is, date& dat)

ios_base::iostate err =0; n
try { 12
typename basic_istream<charT, Traits>::sentry ipfx(is); //3
if(ipfx) 14
use_facet<time_get<charT,Traits> >(is.getloc())
.get_date(is, istreambuf_iterator<charT, Traits>()
Jis, err, &dat.tm_date); 15
if (Idat) err |= ios_base:failbit; 116

Hitry
catch(...) I

bool flag = FALSE;
try { is.setstate(ios_base::failbit); } 118
catch(ios_base::failure) { flag= TRUE; } 19
if (flag) throw; /110

}

if (err) is.setstate(err); /11

returnis;

The variable err will keep track of errors as they occur. In this
example, it is handed over to the tme_get facet, which will set the
respective state bits.

All operations inside an extractor or inserter should be inside a try-
block, so that the respective error states could be set correctly before the
exception is actually thrown.

/I3 Here we define the sentry object that does all the preliminary work, like
skipping leading white spaces.

/14 We check whether the preliminaries were done successfully. Class
sentry has a conversion to bool that allows this kind of check.

/I5 This is the call to the time parsing facet of the stream'’s locale, as in the
primitive version of the extractor.

/l6 Let's assume our date class allows us to check whether the date is
semantically valid, e.g., it would detect wrong dates like February 30.
Extracting an invalid date should be treated as a failure, so we set the
failbit

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 96

Stream Input/Output

Note that in this case it is not advisable to set the failbit through the
stream’s setstate() function, because setstate() also raises
exceptions if they are switched on in the stream's exception mask. We

don't want to throw an exception at this point, so we add the failbit to
the state variable err .

/17 Here we catch all exceptions that might have been thrown so far. The
intent is to set the stream'’s error state before the exception terminates
the extractor, and to rethrow the original exception.

/I8 Now we eventually set the stream’s error state through its steatite()
function. This call might throw an ios_base::failure exception
according to the stream's exception mask.

/19 We catch this exception because we want the original exception thrown
rather than the ios_base::failure in all cases.

/110 We rethrow the original exception.

//11 If there was no exception raised so far, we set the stream’s error state
through its steatite() function.

The inserter is implemented using the same pattern:

template<class charT, class Traits>
basic_ostream<charT, Traits>& operator <<
(basic_ostream<charT, Traits >& 0s, const date& dat)

ios_base::iostate err = 0;

try {
typename basic_ostream<charT, Traits>::sentry opfx(0s);

if(opfx)
{

char patt[3] = "%x";

charT fmt[3];

use_facet<ctype<charT> >(0s.getloc())
.widen(patt,patt+2,fmt); J/in

if (

use_facet<time_put<charT,ostreambuf_iterator<charT,Traits> > >
(0s.getloc())
.put(os,0s,0s.fill(),&dat.tm_date,fmt,(fmt+2)) 2
failed() 113

)
err =ios_base::badbit; 14

0s.width(0); 115

}ihry
catch(...)

bool flag = FALSE;
try { , »
os.setstate(ios_base::failbit);

catch(ios_base::failure) { flag= TRUE; }
if (flag) throw;

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 97
Stream Input/Output

if (err) os.setstate(err);

return os;

The inserter and the extractor have only a few minor differences:

/11 We prefer to use the other put() function of the locale's tme_put facet.
It is more flexible and allows us to specify a sequence of format
specifiers instead of just one. We declare a character array that contains
the sequence of format specifiers and widen it to wide characters, if
necessary.

/12 Here we provide the format specifiers to the time_put facet's put()
function.

/I3 Theput() function returns an iterator pointing immediately after the
last character produced. We check the success of the previous output
by calling the iterators failed() function.

/l4 If the output failed then the stream is presumably broken, and we set
badbit

//5 Here we reset the field width, because the facet's put() function uses
the stream's format settings and adjusts the output according to the
respective field width. The rule is that the field width shall be reset
after each usage.

2.7.4.2 An Afterthought

Why is it seemingly so complicated to implement an inserter or extractor?
Why doesn't the first simple approach suffice?

First, it is not really as complicated as it seems if you stick to the patterns: we
give these patterns in the next section. Second, the simple extractors and
inserters in our first approach do suffice in many cases, when the user-
defined type consists mostly of data members of built-in types, and runtime
efficiency is not a great concern.

However, whenever you care about the runtime efficiency of your input and
output operations, it is advisable to access the stream buffer directly. In such
cases, you will be using fast low-level services and hence will have to add
format control, error handling, etc., because low-level services do not handle
this for you. In our example, we aimed at optimal performance; the extractor
and inserter for locale-dependent parsing and formatting of dates are very
efficient because the facets directly access the stream buffer. In all these
cases, you should follow the patterns we are about to give.

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 98
Stream Input/Output

2.7.5 Patterns for Extractors and Inserters of User-Defined Types
Here is the pattern for an extractor:

template<class charT, class Traits>
basic_istream<charT, Traits>& operator >>

(basic_istream<charT, Traits >& is, UserDefinedType &Xx)

ios_base::iostate err = 0;
try {

typename basic_istream<charT, Traits>::sentry ipfx(is);
if(ipfx)
/I Do whatever has to be done!

Il Typically you will access the stream's locale or buffer.
/I Don't call stream member functions here in MT environments!

/I Add state bits to the err variable if necessary, e.g.
II'if (...) err |=ios_base::failbit;

}
Hitry
catch(...) n
bool flag = FALSE;
try { is.setstate(ios_base: failbit); } 118
catch(ios_base: failure) { flag= TRUE; } 19
if (flag) throw; /110
}
if (err) is.setstate(err); /11
return is;
}

Similarly, the pattern for the inserter looks like this:

template<class charT, class Traits>
basic_ostream<charT, Traits>& operator <<

(basic_ostream<charT, Traits >& 0s, const UserDefinedType &Xx)

ios_base::iostate err =0;
try { _ ,
typename basic_ostream<charT, Traits>::sentry opfx(0s);
if(opfx)
/I Do whatever has to be done!

Il Typically you will access the stream's locale or buffer.
/I Don't call stream member functions here in MT environments!

/I Add state bits to the err variable if necessary, e.g.
Il (...) err |=ios_base::failbit;

I Reset the field width after usage, i.e.
Il 0s.width(0);

}
}Hitry

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved. 99
Stream Input/Output

catch(...)

bool flag = FALSE;

try { os.setstate(ios_base::failbit); }
catch(ios_base:failure) { flag= TRUE; }
if (flag) throw;

if (err) os.setstate(err);

return os;

2.8 Manipulators

We have seen examples of manipulators in Section 2.3.3.2. There we learned
that:

* Manipulators are objects that can be inserted into or extracted from a
stream, and

* Such insertions and extractions have specific desirable side effects.

As a recap, here is a typical example of two manipulators:
cout << setw(10) << 10.55 << end|;

The inserted objects setw(10) and endl are the manipulators. As a side
effect, the manipulator setw(10) sets the stream'’s field width to 10.
Similarly, the manipulator endl inserts the end of line character and flushes
the output.

As we have mentioned previously, extensibility is a major advantage of
iostreams. We've seen in the previous section how you can implement
inserters and extractors for user-defined types that behave like the built-in
input and output operations. Additionally, you can add user-defined
manipulators that fit seamlessly into the iostreams framework. In this
section, we will see how to do this.

First of all, to be extracted or inserted, a manipulator must be an object of a
type that we call manipT , for which overloaded versions of the shift operators
exist. (Associated with the manipulator type manipT, there is usually a
function that we will call () that we will explain in detail later.) Here's

manipT

the pattern for the manipulator extractor:

template <class charT, class Traits>

basic istream<charT, Traits>&

operator>> (basic istream<charT, Traits>& istr
,const manipT& manip)

{ retunf manipr (St 2.); }

With this extractor defined, you can extract a manipulator Manip , which is an
object of type manipT, by simply saying:

cin >> Manip;

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 100
Stream Input/Output

This results in a call to the operator>>() sketched out above. The
manipulator inserter is analogous.

A manipulator's side effect is often created by calling an associated function

f aipr 0 that takes a stream and returns the stream. There are several ways to
associate the manipulator type manipT to the functionf . () thatwe will
explore in the subsequent sections. The iostream framework does not specify
a way to implement manipulators, but there is a base class called smanip that
you can use for deriving your own manipulators. We will explain this
technique along with other useful approaches.

It will turn out that there is a major difference between manipulators with
parameters like width(10) and manipulators without parameters like end! .
Let's start with the simpler case of manipulators without parameters.

2.8.1 Manipulators without Parameters

Manipulators that do not have any parameters, like endl , are the simplest
form of manipulator. The manipulator type manipT is a function pointer
type, the manipulator Manip is the function pointer, and the associated

functionf .0 isthe function pointed to.

In iostreams, the following function pointer types serve as manipulators:

(1) ios_base& (*pf)(ios_base&)

(2) basic_ios<charT,Traits>& (*pf)(basic_ios<charT,Traits>)

(3) basic_istream<charT, Traits>& (*pf)(basic_istream<charT,Traits>)
(4) basic_ostream<charT,Traits>& (*pf)(basic_ostream<charT, Traits>)

The signature of a manipulator function is not limited to the examples above.
If you have created your own stream types, you will certainly want to use
additional signatures as manipulators.

For the four manipulator types listed above, the stream classes already offer
the required overloaded inserters and member functions. For input streams,
extractors take the following form:

template<class charT, class traits>

basic_istream<charT, traits>&

basic_istream<charT, traits>::operator>>

(basic_istream<charT traits>& (*pf)(input_stream_type &))
{ return (*pf)(*this);..}

where input_stream_type is one of the function pointer types (1)-(3).

Similarly, for output streams we have:

template<class charT, class traits>

basic_ostream<charT, traits>&

basic_ostream<charT, traits>::operator<<

(basic_ostream<charT, traits>& (*pf)(output_stream_type &))
{ return (*pf)(*this); }

where output_stream_type is one of the function pointer types (1), (2), or (4).

2.8.1.1 Examples of Manipulators without Parameters

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 101
Stream Input/Output

Let's look at the manipulator endl as an example of a manipulator without
parameters. The manipulator endl , which can be applied solely to output
streams, is a pointer to the following function of type (4):

template<class charT, class traits>

inline basic_ostream<charT, traits>&

endl(basic_ostream<charT, traits>& 0s)

os.put(os.widen(\n'));
os.flush();

return os;

Hence an expression like:

cout << endl;

results in a call to the inserter:
ostream& ostream::operator<< (ostreamé& (*pf)(ostream&))

with endl as the actual argument for pf . In other words, cout << endl; is
equal to cout.operator<<(endl);

Here is another manipulator, boolalpha , that can be applied to input and
output streams. The manipulator boolalpha is a pointer to a function of type

@ :

ios_base& boolalpha(ios_base& strm)
strm.setf(ios_base::boolalpha);

return strm;

Summary: Every function that takes a reference to an ios_base , a
basic_ios , a basic_ostream , or a basic_istream , and returns a reference to
the same stream, can be used as a parameter-less manipulator.

2.8.1.2 A Remark on the Manipulator end|

The manipulator endl is often used for inserting the end-of-line character
into a stream. However, endl does additionally flush the output stream, as
you can see from the implementation of endl shown above. Flushing a
stream, a time-consuming operation that decreases performance, is
unnecessary in most common situations. In the standard example:

cout << "Hello world" << endl;

flushing is not necessary because the standard output stream cout is tied to
the standard input stream cin , so input and output to the standard streams
are synchronized anyway. Since no flush is required, the intent is probably
to insert the end-of-line character. If you consider typing \n' more trouble

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 102
Stream Input/Output

than typing endl , you can easily add a simple manipulator nl that inserts the
end-of-line character, but refrains from flushing the stream.

2.8.2 Manipulators with Parameters

Manipulators with parameters are more complex than those without because
there are additional issues to consider. Before we explore these issues in
detail and examine various techniques for implementing manipulators with
parameters, let's take a look at one particular technique, the one that is used
to implement standard manipulators such as setprecision(), setw() , etc.

2.8.2.1 The Standard Manipulators

Rogue Wave's implementation of the standard iostreams uses a certain
technique for implementing most standard manipulators with parameters:
the manipulator type manipT is a function pointer type; the manipulator
object is the function pointed to; and the associated function f . is a global
function.

The C++ standard defines the manipulator type as smanip . The type itself is
implementation-defined; all you know is that it is returned by some of the
standard manipulators. In Rogue Wave's implementation, smanip is a class
template:

template<class T>

class smanip {

public:
smanip(ios_base& (*pf)(ios_base&, T), T manarg);

)

A standard manipulator like setprecision() can be implemented as a global
function returning an object of type smanip<T> :

inline smanip<int> setprecision(int n)
{ return smanip<int>(sprec, n); }

The associated functionf . is the global function sprec :
inline ios_base& sprec(ios_base& str, int n)

str.precision(n);
return str;

2.8.2.2 The Principle of Manipulators with Parameters

The previous section gave an example of a technique for implementing a
manipulator with one parameter: the technique used to implement the
standard manipulators in iostreams. However, this is not the only way to
implement a manipulator with parameters. In this section, we examine other
techniques. Although all explanations are in terms of manipulators with one

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 103
Stream Input/Output

parameter, it is easy to extend the techniques to manipulators with several
parameters.

Let's start right at the beginning: what is a manipulator with a parameter?

A manipulator with a parameter is an object that can be inserted into or
extracted from a stream in an expression like:

cout << Manip(x);
cin >> Manip(X);

Manip(x) must be an object of type manipT , for which the shift operators are
overloaded. Here's an example of the corresponding inserter:
template <class charT, class Traits>

basic ostream<charT, Traits>&
operator<< (basic ostream<charT,Traits>& ostr

,const manipT& manip)
{ // call the associated function f anipr» €0
(*manip.f manipT)(ostr,manip.arg 0
return os;
With this inserter defined, the expression cout << Manip(x); isequal to a
call to the shift operator sketched above; i.e., operator<<(cout, Manip(x));
Assuming that a side effect is created by an associated functionf .., the

manipulator must call the associated function with its respective
argument(s). Hence it must store the associated function together with its
argument(s) for a call from inside the shift operator.

The associated functionf .. can be a static or a global function, or a
member function of type manipT , for example.

In the inserter above, we've assumed that the associated function f . isa
static or a global function, and that it takes exactly one argument. Generally,
the manipulator type manipT might look like this:

template <class FctPtr, class Argl, class Arg2, ...>

class manipT

public:

manipT(FctPtr, Argl, Arg2, ...);
private:

FctPtrfp_;

Argl argl ;

Arg2 arg2_;

l

Note that this is only a suggested manipulator, however. In principle, you
can define the manipulator type in any way that makes the associated side
effect function and its arguments available for a call from inside the
respective shift operators for the manipulator type. We will see other
examples of such manipulator types later in this section; for instance, a
manipulator type called smanip defined by the C++ standard. Itisan
implementation-defined function type returned by the standard
manipulators. See the Class Reference for details.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 104
Stream Input/Output

Returning now to the example above, the manipulator object provided as an
argument to the overloaded shift operator is obtained by Manip(x) , which
has three possible solutions:

(1) Manip(x) is a function call. In this case, Manip would be the name of a
function that takes an argument of type x and returns a manipulator
object of type manipT ; i.e., Manip is a function with the following
signature:

manipT Manip (X x);

(2) Manip(x) is a constructor call. In this case, Manip would be the name of a
class with a constructor that takes an argument of type Xand constructs a
manipulator object of type Manip ; i.e., Manip and manipT would be
identical:

class Manip {

public:
Manip(X x);

(3) Manip(x) isa call to a function object. In this case, Manip would be an
object of a class M which defines a function call operator that takes an
argument of type x and returns a manipulator object of type manipT :

class M {
public:

manipT operator()(X x);
} Manip;

Solutions (1) and (2) are semantically different from solution (3). In solution
(1), Manip is a function and therefore need not be created by the user. In
solution (2), Manip is a class hame and an unnamed temporary object serves
as manipulator object. In solution (3), however, the manipulator object Manip
must be explicitly created by the user. Hence the user has to write:

manipT Manip;
cout << Manip(x);

which is somewhat inconvenient because it forces the user to know an
additional name, the manipulator type manipT , and to create the manipulator

object Manip .31 For these reasons, solution (3) is useful if the manipulator has

state; i.e., if it stores additional data like a manipulator, let call it lineno
which provides the next line number each time it is inserted.

The problem with solution (2) is that several current compilers cannot handle
unnamed objects.

31 An alternative could be to provide Manip as a static or a global
object at the user's convenience. Unfortunately, this
approach would introduce the well-known order-of-
initialization problems for global and static objects.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 105
Stream Input/Output

For any of the three solutions just discussed, there is also a choice of
associated functions. The associated functionf .. can be either:

a) A static or a global function;
b) A static member function;
c) A virtual member function.

Among these choices, (b), i.e. use of a static member function, is the
preferable in an object-oriented program because it permits encapsulation of
the manipulator together with its associated function. This is particularly
recommended if the manipulator has state, as in solution (3), where the
manipulator is a function object, and the associated function has to access the
manipulator's state.

Using (¢), i.e. a virtual member function, introduces the overhead of a virtual
function call each time the manipulator is inserted or extracted. It is useful if
the manipulator has state, and the state needs to be modified by the
associated manipulator function. A static member function would only be
able to access the manipulator's static data; a non-static member function,
however, can access the object-specific data.

2.8.2.3 Examples of Manipulators with Parameters

In this section, let's look at some examples of manipulators with parameters.
The examples here are arbitrary combinations of solutions (1) to (3) for the
manipulator type, with (a) to (c) for the associated function. We also use the
standard manipulator setprecision() to demonstrate the various
techniques.

Example 1. Function Pointer and Global Function. This example combines
(1) and (c), and so:

e manipT is a function pointer type;
e The manipulator object is the function pointed to; and
* Theassociated functionf .. isa global function.

Rogue Wave's implementation of the standard iostreams uses this technique
for implementing most standard manipulators with parameters. See Section
2.8.2.1 for reference.

Example 2: Unnamed Object and Static Member Function. This example
combines (2) and (b), and thus:

e The manipulator object Manip is an unnamed object;
e The manipulator type manipT is a class; and
e The associated function f is a static member function.

manipT

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 106
Stream Input/Output

The manipulator type manipT can be derived from the manipulator type
smanip defined by iostreams. Here is an alternative implementation of a
manipulator like setprecision()
class setprecision : public smanip<int> {
public:
setprecision(int n) : smanip<int>(sprec_, n) { }
private:
static ios_base& sprec_(ios_base& str, int n)
{ str.precision(n);
return str;

}
%
Example 3: Unnamed Object and Virtual Member Function. This example
(2) and (c), and therefore:

e The manipulator object Manip is an unnamed object;
e The manipulator type manipT is a class; and

e The associated function f is a virtual member function of that class.

manipT

The idea here is that the associated function f .. is a non-static member
function of the manipulator type manipT. In such a model, the manipulator
does not store a pointer to the associated functionf, ., but defines the
associated function as a pure virtual member function. Consequently, the
manipulator type manipT will be an abstract class, and concrete manipulator
types will be derived from this abstract manipulator type. They will have to
implement the virtual member function that represents the associated
function.

Clearly, we need a new manipulator type because the standard manipulator
type smanip is implementation-defined. In Rogue Wave's Standard C++
Library, it has no virtual member functions, but stores a pointer to the
associated function. Here is the abstract manipulator type we need:

template <class Arg, class Ostream>
class virtsmanip

{

public:
typedef Arg argument_type;
typedef Ostream ostream_type;
virtsmanip (Arga) : arg_(a){}

protected:
virtual Ostream& fct_(Ostream&,Arg) const = 0;
Argarg_;

friend Ostreamé&
operator<< (Ostreamé& ostr
,const virtsmanip<Arg,Ostream>& manip);
3

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 107
Stream Input/Output

This type vitsmanip differs from the standard type smanip in several ways:
« It defines the above-mentioned pure virtual member function fct_()

e Theargumentarg_ and the virtual function fct () are protected
members, and consequently the respective shift operator for the
manipulator type has to be a friend function.

« Itis abase class for output manipulators only.

The standard manipulator smanip expects a pointer to a function that takes
anios_base reference. In this way, a manipulator is always applicable to
input and output streams, regardless of whether or not this is intended. With
our new manipulator type virtsmanip, we can define manipulators that
cannot inadvertently be applied to input streams.

Since we have a new manipulator type, we also need a new overloaded
version of the manipulator inserter:

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 108
Stream Input/Output

template <class Arg, class Ostream>
Ostream&
operator<< (Ostreamé& ostr, const virtsmanip<Arg,Ostream>& manip)

manip.fct_(ostr,manip.arg_);
return ostr;

After these preparations, we can now provide yet another alternative
implementation of a manipulator like setprecision() . This time
setprecision() is a manipulator for output streams only:

class setprecision : public vitsmanip<int,basic_ostream<char> >

{

public:

setprecision(argument_type n)

: vitsmanip<argument_type,ostream_type>(n) {}

protected:
ostream_type& fct_(ostream_type& str, argument_type n) const

str.precision(n);
return str;

}
Iy

Example 4. Function Object and Static Member Function. The next
example combines (3) and (b), so here:

e The manipulator object Manip is an object of a type Mthat defines the

function call operator;

e The manipulator type manipT is a class type that is returned by the

overloaded function call operator of class M and

* The associated function f is a static member function of class M

manipT

This solution, using a function object as a manipulator, is semantically

different from the previous solution in that the manipulator object has state,

i.e., it can store data between subsequent uses.

Let us demonstrate this technique in terms of another example: an output

manipulator that inserts a certain string that is maintained by the

manipulator object. Such a manipulator could be used, for instance, to insert

a prefix to each line:

Tag<char> change_mark("v1.2 >>");

while (new_text)
ostr << change_mark << next_line;

change_mark("");
while (old_text)
ostr << change_mark << next_line;
We would like to derive the Tag manipulator here from the standard
manipulator smanip . Unfortunately, smanip is restricted to associated

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.
Stream Input/Output

109

functions that take an ios_base reference as a parameter. In our example, we
want to insert the stored text to the stream, so we need the stream's inserter.
However, ios_base does not have inserters or extractors. Consequently we
need a new manipulator base type, similar to smanip , that allows associated
functions that take a reference to an output stream:

template <class Ostream, class Arg>

class osmanip {

public:

typedef Ostream ostream_type;
typedef Arg argument_type;

osmanip(Ostream& (*pf)(Ostreamé&, Arg), Arg arg)
:pf_(pf) , arg_(arg) {; }

protected:
Ostream& (*pf_)(Ostream&, Arg);
Arg arg_;

friend Ostream&
operator<<
(Ostreamé& ostr, const osmanip<Ostream,Arg>& manip);

k
Then we need to define the inserter for the new manipulator type osmanip :

template <class Ostream, class Arg>
Ostream&
operator<< (Ostreamé& ostr,const osmanip<Ostream,Arg>& manip)

(*manip.pf_)(ostr,manip.arg_);
return ostr;

Now we define the function object type M here called Tag:

template <class charT>
class Tag
: public osmanip<basic_ostream<charT>, basic_string<charT> >

public:
Tag(argument_type a="")
: osmanip<basic_ostream<charT>, basic_string<charT> >

(fct_,a){}

osmanip<ostream_type,argument_type>&
operator() (argument_type a)

arg_=g;
return *this;
private:
static ostream_type& fct_ (ostream_type& str, argument_type a)
return str << a;
}
h
Note that the semantics of this type of manipulator differ from the previous
ones, and from the standard manipulator setprecision . The manipulator

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 110
Stream Input/Output

object has to be explicitly created before it can be used, as shown in the
example below:

Tag<char> change_mark('v1.2 >>");

while (new_text)
ostr << change_mark << next_line;

change_mark(");
while (old_text)
ostr << change_mark << next_line;

This kind of manipulator is more flexible. In the example above, you can see
that the default text is setto "v1.2>>" when the manipulator is created.
Thereafter you can use the manipulator as a parameterless manipulator and
it will remember this text. You can also use it as a manipulator taking an
argument, and provide it with a different argument each time you insert it.

Example 5: Function Object and Virtual Member Function. In the
previous example, a static member function is used as the associated
function. This has the slight disadvantage that the associated function
cannot modify the manipulator's state. Should modification be necessary,
you might consider using a virtual member function instead.

Our final example here is a manipulator that stores additional data, the
previously mentioned lineno manipulator. It adds the next line number
each time it is inserted:

LineNo lineno;
while (‘cout)

cout<<lineno<<...;

}
The manipulator is implemented following the (3) and (b) pattern, i.e.:

« The manipulator object Manip is an object of a type Mthat defines the
function call operator;

e The manipulator type manipT is a class type that is returned by the
overloaded function call operator of class M and

* The associated function f is a virtual member function of class M

manipT

The manipulator object contains a line number that is initialized when the
manipulator object is constructed. Each time the lineno manipulator is
inserted, the line number is incremented.

For the manipulator base type, we use a slightly modified version of the
manipulator type osmanip from Example 3. The changes are necessary
because the associated function in this case may not be a constant member
function:

emplate <class Arg, class Ostream>
class virtsmanip

{
public:
typedef Arg argument_type;

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 111
Stream Input/Output

typedef Ostream ostream_type;
virtsmanip (Arg a) : arg_(a){ }

protected:
virtual Ostream& fct_(Ostreamé&,Arg) = 0;
Argarg_;

friend Ostream&
operator<< (Ostreamé& ostr
Virtsmanip<Arg,Ostream>& manip);

i

template <class Arg,class Ostream>

Ostream&

operator<< (Ostreamé& ostr
,virtsmanip<Arg,Ostream>& manip)

manip.fct_(ostr,manip.arg_);
return ostr;

}
The line number manipulator could be implemented like this:

template <class Ostream>
class LineNo
: public virtsmanip<int,Ostream >

{
public:
LineNo(argument_type n=0)
: vitsmanip<argument_type, ostream_type> (n)

virtsmanip<argument_type,ostream_type>&
operator() (argument_type arg)

arg_=arg;
return *this;

protected:
argument_type Ino_;
ostream_type& fct_ (ostream_type& str, argument_type n)

Ino_=(>0)?n:Ino_;
str << ++no_;
arg_=-1;

return str;

}

J§
Using a virtual member function as the associated manipulator function
introduces the overhead of a virtual function call each time the manipulator
is inserted. If it is necessary that a manipulator update its state after each
insertion, a static member function will not suffice. A global function that is
a friend of the manipulator type might do the trick. However, in an object-

oriented program, you are usually advised against global functions that
modify private or protected data members of a class they are friends with.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 112

Stream Input/Output

2.9 Streams and Stream Buffers

So far we have used streams as the source or target of input and output
operations. But there is another aspect of streams: they are also objects in
your C++ program that you might want to copy and pass around like other
objects. However, streams cannot simply be copied and assigned. The
following section shows what you have to do instead.

Stream buffers play a special role. In numerous cases you will not want to
create copies of a stream buffer object, but simply share a stream buffer
among streams. Section 2.9.2 explores this option.

If you really want to work with copies of stream buffers, see section 2.9.3 for
hints and caveats.

2.9.1 Copying and Assighing Stream Objects

Stream objects cannot simply be copied and assigned. Let us consider a
practical example to see what it means. A program writes data to a file if a
file name is specified on program call, or to the standard output stream cout
if no file name is specified. You want to write to one output stream in your
program; this stream will either be a file stream or the standard output
stream. The most obvious way to do this is to declare an output file stream
object and assign it to cout , or to use cout directly. However, you can’t do it
this way:

int main(int argc, char argv(])

ofstream fil;
if (argc > 1)
{ filL.open(argv[1]);

cout = fil; /l never do this !l

/I output to cout, e.g.
cout << "Hello world!" << endl;

}
This solution is bad for at least two reasons. First, assignments to any of the
predefined streams should be avoided. The predefined stream cin , cout |,
cerr ,and clog have special properties and are treated differently from other
streams. If you reassign them, as done with cout in the example above, you
lose their special properties. Second, assignment and copying of streams is
hazardous. The assignment of the output stream fil will compile and might

even work; however, your program is likely to crash afterwards.32

32 Traditional iostreams had classes called ostream_withassign
that explicitly allowed copying and assignment of stream
objects.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 113
Stream Input/Output

Please note: Stream objects must never be copied or assigned to each
other.

Let us see why. The copy constructor and the assignment operator for

streams are not defined33; therefore, the compiler-generated default copy
constructor and assignment operator are used. As usual, they only copy and
assign a stream object’s data members, which is insufficient because a stream
object holds pointers as well. Figure 31 is a sketch of the data held by a

stream object:
locale format state | error state

other stream data stream buffer | exception mask
stream j

character buffer

Figure 31. Data held by a stream object. Please note that some data members are
omitted for the sake of simplicity.

The stream buffer contains several pointers to the actual character buffer it
maintains. The default copy constructor and assignment operator will not
correctly handle these pointers.

2.9.1.1 Copying a Stream's Data Members

33 Traditional iostreams had the copy constructor and assignment
operator defined as private member functions; hence, they
were not usable.

It is an open issue whether the copy constructor and
assignment operator of streams should be defined as
private member functions.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 114
Stream Input/Output

To achieve the equivalent effect of a copy, you might consider copying each
data member individually. This can be done as in the following example:

int main(int argc, char argv(])

ofstream out;

if (argc > 1)
out.open(argv[1]);

else

{ out.copyfmt(cout); J/iN
out.clear(cout.rdstate()); 2
out.rdbuf(cout.rdbuf()); 113

}
/I output to out, e.g.
out << "Hello world!" << endl;

/Il Thecopyfmt() function copies all data from the standard output stream
cout to the output file stream out , except the error state and the stream
buffer. (There is a function exceptions() that allows you to copy the
exception mask separately; i.e., cout.exceptions(fil.exceptions());

However, you need not do this explicitly, since copyfmt() already
copies the exception mask.)

/I2 Here the error state is copied.
/I3 Here the stream buffer pointer is copied.

Please note the little snag here. After the call to rdbuf() , the buffer is shared
between the two streams, as shown in Figure 32:

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 115
Stream Input/Output

source target
stream stream

error
state

error
state

clear()

exception

mas exception()

exception
mask

L

[

locale

copyfmt()

stream stream
buffer rdbuf() "* buffer
pointer pointer

stream
puffer

I

character buffer

Figure 32. Copying a stream’s internal data results in a shared buffer

2.9.1.2 Sharing Stream Buffers Inadvertently

Whether or not you intend to share a stream buffer among streams depends
on your application. In any case, it is important that you realize the stream
buffer is shared after a call to rdbuf() ; in other words, you must monitor the
lifetime of the stream buffer object and make sure it exceeds the lifetime of
the stream. In our little example above, we use the standard output stream's
buffer. Since the standard streams are static objects, their stream buffers
have longer lifetimes that most other objects, so we are safe. However,
whenever you share a stream buffer among other stream objects, you must
carefully consider the stream buffer's lifetime.

The example above has another disadvantage we haven't considered yet, as
shown in the following code:

int main(int argc, char argv(])

ofstream out;

if (argc > 1)
out.open(argv[l]);
else
{ out.copyfmt(cout); J/in
out.clear(cout.rdstate()); 12
Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 116

Stream Input/Output

out.rdbuf(cout.rdbuf()); 3

Il output to out, e.g.
out << "Hello world!" << endl;

}

As we copy the standard output stream's entire internal data, we also copy
its special behavior. For instance, the standard output stream is
synchronized with the standard input stream. (See Section 2.10.4 for further
details.) If our output file stream out is a copy of cout , it is forced to
synchronize its output operations with all input operations fromcin . This
might not be desired, especially since synchronization is a time-consuming
activity. Here is a more efficient approach using only the stream buffer of
the standard output stream:

int main(int argc, char argv(])

filebuf* fbo = new filebuf; n

ostream out((argc>1)? 2
fb->open(argv[1],ios_base::outlios_base::trunc): 13
cout.rdbuf());

if (out.rdbuf() != fb)
delete fb;

out << "Hello world!" << endl;

/Il Instead of creating a file stream object, which already contains a file
buffer object, we construct a separate file buffer object on the heap that
we can hand over to an output stream object if needed. This way we
can delete the file buffer object if not needed. In the original example,
we constructed a file stream object with no chance of eliminating the file
buffer object if not used.

/I2- An output stream is constructed. The stream has either the standard
output stream's buffer, or a file buffer connected to a file.

/13 If the program is provided with a file name, the file is opened and
connected to the file buffer object. (Note that you must ensure that the
lifetime of this stream buffer object exceeds the lifetime of the output
stream that uses it.) The open() function returns a pointer to the file
buffer object. This pointer is used to construct the output stream object.

/14 1f no file name is provided, the standard output stream's buffer is used.

As in the original example, out inserts through the standard output stream's
buffer, but lacks the special properties of a standard stream.

Here is an alternative solution that uses file descriptors, a non-standard
feature of Rogue Wave's implementation of the standard iostreams34:

34 This feature was available in the traditional iostreams, but is not
offered by the standard iostreams. Rogue Wave's
implementation of the standard iostreams retains the old
feature for backward compatibility with the traditional

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 117
Stream Input/Output

int main(int argc, char argv(])

ofstream out;

if (argc > 1) out.open(argv[l)); 1
else out.rdouf()->open(1); 12
out << "Hello world!" << endl;

/11 If the program is provided with a file name, the file is opened and
connected to the file buffer object.

/12 Otherwise, the output stream'’s file buffer is connected to the standard
input stream stdout whose file descriptor is 1.

The effect is the same as in the previous solution, because the standard
output stream cout is connected to the C standard input file stdout . This is
the simplest of all solutions, because it doesn’t involve reassigning or sharing
stream buffers. The output file stream's buffer is simply connected to the
right file. However, this is a non-standard solution, and may decrease
portability.

2.9.1.3 Using Pointer or References to Streams

If you do not want to deal with stream buffers at all, you can also use
pointers or references to streams instead. Here is an example:

int main(int argc, char argv(])

ostream* fp; n
if (argc > 1)

fp = new ofstream(argv[1]); 12
else

fp = &cout 3

Il output to *fp, e.g.
*fp << "Hello world!" << end|; /s
if(fp!=&cout) delete fp;

}

/1 A pointer to an ostream is used. (Note that it cannot be a pointer to an
ofstream , because the standard output stream cout is not a file stream,
but a plain stream of type ostream .)

/12 Afile stream for the named output file is created on the heap and
assigned to the pointer, in case a file name is provided.

/I3 Otherwise, a pointer to cout is used.

/14 Output is written through the pointer to either cout or the named

output file.
iostreams, but it is a non-standard feature. Using it might
make your application non-portable to other standard
iostream libraries.
Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 118

Stream Input/Output

An alternative approach could use a reference instead of a pointer:
int main(int argc, char argv[])

ostream& fr = (argc > 1) ? *(new ofstream(argv[1])) : cout;
Il output to *fr, e.g.
fr <<"Hello world!" << endl;
if (&fri=&cout) delete(&fr);
}

Working with pointers and references has a drawback: you have to create an
output file stream object on the heap and, in principle, you have to worry
about deleting the object again, which might lead you into other dire straits.

In summary, creating a copy of a stream is not trivial and should only be
done if you really need a copy of a stream object. In many cases, it is more
appropriate to use references or pointers to stream objects instead, or to
share a stream buffer between two streams.

Keep in mind: Never create a copy of a stream object when a reference or a
pointer to the stream object would suffice, or when a shared stream buffer
would solve the problem.

2.9.2 Sharing a Stream Buffer Among Streams

Despite the previous caveats, there are situations where sharing a stream
buffer among streams is useful and intended. Let us focus on these in this
section.

2.9.2.1 Several Format Settings for the Same Stream

Imagine you need different formatting for different kinds of output to the
same stream. Instead of switching the format settings between the different
kinds of output, you can arrange for two separate streams to share a stream
buffer. The streams would have different format settings, but write output to
the same stream buffer. Here is an example:

ofstream file1("/tmp/Xx");
ostream file2(file1.rdbuf()); \\1

filel.setf(ios_base::fixed, ios_base::floatfield); \2
filel.precision(5);
file2.setf(ios_base::scientific, ios_base::floatfield);

file2.precision(3);
filel << setw(10) << 47.11 <<\n; \3
file2 << setw(10) << 47.11 <<\, \4

/IL The stream buffer of filel is replaced by the stream buffer of file2
Afterwards, both streams share the buffer.

/I2 Create different format settings for both files.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 119
Stream Input/Output

/13 The output here will be: 47.11000
/14 The output here will be: 4.711e+01

Note that file2 in the example above has to be an output stream rather than
an output file stream. This is because file streams do not allow you to switch
the file stream buffer.

2.9.2.2 Several Locales for the Same Stream

Similarly, you can use separate streams that share a stream buffer in order to
avoid locale switches. This is useful when you have to insert multilingual
text into the same stream. Here is an example:

ostringstream filel;
ostream file2(file1.rdbuf());

filel.imbue(locale("De_DE"));
file2.imbue(locale("En_US");

filel << 47.11 <<\t
file2 << 47.11 <<"\n

cout << filel.str() << endl; 1
/Il The output will be: 47,11 47.11

Again, there is a little snag. In Figure 33, note that a stream buffer has a
locale object of its own, in addition to the stream’s locale object.

streaml stream 2
N 4 N~— 4
l l

stream buffer pointer stream buffer pointer

stream buffer

locale I

Figure 33. Locale objects and shared stream buffers

Section 2.2.2.1 explained the role of those two locale objects. To recap, the
stream delegates the handling of numeric entities to its locale’s numeric
facets. The stream buffer uses its locale’s code conversion facet for character-
wise transformation between the buffer content and characters transported
to and from the external device.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 120
Stream Input/Output

Usually the stream’s locale and the stream buffer’s locale are identical.
However, when you share a stream buffer between two streams with

different locales, you must decide which locale the stream buffer will use.35

You can set the stream buffer’s locale by calling the pubimbue() function as
follows:

.filel.imbue(locale("De_DE"));
file2.imbue(locale("En_US"));
file1.rdbuf()->pubimbue(locale(“De_DE"));

2.9.2.3 Input and Output to the Same Stream

You can also use a shared stream buffer in order to have read and write
access to a stream:

filebuf fbuf; n
fouf.open(*/timp/inout”,ios_base::injios_base::out); 2
istream in(&fbuf); 113
ostream out(&fbuf); 14
cout << in.rdbuf(); 15
out<<"."<<\n'; 16

/11 Create a file buffer, and

/I2 Connect it to a file. Note that you have to open the file in input and
output mode if you want to read and write to it.

/I3 Create an input stream that works with the file buffer fouf .
/l4 Create an output stream that also uses the file buffer fouf .

/15 Read the entire content of the file and insert it into the standard output
stream. Afterwards the file position is at the end of the file.

The most efficient way to read a file’s entire content is through the
rdbuf() function, which returns a pointer to the underlying stream
buffer object. There is an inserter available that takes a stream buffer
pointer, so you can insert the buffer’s content into another stream.

/16 Write output to the file. As the current file position is the end of the file,
all output will be inserted at the end.

35 Whether and how the user can influence the setting of the
stream buffer’s locale is still open. At the time of this
writing, a call to the stream’s imbue() function changes
the stream buffer’s locale object as well. In the example
above, the shared stream buffer will have the locale object
of file2 . This is not a problem here because the stream
buffer only uses the locale’s conversion facet, and both
locales will probably have the same void conversion facet.
However, this would cause a problem in the case where
the streams’ locales have different code conversion facets.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 121
Stream Input/Output

Naturally, it is easier and less error-prone to use bidirectional streams when

you have to read and write to a file. The bidirectional equivalent to the

example above would be:

fstream of("/tmp/inout");
cout << of.rdbuf();
of<<"."<<\n';

Notice that there is a difference between the solutions that you can see by
comparing Figure 34 and Figure 35. An input and an output stream that

share a stream buffer, as shown in Figure 34, can still have separate format
settings, different locales, different exception masks, and so on.

inputstream

outputstream

exception
mask

error
locale

state
fomat stream
state buffer

pointer

other
stream
data

exception
mask

locale

other
stream
data

fomat
state

error
state

stream
buffer
pointer

stream

buffer

character buffer

Figure 34. An input and an output stream sharing a stream buffer

Copyright [7 1996 Rogue Wave Software, Inc. All rights reserved.

Stream Input/Output

122

In contrast, the bidirectional stream shown in Figure 35 can have only one
format setting, one locale, and so on:

bidirectional stream

error
locale

state
format stream
state butter

pointer

V.

exception
mask

| other
stream
data

stream
buffer

[

character buffer

Figure 35. A bidirectional stream

It seems clear that you cannot have different settings for input and output
operations when you use a bidirectional stream. Still, it is advisable to use
bidirectional file or string streams if you need to read and write to a file or
string, instead of creating an input and an output stream that share a stream
buffer. The bidirectional stream is easier to declare, and you do not have to
worry about the stream buffer object’s lifetime.

Please note: It’s better to use one bidirectional file or string stream for
reading and writing to a file or string, rather than two streams that share a
stream buffer.

2.9.3 Copies of the Stream Buffer

The previous section showed how you can read the content of a file in its
entirety by using the rdouf() function. Let us now explore a variation of that
example. Imagine another file containing some sort of header information
that needs to be analyzed before we start appending the file. Instead of
writing the current file content to the standard output stream, we want to
process the content before we start adding to it. The easiest way to put the

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 123
Stream Input/Output

entire file content into a memory location for further processing is by
creating a string stream and inserting the file’s stream buffer into the string
stream:

fstream fil("/tmp/inout”);

stringstream header_stream; n
header_stream << fil.rdbuf(); 12
/I process the header, e.g.

string word;

header_stream >> word; 13

/I1 The easiest way to put the entire file content into a memory location for
further processing is by creating a string stream, and

/12 Inserting the file’s stream buffer into the string stream.

/I3 We now have the usual facilities of an input stream for reading and
analyzing the header information; i.e., operator>>() , read() , get) ,
and so on.

In cases where this procedure is insufficient, you should create a string that
contains the header information and process the header by means of the
string operations find() , compare() , etc.

fstream fil("/tmp/inout”);

header_stream << fil.rdbuf();
string header_string = header_stream.str();

Il process the header, e.g.

string::size_type pos = header_string.rfind(".);
If the header contains binary data instead of text, even a string will probably
not suffice. Here you would want to see the header as a plain byte sequence,
i.e., an ordinary char* buffer. But note that a code conversion might already
have been performed, depending on the locale attached to the file stream. In
cases where you want to process binary data, you have to make sure that the
attached locale has a non-converting code conversion facet:

fstream fil("/tmp/inout");
header_stream << fil.rdbuf();

string header_string = header_stream.str();
const char* header_char_ptr = header_string.data();

Il process the header, e.g.

intidx;

memcpy((char*) &idx,header_char_ptr,sizeof(int));
A note on efficiency: If the header information is extensive, you will have to
consider the number of copy operations performed in the previous example.
Figure 36 shows how these copies are made:

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 124
Stream Input/Output

C T T T T 1T T 1T 71 71711 external file

fstream: :rdbuf()

C T T T’ T T T T T T 1T] ostringstream

stringstream: :str()

LT T T I T T] sting

string::data()

char* pointer

Figure 36. Copies of the file content

The content of the file is copied into the string stream’s buffer when the
pointer obtained through rdbuf() is inserted to the string stream. A second

copy is created when the string stream’s function str() s called.36 The call
to the string’s function data() does not create yet another copy, but returns a
pointer to the string’s internal data.

2.10 Synchronizing Streams

In the previous section, we saw how streams can share stream buffers. In
this section, we will see that streams can also share a file, as when streams in
different processes exchange data through a file. Figure 37 graphically
illustrates how streams share files:

36 The traditional iostreams’ strstream allows you to obtain a
pointer to the stream’s internal buffer. Different from the
standard iostreams’ stringstream, it does not create a
copy of the internal data. Hence, using the deprecated
strstream instead of the standard stringstream spares
you the overhead of creating a second copy of the data.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 125
Stream Input/Output

streaml stream 2

N N
l file buffer l file buffer

external file

Figure 37. Streams sharing a file

Because streams use a buffer, the content of the file might be different from
the content of the buffer that is supposed to reflect the file’s content. When
data is extracted through a file stream, a certain part of the file’s content is
read into the buffer; subsequent extractions access the buffer instead of the
file. Once the file content is modified, the buffer content becomes obsolete.
Similarly, when data is written through a file stream, the output is stored in
the buffer and not written to the file. The file is accessed only when the
buffer is full. For this reason, output from one stream will not be
immediately available to the other stream.

2.10.1 Explicit Synchronization

You can force the stream to empty its buffer into an output file, or to refill its
buffer from an input file. This is done through the stream buffer’s function
pubsync() . Typically, you will call pubsync() indirectly through functions of
the stream layer. Input streams and output streams have different member
functions that implicitly call pubsync()

2.10.1.1 Output Streams

Output streams have a flush() function that writes the buffer content to the
file. In case of failure, badbit will be set or an exception thrown, depending
on the exception mask.

ofstream ofstr("/tmp/fil");

ofstr << "Hello *; \\1
ofstr << "World!\n";
ofstr.flush(); \\2
Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 126

Stream Input/Output

/I1 The attempt to extract anything from the file tmpffil after this
insertion will probably fail, because the string "Hello" is buffered and
not yet written to the external file.

/l2 After the call to flush() , however, the file will contain "Hello
World\n" . (Incidentally, the call to ostr.flush() can be replaced by
the flush manipulator; i.e., ostr << flush;)

Keep in mind that flushing is a time-consuming operation. The function
flush() not only writes the buffer content to the file; it may also reread the
buffer in order to maintain the current file position. For the sake of
performance, you should avoid inadvertent flushing, as when the endl
manipulator calls flush() on inserting the end-of-line character. (See Section
2.8.1.2))

2.10.1.2 Input Streams

Input streams have a sync() function. It forces the stream to access the

external device and refill its buffer, beginning with the current file position.3’
The example below demonstrates the principle theoretically. In real-life,
however, the two streams would belong to two separate processes and could
use the shared file to communicate.

ofstream ofstr("/tmp/fil");

ifstream ifstr("tmp/fil");
string s;

ofstr << "Hello "
ofstream::pos_type p = ofstr.tellp();
ofstr << "World'\n" << flush;

ifstr >> s; \\1
ofstr.seekp(p);

ofstr << "Peter!" << flush; \\2

ifstr >> s; \3

ofstr << " Happy Birthday\n" << flush; \4
ifstr >>s; \5

ifstr.sync(); \\6

ifstr >> s;

37 In case of input streams the behavior of sync() is
implementation-defined, i.e. is not standardized. The
traditional iostreams had a sync() function that did the
expected synchronization, i.e. refilling the buffer
beginning with the current file position.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 127
Stream Input/Output

/IL Here the input stream extracts the first string from the shared file. In
doing so, the input stream fills its buffer. It reads as many characters
from the external file as needed to fill the internal buffer. For this
reason, the number of characters to be extracted from the file is
implementation-specific; it depends on the size of the internal stream
buffer.

/12 The output stream overwrites part of the file content. Now the file
content and the content of the input stream's buffer are inconsistent.
The file contains "Hello Peter!" ; the input stream's buffer still contains
"Hello World!"

/I3 This extraction takes the string "World"" from the buffer instead of
yielding "Peter”” , which is the current file content.

/l4 More characters are appended to the external file. The file now contains
"Hello Peter! Happy Birthday!" , Whereas the input stream's buffer is
still unchanged.

/I5 This extraction yields nothing. The input stream filled its buffer with
the entire content of the file because the file is so small in our toy
example. Subsequent extractions made the input stream hit the end of
its buffer, which is regarded as the end of the file as well. The
extraction results in eofbit ~ set, and nothing will be extracted. There is
no reason to ever access the external file again.

/16 Acall tosync() eventually forces the input stream to refill the buffer
from the external device, beginning with the current file position. After
the synchronization, the input stream's buffer will contain "Happy
Birthday\n" . The next extraction will yield "Happy" .

As the draft specifies the behavior of sync() as implementation-
defined, you can alternatively try repositioning the input stream to the
current position instead; i.e., istr.seekg(ios_base::cur);

Please note: If you have to synchronize several streams that share a file, it
is advisable to call the sync() function after each output operation and
before each input operation.

2.10.2 Implicit Synchronization Using the unitbuf Format Flag

You can achieve a kind of automatic synchronization for output files by
using the format flag ios_base::unitbuf . It causes an output stream to flush
its buffer after each output operation as follows:

ofstream ostr("/tmpffil");
ifstream istr("/tmpffil");

ostr << unitbuf; \\1

while (some_condition)

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 128
Stream Input/Output

{ostr<<"... some output..."; \\2
/I process the output
istr >>s;
...

}
/Il Setthe unitouf format flag.

/12 After each insertion into the shared file /tmpffil, the buffer is
automatically flushed, and the output is available to other streams that
read from the same file.

Since it is not overly efficient to flush after every single token that is inserted,
you might consider switching off the unitouf ~ flag for a lengthy output that is
not supposed to be read partially.

ostr.unsetf(ios_base::unitbuf); \\1

ostr<<" ... some lengthy and complicated output ...";

ostr.flush().setf(ios_base::unitbuf); \\2
/11 Switch off the unitouf flag. Alternatively, using manipulators, you can

say ostr << nounitbuf;

/12 Flush the buffer and switch on the unitouf ~ flag again. Alternatively,
YOou can say ostr << flush << unitbuf;

2.10.3 Implicit Synchronization by Tying Streams

Another mechanism for automatic synchronization in certain cases is tying a
stream to an output stream, as demonstrated in the code below. All input or
output operations flush the tied stream's buffer before they perform the
actual operation.

ofstream ostr(“tmpffil");

ifstream istr("/tmpffil");
ostream* old_tie = istr.tie(&ostr); /1

while (some_condition)
{ ostr << " some output "
string s;
while (istr >> s) 12
/I process input ;

istr.tie(old_tie); 113

/Il The input stream istr is tied to the output stream ostr . The tig()
function returns a pointer to the previously tied output stream, or zero
if no output stream is tied.

/12 Before any input is done, the tied output stream's buffer is flushed so
that the result of previous output operations to ostr is available in the
external file Ampffil

/I3 The previous tie is restored.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 129
Stream Input/Output

2.10.4 Synchronizing the Predefined Standard Streams

The predefined streams cin , cout , cerr , and clog are examples of
synchronized streams:

e cin istied to cout ; i.e., before each input operation on cin , the output
stream cout is forced to flush its buffer.

e cerr issynchronized using the unitouf format flag; i.e., after each output
to cerr, its buffer is flushed.

» clog isconnected to the same output channel and thus behaves like cerr |,
except that it is not synchronized with any of the other standard streams;
i.e., it does not have the unitbuf ~ flag set.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 130
Stream Input/Output

2.10.5 Synchronization with the C Standard 1/0

The predefined C++ streams cin , cout , cerr , and clog are associated with
the standard C files stdin , stdout , and stderr, as we saw in Section 2.3.1.
This means that insertions into cout , for instance, go to the same file as
output to stdout . By default, input and output to the predefined streams is
synchronized with read or write operations on the standard C files. The
effect is that input and output operations are executed in the order of
invocation, independently of whether the operations used the predefined
C++ streams or the standard C files.

This synchronization is time-consuming and thus might not be desirable in
all situations. You can switch it off by calling:

sync_with_stdio(false);

After such a call, the predefined streams operate independently of the C
standard files, with possible performance improvements in your C++ stream
operations. However, you should call sync_with_stdio() prior to any input
or output operation on the predefined streams, because otherwise the effect
of calling sync_with_stdio() will be implementation-defined.

2.11 Stream Storage for Private Use: iword, pword,
and xalloc

As we have seen in previous sections, a stream carries a number of data
items: an error state, a format state, a locale, an exception mask, information
about tied streams, and a stream buffer, to mention a few. Sometimes it is
useful and necessary to store additional data in a stream.

2.11.1 An Example: Storing a Date Format String

Consider the inserter and extractor we defined for a date class in Section 2.7.
The input and output operations were internationalized and relayed the task
of date formatting and parsing to the stream's locale. Here, however, the
rules for formatting and parsing were fixed, making them much more
restricted than the features available in the standard C library, for example.

In the standard C library, you can specify format strings, similar to those for
prinft() and scanf() , that describe the rules for parsing and formatting

dates.38 For example, the format string "%A, %B %d, %Y" stands for the rule

38 see functions stritime() , strptime() , and wcsftime() in
X/Open for reference.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 131
Stream Input/Output

that a date must consist of the name of the weekday, the name of the month,
the day of the month, and the year—as in Friday, July 12, 1996.

Now imagine you want to improve the input and output operations for the
date class by allowing specification of such format strings. How can you do
this? Other format information is stored in the stream's format state;
consequently, you may want to store the format string for dates somewhere
in the stream as well. And indeed, you can.

Streams have an array for private use. An array element is of a union type

that allows access as a long or as a pointer to void .39 The array is of
unspecified size, and new memory is allocated as needed. In principle, you
can think of it as infinitely long.

You can use this array to store in a stream whatever additional information
you might need. In our example, we would want to store the format string.

The array can be accessed by two functions: iword() and pword() . Both
functions take an index to an array element and return a reference to the
respective element. The function iword() returns a reference to long ; the
function pword() allows access to the array element as a pointer to void .

Indices into the array are maintained by the xalloc() function, a static
function in class ios_base that returns the next free index into the array.

2.11.2 Another Look at the Date Format String

We would like to store the format string for dates in the iostream storage
through iword() and pword() . In this way, the input and output operations
for date objects can access the format string for parsing and formatting.
Format parameters are often set with manipulators (see Section 2.3.3.2), so
we should add a manipulator that sets the date format string. It could be
used like this:

date today;

ofstream ostr;

...

ostr << setfmt("%D") << today;

Here is a suggested implementation for such a manipulator;

class setfmt : public smanip<const char*>

public:

setfmt(const char* fmt)

: smanip<const char*>(setfmt_,fmt) {}

private:

static const int datfmtldx ; \\1

39 According to the draft working paper, they are two separate
arrays. However, RW's implementation uses the old
technique involving only one array.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 132
Stream Input/Output

static ios_base& setfmt_(ios_base& str, const char* fmt)

{
str.pword(datfmtldx) = (void*) fmt; \\2
return str;

}

template<class charT, class Traits>

friend basic_ostream<charT, Traits> & \3
operator << (

basic_ostream<charT, Traits >& 0s, const date& dat);

const int setfmt::datfmtldx = ios_base::xalloc(); \%

The technique applied to implement the manipulator is described in detail in
Example 2 of Section 2.8.2.3, so we won't repeat it here. But regarding this
manipulator and the private use of iostream storage , there are other
interesting details:

/1 The manipulator class owns the index of the element in the iostream
storage where we want to store the format string. It is initialized in\4
by a call to xalloc()

/l2 The manipulator accesses the array pword() using the index datfmtidx

and stores the pointer to the date format string.40 Note that the
reference returned by pword() is only used for storing the pointer to the
date format string. Generally, one should never store a reference
returned by iword() or pword() in order to access the stored data
through this reference later on. This is because these references can
become invalid once the array is reallocated or copied. (See the Class
Reference for more details.)

/I3 The inserter for date objects needs to access the index into the array of
pointers, so that it can read the format string and use it. Therefore, the
inserter has to be declared as a friend. In principle, the extractor would
have to be a friend, too; however, the standard C++ locale falls short of
supporting the use of format strings like the ones used by the standard
C function strptime() . Hence, the implementation of a date extractor
that supports date format strings would be a lot more complicated than
the implementation for the inserter, which can use the stream's locale.
We have omitted the extractor for the sake of brevity.

The inserter for date objects given below is almost identical to the one we
described in Section 2.7.3:
template<class charT, class Traits>

basic_ostream<charT, Traits> &
operator << (basic_ostream<charT, Traits >& 0s, const date& dat)

40 Error handling is omitted in the example because the standard
does not indicate how pword() and iword() indicate
failure. Possible choices would be to throw a bad_alloc
exception or to set the failbit

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 133
Stream Input/Output

ios_base::iostate err =0;
char* patt=0;

int len =0;

charT* fmt =0;

try {
typename basic_ostream<charT, Traits>::sentry opfx(0s);
if(opfx)
{
patt = (char*) os.pword(setfmt.datfmtldx); \\1

len = strlen(patt);
fmt = new charT[len];

use_facet<ctype<charT> >(0s.getloc()).
widen(patt, patt+en, fmt);

if (use_facet<time_put<charT
,ostreambuf_iterator<charT,Traits> > >
(0s.getloc())
.put(0s,0s,0s.fill(),&dat.tm_date,fmt,fmt+len) \2
failed()

err = ios_base::badbit;
os.width(0);

}}//try
catch(...)

delete [] fmt;

bool flag = FALSE;

try { , .
os.setstate(ios_base: failbit);

catch(ios_base::failure) { flag= TRUE; }
if (flag) throw;

delete [] fmt;
if (err) os.setstate(err);

return os;

}
The only change from the previous inserter is that the format string here is
read from the iostream storage (in statement //1) instead of being the fixed
string "%x" . The format string is then provided to the locale's time
formatting facet (in statement /2).

2.11.3 Caveat
Note that the solution suggested here has a pitfall.

The manipulator takes the format specification and stores it. The inserter
retrieves it and uses it. In such a situation, the question arises: Who owns
the format string? In other words, who is responsible for creating and
deleting it and hence controlling its lifetime? Neither the manipulator nor
the inserter can own it because they share it.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 134
Stream Input/Output

We solved the problem by requiring the format specification to be created
and deleted by the iostream user. Only a pointer to the format string is
handed over to the manipulator, and only this pointer is stored through
pword() . Also, we do not copy the format string because it would not be
clear who—the manipulator or the inserter—is responsible for deleting the
copy. Hence the iostream user has to monitor the format string’s lifetime,
and ensure that the format string is valid for as long as it is accessed by the
inserter.

This introduces a subtle lifetime problem in cases where the date format is a
variable instead of a constant: the stream might be a static stream and hence
live longer that the date format variable. This is a problem you will always
deal with when storing a pointer or reference to additional data instead of
copying the data.

However, this subtle problem does not impose an undue burden on the user
of our setimt manipulator. If a static character sequence is provided, as in:

cout<< setfmt ("%A, %B %d, %Y") << today;

the setfmt manipulator can be used safely, even with static streams like
cout .

2.12 Creating New Stream Classes by Derivation

Sometimes it is useful to derive a stream type from the standard iostreams.
This is the case when you want to add data members or functions, or modify
the behavior of a stream's I/0 operations.

In Section 2.11, we learned that additional data can be added to a stream
object by using xalloc() , iword() , and pword() . However, this solution has
a certain weakness in that only a pointer to the additional data can be stored
and someone else has to worry about the actual memory.

This weakness can be overcome by deriving a new stream type that stores
the additional data as a data member. Let’s consider again the example of
the date inserter and the setimt manipulator from Section 2.11. Here let's
derive a new stream that has an additional data member for storing the
format string together with a corresponding member function for setting the

date format specification.4l Again, we will confine the example to the
inserter of the date object and omit the extractor. Instead of inserting into an
output stream, as we did before, we will now use a new type of stream called
odatstream

date today;
41 This, of course, is a toy example. You would probably never
derive a new class for adding only one data member.
However, it keeps the example simple and allows us to
demonstrate the principle of deriving new stream classes.
Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 135

Stream Input/Output

odatstream ostr(cout);
...
ostr << setfmt("%D") << today;

In the next sections, we will explore how we can implement such a derived
stream type.

2.12.1 Choosing a Base Class

The first question is: Which of the standard stream classes shall be the base
class? The answer fully depends on the kind of addition or modification you
want to make. In our case, we want to add formatting information, which
depends on the stream's character type since the format string is a sequence
of tiny characters. As we will see later on, the format string must be
expanded into a sequence of the stream’s character type for use with the
stream's locale. Consequently, a good choice for a base class is class
basic_iostream <charT,Traits> , and since we want the format string to
impact only output operations, the best choice is class basic_ostream
<charT,Traits>

In general, you choose a base class by looking at the kind of addition or
modification you want to make and comparing it with the characteristics of
the stream classes.

* Choose ios_base if you add information and services that do not depend
on the stream's character type.

e Choose basic_ios<charT, Traits> if the added information does
depend on the character type, or requires other information not available
inios_base , such as the stream buffer.

» Derive from the stream classes basic_istream <charT,Traits> ,
basic_ostream <charT,Traits> , Or basic_iostream <charT, Traits> if
you want to add or change the input and output operations.

» Derive from the stream classes basic_(i/o)fstream <charT,Traits> , or
basic_(i/o)stringstream <charT, Traits, Allocator> if you want to
add or modify behavior that is file- or string-related, such as the way a
file is opened.

Derivations from basic_istream <charT, Traits> , basic_ostream

<charT,Traits> , Or basic_iostream <charT, Traits> are the most common
cases, because you typically want to modify or add input and output
operations.

If you derive from ios_base or basic_ios<charT, Traits>, you do not
inherit any input and output operations; you do this if you really want to
reimplement all of them or intend to implement a completely different kind
of input or output operation, such as unformatted binary input and output.

Derivations from file or string streams such as basic_(i/o)fstream
<charT,Traits> or basic_(i/o)stringstream <charT, Traits, Allocator>

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 136
Stream Input/Output

are equally rare, because they make sense only if file- or string-related data
or services must be added or modified.

Choose basic_istream <charT, Traits> , basic_ostream <charT,Traits> ,
or basic_iostream <charT, Traits> as a base class when deriving new
stream classes, unless you have good reason not to do so.

2.12.2 Construction and Initialization

All standard stream classes have class basic_ios<charT, Traits> as a virtual
base class. In C++, a virtual base class is initialized by its most derived class;
i.e., our new odatstream class is responsible for initialization of its base class
basic_ios<charT, Traits> . Now class basic_ios<charT,Traits> has only
one public constructor, which takes a pointer to a stream buffer. This is
because class basic_ios<charT,Traits> contains a pointer to the stream
buffer, which has to be initialized when a basic_ios object is constructed.
Consequently, we have to figure out how to provide a stream buffer to our
base class. Let's consider two options:

e Derivation from file stream or string stream classes; i.e., class
(ilo)fstream<> or class (i/o)stringstream<> ,and

» Derivation from the stream classes basic_(i/o)stream<>

2.12.2.1 Derivation from File Stream or String Stream Classes Like

(i/o)fstream<> or (i/0)stringstream<>

The file and string stream classes contain a stream buffer data member and
already monitor their virtual base class's initialization by providing the
pointer to their own stream buffer. If we derive from one of these classes, we
will not provide another stream buffer pointer because it would be
overwritten by the file or string stream's constructor anyway. (Remember
that virtual base classes are constructed before non-virtual base classes
regardless of where they appear in the hierarchy.) Consider:

template <class charT, class Traits=char_traits<charT> >
class MyOfstream : public basic_ofstream<charT,Traits> {
public:
MyOfstream(const char* name)
- basic_ios<charT, Traits>(... streambufptr...)
, basic_ofstream<charT,Traits>(name) {}
...

J
The order of construction would be:

basic_ios(basic_streambuf<charT, Traits>*)
basic_ofstream(const char*)
basic_ostream(basic_streambuf<charT,Traits>*)
ios_base()

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 137
Stream Input/Output

In other words, the constructor of basic_ofstream overwrites the stream
buffer pointer set by the constructor of basic_ios

To avoid this dilemma, class basic_ios<charT,Traits> has a protected
default constructor in addition to its public constructor. This default
constructor, which requires a stream buffer pointer, doesn't do anything.
Instead, there is a protected initialization function
basic_ios<charT,Traits>::init() that can be called by any class derived
from basic_ios<charT,Traits> . With this function, initialization of the
basic_ios<> base class is handled by the stream class that actually provides
the stream buffer—in our example, basic_ofstream<charT,Traits> ltwill
call the protected init) ~ function:

template <class charT, class Traits=char_traits<charT> >

cla%s"(l:_/lyOfstream : public basic_ofstream<charT, Traits> {

IOIL\J/IyO-fstream(const char* name)

: basic_ofstream<charT, Traits>(name) {}
n...

h
The order of construction and initialization is:
basic_ios()
basic_ofstream(const char*)
basic_ostream()
which calls;

basic_ios<charT,Traits>::init(basic_streambuf<charT,Traits>*)
ios_base()

2.12.2.2 Derivation from the Stream Classes basic_(i/0)stream<>

The scheme for deriving from the stream classes is slightly different in that
you must always provide a pointer to a stream buffer. This is because the
stream classes do not contain a stream buffer, as the file or string stream
classes do. For example, a class derived from an output stream could look
like this:

template <class charT, class Traits=char_traits<charT>>

class MyOstream : public basic_ostream<charT, Traits> {

public:

MyOstream(basic_streambuf<charT, Traits>* sh)

: basic_ostream<charT, Traits>(sb) {}
...

8
There are several ways to provide the stream buffer required for constructing
such a stream:

» Create the stream buffer independently, before the stream is created.
Here is a simple example in which a file buffer is created as a separate
object and used by the derived stream:

basic_filebuf<char> strbuf;
strbuf.open("tmp/hox");

MyOstream<char> mostr(&strbuf);
mostr << "Hello world\n";

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 138
Stream Input/Output

* Take the stream buffer from another stream. In the example below, the
stream buffer is “borrowed” from the standard error stream cerr :

MyOstream<char,char_traits<char> > mostr(cerr.rdbuf());
mostr << "Hello world\n";

Remember that the stream buffer is now shared between mostr and cerr
(see Section 2.9.2 for details).

* Contain the stream buffer in the derived stream, either as a data
member or inherited. This option is typically preferred when a new
stream buffer type is used along with the new stream type.

2.12.3 The Example

Let’s return now to our example, in which we are creating a new stream class
by derivation.

2.12.3.1 The Derived Stream Class

Let us derive a new stream type odatstream that has an additional data
member fmt_ for storing a date format string, together with a corresponding
member function fmt() for setting the date format specification.

template <class charT, class Traits=char_traits<charT> >
class odatstream : public basic_ostream <charT,Traits>

{

public:

odatstream(basic_ostream<charT, Traits>& ostr,const char* fmt =
"06X") \\1

: basic_ostream<charT, Traits>(ostr.rdbuf())

{
fmt_=new charT[strlen(fmt)];
use_facet<ctype<charT> >(ostr.getloc()).

widen(fmt, fmt+strlen(fmt), fmt); \\2
basic_ostream<charT, Traits>& fmt(const char* f) \3
{
delete[] fmt_;

fmt_=new charT[strlen(f)];

use_facet<ctype<charT> >(0s.getloc()).
widen(f, f+strlen(f), fmt_);

return *this;

}

charT const* fmt() const v

charT * p = new charT[Traits::length(fmt_)];
Traits::copy(p,fmt_, Traits::length(fmt));
return p;

~odatstream() \\5
{delete[] fmt_;}

private:
charT* fmt_; \\6
Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 139

Stream Input/Output

template <class charT, class Traits> \\7
friend basic_ostream<charT, Traits> &
operator << (basic_ostream<charT, Traits >& 0s, const date& dat);

/Il A date output stream borrows the stream buffer of an already existing
output stream, so that the two streams will share the stream buffer.

The constructor also takes an optional argument, the date format string.
This is always a sequence of tiny characters.

/12 The format string is widened or translated into the stream's character
type charT . This is because the format string will be provided to the
time facet of the stream's locale, which expects an array of characters of
type charT .

/I3 This version of function fmt() allows you to set the format string.

/l4 This version of function fmt() returns the current format string setting.

/I5 The date stream class needs a destructor that deletes the format string.

/16 A pointer to the date format specification is stored as a private data
member fmt_ .

/17 The inserter for dates will have to access the date format specification.
For this reason, we make it a friend of class odatstream

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 140

Stream Input/Output

2.12.3.2 The Date Inserter

We would like to be able to insert date objects into all kinds of output
streams. And, whenever the output stream is a date output stream of type
odatstream , we would like to take advantage of its ability to carry additional
information for formatting date output. How can this be achieved?

It would be ideal if the inserter for date objects were a virtual member
function of all output stream classes that we could implement differently for
different types of output streams. For example, when a date object is
inserted into an odatstream, the formatting would use the available date
formatting string; when inserted into an arbitrary output stream, default
formatting would be performed. Unfortunately, we cannot modify the
existing output stream classes, since they are part of a library you will not
want to modify.

This kind of problem is typically solved using dynamic casts. Since the
stream classes have a virtual destructor, inherited from class basic_ios , we

can use dynamic casts to achieve the desired virtual behavior.42

Here is the implementation of the date inserter, which is similar to the one in
Section 2.7.2. The differences are shaded:

template<class charT, class Traits>

basic_ostream<charT, Traits> &

operator << (basic_ostream<charT, Traits >& 0s, const date& dat)
ios_base::iostate err =0;

try {
typename basic_ostream<charT, Traits>::sentry opfx(0s);

if(opfx)

charT* fmt;
charT buf[3];

try { \1

odatstream<charT, Traits>*

p = dynamic_cast<odatstream<charT, Traits>*>(&os); \2
}
catch (bad_cast) \\3

char patt[3] = "%x";

use_facet(os.getloc(),
(ctype<charT>*)0).widen(patt,patt+3,buf);

42 For a more detailed discussion of the problem and its solution,
see Section 14.2, p. 306ff, of Bjarne Stroustrup, "The
Design and Evolution of C++," Addison-Wesley 1994,

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 141
Stream Input/Output

fmt = (p) ? p->fmt_: buf; \4

if (use_facet<time_put<charT,ostreambuf_iterator<charT, Traits>
> >(0s.getloc())

put(os,0s,0s fill(),&dat.tm_date,fmt,fmt+Traits::length(fmt)).fai
led())
err =ios_base::badbit;
os.width(0);

}}//try
catch(...)

bool flag = FALSE;
try { , o
os.setstate(ios_base::failbit);

}
catch(ios_base:failure) { flag= TRUE; }
if (flag) throw;

}

if (err) os.setstate(err);

return os;

}

/11 We will perform a dynamic cast in statement /2 . A dynamic cast
throws an exception in case of mismatch. Naturally, we do not want to
confront our user with bad_cast exceptions because the mismatch does
not signify an error condition, but only that the default formatting will
be performed. For this reason, we will try to catch the potential
bad cast exception.

/I2 This is the dynamic cast to find out whether the stream is a date stream
or any other kind of output stream.

/I3 In case of mismatch, we prepare the default date format specification
"%x" .

/14 If the stream is not of type odatstream , the default format specification
prepared in the catch clause is used. Otherwise, the format
specification is taken from the private data member fmt_ .

2.12.3.3 The Manipulator

The date output stream has a member function for setting the format
specification. Analogous to the standard stream format functions, we would
like to provide a manipulator for setting the format specification. This
manipulator will affect only output streams. Therefore, we have to define a
manipulator base class for output stream manipulators, osmanip , along with
the necessary inserter for this manipulator. We do this in the code below.
See Section 2.8 for a detailed discussion of the technique we are using here:

template <class Ostream, class Arg>

class osmanip {

public:

typedef Ostream ostream_type;
typedef Arg argument_type;

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 142
Stream Input/Output

osmanip(Ostream& (*pf)(Ostreamé&, Arg), Arg arg)
:pf_(pf) , arg_(arg) {; }

protected:
Ostream& (*pf_)(Ostream&, Arg);
Arg arg_;

friend Ostream&
operator<< (Ostreamé& ostr, const osmanip<Ostream,Arg>& manip);

i

template <class Ostream, class Arg>
Ostreamé& operator<< (Ostreamé& ostr,const osmanip<Ostream,Arg>&
manip)

(*manip.pf_)(ostr,manip.arg_);
return ostr;

After these preliminaries, we can now implement the setfmt manipulator
itself:

template <class charT, class Traits>
inline basic_ostream<charT, Traits>&
sfmt(basic_ostream<charT, Traits>& ostr, constchar*f) \\1

{

try { W2
odatstream<charT, Traits>* p =
dynamic_cast<odatstream<charT,Traits>*>(&ostr);

}
catch (bad_cast) \3
{ return ostr; }

p->fmt(f); \%)
return ostr;

}

template <class charT ,class Traits>

inline osmanip<basic_ostream<charT,Traits>,const char*>

setfmt(const char* fmt)
{ return osmanip<basic_ostream<charT, Traits>,const
char*>(sfmt,fmt); } \5
/L The function sfmt() is the function associated with the setfmt

manipulator. Its task is to take a format specification and hand it over
to the stream. This happens only if the stream is a date output stream;
otherwise, nothing is done.

/I2 We determine the stream’s type through a dynamic cast. As it would be
rather drastic to let a manipulator call result in an exception thrown, we
catch the potential bad_cast exception.

/I3 In case of mismatch, we don't do anything and simply return.

/l4 In case the stream actually is a date output stream, we store the format
specification by calling the stream's fmt() function.

/15 The manipulator itself is a function that creates an output manipulator
object.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 143

Stream Input/Output

2.12.3.4 A Remark on Performance

The solution suggested in the previous Sections 2.12.3.2 and 2.12.3.3 uses
dynamic casts and exception handling to implement the date inserter and the
date format manipulator. Although this technique is elegant and makes
proper use of the C++ language, it might introduce some loss in runtime
performance due to the use of exception handling. This is particularly true
as the dynamic cast expression, and the exception it raises, is used as a sort of
branching statement. In other words, the "exceptional” case occurs relatively
often and is not really an exception.

If optimal performance is important, you can choose an alternative approach:
in the proposed solution that uses dynamic casts, extend the date inserter for
arbitrary output streams basic_ostream<charT, Traits>& operator<<

(basic_ostream <charT,Traits>&, const date&) so that it formats dates
differently, depending on the type of output stream. Alternatively, you can
leave the existing date inserter for output streams unchanged and implement
an additional date inserter that works for output date streams only; its
signature would be odatstream<charT, Traits>& operator<<
(odatstream<charT,Traits>&, const date&) . Also, you would have two
manipulator functions, one for arbitrary output streams and one for output
date streams only, that is, basic_ostream<charT,Traits>& sfmt

(basic_ostream<charT, Traits>&, const char*) and
odatstream<charT,Traits>& sfmt (odatstream<charT,Traits>&, const

char*) . In each of the functions for date streams, you would replace those
operations that are specific for output date streams.

This technique has the drawback of duplicating most of the inserter's code,
which in turn might introduce maintenance problems. The advantage is that
the runtime performance is likely to be improved.

2.12.4 Using iword/pword for RTTI in Derived Streams

In the previous section, we discussed an example that used runtime-type
identification (RTTI) to enable a given input or output operation to adapt its
behavior based on the respective stream type's properties.

Before RTTI was introduced into the C++ language in the form of the new
style casts dynamic_cast<> , the problem was solved using iword() , pword() ,
and xalloc() as substitutes for runtime-type identification (RTTI).43 We
describe this old-fashioned technique only briefly because, as the previous
example suggests, the use of dynamic casts is clearly preferable over the

43 An introduction to this technique can also be found in Section
6.10, p. 90ff, of Steve Teale's "C++ I0Streams Handbook,"
Addison-Wesley 1993. Watch out, the example given
there has several severe bugs!

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 144
Stream Input/Output

RTTI substitute. Still, the traditional technique might be useful if your
current compiler does not yet support the new-style casts.

The basic idea of the traditional technique is that the stream class and all
functions and classes that need the runtime type information, like the inserter
and the manipulator function, agree on two things:

e Anindex into the arrays for additional storage; in other words, Where do
| find the RTTI?, and

* The content or type identification that all concerned parties expect to find
there; in other words, What will | find?

In the sketch below, the derived stream class reserves an index into the
additional storage. The index is a static data member of the derived stream
class, and identifies all objects of that stream class. The content of that
particular slot in the stream's additional storage, which is accessible through
pword() , is expected to be the respective stream object's this pointer.

Here are the modifications to the derived class odatstream

template <class charT, class Traits=char_traits<charT> >
class odatstream : public basic_ostream <charT,Traits>

public:
static int xindex() \\1

static int inited = 0;
static int value = 0;
if (linited)

value = xalloc();
inited++;

return value;

}

odatstream(basic_ostream<charT, Traits>& ostr,const char* fmt =
Il% xl l)
- basic_ostream<charT, Traits>(ostr.rdbuf())

{
pword(xindex()) = this; \\2

fmt_=new charT[strlen(fmt)];
use_facet<ctype<charT> >(ostr.getloc()).widen(fmt,
fmt+strien(fmt), fmt_);
}

/I ... other member, as in the previous section ...
g
/I1 The static function xindex() is concerned with reserving the index into

the arrays for additional storage. It also serves as the access function to
the index.

/I2 The reserved slot in the arrays for additional storage is filled with the
object's own address.

Here are the corresponding modifications to the manipulator:

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 145
Stream Input/Output

template <class charT, class Traits>
inline basic_ostream<charT, Traits>&
sfmt(basic_ostream<charT, Traits>& ostr, const char* f)

if (ostr.pword(odatstream<charT, Traits>::xindex()) == &ostr) \1
((odatstream<charT, Traits>&)ostr).fmt(f);
return ostr;

}

/I1 The manipulator function checks whether the content of the reserved
slot in the stream's storage is the stream's address. If it is, the stream is
considered to be a date output stream.

Note that the technique described in this section is not safe. There is no way
to ensure that date output streams and their related functions and classes are
the only ones that access the reserved slot in a date output stream's
additional storage. In principle, every stream object of any type can access
all entries through iword() or pword() . It's up to your programming
discipline to restrict access to the desired functions. It is unlikely, however,
that all streams will make the same assumptions about the storage's content.
Instead of agreeing on each stream object's address as the run-time-type
identification, we also could have stored certain integers, pointers to certain
strings, etc. Remember, it's the combination of reserved index and assumed
content that represents the RTTI substitute.

2.13 Defining A Code Conversion Facet

File stream buffers are responsible for the transport of characters to and from
an external device. In many cases, the character encoding used internally
inside your program and externally on the device will differ. Hence the file
stream buffer will have to convert characters from one encoding to another
each time it reads from or writes to the external device. (This User’s Guide
section on internationalization gives a detailed discussion of character
encodings and explains a couple of typical code conversions. If you are not
familiar with code conversions, we recommend you read about them before
delving into the details of implementing one, which will be explained in this
section.)

A code conversion is not performed by the file stream buffer itself. This task
is encapsulated in a code conversion facet. Each time the file stream buffer
has to convert characters, it consults its locale's code conversion facet for the
actual conversion. For this reason, file stream buffers and code conversion
facets have to work together closely, and the file stream buffer depends on its
locale's code conversion facet.

This clear separation of responsibilities enables you to change a file stream’s
behavior substantially, without touching the file stream class itself. All you
have to do is provide a special code conversion facet. In doing so, you turn
an ordinary file stream into one that converts, say, EBCDIC files on a
mainframe's file system into a stream of ASCII characters for internal
processing.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 146
Stream Input/Output

However, the task of implementing a code conversion facet requires a
thorough understanding of the way file stream buffers and code conversion
facets interact. In this section, we will use two examples to explain the
principles of this interaction.

Before we move on to the examples, let’s go through an overview of the
different kinds of code conversions. As we will see later on, different types
of code conversions require different kinds of implementations.

2.13.1 Categories of Code Conversions

Code conversions fall into various categories depending on the properties of
the character encodings involved. There are:

» Constant-size conversions, and

« Multibyte conversions, which again fall into the categories of:
» State-independent conversions, and
e State-dependent conversions.

Constant-size conversions are between character encodings where all
characters are of equal size. All single- or wide-character encodings are
examples of such character encodings. Each single character stands for itself
and can be recognized and translated independently of its context.
Conversions between ASCII and EBCDIC, or Unicode and 1SO10646, are
examples of constant-size conversions.

Multibyte conversions involve multibyte encodings. In multibyte
encodings, characters have varying size. Some multibyte characters consist
of two or more bytes, while others are represented by just one byte.

There is a substantial difference between code conversions involving state-
dependent character encodings, and conversions between state-independent
encodings. (Again, see this User's Guide section on internationalization for
further details.)

State-dependent multibyte conversions involve one character encoding that
is state-dependent. In state-dependent character encodings, character
sequences can have different meanings depending on the current context.
State-dependent encodings typically have modes and escape sequences that
allow switching between modes. An example of a state-dependent character
conversion is the conversion between the state-dependent JIS encoding for
Japanese characters and the Unicode wide-character encoding.

State-independent multibyte conversions do not have modes. A sequence
of characters can always be interpreted independently of its context. An
example of a state-independent multibyte conversion is the conversion
between EUC, which a state-independent multibyte encoding, and Unicode.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 147
Stream Input/Output

2.13.2 Example 1: Defining a Tiny Character Code Conversion
(ASCIl <-> EBCDIC)

As an example of how file stream buffers and code conversion facets
collaborate, we would now like to implement a code conversion facet that
can translate text files encoded in EBCDIC into character streams encoded in
ASCII. The conversion between ASCII characters and EBCDIC characters is
a constant-size code conversion where each character is represented by one
byte. Hence the conversion can be done on a character-by-character basis.

To implement and use an ASCII-EBCDIC code conversion facet, we will:

1. Derive a new facet type from the standard code conversion facet type
codecvt .

2. Specialize the new facet type for the character type char .
3. Implement the member functions that are used by the file buffer.

4. Imbue a file stream's buffer with a locale that carries an ASCII-EBCDIC
code conversion facet.

The following sections will explain these steps in detail.

2.13.2.1 Derive a New Facet Type

Here is the new code conversion facet type AsciiEbcdicConversion

template <class internT, class externT, class stateT>
class AsciiEbcdicConversion
: public codecvt<internT, externT, stateT>

JE
It is empty because we will specialize the class template for the character
type char .

2.13.2.2 Specialize the New Facet Type and Implement the Member
Functions

Each code conversion facet has two main member functions, in() and out()

* Functionin() is responsible for the conversion done on reading from the
external device; and

e Function out() is responsible for the conversion necessary for writing to
the external device.

The other member functions of a code conversion facet used by a file stream
buffer are:

e The function always_noconv() , which returns true if no conversion is
performed by the facet. This is because file stream buffers might want to
bypass the code conversion facet when no conversion is necessary; e.g.,

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 148
Stream Input/Output

when the external encoding is identical to the internal. Our facet
obviously will perform a conversion and does not want to be bypassed,
so always_noconv() will return false in our example.

e The function encoding() , which provides information about the type of
conversion; i.e., whether it is state-dependent or constant-size, etc. In our
example, the conversion is constant-size. The function encoding() is
supposed to return the size of the internal characters, which is 1 because
the file buffer uses an ASCII encoding internally.

All public member functions of a facet call the respective, protected virtual
member function, named do_...) . Here is the declaration of the specialized
facet type:

class AsciiEbcdicConversion<char, char, mbstate_t>
: public codecvt<char, char, mbstate_t>

protected:

result do_in(mbstate_t& state

,const char* from, const char* from_end, const
char*& from_next

,char* to ,char*to_limit , char*&
to_next) const;

result do_out(mbstate_t& state

,const char* from, const char* from_end, const
char*& from_next

,char* to ,char*to_limit , char*&
to_next) const;

bool do_always_noconv() const thow()
{return false; };

int do_encoding() const throw();
{retun 1;}

h
For the sake of brevity, we implement only those functions used by Rogue
Wave's implementation of file stream buffers. If you want to provide a code
conversion facet that is more widely usable, you would also have to
implement the functions do_length() and do_max_length()

The implementation of the functions do_in() and do_out() is
straightforward. Each of the functions translates a sequence of characters in
the range [from,from_end) into the corresponding sequence [to,to_end)

The pointers from_next andto_next point one beyond the last character
successfully converted. In principle, you can do whatever you want, or
whatever it takes, in these functions. However, for effective communication
with the file stream buffer, it is important to indicate success or failure

properly.

2.13.2.3 Use the New Code Conversion Facet
Here is an example of how the new code conversion facet can be used:

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 149
Stream Input/Output

fstream inout("tmpffil"); \\1
AsciiEbcdicConversion<char,char,mbstate_t> cvtfac;
locale cvtloc(locale(),&cvtfac);
inout.rdbuf()->pubimbue(cvtloc) \2
cout << inout.rdbuf(); \3

/Il When afile is created, a snapshot of the current global locale is attached
as the default locale. Remember that a stream has two locale objects:
one used for formatting numeric items, and a second used by the
stream's buffer for code conversions.

/12 Here the stream buffer's locale is replaced by a copy of the global locale
that has an ASCII-EBCDIC code conversion facet.

/I3 The content of the EBCDIC file "tmpfil" is read, automatically
converted to ASCII, and written to cout .

2.13.3 Error Indication in Code Conversion Facets

Since file stream buffers depend on their locale's code conversion facet, it is
important to understand how they communicate. On writing to the external
device, the file stream buffer hands over the content of its internal character
buffer, partially or entirely, to the code conversion facet; i.e., to its out()
function. It expects to receive a converted character sequence that it can
write to the external device. The reverse takes place, using the in() function,
on reading from the external file.

In order to make the file stream buffer and the code conversion facet work
together effectively, it is necessary that the two main functions in() and

out() indicate error situations the way the file stream buffer expects them to
doit.

There are four possible return codes for the functionsin() and out()
e ok, which should obviously be returned when the conversion went fine.

e parial , which should be returned when the code conversion reaches
the end of the input sequence [from,from_end) before a new character
can be created. The file stream buffer's reaction to partial is to provide
more characters and call the code conversion facet again, in order to

successfully complete the conversion.44

44 1n our example of a conversion between ASCII and EBCDIC, we
have no reason to ever return partial , because this is a
conversion of single byte characters. Either a character
can be recognized and converted, or the conversion fails;
that is, error will be returned. The partial return code
only makes sense in wide-character and multibyte
conversions.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 150
Stream Input/Output

* error , which indicates a violation of the conversion rules; i.e., the
character sequence to be converted does not obey the expected rules and
thus cannot be recognized and converted. In this situation, the file
stream buffer stops doing anything, and the file stream eventually sets
its state to badbit and throws an exception if appropriate.

* noconv , which is returned if no conversion was needed.

2.13.4 Example 2: Defining a Multibyte Character Code
Conversion (JIS <-> Unicode)

Let us consider the example of a state-dependent code conversion. As
mentioned previously, this type of conversion would occur between JIS,
which is a state-dependent multibyte encoding for Japanese characters, and
Unicode, which is a wide-character encoding. As usual, we assume that the
external device uses multibyte encoding, and the internal processing uses
wide-character encoding.

Here is what you have to do to implement and use a state-dependent code
conversion facet:

1. Define a new conversion state type if necessary.

2. Define a new character traits type if necessary, or instantiate the
character traits template with the new state type.

3. Define the code conversion facet.
4. Instantiate new stream types using the new character traits type.

5. Imbue a file stream's buffer with a locale that carries the new code
conversion facet.

These steps are explained in detail in the following sections.

2.13.4.1 Define a New Conversion State Type

While parsing or creating a sequence of multibytes in a state-dependent
multibyte encoding, the code conversion facet has to maintain a conversion
state. This state is by default of type mbstate_t , which is the
implementation-dependent state type defined by the C library. If this type
does not suffice to keep track of the conversion state, you have to provide
your own conversion state type. We will see how this is done in the code
below, but please note first that the new state type must have the following
member functions:

* Aconstructor. The argument 0 has the special meaning of creating a
conversion state object that represents the initial conversion state;

» Copy constructor and assignment;

e Comparison for equality and inequality.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 151
Stream Input/Output

Now here is the sketch of a new conversion state type:

class JiSstate_t{

public:
JISstate_t(int state=0)
: state_(state) {; }

JISstate_t(const JISstate_t& state)
: state_(state.state) {;}

JISstate_t& operator=(const JISstate_t& state)

if (&state = this)
state_= state.state_;
return *this;

JISstate_t& operator=(const int state)

state_= state;
return *this;

}

bool operator==(const JISstate_t& state) const

return (state_ == state.state _);

bool operator!=(const JISstate_t& state) const

return (!(state_ == state.state));

private:
int state_;

g
2.13.4.2 Define a New Character Traits Type

The conversion state type is part of the character traits. Hence, with a new
conversion state type, you need a new character traits type.

Rogue Wave's implementation of the Standard C++ Library has a non-
standard extension to the standard character traits class template

char_traits . The extension is an additional template parameter for the
conversion state type. For this reason, you can create a new character traits
type by instantiating the character traits with your new conversion state

type:
char_traits<wchar_t, JISstate_t>
However, if you do not want to rely on a non-standard and thus non-

portable feature of the library, you have to define a new character traits type
and redefine the necessary types:

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 152
Stream Input/Output

struct JIS_char_traits: public char_traits<wchar_t>

typedef JiSstate_t state_type;
typedef fpos<state_type> pos_type;
typedef wstreamoff off_type;

2.13.4.3 Define the Code Conversion Facet

Just as in the first example, you have to define the actual code conversion
facet. The steps are basically the same as before, too: define a new class
template for the new code conversion type and specialize it. The code would
look like this:

template <class internT, class externT, class stateT>

class UnicodeJISConversion
: public codecvt<internT, externT, stateT>

{
I3

class UnicodeJISConversion<wchar _t, char, JISstate t>
: public codecvt<wchar _t, char, JISstate_t>

protected:

result do_in(JISstate_t& state,
const char* from,
const char* from_end,
const char*& from_next,
wchar_t* to,
wchar_t* to_limit,
wchar_t*& to_next) const;

result do_out(JISstate_t& state,
const wchar_t* from,
const wchar_t* from_end,
const wchar_t*& from_next,
char* to,
char* to_limit,
chart& to_next) const;

bool do_always_noconv() const throw()
{return false; },

int do_encoding() const throw();
{return-1;}

h
In this case, the function do_encoding() has to return -1, which identifies the
code conversion as state-dependent. Again, the functionsin() and out()
have to conform to the error indication policy explained under class
codecvt in the Class Reference.

The distinguishing characteristic of a state-independent conversion is that
the conversion state argumenttoin() and out() is used for communication
between the file stream buffer and the code conversion facet. The file stream
buffer is responsible for creating, maintaining, and deleting the conversion
state. At the beginning, the file stream buffer creates a conversion state

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 153
Stream Input/Output

object that represents the initial conversion state and hands it over to the
code conversion facet. The facet modifies it according to the conversion it
performs. The file stream buffer receives it and stores it between two
subsequent code conversions.

2.13.4.4 Use the New Code Conversion Facet
Here is an example of how the new code conversion facet can be used:

typedef basic_fstream<wchar_t,JIS_char_traits> JIS_fstream; \\1
JIS_fstream inout("tmpffil");
UnicodeJISConversion<wchar_t,char,JISstate_t> cvtfac;

locale cvtloc(locale(),&cvtfac);

inout.rdbuf()->pubimbue(cvtloc) \2

weout << inout.rdbuf(); \3

/1 Our Unicode-JIS code conversion needs a conversion state type
different from the default type mbstate_t . Since the conversion state
type is contained in the character traits, we have to create a new file
type. Instead of JIS_char_traits , we could have taken advantage of
the non-standard extension to the character traits template and have
used char_traits<wchar_t,JISstate_t>

/12 Here the stream buffer's locale is replaced by a copy of the global locale
that has a Unicode-JIS code conversion facet.

/I3 The content of the JIS encoded file "Ampffil" is read, automatically
converted to Unicode, and written to wcout .

2.14 Differences between Standard and Traditional
lostreams4s

The standard iostreams facility differs substantially from the traditional
iostreams. This section briefly describes the main differences.

2.14.1 The Character Type

In the past, you may already have used iostreams—the traditional iostreams.
The iostreams included in the Standard C++ Library are mostly compatible,
yet slightly different from what you know. The most apparent change is that
the new iostream classes are templates, taking the type of the character as a
template parameter.

The traditional iostreams were of limited use. They could handle only byte
streams; in other words, they read files byte per byte, and worked internally
with a buffer of bytes. They had problems with languages that have
alphabets containing thousands of characters. These alphabets are encoded

45 The list in this section is not meant to be complete, since this is a
preliminary release of the User's Guide.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 154
Stream Input/Output

as multibytes for storage on external devices like files, and represented as
wide characters internally. They required a code conversion with each input
and output.

The new templatized iostreams can handle large alphabets. These iostreams
can be instantiated for one-byte skinny characters of type char , and for wide
characters of type wchar_t . In fact, you can instantiate iostream classes for
any user-defined character type. Section 2.13 describes in detail how this can
be done.

2.14.2 Internationalization

Another new feature of the standard iostreams is internationalization.
Traditional iostreams were incapable of adjusting to local conventions.
Output of numerical items was always done following the US English
conventions for number formatting. The new iostreams are internationalized
to allow for local conventions. They use the standard locales described in the
section on locales.

2.14.3 File Streams

2.14.3.1 Connecting Files and Streams

The traditional iostreams supported a file stream constructor, taking a file
descriptor that allowed connection of a file stream to an already open file.
This is no longer available in the standard iostreams.

The functions attach() and detach() do not exist anymore.

2.14.3.2 The File Buffer

Due to changes in the iostream architecture, the file buffer is now contained
as a data member in the file stream classes. In some old implementations, the
buffer was inherited from a base class called fstreambase

The old file streams had a destructor; the new file streams don’t need one.
Flushing the buffer and closing the file is now done by the file buffer’s
destructor.

2.14.4 String Streams

Output string streams are always dynamic. Thestr() function does not
have the functionality of freezing the string stream anymore. Instead, the
string provided through str() is copied into the internal buffer; it is not used
as the internal buffer. Accordingly, the string returned through str() s
always a copy of the internal buffer.

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 155
Stream Input/Output

If you need to influence a string stream’s internal buffering, you must do it
through pubsetbuf()

The classes strstream | istrstream |, ostrstream , and strstreambuf are
deprecated features in the standard iostreams. They are still provided by
this implementation of the standard iostreams, but will be omitted in the
future.

2.14.5 Streams with Assign

The classes ostream_withassign , istream_withassign , and
iostream_withassign do not exist in the standard iostreams anymore. You
can only assign the data components of a stream to another stream. This is
done through the functions copyfmt() and rdbuf() in class basic_ios.

2.15 Differences between Standard and Rogue Wave
IOStreams

This section describes how the Rogue Wave implementation of the standard
iostreams differs from the ISO/ANSI Standard C++ Library specification.
You must be aware that whenever you use one of the features described
here, the portability of your program will be impaired. It will not conform to
the standard.

2.15.1 Extensions

Rogue Wave’s implementation of the standard iostreams has several
extensions that we will describe briefly in the sections below.

2.15.1.1 File Descriptors

The traditional iostreams allowed a file stream to connect to a file using a file
descriptor. File descriptors are used by functions like open() , close()

read() ,and write() that are part of most C libraries, especially on UNIX-
based platforms. However, the ISO/ANSI standard for the programming
language C and its library does not include these functions, nor does it
mention file descriptors. In this sense, the use of file descriptors introduces
platform and operating system dependencies into your program. This is
exactly why the standard iostreams does not use file descriptors.

Now you might already have programs that use the file descriptor features
of the traditional iostreams. And you may need to access system-specific
files like pipes, which are accessible only through file descriptors. To
address these concerns, Rogue Wave’s implementation offers additional
constructors and member functions in the file stream and file buffer classes
that enable you to work with file descriptors.

The main additions are:

* Constructors that take a file descriptor rather than a file name;

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 156
Stream Input/Output

* An additional third parameter that allows specification of file access
rights. This parameter, available on several constructors and the open()
member functions, is not available with the standard interface. The
parameter has a default, so that you usually need not worry about file
protection.

2.15.2 Restrictions

Rogue Wave’s implementation of the standard iostreams has several
restrictions, most of which correspond to the limited capabilities of current
compilers in handling Standard C++. These restrictions include:

e Member templates;

« Explicit template argument specification (use_facet and has facet in
locale)

2.15.3 Deprecated Features

e Thestrsteam classes

Copyright [J 1996 Rogue Wave Software, Inc. All rights reserved. 157
Stream Input/Output

” Appendix:
' Implementation Dependencies and
J Open Issues in the Standard

Implementation-Dependent Behavior

1. The memory allocation strategy of operator<<() for strings is not
specified; in other words, the strategy is implementation-dependent.

2. The behavior of an input file stream’s sync() function is
implementation-dependent. An input file stream’s sync() function
should synchronize the input sequence with the input file; that is, it
should refill the buffer from the current position on, or the draft should
state exactly what the sync() function does.

3. Itis unspecified—that is, implementation-dependent—how pword() and
iword() indicate failure. Possible choices could be throwing a bad_alloc
exception, or setting failbit

Rogue Wave's implementation uses operator new for allocating these
arrays, which means that bad_alloc ~ will be thrown.

4. Itis unspecified what happens ifiword() or pword() are provided with
an index that was not returned by a previous call to xalloc()

Rogue Wave's implementation allocates as much memory as necessary to
provide the requested array entry.

Open Issues in the Standard

1. Acall toastream’simbue() function changes the stream buffer’s locale
object as well. This is a problem when two streams share a stream buffer
and the streams’ locales have different code conversion facets.

2. Itis unspecified when calls to a stream’s imbue() function are allowed.
This is especially crucial when code conversion needs to be performed.

Copyright © 1996 Rogue Wave Software, Inc. All rights reserved. 159
Appendix

Rogue Wave Std. C++ Lib. User Docs, Vol 2-pt.A 160
Stream Input/Output

	HOME
	Rogue Wave Standard C++ Library Iostreams and Locale User s Guide
	Table of Contents
	Internationalization
	How to Read this Section
	Internationalization and Localization
	Localizing Cultural Conventions
	Character Encodings for Localizing Alphabets
	Summary

	The Standard C Locale and the Standard C++ Locales
	The C Locale
	The C++ Locales
	Facets
	Differences between the C Locale and the C++ Locales
	Relationship between the C Locale and the C++ Locale

	The Locale
	The Facets
	Creating a Facet Object
	Accessing a Locale s Facets
	Using a Stream s Facet
	Creating a Facet Class for Replacement in a Locale
	The Facet Id
	Creating a Facet Class for Addition to a Locale

	User-Defined Facets: An Example
	A Phone Number Class
	A Phone Number Formatting Facet Class
	An Inserter for Phone Numbers
	The Phone Number Facet Class Revisited
	An Example of a Concrete Facet Class
	Using Phone Number Facets
	Formatting Phone Numbers
	Improving the Inserter Function

	Stream Input/Output
	How to Read This Section
	Code Examples
	Terminology

	The Architecture of Iostreams
	What Are the Standard Iostreams?
	How Do the Standard Iostreams Work?
	How Do the Standard Iostreams Help Solve Problems?
	The Internal Structure of the Iostreams Layers

	Formatted Input/Output
	The Predefined Streams
	NarrowWideAssociated charactercharacterC standard streamstreamfiles
	Input and Output Operators
	Format Control Using the Stream s Format State
	Localization Using the Stream s Locale
	Formatted Input

	Error State of Streams
	Checking the Stream State
	Catching Exceptions

	File Input/Output
	The Difference between Predefined File Streams (cin, cout, cerr, and clog) and File Streams
	Code Conversion in Wide Character Streams
	File Streams
	The Open Mode
	Binary and Text Mode

	In-Memory Input/Output
	The Internal Buffer
	The Open Modes

	Input/Output of User-Defined Types
	An Example Using a User-Defined Type
	A Simple Extractor and Inserter for the Example
	Improved Extractors and Inserters
	More Improved Extractors and Inserters
	Patterns for Extractors and Inserters of User-Defined Types

	Manipulators
	Manipulators without Parameters
	Manipulators with Parameters

	Streams and Stream Buffers
	Copying and Assigning Stream Objects
	Sharing a Stream Buffer Among Streams
	Copies of the Stream Buffer

	Synchronizing Streams
	Explicit Synchronization
	Implicit Synchronization Using the unitbuf Format Flag
	Implicit Synchronization by Tying Streams
	Synchronizing the Predefined Standard Streams
	Synchronization with the C Standard I/O

	Stream Storage for Private Use: iword, pword, and xalloc
	An Example: Storing a Date Format String
	Another Look at the Date Format String
	Caveat

	Creating New Stream Classes by Derivation
	Choosing a Base Class
	Construction and Initialization
	The Example
	Using iword/pword for RTTI in Derived Streams

	Defining A Code Conversion Facet
	Categories of Code Conversions
	Example 1: Defining a Tiny Character Code Conversion (ASCII <-> EBCDIC)
	Error Indication in Code Conversion Facets
	Example 2: Defining a Multibyte Character Code Conversion (JIS <-> Unicode)

	Differences between Standard and Traditional Iostreams
	The Character Type
	Internationalization
	File Streams
	String Streams
	Streams with Assign

	Differences between Standard and Rogue Wave IOStreams
	Extensions
	Restrictions
	Deprecated Features

