
w w w. ra d i sy s . co m
Revision B • July 2006

Using TrueFFS for OS-9®

Version 1.3

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 1.3 of TrueFFS for Microware OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

3

Contents

Chapter 1: Installing TrueFFS for OS-9®

Installing FTL on OS-9 ... 6.

Method 1: Creating a Bootfile with os9make ... 6.

Method 2: Creating a Bootfile with the Configuration Wizard... 7.

Installing FTL on OS-9 for 68K.. 7.

Adding FTL to a Running System... 8.

Chapter 2: Using and Testing
TrueFFS

Formatting the Flash Device ... 10.

Testing TrueFFS and the FTL ... 12.

Chapter 3: Technical Overview
The OS-9 Flash File System... 14.

FTL Device Driver and Descriptors... 14.

FTL Device Driver Limitations... 16.

FTL Device Descriptors .. 16.

FTL and the PC Card Program ... 17.

Chapter 4: Programming Reference
System Calls.. 20.

I_SETSTAT, SS_DEFLSH...21
I_SETSTAT, SS_DEFRAG..22
I_SETSTAT, SS_DELBLK...23
I_SETSTAT, SS_LLFRMT..24

Utilities ... 26.

filltest ..27
ftcheck...28
ftdefrag..29
ftformat...30

Configuration Fields ... 31.

ds_flash_base...32
ds_flash_size ..33
ds_flash_source ...34

Errors ... 35.

Chapter 5: Porting Guide
Common Code Files ... 38.

Hardware-Specific Functions .. 38.

Communication Structure... 38.

Required Fields .. 39.

Optional Fields... 39.

Fields Specified in the Device Descriptor .. 39.

Example Source Code ... 40.

Using TrueFFS for OS-9®

4

Driver and Descriptor ... 40.

5

1 Installing TrueFFS for OS-9®

This chapter contains installation instructions for including the TrueFFS for OS-9®
Flash Translation Layer (FTL) in an OS-9 boot image configuration or adding FTL
to an already running OS-9 system. FTL is a standard for flash file systems which
provides full disk emulation for standard flash devices. TrueFFS for OS-9 allows
programs to have disk-like access to flash memory.

The following sections are included in this chapter:

• Installing FTL on OS-9

• Installing FTL on OS-9 for 68K

• Adding FTL to a Running System

Using TrueFFS for OS-9®

6

Installing FTL on OS-9
Use one of the following methods to configure the OS-9 boot files to include FTL. If
you do not want to reboot your OS-9 system to add FTL, refer to the Adding FTL to
a Running System section.

Method 1: Creating a Bootfile with os9make

To create a bootfile using os9make, complete the steps below:

Step 1. Edit MWOS/OS9000/<CPU Family>/PORTS/<Port>/BOOTS/
SYSTEMS/PORTBOOT/bootfile.ml to ensure that the following lines are
uncommented. (Remove the leading asterisk.)

../../../../../CMDS/BOOTOBJS/rbf

../../../../../CMDS/format

Step 2. Add the following lines to the bootfile.ml file:

../../../CMDS/BOOTOBJS/rbftl

../../../CMDS/BOOTOBJS/DESC/RBFTL/rrf0

../../../CMDS/ftformat

If space in your image permits, uncomment the following lines in the bootfile.ml
file. These utilities are optional, but help to test the installation.

../../../../../CMDS/dcheck

../../../../../CMDS/dir

../../../../../CMDS/kermit

../../../../../CMDS/mdir

../../../../../CMDS/save

../../../../../CMDS/filltest

../../../../../CMDS/ftcheck

../../../../../CMDS/ftdefrag

Step 3. Rebuild the bootfile using os9make and the makefile that resides in
MWOS/OS9000/<CPU Family>/PORTS/<port>/BOOTS/SYSTEMS/PORTBOOT.

Step 4. Follow the instructions in your OS-9 for <target> Board Guide for placing the
bootfile onto the target system.

The descriptor name may differ on some OS-9 systems.

Chapter 1: Installing TrueFFS for OS-9®

7

Method 2: Creating a Bootfile with the Configuration Wizard

Complete the following steps to create a bootfile using the Configuration Wizard:

Step 1. Edit the bootfile.ml file in MWOS/OS9000/<CPU Family>/
PORTS/<Port>/BOOTS/INSTALL/PORTBOOT to ensure that the following lines are
uncommented. (Removing the leading asterisk.)

../../../../../CMDS/BOOTOBJS/rbf

../../../../../CMDS/format

If space in your image permits, uncomment the following utilities. These utilities are
optional, but help to test the installation.

../../../../../CMDS/dir

../../../../../CMDS/mdir

../../../../../CMDS/save

Step 2. Add the following lines to the user.ml file in MWOS/OS9000/
<CPU Family>/PORTS/<Port>/BOOTS/INSTALL/PORTBOOT:

../../../CMDS/BOOTOBJS/rbftl

../../../CMDS/BOOTOBJS/DESC/RBFTL/rrf0

../../../../../CMDS/ftformat

If space in your image permits, the following optional utilities can be added to test
the installation:

../../../../../CMDS/dcheck

../../../../../CMDS/kermit

../../../../../CMDS/filltest

../../../../../CMDS/ftcheck

../../../../../CMDS/ftdefrag

Step 3. From the Configuration Wizard’s Master Builder window, check the User
Commands box, then rebuild the bootfile.

Step 4. Follow the instructions in your OS-9 for <target> Board Guide for placing the
bootfile onto the target system.

Installing FTL on OS-9 for 68K
Use these instructions to configure the OS-9 for 68K boot files to include FTL. If
you do not want to reboot your OS-9 for 68K system to add FTL, see Adding FTL
to a Running System on page 8.

Step 1. Edit the applicable bootlist file (example: d0.bl, h0.bl) in MWOS/OS9/<CPU
Family>/PORTS/<Port>/BOOTLISTS to ensure that the following lines are
uncommented by removing the leading asterisk:

../../../68000/CMDS/BOOTOBJS/rbf

../../../68000/CMDS/format

Using TrueFFS for OS-9®

8

If space permits, uncomment the following lines in the bootlist file by removing the
leading asterisk. These utilities are optional, but help to test the installation.

../../../68000/CMDS/dcheck

../../../68000/CMDS/dir

../../../68000/CMDS/kermit

../../../68000/CMDS/mdir

../../../68000/CMDS/save

Add the following lines to the bootlist file:

CMDS/BOOTOBJS/RBFTL/rbftl

CMDS/BOOTOBJS/RBFTL/rrf0

CMDS/BOOTOBJS/RBFTL/rrf0fmt

Step 2. Rebuild the boot image.

Step 3. Follow the boot image download instructions included in your Microware manuals
to place your new boot into flash on the system.

Adding FTL to a Running System
Complete the following steps to add FTL to a currently running OS-9 system. These
steps work for both OS-9 and OS-9 for 68k systems.

Step 1. Use a program such as kermit -ri to transfer the following modules from your
host system to the target:

• rbftl
• rrf1
• rrf1fmt (for OS-9 for 68K)

Step 2. Load the driver, rbftl. To load rbftl from your execution directory, use the
following command at an OS-9 shell prompt:

load -d rbftl

Step 3. Load the descriptors. To load rrf1 from your execution directory, use the following
command from an OS-9 shell prompt:

load -d rrf1

The descriptor name may differ on some OS-9 systems.

The rrf0fmt is a format-enabled descriptor. The descriptor name may differ
on some OS-9 for 68K systems.

Refer to your OS-9 for 68K Processors BLS Reference for OS-9 for 68K
installation and configuration information.

9

2 Using and Testing
TrueFFS

This chapter explains how to use and test TrueFFS and the FTL for
OS-9/OS-9 for 68K once it has been installed.

The following sections are included in this chapter:

• Formatting the Flash Device

• Testing TrueFFS and the FTL

OS-9 for 68K Users:
When using TrueFFS for the first time, the bootfile must be in the EPROM
device; some flash chips require the entire flash area to be seen by the driver.
You also need another media (hard disk, floppy disk) for the high-level system.
After the flash disk is initialized, you can copy the high-level system from the
hard disk or floppy disk to the flash disk, and make a script to run the modules
in the flash disk.

OS-9 for 68K Users:
Do not want to put a bootfile on an EPROM that is bigger than the EPROM size
allows.

Using TrueFFS for OS-9®

10

Formatting the Flash Device
Before you can perform any file operations on a flash device, you must perform a
low-level format and a high-level format. Be sure the target does not have jumpers
or switches set to boot from FLASH before trying to format FLASH. For more
information on FLASH, refer to your OS-9 board guide.

On some systems (for example the StrongARM ThinClient and GraphicsClient) it is
necessary to run the pflash -u -ew command prior to performing the steps below.
This is necessary if pflash has been used previously to program the Flash device.

Step 1. Use the included ftformat utility to perform the low-level FTL format of the flash
device. The command below uses the default parameters:

[1]$ ftformat /rrf0

This utility will perform a low level format of a flash volume /rrf0@
for use with the rbftl TrueFFS flash file system driver.

This operation can run for up to 35 seconds for each megabyte of
flash being formatted.

This formatting will destroy all file and low-level state info
including wear-leveling info, if any, stored in the flash.

Do you wish to continue (y or n)? : y

The low level format of /rrf0@ has completed successfully.

Be sure to perform a format of /rrf0 before attempting file
operations (answer n to requests for physical format and physical
verify in format).
The ftformat utility uses the I_SETSTAT, SS_LLFRMT call to perform a low-level
format of the flash volume.

The parameters passed with this call include:

• boot image length

• percent of the device to reserve for when the volume becomes full

• number of spare erase units

• size of RAM-resident FTL virtual map

• additional FAT-16 parameters

The low-level format needs to be done only once unless the format becomes
corrupted.

The only operations you can perform on a flash volume before low-level formatting
are: I_ATTACH, I_OPEN, I_SETSTAT, and I_CLOSE.

Step 2. Use any OS-9 format utility to perform the high-level, file system formatting of the
volume. This example uses the format utility with default parameters:

[2]$ format /rrf0

Chapter 2: Using and Testing TrueFFS

11

disk format utility
 OS-9000 for the ARM PS7111 - 7111

---------------- format parameters ---------------
disk type: hard disk - auto sizing
variable parameters:
 block size: 512
 logical block offset: 0
 block interleave: 3
 block address of bitmap: 1242
 total blocks on disk: 3726

ready to format /rrf0 (y/n/q) ? y

do physical format (y/n/q) ? n

disk name (32 bytes max.): <flash>

performing the logical format

do physical verify (y/n/q) ? n

quantity good 3726 (1907712 bytes)
quantity bad 0 (0 bytes)
quantity on disk 3726 (1907712 bytes)
quantity verified 0 (0 bytes)

The high-level format utility typically obtains the number of total blocks to format
using an I_GETSTAT, SS_DSIZE call to rbftl. Since this call is supported by the
driver, a high-level format operation can use the automatic parameters selected by
the format utility.

If the low-level format was not performed, the I_GETSTAT, SS_DIZE command from
the high-level format utility fails.
You can use the formatted flash device with standard RBF or PCF commands and
utilities. The following example shows the dir utility using an RBF descriptor.

[3]$ dir -e /rrf0

Directory of /rrf0 00:21:05
Owner Last modified Attributes Block Bytecount Name
----- ------------- ---------- ----- --------- ----

To mark blocks of flash as deleted, use the I_SETSTAT, SS_DELBLK call. This allows
the flash memory to be re-used after an RBF or PCF file is deleted. The SS_DELBLK
call is not performed by RBF or PCF, but the capability may be added.

To defragment and recycle non-writeable areas of flash, use the ftdefrag utility.
The following example shows a typical use of the ftdefrag command:

[4]$ ftdefrag /rrf0@

Specify (in dec) max number of free sectors desired: 400

Using TrueFFS for OS-9®

12

Actual number of free sectors available (in dec) is 438

The ftdefrag utility uses the I_SETSTAT, SS_DEFRAG call. This call is typically
performed by an application after an I_SETSTAT, SS_DELBLK call.

Testing TrueFFS and the FTL
Step 1. On the target board, change to the directory where the descriptor is located using

the following command: chd /rrf0

Step 2. Save all modules from memory into the flash to test the write function. Use the
following command from the target board shell prompt:

mdir -u ! save -z &

The system should display a shell prompt while performing the write operations.

Step 3. Enter commands to test the system while a save operation occurs. Below is an
example:

save rbf

dir -e

Step 4. Enter commands to delete files while saving. Below is an example:

del activ

del build

del dir

13

3 Technical Overview

This chapter explains how the rbftl device driver works with the OS-9 RBF and
PCF file managers to make flash memory accessible like disk devices.

The following sections are included in this chapter:

• The OS-9 Flash File System

• FTL Device Driver and Descriptors

• FTL and the PC Card Program

Using TrueFFS for OS-9®

14

The OS-9 Flash File System
FTL (flash translation layer) is a standard for flash file systems which provides full
disk emulation for standard flash devices. TrueFFS for OS-9 uses existing OS-9 file
managers with a new device driver, rbftl, to enable access to flash memory that
emulates disk access. Flash memory is non-volatile, block-accessible memory. FTL
supports board-resident flash and PC Card flash devices. See your Release Notes to
determine the cards and flash devices that are supported for your board.

Like other OS-9 I/O systems, FTL separates the applications and operating system
from the physical devices. This enables the rbftl device driver to handle multiple
types of devices through the common RBF and PCF file manager interfaces as
shown in Figure 3-1..

Figure 3-1. OS-9 I/O System with FTL

FTL Device Driver and Descriptors
FTL for OS-9 includes the rbftl device driver and RBF and PCF device descriptors.
rbftl includes translation algorithms common to all devices and device-specific
Memory Technology Device (MTD) components which are board-specific.

Applications

OS-9 and
I/O Manager

File Mangers

Device Driver and

Physical Hardware

rbftl

RBF PCF

IOMAN

OS-9

Device Descriptors

including PC Cards
and flash arrays on

 motherboards

Chapter 3: Technical Overview

15

Figure 3-2. FTL rbftl Structure

The rbftl driver includes a single "block manager" and set of hardware driver
routines which share a relationship similar to that of RBF and a typical device
driver.

The "block manager," shown as the FTL Algorithms in Figure 3-2., implements the
media wear-leveling intelligence.

Media wear-leveling is accomplished through a metadata structure on the media
which provides rbftl with the following:

• a block address translation map

• block wear-leveling information

• block-in-use information

The FTL algorithms use this information for block read requests and to determine a
flash block range for memory write requests.

To maintain flash memory device independence, the MTD (memory technology
driver) intelligence is not embedded into the FTL algorithms. Separate routines,
though still internal to the driver, are used by the FTL algorithms to manage flash
hardware.

The thin layer that binds the FTL algorithms to a given MTD (memory technology
driver) is a standard set of call entry points. These are:

• Write - writes a block of bytes to flash.

• Erase - erases one or more contiguous flash erasable blocks.

Device Driver (rbftl)

Physical Hardware
including PC Cards
and flash arrays on
motherboards

Memory Technology
Driver (MTD)

MTD

FTL Algorithms

MTD MTD

rcf1 rrf1 pcf1 prf1
Device
Descriptors

Using TrueFFS for OS-9®

16

• Identify - probes the flash hardware to determine if it is a type this MTD
supports. If so, the MTDs write and erase routines are set up for the FTL
algorithms to call.

A read routine is not included because all types of flash that can be memory mapped
may be read with simple processor memory reads.

FTL Device Driver Limitations

• rbftl cannot operate with flash cards that are write protected. To read the
flash JEDEC ID, the FTL code puts the flash into command mode which can
only be done when the flash is write-enabled.

• rbftl supports unpartitioned volumes only. This prevents rbftl from reading
flash cards that were partitioned on another system.

• FTL for OS-9 supports only one device per LUN (logical unit number) to be
open under a single instantiation of the driver. Multiple flash volumes require
multiple driver static storage allocation. This is guaranteed by having different
dd_port values in each rbftl descriptor.

FTL Device Descriptors

FTL for OS-9 includes the following device descriptors:

• rcf1 for PC Card flash under RBF

• rcf2 for PC Card flash under RBF

• rrf1 for resident flash under RBF

• pcf1 for PC Card flash under PCF

• pcf2 for PC Card flash under PCF

• prf1 for resident flash under PCF

These descriptors are standard RBF or PCF descriptors which include the following:

• additional device-specific logical-unit static storage initializers to define a flash
base address

• a flash or array size

• a flag to indicate if the flash is PC Card based or resident

• a flash type JEDEC identification specifier

The standard descriptor header, dd_port field, is set to the flash base address value.
The LUN initializer is always zero (0).

The PC Card flash descriptors are not PCMCIA socket specific. rcf1, rcf2,
pcf1, and pcf2 work with a flash card inserted into any supported socket.

rbftl requires that all of the flash accessed as a single volume is directly byte
accessible. The base address and the size of the flash to be accessed are specified in
the device descriptors. The base address must point to the beginning of a single flash
device so rbftl can access the flash command registers. For interleave flash, the
base address must point to the first flash device.

Chapter 3: Technical Overview

17

The flash size does not have to span the entire flash device but must terminate on an
erase block boundary.

The flash location flag is not used. rbftl accesses both resident and PC Card-based
flash without regard for the additional considerations that removable flash
provides. For PC Card flash, this requires that another program has already ensured
the following:

• A single memory window large enough to access the entire flash array is
enabled.

• Flash accesses through this window are always word-wide.

• Flash Vcc and Vpp are always available and enabled.

• Flash is always available. The PC Card is in the slot.

The flash type identification specifier, JEDEC ID, is not used. FTL auto-detects the
flash type. If it is necessary to manually set the JEDEC ID, this number can be set to
a non-zero value.

FTL and the PC Card Program
A separate PC Card program is required to use FTL with flash memory on PC
Cards. FTL requires the PC Card program to:

• initialize the flash socket with I_ATTACH

• open a single memory window into the flash array on the card with the base
address specified in the rbftl device descriptor

• issue an I_DETACH call when the card is removed

The flash length value specified in the rbftl descriptor is an upper bound. If the PC
Card program determines that the flash array is larger than the descriptor value,
rbftl uses the descriptor value when operating on the flash volume. If the PC Card
program determines the flash array is smaller than the descriptor value, the PC Card
program needs to issue an SS_DEFLSH call to the flash device to modify the value
used by the rbftl descriptor. For rbftl to obtain the modified values in the driver
static storage, the flash device must be attached at the time of the change. For rbftl
to retain the modified values, the flash device must remain attached. The values are
cleared from the driver static storage when a new SS_DEFLSH call is issued or when
the card is removed using I_DETACH calls.

Using the CardSoft daemon, csfd, as the PC Card program allows rbftl to access
the PCMCIA socket controller. csfd passes the path identification for the opened
socket to rbftl through an I_SETSTAT call. rbftl can perform csf operations in
system state in a device-independent manner. csfd can pass the device name of the
socket containing the flash card to rbftl. This enables a process performing I/O
operations on flash files to obtain the socket device name through a special
I_GETSTAT call. The process can register as a notification client through the
CardSoft application programming interface (API) like csfd registers itself. Any
process for which flash card removal is a critical event can receive notification of
the event.

Using TrueFFS for OS-9®

18

19

4 Programming Reference

This chapter contains the reference pages for the FTL system calls, utilities,
configuration fields, and errors.

The following sections are included in this chapter:

• System Calls

• Utilities

• Configuration Fields

• Errors

Using TrueFFS for OS-9®

20

System Calls
The following OS-9 system calls are included for TrueFFS and the FTL:

• I_SETSTAT, SS_DEFLSH

• I_SETSTAT, SS_DEFRAG

• I_SETSTAT, SS_DELBLK

• I_SETSTAT, SS_LLFRMT

Chapter 4: Programming Reference

21

I_SETSTAT, SS_DEFLSH

Function Code

I_SETSTAT, SS_DEFLSH

Syntax

#include <IO/ftlsrvcb.h>

Parameter Block Structure

typedef struct ss_deflsh_pb

{

 u_int32 flash_base;

 u_int32 flash_size;

 u_int16 bus_width;

}

ss_deflsh_pb, *Ss_deflsh_pb;

Attributes

State: User, System, and I\O

Description

csfd calls I_SETSTAT, SS_DEFLSH to notify rbftl that the flash array in the
system is smaller than specified in the descriptor.

flash_base

is the starting memory address of the flash array.

flash_size

is the actual size of the flash array.

bus_width

specifies in bits the width of array memory accesses.

Using TrueFFS for OS-9®

22

I_SETSTAT, SS_DEFRAG

Function Code

I_SETSTAT, SS_DEFRAG

Syntax

#include <IO/ftlsrvcb.h>

Parameter Block Structure

typedef struct ss_defrag_pb

{

 u_int32 irLength;

}

ss_defrag_pb, *Ss_defrag_pb;

Attributes

State: User, System, and I\O

Description

The ftdefrag utility calls I_SETSTAT, SS_DEFRAG to defragment a flash device.

irLength is the maximum number of free sectors to make available. Depending on
the amount of recoverable space on the device, this number may not be reached.

Possible Errors

EOS_BAD_FORMAT
EOS_BTYP
EOS_GENERAL_FAILURE
EOS_WRITE_FAULT

Chapter 4: Programming Reference

23

I_SETSTAT, SS_DELBLK

Function Code

I_SETSTAT, SS_DELBLK

Syntax

#include <IO/ftlsrvcb.h>

Parameter Block Structure

typedef struct ss_delblk_pb

{

 u_int32 irSectorNo;

 u_int32 irSectorCount;

}

ss_delblk_pb, *Ss_delblk_pb;

Attributes

State: User, System, and I\O

Description

I_SETSTAT, SS_DELBLK marks blocks of flash as deleted. This allows flash
memory to be re-used more efficiently after files have been deleted.

irSectorNo is the starting sector number of blocks to delete.

irSectorCount is number of sectors to delete.

Possible Errors

EOS_BAD_FORMAT
EOS_BTYP
EOS_GENERAL_FAILURE
EOS_SECTOR_NOT_FOUND
EOS_WRITE_FAULT

Using TrueFFS for OS-9®

24

I_SETSTAT, SS_LLFRMT

Function Code

I_SETSTAT, SS_LLFRMT

Syntax

#include <IO/ftlsrvcb.h>

Parameter Block Structure

typedef struct ss_llfrmt_pb

{

 FormatParams* formatParams;

}

ss_llfrmt_pb, *Ss_llfrmt_pb;

Attributes

State: User, System, and I\O

Description

The ftformat utility calls I_SETSTAT, SS_LLFRMT to perform a low-level format
of the flash volume.

formatParams are a set of device parameters including:

• int32 bootImageLen;
Space to reserve for a boot-image at the start of the medium. The FLite volume
begins at the next higher erase unit boundary.

• u_int16 percentUse;
FTL performance depends on how full the flash media is. Performance slows as
the media is close to 100% full. To increase performace, format the media to
less than 100% capacity, which guarantees some free space at all times by
sacrificing some capacity.

• u_int16 noOfSpareUnits;
FTL needs at least one spare erase unit to function as a read/write media. (It is
possible to specify zero (0) to achieve WORM functionality). You can specify
more than one spare unit. This takes more media space, but if one of the flash
erase units becomes bad and un-erasable in the future, one of the spare units
needs to replace it. A second spare unit can continue read/write functionality.
Without the spare unit, the media enters read-only mode. The standard value to
use is 1.

Chapter 4: Programming Reference

25

• u_int32 vmAddressingLimit;
Part of the FTL virtual map always resides in RAM. The RAM-resident portion
is used to address the media below the VM addressing limit. Reading and
writing to this part is usually faster. The larger the limit, the more RAM size
that is required. To get the extra RAM requirement in bytes, divide the limit by
512. The minimum VM limit is 0. The standard value to use is 0x10000, the
first 64KB.

• int (*progressCallback)
 (u_int16 totalUnitsToFormat,
 u_int16 totalUnitsFormattedSoFar);
The progress callback routine is called if not NULL. The callback routine is
called after erasing each unit, and its parameters are the total number of erase
units to format and the number erased so far. The callback routine returns a
status value. A value of OK (0) allows formatting to continue. Any other value
will abort the formatting with the returned status code.

DOS Formatting Section

• char volumeId[4];

The volume identification number is four characters.

• char *volumeLabel;

The volume label string is used if entered. If NULL, no label is used.

• u_int16 noOfFATcopies;

DOS media is usually formatted with two FAT copies. The first copy is always
used, but more copies make it possible to recover if the FAT becomes corrupted,
which is a rare occurrence. Having multiple copies slows down performance
and uses media space. The standard value to use is 2.

• u_int16 embeddedCISlength;

This is the length in bytes of CIS to embed after the unit header.

• u_int8 *embeddedCIS;

The unit header is structured as a beginning of a PCMCIA 'tuple' chain (a CIS).
The unit header contains a data organization tuple, which points past the end of
the unit header to a location which usually contains hexadecimal ff's which
mark an 'end-of-tuple-chain'. It is possible to embed an entire CIS chain at this
location. If so, 'embeddedCISlength' marks the length of the chain in bytes.

Possible Errors

EOS_BAD_FORMAT. SS_LLFRMT returns this code when the verify pass following the
low-level format failed, indicating a hardware failure.

EOS_<callback>. These are callback procedure errors. One field in the SS_LLFRMT
structure is for a callback procedure to take advantage of format progress status.

EOS_VOLUME_TOO_SMALL

EOS_WRITE_FAULT

Using TrueFFS for OS-9®

26

Utilities
The following FTL utilities are included:

• filltest

• ftcheck

• ftdefrag

• ftformat

Chapter 4: Programming Reference

27

filltest

Syntax

filltest [<opts>] {<path> [<opts>]}

Attributes

Operating System:OS-9 and OS-9 for 68K

Options and Parameters

<path>

pathname of the flash device to do the test

-h[=]<count>

Performs the “Hammer” test count times after writing the files. The default is 5.

-s[=]<size>

Specifies the maximum number of files to write. The default is 9999.

Description

The filltest utility completely fills any RBF-formatted device with files that are
several blocks in length and performs the stress testing.

Examples

filltest -s=100 /rrf1

Errors

EOS_BAD_FORMAT
EOS_BTYP
EOS_GENERAL_FAILURE
EOS_UNKNOWN_MEDIA

EOS_WRITE_FAULT

Using TrueFFS for OS-9®

28

ftcheck

Syntax

ftcheck <mem addr> [size]

Attributes

Operating System:OS-9 and OS-9 for 68K

Parameters

<mem addr>

The starting address of the flash disk

[size]

The size of the flash disk

Description

The ftcheck utility checks the integrity of an FTL media by collecting the
information, such as Erase Units, Sectors/Unit, Direct Memory from it. It can also
verify erased media.

Examples

ftcheck 0xFFA00000

Errors

EOS_BTYP
EOS_GENERAL_FAILURE
EOS_UNKNOWN_MEDIA
EOS_WRITE_FAULT

Chapter 4: Programming Reference

29

ftdefrag

Syntax

ftdefrag [<opts>] {<path> [<opts>]}

Attributes

Operating System:OS-9 and OS-9 for 68K

Options and Parameters

<path>

pathname of the flash device to defragment.

-q

Operates in Quiet mode, and return the number of actual sectors available.

-s[=]<size>

Specifies the maximum number of physical sectors to recover. The default is 16.

Description

The ftdefrag utility optimizes performance of FTL media by reorganizing media
data blocks. This reorganization defragments and recycles non-writeable flash areas
to achieve optimal writing speed. This operation would typically be performed after
deleting one or more large files.

Examples

ftdefrag /rrf1@

Errors

EOS_BAD_FORMAT
EOS_BTYP
EOS_GENERAL_FAILURE
EOS_WRITE_FAULT

Using TrueFFS for OS-9®

30

ftformat

Syntax

ftformat [<opts>] {<path> [<opts>]}

Attributes

Operating System:OS-9 and OS-9 for 68K

Options and Parameters

<path>

pathname of the flash device to format

-p[=]<percent>

Specifies the percentage of media space to reserve for slack. The default is 1%.

-q

Operates in quiet mode and do not prompt.

-r[=]<size>

Specifies the size of area to reserve at the start of Flash. The default is 0h.

-s[=]<size>

Specifies the Flash array. The default is the value in device descriptor.

-u[=]<units>

Specifies the number of erase units to reserve for swapping. The default is 1.

-v[=]<size>

Specifies the Virtual Memory Direct Addressing Limit. Default is 1.

-y

Does not ask whether to continue; format immediately.

Description

The ftformat utility performs a low-level format of a flash media device. During a
low-level format operation, the rbftl driver erases all units of the flash media and
lays down a metadata structure which is used for wear leveling and data block
location. Once the media has been low-level formatted, a high-level format can be
done by the file manager. The high-level format of the FTL media creates the
directory structure and file allocation information. The low-level format is normally
a one-time operation, unless the media becomes corrupted through an event such as
software or hardware failure.

OS-9 for 68K Users:
On OS-9 for 68K, there is a format-enabled descriptor (rrf1fmt) that can
be used if you want to format the media.

Chapter 4: Programming Reference

31

Example

ftformat /rrf1

Errors

EOS_BAD_FORMAT
EOS_<callback>
EOS_VOLUME_TOO_SMALL
EOS_WRITE_FAULT

See Also

format in the Utilities Reference

Configuration Fields
In addition to the configuration fields included in RBF, the following FTL fields are
included:

• ds_flash_base

• ds_flash_size

• ds_flash_source

Using TrueFFS for OS-9®

32

ds_flash_base

Default Description Macro

FLASH_BASE

EditMod Labels

1-module header

2-device descriptor data definitions

4-RBF logical unit static storage

5-rbftl specific information

1-flash base address

Description

This is the base address of the flash memory.

Default Value

None

Available Values

Value ranges are hardware dependent. Refer to your OS-9 board guide to see what
types and sizes of flash your board has available.

Chapter 4: Programming Reference

33

ds_flash_size

Default Description Macro

FLASH_SIZE

EditMod Labels

1-module header

2-device descriptor data definitions

4-RBF logical unit static storage

5-rbftl specific information

2-size of flash to be used

Description

This is the size of flash to be used in bytes.

Default Value

None

Available Values

Value ranges are hardware dependent. Refer to your OS-9 board guide to see what
types and sizes of flash your board has available.

Using TrueFFS for OS-9®

34

ds_flash_source

Default Description Macro

FLASH_SOURCE

EditMod Labels

1-module header

2-device descriptor data definitions

4-RBF logical unit static storage

5-rbftl specific information

3-flash source location

Description

Use this parameter to set the flash location, on the motherboard or on a PC Card.

Default Value

None

Available Values

Available values are listed in <links>Table 4-1. ds_flash_source Available Values.

Table 4-1. ds_flash_source Available Values

Description Macro EditMod
Board resident-hosted flash None 0
PC Card-hosted flash None 1

Chapter 4: Programming Reference

35

Errors
The FTL errors described in <links>Table 4-2. FTL Errors are defined in
ftlsrvcb.h.

Table 4-2. FTL Errors

Number Name Description
000:249 EOS_BTYP Bad type (incompatible media).

A read operation was attempted on
incompatible media. For example, a
read attempt was made on a flash
device that was not low-level
formatted.

012:019 EOS_WRITE_PROTECT Write protect.
A write operation was attempted on a
write-protected device.

012:023 EOS_BAD_FORMAT Mount error.
An error was detected in the FTL
structure on the device while
mounting the format units.

012:026 EOS_UNKNOWN_MEDIA Media error.
The flash driver MTDs did not
recognize the flash hardware type.

012:027 EOS_SECTOR_NOT_FOUND Sector out of bounds.
The specified sector is not on the
available media.

012:029 EOS_WRITE_FAULT Write error.
Error occurred during write operation,
often a hardware error such as write
timeout.

012:031 EOS_GENERAL_FAILURE Device error.
Error was detected while operating
with the device structures.

012:063 EOS_NOT_ENOUGH_MEMORY Mount error.
The paramenters specified in the
metadata structure of the flash media
exceed the memory requirement
specified in the same structure. This
indicates the FTL structure is not
intact.

012:064 EOS_VOLUME_TOO_SMALL Format error.
The descriptor specified the number
of units to be less than or equal to the
descriptor’s first effective unit plus the
format-specified number of spare
erase units. This indicates a bad
descriptor.

Using TrueFFS for OS-9®

36

37

5 Porting Guide

This chapter explains how to add support for a new flash part into a rbftl flash
driver.

Rbftl drivers consists of two parts: Common code that is already written for your
driver, and hardware specific code that you write. The common code includes the
wear-balancing algorithm and RBF driver interface, and generally makes up most of
the driver. In the hardware specific code, you will need to write functions for
identifying, erasing, and writing the flash part you choose.

Using TrueFFS for OS-9®

38

Common Code Files
Below is a list of files you will need to build your driver:

rbftl_start.r Wear-balancing and RBF driver interface, normally found in
the LIB directory for your processor.

identify.c Called by the common code when requesting identification
from the flash part.

rbftl_defs.h Describes the interface between your hardware specific code
and the common code.

rbftl.des File used for making rbftl descriptors.

Hardware-Specific Functions
The hardware-specific functions you need are for identification, erasing, and
writing the flash part. Each has a specific prototype:

error_code flash_write(u_int32 address, u_int8* buff, u_int32
length, u_int16 overwrite);

address Flash part relative address to write data. You must call
flash.map() to make this a system address.

buff Buffer containing data to write to flash part.

length Number of bytes to write to flash part.

overwrite Used to specify whether or not this area of flash has been
erased. No longer used.

error_code flash_erase(u_int32 first_block, u_int32 num_of_blocks);

first_block This specifies the first block to erase on the flash part.
Normally, flash blocks are of a fixed size, such as 64K. To
compute the address to erase, multiply first_block by the
flash block size.

num_of_blocks Number of flash blocks to erase.

error_code flash_identify();

This routine is responsible for identifying your flash device as well as filling out
fields in the global structure called flash.

Communication Structure
Communication between the hardware specific and common code happens via a
global data structure that is defined in rbftl_defs.h. This structure is declared in
the common code and is named flash. Your flash identification routine is
responsible for setting the required fields properly so that the common code can
make use of them.

Chapter 5: Porting Guide

39

Required Fields

Required fields are referenced by common code.

erasable_block_sizeNumber of bytes in an erase block.

write Function pointer to your flash write routine.

erase Function pointer to your flash erase routine.

Optional Fields

Optional fields are used by other existing hardware specific code.

type JEDEC ID of flash part.

chip_size Byes in a single chip in flash array.

num_chips Number of flash chips.

interleaving Address difference between two successive words on a chip
(for example 2 for two 8 bit parts, 1 for one 16bit part).

parallel_limit Effective flash byte bus width.

flags Not used currently.

hw_data Place you can store data.

read Function pointer that reads memory off the flash device. The
default value is memcpy. You can set this to another value if
your flash device has special access needs.

map Function that converts flash device relative addresses to real
memory addresses. Default is returning
(address+flash.flash_base).

Fields Specified in the Device Descriptor

The following fields are values specified in the device descriptor and should not be
modified.

flash_cache Address of cached flash memory.

flash_base Address of uncached flash memory.

flash_size Number of bytes in the flash device.

flash_source 0—resident, 1—PC Card.

flash_width 8, 16, 32.

flash_mfg_id Manufacturer's id (optional).

flash_dev_id Flash device id (optional).

Using TrueFFS for OS-9®

40

Example Source Code
Sample source code is provided for your reference. This includes skeleton code for
writing your hardware specific section, and makefiles to build the driver and
descriptor.

The skeleton code is located in the MWOS/SRC/IO/RBFTL/SAMPLE directory. It
contains three files: id.c, erase.c, and write.c. These files contain function
declarations for the hardware specific functions you need to write, as well as useful
comments about the interface to the common code. Make a new directory in
MWOS/SRC/IO/RBFTL and copy these three files there.

As for the ports themselves, the sample systems can be found in the following
directory:

• MWOS/OS9000/SAMPLES/PORTS/RBF/RBFTL for OS-9

• MWOS/OS9/68000/PORTS/SAMPLES/RBF/RBFTL for OS-9 for 68K

You can modify the configuration files and makefiles in the directory and move
them to the desired new port.

These sample systems are for example purpose only. They will not work correctly
without modifications from you. Also, the real RBFTL driver may have different file
name(s).

Driver and Descriptor
The driver is called rbftl, and is in the CMDS/BOOTOBJS directory in the PORT tree.
The descriptors will be generated in the CMDS/BOOTOBJS/DESC/RBFTL directory in
the PORT tree. Makefiles for the driver and descriptor are located in the RBF/RBFTL
directory of the PORT tree.

On an OS-9 system, the config.des file specifies descriptor values where you set
the flash base address, size, and bus width for your device. Below is an example
section that shows how to set these values for a descriptor called rrf0. In this case,
the base address starts at 0x09000000, the flash size is 16 MB, and the bus width is
32 bits.

#if defined (RRF0) /* Rrf0 descriptor */
/* Module header macros */
#define MH_NAME_OVERRIDE "rrf0"
/* Device descriptor common macros */
/* rbf macros */
/* rbftl macros */
#define FLASH_BASE_OVERRIDE 0x09000000
#define FLASH_SIZE_OVERRIDE 0x1000000
#define FLASH_SOURCE_OVERRIDE 0
#define FLASH_WIDTH_OVERRIDE 32
#define FLASH_MFGID_OVERRIDE 0
#define FLASH_DEVID_OVERRIDE 0
#define LUN_OVERRIDE 0
#endif /* RRF0 descriptor */

Chapter 5: Porting Guide

41

On an OS9 for 68k system, the base address, size, and bus width are specified in the
systype.d file.

* Flash System Memory Definitions
*
* These are used to make descriptors for the flash file system.

FlashDBase equ $FF800000 Base address of FLASH when
 coldstarting from ROM
FlashDSize equ $200000 size of FLASH memory
FlashSecSize equ 512 Size of sector size

* Flash disk descriptor definitions
*
* FLASHDesc Port,Size,Source,Width,MFGID,DEVID,Driver name,MTD
name
*
FlashRRF0 macro
 FLASHDesc FlashDBase,FlashDSize,0,8,0,0,rbftl,mtd
 endm

Using TrueFFS for OS-9®

42

	Using TrueFFS for OS-9®
	Contents
	Installing TrueFFS for OS-9® Chapter 1
	Installing FTL on OS-9
	Method 1: Creating a Bootfile with os9make
	Method 2: Creating a Bootfile with the Configuration Wizard

	Installing FTL on OS-9 for 68K
	Adding FTL to a Running System

	Using and Testing TrueFFS Chapter 2
	Formatting the Flash Device
	Testing TrueFFS and the FTL

	Technical Overview Chapter 3
	The OS-9 Flash File System
	FTL Device Driver and Descriptors
	FTL Device Driver Limitations
	FTL Device Descriptors

	FTL and the PC Card Program

	Programming Reference Chapter 4
	System Calls
	I_SETSTAT, SS_DEFLSH
	I_SETSTAT, SS_DEFRAG
	I_SETSTAT, SS_DELBLK
	I_SETSTAT, SS_LLFRMT
	Utilities
	filltest
	ftcheck
	ftdefrag
	ftformat
	Configuration Fields
	ds_flash_base
	ds_flash_size
	ds_flash_source
	Errors

	Porting Guide Chapter 5
	Common Code Files
	Hardware-Specific Functions
	Communication Structure
	Required Fields
	Optional Fields
	Fields Specified in the Device Descriptor

	Example Source Code
	Driver and Descriptor

