
w w w. ra d i sy s . co m
Revision A • July 2006

USB Host SDK for OS-9®

Version 2.0

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 2.0 of USB Host SDK for OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

USB Host SDK for OS-9 3

Table of Contents

Chapter 1: Getting Started with USB Host for OS-9® 7

8 System Overview
9 System Requirements
9 Windows Development Platform Hardware Requirements
9 Windows Development Platform Software Requirements
10 OS-9 Target System/USB Host Hardware Requirements
11 Installing the Software
11 Installing to the Windows Development Platform
13 Installing to the OS-9 Target System/USB Host
13 USB Host Module List
16 Loading and Starting the USB Host Software
21 Example Commands
21 Checking for USB Devices
21 Getting Device Information
22 Checking for Data Transmission
24 Mouse Through MAUI®

Chapter 2: Using USB Host for OS-9 27

28 Overview
30 Hardware Controller Driver
30 Bus Methods Structure
30 Bus Methods Structure Fields
31 Pipe Methods Structure
31 Bus Methods Structure Fields
33 USB Management Driver
33 Bus Explore
35 Plug and Play

4 USB Host SDK for OS-9

35 Match
36 Attach
36 Detach
37 Registering with usbman
39 Logical Device Drivers
39 LDD Initialization
39 LDD De-Initialization
40 Suggested OS-9 Interface
40 Setstats
40 Getstats
40 Plug-n-play
41 Standard OS-9 LDD Drivers
41 USB Mouse
42 Data Format
42 Use With MAUI
43 Testing the USB Mouse
44 USB Keyboard
44 Data Format
45 Use With MAUI
46 Testing the USB Keyboard
47 USB Printer
48 Testing the USB Printer
49 USB Mass Storage
50 Testing USB Mass Storage Devices
51 Generic USB Driver
51 Plug-n-Play
51 Accessing Endpoints with spugen
52 Testing spugen
55 Reference API
68 User-State Daemon Process

Chapter 3: USB Host API Reference 69

70 Pipe Functions List

USB Host SDK for OS-9 5

71 Transfer Functions List
72 Interface Functions List
73 Device Functions List
74 Alphabetical Listing

Chapter 4: USB Host for OS-9 Utilities 131

Appendix A: Porting to the USB Host Stack 137

138 Writing the Logical Device Driver (LDD)
138 Creating a Directory Structure
140 Implementing your LDD
142 Additional File Information
143 Writing a Hardware Control Driver
143 Overview
143 Transfer Types
145 Bus Methods Structure
145 Calling usbman
146 Existing Drivers
148 Implementing the Driver
149 Testing the Driver

6 USB Host SDK for OS-9

Chapter 1: Gett ing Started with USB

Host for OS-9®

This chapter describes how to install and configure the USB Host SDK
for OS-9® software on your Windows development platform and on your
OS-9 target system. It includes the following sections:

• System Overview

• System Requirements

• Installing the Software

• Example Commands

8 USB Host SDK for OS-9

System Overview

Figure 1-1 shows a typical development environment for using USB Host
SDK for OS-9. It is recommended that you assemble and configure your
development environment before software installation.

Figure 1-1 USB Host Development Environment

Ethernet

RS-232 null
modem serial

cable with 9-pin
connector

Windows Development Platform

connect to free
serial port

connect to
serial port

connect to
Ethernet port

(recommended)

OS-9 Target System/USB Host

series "A" USB
receptacle

series "B" USB
receptacle

The USB device can be a
single device or a USB
Hub supporting multiple
USB devices.

Standard
USB Cable

USB Host
Controller

USB Device
(USB HUB)

series "A" USB
receptacles

1Getting Started with USB Host for OS-9®

USB Host SDK for OS-9 9

System Requirements

Windows Development Platform Hardware Requirements

Your Windows development platform must have the following minimum
hardware characteristics:

• 250MB of free hard disk space

• the recommended amount of RAM for your particular operating system

• a CD-ROM drive

• a free serial port

• an Ethernet network card (optional but recommended)

• access to an Ethernet network (optional but recommended)

Windows Development Platform Software Requirements

The Windows development platform must have the following software
installed:

• Microware OS-9 for Embedded Systems (aka OEM Package)

• USB Host SDK for OS-9 add-on

• Windows ME, 2000, NT 4.0, or XP

• terminal emulation program

NoteNote
The terminal emulation program, Hyperterminal, ships with all Windows
operating systems.

10 USB Host SDK for OS-9

OS-9 Target System/USB Host Hardware Requirements

Your OS-9 target system/USB Host reference board requires the following
hardware:

• a free serial port

• an RS-232 null modem serial cable with 9-pin connectors

• one or more USB ports

• a standard USB cable

• a free Ethernet port (optional but recommended)

• access to an Ethernet network (optional but recommended)

NoteNote
Some USB Host Controllers require a non-cached memory shade.

NoteNote
To use the USB Host system, you will also need standard USB devices
such as a mice, keyboards, printers, or mass storage devices and the
appropriate cables.

1Getting Started with USB Host for OS-9®

USB Host SDK for OS-9 11

Installing the Software

Installing to the Windows Development Platform

The USB Host SDK for OS-9 software package is an add-on to OS-9.
OS-9 must be installed on your Windows development platform before the
USB Host software is installed.

To install OS-9, insert the CD-ROM into your Windows development
platform CD-ROM drive and follow the on-screen instructions. After OS-9 is
installed, you will be able to choose USB Host SDK for OS-9 from the
Add-Ons menu.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For detailed installation instructions, refer to the Getting Started with
Microware Products manual. This manual is accessible via Acrobat
Reader from the Microware OS-9 CD.

NOTE: Portions of the source code for the USB Host SDK have this
copyright/license.

Copyright (c) 2001 The NetBSD Foundation, Inc.
All rights reserved.

This code is derived from software contributed to The NetBSD
Foundation by Lennart Augustsson (lennart@augustsson.net) at
Carlstedt Research & Technology.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

12 USB Host SDK for OS-9

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

 This product includes software developed by the NetBSD
 Foundation, Inc. and its contributors.

4. Neither the name of The NetBSD Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION,
INC. AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1Getting Started with USB Host for OS-9®

USB Host SDK for OS-9 13

Installing to the OS-9 Target System/USB Host

Before installing the USB Host software onto your OS-9 target system/USB
Host, you must complete the following steps:

Step 1. Assemble and configure your USB Host development environment
hardware.

Step 2. Install OS-9 and the USB Host SDK for OS-9 software onto your
Windows development platform.

Step 3. Create an OS-9 ROM Image and load it onto your OS-9 target system
/USB Host.

Step 4. Boot your OS-9 Target System/USB Host to an OS-9 prompt. The OS-9
prompt must be accessible via your terminal emulation program.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Creating an OS-9 ROM Image, loading the image onto the target
system, and booting to an OS-9 prompt is described in your target
system’s board guide. The board guides are accessible via Acrobat
Reader from the Microware OS-9 CD.

USB Host Module List

After installing the USB Host SDK for OS-9 add-on package onto your
Windows development platform, the following USB Host modules will be
present on your system:

• USB Controller Drivers
C:\MWOS\OS9000\<PROCESSOR>\PORTS\<BOARD_PORT>\CMDS\BOOTOBJS\usbhcd
C:\MWOS\OS9000\<PROCESSOR>\PORTS\<BOARD_PORT>\CMDS\BOOTOBJS\usbhcde

14 USB Host SDK for OS-9

• USB Controller Driver Descriptors
C:\MWOS\OS9000\<PROCESSOR>\PORTS\<BOARD_PORT>\CMDS\BOOTOBJS\NULLFM\usbhc
C:\MWOS\OS9000\<PROCESSOR>\PORTS\<BOARD_PORT>\CMDS\BOOTOBJS\NULLFM\usbhc2
C:\MWOS\OS9000\<PROCESSOR>\PORTS\<BOARD_PORT>\CMDS\BOOTOBJS\NULLFM\usbhc3
C:\MWOS\OS9000\<PROCESSOR>\PORTS\<BOARD_PORT>\CMDS\BOOTOBJS\NULLFM\usbhc4

• USB Keyboard MAUI Protocol Module
C:\MWOS\OS9000\<PROCESSOR>\PORTS\<BOARD_PORT>\CMDS\BOOTOBJS\MAUI\mp_usbkbd

• USB Mouse and Keyboard MAUI CDB Module
C:\MWOS\OS9000\<PROCESSOR>\PORTS\<BOARD_PORT>\CMDS\BOOTOBJS\MAUI\cdb_usb*

• USB Host Manager Driver
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\usbman

• USB Host Manager Driver Descriptor
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\usb

• USB Mouse Driver
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\ums

• USB Mouse descriptors
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\um0
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\um1

• USB Keyboard Driver
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\ukbd

• USB Keyboard Descriptor
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\ukbd0

• USB Generic Driver
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\spugen

• USB Generic Driver descriptors
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\ugen0
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\ugen1

• USB Printer Driver

C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\ulpt

• USB Printer Descriptor

C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\ulp0

1Getting Started with USB Host for OS-9®

USB Host SDK for OS-9 15

• USB Mass Storage Device Driver
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\udiskd

• USB Mass Storage Device Descriptors
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\DESC\muh*
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\DESC\uh*

• NullFM file manager
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\nullfm

NoteNote
The drive letter, <processor> directory, and <board_port> directory will
vary depending on your particular installation.

16 USB Host SDK for OS-9

Loading and Starting the USB Host Software

The objective of this procedure is to move the USB Host modules, which
are drivers and descriptors, from the Windows development platform onto
the OS-9 target system/USB Host. Some port directories include support in
the Wizard for USB Host. If your port directly supports USB host, there will
be a USB Host check-box on the bootfile options tab.

Click this checkbox to enable USB Host support. You will also want to
select MAUI, keyboard, and mouse from the master builder window to
include the appropriate software.

NoteNote
The USB Host software works best when the system tick rate (ticks per
second) is 1000 or higher. This allows the USB Host software to
accurately implements delays and time-outs. This value can be set on
the “Init Options” tab of the Disk Options dialog.

1Getting Started with USB Host for OS-9®

USB Host SDK for OS-9 17

If your port does not directly support USB host, you will need to manually
load the software onto your target. There are several ways this can be
accomplished and the following procedure describes only one method of
accomplishing this task.

Step 1. On the Windows development platform, open a text editor, such as
Notepad, and create a text file list that includes the USB Host modules.
Be sure there is only one module per line and that you include the full
path.

Your final text file should look something like the following:
C:\MWOS\OS9000\<PROCESSOR>\PORTS\<BOARD_PORT>\CMDS\BOOTOBJS\NULLFM\usbhcd
C:\MWOS\OS9000\<PROCESSOR>\PORTS\<BOARD_PORT>\CMDS\BOOTOBJS\NULLFM\usbhc
C:\MWOS\OS9000\<PROCESSOR>\PORTS\<BOARD_PORT>\CMDS\BOOTOBJS\NULLFM\usbhcde
C:\MWOS\OS9000\<PROCESSOR>\PORTS\<BOARD_PORT>\CMDS\BOOTOBJS\NULLFM\usbhc2
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\usbman
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\usb
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\ums
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\um0
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\um1
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\ukbd
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\ukbd0
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\spugen
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\ugen0
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\ugen1
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\ulpt
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\ulp0
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\udiskd
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\DESC\muh01
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\DESC\muh11
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\DESC\muh21
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\USBH\DESC\muh31
C:\MWOS\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\nullfm
C:\MWOS\OS9000\<PROCESSOR>\CMDS\usbd
C:\MWOS\OS9000\<PROCESSOR>\CMDS\usbdevs
C:\MWOS\OS9000\<PROCESSOR>\CMDS\ugenstat

NoteNote
The drive letter, <processor> directory, and <board_port> directory will
vary depending on your particular installation.

18 USB Host SDK for OS-9

Step 2. Save this file as usb_mods.ml on your Windows system in a location
of your choice.

1Getting Started with USB Host for OS-9®

USB Host SDK for OS-9 19

Step 3. On the Windows development platform, open a DOS shell. Using DOS
commands, navigate to the directory where usb_mods.ml is located,
and type the following DOS command:

% os9merge -z=usb_mods.ml>usb_mods

This creates a merged file called usb_mods. usb_mods will be located in
the same directory that usb_mods.ml is located.

Step 4. Load the usb_mods file onto the OS-9 target system/USB Host
system’s RAM.

From the Windows desktop, start Hawk™ by selecting Start ->
RadiSys -> Microware OS-9 for <product> -> Microware
Hawk IDE.

From the Target Menu, select Load. Enter the IP address of your OS-9
target. In the Module dialog, push the navigation button and navigate to the
location of the usb_mods file and select usb_mods. Press the Load
button.

NoteNote
This procedure requires that the Hawk debugger daemons be loaded
and running on the OS-9 target system. You can make this selection
while building the OS-9 ROM Image.

Step 5. Start the USB Host software by typing the following command from the
terminal emulation window on the Windows development platform:

$ usbd &

The USB Host modules are now loaded and running on your OS-9 target
system/USB Host.

20 USB Host SDK for OS-9

NoteNote
This procedure assumes that you have access to an Ethernet network
for loading the USB Host software from the Windows development
system to the target system. If you do not have access to a network,
you can load the USB Host software via FTP across the serial
connection using OS-9 commands and your terminal emulation
program.

1Getting Started with USB Host for OS-9®

USB Host SDK for OS-9 21

Example Commands

Checking for USB Devices

Once the USB Host software is loaded onto your OS-9 target system/USB
Host, you can check the system for existing USB devices. To see what
devices are plugged into the USB, type the following command in the
terminal emulation program window.

$ usbdevs

Following is an example response from the command:
Bus #0, Root Hub, Address 1,
[1] <empty>
[2] Address 2, NOVATEK: ORTEK USB Keyboard

Bus #1, Root Hub, Address 1,
[1] <empty>
[2] <empty>

Bus #2, Root Hub, Address 1,
[1] Address 2, SanDisk Corporation: U3 Cruzer Micro: 0000051015079136
[2] <empty>
[3] <empty>
[4] <empty>

The above example shows the three root hubs (two USB v1.1 controllers
and one USB v2.0 controller). A USB keyboard is plugged into a USB v1.1
controller and a USB mass storage (Flash disk) device is plugged into the
USB v2.0 controller. The keyboard and disk has been both been assigned
address 2, but on different busses.

Getting Device Information

You can view information about USB devices on the system. For example,
to learn more about the USB keyboard device in the example above, type
the following command in the terminal emulation program window. Note
that the bus number must be specified so that the device address is not
ambiguous:

$ usbdevs -a=2 -b=0

22 USB Host SDK for OS-9

Following is an example response from the command:
Address 2, NOVATEK: ORTEK USB Keyboard (vendor 1444, product 38705)
 Device Descriptor: max_packet 8, protocol 0, release 0.1, configurations 1
 Config. Descriptor (1): interfaces 2, value 1, iconfig 0
 attributes 0xa0, max power 100 mA
 Interface Descriptor 1: NOVATEK
 alt. setting 0, num eps 1,
 class 3, subclass 1, protocol 1, iInterface 4
 Interface Descriptor 2: NOVATEK
 alt. setting 0, num eps 1,
 class 3, subclass 1, protocol 2, iInterface 4

$ usbdevs -a=2 -b=2

Following is an example response from the command:
Address 2, SanDisk Corporation: U3 Cruzer Micro: 0000051015079136 (vendor 1921,
 product 21506)
 Device Descriptor: max_packet 64, protocol 0, release 0.2, configurations 1
 Config. Descriptor (1): interfaces 1, value 1, iconfig 0
 attributes 0x80, max power 200 mA
 Interface Descriptor 1: alt. setting 0, num eps 2,
 class 8, subclass 6, protocol 80, iInterface 0

Checking for Data Transmission

You can determine if a USB device is sending data over the USB. For
example, to determine if the USB keyboard device in the example above is
sending keyboard data over the USB, type the following commands in the
terminal emulation program window:

$ tmode nopause
$ dump /ukbd0

After typing the commands, type on the USB keyboard. Following is an
example response from the command:
 Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E
-------- ---- ---- ---- ---- ---- ---- ---- ---- ----------------
00000000 0000 0f00 0000 0000 0000 0000 0000 0000
00000010 0000 0f00 0000 0000 0000 0d00 0000 0000
 *** 2. duplicate lines ***
00000040 0000 0000 0000 0000 0000 0f00 0000 0000
00000050 0000 0d00 0000 0000 0000 0f00 0000 0000
00000060 0000 0d00 0000 0000 0000 0000 0000 0000
00000070 0000 1c0c 0000 0000 0000 1c00 0000 0000
00000080 0000 0000 0000 0000 0000 5100 0000 0000Q.....

1Getting Started with USB Host for OS-9®

USB Host SDK for OS-9 23

You can press Ctrl-C to exit dump.

24 USB Host SDK for OS-9

Mouse Through MAUI®

To use a USB Mouse as a MAUI® input device complete the following
steps:

Step 1. Load the following special modules on the OS-9 target machine:

• Standard MAUI PS/2 Mouse protocol module.
C:\MWOS\OS9000\<PROCESSOR>\PORTS\<BOARD_PORT>\CMDS\BOOTOBJS\MAUI\mp_bsptr

• CDB Module that defines a USB Mouse for MAUI
C:\MWOS\OS9000\<PROCESSOR>\PORTS\<BOARD_PORT>\CMDS\BOOTOBJS\MAUI\cdb_usb

Step 2. Load the following MAUI modules on the OS-9 target. These modules
are included with OS-9.
OS9000/<PROCESSOR>/CMDS/maui
OS9000/<PROCESSOR>/CMDS/BOOTOBJS/maui_inp
OS9000/<PROCESSOR>/CMDS/BOOTOBJS/maui_win
OS9000/<PROCESSOR>/CMDS/BOOTOBJS/mfm
OS9000/<PROCESSOR>/CMDS/BOOTOBJS/mauidev
OS9000/<PROCESSOR>/CMDS/BOOTOBJS/mauidrvr
OS9000/<PROCESSOR>/CMDS/MAUIDEMO/inp

Step 3. Type the following commands in the terminal emulation program
window:

$ maui_inp &
$ tmode nopause
$ inp -i=/um0/mp_bsptr

Following is an example response from the command:
Opening device '/um0/mp_bsptr'
Send signal to 'inp' to end test
Expected device id 0x3fa8018

1Getting Started with USB Host for OS-9®

USB Host SDK for OS-9 25

Step 4. Move the mouse, or click buttons on the mouse.

Following is an example response from the command:
+--+
Device type: +++ Pointer +++ Device ID: 0x3fa8018
| Sub-type: 0x1
| INP_PTR_DOWN
| Button changed: 1
| Button status 1 (0x1)
| New position (0,0)
| Simulating keysym: INP_KEY_NULL (0x0)
+--+
Device type: +++ Pointer +++ Device ID: 0x3fa8018
| Sub-type: 0x2
| INP_PTR_UP
| Button changed: 1
| Button status 0 (0x0)
| New position (0,0)
| Simulating keysym: INP_KEY_NULL (0x0)
+--+

Step 5. You can press Ctrl-C to exit inp

26 USB Host SDK for OS-9

Chapter 2: Using USB Host for OS-9

This chapter provides a description of the OS-9 implementation for USB
host. It includes the following sections:

• Overview

• Hardware Controller Driver

• USB Management Driver

• Logical Device Drivers

• Standard OS-9 LDD Drivers

• User-State Daemon Process

28 USB Host SDK for OS-9

Overview

The stack for the OS-9 implementation of USB Host consists of the
following three main components:

• Hardware Controller Drivers

• USB Management Driver

• Logical Device Drivers

Dividing the USB Host responsibilities between these components provides
maximum modularity and flexibility, enables easy maintenance, and
ensures performance. Each component is described in the following
sections of this chapter.

Figure 2-1 provides a visual overview of the USB Host stack. Figure 2-2
shows the overall USB Host architecture as it relates to an OS-9 system.

Figure 2-1 USB Host Stack

USB Logical Device Driver Device Descriptor

OS-9 File Manager

USB Host Controller Hardware

USBHCDx (Host Controller
Drivers)

NullFM

/usbhcX

USBMAN (Device Dependent)
NullFM

/usb

USB Driver Interface (USBDI)

USB Host Controller Driver Interface (HCDI)

2Using USB Host for OS-9

USB Host SDK for OS-9 29

Figure 2-2 USB Host Architecture

USB Logical Device Driver
(Provides OS-9 Access to USB Device)

USB Logical
Device Driver

Direct
Access
to USB

from
OS-9

System-
State

Process

OS-9 File
Manager

OS-9 User-State Process

OS-9 File
Manager

OS-9 File
Manager

USBMAN (Device Independent)

USB Driver Interface (USBDI)

USB Host Controller Hardware

USBHCD (Host Controller Driver)

USB Host Controller Driver Interface (HCDI)

30 USB Host SDK for OS-9

Hardware Controller Driver

The hardware controller driver is responsible for initializing the USB
hardware, scheduling transfers on the USB, managing the root hub, and
notifying logical device drivers when a transfer has completed. This driver
is given tasks to perform by usbman through the HCDI interface.

The HCDI interface is a series of function pointers into the Hardware
Controller Driver to open and close pipes, allocate DMA memory, and
perform transfers on the USB. There are two classifications of function
pointers—bus methods and pipe methods.

Bus Methods Structure

Following is the bus methods structure:
struct usbd_bus_methods {
usbd_status (*open_pipe)(struct usbd_pipe *pipe);
 void (*soft_intr)(void *);
 void (*do_poll)(struct usbd_bus *bus);
 usbd_status (*allocm)(struct usbd_bus *bus, usb_dma_t *dma,
 u_int32_t bufsize);
 void (*freem)(struct usbd_bus *bus, usb_dma_t *dma);
 struct usbd_xfer * (*allocx)(struct usbd_bus *bus);

void (*freex)(struct usbd_bus *bus, struct usbd_xfer *x);
};

Bus Methods Structure Fields

open_pipe Notifies the Hardware Controller Driver of a
new transfer pipe to a device on the USB.
This call modifies the methods and
methods_gp fields of the given pipe
structure.

soft_intr Notifies the Hardware Controller Driver
there are potentially aborted transfers to be
cleaned up.

2Using USB Host for OS-9

USB Host SDK for OS-9 31

allocm Allocates memory suitable for DMA. This
modifies the dma parameter. This will return
USBD_NORMAL_COMPLETION on success,
or USBD_NOMEM if no memory available.

freem Frees memory allocated by allocm.

allocx Allocates a transfer handle, and returns it.

freex Frees a transfer handle allocated by
allocx.

Pipe Methods Structure

The pipe methods structure below is initialized after calling open_pipe in
the bus methods structure.
struct usbd_pipe_methods {

usbd_status (*transfer)(usbd_xfer_handle xfer);
usbd_status (*start)(usbd_xfer_handle xfer);
void (*abort)(usbd_xfer_handle xfer);
void (*close)(usbd_pipe_handle pipe);
void (*cleartoggle)(usbd_pipe_handle pipe);
void (*done)(usbd_xfer_handle xfer);

};

Bus Methods Structure Fields

transfer Performs a transfer on the USB.

start Starts the next transfer to the device.

abort Aborts a transfer on the USB.

close Closes a transfer. The transfer must not be
active to call this (i.e. use abort first).

cleartoggle Clears the data toggle back to 0.

done Called after successfully completing a
transfer.

The common names for the Hardware Controller Drivers begin with
usbhcd. The device descriptors for these drivers are in the form usbhc?
where ? is either no character, ‘2’, ‘3’, or ‘4’. usbman will attempt to open

32 USB Host SDK for OS-9

usbhc, usbhc2, usbhc3, and usbhc4 (in that order) when initializing the
USB stack. Typically, the drivers are organized such that low or full speed
drivers are opened first and any high speed driver is opened last. This
driver can be initialized with the iniz command (for example iniz
/usbhc). Upon doing so, the Hardware Controller Driver will initialize the
hardware and begin generating Start Of Frame packets every 1ms on the
USB. The recommended method for intializing the USB stack, however, is
to start the usbd daemon process.

The hardware controller driver is the only board specific module required
for the OS-9 USB Stack. Consequently, it is found in the CMDS\BOOTOBJS
directory of the board PORT directory.

2Using USB Host for OS-9

USB Host SDK for OS-9 33

USB Management Driver

The USB Management Driver, usbman, is a nullfm driver that implements
the management layer of the USB Host software. It has the following
responsibilities:

• Maintains bus topology

• Implements USBDI interface for LDDs

• Performs USB explore

• Implements hub driver

• Manages plug-n-play

usbman communicates directly to the Hardware Controller Driver through
the HCDI interface and other setstat/getstat calls.

usbman is located in the following directory:

OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/usman

The usbman descriptor is located in the following directory:

OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/usb

Bus Explore

Most of the responsibilities of usbman revolve around a bus explore. The
process is started by plugging in or removing a device from the USB. Below
is a short description of the sequence of events in a bus explore:

Step 1. The hub driver, as a part of usbman, receives notification that its pipe
has transferred data. The interrupt service routine for the hub driver
sends a signal to the USBD daemon process indicating that a USB
explore is required.

34 USB Host SDK for OS-9

NoteNote
The explore of the USB may take several seconds, thus necessitating
the use of a process context for the explore.

Step 2. usbd wakes up and performs an explore setstat into usbman. The
explore code in usbman performs a depth first search on the USB
starting with the root hub.

Step 3. The explore code inspects each port on every hub, one at a time, to
determine if any change is present. A change may be either something
plugged in or removed, or an overcurrent condition.

• Device Removed

If a device was removed, the detach LDD routine is called for the driver
that is assigned to the device. The control pipe is then closed, and any
memory is removed. If the device was a hub, then each downstream
device will have its detach LDD routine called, followed by closing the
control pipe and memory reclamation.

• Device Inserted

If a device was inserted, usbman opens a control pipe and gathers
basic information about the device. usbman then attempts to match an
available LDD to this device using the match routine. If a driver
matches, then the attach LDD routine is called, and this LDD is no
longer considered available.

• Overcurrent

If a port on a hub is overcurrent, it is treated as if the device was
removed. However, the port may not be used again unless the entire
hub is removed from the USB and re-inserted.

USB Addresses are assigned by usbman. There is no rule that a particular
device will always be assigned a particular address. In addition, there is no
order for matching a driver to a new device.

2Using USB Host for OS-9

USB Host SDK for OS-9 35

Plug and Play

Plug and play is accomplished in the OS-9 USB Host stack through a
usbman callout mechanism. usbman makes this call to one of three
possible functions: match, attach, or detach. Essentially, the call is
initiated when there is a device modification; usbman recognizes the
modification and calls the appropriate function to notify the LDD.

For example, suppose a device were removed from USB. At this point,
usbman would call the detach function, which would then tell the
available LDD to change the device information.

More information on the match, attach, and detach functions is
provided in the following sections.

Match

match is called by usbman when there is an attempt to assign a device on
the USB to an available LDD. This function is called after a device is
plugged into the bus or after a driver registers with usbman.

In addition, match is passed as a device structure and an interface
structure. Both of these represent the current state of the device on the
USB. The match routine should look at these two parameters (device
structure and interface structure) to determine whether or not the driver can
communicate with the device.

Below is a sample prototype of the match function:

int os9_match(struct usbd_device *dev,
usbd_interface_handle iface)

The match function may perform transfers on the USB over the control
pipe, since that has already been established by usbman. Such
transfers would likely be to retrieve endpoint or vendor-specific
descriptors. The configuration and interface for the device should not be
set at this time. usbman will loop on each interface in a configuration
(for each configuration).

36 USB Host SDK for OS-9

The match function should return 0 if the device does not match what
the driver expects. If the driver can communicate with the USB device,
the match function should return any non-zero value.

Attach

The attach function is called by usbman after a successful call to the
match function. Attach should open any relevant transfer pipes and
perform any other setup required to initialize the device. This function
will return a value from the usb_status enumerated type (located in
usb.h). Below is a sample prototype for the attach function.

usbd_status os9_attach(usbd_device_handle dev,
usbd_interface_handle iface)

NoteNote
If the attach function returns an error, the detach function will not be
called. This means that the attach function must properly deallocate
resources allocated prior to the error condition.

Detach

The detach function is called by usbman if the device is removed from
the USB, or if the driver is de-registering itself with usbman. This
function is responsible for deallocating any resources acquired in the
attach routine. Normally, this means closing pipes and freeing
memory. Below is an example detach function prototype:

usbd_status os9_detach(usbd_device_handle dev)

2Using USB Host for OS-9

USB Host SDK for OS-9 37

Registering with usbman

The following routines perform plug and play on the USB for OS-9. These
routines are provide a way for usbman to call back into the LDD. Each LDD
registers its functions with usbman when it initializes. Below is the plug and
play structure followed by a brief description of each field.
typedef struct {
 usbd_status (*detach)(struct usbd_device *dev);
 usbd_status (*attach)(struct usbd_device *dev, usbd_interface_handle iface);
 int (*match) (struct usbd_device *dev, usbd_interface_handle iface);
 void *gp; /* ldd global pointer */
 void *dev_data; /* (ldd) device specific data */
} usbd_ldd_t;

detach This is called when a device is removed
from the USB. This routine should close any
interrupt, bulk, or isochronous pipes and
any other resources allocated in the
attach routine. usbman will close the
control pipe.

attach This is called after a successful return from
match. This routine should open any pipes
required for this device to function. It may
also perform transfers over the control pipe.

match This routine will determine if the given
device and interface are appropriate for this
LDD. If no match is possible, then return
UMATCH_NONE. Otherwise, return
UMATCH_IFACECLASS. This routine may
also perform transfers over the control pipe.
However, do not attempt to change the
interface. If the given interface, iface, is
not suitable, return UMATCH_NONE. The
usbman explore routine will iterate over all
interfaces.

gp This is the LDD global pointer, and should
be set properly by the LDD before
registering the attach/match/detach
routines with usbman.

38 USB Host SDK for OS-9

dev_data This is for specific use by the LDD. In some
circumstances, it is useful to place
information here in the attach routine.

2Using USB Host for OS-9

USB Host SDK for OS-9 39

Logical Device Drivers

A Logical Device Driver (LDD) implements code to support a particular
USB device like a mouse, keyboard, or printer. It is intended that each LDD
support the standard OS-9 interface as much as possible. These drivers
interface to usbman using the USBDI interface. LDDs may use any OS-9
file manager, including nullfm.

LDD Initialization

Each LDD must perform the following steps once during initialization:

Step 1. Open /usb. This opens a path to usbman so that this LDD may use the
USBDI interface.

Step 2. Perform a GS_USB_USBMAN_IFACE getstat to retrieve function pointers
that implement the USBDI interface.

Step 3. Perform a SS_USB_LDD_METHODS setstat to register attach, match,
detach routines with usbman.

LDD De-Initialization

Perform the following steps to de-initialize an LDD:

Step 1. Perform SS_USB_LDD_METHODS setstat (with enable field set to 0) to
remove registration with usbman.

Step 2. Close path to /usb.

40 USB Host SDK for OS-9

Suggested OS-9 Interface

It is suggested that each LDD support the standard OS-9 interface. Below
is a list of setstats/getstats that each LDD should implement, if possible.

Setstats

SS_SENDSIG Send signal on data registration.

SS_RELEASE Remove SS_SENDSIG registration.

Getstats

SS_READY Return number of bytes ready for read.

Plug-n-play

Each LDD must register an attach, match, and detach routine with usbman.
These routines facilitate plug-n-play under OS-9. Following is a code
snippet showing how to register these routines.
usbd_ldd_t mouse_ldd = {os9_detach_mouse,

os9_attach_mouse,
os9_match_mouse,
NULL, /* gp */
NULL}; /* dev_data */

/* register attach/match/detach with usbman */
methods_pb.enable = 1;
mouse_ldd.gp = get_static();
methods_pb.ldd = &mouse_ldd;
err = _os_setstat(usb_path, SS_USB_LDD_METHODS, &methods_pb);

Removing registration with usbman should only occur in the term part of
the driver. Following is an example:
/* un-register with usbman */
methods_pb.enable = 0;
methods_pb.ldd = &mouse_ldd;
(void) _os_setstat(usb_path, SS_USB_LDD_METHODS, &methods_pb);

2Using USB Host for OS-9

USB Host SDK for OS-9 41

Standard OS-9 LDD Drivers

The OS-9 USB Host Stack ships with the following Logical Device Drivers:

• USB Mouse

• USB Keyboard

• USB Printer

• USB Mass Storage

• USB Mass Storage

USB Mouse

The USB Host Mouse driver is implemented as a nullfm Driver. It
supports the standard OS-9 interface for read, SS_RELEASE,
SS_SENDSIG, and SS_READY. The standard OS-9 utilities, such as dump,
can be used with this driver. This driver attaches to any device that
declares itself to be a HID Mouse device with an x and y report. The driver
and its descriptors are found in the following locations:

• Source Directory:

SRC/DPIO/NULLFM/DRVR/USBH/UMS

• Driver Location:

OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/ums

• Descriptor Location:

OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/um0
OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/um1

42 USB Host SDK for OS-9

Data Format

The USB Host mouse driver generates PS/2 style data. Each mouse
movement and/or button press is represented by 3 bytes. PS/2 only allows
for 3 buttons and 8 bits of movement per data sample. Following is the data
format:

Byte 0: oy ox sy sx 1 b3 b2 b1
Byte 1: x7 x0 - signed x data
Byte 2: y7 y0 - signed y data

B1 button 1 down

B2 button 2 down

B3 button 3 down

Oy overflow in y direction

Ox overflow in x direction

Sy sign bit in y direction

Sx sign bit in x direction

Use With MAUI

To use the USB Mouse with MAUI, the correct protocol module cdb is
required. The USB Mouse uses the mp_bsptr protocol module. This is the
standard PS/2 mouse protocol module. Since the USB Mouse driver
generates PS/2 data, mp_bsptr is very functional.

For applications to be aware of the USB Mouse, a cdb entry must be
added. Following is a code snippet that shows a USB Mouse entry in a
cdb.a file. This file is found in the following location:

OS9000/<PROCESSOR>/PORTS/<BOARD>/MAUI/CDB
psect cdb,(5<<8)+1,$8000,212,0,entry

org 0

entry:
 (Other entries here)
 dc.b "5:/um0/mp_bsptr:TY=\"ptr\":",13 * USB Mouse

 ends

2Using USB Host for OS-9

USB Host SDK for OS-9 43

Testing the USB Mouse

The USB Mouse can be tested in two ways. The first, and simplest method,
is using the OS-9 dump utility. Following is an example of using OS-9 dump:
$ tmode nopause
$ dump /um0
(Move the mouse and press buttons)
 Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E
-------- ---- ---- ---- ---- ---- ---- ---- ---- ----------------
00000000 0900 000b 0000 0900 000b 0000 0a00 0008
00000010 0000 0803 0308 0403 0806 0408 0603 0806
00000020 0308 0403 0803 0308 0002 08ff 0208 fe01~.
(Ctrl-C to exit)
Error #000:177

The second method for testing the mouse is to use the MAUI inp demo
software. Following is an example of using inp:
$ maui_inp &
$ tmode nopause
$ inp -i=/um0/mp_bsptr
Opening device '/um0/mp_bsptr'
Send signal to 'inp' to end test
Expected device id 0x3fa8018
+--+
Device type: +++ Pointer +++ Device ID: 0x3fa8018
| Sub-type: 0x4
| INP_PTR_MOVE
| Button changed: 0
| Button status 0 (0x0)
| New position (-64,117)
| Simulating keysym: INP_KEY_NULL (0x0)
+--+
Device type: +++ Pointer +++ Device ID: 0x3fa8018
| Sub-type: 0x1
| INP_PTR_DOWN
| Button changed: 2
| Button status 2 (0x2)
| New position (-64,117)
| Simulating keysym: INP_KEY_NULL (0x0)
+--+
Device type: +++ Pointer +++ Device ID: 0x3fa8018
| Sub-type: 0x2
| INP_PTR_UP
| Button changed: 2
| Button status 0 (0x0)
| New position (-64,117)
| Simulating keysym: INP_KEY_NULL (0x0)
+--+
(Ctrl-C to exit)

44 USB Host SDK for OS-9

USB Keyboard

The USB Host Keyboard driver is implemented as a nullfm Driver. It
supports the standard OS-9 interface for read, SS_RELEASE,
SS_SENDSIG, and SS_READY. The standard OS-9 utilities, such as dump,
can be used with this driver. This driver attaches to any device that
declares itself to be a HID Keyboard that uses the BOOT Protocol. The
driver and its descriptors are found in the following locations:

• Source Directory:

SRC/DPIO/NULLFM/DRVR/USBH/UKBD

• Driver Location:

OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/ukbd

• Descriptor Location:

OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/ukbd0
OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/ukbd1

Data Format

The USB Keyboard uses an 8-byte data format. Below is a C-style structure
describing the format. A special protocol module, named mp_usbkbd was
created to handle this exact format.
#define KEYSLOTS 6
typedef struct {
 u_int8 modifiers;
#define MOD_CONTROL_L0x01
#define MOD_CONTROL_R0x10
#define MOD_SHIFT_L0x02
#define MOD_SHIFT_R0x20
#define MOD_ALT_L0x04
#define MOD_ALT_R0x40
#define MOD_META_L0x08
#define MOD_META_R0x80
 u_int8 reserved;
 u_int8 keycode[KEYSLOTS];
} UKBD_DATA;

2Using USB Host for OS-9

USB Host SDK for OS-9 45

The USB Keyboard can handle up to 6 characters pressed at a time. The
keycode array represents “down” keys. "Up" keys must be deduced from
consecutive packets. That is to say, if a particular key is "down", and then is
not present in the keycode array on the next packet, then the key is
declared "up".

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about the keyboard data packet, please refer to
the Device Class Definition for Human Interface Devices (HID) at
www.usb.org.

Use With MAUI

To use the USB Keyboard with MAUI, the correct protocol module and an
updated cdb module will be required. The USB Keyboard uses the
mp_usbkbd protocol module. This is found in the following location:

SRC/MAUI/MP/MP_USBKBD

For applications to be aware of the USB Keyboard, a cdb entry must be
added. Below is a code snippet that shows a USB Keyboard entry in a
cdb.a file. This file is found in the following location:

OS9000/<PROCESSOR>/PORTS/<BOARD>/MAUI/CDB
psect cdb,(5<<8)+1,$8000,212,0,entry

org 0

entry:
 (Other entries here)
 dc.b "5:/ukbd0/mp_usbkbd:TY=\"ptr\":",13 * USB Keyboard

 ends

The mp_usbkbd protocol module turns separate LEDs when the Caps
Lock, Num Lock, or Scroll Lock key is pressed.

46 USB Host SDK for OS-9

The key repeat functionality (keys that repeat while holding down a
particular key) is not implemented. According to the USB HID specification,
auto-repeating keys while they are down is a function of the USB Software,
not the keyboard. Currently, this feature does not exist in the OS-9
Keyboard driver.

Testing the USB Keyboard

The USB Keyboard can be tested in two ways. The first method uses the
standard OS-9 dump utility. Following is an example of using OS-9 dump:
$ dump /ukbd0

 Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E
-------- ---- ---- ---- ---- ---- ---- ---- ---- ----------------
00000000 0000 0400 0000 0000 0000 0000 0000 0000
00000010 0000 0500 0000 0000 0000 0000 0000 0000
00000020 0000 0600 0000 0000 0000 0000 0000 0000
00000030 0000 0700 0000 0000 0000 0000 0000 0000
00000040 0000 0800 0000 0000 0000 0000 0000 0000
00000050 0200 0000 0000 0000 0200 0400 0000 0000
00000060 0200 0416 0000 0000 0200 0416 0700 0000
00000070 0200 0407 0000 0000 0200 0700 0000 0000
00000080 0200 0000 0000 0000 0000 0000 0000 0000
00000090 0000 2c00 0000 0000 0000 0000 0000 0000 ..,.............

The second method for testing the USB Keyboard is to use the MAUI inp
demo software. Following is an example of using inp:
$ maui_inp &
$ tmode nopause
$ inp -i=/ukbd0/mp_usbkbd
Opening device '/ukbd0/mp_usbkbd'
Send signal to 'inp' to end test
Expected device id 0x3fa8018
+--+
Device type: +++ Key +++ Device ID: 0x3fa8018
| Sub-type: 0x4
| INP_KEYMOD_DOWN
| Keysym received: INP_KEY_NULL (0x0)
| Key modifiers: 0x1
| Shft CapL Ctrl Alt Meta Num Scrl
| L R L R L R L R L R Lock Lock
| x
+--+
Device type: +++ Key +++ Device ID: 0x3fa8018
| Sub-type: 0x8
| INP_KEYMOD_UP
| Keysym received: INP_KEY_NULL (0x0)
| Key modifiers: 0x0

2Using USB Host for OS-9

USB Host SDK for OS-9 47

| Shft CapL Ctrl Alt Meta Num Scrl
| L R L R L R L R L R Lock Lock
|
+--+
Device type: +++ Key +++ Device ID: 0x3fa8018
| Sub-type: 0x4
| INP_KEYMOD_DOWN
| Keysym received: INP_KEY_NULL (0x0)
| Key modifiers: 0x4
| Shft CapL Ctrl Alt Meta Num Scrl
| L R L R L R L R L R Lock Lock
| x
+--+
(Ctrl-C to exit)

USB Printer

The USB Host Printer driver is implemented as a nullfm Driver. It
supports the standard OS-9 interface for write, SS_RELEASE,
SS_SENDSIG, and SS_READY. The standard OS-9 utilities, such as merge,
can be used with this driver. The driver and its descriptor are found in the
following locations:

• Source Directory

SRC/DPIO/NULLFM/DRVR/USBH/ULPT

• Driver Location

OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/ulpt

• Descriptor Location

OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/ulp0

The printer driver attaches to any device advertising itself as a
uni-directional or bi-directional printer. The OS-9 USB Printer Driver does
not modify the data sent to the printer. That is to say, the data the
application writes to the printer must be understood by the printer. The
ulpt driver does not massage the data.

48 USB Host SDK for OS-9

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Information about USB printers is located at www.usb.org.

Testing the USB Printer

Following is an example of how to test a printer using the OS-9 merge
utility. A sample text file can be found in the following location:

SRC/DPIO/NULLFM/DRVR/USBH/ULPT/sample.txt

$ merge sample.txt>/ulp0

NoteNote
Many USB Printers that accept ASCII text require a <CR><LF> at the
end of each line, and a Ctrl-L as a Form Feed character. A sample text
file (sample.txt) exists in the source directory for the printer driver.

There is also a usbprint utility that can be used to print a file. Following is
an example command for usbprint:

$ usbprint sample.txt

NoteNote
The default print device is /ulp0.

2Using USB Host for OS-9

USB Host SDK for OS-9 49

USB Mass Storage

The USB Mass Storage driver is implemented as a nullfm Driver. It
supports the standard OS-9 interface for a disk device (either Windows FAT
format or OS-9’s native RBF format). The driver and its descriptors are
found in the following locations:

• Source Directory

OS9000/SRC/IO/RBF/DRVR/USBDISK

• Driver Location

OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/udiskd

• Descriptors Location

OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/DESC/muh* (for PCF)
OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/DESC/uh* (for RBF)

There are a large number of device descriptors for various uses.

• Since USB Mass Storage devices can appear and disappear
dynamically, the device descriptors refer to disk 0 as the first disk device
located on the busses, disk 1 as the second disk located on the busses,
and so forth, up to 3 for the fourth disk located.

• The disks have partitions - partition 1 is the first partition and partition 2
is the second.

• USB Mass Storage devices can be formatted for use with PCF
(Windows/MS-DOS format) or RBF (OS-9’s native disk format).
Descriptor names that begin with m (for MS-DOS) are for use with the
PCF file manager.

• Descriptors with a single digit before any extension refer to the entire
device, including the partition table itself.

• Some files contains simplified descriptor names historically used to
refer to hard disks (e.g. h0 or h1).

• Some descriptors are format enabled - allowing the format command to
rewrite the file structure of the device.

The following are some examples that illustrate the general format for the
descriptor file names.

50 USB Host SDK for OS-9

muh0 - PCF format descriptor for the entire first available disk

uh11fmt - RBF format descriptor for the first partition of the second
available disk with formatting enabled

muh22.h2 - PCF format descriptor for the second partition of the third
available disk with a module name of h2.

Testing USB Mass Storage Devices

Following is an example of how to test USB Mass Storage devices. This
example uses a 1GB Flash disk and a 250GB external hard disk, both
pre-formatted for Windows.
$ iniz muh01
$ iniz muh11
$ dir /muh01 /muh11

 Directory of /muh01 01:30:30
Documents LaunchU3.exe System
 Directory of /muh11 01:30:30
21-Apr-06 24-Apr-06 25-Apr-06 26-Apr-06 27-Apr-06
28-Apr-06 CMDS Recycled System Volume Information
~vspcache.dir
$ chd /muh01
$ makdir CMDS
$ chd CMDS
$ copy /muh11/CMDS/procs
$ dir
 Directory of . 16:49:38
procs
$

2Using USB Host for OS-9

USB Host SDK for OS-9 51

Generic USB Driver

The Generic USB Driver (spugen) enables applications to configure and
transfer data directly to a device on the USB. Only bulk and interrupt pipes
are supported, and there is no intention of supporting isochronous pipes.
spugen is a SoftStax® (SPF) driver, and requires edition 269 or greater of
the SPF file manager. The driver and its descriptors are found in the
following locations:

• Source Directory:

SRC/DPIO/SPF/DRVR/USBGEN

• Driver Location:

OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/spugen

• Descriptor Location:

OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/ugen0
OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH/ugen1

Plug-n-Play

With respect to plug-n-play, spugen registers its attach, match, and detach
routines like any other Logical Device Descriptor. However, spugen
matches to any device. In addition, usbman will only attempt to match the
generic driver with a device after all other drivers have been given an
opportunity to match. Therefore, the desired configuration is to initialize
(iniz) all non-generic devices as well as spugen. In this way, any device
plugged into the USB will first try to attach to regular LDDs and will then try
to attach to spugen.

Accessing Endpoints with spugen

spugen is a special LDD because it allows a direct connection to the
control pipe, and also allows a direct connection to a specific endpoint on
the USB device. For example, opening /ugen0 will open the control pipe
on the device. An application can then request configuration information or
make requests to the device.

52 USB Host SDK for OS-9

To open a specific endpoint on a USB device, append a # character
followed by the endpoint number after the device name. For example,
/ugen0#1 will open endpoint 1 on the USB device attached to /ugen0.
/ugen1#2 will open endpoint 2 on the USB device attached to /ugen1.

The application can request information about the device by making
various setstat calls into the spugen driver using the control pipe. In this
way, the application can determine how many endpoints a device has, and
the type of device, for example a printer mouse, or camera.)

Testing spugen

Following is a list of steps for testing spugen with a USB mouse. Before
you start, make sure that the following SPF modules are on your OS-9
target. This can be determined by running the mdir utility on the USB Host
machine.

OS9000/<PROCESSOR>/CMDS/BOOTOBJS/SPF/spf
OS9000/<PROCESSOR>/CMDS/mbinstall

Step 1. Type the following commands at the OS-9 prompt:

$ usbd &
$ usbdevs

Following is an example response from the command:
$ usbdevs
Bus #0, Root Hub, Address 1,
[1] <empty>
[2] Address 2, Fellowes Inc.: Fellowes 5 Button

Bus #1, Root Hub, Address 1,
[1] <empty>
[2] <empty>

Bus #2, Root Hub, Address 1,
[1] <empty>
[2] <empty>
[3] <empty>
[4] <empty>

This response shows that a mouse is present on USB bus #0 (low and
full-speed bus) at address 2.

2Using USB Host for OS-9

USB Host SDK for OS-9 53

Step 2. Type the following commands at the OS-9 prompt:

$ iniz /ugen0
$ ugenstat

Following is an example response from the command:
Device Descriptor: 12011001 00000008 25251389 22500102 0001
Fellowes Inc. Fellowes 5 Button
Number of Configurations: 1
Config Descriptor 1: 09022200 010100a0 32
 Full Descriptor: 09022200 010100a0 32
 09040000 01030102 00
 09210001 00012248 00
 07058103 08000a

 Number of interfaces: 1
 Interface Descriptor 0: 09040000 01030102 00

 Number of endpoints: 1
 Endpoint Descriptor 0: 07058103 08000a

This response shows that the UGEN driver is attached to the mouse. By
decoding the configuration and endpoint data, this mouse has only one
endpoint, numbered 1.

Step 3. Type the following commands at the OS-9 prompt:

$ dump "/ugen0#1"

Following is an example response from the command if the mouse is then
moved:
 Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E
-------- ---- ---- ---- ---- ---- ---- ---- ---- ----------------
00000000 0000 ff00 00ff 0100 00fb 0000 00fd 0300{...}..
00000010 00fe 0500 0000 0100 00f6 0f00 00f5 1600 .~.......v...u..
00000020 00f3 1800 00f6 1800 00f8 1200 00f6 0a00 .s...v...x...v..
00000030 00f5 0b00 00f7 0900 00f8 0800 00fa 0400 .u...w...x...z..
00000040 00fa 0400 00fd 0200 00fd 0100 00fe 0100 .z...}...}...~..
00000050 00ff 0000 0001 0000 0000 ff00 0004 ff00
00000060 0004 ff00 0006 fe00 0007 fe00 0008 ff00~...~.....
00000070 0008 0000 000b ff00 000d 0000 000e 0000
(Ctrl-C to exit)

54 USB Host SDK for OS-9

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For information regarding the data format of the device, configuration,
interface, and endpoint descriptors, please refer to the USB
specifications, which can be found at www.usb.org.

2Using USB Host for OS-9

USB Host SDK for OS-9 55

Reference API

An Application may make many getstat/setstat calls into spugen to either
query information about the device, or to set the device configuration.
Below is a list of these, and their purposes. Since spugen is a SoftStax
(SPF) driver, the standard SPF getstat/setstat parameter block is used.
Structures used for ugen getstat/setstat values can be found in the
following location:

SRC/IO/USBH/DEFS/usb.h and SRC/DEFS/HW/usb_host.h.

/* generic getstat/setstat parameter block */
struct spf_ss_pb {

u_int32 code;/* setstat module code*/
u_int32 size;/* size of mod_param*/
void* param; /* module parameter block*/
u_int8 updir; /* gs/ss going up the stak flag */

#define SPB_GOINGUP1/* Param blk is going up stack*/
#define SPB_GOINGDWN 0/* Param blk going down stack*/

u_int8 rsv[3];/* RESERVED FOR FUTURE USE!*/
};

56 USB Host SDK for OS-9

GS_USB_GET_CONFIG

Get current Device Configuration Value

Syntax
int config;
err = _os_getstat(path, GS_USB_GET_CONFIG, &config);

Description

Get current device configuration value.

Return Value

EIO I/O error retrieving configuration information
from device.

SUCCESS Retrieved configuration value.

2Using USB Host for OS-9

USB Host SDK for OS-9 57

GS_USB_GET_ALTINTERFACE

Get Alternate Interface Value

Syntax
struct usb_alt_interface ai;
err = _os_getstat(path, GS_USB_GET_ALTINTERFACE, &ai);

Description

Get alternate interface value.

Return Value

ENIVAL No interface selected for this device.

EIO Error retrieving alternate interface.

SUCCESS Retrieved alternate interface value, and
assigned to ai->alt_no.

58 USB Host SDK for OS-9

GS_USB_GET_NO_ALT

Get Number of Alternate Interfaces

Syntax
struct usb_alt_interface ai;
err = _os_getstat(path, GS_USB_GET_NO_ALT, &ai);

Description

Get number of alternate interfaces.

Return Value

ENIVAL No interface selected for this device.

EIO Error retrieving alternate interface.

SUCCESS Retrieved number of alternate interfaces,
and assigned to ai->alt_no.

2Using USB Host for OS-9

USB Host SDK for OS-9 59

GS_USB_GET_DEVICE_DESC

Get Device Descriptor

Syntax
usb_device_descriptor_t dev_desc;
err = _os_getstat(path, GS_USB_GET_DEVICE_DESC, &dev_desc);

Description

Get device descriptor.

Return Value

EINVAL No device descriptor available.

SUCCESS Returns device descriptor.

60 USB Host SDK for OS-9

GS_USB_GET_CONFIG_DESC

Get Current Configuration Descriptor

Syntax
struct usb_config_desc config_desc;
err = _os_getstat(path, GS_USB_GET_CONFIG_DESC, &config_desc);

Description

Get current configuration descriptor.

Return Value

EINVAL No configuration descriptor available.

SUCCESS Returns device descriptor.

2Using USB Host for OS-9

USB Host SDK for OS-9 61

GS_USB_GET_INTERFACE_DESC

Get Interface Descriptor on Device

Syntax
struct usb_interface_desc iface_desc;
err = _os_getstat(path,GS_USB_GET_INTERFACE_DESC,&iface_desc);

Description

Get interface descriptor on device.

• iface_desc.config_index

Configuration index to use, or -1 for the current configuration.

• iface_desc.interface_index

Interface index to use, or -1 for the current interface.

• iface_desc.alt_index

Alternate index to use, or -1 for current alternate interface.

Return Value

EINVAL No configuration or interface descriptor.

SUCCESS Returns interface descriptor in
iface_desc.desc.

62 USB Host SDK for OS-9

GS_USB_GET_ENDPOINT_DESC

Get Endpoint Descriptor on Device

Syntax
struct usb_endpoint_desc ep_desc;
err = _os_getstat(path,GS_USB_GET_ENDPOINT_DESC,&iface_desc);

Description

Get endpoint descriptor on device.

• ep_desc.config_index

Configuration index to use, or -1 for the current configuration.

• ep_desc.interface_index

Interface index to use, or -1 for the current interface.

• ep_desc.alt_index

Alternate index to use, or -1 for current alternate interface.

• ep_desc.endpoint_index

Endpoint index to use.

Return Value

EINVAL Could not get information on configuration
descriptor.

SUCCESS Endpoint descriptor copied to
ep_desc.desc.

2Using USB Host for OS-9

USB Host SDK for OS-9 63

GS_USB_GET_STRING_DESC

get string descriptor from USB device

Syntax
struct usb_string_desc string_desc;
err = _os_getstat(path,GS_USB_GET_STRING_DESC,&string_desc);

Description

Get string descriptor from USB device.

• string_desc.string_index

String index from device, configuration, or interface descriptor.

• string_desc.language_id

Language to use (0 if ASCII).

Return Value

EINVAL I/O error retrieving string descriptor.

SUCCESS String descriptor copied to
string_desc.desc.

64 USB Host SDK for OS-9

SS_USB_SET_CONFIG

Set the Configuration Index

Syntax
int config_index=1;
err = _os_setstat(path,SS_USB_SET_CONFIG,&config_index);

Description

Set the configuration index.

NoteNote
This must be done before any paths are opened to a specific endpoint,
for example /ugen0#1.

Return Value

EPERM No write permission on opened path.

EIO Error setting configuration.

SUCCESS Configuration set to given index.

2Using USB Host for OS-9

USB Host SDK for OS-9 65

SS_USB_SET_ALTINTERFACE

Sets the Alternate Interface

Syntax
struct usb_alt_interface alt_iface;
alt_iface.alt_no = 0;
err = _os_setstat(path,SS_USB_SET_ALTINTERFACE,&alt_iface);

Description

Sets the alternate interface.

NoteNote
This must be done before any paths are opened to a specific endpoint,
for example /ugen0#1.

Return Value

EPERM No write permission on opened path.

EIO Error setting configuration.

SUCCESS Configuration set to given index.

66 USB Host SDK for OS-9

SS_USB_DO_REQUEST

Performs a Device Specific Request Over the Control Pipe

Syntax
struct usb_ctl_request req;
err = _os_setstat(path,SS_USB_DO_REQUEST,&req);

Description

Performs a device specific request over the control pipe.

req.addr Device address.

req.request Standard 8 byte device request structure
initialized.

req.data Pointer to memory where data returned
from the device will be stored.

req.flags 0, or USBD_SHORT_XFER_OK.

Return Value

EPERM No write permission on opened path

EINVAL Returned if a SET ADDRESS, SET
CONFIGURATION, or SET INTERFACE
request is attempted.

EIO Error setting configuration.

SUCCESS Request performed.

Any data returned will be stored in the data field. The actual number of
bytes returned will be stored in req.actlen.

2Using USB Host for OS-9

USB Host SDK for OS-9 67

SS_USB_SET_SHORT_XFER

Allows Short Transfers

Syntax
err = _os_setstat(path,SS_USB_SET_SHORT_XFER,NULL);

Description

Allows short transfers (less than the maximum endpoint length) when
reading data from the USB device. This is not for the control pipe, but for
other endpoints, such as /ugen0#1.

Return Value

EINVAL Attempt to set for control pipe (/ugen0), or
no interrupt or bulk pipe open for read.

SUCCESS Allow short reads on this pipe.

68 USB Host SDK for OS-9

User-State Daemon Process

The user-state daemon process, usbd, serves the following purposes:

• Initializes the USB Host stack

• Activated to perform bus explore code in usbman when a device is
plugged in or removed from the USB.

• Initiates an asynchronous "clear endpoint stall". This can occur if a
driver determines an error condition in the interrupt service routine.

To initialize the USB stack, use the following command at the OS-9 prompt:

$ usbd &

usbd will respond to a signal 2 or 3, to shut down the stack. Also, all drivers
must be de-initialized for the USB Host Stack to properly terminate.

Chapter 3: USB Host API Reference

This chapter provides a library function reference for USB Host for
OS-9. It documents the USBDI interface.

The USBDI interface is the API that implements access to the USBMAN
driver. Any USB logical device driver or system-state application
accesses the USB through the USBDI API.

The function references are sorted into the following categories:

• Pipe Functions List

• Transfer Functions List

• Interface Functions List

• Device Functions List

• Alphabetical Listing

70 USB Host SDK for OS-9

Pipe Functions List

Table 3-1 Pipe Functions

Function Name Description

usbman_abort_pipe() Abort a Pipe Operation

usbman_clear_endpoint_stall() Clear STALLED Condition

usbman_clear_endpoint_stall_async() Clear STALLED Condition

usbman_clear_endpoint_toggle() Reset Endpoint Toggle

usbman_close_pipe() Close Pipe

usbman_do_request() Perform Transfer Over Control Pipe

usbman_do_request_flags() Perform Transfer

usbman_open_pipe() Create Bulk Transfer Pipe

usbman_open_pipe_intr() Create Interrupt Pipe

usbman_pipe2device_handle() Return Device Handle

3USB Host API Reference

USB Host SDK for OS-9 71

Transfer Functions List

Table 3-2 Transfer Functions

Function Name Description

usbman_alloc_buffer() Allocate a DMA Buffer

usbman_alloc_xfer() Allocate a Transfer Structure

usbman_bulk_transfer() Perform Bulk Transfer

usbman_free_buffer() Free DMA Buffer

usbman_free_xfer() Free Transfer

usbman_get_buffer() Return Current DMA Buffer Pointer

usbman_get_xfer_status() Get Transfer Status

usbman_setup_default_xfer() Initialize Transfer Handle

usbman_setup_isoc_xfer() Initialize ISOC Transfer

usbman_setup_xfer() Assign Fields in Transfer

usbman_sync_transfer() Perform Asynchronous Transfer

usbman_transfer() Initialize Bulk Transfer

72 USB Host SDK for OS-9

Interface Functions List

Table 3-3 Interface Functions

Function Name Description

usbman_endpoint_count() Return Number of Endpoints

usbman_free_report_desc() Deallocate Memory

usbman_get_config() Request Configuration Descriptor

usbman_get_hid_descriptor() Request HID Descriptor

usbman_get_report() Request HID Report Descriptor

usbman_get_report_descriptor() Request HID Report Descriptor

usbman_interface2device_handle() Return Device Handle

usbman_interface2endpoint_descriptor() Return Endpoint Descriptor

usbman_read_report_desc() Allocate and read the report descriptor

usbman_set_idle() Silence Report on the Interrupt In Pipe

usbman_set_interface() Request Interface Change

usbman_set_protocol() Switch Between Boot and Report
Protocol

usbman_set_report() Perform Set Report Request

3USB Host API Reference

USB Host SDK for OS-9 73

Device Functions List

Table 3-4 Device Functions

Function Name Description

usbman_device2interface_handle() Return Interface Handle

usbman_get_config_desc() Get Configuration Descriptor

usbman_get_config_desc_full() Request Configuration Descriptor

usbman_get_device_desc() Request Device Descriptor

usbman_get_string_desc() Request String Descriptor

usbman_interface_count() Return Number of Interfaces

usbman_set_config_index() Set Configuration Index

usbman_set_config_no() Set Configuration

74 USB Host SDK for OS-9

Alphabetical Listing

Table 3-5 Alphabetical Listing of Functions

Function Name Description

usbman_abort_pipe() Abort a Pipe Operation

usbman_alloc_buffer() Allocate a DMA Buffer

usbman_read_report_desc() Allocate and read the report descriptor

usbman_alloc_xfer() Allocate a Transfer Structure

usbman_bulk_transfer() Perform Bulk Transfer

usbman_clear_endpoint_stall() Clear STALLED Condition

usbman_clear_endpoint_stall_async() Clear STALLED Condition

usbman_clear_endpoint_toggle() Reset Endpoint Toggle

usbman_close_pipe() Close Pipe

usbman_device2interface_handle() Return Interface Handle

usbman_do_request() Perform Transfer Over Control Pipe

usbman_do_request_flags() Perform Transfer

usbman_endpoint_count() Return Number of Endpoints

usbman_find_edesc() Return Endpoint Descriptor

usbman_find_idesc() Return Interface Descriptor

usbman_free_buffer() Free DMA Buffer

usbman_free_report_desc() Deallocate Memory

3USB Host API Reference

USB Host SDK for OS-9 75

usbman_free_xfer() Free Transfer

usbman_get_buffer() Return Current DMA Buffer Pointer

usbman_get_config() Request Configuration Descriptor

usbman_get_config_desc() Get Configuration Descriptor

usbman_get_config_desc_full() Request Configuration Descriptor

usbman_get_device_desc() Request Device Descriptor

usbman_get_device_descriptor() Return Device Descriptor

usbman_get_hid_descriptor() Request HID Descriptor

usbman_get_no_alts() Get Number of Alternate Interfaces

usbman_get_report() Request HID Report Descriptor

usbman_get_report_descriptor() Request HID Report Descriptor

usbman_get_string_desc() Request String Descriptor

usbman_get_xfer_status() Get Transfer Status

usbman_interface_count() Return Number of Interfaces

usbman_interface2device_handle() Return Device Handle

usbman_interface2endpoint_descriptor() Return Endpoint Descriptor

usbman_open_pipe() Create Bulk Transfer Pipe

usbman_open_pipe_intr() Create Interrupt Pipe

usbman_pipe2device_handle() Return Device Handle

Table 3-5 Alphabetical Listing of Functions

Function Name Description

76 USB Host SDK for OS-9

usbman_set_config_index() Set Configuration Index

usbman_set_config_no() Set Configuration

usbman_set_idle() Silence Report on the Interrupt In Pipe

usbman_set_interface() Request Interface Change

usbman_set_protocol() Switch Between Boot and Report
Protocol

usbman_set_report() Perform Set Report Request

usbman_setup_default_xfer() Initialize Transfer Handle

usbman_setup_isoc_xfer() Initialize ISOC Transfer

usbman_setup_xfer() Assign Fields in Transfer

usbman_sync_transfer() Perform Asynchronous Transfer

usbman_transfer() Initialize Bulk Transfer

Table 3-5 Alphabetical Listing of Functions

Function Name Description

3USB Host API Reference

USB Host SDK for OS-9 77

usbman_abort_pipe()

Abort a Pipe Operation

Syntax
usbd_status usbman_abort_pipe(usbd_pipe_handle pipe);

Description

Aborts a pipe operation. This function returns
USBD_NORMAL_COMPLETION if the operation is successful.

Parameters

pipe A valid open pipe.

See Also
usbman_close_pipe()
usbman_open_pipe()

78 USB Host SDK for OS-9

usbman_alloc_buffer()

Allocate a DMA Buffer

Syntax
void *usbman_alloc_buffer(
 usbd_xfer_handle xfer,
 u_int32_t size);

Description

Allocates a DMA buffer for the given transfer handle xfer. Returns NULL if
the allocation fails; otherwise returns the pointer to the allocated memory.

Parameters

xfer Must be a valid transfer handle; returned
from usbman_alloc_xfer().

size Number of bytes to allocate.

Modifies

xfer -> dmabuf Updated to store reference to allocated
memory.

xfer -> rqflags URQ_DEV_DMABUF flag set.

See Also
usbman_free_buffer()
usbman_get_buffer()

3USB Host API Reference

USB Host SDK for OS-9 79

usbman_alloc_xfer()

Allocate a Transfer Structure

Syntax
usbd_xfer_handle usbman_alloc_xfer(usbd_device_handle);

Description

Allocates a usbd_xfer structure, and returns it to the calling function.

Parameters

dev A valid usbd_device_handle.

See Also
usbman_free_xfer()

80 USB Host SDK for OS-9

usbman_bulk_transfer()

Perform Bulk Transfer

Syntax
usbd_status usbman_bulk_transfer(
 usbd_xfer_handle xfer,
 usbd_pipe_handle pipe,
 u_int16_t flags,
 u_int32_t timeout,
 void *buf,
 u_int32_t *size,
 char *lbl);

Description

Performs a bulk transfer to or from a device. This call will not return until the
transfer is successful, or has timed out. This call returns
USBD_NORMAL_COMPLETION if the transfer was successful;
USBD_INTERRUPTED if the transfer was interrupted by a deadly IO signal;
USBD_IOERROR if a transfer failed; and USBD_TIMEOUT if the transfer
timed out.

Parameters

xfer A transfer handle allocated with
usbman_alloc_xfer.

pipe An open pipe to the device.

flags 0 means no special flags.

USBD_NO_COPY: do not copy data from buf
to DMA buffer.

USBD_FORCE_SHORT_XFER: force last
short packet on write.

timeout Number of milliseconds to wait for device to
respond to transfer.

USBD_NO_TIMEOUT: wait forever.

3USB Host API Reference

USB Host SDK for OS-9 81

*buf Write: contains data transfer to device.

Read: valid memory location to store data
read from device.

*size Write: number of bytes to transfer to device

Read: number of bytes to read from device
(size of buf)

*lbl Unused.

Modifies

This call modifies various fields in xfer.

82 USB Host SDK for OS-9

usbman_clear_endpoint_stall()

Clear STALLED Condition

Syntax
usbd_status usbman_clear_endpoint_stall(
 usbd_pipe_handle pipe);

Description

Clears the STALLED condition of the device. This will also reset the data
toggle to 0. Clearing the endpoint stall is usually not necessary, unless a
device has returned USBD_STALLED in response to a data transfer. This
call returns USBD_NORMAL_COMPLETION if successful and
USBD_IOERROR if the device did not respond.

Parameters

pipe An open pipe to the device.

Modifies

This call sets the toggle state of the pipe to 0.

See Also
usbman_clear_endpoint_stall_async()
usbman_clear_endpoint_toggle()

3USB Host API Reference

USB Host SDK for OS-9 83

usbman_clear_endpoint_stall_async()

Clear STALLED Condition

Syntax
usbd_status usbman_clear_endpoint_stall_async(
 usbd_pipe_handle pipe);

Description

Clears the STALLED condition of the device and resets the data toggle to
0. This is identical to usbman_clear_endpoint_stall, except that this
operation is not performed until some time later. This call will return
immediately. This version of the call is useful if the endpoint stall needs to
be cleared in interrupt context. This call returns
USBD_NORMAL_COMPLETION if successful and USBD_IOERROR if the
device did not respond.

Parameters

pipe An open pipe to the device.

Modifies

This function sets the toggle state of the pipe to 0.

See Also
usbman_clear_endpoint_stall()
usbman_clear_endpoint_toggle()

84 USB Host SDK for OS-9

usbman_clear_endpoint_toggle()

Reset Endpoint Toggle

Syntax
void usbman_clear_endpoint_toggle(
 usbd_pipe_handle pipe);

Description

Resets the endpoint toggle to 0. Resetting the endpoint toggle is only
necessary if resetting the device, or if clearing the endpoint stall.

Parameters

pipe An open pipe to the device.

Modifies

This function sets the toggle state of the pipe to 0.

See Also
usbman_clear_endpoint_stall()
usbman_clear_endpoint_stall_async()

3USB Host API Reference

USB Host SDK for OS-9 85

usbman_close_pipe()

Close Pipe

Syntax
usbd_status usbman_close_pipe(usbd_pipe_handle pipe);

Description

Closes pipe and frees interrupt pipe transfer buffer. This function returns
USBD_NORMAL_COMPLETION if the operation is successful and
USBD_PENDING_REQUESTS in the middle of the operation.

Parameters

pipe A valid open pipe.

See Also
usbman_abort_pipe()
usbman_open_pipe()

86 USB Host SDK for OS-9

usbman_device2interface_handle()

Return Interface Handle

Syntax
usbd_status usbman_device2interface_handle(
 usbd_device_handle dev,
 u_int8_t ifaceno,
 usbd_interface_handle *iface);

Description

Returns the specified interface handle for the given device. This function
returns USBD_NORMAL_COMPLETION if the operation is successful;
USBD_NOT_CONFIGURED if there is no configuration descriptor for this
device; and USBD_INVAL if the ifaceno parameter is out of range.

Parameters

dev A valid device handle.

ifaceno Interface number. This is between 0 and
n-1, where n is the number of interfaces.

*iface If successful, the interface handle will be
stored in *iface.

3USB Host API Reference

USB Host SDK for OS-9 87

usbman_do_request()

Perform Transfer Over Control Pipe

Syntax
usbd_status usbman_do_request(
 usbd_device_handle pipe,
 usb_device_request_t *req,
 void *data);

Description

Performs a transfer over the control pipe to the specified device. The data
transferred is a fixed 8-byte structure defined by the USB specification. If
any data is returned from the device, it is copied into the data parameter.
The data parameter must be large enough to hold such information.

This function returns USBD_NORMAL_COMPLETION if successful;
USBD_NOMEM if no memory is available; USBD_IOERROR when there is a
transfer error to the device; and USBD_STALLED if the transfer caused the
device to STALL.

Parameters

pipe A valid device handle.

*req 8-byte request structure that is properly
defined.

*data NULL if no return data; otherwise pointer to
return data memory.

88 USB Host SDK for OS-9

usbman_do_request_flags()

Perform Transfer

Syntax
usbd_status usbman_do_request_flags(
 usbd_device_handle pipe,
 usb_device_request_t *req,
 void *data,
 u_int16_t flags,
 int *actlen,
 u_int32_t timeout);

Description

Performs the same function as usbman_do_request with the addition of
three parameters: flags, actlen, and timeout.

This functions returns USBD_NORMAL_COMPLETION if successful;
USBD_NOMEM if no memory is available; USBD_IOERROR when there is a
transfer error to the device; and USBD_STALLED if the transfer caused the
device to STALL.

Parameters

pipe A valid device handle.

*req 8-byte request structure that is properly
defined.

*data NULL if no return data; otherwise pointer to
return data memory.

flags Flags normally passed to create a transfer
handle: USBD_NO_COPY,
USBD_SHORT_XFER_OK,
USBD_FORCE_SHORT_XFER.

*actlen Receives the number of bytes of data
transferred from the device.

3USB Host API Reference

USB Host SDK for OS-9 89

timeout Specifies the time in which to perform the
request before aborting the request.
Passing 0 specifies no timeout should be
used. The timeout value is in terms of
milliseconds.

90 USB Host SDK for OS-9

usbman_endpoint_count()

Return Number of Endpoints

Syntax
usbd_status usbman_endpoint_count(
 usbd_interface_handle iface,
 u_int8_t *count);

Description

Returns the number of endpoints in the current interface. Upon completion,
this function returns USBD_NORMAL_COMPLETION.

Parameters

iface A valid interface handle that contains a valid
interface descriptor.

*count Receives the number of endpoints in this
interface.

See Also
usbman_interface_count()

3USB Host API Reference

USB Host SDK for OS-9 91

usbman_find_edesc()

Return Endpoint Descriptor

Syntax
usb_endpoint_descriptor_t *usbman_find_edesc(
 usb_config_descriptor_t *cd,
 int ifaceidx,
 int altidx,
 int endptidx);

Description

Returns the specified endpoint descriptor for the current configuration
descriptor. Upon completion, this function returns a pointer to the
requested endpoint descriptor, or NULL if not found.

Parameters

*cd A valid configuration descriptor.

ifaceidx Interface number in the configuration.

altidx Alternate index in the configuration (0 if
none).

endptidx Endpoint index in the interface.

See Also
usbman_find_idesc()

92 USB Host SDK for OS-9

usbman_find_idesc()

Return Interface Descriptor

Syntax
usb_interface_descriptor_t *usbman_find_idesc(
 usb_config_descriptor_t *cd,
 int ifaceidx,
 int altidx);

Description

Returns the specified interface descriptor given a configuration descriptor.

Parameters

*cd A valid configuration descriptor.

ifaceidx Interface number in the configuration.

altidx Alternate index in the configuration (0 if
none).

See Also
usbman_find_edesc()

3USB Host API Reference

USB Host SDK for OS-9 93

usbman_free_buffer()

Free DMA Buffer

Syntax
void usbman_free_buffer(usbd_xfer_handle xfer);

Description

Frees a DMA buffer for the given transfer handle. This should only be called
if usbman_alloc_buffer() was successfully called on the given
transfer handle. No return value.

Parameters

xfer Must be a valid transfer handle, returned
from usbman_alloc_xfer().

Modifies

xfer->dmabuf Deallocates memory.

xfer->rqflags Clears the URQ_DEV_DMABUF and
URQ_AUTO_DMABUF flags.

See Also
usbman_alloc_buffer()
usbman_get_buffer()

94 USB Host SDK for OS-9

usbman_free_report_desc()

Deallocate Memory

Syntax
void usbman_free_report_desc(
 void *descp,
 int mem);

Description

Deallocates memory for a HID report descriptor. descp must be a value
returned from usbd_read_report_desc.

Parameters

*descp A report descriptor pointer to free.

mem Unused.

See Also
usbman_read_report_desc()

3USB Host API Reference

USB Host SDK for OS-9 95

usbman_free_xfer()

Free Transfer

Syntax
usbd_status usbman_free_xfer(usbd_xfer_handle xfer);

Description

Frees xfer. Also will free the DMA buffer if present.

Parameters

xfer A valid usbd_xfer_handle structure that
was allocated by usbd_alloc_xfer().

See Also
usbman_alloc_xfer()

96 USB Host SDK for OS-9

usbman_get_buffer()

Return Current DMA Buffer Pointer

Syntax
void *usbman_get_buffer(usbd_xfer_handle xfer);

Description

Returns the current DMA buffer pointer for the given transfer handle. If no
DMA buffer has been allocated, NULL is returned.

Parameters

xfer Must be a valid transfer handle, returned
from usbman_alloc_xfer().

See Also
usbman_alloc_buffer()
usbman_free_buffer()

3USB Host API Reference

USB Host SDK for OS-9 97

usbman_get_config()

Request Configuration Descriptor

Syntax
usbd_status usbman_get_config(
 usbd_device_handle dev,
 u_int8_t *conf);

Description

Requests the configuration descriptor from the given device. This call will
perform a transfer using the control pipe over the USB. This function
returns USBD_NORMAL_COMPLETION if successful; USBD_NOMEM if no
memory is available; USBD_IOERROR when there is a transfer error to the
device; and USBD_STALLED if the transfer caused the device to STALL.

Parameters

dev A valid USB device handle.

*conf Pointer to at least 9 bytes, the size of the
standard configuration descriptor.

See Also
usbman_get_config_desc()
usbman_get_config_desc_full()

98 USB Host SDK for OS-9

usbman_get_config_desc()

Get Configuration Descriptor

Syntax
usbd_status usbman_get_config_desc(
 usbd_device_handle dev,
 int confidx,
 usb_config_descriptor_t *d);

Description

Get configuration descriptor from device handle (for example
dev->cdesc).

Parameters

dev A valid usbd_device_handle.

confidx Configuration index.

*d Address of storage for the basic
configuration description.

See Also
usbman_get_config()
usbman_get_config_desc_full()

3USB Host API Reference

USB Host SDK for OS-9 99

usbman_get_config_desc_full()

Request Configuration Descriptor

Syntax
usbd_status usbman_get_config_desc_full(
 usbd_device_handle dev,
 int conf,
 void *d,
 int size);

Description

Requests the configuration descriptor from the given device. The
configuration index and the amount of data to receive is specified by the
conf and size parameters. This function returns
USBD_NORMAL_COMPLETION if successful; USBD_NOMEM if no memory is
available; USBD_IOERROR when there is a transfer error to the device; and
USBD_STALLED if the transfer caused the device to STALL.

Parameters

dev A valid USB device handle.

conf Specifies configuration index for descriptor.

*d Pointer to at least 9 bytes, the size of the
standard configuration descriptor.

size Number of bytes in configuration to request.

See Also
usbman_get_config()
usbman_get_config_desc()

100 USB Host SDK for OS-9

usbman_get_device_desc()

Request Device Descriptor

Syntax
usbd_status usbman_get_device_desc(
 usbd_device_handle dev,
 usb_device_descriptor_t *d);

Description

Requests the device descriptor from the given device. This function returns
USBD_NORMAL_COMPLETION if successful; USBD_NOMEM if no memory is
available; USBD_IOERROR when there is a transfer error to the device; and
USBD_STALLED if the transfer caused the device to STALL.

Parameters

dev A valid USB device handle.

*d Pointer to 18 bytes, size of the standard
device descriptor.

See Also
usbman_get_device_descriptor()

3USB Host API Reference

USB Host SDK for OS-9 101

usbman_get_device_descriptor()

Return Device Descriptor

Syntax
usb_device_descriptor_t *usbman_get_device_descriptor(
 usbd_device_handle dev)

Description

Returns the device descriptor retrieved after the device was initially
explored.

Parameters

dev A valid USB device handle.

See Also
usbman_get_device_desc()

102 USB Host SDK for OS-9

usbman_get_hid_descriptor()

Request HID Descriptor

Syntax
usb_hid_descriptor_t *usbman_get_hid_descriptor(
 usbd_interface_handle ifc);

Description

Requests the HID descriptor for the given interface handle. The HID
descriptor is normally retrieved with the configuration descriptor. This
function returns a pointer to the HID descriptor. If no HID descriptor is
found, NULL is returned.

Parameters

ifc A valid interface handle.

See Also
usbman_get_report()
usbman_get_report_descriptor()

3USB Host API Reference

USB Host SDK for OS-9 103

usbman_get_no_alts()

Get Number of Alternate Interfaces

Syntax
int usbman_get_no_alts(
 usb_config_descriptor_t *cdesc,
 int ifaceno);

Description

Get the number of alternate interfaces in the given configuration descriptor
and interface number. Upon completion, this function returns the number of
alternate interfaces.

Parameters

*cdesc A valid configuration descriptor.

ifaceno Interface number.

104 USB Host SDK for OS-9

usbman_get_report()

Request HID Report Descriptor

Syntax
usbd_status usbman_get_report(
 usbd_interface_handle iface,
 int type,
 int id,
 void *data,
 int len);

Description

Requests the HID report descriptor for the given interface. This will cause a
data transfer on the USB. This function returns
USBD_NORMAL_COMPLETION if successful; USBD_NOMEM if no memory is
available; USBD_IOERROR when there is a transfer error to the device; and
USBD_STALLED if the transfer caused the device to STALL.

Parameters

iface A valid interface handle.

type UHID_INPUT_REPORT,
UHID_OUTPUT_REPORT,
UHID_FEATURE_REPORT.

id HID id.

*data Pointer to memory where report will be
stored.

len Number of bytes of data to retrieve of HID
descriptor.

See Also
usbman_get_hid_descriptor()
usbman_get_report_descriptor()

3USB Host API Reference

USB Host SDK for OS-9 105

usbman_get_report_descriptor()

Request HID Report Descriptor

Syntax
usbd_status usbman_get_report_descriptor(
 usbd_device_handle dev,
 int ifcno,
 int size,
 void *d);

Description

Requests a HID report descriptor for the given device. This will cause a
data transfer on the USB. This function returns
USBD_NORMAL_COMPLETION if successful; USBD_NOMEM if no memory is
available; USBD_IOERROR when there is a transfer error to the device; and
USBD_STALLED if the transfer caused the device to STALL.

Parameters

dev A valid USB device.

ifcno Interface number.

size Number of bytes to request.

*d Pointer to memory to store requested report
descriptor.

See Also
usbman_get_hid_descriptor()
usbman_get_report()

106 USB Host SDK for OS-9

usbman_get_string_desc()

Request String Descriptor

Syntax
usbd_status usbman_get_string_desc(
 usbd_device_handle dev,
 int sindex,
 int langid,
 usb_string_descriptor_t *sdesc,
 int *size);

Description

Requests the string descriptor for the given device. This will cause a data
transfer on the USB. Upon successful completion, the string descriptor will
be stored in sdesc. This function returns USBD_NORMAL_COMPLETION if
successful; USBD_NOMEM if no memory is available; USBD_IOERROR when
there is a transfer error to the device; and USBD_STALLED if the transfer
caused the device to STALL.

Parameters

dev A valid device handle.

sindex String index.

langid Language ID.

*sdesc Pointer to string descriptor structure.

*size Receives the actual length of the string
descriptor.

3USB Host API Reference

USB Host SDK for OS-9 107

usbman_get_xfer_status()

Get Transfer Status

Syntax
void usbman_get_xfer_status(
 usbd_xfer_handle xfer,
 usbd_private_handle *priv,
 void **buffer,
 u_int32_t *count,
 usbd_status *status);

Description

Returns information regarding the given xfer transfer handle.

Parameters

xfer A valid xfer handle.

*priv Receiving the private data area for the
transfer.

**buffer Receiving the DMA buffer.

*count Receiving the total number of bytes
transferred.

*status Returns the transfer status.

108 USB Host SDK for OS-9

usbman_interface_count()

Return Number of Interfaces

Syntax
usbd_status usbman_interface_count(
 usbd_device_handle dev,
 u_int8_t *count);

Description

Returns the number of interfaces for the current configuration.

Parameters

dev A valid device.

*count Receiving the number of interfaces.

3USB Host API Reference

USB Host SDK for OS-9 109

usbman_interface2device_handle()

Return Device Handle

Syntax
void usbman_interface2device_handle(
 usbd_interface_handle iface,
 usbd_device_handle *dev);

Description

Returns the device handle for a given interface handle. An interface cannot
exist without an associated device handle.

Parameters

iface A valid interface handle.

*dev Receives the device handle associated with
iface.

110 USB Host SDK for OS-9

usbman_interface2endpoint_descriptor()

Return Endpoint Descriptor

Syntax
usb_endpoint_descriptor_t
*usbman_interface2endpoint_descriptor(
 usbd_interface_handle iface,
 u_int8_t address);

Description

Returns the endpoint descriptor given an interface handle. Upon
completion, this function returns a pointer to an endpoint descriptor, or
NULL if the index is out of range.

Parameters

iface A valid interface handle.

address Endpoint number.

3USB Host API Reference

USB Host SDK for OS-9 111

usbman_open_pipe()

Create Bulk Transfer Pipe

Syntax
usbd_status usbman_open_pipe(
 usbd_interface_handle iface,
 u_int8_t address,
 u_int8_t flags,
 usbd_pipe_handle *pipe);

Description

Creates a bulk transfer pipe to the given endpoint. The address (endpoint)
will be checked to see if it is valid. This function returns
USBD_NORMAL_COMPLETION if the call is successful;
USBD_BAD_ADDRESS if the endpoint is invalid; USBD_IN_USE if the pipe is
already opened to endpoint, but the caller wanted an exclusive connection.

Parameters

iface

address Endpoint on USB bus.

flags Passing USBD_EXCLUSIVE_USE will open
the pipe exclusively for the caller.

pipe A new pipe will be created and returned in
this parameter.

See Also
usbman_open_pipe_intr()

112 USB Host SDK for OS-9

usbman_open_pipe_intr()

Create Interrupt Pipe

Syntax
usbd_status usbman_open_pipe_intr(
 usbd_interface_handle iface,
 u_int8_t address,
 u_int8_t flags,
 usbd_pipe_handle *pipe,
 usbd_private_handle priv,
 void *buffer,
 u_int32_t length,
 usbd_callback cb
 int interval);

Description

Creates an interrupt pipe to the given endpoint.

Parameters

iface A valid interface.

address Endpoint on USB bus.

flags USBD_EXCLUSIVE_USE: open exclusive
pipe.

*pipe New pipe will be returned in this parameter.

priv Parameter passed to interrupt service
routine.

*buffer Data buffer. Must be big enough according
to class definition of device.

length Bytes in data buffer.

cb Interrupt service routine—called when data
transfers, or transmission error.

int Polling interval.

3USB Host API Reference

USB Host SDK for OS-9 113

See Also
usbman_open_pipe()

114 USB Host SDK for OS-9

usbman_pipe2device_handle()

Return Device Handle

Syntax
usbd_device_handle usbman_pipe2device_handle(
 usbd_pipe_handle pipe);

Description

Returns the device handle associated with the given pipe. Upon
completion, this function returns the device handle associated with this
pipe.

Parameters

pipe A valid pipe handle, created by
usbman_open_pipe.

3USB Host API Reference

USB Host SDK for OS-9 115

usbman_read_report_desc()

Allocate and read the report descriptor

Syntax
usbd_status usbman_read_report_desc(
 usbd_interface_handle ifc,
 void **descp,
 int *sizep,
 usb_malloc_type mem);

Description

Calculates the size of the descriptor and allocates memory for it. Returns
the Report Descriptor for a HID device (for example a mouse or keyboard).

Parameters

ifc A valid interface handle.

**descp Memory for the report descriptor is allocated
and stored in *descp.

*sizep The size of the memory allocated is stored
in *sizep.

mem Ignored.

See Also
usbman_free_report_desc()

116 USB Host SDK for OS-9

usbman_set_config_index()

Set Configuration Index

Syntax
usbd_status usbman_set_config_index(
 usbd_device_handle dev,
 int index,
 int msg);

Description

Sets the configuration index for the given device. This will perform transfers
over the USB. This call assumes that no interrupt, bulk, or isochronous
pipes are open on dev.

This function returns USBD_NORMAL_COMPLETION if successful;
USBD_NOMEM if no memory is available; USBD_IOERROR when there is a
transfer error to the device; USBD_STALLED if the transfer caused the
device to STALL; USBD_INVAL when a bad configuration descriptor is
retrieved from the device; and USBD_NO_POWER when the device exceeds
available power on the hub.

Parameters

dev A valid device handle.

index Configuration index to set.

msg Unused.

See Also
usbman_set_config_no()

3USB Host API Reference

USB Host SDK for OS-9 117

usbman_set_config_no()

Set Configuration

Syntax
usbd_status usbman_set_config_no(
 usbd_device_handle dev,
 int no,
 int msg);

Description

Sets the configuration for the given device specified by config_no. This
will perform transfers over the USB. This call assumes that no interrupt,
bulk, or isochronous pipes are open on dev.

This function returns USBD_NORMAL_COMPLETION if successful;
USBD_NOMEM if no memory is available; USBD_IOERROR when there is a
transfer error to the device; USBD_STALLED if the transfer caused the
device to STALL; USBD_INVAL when a bad configuration descriptor is
retrieved from the device; and USBD_NO_POWER when the device exceeds
available power on the hub.

Parameters

dev A valid device handle.

no Configuration index to set.

msg Unused.

See Also
usbman_set_config_index()

118 USB Host SDK for OS-9

usbman_set_idle()

Silence Report on the Interrupt In Pipe

Syntax
usbd_status usbman_set_idle(
 usbd_interface_handle iface,
 int duration,
 int id);

Description

Silences a particular report on the interrupt In Pipe until a new event occurs
or until the specified time passes. Valid for an HID device only.

Parameters

iface A valid interface handle.

duration Duration of the file.

id Identification for idle.

See Also
usbman_set_protocol()

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information refer to the USB HID 1.1 Specification.

3USB Host API Reference

USB Host SDK for OS-9 119

usbman_set_interface()

Request Interface Change

Syntax
usbd_status usbman_set_interface(
 usbd_interface_handle iface,
 int altidx);

Description

Requests an interface change specified by iface->index. This will
perform transfers on the USB. This function returns
USBD_NORMAL_COMPLETION if successful; USBD_NOMEM if no memory is
available; USBD_IOERROR when there is a transfer error to the device; and
USBD_STALLED if the transfer caused the device to STALL.

Parameters

iface A valid interface handle.

altidx Alternate interface handle, 0 if none.

120 USB Host SDK for OS-9

usbman_set_protocol()

Switch Between Boot and Report Protocol

Syntax
usbd_status usbman_set_protocol(
 usbd_interface_handle iface,
 int report);

Description

Switches between the boot protocol and report protocol for an HID device.

Parameters

iface Valid interface.

report 0: boot protocol.

1: report protocol.

See Also
usbman_set_idle()

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information refer to the USB HID 1.1 Specification.

3USB Host API Reference

USB Host SDK for OS-9 121

usbman_set_report()

Perform Set Report Request

Syntax
usbd_status usbman_set_report(
 usbd_interface_handle iface,
 int type,
 int id,
 void *data,
 int len);

Description

Performs a set report request to the given interface. This function returns
USBD_NORMAL_COMPLETION if successful; USBD_NOMEM if no memory is
available; USBD_IOERROR when there is a transfer error to the device; and
USBD_STALLED if the transfer caused the device to STALL.

Parameters

iface A valid interface handle.

type UHID_INPUT_REPORT,
UHID_OUTPUT_REPORT,
UHID_FEATURE_REPORT.

id Report value id.

*data Pointer to memory for request data.

len Length of data.

See Also
usbman_set_idle()
usbman_set_protocol()

122 USB Host SDK for OS-9

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information refer to the USB HID 1.1 Specification.

3USB Host API Reference

USB Host SDK for OS-9 123

usbman_setup_default_xfer()

Initialize Transfer Handle

Syntax
void usbman_setup_default_xfer(
 usbd_xfer_handle xfer,
 usbd_device_handle dev,
 usbd_private_handle priv,
 u_int32_t timeout,
 usb_device_request_t *req,
 void *buffer,
 u_int32_t length,
 u_int16_t flags,
 usbd_callback cb);

Description

Initializes a transfer handle xfer with given parameter values. Upon
completion, this function returns nothing.

Parameters

xfer A valid transfer handle returned from
usbman_alloc_xfer.

dev A valid USB device associated with the
transfer.

priv Parameter passed to interrupt service
routine.

timeout Milli-seconds to wait before timing out, or
USBD_NO_TIMEOUT.

*req Device request if using control pipe,
otherwise NULL.

*buffer Memory to hold transfer.

length Bytes in buffer.

124 USB Host SDK for OS-9

flags USBD_NO_COPY, USBD_SYNCHRONOUS,
USBD_SHORT_XFER_OK, or
USBD_FORCE_SHORT_XFER.

cb Function to be called when transfer has
completed.

See Also
usbman_setup_isoc_xfer()
usbman_setup_xfer()

3USB Host API Reference

USB Host SDK for OS-9 125

usbman_setup_isoc_xfer()

Initialize ISOC Transfer

Syntax
void usbman_setup_isoc_xfer(
 usbd_xfer_handle xfer,
 usbd_pipe_handle pipe,
 usbd_private_handle priv,
 u_int16_t *frlengths,
 u_int32_t nframes,
 u_int16_t flags,
 usbd_callback cb);

Description

Initializes a transfer handle xfer with given parameter values. Upon
completion, this function returns nothing.

Parameters

xfer A valid transfer handle.

pipe A valid open pipe.

priv Parameter passed to interrupt service
routine.

*frlengths Array of frame lengths.

nframes Number of frames (elements in
frlengths).

flags USBD_NO_COPY, USBD_SYNCHRONOUS,
USBD_SHORT_XFER_OK, or
USBD_FORCE_SHORT_XFER.

cb Function to be called when transfer has
completed.

See Also
usbman_setup_default_xfer()

126 USB Host SDK for OS-9

usbman_setup_xfer()

3USB Host API Reference

USB Host SDK for OS-9 127

usbman_setup_xfer()

Assign Fields in Transfer

Syntax
void usbman_setup_xfer(
 usbd_xfer_handle xfer,
 usbd_pipe_handle pipe,
 usbd_private_handle priv,
 void *buffer,
 u_int32_t length,
 u_int16_t flags,
 u_int32_t timeout,
 usbd_callback cb);

Description

Initializes a transfer handle xfer with given parameter values. Upon
completion, this function returns nothing.

Parameters

xfer A valid transfer handle.

pipe A valid open pipe.

priv Parameter passed to interrupt service
routine.

*buffer Receiving the DMA buffer.

length Bytes in data buffer.

flags USBD_NO_COPY, USBD_SYNCHRONOUS,
USBD_SHORT_XFER_OK, or
USBD_FORCE_SHORT_XFER.

timeout Number of milliseconds to wait for device to
respond to transfer.

cb Function to be called when transfer has
completed.

128 USB Host SDK for OS-9

See Also
usbman_setup_default_xfer()
usbman_setup_isoc_xfer()

3USB Host API Reference

USB Host SDK for OS-9 129

usbman_sync_transfer()

Perform Asynchronous Transfer

Syntax
usbd_status usbman_sync_transfer(
 usbd_xfer_handle req);

Description

Performs a synchronous transfer on the USB. The transfer handle req
specifies direction, data, timeout, and transfer type. This call will not return
until the transfer has completed successfully, timed out, or a USB error
occurs.

This function returns USBD_NORMAL_COMPLETION if successful;
USBD_NOMEM if no memory is available; USBD_IOERROR when there is a
transfer error to the device; USBD_STALLED if the transfer caused the
device to STALL; and USBD_TIMEOUT when no transfer occurred because
the time interval expired.

Parameters

req A valid transfer handle.

See Also
usbman_bulk_transfer()
usbman_transfer()

130 USB Host SDK for OS-9

usbman_transfer()

Initialize Bulk Transfer

Syntax
usbd_status usbman_transfer(usbd_xfer_handle req);

Description

Initiates a bulk data transfer, either incoming or outgoing. This function
returns USBD_NORMAL_COMPLETION if the operation is successful;
USBD_NOMEM if there is no memory to allocate DMA buffer; and
USBD_TIMEOUT if the operation timed out.

Parameters

req A valid usbd_xfer structure as allocated by
usbd_alloc_xfer().

Chapter 4: USB Host for OS-9 Uti l i t ies

This chapter provides a description of the USB Host for OS-9 utilities.
Table 4-1 summarizes the USB utilities.

Table 4-1 USB Host for OS-9 Utilities

Name Description

usbdevs Print Current Devices on the USB

usbprint Print Source File

ugenstat Display Descriptors for Given UGEN Descriptor

132 USB Host SDK for OS-9

usbdevs

Print Current Devices on the USB

Syntax
usbdevs [options]

Source
SRC/IO/USBH/UTILS/USBDEVS

Options

-a[=]<addr> Display device address <addr>
information.

-b[=]<bus> Specify the bus on which to access device
at <addr>. The default bus number is 0.

-e Display extended information.

Description

This utility prints out the current devices on the USB. This information
includes the device descriptor, configuration descriptor, interface
descriptor, and any string descriptors. The -a and -b options can be used
to select a particular device by USB address/bus and display extended
information for that device.

Example

The following example shows three root hubs, two with two ports and one
with four ports. A USB v1.1 device is plugged into a USB v1.1 3-port hub. A
USB v2.0 Flash disk is plugged into a port on the high-speed bus #2.
$ usbdevs
Bus #0, Root Hub, Address 1,
[1] <empty>
[2] Address 2, Hub (vendor 1228, product 4386)
 [1] Address 3, Fellowes Inc.: Fellowes 5 Button
 [2] <empty>
 [3] <empty>

Bus #1, Root Hub, Address 1,
[1] <empty>

4USB Host for OS-9 Utilities

USB Host SDK for OS-9 133

[2] <empty>

Bus #2, Root Hub, Address 1,
[1] <empty>
[2] Address 2, SanDisk Corporation: U3 Cruzer Micro: 0000051015079136
[3] <empty>
[4] <empty>
$ usbdevs -a=2 -b=2
Address 2, SanDisk Corporation: U3 Cruzer Micro: 0000051015079136 (vendor 1921,
 product 21506)
 Device Descriptor: max_packet 64, protocol 0, release 0.2, configurations 1
 Config. Descriptor (1): interfaces 1, value 1, iconfig 0
 attributes 0x80, max power 200 mA
 Interface Descriptor 1: alt. setting 0, num eps 2,
 class 8, subclass 6, protocol 80, iInterface 0

134 USB Host SDK for OS-9

usbprint

Print Source File

Syntax
usbprint [options] <source-file> [<printer-device>]

Source
SRC/IO/USBH/UTILS/USBPRINT

Options

-m Search for source file in module directory.

Description

This utility prints the source file to the specified printer device. If no printer
device is specified, it will default to /ulp0.

Example

• Printing using the standard USB printer driver.

$ usbprint sample.txt /ulp0

• Printing using the Generic USB driver.

$ usbprint sample.txt "/ugen0#2"

4USB Host for OS-9 Utilities

USB Host SDK for OS-9 135

ugenstat

Display Descriptors for Given UGEN Descriptor

Syntax
ugenstat [device]

Source
SRC/IO/USBH/UTILS/UGENSTAT

Description

This utility displays the device, configuration, interface, endpoint, and string
descriptors for the given UGEN device descriptor. If no descriptor is
specified, the default will be /ugen0.

Example

The following example shows a mouse attached to /ugen0.

$ ugenstat /ugen0
Device Descriptor: 12010001 00000008 03067168 00010422 0001
NOVATEK USB Mouse STD.
Number of Configurations: 1
Config Descriptor 1: 09022200 010100a0 32

 Number of interfaces: 1
 Interface Descriptor 0: 09040000 01030102 00

 Number of endpoints: 1
 Endpoint Descriptor 0: 07058103 08000a

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The data format printed for the descriptors is defined in the USB 1.1
documentation. This can be found at www.usb.org.

136 USB Host SDK for OS-9

Appendix A: Port ing to the USB Host

Stack

This chapter details how to port to the USB Host stack. The following
sections are included:

• Writing the Logical Device Driver (LDD)

• Writing a Hardware Control Driver

138 USB Host SDK for OS-9

Writing the Logical Device Driver (LDD)

This section will describe how to make a new Logical Device Driver for the
USB Host Stack. Any file manager may be used for an LDD, but in this
chapter, the driver will be under the NullFM File Manager.

Before you begin, you will need to decide the following information:

• the directory name for the LDD

• the driver name

• the descriptor name

The makefile and all of the source code files for the LDD will reside in
the following directory:
/mwos/SRC/DPIO/NULLFM/DRVR/USBH/<YOUR_LDD_DIRECTORY_NAME>

Both the driver and descriptor modules will be located in the following
directory:

/mwos/OS9000/<PROCESSOR>/CMDS/BOOTOBJS/USBH

Creating a Directory Structure

The first step in writing an LDD is to create a directory structure for your
NullFM driver. This will be the directory in which you will copy and
modify files from the sample driver directory (SAMPLE_LDD). Follow the
procedure below to create this structure and associated files for your
new LDD.

Step 1. Create a new folder in the /mwos/SRC/DPIO/NULLFM/DRVR/USBH directory.
This folder will contain the source files and makefiles for your NullFM
driver.

Step 2. Create a DEFS directory within the folder you just created. This
directory will contain all header files specific to this driver and
descriptor.

APorting to the USB Host Stack

USB Host SDK for OS-9 139

Step 3. Copy the following files from the SAMPLE_LDD directory (sample driver)
into your driver directory:

• drvr.mak

• init.c

• makefile

• rw.c

• desc.mak

• hw.c

• main.c

• os9_dev.c

• stat.c

Step 4. Copy the following files from the SAMPLE_LDD/DEFS directory into the
DEFS directory of your driver:

• defsfile.h

• desc.h

• funcs.h

• usbh_desc.h

140 USB Host SDK for OS-9

Implementing your LDD

Below is a step-by-step guide of which code to modify in each file
copied from the SAMPLE_LDD directory. This step-by-step guide details
an example scenario using a camera driver and descriptor. (ucamera is
the driver name, and ucamera0 is the descriptor name.)

Step 1. Modify the drvr.mak file to change the driver name and directory. To
do this, change the TRGTS and DRVNAME macros to the name of your
LDD driver. Then, change the LOCDRV macro to the source directory
name of your LDD. Below is an example that shows the driver name as
ucamera and the directory as UCAMERA.

TRGTS= ucamera

LOCDRV= USBH/UCAMERA

DRVNAME= ucamera

Step 2. Modify the descriptor name in the desc.mak file. To do this you will
need to change the TRGTS macro. Below is an example that shows a
descriptor name of ucamera0.

TRGTS= ucamera0

NoteNote
The descriptor name and driver name must be different.

APorting to the USB Host Stack

USB Host SDK for OS-9 141

Step 3. Modify the desc.h file located in the DEFS directory. This file contains
the basic descriptor information for your LDD NullFM driver. You will
need to change the DRIVERNAME definition and the descriptor name
pre-processing conditional. Below is an example:

#if defined(ucamera0)

#define DRIVERNAME "ucamera"

#define FILEMANAGERNAME "nullfm"

#define VECTOR 0

#define IRQLEVEL 5

#define PRIORITY 20

#define PORTADDR(void*)0x0

#define DEVICE_MODE FAM_READ|FAM_WRITE

#endif

Step 4. Modify the os9_dev.c file to incorporate device specific changes to
the os9_match, os9_detach, os9_attach, and the os9_intr
routines.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on these routines, refer to the Logical Device
Drivers section of Chapter 2 of this manual.

Step 5. If your driver should respond to either a read or write on an open path,
modify the rw.c file. In addition, the data_available function should
be modified to return the number of bytes available for read.

142 USB Host SDK for OS-9

Additional File Information

Below is a list of files that may not require direct modification.

makefile main makefile that builds the driver and
descriptor

init.c implements driver initialization and
termination routines

hw.c called during initialization and termination to
open a path and register with usbman

main.c main psect for this driver

stat.c contains setstat and getstat routines for this
driver.

DEFS/defsfile.h main include file to include other header
files

DEFS/funcs.h contains all global function/type definitions
for the driver

DEFS/usbh_desc.h file that allows you to extend the driver static
storage definition

APorting to the USB Host Stack

USB Host SDK for OS-9 143

Writing a Hardware Control Driver

This section describes the steps necessary to write a new hardware
control driver for the USB Host stack for OS-9.

NoteNote
Before reading this chapter, be certain you have perused Chapter 2:
Using USB Host for OS-9 of this manual.

Overview

A USB hardware driver is responsible for initializing the USB hardware,
scheduling transfers, and servicing interrupts. The USB manager,
usbman, is responsible for scheduling all transfers for the hardware
controller driver. It is the responsibility of the hardware driver to perform
these transfers and provide notification when the transfers are
complete.

Transfer Types

The hardware controller driver must implement following six types of
transfer:

• root hub control

• root hub interrupt

• device control

• device interrupt

• device bulk

• device isochronous transfers

144 USB Host SDK for OS-9

Each transfer type has a function block associated with it. This function
block allows usbman to call directly into the hardware control driver to start
transfers, close a pipe, abort a pipe, and other such operations. Below is
the definition of the transfer function block located in usbdivar.h:

struct usbd_pipe_methods {

usbd_status (*transfer)(usbd_xfer_handle xfer);

usbd_status (*start)(usbd_xfer_handle xfer);

void (*abort)(usbd_xfer_handle xfer);

void (*close)(usbd_pipe_handle pipe);

void (*cleartoggle)(usbd_pipe_handle pipe);

void (*done)(usbd_xfer_handle xfer);

};

APorting to the USB Host Stack

USB Host SDK for OS-9 145

Bus Methods Structure

The hardware control driver must also implement a bus methods
structure; this is another way that usbman can call directly into the
hardware control driver. This structure contains functions for opening a
pipe, allocating and freeing memory, and allocating and freeing DMA
memory.

Below is the structure definition located in usbdivar.h.

struct usbd_bus_methods {

usbd_status (*open_pipe)(struct usbd_pipe *pipe);

void (*soft_intr)(struct usbd_bus *);

void (*do_poll)(struct usbd_bus *);

usbd_status (*allocm)(struct usbd_bus *, usb_dma_t *,

u_int32_t bufsize);

void (*freem)(struct usbd_bus *, usb_dma_t *);

struct usbd_xfer * (*allocx)(struct usbd_bus *);

void (*freex)(struct usbd_bus *,

 struct usbd_xfer *);

};

The bus methods function block is returned by the hardware control
driver in response to a GS_USB_BUS_METHODS getstat. Usbman
performs this getstat while initializing the USB stack.

Calling usbman

The hardware controller driver may also call into usbman on two
occasions: to insert a transfer into the list and to notify usbman when a
transfer was completed. These methods are given to the hardware
control driver from usbman by the SS_USB_MAN_METHODS setstat.
This means the hardware control driver must acknowledge this setstat
and store the methods and global pointer for usbman.

146 USB Host SDK for OS-9

Existing Drivers

Because a sample driver does not currently exist, you must start from
one of the three existing hardware controller drivers: EHCI, OHCI,
PHCI, SL811HST, or UHCI. Below is a brief description of each driver.

EHCI commonly used on desktop computers
(www.usb.org/developers/
docs.html)

This driver creates a series of schedules for
the hardware to act upon. The EHCI
controller generates an interrupt as the
various tasks are completed. This driver
also relies on the fact that there will be low
and/or full-speed driver support (companion
OHCI or UHCI controllers). Like OHCI, this
driver requires some type of shared memory
betweent the processor and controller.

OHCI commonly used on desktop computers
(www.usb.org/developers/
docs.html)

This driver stores an elaborate list of items
to transfer and only generates an interrupt
after a successful transfer on the USB. The
OHCI controller walks the transfer list and
schedules USB time in hardware. In
addition, this driver requires some type of
shared memory between the processor and
the controller.

PHCI driver for the Philips ISP1161/2 embedded
USB Host chip

This hardware is more CPU intensive than
the OHCI driver. Software must schedule
transfers every millisecond, but more than
one transfer may be scheduled. At the end
of the frame (one millisecond), the software

APorting to the USB Host Stack

USB Host SDK for OS-9 147

must determine which transfers were
successful and schedule more transfers on
the USB for the next frame.

SL811HS driver for the ScanLogic 811HS USB Host
chip

This is the most CPU intensive hardware
because the hardware driver must schedule
every transfer on the USB. This results in
many interrupts per frame (millisecond).
SL811HS does not have an integrated root
hub. Instead, the driver is notified of a
voltage change on the bus, where it must
then determine if something was inserted or
removed from the root hub.

UHCI commonly used on Intel-based desktop
computers (http://www.intel.com/design/
USB/UHCI11D.htm)

This driver stores a simple list of items to
transfer and generates an interrupt after a
successful transfer on the USB. The UHCI
controller walks the transfer list that the
driver schedules for the USB. In addition,
this driver requires some type of shared
memory between the processor and the
controller.

148 USB Host SDK for OS-9

Implementing the Driver

To implement the driver, complete the following steps:

Step 1. Make a new directory in /mwos/SRC/DPIO/NULLFM/DRVR/USBH and
a DEFS subdirectory and copy files from one of the existing drivers.

Step 2. Create a new directory and DEFS subdirectory in the board port to
contain the makefiles and board definitions for this driver
(/MWOS/OS9000/<PROCESSOR>/PORTS/<BOARD>/NULLFM/
YOUR_DRIVER_NAME). Copy port files from an existing USB Host driver
into this directory. These makefiles will require some modification in
order to redefine any source or include paths.

Step 3. If your driver uses DMA, you will need to define the following symbol:
USE_NONCACHED_MEM. This will include code in usb_mem.c to
perform memory allocation for DMA memory. The malloc_dma
function defined in this file performs an allocation out of a non-cached
memory shade. This function will also ensure that the memory
allocated is on the proper alignment boundary.

When using the USB_NONCACHED_MEM define, DMA memory
allocations occur out of the M_USB_DMA memory shade. To reduce
memory fragmentation, the MAUI memory APIs are used. Thus, a MAUI
memory shade for M_USB_DMA must be created before using the
malloc_dma function. (Refer to init.c in the OHCI, UHCI, or EHCI
driver)

Step 4. Update the desc.h file located in
/MWOS/OS9000/<PROCESSOR>/PORTS/<BOARD>/NULLFM/
<YOUR_DRIVER>/DEFS. In particular, the VECTOR, IRQLEVEL,
PRIORITY, and PORTADDR must be updated to reflect the proper
values for the board.

Step 5. Update the USB hardware specific file in the driver. This file contains
the hardware initialization, termination, interrupt service routine, and
usbman entrypoints. Development of this driver will take time, but can
be achieved if tested. The section below contains more information on
testing the USB Host driver.

APorting to the USB Host Stack

USB Host SDK for OS-9 149

Testing the Driver

Testing a USB Host driver occurs in several phases starting with the
most basic test: initializing and de-initializing the driver. Below is a
sample command used to initialize your driver on your OS-9 target. You
will need your driver, descriptor, and the NullFM File Manager on your
OS-9 target.

$iniz /usbhc

After the above command is issued, the init entrypoint in the NullFM
driver will be called. When this is complete, perform the following steps:

Step 1. Set a breakpoint on this function and step through the code to see if
hardware initialization occurred properly.

Step 2. Turn on the start-of-frame (SOF) interrupt in the initialization code for
your driver. SOF interrupts occur every 1 milli-second; you will know if
one has occurred by setting a breakpoint on your interrupt service
routine.

Step 3. Test termination of the driver by typing the following command:

$ deiniz /usbhc

After this command is issued, the term entrypoint is called. It is
important to make sure that the hardware is turned off properly and that
interrupts have been masked and memory deallocated. Repeated iniz
and deiniz commands can be used to test memory leakage by using
the mfree command.

Step 4. Determine if a root hub interrupt is being raised. To do this, set a
breakpoint in the part of your interrupt service routine that handles the
root hub interrupt.

Step 5. Iniz your driver and plug in a device like a hub or mouse into the USB
port. The root hub interrupt should fire when the device is plugged in. If
your hardware does not have an integrated root hub into the chip, refer
to the SL811HS driver.

150 USB Host SDK for OS-9

Step 6. Iniz usbman. Below is a sample of how to do this. You will need the
driver, descriptor, the NullFM file manager, usbman driver, and usbman
descriptor on your OS-9 target.

$ iniz /usb

Iniz-ing /usb will cause usbman to initialize and iniz your hardware
driver. At this point, there will be an exchange of information between
usbman and your driver via getstat/setstats. If this swap of information
is successful, your driver and usbman have exchanged entrypoints.

Step 7. Start the usbd daemon. This opens a path to usbman and perform an
explore on USB. Using the -v option will print out each occurrence of a
USB explore. The usbd program performs an explore whenever a root
hub interrupt occurs.

NoteNote
It is important to plug in and out a device multiple times to ensure that
the root hub interrupt is working properly.

The -v option command is shown below:

$ usbd -v

At this point, the usbdevs program can be used to print out information
about devices on the USB.

NoteNote
As soon as a device is plugged into the USB, an explore should occur.

APorting to the USB Host Stack

USB Host SDK for OS-9 151

When the explore is successful, the usbdevs program prints out the
configuration information for the device. It is helpful to leave usbd -v
running in the foreground on the console and use the usbdevs
program on a second serial port (or telnet window).

You should be able to run usbdevs after plugging in or removing a
device on the USB. usbdevs will display current topology. If it does not,
you have a USB transfer problem.

Step 8. As a final test, perform the tests in Chapter 1: Getting Started with
USB Host for OS-9® of this manual once more This will ensure that
control and interrupt pipes are working properly. If you require a device
with bulk or isochronous endpoints, you will need to write a separate
application to perform the tests relating to those endpoints.

152 USB Host SDK for OS-9

	USB Host SDK for OS-9®
	Table of Contents
	Chapter 1: Getting Started with USB Host for OS-9®
	System Overview
	System Requirements
	Windows Development Platform Hardware Requirements
	Windows Development Platform Software Requirements
	OS-9 Target System/USB Host Hardware Requirements

	Installing the Software
	Installing to the Windows Development Platform
	Installing to the OS-9 Target System/USB Host
	USB Host Module List
	Loading and Starting the USB Host Software

	Example Commands
	Checking for USB Devices
	Getting Device Information
	Checking for Data Transmission

	Mouse Through MAUI®

	Chapter 2: Using USB Host for OS-9
	Overview
	Hardware Controller Driver
	Bus Methods Structure
	Bus Methods Structure Fields

	Pipe Methods Structure
	Bus Methods Structure Fields

	USB Management Driver
	Bus Explore
	Plug and Play
	Match
	Attach
	Detach
	Registering with usbman

	Logical Device Drivers
	LDD Initialization
	LDD De-Initialization
	Suggested OS-9 Interface
	Setstats
	Getstats

	Plug-n-play

	Standard OS-9 LDD Drivers
	USB Mouse
	Data Format
	Use With MAUI
	Testing the USB Mouse

	USB Keyboard
	Data Format
	Use With MAUI
	Testing the USB Keyboard

	USB Printer
	Testing the USB Printer

	USB Mass Storage
	Testing USB Mass Storage Devices

	Generic USB Driver
	Plug-n-Play
	Accessing Endpoints with spugen
	Testing spugen
	Reference API

	GS_USB_GET_CONFIG
	GS_USB_GET_ALTINTERFACE
	GS_USB_GET_NO_ALT
	GS_USB_GET_DEVICE_DESC
	GS_USB_GET_CONFIG_DESC
	GS_USB_GET_INTERFACE_DESC
	GS_USB_GET_ENDPOINT_DESC
	GS_USB_GET_STRING_DESC
	SS_USB_SET_CONFIG
	SS_USB_SET_ALTINTERFACE
	SS_USB_DO_REQUEST
	SS_USB_SET_SHORT_XFER

	User-State Daemon Process

	Chapter 3: USB Host API Reference
	Pipe Functions List
	Transfer Functions List
	Interface Functions List
	Device Functions List
	Alphabetical Listing
	usbman_abort_pipe()
	usbman_alloc_buffer()
	usbman_alloc_xfer()
	usbman_bulk_transfer()
	usbman_clear_endpoint_stall()
	usbman_clear_endpoint_stall_async()
	usbman_clear_endpoint_toggle()
	usbman_close_pipe()
	usbman_device2interface_handle()
	usbman_do_request()
	usbman_do_request_flags()
	usbman_endpoint_count()
	usbman_find_edesc()
	usbman_find_idesc()
	usbman_free_buffer()
	usbman_free_report_desc()
	usbman_free_xfer()
	usbman_get_buffer()
	usbman_get_config()
	usbman_get_config_desc()
	usbman_get_config_desc_full()
	usbman_get_device_desc()
	usbman_get_device_descriptor()
	usbman_get_hid_descriptor()
	usbman_get_no_alts()
	usbman_get_report()
	usbman_get_report_descriptor()
	usbman_get_string_desc()
	usbman_get_xfer_status()
	usbman_interface_count()
	usbman_interface2device_handle()
	usbman_interface2endpoint_descriptor()
	usbman_open_pipe()
	usbman_open_pipe_intr()
	usbman_pipe2device_handle()
	usbman_read_report_desc()
	usbman_set_config_index()
	usbman_set_config_no()
	usbman_set_idle()
	usbman_set_interface()
	usbman_set_protocol()
	usbman_set_report()
	usbman_setup_default_xfer()
	usbman_setup_isoc_xfer()
	usbman_setup_xfer()
	usbman_sync_transfer()
	usbman_transfer()

	Chapter 4: USB Host for OS-9 Utilities
	usbdevs
	usbprint
	ugenstat

	Appendix A: Porting to the USB Host Stack
	Writing the Logical Device Driver (LDD)
	Creating a Directory Structure
	Implementing your LDD
	Additional File Information

	Writing a Hardware Control Driver
	Overview
	Transfer Types
	Bus Methods Structure
	Calling usbman

	Existing Drivers
	Implementing the Driver
	Testing the Driver

