
w w w. ra d i sy s . co m
Revision A • July 2006

OS-9® for IXDP425 Board
Guide

Version 4.7

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.7 of Microware OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

OS-9 for IXDP425 Board Guide 3

Contents

: Contents.

Chapter 1: Installing and Configuring OS-9®.

Development Environment Overview .. 6.

Requirements and Compatibility .. 7.

Host Hardware Requirements (PC Compatible) ... 7.

Host Software Requirements (PC Compatible) .. 7.

Target Hardware Requirements ... 7.

Target Hardware Setup ... 8.

RedBoot Flash part ... 8.

Connecting the Target to the Host .. 9.

Building the ROM Image ... 11.

Coreboot .. 11.

Bootfile .. 11.

Starting the Configuration Wizard .. 12.

Creating the ROM Image .. 13.

Creating the Coreboot Image ... 14.

Creating the Bootfile Image ... 14.

Building a ROM Image.. 14.

Bootstrapping OS-9 .. 17.

Burning the Flash Part .. 18.

Programming a ROM Image with RedBoot.. 19.

Programming a ROM Image with the pflash Utility .. 20.

Chapter 2: Board-Specific Reference.

Boot Options .. 24.

Booting from Flash ... 24.

Booting over a Serial Port via kermit... 24.

Restart Booter .. 25.

Break Booter .. 25.

Sample Boot Session and Messages ... 25.

The Fastboot Enhancement... 26.

Overview .. 26.

Implementation Overview .. 27.

Contents

4 OS-9 for IXDP425 Board Guide

B_QUICKVAL.. 27.

B_OKRAM .. 27.

B_OKROM.. 27.

B_1STINIT .. 28.

B_NOIRQMASK .. 28.

B_NOPARITY.. 28.

Implementation Details ... 29.

Compile-time Configuration ... 29.

Runtime Configuration... 29.

OS-9 Vector Mappings .. 30.

Fast Interrupt Vector (0x7)... 32.

Port Specific Utilities .. 33.

dmppci.. 34.

pciv ... 35.

pflash.. 36.

setpci .. 37.

Appendix A: Board-Specific Modules.

Low-Level System Modules .. 40.

High-Level System Modules ... 41.

CPU Support Modules ... 41.

System Configuration Module .. 41.

Interrupt Controller Support ... 42.

Ticker .. 42.

Generic I/O Support Modules (File Managers)... 42.

Pipe Descriptor ... 43.

RAM Disk Support .. 43.

RAM Descriptors ... 43.

Serial and Console Devices.. 43.

Descriptors for use with scixc1100 .. 44.

Descriptors for use with scllio ... 44.

SPF Device Support .. 45.

Support for NPE ports .. 45.

spethix Descriptors .. 45.

Network Configuration Modules ... 45.

Port Specific Utilities .. 45.

Common System Modules List ... 46.

OS-9 for IXDP425 Board Guide 5

1 Installing and Configuring OS-9®
Chapter 1

This chapter describes how to install and configure OS-9 on the Intel
IXDP425 development platform. It includes the following sections:

• Development Environment Overview
• Requirements and Compatibility
• Target Hardware Setup
• Connecting the Target to the Host
• Building the ROM Image
• Bootstrapping OS-9
• Burning the Flash Part

Chapter 1: Installing and Configuring OS-9®

6 OS-9 for IXDP425 Board Guide

Development Environment Overview
Figure 1-1 shows a typical development environment for the Intel
IXDP425. The components shown are the minimum required to
develop software with OS-9 and the IXDP425.

Figure 1-1. IXDP425 Development Environment

Ethernet Network

PC Workstation

Network Serial

PRO/100+ Adapter

U
A

R
T

0
NPE CNPE B

U
A

R
T

1

RESET

Voltage
Regulator

Chapter 1: Installing and Configuring OS-9®

OS-9 for IXDP425 Board Guide 7

Requirements and Compatibility
Before you begin, install the Microware OS-9 for XScale CD-ROM on
your host PC.

Host Hardware Requirements (PC Compatible)
The host PC must have the following minimum hardware
characteristics:

• 250MB of free hard disk space
• the recommended amount of RAM for the host operating system
• a CD-ROM drive
• a free serial port
• an Ethernet network card
• access to an Ethernet network

Host Software Requirements (PC Compatible)
The host PC must have the following software installed:

• Microware OS-9 for XScale
• Windows 95, Windows 98, Windows NT 4.0, Windows 2000,

Windows ME, or Windows XP.
• terminal emulation program

• BOOTP server. The BOOTP server is required to assign an IP
address as RedBoot brings the board up. In addition, if Ethernet
booting of OS-9 is required the BOOTP server will also be used.

• TFTP server. The TFTP server is required to serve boots to the
IXDP425 via RedBoot bootstrap sequence. Again, if Ethernet
booting of OS-9 is required the TFTP server will also be used.

Target Hardware Requirements
Your reference board requires the following Intel supplied equipment:

• Intel IXDP425 board

The examples in this document use Hyperterminal, a terminal
emulation program, which is included with all Windows
operating systems.

Chapter 1: Installing and Configuring OS-9®

8 OS-9 for IXDP425 Board Guide

• power supply
• serial cable
• Intel Ethernet Pro 100+ PCI card
• Ethernet cable
• Access to an Ethernet network

Target Hardware Setup

RedBoot Flash part
Install the Intel-supplied RedBoot Flash part into the IXDP425. Follow
the instructions provided by Intel. The RedBoot boot monitor is used to
bootstrap OS-9 onto the board.

Be very careful when handling the Flash chips as the pins can
be easily bent.

Chapter 1: Installing and Configuring OS-9®

OS-9 for IXDP425 Board Guide 9

Connecting the Target to the Host
To connect the target to your host machine, complete the following steps:

Step 1. Ensure that the power switch on the power supply is in the OFF position.
Connect the power cord to the power supply and connect the power
supply to the IXDP425 board.

Step 2. Install the Intel Ethernet Pro 100+ PCI card in the bottom PCI slot
marked PCI SLOT 3.

Step 3. Plug one end of your Ethernet cable into the RJ-45 connector on the
PCI card and the other end into your Ethernet network.

Step 4. Connect the male end of the provided serial cable into the 9-bin serial
port marked UART0. Connect the female end into your PC workstation.

Step 5. On the Windows desktop, click the Start button and select Programs
-> Accessories -> Communications -> Hyperterminal. Select
the Hyperterminal icon.

Step 6. Enter a name for your Hyperterminal session and select an icon for the
new session. Click OK. A new icon with the name of your session
displays. The settings you choose for this session can be saved for future
use.

Step 7. In the Connect To dialog, go to the Connect Using box and select the
communications port with which you plan to connect to the reference
board. The port you select must be the same port in which you inserted
the cable to your host machine. Click OK.

Step 8. In the Properties box on the Port Settings tab (shown in Figure 1-2),
enter the following settings, then click OK to close the dialog.

Bits per second = 115200

Data Bits = 8

Parity = None

Stop bits = 1

Flow control = None

Chapter 1: Installing and Configuring OS-9®

10 OS-9 for IXDP425 Board Guide

Figure 1-2. Port Settings

Step 9. Go to the Hyperterminal menu and select Call -> Call from the
pull-down menu to establish your terminal session with the reference
board. If you are connected, the bottom left of your Hyperterminal
screen displays the word Connected.

Step 10. Apply power to the board. The board should fail to find a BOOTP
server. Output similar to the following displays:

FLASH configuration checksum error or invalid key

Ethernet eth0: MAC address 00:07:e9:0d:95:be

Can't get BOOTP info for device!

RedBoot(tm) bootstrap and debug environment [ROM]

Non-certified release, version 2.00 - built 17:25:55, Dec 13 2002

Platform: Intel(R) IXDP425

Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x10100000-0x20000000, 0x101156a8-0x1ffdd000 available

FLASH: 0x50000000 - 0x51000000, 128 blocks of 0x00020000 bytes each.

RedBoot>

Step 11. Record the MAC address (00:07:e9:0d:95:be in this example) for later
use.

Chapter 1: Installing and Configuring OS-9®

OS-9 for IXDP425 Board Guide 11

Step 12. Create an entry in the bootptab file for your BOOTP server that will
allow the BOOTP server to respond to the recorded MAC address and
provide it with an internet address. The boot filename is irrelevant—it is
not used by RedBoot.

Step 13. Press the reset button to reboot the IXDP425 board. This time it should
find the BOOTP server and be served the internet address you specified
in the bootptab file.

Your target is now ready to download an OS-9 ROM image from your
TFTP server.

Building the ROM Image
The OS-9 ROM image is a set of files and modules that collectively
make up the OS-9 operating system. The specific ROM Image contents
can vary from system to system depending on hardware capabilities
and user requirements.

To simplify the process of loading and testing OS-9, the ROM Image is
generally divided into two parts:

• coreboot, the low-level image.
• bootfile, the high-level image.

Coreboot
The coreboot image generally initializes hardware devices and locates
the high-level (or bootfile) image as specified by its configuration.
Depending on hardware capabilities, the bootfile image may be found
on a Flash part, a hard disk, or on an Ethernet network. It also builds
basic structures based on the image it finds and passes control to the
kernel to bring up the OS-9 system.

Bootfile
The bootfile image contains the kernel and other high-level modules
(such as the initialization module, file managers, drivers, descriptors,
and applications). The image loads into memory, based on the device
selected from the boot menu. This image usually displays an OS-9 shell
prompt, but can be configured to automatically start an application.

Chapter 1: Installing and Configuring OS-9®

12 OS-9 for IXDP425 Board Guide

Microware provides a Configuration Wizard to create a coreboot image,
a bootfile image, or an entire OS-9 ROM Image. The Wizard can also
modify an existing image. The Configuration Wizard automatically
installs on your host PC during the installation process.

Starting the Configuration Wizard
The Configuration Wizard builds the coreboot, bootfile, or ROM image.
To start the Wizard, perform the following steps:

Step 1. From the Windows desktop, select Start -> Programs -> RadiSys
-> Microware OS-9 for XScale -> Microware Configuration
Wizard.

Figure 1-3. Configuration Wizard Opening Screen

Step 2. Select your target board, Intel IXP425, from the Select a board pull-
down menu.

Chapter 1: Installing and Configuring OS-9®

OS-9 for IXDP425 Board Guide 13

Step 3. Select the Create new configuration radio button from the Select
a configuration menu and enter a name for your boot configuration in
the supplied text box. This names your new configuration, which you
can access later by selecting the Use existing configuration pull-down
menu.

Step 4. Select the Advanced Mode radio button from the Choose Wizard Mode
group and click OK. The Wizard’s main window displays. This is the
window from which you build your image. An example is shown in the
following figure.

Figure 1-4. Configuration Wizard Main Window

Creating the ROM Image
The ROM Image consists of the coreboot image (low-level system files)
and the bootfile image (high-level system files). Together these files
comprise the OS-9 operating system. You use the Configuration Wizard
to choose the contents of your OS-9 implementation. You can also
create individual coreboot and bootfile images, or combine them into a
single file called the ROM image.

Chapter 1: Installing and Configuring OS-9®

14 OS-9 for IXDP425 Board Guide

Creating the Coreboot Image
The default Intel IXP425 coreboot configuration is valid and does not
require modification to create a working system.

Creating the Bootfile Image
The default settings in the Configuration Wizard are preset for optimum
performance for the Intel IXP425 XScale board. The only modifications
required are the network settings. The network settings information
must be obtained from your network administrator.

Building a ROM Image
Complete the following steps to build a ROM image for the board:

Step 1. To use the target board across a network, you must configure the
Ethernet settings within the Configuration Wizard. To do this, select
Configure -> Bootfile -> Network Configuration from the
Wizard’s main menu.

Step 2. From the Network Configuration dialog, select the Interface
Configuration tab. From here you can select and enable the
interface. For example, you can select the appropriate Ethernet card
from the list of options on the left and specify whether you want to
enable IPv4 or IPv6 addressing. The next figure shows an example of
the Interface Configuration tab.

Chapter 1: Installing and Configuring OS-9®

OS-9 for IXDP425 Board Guide 15

Figure 1-5. Network Configuration Dialog

Step 3. Select the SoftStax® Setup tab. The SoftStax Setup tab displays as
shown in the next figure.

To learn more about IPv4 and IPv6 functionalities, see the Using
LAN Communications manual included with this product CD.

If you do not know the network values for your board, contact
your system administrator.

Chapter 1: Installing and Configuring OS-9®

16 OS-9 for IXDP425 Board Guide

Figure 1-6. SoftStax Setup Tab

Step 4. Configure your system as shown in the figure above.

Step 5. Leave the other Network Configuration options at the default settings.

Change other network configuration options in this dialog, such as DNS
and gateway, according to your specific requirements and network.

Step 6. Click OK in the Network Configuration dialog to close it and return to
the Configuration Wizard main window.

Step 7. Select Configure -> Build Image. The Master Builder dialog
window displays as shown in the next figure.

Chapter 1: Installing and Configuring OS-9®

OS-9 for IXDP425 Board Guide 17

Figure 1-7. Master Builder Dialog

Step 8. Configure your Master Builder options as shown in the figure above.

Step 9. Click Build. This builds a ROM image that the RedBoot boot monitor
can load. The image, rom, is stored in the following directory:

\MWOS\OS9000\ARMV5\PORTS\IXP425\BOOTS\INSTALL\PORTBOOT

Use the Save As... button to save the rom file to the correct location for
your TFTP server.

Bootstrapping OS-9
The target is now configured, the rom file is saved, and you are ready to
boot OS-9 on your IXDP425.

Step 1. Turn the power supply on or press the reset button on the IXDP425.

Step 2. Wait for the RedBoot> prompt and then type load -r -b
0x10200000 rom.

Step 3. Wait for the download to finish and then type go 0x10200000.

OS-9 boots and networking is available. The following is an example of
the output:

Chapter 1: Installing and Configuring OS-9®

18 OS-9 for IXDP425 Board Guide

FLASH configuration checksum error or invalid key

Ethernet eth0: MAC address 00:07:e9:0d:95:be

IP: 208.252.117.7, Default server: 208.252.116.54

RedBoot(tm) bootstrap and debug environment [ROM]

Non-certified release, version 2.00 - built 17:25:55, Dec 13 2002

Platform: Intel(R) IXDP425

Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x10100000-0x20000000, 0x101156a8-0x1ffdd000 available

FLASH: 0x50000000 - 0x51000000, 128 blocks of 0x00020000 bytes each.

RedBoot> load -r -b 0x10200000 rom

Raw file loaded 0x10200000-0x103d164c

RedBoot> go 0x10200000

OS-9 Bootstrap for the ARM (Edition 68)

PCI device initialization - Completed

Now trying to Override autobooters.

Press the spacebar for a booter menu

Now trying to Boot embedded OS-9 in-place.

Compressed bootfile found at $10300000

A valid OS-9 bootfile was found.

+3

+5

$

Burning the Flash Part
You may want to burn a ROM file into the Flash part. This is done by
creating a Flash image with RedBoot’s fis create command. The
ROM image can then be loaded without the need for a BOOTP server
nor a TFTP server.

There are no special requirements when creating boots that will reside
in Flash.

There are two ways to burn the ROM image into the Flash part: with
RedBoot and with OS-9’s pflash utility. Using the RedBoot method at
least one time results in an easier to maintain system since it allocates a
section of the Flash for OS-9’s use. Each of these methods will be
discussed in the following two sections.

Chapter 1: Installing and Configuring OS-9®

OS-9 for IXDP425 Board Guide 19

Programming a ROM Image with RedBoot
The following steps assume that your BOOTP and TFTP server are
functional and you have already been able to boot OS-9 on your
IXDP425.

Step 1. Apply power to your system or press the reset button if the system is
already on. Wait for the RedBoot> prompt.

Step 2. Issue the fis init command to initialize the flash image system (FIS)
directory structure in the Flash part.

RedBoot> fis init

About to initialize [format] FLASH image system - are you sure (y/n)? y

*** Initialize FLASH Image System

 Warning: device contents not erased, some blocks may not be usable

... Unlock from 0x50fe0000-0x51000000: .

... Erase from 0x50fe0000-0x51000000: .

... Program from 0x1ffdf000-0x1ffdf300 at 0x50fe0000: .

... Lock from 0x50fe0000-0x51000000: .

RedBoot>

Step 3. Load the OS-9 ROM image into RAM.

RedBoot> load -r -b 0x10200000 rom

Raw file loaded 0x10200000-0x103d164c

Step 4. Use the fis create command to create a new image in the FIS
directory structure. The new image is created at the midpoint of the
Flash part (0x50800000).

RedBoot> fis create -b 0x10200000 -l 0x3c0000 -f 0x50800000 -r 0x10200000
os9

... Erase from 0x50800000-0x50bc0000:

... Program from 0x10200000-0x105c0000 at 0x50800000:

... Unlock from 0x50fe0000-0x51000000: .

... Erase from 0x50fe0000-0x51000000: .

... Program from 0x1ffdf000-0x1ffff000 at 0x50fe0000: .

... Lock from 0x50fe0000-0x51000000: .

Step 5. Turn off the power to the board for a short time.

Step 6. Turn the power back on and wait for the RedBoot> prompt. At the
prompt use the fis load command to load the OS-9 ROM image into
RAM.

RedBoot> fis load os9

Chapter 1: Installing and Configuring OS-9®

20 OS-9 for IXDP425 Board Guide

This fis load command accomplishes exactly the same thing as the
TFTP load command used previously, except that it doesn’t require a
BOOTP nor a TFTP server.

Programming a ROM Image with the pflash Utility
pflash is an OS-9 utility that transfers an image into Flash. The
following steps detail how to create a new coreboot image and burn the
image into Flash using this utility.

Step 1. If no longer running the Configuration Wizard (from the previous steps)
on your Windows desktop, select Start -> Programs -> RadiSys -
> Microware OS-9 for XScale -> Microware Configuration
Wizard. The Configuration Wizard opening screen displays. Click on
the Use existing configuration radio button in the Select a
configuration group. Ensure that your previous configuration appears
in the drop-down menu and that the Advanced Mode radio button is
selected in the Choose Wizard Mode group. Click OK.

Step 2. Select Configure -> Build Image.. to display the Master Builder
screen.

Step 3. Ensure Coreboot + Bootfile is selected and click Build.

Step 4. Once the build is complete, click Save As to save the ROM image to a
directory of your choosing.

The default location for this file is in the following directory:

\MWOS\OS9000\ARMV5\PORTS\IXP425\BOOTS\INSTALL\PORTBOOT

Step 5. Start a DOS shell on the host system.

Step 6. Navigate to the directory in which the OS-9 ROM image, rom, is
located.

Step 7. On the target, initialize the large RAM disk (/r1) so it can hold the
ROM image by entering the following command in the Hyperterminal
window:

$ iniz /r1

Step 8. On your Windows host, use FTP to transfer the new image to the target
system. At the prompt enter the following command:

ftp <IP address or host name of target>

Step 9. Log in with the username super and the password user.

Chapter 1: Installing and Configuring OS-9®

OS-9 for IXDP425 Board Guide 21

Step 10. At the ftp> prompt, enter the following command:

ftp> cd /r1

This specifies that the /r1 device ‘s root is the current directory.

Step 11. At the ftp> prompt, enter the following command:

ftp> bin

This designates binary format.

Step 12. At the ftp> prompt, enter the following command:

ftp> put rom

The OS-9 ROM image file transfers to the target’s RAM disk (/r1).

Step 13. On the target, enter the following command:

$ pflash -s=0x50800000 -f=/r1/rom

The file is programmed into the target system’s Flash memory. It can be
loaded with RedBoot’s fis load command previously described.

Chapter 1: Installing and Configuring OS-9®

22 OS-9 for IXDP425 Board Guide

OS-9 for IXDP425 Board Guide 23

2 Board-Specific Reference Chapter 2

This chapter contains porting information specific to the Intel IXDP425
Embedded XScale board. It includes the following sections:

• Boot Options
• The Fastboot Enhancement
• OS-9 Vector Mappings
• Port Specific Utilities

For general information on porting OS-9, see the OS-9 Porting
Guide.

Chapter 2: Board-Specific Reference

24 OS-9 for IXDP425 Board Guide

Boot Options
Default boot options for the Intel IXDP425 are listed below. The boot
options can be selected by pressing the space bar during system boot
when the following message appears on the serial console:

Press the spacebar for a booter menu

The configuration of these booters can be changed by altering the
default.des file, located in the following directory:

MWOS\OS9000\ARMV5\PORTS\IXP425\ROM

Booters can be configured to be either of these:

• Auto booters, which automatically attempt to boot in the same order
as listed in the auto booter array.

• Menu booters, from the defined menu booter array, which are
chosen interactively from the console command line after the boot
menu displays.

Booting from Flash
When the rom_cnfg.h file has a defined ROM search list, the options
bo and lr appear in the boot menu. If no ROM search list is defined,
N/A appears in the boot menu. If an OS-9 bootfile is programmed into
Flash memory in the address range defined in the port’s default.des
file, the system can boot and run from Flash.

rom_cnfg.h is located in the following directory:

MWOS\OS9000\ARMV5\PORTS\IXP425\ROM\ROMCORE

bo ROM boot—the system runs “in-place”, which on
the IXDP425 is actually RAM.

lr load to RAM—the system copies the ROM
bootfile image into RAM and runs from there.

Booting over a Serial Port via kermit
The system can download a bootfile in binary form over its serial port at
speeds up to 115200 using the kermit protocol. The duration of this
transfer depends of the bootfile’s size, but it usually takes at least three
minutes to complete. Dots on the console indicate download progress.

Chapter 2: Board-Specific Reference

OS-9 for IXDP425 Board Guide 25

ker kermit boot: The boot file is sent via kermit
protocol into system RAM and it runs from there.

Restart Booter
The restart booter enables a way to restart the bootstrap sequence.

q quit: Quit and try to restart the booting process.

Break Booter
The break booter allows entry to the system level debugger (if one
exists). If the debugger is not in the system the system resets.

break break: Break and enter the system level debugger
Rombug.

Sample Boot Session and Messages
Below is an Intel IXDP425 example boot using the bo boot option.

OS-9 Bootstrap for the ARM (Edition 68)

PCI device initialization - Completed

Now trying to Override autobooters.

Press the spacebar for a booter menu

BOOTING PROCEDURES AVAILABLE ------- <INPUT>

Boot embedded OS-9 in-place -------- <bo>

Copy embedded OS-9 to RAM and boot - <lr>

Enter system debugger -------------- <break>

Restart the System ----------------- <q>

Select a boot method from the above menu: bo

Compressed bootfile found at $10300000

A valid OS-9 bootfile was found.

Chapter 2: Board-Specific Reference

26 OS-9 for IXDP425 Board Guide

+3

+5

$ mfree

Current total free RAM: 183540.00 K-bytes

The Fastboot Enhancement
Fastboot enhancements to OS-9 provide faster system bootstrap
performance to embedded systems. Normal OS-9 bootstrap
performance is attributable to its flexibility. OS-9 handles many different
runtime configurations, to which it dynamically adjusts during the
bootstrap process.

The Fastboot concept consists of informing OS-9 that the defined
configuration is static and valid. These assumptions eliminate the
dynamic searching OS-9 normally performs during the bootstrap
process and enables the system to perform a minimal amount of
runtime configuration. As a result, bootstrap speed achieves a
significant increase.

Overview
The Fastboot enhancement consists of a set of flags that control the
bootstrap process. Each flag informs some portion of the bootstrap
code that a particular assumption can be made and to omit the
associated bootstrap functionality.

The Fastboot enhancement enables control flags to be statically
defined when the embedded system is initially configured as well as
dynamically altered during the bootstrap process itself. For example, the
bootstrap code could be configured to query dip switch settings,
respond to device interrupts, or respond to the presence of specific
resources which would indicate different bootstrap requirements.

In addition, the Fastboot enhancement’s versatility allows for special
considerations under certain circumstances. This versatility is useful in a
system where all resources are known, static, and functional, but
additional validation is required during bootstrap for a particular
instance, such as a resource failure. The low-level bootstrap code may
respond to some form of user input that would inform it that additional
checking and system verification is desired.

Chapter 2: Board-Specific Reference

OS-9 for IXDP425 Board Guide 27

Implementation Overview
The Fastboot configuration flags are implemented as a set of bit fields.
An entire 32-bit field is dedicated for bootstrap configuration. This
four-byte field is contained within the set of data structures shared by
the ModRom sub-components and the kernel. Hence, the field is
available for modification and inspection by the entire set of system
modules (high-level and low-level). Currently, six bit flags are defined
with eight bits reserved for user-definable bootstrap functionality. The
reserved user-definable bits are the high-order eight bits (31–24). This
leaves bits available for future enhancements. The currently defined bits
and their associated bootstrap functionality are listed below.

B_QUICKVAL
The B_QUICKVAL bit indicates that only module headers of ROM
modules are validated during the memory module search phase. This
causes the CRC check on modules to be omitted. This option is a
potential time saver, due to the complexity and expense of CRC
generation. If a system has many modules in ROM, where access time
is typically longer than RAM, omitting the CRC check on the modules
drastically decreases bootstrap time. Data corruption rarely occurs in
ROM. Therefore, omitting CRC checking is usually a safe option.

B_OKRAM
The B_OKRAM bit informs both low- and high-level systems that they
should accept their respective RAM definitions without verification.
Normally, the system probes memory during bootstrap based on
defined RAM parameters. This allows system designers to specify a
possible RAM range, which the system validates upon startup. Thus, the
system can accommodate varying amounts of RAM. In an embedded
system where the RAM limits are usually statically defined and
presumed functional, the defined RAM list does not need validating.
Bootstrap occurs faster by assuming that the RAM definition is
accurate.

B_OKROM
The B_OKROM bit causes acceptance of the ROM definition without
probing for ROM. This configuration option behaves like the B_OKRAM
option, except that it applies to the acceptance of the ROM definition.

Chapter 2: Board-Specific Reference

28 OS-9 for IXDP425 Board Guide

B_1STINIT
The B_1STINIT bit causes acceptance of the first init module found
during cold-start. By default, the kernel searches the entire ROM list
passed by ModRom for init modules before it accepts and uses the
init module with the highest revision number. In a statically defined
system, time is saved by using this option to omit the extended init
module search.

B_NOIRQMASK
The B_NOIRQMASK bit informs the entire bootstrap system that it should
not mask interrupts for the duration of the bootstrap process. Normally,
the ModRom code and kernel cold-start mask interrupts for the duration
of system startup. However, some systems with a well-defined interrupt
system (i.e. completely calmed by the sysinit hardware initialization
code) and also a requirement to respond to an installed interrupt
handler during system startup can enable this option to prevent the
ModRom and the kernel cold-start from disabling interrupts. This is
particularly useful in power-sensitive systems that need to respond to
“power-failure” oriented interrupts.

Some portions of the system may still mask interrupts for short periods
during the execution of critical sections.

B_NOPARITY
If the RAM probing operation is not omitted, the B_NOPARITY bit
causes the system to not perform parity initialization of the RAM. Parity
initialization occurs during the RAM probe phase. The B_NOPARITY
option is useful for systems that require either no parity initialization at
all or systems that require it only for “power-on” reset conditions.
Systems that require parity initialization only for initial “power-on” reset
conditions can dynamically use this option to prevent parity initialization
for subsequent “non-power-on” reset conditions.

Chapter 2: Board-Specific Reference

OS-9 for IXDP425 Board Guide 29

Implementation Details
This section describes the compile-time and runtime methods by which
the bootstrap speed of the system can be controlled.

Compile-time Configuration
The compile-time configuration of the bootstrap is provided by a
predefined macro (BOOT_CONFIG), used to set the initial bit-field values
of bootstrap flags. You can redefine the macro for recompilation to
create a new bootstrap configuration. The new overriding value of the
macro should be established by redefining the macro in the
rom_config.h header file or as a macro definition parameter in the
compilation command.

The rom_config.h header file is one of the main files used to
configure the ModRom system. It contains many configuration details
of the low-level system. Below is an example of how to redefine the
system’s bootstrap configuration using the BOOT_CONFIG macro in the
rom_config.h header file:

#define BOOT_CONFIG (B_OKRAM + B_OKROM + B_QUICKVAL)

Below is an alternate example showing the default definition as a
compile switch in the compilation command in the makefile:

SPEC_COPTS = -dNEWINFO –dNOPARITYINIT –dBOOT_CONFIG=0x7

This redefinition of the BOOT_CONFIG macro results in a bootstrap
method that accepts RAM and ROM definitions without verification and
validates modules solely on the correctness of their module headers.

Runtime Configuration
The default bootstrap configuration can be overridden at runtime by
changing the rinf->os->boot_config variable from either a
low-level P2 module or from the sysinit2() function of the
sysinit.c file. The runtime code can query jumper or other hardware
settings to determine the user-defined bootstrap procedure to use. An
example P2 module is shown below. If the override is performed in the
sysinit2() function, the effect is not realized until after the low-level
system memory searches are performed. This means that any runtime
override of the default settings pertaining to the memory search must
be done from the code in the P2 module code.

Chapter 2: Board-Specific Reference

30 OS-9 for IXDP425 Board Guide

#define NEWINFO
#include <rom.h>
#include <types.h>
#include <const.h>
#include <errno.h>
#include <romerrno.h>
#include <p2lib.h>
error_code p2start(Rominfo rinf, u_char *glbls)
{

/* if switch or jumper setting is set… */
if (switch_or_jumper == SET) {

/* force checking of ROM and RAM lists */
rinf->os->boot_config &= ~(B_OKROM+B_OKRAM);

}
return SUCCESS;

}

OS-9 Vector Mappings
This section contains the OS-9 vector mappings for the IXDP425
Embedded XScale board.

The ARM standard defines exceptions 0x0-0x7. The OS-9 system maps
these one-to-one. External interrupts from vector 0x6 expand to the
virtual vector range shown below by the irqixc1100 module.

Table 2-1. OS-9 IRQ Assignment for the Intel IXDP425

OS-9 IRQ # ARM Function
0x0 Processor Reset
0x1 Undefined Instruction
0x2 Software Interrupt
0x3 Abort on Instruction Prefetch
0x4 Abort on Data Access
0x5 Unassigned/Reserved
0x6 External Interrupt
0x7 Fast Interrupt
0x8 Alignment Error Form of Data abort

Chapter 2: Board-Specific Reference

OS-9 for IXDP425 Board Guide 31

Table 2-2. Intel IXDP425 Specific IRQ Assignments

OS-9 IRQ # IXDP425 Specific IRQ
0x41 Ethernet NPE A
0x42 Ethernet NPE B
0x43 Queue Manager Queues 1 - 32
0x44 Queue Manager Queues 33 - 64
0x45 General Purpose Timer 0
0x46 GPIO[0]
0x47 GPIO[1]
0x48 PCI Interrupt
0x49 PCI DMA Channel 1
0x4a PCI DMA Channel 2
0x4b General Purpose Timer 1
0x4c USB
0x4d Console UART (UART1)
0x4e Timestamp Timer
0x4f High-speed UART (UART0)
0x50 Watchdog Timer
0x51 Performance Monitoring Unit Counter Rollover
0x52 XScale PMU Counter Rollover
0x53 GPIO[2]
0x54 GPIO[3]
0x55 GPIO[4]
0x56 GPIO[5]
0x57 GPIO[6]
0x58 GPIO[7]
0x59 GPIO[8]
0x5a GPIO[9]
0x5b GPIO[10]
0x5c GPIO[11]
0x5d GPIO[12]
0x5e Software Interrupt 0
0x5f Software Interrupt 1

Chapter 2: Board-Specific Reference

32 OS-9 for IXDP425 Board Guide

Fast Interrupt Vector (0x7)
The ARM5-defined fast interrupt (FIQ) mapped to vector 0x7 is handled
differently by OS-9 interrupt code and cannot be used as freely as the
external interrupt mapped to vector 0x6. To make fast interrupts as
quick as possible for extremely time critical code, no context
information is saved on exception (except auto hardware banking) and
FIQs are never masked. This requires any exception handler to save
and restore its necessary context if the FIQ mechanism is used. This
requirement means that a FIQ handler’s entry and exit points must be
in assembly, as the C compiler makes assumptions about context. In
addition, system calls are not possible unless a full C ABI context save is
first performed. The OS-9 IRQ code for the XScale assigns all interrupts
as normal external interrupts. It is up to the user to redefine a source as
an FIQ to make use of this feature.

Chapter 2: Board-Specific Reference

OS-9 for IXDP425 Board Guide 33

Port Specific Utilities
Utilities for the Intel IXDP425 are located in the following directory:

MWOS/OS9000/ARMV5/PORTS/IXP425/CMDS

The following port specific utilities are included:

dmppci Shows PCI device information.

pciv Displays board PCI bus information.

pflash Programs onboard Flash.

setpci Pokes PCI device settings.

Chapter 2: Board-Specific Reference

34 OS-9 for IXDP425 Board Guide

dmppci
Show PCI Information

Syntax
dmppci <bus_number> <device_number> <function_number>
{<size>}

Description
dmppci displays PCI configuration information not normally available
by other means, except programming with the PCI library.

Chapter 2: Board-Specific Reference

OS-9 for IXDP425 Board Guide 35

pciv
PCI Configuration Space View

Syntax
pciv [options]

Options
-a Display base address information and size.

-r Display PCI routing information.

-i Show class information.

-? Display help.

Description
The pciv utility allows visual indication of the status of the PCIbus. This
should be executed only on a PCI host device.

Chapter 2: Board-Specific Reference

36 OS-9 for IXDP425 Board Guide

pflash
Program Strata Flash

Syntax
pflash [options]

Options
-f[=]filename Input filename (required parameter).
-eu Erase used space only (default).
-ew Erase whole flash.
-ne Do not erase flash.
-i Print information about flash.
-nv Do not verify erase or write operations.
-q Do not display progress indicator.
-b[=]addr Specify base address of flash (hex). The

default is 0x50000000.
-s[=]addr Specify write/erase address for file (hex). The

default start address is 0x50000000.

-u Leave Flash part unlocked.

-np Disable protection. Reprograms addresses in
the range 0x5000000 to 0x50040000 or
0x50fc0000 to 0x51000000. Note: These
protected areas are used for the RedBoot
code and FIS directory structure.
Reprogramming them may make your board
unbootable.

Description
The pflash utility allows programming of Intel Strata Flash parts. The
primary use is in burning the OS-9 ROM image into the on-board Flash
part. This allows for booting using the lr/bo booters.

Chapter 2: Board-Specific Reference

OS-9 for IXDP425 Board Guide 37

setpci
Set PCI Value

Syntax
setpci <bus> <dev> <func> <offset> <size{bwd}> <value>

Description
The setpci utility sets PCI configuration information not normally
available by other means, other than programming with the PCI library.
The setpci utility can also read a single location in PCI space. The
following parameters are included:

<bus> PCI Bus Number 0..255.

<dev> PCI Device Number 0..32.

<func> PCI Function Number 0..7.

<offset> Offset value (command register offset = 4).

<size> Size b=byte w=word d=dword.

<value> The value to write in write mode.

If no value is included, the utility executes in read mode.

Chapter 2: Board-Specific Reference

38 OS-9 for IXDP425 Board Guide

OS-9 for IXDP425 Board Guide 39

A Board-Specific Modules Appendix A

This chapter describes modules specifically written for the target board.
It includes the following sections:

• Low-Level System Modules
• High-Level System Modules
• Common System Modules List

Appendix A: Board-Specific Modules

40 OS-9 for IXDP425 Board Guide

Low-Level System Modules
The following low-level system modules are tailored specifically for the
Intel IXDP425. The functionality of many modules can be altered
through changes to the configuration data module (cnfgdata). These
modules are located in the following directory:

MWOS/OS9000/ARMV5/PORTS/IXP425/CMDS/BOOTOBJS/ROM

cnfgdata Contains the low-level configuration data.

cnfgfunc Provides access services to cnfgdata data.

commcnfg Initializes the communication port defined in
cnfgdata.

conscnfg Initializes the console port defined in
cnfgdata.

dumppciccs Displays the contents of the PCI Command
and Configuration Space.

initext Performs basic initialization of the PCI
sub-system.

io16550 Provides low-level serial services via the
on-board UARTs.

llpro100 Drives the Intel Ethernet Pro 10/100 PCI
board. This driver is used for low-level
debugging and Ethernet booting.

pciwalk Walks the PCI bus, plus partitions PCI memory
and I/O space to found devices. When the
board operates in option (non-host) mode,
this module performs no function.

portmenu Initializes booters defined in cnfgdata.

romcore Provides board-specific initialization code.

tmrixc1100 Uses general purpose timer 0 to provide timer
services for the low-level system.

usedebug Initializes low-level debug interface to
RomBug, SNDP, or none.

Appendix A: Board-Specific Modules

OS-9 for IXDP425 Board Guide 41

High-Level System Modules
The following OS-9 system modules are tailored specifically for the Intel
IXDP425. Unless otherwise specified, each module is located in a file of
the same name in the following directory:

MWOS/OS9000/ARMV5/PORTS/IXP425/CMDS/BOOTOBJS

CPU Support Modules
These files are located in the following directory:

MWOS/OS9000/ARMV5/CMDS/BOOTOBJS

kernel Provides all basic services for the OS-9 system.

cache Provides cache control for the CPU cache
hardware. The cache module is in the
cachexscale file.

fpu Provides software emulation for floating point
instructions.

ssm System Security Module—provides support for
the CPU’s MMU (Memory Management
Unit).

vectors Provides interrupt service entry and exit code.
The vectors module is found in the file
vectxscale.

System Configuration Module
The system configuration modules are located in the following directory:

MWOS/OS9000/ARMV5/PORTS/IXP425/CMDS/BOOTOBJS/INITS

dd High-level initialization module that specifies
/dd as the initial disk device.

nodisk High-level initialization module that specifies
no initial disk device. This init module is
used in diskless systems.

configurer Init module generated by the Configuration
Wizard.

Appendix A: Board-Specific Modules

42 OS-9 for IXDP425 Board Guide

Interrupt Controller Support
The interrupt controller support module provides an extension to the
vectors module by mapping the single interrupt generated by an
interrupt controller into a range of pseudo vectors. The pseudo vectors
are recognized by OS-9 as extensions to the base CPU exception
vectors. For more information, see the Port Specific Utilities section.

irqixc1100 System extension module that provides
interrupt dispatching support for the
IXC1100’s interrupt controller (vector range
0x40 - 0x5f).

Ticker
tkixc1100 Driver that provides the system ticker based on

the IXC1100’s general purpose timer 1.

hcsub Subroutine module that provides a high-speed
timer interface used by the HawkEye Profiler

Generic I/O Support Modules (File Managers)
The generic I/O support modules are located in the following directory:

MWOS/OS9000/ARMV5/CMDS/BOOTOBJS

ioman Generic I/O support for all I/O device types.

scf Character device management functions.

rbf Generic block device management functions
for the OS-9 format.

pcf Block device management functions for
MS-DOS FAT format.

spf Generic protocol device management
function support.

pipeman Memory FIFO buffer for communication.

Appendix A: Board-Specific Modules

OS-9 for IXDP425 Board Guide 43

Pipe Descriptor
The pipe descriptor is located in the following directory:

MWOS/OS9000/ARMV5/PORTS/IXP425/CMDS/BOOTOBJS/DESC

pipe Pipeman descriptor that provides a
RAM-based FIFO, which can be used for
inter-process communication.

RAM Disk Support
The RAMdisk device driver is located in the following directory:

MWOS/OS9000/ARMV5/CMDS/BOOTOBJS

ram RBF driver that provides a RAM-based virtual
block device.

RAM Descriptors
The RAMdisk descriptors are located in the following directory:

MWOS/OS9000/ARMV5/PORTS/IXP425/CMDS/BOOTOBJS/DESC/RAM

r0 RBF descriptor that provides access to a 512K
RAM disk.

r0.dd RBF descriptor that provides access to a 512K
RAM disk—with module name dd (for use as
the default device).

r1 RBF descriptor that provides access to an 8MB
RAM disk for storing images to program into
the Flash.

Serial and Console Devices
scixc1100 SCF driver that provides serial support the

IXC1100's internal UARTs.

Appendix A: Board-Specific Modules

44 OS-9 for IXDP425 Board Guide

Descriptors for use with scixc1100
term1/t1 Descriptor modules for use with scixc1100

UART0 (Fast port)
Default Baud Rate: 115200
Default Parity: None
Default Data Bits: 8
Default Stop Bits: 1
Default Handshake: XON/XOFF

term2/t2 Descriptor modules for use with scixc1100

UART1 (Console port)
Default Baud Rate: 115200
Default Parity: None
Default Data Bits: 8
Default Stop Bits: 1
Default Handshake: XON/XOFF

scllio SCF driver that provides serial support via the
polled low-level serial driver.

Descriptors for use with scllio
The scllio descriptors are located in the following directory:

MWOS\OS9000\ARMV5\PORTS\IXP425\CMDS\BOOTOBJS\DESC\SCLLIO

vcons/term Descriptor modules for use with scllio in
conjunction with a low-level serial driver. Port
configuration and setup follows that which is
configured in cnfgdata for the console port.
scllio can communicate with a true
low-level serial device driver like io16550, or
with an emulated serial interface provided by
iovcons.

For more information, see the OS-9 Porting Guide and the OS-9
Device Descriptor and Configuration Module Reference.

Appendix A: Board-Specific Modules

OS-9 for IXDP425 Board Guide 45

SPF Device Support

Support for NPE ports
The Ethernet support module is located in the following directory:

MWOS/OS9000/ARMV5/PORTS/IXP425/CMDS/BOOTOBJS/SPF

spethix SPF driver to support ethernet via NPE B or
NPE C.

spethix Descriptors
These descriptor files are located in the following directory:

MWOS/OS9000/ARMV5/PORTS/IXP425/CMDS/BOOTOBJS/SPF

spix0 SPF descriptor module for use with the NPE B
Ethernet connector.

spix1 SPF descriptor module for use with NPE C
Ethernet connector.

Network Configuration Modules
These files are located in the following directory:

MWOS/OS9000/ARMV5/PORTS/IXP425/CMDS/BOOTOBJS/SPF

inetdb Internet database information.

inetdb2 Target-specific database information.

rpcdb RPC database information.

Port Specific Utilities
The following IXDP425-specific programs are provided. For more
information about their functions and syntax, enter the -?
command-line option. They are located in the following directory:

MWOS/OS9000/ARMV5/PORTS/IXP425/CMDS

dmppci Allows a specific PCI device’s configuration
area to display.

Appendix A: Board-Specific Modules

46 OS-9 for IXDP425 Board Guide

pciv Displays configuration information about all
available PCI devices.

pflash Programs the on-board Intel StrataFlash device.

setpci Allows changes to the PCI configuration of
devices.

Common System Modules List
The following low-level system modules provide generic services for
OS-9 Modular ROM. They are located in the following directory:

MWOS/OS9000/ARMV5/CMDS/BOOTOBJS/ROM

bootsys Provides booter registration services.

console Provides console services.

dbgentry Inits debugger entry point for system use.

dbgserv Provides debugger services.

excption Provides low-level exception services.

flshcach Provides low-level cache management services.

hlproto Provides user-level code access to protoman.

llbootp Provides bootp services.

llip Provides low-level IP services.

llslip Provides low-level SLIP services.

lltcp Provides low-level TCP services.

lludp Provides low-level UDP services.

llkermit Provides a booter that uses kermit protocol.

notify Provides state change information for use with
LL and HL drivers.

override Provides a booter which allows a choice
between menu and auto booters.

parser Provides argument parsing services.

Appendix A: Board-Specific Modules

OS-9 for IXDP425 Board Guide 47

pcman Provides a booter that reads MS-DOS file
system.

protoman Provides a protocol management module.

restart Provides a booter that causes a soft reboot of
the system.

romboot Provides a booter that allows booting from
ROM.

rombreak Provides a booter that calls the installed
debugger.

rombug Provides a low-level system debugger.

sndp Provides low-level system debug protocol.

srecord Provides a booter that accepts S-Records.

swtimer Provides timer services via software loops.

For a complete list of OS-9 modules common to all boards,see
the OS-9 Device Descriptor and Configuration Module Reference
manual.

Appendix A: Board-Specific Modules

48 OS-9 for IXDP425 Board Guide

	OS-9® for IXDP425 Board Guide
	Contents
	Installing and Configuring OS-9®
	Development Environment Overview
	Requirements and Compatibility
	Host Hardware Requirements (PC Compatible)
	Host Software Requirements (PC Compatible)
	Target Hardware Requirements

	Target Hardware Setup
	RedBoot Flash part

	Connecting the Target to the Host
	Building the ROM Image
	Coreboot
	Bootfile
	Starting the Configuration Wizard
	Creating the ROM Image
	Creating the Coreboot Image
	Creating the Bootfile Image

	Building a ROM Image

	Bootstrapping OS-9
	Burning the Flash Part
	Programming a ROM Image with RedBoot
	Programming a ROM Image with the pflash Utility

	Board-Specific Reference
	Boot Options
	Booting from Flash
	Booting over a Serial Port via kermit
	Restart Booter
	Break Booter
	Sample Boot Session and Messages

	The Fastboot Enhancement
	Overview
	Implementation Overview
	B_QUICKVAL
	B_OKRAM
	B_OKROM
	B_1STINIT
	B_NOIRQMASK
	B_NOPARITY

	Implementation Details
	Compile-time Configuration
	Runtime Configuration

	OS-9 Vector Mappings
	Fast Interrupt Vector (0x7)

	Port Specific Utilities
	dmppci
	pciv
	pflash
	setpci

	Board-Specific Modules
	Low-Level System Modules
	High-Level System Modules
	CPU Support Modules
	System Configuration Module
	Interrupt Controller Support
	Ticker
	Generic I/O Support Modules (File Managers)
	Pipe Descriptor
	RAM Disk Support
	RAM Descriptors

	Serial and Console Devices
	Descriptors for use with scixc1100
	Descriptors for use with scllio

	SPF Device Support
	Support for NPE ports
	spethix Descriptors
	Network Configuration Modules

	Port Specific Utilities
	Common System Modules List

