Digital UNIX

Command and Shell User’s Guide

Order Number: AA-PS2HD-TE

March 1996
Product Version: Digital UNIX Version 4.0 or higher

This books explains to the general Digital UNIX user how to use
commands and shells and how to communicate with other network users.

Digital Equipment Corporation
Maynard, Massachusetts

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

O Digital Equipment Corporation 1996
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, Alpha AXP, AlphaGeneration, AlphaServer, AlphaStation, AXP, Bookreader,
CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem,
DECterm, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, OpenVMS,

POLY CENTER, Q-bus, StorageWorks, TruCluster, TURBOchannel, ULTRIX, ULTRIX Mail
Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS, XUI, and
the DIGITAL logo.

NFS is aregistered trademark of Sun Microsystems, Inc. Open Software Foundation, OSF,
OSF/1, OSF/Motif, and Motif are trademarks of the Open Software Foundation, Inc. UNIX is
aregistered trademark in the United States and other countries licensed exclusively through
X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Book

U T [T o PN XiX
Lol 0] o PP UP PP TPPPPTR XiX
OFganiZaLION ...eeveeiee ettt e et e e et e e e e e e et e e eeee XX
Related DOCUMENTS iiiiiieeii e e e e e e e e e e eaens XXi
Reader’ S COMMENES ...ciiiiiie e e e e e e e eaens XXii
(00 10177= 01110 1S XXiii

1 Getting Started

L1 LOgging IN oo 1-1
1.2 LOgging OUL ..ot 14
1.3 USING COMMANGS ...oiiiviiiieeiieeiiie ettt 14
1.4 Stopping Command EXECULION coveeiiiiiiiiiieeeeieeiiie e 16
15 Setting Your Password cooouuiiiiiiiiiiiiiiiiee e 1-6
151 Password GUIdEIINES coovvviiiiiiieiiiiii e 1-7
152 Password ProCedureSoeuivieiiieiiiiieieeeeeeiiiin e 18
1.6 Getting HEIP coveeieee e 1-9
1.6.1 Displaying and Printing Online Reference Pages (man) 1-9

1.6.2 Locating Commands Using Descriptive Keywords —.............. 1-10

2.1
2.2
2.3

24

31

3.2

3.3
3.4

35

Overview of Files and Directories

Overview Of TeXt EdITOrS uvuiiiiiiiiiiiiie et
Creating Sample Files with the vi Text Editorcooiiiiien
Understanding Files, Directories, and Pathnamesc.......
231 Filesand FIleNameSccooooiiiiiiiiiiiieeciei e
2.3.2 Directoriesand SUDAITECIONES cooevvveiiiiiiieeiiiiiiie e
2.3.3 Displaying the Name of Your Current (Working) Directory
(PWA) e
234 The Tree-Structure File System and Pathnames
Specifying Files with Pattern Matching —coooooiiiiiiiiiie

Managing Files

Listing FIIES (IS) wvvneeeei e
3.1.1 Listing Contents of the Current Directory —cccoecevvvnenns
3.1.2 Listing Contents of Other Directoriescccoeeveviiveveinnnenns
3.1.3 FHagsUsedwiththelsCommandcccoeeveiiiiiiiiinenens

Displaying FIlES ...
3.21 Displaying Files Without Formatting (pg, more, cat)
3.22 Displaying Files with Formatting (pr)cccoovveviiiiieiinienenns

Printing Files (Ipr, 1pa, Iprm) oo

Linking FIles (IN) oo e
34.1 Hard Linksand Soft LINKS c.ouvuiiiiiiiiiiiiii e
34.2 Linksand File Systemscoieviiiiieiiiiiiecee e
34.3 UsSiNgLINKS oo

3.4.4 How Links Work — Understanding Filenames and i-numbers .
345 Removing LiNKS ..viiiiiiiieeie e

Copying FIlES (CP) vevvneeeii e e e
3.5.1 Copying Filesin the Current Directoryccceeveevvinneens
3.5.2 Copying Filesinto Other Directoriescccooeevvveveeeeinneenns

iv Contents

2-2
2-5
26
2—7

2—7
2-8

32

32
33
33

3.6

37
3.8
39

3.10

4.1
4.2

4.3
4.4
45
4.6

51

Renaming or Moving Files (MV) ..o 322
3.6.1 Renaming FIleS ... 322
3.6.2 Moving Filesinto a Different Directory —..........ccoeivevennnens 3-23
Comparing Files (diff) ..oooeee e 324
Sorting File Contents (SOM) ..vvveeieeeieeeiie et 3-26
Removing Files (M) .ooeeee e 3-27
39.1 RemovingaSingleFile ... 3-27
3.9.2 Removing Multiple Files — Matching Patterns 3-28
Determining File Type (fil€) ..ooovrriniee e, 3-30
Managing Directories

Creating aDirectory (mKdir) —ooooeeiieiii e 41
Changing Directories (Cd) ...oooveieiieii e 44
421 Changing Your Current DIreCtory coovvieeiiieiiiinneennnnns 44
4.2.2 Using Relative Pathname Notationccooooeiiiiiiinennennn. 4-5
4.2.3 Accessing Directories Through Symbolic Links —.................. 47
Displaying Directories (IS—F) .oeveiiiii e 4-8
Copying DIireCtOrieS (CP) we-eeveerneereeuieeeeieeeeeieeeeeiaeeeeien e eeeiaaeees 4-8
Renaming DIrectorieS (MV) ...ooeeeeieiee e e 4-10
Removing Directories (rmdir) oooeeiiiiiiieee e 4-10
46.1 Removing Empty DIirectoriescccoveveeiieieeiineeiiiineeeennn, 4-11
4.6.2 Removing Multiple Directoriescccooeveeeiiiiiiiineeiiiineeeennn. 4-12
4.6.3 Removing Your Current Directory —cccoeveveeiineiiiiineenennn. 4-12
4.6.4 Removing Files and Directories Simultaneously (rm —) 4-13
Controlling Access to Your Files and Directories

Understanding Password and Group Security Files ccccccenee. 5-1
511 The/etc/passwd Fileccoooriiiiiii e 5-2

Contents v

512 The/etc/group File ..o

5.2 Protecting Files and DIireCtOrieScooeveeiiiieiiiiiieieiie e

5.3 Displaying File and Directory Permissions (IS) cccceeveveieieneennnnn.

5.4 Setting File and Directory Permissions (chmod) —cccccciiiiieennnns
54.1 Specifying Permissions with Letters and Operation Symbols

54.1.1 Changing File PErmiSsionsccccccceiiiieeiiiiiinnnnnn.

54.1.2 Changing Directory PErmissionsccccccvvvvnnnnnn.

54.1.3 Using Pattern-Matching Charactersccccccceennen.

54.14 Setting Absolute Permissions ccccooeevieiiiiinnnn.

5.4.2 Specifying Permissions with Octal Numbers —

55 Setting Default Permissions with the User Mask (umask) —

551 Settingtheumask ...

5.6 Changing Your Identity to AccessSFilesoooiiiiiiiiiiiiiiiieeee

5.7 SUPEruSar CONCEPLS ..ieniii ettt eeas

5.8 Changing Owners and Groups (chown and chgrp) —ccoevviieieenenns

59 Additional Security CONSIAEratioNScooeeveevviiiiieeeiiiiiiieeeeeeeenns

6 Using Processes

6.1 Understanding Programs and ProcesseS ccoeeeveiveveiiieeeiinneeeennnnn.
6.2 Understanding Standard Input, Output, and Error —cccccceeeeeeees
6.2.1 Redirecting Input and OULPUL oeeiivniiiiiieeee e

6.2.1.1 Reading Input fromaFile ..o
6.2.1.2 Redirecting OULPUL coovviiiiiiiieeiieii e

6.2.2 Redirecting Standard Error to aFileccooooeiiiiiiiiinieniens

6.2.2.1 Bourne and Korn Shell Error Redirection —................
6.2.2.2 C Shell Error Redirectioncoeveviieiiiiiiiiiiiann,

6.2.3 Redirecting Both Standard Error and Standard Output —

6.3 Running Severa Processes Simultaneously coovveviviiiiiiiineeeenns

vi Contents

6.4

6.5

7.1
7.2

7.3

7.4

6.3.1 Running Foreground ProCeSSES coeeveviiiiiiiiieeeiie e

6.3.2 Running Background Processesccoovvviiiiieiiiinieneiiinees
Monitoring and Terminating ProCeSSES uvveveeiiieieiiiieeeieeeeeeenn,
6.4.1 Checking Process StaluS ceeivieeiiimmiiiiiieeeiieiiiineeeeeees
6.4.1.1 ThepsCommandcccooveiiiiieiiiiiieieieee e,
6.4.1.2 ThejobsCommandcccooiiiiiiiiiiiiiiiieeeiieeeeeeen,
6.4.2 Canceling a Foreground Process (Ctrl/C) ...ooooeeiiiiiiiiiieeeeens
6.4.3 Canceling a Background Process (Kill) — ...ooveiieeiiiiiiiiieees
6.4.4 Suspending and Resuming a Foreground Process (C Shell
NIy) o e
Displaying Information About Users and Their Processes

Shell Overview

PUrpose of ShEllS oo
Summary of Bourne, C, and Korn Shell Features —c.ococe.
7.2.1 MoreInformation on C and Korn Shell Features
7.2.2 TheRestricted Bourne Shell ..o,
Changing Your Shell ..o

7.3.1 Determining What Shell You Are Running —ceeeieeieens
7.3.2 Temporarily Changing Your Shellcooooiiiiis
7.3.3 Permanently Changing Your Shell ccooooiiiiiiies
Command ENtry AidS .ooeeeieei e
7.4.1 Using Multiple Commands and Command ListS

7.4.1.1 Running Commands in Sequence with a Semicolon (;) .
7.4.1.2 Running Commands Conditionally —cccccccennen.

742 Using Pipesand FIlters ..o
7.43 Grouping COMMANAS ...oevviiieeiiieii e

7431 Using ParentheseS () .oooevvveviiiiiiieeeeee e
7432 UsSNgBraces{ } .oooiiiiiiiii e

TA4 QUOLING oot e

7-1
-2
7-3
-4
-4

7-5
7-5
7-6

Contents vii

7441 UsingtheBackslash (\) .oooooiiiiiiiiii
7442 Using Single QUOES (") ooeveeiieie e
74.4.3 Using Double QUOES (" ™) voveeriieiei e
7.5 The Shell EnVIironment ...

751 Thelogin Programcoooeoiiiioiiieee e
752 Environment VariableS ..o
753 Shall Variables ..o,
7.6 Login Scripts and Your EnVironment ccoooeiieiiiiiiieniiineeeeeennnn,
7.7 USINg Variables ..o
771 Setting Variables oo

7.7.1.1 Bourne and Korn Shell Variablescccvvvenivvinnn..
7712 CShell Variables ..o.ooeeeeeee e
7.71.3 Setting Variablesin All Shells ...

7.7.2 Referencing Variables (Parameter Substitution)
7.7.3 Displaying the Values of Variablescccoeiiiiiiiiiinennnnnn.
7.74 Clearing the Values of Variablesccoooiiiiiiiiiiiiiiiennn.
7.8 How the Shell Finds Commands ccovveiiiiiiiiiieeee e
7.9 USINg LOQOUL SCHPES weveieeiiiiee et e e
7.9.1 Logout Scriptsand the Shell ...
7.9.2 A Sample.logout File ...
7.10 Using Shell Procedures (SCrptS) .ooevvvveeieeeiiiiiiiie e

7.10.1 Writing and Running Shell Procedurescccoevvevennnnn..
7.10.2 SpecifyingaRun Shell ...

8 Shell Features

8.1 Comparison of C, Bourne, and Korn Shell Features
8.2 C Shell FEAIUrES oo

821 Sample.cshrcand .0gin SCriptS ccoovvviviiiiieiiiiiieeeeees
8.22 MetaCharaCterS coovvviiiiieiiieiis e
8.23 Command HiStOryuuiiieiiiiiiiiii e

viii Contents

8-1
8-3
8-3

8.3

84

9

9.1
9.2
9.3
94

10

10.1
10.2

8.24 Filename Completionccoiiiiiiiiiiiie e

8.25 Al@SES i
8.2.6 Built-InVariablesccooiiiiiiii
8.2.7 Built-In Commandsccoeviiiiiiiiiie e
Bourne Shell FEatUres oooeiiiiiiiee e
8.3.1 Sample .profile Login SCriptccooveiiiiiieiiiiieeeeiinnne.
8.3.2 MetacharaCterscooeiiiiiiiiiiii e
8.3.3 Built-InVariablesooiiiiiiii
8.34 Built-In Commandscoeeviiiiiiiiiie e
Korn Shell Featurescoovuiieiiiiiee e
84.1 Sample .profile and .kshrc Login Scripts —ccceveneeee.
8.4.2 MetaCharaCtersooooviiiiiiiiiiiiie e
8.4.3 Command HiStorycoeeviuiieriiiieieiii e
8.4.4 Command Line Editing Using the fc Command

84.4.1 Examplesof Command Line Editing
8.4.5 Filename Completioncccoiiiiiiiiiiiiiiie e
8.4.6 AlIASES i
8.4.7 Built-InVariablesccoiiiiiiii
8.4.8 Built-In Commandscceeviiiiiiiiii e

Using the System V Habitat

Setting Up Your ENVIronment oovviirieeiiiiiiiieeeeeeeiiinnn
How the System V Habitat AccessWorks —cccooevviiiiiinnnnnne.
Compatibility for Shell SCripts coovvvviiiiiie e
System V Habitat Command Summary —ccccceeeveeeevennnnnnnn.

Obtaining Information About Network Users and
Hosts

Identifying Usersonthe Local HOSt cooovvviiiiiiiiiiciee,
Obtaining Information About Network Users —ccoven....

Contents ix

10.3
104
105

11

111
11.2

11.3

114
115
11.6

11.7

10.2.1 Obtaining Information About a Specific User

10.2.2 Obtaining Information About Users on a Remote Host
10.2.3 Obtaining Information About an Individual User on a

ReEMOtE HOSE ..o

10.2.4 Customizing Output from the finger Command

Obtaining Information about Remote Hosts and Users —

Obtaining Information About Users on Remote Hosts —

Determining Whether a Remote Host IsOnline c.ocoeeieee.

Sending and Receiving Messages

Addressing Mail MESSagES iveviiieiiii e
Sending a Mail Message Using mailX —.......ccoooeiiviiiiiiniiiiiiieeeeenn,

11.21 Editing aMESSA0E ...oiveveieeeiii e e
1122 Aborting aMeSSage ...oeveveiiiieii i

11.2.21 Aborting aMessage with Ctrlc ..o,
11.2.2.2 Aborting a Message with an Escape Command

11.2.3 Including aFile within aMessagecccooeveviiieiiiiineenennn.

Receiving aMail MeSSage oveeviiiiii e

1131 Deeting aMeSSAg8 ...oeeeeenieiiiiieeeeie e
1132 Replyingto aMESSage ..ceenieviviiiiiiiiii e
1133 Saving aMESSA0E ..euiiiiiiiiieieii e

11331 SavingaMessageinaFileccccoiiiiiiiiiiiiinnnnnn.
11.33.2 SavingaMessageinaFolderccccooeviiiiiiinnnnns.

11.34 Forwarding aMESSAgE ..eeuievivnieieiiii e

Getting Help from mailX ..o
EXiting Mail oo
Customizing Mail SESSIONS cceviiiiiiii e
11.6.1 Creating Mail AlI@SeS ...ooniieiiiieieei e
11.6.2 Setting Mail Variables ...,

The Message Handling (MH) Program —cccoooiiiiiiiiiiniiineees

x Contents

10-3
104

104
104
10-5
10-8
10-9

11.8
11.9

12

121

12.2
12.3

13

131
13.2
133

14

141
14.2
14.3

Sending and Receiving Messages With write ccovvviiiiiiieenens 11-21
Sending and Receiving Messages with talk ..., 11-23
Copying Files to Another Host
Copying Files Between aLocal and a Remote Host 12-1
1211 Using rcp to Copy Files Between Local and Remote Hosts 12-2
12.1.2 Using ftp to Copy Files Between Local and Remote Hosts 12-3
12.1.3 Using mailx to Copy ASCII Files Between Local and
REMOtE HOSIS ..oveeciee e 12-9
12.1.4 Using write to Copy Files Between Local and Remote Hosts. 12-9
Copying Directories of Files Between a Local and a Remote Host 12-9
Copying Files Between Two Remote HOStS veveviiiiiiiieeeeenn 12-10
Working on a Remote Host
Using rloginto Log in to aRemote Host ..o, 13-1
Using rsh to Run Commands on a Remote Host c.oceeveneeen. 13-2
Using telnet to Log Into a Remote HOSt oeveieeiveiiieeeeeeee, 13-3
The UUCP Networking Commands
UUCP Pathname COonVeNtionS covveeviemiiiineeeeeeeiisee e eeeeeennnnn 141
Finding Hosts that Support UUCP ... 14-2
Connecting to a RemMote HOSE ccoovvviiiiieciieii e 14-2
14.3.1 Using cu to Connect to a Remote HOSt eevviiieieiinnnnnn. 14-3
14.3.1.1 Using cu to Connect by Name to a Remote Host 14-3
14.3.1.2 Using cu to Specify a Directly-Connected Remote
HOSE e 144
14.3.1.3 Using cu to Connect by Telephone to a Remote Host . 144
14.3.1.4 Loca cu CommandS ccceevviiiieeiiimiiiiiieeeeeeennnnnn 146
14.3.1.5 Using cu to Connect a Local Computer to Several
Remote COMPULErS ...ooeviieeeei e 14-8

Contents xi

14.3.2 Using tip to Connect to a Remote Host ccoovvviiieeeennnne. 14-9

14.3.2.1 Using tip to Connect by Name to a Remote Host ... 149
14.3.2.2 Using tip to Connect by Telephone to a Remote Host. 14-10

14.3.2.3 Loca tip CommandSccoeveevniiiiiiiieeeei e 14-12
14.3.2.4 Using tip to Connect a Local Computer to Several
Remote COMPULErS ..oeeiiicei e 1413

14.3.3 Using ct to Connect to a Remote Terminal with aModem .. 14-15

144 Using uux to Run Commands on Remote HOStS c.ovvveiineen, 14-18
14.4.1 Using uux from the Bourne or Korn Shells 14-19
1442 Using uux fromthe C Shell ..., 14-20
14.43 Other uux Features and SUQQESLIONS evvevvviiiiieeeeeeeeeen 14-20

145 Using UUCP To Send and Receive Files cccccciiiiiiiiiiniiinnnn. 14-21
1451 Using UUCP to Copy Filesin the Bourne and Korn Shells . 1422
145.2 Using UUCPto Copy Filesinthe C Shell 14-23

146 Using uuto with uupick to Copy Filescccoveiiiiiiiiiiiieeeeeeee, 14-24

147 Using uuto to Send aFileLocallycoooeiiiiiiiiii e, 14-26

14.8 Displaying Job Status of UUCP Utilitiescooveveiiiiiiiiineeeennn, 14-27
14.8.1 Theuustat ComMmMandccooeeeevimiiiiineeeieeei e 14-27

14.8.1.1 Displaying the Holding Queue Output with a uustat
L0 o 1 o o 14-28
14.8.1.2 Displaying the Current Queue Output with uustat
L0 o1 o 013 14-29
14.8.2 Using the uulog Command to Display UUCP Log Files 14-31
14.8.3 Monitoring UUCP StatUS ooeeviiiiiiieeeeceeeii e 14-32

A A Beginner's Guide to Using vi

Al Getting Started o.oniieeiie e A2
A1l CreatingaFile ..o, A2
A.12 Opening an Existing File ..., A4
A.13 Saving aFileand QUItting Vicooeviiiiiiieeie e, A4
A.l4 Moving WithinaFile ..., A6

A.141 Moving the Cursor Up, Down, Left, and Right A6

Xii Contents

A2

A3

B.1
B.2

A.14.2 Moving the Cursor by Word, Line, Sentence, and
Paragraph
A.1.43 Moving and Scrolling the Cursor Forward and
Backward Through a File
A.144 Movement Command Summary

A.15 Entering New Text
A.16 Editing Text

A.16.1 Deleting Words
A.16.2 Deleting Lines
A.1.6.3 Changing Text
A.1.6.4 Text Editing Command Summary

A.1.7 Undoing a Command
A.1.8 Finishing Your Edit Session

Using Advanced TeChNIiQUES oviviiiieiiiiiieeee e
A.21 Searching for SINGS ...ooveeeieieee e
A.22 Deédetingand Moving Textcccoiveiiiiiiiiiiineeeee e
A.23 Yanking and Moving Text cccooveiiiiiieieiiieeee e
A.24 Other Vi FEAUINES iiiiiiiiiiiiie e

Using the Underlying ex Commands cccooeveviveeeiiieeeennnnnn.
A.31 Making SUDSLItULIONS cccvniiiiiiieeeii e
A.3.2 WritingaWhole Fileor Partsof aFile
A.3.3 DeleingaBlock of Textcccooiviiiiiiiiiiiiiiiiieeeeeen.
A.34 Customizing Your Environmentcccooeviiiiiinnennnnn.
A.35 Saving Your CustomizationSccccoveeveviiieeeiinneeeennnn.
Creating and Editing Files with ed

Understanding Text Files and the Edit Buffer
Creating and Saving Text Files

B.2.1 Starting the ed Program
B.2.2 Entering Text — The a (Append) Subcommand
B.2.3 Displaying Text — The p (print) Subcommand
B.24 Saving Text — The w (write) Subcommand

B.24.1 Saving Text under the Same Filename
B.24.2 Saving Text under a Different Filename

B-1
B2

B2
B2
B-3
B4

B4
B-5

Contents xiii

B.243 SavingPartof aFilecccoooiiiiiiiiii,

B.25 Leaving the ed Program — The q (quit) Subcommand
B.3 Loading Filesinto the Edit Buffercoooiiiiiiiii e,
B.3.1 Usingtheed (edit) Commandccccooeiiiiiiiiiiiiiiiineeeeen,
B.3.2 Using the e (Edit) Subcommandccccooeiiiiiiiiiiiinnenenn,
B.3.3 Using ther (read) Subcommandcoovviiiiiiiieiiiinnnnn,
B.4 Displaying and Changing the Current Lineccoovveiiiiieiineenennn.
B.4.1 Finding Your Position in the Bufferccccooiiiiiiiinnennn.
B.4.2 Changing Your Position in the Bufferccc.ooiiiiiieiin.
2 e o= 1 oo 1= S
B.5.1 Searching Forward Through the Buffer —..............cccoeeeieen.
B.5.2 Searching Backward Through the Buffer —...........................
B.5.3 Changing the Direction of aSearch cc.oooiiiiiiiininnennn.
B.6 Making Substitutions — The s (substitute) Subcommand
B.6.1 Substituting on the Current Linecccooveiiiiiiiiiiieeeennn.
B.6.2 Substituting on a Specific Linecc.oooiiiiiiiiiiieee,
B.6.3 Substituting on Multiple LineSccoevviiiiiiiiiieieieeeeeen,
B.6.4 Changing Every Occurrence of aString ccccoeveveviieneennn.
B.6.5 Removing CharaCterscoooiviviiiiiiiiiiiieeeeiee e
B.6.6 Substituting at Line Beginningsand Ends ccccoeeee.
B.6.7 UsingaContext Searchcoiviiiiiiiiiiiiie e,
B.7 Deleting Lines— The d (delete) Subcommand ccccoeveiiieeeen.
B.7.1 Deéetingthe Current Lineccoviviiiiieiiiiiieeiii e
B.7.2 Deleting a SpecificLinecooviiiiiiiiieii e
B.7.3 Deéleting Multiple LineS cooveiiiiiiieee e
B.8 Moving Text — The m (move) Subcommandccccoeveveiiiieneennn.
B.9 Changing Lines of Text — The ¢ (change) Subcommand
B.9.1 ChangingaSingleLineof Textccccoiiiiiiiiiiiiiiinienennnn.
B.9.2 Changing Multiple Linesof Textcccoiviiiiiiiiiiiiiiieeeenn.
B.10 Inserting Text — Thei (insert) Subcommandcccoeveviiiieneennn.

Xxiv Contents

B.11 Copying Lines— Thet (transfer) Subcommand
B.12 Using System Commands from ed
B.13 Ending the ed Program

C

C1
C2

C3
C4

B.10.1 UsingLine NUMDbErscccooiiiiiiiiiiiiieeee e,
B.10.2 Using aContext Searchcccooeviiiiiiiiiiiiiieeeeee,

Using Internationalization Features

Understanding LOCaIE veviiiiiiiiiiieeee e
How Locale Affects Processing and Display of Data —.............

C.21 CollaliON oeeiiiiieeeceeee e
C.22 Dateand Time FOrmatsScccccoevieeiiiiiiiiiieeeeiennnnnnn,
C.23 Numeric and Monetary Formats —cccooeevevieeeennnnnn.
C.24 IMESSAGES coeeiiiiiiiei et e
C.25 Yes/NOPromptsS ..ooooviiiiiiiieiiieiiie e

Determining Whether aLocale Has Been Set ocoeeee.

Setting aLlocale ..o

CA1l Locale CaegoriBsccocuoiieiiiieeeeiiieeeeieee e e e
C.4.2 Limitations of Locale Settings ooevevvveeveinieeeeinnnnn.

C.4.21 Locae Settings Are Not Validated
C.4.2.2 FileDatalsNot Boundtoalocde

C.4.23 Setting LC_ALL Overrides All Other Locale

VariablES oo

Customizing Your mailx Session

Using Escape Commands in Your mailx Session

........ C-1

........ C3
........ CH4
........ C5
........ C5
........ C5

Contents xv

F Using the mailx Commands

Index

Examples

11-1: Output from mailx Help Command cccoeieiiiiiiieii e, 11-14
12-1: Using ftpto Copy aFile ..o, 124
Figures

1-1: Shell Interaction with the User and the Operating System — 1-5
2-1: A Typical Digital UNIX File System ccccoiiieiiiieeieieeeeee e, 2-9
2-2: Relative and Full Pathnames ..o 2-12
3-1: Removing Linksand Filescooiiiiiii i, 3-18
4-1: Relationship Between Directories and Subdirectories c......... 4-3
4-2: Copying aDIrectory Tre8 ...oiiiiiiii e 4-9
5-1: File and Directory Permission Fieldsccccoeeviiiiiiiiiiiiiiie e, 5-7
7-1: Flow Through aPipelineccooviiiiiiii e 7-9
O-1: System V Habital oooviiiiii i 9-2
Tables

3-1: ThelsCommand OPtioNS ooviiiiieiiii e 34
3-2: Thels— Command INfOrmationccoovieiieiiiiiinieeeeiiiiiiee e 35
3-3: Thepr Command FIagsSoiiiiiiiieiii e 3-8
3-4: Thelpr Command FIagscooiviiiieiii e 3-11
5-1: Differences Between File and Directory Permissions 55
5-2: Permission COMDINAIONS ouvvuniieeiiiiiiie et 5-12
5-3: How Octal Numbers Relate to Permission Fields cccvviieiieneens 5-13

xvi Contents

5-4:
6-1:
7-1:
7-2:
7-3:
7-4.
7-5:
7-6:
7-7
8-1:
8-2:
8-3:
8-4.
8-5:
8-6:
87
8-8:
8-9:

8-10:
8-11:
8-12:
8-13:
8-14:
8-15:
8-16:
8-17:

9-1:

10-1:

The umask Permission CombinationS ccoovvvviiineeeiiniiiiineeeeenns 5-14
Shell Notation for Reading Input and Redirecting Output — 62
Shell Names and Default Prompts —coooviiiiiieiiiii e -5
Multiple Command OPErators vveuiieeeiieeiiiiireeee e -7
Command Grouping SymbolS eiiiiiii 7-10
Shell Quoting CoNVENIONS ooviviiiieceiei e 7-12
Selected Shell Environment Variablesooovieiiiiiiiiii 7-14
System and Local LOgin SCIHPLS ..vvvviieiiiiiiiiie e 7-17
Description of Example Shell Script ..., 727
C, Bourne, and Korn Shell FEAtUreS oevienieiiieeee e 8-1
Example .CShrc SCript oo 84
Example 1ogin SCript ..o 85
C Shell MetaCharaCters coovvviiiiiiieiiei e 86
Reexecuting History Buffer Commands ooooiiviiiiiiiiiiineeeenn, 89
Built-In C Shell Variables oooviiiiiiiiiiii e 8-12
Built-In C Shell Commands oovviiiiiiiiiii e 8-13
Example Bourne Shell .profile Script ..., 8-15
Bourne Shell Metacharactersccoovieeiiiiiiii e 8-16
Built-In Bourne Shell Variablesccooviiiiiiiiiii s 8-18
Built-In Bourne Shell Commands —cooovvviiiiiiiiiiiiei e 8-19
Example Korn Shell .profile Script cooooiieiiiiii s 821
Example KSNrc SCript .oooeeeie e 8-23
Korn Shell MetacharaCters ... 824
Reexecuting History Buffer Commands —ccoovveeiiiiiiiiiieenennns 826
Built-In Korn Shell Variables ..o 8-32
Built-In Korn Shell Commands oeoiiieiiiiiii e 8-33
User Commands SUMMEAY oeeeeeeiiiiieeeeeeeeiie e e e e 95
Options to the finger Command coovviviiiiiieiiii e 104

Contents xvii

10-2: Optionsto the ruptime Command oooeeiiiieiiiiiiereie e, 10-7
11-1: Commands for the MH Message-Handling Program — 11-19
12-1: ftp Subcommands for Connecting to a Host and Copying Files 12-5
12-2: ftp Subcommands for Directory and File Modification 127
12-3: ftp Subcommands for Help and Status Informationc.cc.. 12-8
13-1: telnet SUDCOMMANAS oiiiiii e 134
14-1: Options to the cu COMMEND oeviiiiiiiiiiii e 14-5
14-2: Loca cU COMMAENGS ..ovveiieiiieiii e 14-8
14-3: Optionsto thetip Commandooooviiiiiiiinieiiei e 14-12
14-4: Loca tip COMMANAS uniieieiiii e 14-14
14-5: Optionsto the ct Command cooveiiiiiiiiiie e 14-17
14-6: Options to the uux CommaNd cocoeiiiiiiiiiiere e 14-21
14-7: Options to the UUCP Command coeeveiiieriiiiieeeiiieeeeiie e, 14-24
14-8: Options to the uupick Command ccoooiiiiiiiiii e, 14-25
14-9: Options to the uuto Command ccoeviiiiiiiiieri e 14-26
14-10: Optionsto the uustat CommMand cooeviiiiieiiiiieeeee e, 14-30
14-11: Optionsto the uulog Command cooovviiiiiiiiiiiiii e 14-31
A-1: Write and Quit Command SUMMAIY ccoovvviiiieiiiiiiin e A6
A-2: Cursor Movement Command SUMMAaY covvveiiieeiieeiiinneeeeeeennnnnnn A-9
A-3: Text Insertion Command SUMMANY ccooveviiiinieeieeei e A-12
A-4: Text Editing Command SUMMEY oooeeviiiiiiiiieeeeeeeii e A-15
A-5: Selected vi Environment Variablesccccoceiiiiiiiiiiiiin A-22
C-1: LOCAIENEIMES ...t e e Cc—7
C-2: Environment Variables That Influence Locale Functions —................. C38
D-1: Variablesfor Customizing Your mailx Sessioncceevvvvinnnnnen. D-1
E-1: Escape Commandsin mailooiiiiiiiiiiie e E-1
F-1: Commands for the mailx Programcccoovieeiiimiiiiiieeeeeeee F1

xviii Contents

About This Book

Command and Shell User’s Guide introduces users to the basic use of
commands and shells in the Digital UNIX[operating system. This book
also documents how to communicate with other network users.

This preface covers the following topics:

Audience

Scope
Organization
Related Documents
Conventions

Audience

This book is written for those who do not have extensive knowledge of
UNIX compatible operating systems. This book explains important concepts,
provides tutorials, and is organized according to task.

Scope

This book introduces you to the use of commands and shells. After reading
this book, you should be able to:

Gain access to your system and issue commands
Understand file and directory concepts

Manage files and directories

Control access to your files and directories
Manage processes

Understand and manage your shell environment
Usethevi and ed text editors

Use network applications to communicate with network users and access
remote systems and processes

Organization

This book is organized into 13 chapters and 6 appendices.

Chapter 1

Chapter 2

Chapter 3
Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

xx About This Book

Shows how to log in and out of your system, enter commands,
set your password, and obtain online help.

Provides an overview of the file system, consisting of the files
and directories that are used to store text, programs, and other
data. This chapter also introduces you to the vi text editor, a
program that allows you to create and modify files.

Shows how to manage files. Y ou will learn how to list,
display, copy, move, link, and remove them.

Explains how to manage directories. Y ou will learn how to
create, change, display, copy, rename, and remove them.

Shows how to control access to your files and directories by
setting appropriate permissions. |t also describes standard
password and group security issues as well as provides an
overview of additional security considerations.

Describes how the operating system creates and keeps track of
processes. This chapter explains how to redirect process input,
output, and error information, run processes simultaneously,
display process information, and cancel processes.

Introduces features common to the three shells available with
the operating system: the Bourne, C, and Korn shells. You
learn how to change your shell, use command entry aids,
understand some features of your shell environment (login
scripts, environment and shell variables), set and clear
variables, write logout scripts, and write and run basic shell
procedures.

Provides detailed reference information about the C, Bourne,
and Korn shells, comparing their features. It details the
commands and environment variables of each program and
shows how to set up your login script.

Shows how to access the System V habitat, a subset of
commands, subroutines, and system calls that conforms to the
System V Interface Definition (SVID).

Provides information on how to get information about other
users and remote hosts on the network.

Provides information about how to send a message to another
user.

Chapter 12
Chapter 13

Chapter 14

Provides information about how to copy files to or between
remote hosts.

Provides information about how to log in to or execute
commands at a remote host.

Provides information about the UNIX-to-UNIX Copy Program
(UUCP) for performing communication tasks concurrently on
both alocal and remote host.

The appendixes in this book provide the following information:

Appendix A

Appendix B

Appendix C

Appendix D
Appendix E

Appendix F

Teaches you how to use the basic features of the vi text
editor.

Teaches you how to use the ed text editor. Detailed
information about ed is provided because all systems have
this editor, and ed can be used in critical system management
situations when no other editor can be used.

Describes the internationalization features that alow users to
process data and interact with the system in a manner
appropriate to their native language, customs, and geographic
region.

Provides alist of variables that can beused inthe. mai |l r c
file to customize amai | X session.

Provides alist of escape commands that can be used to
perform certain tasks from within amai | x session.

Provides alist of commands that can be used to send, read,
delete, or save messages using mai | x.

Related Documents

The following Digital UNIX user documents are available in Bookreader
format on your CD-ROM and optionally in hardcopy:

* Quick Reference Card

* Documentation Overview, Glossary, and Master Index
e System Administration

» Reference Pages Section 1

» Reference Pages Section 8 and 1m

The following OSF/1 documents are currently available from Prentice-Hall:
e OSF/1 Command Reference
* OS-/1 System and Network Administrator’s Reference

About This Book xxi

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code
General users G Blue

System and network administrators S Red
Programmers P Purple
Device driver writers D Orange
Reference page users R Green

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides
information on all of the books in the Digital UNIX documentation set.

Reader's Comments

Digital welcomes any comments and suggestions you have on this and other
Digital UNIX manuals.

Y ou can send your comments in the following ways:
e Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y 32
* Internet electronic mail: r eaders_conment @k3. dec. com

A Reader’s Comment form is located on your system in the following
location:

/usr/ doc/ readers_conment . t xt

* Mail:
Digital Equipment Corporation
UEG Publications Manager
ZK03-3/Y 32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed manual.
The form is postage paid if you mail it in the United States.

xxii About This Book

Please include the following information along with your comments:

o Thefull title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

* The section numbers and page numbers of the information on which you
are commenting.

* Theversion of Digital UNIX that you are using.
» If known, the type of processor that is running the Digital UNIX

software,

The Digital UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Digital technical support office.
Information provided with the software media explains how to send problem
reports to Digital.

Conventions

The following conventions are used in this book:

cat (1)

Ctrl/x

A percent sign represents the C shell system prompt. A dollar sign
represents the system prompt for the Bourne and Korn shells.

A number sign represents the superuser prompt.
Boldface type in interactive examples indicates typed user input.

Italic (slanted) type indicates variable values, placeholders, and
function argument names.

In syntax definitions, brackets indicate items that are optional and
braces indicate items that are required. Vertical bars separating items
inside brackets or braces indicate that you choose one item from
among those listed.

In syntax definitions, a horizontal ellipsis indicates that the preceding
item can be repeated one or more times.

A cross-reference to a reference page includes the appropriate section
number in parentheses. For example, cat (1) indicates that you can
find information on the cat command in Section 1 of the reference
pages.

This symbol indicates that you hold down the first named key while
pressing the key or mouse button that follows the slash. In examples,
this key combination is enclosed in a box (for example, Ctrl/C).

About This Book xxiii

Getting Started 1

This chapter introduces the basic tasks for using the operating system. Before
reading this chapter, familiarize yourself with your system’s hardware
components.

If you are familiar with the UNIX operating system or other operating
systems, you may want to skim this chapter.

After completing this chapter, you will be able to:
* Loginto and log out of the operating system
» Set and change your password
» Execute commands
e Stop command execution
» View and display reference (man) pages
To use the operating system to its full capabilities, you must learn how to
create and modify files with a text editing program. See Chapter 2 for an
overview of text editors, and Appendix A and Appendix B for information on
thevi and ed text editors, respectively. Once you learn how to use a text
editor, you should have the basic skills necessary to start using the operating
system.

Security Note

If your system is running the optional enhanced security, your
login and password procedures may be different than the
procedures documented in this book. See the Security document
for more information.

1.1 Logging In

To use the operating system, your operating system must be installed and
running and you must be logged in. Logging in identifies you as avalid
system user and creates a work environment that belongs to you aone.

Before logging in, obtain your user name and passwor d from the system
administrator. A username (typically your surname or initials) identifies you
as an authorized user. A password (a group of charactersthat is easy for you
to remember but difficult for others to guess) verifies your identity.

Think of your username and password as electronic keys that give you access
to the system. When you enter your username and password during the login
process, you identify yourself as an authorized user.

Y our password is an important part of system security because it prevents
unauthorized use of your data. For more information on passwords, see
Section 1.5.1.

Thefirst step in the login process is to display the login prompt. When your
system is running and your workstation is on, the following login prompt
appears on your screen:

| ogi n:

On some systems, you may have to press the Return key a few times to
display the login prompt.

Your system’s login prompt screen may be somewhat different. For
example, in addition to the login prompt, the screen may display the system
name and the version number of the operating system.

To log in, perform the following steps:

1. Enter your username at the login prompt. If you make a mistake, use the
Delete key or Backspace key to correct it.

For example, if your usernameis larry, enter:
login: larry

The password prompt appears:

login: larry

Passwor d:

2. Enter your password. For security reasons, the password does not display
on the screen when you typeit.

If you think you made a mistake while typing your password, press the
Return key. |If your password is incorrect, the system displays a message
and prompts you to enter your username and password again.

After you enter your username and password correctly, the system
displays the shell prompt, usually a dollar sign ($) prompt or a percent
sign (%) prompt. Your system’s shell prompt may be different.

1-2 Getting Started

Note
In this book, the shell prompt display is adollar sign ($).

The shell prompt display tells you that your login is successful, and that the
system is ready to go to work for you. The shell prompt is your signal that
the shell is running. The shell is a program that interprets all commands you
enter, runs the programs you have asked for, and sends the results to your
screen. For more information about commands and the shell prompt, see
Section 1.3 and Chapter 7.

When you first log in, you are automatically placed in your login directory.
See Chapter 2 for information about your login directory.

If your system does not display the shell prompt, you are not logged in. You
may, for example, have entered your username or your password incorrectly.
Try to log in again. If you till cannot log in, see your system administrator.

Note

Y our system may not require you to have a password, or you
may have been assigned a password that is common to all new
users. To ensure security in these cases, set your own password.
For information on how to create or change a password, see
Section 1.5.

Many systems display a welcome message and announcements whenever
users log in. For example, the following is atypical login screen (your screen
may vary):

Wel come to the Operating System

Fri Dec 7 09:48:25 EDT 19nn

You have mail .
$

The preceding announcement contains the following pieces of information:
* A greseting
» The date and time of your last login

Note this information whenever you log in, and tell your system
administrator if you have not logged in at the time specified. A wrong
date and time might indicate that someone has been breaking into your
system.

* Whether you have mail messages waiting to be read

Briefly, mail is a program that allows you to send and receive electronic
mail. The system displays the message You have mai | when there are
mail messages for you that are waiting to be read. If you have no mail
messages, this line does not appear.

Getting Started 1-3

1.2 Logging Out

When you are ready to end your work session, log out of the system.
Logging out leaves the operating system running for other users and also
ensures that no one else can use your work environment.

To log out, perform the following steps:

1. Make sure that the shell prompt is displayed.

2. Press Ctrl/D. If Ctrl/D does not work, enter the exi t command.
The system displays the login prompt. On some systems, a message may
aso be displayed.

At this point, you or another user may log in.

1.3 Using Commands

Operating system commands are programs that perform tasks on the
operating system. The operating system has a large set of commands that are
described in the remaining chapters of this book and in the related reference

pages.

Entering a command is an interactive process. When you enter a command,
the shell interprets that command, and then gives an appropriate response —
that is, the system either runs the program or displays an error message.

A shdll reads every command you enter and directs the operating system to
do what is requested. Therefore, the shell is a command interpreter.

The shell acts as a command interpreter in the following way:
1. The shell displays a shell prompt and waits for you to enter a command.

2. You enter acommand, the shell analyzesit, and locates the requested
program.

3. The shell asks the system to run the program, or it returns an error
message.

4. When the program completes execution, control returns to the shell,
which again displays the prompt.

Figure 1-1 shows the relationship between the user, the shell, and the
operating system. The shell interacts with both the user to interpret
commands and with the operating system to request command execution.

1-4 Getting Started

Figure 1-1: Shell Interaction with the User and the Operating

System
o
] it
)
Command Interpreted
line command i
I
I
R
o
i
User types Shell interprets [
command command E pd

The Operating System
executes command

ZK-0530U-R

The operating system supports three different shells: the Korn, C, and Bourne
shells. Your system administrator determines which shell is active when you
log in for the first time. For more information about shells, see Chapter 7.

When using the operating system, enter commands at the shell prompt on the
command line. For example, to display today’s date and time, enter:

$ date

If you make a mistake while typing a command, use the Delete key or
Backspace key to erase the incorrect characters and then retype them.

An argument is a string of charactersthat follows a command name. An
argument specifies the data the command uses to complete its action. For
example, the man command gives you information about operating system
commands. To display complete information about the dat e command,
enter:

$ man date
Commands can have options that modify the way a command works. These
options are called flags and immediately follow the command name. Most

commands have severa flags. If you use flags with a command, arguments
follow the flags on the command line.

Getting Started 1-5

For example, suppose that you use the —f flag with the man command. This
flag displays a one-line description of a specified command. To display a
one-line description of the dat e command, you would enter:

$ man —f date

While a command is running, the system does not display the shell prompt
because the control passes to the program you are running. When the
command completes its action, the system displays the shell prompt again,
indicating that you can enter another command.

In addition to using the commands provided with the system, you can also
create your own personalized commands. Refer to Section 7.10.1 for
information about creating these special commands.

1.4 Stopping Command Execution

If you enter a command and then decide that you do not want it to complete
executing, enter Ctrl/C. The command call stops executing, and the system
displays the shell prompt. You can now enter another command.

Depending upon the command, partial completion of the command may have
varied results (referred to as an unknown state). To see the result of stopping
a command during execution, enter Ctrl/C after executing commands such as
I's -1 tolistfilesin adirectory or cat fi/l ename toview afile on the
screen.

1.5 Setting Your Password

Y our username is public information and generally does not change. Y our
password, on the other hand, is private.

In most instances, when your system account is established, the system
administrator assigns a password that is common to new users. After getting
familiar with the system, select your own password to protect your account
from unauthorized access. In addition, change your password periodically to
protect your data from unauthorized access.

To set your password, use the passwd command. If your account does not
have a password, use the passwd command to set one. For information on
passwd procedures, see Section 1.5.2.

1-6 Getting Started

1.5.1 Password Guidelines
The following guidelines are useful in selecting a password:

Do not choose a word found in a dictionary.

Do not use personal information as your password, or as a substring of it,
such as your username, names (yours, your family’s, your company’s),
initials, or the make or model of your car.

Do not use the default password you received with your account.

Do not use old passwords or the same prefix or suffix you used in
previous passwords. This rule also applies to any passwords you may
have used in previous jobs.

Do not choose a password that is easy to guess (includes al of the above
options) even if you reverse their spelling. Choose a password that is
hard to guess, not hard to remember.

Do not choose passwords shorter than six charactersin length. Y our
password can be up to eight characterslong. (Password length is
measured in bytes, rather than characters, but we can regard these terms
as the same, for now.)

Do not write your password on paper or place it in afile on the system.

If possible, use a mixture of uppercase and lowercase letters in your
password. You also should include any combination of numbers,
punctuation marks, or underscores (_) in your password.

Change your password frequently, especialy if you think it might have
been compromised.

On most systems, you can change your password as often or seldom as you
like. However, to protect system security, your system administrator may set
limits on how often you should change your password, the length of time
your password remains valid, or the nature of changes you can make. Some
typical password restrictions could be the following:

Character restrictions
— Minimum number of alphabetic characters
— Minimum number of other characters, such as punctuation or numbers

— Minimum number of charactersin a new password that must be
different from the old password

— Maximum number of consecutive duplicate characters allowed in a
password

Time restrictions
— Maximum number of weeks before your password expires

Getting Started 1-7

— Number of weeks before you can change a password

See your system administrator for more information about password
restrictions.

1.5.2 Password Procedures

To set or change your password, follow these steps:

1. Enter the passwd command:
$ passwd
The system displays the following message (identifying you as the user)
and prompts you for your old password:
Changi ng password for usernane
a d password:

If you do not have an old password, the system does not display this
prompt. Go to step 3.

2. Enter your old password. For security reasons, the system does not
display your password as you enter it.

After the system verifies your old password, it is ready to accept your
new password, and displays the following prompt:

New passwor d:

3. Enter your new password at the prompt. Remember that your new
password entry does not appear on the screen.

Finally, to verify the new password (since you cannot see it as you enter),
the system prompts you to enter the new password again:

Re- enter new password:

4. Enter your new password again. As before, the new password entry does
not appear on the screen. When the shell prompt returns to the screen,
your new password is in effect.

If you change your password and the new password does not conform to
password regulations, you receive a message stating the specific problem and
the restrictions in effect for the system.

1-8 Getting Started

Note

Try to remember your password because you cannot log in to the
system without it. If you forget your password, see your system
administrator.

1.6 Getting Help

Most operating system commands needed for your work are described in this
book. If you want to learn more about these and other commands, see the
reference pages. The reference pages are provided in three formats: online
(see Section 1.6.1), Bookreader (see Chapter 5 in the Installation Guide for
more information) and optionally in hard copy (see Related Documents in the
About This Book section of this document). When the hard copy documents
and Bookreader are unavailable, you can quickly access online command
documentation by using the following commands:

» The man command displays online reference pages.
* Theapr opos command displays a one line summary of each command
pertaining to a specified subject.

The following sections describe these features.

1.6.1 Displaying and Printing Online Reference Pages (man)

Online reference pages contain information about commands. To view a
reference page online, use the man command. For example, to view the
reference page for the dat e command, enter the following (your screen
display may vary):

$ man date

date(1) date(1)

NAME
date - Displays or sets the date

SYNOPSI S

Wt hout Superuser Authority
date [-u] [+field_descriptor ...]

Wth Superuser Authority
date [-nu] [Mwdhhmm ssyy | alternate_date_format] [+field_descriptor ..]

The date command wites the current date and time to standard output.
DESCRI PTI ON

The date command wites the current date and tinme to standard output if
--Mre--(7%

Getting Started 1-9

The symbol - - More-- (79 at the bottom of the page indicates that 7% of
the reference page is currently displayed. At this point, you can press the
Space bar to display the next screen of information, press the Return key to
display one more line of information, or enter q to quit and return to the shell
prompt.

Use the following command format to print a reference page:
man manpage| lpr —P printer_name

For example, to print the reference page for the dat e command on a specific
printer, enter:

man date | lpr printer_name

The reference page for the date command is now queued for printing on
printer_nanme. See Section 3.3 for more information about the | pr
command.

To display a brief, one-line description of a command, use the man —f
command. For example, to display a brief description of the who command,
enter:

$ man —f who
who (1) - ldentifies users currently |ogged in

For complete information on the man command and its options, you can
display the reference page by entering the following:

$ man nman

1.6.2 Locating Commands Using Descriptive Keywords

The apr opos command and the man —k command are useful tools if you
forget a command name.

Note

The apr opos and the man —k commands require access to the
what i s database. This database is available if your system
manager loaded the default what i s database when the operating
system was installed or created the database later using the

cat man command.

The apr opos and man —k commands perform the same function. These
commands allow you to enter a command description. The commands then
list all the commands that fit that description.

As shown in the exammple, if a command description contains more than
one word, the words must be enclosed in double quotes ("). If the

1-10 Getting Started

command description contains only one word, it is not necessary to enclose
the descriptive word in double quotes.

Assume that you cannot remember the name of the command that displays
who is logged on to the system. To display the names and descriptions of all
commands that have something to do with displaying users who are logged
in, enter one of the following:

$ apropos "logged in"
or
$ man —k "l ogged in"

The system displays:

rwho (1c) - who is logged in on | ocal machines
users (1) - print names of users who are |logged in
w (1) - display who is logged in and what they are doing
who (1) - identifies users currently | ogged in
Note

The numbers enclosed in parentheses refer to the section
numbers of the reference pages.

After using the apr opos or man —k commands, you now know that
several commands: rwho, user s, w, and who can be used to display the
users who are logged into the system.

Getting Started 1-11

Overview of Files and Directories 2

This chapter provides an introduction to files, file systems, and text editors.
A fileis a collection of data stored together in the computer. Typical files
contain memos, reports, correspondence, programs, or other data. A file
system is the useful arrangement of files into directories.

A text editor is aprogram that allows you to create new files and modify
existing ones.

After completing this chapter, you will be able to:

* Createfileswith the vi text editor. These files will be useful for working
through the examples later in this book.

» Understand the file system components and concepts.

This knowledge can help you design afile system that is appropriate for the
type of information you use and the way you work.

2.1 Overview of Text Editors

An editor is a program that alows you to create and change files containing
text, programs, or other data. An editor does not provide the formatting and
printing features of a word processor.

With atext editor, you can:

* Create, read, and write files

» Display and search for data

* Add, replace, and remove data

* Move and copy data

* Run operating system commands

Y our editing takes place in an edit buffer that you can save or discard.

Thevi and ed text editing programs are available on the operating system.
Each editor has its own methods of displaying text as well as its own set of
subcommands and rules.

For information about vi , read the next section and Appendix A. For
information about ed, see Appendix B.

Y our system may contain additional editors; see your system administrator
for details.

2.2 Creating Sample Files with the vi Text Editor
This section shows how to create three files with the vi text editor.

The goal of this section is to have you create, using a minimal set of
commands, files that can be used for working through the examples later in
this book. For more information about vi , see Appendix A and the vi (1)
reference page.

Note

If you are familiar with a different editing program, you can use
that program to create the three sample files described in this
section. If you have already created three files with an editing
program, you can use those files by substituting their names for
the filenames used in the examples.

When following the steps that are used to create the sample files, only enter
the text that is shown in boldface characters. System prompts and output are
shown in a different typeface, | i ke thi s.

To create three sample files, follow these steps:

1

Start the vi program by typing vi and the name of a new file at the shell
prompt. Press the Return key:

$ vi filelReturn:

Thisis a new file, so the system responds by putting your cursor at the
top of a screen:

LA S S B B

"filel" [New file]

Note the blank lines on your screen that begin with atilde (~). These
tildes indicate the lines that contain no text. Because you have not
entered any text, all lines begin with atilde.

To specify that you want to insert text to the new file, type the lowercase
letter i . The system does not display thei that you enter.

2-2 Overview of Files and Directories

Enter the following sample text, pressing the Return key after each line.
To correct mistakes before moving to the next line, press the Delete key
or the Backspace key to move backward over the mistake. Retype the text
correctly.

You start the vi program by entering Return

the vi conmmand optionally foll owed by the nane Return
of a new or existing file. Escape

| S S B

"filel" [New file]

. Toindicate that you have finished your current work, press the Escape
key and type a colon ().

Note

Depending upon how your terminal or workstation is set up,
the Escape key may be programmed to perform a different
function. It is possible that one of the function keys on your
keyboard may have been set up to perform the "escape”
function. See your system administrator if your Escape key
does not operate properly.

The colon is displayed as a prompt at the bottom of the screen as follows:

You start the vi program by entering
the vi command optionally foll owed by the name
of a new or existing file.

LA S S B

Next, enter a lowercase letter w. Entering the letter windicates to the
system that you want towr i t e, or save, a copy of the new file in your
current, user directory (see Chapter 4 for an explanation about your
current directory).

Overview of Files and Directories 2—3

Your screen will ook like this:

You start the vi program by entering
the vi conmand optionally foll owed by the name
of a new or existing file.

| S B B

"filel" [New file] 3 lines, 111 characters

The system displays the name of the new file as well as the number of
lines and charactersit contains.

The system is still in the vi text editor so you can create two more
sample files. The processis the same as the one you used to create
filel, but the text you enter will be different.

5. To create the second file, fi | €2, type acolon (). The colon is displayed
as a prompt at the bottom the screen. Enter vi fi | e2 to create your
second sample file.

The system responds with a screen that looks like this:

LA T B B R

"file2" No such file or directory

Themessagefil e2 No such file or directory indicatesthat
file2isanew file

6. Indicate that you want to insert text to the new file by typing the
lowercase letter i . Enter the following sample text:

If you have created a new file, you will find
that it is easy to add text.

7. Pressthe Escape key, type a colon (:), and enter the lowercase letter w to
write, or save, the file in your current directory.

2—-4 Overview of Files and Directories

Your screen will ook like this:

If you have created a new file, you will find
that it is easy to add text.

LA S S B B |

"file2" [New file] 2 lines, 75 characters

8. To create the third file, follow the instructions in step 5. However, name
thefilefi | €3, and enter the following sample text:

You will find that vi is a useful
editor that has many features.

9. Then, press the Escape key, type a colon (), and enter the wg command.

The wg command writes the file, quits (or exits) the editor, and returns
you to the shell prompt.

2.3 Understanding Files, Directories, and Pathnames

A fileis a collection of data stored in a computer. A file stored in a
computer is like a document stored in a filing cabinet because you can
retrieve it, open it, process it, close it, and store it as a unit. Every computer
file has a filename that both users and the system use to refer to the file.

A file system is the arrangement of files into a useful pattern. Any time you
organize information, you create something like a computer file system. For
example, the structure of a manual file system (file cabinets, file drawers, file
folders, and documents) resembles the structure of a computer file system.
(The software that manages the file storage is also known as the file system,
but that usage of the term does not occur in this chapter.)

Once you have organized your file system (manual or computer), you can
find a particular piece of information quickly because you understand the
structure of the system. To understand the file system, you should first
become familiar with the following three concepts:

¢ Files and filenames
e Directories and subdirectories
» Tree structures and pathnames

Overview of Files and Directories 2-5

2.3.1 Files and Filenames

A file can contain the text of a document, a computer program, records for a
general ledger, the numerical or statistical output of a computer program, or
other data

A file name can contain any character except the following because these
characters have special meaning to the shell:

o dash (/)

* backslash (\)

e ampersand (&)

» left- and right-angle brackets (< and >)
* question mark (?)

e dollar sign (%)

» left bracket ([)

o asterisk (*) or

» vertical bar or pipe symbol (])

You may use a period or dot (.) in the middle of afilename, but never at the
beginning of the filename unless you want the file to be "hidden" when doing
asimple listing of files. For information about characters with special
meanings to your shell, refer to the sections about metacharactersin Chapter
8. For information about listing hidden files, see Section 3.1.3.

Note

Unlike some operating systems, this operating system
distinguishes between uppercase and lowercase letters in
filenames (that is, it is case sensitive). For example, the
following three filenames represent three distinct files. fi | ea,
Fi | ea, and FI LEA.

Use filenames that reflect the actual contents of your files. For example, a
filename such as neno. advt might indicate that the file contains a memo
about advertising. On the other hand, filenames such asfi |l ea, fi |l eb, or
fil ec tell you nothing about the contents of that file.

It is also a good idea to use a consistent pattern to name related files. For
example, suppose you have an advertisting report that is divided into
chapters, with each chapter contained in a separate file. 'Y ou might name
these files in the following way:

chapl. advt
chap2. advt
chap3. advt

2—6 Overview of Files and Directories

2.3.2

2.3.3

The maximum length of a filename depends upon the file system used on
your operating system. For example, your file system may allow a maximum
filename length of 255 characters (the default), or it may allow a maximum
filename length of only 14 characters. Because knowing the maximum
filename length is important to name files with meaningful file names, see
your system administrator for details.

Directories and Subdirectories

Y ou can organize your files into groups and subgroups that resemble the
cabinets, drawers, and folders in a manual file system. These groups are
called directories, and the subgroups are called subdirectories. A well-
organized system of directories and subdirectories lets you retrieve and
manipulate the data in your files quickly.

Directories differ from files in two significant ways:
» Directories are organizational tools; files are storage places for data.
» Directories contain the names of files, other directories, or both.

When you first log in, the system automatically places you in your login
directory. This directory was created for you when your computer account
was established. However, a file system in which al files are arranged under
your login directory is not necessarily the most efficient method to organize
your files.

As you work with the system, you may want to set up additional directories
and subdirectories so you can organize your files into useful groups. For
example, assume that you work for the Sales department and are responsible
for four lines of automabiles. You may want to create a subdirectory under
your login directory for each automobile line. Each subdirectory can contain
all memos, reports, and sales figures applicable for the automaobile model.

Once your files are arranged into a directory structure that you find useful,
you can move easily between directories. See Chapter 4 for information
about creating directories and moving between them.

Displaying the Name of Your Current (Working) Directory
(pwd)

The directory in which you are working at any given time is your current, or
working directory.

Overview of Files and Directories 2—7

Whenever you are uncertain about the directory in which you are working or
where that directory exists in the file system, enter the pwd (print working
directory) command as follows:

$ pwd

The system displays the name of your current directory in the format:
[usr/ nmsg

This information indicates that you are currently working in a directory
named s g that is located under the usr directory.

The/ usr/ meg notation is known as the pathname of your working
directory. See the following section for information about pathnames.

2.3.4 The Tree-Structure File System and Pathnames

The files and directories in the file system are arranged hierarchically in a
structure that resembles an upside-down tree with the roots at the top and the
branches at the bottom. This arrangement is called atree structure. You can
find more detailed information about the directory structure in the hi er (5)
reference page.

Figure 2-1 shows atypica file system arranged in atree structure. The
names of directories are printed in bold, and the names of files are printed in
italics.

2—8 Overview of Files and Directories

Figure 2-1: A Typical Digital UNIX File System

/

bin user dev etc lib lost + found usrtmp

chang smith

plans report payroll

//\ /‘\ regular contract
1Q 20 3Q 4Q partl part2 part3 m %
N

5 1Q 2Q 3Q 4Q 1Q 20 30 4Q

ZK-0531U-R

1 At thetop of the file system shown in Figure 2-1 (that is, at the root of
the inverted tree structure) is a directory called ther oot directory. The
symbol that represents this first major division of the file system is a
slash (/).

2 At the next level down from the root of the file system are eight
directories, each with its own system of subdirectories and files. Figure
2-1, however, shows only the subdirectories under the directory named
user . These arethe login directories for the users of this system.

3 Thethird level down the tree structure contains the login directories for
two of the system’s users, sni t h and chang. It isin these directories
that sm t h and chang begin their work after logging in.

4 The fourth level of the figure shows three directories under the chang
login directory: pl ans, report, and payrol .

Overview of Files and Directories 2—9

5 Thefifth level of the tree structure contains both files and subdirectories.
The pl ans directory contains four files, one for each quarter. The
report directory contains three files comprising the three parts of a
report. Also on the fifth level are two subdirectories, r egul ar and
cont r act , which further organizes the information in the payr ol |
directory.

A higher level directory is frequently called a parent directory. For
example, in Figure 2-1, the directories pl ans, r eport, and payr ol | all
have chang as their parent directory.

A pathname specifies the location of a directory or afile within the file
system. For example, when you want to change from working on File A in
Directory X to File B in Directory Y, you enter the pathname to File B. The
operating system then uses this pathname to search through the file system
until it locates File B.

A pathname consists of a sequence of directory names separated by slashes
(/) that ends with a directory name or afilename. Thefirst elementin a
pathname specifies where the system is to begin searching, and the fina
element specifies the target of the search. The following pathname is based
on Figure 2-1:

/user/chang/ report/part3

Thefirst dash (/) represents the root directory and indicates the starting
place for the search. The remainder of the pathname indicates that the search
isto go to the user directory, then to the chang directory, next to the
report directory, and finaly to the part 3 file.

Whether you are changing your current directory, sending data to afile, or
copying or moving afile from one place in your file system to another, you
use pathnames to indicate the objects you want to manipulate.

A pathname that starts with adash (/) (the symbol representing the root
directory) is called a full pathname or an absolute pathname. You can also
think of afull pathname as the complete name of afile or a directory.
Regardless of where you are working in the file system, you can aways find
afile or adirectory by specifying its full pathname.

The file system also lets you use relative pathnames. Relative pathnames
do not begin with the / / that represents the root directory because they are
relative to the current directory.

Y ou can specify arelative pathname in one of several ways:
» Asthe name of afilein the current directory.

» Asapathname that begins with the name of a directory one level below
your current directory.

2—-10 Overview of Files and Directories

* Asapathname that beginswith . . (dot dot, the relative pathname for
the parent directory).

* Asapathname that begins with . (dot, which refersto the current
directory). This relative pathname notation is useful when you want to
run your own version of an operating system command in the current
directory (for example./ls).

Every directory contains at least two entries: . . (dot dot), and . (dot,
which refers to the current directory).

In Figure 2-2, for example, if your current directory is chang, the relative
pathname for the file 1Qin the cont r act directory is

payrol I / contract/1Q By comparing this relative pathname with the
full pathname for the same file,

/user/ chang/ payrol | / contract/ 1Q you can see that using relative
pathnames means less typing and more convenience.

Overview of Files and Directories 2—-11

Figure 2-2: Relative and Full Pathnames

bin user dev etc lib lost+ found usrtmp

chang smith

-
-
-
~

plans report payroll "
\\\
Ny
U
regular contract

1Q 20 30 4Q partl part2 part3 /,
4
l,/

1Q 20 30 4Q 1Q 20 30 4Q

——————— = Relative pathname
= Full pathname

ZK-0532U-R

In the C shell and the Korn shell, you may also use atilde (~) at the
beginning of relative pathnames. The tilde character specifies a user’s login
(home) directory.

For example, to specify your own login directory, use the tilde alone. To
specify the login directory of user chang, specify ~chang.

For more information on using relative pathnames, see Chapter 4.

2—-12 Overview of Files and Directories

Note

If there are other users on your system, you may or may not be
able to get to their files and directories, depending upon the
permissions set for them. For more information about file and
directory permissions, see Chapter 5. In addition, your system
may contain enhanced security features that may affect access to
files and directories. If so, see your system administrator for
details.

2.4 Specifying Files with Pattern Matching

Commands often take filenames as arguments. To use several different
filenames as arguments to a command, you can type out the full name of
each file, as the following example shows:

$1s filel file2 file3

However, if the filenames have a common pattern (in this example, thefi | e
prefix), the shell can match that pattern, generate a list of those names, and
automatically pass them to the command as arguments.

The asterisk (*), sometimes referred to as a wildcard, matches any string of
characters. In the following example, thel s command finds the name of
every text file in the current directory that includesthefi | e prefix:

$1s file*

Thefi | e* matches any filename that begins with f i | e and ends with any
other character string. The shell passes every filename that matches this
pattern as an argument for the | s command.

Thus, you do not have to enter (or even remember) the full name of each file
in order to use it as an argument. Both commands (I s with al filenames
typedoutand | s fil e*) do the same thing — they pass al files with the
fil e prefix in the directory as argumentsto the | s command.

There is one exception to the genera rules for pattern matching. When the
first character of a filename is a period, you must match the period explicitly.
For example, | s * displays the names of all filesin the current directory
that do not begin with a period. The command | s —a displays al filenames
that begin with a period.

This restriction prevents the shell from automatically matching the relative
directory names. Theseare. (called dot, standing for the current directory)
and .. (caled dot dot, standing for the parent directory). For more
information on relative directory names, see Chapter 4.

If a pattern does not match any filenames, the shell displays a message
informing you that no match has been found.

Overview of Files and Directories 2—13

In addition to the asterisk (*), operating system shells provide other ways to
match character patterns. The following list summarizes all pattern-matching
characters and provides examples.

Character Action

* Matches any string, including the null string.
For example, t h* matchest h, t heodor e, and
t her esa.

? Matches any single character.

For example, 304?b matches 304Th, 3045b, 304Bb,
or any other string that begins with 304, ends with b,
and has one character in between.

[--] Matches any one of the enclosed characters.

For example, [AGX] * matches all filenamesin the
current directory that begin with A, G, or X.

[-] Matches any character that falls within the specified
range, as defined by the current locale. For more
information on locale, see Appendix C.

For example, [T- W * matches all filenamesin the
current directory that begin with T, U, V, or W

[r..] Matches any single character except one of those
enclosed.

For example, [! abyz] * matches all filenamesin the
current directory that begin with any character except a,
b,y,orz.

This pattern matching is available only in the Bourne and
Korn shells.

Because this operating system is an internationalized operating system, it
provides the following additional pattern-matching features:

Character Action

[[:cl ass]] A character class name enclosed in bracket-colon
delimiters matches any of the set of charactersin the
named class.

The supported classes are al pha, upper, | ower,
di git,al numxdigit, space, print, punct,
graph,andcntrl .

For example, the al pha character class name specifies
that you want to match any alphabetic character

2—-14 Overview of Files and Directories

[[=char=]*]

(uppercase and lowercase) as defined by the current
locale. If you are running an American-based locale,
al pha matches any character in the alphabet (A-Z, a2z).

A character enclosed in bracket-equal delimiters matches
any equivalence class character.

An equivalence class is a set of collating elements that all
sort to the same primary location. 1t is generally
designed to deal with primary-secondary sorting; that is,
for languages such as French that define groups of
characters as sorting to the same primary location, and
then having atie-breaking, secondary sort.

For more information on internationalized pattern-matching characters, see
the gr ep(1) reference page. For more information on the operating system’s
internationalization features, see Appendix C.

Overview of Files and Directories 2—15

Managing Files 3

This chapter describes how to manage files on your system. After completing
this chapter, you will be able to:

» Listfiles
» Display and print files
* Link files

» Copy, rename, and move files
e Compare and sort files

* Remove files from the system
» Determine file type

To learn about managing files, follow the examples in this chapter. Do each
example in order so that the information on your screen is consistent with the
information in this book.

Before you can work through the examples, you must be logged in and your
login directory must contain the following three files created in Chapter 2:
filel,file2,andfil e3. To produce alisting of the files in your login
directory, enter thel s command, which is explained in the following
section. If you are using files with different names, make the appropriate
substitutions as you work through the examples.

In the following examples, when you are asked to return to your login
directory, enter the cd (change directory) command as follows:

$ cd
$

In the preceding example, the dollar sign ($) represents the shell prompt.
Your shell prompt may vary.

In addition, before working on the examples in this chapter, create a
subdirectory called pr oj ect inyour login directory. To do so, enter the
following mkdi r (make directory) command from your login directory:

$ nkdir project

$

For more information on the cd and nkdi r commands, see Section 4.2 and
Section 4.1 respectively.

3.1 Listing Files (Is)

3.1.1

You can display alisting of the contents of one or more directories with the
| s (list directory) command. This command produces a list of the files and
subdirectories (if any) in your current directory. You can also display other
types of information, such as the contents of directories other than your
current directory.

The format of thel s command is:

Is

Thel s command has a number of options, called flags that enable you to
display different types of information about the contents of a directory. Refer
to Section 3.1.3 for information about these flags.

Listing Contents of the Current Directory

To list the contents of your current directory, enter:

$1s

Used without flags in this format, the | s command lists the names of the
files and directories in your current directory:

$1s
filel file2 file3 pr oj ect
$

You may aso list portions of your current directory’s contents by using the
command format:

Is filename
The fi | enane entry can be the name of the file or alist of filenames

separated by spaces. You may also use pattern-matching characters to specify
files. See Chapter 2 for information on pattern matching.

3-2 Managing Files

3.1.2

3.1.3

For example, to list the files whose names begin with the charactersfi | e,
you would enter the following command:
$1s file*

filel file2 file3
$

Listing Contents of Other Directories

To display alisting of the contents of a directory other than your current
directory, use the following format:

Is dirname

The di r nane entry is the pathname of the directory whose contents you
want to display.

In the following example, the current directory is your login directory, and
you want to display the/ user s directory. Your system may contain another
directory with a name similar to the / user s directory. The name of the

[user s directory is preceded by a dlash (/), which indicates that the system
should begin searching from the root directory.

$|s /users

any beth chang george jerry larry
mar k noni que ron
$

The | s command lists directory and filenames in collated order as
determined by the current locale. For more information about locales (as
used with internationalization), see Appendix C.

Flags Used with the Is Command

Inits simplest form, the | s command displays only the names of files and
directories contained in the specified directory. However, | s has severa
flags that provide additional information about the listed items or change the
way in which the system displays the listing.

When you want to include flags with the | s command, use the following
format:

Is —flagname(s)
The - fl agnane(s) entry specifies one or more flags (options) that you are
using with the command. For example, the —I flag produces a long listing

of the directory contents. Note also that all | s flags are preceded by the dash
character (-).

Managing Files 3-3

If you want to use multiple flags with the command, enter the flag names
together in one string:

$1s -lta
Table 3-1 lists some of the most useful | s command flags.

Table 3-1: Thels Command Options

Flag Action

—I Listsin long format. An—I listing provides the type,
permissions, number of links, owner, group, size, and time of last
maodification for each file or directory listed.

-t Sorts the files and directories by the time they were last modified
(latest first), rather than collated by name.

—r Reverses the order of the sort to get reverse collated order (I s
—r), orreversetimeorder (Is —tr).

-a Lists all entries including "hidden files'. Without this flag, the | s

command does not list the names of entries that begin with a dot
(),suchas. profile,.login,and relative pathnames.

The following example shows along (-1) listing of a current directory. The
namel ar ry shows the owner of the files. Your username and group name
will replacel arry and syst emon the screen.

$ s -l
total 4
Srwr--r-- 1
SrwWr--r-- 1
SrwWr--r-- 1
drwxr-xr-x 2

larry system 101 Jun 5 10:03 filel
larry system 75 Jun 5 10:03 file2
larry system 65 Jun 5 10:06 file3
larry system 32 Jun 5 10: 07 project

$
Table 3-2 explains the information displayed on your screen after you enter
thel s —I command.

3—-4 Managing Files

Table 3-2: Thels —| Command Information

Field Information

total 4 Number of 512-byte blocks taken up by files in this directory.

dr wxr - xr - x File type and permissions set for each file or directory. The
first character in this field indicates file type:
— (dash) for ordinary files
b for block-special files
¢ for character-special files
d for directories
| for symbolic links
p for pipe-specia files (first in, first out)
s for local sockets
The remaining characters indicate what read (r), write (w),
and execute (X) permissions are set for the owner, group, and
others. In addition, other permission information may also be

displayed.2
1 Number of links to each file.P
larry Username of the file's owner.
system Group to which the file belongs.
101 Number of bytesin the file.

Jun 5 10: 03 Date and time the file was created or last modified in the
format defined by your current locale.

filel Name of the file or directory.

Table notes:

a. For more information on permissions, see Chapter 5.

b. For an explanation of file links, see Section 3.4.

There are other | s command flags that you may find useful as you gain

experience with the operating system. For detailed information about the | s
command flags, see the | s(1) reference page.

3.2 Displaying Files

You can view any text file stored on your system with atext editor.
However, if you want to just look at a file without making any changes, you
may view it (with or without screen formatting) using a variety of operating
system commands. The following sections describe these commands.

Managing Files 3-5

3.2.1 Displaying Files Without Formatting (pg, more, cat)

The following commands display afile just asit is, without adding any
specia characteristics that govern the appearance of the contents:

* P9
+ cat
* nore

For information on displaying files with formatting, see Section 3.2.2.
To display afile without formatting, the general format is:

command filename

The conmand entry is one of the following command names: pg, nor e, or
cat. The fil enane entry can be the name of one file, or a series of
filenames separated by spaces. Y ou may also use pattern-matching characters
to specify your files. See Chapter 2 for information on using pattern-
matching characters.

The pg command allows you to view one or more files. In the following
example, the pg command displays the contents of fi | el in your login
directory:

$ pg filel

You start the vi program by entering

the command vi, optionally followed by the nane

of a new or existing file.
$

To view the contents of bothfi | el and fi | e2, enter both file names on
the command line. When you display files that contain more lines than will
fit on the screen, the pg command pauses as it displays each screen. To
view the next screen of information in afile, press the Return key until you
reach the end of the current file. When you press the Return key at the end
of the current file, the start of the next file is displayed. The pg command
always displays multiple files in the order in which you listed them on the
command line. In the example shown below, (EOF) : (end of file) means
that you are at the end of the current file.

$ pg filel file2You start the vi programby entering

the command vi, optionally followed by the nanme

of a new or existing file.

(EOF) : Return

(Next file: file2) Retun

If you have created a new file, you will find

that it is easy to add text.

(ECF) : Return

$

3-6 Managing Files

3.2.2

AttheNext file: filenane prompt, you can enter the —n option to go
back to the previous file instead of displaying the next file.

When you display files that contain more lines than will fit on the screen, the
pg command pauses as it displays each screen. To see the next screen of
information in afile, press the Return key.

The nor e command also alows you to enter multiple file names on the
command line and is very much like the pg command in the way that it
handles long files. If the file(s) contains more lines than can fit on your
screen, nor e pauses and displays a message telling you what percentage of
the file you have viewed thus far. At this point, you can do one of the
following:

» Press the Space bar to display the remainder of the file a page at atime

* Pressthe Return key to display one line at atime

* Typeq to quit viewing the file(s)

The cat command aso displays text. However, it is less useful for viewing
long files because it does not paginate files. When viewing afile that is
larger than one screen, the contents will display too quickly to be read. When
this happens, press Ctrl/S to halt the display. Y ou can then read the text.
When you want to display the remainder of the file, press Ctrl/Q. Because

cat isnot useful for viewing long files, you may prefer using the pg or
nmor e command in these cases.

The pg, nor e, and cat commands all have additional options that you may
find useful. For more information, refer to the reference pages for these
commands.

Displaying Files with Formatting (pr)

Formatting is the process of controlling the way the contents of your files
appear when you display or print them. The pr command displays afilein a
simple but useful style.

Note

The pr command does not interpret any text formatting macros
that may reside in your file. The pr command does not format
files the sameway asnrof f ortrof f, for example.

To display a file with simple formatting, the format of the command is:

pr filename

The fi | enane entry can be the name of the file, the relative pathname of
the file, the full pathname of the file, or alist of filenames separated by

Managing Files 3—-7

spaces. The format you use depends on where the file is located in relation
to your current directory. You may also use pattern-matching characters to
specify files. See Chapter 2 for information on pattern matching.

Used without any options, the pr command does the following:
» Divides the contents of the file into pages

» Puts the date, time, page number, and filename in a heading at the top of
each page

* Leavesfive blank lines at the end of the page

When you use the pr command to display afile, its contents may scroll off
your screen too quickly for you to read them. When this happens, you can
view the formatted file by using the pr command along with the nor e
command. The nor e command instructs the system to pause at the end of
each screenful of text.

For example, to display along file called r eport so that it pauses when the
screen is full, enter the following command:

$ pr report nore

When the system pauses at the first screen of text, press the Space bar to
display the next screen. The previous command uses the pipe symbol (]) to
take the output from the pr command and use it as input to the nor e
command. For more information on pipes, see Section 7.4.2.

Sometimes you may prefer to display afile in a more sophisticated format.
Y ou can use a humber of flags in the command format to specify additional
formatting features. Table 3-3 explains several of these flags.

Table 3-3: The pr Command Flags

Flag Action
+page Begins formatting on page number page. Otherwise, formatting
begins on page 1.

For example, thepr +2 fil el command starts formatting
filel onpage?2.

—col um Formats page into columns. Otherwise, pr formats pages with
one column.

For example, thepr -2 fil el command formatsfil el into
two columns.

3-8 Managing Files

Table 3-3:

Flag

—m

—wnum

—onum

-l num

—h string

(continued)

Action

Formats all specified files at the same time, side-by-side, one per
column.

For example, thepr —m fil el fil e2 command displays the
contents of fi | el in the left column, and that of fi | e2 inthe
right column.

Formats double-spaced output. Otherwise, output is single-spaced.

For example, thepr —d fil el command displaysfil el in
double-spaced format.

Uses a formfeed character to advance to a new page. (Otherwise,
pr issues a sequence of linefeed characters.) Pauses before
beginning the first page if the standard output is a terminal.

Uses a formfeed character to advance to a new page. (Otherwise,
issues a sequence of linefeed characters.) Does not pause before
beginning the first page if the standard output is aterminal.

Sets line width to numcolumns. Otherwise, line width is 72
columns.

For example, thepr —w40 fi | el command sets the line
length of fi | el to 40 columns.

Offsets (indents) each line by numcolumn positions. Otherwise,
offset is 0 (zero) column positions.

For example, the pr —05 fil el command indents each line of
filel five spaces.

Sets page length to numlines. Otherwise, page length is 66 lines.

For example, thepr —130 fi |l el command sets the page
length of fi | el to 130 lines.

Uses the specified string of characters, rather than the filename, in
the header (title) that is displayed at the top of every page. If

st ri ng includes blanks or special characters, it must be
enclosedin’ ' (single quotes).

For example, thepr —h ' My Novel’
specifies **My Novel’’ as the title.

Prevents pr from formatting headings and the blank lines at the
end of each page.

fil el command

For example, thepr —t fil el command specifiesthat fil el
be formatted without headings and blank lines at the end of each

page.

Managing Files 3-9

Table 3-3: (continued)

Flag Action
—schar Separates columns with the character char rather than with blank
spaces. You must enclose special charactersin single quotes.

For example, thepr —s’ *’ fil el command specifies that
asterisks separate columns.

Y ou can use more than one flag at a time with the pr command. In the
following example, you instruct pr to format fi | el with these
characteristics:

» With double spacing (d)
» With thetitle "My Novel" rather than the name of the file
$ pr —dh 'MWy Novel’ filel

For detailed information about pr and its flags, refer to the pr (1) reference
page.

3.3 Printing Files (Ipr, Ipq, Iprm)

Usethe |l pr command to send one or more files to the system printer. The

| pr command actually placesfilesin aprint queue, which is alist of files
waiting to be printed. Once the | pr command places your files in the queue,
you can continue to do other work on your system while you wait for the
files to print.

The general format of the |l pr command is:

Ipr filename

The fi | enane entry can be the name of the file, the relative pathname of
the file, the full pathname of the file, or alist of filenames separated by
spaces. The format you use depends on where the file is located in relation

to your current directory. You may also use pattern-matching characters to
specify files. See Chapter 2 for information on pattern matching.

If your system has more than one printer, use the following format to specify
where you want the file to print:

Ipr —P printername filename

3-10 Managing Files

The —P flag indicates that you want to specify a printer. The pri nt er nanme
entry is the name of a printer. Printers often have names such as| p0, | p1,
and | pn. Ask your system administrator for the printer names at your
facility.

If your system has more than one printer, one of them is the default printer.
When you do not enter a specific pri nt er name, your print request goes to
the default printer.

The following example shows how to use the| pr command to print one or
more files on a printer named | pO:

$ Ipr —PIp0 filel
$lpr —Plp0 file2 file3
$

Thefirst | pr command sendsfi | el to thel pO printer and then displays
the shell prompt: adollar sign ($). The second | pr command sendsfi | e2
and f i | e3 to the same print queue, and then displays the shell prompt
before the files finish printing.

Severa | pr command flags enable you to control the way in which your file
prints. Following is the general format for using a flag with this command:

Ipr flag filename

Table 3-4 explains some of the most useful | pr command flags.
Table 3-4: The Ipr Command Flags

Flag Action

—#num Prints numcopies of the file. Otherwise, | pr prints one copy.
For example, thel pr —#2 fil el command prints two
copiesof fil el.

—wnum Sets line width to numcolumns. Otherwise, line width is 72
columns. For example, thel pr —w40 fil el command
printsf i | el with lines that are 40 columns long.

—i num Offsets (indents) each line by numspace positions. Otherwise,
offset is 8 spaces. For example, thel pr —i 5 filel
command printsf i | el with lines that are indented five
spaces.

-p Formats the file using pr as afilter.

Managing Files 3-11

Table 3-4: (continued)

Flag Action

—T ’"string’ Usesthe specified string of characters, rather than the
filename, in the header used by pr. Requires the —p option.
If the string includes blanks or special characters, it must be
enclosedin’ ' (single quotes). For example, thel pr —p
-T My Novel’ fil el command specifies‘‘My Novel”
asthe title.

—m Sends mail when the file completes printing. For example, the
command | pr —m fi | el specifies that you want mail to be
sent to you oncefi | el prints.

Once you have entered the | pr command, your print request is entered into
the print queue.

To see the position of the request in the print queue, use the | pg command.
To look at the print queue, enter:
$ I'pq

If your request has already been printed, or if there are no requests in the
print queue, the system responds with the following message:

no entries

If there are entries in the print queue, the system lists them and indicates
which request is currently being printed. Following is atypical listing of
print queue entries (your listing will vary):

Rank Onner Job Files Total Size
active marilyn 489 report 8470 bytes
1st sue 135 letter 5444 bytes
2nd j uan 360 (standard input) 969 bytes

3rd larry 490 travel 1492 bytes

The | pgcommand displays the following for each print queue entry:
* Itspriority

* |tsowner

* Itsjob number

* Name of thefile

» Sizeof thefilein bytes

For example, Marilyn’s report (job number 489) is currently being printed,
and the requests of Sue, Juan, and Larry are pending.

3-12 Managing Files

When you print files, the position of the request in the queue as well as its
size may help you estimate when your request may be finished. Generally,
the higher the priority number in the queue and the larger the print request,
the more time it will take.

If your system has more than one printer, use the following format to specify
which print queue you want to see:

Ipq —P printername filename

The —P flag indicates that you want to specify a print queue. The
pri nt er name entry is the name of a particular printer. Usethel pst at
—s command to learn the names of al the printers.

If you decide not to print your request, you can delete it from the print queue
by using the | pr mcommand. The general format of the | pr mcommand is
the following:

Iprm jobnumber

Thej obnunber entry specifies the job number that the system has assigned
to your print request. Y ou can see the job number by entering the | pq
command.

For example, if Larry wants to cancel his print request, he can enter:

$ I prm 490
$

Thetravel filewill be removed from the print queue.

3.4 Linking Files (In)

A |1 nk is aconnection between a filename and the file itself. Usually, afile
has one link — a connection to its origina filename. However, you can use
thel n (link) command to connect a file to more than one filename at the
same time.

Links are convenient whenever you need to work with the same data in more
than one place. For example, suppose you have a file containing assembly-
line production statistics. You use the data in this file in two different
documents — in a monthly report prepared for management, and in a monthly
synopsis prepared for the line workers.

You can link the statistics file to two different filenames, for example,

mgm . stat and | i ne. st at, and place these filenames in two different
directories. In this way, you save storage space because you have only one
copy of the file. More importantly, you do not have to update multiple files.
Because ngnt . st at and | i ne. st at arelinked, editing one automatically
updates the other, and both filenames always refer to the same data.

Managing Files 3-13

3.4.1 Hard Links and Soft Links

There are two kinds of links available for your use: hard links and soft
(symboalic) links.

* Hard links alow you to link only files in the same file system. When
you create a hard link, you are providing another name for the same file.
All the hard link names for afile, including the original hame, are on
equal footing. It isincorrect to think of one filename as the real name,
and another as only alink.

» Soft links or symbolic links allow you to link both files and directories.
In addition, you may link both files and directories across different file
systems. A symbolic link is actually a distinct file that contains a pointer
to another file or directory. This pointer is the pathname to the
destination file or directory. Only the original filename is the real name
of thefile or directory. Unlike a hard link, a soft link is actually only a
link.

With both hard and soft links, changes made to a file through one name
appear in the file as seen through another name.

A major difference between hard and soft links occurs when removing them.
A file with hard-linked names persists until al its names have been removed.
A file with soft-linked names vanishes when its origina name has been
removed; any remaining soft links then point to a nonexistent file. See
Section 3.4.5.

3.4.2 Links and File Systems

The term file system as used in this discussion of links differs from its earlier
usage in this book. Previoudly, afile system was defined as a useful
arrangement of files into a directory structure. Here, the same term acquires
amore precise meaning: the files and directories contained within a single
disk partition. A disk partition is a physical disk, or a portion of one, that
has been prepared to contain file directories.

You can use the df command to discover the name of the disk partition that
holds any particular directory on your operating system. Hereis an example
in which df shows that the directories/ ul/ i nf o and/ et c arein different
file systems, but that / et ¢ and / t np are in the same file system:

3-14 Managing Files

3.4.3

$ df /ul/info

Fi | esystem 512- bl ks used avail capacity Mounted on
/dev/rz2c 196990 163124 14166 92% /ul

$ df /etc

Fi | esystem 512- bl ks used avail capacity Mounted on
/dev/rz3a 30686 19252 8364 70% /

$ df /tnp

Fi | esystem 512- bl ks used avail capacity Mounted on
/dev/rz3a 30686 19252 8364 70% /

$

Using Links

To link files in the same file system, use the following command format:
In /dirnamel/filenamel /dirnameZ/filename2

The/di rnamel/ fil enanel entry is the pathname of an existing file.
The/di rnanme2/ fil enaneZ2 entry is the pathname of a new filename to
be linked to the existing / di r nanel/fi | enanel. Thedi rnanel and
di r name2 arguments are optional if you are linking files in the same
directory.

If you want to link files and directories across file systems, you can create
symbolic links. To create a symbolic link, add an —s flag to thel n
command sequence and specify the full pathnames of both files. Thel n
command for symbolic links takes the following form:

In —s /dirnamel/filenamel /dirnameZ2/filename2

The/di rnanel/fil enanel entry is the pathname of an existing file.
The/ di rnanme2/fil enanme2 entry is a pathname of a new filenamein a
different file system.

In the following example, the | n command links the new filename
checkfi | e to the existing file named f i | e3:

$Infile3 checkfile
$

Now use the nor e command to verify that f i | e3 and checkfi | e aretwo
names for the same file:

$ nore file3

Managing Files 3-15

3.4.4

The system displays the following:

You will find that vi is a useful
editor that has nmany features.
$

Now display the text of checkfi | e:

$ nore checkfile

You will find that vi is a useful
editor that has nany features.

$

Notice that both f i | e3 and checkf i | e contain the same information.

Any change that you make to the file under one name will show up when
you access the file by its other name. Updating fi | €3, for example, will
also update checkfi | e.

If your two files were located in directories that are in two different file
systems, you need to create a symbolic link between them. For example, to
link afile called newfi | e that isinthe/ r eport s directory to thefile
calednt gfi | e inthe/ summary directory, you can create a symbolic link
by using the following:

$1In —s /reports/newfile /summary/ntgfile

$

The information in both files is till updated in the same manner as
previously explained.

How Links Work — Understanding Filenames and i-numbers

Each file has a unique identification number, called an i-number. Thei-
number refers to the file itself — data stored at a particular location — rather
than to the filename. The i-number distinguishes the file from other files
within the same file system.

A directory entry is alink between an i-number that represents a physical file
and afilename. It is this relationship between files and filenames that enables
you to link multiple filenames to the same physical file — that is, to the same
i-number.

To display the i-numbers of filesin your current directory, usethel s
command with the —i (print i-number) flag in the following format:

Is —i

3-16 Managing Files

3.4.5

Examine the identification numbers of the files in your login directory. The
number preceding each filename in the listing is the i-number for that file.
$1s —i

1079 checkfile 1077 filel 1078 file2 1079 file3

$

The i-numbers in your listing will differ from those shown in this example.
However, the important thing to note is the identical i-numbersfor fi | e3
and checkfi | e, the two files linked in the previous example. In this case,
the i-number is 1079.

Because an i-number represents a file within a particular filesystem, hard
links cannot exist between separate file systems.

The situation is entirely different with symbolic links, where the link
becomes a new file with its own, new i-number. The symboalic link is not
another filename on the original file's i-number, but instead is a separate file
with its own i-number. Because the symbolic link refersto the original file
by name, rather than by i-number, symbolic links work correctly between
separate file systems.

Removing Links

The r m(remove file) command does not always remove afile. For example,
suppose that afileis linked to more than one filename; that is, several names
refer to the same i-number. In this case, the r mcommand removes the link
between the i-number and that filename, but leaves the physical file intact.
The r mcommand actually removes a physical file only after it has removed
the last link between that file and a filename, as shown in Figure 3-1. When
a symbolic link is removed, the filename specifying the pointer to the
destination file or directory is removed.

For detailed information about the r mcommand, refer to Section 3.9.

Managing Files 3-17

Figure 3-1: Removing Links and Files

File — hame2

namel —» rm namel

File —name2

———» rm name?2

ZK-0533U-R

To display both the i-numbers and the number of filenames linked to a
particular i-number, use the | s command with the—i (print i-number) and
the —I (long listing) flags in the following format:

Is il

Examine the links in your login directory. Remember that the i-numbers
displayed on your screen will differ from those shown in the example and
that your username and your group’s name will replacethel arry and
syst ementries.

$1s il

total 3

1079 -rwr--r-- 2 larry system 65 Jun 5 10:06 checkfile
1077 -rwr--r-- 1 larry system 101 Jun 5 10:03 filel
1078 -rwr--r-- 1 larry system 75 Jun 5 10:03 file2
1079 -rwr--r-- 2 larry system 65 Jun 5 10:06 file3
1080 drwxr-xr-x 2 larry system 32 Jun 5 10:07 project

$

Again, the first number in each entry shows the i-number for that filename.
The second element in each line shows the file permissions, described in
detail in Chapter 5.

3-18 Managing Files

The third field for each entry, the number to the left of the username,
represents the number of links to that i-number. Noticethat fi | e3 and
checkf i | e have the same i-number, 1079, and that both show two links.
Each time the r mcommand removes a filename, it reduces the number of
links to that i-number by one.

In the following example, use the r mcommand to remove the filename
checkfile.

$ rmcheckfile
$

List the contents of the directory withthel s —i | command. Notice that
the r mcommand has reduced the number of links to i-number 1079, which is
the same i-number to which f i | e3 islinked, by one.

$1s —il

total 3

1077 -rwr--r-- 1 larry system 101 Jun 5 10:03 filel
1078 -rwr--r-- 1 larry system 75 Jun 5 10:03 file2
1079 -rwr--r-- 1 larry system 65 Jun 5 10:06 file3
1080 drwxr-xr-x 2 larry system 32 Jun 5 10: 07 project
$

3.5 Copying Files (cp)

This section provides information about how to copy files on alocal system.
For information about copying files to and from remote systems see Chapter
12 and Chapter 14.

The cp (copy) command copies a file from one filename to another filename
in your current directory or copies the file from one directory to another
directory.

The cp command is especially useful to make backup copies of important
files. Because the backup and the origina are two distinct files, you can
make changes to the original while till maintaining an unchanged copy in
the backup file. Thisis helpful in case something happens to the origina
version. Also, if you decide you do not want to save your most recent
changes to the origina file, you can begin again with the backup file.

Compare the cp command, which actually copies files, with the | n
command, which creates multiple names for the same file. Section 3.4
explains the | n command in detail. Refer also to the cp(l) and | n(1)
reference pages.

The format of the cp command is:
cp source destination

Managing Files 3—-19

3.5.1

The sour ce entry is the name of the file to be copied. The dest i nati on
entry is the name of the file to which you want to copy sour ce. The

sour ce and dest i nat i on entries can be filenames in your current
directory or pathnames to different directories. This statement is true when
you are copying files from one directory to another. To copy the contents of
an entire directory to another directory (recursively, using the - r option), see
Section 4.4.

To copy files to a different directory, use the general format of the cp
command. In this case, sour ce is aseries of one or more filenames and
dest i nat i on is apathname that ends with the name of the target
directory. In the sour ce entry you may also use pattern-matching
characters.

Copying Files in the Current Directory

The cp command creates the destination file if it does not already exist.
However, if afile with the same name as the destination file does exist, cp
copies the source file over the existing destination file.

Caution

If the destination file exists, your shell may alow the cp
command to erase the contents of that file before it copies the
source file. As aresult, be certain that you do not need the
contents of the destination file, or that you have a backup copy
of the file, before you use it as the destination file for the cp
command. If you use the C shell, see Table 8-6 for the

nocl obber variable that can be set to prevent the erasure of
the destination file.

In the following example, the destination file does not exist, so the cp
command createsit. Firgt, list the contents of your login directory:

$1s
filel file2 file3 pr oj ect
$

Copy the sourcefile, fi | €2, into the new destination file, fi | e2x:

$cpfile2 file2x
$

3-20 Managing Files

3.5.2

List the contents of the directory to verify that the copying process was
successful:
$1s

filel file2 file2x file3 pr oj ect
$

Copying Files into Other Directories

Y ou need a subdirectory to work through the following example, so create
one caled r eport s with the mkdi r command:

$ nkdir reports
$

Tocopy thefi |l e2 fileinto ther eport s directory, enter:

$ cp file2 reports
$

List the contents of r epor t s to verify that it containsa copy of fi | e2:

$ Is reports
file2
$

Y ou can also use the cp command to copy multiple files from one directory
into another directory. The format of the command is:

cp filenamel filename2 dirname

In the following example, enter the cp command to copy both fi | e2 and
fil el intothereports directory, and then list the contents of that
directory:

$cpfile2 file3 reports

$ Is reports

file2 file3

$

In the above example, you do not have to specify fi |l e2 andfi | €3 as part
of the di r name entry because the files being copied are retaining their
original filenames.

You may also use pattern-matching characters to copy files. For example, to
copyfile2andfil edintoreports, enter:

$ cp file* reports
$

Managing Files 3-21

To change the name of a file when you copy it into another directory, enter
the name of the source file (the original file), the directory name, a slash (/),
and then the new filename. In the following example, copy fi | e3 into the
r eport s directory under the new name not es, and list the contents of the
report s directory:

$ cp file3 reports/notes

$ Is reports

file2 file3 notes

$

3.6 Renaming or Moving Files (mv)

3.6.1

You can use the mv (move) command to perform the following actions:
» Move one or more files from one directory into another directory
* Renamefiles

The format of the mv command is:;

mv oldfilename newfilename

The ol df i | enane entry is the name of the file you want to move or
rename. The newf i | enane entry is the new name you want to assign to
the original file. Both entries can be names of files in the current directory, or
pathnames to files in a different directory. Y ou may also use pattern-
matching characters.

The mv command links a new name to an existing i-number and breaks the
link between the old name and that i-number. It is useful to compare the mv
command with the | n and cp commands, which are explained in Section 3.4
and Section 3.5. Refer also to the reference pages for these commands.

Renaming Files

In the following example, first list the i-number of each file in your current
directory withthel s —i command. Next, enter the mv command to change
the name of filefi | e2x tonewfi | e. Thei-numbers displayed on your
screen will differ from the numbers in the example:

$1s —i

1077 filel 1088 fil e2x 1080 proj ect

1078 file2 1079 file3 1085 reports

$ nv file2x newfile
$

3-22 Managing Files

3.6.2

Again, list the contents of the directory:

$1s —i

1077 filel 1079 file3 1080 proj ect
1078 file2 1088 newfile 1085 reports
$

Note two things in this example:
e Thenmv command changes the name of filef i | e2x to newfi |l e.

e Thei-number for the original file (fi | e2x) and newf i | e isthe same —
1088.

The mv command removes the connection between i-number 1088 and
filenamef i | e2x, replacing it with a connection between i-number 1088 and
filename newf i | e. However, the command does not change the file itsalf.

Moving Files into a Different Directory

Y ou can also use the mv command to move one or more files from your
current directory into a different directory.

Note

Type the target directory name carefully because the nv
command does not distinguish between filenames and directory
names. If you enter an invalid directory name, the mv command
takes that name as a new filename. The result is that thefileis
renamed rather than moved.

In the following example, the | s command lists the contents of your login
directory. The mv command movesfi | e2 from your current directory into
ther eport s directory. Thel s command then verifies that the file has been
removed:

$1s

filel file2 file3 newfile project reports
$nv file2 reports

$1s

filel file3 newfile project reports

$

List the contents of ther epor t s directory to verify that the command has
moved the file:

$ Is reports
file2 file3 notes
$

Managing Files 3-23

You may also use pattern-matching charactersto move files. For example, to
movefil el andfil e3intoreports, you could enter the following
command:

$ nv file* reports
$

Now list the contents of your login directory to verify that fi | el and
fil e3 have been moved:

$1s
newfile project reports
$

Copyfilel,file2,andfil e3 backinto your login directory. The dot (.)
in the following command line specifies the current directory, which in this
case is your login directory:

$ cp reports/file* .

Verify that the files are back in your login directory:

$1s

filel file2 file3 newfile project reports

$

Lastly, verifythat fil el,fil e2,andfil e3 arestill inthereports
directory:

$Is reports

filel file2 file3 newfile project reports

$

3.7 Comparing Files (diff)

Y ou can compare the contents of text files with the di f f command. Use the
di ff command when you want to pinpoint the differencesin the contents of
two files that are expected to be somewhat different.

The format of thedi f f command is:
diff filel file2
Thedi f f command scans each line in baoth files looking for differences.

When thedi f f command finds aline (or lines) that differ, for each line that
is different the following information is reported:

» Line numbers of any changes
» Whether the difference is an addition, a deletion, or a change to the line

3-24 Managing Files

If the change is caused by an addition, di f f displays:
I[,1]7 ar[,r]

where| isalinenumberinfilelandr isalinenumberinfi/le2. The
a indicates an addition. If the difference was a deletion, di f f would specify
ad; if the difference was a change to aline, di f f would specify ac.

The actua differing lines follow. In the leftmost column, a left angle bracket
(<) indicates lines from f i | e1, and aright angle bracket (>) indicates lines
fromfile2.

For example, suppose that you want to quickly compare the following
meeting rostersin the filesj an15nt g and j an22nt g:

janlbntg jan22ntg

alice alice
colleen brent
daniel carol
david colleen
emily daniel
frank david
grace emily
helmut frank
howard grace
jack helmut
jane jack
juan jane
lawrence juan
rusty lawrence
soshanna rusty
sue soshanna
tom sue

tom

Managing Files 3-25

Instead of tediously comparing the list by sight, you can use the di f f
command to comparej an15nt g with j an22nt g as follows:

$ diff janl5ntg jan22ntg

2a3, 4

> brent

> carol

10d11

< howard

$

Here we find that Brent and Carol attended the meeting on January 22, and
Howard did not. We know this because the line number and text output
indicate that br ent and car ol are additions to filej an22nm g and that
howar d is a deletion.

In cases where there are no differences between files, the system will merely
return your prompt. For more information, see the di f f (1) reference page.

3.8 Sorting File Contents (sort)

Y ou can sort the contents of text files with the sort command. Y ou can use
this command to sort a single file or multiple files.

The format of the sort command is;

sort filename

The fi | enane entry can be the name of the file, the relative pathname of
the file, the full pathname of the file, or alist of filenames separated by
spaces. You may also use pattern-matching characters to specify files. See
Chapter 2 for information about pattern matching.

A good example of what the sort command can do for you is to sort a list
of names and put them in collated order as defined by your current locale.
For example, assume that you have lists of names that are contained in three
files,1istl,list2,andlist3:

listl list2 list3

Zenith, Andre Rocca, Carol Hamilton, Abe
Dikson, Barry Shepard, Louis Anastio, William
D’Ambrose, Jeanette Hillary, Mimi Saluccio, William
Julio, Annette Chung, Jean Hsaio, Peter

3-26 Managing Files

To sort the names in all three files, enter:

$ sort list*
Anastio, WIIliam
Chung, Jean

D Anbrose, Jeanette
Di ckson, Barry
Ham | t on, Abe
Hllary, Mm

Hsai o, Peter
Julio, Annette
Rocca, Carol

Sal ucci o, Julius
Shepard, Louis
Zenith, Andrew

$

You can also capture the sorted list by redirecting the screen output to afile
that you name by entering:

$ sort list* >new i st
$

For more information about redirecting output, see Chapter 6. For a detailed
description of the sort command and its many options, see the sor t (1)
reference page.

3.9 Removing Files (rm)

3.9.1

When you no longer need afile, you can remove it with the r m(remove file)
command. Use this command to remove a single file or multiple files.

The format of the r mcommand is:
rm filename
The fi | enane entry can be the name of the file, the relative pathname of

the file, the full pathname of the file, or alist of filenames. The format you
use depends on where the file is located in relation to your current directory.

Removing a Single File

In the following example, you remove the file called f i | el from your login
directory.

Managing Files 3-27

3.9.2

First, return to your login directory with the cd (change directory) command.
Next, enter the pwd (print working directory) command to verify that your
login directory is your current directory, and then list its contents.

Remember that the system substitutes the name of your login directory for
the notation / u/ unane in the example.

$ cd

$ pwd

/ u/ unane

$1s
filel file2 file3 newfile project reports

$

Enter the r mcommand to remove newf i | e, and then list the contents of the
directory to verify that the system has removed the file.
$ rmnewfile

$1s
filel file2 file3 project reports

$

You must have permission to access a directory before you can remove files
from it. For information about directory permissions, see Chapter 5.

Note

In addition to removing one or more files, r malso removes the
links between files and filenames. The r mcommand actually
removes the file itself only when it removes the last link to that
file. For information about using the r mcommand to remove
links, see Section 3.4.5.

Removing Multiple Files — Matching Patterns

Y ou can remove more than one file at a time with the r mcommand by using
pattern-matching characters. See Chapter 2 for a description of pattern-
matching characters.

For example, suppose your current directory contains the following files:
recei vabl e. j un, payabl e. j un, payroll.jun, and
expenses. j un. You can remove al four of these files with ther m
*. j un command.

3-28 Managing Files

Caution

Be certain that you understand how the * pattern-matching
character works before you use it. For example, ther m *
command removes every file in your current directory. Be
especialy careful with * at the beginning or end of a filename.
If you mistakenly enter r m * nane instead of r m* name, you
will remove al your files, rather than just those ending with
name. (If your system is backed up on aregular basis, your
system administrator can help you recover lost files.)

You may prefer to use the —i flag with the r mcommand, which
prompts you for verification before deleting a file or files. See the end
of this section for details.

Y ou can also use the pattern-matching question mark (?) character with the

r mcommand to remove files whose names are the same, except for a single
character. For example, if your current directory contains the filesr ecor d1,
record2, record3, and r ecor d4, you can remove al four files with the
rmrecord? command.

For detailed information about pattern-matching characters, see Chapter 2.

When using pattern-matching characters, you may find the —i (interactive)
flag of the r mcommand particularly useful. Ther m —i command alows
you to selectively delete files. For each file selected by the command, the
operating system asks whether or not you want to delete or retain the file.

For example, suppose that your directory contains the filesr ecor d1,
record2, record3, record4,record5, andrecord6. Createthose
files now in your login directory by using the t ouch command as follows:

$ touch recordl record2 record3 record4 record5 record6
$

Thet ouch command is useful when you want to create empty files, as you
are now. For complete information on thet ouch command, see the
t ouch(1) reference page.

If you want to remove four of the six files that begin with the characters
record, enter:

$rm-i record?

rm renove recordl?n
rm renove record2?y
rm renove record3?y
rm renove record4?y
rm renove record5?y
rm renove record6é?n
$

In the preceding example, you have deleted all files except for r ecor d1 and
recor dé6.

Managing Files 3-29

Note

In addition to removing one or more files, the r mcommand also
provides an option, the —r flag, that removes files and directories
at the same time. See Chapter 4 for more information.

3.10 Determining File Type (file)

Usethefi | e command when you want to see what kind of data afile
contains without having to display its contents. Thefi | e command
displays whether the file is one of the following:

+ Atextfile
» A directory

» Input for one of the text formatting packagest r of f, nrof f, or egn
input text

» Source code for the C or FORTRAN programming languages
* An executablefile

Thefil e command is especialy useful when you suspect that afile
contains a compiled program. Displaying the contents of a compiled program
can produce disconcerting results on your screen.

The format of thefi | e command is:

file filename

The fi I enane entry can be the name of the file, the relative pathname of
the file, the full pathname of the file, or alist of filenames. The format you
use depends on where the file is located in relation to your current directory.
You may aso use pattern-matching charactersto specify files. See Chapter 2
for information on pattern matching.

For example, to determine the file type of entriesin your login directory,
enter the following:

$ cd

$ pwd

/ u/ unare

$file *

filel: ascii text
file2: ascii text
file3d: ascii text
project: directory
recordl: enpty
record6: enpty
reports: directory
$

3-30 Managing Files

Thefi |l e command has identifiedfil el,fil e2,andfi |l e3 as ASCII

text files, pr oj ect andr eport s asdirectories, and r ecor d1 and
recor dé as empty files.

For more information on thef i | e command, seethefi | e(1) reference
page.

Managing Files 3-31

Managing Directories 4

This chapter shows you how to manage directories on your system. After
completing this chapter, you will be able to:

» Create directories

* Change directories

» Display, copy, and rename directories

* Remove directories

To learn about managing directories, try the examples in this chapter. You

should perform each example in sequence so that the information on your
screen is consistent with the information shown in this chapter.

Before you can do the examples, you must be logged in and your login
directory should be in the state that you left it after doing the examplesin
Chapter 3. As aresult, your login directory should contain the following:

e Thefilesfilel,file2,file3,recordl,andrecord6

» The subdirectory, r eport s, that containsthe filesfil el,fil e2,
file3,andnotes

» The empty subdirectory pr oj ect

If you are using files with different names, make the appropriate substitutions
as you work through the examples. To produce a listing of the files in your
current directory, use thel s command, which is explained in Chapter 3.

4.1 Creating a Directory (mkdir)

Directories allow you to organize individual files into useful groups. For
example, you could put all the sections of a report in a directory named
reports, or the data and programs you use in cost estimating in a directory
named est i mat e. A directory can contain files, other directories, or both.

Your login directory was created for you when your computer account was
established. However, you will probably need additional directories to
organize the files you create while working with the operating system. You
create new directories with the nkdi r (make directory) command.

The format of the nkdi r command is:
mkdir dirname

The di r nane entry is the name you want to assign to the new directory.

The system creates di r name as a subdirectory of your working directory.
This means that the new directory is located at the next level below your
current directory.

In the following example, return to your login directory by entering the cd
command, and create a directory named pr oj ect 2:

$ cd

$ nkdir project2

$

Now, create a subdirectory in ther eport s directory by entering arelative
pathname:

$nkdir reports/status
$

Figure 4-1 shows the new file system tree structure. The pr oj ect ,

proj ect 2, and r eport s directories are located one level below your
login directory, and the st at us subdirectory is located one level below the
reports directory.

4-2 Managing Directories

Figure 4-1: Relationship Between Directories and Subdirectories

Login Directory

filel recordl
file2 record6

file3
reports
subdirectory —|
filel, file2
file3, notes project project2
subdirectory subdirectory
status
subdirectory

ZK-0534U-R

Like filenames, the maximum length of a directory name depends upon the
file system used on your computer. For example, your file system may allow
a maximum directory name length of 255 bytes (the default), or it may alow
a maximum directory name length of only 14 bytes. Knowing the maximum
directory name length is important to help you give meaningful names to
your directories. See your system administrator for details.

The operating system does not have a symbol or notation that automatically
distinguishes between afilename and a directory name, so you may find it
useful to establish your own naming conventions to designate files and
directories. However, you can usethel s —F command to distinguish
between filenames and directory names when the contents of your current
directory are displayed. For more information on this command, see Section
4.3.

Managing Directories 4-3

4.2 Changing Directories (cd)

42.1

The cd (change directory) command allows you to switch from your current
(working) directory to another directory. You can move to any directory in
the file system from any other directory in the file system by executing cd
with the proper pathname.

Note

Y ou must have execute permission to access a directory before
you can use the cd command. For information about directory
permissions, see Chapter 5.

The format of the cd command is:
cd pathname

The pat hname entry can either be the full pathname or the relative
pathname of the directory that you want to set as your current directory.

If you enter the cd command without a pathname, the system returns you to
your login directory (also known as your HOME directory).

To check the name of and display the path for your current directory, enter
the pwd (print working directory) command. See Chapter 2 for information
about the pwd command.

Changing Your Current Directory

In the following example, you enter the pwd command to display the name
(which is also the pathname) of your working directory. You then use the
cd command to change your current directory.

First return to your login directory, if necessary, by entering the cd
command without a pathname. Next, enter the pwd command to verify that
your login directory is your current directory. Remember that the system
substitutes the name of your login directory for the notation / u/ uname in
the example:

$ cd

$ pwd

/ u/ unane

$

4—-4 Managing Directories

4.2.2

Enter the cd command with the relative pathname pr oj ect 2 to changeto
the pr oj ect 2 directory:

$ cd project2
$

Enter pwd again to verify that pr oj ect 2 isthe current directory. Then,
enter cd to return to your login directory:

$ pwd

/ u/ unare/ proj ect 2

$ cd
$

To change your current directory to the st at us directory, which is a
different branch of the file system tree structure, enter the cd command with
afull pathname:

$ cd reports/status

$ pwd

/u/ uname/ r eport s/ status

$

Using Relative Pathname Notation

Y ou can use the following relative pathname notation to change directories
quickly:

* Dot notation (. and ..)

» Tilde notation (~)

Every directory contains at least two entries that are represented by dot (.)
and dot dot (..). These entries refer to directories relative to the current
directory:

dot () This entry refers to the current directory.

dot dot (..) This entry refers to the parent directory of your working
directory. The parent directory is the directory
immediately above the current directory in the file system
tree structure.

Todisplay the. and.. entriesaswell as any files beginning with a
period, use the —a flag with the | s command.

Managing Directories 4-5

In the following example, change to the r epor t s directory by changing
first to your login directory and then to the r epor t s directory:
$ cd

$ cd reports
$

Thel s command displays the directory contents as well asthe st at us
subdirectory you created earlier:
$1s

filel file2 file3 not es status
$

Now, executethel s —a command to list all directory entries as well as
those that begin with a dot (.) — the relative directory names:
$1s -a

i o filel file2 file3 not es st at us
$

Y ou can use the relative directory name dot dot (..) to refer to files and
directories located above the current directory in the file system tree
structure. That is, if you want to move up the directory tree one level, you
can use the relative directory name for the parent directory rather than using
the full pathname.

In the following example, thecd .. command changes the current
directory from r epor t s to your login directory, which is the parent
directory of r eport s. Remember that the / u/ uname entry represents
your login directory.

$ pwd

/u/ unare/ reports

$cd ..

$ pwd

/ u/ uname

$

To move up the directory structure more than one level, you can use a series
of relative directory names, as shown in the following example. The response
to the following pwd command, the slash (/) entry, represents the root
directory.

$cd../..
$ pwd
/

$

4—-6 Managing Directories

4.2.3

In the C shell and the Korn shell, you may use atilde (~) to specify auser’'s
login directory. For example, to specify your own login directory, use the
tilde alone as follows:

$ cd ~

The above tilde notation does not save you keystrokes because in al
operating system shells you may get the same results by merely entering cd
from any place in the file system.

However, if you want to access a directory below your login directory, tilde
notation can save you keystrokes. For example, to accessther eport s
directory from anywhere in the file system, enter the following:

$ cd ~/reports

Tilde notation is also very useful when you want to access a file or directory
either in or below another user’s login directory. You may not know the
precise location of that user’s login directory, but assuming you have the
appropriate permissions, you could get there with a minimum of keystrokes.

For example, from any place in the file system, you could specify the login
directory of a hypothetical user j ones by entering the following:

$ cd ~jones

In addition, if user j ones tells you that you can find afile in the st at us
directory immediately below the login directory, you can access the directory
by entering the following:

$ cd ~jones/status

Accessing Directories Through Symbolic Links

When directories are connected through a symbolic link, the parent directory
you access with the cd command differs depending upon whether you are
specifying the actual directory name or the relative directory name. In
particular, using the full pathname to find the parent of a symbolically linked
directory results in accessing the actual parent directory.

For example, suppose user 2 isworking on afilein the

/ u/ user 2/ proj ect directory, which is the symbolic link to
/ u/ user 1/ proj ect . To change to the actual parent directory
(/ ul user 2), user 2 types the following:

$ cd /uluser2

$ pwd

/ ul user 2

$

Managing Directories 4—7

If user 2 specified the relative directory name (..), the parent directory of the
symbolic link would be accessed. For example, suppose user 2 is working
on the samefilein the/ u/ user 2/ pr oj ect directory, which is the
symbolic link to / u/ user 1/ pr oj ect . To access the parent directory of
the symbolic link, user 2 enters the following:

$cd ..

$ pwd

/uluserl

$

Instead of being in the/ u/ user 2 directory, user 2 is now in the directory
caled/ u/ user 1.

For background information on symbolic links, see Section 3.4.

4.3 Displaying Directories (Is —F)

A directory can contain subdirectories as well as files. To display
subdirectories, usethel s —F command. This command displays the
contents of the current directory and marks each directory with atrailing
dlash character (/) so that it can be readily distinguished from afile.

The format of thel s —F command is:
Is —F
In the following example, return to your login directory and enter thel s —F

command to display the directory contents. Note that the pr oj ect ,
proj ect 2, andr eport s directories are marked with a dash:

$ cd

$1s —F

filel file3 project2/ record6
file2 pr oj ect/ recordl reports/
$

Some C and Korn Shell users define an alias for thel s command so that
whenever they enter | s, thel s —F command is executed. For more
information about defining aliases, see Chapter 8.

4.4 Copying Directories (cp)

You can use the cp command with the —r flag to recursively copy
directories and directory trees to another part of the file system. Thecp -r
command has the following format:

cp —r source destination

4-8 Managing Directories

The sour ce entry is the name of the directory to be copied. The
dest i nat i on entry is the name of the directory location to which you
want to copy sour ce.

Figure 4-2 shows how the cp —r command in the following example copies
the directory treer epor t s into the directory pr oj ect . It is assumed that
the command is entered from the login directory:

$ cp —r reports project

Figure 4-2: Copying a Directory Tree

Login Directory

filel recordl
file2 record6
file3

reports
subdirectory
filel, file2
file3, notes ; ;
project project2
subdirectory subdirectory
status

subdirectory

i reports E
—— i subdirectory !
1 filel, file2, file3, notes !

status

ZK-0535U-R

Note that ther eport s directory files, fil el,file2,fil e3, and
not es, aswell asthe st at us subdirectory, have been copied to pr oj ect .

Managing Directories 4-9

4.5 Renaming Directories (mv)

Y ou can use the nv command to rename a directory only when that directory
is contained in the same disk partition.

The format of the mv command is:
mv olddirectoryname newdirectoryname

The ol ddi r ect or ynane entry is the name of the directory you want to
move or rename. The newdi r ect or ynane entry is the new name you
want to assign to the origina directory name.

In the following example, first change to ther epor t s directory. Then, enter
I s —i —d command to list the i-number for the st at us directory:

$ cd reports

$1s —-i -d status

1091 status

$

Now, enter the mv command to change the name of st at us to
newst at us. Then, list the i-number for the newst at us directory:
$ nv status newstatus

$ Is —i —d newstatus

1091 newst at us
$

Notice that the second | s —i —d command does not list the origina
directory name st at us. However, it does list the new directory name,
newst at us, and displays the same i-number (1091 in this example) for the
new directory as for the original st at us directory.

4.6 Removing Directories (rmdir)

When you no longer need a particular directory, you can remove it from the
file system with the r ndi r (remove directory) command. This command
removes only empty directories — those that contain no files or subdirectories.
For information about removing files from directories, see Section 4.6.4 and
Section 3.9.

The format of ther ndi r command is:

rmdir dirname

The di r nane entry is the name, or pathname, of the directory you want to
remove.

Before working through the examples in the following sections, create three
subdirectories in the directory pr oj ect 2.

4-10 Managing Directories

4.6.1

First, usethecd proj ect 2 command to set pr oj ect 2 as your current
directory. Next, use the nkdi r command to create the schedul e, t asks,
and cost s directories. Then, list the contents of the pr oj ect 2 directory:
$ cd project2

$ nkdir costs schedul e tasks

$1s -F

costs/ schedule/ tasks/

$

Finally, use the cd command to return to your login directory:
$ cd
$ pwd

[u/ uname
$

Removing Empty Directories

Ther ndi r command removes only empty directories. If you try to remove
adirectory that contains any files or subdirectories, the r ndi r command
displays an error message, as the following example shows:

$ rodir project2

rndir: project2 not enpty

$

Note

Y ou cannot remove a directory while you are positioned in it.
To remove a directory, you must be elsewhere in the directory
tree. See Section 4.6.3 for more information.

Before you can remove the directory pr oj ect 2, you must first remove the
contents of that directory. In the following example, the cd command makes
pr oj ect 2 your current directory, and thel s - F command lists the
contents of pr oj ect 2:

$ cd project2

$1s -F

costs/ schedul e/ tasks/

Now remove the directory schedul e from the current directory, and then
list the remaining contents of the pr oj ect 2 directory:

$ rndir schedul e

$1s -F

costs/ tasks/

$

Managing Directories 4-11

4.6.2

4.6.3

The pr oj ect 2 directory still contains two subdirectories. cost s and

t asks. You can remove them by using pattern-matching characters, as
described in the next section. Once these subdirectories are removed, you can
delete the pr o] ect 2 directory, as described in Section 4.6.3.

Removing Multiple Directories

Y ou can remove more than one directory at a time with the r ndi r command
by using pattern-matching characters. See Chapter 2 for detailed information
about pattern-matching characters.

For example, suppose that you are in the pr oj ect 2 directory and want to
remove two subdirectories: cost s andt asks. To do so, enter ther ndi r
*s?s command. Then, enter thel s command to verify that the pr oj ect 2
directory contains no entries:

$rmdir *s?s

$1s

$

Caution

Entering the r ndi r command with the asterisk (*) character
alone removes ALL empty directories from your current
directory. Use the asterisk (*) pattern-matching character with
care.

Removing Your Current Directory

Y ou cannot remove your current directory while you are still working in it.

Y ou can remove it only after you move into another directory. You
generaly enter the dot dot (..) command to move into the parent directory of
your current directory, and then enter r ndi r with the pathname of the target
directory.

The directory pr oj ect 2 isempty. To remove pr oj ect 2, first move to
your login directory, which is the parent directory of pr oj ect 2. Then, use
ther ndi r di r name command to remove pr oj ect 2, and enter | s to
confirm the removal:

$ cd

$ rndir project2

$1s

filel file2 file3 project/ recordl recor dé reports/
$

4-12 Managing Directories

4.6.4

Your login directory no longer contains the pr oj ect 2 directory.

Removing Files and Directories Simultaneously (rm —r)

Ther ndi r command removes only directories, not files. You can, however,
remove files and directories at the same time by using the r mcommand with
the —r (recursive) flag.

Ther m —r command first deletes the files from a directory and then deletes
the directory itself. It deletes the directory you specify as well as any
subdirectories (and the files they contain) below it on the directory tree. This
command should be used with caution.

The format of ther m —r command is:

rm —r pathname

The pat hnane entry can either be the full pathname or the relative
pathname of the directory that you want to remove. You may also use
pattern-matching charactersto specify files.

Caution

Be certain that you understand how the —r flag works before you
use it. For example, entering ther m —r * command from your
login directory deletes all files and directories to which you
have access. If you have superuser authority and are in the root
directory, this command will delete all system files. See Section
5.7 for more information about superuser authority.

When using ther m —r command to remove files or directories, it is a good
idea to include the —i flag in the command line:

rm —ri pathname

When you enter the command in this form, the system prompts you for
verification before actually removing the specified item(s). In this way, by
answering y (yes) or n (no) in response to the prompt, you control the actual
removal of afile or directory. Keep in mind that using the —r i option may
reguire you to reply to many, many prompts (depending upon how many files
you have).

Managing Directories 4-13

Controlling Access to Your Files and
Directories 5

This chapter shows you how to control accessto your system as well as your
files and directories. After reading this chapter, you will be able to:

» Understand password, group, and system security issues

» Understand file and directory permissions

» Display and set file and directory permissions

» Change owners and groups

e Change your identity to access files

» Understand superuser concepts

» Learn whereto find information about enhancements to security that may
be installed on your system

A good way to learn about the topics in this chapter is to do the examples so
that the information on your screen is consistent with the information in this
book.

Before you can work through the examples, you must be logged in and your
login directory should be in the state that you left it after doing the examples
in Chapter 4. Your login directory should contain:

e Thefilesfilel,file2,file3,recordl,andrecord6

» Thesubdirectory r eport s that containsthefil el,file2,file3,
and not es files and the subdirectory newst at us

* Theproject subdirectory that containsthe filesfil el,fil e2,
file3, and not es aswell asthe subdirectory st at us

If you are using files with different names, make the appropriate substitutions
as you work through the examples.

5.1 Understanding Password and Group Security Files

Before a user can log in successfully, the user must be made known to the
system by the creation of a user account. Adding a user account is a routine
but critical activity that is usually performed by the system administrator.

5.1.1

When a user account is created, information about the new user is added to
the following two files:

/ et c/ passwd Thisfile contains individual user information for all users
of the system.

/etc/group Thisfile contains group information for all groups on the
system.

These files define who can use the system and each user’s accessrights. In
addition, all other system security controls depend upon password and group
security. The following sections describe the / et ¢/ passwd and

/ et c/ group files.

The /etc/passwd File

The/ et ¢/ passwd file contains records that define login accounts and
attributes for all system users. This file can be altered only by a user with
superuser privileges. See Section 5.7 for more information.

Each record in the / et ¢/ passwd file defines alogin account for an
individual user. The fields are separated by colons and the last field ends
with a newline character. The following text shows the format of an

/ et ¢/ passwd file entry and describes the meaning of each field:

username: password: U D: G D: user_info:login_directory:|ogin_shell

user nane Your login name.

password Y our password stored in encrypted form. Encryption
prevents unauthorized users or programs from discovering
your actual password. If no password has been specified
for a user, this field will be blank.

ubD (User ID) A unique number identifying you to the system.

G D (Group ID) A number identifying your default group. You
can belong to one or more groups.

user_info This field can contain the following: your full name,
maximum file size (a number limiting the maximum size
of any file you create or extend), and site specific
information (an attribute serving various purposes for each
installation - it normally records biographical information).

login_directory
Your current directory after logging in to the system. Itis
usually a directory you own and use to store private files.

I ogi n_shel | The program run by the | ogi n program after you
successfully log in to the system. It is normally a shell

5-2 Controlling Access to Your Files and Directories

program used to interpret commands. For more
information on shells, see Chapter 7 and Chapter 8.

The following example is a sample entry in the / et c/ passwd file:

| ee: NebPsa9qxMkbD: 201: 20: Lee Voy, sal es, x1234: /users/lee: \
[usr/ bin/sh

The user account | ee has user ID 201 and group ID 20. Lee'sfull nameis
Lee Voy, and his department and telephone are listed. The login directory is
/ user s/ | ee and the Bourne shell (/ usr/ bi n/ sh) is defined as the
command interpreter. The password field contains Lee's password in
encrypted form.

5.1.2 The /etc/group File

The/ et ¢/ gr oup file defines login accounts for all groups using the
system. This file can be altered only by a user with superuser privileges. See
Section 5.7 for more information.

Each record in the group database defines the login account of one group.
Groups provide a convenient way to share files among users with a common
interest or who are working on the same project.

Each entry inthe / et ¢/ gr oup fileis asingle line that contains four fields.
The fields are separated by colons, and the last field ends with a newline
character. The following text shows the format of each entry and describes
the meaning of each field:

groupnane: password: G D: user1[, user2, ..., userN]

groupnane A unique character string that identifies the group to the

system.
password Thisfield is always empty. Entriesin this field are ignored.
G D (Group ID) A unique number that identifies the group to the
system.

usernanes A list of users who belong to the group.

5.2 Protecting Files and Directories

The operating system has a number of commands that enable you to control
access to your files and directories. Y ou can protect afile or directory by
setting or changing its per missions, which are codes that determine the way
in which anyone working on your system can use the stored data.

Controlling Access to Your Files and Directories 5-3

Setting or changing permissions is also referred to as setting or changing the
protections on your files or directories. You generaly protect your data for
one or both of the following reasons:

* Your files and directories contain sensitive information that should not be
available to everyone who uses your system.

* Not everyone who has access to your files and directories should have the
permission to alter them.

Caution

Your system may alow two or more users to make changesto
the same file at the same time without informing them. If thisis
s0, the system saves the changes made by the last user to close
the file; changes made by the other users are lost (some text
editors warn users of this situation). It is therefore a good idea to
set file permissions to allow only authorized users to modify
files. The specified users should then communicate about when
and how they are using the files.

Each file and each directory has nine permissions associated with it. Files and
directories have the following three types of permissions:

o 1 (read)

o w(write)

* X (execute)

These three permissions occur for each of the following three classes of

USErs:

e U (user/owner)

* g (group)
* 0 (al others; also known as "world")

Ther permission allows users to view or print the file. The w permission
allows users to write to (modify) the file. The x permission allows users to
execute (run) the file or to search directories.

The user/owner of afile or directory is generally the person who created it. If
you are the owner of afile, you can change the file permissions with the
chnod command, which is described in Section 5.4.

The gr oup specifies the group to which the file belongs. If you are the
owner of afile, you can change the group ID of the file with the chgr p
command, which is described in Section 5.8.

5—4 Controlling Access to Your Files and Directories

Note

If you do not own afile, you cannot change its permissions or
group ID unless you have superuser authority. See Section 5.7
for more information.

The meanings of the three types of permissions differ dightly between
ordinary files and directories. See Table 5-1 for more information.

Table 5-1: Differences Between File and Directory Permissions

Permission For a File For a Directory
r (read) Contents can be viewed or Contents can be read, but not
printed. searched. Normally r and x are
used together.
w (write) Contents can be changed or Entries can be added or removed.
deleted.
X (execute) File can be used as aprogram. Directory can be searched.

5.3 Displaying File and Directory Permissions (Is)

To display the current file permissions, enter the | s command with the —I
flag. To display the permissions for a single file or selected files, enter the
following command:

$1s -l filenane

The fi | enane entry can be the name of the file or alist of filenames
separated by spaces. You may also use pattern-matching characters to specify
files. See Section 5.4.1.3 for more information.

To display the permissions for all of the files in your current directory, enter

thel s —I command:

$1s -l

total 7

-rwr--r-- 1 larry system 101 Jun 5 10:03 filel
-rwr--r-- 1 larry system 171 Jun 5 10:03 file2
-rwr--r-- 1 larry system 130 Jun 5 10:06 file3
drwxr-xr-x 2 larry system 32 Jun 5 10:07 project
-rwr--r-- 1 larry system 0 Jun 5 11:03 recordl
-rwr--r-- 1 larry system 0 Jun 5 11:03 record6
drwxr-xr-x 2 larry system 32 Jun 5 10:31 reports
$

Controlling Access to Your Files and Directories 5-5

The first string of each entry in the directory shows the permissions for that
file or directory. For example, the fourth entry, dr wxr - Xr - X, shows the
following:

* That thisis adirectory (the d notation)
* That the owner can view it, writein it, and search it (the r wx sequence)

» That the group can view it and search it, but not write in it (the first r - x
sequence)

* That all others can view it and search it, but not write in it (the second
r- X sequence)

The third field shows the file's owner, (in this case, | ar r y), and the fourth
field shows the group to which the file belongs, (in this case, syst en).

To list the permissions for a single directory, usethel s —I d command:

$1s —ld reports
dr wxr - Xr - x 2 larry system 32 Jun 5 10: 31 reports
$

Taken together, all the permissions for afile or directory are called its
permission code. As Figure 5-1 shows, a permission code consists of four
parts:

* A single character shows the file type. The dash (-) indicates an ordinary
file, d adirectory, and | asymbolic link. Any other character indicates
an 1/0O (Input/Output) device.

* A 3-character permission field shows user (owner) permissions, which
may be any combination of read, write, and execute.

* Another 3-character permission field shows group permissions.
» Another 3-character permission field shows permissions for al others.

5-6 Controlling Access to Your Files and Directories

Figure 5-1: File and Directory Permission Fields

/permission\

type owner group others
rwx rwx rwx

- (file

(file) r read
d (directory) w write
I (symbolic link) X execute
b (block special file)
¢ (character special file)
p (named pipe special file)
s (local socket special file)

ZK-0536U-R

When you create afile or directory, the system automatically supplies a
predetermined permission code. The following is a typical file permission
code:

STWr--1--

This file permission code specifies that the owner has read and write
permissions while the group and all others have read permission. The dashes
(- in some positions following the file-type notation indicate that the
specified class of user does not have permission for that operation.

The following is atypical directory permission code:
dr wxr - Xr - x

This directory permission code specifies that owner has read, write, and
search permissions, while the group and al others have read and search
permissions.

The default permission codes that your system provides relieve you from the
task of specifying them explicitly every time you create afile or directory. If
you want to create your own default permission codes, you must change your
user mask with the umask command. For an explanation of the unask
command, see the description of the command in Section 5.5.

Controlling Access to Your Files and Directories 5—7

5.4 Setting File and Directory Permissions (chmod)

Y our ability to change permissions gives you a great deal of control over the
way your data can be used. Use the chnod (change mode) command to set
or change the permissions for your files and directories.

For example, you obviously permit yourself to read, modify, and execute a

file. You generaly permit members of your group to read afile. Depending
upon the nature of your work and the composition of your group, you often
alow them to modify or executeit. You generally prohibit all other system
users from having any access to afile.

Note

You must be the owner of the file or directory (or have superuser
authority) before you can change its permissions. This means
that your username must be in the third field inan| s —I listing
of that file.

It is important to realize that whatever restrictions you impose on file and
directory access, the superuser can always override them. For example, if
you use the chnmod command to specify that only you can have access to the
report 20 file. The superuser can till access this file. For more
information on this topic, see Section 5.7.

There are two ways to specify the permissions set by the chnod command:
* You can specify permissions with letters and operation symbols.
* You can specify permissions with octal numbers.

The following sections describe how to specify permissions with letters and
operation symbols, as well as with octal numbers.

5.4.1 Specifying Permissions with Letters and Operation
Symbols

You can use letters and operation symbols to change file and directory
permissions.

The following is the format of the chnbod command when using letters and
operation symbols:

chmod userclass-operation-permission filename

5-8 Controlling Access to Your Files and Directories

The user cl ass- oper ati on- pernm ssi on entry actually represents
three codes that specify the user class, group, operation, and permission code
that you want to activate. The f i [enane entry is the name of the file or
files whose permissions you want to change. You may also use pattern-
matching characters to specify files. See Section 5.4.1.3 for more
information.

User classes, operations, and permissions are defined as follows:
» Useone or more of these letters to represent the user cl ass:
u User (owner)
g Group
0 All others (besides owner and group)
a All (user, group, and al others)
* Use one of these symbols to represent the oper at i on:
+ Add permission
— Remove permission
= Assign permission regardless of previous setting
* Useone or more of these letters to represent the type of per mi ssi on:

r Read

S Set user or group ID
w Write

X Execute

5.4.1.1 Changing File Permissions
In the following example, first enter thel s —| command to display the
permissions for thefi | el file:

$1s -l filel
SrWr--T-- 1 larry system 101 Jun 5 10:03 filel
$

The owner (larry) has read/write permissions while the group and others have
only read permissions.

Controlling Access to Your Files and Directories 5-9

Now, enter the chmod command with the flags go+w. This command
expands the permissions for both the group (g) and for others (0) by giving
them write access (+w) to f i | el in addition to the read access they already
have:

$ chnod go+w filel
$

Next, list the new permissions for the file:

$1s -l filel
-rwrwrw 1 larry system 101 Jun 5 10:03 filel
$

Y ou have given your group and al other system users write permission to
filel.

5.4.1.2 Changing Directory Permissions

The procedure for changing directory permissions is the same as that for
changing file permissions. However, to list the information about a directory,
you usethel s —I d command:

$ Is —-Id project

drwxr-xr-x 2 larry system 32 Jun 5 10:07 project

$

Now change the permissions with the chnod g+w command so that the
group (g) has write permission (+w) for the directory pr oj ect :

$ chnod g+w proj ect

$ 1s —-ld project

drwxrwxr-x 2 larry system 32 Jun 5 10:07 project

$

5.4.1.3 Using Pattern-Matching Characters

If you want to make the same change to the permissions of all entriesin a
directory, you can use the pattern-matching character asterisk (*) with the
chmod command. For information on pattern-matching characters, see
Chapter 2.

In the following example, the command chnod g+x * gives execute (X)
permission to the group (g) for al files (*) in the current directory:

5-10 Controlling Access to Your Files and Directories

$ chnod g+x *

$

Now enter thel s —I command to show that the group now has execute (x)
permission for al files in the current directory:

$1s -l

total 7

-rwrwxrw 1 larry system 101 Jun 5 10:03 filel
-rwr-xr-- 1 larry system 171 Jun 5 10:03 file2
-rwr-xr-- 1 larry system 130 Jun 5 10:06 file3
drwxrwxr-x 2 larry system 32 Jun 5 10: 07 project
-rwr-xr-- 1 larry system 0 Jun 5 11:03 recordl
-rwr-xr-- 1 larry system 0 Jun 5 11:03 record6
drwxr-xr-x 2 larry system 32 Jun 5 10:31 reports
$

5.4.1.4 Setting Absolute Permissions

An absolute permission assignment (=) resets al permissions for afile or
files, regardless of how the permissions were set previoudly.

In the following example, thel s —I command lists the permissions for the
file3file. Thenthechnod a=rwx command gives al three permissions
(r wx) to all users (a).

$1s -l file3

-rwr-x-r-- 1 larry system 130 Jun 5 10:06 file3

$ chnod a=rwx file3

$1s -l file3

- VWX WXT WX 1 larry system 130 Jun 5 10:06 file3

$

Y ou can also use an absolute assignment to remove permissions. In the
following example, the chnmod a=rw newf i | e command removes the
execute permission (x) for all groups (a) fromthefi | e3 file:

$ chnod a=rw file3

$1s -l file3

S TWE W W 1 larry system 130 Jun 5 10:06 file3
$

5.4.2 Specifying Permissions with Octal Numbers
Y ou can also use octal numbers to change file and directory permissions.

To use octal number permission codes with the chnmod command, enter the
command in the following form:

chmod octalnumber filename

The oct al nunber entry is a 3-digit octal number that specifies the
permissions for owner, group, and others. The fi | ename entry is the name

Controlling Access to Your Files and Directories 5-11

of the file whose permissions you want to change. It can be the name of the
file or alist of filenames separated by spaces. You may also use pattern-
matching characters to specify files. See Section 5.4.1.3 for more
information.

An octal number corresponds to each type of permission:

4= read
2 = write
1 = execute

To specify agroup of permissions (a permissions field), add together the
appropriate octal numbers (r , w, and X denote read, write, and execute

respectively):

3= -wx (2+1)
6=rw (4+2

7=rw (4+2+1)

0= --- (no permissions)

Table 5-2 lists the eight possible permission combinations.

Table 5-2: Permission Combinations

Octal Binary

Number Number Permissions Description
0 000 None No permissions granted
1 001 --X Execute
2 010 - W Write
3 011 - WX Write/execute
4 100 r-- Read
5 101 r-x Read/execute
6 110 rw Read/write
7 111 I WX Read/write/execute

The entire permission code for afile or directory is specified with a 3-digit

octal number, one digit each for owner, gr oup, and ot hers. Table 5-3
shows some typical permission codes and how they relate to the permission
fields.

5-12 Controlling Access to Your Files and Directories

Table 5-3: How Octal Numbers Relate to Permission Fields

Octal Owner Group Others Complete
Number Field Field Field Code

77 I WX I WX I WX I WXT VWX T WX
755 I WX r-x r-x I WXT - XTI - X
700 I WX --- rwx------
666 rw rw rw FW- W W

For example, you could use the following commands to change the
permission of fi | e3 using octal numbers:

$1s -l file3

-rwrwrw 1 larry system 130 Jun 5 10:06 file3
$ chrmod 754 file3

$1s -l file3

-rwxr-xr-- 1 larry system 130 Jun 5 10:06 file3
$

5.5 Setting Default Permissions with the User Mask

(umask)

Every time you create a file or a directory, default permissions are established
for it. These default permissions are initialy established either by the
operating system or the program you are running (both will be considered to
be the creating program in the umask description that follows). Setting
default permissions relieves you from the task of specifying permission codes
explicitly every time you create afile or directory. The operating system
assigns the default permission values of 777 for executable files and 666 for
all other files.

If you want to further restrict whatever permissions are established by a
program when it creates a file or directory, you must specify a user mask
with the umask command.

The user mask is a numeric value that determines the access permissions
when afile or directory is created. As aresult, when you create afile or
directory, its permissions are set to what the creating program specifies,
minus what the umask value forbids.

The unask command has the following format:

umask octalnumber

Controlling Access to Your Files and Directories 5-13

The oct al nunber entry is a 3-digit octal number that specifies the
permissions to be subtracted from the default permissions (777 or 666).

Setting the user mask is very similar to setting the permission bits discussed
in Section 5.4.2. The permission code for afile or directory is specified with
a 3-digit octal number. Each digit represents a type of permission. The
position of each digit (first, second, or third) represents 3 bits that correspond
to the following:

* Thefirst digit is for the owner of the file (you).

» The second digit is for the gr oup of thefile.

» Thethird digit isfor ot her s.

When you set the umask, you are actually specifying which permissions are

not to be granted regardless of the permissions requested by the file creating
program.

Table 5-4 lists the eight possible unask permission combinations for easy
reference. Note that the umask permission values are the inverse of those
specified for regular permission codes. Also note that these permission values
are applied to those set by the creating program.

Table 5-4: The umask Permission Combinations

Allowed
Octal Number Permissions Description

0 I WX Read/write/execute

1 rw Read/write

2 r-x Read/execute

3 r-- Read

4 - WX Write/execute

5 - W Write

6 --X Execute

7 none No permissions granted

For example, if you specify a user mask of 027 (and the file is executable):

 Theowner isalowed al permissions requested by the program creating
thefile.

* Thegroup is not alowed write permission.

5-14 Controlling Access to Your Files and Directories

5.5.1

* Theot hers arenot allowed any permissions.

A good user mask value to set for your own files and directories depends
upon how freely information resources are shared on your system. The
following guidelines may be useful:

* Inavery open computing environment, you might specify 000 as a user
mask value, which allows no restrictions on file/directory access. As a
result, when a program creates a file and specifies permission codes for it,
the user mask imposes no restrictions on what the creating program has
specified.

* In amore secure computing environment, you might specify 066 as a
user mask value, which allows you total access, but prevents al others
from being able to read or write to your files. As aresult, when afileis
created, its permissions are set to what the creating program specifies,
minus the user mask restrictions that prevent read/write access for
everyone but you.

* Inavery secure computing environment, you might specify 077 as a user
mask value, which means that only you have access to your files. Asa
result, when afile is created, its permissions are set to what the creating
program specifies, minus the user mask restrictions that prevent anyone
else from reading, writing, or executing your files.

To show you how urmask works, assume that you have entered the following
command:

$ umask 037

This command establishes a permission code of 740 (if the file is executable)
and produces the following results:

* You (the owner) are alowed all permissions.

» Members of your group are not allowed write and execute permissions.

» All others are not allowed any permissions.

Further, assume that you have just created afile. By default, your editor
always assigns the following default permissions. owners are alowed all
permissions, and all others only read and execute permissions. However,
since you have previously set a user mask of 037, it further restricts the file

permissions. As aresult, the owner still has al permissions, but the group
cannot execute the file, and all others have no permissions.

Setting the umask
You may activate the umask command in two ways:

Controlling Access to Your Files and Directories 5-15

Include the umask command in your login script. This is the most
common and efficient way to specify your user mask because the
specified value is set automatically for you whenever you log in. For a
discussion of login scripts, see Chapter 7. For examples of umask
commands in login scripts, see Chapter 8.

Enter the umask command at the shell prompt during alogin session.
The user mask value you set is in effect for that login session only.

For a more detailed example of how the user mask works in restricting
permissions for files you create with a text editor, follow the steps in this
procedure:

1

Enter the following command to find out what the current value of your
user mask is:

$ umask

If the user mask value is 000, there are no restrictions on the permissions
established by file-creating programs. Go to step 3.

If the user mask value is set, write it down. Go to step 2.

Set the user mask value to 000 so that that there will be no restrictions on
the permissions established by file-creating programs. Before resetting
the user mask, make sure you have written down the current value in case
you need to reset it.

Enter the following command:

$ umask 000

Create afile, saveit, and then exit your editor.

Display the permissions of the file by using thel s —I command. We
will assume for the sake of the example that read/write permissions are
granted for all users:

$1Is -1

-rwrwrw 1 user-nane 15 Cct 27 14:42 yourfile

$

Reset the user mask to 022 by entering the following command:
$ umask 022

A user mask of 022 establishes the following permission restrictions:
owners are allowed al permissions and all others are allowed only read
and execute permissions.

Create another file, save it, and then exit your editor.

5-16 Controlling Access to Your Files and Directories

7. Display the permissions of the file by entering thel s —I command:

$1s -l
-rwr--r-- 1 user-nane 15 Oct 27 14:45 yourfile2
$

Notice that the write permissions for the group and al others have been
removed in accordance with the user mask value of 022.

8. Reset the user mask to its original value or to another value (if you
choose).

Note

A user with superuser privileges can override whatever access
restrictions you impose on files and directories. For more
information on this topic, see Section 5.7.

On occasion, the results you obtain when specifying a user mask may vary
from what you intended. If so, see your system administrator.

The operating system provides a default user mask value of 022, which
allows the owner all permissions, but prevents members of your group or any
other users from writing to your files. However, your system’s user mask
default may vary.

5.6 Changing Your ldentity to Access Files

The su command allows you to alter your identity during alogin session. A
reason for altering your identity is to be able to access files that you do not
own. To protect system security, you should not assume another identity
without the owner’s or the system administrator’s permission.

The su command allows you to log in to another user’s account only if you
know that user’s password. The su command authenticates you and then
resets both the process's user ID and the effective user 1D to the value of the
newly specified user ID. The effective user ID is the user ID currently in
effect for the process, although it may not be the user ID of the person
logged in.

The format of the su command is:

su username

The user nane entry is the username of the person whose identity you want
to assume.

If after altering your identity, you want to confirm what identify you have
assumed, use the whoam command. This command displays the username
of the identity you have assumed.

Controlling Access to Your Files and Directories 5-17

After completing your work under a new identity, you should return to your
own login identity. To do so, press Ctrl/D or enter the exi t command.

The following example shows how Juan assumes Lucy’s identity with the su
command, confirms it with the whoam command, removes afile, and then
returns to his own login identity with the exi t command:

$ su lucy

Password: ...

$ whoami

l ucy

$rmfile9

$ exit

$ whoanm

j uan

$

For more information, see the su(1) and whoam (1) reference pages.

5.7 Superuser Concepts

Every system has a superuser who has permissions that supersede those of
ordinary users. This superuser is often referred to as root.

The root user has absolute power over the running of the system. This user
has accessto all files and all devices and can make any changes to the
system. The root user is said to have superuser privileges.

The following is alist of tasks ordinarily performed by root users:

» Edit files not normally changeable by ordinary users (for example,
/ et c/ passwd)

» Be able to change ownership and permissions of all files

» Execute restricted commands like mount or r eboot

» Kill any process running on your system

* Add and remove user accounts

* Boot and shut down the system

» Back up the system

Many of the preceding tasks are performed by system administrators who
require superuser privileges. The system administrator’s job is to manage the

system by performing the preceding tasks, installing new software, analyzing
system performance, and reporting hardware failures.

Depending upon your computing environment, you may or may not be the
system administrator for your system or have root privileges. Your site
configuration as well as your job responsibilities will determine your
privileges.

5-18 Controlling Access to Your Files and Directories

If you work from aterminal or workstation that accesses a centralized
system, you will probably not be the system administrator or have root
privileges. In this situation, the system administrator, who is in charge of
maintaining, configuring, and upgrading the system, will be the person who
has root privileges.

If you perform your tasks from a workstation that is either independent or
networked to other workstations or systems, you may indeed have root
privileges for your own workstation, but not be the system administrator of
your site. In this situation, you would maintain your own workstation only.
However, the system administrator would still maintain shared machines and
networks.

To become a root user, use the su command. You must also know the
password for the root user. The format of the su command is:

Su root

The following example shows how Juan becomes a root user to perform an
administrative task:
$ su root

Passwor d:
#

The new prompt, a number sign (#), indicates that Juan has become a root
user and that a shell has been created for his use. The root user shell (often
the C shell) is defined in the / et ¢/ passwd file. Juan may now perform the
administrative task.

Caution

Because the root user has absolute power over the system, the
password should be carefully protected. Otherwise, unauthorized
use of the system may result in corruption or destruction of data.

After completing your work as the root user, you should return to your own
login identity. To do so, press Ctrl/D or enter the exi t command. You are
then returned to the system prompt.

5.8 Changing Owners and Groups (chown and chgrp)

In addition to setting permissions, you can control how afile or directory is
used by changing its owner or group. Use the chown command to change
the owner and the chgr p command to change the group.

Controlling Access to Your Files and Directories 5-19

Note

In order to use the chown command, you must have superuser
privileges. For more information on this topic, see Section 5.7.

Enter the chown command in the following form:

chown owner filename

The owner entry is the username of the new owner of the file. The

fil enane entry is alist of one or more files whose ownership you want to
change. You may also use pattern-matching characters to specify files. See
Section 5.4.1.3 for more information.

Enter the chgr p command in the following form:
chgrp group file

The gr oup entry is the group ID or group name of the new group. Note that
to change the group ownership of afile, you must be a member of the group

to which you are changing the file. The fi / e entry isalist of one or more

files whose ownership you want to change.

For more information, see the chown(1) and chgr p(1) reference pages.

5.9 Additional Security Considerations

The security guidelines enforced at your site protect your files from
unauthorized access. See your system administrator for complete information
about security guidelines.

In addition, it is wise to avoid running untrusted software (software that is
from an unknown source or that has not been validated for system security).
When you run a program, that program has all of your access rights, and
nothing prevents the program from being used to illicitly access, observe, or
alter sengitive files.

Y ou should be aware of three types of programs that compromise security:
* Trojan horse

A trojan horse is a program that performs, or appears to perform, its
defined task properly; however, it also performs hidden functions that
may be malicious. A trojan horse program emulates the program that you
intended to run, but may perform an unwanted action. It might vandalize
your files by atering or deleting them, or compromise the files by making
illegal copies of them.

A typical trojan horseisthe | ogi n trojan horse, which mimics the
system’s login prompt on the display and waits for you to enter a
username and password. The program mails or copies this information to
the user responsible for the trojan horse. As the trojan horse exits, it

5-20 Controlling Access to Your Files and Directories

displaysLogi n i ncorrect. Thereal | ogi n program then runs.
Most users assume they typed the password incorrectly, and are unaware
that they were deceived.

* Computer worm

A computer worm is a program that moves around a computer network,
making copies of itself. For example, alogin computer worm can log in
to a system, copy itself onto the system, start running, log in to another
system, and then continue this process indefinitely.

o Computer virus

A computer virus program is really atype of trojan horse. Normally, a
trojan horse waits passively for the right user to run it (usualy a
privileged user). Viruses spread by inserting themselves in other
executable files, thus increasing the threat and extent of compromise of
privacy or integrity.

Be careful of programs that were not installed by the person who administers
your system. Programs that are obtained from bulletin boards and other
unknown origins are particularly suspect. Even if the program includes
source code, it is not always possible to examine the program carefully
enough to determine if it is trustworthy.

Controlling Access to Your Files and Directories 5-21

Using Processes 6

This chapter explains the operating system processes. After completing this
chapter, you will be able to:

» Understand programs and processes

» Redirect process input, output, and errors

* Run processes in the foreground and background

» Check the status of processes

e Cancel processes

» Display information about users and their processes

A good way to learn about the preceding topics is to try the examplesin this

chapter. Y ou should do each example so that the information on your screen
is consistent with the information in this book.

6.1 Understanding Programs and Processes

A program is a set of instructions that a computer can interpret and run. Y ou
may think of most programs as belonging to one of two categories:

» Application programs such as text editors, accounting packages, or
electronic spreadsheets

» Programs that are components of the operating system such as
commands, the shell (or shells), and your login procedure

While a program is running, it is called a process. The operating system
assigns every process a unique number known as a process identifier.

The operating system can run a number of different processes at the same
time. When more than one process is running, a scheduler built into the
operating system gives each process its fair share of the computer’s time,
based on established priorities.

6.2 Understanding Standard Input, Output, and Error

When a process begins executing, the operating system opens three files for
the process: st di n (standard input), st dout (standard output), and
st derr (standard error). Programs use these files as follows:

6.2.1

e Standard input is the place from which the program expects to read its
input. By default, processes read st di n from the keyboard.

e Standard output is the place to which the program writes its output. By
default, processes write st dout to the screen.

e Standard error is the place to which the program writes its error
messages. By default, processes write st der r to the screen.

In most cases, the default standard input, output, and error mechanisms will
serve you well. However, there are times when it is useful to redirect the
standard input, output, and error. The following sections describe these
procedures.

Redirecting Input and Output

A command usually reads its input from the keyboard (standard input) and
writes its output to the display (standard output). Y ou may want a command
to read its input from afile, write its output to afile, or both. You can select
input and output files for a command with the shell notation shown in Table
6-1. This notation can be used in al shells.

Table 6-1: Shell Notation for Reading Input and Redirecting

Output
Notation Action Example
Reads standard input from a file we <file3
Writes standard output to afile s >file3
>> Appends (adds) standard output to the end of afile |s >>file3

The following sections explain how to read input from a file and how to
write output to afile.

6.2.1.1 Reading Input from a File

All shells allow you to redirect the standard input of a process so that input is
read from afile, instead of from the keyboard.

Y ou can use input redirection with any command that accepts input from
st di n (your keyboard). Y ou cannot use input redirection with commands,
such as who, that do not accept input.

6—2 Using Processes

To redirect input, use the left-angle bracket (<), as the following example
Shows:

$ we <file3
3 27 129
$

Thewc (word count) command counts the number of lines, words, and bytes
in the named file. So f i | e3 contains 3 lines, 27 words, and 129 bytes. If
you do not supply an argument, the wc command reads its input from the
keyboard. In this example, however, input for wc comes from the file named
file3.

Note that in the preceding example, you could have entered the following,
and displayed the same output:
we file3

This is because most commands allow the input file to be specified without
the left-angle bracket (<).

However, there are a few commands like mai | that require the use of the
left-angle bracket (<) for special functions. For example, note the following
command:

$ mail juan <report

This command mails to the user j uan thefiler eport. For more
information about mail, see the mai | (1) reference page.

6.2.1.2 Redirecting Output

All shells allow you to redirect the standard output of a process from the
screen (the default) to afile. As aresult, you can store the text generated by a
command into a new or existing file.

To send output to afile, use either aright-angle bracket (>) or two right-
angle brackets (>>).

The right-angle bracket (>) causes the shell to:

» Replace the contents of the file with the output of the command, if the
file exists.

» Create thefile, if the file does not exist and place the output of the
command into the file.

Two right-angle brackets (>>) add (append) the output of the command to the
end of afile that exists. If you use two right-angle brackets (>>) to write
output to afile that does not exist, the shell creates the file containing the
output of the command.

Using Processes 6—3

6.2.2

In the next example, the output of | s goesto the file named fi | e:

$1s >file
$

If the file already exists, the shell replaces its contents with the output of | s.
If fil e doesnot exigt, the shell createsiit.

In the following example, the shell adds the output of | s to the end of the
filenamed fi | e:

$1s >>file
$

If fil e doesnot exist, the shell createsiit.

In addition to their standard output, processes often produce error or status
messages known as diagnostic output. For information about redirecting
diagnostic output, see the following section.

Redirecting Standard Error to a File

When a command executes successfully, it displays the results on the
standard output. When a command executes unsuccessfully, it displays error
messages on the default standard error file, the screen. However, the shell
allows you to redirect the standard error of a process from the screen to afile.

Redirection symbols and syntax vary among shells. The following sections
describe standard error redirection for the Bourne, Korn, and C shells.

6.2.2.1 Bourne and Korn Shell Error Redirection

The general format for Bourne and Korn shell standard error redirection is
the following:

command 2> errorfile

The command entry is an operating system command. Theerrorfil e
entry is the name of the file to which the process writes the standard error.
The 2> is afile descriptor digit combined with the right-angle bracket (>),
the output redirection symbol. The file descriptor digit tells the shell what
standard file to access so that its contents may be redirected. The file
descriptor digit 2 indicates that the standard error file is being redirected.

In fact, for the Bourne and Korn shells, a file descriptor digit is associated
with each of the files a command ordinarily uses:

» File descriptor O (same as the left-angle bracket [<]) specifies standard
input (the keyboard).

» File descriptor 1 (same as the right-angle bracket [>]) specifies standard
output (the screen).

6—4 Using Processes

» File descriptor 2 specifies standard error (screen).

In the following example, an error is redirected to the er r or file when the
| s command attempts to display the nonexistent file, r eport x. The
contents of er r or file are then displayed:

$ Is reportx 2> error

$ cat error

reportx not found
$

Although only standard error is redirected to afile in the preceding example,
typically you would redirect both standard error and standard output. See
Section 6.2.3 for more information.

For many commands, the difference between standard output and standard
error is difficult to see. For instance, if you use the | s command to display a
nonexistent file, an error message displays on the screen. If you redirect the
error message to afile asin the previous example, the output is identical.

6.2.2.2 C Shell Error Redirection

6.2.3

The general format for C shell standard error redirection is the following:

(command> outfile)>& errorfile

The conmand entry is any operating system command. The out fi | e entry
is the name of the file to which the process writes the standard output. The
right-angle bracket (>) redirects the standard error to afile. The errorfil e
entry is the name of the file to which the process writes the standard error.
Note that in this command format, the parentheses are mandatory.

Redirecting Both Standard Error and Standard Output

In the preceding sections, you learned how to redirect standard output and
standard error separately. Usually, however, you would redirect both standard
output and standard error at the same time. Standard output and standard
error can be written to different files or to the same file.

For the Bourne and Korn shells, the general format for redirecting both
standard output and standard error to different files is the following:

command> outfile2> errorfile
The conmand entry is an operating system command. The out fi | e entry
is the file to which the process writes the standard output. The 2> symbol

redirects the error output. The error fil e entry is the file where the
process writes the standard error.

Using Processes 6-5

For the C shell, the general format for redirecting both standard output and
standard error to different files is the following:

(command> outfile)>& errorfile

The command entry is an operating system command. The out fi | e entry
is the file to which the process writes the standard output. The right-angle
bracket and ampersand (>&) symbol redirects the error output. The
errorfil e entry isthe file where the process writes the standard error.
Note that in this command format, the parentheses are mandatory. See
Section 6.2.2.2 for more information.

For the Bourne and Korn shells, the general format for redirecting both
standard output and standard error to the same file is the following:

commandl> outfile2>&1

The conmand entry is an operating system command. The 1> symbol
redirects the standard output. The out fi | e entry is the file to which the
process writes the standard output. The 2>&1 symbol tells the shell to write
the standard error (file descriptor 2) in the file associated with the standard
output (>&1), out fil e.

For the C shell, the general format for redirecting both standard output and
standard error to the same file is the following:

command>& outfile

The conmand entry is an operating system command. The out fi | e entry
is the file to which the process writes the standard output. The right-angle
bracket and ampersand (>&) symbol tells the shell to write the standard
output and standard error to the same file specified by out fi I e.

6.3 Running Several Processes Simultaneously

6.3.1

The operating system can run a number of different processes at the same
time. This capability makes it a multitasking operating system, which means
that the processes of severa users can run at the same time.

These different processes can be from one or multiple users. As aresult, you
do not have to enter commands one at atime at the shell prompt. Instead,
you can run both foreground and background processes simultaneously. The
following sections describe both foreground and background processes.

Running Foreground Processes

Normally, when you enter a command on the command line, you wait for the
results to display on your screen. Commands entered singly at the shell
prompt are called foreground processes.

6—6 Using Processes

6.3.2

Most commands take a short time to execute — perhaps a second or two.
However, some commands require longer execution times. If along-duration
command runs as a foreground process, you cannot execute other commands
until the current one finishes. As aresult, you may want to run a long-
duration command as a background process. The following section describes
background processes.

Running Background Processes

Generally, background processes are most useful with commands that take a
long time to run. Instead of tying up your screen by entering a long-duration
command as a foreground process, you can execute a command as a
background process. Y ou can then continue with other work in the
foreground.

To run a background process, you end the command with an ampersand (&).
Once a process is running in the background, you can perform additional
tasks by entering other commands at your workstation.

After you create a background process, the following takes place:

» The Process Identification Number (PID) is displayed. The operating
system creates and assigns PIDs so that all processes currently running on
the system can be tracked. (In the Korn or the C shell, job numbers are
assigned as well.)

* The prompt returns so that you can enter another command.

* Inthe C shell, amessage is displayed when the background processis
complete.

When you create a background process, note its PID number. The PID
number helps you to monitor or terminate the process. See Section 6.4 for
more information.

Because background processes increase the total amount of work the system
is doing, they may also slow down the rest of the system. This may or may
not be a problem, depending upon how much the system slows and the
nature of the other work you or others do while background processes run.

Most processes direct their output to standard output, even when they run in
the background. Unless redirected, standard output goes to your workstation.
Because the output from a background process may interfere with your other
work on the system, it is usually good practice to redirect the output of a
background process to afile or to a printer. Then you can look at the output
whenever you are ready. For more information about redirecting output, see
the examples later in this chapter as well as Section 6.2.

Using Processes 6—7

The examples in the remainder of this chapter use a command that takes
more than a few seconds to run:

$ find / —type f —print

This command displays the pathnames for all files on your system. You do
not need to study the f i nd command in order to complete this chapter — it is
used here simply to demonstrate how to work with processes. However, if
you want to learn more about the f i nd command, see the f i nd(1) reference

page.

In the following example, the f i nd command runs in the background (by
entering an ampersand [&]) and redirects its output to a file named

di r. pat hs (by using the right-angle bracket [>] operator):

$ find / —type f —print >dir.paths &

24

$

When the background process starts, the system assigns it a PID (Process

I dentification) number (24 in this example), displays it, and then prompts you
for another command. Y our process number will be different from the one
shown in this and following examples.

If you use the Korn or C shell, job numbers are assigned aswell. Inthe C
shell, the preceding example looks like this:

%ind / —-type f —print >dir.paths &
[1] 24
% _

Note that the job number [1] is displayed to the left of the PID number.

Y ou can check the status of the process with the ps (process status) or the
j obs command (Korn and C shell). You can also terminate a process with
theki | I command. See the following section for more information about
these commands.

In the C shell, when the background process is completed, a message is
displayed:

[1] 24 Done find/ —type f —print >dir.paths

The completion message displays the job number and the PID, the status
Done, and the command executed.

6.4 Monitoring and Terminating Processes

Use the ps (process status) command to find out which processes are running
and to display information about those processes. In the Korn and C shells,
you also can use the j obs command to monitor background processes.

If you need to stop a process before it is finished, use the ki | | command.

6—8 Using Processes

6.4.1

The following sections describe how to monitor and terminate processes.

Checking Process Status

The ps command allows you to monitor the status of all active processes,
both foreground and background. In the Korn and C shell, you also can use
thej obs command to monitor background processes only. The following
sections describe the ps and the j obs command.

6.4.1.1 The ps Command

The ps command has the following form:
ps

In the following example, the ps command displays the status of all
processes associated with your workstation under the following headings:

$ ps
PI D TT STAT TI VE COVIVAND
29670 p4 I 0: 00. 00 -sh (csh)
515 p5 S 0: 00. 00 -sh (csh)
28476 p5 R 0: 00. 00 ps
790 p6 I 0: 00. 00 -sh (csh)
$
You interpret the display under these entry headings as follows:
Pl D Process identification. The system assigns a process

identification number (Pl D number) to each process when
that process starts. There is no relationship between a
process and a particular Pl D number; that is, if you start the
same process several times, it will have a different Pl D
number each time.

TT Controlling terminal device name. On a system with more
than one workstation, this field tells you which workstation
started the process. On a system with only one workstation,
this field can contain the designation consol e or the
designation for one or more virtual terminals.

STAT Symbolic process status. The system displays the state of
the process, with a sequence of up to four aphanumeric
characters. For more information, see the ps(1) reference
page.

TI ME Time devoted to this process by the computer is displayed
in minutes, seconds, and hundredths of seconds starting
when you enter ps.

COVIVAND The name of the command (or program) that started the
process.

Using Processes 6-9

Y ou can also check the status of a particular process by using the —p flag and
the PID number with the ps command. The general format for checking the
status of a particular process is the following:

ps —p PIDnumber

The ps command also displays the status of background processes. If there
are any background processes running, they will be displayed along with the
foreground processes. The following example shows how to start af i nd
background process and then check its status:

$ find / —type f —print >dir.paths &

25

$ ps —p25

PI D TTY TIME COVWAND
25 console 0:40.00 find

$

Y ou can check background process status as often as you like while the
process runs. In the following example, the ps command displays the status
of the preceding f i nd process five times:

$ ps —p25

PID TTY TIME COMVAND
25 console 0:18:00 find

$ ps —p25

PID TTY TIME COMVAND
25 console 0:29:00 find

$ ps —p25

PID TTY TIME COMVAND
25 console 0:49:00 find

$ ps —p25

PID TTY TIME COMVAND
25 console 0:58:00 find

$ ps —p25

PID TTY TIME COMVAND
25 console 1:02:00 find

$ ps —p25

PID TTY TI ME COVWAND

$

Notice that the sixth ps command returns no status information because the
f i nd process ended before the last ps command was entered.

Generally, the simple ps command described here tells you al you need to
know about processes. However, you can control the type of information
that the ps command displays by using more of its flags. One of the most
useful ps flagsis—e, which causes ps to return information about all
processes, not just those associated with your terminal or workstation. For
an explanation of al ps command flags, see the ps(1) reference page.

6—10 Using Processes

6.4.1.2 Thejobs Command

The Korn shell and the C shell display both ajob and a PID when a
background process is created. The j obs command reports the status of all
background processes only, based upon the job number.

Thej obs command has the following form:
jobs

Adding the —I flag displays both the job number and the PID.

The following example shows how to start af i nd process and then check
its status in the C shell with thej obs —| command:

%find /| —type f —print >dir.paths &

[2] 26

% j obs -l

[2] +26 Running find / —type f —print >dir.paths &
%

The status message displays both the job ([2]) and the PID number (26),
the status Runni ng, and the command executed.

6.4.2 Canceling a Foreground Process (Ctrl/C)

To cancel aforeground process (stop an executing command), press Ctrl/C.
The command stops executing, and the system displays the shell prompt.
Note that canceling a foreground process is the same as stopping command
execution (described in Chapter 1).

Most simple operating system commands are not good examples for
demonstrating how to cancel a process — they run so quickly that they finish
before you have time to cancel them. However, the following f i nd
command runs long enough for you to cancel it (after the process runs for a
few seconds, you can cancel it by pressing Ctrl/C):

$ find / —type f —print
[usr/sbin/acct/acctcms
/ usr/ sbin/acct/acctcoNl
/usr/sbin/acct/acctcon2
[usr/sbin/acct/acctdi sk
/usr/sbin/acct/acctnerg
/usr/sbin/acct/accton
/usr/sbin/acct/acctprcl
/usr/sbin/acct/acctprc2
[usr/ sbi n/acct/acctw nmp
/usr/ shin/acct/chargef ee
[usr/ sbin/acct/ckpacct
/usr/ sbin/acct/dodi sk
Ctrl/IC

$

Using Processes 6-11

6.4.3

The system returns the shell prompt to the screen. Now you can enter
another command.

Canceling a Background Process (kill)

If you decide, after starting a background process, that you do not want the
process to finish, you can cancel the process with the ki | | command.
Before you can cancel a background process, however, you must know its
PID number.

If you have forgotten the PID number of that process, you can use the ps
command to list the PID numbers of all processes. If you are a C or Korn
Shell user, it is more efficient to use thej obs command to list background
processes only.

The general format for terminating a particular processis the following:
kill PIDnumber

If you want to end all the processes you have started since login, use the
kil 0O command. You do not have to know the PID numbersto useki I |
0. Because this command deletes all of your processes, use this command
carefully.

The following example shows how to start another f i nd process, check its
status, and then terminate it:

$ find / —type f —print >dir.paths &

38

$ ps

PID TT STAT TI ME COMVAND
520 p4 | 0:11:10 sh

38 p5 | 0:10:33 find

1216 p6 S 0: 01: 14 qdaenon
839 p7 R 0:03:55 ps

$ kill 38

$ ps

38 Term nated

PID TT STAT TI ME COMVAND
520 p4 I 0:11: 35 sh

1216 p6 S 0: 01: 11 qdaenobn
839 p7 R 0:03:27 ps

$

The command ki | | 38 stops the background f i nd process, and the

second ps command returns no status information about PID number 38.
The system does not display the termination message until you enter your
next command.

Note that in this example, ki | | 38 and ki | | 0 have the same effect
because only one process was started from this terminal or workstation.

6—12 Using Processes

In the C shell, theki | I command has the following format:
kill % jobnumber

The following example uses the C shell to start another f i nd process, to
check its status with the] obs command, and then to terminate it:
%find /| —type f —print >dir.paths &

[3] 40

% j obs -l

[3] +40 Running find / —-type f —print >dir.paths &

%kill 98

% j obs -l

[3] +Term nated find / —type f —print > dir.paths

%

6.4.4 Suspending and Resuming a Foreground Process (C Shell
Only)

Stopping a foreground process and resuming it can be helpful when you have
a long-duration process absorbing system resources and you need to do
something quickly.

Rather than waiting for process completion, you can stop the process
temporarily (suspend it), perform your more critical task, and then resume the
process. Suspending a process is available for C shell users only.

To suspend a process, press Ctrl/Z. A message will display listing the job
number, the status suspended, and the command executed.

Once you are ready to resume the process, enter:
% n

To resume the process in the background, enter:
% n &

where the n entry is the number of the stopped job.

The following example starts af i nd process, suspends it, checks its status,
resumes it, and then terminates it:

%find / —type f —print >dir.paths &

[4] 41

% j obs -l

[4] +41 Running find / —type f —print >dir.paths &
% Ctrl/z

Suspended

% j obs -l

[4] +Stopped find / —type f —print > dir.paths
%4 &

[4] find / —type f —print >dir.paths &

% kill %

[4] +Terminated find / —type f —print > dir.paths

Using Processes 6-13

Once a process is suspended, you may also resume it by entering the f g
command. If a currently running process is taking too long to run and is
tying up your keyboard, you can use the bg command to place the processin
the background and enter other commands.

The following example starts af i nd process, suspends it, puts the process
in the background, copies a file, and then resumes the process in the
foreground:

%find /| —type f —print >dir.paths

Ctrl/z

Suspended

% bg

[5] find / —type f —print > dir.paths &

% cp salaryl salary2

%fg

find / —type f —print > dir.paths

%

6.5 Displaying Information About Users and Their
Processes

The operating system provides the following commands that can tell you who
is using the system and what they are doing:

who Displays information about currently logged in users.

w Displays information about currently logged in users and what
they are currently running on their workstations.

ps au Displays information about currently logged in users and the
processes they are running.

The who command allows you to determine who is logged into the system. It
may be especially useful, for example, when you want to send a message and
want to know whether the person is currently available.

In the following example, information about all currently logged in usersis
displayed:

$ who

j uan ttyol Jan 15 08: 33

chang tty05 Jan 15 08:45

larry tty07 Jan 15 08: 55

t ony tty09 Jan 15 07: 53

lucy pts/2 Jan 15 11: 24 (bost on)

$

Note that the who command lists the username of each user on the system,
the workstation being used, and when the person logged in. In addition, if a
user islogged in from a remote system, the name of the system is listed. For

6—14 Using Processes

example, | ucy logged in remotely from the system bost on onJan 15 at
11: 24.

The actual display format of who varies according to your current locale.
See Appendix C for more information about locales.

Thewho —u command gives all the information of the who command and
also displays the PID of each user and the number of hours and minutes since
there was activity at a workstation. Activity for less than a minute is
indicated by a dot (.).

In the following example, al currently logged in users are displayed:

$ who -u

j uan tty0l Jan 15 08: 33 01: 02 50

chang tty05 Jan 15 08: 45 . 52

larry tty07 Jan 15 08: 55 . 58

t ony tty09 Jan 15 07:53 01: 20 60

I ucy pts/5 Jan 15 11: 24 . 65 (boston)
$

Note that in the preceding example, j uan andt ony have been inactive for
over an hour, while chang, | arry, and | ucy have been inactive for less
than a minute.

Now that you know how to find out who is active on your system, you may
want to find out what command each person is currently executing. The w
command displays the command that is currently running at each user’s
workstation.

In the following example, information about all users (the User column) and
their current commands (the what column) is displayed:

$w

11: 02 up 3 days, 2:40, 5 users, |load average: 0.32, 0.20, 0.00
User tty login@ idle JCPU PCPU what

j uan ttyol 8: 33am 12 54 14 —csh

chang tty05 8: 45am 6: 20 26 rmail

larry tty07 8: 55 1:58 8 -—csh

t ony tty09 7:53 3:10 22 4 mail

| ucy tty02 11: 24 1: 40 18 4 —csh

$

In addition, the w command displays the following information:

e Thetty column: user’'s workstation

e Thel ogi n@column; user’s login time

* Thei dl e column: amount of time since the user entered a command

e The JCPU column:; total CPU time used during the current login session

e The PCPU column; CPU time used by the command that is currently
executing

Using Processes 6-15

On certain occasions, you may want to have a detailed listing of current
processes (both foreground and background) and the users who are running
them. To get such alisting, use the ps au command. In the following
example, information about five users and their active processes is displayed:

$ ps au

USER PID %CPU UWEM SZ RSS TT STAT TIME COVVAND
juan 26300 16.5 0.8 441 327 p3 R 0:02: 01 ps au
chang 25821 7.0 0.2 149 64 p4 R 0:12:23 mail —n
larry 25121 6.1 0.2 107 83 p22 R 26:25:07 tip nodem
tony 11240 4.5 0.6 741 225 pl9 R 1: 57: 46 emacs
lucy 26287 0.5 0.1 61 28 pl1 S 0: 00: 00 nore

$

The most important fields for the general user are the USER, PI D, Tl MVE, and
COVIVAND fields. For information on the remaining fields, see the ps(1)
reference page.

6—16 Using Processes

Shell Overview 7

This chapter introduces you to the operating system shells. After completing
this chapter, you will be able to:

» Understand the purpose and general features of the Bourne, C, and Korn
shells

» Change your shell
e Use command entry aids common to all shells

» Understand your shell environment as well as the role of login scripts,
environment variables, and shell variables

» Set and clear environment and shell variables

» Understand how the shell finds commands on your system

» Write logout scripts

* Write and run basic shell procedures

This chapter covers features common to all operating system shells, with

some descriptions of shell differences. For detailed information on specific
Bourne, C, and Korn shell features, see Chapter 8.

7.1 Purpose of Shells

The user interfaces to the operating system are called shells. The shells are
programs that interpret the commands you enter, run the programs you have
asked for, and send the results to your screen.

The operating system provides the following shells:

» The Bourne shell (system default)

e The C shell

* The Korn shell

Y ou may access any shell, depending upon the security restrictions in effect
on your system as well as upon the licensing restrictions of the Korn shell. In

any case, al shells perform the same basic function: they allow you to
perform work on your system by executing commands.

In addition to interpreting commands, the shell can also be used as a
programming language. Y ou can create shell procedures that contain
commands. Shell procedures are executed in the same way that you execute a
program: on the command line after the shell prompt.

When you run a shell procedure, your current shell creates or spawns a
subshell. A subshell is a new shell your current shell createsto run a
program. Thus, any command the shell procedure executes (for example, cd)
leaves the invoking shell unaffected.

Shell procedures provide a means of carrying out tedious commands, large or
complicated sequences of commands, and routine or repetitive tasks.

See Section 7.10 for more information on shell programming.

7.2 Summary of Bourne, C, and Korn Shell Features

The operating system provides the following shells that have both command
execution and programming capabilities:

* The Bourne shell (sh)

Thisisasimple shell that is easily used in programming. It is usualy
represented by a dollar sign ($) prompt. This shell does not provide
either the interactive features or the complex programming constructs
(arrays and integer arithmetic) of the C shell or the Korn shell.

The Bourne shell also provides arestricted shell (Rsh). For more
information, see Section 7.2.2.

« TheC shdl (csh)

This shell is designed for interactive use. It is usually represented by a
percent sign (%) system prompt. The C shell provides some features for
entering commands interactively:

— A command history buffer

— Command aliases

— Filename completion

— Command line editing

For more information on these features, see Section 7.2.1.
* TheKorn shell (ksh)

This shell combines the ease of use of the C shell and the ease of
programming of the Bourne shell. The system prompt is usually a dollar
sign ($) prompt. The Korn shell provides these features:

— Theinteractive features of the C shell

7-2 Shell Overview

— The simple programming syntax of the Bourne shell
— Command line editing
— The fastest execution time

— Upward compatibility with the Bourne shell (that is, most Bourne
shell programs will run under the Korn shell)

For more information on these features, see Section 7.2.1.

7.2.1 More Information on C and Korn Shell Features
Both the C and the Korn shells offer the following interactive features:

Command history

The command history buffer stores the commands you enter and alows
you to display them at any time. As aresult, you can select a previous
command, or parts of previous commands, and then reexecute them. This
feature may save you time because it allows you to reuse long commands
instead of retyping them. In the C shell, this feature requires some setup
in the .cshrc file; in the Korn shell this feature is automatically provided.

Command aliases

The command aliases feature allows you to abbreviate long command
lines or rename commands. Y ou do this by creating aliases for long
command lines that you frequently use. For example, assume that you
often need to move to the directory / usr/ chang/ r eport s/ st at us.
You could create an dias st at us that could move you to that directory
whenever you enter st at us on the command line. In addition, aliases
allow you to make up more descriptive names for operating system
commands. For example, you could define an alias named r enane for
the mv command.

Filename completion

In the C shell, the filename completion feature saves typing by allowing
you to enter a portion of the filename. When you press the Escape key,
the shell will complete the filename for you. See Section 8.2.4 for more
information about filename completion in the C shell.

In the Korn shell, you can ask the shell to display alist of file names that
match the partial name you entered. You may then choose among the
displayed file names. See Section 8.4.5 for more information about
filename completion in the Korn shell.

The Korn shell provides an inline editing feature that allows you to retrieve a
previously entered command and edit it. To use this feature, you must know
how to use atext editor such asvi or emacs.

Shell Overview 7-3

For more information about these shell features, see Chapter 8.

7.2.2 The Restricted Bourne Shell

The operating system enhances system security by providing specified users a
limited set of functions with arestricted version of the Bourne shell (Rsh).
When these specified users log in to the system, they are given accessto the
restricted Bourne shell only. Your system administrator determines who has
access to the restricted Bourne shell.

A restricted shell is useful for installations that require a more controlled
shell environment. As aresult, the system administrator can create user
environments that have a limited set of privileges and capabilities. For
example, al users that are guests to your system might be allowed access
under the username guest . When logging in to your system, user guest
would be assigned a restricted shell.

The actions of Rsh are identical to those of sh, except that the following
actions are not allowed:

» Changing directories. The cd command is deactivated.
» Specifying pathnames or command names containing a slash (/).

e Setting the value of the PATH or the SHEL L variables. For more
information on these variables, see Section 7.5.2.

» Redirecting output with the right-angle brackets (> and >>).
For more detailed information on Rsh, see the sh(1) reference page. For

information on how system administrators create restricted shells, see your
system administrator.

7.3 Changing Your Shell

Whenever you log in, you are automatically placed in a shell specified by
your system administrator. However, depending upon the security featuresin
effect on your system, you can enter commands that will alow you to do the
following:

» Determine which shell you are running
e Temporarily change your shell
» Permanently change your shell

The following sections describe these operations.

7—-4 Shell Overview

7.3.1

7.3.2

Determining What Shell You Are Running

To determine what shell you are currently running, enter the following
command:

echo $SHELL
The filename of the shell you are running will display.
In the following example, assume that you are running the Bourne shell (sh):

$ echo $SHELL
[usr/ bin/sh
$

Table 7-1 lists the filename that displays for each shell as well as the default
system prompt (your system prompt may vary).

Table 7-1: Shell Names and Default Prompts

Shell Shell Name Default Prompt
Bourne sh $
Restricted Bourne Rsh $
C csh %
Korn ksh $

Temporarily Changing Your Shell

You may experiment with using other shells if the security features on your
system allow it.

To temporarily change your shell, enter the following command:
shel | nane

The shel | nane is the filename of the shell you want to use. See Table 7-1
for valid shell file names to enter on the command line. Once the shell is
invoked, the correct shell prompt is displayed.

Once you are done using the new shell, you can return to your default shell
by entering exi t or by pressing Ctrl/D.

Shell Overview 7-5

For example, assume that the Korn shell is your default shell. To change to
the C shell and then back to the Korn shell, enter the following commands:

$ /usr/bin/csh
% exi t

$

Note

If you are using the Bourne Restricted Shell, you cannot change
to another shell.

7.3.3 Permanently Changing Your Shell

You may permanently change your default shell if the security features on
your system alow it. If your current shell is the C shell, use the chsh
command to change your default shell. If you don’t use the C shell, change
your default shell by contacting your system administrator.

In the C shell, enter the following command to change the default shell:

% chsh

Changi ng | ogi n shell for user.
ad shell: /[usr/bin/csh

New shel | :

Enter the name of the new shell. See Table 7-1 for valid shell names to enter
on the command line.

After entering the chsh command, you must log out and log in again for the
change to take effect.

7.4 Command Entry Aids
The following features of al operating system shells help you do your work:
* The ability to enter multiple commands and command lists
* Pipes and filters
* The ability to group commands
* Quoting

7—6 Shell Overview

7.4.1 Using Multiple Commands and Command Lists

The shell usualy takes the first word on a command line as the name of a
command and then takes any other words as arguments to that command.
The shell usually considers each command line as a single command.
However, you can use the operators in Table 7-2 to execute multiple
commands on a single command line.

Table 7-2: Multiple Command Operators

Operator Action Example

; Causes commands to run in cndl ; cnd?

seguence.
&& Runs the next command if the cndl && cnd2

current command succeeds.

Il Runs the next command if the cndl || cnd2
current command fails.

| Creates a pipeline. cndl | cnd2

The following sections describe running commands in sequence (;), running
commands conditionally (|| and &&), and using pipelines (|).

7.4.1.1 Running Commands in Sequence with a Semicolon (;)

Y ou can enter more than one command on aline if you separate commands
with the semicolon (;).

In the following example, the shell runs| s and waits for it to finish. When
| s isfinished, the shell runs who, and so on through the last command:

$1s ; who ; date ; pwd
change file3 newfile

any consol e/ 1 Jun 4 14: 41
Tue Jun 4 14:42:51 CDT 1996

[ul any

$

If any one command fails, the others still execute successfully.

To make the command line easier to read, separate commands from the
semicolon (;) with blanks or tabs. The shell ignores blanks and tabs used in
this way.

Shell Overview 7-7

7.4.1.2 Running Commands Conditionally

7.4.2

When you connect commands with two ampersand (&&) or pipe (| |)
operators, the shell runs the first command and then runs the remaining
commands only under the following conditions:

&& The shell runs the next command only if the current command
completes (a command indicates successful completion when it
returns a value of zero).

Il The shell runs the next command only if the current command does
not complete.

The syntax for the two ampersand (& &) operator follows:
cmd1 && cmd2 && cmd3 && cmd4 && cmd5

If cnd1 succeeds, the shell runs cnd2. If cntd2 succeeds, the shell runs
cnt3, and on through the series until a command fails or the last command
ends. (If any command fails, the shell stops executing the command line).

The syntax for the pipe (| |) operator follows:
cmdl || emd2

If cnd1 fails, then the shell runs cnd2. If cnd1 succeeds, the shell stops
executing the command line.

For example, suppose that the command nysort is asorting program that
creates atemporary file (mysort . t np) in the course of its sorting process.
When the sorting program finishes successfully, it cleans up after itself,
deleting the temporary file. If, on the other hand, the program fails, it may
neglect to clean up. To ensure deletion of mysort . t np, enter the
following command line:

$ nysort || rmnysort.tnp
$

The second command executes only if the first command fails.

Using Pipes and Filters

A pipe is aone-way connection between two related commands. One
command writes its output to the pipe, and the other process reads its input
from the pipe. When two or more commands are connected by the pipe (])
operator, they form a pipeline.

Figure 7-1 represents the flow of input and output through a pipeline. The
output of the first command (cnt/1) is the input for the second command
(cnd2); the output of the second command is the input for the third
command (cnd3).

7—-8 Shell Overview

Figure 7-1: Flow Through a Pipeline

Cmd2 Cmd3
Cmdl —%|—>| itery —»|—> (ilter) |——>

ZK-0537U-R

A filter is a command that reads its standard input, transforms that input, and
then writes the transformed input to standard output. Filters are typically
used as intermediate commands in pipelines — that is, they are connected by a
pipe (|) operator. For example, to cause thel s command to list recursively
the contents of all directories from the current directory to the bottom of the
hierarchy, and then to display the results, enter the following command:

$1s -R| pg
In this example, the pg command is the filter because it transforms the
output from thel s —R command and displays it one screen at atime.

Certain commands that are not filters have a flag that causes them to act like
filters. For example, the di f f (compare files) command ordinarily compares
two files and writes their differences to standard output. The usual format for
di ff follows:

diff filel file2

However, if you use the dash (-) flag in place of one of the file names, di f f
reads standard input and compares it to the named file.

In the following pipeling, | s writes the contents of the current directory to
standard output. The di f f command compares the output of | s with the
contents of afilenamed di rfi | e, and writes the differences to standard
output one page at a time (with the pg command):

$1s | diff —dirfile | pg
In the following example, another kind of filter program (gr ep) is used:
$1s —l | grep r-x | we -l
12
$
In this example, the following takes place:

e Thels —I command listsin long format the contents of the current
directory.

* Theoutput of | s —I becomes the standard input to gr ep r - x, afilter
that searches for the files in its standard input for patterns with
permissions of r - x, and writes all lines that contain the pattern to its
standard outpui.

Shell Overview 7-9

7.4.3

» The standard output of gr ep r - x becomes the standard input to wc
—I, which displays the number of files matching the gr ep criteriain the
standard input.

To get the same results without using a pipeline, you would have to do the
following:

1. Directtheoutput of | s —|I /user to afile. For example:
$1s - >filel

2. Usefil el asinput for grep r-x and redirect the output of gr ep to
another file. For example:

$ grepr-x filel >file2

3. Usethe output file of gr ep asinput forwc —I . For example:

$we -l file2
As the preceding procedure demonstrates, using a pipeline is a much easier
way to perform the same operations.

Each command in a pipeline runs as a separate process. Pipelines operate in
one direction only (left to right), and all processesin a pipeline can run at the
same time. A process pauses when it has no input to read or when the pipe to
the next processiis full.

Grouping Commands
The shell provides two ways to group commands, as shown in Table 7-3.

Table 7-3: Command Grouping Symbols

Symbols Action
(commands) The shdll creates a subshell to run the grouped cormands as
a separate process.

{conmmands} The shell runs the grouped conmands as a unit. Braces can
only be used in the Korn and Bourne shells.

The following sections describe the command grouping symbols of Table 7-3
in greater detail.

7-10 Shell Overview

7.4.3.1 Using Parentheses ()

In the following command grouping, the shell runs the commands enclosed
in parentheses as a separate process:

$ (cd reports;ls);ls

The shell creates a subshell (a separate shell program) that moves to the
reports directory and lists the files in that directory. After the subshell
process is complete, the shell lists the files in the current directory (I s).

If this command were written without the parentheses, the original shell
would moveto ther eport s directory, list the filesin that directory, and
then list the files in that directory again. There would be no subshell and no
separate process for thecd reports; | s command.

The shell recognizes the parentheses wherever they occur in the command
line. To use parentheses literally (that is, without their command-grouping
action), quote them by placing a backslash (\) immediately before either the
open parenthesis [(] or the close parenthesis [)], for example, \ (

For more information on quoting in the shell, see Section 7.4.4.

7.4.3.2 Using Braces {}

7.4.4

Using bracesis valid only in the Bourne and Korn shells.

When commands are grouped in braces, the shell executes them without
creating a subshell. In the following example, the shell runs the dat e
command, writing its output to thet oday. gr p file, and then runs the who
command, writing its output tot oday. grp :

$ { date; who }>today.grp

$

If the commands were not grouped together with braces, the shell would
write the output of the dat e command to the display and the output of the
who command to the file.

The shell recognizes braces in pipelines and command lists, but only if the
left brace is the first character on a command line.

Quoting

Reserved characters are characters such as the left-angle bracket (<), the
right-angle bracket (.), the pipe (|), the ampersand (&), the asterisk (*), and
the question mark (?) that have a special meaning to the shell. See Chapter
8 for lists of reserved characters for each operating system shell.

To use areserved character literally (that is, without its special meaning),
guote it with one of the three shell quoting conventions, as shown in Table
7-4.

Shell Overview 7-11

Table 7-4: Shell Quoting Conventions

Quoting Action
Convention
\ Backslash — Quotes a single character.

Single quotes — Quotes a string of characters (except the
single quotation marks themselves).

Double quotes — Quotes a string of characters (except $, *
and) .

The following sections describe the quoting conventions of Table 7-4 in
greater detail.

7.4.4.1 Using the Backslash (\)

To quote a single character, place a backdash (\) immediately before that
character, as in the following:

$ echo \?

?

$

This command displays a single question mark (?) character.

7.4.4.2 Using Single Quotes (' ")

When you enclose a string of charactersin single quotes, the shell takes
every character in the string (except the ’ itself) literally. Single quotes are
useful when you do not want the shell to interpret:

* Reserved characters such the dollar sign ($) , the grave accent (*) , and
the backslash (\)

* Variable names

The following example shows how single quotes are used when you want to
display a variable name without having it being interpreted by the shell:

$ echo ' The value of $USER is’ $USER
The val ue of $USER is any
$

The echo command displays the variable name $USER when it appears
within single quotes, but interprets the value of $USER when it appears
outside the single quotes.

For information on variable assignments, see Section 7.7.1.

7-12 Shell Overview

7.4.4.3 Using Double Quotes (" ")

Double quotes (" ") provide a special form of quoting. Within double quotes,

the reserved characters dollar sign ($) , grave accent () , and backslash

(\) keep their special meanings. The shell takes literally al other characters
within the double quotes. Double quotes are most frequently used in variable
assignments.

The following example shows how double quotes are used when you want to
display brackets (normally reserved characters) in a message containing the
value of the shell variable:

echo "<<Current shell is $SHELL>>"

<<Current shell is /usr/bin/csh>>
$

For information on variable assignments, see Section 7.7.1.

7.5 The Shell Environment

7.5.1

Whenever you log in, your default shell defines and maintains a unique
working environment for you. Y our environment defines such characteristics
as your user identity, where you are working on the system, and what
commands you are running.

Y our working environment is defined by both environment variables and
shell variables. Your default login shell uses environment variables and
passes them to all processes and subshells that you create. Shell variables are
valid only for your current shell and are not passed to subshells.

The following sections discuss the shell environment, how it is configured,
and how you can tailor it.

The login Program

Whenever you log in, the | ogi n program isrun. This program actually
begins your login session using data stored in the / et ¢/ passwd file, which
contains one line of information about each system user. The

/ et ¢/ passwor d file contains your username, your password (in encrypted
form), your home directory, and your default shell. For more information on
the/ et c/ passwd file, see Chapter 5.

Thel ogi n program runs after you enter your username at the | ogi n:
prompt. It performs the following functions:

» Digplaysthe Passwor d: prompt (if you have a password).

» Vaerifies the username and password you entered against what is contained
inthe/ et ¢/ passwd file.

» Assigns default values to the shell environment.

Shell Overview 7-13

e Starts running the shell process.

* Runs system login scripts and your personal login scripts. See Section 7.6
for more information.

7.5.2 Environment Variables

Y our shell environment defines and maintains a unique working environment
for you. Most of the characteristics of your working environment are defined
by environment variables.

Environment variables consist of a name and avalue. For example, the
environment variable for your login directory is named HOVE, and its value
is defined automatically when you log in.

Some environment variables are set by the | ogi n program, and some can be
defined in the login script that is appropriate for your shell. For example, if
you use the C shell, environment variables will typically be set in the

. cshr c login script. For more information on login scripts, see Section 7.6.

Table 7-5 lists selected environment variables that can be used by all
operating system shells. Most of the values of these variables are set during
the login process, and are then passed to each process that you create during
your session.

Table 7-5: Selected Shell Environment Variables

Environment
Variable Description

HOVE Specifies the name of your login directory, the directory
that becomes the current directory upon completion of a
login. The cd command uses the value of HOVE as its
default value. Thel ogi n program sets this variable, and
it cannot be changed by the individual user.

L OGNAME Specifies your login name.

MAI L Specifies the pathname of the file used by the mail system
to detect the arrival of new mail. Thel ogi n program sets
this variable based upon your username.

PATH Specifies the directories and the directory order that your
system uses to search for, find, and execute commands.
This variable is set by your login scripts.

SHELL Specifies your default shell. This variableis set by | ogi n
using the shell specified in your entry in the
[et c/ passwd file.

7-14 Shell Overview

Table 7-5:

Environment
Variable

TERM

TZ

LANG

LC_COLLATE

LC_CTYPE

LC_MESSAGES

LC_MONETARY

LC_NUMERI C

LC_TI ME

(continued)

Description

Specifies the type of terminal you are using. This variable
is usually set by your login script.

Specifies the current time zone and difference from
Greenwich mean time. This variable is set by the system
login script.

Specifies the locale of your system, which is comprised of
three parts: language, territory, and character code set.
The default value is the C locale, which implies English
for language, U.S. for territory, and ASCII for code set.
LANG can be set in alogin script.

Specifies the collating sequence to use when sorting names
and when character ranges occur in patterns. The default
value is the ASCII collating sequence. LC_COLLATE can
be set in alogin script.

Specifies the character classification rules used in the

ct ype functions for the current locale. The default value
is the classification for ASCII characters. LC_TYPE can
be set in alogin script.

Specifies the language used for yes/no prompts. The
default value is American English, but your system may
specify another language.

Specifies the monetary format for your system. The default
value is the American format for monetary figures.
LC MONETARY can be set in alogin script.

Specifies the numeric format for your system. The default
value is the American format for numeric quantities.
LC_NUMERI Ccan be set in alogin script.

Specifies the date and time format for your system. The
default value is the American format for dates and times.
LC _TI ME can be set in alogin script.

Many of these environment variables can be set during the login process by
the appropriate login script (see Section 7.6). However, you may reset them
as well as set those for which no default values have been provided. See
Section 7.7.1 for more information.

For more information on the LANG, LC_COLLATE, LC_CTYPE,
LC_MESSAGES, LC_MONETARY, LC_NUMERI C, and LC_TI ME variables,
refer to Appendix C which explains the variables in the context of other
system features that support the languages and customs of different countries.

Shell Overview 7-15

You may also create your own environment variables. For example, some
systems have more than one mail program available to users. Assume that
mai | and mh are available on your system and that each has its own
pathname. As aresult, you could define a variable for the pathname of each
mail program.

For more information about environment variables specific to each operating
system shell, see Chapter 8. For a complete list of operating system shell
environment variables, see the sh(1), csh(1), and ksh(21) reference pages.

7.5.3 Shell Variables

Shell variables are valid only for your current shell and are not passed to
subshells. Consequently, they can be used only in the shell in which they are
defined. In other words, they may be thought of as local variables.

Shell variables can be accessed outside of the current shell by becoming
environment variables. For more information about environment variables,
see Section 7.7.1.

You may aso create your own shell variables. For example, some mail
programs use the pager variable to define the program that displays mail.
Suppose that your mail program is mai | X. You could define the PAGER
variable to use the nor e program to display your mail.

For information on how to set shell variables, see Section 7.7.1.

7.6 Login Scripts and Your Environment

A login script is afile that contains commands that set up your user
environment. There are two kinds of login scripts:

e System login scripts for all users of a particular shell.

These scripts create a default environment for all users and are
maintained by your system administrator. The Bourne and Korn shells
use a system login script called / et ¢/ profi |l e. TheC shell usesa
script called / et ¢/ csh. | ogi n. See Table 7-6 for the pathnames of
system login scripts.

When you log in, the commands in this file are executed first.
* Loca login scripts in your default login directory.

These scripts allow you to tailor your environment, and you maintain the
appropriate file. For example, you could change the default search path or
shell prompt. If your default shell (see Section 7.3) is the Bourne or Korn
shell, the login script fileis called . profi | e. The C shell uses the file

7-16 Shell Overview

called . | ogi n. A local login script is executed after the system login
Sscript.

If the C shell is your default, your environment can be further tailored with
the . cshr c file. It executes when you log in (before. | ogi n) and
whenever you spawn a subshell. The . cshr c file is the C-shell mechanism
that automatically makes variables available to subshells.

On startup, the Korn shell will also execute any file pointed to by the ENV
environment variable. This variableistypicaly setinthe. profil e file
and is set to another file, usually in the $HOVE directory. Some users prefer
to cal thisfile. kshrc or . envfil e. Tousesuch afile, place alinelike
thisinyour . profil e file:

ENV=~/ . kshrc

Such afile typically contains shell variables, alias definitions, and function
definitions. This file will be referred to as . kshr ¢ for the remainder of this
document.

Creating your own login script is not mandatory as the system login script
for your shell provides a basic environment. Y our system administrator may
have created a local login script that you can modify with atext editor.

When you are new to the system, you may want to use the default
environment established for you. However, as you become more familiar
with the system, you may want to create or modify your own login script.

Table 7-6 lists the system login and local login scripts for each operating
system shell. All scripts for a given shell run whenever you log in to your
system. In addition, when you enter csh at any shell prompt or execute a C
shell script, the . cshr ¢ file executes and creates an environment for the C
subshell.

Table 7-6: System and Local Login Scripts

System Local
Shell Pathname Login Script Login Script
Bourne [usr/ bin/sh /etclprofile .profile
Korn [usr/ bin/ksh /etc/profile .profile
ENV
C [usr/bin/csh /etc/csh.login .login
.cshrc

To determine if you have any local login scripts in your home directory, use
thel s —a command. This command displays all files that begin with a dot

Shell Overview 7-17

(.) aswell as all other entries.

The following customization features are commonly set in the local login
scripts:

* Terminal characteristics

» Search path and other environment variables

» Shell variables

* Maximum permissions for new files with umask (see Chapter 5)
* Allowing or stopping messages to your workstation

* Thetrap command (Bourne and Korn shells only)

* Command aliases, history variables (C and Korn shells only)

» Displaying system status information and other messages

» Checking for mail

» Checking for news

It is agood idea to check the contents of your system login script so that you
can avoid duplication in your local login script. For example, if your system
login script checks for news, there is no need to do the same in your local
login script.

See Chapter 8 for specific examples of Bourne, Korn, and C login scripts.

7.7 Using Variables

All operating system shells use environment and shell variables to define user
environment characteristics. As part of the set-up process, your system
administrator has provided default environment and shell variable valuesin
the appropriate login scripts.

For most users, the default environment and shell variable values are
sufficient. As you become more familiar with the system, however, you may
want to modify some values. For example, you may want to reset the
variable that defines your shell prompt so that it is more personalized. Or
you may want to set a shell variable that specifies a very long directory
pathname so that you can save time keying commands that use the directory
(see the examples in Section 7.7.1). Or you may find setting variables useful
when writing shell procedures. You will find that you may use variables
creatively to enhance your work environment.

Some environment variables may be reset and some are read-only and cannot
bereset. That is, these variables can be used, but not modified. For more
information on this topic, see the appropriate shell reference page; sh(l),
csh(d), or ksh(d).

7-18 Shell Overview

7.7.1

To reset environment variables as well as define your own shell variables, do
one of the following:

» Edit the appropriate local login script if you want these values set for you
whenever you log in. For more information, see Section 7.6.

* Set the environment variables on the command line if you want these
values set only for the current login session.

At any time, you may reference the value of any variable as well as display
its value. Y ou may also clear the value of any variable.

Setting Variables

The following sections describe how to set, reference, display, and clear
variable values.

7.7.1.1 Bourne and Korn Shell Variables

In the Bourne and Korn shells, you set variables with an assignment
statement. The general format for setting variables is the following:

name=value

The nane entry specifies the variable name. The val ue entry specifies the
value assigned to the variable. Be sure you do not enter spaces on the
command line.

For example, you can create a variable called pl ace by assigning it avalue
of U S. A. withthe following statement:

$ place=’ U. S. A

$

From then on, you can use the variable p/ ace just as you would use its
value.

For a more useful example, assume that you are using the Bourne shell and
that you temporarily want to personalize your shell prompt. The default
Bourne shell prompt is adollar sign ($) set by the PS1 environment variable.

TosetittoWhat Shall | Do Next? >, enter the following command:
$ PS1="What Shall | Do Next? >’
VWhat Shall | Do Next? >

If you want to make the shell prompt available to subshells, enter the

Shell Overview 7-19

following command:

$ export PS1

Thiswhat Shall | Do Next? > prompt will be in effect throughout
your session. If you want to make the new prompt more permanent, enter the

same assignment statement and the export command in your . profil e
file. When you export a shell variable, it becomes an environment variable.

As another example, to save keying time you want to define a variable for a
long pathname that you use often. To define the variabler epor t s for the
directory / usr/ sal es/ shoes/ wonen/retai |l / reports, enter the
following:

$ reports=/usr/sal es/ shoes/wonen/retail/reports

To reference the variable after setting it, enter a dollar sign ($) before the
variable name. For more information on referencing variables, see Section
7.7.2.

Y ou can now use the variable r epor t s in any commands you enter during
this session. If you want to make this variable permanent, enter the same
assignment statement in your . profi | e file.

7.7.1.2 C Shell Variables

In the C shell, you set environment variables with the set env command.
The general format of the set env command is the following:

setenv name value

The nane entry specifies the variable name. The val ue entry specifies the
value assigned to the variable.

For a example of setting the PATH environment variable, see Section 7.8.

You set shell variables with the set command. The format of the set
command is:

set name=value

The name entry specifies the variable name. The val ue entry specifies the
value assigned to the variable. If the val ue entry contains more than one
part (has spaces), enclose the whole expression in single quotes ().

For example, assume that you want to change your prompt. The default C
shell prompt is a percent sign (%). To set it to Ready? >, enter the

7-20 Shell Overview

following on the command line:

% set pronpt =" Ready? >
Ready? >

The Ready? > prompt will be in effect throughout your session. If you
execute another shell from the Ready? > prompt, you will get the new
shell’s prompt. To make the new prompt permanent, enter the same
command in your . cshr c file.

7.7.1.3 Setting Variables in All Shells

1.7.2

7.7.3

To set or reset environment or shell variables in any operating system shell,
do one of the following:

» Edit the appropriate local login script if you want these values set for you
whenever you log in. For more information about login scripts, see
Section 7.6.

* Set them on the command line if you want these values set only for the
current login session.

Referencing Variables (Parameter Substitution)

To reference the value of a variable in a command line, enter a dollar sign ($)
before the variable name. The dollar sign ($) causes the shell you are using to
substitute the value of the variable for the variable name. This is known as
parameter substitution.

For example, assume that you have previously defined the variable sal es
for the long pathname / user/ r eport s/ QL/ mar ch/ sal es, and that you
want to use this variable with the cd command. To do so, enter the cd
command with the sal es variable:

$ cd $sales
$

Then, enter the pwd command to verify that the directory is changed:

$ pwd
/user/reports/ QL/ march/ sal es
$

In this example, the shell substitutes the actual pathname of the directory
/user/reports/ QL/ march/ sal es for the variable name sal es.

Displaying the Values of Variables

You can display the value of any variable currently set in your shell.
Variable values can be displayed either singly or as a group.

Shell Overview 7-21

To display the value of a single variable, use the echo command in the
following general format:

echo $variable

The vari abl e entry identifies the variable you want to display.

For example, assume that you use the Korn shell and want to display the
value of the SHELL environment variable. To do so, enter the following
command:

$ echo $SHELL

/usr/ bin/ksh
$

For the Bourne and Korn shells, to display the value of all currently set
variables, use the set command without any options. For example, the
following example lists the currently set values in the Bourne shell (your
output will vary):

$ set

EDI TOR=enacs

HOVE=/ user s/ chang

LOGNAME=chang

MAI L=/ usr/ mai | / chang

PATH=: / usr/ bi n: / usr/ bi n/ X11

PS1=$

SHELL=/ usr/ bi n/ sh

TERMEXt erm

$

For the C shell, to display the value of al currently set shell variables, use
the set command without any options. To display the value of all currently
set environment variables, use the set env command or the pri nt env
command without any options.

7.7.4 Clearing the Values of Variables

Y ou may remove the value of most any current variable. Please note,
however, that the following variables cannot be cleared:

» PATH

» PS1 (Bourne and Korn shell)

» PS2 (Bourne and Korn shell)

* MAI LCHECK (Bourne and Korn shell)
* | FS(Bourne and Korn shell)

For more information on these variables, see the appropriate shell reference
pages, sh(1), csh(l), or ksh(1).

7-22 Shell Overview

In the Bourne and Korn shells, you can clear both environment and shell
variables with the unset command. The format of the unset command is:

unset name

The narne entry specifies the variable name.

In the C shell, you clear environment variables with the unset env
command. The format of the unset env command is:

unsetenv name

The nane entry specifies the variable name.

You clear shell variables with the unset command. The format of the
unset command is:

unset name

The name entry specifies the variable name.

For an example, assume that you use the Korn shell and have created a
variable called p/ ace and have assigned it avalueof U. S. A.. To clear
the variable, enter the following:

$ unset place

$

For more detailed information about setting and referencing variables, see the
appropriate shell reference pages,; sh(1), csh(1), or ksh(1).

7.8 How the Shell Finds Commands

Every time you enter a command, your shell searches through alist of
directories to find the command. This list of directories is specified by the
PATH environment variable.

At many installations, system administrators specify default PATH directories
for new users. However, more experienced users may need to change these
PATH directories.

The PATHvariable contains a list of directories to search, separated by
colons (:). The order in which the directories are listed is the search order
that the shell uses to search for the commands that you enter.

To determine the value of PATH, use the echo command. For example,

Shell Overview 7-23

assume that you are using the C shell and have entered the following:

% echo $PATH
fusr/bin:/usr/bin/X1l1
% _

This output from the echo command (your output may vary) tells you that
the search order of the preceding example is the following:

* The/ usr/ bi n directory is searched first.
* The/usr/ bi n/ X11 directory is searched second.
Typically, PATHis set as an environment variable in the appropriate login

script. In the Bourne and Korn shells, the PATHvariable is normally set in
the. profi |l e script. Inthe C shell, it is normally set in the . | ogi n script.

If you want to change the search path, you can assign a new value to the
PATHvariable. For example, assume that you use the Bourne shell and that
you have decided to use your own versions of some operating system
commands. As aresult, you want to add $HOVE/ usr / bi n/ to the search
path. To do so, enter the following on the command line if you want the
new PATHvariable value to be in effect for the current login session:

$ export PATH=$HOVE/ usr/bin:/usr/bin:/usr/bin/X11
$

If you want this new PATH variable value to be in effect for all future
sessions, modify the PATHvariablein your . profi | e script. When you
next log in, the changes you have made in your . pr of i | e script will take
effect.

7.9 Using Logout Scripts

Y ou can create alogout script that automatically runs every time you end
your session. Just like login scripts, the . | ogout file must reside in your
home directory.

Y ou can use logout scripts for the following purposes:
» To clear your screen

* To display alogout message

» To run long background processes after you log out
* Torun afile cleanup routine

To create alogout script, do the following:
1. Createafilecaled. | ogout inyour home directory with atext editor.
2. Place the commands you want in the file. See Section 7.9.2 for idess.

7-24 Shell Overview

7.9.1

7.9.2

3. Save the text and exit the editor.

4. Enter the following command to ensure that the . | ogout file has the
appropriate executable permissions:

$ chrmod u+x .| ogout
$

Using a. | ogout fileis not mandatory; it is a convenience that may
enhance your work environment.

Logout Scripts and the Shell

If you are using the C shell, the . | ogout script executes automatically
when you log out.

If you are using the Bourne or the Korn shell and want to use a logout script,
you must ensure that a special trap is setin your . pr of i | e script. A trap

is a command sequence that looks for a specified signal from aterminal, and
then runs a specified command or set of commands.

If the following line is not set in your . pr ofi | e script, you must add it
with atext editor:

trap $HOWE .| ogout O

This statement tells your system to run the . | ogout script whenever it
receives a zero (0) signal, which occurs automatically when you log out.

A Sample .logout File

The following example . | ogout file does the following:

* Clearsthe screen

» Displays alogout message that provides the name of your system, your
username, and the logout time

» Displays a parting message

* Runs afile cleanup routine in the background after you log out

Note that lines beginning with the number sign (#) are comment lines that
describe the commands below them.

O ear the screen

cl ear

Display the nanme of your system your usernane,
and the time and date that you | ogged out
echo ‘hostnanme’ : ‘whoanmi‘ |ogged out on ‘date’

Run the find command in the background. This command
searches your login directory hierarchy for all

Shell Overview 7-25

tenporary files that have not been accessed in
7 days, and then del etes them
find ~ —name "*.tnp’ -atine +7 —exec rm{} \; &

A parting nessage
echo "Good Day. Come Back Soon”

7.10 Using Shell Procedures (Scripts)

In addition to running commands from the command line, the shell can read
and run commands contained in afile. Such afile is called a shell procedure
or shell script.

Shell procedures are easy to develop, and using them can help you work
more efficiently. For example, you may find shell procedures useful because
you can place frequently used commands in one file, and then execute them
by entering only the name of the procedure. As a result, they are useful for
doing repetitious tasks that would normally require entering many commands
on the command line.

Because shell procedures are text files that do not have to be compiled, they
are easy to create and to maintain.

Each shell has its own native programming language. The following are
some programming language features that apply to all shells:

e Storing values in variables

» Testing for predefined conditions
» Executing commands repeatedly
* Passing arguments to a program

For more information on specific programming features of your shell, see
Chapter 8.

7.10.1 Writing and Running Shell Procedures
To write and run a shell procedure, do the following:

1. Create afile of the commands you need to accomplish a task. Create this
file as you would any text file: with vi or another editing program. The
file can contain any system command or shell command (described in the
sh(1), csh(1), or ksh(1) reference pages).

2. Usethechnod +x command to give the file x (execute) status. For
example, the command chnmod g+x reser ve gives execute status to
the file named r eser ve for any user in your group (g). See Chapter 5
for information on using the chnod command.

7—-26 Shell Overview

3. Run the procedure by entering its name. Enter the pathname if the
procedure file is not in your current directory.

The following example shows a simple shell procedure named | ss that sorts
I s —I command output by file size:

! [usr/bin/csh
|ss: sort and |i st
Ils —-I sort —n +4

Table 7-7 describes each linein | ss.

Table 7-7: Description of Example Shell Script

Shell Command Description

#! [usr/bin/csh Specifies the shell where the shell
procedure should run.2

#lss: list and sort Comment line that describes the purpose of
the shell procedure.

s —=I | sort —n +4 These are the commands in the shell

procedure. This procedure lists the filesin
adirectory (I s —l). Output fromthel s
-l command is then piped to the sor t
command (| sort —n +4). This
command skips over the first four columns
of thel s —I output, sorts the fifth column
(the file size column) numerically, and
writes the lines to the standard output.

Table notes:
a. See Section 7.10.2 for more information.

Torunthel ss procedure, enter | ss. Sample system output looks similar
to the following:

$ Iss

-rwrwrw 1 larry system 65 Mar 13 14:46 file3
-rwrwrw 1 larry system 75 Mar 13 14:45 file2
-rwrwrw 1 larry system 101 Mar 13 14:44 filel
$

Shell Overview 7-27

7.10.2 Specifying a Run Shell

At times, you may want to specify the shell where a shell procedure should
run. Thisis because of possible syntactic differences between the shells, but
is especialy true of differences between the C shell and the other shells.

By default, the operating system assumes that any shell procedure you run
should be executed in the same shell as your login shell. For example, if your
login shell is the Korn shell, by default your shell procedures will run in that
same shell.

The ability to override the default is very useful for shell procedures that
many users run because it ensures that the procedure executes in the correct
shell, regardless of the user’slogin shell. To change this default run shell,
include the following command as the first line of the shell procedure:

#! shel | _pat h

The shel | _pat h entry specifies the full pathname of shell where you want
the procedure to run.

For example, if you want a shell procedure to run under the C shell, the first
line of the procedure should be the following:

#!/usr/ bin/csh

7-28 Shell Overview

Shell Features 8

This chapter functions as a reference source for C, Bourne, and Korn shell
features. Unlike other chapters of this guide that present conceptual and/or
tutorial information, the purpose of this chapter is to provide very brief

reference information about each shell.

To get the most out this chapter, you should already be familiar with the
introductory shell overview information in Chapter 7.

After completing this chapter, you should be able to:
* Understand the main differences between operating system shells
» Understand specific features of each operating system shell
* Understand the specifics of local login scripts for each shell

8.1 Comparison of C, Bourne, and Korn Shell Features
Table 8-1 compares C, Bourne, and Korn shell selected features.

Table 8-1: C, Bourne, and Korn Shell Features

Feature

Shell programming

Signal trapping

Restricted shells

Description C

A programming language Yes
that includes features such

as loops, condition

statements, and variables.

Mechanisms for trapping Yes
interruptions and other

signals sent by the

operating system.

A security feature that No
provides a controlled shell
environment with limited
features.

Bourne Korn
Yes Yes
Yes Yes
Yes No

Table 8-1: (continued)

Feature Description C Bourne Korn

Command aliases A feature that allows you Yes No Yes
to abbreviate long
command lines or to
rename commands.

Command history A feature that stores Yes No Yes
commands and allows you
to edit and reuse them.

Filename completion A feature that allows you Yes No Yes
to enter a portion of a
filename and the system
automatically completes it
or suggests a list of
possible choices.

Command line editing A feature that allows you Yes No Yes
to edit a current or
previously entered
command line.

Array The ability to group data Yes No Yes
and call it by a name.

Integer arithmetic The ability to perform Yes No Yes
arithmetic functions
within the shell.

Job control Facilities for monitoring Yes No Yes
and accessing background
processes.

For detailed information on shell features, see the appropriate shell reference
pages, sh(1), csh(l), or ksh(l).

8-2 Shell Features

8.2 C Shell Features
This section describes the following C shell features:
e Sample. cshrc and. | ogi n scripts
* Metacharacters
e Command history and aliases
* Built-in variables and commands

8.2.1 Sample .cshrc and .login Scripts

The. cshr ¢ login script sets up your C shell environment by defining
variables and operating parameters for the local shell process. The. | ogi n
script defines variables and operating parameters that you want executed at
the beginning of your session, and that you want to be valid for all shell
processes during the current login session.

When you log in, the operating system executes the . cshr ¢ filein your
home directory first, and the . | ogi n file second. The . | ogi n script is
executed only when you log in. However, the . cshr ¢ file is executed each
time you create a subshell.

In the following . cshr ¢ script, shell variables, command aliases, and
command history variables are set. Table 8-2 explains each part of the script.

Set shell variables
set nocl obber

set ignoreeof

set notify

Set command al i ases

alias h "history \!'* | nore’
alias | "Is I’

alias c clear

Set history variables

set history=40

set savehi st =40

Set pronpt
set pronmpt = '\!l %’

Shell Features 8-3

Table 8-2: Example .cshrc Script

Command Description
Shell Variables
set nocl obber Stops files from being overwritten. If set,

places restrictions on output redirection > to
ensure that files are not accidentally
destroyed, and that >> redirections refer to
existing files.

set ignoreeof Specifies that you cannot use Ctrl/D to end
your login session. Instead, you must use
either theexi t or thel ogout commands.

set notify Informs you when background processes
have completed.

Command Aliases

alias h "history \!* | nore’ Defines the contents of the command
history buffer through the nor e command.
The\ ! * string specifies that all the history
buffer should be piped.

alias | '"Is I’ Defines a short name, | , for thel s —|
command that lists directory files in the
long format.

alias c clear Defines a short name, ¢, for the cl ear

command that clears your screen.

History Variables

hi st or y=40 Instructs the shell to store the last 40
commands in the history buffer.
savehi st =40 Instructs the shell to store the last 40

commands and use them as the starting
history for the next login session.

Prompt Variable

set prompt = '\! %’ Changes your prompt so that it tells you the
command number of the current command.

8—4 Shell Features

In the following . | ogi n script, the permissions for file creation are set, the
PATH environment variable is set, and the editor and printer are specified.
Table 8-3 explains each part of the script.

Set file creation perm ssions
umask 027

Set environment variabl es

set env PATH=/usr/bin:/usr/local/bin:
set cdpath=.:..:$HOME

setenv EDI TOR enacs

set env MAI LHOST boston

set env PRI NTER sal es

Table 8-3: Example .login Script

Command Description

File Permissions

umask 027 Specifies the permissions to be

subtracted from the default

permissions set by the creating
program for al new files created. The
umask value is subtracted from 777
(for executable programs) or from
666. For an executable program, a
umask value of 027 resultsin all
permissions for the owner, read and
execute permissions for members of
the same group, and no permissions

for al others.

Environment Variables

setenv PATH /usr/bin:/usr/local/bin: Specifies the search path. In this case,
[usr/ bi n is searched first, and
[usr/1ocal/bin issearched

second.

set cdpath=.:..:$HOVE cdpat h is avariable that sets the
search path for the cd command. This
variable assignment specifies that the
cd command should search for the
named directory in the current
directory (.) first, in the parent
directory (..) second, and the home

directory ($HOVE) third.

Shell Features 8-5

Table 8-3: (continued)

Command Description

setenv EDI TOR enmcs Specifies the emacs editor as the
default editor when running a program
that allows you to edit afile. For
example, various mail programs allow
you to use an editor to compose and
edit messages.

set env MAI LHOST bost on Specifies bost on as your mail
handling system.

setenv PRI NTER sal es Specifies the printer sal es as your
default printer.

8.2.2 Metacharacters

Table 8-4 describes C shell metacharacters (characters that have special
meaning to the shell).

Table 8-4: C Shell Metacharacters

Metacharacter

Syntactic

|
&&

Il
0

&

Filename

8-6 Shell Features

Description

Separates commands that should be executed sequentially.
Separates commands that are part of a pipeline.

Runs the next command if the current command succeeds.
Runs the next command if the current command fails.

Groups commands to run as a separate processin a
subshell.

Runs commands in the background.

Separates the parts of afile's pathname.
Matches any single character except aleading dot (.).
Matches any sequence of characters except a leading dot

()-

Matches any of the enclosed characters.

Table 8-4:

Metacharacter

Quotation

I nput/Output

<<
>>
>&
>>&

>l

Substitution

(continued)

Description

Specifies a home directory when used at the beginning of
filenames.

Specifies that any of the enclosed characters should be
interpreted literally; that is, without their special meaning
to the shell.

Provides a specia form of quoting. Specifies that the $
(dollar sign), “(grave accent), and \ (backslash) characters
keep their special meaning, while al other enclosed
characters are interpreted literally; that is, without their
special meaning to the shell. Double quotes are useful in
making variable assignments.

Redirects input.
Redirects output to a specified file.

Redirects input and specifies that the shell should read
input up to a specified line.

Redirects output and specifies that the shell should add
output to the end of afile.

Redirects both diagnostic and standard output and appends
them to afile.

Redirects both diagnostic and standard output to the end of
an existing file.

Redirects ouput and specifies that if the noc/ obber
variable is set (prevents overwriting of files); it should be
ignored so that the file can be overwritten.

Specifies variable substitution.

Specifies history substitution.

Precedes substitution modifiers.

Used in special kinds of history substitution.
Specifies command substitution.

Shell Features 8-7

8.2.3 Command History

The command history buffer stores the commands you enter and allows you
to display them at any time. As a result, you can select a previous command,
or parts of previous commands, and then reexecute them. This feature may
save you time because it allows you to reuse long commands instead of
reentering them.

You may want to enter the following three commands in your . cshr ¢ file:
* set history=n

Creates a history buffer that stores the command lines you enter. The n
entry specifies the number of command lines you want to store in the
history buffer.

e set savehist=n

Saves the command lines you entered during the current login session and
makes them available for the next login session. The n entry specifies
the number of command lines you want to store in the history buffer
when you log out.

e set prompt="[\!] %’
Causes your C shell prompt to display the number of each command line.

To see the contents of the history buffer, use the hi st or y command. The
displayed output will be similar to the following (your output will vary):

[18] % history

set history=15
pwd

5 cd /usr/sales

6 Is -l

7 cp report reportb
8

9

Hw

mv /usr/account s/ new .
cd /usr/accounts/ new

10 nkdir june

11 cd june

12 nv /usr/accounts/ new june .

13 I's -l

14 cd /usr/sales/ QL

15 vi earnings

16 cd /usr/chang

17 vi status

18 history

[19] % _

To reexecute any command in the command history buffer, use the
commands listed in Table 8-5. Each command starts with an exclamation
point (!), which tells the C shell that you are using commands in the history
buffer.

8-8 Shell Features

8.2.4

Table 8-5: Reexecuting History Buffer Commands

Command Description

I Reexecutes the previous command.

I'n Reexecutes the command specified by n. For example, using the
history buffer shown in the previous display, ! 5 reexecutes the
cd /usr/sal es command.

I —n Reexecutes a previous command relative to the current command.
For example, using the history buffer shown in the previous
display, ! - 2 invokes command number 17, vi st at us.

I'string Reexecutes the most recent command that has first characters
matching those specified by st ri ng. For example, using the
history buffer shown in the previous display, ! cp invokes
command number 7, cp report reportb5.

I ?string Reexecutes the most recent command line that has any characters
matching those specified by st ri ng. For example, using the
history buffer shown in the previous display, ! ?QL invokes
command number 14, cd /usr/ sal es/ QL.

The command history buffer also allows you to reuse previous command
arguments as well as to modify previous command lines. For information on
these features, see the csh(1) reference page.

Filename Completion

The C shell allows you to enter a portion of a filename or pathname at the
shell prompt, and the shell will automatically match and complete the name.
This feature saves you time when you are trying to display long, unique
filenames.

For example, assume that you have the file meet i ngs_sal es_stat us in
your current directory. To display along listing of the file, enter the
following command:

% |s —I neetings Escape
The system displays the following on the same command line:
%|s —I neetings_sal es_status

Y ou can now execute the command by pressing Return.

For more detailed information on filename completion, see the csh(1)
reference page.

Shell Features 8-9

8.2.5 Aliases

The command aliases feature allows you to abbreviate long command lines
or rename commands. Y ou do this by creating al i ases for long command
lines that you frequently use.

For example, assume that you often need to move to the directory

[usr/chang/ reports/status. Youcan create an dias st at us,
which will move you to that directory whenever you enter it on the command
line.

In addition, aliases allow you to make up more descriptive names for
commands. For example, you could define an alias named r enane for the
mv command.

To create aliases, use the al i as command. The format of the al i as
command is:

alias aliasname command
The al i asnane entry specifies the name you want to use. The conmand
entry specifies either the original command or a series of commands. If the

conmand has more than one part (has spaces), enclose the whole expression
insingle quotes).

8-10 Shell Features

8.2.6

For example, to create the alias st at us that moves you to the directory
[usr/ chang/ r eport s/ st at us, enter the following command:

% alias status 'cd /usr/chang/reports/status’

The usual way to define aliases is to make them a permanent part of your
environment by including them in your . cshr ¢ file. Asaresult, you can
use the aliases whenever you log in or start a new shell. See Section 8.2.1 for
an example.

To display all alias definitions, enter the following command:
% al i as
To display the definition of a particular alias, enter the following command:

% al i as al i asnane

The al i asnane entry specifies the particular alias for which you are
reguesting a definition.

To remove an dias for the current login session, use the unal i as
command. The general format of the unal i as command is the following:

unalias aliasname

The al i asnamne entry specifies the alias you want to remove.

To remove an dias for the current and all future login sessions, do the
following:

1. Enter the following command:
% unal i as al i asnane
The al i asnane entry specifies the alias you want to remove.
2. Editthe. cshr c file and remove the alias definition. Then, save the file.

3. Enter the following command to reexecute the . cshr ¢ file:
% source .cshrc

For complete information on using aliases with the C shell, see the csh(1)
reference page.

Built-In Variables

The C shell provides variables that can be assigned values. These variables
can be very useful for storing values that can be later used in commands. In
addition, you can directly affect shell behavior by setting those variables to
which the shell itself refers.

Table 8-6 describes selected C shell built-in variables that are of the most
interest to general users. For a complete list of C shell built-in variables, see
the csh(1) reference page.

Shell Features 8-11

8.2.7

Table 8-6:

Variable

argv
cwd
hone

i gnor eeof

cdpat h

nocl obber

notify

pat h
pronpt
shel |

status

Built-In C Shell Variables

Description

Contains a value or values that can be used by the shell or
shell scripts.

Contains the pathname to your current directory. The value of
this variable changes every time you use the cd command.

Contains the pathname of your home directory. The default
value for this variable is specified in the / et ¢/ passwd file.

Specifies whether Ctrl/D can be used to log out from the
system. If set, you must use either | ogout or exi t to log
out. If unset, you may use Ctrl/D to log out. This variableis
usualy set inthe . cshr c file.

Specifies alternative directories to be searched by the system
when locating subdirectories with the cd, chdi r, or pushd
commands. This variable is usualy set in the . | ogi n file.

Specifies whether afile can be overwritten. If set, places
restrictions on output redirection > to ensure that files are not
accidentally destroyed, and that >> redirections refer to
existing files. If set, afile cannot be overwritten. This variable
isusualy setinthe. cshrc file

Specifies whether you want to be notified when a background
process has completed. If set, you are notified; if unset, you
are not notified. This variable isusually set inthe. cshrc
file.

Specifies the search path that the shell uses to find commands.
This variable is usually set inthe . | ogi n file.

Can be used to customize your C shell prompt. This variable
isusually setinthe. cshrc file

Specifies the shell to create when a program creates a
subshell. Thisvariableis usualy set inthe. | ogi n file.

Specifies whether the most recently executed command
completed without error (avalue of zero is returned) or with
an error (a nonzero value is returned).

Built-In Commands

Table 8-7 describes selected C shell commands that are of the most interest
to general users. For a complete list of C shell built-in commands, see the
csh(2) reference page.

8-12 Shell Features

Table 8-7: Built-In C Shell Commands

Command Description

ali as Assigns and displays alias definitions.2

bg Puts a suspended process in the background.?

echo Writes arguments to the shell’s standard output. For more
information and the command format, see the csh(1) reference
page.

fg Puts a currently running background process in the
foreground.P

hi story Displays the contents of the command history buffer.c

j obs Displays the job number and the PID number of current
background processes.P

| ogout Terminates the login session.

rehash Tells the shell to recompute the hash table of command locations.

Use this command if you add a command to a directory in the
shell’s search path and want the shell to be able to find it. If you
do not use r ehash, the command cannot be executed because it
was not in the directory when the hash table was originally

created.

r epeat Repeats a command a specified number of times. For more
information and the command format, see the csh(1) reference
page.

set Assigns and displays shell variable values.d

set env Assigns environment variable values.d

sour ce Executes commands in afile. This can be used to update the
current shell environment.®

time Displays the execution time of a specified command. For more
information, see the csh(2) reference page.

unal i as Removes alias definitions.2

unset Removes values that have been assigned to variablesd

unset env Removes values that have been assigned to environment
variablesd

Table notes:

a. For more information about the al i as and unal i as commands, see
Section 8.2.5.

b. For more information about the bg, f g, and j obs commands, see
Chapter 6.

Shell Features 8-13

c. For more information about the hi st or y command, see Section 8.2.3.

d. For more information about the set , set env, unset, and unset env
commands, see Chapter 7.

e. For more information about the sour ce command, see Section 8.2.5,
and the csh(1) reference page.

8.3 Bourne Shell Features

8.3.1

This section describes the following Bourne shell features:
e A sample. profil e login script

* Metacharacters

* Built-in variables and commands

Sample .profile Login Script

If your login shell is the Bourne shell, the operating system executes the
. profil e login script to set up your environment.

The . profi | e login script variables that are exported are passed to any
subshells and subprocesses that are created. Variables that are not exported
are used only by the login shell.

In the following . profi | e login script, shell variables are set and exported,
atrap is set for the logout script, and the system is instructed to display
information. Table 8-8 explains each part of the script.

Set PATH

PATH=/ usr/ bi n: /usr /1 ocal / bi n:

Export gl obal variables

export PATH

Set shell variables

PS1=" $SLOGNAME $ '

CDPATH=. : .. : $HOVE

Set up for |ogout script

trap "echo I ogout; $HOVE .logout" O
Display status information

date

echo "Currently logged in users:" ; users

8-14 Shell Features

Table 8-8: Example Bourne Shell .profile Script

Command
Set Search Path
PATH=/ usr/ bi n: /usr/ |l ocal / bi n:

Export Search Path

export PATH

Set Shell Variables

PS1="$LOGNAME $ ’

Set Up Logout Script

trap "echo I ogout; $HOVE/ .l ogout" O

Description

Specifies the search path. In this
case, / usr/ bi n is searched first
and / usr/ | ocal / bi n searched
second.

Specifies that the search path is to
be passed to all commands that
you execute.

PS1 is the variable that specifies
the Bourne shell prompt, and its
default valueis $. However, this
variable assignment specifies that
your prompt should be changed to
the following: user nane $. For
example, if your username were
any, your prompt would be the
following: any $.

CDPATHis a variable that sets the
search path for the cd command.
This variable assignment specifies
that the cd command should
search for the named directory in
the current directory () first, in
the parent directory (..) second,
and the home directory ($HOVE)
third.

Specifies that your shell should
display | ogout and execute your
.1 ogout script whenthet rap
command captures the exit signal
(0).2

Shell Features 8-15

Table 8-8: (continued)

Command Description
Display Status Information

dat e Displays the date and time.

Table notes:
a. For more information about thet r ap command, see Section 7.9.1.

8.3.2 Metacharacters

Table 8-9 describes Bourne shell metacharacters (characters that have special
meaning to the shell).

Table 8-9: Bourne Shell Metacharacters

Metacharacter Description

Syntactic

| Separates commands that are part of a pipeline.

&& Runs the next command if current command succeeds.

[Runs the next command if the current command fails.

; Separates commands that should be executed sequentially.

= Separates elements of a case construct.

& Runs commands in the background.

() Groups commands to run as a separate processin a
subshell.

Filename

/ Separates the parts of afile's pathname.

? Matches any single character except aleading dot (.).

8-16 Shell Features

8.3.3

Table 8-9:

Metacharacter

*

[]
Quotation
\

I nput/Output

<<
>>

2>
Substitution
..}

(continued)

Description

Matches any sequence of characters except a leading dot
().

Matches any of the enclosed characters.

Specifies that the following character should be interpreted
literally; that is, without its special meaning to the shell.

Specifies that any of the enclosed characters (except for
the’ quote character) should be interpreted literally; that
is, without their special meaning to the shell.

Provides a specia form of quoting. Specifies that the $
(dollar sign), “(grave accent), and \ (backslash) characters
keep their special meaning, while al other enclosed
characters are interpreted literally; that is, without their
special meaning to the shell. Double quotes are useful in
making variable assignments.

Redirects input.
Redirects output to a specified file.

Redirects input and specifies that the shell should read
input up to a specified line.

Redirects output and specifies that the shell should add
output to the end of afile.

Redirects diagnostic output to a specified file.

Specifies variable substitution.
Specifies command output substitution.

Built-In Variables

The Bourne shell provides variables that can be assigned values. The shell
sets some of these variables, and you can set or reset al of them.

Table 8-10 describes selected Bourne shell built-in variables that are of most
interest to general users. For complete information on all Bourne Shell built-
in variables, see the sh(1) reference page.

Shell Features 8-17

Table 8-10: Built-In Bourne Shell Variables

Variable Description

HOVE Specifies the name of your login directory, the directory that
becomes the current directory upon completion of alogin.
The cd command uses the value of HOVE as its default value.
HOVE is set by the | ogi n command.

PATH Specifies the directories through which your system should
search to find and execute commands. The shell searches these
directories in the order specified here. Usually, PATHIis set in
the. profil e file

CDPATH Specifies the directories that the cd command will search to
find the specified argument to cd. If cd’sargument is null,
or if it begins with a slash (/), dot (.), or dot dot (..), then
CDPATH s ignored. Usually, COPATHIs set in your
.profil e file.

MAI L The pathname of the file where your mail is deposited. You
must set MAI L, and thisis usually doneinyour . profil e
file.

MAI LCHECK Specifies in seconds how often the shell checks for mail (600
seconds is the default). If the value of this variableis set to 0,
the shell checks for mail before displaying each prompt.

MAI LCHECK is usually set inyour . profi | e file.

SHEL L Specifies your default shell. This variable should be set and
exported by your . profi | e file.
Ps1 Specifies the default Bourne shell prompt, and its default

vaueis$. PSIisusudly setinyour. profil e file If
PS1 is not set, the shell uses the standard primary prompt
string.

ps2 Specifies the secondary prompt string — the string that the
shell displays when it requires more input after you enter a
command line. The standard secondary prompt string is a >
symbol followed by a space. PS2 is usualy set in your
.profil efile If PS2 isnot set, the shell uses the standard
secondary prompt string.

8.3.4 Built-In Commands

Table 8-11 describes selected Bourne shell commands that are of the most
interest to general users. For a complete list of Bourne shell built-in
commands, see the sh(1) reference page.

8-18 Shell Features

Table 8-11: Built-In Bourne Shell Commands

Command

cd
echo
export

pwd
set
tines

trap
umask

unset

Table notes:

Description

Allows you to change directories. If no directory is specified, the
value of the HOVE shell variable is used. The COPATH shell
variable defines the search path for this command.2

Writes arguments to the standard output.?

Marks the specified variable for automatic export to the
environments of subsequently executed commands.

Displays the current directory.©
Assigns and displays variable values.d

Displays the accumulated user and system times for processes run
from the shell.

Runs a(lj specified command when the shell receives a specified
signal.

Specifies the permissions to be subtracted for all new files
created.®

Removes values that have been assigned to variables.d

a. For more information about the cd command, see Chapter 4, and the
sh(1) reference page.

b. For more information about the echo command, see Section 8.3.1 and
the sh(1) reference page.

¢. For more information about the pwd command, see Chapter 2.
d. For more information about the set , t r ap, and unset commands, see

Chapter 7.

e. For more information about the umask command, see Chapter 5 and
Section 8.2.1.

8.4 Korn Shell Features
This section describes the following Korn shell features:
e Sample. profil e and. kshr c login scripts
* Metacharacters
e Command history

Shell Features 8-19

» Editing command lines

» Filename completion

o Aliases

* Built-in variables and commands

8.4.1 Sample .profile and .kshrc Login Scripts

If your login shell is the Korn shell, the operating system processes the

. profil e login script in your home directory. The. profil e login
script defines environment variables. These variables are used by your login
shell as well as any subshells and subprocess that are created. The

. profil e login script is executed only when you log in.

The. kshr ¢ login script sets up your Korn shell environment by defining
variables and operating parameters for the local shell process. It is executed
each time you create a subshell.

Note

Before creating a. kshr c file in your home directory, make
sure that the ENV=$HOVE/ . kshr ¢ environment variable is set
and exported in your . prof i | e. Oncethisis done, the

. kshr ¢ login script will execute each time you log in and each
time you create a subshell.

In the following . profi | e login script, global environment variables are
set and exported, and shell variables are set. Table 8-12 explains each part of
the script.

Set environnment variabl es
PATH=/ usr/ bi n:/usr/1ocal / bin:
ENV=$HOME/ . kshr c

EDI TOR=vi

FCEDI T=vi

PS1="' hostnane’ [!] $ "

Export gl obal vari abl es
export PATH ENV EDI TOR FCEDI T PS1

Set mail variabl es

MAI L=/ usr/ spool / mai | / SLOGNAME
MAI LCHECK=300

8-20 Shell Features

Table 8-12: Example Korn Shell .profile Script

Command
Set Environment Variables

PATH=/ usr/ bin:/usr/l ocal /bin

ENV=$HOVE/ . kshr c

EDI TOR=Vi

FCEDI T=vi

PS1="‘ host nane‘ [!] $ "

Export Global Variables

export PATH ENV EDI TOR FCEDI T PS1

Description

Specifies the search path. In this
case, / usr/ bi n is searched
firstand / usr/ | ocal / bin
searched second.

Specifies $HOVE/ . kshr ¢ as
the login script.

Specifies vi as the default
editor for command line editing
at the shell prompt and for
filename completion.

Specifies vi as the default
editor for thef c
command.2

PS1 is the variable that
specifies the Korn shell prompt,
and its default value is $.
However, this variable
assignment specifies that your
prompt should be changed to the
following: the output of the
host name command, followed
by the command number of the
current command, followed by
the dollar sign ($). For
example, if the name of your
system is bost on, and the
current command is numbered
30, your prompt would be the
following: bost on[30] $.

Specifies that the values of the
PATH, ENV, EDI TOR, FCEDI T,
and PS1 variables should be
exported to all subshells.

Shell Features 8-21

Table 8-12: (continued)

Command
Set Mail Variables

MAI L=/ usr/ spool / mai | / SLOGNAME

VAl LCHECK=300

Table notes:

Description

Specifies the pathname of the
file used by the mail system to
detect the arrival of new mail.
In this case, the mail system
would look in your username
subdirectory under the

/usr/ spool / mai | directory.

Specifies that the shell should
check for mail every 300
seconds (5 minutes).

a. For information on the f ¢ command, see Section 8.4.4.

In the following . kshr ¢ login script, shell variables, command aliases, and
command history variables are set, as well as the permissions for file
creation. Table 8-13 explains each part of the script.

Set shell vari ables
set —o0 nonitor
set —o trackall

Set command al i ases
alias rmerm —i
al i as rename='nv
alias h "history \!'* | nore’
alias | 'Is I’

alias c clear

1

Set history variables
Hl STSI ZE=40

Set file creation perm ssions
umask 027

8-22 Shell Features

Table 8-13: Example .kshrc Script

Command
Shell Variables

set —o0 nonitor

set —o trackall

Command Aliases

alias rmF rm-—i’

alias renanme= nv’

alias h="history \!* | nore’

alias I="Is I’

alias c="clear’

History Variables
HI STSI ZE=40

Description

Specifies that the shell should monitor all
background processes and display a
completion message when the process
finishes.

Specifies that the shell should track all
commands that you execute. Once a
command is tracked, the shell stores the
location of the command and finds the
command more quickly the next time you
enter it.

Specifies the use of the —i option (which
prompts you for file deletion) with ther m
command.

Specifiesr ename as a new name for the
mv command.

Defines a command that pipes the contents
of the command history buffer through the
nmor e command. The\ ! * string specifies
that al of the history buffer should be
piped.

Defines a short name for thel s —I
command that lists directory filesin the
long format.

Defines a short name for the clear command
that clears your screen.

Instructs the shell to store the last 40
commands in the history buffer.

Shell Features 8-23

Table 8-13: (continued)

Command
Set File Creation Permissions

umask 027

8.4.2 Metacharacters

Description

Specifies the maximum permissions for all
new files created. This command provides
al permissions for the owner, read, and
execute permissions for members of the
same group, and no permissions for all
others. The umask is not inherited by
subshells.

Table 8-14 describes Korn shell metacharacters (characters that have special

meaning to the shell).

Table 8-14: Korn Shell Metacharacters

Metacharacter Description

Syntactic

| Separates commands that are part of a pipeline.

&& Runs the next command if the current command succeeds.
[Runs the next command if the current command fails.

; Separates commands that should be executed sequentially.
= Separates elements of a case construct.

& Runs commands in the background.

() Groups commands in a subshell as a separate process.

{1} Groups commands without creating a subshell.

Filename

/ Separates the parts of afile's pathname.

? Matches any single character except aleading dot (.).

* Matches any character sequence except a leading dot (.).
[1] Matches any of the enclosed characters.

~ Specifies a home directory when it begins a filename.

8-24 Shell Features

8.4.3

Table 8-14:

Metacharacter

Quotation

\

I nput/Output

<<
>>
>&

Substitution

${..}
%

(continued)

Description

Specifies that the following character should be interpreted
literally; that is, without its special meaning to the shell.

Specifies that any of the enclosed characters (except for
the ') should be interpreted literaly; that is, without their
special meaning to the shell.

Provides a specia form of quoting. Specifies that the
dollar sign (%), * (grave accent), \ (backslash), and) (close
parenthesis) characters keep their special meaning, while
all other enclosed characters are interpreted literally; that
is, without their special meaning to the shell. Double
quotes (" ") are useful in making variable assignments.

Redirects input.
Redirects output to a specified file.

Redirects input and specifies that the shell should read
input up to a specified line.

Redirects output and specifies that the shell should add
output to the end of afile.

Redirects both diagnostic and standard output and appends
them to afile.

Specifies variable substitution.
Specifies job number substitution.
Specifies command output substitution.

Command History

The command history buffer stores the commands you enter and allows you
to display them at any time. As a result, you can select a previous command,
or parts of previous commands, and then reexecute them. This feature may
save you time because it allows you to reuse long commands instead of

reentering them.

Shell Features 8-25

To see the contents of the history buffer, use the hi st or y command. The
displayed output will be similar to the following (your output will vary):

[18] $ history
l's —I
pwd
cd /usr/sales
ls -l
Cp report report5
mv /usr/accounts/ new .
cd /usr/account s/ new
10 nkdir june
11 cd june
12 nv /usr/accounts/ new june .
13 I's -l
14 cd /usr/sales/ QL
15 vi earnings
16 cd /usr/chang
17 vi status
[19] $

To reexecute any command in the command history buffer, use the
commands listed in Table 8-15. Each command starts with the letter r.

©Co~NoOOh~,W

Table 8-15: Reexecuting History Buffer Commands

Command Description
r Reexecutes the previous command
rn Reexecutes the command specified by n. For example, using

the history buffer shown in the previous display, r 5 reexecutes
thecd /usr/ sal es command.

r —n Reexecutes a previous command relative to the current
command. For example, using the history buffer shown in the
previous display, r - 2 invokes command number 16, cd
[usr/ chang.

r string Reexecutes the most recent command that has first characters
matching those specified by st ri ng. For example, using the
history buffer shown in the previous display, r cp invokes
command number 7, cp report reportbs.

For more information on reexecuting history buffer commands, see the
ksh(1) reference page.

If you want to increase or decrease the number of commands stored in your
history buffer, set the HI STSI ZE variablein your . pr of i | e file. This
variable has the following format:

8-26 Shell Features

HISTSIZE=n

The n entry specifies the number of command lines you want to store in the
history buffer.

For example, to store 15 commands in the history buffer, use the following
command:

HI STSI ZE=15

The Korn shell aso alows you to edit current command lines as well as
reuse those aready entered in the command history buffer. To use this
feature, you must know how to use atext editor such asvi or emacs. For
information on these features, see the following section.

8.4.4 Command Line Editing Using the fc Command

The Korn shell alows you to list and/or edit the command lines in your
command history buffer. As aresult, you may modify any element of a
previous command line and then reexecute the command line.

The command line editing functions for the Korn shell are extensive. This
section covers only the most basic functions. For more detailed information,
see the ksh(1) reference page.

To display the command history buffer and/or to edit its contents, use the
built-in command f ¢ (fix command). The f ¢ command has the following
two formats:

1
fc [-eeditor] [-nlr] [first] [last]

This command format allows you to display and/or edit any number of
command lines in your buffer.

— The—-e edi t or entry specifies the editor (usualy vi or enacs)
you want to use in editing the command line. If you do not specify
—e, the f ¢ command displays the lines, but does not alow you to
edit them.

— The—n flag specifies that you want to list the command lines in the
buffer without numbers. The —I flag specifies that you want to list the
command lines in the buffer with numbers. If you do not specify a
line number or arange of line numbers, the last 16 lines you entered
will be listed.

— The-r flag specifies that you want to list the command in the buffer
in reverse order.

— Thefirst and/ ast entries specify arange of command linesin
the buffer. Y ou may specify them either with numbers or with strings.

Shell Features 8-27

If you want to specify a default editor for the —e flag, define the FCEDI T
variablein your . pr of i | e script. For example, if you want to make
emacs your default editor, enter the following variable definition:

FCEDI T=enacs

fc -e - [old=new] [string]

This command allows you to immediately replace an o/ d string with a
newstring within any previous command line.

— The—e — entry specifies that you want to make a replacement.

— The ol d=newentry specifies that you want to replace the o/ d string
with the newstring.

— The st ri ng entry specifies that the Korn shell should make the edit
to the most recent command line in the buffer containing the
string.

The following section contains some examples of f ¢ use.

The Korn shell also alows you to edit individual command lines at the shell
prompt by using a command set similar to the vi or the emacs editors. For
more information on this feature, see the ksh(1) reference page.

8.4.4.1 Examples of Command Line Editing
Example 1: Displaying Command Lines in the Command History Buffer

To display command lines 15 to 18, enter the following command:

$ fc -1 15 18

151s —-la

16 pwd

17 cd /u/ben/reports
18 nore sales

$

You may aso list the same command lines by specifying command strings
instead of line numbers, as in the following example:

$fc -l |Is nore
151s —-la

16 pwd

17 cd /u/ben/reports
18 nore sal es

$

8-28 Shell Features

8.4.5

Example 2: Editing and Executing Command Lines

To display and edit command lines 15 to 18 with the vi editor, enter the
following command:

$ fc —e vi 15 18

Is —la

pwd

cd /u/ben/reports

nore sal es

After making your edits, write and exit the file with the : wg! command.
The command lines in the file are then reexecuted.

Example 3: Replacing and Reexecuting Command Lines

Assume that you have just entered the echo hel | o command, and now
want to replace hel | o with goodbye. To do the replacement and
reexecute the command line, enter the following command:

$ echo hello

hell o

$ fc —e — hel |l o=goodbye echo

echo goodbye

goodbye

For more detailed information on the f ¢ command and command line
editing, see the ksh(1) reference page.

Filename Completion

The Korn shell allows you to enter a portion of afilename or pathname at the
shell prompt and the shell will automatically match and complete the name.
If there is more than one filename or pathname that matches the criterion, the
shell will provide you with alist of possible matches.

To activate the filename completion mechanism, define the EDI TOR variable
inyour . profil e file. For example, if you want to use the vi editor, enter
the following variable definition in your . profi | e file:

EDI TOR=vVi

To demonstrate how filename completion works, assume that your editor is
vi and that you have the sal esreport 1, sal esreport 2, and
sal esreport 3 filesin your current directory. To display along listing

Shell Features 8-29

8.4.6

and to activate filename completion, enter the following command:

$ I's -l sal esreport Escape =
1) sal esreportfeb

2) sal esreportjan

3) sal esreportnmar

$ Is —I salesreport

The system redisplays your command, and the cursor is now at the end of
sal esreport. If youwant to choosesal esreportjan, typea (thevi
append command) followed by j an, then press Return. The listing for

sal esreportjan will be displayed.

For more detailed information on filename completion, see the ksh(1)
reference page.

Aliases

The command aliases feature allows you to abbreviate long command lines
or rename commands. Y ou do this by creating al i ases for long command
lines that you frequently use.

For example, assume that you often need to move to the directory

/usr/ chang/ reports/status. Youcan createan dlias st at us,
which will move you to that directory whenever you enter it on the command
line.

In addition, aliases allow you to make up more descriptive names for
commands. For example, you could define an alias named r enane for the
mv command.

To create aliases, use the al i as command. The general format of the
al i as command is the following:

alias aliasname=command

The al i asnane entry specifies the name you want to use. The conmand
entry specifies either the original command or a series of commands. If the
conmand has more than one part (has spaces), enclose the whole expression
in single quotes.

For example, to create the alias st at us that moves you to the directory

[usr/ chang/ report s/ st at us, enter the following command:

alias status='cd /usr/chang/reports/status’

The usua way to define aliases is to place them in your . kshr ¢ file so that

you can use them whenever you log in or start a new shell. See Section
8.4.1 for an example.

8-30 Shell Features

To display all aias definitions, enter the following command:

$ alias

To display the definition of a particular alias, enter the following command:
$ alias aliasnane

The al i asnane entry specifies the particular alias for which you are
reguesting a definition.

The Korn shell allows you to export the aliases you create. Variables that are
exported are passed to any subshells that are created so that when you
execute a shell procedure or new shell, the alias remains defined. (Variables
that are not exported are used only by the login shell.)

To export an alias, use the following form of the al i as command:

alias —x aliasname=command

The —x flag specifies that you want to export the alias. The al i asnane
entry specifies the name you want to use. The conmmand entry specifies

either the original command or a series of commands. If the conmand has
more than one part, enclose the whole expression in single quotes.

For example, to export an alias definition for the r mcommand, enter the
following:

alias —x rm=’ rm —i
Y ou can enter the preceding command in one of two ways.

e Editthe. kshrc or. profil e fileif you want an alias exported
whenever you log in.

» Export an alias on the command line if you want the alias exported only
for the current login session.

To remove an dlias for the current login session, use the unal i as

command. The general format of the unal i as command is the following:

unalias aliasname

The al i asnane entry specifies the alias you want to remove.

To remove an dias for the current and all future login sessions, do the
following:

1. Enter the following command:
$ unalias aliasnane

The al i asnane entry specifies the alias you want to remove.

2. Editthe. kshr c file (or the file on your system that contains alias
definitions) and remove the alias definition. Then, save the file.

Shell Features 8-31

3. Enter the following command to reexecute the . kshr c file:
$ source . kshrc

The Korn shell provides additional aliasing features. For complete
information on using aliases with the Korn shell, see the ksh(1) reference

page.

8.4.7 Built-In Variables

The Korn shell provides variables that can be assigned values. The shell sets
some of these variables, and you can set or reset all of them.

Table 8-16 describes selected Korn shell built-in variables that are of the
most interest to general users. For complete information on all Korn shell
built-in variables, see the ksh(1) reference page.

Table 8-16: Built-In Korn Shell Variables

Variable Description

HOVE Specifies the name of your login directory. The cd command
uses the value of HOVE as its default value. In Korn shell
procedures, use HOVE to avoid having to use full pathnames —
something that is especialy helpful if the pathname of your
login directory changes. HOVE is set by thel ogi n
command.

PATH Specifies the directories through which your system should
search to find and execute commands. The shell searches these

directories in the order specified here. Usualy, PATHis set in
the. profil e file

CDPATH Specifies the directories that the cd command will search to
find the specified argument to cd. If the cd argument is null,
or if it begins with a slash (/), dot (.), or dot dot (..), then
CDPATH s ignored. Usually, COPATH s set in your
.profil efile

MAI L The pathname of the file where your mail is deposited. MVA/ L
isusually setinyour . profil e file

MAI LCHECK Specifies in seconds how often the shell checks for mail (600
seconds is the default). If the value of this variableis set to 0,
the shell checks for mail before displaying each prompt.

MAI LCHECK is usually set inyour . profi | e file.

SHELL Specifies your default shell. This variable should be set and
exported by your . profi | e file.

8-32 Shell Features

8.4.8

Table 8-16:

Variable
PS1

PS2

HI STFI LE

EDI TOR

FCEDI'T

HI STSI ZE

(continued)

Description

Specifies the default Korn shell prompt, and its default value
is the dollar sign ($). PS1 isusualy setinyour . profile
file. If PS1 isnot set, the shell uses the standard primary
prompt string.

Specifies the secondary prompt string — the string that the
shell displays when it requires more input after entering a
command line. The standard secondary prompt string is a >
symbol followed by a space. PS2 is usualy set in your
.profil efile If PS2 isnot set, the shell uses the standard
secondary prompt string.

Specifies the pathname of the file that will be used to store the
command history. This variable is usually set in your
.profilefile

Specifies the default editor for command line editing at the
shell prompt and for filename completion. This variable is
usualy set inyour . profil e file

Specifies the default editor for the f ¢ command. This variable
isusualy setinyour . profil e file

Specifies the number of previously entered commands that are
accessible by this shell. The default is 128. This variable is
usualy set in your . kshrc file.

Built-In Commands

Table 8-17 describes selected Korn shell commands that are of the most
interest to general users. For a complete list of Korn shell built-in commands,
see the ksh(2) reference page.

Table 8-17:

Command

alias
cd

echo

Built-In Korn Shell Commands

Description

Assigns and displays alias definitions.2

Allows you to change directories. If no directory is specified, the
value of the HOVE shell variable is used. The CDPATH shell
variable defines the search path for this command.?

Writes arguments to the standard output. For more information
and the command format, see the ksh(1) reference page.

Shell Features 8-33

Table 8-17: (continued)

Command Description

export Marks the specified variable for automatic export to the
environments of subsequently executed commands.©

fc Allows you to display, edit, and reexecute the contents of the
command history buffer.d

hi story Displays the contents of the command history buffer.2

j obs Displays the job number and the PID number of current
background processes.

pwd Displays the current directory.®

set Assigns and displays variable values.f

times Displays the accumulated user and system times for processes run
from the shell.

trap Runs a specified command when the shell receives a specified
signal.f

umask Specifies the permissions to be subtracted from the default
permissions set by the creating program for all new files
created.d

unal i as Removes alias definitions.2

unset Removes values that have been assigned to variables!

Table notes:

a. For more information about the al i as, hi st ory, andunal i as
commands, see Section 8.4.6.

b. For more information about the cd command, see Chapter 4 and the
ksh(1) reference page.

c. For more information about the export command, see Section 8.4.1 and
the ksh(1) reference page.

For more information about the f ¢ command, see Section 8.4.4.
For more information about the pwd command, see Chapter 2.

f. For more information about the set , t r ap, and unset commands, see
Chapter 7.

g. For more information about the umask command, see Chapter 5 and
Section 8.4.1.

8-34 Shell Features

Using the System V Habitat 9

The System V habitat consists of alternate versions of commands,
subroutines, and system calls that support the source code interfaces and
runtime behavior for all components of the Base System and Kernel
Extension as defined in the System V Interface Definition (SVID). This
implementation of the System V habitat supports all SVID 2 functions and
SVID 3 functions. Note that the System V habitat does not contain aternate
versions of default system commands, subroutines, and system calls that
already meet the SVID requirement.

Using the System V habitat lets you override the default system commands
and functions with corresponding System V commands and functions (system
calls and subroutines). Y ou can access the habitat in two ways:

» Specify the absolute paths of the System V commands and libraries.

» Define the PATH environment variable to search the System V habitat for
commands before it searches the default system locations. To set your
PATH environment variable, modify your . profil e or.| ogi nand
. cshr c files as described in Section 9.1.

Because the System V system calls are not layered over the system callsin
the default system, applications that are built using the system calls in the
System V habitat run with virtually no performance overhead. Figure 9-1
illustrates the System V habitat placement within the default operating
system and shows that the System V system calls reside at the kernel level.

Figure 9-1: System V Habitat

other applications
and commands

standard C
library

Kernel
Level

default system
calls

SVID
system
calls

SVID
commands

other
habitats

ZK-0849U-R

The following sections describe how to set up your environment to access the
System V habitat and how it works.

9.1 Setting Up Your Environment

To automatically access the System V habitat when you log on, you must
add a command line to your . profi | e fileif you use the Bourne or Korn
shell, or toyour . | ogi n and . cshr c filesif you use the C shell. The
command line modifies the PATH environment variable, which causes the
System V habitat to be searched before the standard default locations on the
system are searched, such as/ bi n or / usr/ bi n. The System V habitat
scripts are as follows:

9-2 Using the System V Habitat

» /etc/svid2_profile (for the Bourne or Korn shells)
/ etc/svid2_| ogi n (for the C shell)

Specifies SVID 2 behavior when placed in either your . profil e or
.1 ogi nand. cshrc files, respectively.

» /etc/svid3_l ogin (for the Bourne or Korn shell)
[etc/svid3_profil e (for the C shell)

Specifies SVID 3 behavior when placed in either your . profil e or
.1 ogi nand. cshrc files, respectively.

For example, if you use the Bourne or Korn shell and you want to specify
SVID 2 behavior, edit the . pr of i | e file and add the following command
line:

if [-f /etc/svid2_profile]

t hen

. letc/svid2_profile
fi

If you use the C shell and you want to specify SVID 2 behavior, edit the
.1 oginand. cshrc files and add the following command line:
if (-e/etc/svid2_login) then

source /etc/svid2_login
endi f

The dot (.) and sour ce commands are shell-specific. See the appropriate
reference page for more information.

9.2 How the System V Habitat Access Works

Whether you choose the script that specifies SVID 2 behavior or the script
that specifies SVID 3 behavior, both establish the System V habitat as
follows:

» Defines SVI D2PATH, a System V only variable, to be the contents of
/etc/svid2pathor/etc/svid3path. The/etc/svid2path
and / et ¢/ svi d3pat h files contain the path definition for SVID 2 and
SVID 3, respectively.

e Adds SVI D2PATH bi n and SVI D2PATH sbi n to the beginning of
your current PATH.

» Exports both SVI D2PATH and PATH.

e Setsthe TZ variable to the appropriate value. If you select SVID 2
behavior, it aso sets the TZC variable to the appropriate value. See the
System Administration guide for more information on time zone formats.

Hence, if you need to determine the location of the System V habitat on your
system, run the cat (1) command on the/ et ¢/ svi d2pat h or

Using the System V Habitat 9-3

/ et c/ svi d3pat h file.

By using the System V habitat scripts to alter the PATH environment
variable, the System V habitat path can be changed without an administrator
updating each user’s. profileor.l oginand. cshrc files The
administrator simply updates the / et ¢/ svi d2pat h and

/ et c/ svi d3pat h files to enable global definitions.

To further illustrate how the System V habitat script sets a PATH, look at the
following . profi | e file which specifies the System V habitat script for
SVID 2.
stty erase DEL kill ~Uintr ~C quit X echo
TERM=vt 100
PATH=: $HOVE/ bi n: /usr/1ib:/bin
MAI L=/ usr/ mai | / $LOGNANVE
EDI TOR=vi
export MAIL PATH TERM EDI TOR
if [-f /etc/svid2_profile]
t hen
. letc/svid2_profile
fi

In this example, assume that the path of the System V habitat is

[usr/ opt/ s5 asreflected by the contents of / et ¢/ svi d2pat h and that
your login directory is/ usr/ user s/ xxx. When you display the PATH
after logging in with the preceding . pr of i | e file, the result would show
that the path to the System V habitat has been prepended to the PATH set in
the third line of the . pr ofi | e file as follows:

% echo $PATH Return
/usr/opt/s5/bin:/usr/opt/s5/sbin:/usr/users/xxx/bin:/usr/lib:/bin

Hence, when you issue a shell command, the System V habitat is searched
first. If the command is not found, the specified paths are searched.

9.3 Compatibility for Shell Scripts

Compatibility for your shell scripts is achieved by altering your shell’s PATH
environment variable (as explained in Section 9.1). Therefore, the System V
habitat is searched before the default system locations. If your PATH
variable is set for the System V habitat, your scripts are System V
compatible regardless of whether you use the Bourne, Korn, or C shell.

9.4 System V Habitat Command Summary

Table 9-1 summarizes the behavior of user commands in the System V
habitat that have options or features that differ from the default system
versions. For a complete explanation of the commands in the habitat, refer to
the reference page for each command.

9-4 Using the System V Habitat

Table 9-1: User Commands Summary

Command

chnod(2)

df (1)
I n(2)

I s(1)

mai | x(1) and Mai | (1)

sum(l)

tr(1)

System V Behavior

Ignores the umask value when the who string is omitted,
behaving as though a is the who value when you use the
symbolic form of this command.

Accepts the - t option, which prints space totals, and
accepts an optional file system name or device name.

Accepts the - f option, which silently removes existing
destination pathnames before creating the specified link.

Produces multicolumn output only if the - C option is
specified. Also, the - s option causes file sizes to be
reported in 512 byte units instead of 1024 byte units.

Includes the capahilities of the System V mai | x
command.

Uses the word-by-word algorithm by default; uses the
byte-by-byte algorithm if the - r option is specified. The
default use of the checksum algorithms for the System V
sumcommand is the reverse of the default system version
of the sumcommand.

Includes the - A option whenever you specify the - ¢
option. The - A option causes only the charactersin the
octal range of 1 to 377 to be complemented.

Using the System V Habitat 9-5

10.1

Obtaining Information About
Network Users and Hosts 10

This chapter describes how to find information about local and remote users
and hosts before you begin communication or file transfer tasks. The
commands described in this chapter will enable you to:

Learn about your own network connection (who am i command,
Section 10.1)

Determine who is currently logged in to the local system and from where
they are logged in (who command, Section 10.1)

Find additional information about another user, if available; for example,
full name, office location, phone number, projects, or plans (f i nger
command, Section 10.2.1)

Determine whether a user can be reached using either the t al k or
wri t e commands (fi nger command, Section 10.2.1 and Section
10.2.2)

Analyze and sort information about remote host usage (r upti e
command, Section 10.3)

Determine who is currently logged in to a remote host (r who command,
Section 10.4)

Determine whether a remote host is online (pi hg command, Section
10.5)

Note

The commands described in this chapter are, like all TCP/IP
operations, subject to the security features on the local and
remote hosts. If they do not work as stated here or in the related
reference pages, see your system administrator.

Identifying Users on the Local Host

When you log in to a host computer by providing a user name and password,
you have a unique identity. To verify this information for your own network
connection, you can use a version of the wno command called who am i to
display the following information about you:

10.2

* Login name

e Terminal name (line)

* Time of login

» Computer from which the network connection came

For example, user | ennon might enter the who am i command at the
system prompt (%9 and read the following output:

% who am i
| ennon ttypO Jul 15 14:17 (wal rus)

In this example, user | ennon logged in from host wal r us at 2:17 in the
afternoon of July 15. ThelineisttypO, and wal r us isthe name for this
line, from which the network connection came.

Thewho am i command can help you keep track of the sessions you have
running on your workstation. Some sessions may be remote logins to
another host by yourself or by someone with whom you are working. See
the who(1) reference page for more information about thewho am i
command.

To find out if other users are logged in to the same local host, use the who
command. In the following example, | ennon enters the who command at
the prompt of local host | ondon, and learns that three other users are
currently logged in to | ondon from different nodes:

| ondon% who

| ennon ttypO Jul 15 08:17 (wal rus)
elvis ttyp2 Jul 15 07:55 (vel vet)
bur don ttypl Jul 15 09: 02 (ani mal)
sarj an ttyp4 Jul 14 16: 47 (pepper)

The output from the who command is the same as that from thewho am i
command.

Obtaining Information About Network Users

Thefi nger command and its options enable you to display information
about users with accounts on local or remote hosts. The specified host must
be running af i nger d daemon server or have thei net d daemon
configured to start f i nger d. See your system administrator if the f i nger
command does not work as described in the f i nger (1) reference page.

Thefi nger command has the following syntax:

finger [[option...] [user...] [user@host_name...]]

If you usethef i nger command without specifying an option or a user
name, it lists the following information about all users on the local host

10-2 Obtaining Information About Network Users and Hosts

where you are logged in, if the information isin the/ et ¢/ passwd file for

agiven user:
e Login name
* Full name

* Terminal line name and whether it can receive messages from other users
through wr i t e (see Section 11.8) or t al k (see Section 11.9)

e Idletime
* Logintime
* User's office location

10.2.1 Obtaining Information About a Specific User

If you specify the login name of a user on your local host, the f i nger
command displays more information than if you entered the f i nger
command without specifying a user name. The following additional
information about the user is displayed:

* User's home directory and login shell
» Contents (if any) of the. pl an and . pr oj ect filesin the user's home
directory

The following example shows how to use the f i nger command to find
information about user sni t h, who has an account on your local host:

% finger smth

Login nane: snith (nmessages off) In real life: John Snmith
O fice: LV05-3/T24
Directory: /usr/netd/r2/snmith Shel | : /bin/csh

On since Apr 9 16:20:56 on ttypb fromwonbat.|v5. dec.c
18 seconds ldle Tine
Proj ect: book, "Conmunicating with Network Users"
Pl an:
Get information in the follow ng areas:
net wor kK commands
mai | x

In the first line of output, messages of f meansthat user sni t h has put
the mesg n command in his. | ogi n file to prevent his termina from
receiving messages from other users through thewr i t e or t al k commands,
which can be distracting.

The preceeding example also displays the contents of the . pr oj ect file and
the . pl an filethat user smi t h created in his home directory. The

. proj ect file can contain only one line. The. pl an file can contain as
many lines as the file system allows; f i nger will print al the lines until the
end-of-file (EOF) is reached.

Obtaining Information About Network Users and Hosts 10-3

10.2.2 Obtaining Information About Users on a Remote Host

In the following example, the f i nger command displays information about
users on the remote host bost on:

% finger @oston

[bost on]
Logi n Name TTY Idle When Ofice
any Any W1 son po 4 Thu 10: 00 345

chang Pet er Chang *pl 2:58 Thu 10: 16 103

Thefirst output line lists the remote host name, bost on, and the second line
describes the type of information in each column of the remaining output,
each line alocated to one user. The asterisk (*) indicates that user chang
has put the command, mesg n in his. | ogi n file to prevent his terminal
from receiving messages from other users through thewri t e ort al k
commands.

10.2.3 Obtaining Information About an Individual User on a

Remote Host

To display information about user | ui s on remote host havana use the
following f i nger command:

% finger |uis@avana

Login name: luis Inreal life: Luis Aguilera
Directory: /users/luis Shel | : /bin/csh

On since May 24 10:16:07 on ttyp2 from:0.0

58 minutes Idle Tine

Proj ect: baseball ganme sinulation software

Pl an:

Distribute with linked statistics nodul e.

10.2.4 Customizing Output from the finger Command

There are several options to the f i nger command that enable you to
modify the output according to the data you need. Table 10-1 lists and
describes each option.

Table 10-1: Options to the finger Command

Option Description

-b Produces a brief version of output
—f Suppresses display of titles of each field
—h Suppresses printing of users . pr oj ect files

10-4 Obtaining Information About Network Users and Hosts

10.3

Table 10-1: (continued)

Option Description

—i Displays list of users with idle times
-l Produces long format of output despite other options

-m Assumes that user is an account hame

-p Suppresses printing of users' . pl an files

—q Displays only users' login and terminal names and login time
-s Produces brief format of output despite other options

—-W Produces narrow, brief format of output despite other options

For more information on the f i nger command, seethefi nger (1)
reference page.

Obtaining Information about Remote Hosts and
Users

Before you send messages or transfer files over the network using the
commands described in this book, you should know whether or not the
recipient host is currently online. To do this, use ther upt i me command
which works for hosts that are running the r whod daemon on the local
network.

Ther upt i me command displays the following information:
* Host name

* Online status (up for online or down for offline)

* Thelength of time the host has been on line (or off line)

* The number of users currently logged in to the host (optionally including
those whose sessions have been idle for an hour or longer)

* Load average statistics in 5-, 10-, or 15-minute intervals prior to the
rupti me request

The syntax of the r upt i me command is:

ruptime [[option...] [sort_option]]

Obtaining Information About Network Users and Hosts 10-5

If you use the r upt i me command without options, a status report about the
hosts on your local network, sorted alphabetically by host name, is displayed.

For example:

% ruptime

appl e up 102+05: 07 4 users, |load 0.09, 0.04, 0.04
bybl os up 3+03: 17, 3 users, load 0.08, 0.07, 0.04
car pal up 2:28, O users, load 7.01, 5.02, 3.03
dul | down 9+21: 59

eager down 23+22:45

f oobar up 3+01: 44, 9 users, load 0.01, 0.02, 0.03
garlic up 14+01:35, 1 user, |l oad 0.06, 0.12, 0.11
hi ccup up 4+22:14, 19 users, load 6.37, 3.90, 2.71
j ackal up 13+10:32, 26 users, load 0.70, 0.92, 0.95
starry up 16+21: 08, 1 user, | oad 0.22, 0.14, 0.07
travel up 13+23: 44, 7 users, load 1.01, 1.19, 0.5
trekky down 23+03:53

tri bbl up 8+21: 43, 0 users, |load 0.00, 0.00, 0.00
t r ubbl up 14+02: 34, 0 users, load 0.00, 0.00, 0.00
tunnel down 14+02: 34

war p9 up 8+01: 24, 9 users, load 0.01, 0.02, 0.03

Often, you need to determine only whether a single host is currently online.
To do this, enter the r upt i me command with the host name, as shown in
the following example, for host t r ekky:

% ruptime trekky
trekky down 23+03: 53

This output shows that host t r ekky is not currently online.

Y ou can also determine whether a host is online by using the pi ng
command described in Section 10.5; pi ng works for any host in a TCP/IP
network configuration.

If you plan to run commands on a remote host (as described in Chapter 13),
use ther upt i me command with the - | option to determine whether the
host resources will be adequate. This command sorts the hosts by load
average in descending order. The following example shows partial output
fromtherupti me -1 command:

Y% ruptime -I

car pal up 2: 28, 0 users, |oad 7.01, 5.02, 3.03
hi ccup up 4+22:14, 19 users, load 6.37, 3.90, 2.71
travel up 13+23: 44, 7 users, load 1.01, 1.19, 0.5

j ackal up 13+10: 32, 26 users, load 0.70, 0.92, 0.95

In this example, usage is low on al hosts except car pal and hi ccup.
Therefore, you may decide to remotely log in to either t ravel orj ackal ,
if either host is suitable for your purpose.

10-6 Obtaining Information About Network Users and Hosts

If you need to use a remote host for along period of time, you should know
the total number of users there, not just the number whose sessions have been
active for an hour or longer. Usether upt i me command with the - a
option to display the total number of users on aremote host. The following
two examples use ther upt i me - a command to determine the total number
of usersfirst on host t r avel , and then on host j ackal :

% ruptime -a travel
travel up 13+23: 44, 32 users, load 1.01, 1.19, 0.5

% ruptime -a jackal
j ackal up 13+10: 32, 29 users, | oad 0.70, 0.92, 0.95

From the results of ther upt i me command using the - a and - | options (in
the preceding example), you can determine that both hosts have nearly the
same number of users, but the current usage on host t r avel is calculated
from only the 7 (from atotal of 32) users whose sessions have been active
for an hour or longer. By contrast, usage on host j ackal isless, but is
calculated from 26 of the total of 29 users. You could conclude that, over a
period of time, usage on host t r avel may increase as more users log in, but
that usage on host j ackal may either decrease or stay nearly the same,
because most of its users are already logged in.

The remaining options (except for - r) sort by different output fields, and in
descending aphabetical order. To reverse this order, put the - r option after
the other option on the command line. Y ou should not combine other

rupti me command options; if you do, only the last option on the command
line will be used. Table 10-2 describes each option.

Table 10-2: Options to the ruptime Command

Option Description

-a Provides information for al users, including those whose
sessions have been idle for an hour or longer

—I Sorts output by load average over 5-, 10-, and 15-minute

intervals
—r Reverses the sort order
—t Sorts output by length of time host is online
—-u Sorts output by number of users

For more information, see the r upt i ne(1) reference page.

Obtaining Information About Network Users and Hosts 10-7

10.4 Obtaining Information About Users on Remote
Hosts

Before using a command that sends a message or transfers afile, you often
need to know if the recipient user is logged in. To determine whether a user
is logged in to a remote host on the local network, you can use the r who
command, specifying the name of one or more users. The r who command
operates only for hosts running the r whod daemon. See your system
administrator if necessary.

The r who command displays the following information:
e Usar name

e Host nhame

e Start date and time

* Number of minutes a user’s session has been inactive.

The r who command has the following syntax:

rwho [[-a] [user...]]

Without options, the r wno command lists all users currently logged in to
hosts on the local network, except those who have been idle for an hour or
longer. A typical loca network has several dozen users, so you should
specify only the users about whom you need information.

Although the - a option displays al users, including those idle for more than
an hour, you can still use it while specifying only certain users. This enables
you to determine whether or not a remote user is logged in, regardless of
whether that user has been inactive for an hour or longer. The following
example uses r who with the - a option to determine this information for
userswal | y, becky, and smi t h:

%rwho -a wally becky smith

becky cygnus: ptsO Jan 17 11:20 :12
smth aqui la:ttyp0 Jan 15 09:52 :22
wal |y lyra: pts7 Jan 17 13:15 1:32
wal |y lyra: pts8 Jan 17 14:15 1:01

As shown, the output from the r who command displays in alphabetical order
by user name, then by host name. The amount of idle time greater than one
hour is shown in the last column, after the starting time and date of each
session. Without the - a option, the information for user wal | y would not
have displayed.

For more information on the r who command, see the r who(1) reference
page.

10-8 Obtaining Information About Network Users and Hosts

10.5 Determining Whether a Remote Host Is Online

The pi ng command is used by system administrators to fix network
transmission problems and works for any host configured in a TCP/IP
network. As anetwork user, you can use it to determine whether a remote
host is currently online. For example, to determine whether remote host
noon is online, enter the pi ng command at your local system prompt. The
output, which verifies that the remote host is online, will continue to display
until you press Ctrl/c, as shown in the following example:

% pi ng noon

PI NG noon (130.180.4.108): 56 data bytes

64 bytes from 130.180.4.108: icnp_seq=0 ttl =255 time=42 ns

64 bytes from 130.180.4.108: icnp_seq=1 ttl =255 time=0 ns

64 bytes from 130.180.4.108: icnp_seq=2 ttl =255 time=0 s

64 bytes from 130.180.4.108: icnp_seq=3 ttl =255 time=0 s
(KbCtrl/c(Ke

----moon PING Statistics----

9 packets transmitted, 9 packets received, 0% packet |oss
round-trip (ms) min/avg/ max = 0/4/42 ns

Obtaining Information About Network Users and Hosts 10-9

111

Sending and Receiving Messages 11

This chapter describes how to send or receive messages over the network by
using one of the following commands:

* mailx orMil

s wite

* Message Handling (MH) program

« talk

Examples in this chapter use the mai | x program rather than Mai | . Using
mai | x, you can do the following tasks:

* Send amessage to a user

» Edit a message before sending it

* Include files within messages

» Save or organize incoming messages

Using nai | x you can aso send entire files, atask described in Chapter 12,
"Copying Files to Another Host."

The Digital UNIX mai | x or Mai | command accesses the same mail
program as the ULTRIX nmai | (that is, / usr/ ucb/ mai |) command.

Refer to Chapter 2 of the ULTRIX to Digital UNIX Migration Guide for more
information.

Thew it e andt al k commands work interactively; the recipient must be
logged in. Before using these interactive commands, you can verify the
name and availability of a user or host by using the following commands
described in Chapter 10:

» finger orwho to find a user on the local host
« finger,rhwo,orruptine tofind auser on aremote host
* pingorruptime tofind acurrently reachable host

Addressing Mail Messages

Using nai | x, you can send a message to one or more users at the following
locations:

11.2

* Onyour loca host
* On aremote host connected to your local host via TCP/IP

* On ahost in another network, through either TCP/IP, DECnet, or UUCP
addressing

Use the following syntax for the mai | x command:
mailx use] @{ host| domain| host.domain} | ...

To send mail to users on the local host, enter the mai | x command and
specify a user parameter for each user. For users on remote hosts, you
must specify additional information about the location of the host after the

‘la g'gn!1 (@.

For example, to send mail from host or ange to userssmi t h and j ones
on the same local host, you would enter the following command:

orange% nmi |l x smith jones

To send mail to user hobbes on a different host, pl ut o, in the same
domain, you would enter the following command:

orange% mai | x hobbes@l ut o

In the preceding example, if user hobbes were in another domain called
pl anet s, you would add the name of the remote network domain, as shown
in the following command:

or ange% mai | x hobbes@l ut 0. pl anets

The domain is sometimes split into further subdivisions with the name of
each separated by a period (.) in the destination name. Depending on how
the network has been configured by the network administrator, you can
address a user on a remote host in another domain by specifying only the
domain name, as in the following command:

orange% nai | x hobbes@l anets

If necessary, see your system administrator for help addressing a mail
message.

Sending a Mail Message Using mailx

This section explains how to use mai | x to send a message to a user on a
local host and a copy of the message to other users.

11-2 Sending and Receiving Messages

To begin the example, user Jones enters the mai | x command at the local
system prompt, or ange %
orange% mai | x suzuki Return

After pressing the Return key, the Subj ect : prompt displays. Pressing
the Return key again immediately would leave the subject blank. Instead,
user Jones enters the subject of the message before pressing the Return key,
and then begins writing the message:

Subj ect: Basebal | question Return

Are there any Japanese basebal |l sirmulation ganmes?

I want to conpare Sadharu Oh’s hitting statistics

to those of Hank Aaron. To do this, | need to set

up a simul ated basebal |l season having each hitter

play for one year in the other player’s |eague.

User Jones ends the message by typing a period (.) on ablank line,
followed by the Return key, as shown:

play for one year in the other player’s |eague.
Return
Cc:

In this example, the message has not yet been sent; instead the Cc: (that is,
“*carbon copy’’) prompt appears because user Jones has customized his mail
session by adding set askcc tothe. mai | r ¢ filein his home directory.

(See Section 11.6 and Appendix D on customizing your mail session.)

The Cc: prompt enables you to send copies to other users. If you choose
not to, press the Return key to exit mai | x, and send the message; the end-
of-text message (EOT), then appears followed by the system prompt.

In this example, user Jones sends copies to local user cr ant on and remote
usersgi | I i s and vi ncep by entering the appropriate address for each at
the Cc: prompt and pressing the Return key to exit mai | x and send the

message:

Cc: cranton gillis@trato vincep@r b. bbs. com Return
EOCT
or ange%

Sending and Receiving Messages 11-3

The mai | x program enables you to recover from addressing errors. For
example, if your intended recipient on the local host is cr ant on, but you
mistakenly type cr ant om the following message appears immediately on
your screen,

crantom.. User unknown

and the message is mailed back to you. You can then save and resend it to
the right person.

If you send a message to an unknown person on a remote host, it may take as
long as three days before mai | x sends it back to you. Section 11.3.3.1
explains how to save and resend a returned message.

11.2.1 Editing a Message

To edit amail message before sending it, after replying to the Subj ect :
prompt, enter one of the following escape commands to activate an editor
within mai | x:

* Enter ~v to activate the screen editor that you set with the set VI SUAL
entry inyour . mai | r c file.

» Enter ~e to activate the text editor that you set with the set EDI TOR
entry inyour . mai | r c file.

To use the ~e command from within nai | x to activate a text editor, enter
~e asthe first two characters on a new line — you may need to type the tilde
(~) afew times before it displays. For example:

Subj ect: network docunentation neeting at 2 PM

Everyone, please bring the Table of Contents

for your book so that we can | ook for areas

of overl apping subject matter and
~e

If your . mai | r ¢ file containsset EDI TOR=/ usr/ucb/ vi, you can
now use the vi editor to correct the spelling mistake in the first line and
finish writing the message. When you end the editing session, you are back
inmai | x. You can end the message and exit mai | x or re-invokevi and
continue writing.

11.2.2 Aborting a Message

Y ou may decide not to send a message that you have started. There are two
ways to abort a message before sending it.

11-4 Sending and Receiving Messages

11.2.2.1 Aborting a Message with Ctrlc

You can abort a mail message by pressing Ctrl/c twice, anywhere within a
message. When you first press Ctrl/c, the following message is displayed:

(I'nterrupt -- one nore to kill letter)

Y ou can now reconsider your decision to abort the message. If you decide
not to abort it, continue entering text. If you decide to abort the message,
press Ctrl/c again, and the following message will be displayed:

(Last Interrupt -- letter saved in dead.letter)

The message is aborted, you exit mai | x, and the system prompt is
displayed.

By default, the aborted message is saved in the dead. | et t er filein your
home directory. If you choose not to save aborted messages, you can enter
set nosave inyour. mail rc file. See Section 11.6 and Appendix D for
more information.

Only the most-recently aborted message is saved in the dead. | et t er file.
Y ou can edit and resend it by including it within a mail message. (See
Section 11.2.3 for information on including files within messages.)

The following example shows how to abort a mail message by pressing
Citrl/c:

orange% mai |l x sally

Subj ect: Update to reference page files

What should the mail x(1) reference page include
about sending to renote users? Ctrl/C

(I'nterrupt -- one nore to kill letter)

Ctrl/IC

(Last Interrupt -- letter saved in dead.letter)
or ange%

11.2.2.2 Aborting a Message with an Escape Command

You can abort a mail message by entering either the ~q or the ~x escape
command on a blank line. Unlike aborting a message by pressing Ctrl/c,
these commands abort the message immediately, without prompting you to
reconsider. The ~g escape command saves the aborted text in the

dead. | ett er filein your home directory, but ~x does not, even if you
haveset save inyour. mail rc file

Sending and Receiving Messages 11-5

The following example shows how to abort a mail message by using the ~x
escape command:

orange% nai |l x sally

Subj ect: Update to reference page files

What should the mail x(1) reference page include

~X

or ange%

You may need to enter the beginning tilde character (~) a few times before it
appears.

11.2.3 Including a File within a Message

You can include any file (except an unconverted binary file) within a mail
message. You will do this often when you save and resend any incorrectly-
addressed mail that is returned to you (See Section 11.3.3.1) or when you
edit and resend an aborted message saved in the dead. | et t er filein your
home directory.

From an example in the previous section, the dead. | et t er file contains
the following text:

What should the mail x(1) reference page include
about sending to renote users?

Suppose that you want to resend this file to user sal | y after adding
additional information. While in mai | x, use the ~d escape command to
automatically add the text of dead. | et t er to the mail message, regardless
of the current working directory.

The following example starts a message to user sal | y before adding the
text of dead. | et t er through the ~d command:

orange% nai |l x sally

Subj ect: the nail x(1) reference page

The uucp(l) reference page has formatting

information for sending to renote users.

~d

“lusr/staff/r2/sally/dead.letter" 2/76

After including the file, its full path name is displayed, with the number of
lines (2) and characters (76) that the file contains (including the Return key
or a control character at the end of each line). After the display, you can exit
or continue writing your message, but you may want to enter a text editor
(for example, by typing ~v for vi) to look at the included file, which is not
displayed otherwise.

11-6 Sending and Receiving Messages

11.3

Note

Thedead. | ett er file contains only the most-recently aborted
mail message. Y ou may want to verify that it contains the text
that you want to send.

To include afile (including dead. | et t er) within a mail message, you can
use either of two escape commands, ~< or ~r followed by the file name.
These commands work in the same way. If thefileis not in the same
directory from which you entered nai | x, you must precede the file name
with a full path name or one that is relative to the current directory.

The following example uses the ~< escape command to include afile called
strat o_pr ob from the envi r on directory below the current working
directory:

or ange%

mail x sally

Subj ect: Dan, here's the stratosphere data file

~< environ/strato_prob

"environ/strato_prob" 41/1309

See Section 12.1.3 for information about transferring a file non-interactively
through the mai | x utility.

Receiving a Mail Message
When you receive a mail message, you have the following options:
» Delete or read any message waiting for you.
* Reply to the sender and any other recipients to whom the mail was sent.
e Savethe messagein afile.
» Organize the message by topic in afile of saved messages called afolder.

The mai | x program natifies you if you have new mail when you log in,
enter any operating system command, or press the Return key. You can also
enter the mai | x command at the system prompt to see if you have new
mail.

In the following example, user Jones on host or ange entersmai | x and
finds two messages waiting:

or ange% mai | x

Mail $Revision: 1.1.9.4 $ Type ? for help.
"/usr/spool/nmil/jones": 2 nessages 1 new 1 unread

U 1 root Mon Jul 20 10: 39 14/438 "Syst em news"

>N 2 root Mon Jul 20 11:30 11/292 "Wel cone”
?

Sending and Receiving Messages 11-7

In this example, two messages are waiting from the system administrator

(r oot); oneis unread (denoted by U in column 1) from a previous mai | x
session and the other is new (denoted by N). The question-mark (?) at the
end of the message is the mai | x prompt. You can type another question-
mark at this prompt to display alist of available mai | x commands, as
indicated in the header and as described in Section 11.4.

Y ou can press the Return key at the mai | x prompt to read message 2,
which isindicated by the right-angle bracket (>), in the list of waiting
messages. For example,

? Return

Message 2:

From root Wed Aug 4 11:17:36 1996
Date: Wed, 4 Aug 1996 11:17:29 -0400
From root (system adm nistrator)

To: jones

Subj ect: Wl come

Wel come to the conmpany conputer network. |'mthe
person who manages this system [If you have
questions or problens, send nmail to root. You
can al so send mail to manager or adnin; nessages
will be forwarded to mne.

I will be on vacation for the next two weeks after
this week... starting Monday, August 10. 1'Il be
st di n Space

back on Monday, August 24.
?

In this example, st di n displays because the PAGER variable has been set
to nor e (the default). If the PAGER variable had been set to pg nothing
would have been displayed. Also in the above example st di n appears after
the 15th line of the message because user Jones has customized the mai | x
environment by adding set crt =15 tothe. nai |l rc file. Inthe

.mai | rc file, set crt = gspecifies the number of lines to display at one
time before invoking the pager (either pg or nor e). to display the
remainder of the message. As shown in the example, because the message is
more than 15 lineslong, set crt instructs mai | x to invoke the pager after
15 lines. By pressing the Space bar, the next screen full of the message are
displayed. Y ou should customize your mai | x environment by using set
crt=. Otherwise, long mail messages will scroll rapidly, requiring you to
quickly press the Hold Screen key. See Section 11.6.2 and Appendix D for
more information on customizing mai | x.

11-8 Sending and Receiving Messages

To read another message, enter the message number at the mai | X prompt.
To list the messages again, enter h at the mai | x prompt. In the following
example, user Jones uses the h command to list the mail messages, sees that
the first message is still unread, and entersa 1 at the ? prompt to read it:
? h

U 1 root Mon Jul 20 10: 39 14/438 " Syst em news"

> 2 root Mon Jul 20 11:30 11/292 "Wl cone"

? 1

Message 1:

Fromroot Mon Jul 20 11:30:07 1996

Date: Mon, 20 Jul 1996 11:30:04 -0400

From root (system adm nistrator)

To: jones

Subj ect: System news

The newest rel ease of the text processing
software will be installed after 5 o’ clock
today. Send mail if you have questions or
concerns before or after the installation.

?

The message you are reading is called the current message. To reread it,
enter aperiod (.) at thenai | x prompt. To read the next message, press
the Return key. This message becomes the current message. You can read
all your messages in succession by pressing the Return key after each

message.

11.3.1 Deleting a Message

Y our messages stay in mai | x until you delete them before or after storing
themin afile or in afolder. To delete the current message after reading it,
enter the d (delete) command at the mai | x prompt. To delete a different
message, enter the d command at the mai | x prompt, followed by the
message number. Y ou can delete several messages by listing their numbers
after the d command. For example, enter the following command at the
mai | X prompt to delete messages 7 and 9:

?2d79

Y ou can aso delete arange of messages by using a hyphen between the first
and last message. For example, to delete messages 7 through 11, enter the
following command at the mai | x prompt:

?d7-11

Sending and Receiving Messages 11-9

If you accidentally delete a message, you can recover it with the u (undelete)
command. For example, to undelete message 7, enter the following
command at the mai | x prompt:

?2u7

If you exit nai | x by entering g or qui t e instead of x, any previously read
messages that you do not delete are added to the end of afile of previously
undeleted messages named nbox, in your home directory.

11.3.2 Replying to a Message

Replying to a mail message is similar to sending a mail message. You have
the same options to edit, abort, or include a file in a message, as described in
Section 11.2.

To reply to the sender of a message that you have just finished reading, enter
an uppercase R (reply) command at the mail prompt, as shown in the
following example:

Message 3:

From deedee Mon Jul 20 14:13:32 1996

Date: Mon, 20 Jul 1996 14:13: 05 -0400

From deedee (DeeDee Snith)

To: jones, mays@f24. usernet, susannah@rtwk
Subj ect: Testing text-processing software

I think we should test the new text processing
software on the ol der machines as well as the

newer. Renenber that nmany custoners still have
t he ol der nodel s.
? R

To: deedee
Subj ect: Re: Testing text-processing software

| agree. Also, we should test different machi ne
configurations to deternmine if, for exanple,
it perforns satisfactorily when run renotely.

EOT
?

After you enter R, the recipient and subject line display, enabling you to
verify that you are replying to the intended recipient.

If you enter alowercaser , the reply will be sent to the recipients of the
original mail as well as to the sender; in this example, to
mays@f 24. user net and susannah@artw k, aswell asto deedee.

11-10 Sending and Receiving Messages

Note

To reply only to the sender of a mail message, enter an
uppercase R at the mail prompt. To reply to the sender and all
recipients of a mail message, enter alowercaser at the prompt.

In the preceding example, the Cc: prompt does not appear because user
jones’ . mail rc filedoes not contain the set askcc command.

11.3.3 Saving a Message

If you leave mai | x by entering the g command (instead of the x or exi t
command), the messages that you have just read are stored in the nbox file
in your home directory. You can read this file by using the nor e or cat
command, or you can use a text editor to read and edit it.

To store mail messages in a more useful way, you can save them in
individually-named files or in folders as described in the following sections.

11.3.3.1 Saving a Message in a File
There are several kinds of mail that you might want to save in afile:
e A brief but important message that you read
* Anincorrectly-addressed mail message that nai | x returns to you
* A long message that you want to print and read later
To save a brief message that you read or a mail message that mai | x

returned to you, enter the s command at the mai | x prompt and supply a
name for the file.

A returned message is shown in the second item in the following output from
the mai | x command:
orange% nai | x

Mail $Revision: 1.1.9.4 $ Type ? for help.
"/usr/spool /mail/jones": 2 nessages 1 new 1 unread

U 1 root Mon Jul 20 10: 39 14/438 " System news"

>N 2 MAILER-DAEMON Wed Aug 5 09:39 19/498 "Returned nuil: User
unknown"

?

As shown below, user Jones decides to save the returned message from the
previous example in the file, veri f y- r esend, as areminder to find the

Sending and Receiving Messages 11-11

correct address before resending it.

>N 2 MAlI LER- DAEMON Wed Aug 5 09:39 19/498 "Returned mail: User
unknown"
? s verify-resend

Thefile, veri fy-resend, is saved in the current directory unless an
explicit pathname is specified. For example, user Jones could have saved it
in asubdirectory called f i x-1 at er by entering the following command:

? s fix-later/verify-resend

To save along message without reading the entire text online, press Ctrl/c to
stop the message from scrolling and to display the mai | x prompt. You can
now save (or delete) the message. In the following example, user Jones
receives a 20-page report in message 1, and presses Ctrl/c to access the

mai | x prompt where a command is entered for saving the file:

21

Message 1:

Fromsnmith Wed Aug 5 16:43:42 1996

Date: \Wed, 5 Aug 1996 16:43:41 - 0400

From snmith (Cassandra Smith)

To: jones

Subj ect: 20-page report: host configuration results

Morti ner,

Here's the report on host configuration that the
Ctrl/c

Interrupt

?s sys-config-report

"')s(%/s-config-report" [New file] 2147/48353

2dp

In the example above, after creating the file, user Jones enters dp (that is,
delete-proceed) at the mai | x prompt to prevent the large 20-page file from
being saved in mbox, and to start reading the next mail message. Otherwise,
the mai | x command, d (del et e) and pressing the Return key could have
been entered to do the same.

11.3.3.2 Saving a Message in a Folder

To organize messages for easier reference and to minimize the size of the
nbox file (which is afolder itself) you can save messages in files called
folders. Before using a folder other than mbox, you must create a folder
sub-directory in your home directory and add a pointer to the folder in your
. mai | rc file. For example, if you make a directory named f ol der in

11-12 Sending and Receiving Messages

your home directory, you must add the following line to your . mai | r ¢ file:
set fol der=fol der.

To add a message to a folder, use the mai | x command, s and the folder
name. For example, to save a message about host configuration with other
messages on that topic, write it to a folder named sys- conf i g, asfollows:
Message 7:

Fromsnmith Thu Aug 6 09:32:09 1996

Date: Thu, 6 Aug 1996 09: 32: 08 - 0400

From smith (Cassandra Smith)

To: jones

Subj ect: host configuration testing

According to the report that each LAN ...
? s sys-config
"sys-config [New file] 11/235

When you save the first message in afolder, mai | x stores it and displays
the message, New fi | e. If you save more messages in that folder, mai | x
appends them to the end of the file and displays the message, Appended.

There are two ways to read messages stored in a folder other than mbox:

e From the shell prompt you can start mai | x with the - f option and the
folder name. For example, to read the sys- conf i g folder, enter the
following command:

orange% mai |l x -f sys-config

* If you aredready in mai | x, use thef ol der command to switch to a
different folder. For example, if you are reading the sys-confi g
folder and you want to read the meet i ngs folder, enter the following
command:

? fol der neetings

When you switch folders, mai | x makes any changes to the folder you are
leaving before it opens the new folder.

You can use the f ol der command without arguments to find out what
folder you arein. For example:

? fol der
"sys-config": 17 nessages

Sending and Receiving Messages 11-13

11.3.4 Forwarding a Message

Y ou can use the mcommand and the ~f escape command in nai | X to
forward to other users any message that you receive. The following example
shows how to start message forwarding to user deedee:

? m deedee
Subj ect: forwarding a nessage

For example, to forward message number 3 to user deedee and include a
subject line and introductory note, you would enter the following text:

I received this note fromGary. Do you agree?
~f 3

Interpolating: 3

(conti nue)

EOT

As shown, after you enter the ~f command, you can continue writing or end
the message. To forward the current message, do not enter a number after
the ~f .

11.4 Getting Help from mailx

When you enter mai | x and messages are waiting, the following line is
displayed at the top of the header:

Mail $Revision: 1.1.9.4 $ Type ? for help.

Thisis areminder that you can type a question mark (?) at the mai | x
prompt to display a brief description of available mai | x commands, as
shown in Example 11-1.

Example 11-1: Output from mailx Help Command

??

Control Commands:
q Qit - apply mailbox conmands entered this session.
X Quit - restore mailbox to original state.

I <cmd> Start a shell, run <cnmd>, and return to mail box.
cd [<dir>] Change directory to <dir> or $HOVE
Di spl ay Conmands:
t [<msg_list>] Display messages in <msg_|list> or current nessage.

n Di spl ay next nessage.

f [<msg_list>] Display headi ngs of nessages.

h [<nunp] Di spl ay headi ngs of group containi ng nessage <nun®.
Message Handl i ng:

e [<nunp] Edit nessage <nun®> (default editor is e).

d [<msg_list>] Del ete nessages in <nsg_list> or current nessage.
u [<meg_list>] Recal | del eted nessages.
s [<meg_list>] <file> Append nessages (with headings) to <file>.
w [<nsg_list>] <file> Append nessages (text only) to <file>.
pre [<nmsg_list>] Keep nmessages in system mail box.

Creating New Mail:

11-14 Sending and Receiving Messages

Example 11-1: (continued)

m <addr|ist> Creat e/ send new nessage to addresses in <addrlist>.
r [<nsg_list>] Send reply to senders and recipients of nessages.
R [<msg_list>] Send reply only to senders of nessages.

a Di splay list of aliases and their addresses.

Mai | box Comrands

11.5 Exiting Mail
There are three commands you can use to exit from mai | x:

* The g command returns you to the shell prompt and saves in the nbox
file in your home directory, any messages you read but did not delete.

 Thex and exi t commands are the same. Each returns you to the shell
prompt without changing your mailbox.

11.6 Customizing Mail Sessions

When setting up an account for a new user, the system manager defines
certain mai | x default settingsinthe/ usr/ share/li b/ Mail . rc file
As supplied by the operating system, this file contains the following mai | x
settings, which a user can override:

» Theset ask setting activates the Subj ect: prompt.
» Theset noaskcc setting deactivatesthe Cc: prompt.

» Theset dot setting meansthat asingle dot on a blank line (.)
terminates the mail message.

» Theset nokeep setting means that the system mailbox is deleted
when it becomes empty. This setting is unimportant to most users.

» Theset save setting means that aborted messages are saved in the
dead. | etter file

Y ou can customize your mai | x session by defining aliases and setting
variablesin the . mai | r ¢ file in your home directory. Hereis a sample
.mailrcfile

al i as sue susannah

alias wonbats tom jeff, craig, jim ken
set ask

set askcc

set pronpt=>

unset dot

set record=/usr/users/hal e/ out goi ng

set fol der=fol der

set crt=20

Sending and Receiving Messages 11-15

11.6.1 Creating Mail Aliases

You can usetheal i as command in nai | X to create alternate names for
USEr'S Or USer groups.

Note

The mai | x diasisnot the same al i as command used by the
shell; you cannot use it to modify mail commands.

To define a permanent mail alias, enter the al i as command in the
. mai | r ¢ file, specifying the alias name and one or more login names. The
following . mai | r ¢ file defines two aliases:

al i as sue susannah
alias wonbats tom jeff, craig, jim ken

Thefirst alias defines the name sue to mean user susannah. This enables
you to send mail to susannah by using the name sue. The second alias
enables you to send mail to members of ateam called the Wombats —t om
jeff,craig,jimandken, by addressing your message to wonbat s.
Another way to enter thislinein. mai | r c isthis:
alias wonbats tom\

jeff,\

craig,\

jim\

ken
The backslash (\) enables you to write a single long command on severa
lines.

Whilein mai | x, you can see what aliases are defined by using the al i as
command without arguments. Y ou can also define temporary aliases at the
mai | x prompt that are in effect during that mai | x session.

11.6.2 Setting Mail Variables

Mail variables are similar to variablesin your . | ogi n file. They can be
binary, string, or numeric.

To set abinary mail variablein your . mai | r ¢ file, enter the set command

followed by the option name. The sample . mai | r ¢ file includes these
binary variables:

set ask
set askcc
unset dot

e Setting ask makes mai | x prompt you for the subject line of messages
you send.

11-16 Sending and Receiving Messages

11.7

e Setting askcc makes mai | x prompt you for carbon-copy recipients.

* Unsetting dot makes mai | x refuse to end a message when you type a
line with just a period on it; you would have to end a message by
pressing Ctrl/d instead.

String mail variables accept characters or numbers as values. The sample
. mai | r ¢ file includes the following three string variables:
set fol der=fol der

set record=/usr/users/hal e/ fol der/outgoing
set crt=20

* Thef ol der variable defines a subdirectory to contain your mail folders.
If you set this variable, the mai | x utility creates folders asfilesin this
directory when you save messages using the save f ol der command.
The mai | x utility interprets the file name as a subdirectory of your home
directory.

» Therecord variabletells mai | x to put a copy of each message you
send in the file you specify. If you do not set this variable, no automatic
record is kept. In this example, we've specified afile that will be treated
as an ordinary folder by mai | x. To select the record file, use the
following command:

orange% mai | -f outgoing

e Thecrt variabletells mai | x how many lines of a message should be
displayed before invoking the pager program.

The Message Handling (MH) Program

An alternative to the mai | x program is the Message Handling program
(MH). The MH program is a set of small mail-handling programs that you
use by entering the command you want to execute from the shell prompt.

The MH program is optional; it may not be installed on your host. To
determine if MH is available, ook for the/ usr/ bi n/ mh directory.

To use MH, you must add the / usr / bi n/ mh directory to your path by
editing theset pat h lineinyour . cshrc or. | ogi n file. Then, notify
the shell about the change in your path by logging out and logging back in,
or by entering the following command (for the C shell):

orange% source .l ogin

If your pathissetin. cshrc, use. cshrc instead of . | ogi n in this
command.

Sending and Receiving Messages 11-17

For either the Bourne or Korn shell, you would add this information to the
. profil e file and notify the shell by entering the following command:

orange$. .profile

With the MH program, folders are organized differently from mai | x folders.
New and unread mail is kept in afolder called i nbox, into which you move
the mail that arrives in your system mailbox by using thei nc command.

You must enter the i nc command every time you want to include new mail.

You select afolder with the f ol der command. If you enter it without a
folder name, f ol der displays the currently selected folder.

You can enter the f ol der command with the - al | option to display alist
of your folders and the number of messages in each.

You use the show, pr ev, and next commands to read the current,
previous, and next messages in your current folder. If you enter a message
number with the show command, that message becomes your current
message. For example:

or ange% show 7

Message 7:

From deedee Mon Jul 23 10:02:10 1996
Date: ©Mbn, 23 Jul 96 10:01:25 edt

To: hale

Subj ect: Cafeteria hours
Cc:

Status: R

I"msorry you didn't ask that sooner. The cafeteria
closes its breakfast service at 10. Lunch starts
at 11: 30.

The r nmcommand removes messages from your current folder. If you use
the r mrmcommand with no argument, it deletes the current message. If you
specify one or more message numbers, the messages you specify are
removed. For example, to remove messages 2, 5, and 7, enter the following
command:

orange%rmm2 5 7

Table 11-1 lists most of the MH commands. For a complete list, see the
mh(1) reference page. For more information about each MH command, see
the reference page for each.

11-18 Sending and Receiving Messages

Table 11-1: Commands for the MH Message-Handling Program

Command Description

al i Searches the specified alias files and displays the addresses
corresponding to the specified aliases.

anno Annotates messages to keep track of distribution, forwarding,
and replies for your messages.

bur st Extracts the original messages from a forwarded message,

discards the forwarding header, and places the original
messages at the end of the current folder.

conp Creates a new mail message, providing a template for you to
fill in and invoking an editor to finish the message.

di st Redistributes the current message to addresses that are not on
its original distribution list.

f ol der Selects a folder or displays the contents of your current
folder.

fol ders Lists all your folders and the number of messages each one
contains.

forw Forwards messages to recipients who were not the original

addressees. The message is encapsulated (included with a
‘*Forwarded message’’ notice) and a header is added.

inc Incorporates mail from your system mailbox into your
i nbox folder.
mar k Assigns a name to a sequence of messages in your current

folder. You can then use the pi ck command to select
messages marked in this way.

mhl Lists formatted MH messages. You can use this command as
a replacement for the nor e command to display messages.
mhmai | Sends mail to the specified users. If you do not specify any

users, mhmai | works like the i nc command.

nmsgchk Checks your system mailbox and any other files that can
receive new mail for you, looking for new messages. If any
new messages are found, nsgchk reports.

next Displays the next message in the current folder or in the
specified folder.
packf Compresses afolder into asingle file. (Each message is

normally stored as a separate file) Do not confuse the
packf command with the pack command.

pi ck Selects messages based on content, sequence name, or other
criteria.

Sending and Receiving Messages 11-19

Table 11-1:

Command

prev
pr onpt er

rcvstore
refile
repl

r nf

rmm

scan
send

show
sortm

what now

whom

(continued)

Description

Displays the previous message in the current folder.

Invokes a simple editor designed for composing messages.
The pr onpt er command is invoked by conp, di st ,
forw, and r epl ; you do not need to call pr onpt er
directly.

Incorporates a message from the standard input directly into a
folder.

Moves messages from the current folder to one or more other
folders.

Replies to either the current message or the message you
specify.

Removes al of the messages in afolder and then removes the
folder itself.

Removes messages from a folder. The message files are not
actually destroyed; instead, r nmrenames them by inserting a
number sign (#) as the first character of the file names. On
most hosts, files whose names begin with a number sign are
deleted once a day by an automatic process. Until they are
actually deleted, you can recover removed messages by using
the mv command to rename the files.

Displays alist of the messagesin a folder.

Sends a message that you have created by using conp,
pr onpt er, or another editor.

Displays the contents of a message.

Sorts messages in a folder into chronological order according
to the Dat e: field of the message header.

Prompts you for what to do with a message you have just
composed. Y ou can reexamine an original message to which
you are replying, resume editing the new message, or do
other tasks associated with sending the message.

Expands the header of a message into a set of addresses and

optionally checks to see that the message can be delivered to
those addresses.

11-20 Sending and Receiving Messages

11.8

The following example shows how the MH nsgchk command reports new
messages:

or ange% nsgchk

You have new mail waiting, |ast read on date

You can tailor the features of MH by creatinga . mh_pr ofi | e filein your
top-level directory. The MH reference pages describe the features that you
can modify.

Sending and Receiving Messages With write

Thew i t e command enables two users on the same or different hosts to
communicate on either a video display termina or on nonvideo devices (for
example, a teletypewriter) that print messages on paper.

You canusewr i t e to send a message immediately to someone who you
cannot reach by telephone, especially if you do not require areply. (See also
thet al k command in Section 11.9.)

Thew i t e command displays a message on the terminal screen of the
recipient. You can prevent users from communicating with you through
writeandtal k by entering the mnesg n command in the. | ogi n filein
your home directory. Y ou cannot disable incoming messages from those
with superuser privileges.

To determine whether a user on alocal host has disabled messages from
writeandtal k, usethefi nger command and look at the first line of
output for the phrase nessages of f. For example:

Logi n name: snith (messages off) In real life: John Smth

For users on a remote host, the disabling of wi t e andt al k is denoted by
an asterisk (*) inthe TTY field of the output line, for example:

Log.i n Nane TTY Idle When Ofice
chang Pet er Chang *pl 2:58 Thu 10: 16 103

See Section 10.2.2 and f i nger (1) for more information.

Sending and Receiving Messages 11-21

Y our intended recipient may be running a command that temporarily disables
writ e to prevent its interference, and the sender would receive the message,

Wite: Perm ssion denied
just asif the recipient had explicitly disabled wri t e.

You can use thewr i t e command only when the recipient is logged in. Use
the who command, as described in Section 10.1, to list current users. If, for
example, user smi t h is not logged on when you send a message through
writ e, the following message is displayed on your terminal screen:

smith is not |ogged on

The following steps show how user wang sends a message to user chung,
both of whom are logged in on local host dancer :

1. User wang entersthewr i t e command at the system prompt:
dancer% wite chung

Thew i t e program rings a bell and sends the following message to the
terminal screen of chung:

message fromwang tty04 Feb 14 10: 32: 45
A bell rings user wang’ s terminal when the connection is made.

2. User wang types the message, pressing the Return key after each line,
and ends the message by pressing Ctrl/d. For example, wang sends the
following message in two lines to user chung:

The doubl e-sided | ab printer is working. Retun

Re-send your job, and I'll check it. Retun
Ctrl/id

3. After wang presses Ctrl/d, the EOF (end of file) signal is displayed on
the screen of user chung to indicate the end of the message.

Note

See your system administrator if pressing Ctrl/d does not
produce the EOF signal on the recipient’s screen or if a bell does
not ring on the sender’s terminal.

11-22 Sending and Receiving Messages

119

Y ou can use the exclamation point (I') at the beginning of a new message
line to access the shell prompt and execute any operating system command
(including wr i t €). For example, if wang forgot the name of the current
directory from which chung isto retrieve certain files, wang can enter the
I pwd command to remind himself, as shown:

dancer% write chung

You can copy the network user files from Retun

' pwd Return

/ufs/usr/staff/rO/net-dir/network_comm
|

}ufs/ usr/staff/r0/ net-dir/network_comm
Ctriid
dancer %

Thew i t e command can be used interactively, but it is difficult for both
sender and receiver to determine when the other has finished and is waiting
for areply. For example, wang can enter the following command:

dancer% wite chung

Wang will then wait for chung to reply, but chung might also wait,
thinking that wang intends to continue the message.

To minimize problems, it is a good idea to establish a simple, temporary
protocol each time you want to usewr i t e interactively. For example, user
wang can start his message to chung as follows:

dancer% wite chung

I"I'l mark the end of each nessage with 'ZZZ' Return

and wait for a reply. Please do the same. Retun

11l install a driver for the new printer. Retun
Do you want to test it? ZZZ Return

For more information, seethe wr i t e(1) reference page.

Sending and Receiving Messages with talk

Thet al k command enables a user to send a message to another user on the
same or on a remote host, interactively and more easily than through wri t e.
However, t al k works only on video display terminals.

Likewrit e, youcanuset al k to send a message immediately to someone
who you cannot reach by telephone. Also, likewri t e, thet al k command
may disrupt the receiver because it sends a notification message directly to a
terminal and continues doing so until areply is entered.

To disable incoming messages (except from those with superuser privileges)
fromt al k (and fromwri t e, as described earlier) you can put the
command, mesg ninyour . | ogi n file. To determine whether a user has
done this, use the f i nger command as described in Section 10.2.1 or in the
fi nger (1) reference page.

Sending and Receiving Messages 11-23

During an online t al k session, a*‘send window’’ and a ‘*receive window’’
are opened on each user’sterminal. Each can type into the send window
whilet al k displaysin the receive window what the other user is typing.

For example, to send a message to user hoover on the same local host
appl e, user cool i dge entersthe following t al k command:

appl e% tal k hoover

The program then divides the terminal screen of cool i dge into two parts;
the top half assigned to cool i dge and the bottom half assigned to
hoover.

Next, the following message is displayed in the top of the screen:

[No connection yet]

When the connection is established, the following message is displayed:
[Waiting for your party to respond]

After this message, a bell rings on hoover’ s termina and the following
message is displayed:
Message from Tal k_Daenon@ppl e at 16:18 ...

tal k: connection requested by coolidge@ppl e
tal k: respond with: talk coolidge@pple

If hoover does not respond quickly, the following message is displayed on
cool i dge’ s screen:

[Ringi ng your party again]

When hoover responds, a message about the established connection appears
on cool i dge’ s screen. Each user can now enter text. If the screen fills
up, t al k overwrites the text at the beginning of the screen. Either user can

end the conversation by pressing Ctrl/c. The end of thet al k session is
marked as follows:

[Connection closing. Exiting]

11-24 Sending and Receiving Messages

12.1

Copying Files to Another Host 12

This chapter explains how to use operating system commands to perform the
following tasks:

» Copy files between alocal and a remote host

» Copy entire directories (including subdirectories) of files between a local
and a remote host

» Copy files between two remote hosts
To determine the host name or online status of a remote host before copying

files, usethef i nger, who, r who, pi ng, or r upt i ne commands
described in Chapter 10.

In addition to the information in this chapter, Chapter 14 provides
information on using the UNIX-to-UNIX Copy Program (UUCP) to copy
files to and from remote systems.

Note

The security features on the remote host determine whether or
not you can copy afile. See your system administrator if you
cannot copy afile.

Copying Files Between a Local and a Remote Host

Y ou can use the following commands to copy files between alocal and a
remote host:

* rcp, described in Section 12.1.1; see Section 12.2 to copy entire
directories of files. A host running the Digital UNIX operating system
can user cp with a host running any other UNIX based operating system.

» ftp, described in Section 12.1.2. You can useft p to copy files
between hosts using the following operating systems that also support
ft p: Digital UNIX and VMS (with UCX).

* muil x, described in Section 12.1.3
e wWite, describedin Section 12.1.4

12.1.1 Using rcp to Copy Files Between Local and Remote Hosts

When using r cp to copy files from alocal to aremote host or from a remote
to alocal host, name the file to be copied first, followed by the destination
file, as shown in thisr cp syntax statement:

rcp [option...] localfile hostname:file

The ! ocal fil e variable identifies the local file you want to copy. The
host nane: fil e variable identifies the remote host (host nane) followed
by acolon (:) and the name of the file (fi I e) to which the local fileis
copied.

The following example uses r cp to copy the local file, YTD_sumfrom the
directory / usr/ report s onthelocal host to the file year - end in the
directory / usr/ acct on the remote host noon:

% rcp /usr/reports/ YTD_sum noon:/usr/acct/year-end

You can also send afile on the local host to a user at aremote host. The
following example shows how to copy the file YTD_sumfrom the directory
/usr/reports ontheloca host to thefileacct _sunmari es inthe
home directory of user j ones on the remote host noon:

%rcp /usr/reports/ YTD_sum jones@mon: acct_sumari es

As used in the preceding examples, the r cp command assigns a new creation
date and time to the file created from the original. It also assigns file *‘ read-
write-execute’’ permissions according to the host or user directory containing
the newly created file.

You may need to preserve the original creation date and access permission
mode of the copied file in the new file. As shown in the following example,
the - p option enables you to preserve the original creation date and time and
file access permission of YTD_sumin the file, year - end:

%rcp -p /usr/reports/ YTD sum noon:/usr/acct/year-end

If the - p option was not entered, a new date and time would have been
assigned, and the file access permission would be set to the default assigned
by the system administrator for remote host, noon.

12-2 Copying Files to Another Host

In the next example, the - p option preserves the same file creation and
access permissions in the fileacct _sunmar i es asin the origina file,
YTD _sum

%rcp -p /usr/reports/ YTD sum jones@mon: acct_sunmari es
p-p p

If the - p option was not entered, a new date and time would have been
assigned, but unlike the previous example, the file access permission would
be the default set by user j ones through the umask command (if any) in
the. | ogi n file. If theumask isnot setinthe. | ogi n file, the default for
remote host nroon determines the file access permission mode. See
umask(2) for more information about setting unask.

To copy afile from aremote host to alocal host, follow ther cp syntax
statement shown below. The command syntax is the same as copying a local
file to a remote host with the exception that / ocal fi | e is the destination
file, so it is placed last on the command line:

rcp [option...] hostname:file localfile

12.1.2 Using ftp to Copy Files Between Local and Remote Hosts

Thef t p command is the interface to the File Transfer Protocol (FTP) and
has an extensive set of subcommands (described in Table 12-1, Table 12-2,
and Table 12-3) that support the main task of copying files. You can use the
ft p command to copy files between any two hosts that use the following
operating systems. Digital UNIX, UNIX, and VMS (with UCX).

Seethe f t p(1) reference page for a description of the f t p command
options, which are used primarily for network administration tasks.

Copying files through FTP consists of the following steps:
1. Establishing a session on the remote host

2. Copying the files

3. Disconnecting the session

Thef t p command has the following syntax:

ftp host_name

The host _nane variable specifies the name of the host you want to reach.
If you do not specify a host _nane on the command line, you must use the

f t p subcommand, open (described in Table 12-1) to connect with a remote
host.

Copying Files to Another Host 12-3

After you typeft p, theft p> prompt is displayed and you are logged in to
the remote host. You can then use f t p subcommands to perform the
following tasks:

» Copy files (See Table 12-1)

» List the contents of a remote directory (See Table 12-2)

» Change the current directory on the remote host (See Table 12-2)

* Append alocal file to aremote file (See Table 12-1)

» Copy multiple files (See Table 12-1)

» Escapeto the local shell to run commands (See Table 12-3)

» Delete files on remote hosts (See Table 12-2)

Example 12-1 shows how user al i ce on local host ear t h logs on to

remote host noon, and uses f t p subcommands to check the current working
directory, list its contents, copy a binary file, and end the session.

Example 12-1: Using ftp to Copy a File

earth% ftp nmoon 1

Connected to noon.

220 nmoon FTLPServer systemmane ready. 2
Narme(noon: alice): Return 3

Passwor d: 4

230 User alice logged in 5

ftp> binary 6
200 Type set to |

ftp> pwd 7

257 "ul/alice" is current directory

ftp>1ls -1 8

200 PORT command successful .

150 Opening data connection for /bin/ls (192& 9& 200&. 1, 1026)
(0 bytes)

total 2

SrWr--T-- 1 alice system 101 Jun 5 10:03 filel

STWIF--T-- 1 alice system 171 Jun 5 10:03 file2

STWr--r-- 1 alice system 1201 Jun 5 10:03 sales

ftp> get sal es newsal es 9

200 PORT command successful .

150 Openi ng data connection for testfile (192& 9& 200& 1, 1029)
(1201 bytes)

226 Transfer conplete.

local:tnmp.testfile remte:testfile

ftp> quit 10

221 Goodbye.

eart h%

12-4 Copying Files to Another Host

10

User al i ce entersthe ft p command at the prompt of local host,
eart h to begin an f t p session with remote host, moon.

A message verifying the connection is displayed on the local host.

User al i ce presses Return at the prompt because her login name is the
same on the remote host.

At the Passwor d: prompt, user al i ce entersavalid password that is
not displayed.

The login to the remote host is verified and the f t p> prompt appears,
establishing the f t p session with the remote host.

User al i ce entersthe bi nar y subcommand at the f t p> prompt to set
the file transfer type to binary and FTP verifies it with the message 200
Type set to I.

User al i ce enters the pwd subcommand to identify the current working
directory, and FTP verifies it with the messageu/ al i ce i s current
directory.

User al i ce entersthel s -1 subcommand to list the contents of the
current working directory, fil el,fil e2, and sal es.

User al i ce copiesthe file sal es from the remote host to afile called
newsal es on the local host through the get subcommand.

User al i ce entersthe qui t subcommand to end thef t p session and
returns to the local system prompt.

Table 12-1 describes the f t p subcommands that copy files and exit f t p.
The bi nary, get, and qui t subcommands were used in Example 12-1.

Table 12-1: ftp Subcommands for Connecting to a Host and

Copying Files
Subcommand Description
account [password] Sends a supplemental password that a remote host

other than a Digital UNIX host may require before
granting access to its resources. If the passwor d
is not specified, the user is prompted for it. The
password does not appear on the screen.

asci i Sets the file transfer type to network ASCII, which
is the default. For example, a PostScript file is an
ASCII file.

bi nary Sets the file transfer type to binary image. This may

be more efficient when copying non-ASCI| files.
For example, a DECwrite file is non-ASCII.

Copying Files to Another Host 12-5

Table 12-1: (continued)

Subcommand

bye

get renfile |ocfile

nget renfile
[1ocfile]

nput [ocfile
[renfile]

open host [port]

put locfile
[renfile]

qui t

recv renfile
[locfile]

runi que

12-6 Copying Files to Another Host

Description

Ends the file copying session and exits FTP; same as
qui t.

Copies the remote file, r enf i | e to thefile,

I ocfil eontheloca host. If [ocfil eisnot
specified, the remote file name is used locally. See
aso ther uni que subcommand.

Copies one or more specified files (renfi | e) from
the remote host to / ocf i I e in the current directory
on the local host (supports wildcard or pattern-
matching metacharacter expansion).

Copies one or more specified files (/ ocfi | e) from
thelocal host tor enf i | e on the remote host
(supports wildcard or pattern-matching
metacharacter expansion).

Establishes a connection with the specified host , if
you did not specify it on the command line. If
port is specified, FTP attempts to connect to a
server at that port. If the aut ol ogi n featureis set
(the default), FTP tries to log the user in to the
remote host.

Stores afile, | ocfi | e on the local hogt, in the file
renf il e ontheremote host. If you do not specify
renfil e, FTP usesthe loca file name to name the
remote file. See also the suni que subcommand.

Ends the file copying session and exits FTP; same as
bye.

Copies the remote host file, renf i | e to thefile,
| ocfil e onthelocal host; r ecv works like get .

Toggles, creating unique file names for local
destination files during get operations. If the
unique local file name feature is off (the default),
FTP overwrites local files. Otherwise, if alocal file
has the same name as one specified for alocal
destination file, FTP appendsa. 1 extension to the
specified name of the local destination file.

If alocal file already has the new name, FTP
appends a. 2 extension to the specified name, and
so on up to avaue of 99. If FTP still cannot find a
unique name, it reports an error and the file is not
copied. Notethat r uni que does not affect local
file names generated from a shell command.

Table 12-1:

Subcommand

send /ocfile
[renfile]

suni que

(continued)

Description

Stores alocal file, ocfi |l e inthefile, renfil e
on the remote host; send works like put .

Toggles, creating unique file names for remote
destination files during put operations. If the
unique remote file name feature is off (the default),
FTP overwrites remote files. Otherwise, if aremote
file has the same name as specified for a remote
destination file, the remote FTLPser ver modifies
the name of the remote destination file in the same
way that r uni que does, and it must be supported
on the remote host.

Table 12-2 describes the f t p subcommands that enable you to verify,
change, or create the current directory and list its contents before you copy
files, if necessary. The pwd and | s subcommands were used in Example

12-1.

Table 12-2: ftp Subcommands for Directory and File
Modification

Subcommand Description

cd renptedir
cdup

delete renfile

dir [rendir]
[locfile]

lcd [directory]

I's [rendir]
[1ocfile]

nkdir [rendir]
pwd

renanme fromto

Changes the working directory on the remote host to
renotedir.

Changes the working directory on the remote host to the
parent of the current directory.

Deletes the specified remote file.

Lists the contents of remote directory r endi r to the
file, I ocfi | e onthe loca host.

Changes the working directory on the local host. If you
do not specify adi rect or y, FTP uses your home
directory.

Writes an abbreviated file listing of a remote directory,
rendi r to aloca host file, | ocfil e.

Creates specified directory on remote host.

Displays the name of the current directory on the remote
host.

Renames a file on the remote host.

Copying Files to Another Host 12—-7

Table 12-2: (continued)

Subcommand Description
rodir rendir Removes the remote directory r endi r from the remote
host.

Table 12-3 describes the f t p subcommands that provide help or status
information directly or by invoking the shell from within f t p.

Table 12-3: ftp Subcommands for Help and Status Information

Subcommand Description
I conmand [opti on] Invokes an interactive shell on the local host.
?[subconmand)] Displays a help message describing the

subcommand. If you do not specify
subcommand, FTP displays a list of known
subcommands. See aso the hel p subcommand.

hel p [subconmand] Displays help information. See also the ?
subcommand.

st at us Displays current status of f t p, including the current
transfer mode (ASCII or binary), connection status,
time-out value, and so on.

ver bose Toggles verbose mode. When verbose mode is on
(the default), FTP displays all responses from the
remote FTLPser ver . Also, FTP displays statistics
on all completed file transfers.

Thet f t p command, which is the interface to the Trivial File Transfer
Protocol (TFTP), provides another way of copying files. Unlikef t p, it does
not provide subcommands for any other tasks and is recommended only for
tasks performed by the superuser or the installer of the operating system

(e.g., copying the operating system kernel). Limited file access privileges are
given to theremotet f t p server daemon, t ft pd. Seethet ft p(1)
reference page for more information.

12-8 Copying Files to Another Host

12.1.3 Using mailx to Copy ASCII Files Between Local and

Remote Hosts

The mai | x command copies ASCII files to aloca or remote host, although
mai | X is most often used to send and receive mail messages as described in
Chapter 11. You can copy an ASCII file to one or more users through

mai | X by using the left-angle bracket redirection symbol (<) as shown in
the following syntax:

mailx [option...] recipient... < filename

The reci pi ent variable specifies one or more user names or a nai | x
alias to whom you want to send thefile, fi | enane.

For example, to send the file schedul e to severa users, you could use the
mai | x command, as shown with its - s option that indicates the subject of
the message:

% nailx -s "ganmes" tomjeff craig jimken < schedul e

If you create amail alias of worrbat s (See Section 11.6.1) for these five
members of ateam called Wombats, you can send the file to that alias, as
shown:

% mai | x -s "ganmes" wonbats < schedul e

12.1.4 Using write to Copy Files Between Local and Remote

12.2

Hosts

Thewr i t e command copies files to alocal or remote host, althoughwrit e
is most often used to write messages to other users as tasks described in
Section 11.8. After you typewr i t e, enter the user name of the recipient, a
left-angle bracket redirection symbol (<) , and the name of the file you want
to send. For example, to send afile named | et t er in your current
directory to user mar i a, enter the following command at the host prompt:

%wite maria < letter

Copying Directories of Files Between a Local and a
Remote Host

The - r option of ther cp command enables you to copy entire directories of
files recursively (that is, including files within any subdirectories) between a
local and a remote host.

Copying Files to Another Host 12-9

12.3

To copy adirectory recursively from your local host to a remote host, use the
following syntax:

rcp -r localdirectory hostname:directory

The /| ocal di r ect or y variable identifies the local directory that you want
to copy recursively. The host nane: di r ect or y variable identifies the
remote host (host nane) followed by a colon (:) and the name of the
remote directory (di r ect or y) to which the local directory is copied.

The following example usesr cp -r to copy recursively the directory
[usr/reports from the local host to the directory
[user/ st at us/ newdat a on remote host noon:

%rcp -r /usr/reports noon:/user/status/newdata

You can also copy recursively a directory on your local host to a user at a
remote host. The following example shows how to copy the directory

[usr/reports onthelocal host to the directory

[user/ st at us/ newdat a in the home directory of user sni t h on the
remote host mroon. This example also uses the - p option, as explained in
Section 12.1.1, to preserve the original creation date and access permission
mode of the directory that is copied in the new directory:

%rcp -p -r /usr/reports smith@mon:/user/status/newdata

To copy adirectory recursively from a remote host to your local host, follow
ther cp syntax statement shown below. The command syntax is the same as
copying a directory recursively from alocal to a remote host with the
exception that / ocal di r ect or y is the destination file, so it is placed last
on the command line:

rcp -r hostname:directory localdirectory

Copying Files Between Two Remote Hosts

From your local host, r cp can copy afile on one remote host to afile on
another remote host. To do this, use the following r cp syntax:

rcp remhostl:filesend remhost2.file-recv

The renhost 1 variable identifies the remote host containing the file you
want to send, followed by acolon (:) and thefile, fi | esend that you
want to send. The last part of the statement identifies the second remote
host, r emhost 2, and the file name, fi | e- r ecv, to which the file from
remhost 1 will be copied. If only adirectory nameisgivenin fi/l e-
recv (asin the example below), fi | esend will be copied there with the
same file name.

12-10 Copying Files to Another Host

The following example uses r cp to copy the file spar k from the directory
/ u/ cave/ fred onremotehost f | i nt to the directory / u/ hut / bar ney
on remote host st one:

%rcp flint:/ulcave/fred/spark stone:/u/hut/barney

Copying Files to Another Host 12-11

13.1

Working on a Remote Host 13

The chapter explains how to use commands which enable you to:
* Login to aremote host from your local terminal

» Execute a specified command at a remote host, or if no command is
specified, logs in to the remote host

* Login to aremote host using the Telnet protocol. If rl ogi n is not
supported, uset el net as an aternative.

Note

Any remote login is subject to the security features on the remote
host. If you have difficulty logging in to a remote host, see your
system administrator.

Before using any of these commands you might need to know the correct
host name or whether a remote host is currently reachable. Usethefi nger,
who, rwho, rupti e, and pi ng commands, described in Chapter 10 to
find this information.

Using rlogin to Log in to a Remote Host
You can log in to aremote host with r | ogi n, using the following command
syntax:

rlogin [-l user] host_name

The -1 option enables you to specify a remote username other than your
local username. The host _nane variable specifies the remote host.

The following steps show how to log in to a remote host bost on where the
login name is the same as that on the local host:

13.2

1. Enter the following r | ogi n command followed by the name of the
remote host. For example:

% rlogin boston
Passwor d:

2. Enter your password.

When the system prompt is displayed, you are logged in to the remote
host and can enter any command.

3. To close the connection and return to your local host, press Ctrl/d.
If you have an account on a remote host where your login name is different

from that on the local host, you must use the - | option to log in to the
remote host, as shown in the following steps.

1. Entertherl ogi n -1 command followed by the remote login name and
the name of the remote host. For example:

%rlogin -1 celtic boston
Passwor d:

2. Enter the password corresponding to the login name, cel ti c.

When the system prompt is displayed, you are logged in to the remote
host and can enter any command.

3. To close the connection and return to your local host, press Ctrl/d.

In the following situations, r | ogi n will not prompt for a password:

e |f your local host islisted inthe/ et ¢/ host s. equi v file on the
remote host

» |f the name of your host (and optionally, your username) is listed in the
. rhost s file in your home directory on the remote host

For more information on r | ogi n, seether | ogi n(1) reference page.

Using rsh to Run Commands on a Remote Host

The r sh command enables you to run a single command on a remote UNIX
based host without logging in there. If you need to run several commands
successively, you must log in to the remote host using either r | ogi n or
tel net.

The r sh command has the following syntax:

rsh [-l user] host_name command

The- | option enables you to log in to a remote host where your login name,
user , is different from that on the local host. If you do not specify the - |

13-2 Working on a Remote Host

13.3

option, r sh assumes that your login name is the same on both the local and
remote hosts. The host _nane variable specifies the name of the remote
host. The conmand variable specifies the command you want to run.

Note

If you do not specify a command to run remotely, r sh prompts
you for login information to the remote host.

To user sh, one of the following must be true:

* Your local host islisted inthe/ et ¢/ host s. equi v file on the remote
host.

e Your host islisted in the. r host s file in your home directory on the
remote host.

In the following example, r sh appends a file located on a remote host to a
file on the local host. The remotefile, renfil e2, on host r emhost 2 is
appended to alocdl file called | ocfi | e:

% rsh remhost2 cat renfile2 >> |locfile

Using telnet to Log Into a Remote Host

You can log into aremote host by using thet el net command, which
implements the Telnet protocol.

Using t el net you can:

e Login to aremote host

» Execute any operating system command on the remote host

 Entert el net subcommands (see Table 13-1) for managing the remote
session

Thet el net command has the following syntax:

telnet [host_name[port] |

The host _nane variable specifies the remote host. If you omit the host
name, you can use the open subcommand to create a connection after you
activate the Telnet utility.

If you do not specify a port, the Telnet protocol attempts to contact a
Telnet server at the default port.

The following steps show how to use thet el net command to log into a
remote host named host 3, and to use the t el net subcommand st at us:

Working on a Remote Host 13-3

1. Enter thet el net command and specify the host _nane ashost 3
(the default port is used):
% tel net host3
Trying...
Connected to host3
Escape character is '"]'.
host 3 TCLPTel net service.
| ogi n:

2. Enter your login name; enter your password.

3. Press Ctrl/] (the default escape sequence) to accessthet el net
subcommand prompt, t el net >.

4. Enter the st at us subcommand at the prompt, to display status
information similar to the following:
tel net> status
Connected to host 3.

OQperating in character-at-a-time node.
Escape character is '"]'.

5. To use another subcommmand, press Ctrl/] to redisplay thet el net >
prompt. To display the remote host prompt, press the Return key.

6. To quit the Telnet session from the host prompt, press Ctrl/d.
To quit the Telnet session from the t el net > subcommand prompt, enter
g, or press Ctrl/d.

You can enter the t el net command without any arguments to access the

t el net subcommand mode, indicated by thet el net > prompt.

Thet el net subcommands are described in Table 13-1. Before entering a
subcommand, you must enter the escape sequence, Ctrl/]. This sequence
notifies thet el net program that the following information is not text;
otherwise, t el net would interpret subcommands as text.

For each subcommand, you only need to type enough letters to uniquely
identify the command. For example, q is sufficient for the qui t command.
For acomplete list of t el net subcommands, seethet el net (1) reference

page.

Table 13-1: telnet Subcommands

Subcommand Description

? [subcommand] Displays help information. If a subcommand is specified,
information about that subcommand is displayed.

13-4 Working on a Remote Host

Table 13-1: (continued)

Subcommand Description
cl ose Closes the connection and returnsto t el net command
mode.

di spl ay [argument] Displaysall of the set and toggle values if no argument
is specified; otherwise, lists only those values that match
argument.

open host [port] Opens a connection to the specified host. The host
specification can be either a host name or an Internet
address in dotted decimal form. If no port is given,
t el net attemptsto contact at el net server at the
default port.

qui t Closes a connection and exits the t el net program.
Pressing a Ctrl/d in command mode also closes the
connection and exits.

st at us Shows the status of t el net , including the current mode
and the currently connected remote host.
z Opens a shell on the local host as specified by the

SHELL environment variable. When you exit the shell
by pressing Ctrl/d, t el net returns to the remote
session.

Working on a Remote Host 13-5

The UUCP Networking Commands 14

141

This chapter describes the UNIX-to-UNIX Copy Program (UUCP). Using
UUCP enables you to:

Perform tasks on a remote host
Transfer files between alocal and remote host
Work in background mode

Switch back and forth between the local and remote host, performing
tasks on either or both, concurrently

For an overview of UUCP system management and tasks, see the Network
and Communications Overview.

With UUCP, you can connect over a hardwired asynchronous line, a network,
or a telephone line (using modems at both ends) to:

Another workstation
Another computer running a UNIX based operating system

A computer running an operating system that is not UNIX based (this
requires certain hardware and software)

UUCP Pathname Conventions

UUCP pathnames follow the same conventions as the operating system with
the following exceptions:

Relative pathnames may not work with all UUCP commands. If not,
reenter the command and use the full pathname.

On hosts that support UUCP, the/ usr/ spool / uucppubl i ¢
directory is set up for transferring data among other hosts. The brief
form of this directory is ~uucp.

The pathname for a file on a remote host requires an exclamation point,
(') after the host name. For example, sea! / r esear ch/ new specifies
the file newin the directory / r esear ch on host sea.

Sometimes to specify afile, you must provide the names of the remote
hosts aong the network path. To do so in the Bourne or Korn shells, put
an exclamation point (!) after each host name. For example,

gem car!sea! /research/ cel | s specifiesthefilecel | s in
directory / r esear ch on host sea, which is reachable through host

car ; car isreachablethrough host gem In the C shell, the exclamation
point (!) will be mistranslated unless you precede it with a backslash
(\), for example:

gem!car\!sea\!/research/cells

14.2 Finding Hosts that Support UUCP

To communicate with a remote host by using UUCP commands from your
local host, you must determine which other hosts support the UUCP protocol.
The UUCP uunarre utility displays alist of all hosts with which you can
communicate using UUCP from your local host. The following example
shows the uunane command with output.

% uunarme

elvis
f ab4

This example shows that two remote hosts are accessible to the local host
through UUCP. To identify the local host, use the - | option to the uunane
command. For example:

% uunane - |
nmusi ¢

By using UUCP commands among compatible hosts, a user on host nmusi ¢
can send to or receive files from hosts el vi s or f ab4.
For more information, refer to the uunane(1) reference page.

14.3 Connecting to a Remote Host

Before you can use UUCP commands, you must connect your local host to
the remote host. There are three commands you can use to connect to a
remote host:

e Thecu andti p commands establish a full-duplex connection, giving the
appearance of being directly logged in to the remote host. This
connection enables the simultaneous transfer of data between the hosts.

e Thect command establishes a remote connection by letting you dial an
attached terminal and log in via a modem and telephone line.

14-2 The UUCP Networking Commands

Note

A remote connection is subject to the security features on the
local and remote host. See your system administrator for more
information.

14.3.1 Using cu to Connect to a Remote Host

The cu command and its options enable you to connect to a remote host, log
in to it, and perform tasks there from your local host. You can perform tasks
on each host by switching back and forth between the two. If both hosts use
the operating system, you can enter commands on the remote host from your
local host.

14.3.1.1 Using cu to Connect by Name to a Remote Host

The following steps show how to use the cu command to connect from local
host ear t h to remote host noon, log in to noon, and enter a command
there:

1. Enter the following cu command at the local system prompt; a message
verifies the connection:

eart h% cu noon
Connect ed

The login prompt for the remote host will be displayed.

When connecting to some remote hosts, you may need to press the
Return key several times before alogin prompt is displayed.

2. Loginto host noon at the login prompt. The system prompt for host
nmoon is displayed.

3. At the system prompt, enter any command that host noon supports. For
example, to list the contents of the/ usr/ geog/ cr at er/ eart hsi de
directory, enter the following command at the system prompt:

moon% | s /usr/geog/ crater/earthside
coper ni cus. dat

tycho. dat

moon%

The UUCP Networking Commands 14-3

Note

The preceding example may not work for al cu connections. It
is used here as a brief, general example. See your system
administrator for more information.

After logging in to the remote host, you can switch back and forth between it
and the local host because they run concurrently. To return to your local host
and enter a command there, type a tilde and an exclamation point (~!)
followed directly by the command, or wait for the local host prompt to
display and then enter the command. To return to the remote host, press
Ctrl/d.

14.3.1.2 Using cu to Specify a Directly-Connected Remote Host

To connect to a directly-connected remote host, use the cu command with
the -1 option to name the hardwired line that connects the two computers.
Most of these communication lines have names that are variations of the
standard device name, tt y.

To use the cu command with the - | option to connect to a remote host with
an unknown name, but which uses hardwired devicet t ydO, enter the
following command:

earth%cu -1ttydO
Connect ed

After the connection is made, you can log in to and execute commands on
remote host moon. Refer to the stepsin Section 14.3.1.1.

To return to the local hogt, type a tilde and an exclamation point (~!)
followed directly by the command or wait for the local system prompt to
display before entering the command. To return to the remote host, press
Ctrl/d.

Note

If you usethe - | option, but still enter the name of a remote
host, no error message will be generated. Instead, cu will try to
connect to the first available line for the requested host name,
ignoring the specified line. If it makes the connection, it may
not be the one you intend.

14.3.1.3 Using cu to Connect by Telephone to a Remote Host

You can use cu to connect by telephone to a remote host whenever the
remote host has not been set up to communicate with the local host through
UUCP. To do so, the following conditions must be met:

14-4 The UUCP Networking Commands

« Both the loca and the remote host are connected to modems.

* You know the telephone number of the remote modem and have a valid
login on that host.

The following example shows how to use the cu command to connect to a
remote host that has a long-distance telephone number of 1-612-555-6789.
The - s option specifies a transmission rate of 300 baud. Assuming that
dialing 9 is necessary for an outside dial tone, enter the following cu
command at the local system prompt:

earth% cu -s300 9=16125556789
Connect ed

After the connection is made, you can log in to and execute commands on
the remote host. (Refer to the steps in Section 14.3.1.1).

To return to the local host, type a tilde and an exclamation point (~!)
followed directly by the command or wait for the local system prompt to
display before entering the command. To return to the remote host, press
Ctrl/d.

If you do not use the - s option to specify a transmission speed, an
appropriate rate is selected by default from datain
[fusr/1ib/uucp/Devices.

For added security use the - n option, which prompts you for the telephone
number. This suppresses the display of the phone number with the ps
command, which would otherwise display the number with the cu command
that you enter.

Table 14-1 summarizes the cu command options and entries. See the cu(1)
reference page for more information.

Table 14-1: Options to the cu Command

Option Description

—Sspeed Specifies the rate at which data is transmitted to the remote
host. The default rate, set during UUCP installation and
based on datain/ usr/1i b/ uucp/ Devi ces, should be
sufficient for most of your work.

Most modems operate at 300, 1200, or 2400 baud, while
most hardwired lines are set to 9600 baud or higher. When
transferring a large file, you may want to specify the low
300-baud rate for less interference on the line.

—e | —o Specify - e for even or - 0 for odd parity for data sent to the
remote host.

The UUCP Networking Commands 14-5

Table 14-1: (continued)

Option Description

—h Specify - h to emulate local echoing, to support calls to other
hosts that expect terminals to be set to half-duplex mode.

—d Specify - d to print diagnostic traces.

-n Specify - n to have cu prompt for a telephone number (for
added security)

—I line Specifies the name of a device (line) for the communication

between two computers. The default is either a hardwired
asynchronous line, or a telephone line with an automatic
diaer such as amodem. If your site has several
communication lines, you may want to specify a particular
line for your cu link.

Usually, you do not have to specify aline or device; the
default established during UUCP installation should be
sufficient. If you want to connect to a remote computer but
do not know its name, you can enter the cu command with
the - | option and a variation of the standard device name
tty (for example, -1 ttyl). Ask your system administrator
for the device names at your site.

-t Dials aterminal that has been set to ‘‘ auto-answer’’, and
mapscarriage returntocarriage
return/linefeed.

host name Specifies the name of the remote host with which you want
to establish a connection.

telno Specifies the telephone number in a remote connection using
a modem.

14.3.1.4 Local cu Commands

While connected by cu to aremote host, you can use local cu commands to
perform the following tasks:

» Go back and forth between the local and remote hosts
e Change directories on the local host

e Copy files between local and remote hosts

e Terminate a remote connection

14—-6 The UUCP Networking Commands

To return temporarily to the local host to work, type atilde and an
exclamation point (~!) at the remote system prompt; wait for the local
system prompt to be displayed in the following form, where / ocal isthe
name of the local host:

~[local] !

Instead of waiting for the local system prompt to display, you can enter the
command immediately after typing the ~! that accesses the local host. For
example, while connected by cu to remote host nbon, you can enter the
following command to return to local host ear t h and use the cat
command to read the / usr/ crew r 2/ asi nov/ Al file:

noon% ~! cat /usr/crew r2/asi nov/ Al

There are three cu loca commands for tasks that are performed very often.

Y ou enter these commands from the remote host to perform tasks on the
local host while you continue working on the remote host. These commands
are preceded by atilde and a percent symbol:

~%€d directory name changesthe directory on the local host
~% ake from|[to] copies afile from the remote host to the local host
~Oput to [from copies afile from the local host to the remote host

For example, while connected by cu to remote host noon, you can change
the current directory on local host ear t h from/ usr/ geog/ ocean to
[usr/ geog/ ocean/ paci f i ¢ by entering the following command:

noon% ~%d pacific

While connected by cu to remote host noon, you can copy the file,
[usr/ ETI/cl avi us tothefile/ usr/ NASA/ decode on loca host
eart h by entering the ~% ake local command at the remote system
prompt:

noon% ~% ake /usr/ETI/cl avius /usr/NASA/ decode

While connected by cu to remote host noon, you can copy the local file

[usr/ NASA/ j upi t er tothefile /usr/ ETI/ cl avi us/ hal 9 on the
remote host by entering the ~%put local command at the remote system
prompt:

moon% ~%put /usr/ NASA/jupiter /usr/ETI/clavius/hal9

The UUCP Networking Commands 14—7

Note

Before using the ~% ake and ~%put commands, verify that the
destination directory exists. Unlike the uucp command, these
cu local commands do not create intermediate directories during
file transfers.

Y ou can transfer only ASCII files with ~% ake and ~%put . (For
example, a PostScript file is an ASCII file, but a DECwrite file is not.)

14.3.1.5 Using cu to Connect a Local Computer to Several Remote
Computers

Y ou can enter the cu to connect host X to host Y, log on to host Y, and then
enter the cu command there to connect to host Z. Y ou then have one local
host computer, X, and two remote host computers, Y and Z.

You can run an operating system command on host Z after you log in there.
Then, from Z, you can run commands on the other hosts as follows:

e Torun acommand on host X, prefix the command with a single tilde (~)
e Torun acommand on host Y, prefix the command with two tildes (~~)

Table 14-2 summarizes the most common cu local commands. For
information about other cu local commands, refer to cu(l).

Table 14-2: Local cu Commands

Command Description

~. Logs you off the remote computer and terminates the
remote connection.

When connected to the remote host over a telephone line
using a modem, this command does not always work. In
such cases, press Ctrl/d to log off; then type atilde and a
period (~.) at the prompt and press the Return key to
terminate the remote connection.

~! Returns the session from the remote host to the loca
host. Type atilde and an exclamation point (~!) at the
prompt and enter any command. To return to the remote
host, press Ctrl/d.

After establishing the cu connection, you can go back
and forth between the two hosts by typing ~! (to go
from remote to local) and pressing Ctrl/d (to go from
local to remote).

14-8 The UUCP Networking Commands

Table 14-2: (continued)

Command

~%¢d directory _name

~% ake source [dest]

~Oput source [dest]

~$cmd

Description

Changes the current directory on the local host to that
specified by the di r ect or y_nane variable. If no
directory name is specified, cu changes it to your home
directory.

Copies afile from the remote to the local host. If you do
not specify a dest destination file on the local host, the
~% ake command copies the remote file to the local
host and assigns the same file name.

Copies afile from the local to the remote host. If you do
not specify a dest destination file on the remote host,
the ~%put command copies the local file to the remote
host and assigns the same file name.

Execute the ¢ command on the local host and sends
the output to the remote host for execution by the remote
shell.

14.3.2 Using tip to Connect to a Remote Host

Theti p command and its options enable you to connect to a remote host,
log in to it, and perform tasks there from your local host. Y ou can do tasks
on each by switching back and forth between the two. If both hosts use the
operating system, you can enter commands on the remote host from your

local host.

14.3.2.1 Using tip to Connect by Name to a Remote Host

The following steps show how to use thet i p command to connect from
local host ear t h to remote host noon, log in to noon, and enter a

command there:

1. Enter the following t i p command at the local system prompt; a message
verifies the connection:

earth%tip noon
Connect ed

The login prompt for the remote host will be displayed.

When connecting to some remote hosts, you may need to press the
Return key several times before alogin prompt is displayed.

The UUCP Networking Commands 14-9

2. Loginto host noon at the login prompt. The system prompt for host
noon is displayed.

3. At the system prompt, enter any command that host noon supports. For
example, to list the contents of the / usr / geog/ cr at er / dar ksi de
directory, enter the following command at the system prompt:

moon% | s /usr/ geog/ crater/darksi de
coper ni cus. dat

tycho. dat

nmoon%

Note

The preceding example may not work for al t i p connections.
It is used here as a brief, general example. See your system
administrator if necessary.

After logging in to the remote host, you can switch back and forth between it
and the local host because they run concurrently. To return to your local host
and enter a command there, type a tilde and an exclamation point (~!)
followed directly by the command, or wait for the local host prompt to
display and then enter the command. To return to the remote host, press
Ctrl/d.

14.3.2.2 Using tip to Connect by Telephone to a Remote Host

You can usethet i p command to connect by telephone to a remote host if
the following conditions are met:

* Both the loca and the remote host are connected to modems.

* You know the telephone number of the remote modem or thereis an
entry for the remote host in/ et ¢/ r enot e.

The following steps show how to usethet i p command to connect to a
remote host that has the local telephone number 555-1234 and specifies a
transmission rate of 300 baud:

1. Enter thefollowingti p command at the local prompt, j upi ter;a
message verifies the connection:

jupiter%tip -300 5551234
Connect ed

2. Pressthe Return key. When connecting to some remote hosts, you may
need to press the Return key several times before the remote host’s login
prompt is displayed.

14-10 The UUCP Networking Commands

3. Login at the remote host login prompt. The connection to your local
host is still open, so you can work on the local or remote host.

Note

If you do not specify atransmission speed, thet i p command
uses a 1200-baud rate by default. When transferring a large file,
you may want to specify the low 300-baud rate for less
interference on the line.

The following steps show how to use thet i p command to connect, with a
300-baud transmission rate, to a remote host that has a long-distance
telephone number of 1-612-555-9876.

1. Assuming that you must dial 9 for an outside dial tone, enter the
following t i p command at the prompt of local host ear t h; a message
verifies the connection:

earth%tip -300 9, 16125559876
Connect ed

2. Pressthe Return key. When connecting to some remote hosts, you may
need to press the Return key several times before the remote host’s login
prompt is displayed.

3. Login at the remote host’s login prompt. The connection to your local
host is still open, so you can work on the local or remote host.

For information about customizing the/ et ¢/ r enot e and / et ¢/ phones
files, refer to the book, Network Administration and the r enot e(4) and
phones(4) reference pages.

Table 14-3 summarizesthet i p command options and entries. See the
ti p(2) reference page for more information.

The UUCP Networking Commands 14-11

Table 14-3: Options to the tip Command

Option Description

-baud rate Specifies data transmission rate to the remote host. The
default rate is 1200 baud.

Most modems operate at 300, 1200, or 2400 baud, while
most hardwired lines are set to 9600 baud or higher. When
transferring a large file, you may want to specify the low
300-baud rate for less interference on the line.

The baud rate, set when UUCP isinstalled and customized
for your site, is configured according to the hardware used to
establish connections.

-V Displays any variables as they are read (verbose) from the
.tiprecfile

host name Specifies the remote host to which you want to connect; the
t i p command connects over a hardwired line or a telephone
line using a modem, depending on how your system
communications is set up between the local and remote hosts.

telno Specifies the telephone number in a remote connection, using
amodem. Use this method when the remote host name is
not recognized by t i p (that is, thereis no entry in the
/ et c/ renot e file).

14.3.2.3 Local tip Commands

While connected by t i p to aremote host, you can use local commands to
perform the following tasks:

* Go back and forth between the local and the remote host

» Change directory on the local host from the remote host

» Copy files between local and remote hosts

* Terminate a remote connection

To return temporarily to the local host and enter commands there, type atilde
and exclamation point (~!) at the remote system prompt. The local system
prompt will display in the following form, where shel | is the name of the

local shell and pnt isthe prompt for the local shell, either %for the C shell
or $ for the Bourne or Korn shell:

~[shell] pmt

14-12 The UUCP Networking Commands

To return to the remote host, press Ctrl/d at the local system prompt. To
terminate the t i p process, type atilde and press Ctrl/d (~"D).

You can use the following t i p commands from the remote host to perform
tasks on the local host while you continue working on the remote host.
These commands are preceded by atilde:

~c directory _nane changetheloca directory

~t from[to] copy a file from the remote host to afile on the local host
~< copy afile from the remote host to afile on the local host
~p from|to] copy afile from the local host to a file on the remote host
~> copy afile from the local host to a file on the remote host

For example, while connected by t i p to remote host noon, you can change
the current directory on local host ear t h, from/ usr/ geog/ pol ar to
[usr/ geog/ pol ar/ arcti c by entering the following command:

noon% ~c arctic

While connected by t i p to remote host moon, you can copy the
[usr/ dar ksi de/ t enp/ dat fileto the/ usr/ NASA/ bi os/ t enp file
on local host ear t h by entering the following command:

noon% ~t /usr/darksi de/tenp/dat /usr/ NASA/ bios/tenp

While connected by t i p to remote host moon, you can copy the local
[usr/ NASA bi os/ war n fileto the/ usr/ dar ksi de/ t enp/ change
file on the remote host by entering the following command:

moon% ~p /usr/ NASA/ bi os/ warn /usr/ darksi de/ t enp/ change

Note

You can only transfer ASCII files with the ~t and ~p
commands. (For example, a PostScript file is an ASCII file, but
a DECwrite file is not.)

Neither ~t nor ~p checksfor file transfer errors, the uucp command
provides this verification.

14.3.2.4 Using tip to Connect a Local Computer to Several Remote
Computers

You can enter thet i p command to connect host X to host Y, log on to host
Y, and then enter the t i p command there (if Y supportst i p) to connect to
host Z. Y ou then have one local host computer, X, and two remote host
computers, Y and Z.

The UUCP Networking Commands 14-13

Y ou can run an operating system command on host Z (if Z is a Digital UNIX
host) after you log in there. Then, from Z, you can run commands on the
other hosts as follows:

e To run acommand on host X, prefix the command with a single tilde (~)
e To run acommand on host Y, prefix the command with two tildes (~~)

Note

A command sequence that begins with atilde (~) can be
interpreted by t i p only if it is at the beginning of the command
line.

Table 14-4 summarizes the most common t i p local commands. For
information about other t i p local commands, refer tot i p(1).

Table 14-4: Local tip Commands

Command Description

~Crl/d Logs you off the remote computer and terminates the
remote connection.

When connected to the remote host over a telephone line
using a modem, this does not always work. In such cases,
press Ctrl/d to log off; then enter ~ Ct r 1/ d at the prompt
and press the Return key to terminate the remote
connection.

~. Logs you off the remote computer and terminates the
remote connection.

When connected to the remote host over a telephone line
using a modem, this does not always work. In such cases,
press Ctrl/d to log off; then enter ~. at the prompt and
press the Return key to terminate the remote connection.

~I Returns the session from the remote host to a shell on the
local host. Type atilde and an exclamation point (~!) at
the prompt to enter any command. To return to the remote
host, press Ctrl/d.

After establishing thet i p connection, you can go back and
forth between the two hosts by typing ~! (to go from
remote to local) and press Ctrl/d (to go from local to
remote).

14-14 The UUCP Networking Commands

Table 14-4: (continued)

Command Description

~c directory name Changes the current directory on the local host to that
specified by the di r ect or y_nane variable. If no
directory name is specified, t i p changes it to your home
directory.

~t source [dest] Copies afile from the remote to the local host. If you do
not specify a dest destination file on the local host, the ~t
command copies the remote file to the local host and
assigns the same file name.

~p source [dest] Copies afile from the local to the remote host. If you do
not specify a dest destination file on the remote host, the
~p command copies the local file to the remote host and
assigns the same file name.

~< Copies afile from the remote to the local host; thet i p
command prompts for the command string that will be used
on the remote host to display the remote file, and the name
of the local file, for example, cat fi | enane.

~> Copies afile from the local to the remote host; thet i p
command prompts for the name of the local file and sends
the the file to the remote host as if it were standard input.
The user should set up a command on the remote host to
accept this input before executing the ~> command. For
example, r enot e%cat > destination-file.

Note

Thet i p program uses system prompts and character sequences
that match a system’s interrupt sequence to signal the end of file
transfers through the ~< or ~> command. These values are
configured in the / et c/ r enot e file. Seether enot e(4)
reference page for more information.

14.3.3 Using ct to Connect to a Remote Terminal with a Modem

The ct command enables a user on a remote ASCII terminal with a modem
to communicate with alocal host with a modem over atelephoneline. The
remote terminal user can then log in and work on the local host. If there are
no available telephone lines, the ct command displays a message and asks if
you want to wait for one.

The ct command is useful in the following situations:

The UUCP Networking Commands 14-15

* When secure communications are necessary:

Because the local host contacts the remote terminal, the remote user does
not need to know the telephone number of the local host. The local user
entering ct can monitor the work of the remote user.

* When the cost for the telephone connection should be charged either to
the local site or to a specific account on the remote terminal (like a
collect call).

The - h option can be omitted to emulate making a collect call. The user
on aremote terminal enters the ct command without the - h option.

The following ct features are useful under certain circumstances:

* Youcaninstruct ct to continue dialing a number until the connection is
established or until a set length of time has elapsed.

* You can specify more than one telephone number, and ct can dial each
modem until a connection is established.

Note

Usually, a user on the remote terminal cals the user on the local
host to request act session. If such connections occur often,
your system manager may want to set up UUCP so that alocal
host automatically enters ct to one or more specified terminals
at adesignated time. For information about customizing UUCP,
see your system administrator.

For example, to connect to a remote terminal modem at the same site as
yours, enter the following command. The remote modem has a telephone
number of 7-6092:

earth% ct 76092

Al'l ocated dialer at 1200 baud
Confirm hang_up? (y to hang_up)

After entering the command, a message verifies the connection and prompts
you to either hang up any other phone lines currently in use or cancel the
command.

14-16 The UUCP Networking Commands

The following example shows how to use the ct command to connect to a
remote terminal modem with alocal telephone number of 555-0043,
specifying 9 for an outside line and the - w option for a 2-minute wait for the
modem line:

earth%ct -w2 9=5550043

Al l ocated dialer at 1200 baud
Confirm hang_up? (y to hang_up)

As before, you are prompted to either hang up any other phone lines
currently in use or cancel the command.

The following example shows how to use the ct command to connect from
local host ear t h, to a remote terminal modem with a long-distance number
of 1-201-555-7824, specifying 9 for an outside line and the - w option for a

5-minute wait for the modem line:

earth%ct -ws 9=12015557824

Al l ocated dialer at 1200 baud
Confirm hang_up? (y to hang_up)

Y ou are prompted to either hang up any other phone lines currently in use or
cancel the command.

See the ct (1) reference page for more information.
Table 14-5 summarizes ct command options and required entries.

Table 14-5: Options to the ct Command

Option Description

—wminutes Specifies the maximum length of time in minutes that the ct
command waits for aline. The ct command dials the remote
modem at one-minute intervals until the connection is established
or the specified number of minutes has passed.

Using the - w option suppresses the messages that ct normally
displays if it cannot make the connection.

—xnumber Produces detailed information about the command’ s execution on
standard error output on the local host, to be used for debugging.
The debugging level, number, is a single digit in the range from
0-9; the recommended default is 9.

-V Enables the ct command to send a running narrative to standard
error output.
—h Prevents ct from breaking the current connection.

—sspeed Specifies the data transmission rate of ct ; the default is 1200-
baud. Set the baud rate to the baud rate of the terminal to which
you are connecting.

The UUCP Networking Commands 14-17

Table 14-5: (continued)

Option Description

telno Specifies the phone number of the remote modem. You can enter
alocal or along-distance number, and specify secondary dial
tones such as 9 for an outside line, or an access code.
Use an equal sign (=) following a secondary dial tone (9=), and a
hyphen (-) for delays, asin 555- 5092. Telephone numbers
may contain up to 31 characters, including digits 0-9, and any of
the following: a hyphen or dash (-), an equal sign (=), an asterisk
(*), and a number or pound sign (#).

14.4 Using uux to Run Commands on Remote Hosts

The uux command enables you to run commands on a remote host while
you work on your local host. If the command does not exist on the remote
host, uux does not execute, and the remote host will notify you by mail. If
the command executes and produces output (for example, cat or di f),
you can specify that uux place that output in afile on any specified host.

Note

For security reasons, certain sites may restrict the use of some
commands through uux. Also, enhanced security features on the
local host may affect whether certain commands can be run on
remote hosts through uux. See your system administrator for
more information.

The uux command syntax depends on how the command interpreter of a
given shell treats special characters. The syntax is the same for the Bourne
and Korn shells, but different for the C shell.

Regardless of the shell from which you use uux, there are two ways to
specify the destination:

uux [option...] " commandstring > destination"

uux [option...] commandstring \{ destination\ }

In the first syntax statement, the right-angle bracket (the redirection symbol)
(>) directs the output of the remote command to a destination directory or
file. A pair of double quotation marks (" ") encloses the entire command
because the redirection symbol, the right-angle bracket (>) , is a special
character. Whenever you use any of the following charactersin a command

14-18 The UUCP Networking Commands

line, you must enclose that character or the entire command in double
guotation (" ") marks:

» left-angle bracket (<)

* right-angle bracket (>)

e semi-colon (;)

» vertical bar or pipe (])

e plussign (+)

* left-bracket ()

* right-bracket (])

* question-mark (?)

In the second syntax statement, enclose the destination name within braces
({ }). Youmust type abackdash (\) before each brace because braces are
special charactersto the shell command interpreter. Without backslashes, the
braces would be misinterpreted.

When specifying the pathname of a destination file, you can use a full name,
or a pathname preceded by ~user/ where user is the name of the user’s
login directory.

Output files must be writable. If you are uncertain about the permission
status of a specific target output file, direct the results of the command to the
[usr/ spool / uucppubl i c directory; ~uucp is abrief way of specifying
this directory from a shell.

14.4.1 Using uux from the Bourne or Korn Shells

The following example shows how the uux command uses the operating
system cat command to concatenate the / u/ doc/ F1 file located on host
gem with the/ usr/ doc/ F2 file located on host sky. The result is placed
inthe/ u/ doc/ F3 file on host gem

uux "gem cat gem/u/doc/Fl sky!/usr/doc/F2 > gem/u/doc/F3"

In the following example, the task is the same as in the previous command,
but braces ({ }) are used instead of the redirection symbol to specify the
destination in the uux command line. The task is the same as in the
previous command, but the destination output is implicit:

uux genml cat geml/u/doc/F1 sky!/usr/doc/F2 \{gem /u/doc/F3\}

The UUCP Networking Commands 14-19

14.4.2 Using uux from the C Shell

To perform the same operation as in the previous section, but in the C shell,
enter one of the following uux commands:

uux "gem!cat gem!/u/doc/F1 sky\!/usr/doc/F2 > gem!/u/doc/F3"

The following example uses an implicit destination output file:
uux gem!cat gem!/u/doc/F1 sky\!/usr/doc/F2 \{gem!/u/doc/F3\}

In the two following examples, uux usesthe cat command to send the
acct 6 file from remote host bost on, as output to the acct 6 file in the
public directory on your local host:

uux "cat boston\!/reports/acct6 > ~uucp/acct6"

The following example uses an implicit destination output file:
uux cat boston\!/reports/acct6 \{~uucp/acct6\}

14.4.3 Other uux Features and Suggestions

The uux command assumes your local host is the default, so you do not
need to specify it in the command line. For example, to run the di f f
command to compare the / u/ F1 file on host car with the/ u/ F2 file on
host sea, and place the result in the / u/ F3 file on the local host, use the
following command:

uux "diff car!/u/F1 sea!/u/ F2 > [ulF3"

You can also represent the local host by using just an exclamation point, as
in the following example:

uux "!diff car!/u/F1 seal!/u/F2 > !/u/F3"

When you specify the pathname source file in commands such as di f f or
cat, you can include the following shell pattern-matching characters which
the remote host will interpret: the question-mark (?) , the asterisk (*) , the
left-bracket ([) , and the right bracket (]) . Enclose these characters either
within two backslashes (\ ... \) or within quotation marks (" ... ") so that the
local shell does not interpret the characters before uux sends the command to
the remote host. Do not use pattern-matching characters in destination
names.

If you use the left-angle bracket (<) , the right angle-bracket (>) , the semi-
colon (;),and thepipe (|) shell characters, place them within backslashes
(\ ... \), quotation marks (" ... "), or place the entire command line within
backslashes or quotation marks.

14-20 The UUCP Networking Commands

14.5

Note

The shell redirection characters, two left-angle brackets (<<)
and two right-angle brackets (>>) , do not work in UUCP.

Table 14-6 summarizes uux command options and required entries. See the
uux (1) reference page for more information.

Table 14-6: Options to the uux Command

Option Description

-n Cancels notification through mai | x that usually occurs
when a command fails to execute on the designated host.

The - n and - z options are mutually exclusive.

-z Sends a message through mai | x when command execution
fails on the designated host.

The - n and - z options are mutually exclusive.

—j Displays the job identification number of the uux request
that runs the remote command; use this number with the
uust at command. See Section 13.8.1 for more
information.

commandstring Specifies any command accepted by the designated host.
For more information on the command formats, see Section
13.4.

destination name Specifies the host and file for storing the output of the
command run on aremote host. For example, if you want
to list al the files in a directory on a remote host, you can
use uux to place the listing in afile on your own host by
entering the appropriate destination name. For more
information on the destination formats, see Section 13.4.

Using UUCP To Send and Receive Files

On UNIX based computers (such as Digital UNIX that support the UUCP
protocol), you can use the uucp command to copy one or more files from
one computer to another. You can use uucp to copy files as follows:

e Between loca and remote hosts
e Between two remote hosts
* Between two hosts through an intermediate host

The UUCP Networking Commands 14-21

* Within your local host

To facilitate file transfers, many sites make the public UUCP directory,
usr/ spool / uucppubl i c, available. This directory provides read and
write access to all users and bypasses security restrictions. The brief way to
specify this directory is ~uucp or ~/ inauucp command.

Note

File transfer through uucp is subject to security features on
either host. The uucp utility does not display error messages
for failed file transfers. For more information, see your system
administrator.

The system administrator defines security restrictions to prevent
unwarranted use by remote users, so only certain directories and files
may be accessible for sending or receiving files.

14.5.1 Using UUCP to Copy Files in the Bourne and Korn Shells

From the Bourne or Korn shells, you can specify uucp file names without
using a backslash (\) before the exclamation point (!) that precedes the host
name of the destination file. For example, to copy the st ar file from local
host ear t h to the/ sun/ st at s file in the public directory on the remote
host sky, enter the following command:

earth% uucp star sky!~/sun/stats

To copy the same file and explicitly identify the
[usr/ spool / uucppubl i c directory, enter the following command:

eart h% uucp star sky!/usr/spool /uucppublic/sun/stats

If you need to copy afile to aremote host whose address is unknown to your
local host, you can do so via another host that knows the remote host’s
address. You can copy alocal file to aremote host by first sending it to one
or more intermediate hosts, separating each host name by an exclamation
point (!). For example, to copy the local file st ar tothe/ sun/ st at s file
on the remote host sky by first sending it through the intermediate host,

m kway, enter the following command:

eart h% uucp star nm kway! sky! ~uucp/ sun/stats

14-22 The UUCP Networking Commands

You can use uucp from your local host to copy afile from a remote host to
your local host. For example, to copy the/ cel | s/ t ypel file from remote
host bi ochemto the local file, / dna/ sequence, enter the following
command from local host ear t h:

earth% uucp biochem /cells/typel [/dnal/sequence

Y ou can copy multiple files from a remote host to a local host by using a
pattern-matching character to specify files. For example, to copy al files
with names beginning with r eport from the/ geog/ sur vey directory on
remote host noon to the ~uucp public directory on local host ear t h, enter
the following command:

eart h% uucp noon/geog/survey/report* ~uucp

14.5.2 Using UUCP to Copy Files in the C Shell

In the C shell, the exclamation point (!) has a special meaning. To prevent
the command interpreter from mistrandlating it, you must precede it with a
backslash (\) in a pathname.

For example, to copy the/ usr/ NASA/ ctr | - specs file from local host
eart h to the ~uucp public directory on remote host | una7, enter the
following command from the local host:

earth% uucp /usr/NASA/ctrl-specs [|una7\!~uucp

To copy the pl an9 file from the/ usr/ r eport s/ exobi o directory on
remote host | una? to the ~uucp public directory on local host ear t h,
enter the following command:

eart h% uucp luna7\!/usr/reports/exobiol/plan9 ~uucp

To copy al files with names beginning with nsg from the

/ sensory/ vi sual / eart hri se directory on the remote host | una7 to
the ~uucp public directory on local host ear t h, you can enter the
following command:

earth% uucp luna7\!/sensory/visual/earthrise/nsg *' ~uucp

Here, the pattern-matching character, the asterisk (*) in the source file names
is enclosed within single quotation marks to prevent misinterpretation.

The UUCP Networking Commands 14-23

14.6

In the next example, the same files are copied to ~uucp, but the entire
pathname of the source files is enclosed in double quotation marks to prevent
misinterpretation:

earth% uucp "luna7\!/sensory/visual/earthrise/msg*" ~uucp

Table 14-7 summarizes uucp command options and required entries. See
the uucp(1) reference page for more information.

Table 14-7: Options to the UUCP Command

Option Description

—d Creates intermediate directories needed when copying a
source file to a destination file on a remote host. Entering
uucp with the destination pathname creates the required
directory. The - d option is the default.

—f Do not create intermediate directories during the file transfer.

=i Displays the job identification number of the transfer
operation; use with the uust at command to check transfer
status, or with uust at - k to terminate the transfer. See
Section 13.8.1 for more information.

-m Specifies that uucp send mail to the requester to verify
copying of destination file on a remote host; no mail is sent
for alocal transfer.

—nusername Notifies the recipient, user nanme on the remote hogt, that a
file has been sent; no mail is sent for a local transfer.

source file Specifies the pathname of the file that you want to send or
receive. For more information about UUCP pathnames, see
Section 13.1.

destination_name Specifies the pathname of the file (or directory) that receives
the copy. For more information about destination file
pathnames, see Section 13.5.1 and Section 13.5.2.

Using uuto with uupick to Copy Files

The uut o command copies the file you specify to the public directory on the
destination host where it is obtained by the recipient through uupi ck. The
rmai | program notifies the recipient when the file arrives.

14-24 The UUCP Networking Commands

Note

Any file transfer is subject to the security features on the local
and remote hosts. See your system administrator for more
information.

For example, to send the/ usr/ bi n/ dat a/ j unk file from local host noe
to user cur | y on remote host st ooge, enter the following command:

noe% uuto /usr/bin/data/junk stooge!curly

The uut o command copies the file to the

[usr/ spool /uucppublic/receivel curly/ noe file on host

st ooge. Next, ther mai | utility sends user cur | y amail message stating
that the file has arrived. User cur | y can then enter the uupi ck command
to access the file and save, move, or deleteit. In the following example, user
curl y entersthe uupi ck command on host st ooge; the response from
uupi ck follows:

st ooge% uupi ck

fromsystemnoe: file junk
?

At the uupi ck question mark (?) prompt, user cur | y entersthed and g
options to delete the file and exit from uupi ck:

? d

?q

Table 14-8 summarizes the uupi ck file handling options, entered at the ?
uupi ck prompt.

Table 14-8: Options to the uupick Command

Option Description

* Displays available uupi ck file-handling options.

Ret urn Pressing the Return key signals uupi ck to get the next file.
a [dir] Moves all uut o files from the public directory to the

specified directory on the local host; specify the directory by
using a full or relative pathname. The default is the directory
where you enter uupi ck.

d The d option deletes the current file obtained by uupi ck.

m [dir] Moves afile to a directory specified by either full or relative
pathname; the default is the current directory.

p Displays the file on your workstation.

The UUCP Networking Commands 14-25

14.7

Table 14-8: (continued)

Option Description

g or &rl/d Theq (quit) option enables you to exit from uupi ck
without displaying, moving, or deleting any file in the public
directory. You can aso press Ctrl/d to quit.

I command Enables you to leave uupi ck and return to the operating
system prompt where you can run a command. After the
command executes, control returns to uupi ck.

See the uupi ck(1) reference page for more information.

Using uuto to Send a File Locally

You can also use uut o to send afile to another user on your local host.
However, the recipient does not receive a mail message indicating the file
transfer. For example, user shenp can send the file
/usr/bin/datal/status touserl arry onloca host st ooge, where
each is logged in:

stooge% uuto /usr/bin/data/status larry

Table 14-9 summarizes uut o command options and required entries. See
the uut o(1) reference page for more information.

Table 14-9: Options to the uuto Command

Option Description

—-m Notifies sender when uut o copies a source file to the
specified user name and host.

-p Usually, uut o copies the source file to:

[usr/ spool /uucppublic/receive

/username/ host/file. The- p option sends the source
file to the spool directory on the local host before transferring
a copy of it to the public directory on the specified host.

file_ name The pathname of the source file.

14-26 The UUCP Networking Commands

Table 14-9: (continued)

Option Description

destination_name The pathname to the location where you want to copy the
sourcefile. The dest i nat i on_nanme must include the
user name of the person receiving the file, and has the form,
host!username, where host is the name of the remote
computer and user nane is the user name of the recipient.
When copying afile on your local host, the
dest i nat i on_nane can be simply the name of the user
to whom you are sending the file.

14.8 Displaying Job Status of UUCP Utilities

The UUCP dtilities include three commands, uust at , uul og, and
uunoni t or for displaying status information about UUCP jobs, as
described in the following sections.

14.8.1 The uustat Command
The uust at command supports UUCP jobs by providing the following:
e Status information of file transfers requested by uucp and uut o
» Status information of command executions requested by uux
» Limited control of jobs queued to run on a remote computer
e Cancellation of copy requests from uucp

Status reports from uust at display on your workstation screen in this basic
form; variations depend on the uust at option.

jobid date/tine status systemnanme usernanme size file

Note

Any status display operation is subject to the security features on
the local and remote hosts. See your system administrator for
more information.

Entering uust at without options displays the status information for all the
UUCP commands that you have entered since the last time the holding queue
was cleaned up.

The UUCP Networking Commands 14-27

To report the status of jobs requested by a specific user, use the - u option, as
shown here, for user hugh:

% uustat -u hugh

Two types of output information, each produced by auust at option, are
the current queue and the holding queue: The output of theuustat -q
command is the current queue, which lists the UUCP jobs either queued to
run or currently executing on one or more remote hosts. The output of the
uust at -a command is the holding queue, which lists al jobs that have
not executed during a set period of time.

Note

After the set time period has elapsed, delete the entriesin the
holding queue manually with the uucl eanup command or
automatically through the uudenon. cl eanu script. The
uudenon. cl eanu script has an entry in

/usr/ spool / cron/cront abs/ uucp which is activated by
the/ et c/ cr on daemon. For more information about cleaning
up UUCP queues, see the uucl eanup(8) reference page or your
system administrator.

14.8.1.1 Displaying the Holding Queue Output with a uustat Option

To examine the status of all UUCP jobs in the holding queue, enter the
uust at - a command as shown here with example output:

% uustat -a

sunC3113 Thu Jun 04 17:47:25 1996 S sun doc 289 D.car471afd8
genN3130 Thu Jun 04 09: 14: 30 1996 R gem geo 338 D.car471bcOa
seaC3120 Wed Jun 03 16:02:33 1996 S sea doc 828 /u/doc/tt
seaC3119 Wed Jun 03 12:32:01 1996 S sea nsg rmail doc

This example output consists of the following seven fields:

* Field 1—job ID of the operation; if you need to cancel a process that is
till on the local computer, you would use this field as input to the
uust at command with the - k option, for example,

% uustat -k seaC3119

* Field 2 — date and time that the UUCP command was entered

* Field 3—Sor an R, depending on whether the job sends or receives afile
* Field 4 — name of the hosts where the command was entered

* Field 5 — username of the person who entered the command

14-28 The UUCP Networking Commands

» Field 6 —file size or, in the case of remote execution (as in the last output
line), the name of the remote command (r mai |).

» Field 7—when the sizeisgivenin field 6, (asin the first three output
lines) the file name is displayed in this field

The file name can be either the name given by the user, such as
/u/ doc/ tt or anamethat UUCP assigns internally to data files
associated with remote executions, such as D. car 471af d8.

To report the status of al UUCP jobs in the holding queue requested by a
specific host, enter the uust at - s command as shown here with example
output, for host sky:

% uustat -s sky

skyN bd7 Wed Jun 03 12:09:30 1996 S sky doc 522 [user/doc/ A
skyd bd8 Wed Jun 03 12:10:15 1996 S sky doc 59 D. 3b2al2ce4924
skyC3119 Wed Jun 03 12:11:18 1996 S sky doc rmail nsg

This output is the same as the output produced by the command uust at
-a -s sky.

14.8.1.2 Displaying the Current Queue Output with uustat Options

To examine the status of all UUCP jobs currently executing or queued to run
on each host (the current queue) enter the uust at - g command as shown
here with example output:

% uustat -q

sea 3C Mon Jul 13 09:14:35 1996 NO DEVI CES AVAI LABLE
sun 2C Mon Jul 13 10: 02:22 1996 SUCCESSFUL

gem 1C (2) Mon Jul 13 10:12:48 1996 CAN T ACCESS DEVI CE

This example output consists of the following five fields:
* Field 1 — host name

e Field 2 — number of files, either command (C), or executable (X), in the
holding queue for that host

e Field 3 —number of days (if one or more) that the file has been in the
holding queue

* Field 4 — date and time when UUCP last tried to communicate with the
host in field 1.

e Field 5 — status message of the interaction

See the uust at (1) reference page for more information.
Table 14-10 summarizes uust at command options and required entries.

The UUCP Networking Commands 14-29

Table 14-10: Options to the uustat Command

Option

—r jobid

—shost

—uusername

Description

Displays information for all jobs in the holding queue,
regardless of the user who entered the original UUCP
command.

Cancels the UUCP process specified by j obi d. You can
cancel ajob only if you entered the UUCP command
specified by j obi d. Anyone with superuser privileges can
also cancel UUCP requests.

Reports on the status of your most recent attempt to
communicate with another computer through UUCP.

For example, the status is reported as successful if the UUCP
request executed. If the job was not completed, UUCP
reports an error message, suchasLogi n fail ed.

Useful only to someone with superuser privileges, it runs a
ps -fl p (process status: afull, long list of specified
process IDs) for al PID numbers in the lock files.

Lists the jobs currently queued for each computer. These
jobs are either waiting to execute, or in the process of
executing. If a status file exists for the computer, UUCP
reports its date, time, and the status information. Once the
process is completed, UUCP removes the job listing from the
current queue.

Rejuvenates the UUCP process specified by the job
identification number. This option enables you to mark files
in the holding queue with the current date and time, to ensure
that the cleanup operation does not delete these files until the
alotted job modification time ends.

Reports the status of all UUCP requests that users have
entered to run on the computer specified by the host entry.

Reports the status of all UUCP requests entered to run that
were specified by the user named in the user entry.

You can use both the - shost and the - uuser nane
options with the uust at command to get a status report on
all UUCP requests entered by a specified user and host.

14-30 The UUCP Networking Commands

14.8.2 Using the uulog Command to Display UUCP Log Files

Whenever the local host uses the uucp, uut o, or uux commands, UUCP
log files are created for each remote host. The uul og command displays
these log files. Use uul og to display a summary of uucp, uut o, and uux
command requests by user or by host.

The uulog command displays the contents of the log file activity of either of
the following daemons:

* Theuuci co daemon, called by uucp and uut o

The activity of this daemon is logged in
{usr/ spool / uucp/ . Log/ uuci co/ host.

» Theuuxqt daemon, called by uux

The activity of this daemon is logged in
[usr/ spool /uucp/ . Log/ uuxqt / host.

To display just the uuxqt log file, use the - x option of uul og, as follows:
% uul og - X

The uul og command also enables you to display the uuci co log file or the
file transfer log for any host, or only a specified number of lines at the end of
either log file. For example, to display the uuci co log file for host sky,
use the - s option as follows:

% uul og -s sky

To display the last 40 lines of the file transfer log for host sky, use the - f
option and the number option as shown:

% uul og -f sky -40

Table 14-11 summarizes uul og command options and required entries.

Table 14-11: Options to the uulog Command

Option Description

—f host Performsatai |l -f on thefile transfer log for the specified
host, displaying the end of the log file. Usethel nt er r upt key
sequence to leave the file and return to the prompt.

—s[host] Prints information about copy requests involving the specified
host. If no host is specified, information is displayed for all
hosts. Host names can contain only ASCII characters.

—X Displays the uuxqt log file.

The UUCP Networking Commands 14-31

Table 14-11: (continued)

Option Description

—number Displays the last lines of the log file. The number of linesis

determined by number.

14.8.3 Monitoring UUCP Status

The uunoni t or command is helpful for detecting a host whose status has
changed due to a backlog of jobs, atemporary shutdown, or a change of
either the phone number or log-in password.

The uunoni t or output consists of the following six fields:

Field 1 — host name

Field 2 — number of command files queued for the remote host; if too
large (for example, 100-1000, depending on the host), then the cause of
the backlog should be determined

Field 3 — number of requests for remote execution from the remote host
Field 4 — result of the most recent attempt to connect to the remote host

Field 5 — number of remote host login failures, not including failed dial
attempts; if greater than 20, no further attempts are made

Field 6 —time of last status entry

For more information, see the uunoni t or (8) reference page.

14-32 The UUCP Networking Commands

A Beginner’'s Guide to Using vi A

Whether you are writing memos or modifying C programs, editing text files
is one of the most common uses of any computer system. Thevi text editor
(hereafter known as vi) is particularly well-suited for the day-to-day text
editing tasks of most computer users. Y ou can quickly and easily open afile,
edit it, and save the results using vi .

Thevi text editor is afull-featured text editor with the following major
features:

» Fast processing, especially on startup and global operations
» Full screen editing and scrolling capability
» Separate text entry and edit modes

* Global substitution and complex editing commands using the underlying
ex commands

» Accessto operating system level commands

» Ability to customize system parameters and keyboard mappings
This appendix shows you how to use the basic features of vi . After
completing the exercisesin this appendix, you will be able to:

* Create and save anew file

» Access (open) an existing file

* Move the cursor within the file

* Enter new text

e Change existing text

» Search for strings

* Move and copy text

* Make globa substitutions

» Writeall or part of the text to afile

» Delete, move, or copy blocks of text

» Customize your editing environment

Al

All

This appendix only provides an introduction to the features of vi If you want
to learn more, see the vi (1) reference page. Y ou may also read one of the
many books on the market that describe vi ’s advanced features.

This appendix is divided into three sections. The first section gets you
started with vi . The second section shows you some advanced techniques
for speeding up your work. The third section shows you how to take
advantage of the power of the underlying ex commands.

Getting Started

This section shows you how to create afile with vi , save the file, move the
cursor around in the file, add text, delete text, and modify text.

Creating a File

To create thefile, ny. fi | e, that will be used in the examples throughout
this appendix, enter the vi command as shown below:

$ vi ny.file Retun

Your screen will ook like this:

| N S S S S B A

"my.file" [New file]

The lines beginning with tildes (~) represent the blank lines in the file.
Because ny. fi | e isempty, al lines in the file begin with atilde (~).

Thevi editor has two modes. command mode and input mode.
Command mode is the mode vi isin when it is started. In command mode,
the characters you enter are interpreted as commands for manipulating the
text. Whenvi isininput mode, the characters you enter are interpreted as
text.

When you create a new file with the vi command, the vi editor isin the
command mode. That is, vi iswaiting for you to enter a command.
However, at this point you want vi to be in the input mode so you can insert
text into ny. fi | e, which is empty.

A-2 A Beginner’s Guide to Using vi

Put vi into the input mode by typing:
[

Thei command will not be displayed on the screen. Thevi editor is now
in the input mode and vi will interpret all characters that you type to be text.

In the sample text below, notice the use of the Escape key on the last line of
input and the use of the : wgq command to save the file and exit the vi editor.
Type the sample text exactly as shown. If you make a mistake, use the
Backspace key to correct it; press the Return key where indicated to move to
the next line of text:

You can use this text file Retun

to experinment with vi. Return

The exanpl es shown here Return
will teach you the basics of vi. Escape

[B

-

"ny.file" 4 lines, 108 characters
$

Note

Depending upon how your terminal or workstation is set up, the
Escape key may be programmed to perform a different function.
It is possible that one of the function keys on your keyboard
(possibly F11) may have been set up to perform the escape
function. See your system administrator if your Escape key does
not operate properly.

Pressing the Escape key while vi isin the input mode puts vi back into the
command mode; once in the command mode vi interprets anything you type
to be acommand. The : wg command writes (saves) the file with the name
nmy. fil e into your current directory and quits the vi editor.

The format of the : wq command is much different than other vi commands
because : wg isnot avi command; it is an ex command. When you press a
colon (:) whenvi isinthe command mode, notice that it appears at the
bottom of the screen. The colon (:) begins al ex commands from within
Vi . All ex commands are executed when vi isin the command mode.

You must press the Return key after the command to signify to ex that you
are finished entering the command. See Section A.3 to learn more about ex
commands.

A Beginner’s Guide to Using vi A-3

A.l2

A.13

If you lose track of which mode vi isin, press the Escape key a few times to
make sure vi isin the command mode. If your system is so configured, you
will hear a bell when you press the Escape key that signals that vi is indeed
in the command mode.

The Escape key and itsuse in vi and exiting vi using severa different
methods are described in more detail later in this appendix.

The text you just entered inmy. f i | e will be used in the remaining
examples in this appendix.

Opening an Existing File

Whether you are creating a new file or opening an existing file, the syntax for
using vi isthe same:

vi filename

Toopenthermy. fil e file, enter thevi command as follows:
$vi my.file

Your screen should look like this:

You can use this text file

to experinment with vi.

The exanpl es shown here

will teach you the basics of vi.

| S Y S S B

"my.file" 4 lines, 108 characters

The text you entered in the file will be displayed at the top of the screen.
The lines beginning with tildes (~) represent the blank linesin your file. The
text at the bottom of the screen shows the name of the file, the number of
lines in the file, and the number of charactersin the file.

Saving a File and Quitting vi

In the previous example, you learned that the : wgq command saved the file
and quit thevi editor. However, there are several other options available to
save and quit afile:

» Save afile and continue working in it

A—4 A Beginner’s Guide to Using vi

» Savethefile and quit (exit) vi
e Quit vi without saving the changes made to the file

If you are working on alarge text file and have been adding, changing, and
deleting alot of information, it is suggested to save the file often (perhaps
every 10 minutes) to protect against potential dataloss. Thewrite
command is used to save an entire file to the current directory. The format
of thewr i t e command is:

:w filename

Theentry of fi | enane is optional and is used only when you want to save
afile under a different filename. Omitting f i | ename from the command
automatically saves afile to it's current file name. When you enter the : w
command, the current file name, number of lines, and number of charactersis
displayed at the bottom of your screen. If you entered a new file name, the
new file name will be displayed.

Note

If you specify a new file name with the : w command, you will
have two files saved in your directory: the new file name you
just entered and the original file name.

If you are finished making changes to a file, you can save the file and quit vi
a the same time. The format of thewr i t e and qui t command is:

- wg

The : wg command saves a file to the same file name, quits vi , and brings
you back to your shell prompt.

Y ou also have the option to quit afile and vi simultaneously without saving
the changes you may have made. This option is useful if, for example, you
have deleted many lines of information by mistake and you want to start all
over again. Quitting vi will restore your file to its origina state. However,
quitting vi to restore afile to its origina state will only work if you have
not saved the file previously during the current editing session. To quit your
fileand vi without saving your changes enter:

1q!
Quitting afile with the: q! command will not delete the file from your

directory. Your file will still reside in the directory, but it will not contain
any of the changes you may have made.

Table A-1 summarizes the commands used to save files and quit the vi
editor.

A Beginner’s Guide to Using vi A-5

Table A-1: Write and Quit Command Summary

Command Result

TW Saves the entire file to the current file name; does
not exit the vi editor.

:w filename Saves the entire file to the new file name; does not

exit thevi editor. The new file name and origina
file name reside in the directory.

S wWg Saves the entire file to the current file name and
exitsthe vi editor simultaneously.

:q! Quits the file; exitsthe vi editor; does not save any
changes made to the file since the last time the file
was saved.

A.1.4 Moving Within a File
If you have closed ny. fi | e, reopen it by using the command:
$vi ny.file
The cursor should be on the first character in the file: the Y in the word You.

As mentioned previously in this appendix, vi isin command mode at start
up. In command mode, the characters you enter are treated as commands
rather than as text input to the file.

A.1.4.1 Moving the Cursor Up, Down, Left, and Right

Certain keys on the keyboard have been designated to be movement keys
when vi isin the command mode. The following letters on the keyboard
control cursor movement:

* h (move the cursor one character to the right)

* j (move the cursor down one line staying in the same position)
» k (move the cursor up one line staying in the same position)

* | (move the cursor one character to the left)

A—6 A Beginner’s Guide to Using vi

Using the movement keys, move the cursor to the first letter of the word
experi ment by typing:
F1j

If your keyboard is equipped with arrow keys, you may be able to use the
arrow keys to move l€eft, right, up, or down as well. However, using the h, j ,
k, and | keys alows you to keep your fingers on the main section of the
keyboard for faster typing. On some keyboards, the h, j , k, and | keys are
repetitive keys. That is, holding the key down will repeat the key action
until you release the key. For instance, holding down thej key will rapidly
scroll through the lines in afile.

In the command mode, the Return key acts as a cursor movement key.
Pressing the Return key moves the cursor to the first character of the next
line. This movement differs from thej movement key because the Return
key positions the cursor at the first character of the next line whereas the
moves the cursor to the same character position on the next line.

In the command mode, the hyphen (-) moves the cursor to the first character
of the previous line. This feature is useful to move backward through files.
This movement differs from the k movement key because the hyphen (-)
positions the cursor at the first character of the previous line whereas the k
moves the cursor to the same character position on the previous line.

If you tested any of the cursor movement keys described above, make sure
your cursor is positioned at the first letter of the word exper i nent before
continuing to the next section.

A.1.4.2 Moving the Cursor by Word, Line, Sentence, and Paragraph

Y ou can use the w command to move the cursor by whole word boundaries.
The w command moves the cursor forward to the beginning of the next word.
Move the cursor to the beginning of the word wi t h by typing:

w

Y ou can use the b command to move backward to the beginning of the
previous word. For example, move to the beginning of the word
experi ment by typing:

b

A Beginner’s Guide to Using vi A-7

Now see what happens when you do not use the b command from the
beginning of aword by typing:

I111b

The cursor returns to the beginning of the word exper i nent .

The word motion commands will wrap to the next or previous text line when
appropriate. Move the cursor to the beginning of the word t ext by typing:

bbb

Notice how the cursor moved backward and wrapped around to the previous
line.

There are afew other interesting movement commands you should know
about. The zero (0) moves the cursor to the beginning of the current line,
and the dollar sign, ($) moves the cursor to the end of the current line.

The close parenthesis [)] moves the cursor to the beginning of the next
sentence, and the open parenthesis [(] moves the cursor to the beginning of
the previous sentence.

The right brace (}) moves the cursor to the beginning of the next paragraph,
and the left brace ({) moves the cursor to the beginning of the previous

paragraph.

A.1.4.3 Moving and Scrolling the Cursor Forward and Backward
Through a File

In larger files, you can move the cursor by whole screenfuls by pressing
certain control keys:

e Ctrl/F movesthe cursor one full screen forward

e Ctrl /B movesthe cursor one full screen backward

e Ctrl/ Dmoves the cursor and scrolls down (forward) a half screen

e Ctrl/ Umoves the cursor and scrolls up (backward) a half screen
The following uppercase letters also designate cursor movement over large
boundaries of text:

e The H command moves the cursor Home; that is, to the first character in
the file

e The Gcommand instructs the cursor to Go to the last line in the file

A-8 A Beginner’s Guide to Using vi

A.1.4.4 Movement Command Summary

Thevi text editor has many more cursor movement commands. When you
have learned the basics documented in this appendix, refer to the vi (1)
reference page for more information.

Table A-2 summarizes the cursor movement commands. The cursor
movement keys are in effect only when vi isin the command mode.

Table A-2: Cursor Movement Command Summary

Command

h
j
k
I
Return key

Grl/D
Grl/F
arl/B
arl/U

Result

Move the cursor one character to the right.

Move the cursor down one line in the same position.

Move the cursor up one line in the same position.

Move the cursor one character to the left.

Move the cursor to the beginning of the next line.

Move the cursor to the beginning of the previous line.
Move the cursor forward to the beginning of the next word.
Move the cursor backward to the beginning of the previous word.
Move the cursor to the beginning of the current line.

Move the cursor to the end of the current line.

Move the cursor to the beginning of the next sentence.
Move the cursor to the beginning of the previous sentence.
Move the cursor to the beginning of the next paragraph.
Move the cursor to the beginning of the previous paragraph.
Scroll down (forward) a half screen.

Move the cursor forward one screen.

Move the cursor backward one screen.

Scroll up (backward) a half screen.

Move the cursor home (to the first character in the file).
Move the cursor to the last line of the file.

A Beginner’s Guide to Using vi A-9

A.1.5 Entering New Text

To enter new text into afile, vi must be in the input mode. In input mode,

the characters you enter are inserted as text directly into the file. Remember
that when vi isin the input mode, you can return vi to the command mode
by pressing the Escape key once.

There are several different commands used to insert text, and all of the
commands that are used to insert text automatically place vi in the input
mode as soon as the command is typed.

To begin this exercise, open ny. f i | e and make sure the cursor is
positioned at the word t ext in the first line of the file.

Asyou did initially to insert text into my. fi | e, you will use the insert
command to insert the word new just before the word t ext . With the
cursor positioned on thefirst t intheword t ext , put vi into the input
mode command by typing the insert command:

Next, enter the word new and press the space bar once:
new Space

Exit the input mode by pressing the Escape key:

Escape

The cursor should now be positioned on the space between the words new
and t ext .

Thei command starts inserting text at the character just before the cursor.
That's why you have to remember to press the Space bar to insert a space
between words if the cursor was positioned at the first character in a word
when you started to insert text.

Another command that is used to insert text is the append (@) command. In
contrast to the insert command, the a command adds (or appends) the
characters you type just after the cursor position. To see how the a
command works, use the cursor movement keys to move to the letter u in the
word You, and type:

a
t 00, Escape

Thevi text editor appended the text you typed to the end of the word You.
The cursor should now be positioned on the second comma.

A-10 A Beginner’'s Guide to Using vi

The o command opens a new line below the line with the cursor and allows
you to insert text at the start of that new line. To add a sentence to the end
of this file, move the cursor to the last line of the file by pressing the Return
key three times:

Return

Return
Return

The cursor should be positioned at theword wi | | . To open a new line
below the current line and automatically put vi into the input mode, type:

(o]

Enter the sample text shown below (including pressing the Return key where
indicated), and press the Escape key to return to command mode when you
are finished.

New text can be easily entered Return
while in input node. Escape

Y our screen should now look like this:

You, too, can use this new text file
to experinment with vi.

The exanpl es shown here

will teach you the basics of vi.

New text can be easily entered
while in input node.

L S B |

The O command opens a new line above the current line and starts inserting
text at the start of the new line. This command is most useful for adding
new text to the top of an existing file, but can be used anywherein afile. To
practice using this command to open a line and insert text, move the cursor
to the first line in the file (using the cursor movement command H perhaps)
and type:

]
Opening a new line is easy. Escape

Thevi text editor is back in the command mode once the Escape key is
pressed.

There are two other commands that put vi in the input mode: thel and A
commands. Thel command inserts text at the beginning of the current line.
The A command appends text after the last character at the end of the current
line.

A Beginner’s Guide to Using vi A-11

Practice inserting text to the beginning of aline, by typing:

|
Inserting text is easy. Space Escape

Practice appending text to the end of aline by typing:
A
Real | y! Escape

Y our screen should now look like this:

Inserting a line is easy. Opening a new line is easy. Really!
You, too, can use this newtext file

to experiment with vi.

The exanpl es shown here

will teach you the basics of vi.

New text can be easily entered

while in input node.

Table A-3 summarizes the commands used to insert and append text to afile.
These commands are executed from the command mode and automatically
put vi into the input mode.

Table A-3: Text Insertion Command Summary

Command Result

[Inserts text immediately before the current cursor position.
Appends text immediately after the current cursor position.
Inserts text at the beginning of the current line.

Appends text to the end of the current line.

Opens a new line directly below the current line.

Oo° >» — o

Opens a new line directly above the current line.

A-12 A Beginner’'s Guide to Using vi

A.1.6 Editing Text

Up to this point you have only learned how to add new text to the file, but
what if you need to change some text? Thevi text editor provides
commands for deleting and changing text. For example, to remove the word
easi | y, from the sixth linein ny. fi | e, move the cursor to the first
character of the word and enter:

dw

This command is a combination of the delete command d, and the motion
command w. In fact, many vi commands can be combined with mation
commands to specify the duration of the action. The general form of avi
command follows:

[number] [command] motion

The command entry represents an action command, ot i on represents a
motion command, and number optionally represents the number of times to
perform the command. You also can use this general form to move the
cursor in larger steps.

To illustrate this concept, move the cursor to the beginning of ny. fi | e by
typing H. Now, to move the cursor forward four words, enter:

4w

The cursor has moved four entire words and is positioned at the first letter of
the fifth word, easy.

A.1.6.1 Deleting Words

Using the general form of commands, you can delete the last five words of
this text file. Move the cursor to the beginning of the last line by pressing
the Return key severa times and enter:

5dw

W

It takes five words to delete the whole line rather than four because the
period at the end of the line counts as aword. All punctuation counts as one
word when you're using the delete word command. As areminder that you
should save afile often, this example also had you wr i t e the file (save it)
using the : w command.

Suppose you only want to delete a portion of a word? The x command
deletes one character at atime. To see how this command works, move the
cursor to the letter s in the word exanpl es. Pressthe x key once to delete
the letter s.

A Beginner’s Guide to Using vi A-13

A.1.6.2 Deleting Lines

The dd command is a shortcut for deleting whole lines at atime. The dd
command can be used with a number to delete multiple lines as well. For
example, position the cursor at the sixth line in the file (at the line beginning
with the word New) and type:

2dd

The sixth and seventh lines (even though the seventh line is empty) of the
file are deleted ssimultaneously. The dd command can be used without
specifying a number to delete one line at atime.

The D command clears the current line of text from the current cursor
position to the end of the line but does not delete the line itself. If the cursor
is positioned at the beginning of the line, the entire line is cleared. This
command speeds up your work because you don’t have to know how many
words are in the line to be able to delete them (as you would, for example, if
you were using the dw command). This command is useful if you want to
rewrite an entire line. With the cursor positioned at the beginning of the line,
the D command followed by one of the text insertion commands (i , | , a, or
A) alows you to clear the current line of text and reenter new text with a
minimum of keystrokes.

A.1.6.3 Changing Text

The command for changing text, ¢, can be used to combine the actions of
deleting and returning to input mode. It follows the same general form as the
d command. To change the text new t ext to al nost new deno, move
the cursor to the first character in the word "new", and enter the command:

2cw

The text will not immediately disappear. Instead, a dollar sign ($) is placed
a the end of the change range (thelastt int ext), and vi is placed in input
mode automatically. The text you enter will overwrite the existing text up to
the dollar sign and then extend the text range as needed. Enter the new text
by typing:

al nrost new denp Escape

A.1.6.4 Text Editing Command Summary

As shown in the previous sections, the text editing commands can be used
together with the motion commands to give you more editing power. The
text editing commands can be combined with a number to change or delete
large blocks of words or lines simultaneously. Table A-4 summarizes the
commands used to edit text.

A-14 A Beginner’'s Guide to Using vi

Table A-4: Text Editing Command Summary

Command Result

cw Changes the current word to the new text you type.
You may change the word with as much next text as
necessary. The Escape key signals the end of the
change.

ncw Changes n number of words to the new text you
type. The new text is not limited to just n words.
You may change n words with as much new text as
necessary. The Escape key signals the end of the
change.

D Clears the text from the current cursor position to
the end of the line. Does not delete the space used
by the line thereby allowing you to add more text.

dd Deletes the current line.

ndd Deletes n number of lines beginning with the current
line.

dw Deletes the current word.

ndw Deletes n number of words beginning with the

current word.
X Deletes the current character.

A.1.7 Undoing a Command

If you make a change and then realize it was in error, you may still be able to
correct it if you haven't executed another command. The u command undoes
the last command entered. Undo the last command, 2cw, by typing:

u
The text string al nost new deno will be changed back to new t ext if

you didn’'t execute any other commands since you executed the 2cw
command.

The uppercase U command undoes all changes to the current line and restores
the line to it's original state. The U command works only if you have not
moved the cursor to another line.

A Beginner’s Guide to Using vi A-15

A.1.8

A.2

A21

Finishing Your Edit Session

After you finish the exercises in this appendix, you should save the file and
quit vi . To save your changes and quit vi , enter:

:Wg Return

If you want to quit vi without saving your changes, you can do so by
entering:
1 q! Return

Y ou have now learned enough about vi to edit any file. The following
sections show you some advanced techniques that can improve your
productivity and allow you to customize your environment.

Using Advanced Techniques

This section shows you how to search for text strings, move text, and copy
and paste text. As you work with larger documents, all these tasks increase
your ability to work efficiently.

Searching for Strings

In alarge document, searching for a particular text string can be very time
consuming. The dlash (/) command prompts for atext string to search for
in the file. When you enter the slash (/) and press the Return key, vi
searches the file for the first occurrence of the text string you entered.

If you do not have it open, reopenthenry. fi | e file. Move to the top of the
document using one of the cursor movement keys you learned earlier in this
appendix. To search for the text string t h, enter the following:

/ t h Return

As soon as you enter the dlash (/) command, the slash (/) is displayed at the
bottom of the screen (similar to the way in which the colon () works).

When you entered the text string t h, it was echoed (displayed) at the bottom
of the screen. You can use the Backspace key to fix mistakes when you enter
the search string.

After you press the Return key, the cursor moves to the first occurrence of
the string (the t h in the word t hi s).

A-16 A Beginner’'s Guide to Using vi

A.2.2

The n (next) command continues the search for the next occurrence of the
last string you searched for. Try it now by entering:

n

The cursor should move to the next occurrence of the string, which isthet h
in the word wi t h.

Similarly, the N command searches for the next occurrence of the search
string, but it searches in the opposite direction of the n command. The N
finds the previous occurence of the string.

The question mark (?) command is also used to initiate a search for text
strings, but the question mark (?) initiates a backward search through the
file. When you search backward, the n command moves the cursor backward
to the previous occurrence of the string, and the N command moves the
cursor forward (exactly the opposite of the way in which they work with a
slash (/) search).

Deleting and Moving Text

To move ablock of text, you must first select the text to move. You aready
know how to do this. The delete (d) command not only deletes a line of
text but also copies it to a paste buffer. Once in the paste buffer, the text can
be moved (or pasted) by repositioning the cursor and then using the
lowercase p command to paste the text on the line after the current cursor
position.

Move the cursor to the first line in the file and type:
dd

Thelineis deleted and copied into the paste buffer, and the cursor is located
on the next linein the file. To paste the line in the buffer back into the file,
after the line on which the cursor is positioned, enter:

p

The uppercase letter P (Paste) command is used to paste text on the line
above the cursor rather than below it.

If you delete a letter or block of words, the deleted text will be pasted into
the new position within the current line. For example, to move the word
can to just before the word wi t h, use the following command sequence
(remember to use an uppercase P):

/ can Return

dw

/ Wi t h Return
P

A Beginner’s Guide to Using vi A-17

A.2.3

A24

A.3

Yanking and Moving Text

You copy text in the same manner as you move it, except that instead of
using the delete text command d, you use the yank text command, y. They
command copies (or yanks) the specified text into the paste buffer without
deleting it from the text. It follows the same syntax as the d command. Y ou
can also use the yy command to yank an entire text line into the paste buffer,
in the same way as dd.

For example, to copy the first two lines of the file to a position immediately
underneath them, enter the following command sequence from the first line
of thefile:

2yy

i

p

Y ou must move the cursor down one line using j or the two lines will be
pasted after the first line rather than after the second.

Other vi Features

You may want to try some of the other features of vi . Thevi (1) reference
page lists all of the available commands. Y ou may want to pay particular
attention to the following:

J Joins the next line of text to the current line of text.

Repeats the last command.

Substitutes the current character with the following entered text.
X Deletes the current character.
~ Changes the alphabetic case of the current character.

! Executes an operating system command on the current line of
text and replaces the text with the output.

Crl/L Refreshesthe screen when problems with the screen display
occur. Any time your screen is displaying confusing output,
press Ctrl/L.

Using the Underlying ex Commands

Thevi text editor is based upon the ex line editor. The underlying ex line
editor can bring the power of global changes to your entire text file or any
large piece of it. You can access ex commands from within vi by using the
colon (:) command. You wereintroduced to ex commands earlier in this
appendix with the: wq and : q! commands for writing and quitting an
editing session.

A-18 A Beginner’'s Guide to Using vi

The colon (:) command causes ex to prompt for a command line at the
bottom of the editor screen with acolon (:). Each ex command is ended
by pressing the Return key. Y ou can also enter ex more permanently with
thevi command Q This command turns processing over to ex until you
explicitly returnto vi . This often happens accidentally. If it should happen
to you, you can return to vi by typing vi at the colon (:) prompt followed
by the Return key as follows:

1 Vi Return

An ex command acts on a block of linesin your text file according to the
following general syntax:

:[address[,address]Jcommand

The conmand, along with any of its arguments, acts on the lines between
and including the first and second addr ess. If one address is specified, the
command acts only on the specified line. If no address is specified, the
command acts only on the current line. Addresses can be specified in a
number of ways. Some of the more common address specifications are the
following:

I'i ne nunber Address by absolute line number.

Ipat t ernl Next line that contains the pattern.

. Line that the cursor is on.

$ Last line of the file.

addr esszl i nes Relative offset from the addressed line.

% All the lines in the file, and is used once in place of
both addresses.

The following sections show some of the most generally useful ex
commands, and some of the customization features offered by ex. You
should read the ex (1) reference page for a more detailed list of commands.

A Beginner’s Guide to Using vi A-19

A.3.1 Making Substitutions

The most common substitution task, possibly the most common ex task, is a
global substitution of one word or phrase for another. You can do this with
the s command. If you have closed therry. fi | e file, reopenit. To change
every occurrence of "is" to "was’, use the following command:

1%/ i s/ was/ g Return

This substitution command is applied to al lines in the file by the %address.
The dash (/) is used as a separator. The g argument at the end of the
command causes the substitution to occur globally, that is, on each instance
of the pattern within each line. Without the g argument, substitution occurs
only once on each line.

Y ou should be careful when making substitutions to ensure that you get what
you want. In the previous command line, the word t hi s has changed to
t hwas because every occurrence of i s was changed to was.

You can add a c argument along with the g argument to prompt for
confirmation before each substitution. The format of the confirmation is a bit
complex; however, it is well worth using when you want to be scrupulous
about making global changes.

As an example of confirming a substitution, change the word t hwas back to
t hi s by issuing the following command:

1%/t hwas/ t hi s/ gc Return

The following prompt appears at the bottom of the screen:

You, too, use thwas new text file
ANNNAN

As shown in the next example, type y and press the Return key. You are
then prompted for the second substitution:
You, too, use thwas new text file

ANNANY Return

You, too, use thwas new text file
NANNNNN

Typey and press the Return key, and in responsetotheHit return to
cont i nue prompt, press the Return key once again as follows:

You, too, use thwas new text file
ANNNAN

You, too, use thwas new text file
ANNANY Return
[Ht return to continue] Return

Y ou will find that the two occurrences of the word t hwas have been
changed back to t hi s. In addition, vi is back in the command mode with
the cursor positioned at the first character of the line with the last
substitution.

A—-20 A Beginner’s Guide to Using vi

Now try another substitution on your example file. Add three lines of new
text to the file by using the $ (go to beginning of last line), o (create new
line), yy (yank), and p (paste) commands as follows:

: $ Return

o
Sone new text with a mispelling. Escape

yy
p
p
p

Y ou now should have four lines of new text, all containing the incorrectly
spelled word mi spel |i ng.

To fix the spelling error, enter one of the following commands:
11, $s/ mispel ling/ m sspelling/ Retun

or
:5,8s/ mspelling/ msspelling/ Return

In the first example, the address 1, $ indicates that the substitution should
begin on line one (1) and end at the last line of the file ($). In the second
example, 5, 8 indicates that the substitution should being on line five and
end on line eight. You do not need to use the g operator in either case
because the change is only necessary once on each line.

A.3.2 Writing a Whole File or Parts of a File

The : wg command is a special ex command that writes the whole file. It
combines the features of the write command w and the quit command g. The
only argument that the quit command can take is the exclamation point (!). It
forces the session to quit even if changes made to the file would be lost by
quitting.

The w command can aso take addresses and a filename argument, which
allows you to save part of your text to another file. For example, to save the
first three lines of your text to the new file ny. new. fi | e, use the
following command:

11, 3w ny. new. fil e Return

"my.new.file" [New file] 3 lines, 130 characters

A Beginner’'s Guide to Using vi A-21

A.3.3 Deleting a Block of Text

The delete command in ex isd, just asin vi . To delete from the current
line to the end of the file, use the following command:

1., $d Return

A.3.4 Customizing Your Environment

The ex editor provides two mechanisms for customizing your vi
environment. You can use the: set command to set environment variables,
and the : nap command to map a key sequenceto avi command key.

Environment variables are set either by assigning them as opt i on or no
opt i on for Boolean variables, or by assigning them as opt i on=val ue.
The full set of environment variables is described in the ex (1) reference
page. Table A-5 lists some common variables.

Table A-5: Selected vi Environment Variables

Variable Description

errorbells Specifies that when an error is made, a bell sounds. Thisis
the default setting.

i gnorecase Specifies that when performing searches, the case of
characters should be ignored. The default variable setting is
noi gnor ecase.

nunber Specifies that line numbers are to be displayed at the left
margin. The default variable setting is nonunber .

shownat ch Specifies that when you enter a matching parenthesis or brace,
the cursor moves to the matching character and then returns.
The default variable setting is noshowrat ch.

t abst op Specifies the amount of space between tab stops. The default
setting is 8.
wrapscan Specifies that searches should wrap around the beginning or

end of the file. Thisis the default variable setting.

A-22 A Beginner’s Guide to Using vi

Table A-5: (continued)

Variable Description

wrapmar gi n Creates an automatic right margin located a specified number
of characters from the right side of your screen. Whenever
your cursor reaches the specified right margin, an automatic
new line is generated, and the word you are typing is brought
to the next line.

We recommend that you set the wr aprmar gi n variableto a
value with which you are comfortable. Otherwise, vi will use
the default setting of 0. Using the default setting means that
your cursor jumps to the next line when it reaches the end of
your screen; however, parts of the word you are keying may
be on separate lines.

To display the line numbers of your example file enter the following
command:

:set nunber Return

To remove the line numbers, enter the following command:
:set nonunber Return

The: map command sets asingle vi command key to avi command
sequence. The syntax for the : map command follows:

‘map key sequence Return

This command sequence replaces any existing command for that key. The
command sequence should be identical to the keystrokes you want to map,
except that special keys such as the Return key, the Escape key, and keys
modified with the Ctrl key must be quoted first with Ctrl/V. Because the g
and v keys do not have commands associated with them, they are good keys
to map.

For example, to map a key sequence that inserts a line into your text that
says "This space held for new text", you could use the following command:

:map g oThis space held for new text Ctrl/V Escape Return

Note the use of Ctrl/V to quote the Escape character.

A Beginner’s Guide to Using vi A—23

A.3.5 Saving Your Customizations

Y ou can make your environment customizations permanent by placing the
appropriate ex commands in afile named . exr ¢ in your home directory.
Commands in this file will take effect every time you enter vi or ex. In this
file, you do not need to use the vi command : , because these commands are
read directly by the underlying ex editor.

For example, to customize your environment to always display line numbers
for your files, to use the map sequence shown in the previous section, and to
set an automatic right margin of five spaces, you would first open the . exr c
file with vi in your home directory, and add the following lines of text:

set nunber

map q oThis space held for new text Ctl/V Escape
set wr apnargi n=5

After you write this file, verify that it works by opening your example file.

A-24 A Beginner’'s Guide to Using vi

B.1

Creating and Editing Files with ed B

This appendix explains how to create, edit (modify), display, and save text
files with ed, aline editing program. If your system has another editing
program, you may want to learn how to do these tasks with that program.

A good way to learn how ed works is to try the examples in this appendix
on your system. Since the examples build upon each other, it is important
for you to work through them in sequence. Also, to make what you see on
the screen consistent with what you see in this guide, it is important to do the
examples just as they are given.

In the examples, everything you should enter is printed in boldface. When
you are told in the text to enter something, you should enter all of the
information for that line and then press Return.

Because ed is aline editor, you can work with the contents of a file only one
line at atime. Regardless of what text is on the screen, you can edit only the
current line. If you have experience with a screen editing program, you
should pay careful attention to the differences between that program and ed.
For example, with the ed program, you cannot use the Cursor Up and Cursor
Down keys to change your current line.

Understanding Text Files and the Edit Buffer

A fileis a collection of data stored together in the computer under an
assigned name. You can think of afile as the computer equivaent of an
ordinary file folder — it may contain the text of a letter, a report, or some
other document, or the source code for a computer program.

The edit buffer is a temporary storage areathat holds a file while you work
with it — the computer equivalent of the top of your desk. When you work
with atext file, you place it in the edit buffer, make your changes to the file
(edit it), and then transfer (copy) the contents of the buffer to a permanent
storage area.

The rest of this appendix explains how to create, display, save, and edit
(modify) text files with the ed editor.

B.2 Creating and Saving Text Files

To create and save a text file, perform the following steps. The following
sections describe these steps in detail.

1. At the shell prompt, enter the following command:
$ ed filenane
The fi | ename argument is the name of the file you want to create or
edit.

2. Whenyou receivethe ? fi | enane message, enter the following
append command:

a

3. Enter your text.
4. To stop adding text, enter adot (.) at the start of a new line.

5. To copy the contents of the edit buffer into the i I enane file, enter the
following command:

w

6. To end the ed program, enter the following command:
q

B.2.1 Starting the ed Program

To start the ed program, enter a command of the form ed fi | enane after
the shell prompt ($).

In the following example, the ed af i | e command starts the ed program
and indicates that you want to work with afile named af i | e:

$ ed afile
?afile

The ed program responds with the message ?af i | e, which means that the
file does not exist. You can now use the a (append) subcommand (described
in the next section) to create af i | e and put text into it.

B.2.2 Entering Text — The a (Append) Subcommand

To put text into your file, enter a. The a subcommand tells ed to add, or
append, the text you enter to the edit buffer. If your file had already
contained text, the a subcommand would add the new text to the end of the
file.

B-2 Creating and Editing Files with ed

B.2.3

Type your text, pressing Return at the end of each line. When you have
entered all of your text, enter adot (.) at the start of anew line.

Note

If you do not press Return at the end of each line, the ed
program automatically moves your cursor to the next line after
you fill aline with characters. However, ed treats everything
you enter before you press Return as one line, regardless of how
many lines it takes up on the screen; that is, the line wraps
around to the beginning of the next line (based upon your
workstation display settings).

The following example shows how to enter text into the af i | e file:

a
The only way to stop
appending is to enter a
line that contains only
a dot.

If you stop adding text to the buffer and then decide to add some more, enter
another a subcommand. Type the text and then enter a dot at the start of a
new line to stop adding text to the buffer.

If you make errors as you enter your text, you can correct them before you
press Return. Use the Backspace key to erase the incorrect character(s).
Then enter the correct charactersin their place.

Displaying Text — The p (print) Subcommand
Use the p (print) subcommand to display the contents of the edit buffer.
To display asingle line, use the np subcommand, where n is the number of
the line. For example:

2p
appending is to enter a

To display a series of lines, use the n, np subcommand, where n is the
starting line number and mis the ending line number. For example:

1, 3p

The only way to stop

appending is to enter a
line that contains only

To display everything from a specific line to the end of the buffer, use the
n, $p subcommand, where n is the starting line number and $ stands for the

Creating and Editing Files with ed B—3

last line of the buffer. In the following example, 1, $p displays everything
in the buffer:

1, $p

The only way to stop

appending is to enter a

line that contains only
a dot.

Note

Many examples in the rest of this appendix use 1, $p to display
the buffer’s contents. In these examples, the 1, $p subcommand
is optional and convenient — it lets you verify that the
subcommands in examples work as they should. Another
convenient ed convention is, p, which is equivalentto 1, $p —
that is, it displays the contents of the buffer.

B.2.4 Saving Text — The w (write) Subcommand

The w (write) subcommand writes, or copies, the contents of the buffer into a
file. You can save al or part of afile under its origina name or under a
different name. In either case, ed replaces the original contents of the file
you specify with the data copied from the buffer.

B.2.4.1 Saving Text under the Same Filename

To save the contents of the buffer under the original name for the file, enter
the w subcommand. For example:

w
78

The ed program copies the contents of the buffer into the file named af i | e
and displays the number of characters copied into the file (78). This number
includes blanks and characters such as Return (sometimes called newline),
which are not visible on the screen.

The w subcommand does not affect the contents of the edit buffer. You can
save a copy of the file and then continue to work with the contents of the
buffer.

The stored file is not changed until the next time you use the w subcommand
to copy the contents of the buffer into it. As asafeguard, it is a good practice
to save afile periodically while you work on it. Then, if you make changes
(or mistakes) that you do not want to save, you can start over with the most
recently saved version of the file.

B—4 Creating and Editing Files with ed

Note

The u (undo) subcommand restores the buffer to the state it was
in before it was last modified by an ed subcommand. The
subcommands that u can reversearea, c,d, g, Gi,j,mr,s,
t,v,and V.

B.2.4.2 Saving Text under a Different Filename

Often, you may need more than one copy of the same file. For example, you
could have the original text of aletter in two files — one to keep asit is, and
the other to be revised.

If you have followed the previous examples, you have afilenamed af i | e
that contains the original text of your document. To create another copy of
the file (while its contents are still in the buffer), use a subcommand of the
formw fi | enane, as the following example shows:

w bfile
78

At this point, af i | e and bf i | e have the same contents, since each is a
copy of the same buffer contents. However, becauseaf i | e and bfi | e are
separate files, you can change the contents of one without affecting the
contents of the other.

B.2.4.3 Saving Part of a File
To save part of afile, use a subcommand of the form n, nw fi | enane,

where;

n Specifies the beginning line number of the part of the file
you want to save.

m Specifies the ending line number of the part of the file you

want to save (or the number of asingle line, if that is al
you want to save).

fil enane Specifies the name of a different file (optional).

In the following example, the w subcommand copies lines 1 and 2 from the
buffer into anew file named cfi | e:

1, 2w cfile
44

Then ed displays the number of characterswritten into cfi | e (44).

Creating and Editing Files with ed B-5

B.2.5 Leaving the ed Program — The g (quit) Subcommand

B.3

Caution

The contents of the buffer are lost when you leave the ed
program. To save a copy of the data in the buffer, use the w
subcommand to copy the buffer into afile before you leave the
ed program.

To leave the ed program, enter the g (quit) subcommand. For example:

q
$ _

The q subcommand returns you to the shell prompt ($).

If you have changed the buffer but have not saved a copy of its contents, the
g subcommand responds with ?, an error message. At that point, you can
either save a copy of the buffer with the w subcommand, or enter g again to
leave the ed program without saving a copy of the buffer.

Loading Files into the Edit Buffer

Before you can edit afile, you must load it into the edit buffer. You can load
afile either at the time you start the ed program or while the program is
running.

To load afile into the edit buffer when you start the ed program, enter the
following command:

ed filenane
This command starts ed and loads the f i | enarne file into the edit buffer.

To load afile into the edit buffer while ed is running, you can enter one of
the following commands:

e efilenane

Thisloads the f i | enane file into the buffer, erasing any previous
contents of the buffer.

e nr filenane

Thisreadsthe fi | enane file into the buffer after line n. If you do not
specify n, ed adds the file to the end of the buffer.

B-6 Creating and Editing Files with ed

B.3.1

B.3.2

Using the ed (edit) Command
To load afile into the edit buffer when you start the ed program, enter the
name of the file after the ed command. The ed command in the following
example invokes the ed program and loads the file af i | e into the edit
buffer:
$ ed afile
78
The ed program displays the number of charactersthat it read into the edit
buffer (78).
If ed cannot find thefile, it displays ?fi | enanme . To create that file, use
the a (append) subcommand (described in Section B.2.2) and the w (write)
subcommand (described in Section B.2.4).

Using the e (Edit) Subcommand

Once you start the ed program, you can use the e (edit) subcommand to load
afile into the buffer. The e subcommand replaces the contents of the buffer
with the new file. (Compare the e subcommand with the r subcommand,
described next in Section B.3.3, which adds the new file to the buffer.)

Caution

When you load a new file into the buffer, the new file replaces
the buffer’s previous contents. Save a copy of the buffer with
the w subcommand before you read a new file into the buffer.

In the following example, thee cfi | e subcommand readsthecfi | e file
into the edit buffer, replacingafi | e. Thee afil e subcommand then
loads af i | e back into the buffer, deleting cfi | e. The ed program returns
the number of characters read into the buffer after each e subcommand (44
and 78):

e cfile
44
e afile
78

If ed cannot find thefile, it returns? fi |l enane. To create that file, use
the a (append) subcommand, described in Section B.2.2, and the w (write)
subcommand, described in Section B.2.4.

Creating and Editing Files with ed B—7

B.3.3

Y ou can edit any number of files, one at a time, without leaving the ed
program. Use the e subcommand to load afile into the buffer, make your
changes to the file, and use the w subcommand to save a copy of the revised
file. (See Section B.2.4 for information about the w subcommand.) Then use
the e subcommand again to load another file into the buffer.

Using the r (read) Subcommand

Once you have started the ed program, you can use the r (read)
subcommand to read a file into the buffer. Ther subcommand adds the
contents of the file to the contents of the buffer. Ther subcommand does
not delete the buffer. (Compare ther subcommand with the e subcommand,
described in Section B.3.2, which deletes the buffer before it reads in another
file)

With the r subcommand, you can read a file into the buffer at a particular
place. For example, the 4r cfi | e subcommand readsthefilecfil e into
the buffer following line 4. The ed program then renumbers all of the lines
in the buffer. If you do not use a line number, the r subcommand adds the
new file to the end of the buffer’s contents.

The following example shows how to use the r subcommand with aline
number:

1, $p

The only way to stop
appending is to enter a
line that contains only
a dot.

3r cfile

44

1, $p

The only way to stop
appending is to enter a
line that contains only
The only way to stop
appending is to enter a
a dot.

The 1, $p subcommand displays the four lines of af i | e. Next, the 3r

cfi | e subcommand loads the contents of cf i | e into the buffer, following
line 3, and shows that it read 44 charactersinto the buffer. The next 1, $p
subcommand displays the buffer’s contents again, letting you verify that the
r subcommand read cf i | e into the buffer after line 3.

If you are working the examples on your system, complete the following
steps before you go to the next section:

B-8 Creating and Editing Files with ed

1. Save the contents of the buffer inthecfi | e file
wcfile

2. Load afi | e into the buffer:
e afile

B.4 Displaying and Changing the Current Line

The ed program is aline editor. This means that ed lets you work with the
contents of the buffer one line at atime. The line you can work with at any
given time is called the "current line", and it is represented by the dot (.). To
work with different parts of afile, you must change the current line.

To display the current line, enter the following subcommand:

p

To display the line number of the current line, enter the following
subcommand:

Note

Y ou cannot use the Cursor Up and Cursor Down keys to change
the current line. To change the current line, use the ed
subcommands described in the following sections.

To change your position in the buffer, do one of the following. These steps
are described in detail in the following sections.

1. To set your current line to line number n, enter the following
subcommand:

n
2. To move the current line forward through the buffer one line at atime
press Return.

3. To move the current line backward through the buffer one line at atime,
enter a dash (-) character.

4. To move the current line n lines forward through the buffer, enter the
following subcommand:

. +n

Creating and Editing Files with ed B-9

5. To move the current line n lines backward through the buffer, enter the
following subcommand:

.-n

B.4.1 Finding Your Position in the Buffer

When you first load afile into the buffer, the last line of the file is the current
line. Asyou work with the file, you usually change the current line many
times. You can display the current line or its line number at any time.

To display the current line, enter p:

a dot.

The p subcommand displays the current line (adot.). Because the current
line has not been changed since you read af i | e into the buffer, the current
line is the last line of the buffer.

Enter . = to display the line number of the current line:

4

Since af i | e hasfour lines, and the current line is the last line in the buffer,
the . = subcommand displays 4.

You aso can use the dollar sign (the symbol that stands for the last line in
the buffer) with the = subcommand to determine the number of the last line
in the buffer:

$=
4

The $= subcommand is an easy way to find out how many lines are in the
buffer. Theed $ symbol has no relationship to the shell prompt ($).

B.4.2 Changing Your Position in the Buffer

Y ou can change your position in the buffer (change your current line) in one
of two ways:

» Specify aline number (an absolute position)
* Move forward or backward relative to your current line

B-10 Creating and Editing Files with ed

To move the current line to a specific line, enter the line number; ed displays
the new current line. In the following example, the first line of afi | e
becomes the current line:

1
The only way to stop

Pressing Return advances one line through the buffer and displays the new
current line, as the following example shows:

appending is to enter a
line that contains only

a dot.

?

When you try to move beyond the last line of the buffer, ed returns ?, an
error message. Y ou cannot move beyond the end of the buffer.

To set the current line to the last line of the buffer, enter $.

To move the current line backward through the buffer one line at a time,
enter dashes (—) one after the other, as the following example shows:

line that contains only
appending is to enter a

The only way to stop

?

When you try to move beyond the first line in the buffer, you receive the ?
message. Y ou cannot move beyond the top of the buffer.

To move the current line forward through the buffer more than one line at a
time, enter . n (where n is the number of lines you want to move):

.2

line that contains only

Note that . 2 is an abbreviation for . +2.

Creating and Editing Files with ed B—11

To move the current line backward through the buffer more than one line at a
time, enter the following subcommand: . - n (where n is the number of lines
you want to move):

=2
The only way to stop

B.5 Locating Text

If you do not know the number of the line that contains a particular word or
another string of characters, you can locate the line with a context search.

To search in context, do one of the following:

* To search forward, enter the following subcommand:
/string to findl

* To search backward, enter the following subcommand:
?string to find?

The following sections describe these methods of searching text in detail.

B.5.1 Searching Forward Through the Buffer
To search forward through the buffer, enter the string enclosed in slashes

(/1):

/only/
line that contains only

The context search (/ onl y/) begins on the first line after the current line,
then locates and displays the next line that contains the string "only". That
line becomes the current line.

If ed does not find the string between the first line of the search and the last
line of the buffer, then it continues the search at line 1 and searches to the
current line. If ed searches the entire buffer without finding the string, it
displays the ? error message:

/ random
2

Once you have searched for a string, you can search for the same string again
by entering / /. The following example shows one search for the string

B-12 Creating and Editing Files with ed

B.5.2

B.5.3

B.6

onl y, and then a second search for the same string:

/only/

The only way to stop

I

line that contains only

Searching Backward Through the Buffer

Searching backward through the buffer is much like searching forward,
except that you enclose the string in question marks (?):

?appendi ng?
appending is to enter a

The context search begins on the first line before the current line, and locates
the first line that contains the string appendi ng. That line becomes the
current line. If ed searches the entire buffer without finding the string, it
stops the search at the current line and displays the message ?.

Once you have searched backward for a string, you can search backward for
the same string again by entering ??. This is because ed remembers search
strings.

Changing the Direction of a Search

Y ou can change the direction of a search for a particular string by using the
slash (/) and question mark (?) search characters alternately:

/only/

line that contains only
??

The only way to stop

If you go too far while searching for a character string, it is convenient to be
able to change the direction of your search.

Making Substitutions — The s (substitute)
Subcommand

Use the s (substitute) subcommand to replace a character string (a group of
one or more characters) with another. The s subcommand works with one or
more lines at atime, and is especially useful for correcting typing or spelling
errors.

To make substitutions, do one of the following:

Creating and Editing Files with ed B—13

» To subgtitute newst ri ng for ol dst ri ng at the first occurrence of
ol dst ri ng in the current line, enter the following subcommand:

s/oldstring/newstring/

» To substitute newst ri ng for ol dst ri ng at the first occurrence of
ol dst ri ng on line number n, enter the following subcommand:

ns/ oldstringl newstring/

e To subgtitute newst ri ng for ol dst ri ng at the first occurrence of
ol dst ri ng in each of the lines n through m enter the following
subcommand:

n,ms/ oldstringl newstring/

The following sections describe these methods of substitution in detail.

B.6.1 Substituting on the Current Line

To make a substitution on the current line, first make sure that the line you
want to change is the current line. In the following example, the

[appendi ng/ (search) subcommand locates the line to be changed. Then
the s/ appendi ng/ addi ng t ext/ p (substitute) subcommand substitutes
the string "adding text" for the string "appending” on the current line. The p
(print) subcommand displays the changed line.

[appendi ng/

appending is to enter a

s/ appendi ng/ addi ng text/p
adding text is to enter a

Note

For convenience, you can add the p (print) subcommand to the s
subcommand (for example, s/ appendi ng/ addi ng

t ext / p). This saves you from having to enter a separate p
subcommand to see the result of the substitution.

The s subcommand changes only the first occurrence of the string on a given
line. To learn how to change all occurrences of a string on the line, see
Section B.6.4.

B-14 Creating and Editing Files with ed

B.6.2

B.6.3

B.6.4

Substituting on a Specific Line

To make a substitution on a specific line, use a subcommand of the following
form:

ns/ oldstringl newstring/

Here n is the number of the line on which the substitution is to be made. In
the following example, the s subcommand moves to line number 1 and
replaces the string "stop” with the string "quit" and displays the new line:

1s/stop/quit/p
The only way to quit

The s subcommand changes only the first occurrence of the string on a given
line. To learn how to change all occurrences of a string on the line, see
Section B.6.4.

Substituting on Multiple Lines

To make a substitution on multiple lines, use a subcommand of the following
form:

n,ms/ oldstringl newstring/

Here n isthe first line of the group and mis the last. In the following
example, the s subcommand replaces the first occurrence of the string "to"
with the string "TO" on every line in the buffer:

1, $s/to/ TO

1, $p

The only way TO quit

adding text is TO enter a

line that contains only
a dot.

The 1, $p subcommand displays the contents of the buffer, which lets you
verify that the substitutions were made.

Changing Every Occurrence of a String

Ordinarily, the s (substitute) subcommand changes only the first occurrence
of astring on a given line. However, the g (global) operator lets you change
every occurrence of a string on aline or in a group of lines.

To make a global substitution on a single line, use a subcommand of the
following form:

ns/ oldstringl newstring/

Creating and Editing Files with ed B—15

In the following example, 3s/ on/ ON/ gp changes each occurrence of the
string "on" to "ON" in line 3 and displays the new line:

3s/on/ OV gp
line that cONtains ONl'y

To make a global substitution on multiple lines, specify the group of lines
with a subcommand of the form:

n,ms/ oldstringl newstringlg

In the following example, 1, $s/ TQ' t o/ g changes the string "TO" to the
string "to" in every line in the buffer:

1,$s/TAQ'to/ g

1, $p

The only way to quit

adding text is to enter a

line that cONtains ONl'y

a dot.

B.6.5 Removing Characters

You can use the s (substitute) subcommand to remove a string of characters
(that is, to replace the string with nothing). To remove characters, use a
subcommand of the form s/ ol dst ri ng/ !/ (with no space between the last
two / characters).

In the following example, ed removes the string "adding” from line number
2 and then displays the changed line:

2s/ addi ng/ /
text is to enter a

B.6.6 Substituting at Line Beginnings and Ends
Two special characters let you make substitutions at the beginning or end of
aline:
A (circumflex) Makes a substitution at the beginning of the line.

$ (dollar sign) Makes a substitution at the end of the line. (In this context,
the dollar sign ($) character does not stand for the last line
in the buffer.)

B-16 Creating and Editing Files with ed

B.6.7

To make a substitution at the beginning of aline, usethes/ */ newstri ng
subcommand. In the following example, one s subcommand adds the string
"Remember" to the start of line number 1. Another s subcommand adds the
string "adding" to the start of line 2:

1s/ ™ Renenber, /p

Rermenber, The only way to quit

2s/ ™ addi ng/ p

adding text is to enter a

To make a substitution at the end of aline, use a subcommand of the form
s/ $/ newst ri ng. Inthefollowing example, the s subcommand adds the
string "Then press Enter." to the end of line number 4:

4s/$/ Then press Enter./p
a dot. Then press Enter.

Notice that the substituted string includes two blanks before the word Then
to separate the two sentences.

Using a Context Search

If you do not know the number of the line you want to change, you can
|ocate it with a context search. See Section B.5 for more information on
context searches.

For convenience, you can combine a context search and a substitution into a
single subcommand in the following format:

Istring to findls/oldstringl newstring/

In the following example, ed locates the line that contains the string ", The"
and replaces that string with ", the":

/, Thel/s/, Thel/, thelp
Remenber, the only way to quit

Also, you can use the search string as the string to be replaced with a
subcommand of theform/ string to findl s// newstringl. Inthe
following example, ed locates the line that contains the string "cONtains
ONIly", replaces that string with "contains only", and prints the changed line:

/cONtains ONly/s//contains only/p
line that contains only

Creating and Editing Files with ed B—17

B.7

B.7.1

Deleting Lines — The d (delete) Subcommand

Use the d (delete) subcommand to remove one or more lines from the buffer.
The general form of the d subcommand is the following:

starting line,ending lined

After you delete lines, ed sets the current line to the first line following the
lines that were deleted. If you delete the last line from the buffer, the last
remaining line in the buffer becomes the current line. After a deletion, ed
renumbers the remaining lines in the buffer.

To delete lines from the buffer, do the following:

* To delete the current line, enter the following subcommand:
d

* To delete line number n from the buffer, enter the following
subcommand:

nd

* To delete lines numbered n through mfrom the buffer, enter the
following subcommand:

n, mi

The following sections describe these methods of deleting lines in detail.

Deleting the Current Line

If you want to delete the current line, enter d. In the following example, the
1, $p subcommand displays the entire contents of the buffer, and the $
subcommand makes the last line of the buffer the current line:

1, $p

Remenber, the only way to quit
adding is to enter a

line that contains only

a dot. Then press Enter.

$

a dot. Then press Enter

d

The d subcommand then deletes the current line (in this case, the last line in
the buffer).

B-18 Creating and Editing Files with ed

B.7.2

B.7.3

B.8

Deleting a Specific Line

If you know the number of the line you want to delete, use a subcommand of
the form nd to make the deletion. In the following example, the 2d
subcommand deletes line 2 from the buffer:

2d

1, $p

Remenber, the only way to quit

line that contains only

The 1, $p subcommand displays the contents of the buffer, showing that the
line was deleted.

Deleting Multiple Lines

To delete a group of lines from the buffer, use a subcommand of the form
n, md, where n is the starting line number and mis the ending line number of
the group to be deleted.

In the following example, the 1, 2d subcommand deletes lines 1 and 2:

1, 2d
1, $p
?

The 1, $p subcommand displays the ? message, indicating that the buffer is
empty.

If you are following the examples on your system, you should restore the
contents of the buffer before you move on to the next section. The following
example shows you how to restore the contents of the buffer:

e afile
?

e afile
78

This command sequence reads a copy of the original file af i | e into the
buffer.

Moving Text — The m (move) Subcommand

Use the m(move) subcommand to move a group of lines from one place to
another in the buffer. After a move, the last line moved becomes the current
line.

To move text, enter a subcommand of the following form:

X,ymz

Creating and Editing Files with ed B—19

The x variable is the first line of the group to be moved. The y variableis
the last line of the group to be moved. The z variable is the line the moved
lines are to follow.

In the following example, the 1, 2m4 subcommand moves the first two lines
of the buffer to the position following line 4:

1, 2mé

1, $p

line that contains only

a dot.

The only way to stop
appending is to enter a

The 1, $p subcommand displays the contents of the buffer, showing that the
move is complete.

To move a group of lines to the top of the buffer, use zero (0) as the line
number for the moved lines to follow. In the next example, the 3, 4n0D
subcommand moves lines 3 and 4 to the top of the buffer:

3, 4nD

1, $p

The only way to stop

appending is to enter a

line that contains only

a dot.

The 1, $p subcommand displays the contents of the buffer, showing that the
move was made.

To move a group of lines to the end of the buffer, use $ as the line number
for the moved lines to follow:

1, 2n%

1, $p

line that contains only

a dot.

The only way to stop

appending is to enter a

B.9 Changing Lines of Text — The c (change)
Subcommand

Use the ¢ (change) subcommand to replace one or more lines with one or
more new lines. The ¢ subcommand first deletes the ling(s) you want to
replace and then lets you enter the new lines, just as if you were using the a
(append) subcommand. When you have entered all of the new text, enter a
dot (.) on aline by itself.

B-20 Creating and Editing Files with ed

B.9.1

B.9.2

The general form of the ¢ subcommand is:
starting line,ending linec

To change lines of text, do the following:

1. Enter a subcommand of the following form:
n, mc

The n variable specifies the number of the first line of the group to be
deleted. The mvariable specifies the number of the last line of the group
(or the only line) to be deleted.

2. Typethe new ling(s), pressing Return at the end of each line.
3. Enter adot on aline by itself.

The following sections describe these methods of searching text in detail.

Changing a Single Line of Text

To change a single line of text, use only one line number with the ¢ (change)
subcommand. Y ou can replace the single line with as many new lines as you
like.

In the following example, the 2¢ subcommand deletes line 2 from the buffer,
and then you can enter new text:
2c

appendi ng new material is to
use the proper keys to create a

1, $p

The only way to stop

appendi ng new material is to
use the proper keys to create a
line that contains only

a dot.

The dot on aline by itself stops ed from adding text to the buffer. The
1, $p subcommand displays the entire contents of the buffer, showing that
the change was made.

Changing Multiple Lines of Text

To change more than one line of text, give the starting and ending line
numbers of the group of lines to be with the ¢ subcommand. You can
replace the group of lines with one or more new lines.

Creating and Editing Files with ed B-21

B.10

In the following example, the 2, 3¢ subcommand deletes lines 2 and 3 from
the buffer, and then you can enter new text:

2,3c
adding text is to enter a

1, $p

The only way to stop
adding text is to enter a
line that contains only

a dot.

The dot on aline by itself stops ed from adding text to the buffer. The
1, $p subcommand displays the entire contents of the buffer, showing that
the change was made.

Inserting Text — The i (insert) Subcommand

Usethei (insert) subcommand to insert one or more new lines of text into
the buffer. To locate the place in the buffer for the lines to be inserted, you
can use either a line number or a context search. Thei subcommand inserts
new lines before the specified line. (Compare thei subcommand with the a
subcommand, explained in Section B.2.2, which inserts new lines after the
specified line)) To insert text, do the following:

1. Enter a subcommand of one of the following types:

ni

The n variable specifies the number of the line the new lines will be
inserted above.

[stringli

The st ri ng variable specifies a group of characters contained in the line
the new lines will be inserted above.
2. Enter the new lines.

3. Enter adot at the start of anew line.

The following sections describe these methods of inserting text in detail.

B.10.1 Using Line Numbers

If you know the number of the line where you want to insert new lines, you
can use an insert subcommand of the form ni (where n is a line number).
The new lines you enter go into the buffer before line number n. To end the
i subcommand, enter adot () on aline by itself.

B-22 Creating and Editing Files with ed

In the following example, the 1, $p subcommand prints the contents of the
buffer. Then the 4i subcommand inserts new lines before line number 4:

1, $p

The only way to stop
adding text is to enter a
line that contains only

a dot.

4

--repeat, only--

1, $p

The only way to stop
adding text is to enter a
line that contains only
--repeat, only--

a dot.

After 4i , you enter the new line of text and enter a dot on the next line to
end thei subcommand. A second 1, $p subcommand displays the contents
of the buffer again, showing that the new text was inserted.

B.10.2 Using a Context Search

B.11

Another way to specify wherethei subcommand inserts new linesis to use
a context search. With a subcommand of the form/ st ri ng/ i, you can
locate the line that contains st ri ng and insert new lines before that line.
When you finish inserting new lines, enter a dot on aline by itself.

In the following example, the/ dot /i subcommand inserts new text before
the line that contains the string "dot":

/dot /i
and in the first position--

1, $p

The only way to stop
adding text is to enter a
line that contains only
--repeat, only--

and in the first position--
a dot.

The 1, $p subcommand displays the entire contents of the buffer, showing
the new text.

Copying Lines — The t (transfer) Subcommand

With thet (transfer) subcommand, you can copy lines from one place in the
buffer and insert the copies elsewhere. Thet subcommand does not affect
the original lines.

Creating and Editing Files with ed B—23

The general form of thet subcommand is:
starting line,ending linet line to follow

To copy lines, enter a subcommand of the form:
n, m x

The n variable specifies the first line of the group to be copied. The m
variable specifies the last line of the group to be copied. The x variable
specifies the line the copied lines are to follow.

To copy lines to the top of the buffer, use zero (0) as the line number for the
copied lines to follow. To copy lines to the bottom of the buffer, use the
dollar sign ($) as the line number for the copied lines to follow.

In the following example, the 1, 3t 4 subcommand copies lines 1 through 3,
and inserts the copies after line 4:
1,3t4

1, $p

The only way to stop

adding text is to enter a
line that contains only
--repeat, only--

The only way to stop

adding text is to enter a
line that contains only

and in the first position--
a dot.

The 1, $p subcommand displays the entire contents of the buffer, showing
that ed has made and inserted the copies, and that the original lines are not
affected.

B.12 Using System Commands from ed

Sometimes you may find it convenient to use a system command without
leaving the ed program. At these times you can use the exclamation point
(1) character to leave the ed program temporarily.

To use a system command from ed, enter the following:
! command

B-24 Creating and Editing Files with ed

B.13

In the following example, the ! | s command temporarily suspends the ed
program and runsthe | s (list) system command (a command that lists the
filesin the current directory):

Ils

afile
bfile
cfile

Thel s command displays the names of the files in the current directory
(afile,bfile,andcfil e), and then displays another ! character. The
| s command is finished, and you can continue to use ed.

Y ou can use any system command from within the ed program. You can
even run another ed program, edit afile, and then return to the original ed
program. From the second ed program, you can run a third ed program, use
a system command, and so forth.

Ending the ed Program

This completes the introduction to the ed program. To save your file and
end the ed program, perform the following steps:

1. Enter the w command, as follows:
w

2. Enter the g command, as follows:
q

For afull discussion of the w and g subcommands, see Section B.2.4 and
Section B.2.5 respectively.

For information about other features of ed, see the ed(1) reference page.
For information about printing the files you create with ed, see Chapter 3.

Creating and Editing Files with ed B—25

Cl

Using Internationalization Features C

This appendix describes the internationalization features of the operating
system. These features provide users with the ability to process data and to
interact with the system in a manner appropriate to their native language,
customs, and geographic region (their locale).

After reading this appendix, you will be able to do the following:
» Understand the concept of locale

» Understand what functions are affected by locale

» Determine whether alocale has been set (if necessary)

e Set your locale (if necessary)

» Change your locale or aspects of your locale (if necessary)

If your site isin the United States and you plan to use the American English
language and its conventions, there is no need to set a locale because the
system default is American English.

If your site is outside the United States, the locale will most likely have
already been specified by the system administrator. If the locale has already
been set, you may want to only skim this appendix for background
information on internationalization. If the locale has not been set, the
information in this appendix is essential to you.

Understanding Locale

Because Digital UNIX is an internationalized operating system, it can present
information in a variety of ways. Userstell the operating system how to
process and present information in a way appropriate for their language,
country, and cultural customs by specifying alocale. See Section C.4 for
information about how to specify alocale.

A locale generally consists of three parts: language, territory, and codeset.

All three are important for specifying how information is processed and

displayed:

» Language specifies the native language (for example, German, French,
English).

» Territory specifies the geographic area (for example, Germany, France,
Great Britain).

» Codeset specifies the coded character set that is used for the locale (for
example, 1SO 8859/1, the SO Latin-1 codeset).

At this point, some background information about codesets may be helpful.

The ASCII codeset has traditionally been used on UNIX systems to express
American English. Each letter of the English alphabet (A to Z, ato z) as
well as digits, control characters, and symbols are uniquely identified using
only 7 of the 8 bits in a standard byte. However, the introduction of new
codesets or expansion of old ones has been necessary to include non-English
characters. Because so many programs rely on ASCII charactersin one way
or another, the most commonly used codesets begin with ASCII and build
from there.

By using all 8 bits of a standard byte, a single codeset can uniquely identify
charactersin several aphabetic languages. The most popular codesets are a
series called SO 8859. The first in the seriesis called 1SO 8859/1, the
second is 1SO 8859/2, and so on through 1SO 8859/10. The 1SO 8859/1
codeset, often called Latin-1, supports English and other Western European
languages.

To identify al ideographic symbols in Asian languages, such as Chinese and
Japanese, character encoding requires more than one byte. Numerous
codesets using multibyte character encoding, which is not supported by the
SO 8859 series of codesets, have been developed for Asian languages.

C.2 How Locale Affects Processing and Display of Data

As previously mentioned, the locale specified on your system influences how
information is processed and displayed. Specifically, locale affects how the
software:

» Collates (sorts) data

» Formats date and time expressions

» Formats monetary and other numeric expressions
» Displays messages

» Prompts for yes/no responses

The following sections describe the items in this list.

C-2 Using Internationalization Features

C.2.1 Collation

Collation is the action of arranging elements of a set into a particular order.
Collation aways follows a set of rules. Some languages require collation
rules that are not used in English.

Multilevel

Some languages include groups of characters that all sort to the same
primary location. Additional sort rules apply to order characters within
the same group. For example, the French characters a, &, a, and a all sort
to the same primary location. Words that begin with these characters
collate the same location, at which point words are sorted within the
group. These words are in correct French order:

a
a

abord

apre

apres

aprete

azur

One-to-two character mapping

In some languages, certain single characters are treated as if they were
two characters. For example, the German sharp s () is sorted as if it
were ‘‘ss”’.

Multiple-to-one character mapping

Some languages treat a string of charactersas if it were a single element.
For example, the Spanish ch and Il sequences are treated as unique
charactersin the Spanish alphabet. The following words are in correct
Spanish order:

canto

construir

Curioso

chapa

chocolate

dama

Ignored characters

Some collation rules ignore certain characters. For example, if the
hyphen (-) is defined as a character to be ignored, the strings *‘re-locate’
and ‘‘relocate’” sort to the same position.

Using Internationalization Features C-3

Note

This means that you cannot assume that the range [A to z, ato Z]
includes every letter of an alphabet. For example, the Danish
alphabet includes three characters that sort after z.

C.2.2 Date and Time Formats

Users around the world express dates and times with different formatting
conventions. When specifying day and month names, people in the United
States generally express dates with an expression like the following one:

Tuesday, May 22, 1996

The French, on the other hand, express dates this way:
mardi, 22 mai 1996

The following examples show alternative formats for the date, March 20,
1996. A given format is not the only way to write the date in the listed
country:

3/ 20/ 96 (United States)

20/ 3/ 96 (Great Britain)

20. 3. 96 (France and Germany)
20-111-96 (ltaly)

96/ 3/ 20 (Japan)

2/ 3/ 20 (Japan, Emperor format)

In Japan’s Emperor format, the year (2, in the preceding example) is
expressed as the number of years that the current emperor has reigned.

As with dates, there are many conventions for expressing the time of day. In
the United States, people often use the 12-hour clock with its am. and p.m.
designations. People in most other countries use the 24-hour clock to express
the time.

In addition to the 12-hour/24-hour clock differences, punctuation for written
times can vary, for example:

3:20 p. m (United States)
15h20 (France)

15. 20 (Germany)

15: 20 (Japan)

C-4 Using Internationalization Features

C.23

C.24

C.25

C.3

Numeric and Monetary Formats

The characters used to format numeric and monetary values vary from place
to place. In the United States, the convention is to use a period (.) as the
radix character (the character that separates whole and fractional quantities),
and acomma (,) as the thousands separator. In many European countries,
these conventions are reversed. For example:

1, 234. 56 (United States)

1. 234, 56 (France)

Here are some sample formats for monetary items:
$1, 234. 56 (United States, dollars)

kr 1. 234, 56 (Norway, krona)

SFrs. 1, 234. 56 (Switzerland, Swiss francs)

Note that some formats for monetary amounts include more than two places
for fractiona digits.

Messages

Programs are sometimes written with English messages embedded in the
program itself. In an internationalized program, messages are kept in a
separate file and replaced in the program with calls to a messaging system.
Messages kept in a separate file can be trandated and made available to the
program. When translated messages are available, users can interact with the
system in their native language.

Yes/No Prompts

Many programs ask questions that need a positive or negative response.
Those programs typically look for the English string literalsy or yes, n or
no. An internationalized program lets users enter the characters or words
that are appropriate to their language. For example, a French user should be
able to enter o or oui .

Determining Whether a Locale Has Been Set

If your system is functioning in accordance with the language and
conventions of your country, you can assume that the locale has been set
correctly.

Using Internationalization Features C-5

If you are not sure whether or not your locale has been set, enter the
| ocal e command to display current settings of the locale environment
variables, for example:

% | ocal e

LANG=f r _FR. | S08859- 1

LC COLLATE="fr_FR | SO8859- 1"

LC CTYPE="fr_FR. | SC8859- 1"

LC_MONETARY="fr _FR | SO8859- 1"

LC_NUMERI C="fr_FR | SO8859- 1"

LC TIME="fr_FR | SOB859- 1"

LC_MESSAGES="fr _FR | SO8859- 1"

LC ALL=

The locale environment variables, described in Section C.4.1, define the
locale names used for messages, collation, codeset, numeric formats,
monetary formats, date and time formats, and yes/no responses:

LANG
LC_COLLATE
LC_CTYPE
LC_NUVERI C
LC_MONETARY
LC_TI ME
LC_MESSAGES
LC_ALL

In most cases, only the LANG variable has been set to alocale name, which
then applies to other locale variables with the exception of LC_ALL.

C.4 Setting a Locale

When you specify alocale, you specify alocale name that indicates language,
territory, and codeset. On Digital UNIX systems, locale names adhere to the
following format:

| ang terr. codeset

| ang
Is a 2-letter, lowercase abbreviation for the language name. The
abbreviations are specified in 10 639 Code for the Representation of
Names of Languages, for example: en (English), f r (French), de
(German, from “*Deutsch’’), | a (Japanese).

terr
Is a 2-letter, uppercase abbreviation for the territory name. The
abbreviations are specified in 1SO 3116 Codes for the Representation of

C-6 Using Internationalization Features

Names of Countries, for example: US (United States), NL (the
Netherlands), FR (France), DE (Germany, from *‘Deutschland’’), JP

(Japan).

codeset
Is a string that identifies the codeset, for example: | SC8859- 1 (1SO
8859/1), SJI S (Shift Japanese Industrial Standard), AJEC (Advanced
Japanese EUC).

Full locale namesinclude: en_US. | SOB8859- 1 (English, incorporating
customs for the United States), f r _FR. | SO8859- 1 (French, incorporating
customs for France), de_DE. | SO8859- 1 (German, incorporating customs
for Germany).

A locale can be set by the system administrator or an individual user. If your
system administrator sets the locale at your site, it is likely that a default
locale has been specified for al systems, including yours. You can override
the default locale if you want to do that.

To set alocale, you assign a locale name to one or more environment
variables. The easiest way to do thisis to assign alocale name to the LANG
environment variable because this variable covers all the pieces of alocale
(codeset, collating sequence, numeric, monetary, and date and time formats,
messages, and so forth).

Table C-1 lists the locales available when you install the subset, Single-byte
European Locales. Additional locales may be available if language-variant
software for the operating system is installed on your system.

Table C-1: Locale Names

Language Country Codeset Locale Name

- - ASCII C

- - ASCII POSIX

Danish Denmark Latin-1 da_DK.IS08859-1
German Switzerland Latin-1 de_CH.ISO8859-1
German Germany Latin-1 de DE.ISO8859-1
Greek Greece Latin-7 el_GR.1S08859-7
English Great Britain Latin-1 en_GB.1S08859-1
English United States Latin-1 en_US.1S08859-1
Spanish Spain Latin-1 es ES.1SO8859-1
Finnish Finland Latin-1 fi_FI.1S0O8859-1
French Belgium Latin-1 fr_ BE.ISO8859-1
French Canada Latin-1 fr_CA.1S08859-1

Using Internationalization Features C-7

Table C-1: (continued)

Language Country Codeset Locale Name
French Switzerland Latin-1 fr_CH.ISO8859-1
French France Latin-1 fr_ FR.ISO8859-1
[talian Italy Latin-1 it_IT.1SO8859-1
Dutch Belgium Latin-1 nl_BE.ISO8859-1
Dutch The Netherlands Latin-1 nl_NL.ISO8859-1
Norwegian ~ Norway Latin-1 no_NO.1SO8859-1
Portuguese Portugal Latin-1 pt_PT.ISO8859-1
Swedish Sweden Latin-1 sv_SE.ISO8859-1
Turkish Turkey Latin-9 tr_TR.ISO8859-9

The Clocale is the default if no locales are set on your system. The POSI X
locale is equivalent to the C locale; only letters in the English alphabet are
included in the ASCII codeset that is specified for the POSI X and C locales.

C.4.1 Locale Categories

Table C-2 describes environment variables that influence locale functions.

Table C-2: Environment Variables That Influence Locale

Functions

Variable Description

LC COLLATE Specifies the collating sequence to use when sorting
strings and when character ranges occur in patterns.

LC CTYPE Specifies the character classification (codeset)
information.

LC MONETARY Specifies monetary formats.

LC NUMERI C Specifies numeric formats.

LC_MESSAGES Specifies the language in which messages will
appear if trandations are available. In addition, this
variable specifies strings for affirmative and negative
responses.

LC TI ME Specifies date and time formats.

C-8 Using Internationalization Features

Table C-2: (continued)

Variable Description

LC ALL Overrides all preceding variables and the LANG
environment variable. In general, this variable is
used only in programs and should not be set by
system managers and users. See the following
section on limitations of locale variables for more
information.

Asistrue for the LANG variable, all of the variablesin Table C-2 can be
assigned locale names. Consider the case where your company is located in
the United States but the prevalent language spoken by employees is Spanish.
The LANG environment variable could be set to the name of a Spanish
language locale and the LC_NUMERI C and LC_MONETARY variables set to
the name of a United States English locale. The explicit setting of the

LC _NUMERI Cand LC_MONETARY variables overrides what they were
implicitly set to by LANG. The LC_CTYPE, LC_MESSAGES, LC_TI M,
and LC_COLLATE variables would still be implicitly set to the Spanish
locale. The following are the variable assignments for the C shell to
implement this example:

setenv LANG es_ES. | SG8859- 1

setenv LC_NUMERI C en_US. | SO8859- 1
setenv LC_MONETARY en_US. | SO8859- 1

The following are the same variable assignments for the Bourne and Korn
shells:

LANG=es_ES. | S08859- 1

export LANG

LC_NUVERI C=en_US. | S0B859- 1

export LC NUMERIC

LC_MONETARY=en_US. | SO8859- 1

export LC_MONETARY

Sometimes different versions of the same locale are available locally to meet
the needs of certain languages or software applications. The names of such
locales end with the at sign (@) plus a modifier field. For example, the
collating sequence used for the telephone book in some languages is different
from the collating sequence used for dictionaries. If the standard locale for a
language defined the dictionary collating sequence, another version of the
locale might exist to support the telephone book collating sequence. In this
case the alternative locale version might have a name like

en_FR. |1 SC8859- 1@hone.

Using Internationalization Features C-9

C.4.2 Limitations of Locale Settings

The ability to set locale allows you to tailor your environment, but it does
not protect you from making mistakes. The following sections discuss
problems that can arise when you define locale variables.

C.4.2.1 Locale Settings Are Not Validated

There is nothing to prevent you from defining implausible combinations of
locale names for different aspects of alocale. For example, you could set the
LANG environment variable to a French locale and the LC_CTYPE variable
to a Norwegian locale. The results would probably be undesirable; for
example, French message translations would likely contain characters not
specified in the Norwegian locale. If you define locale variables in addition
to LANG, you are responsible for ensuring a valid combination of locale
settings.

C.4.2.2 File Data Is Not Bound to a Locale

The system has no way of knowing what locale was set when afile was
created. Therefore, the system cannot prevent you from processing the file's
data using a different locale. For example, suppose you copy to your system
afile that was created when the LANG variable was set to a German locale.
If, on your system, LANG s set to a French locale and you use the gr ep
command to search for a string in the file, the gr ep command will use
French collation and pattern matching rules on the German data. It is
therefore your responsibility to know what kind of language data a file
contains and to set the locale accordingly.

C.4.2.3 Setting LC_ALL Overrides All Other Locale Variables

The LC_ALL variable overrides all other locale-dependent environment
variables, even if you set it before setting category-specific variables, such as
LC_COLLATE. The only way to cancel the influence of LC_ALL isto
undefine the variable. For example, enter the command unset env

LC ALL.

The LC_ALL variableis available for users familiar with the System V
environment. In that environment, users set locale either by setting LC_ALL
or by setting all the locale category variables individually.

C-10 Using Internationalization Features

Customizing Your mailx Session D

Y ou can customize your mai | X session permanently by including in your
. mai | rc fileany of the settings described in Table D-1. See the unset
command in Appendix F for information about temporary settings.

Table D-1: Variables for Customizing Your mailx Session

Variable Type
al I net Binary
append Binary
ask Binary
askcc Binary
aut opri nt Binary
bang String
cnd String
conv String

Description

All network names with the same login name are
treated the same.

Saves messages in your nbox file in the order of
arrival; the earliest message is the first message in
the file. When this variable is unset, messages are
saved in reverse order; the first message in the file is
the most recent. The mai | x program runs faster if
append is set.

Prompts you for a subject line when you send a
message. Enter a blank line to send a message with
no subject.

Prompts you for carbon-copy recipients for each
message you send.

Automatically displays the next message when you
delete the current message. When aut opri nt is
unset, nai | x does not display the next message
when you delete a message. |n either case, the next
message becomes your new current message.

Enables the special-case treatment of the
exclamation point (!) in escape command lines asin
Vi .

Allows the user to specify the default command to
be used when using the vertical bar or pipe (|)
command.

Allows the user to specify how to convert UUCP
style addresses for sendmail.

Table D-1:

Variable

crt

DEAD

debug
dot

EDI TOR

escape

excode

f ol der

header

hol d

(continued)

Type

Numeric

String

Binary
Binary

String

String

String

String

Binary

Binary

D-2 Customizing Your mailx Session

Description

For use with a video display (CRT) terminal. Reads
your mail one screenful at atime using the nor e
program. The value tells nai | x how many lines of
the message to display before invoking the pager.
For example:

set crt=20

Allows the user to specify a different location for
dead.letter. A dead letter will be written to
$HOVE/ dead. | et t er by default.

Displays debugging information.

Interprets a period on aline by itself to be the end of
amessage. Do not unset dot and also set
i gnor eeof .

Specifies the pathname for the text editor to be used
when you use the edi t command or the ~e escape.
For example:

set EDI TOR=/usr/ ucb/ ex

If your terminal is a CRT terminal, you can specify
a screen editor for this variable. See the VI SUAL
variable later in this table.

Allows you to specify the escape character (the
character that starts an escape command when you
are in the middle of writing a message). The default
isthetilde (~). You must specify asingle
character.

Allows the user to specify the locale to be used
when doing character conversion on outgoing mail
messages.

Specifies the directory for storing mail folders. A
name beginning with a slash, such as

/usr/ users/ hal e, is an absolute pathname. A
name without an initial slash is a pathname relative
to your home directory. For example, the command
set fol der=fol der indicates the directory
/usr/users/ hal e/ fol der.

Prints the message header of messages when mai | x
isinvoked.

Prevents messages from being moved to your mbox
file after you read them. Messages you have read
are held in your system mailbox.

Table D-1: (continued)

Variable Type Description

i gnore Binary Ignores Ctrl/c interrupts, echoing them as ‘‘at’’ signs
(@. Note that this variable is different from the
i gnor e command described in Appendix F.

i gnor eeof Binary Ignores Ctrl/d as the end of an outgoing message.
Do not set i gnor eeof and also unset dot .

i ndent prefix String Allows the user to specify a string to be inserted at
the beginning of each line of text of a mail message
that was included using the ~mcommand.

keep Binary Allows mai | x to truncate your system mailbox
instead of deleting it when it is empty. Thisis
useful if you have set special permissions on your
system mailbox for security reasons. If keep is
unset, your system mailbox is deleted when it
becomes empty; the next time it is created, you must
reestablish your desired permissions.

keepsave Binary Prevents deletion of saved messages when you quit
mail. Normally, the mai | x program marks
messages when you save them in other files or
folders, and then deletes them from your system
mailbox when you leave mai | x. Setting
keepsave makes mai | x leave these messages in
your system mailbox.

| ang String Allows the user to specify the locale to be used for
displaying the mail message.

LI STER String Allows the user to specify the command used by the
folders commands.

MBOX String Allows the user to specify the location for the mbox
folder. The mbox folder will normally be located in
$HOVE/ mbox.

net oo Binary Includes you in the list of recipients when you send

mail to an alias of which you are a member. If
nmet 00 is unset, you will not receive copies of
messages sent to aliases of which you are a member.

noheader Binary Inhibits display of the header and version
identification when you invoke mai | x.
nosave Binary Prevents mai | x from saving aborted messages as

dead. | et t er inyour home directory.

Customizing Your mailx Session D-3

Table D-1: (continued)

Variable Type Description

onehop Binary When responding to a message which contains other
recipients, sometimes the addresses of the recipients
are relative to the originator’s address. The onehop
option forces the delivery to not follow the path by
which the message arrived and deliver it directly,
thereby improving performance.

out f ol der Binary Causes nmai | x to save outgoing mail messagesin
the directory specified in f ol der .

page Binary Causes a form feed to be inserted between messages
that are processed by the pipe (|) command.

PACGER String Allows the user to specify the paging program of

their choice to be used when displaying their
messages. For example:

PAGER=/ usr/ bi n/ nore or
PAGER=/ usr/ bi n/ pg

pr onpt String Allows the user to change the mai | x prompt when
mai | x isinvoked. For example:
pronpt =>>>

qui et Binary Supresses printing the version when first invoked
and the message number when you use thet ype
command.

record String Specifies the name of a file into which mai | x will
save copies of all outgoing messages.

Repl ayal | Binary Reverses the function of ther epl y and Repl y
commands.

save Binary Allows the user to save mail messages into

dead. |l etter.

sendwai t Binary Causes mai | x to wait until the message has been
processed by the mailer. This option can cause some
performance degradation from the users point of
view since the user will have to wait until the
message has been delivered.

SHELL String Allows the user to specify the shell to use when
invoking the ~ or ~! commands.

screen Numeric Specifies the number of messages to be displayed in
one screenful when you enter the header s
command.

D—4 Customizing Your mailx Session

Table D-1: (continued)

Variable Type Description

sendmai | String Specifies the pathname of the program to use to send
mail messages. If this variable is not specified,
mai | x uses the default delivery system. See your
system administrator for information about alternate

delivery systems.

showt o Binary Displays the recipient’s name instead of the author’'s
name in message headers.

sign String Allows the user to specify a string to be inserted in
the mail message when using the ~a command.

Si gn String Allows the user to specify a string to be inserted in
the mail message when using the ~A command.

toplines Numeric Specifies the number of linesthet op command
prints; the default is 5.

ver bose Binary Invokest op in verbose mode; mai | x then
announces expansion of aliases as messages are sent.

VI SUAL String Specifies the pathname for the screen editor that will

be used when you use the vi sual command or the
~v escape. For example:

set VI SUAL=/usr/uchb/ vi

If your only terminal is a CRT, you can specify a
screen editor for the EDI TOR variable, too; then
eitheredit (~e) orvisual (~v) will invoke
the same editor.

The following example shows the use of the ver bose variable, discussed in
the previous table, that causes mai | x to display expansion of aliases as
messages are sent:

& set verbose

& mail eve

Subj ect: Meeting this afternoon

Enter nessage. Use Crl/d to termnate the letter.
Just a reminder, we're neeting at 2.

Ctrl/d

Cc:
/fusr/users/debra/.forward: line 0: debra...
forwarding to debra@range

debra... Connecting to .local...

debra... Sent

Customizing Your mailx Session D-5

Using Escape Commands in Your

mailx Session E

Thereis a specia set of commands, called escape commands or escapes,
that perform functions while you are in the process of writing a message.

Y ou use an escape command by entering it on aline by itself, with atilde
(~) asthe very first character. Thetilde is called an escape character because
it signals mai | x that an escape command follows. If you want to type areal
tilde as the very first character on aline in your message, you must type two

tildes.

Table E-1 describes the escape commands.

Table E-1: Escape Commands in mail

Command

~! command
~?

~: conmand
~_command

~a
~A
~b address _|ist

~C address_|ist
~C
~d

~e

Description

Allows the user to enter the tilde (~) character in the
body of the mail message.

Executes the shell conmmand you enter.
Prints a brief summary of escape commands.

Executes the specified mail command. Thisis useful for
performing housekeeping tasks such as redisplaying a
message. For example, entering ~: 10 selects and
displays message number 10 just as if you had entered
its number at the & mail prompt.

Inserts the string set in sign into the mail message.
Inserts the string set in Sign into the mail message.

Inserts the specified namesin address_1i st into the
Bcc: (blind carbon copy) list.

Adds the specified names to the Cc: (carbon copy) list.
Dump core.

Includes the file named dead. | et t er, in your home
directory, into the message.

Invokes the editor specified by the EDI TOR mail
variable to edit the message.

Table E-1

Command

~f [nessage | i st]

~F [nessage_|i st]

~h

~i string

~m [nessage_| i st]

~M [nessage | i st]

~p

~r file
~< file
~<lshell _cnmd

~q

~Q

~r file

~S subj ect

~t nane. ..
~V

~w file

(continued)

Description

Reads the current message or the specified messages into
your message.

Similar to ~f with the difference that all headers will be
included regardless of any discard, ignore, or retain
commands.

Edits the message header fields. This command displays
the fields one at atime so you can alter them by adding
text to the end, by using the Delete key, or by pressing
Citrl/u to erase the entire field and then retyping it. Use
this command with caution.

Insert the value of the named variable into the mail
message. For example: ~a is equivaent to ~i sign.
Includes the current message or the specified messages,
shifted one tab stop to the right. Thisis useful to set off
messages you are forwarding as part of your new
message.

Similar to ~mwith the difference that all headers will be
included regardless of any discard, ignore, or retain
commands.

Displays the message you are composing on your
terminal. Thisis useful to see that the message looks the
way you want it to and that it includes the right subject
heading and lists of recipients.

Reads the named file into the mail message. If the
argument begins with an exclamation point (!), the rest
of the string is taken as an arbitrary system command
and is executed with the standard output inserted into the

mail message.
Aborts the current message as if you press two Ctrl/C
interrupts.

Includes the named file in your message.

Makes subj ect the new subject heading, replacing the
previous heading.

Adds the names to the To: list of your message.

Invokes the editor specified by the VI SUAL mail
variable to edit the message.

Writes the message to the named file.

E-2 Using Escape Commands in Your mailx Session

Table E-1:

Command

~| conmand

~N

(continued)

Description

Pipes the message through the named command. Thisis
useful to make global changes in the message; for
example, if you are including a message in your new
message you can use the sed editor to prefix each line
with an angle bracket and a space by using the following
command:

~|sed s/ >]

Y ou can then add your own text; the result will look like
this:

> This is the text of the nessage

> you have i ncl uded.

>

This is the text you add yourself.

Using Escape Commands in Your mailx Session E-3

Using the mailx Commands F

The mai | x program has a large set of commands, some of which are
described in Appendix D and Appendix E. The commandsin Table F-1 can
help you to use the mai | x environment more effectively. The mai | x(1)
reference page lists some other commands that are useful only under special

circumstances.

Table F-1: Commands for the mailx Program

Command

| command

- [n]

alias
alias alias

alias alias nane...

group

al ternates
[alternate |ist]

chdir path
cd path

Description

Echoes the number of the current message.

Allows the user to write comments in mail
script files.

Executes the shell command you enter.

Selects and displays the previous message or the
nth previous message. For example, - 4 backs

up four messages.

With no arguments, lists the current aliases.
With one argument, displays only that alias.
With two or more arguments, creates an alias
with the first argument as its name and all
subsequent arguments as the members of the
dlias. The gr oup command is an alternate for
alias.

Informs mailx that the addresses listed in

al ternate |ist referto the user. If no

al ternate_|ist isspecifiedin the
command, the command displays the current list
of alternates.

Changes your current directory to the pathname
specified, as if you had executed the cd shell
command except that the directory you specify
with chdi r prevails only while you are in the
mail environment.

Table F-1. (continued)

Command

copy [nmessage_Iist]

file
co [nessage |ist]
file

Copy [nessage I st]

del ete
[message Ii st]
d [message Iist]

di scard
[field Iist]

dp
dt

echo string

edit [nessage Iist]

exit
ex
X

file [file€]
fi [file]
folder [file€]
fo [file€]

fol ders

F—2 Using the mailx Commands

Description

Copies the current message or the specified
messages into afile. If fil e exists, the
messages are appended. This command works
like save except that it does not mark copied
messages for deletion when you quit from

mai | x.

Saves the specified messages in a file whose
name is derived from the author of the first
message in the nessage_| i st. This
command will not mark the messages as being
saved. Otherwise equivalent to the Save
command.

Deletes the current message or the specified
messages. You can use theundel et e
command to recover messages you have
accidentally deleted.

Identical to thei gnor e subcommand.

Deletes the current message and prints the next
active message.

Echo the given string. Similar to the shell echo
command.

Invokes the editor specified by EDI TOR and
loads nessage | i st into the editor. When
you exit, any changes made are saved back into
nessage |list.

Exits mail without updating your system
mail box.

Selects amail file or folder. If you do not
specify afile, this command prints your current
path and file name and the number of messages
in your current file. 1f you specify afile or
folder, this command displays any changes you
have made to your current file and switches to
the specified file for reading.

Lists the names of the folders in your folder
directory.

Table F-1. (continued)

Command

foll omup nessage

Fol | owup
[message Ii st]

from|[/ogin]
f [login]
headers [n]
h [n]

hel p

hol d [nessage i st]
ho [nessage |ist]
preserve

[message Ii st]

pre [nessage |ist]
if condition

el se
endi f

Description

Responds to a message and record the response
in afile whose name is derived from the author
of the message. This command overrides the
record option if set.

Responds to the first message in

nmessage | i st and sends the message to the
author of each messagein nessage_1 i st.
The subject line is taken from the first message
and the response is recorded in a file whose
name is derived from the author of the first
message.

Prints the active message header. If you specify
alogin name, this command prints all the active
messages from the specified hame.

Lists active message headers, using the value of
the scr een variable as the number of headers
to display. See Appendix D for a description of
the scr een variable. If you have more than
one screenful of messages, you can move
forward or backward one screenful with the z
command. If you specify a message number,
the header s command displays the screenful
that includes the specified message.

Displays help information.

Holds, or preserves, the current message or the
specified specified messages in your system
mailbox instead of moving them to your nbox
file.

Construction for conditional execution of

mai | x subcommands. Subcommands following
i f areexecuted if condi ti on isTrue
Subcommands following el se are executed if
condi tionisnot True. Anel se isnot
required but the endi f isrequired. The
condition can be send for sending mail, or
recei ve for receiving mail.

Using the mailx Commands F-3

Table F-1. (continued)

Command

ignore [field...]

list
| ocal

mai | user_nane
m user_nane

nbox [nessage |ist]

nore [nessage i st]

More [nessage i st]

new [nessage | i st]

New [nessage | i st]

page [nessage i st]

Page [nessage i st]

F—4 Using the mailx Commands

Description

Sets mai | x to display messages without the
specified fields of the header when you use the
print ortype command. Note that this
command is different from the i gnor e variable
described in Appendix D. If you enter the

i gnor e command with no arguments, the
current list of ignored fields is displayed.

Displays a list of valid mailx subcommands.
List other names for the local host.
Sends a message to the specified user.

Marks the current message or the specified
messages to be moved to your mbox file. This
is helpful if you have set the hol d variablein
your . mai | r c file.

Displays the messagesin nessage /i st
using the defined pager program in PAGER.
Identical to the page subcommand.

Similar to the mor e subcommand, but also
displays the ignored header fields. See nor e
and i gnor e subcommands.

Marks each message in the nessage | i st as
not having been read. Identical to New,
unr ead, and Unr ead subcommands.

Marks each message in the nessage | i st as
not having been read. Identical to new,
unr ead, and Unr ead subcommands.

Displays the messagesin nessage /i st
using the defined pager program in PAGER.
Identical to the nor e subcommand.

Similar to page but aso displays the ignored
header fields. Identical to the Mor e
subcommand.

Table F-1: (continued)

Command

pi pe [nessage |ist]
[shel | _conmand]

| [nessage |ist]
[shel | _conmand]

next
n
+

Return

Print [nessage]
P [nessage]
Type [nessage]
T [nessage]
print [nessage]
p [nessage]
type [nessage]
t [message]

qui t

q

Reply
R
Respond

reply
r
respond

retain [field Iist]

Description

Pipes the message I i st through the

shel | _comand. The message is treated as
being read. If no arguments are given, the
current message is piped through the command
givenin cnd. If the page option is set, a
formfeed is inserted after each message.

Displays the next message.

Displays the current message or the specified
message, including any header fields specified
by the i ghor e command.

Displays the current message or the specified
message without any header fields specified by
thei gnor e command.

Leaves the mai | x program and updates your
system mailbox. If you do not have the hol d
variable set, al messages that you have not
deleted, saved, or preserved are moved to your
nbox file. If you do have hol d set, al these
messages will be left in your system mailbox
and marked as having been read.

Replies to a message. If the original message
was addressed to a group of people, replies sent
with the Repl y command are sent only to the
originator of the message.

Replies to amessage. If the original message
was addressed to a group of people, replies sent
with ther epl y and r espond commands are
sent to everyone who received the original
message.

Adds the header fieldsin fi el d_I i st to the
list of headers to be retained when displaying
message with the pri nt ort ype
subcommands. Uset ype and pri nt to view
messages in their entirety, including fields that
are not retained. If r et ai n is executed with no
arguments, it lists the current set of retained
fields.

Using the mailx Commands F-5

Table F-1: (continued)
Command

save [nessage |ist]
file

s [nessage_Iist]
file

Save [nmessage Iist]

set [variabl €]
se [variabl €]

shel |
sh

source file
so file

size [nessage |ist]

top [message Iist]
to [nessage i st]
t ouch

[message I st]

unalias alias_Iist
undel et e
nessage | i st

u nessage list

unr ead
[message I st]

Unr ead
[message i st]

F—6 Using the mailx Commands

Description

Saves the current message or the specified
messages in the file. Note that the messages are
added to the specified file so that you will not
delete the contents of the file.

Saves the specified messages in a file whose
name is derived from the author of the first
messages. The name of the file is assumed to be
the author’s name with al network addressing
stripped off.

If entered with no variables, the set command
displays all the options you have set. If you
specify a variable, the option will be set.
(Appendix E lists the available variables.)

Invokes the shell interactively.

Reads mail commands from a file (usually
.mailrc).

Displays the size in lines and characters of the
messages in nessage_| i st.

Displays the first five lines in the current
message or each of the specified messages.

Marks the messages in message_I i st to be
moved from your system mailbox to your
personal mbox when you quit the mai | x
program even though you have not read the
listed messages. The messages appear in your
mbox as unread messages. When you use touch,
the last message in nessage_I i st becomes
the current message.

Deletes the specified alias names.
Undel etes the specified messages.

Marks each message in message_I i st asnot
having been read. Identical to the new, New,
and Unr ead subcommands.

Marks each message in message_1 i st asnot
having been read. Identical to the new, New,
and unr ead subcommands.

Table F-1: (continued)
Command

unset

ver si on
vi sual

wite

[mressage list] file
w [nessage | i st]
file

z[+]
Z_

Description

Unsets (turns off) options. For example, if your
. mai | rc fileincludesaset hol d command,
you can use the unset command to disable the
hol d variable for the current mai | x session.

Displays the version banner for the mai | x
command.

Invokes the editor specified by the VI SUAL
mail variable to edit the current message.

Saves the current message or the specified
messages in the named file. Thisis similar to
the save command, except that wr i t e saves
only the body of each message; the headers are
deleted.

Moves forward or backward one screenful of
messages. Y ou can specify the number of
messages in a screenful with the scr een
variable. (See Appendix D.) To move forward
one full screen, enter z or z+; to move
backward, enter z- .

Using the mailx Commands F-7

Special Characters

I subcommand (ftp), 12-8
$ 12
%, 1-2
& operator, 6-7
& & operator, 7-8
() (parentheses)
See parentheses
; (semicolon)
See semicolon
? (question mark)
See question mark
? subcommand (ftp), 12-8
{} (braces)
See braces
|| operator, 7-8
~ (tilde)
See tilde

A

absolute pathname, 2-10
absolute permissions, 5-11
removing, 5-11
accessing
help, 1-9

account subcommand (ftp), 12-5

Index

active processes, 6-16
add (a) command (vi text editor), A-10
ali command in MH, 11-20
alias
listing in MH, 11-20
aliases, 8-10, 8-30
C shell, 8-10, 8-13
for mail, 11-16
Korn shell, 8-34
seeing current when in mail, 11-16
setting in C and Korn shells, 7-3
ampersand (&) operator
background processes, 6-7
anno command in MH, 11-20
append subcommand (ed editor), B-2
append text (A) command (vi text editor),
A-11
apropos command, 1-10
arguments to commands, 1-5
ASCII
codeset, C-2
ascii subcommand (ftp), 12-5
Asian languages
codesets that support, C-2
ask variable in mail, 11-16
askcc variablein mail, 11-17
assign default values to shell, 7-13

at (@) extension in locale name, C-9
autologin, 1-1

B

background
putting process in, 6-14
background process, 6-6, 67
displaying status for, 6-10
backslash, 7-12
to continue a command on the next line,
11-16
bg command, 6-14
bg command (C shell), 8-13
binary numbers
in permissions, 5-12
binary subcommand (ftp), 12-5
Bourne shell, 7-1, 8-1, 8-14
built-in commands, 8-18
built-in variables, 8-17
clearing variable values, 7-23
login script, 8-14
Jlogout script, 7-25
metacharacters, 8-16
pattern matching, 2-14
.profile login script, 7-17, 8-14
redirecting errors, 64
setting variables, 7-19
braces
using to group commands, 7-11
breaking remote cu connection (UUCP), 14-8
breaking remote tip connection (UUCP),
1414
built-in
commands, 8-12, 8-18, 8-33
variables, 8-11, 8-17, 8-32

Index—2

burst command in MH, 11-20
bye subcommand (ftp), 12-5

C

C locale, C—7
C shdll, 7-1, 8-1, 8-3
aliases, 7-3, 8-10
built-in commands, 8-12
built-in variables, 8-11
changing to another shell, 7-6
clearing variable values, 7-23
command history, 7-3, 8-8
.cshre login script, 7-17, 8-3
displaying value of variables, 7-22
filename completion, 7-3, 8-9
Jogin script, 7-17, 85
Jogout script, 7-25
metacharacters, 86
redirecting errors, 6-5
setting environment variables, 7-20
stop and start a process, 6-13
can’'t remember command name, 1-11
cancel print jobs, 3-13
canceling commands, 1-6
carbon copiesin mail, 11-3
getting a prompt for, 11-17
case sensitivity, 2-6
cat command, 3-6
cd command, 3-1, 44
Bourne shell, 8-19
Korn shell, 8-34
cd subcommand (ftp), 12—7
cdup subcommand (ftp), 12-7
change (c) command (vi text editor), A-14
change (¢) subcommand (ed editor), B—20

change word (cw) command (vi text editor),

A-14
changing
directories, 3-1, 44
directory permissions, 5-10
file permissions, 5-10
group, 5-19
identity, 5-17

name of file during copy command, 3-22

owners of files and directories, 5-19
shell permanently, 7-6
shell temporarily, 7-5
your password, 1-8
your shell, 74
character mapping
multiple-to-one, C-3
one-to-two, C-3
characters
list of pattern matching, 2-14
maximum number in filename, 2—7
quoting to make literal, 7-11
upper and lower case, 2-6
chgrp
command, 54
chgrp command, 5-19, 5-20
chmod command, 5-13, 5-3, 54, 5-8
chown command, 5-19, 5-20
clearing variable values, 7-22
close subcommand (telnet), 13-4
codesets
ASCII, C-2
eight-hit, C-2
1SO, C-2
part of locale, C-2
support for Asian languages in, C-2

collation, C-3
colon

usein vi text editor, 2-3, A-3, A—18
command ar gument

containing more than one word, 1-11
command history, 7-3

C shell, 88

Korn shell, 825
command mode (vi editor), A6
commands

alias, 8-13, 8-34

apropos, 1-10

bg, 6-14, 8-13

can't remember command name, 1-11

cat, 3-6

cd, 3-1, 44, 8-19, 8-34

chgrp, 5-19, 54

chmod, 54, 5-8

chown, 5-19

connecting with pipes, 7-8

continuing on the next line, 11-16

cp, 3-19, 3-20

date, 1-5

df, 3-14

diff, 3-24

documentation for, 1-9

echo, 7-22, 8-13, 8-19, 8-34

exit, 5-18

export, 8-19, 8-34

fc, 8-34

fg, 6-14, 8-13

file, 3-30

find, 67

flags, 1-5

history, 8-13, 8-34

in mailx, 1

Index-3

commands (cont.)

jobs, 6-11, 6-9, 8-13, 8-34

kill, 6-12

In, 3-13, 3-15

login, 1-1

logout, 8-13

Ipg, 3-12, 3-13

lpr, 3-10, 3-11

Iprm (remove from print queue), 3-13

Ipstat, 3-13

Is, 2-13, 3-18, 3-2, 3-23, 3-3, 34, 5-5,
56

man, 1-10, 1-5, 1-9

mkdir, 3-2, 4-1

more, 3-15, 3-6, 3-8

mv, 3-22, 3-23, 4-10

options, 1-5

page (pg), 3-6

passwd, 1-6, 1-8

pg, 3-6

pr, 37

ps, 6-8, 6-9

pwd, 2-7, 8-19, 8-34

redirecting output, 3-27

rehash, 8-13

repeat, 8-13

rm, 3-17, 3-19, 3-27, 3-28, 4-13

rmdir, 4-10, 4-12

run from remote host (UUCP), 14-18

running conditionally, 7-8

running in sequence, 7—7

running multiple, 7-7

set, 8-13, 8-19, 8-34

setenv, 7-20, 8-13

sort, 3-26

source, 8-13

Index—4

commands (cont.)
stopping execution, 1-6
su, 5-17
time, 8-13
times, 8-19, 8-34
touch, 3-29
trap, 8-19, 8-34
umask, 5-13, 8-19, 8-34
undias, 8-13, 8-34
unset, 7-23, 8-13, 8-19, 8-34
unsetenv, 7-23, 8-13
use of special charactersin, 7-11
using, 1-4
w, 6-15
wc, 6-3
who, 6-14
whoami, 5-17
communicating with remote host (UUCP),
141
comp command in MH, 11-20
comparing files, 3-24
comparison between shell features, 8-2
completing filenames, 7-3
computer virus, 5-21
concatenate files, 3-7
conditional running of commands, 7-8
connecting commands with pipes, 7-8
connecting to an unknown remote host via
modem (UUCP), 14-10
connecting to an unknown remote system via
modem (UUCP), 144
context searching
ed editor, B-12
vi text editor, A-16
continuing a command on the next line, 11-16

copying
changing file name during, 3-22
files from one directory to another, 3-20
files to other directories, 3-21
files (UUCP), 14-22
files, local host control (UUCP), 14-24
lines, ed editor, B-23
copying directories, 4-8
copying files, 3-19
correcting mistakes
in commands, 1-5
when logging in, 1-2
correcting typing errors
ed editor, B-3
vi text editor, A-11
cp command, 3-19
creating
directories, 3-2, 4-1
empty files, 3-29
logout script, 7-24
mail folders, 11-13
multiple names for same file, 3-19
symbolic links, 3-15
text files
ed editor, B-2
vi editor, A4
text files with vi, 2—2
CRT screen
use by talk command, 11-24
crt variable in mail, 11-17
csh.login system login script, 7-16
.cshrc login script

modifying to use MH program, 11-17, 7-17,

8-3
modifying for System V Habitat, 9-2

ct command (UUCP)
options, connecting to remote host via
modem, 14-14
Ctrl/C
to abort a mail message, 11-5
Ctrl/D, 5-18, 5-19
to end a mail message, 11-17
to log out, 14
cu command (UUCP)
connect local to remote, 14-8
options, connecting to a remote host, 14-3
using local commands, 14-3, 14-6
current directory, 2-7
current message, 11-9
customizing
login scripts, 7-18
customizing mailx, D-1
customizing your mail environment
by customizing the mail program, 11-15
by setting mail variables, 11-16

D

database security, 5-1
group, 5-3
date command, 1-5
date format, C+4
dead.letter file, 11-5
default
permission codes, 5-13, 5-7
prompts for shells, 7-5
setting permissions with umask, 5-13
values to shells, 7-13
default user mask (umask), 5-17
defining
custom shell variables, 7-19
login account, 5-2

Index-5

defining (cont.)
user environment, 7-13
delete character (x) command (vi text editor),
A-13
delete (d) subcommand (ed editor), B-18
delete key, 1-5
delete line (dd) command (vi text editor),
A-13
delete subcommand (ftp), 12—7
delete word (dw) command (vi text editor),
A-13
deleting
a specific line
ed editor, B-19
vi text editor, A-13
clearing a line (D) command, A-14
current line
ed editor, B—18
directories, 4-10
files, 3-28, 3-29
multiple lines
ed editor, B-19
vi text editor, A-13
one character at atime, A-13
print jobs from queue, 3-13
determining file type, 3-30
device name, specifying with cu command
(Uuck), 145
diff command, 3-24
differences between file and directory
permissions, 5-5
differences between files, 3-24
digests
exploding into messages in MH, 11-20
directories, 2—7
changing, 3-1, 44

Index—6

directories (cont.)
changing owner of, 5-19
changing permissions, 5-10
copying, 4-8
copying files from another directory, 3-20
creating, 4-1
definition of, 21
deleting, 4-10
displaying, 4-8
displaying current, 2—7
listing contents of, 3-2
managing, 4-1
parent, 2-10
path, 2-10
permissions, 5-5
removing current, 4-12
removing empty, 4-11
removing multiple, 4-12
renaming, 4-10
root, 2-9
search path, 7-23
tree structure, 2-8
disk partitions, 3-14
display log of UUCP utilities, 14-31
display subcommand (telnet), 134
displaying
active processes, 6-16
command status, 6-8
current directory name, 2—7
differences between files, 3-24
directories, 4-8
directory contents, 3-2
directory permissions, 5-5
disk partitions, 3-14
file permissions, 5-5
file type, 3-30

displaying (cont.)
files, 3-5
files with formatting, 3-7
files without formatting, 3-6
inactive users, 6-15
inode number of file, 3-16
multiple files at once, 3-6
online reference pages, 1-9
pathnames for al files, 6-8
print queue status, 3-12
printer names, 3-13
process information, 6-14
process status, 6-9
user identity, 5-18
user name, 5-17
value of variablesin C shell, 7-22
variable name, 7-12
variable values, 7-22
who is logged on, 1-10
who is on the system, 6-14
dist command in MH, 11-20
dot notation, 2-11
dot option for mail, 11-17
double quotes, 7-13

E

echo command, 7-22
Bourne shell, 8-19
C shell, 8-13
Korn shell, 8-34

ed editor
append subcommand, B2
change (c) subcommand, B—20
context searching, B—12
copying lines, B—23
correcting typing errors, B-3

ed editor (cont.)
creating and saving text files, B—2
delete (d) subcommand, B—18
deleting a specific line, B-19
deleting current line, B-18
deleting multiple lines, B-19
displaying the current line, B9
edit buffer, B-1
edit (e) subcommand, B-6, B—7
edit (ed) command, B—-7
global (g) operator, B-15, B-16
insert (i) subcommand, B—22
locating text, B-12
move (m) subcommand, B-19
moving text, B—19
print (p) subcommand, B-3
quit (g) subcommand, B-6
read (r) subcommand, B-6, B-8
removing characters, B-16
replacing character strings, B—13
saving part of afile, B-5
saving text, B4, B-5
starting the editor, B2
substitute (s) subcommand, B—13
substitutions on multiple lines, B-15
transfer (t) subcommand, B—23
using system commands, B—24
write (w) subcommand, B—4, B-6
edit (e) subcommand (ed editor), B—6, B—7
edit (ed) command (ed editor), B—7
editing
command lines in the Korn shell, 8-27
linked files, 3-13
mail messages, 114
empty files, 3-29

Index—7

end of message/conver sation (local letc/passwd file, 5-2, 5-3

communications), 11-22, 11-23 letc/password file, 7-13

ending ex line editor, A-18

alocal message, 11-22 execute permission, 5-5, 5-9

amail message, 11-3 exit command, 5-18, 5-19
enhanced security system, 1-1 exiting from the mail program, 11-15
environment variables, 7-14 export command

corresponding to locale categories, C-8 Bourne shell, 8-19

HOME, 7-15 Korn shell, 8-34

LANG, 7-15

LC ALL, 7-15 F

LC_COLLATE, 7-15
LC_CTYPE, 7-15
LC_MESSAGES, 7-15
LC_MONETARY, 7-15
LC_NUMERIC, 7-15

fc command (Korn shell), 8-34
fg command, 6-14

fg command (C shell), 8-13
file command, 3-30

file descriptors, 64

LC_TIME, 7-15 file system, 2-1, 2-5
LOGNAME, 7-15 ;
file type
MAIL, 7-15 determining, 3-30
PATH, 7-15 filename completion, 7-3, 8-29, 8-9
SHELL, 7-15 i
filenames, 2-5
TERM, 7-15 characters restricted in, 2—6
TZ, 7-15 i
files
erasing files

changing identity to access, 5-17

prevention, 3-20 changing permissions, 5-10

errorbells environment variable, A—23 comparing differences between two, 3-24

copying, 3-19

copying (UUCP), 14-22
creating empty, 3-29
definition of, 2-5

errors
redirecting output to afile, 64
escape char acter
including in a mail message, E-1
tilde asin mail, E-1

. _ descriptors, 64
escape commands in mail, E-1 determining type, 3-30
escape key displaying, 3-6
useinvi, A-3

displaying multiple, 3-6
displaying pathnames for all, 6-8
displaying with formatting, 37

/etc/group file, 5-3

Index—8

files (cont.)
inode number, 3-16
introduction to, 2—1
linking, 3-13
mailing to other users, 11-6
maximum length, 2—7
moving, 3-22
naming conventions, 2-6
noclobber variable to prevent erasure, 3-20
printing, 3-10
protecting, 5-3
read permission, 5-9
reading input from, 6-2
receiving (UUCP), 14-21
redirecting errors to, 64
redirecting output, 6-3
removing, 3-27
renaming, 3-22
restricted characters in filename, 2-6
restricting access, 5-15
saving mail messages in, 11-13
security, 5-1
security considerations, 520
sending (UUCP), 14-21
setting absolute permissions, 5-11
sorting contents of, 3-26
specifying with pattern matching, 2—13
used for security control, 5-2
wildcard use, 2-13

filtering standard input, 7-9

filters, 7-8

find command, 6-7

finger command, 10-2

flags, 1-5

folder command
in MH, 11-20

folder command in mail, 11-13
folder variable for mail, 11-17
folders command
in MH, 11-20
foldersin mail, 11-12, 11-20
creating, 11-13
listing in MH, 11-18, 11-20
names of in MH program, 11-18
removing in MH, 11-20
seeing what your current folder is, 11-13
setting up to use, 11-12
used by MH program, 11-18
foreground
putting process in, 6-14
foreground processes, 6-6
forget command name, 1-11
formatting a file, 3-7
forw command in MH, 11-20
forwarding files (UUCP), 14-14
forwarding mail messages, 11-14
ftp subcommands, 12-5, 127, 12-8
full pathname, 2-10

G

get subcommand (ftp), 12-5
getting help, 1-9
global (g) operator (ed editor), B-15, B-16
global substitution in vi text editor, A—20
group file, 5-1
grouping commands
with braces, 7-11
with parentheses, 7-11
groups, 5-3
guidelines
for setting password, 1-7

Index—9

H

hard links, 3-14
help, 1-9
getting from the mail program, 11-14
help command in mail, 11-14
help subcommand (ftp), 12-8
history command
C shell, 8-13
Korn shell, 8-34
history of recently used commands, 8-25, 8-8
HOME environment variable, 7-15

i-number, 3-16
1/0, 6-1
ignorecase environment variable, A—23
illegal charactersin filenames, 2-6
inbox folder in MH program, 11-18
inc command in MH, 11-18, 11-20
including mail in MH, 11-18, 11-20
inline editing in Korn Shell, 74
inode number, 3-16
and symbolic links, 3-17
moving files, 3-22
input
reading, 6-2
input mode (vi text editor), A-10
insert (i) subcommand (ed editor), B—22
insert text (I) command (vi text editor), A-11
insert text (i) command (vi text editor), A—10
intermediate hosts used in file transfers
(UucCp), 14-14
inter nationalization
LANG environment variable, 7-15, C-7
LC_ALL environment variable, 7-15, C-8

Index—-10

internationalization (cont.)
LC_COLLATE environment variable, 7-15,
Cc-8
LC_CTYPE environment variable, 715,
C-8
LC_MESSAGES environment variable,
7-15, C-8
LC_MONETARY environment variable,
7-15, C-8
LC_NUMERIC environment variable, 7-15,
C-8
LC_TIME environment variable, 7-15, C-8
pattern matching, 2-14
1 SO codesets, C-2

J

jobs command, 6-11, 6-9
C shell, 8-13
Korn shell, 8-34

K

kill command, 6-12

killing ajob or process, 6-12

Korn shell, 7-1, 8-1, 8-19
aliases, 7-3, 8-30
built-in commands, 8-33
built-in variables, 8-32
clearing variable values, 7-23
command history, 7-3, 8-25
editing command lines, 8-27
filename completion, 7-3, 8-29
inline editing, 74
.kshrc login script, 7-17, 8-22
login script, 8-20, 8-22
Jogout script, 7-25

Korn shell (cont.)
metacharacters, 8-24
pattern matching, 2-14
.profile login script, 7-17, 8-20
redirecting errors, 6-4
setting variables, 7-19
kshrc login script, 7-17, 8-22

L

LANG environment variable, 7-15, C—7
language
part of locale, C-1
LC_ALL environment variable, 7-15, C-8
dangers of setting, C-10
LC_COLLATE environment variable, 7-15,
Cc-8
LC_CTYPE environment variable, 7-15, C-8
LC_MESSAGES environment variable, 7-15,
Cc-8
LC_MONETARY environment variable,
7-15, C-8
LC_NUMERIC environment variable, 7-15,
C-8
LC_TIME environment variable, 7-15, C-8
led subcommand (ftp), 12—7
length
maximum for files, 2—7
linking files, 3-13, 3-15
links
hard, 3-14
removing, 3-17
soft, 3-14
symbalic, 3-14
list
of pattern matching characters, 2-14

listing directory contents, 3-2, 3-3, 3-2
listing mail messages, 11-7
literal characters, 7-11
using backslash, 7-12
using double quotes, 7-13
using single quotes, 7-12
In command, 3-13, 3-15
local commands (UUCP), 14-12, 14-3, 14-6,
149
local communication facility, messages
sending, write command, 11-21
local host control of file access (UUCP)
uuto command, 14-24
local variables, 7-16
|locale command, C-5
locales
categories of, C-8
determining which locale is set, C-5
effect on date and time format, C—4
effect on messages, C-5
effect on software, C—2
effect on sort order, C-3
environment variables used with, C-6
introduction to, C-1
name format for, C-6
names of
a (@) modifier in, C-9, C-7
numeric and monetary format in, C-5
setting, C—7
preferred method for, C—7
restrictions when, C-10
yes/no response strings, C-5
locating command names, 1-10
locating text
ed editor, B-12
vi text editor, A-16

Index—-11

logging in
Seelogin
logging into another user account, 5-17
logging out, 14
script, 7-24
login
with enhanced security system, 1-1
login account, 5-2
login asroot user, 5-19
login directory, 2—7
Jogin login script
modifying to use MH program, 11-17
modifying for System V Habitat, 9-2
login program, 7-13
login script
activating umask, 5-16
Bourne shell, 8-14
C shell, 8-3, 85
csh.login system script, 7-16
.cshre script, 7-17, 8-3
Korn shell, 8-20, 8-22
kshrc script, 7-17, 8-22
Jogin script, 7-17, 8-5
.profile script, 7-17, 8-14, 8-20
profile system script, 7-16
login scripts
customizing, 7-18
LOGNAME environment variable, 7-15
logout command (C shell), 8-13
logout script, 7-24, 7-25
lower case characters, 2-6
Ipq (display print queue) command, 3-12
Ipr command, 3-10
Iprm (remove from print queue) command,
3-13

Index—-12

Is command
output from -I option, 34
Is (list directory contents) command, 3-2
Is (list directory) command, 3-18, 3-2, 3-3,
34,55,56
Is subcommand (ftp), 12—7

M

Mail, 11-1 to 11-17
mail
aliases, 11-16
aliases, listing in MH, 11-20
annotating messages in MH, 11-20
announcement of new messages on arrival,
11-7
checking for messages in MH, 11-20
composing messages in MH, 11-20
compressing messages into afilein MH,
11-20
current message, defined, 11-9
customizing, 11-15
deleting messages in MH, 11-20
displaying messages in MH, 11-20
distributing messages in MH, 11-20
editing a message, 114
ending a message, 11-3
entering a subject for, 11-16, 11-3
exiting from, 11-15
exploding digests in MH, 11-20
—f option to select afolder, 11-13
filing messages in MH, 11-20
folders, 11-12
creating, 11-13
setting up to use, 11-12
formatted listings of messages in MH, 11-20
forwarding messages in, 11-14

mail (cont.)

forwarding messages in MH, 11-20
handling with the MH message handling
program, 11-17
getting help in, 11-14
including messages in MH
asynchronously, 11-20, 11-18, 11-20
listing foldersin MH, 11-18, 11-20
listing message headers, 11-7, 11-8
listing messages in MH, 11-20
mailing filesin, 11-6
marking messages in MH, 11-20
messages moved to mbox file, 11-10
notification when messages are waiting for
you, 117
preventing moving of messages to mbox file,
11-10
reading messages in, 11-7
by number, 11-8
reading messages in MH, 11-20
removing foldersin MH, 11-20
removing messages in MH, 11-20
replying to messages in, 11-10
replying to messages in MH, 11-20
reporting recipients of messagesin MH,
1120
saving messages in files, 11-13
saving messages in folders, 11-13
seeing what your current folder is, with the
folder command, 11-13
selecting messages by content in MH, 11-20
sending messages, 11-2, 11-3
by carbon copy, 11-17, 11-3
sending messages in MH, 11-20
with a prompting front end, 11-20
sending messages to aliases, 11-16

mail (cont.)
setting or listing a folder in MH, 11-20
sorting messages in MH, 11-20
specifying length of screen for message
display, 11-17
specifying location of folders for, 11-17
specifying location of record copies of
outgoing mail, 11-17
specifying options interactively, D—1
the MH program, 11-17, 11-21
variables, 11-16 to 11-17
verbose mode, example of, D-5
MAIL environment variable, 7-15
mailing files, 11-6
from the shell, 11-6
.mailrc file
modifying to customize mail, 11-15, 11-12
mailx, 11-1 to 11-17
escape commands, E-1
mailx command
to enter the mail environment, 11-7
mailx commands, F-1
man command, 1-5, 1-9
man pages, 1-9
managing directories, 4-1
map command (vi text editor), A—23
mark command in MH, 11-20
maximum length for file names, 2—7
mbox file, 11-10
preventing moving of messages to, 11-10
message
annotating in MH, 11-20
checking for in MH, 11-20
composing in MH, 11-20
compressing into filesin MH, 11-20
deleting in MH, 11-20

Index—-13

message (cont.)
displaying alist of in MH, 11-18
displaying in MH, 11-20
distributing in MH, 11-20
exploding digests into in MH, 11-20
filing in MH, 11-20
formatted listings of in MH, 11-20
forwarding in MH, 11-20
including in MH
asynchronously, 11-20, 11-18, 11-20
listing in MH, 11-20
marking in MH, 11-20
reading in MH, 11-20
removing in MH, 11-18, 11-20
replying to in MH, 11-20
reporting recipients of in MH, 11-20
selecting by content in MH, 11-20
sending in MH, 11-20
with a prompting front end, 11-20
sorting in MH, 11-20
messages, C-5
messages (local communications)
ending, end-of-file symbol (EOF), 11-22,
11-23
long, in files, 12-9
sending, write command, 11-21
metachar acters
Bourne shell, 8-16
C shell, 8-6
Korn shell, 8-24
mget subcommand (ftp), 12-5

MH message handling program, 11-17, 11-21

annotating messages in, 11-20
checking for messages in, 11-20

commands used at the shell prompt, 11-17

composing messages in, 11-20

Index—-14

MH message handling program (cont.)
compressing messages into afilein, 11-20
deleting messages in, 11-20
distributing messages in, 11-20
exploding digests in, 11-20
filing messages in, 11-20
finding if installed on your host, 11-17
forwarding messages in, 11-20
including messages in

asynchronously, 11-20, 11-20
listing diases in, 11-20
listing folders in, 11-20
listing messages in, 11-20
marking messages in, 11-20
modifying your path to use, 11-17
reading messages in, 11-18, 11-20
removing foldersin, 11-20
removing messages in, 11-18, 11-20
replying to messages in, 11-20
reporting recipients of messages in, 11-20
selecting afolder in, 11-18
selecting messages by content in, 11-20
sending messages in, 11-20

with a prompting front end, 11-20
setting or listing a folder in, 11-20
sorting messages in, 11-20
tailoring features of, 11-21
uses folders, 11-18

mhl command in MH, 11-20

mhmail command in MH, 11-20

mkdir command, 3-2, 4-1

mkdir subcommand (ftp), 12-7

monetary formats, C-5
representation of fractions, C-5

monitoring UUCP, 14-32

more command, 3-6
used by mail to display messages, 11-17,
11-8
mor e than one word in command argument,
1-11
move command, 4-10
move (m) subcommand (ed editor), B-19
moving
files, 3-22, 3-23
text
ed editor, B-19
vi text editor, A-17
moving directories, 4-10
mput subcommand (ftp), 12-5
msgcheck command in MH, 11-20
multibyte characters
support for in codesets, C-2
multiple names for same file, 3-19
multitasking, 6-6
mv command, 3-22, 4-10, 3-23

N

naming files, 2—6

next command in MH, 11-20

noignore environment variable, A—23
nonumber environment variable, A—23
noshowmatch environment variable, A-23
number environment variable, A—23
numeric formats, C-5

O

octal numbers
in setting permissions, 5-11
online documentation, 1-9

open line (0) command (vi text editor), A-11
open previous line (O) command (vi text
editor), A-11
open subcommand (ftp), 12-5
options to commands, 1-5
options, mail
specifying interactively, D—1
owner
changing for files and directories, 5-19

P

packf command in MH, 11-20
page (pg) command, 3-6
parameter subsitution, 7-21
parent directory, 2-10
parentheses

using to group commands, 7-11
passwd command, 1-6
password

file, 5-1, 52

for logging in, 1-2

forgotten, 1-9

restrictions, 1-8

security restrictions, 1-7

selecting new, 1-7

setting, 1-6

setting with enhanced security system, 1-1
PATH environment variable, 7-15

setting for System V habitat, 9-2
PATH variable, 7-23
path, modifying to use MH program, 11-17
pathname, 2-10, 2-8

absolute, 2-10

dot notation, 2—-11

full, 2-10

relative, 2-10

Index—-15

pathname (cont.) printing

using tilde in, 2-12 files, 3-10
pathname conventions (UUCP), 14-1 on a specific printer, 3-11
pattern matching, 2-13 on default printer, 3-11
changing file permissions with, 5-10 options, 3-11
internationalized, 2—-14 reference pages, 1-9
list of allowable characters, 2-14 Process | dentification Number (PID), 6-7
removing multiple files, 3-28 process identifier, 61
permission combinations for umask, 5-14 processes, 6-1
permissions displaying active, 6-16
binary numbers, 5-12 displaying status, 6-8, 6-9
changing, 5-3 displaying who is running them, 6-14
combinations, 5-12 grouping commands, 7-11
directory, 5-5 killing, 6-12
read, 5-9 resuming, 6-13
setting absolute, 5-11 running through pipes, 7-10
setting file and directory, 5-8 stopping, 6-11
setting with octal numbers, 5-11 .profile login script
specifying with umask, 5-15 modifying to use MH program, 11-18, 7-17,
pg command, 3-6 8-14, 8-20
pick command in MH, 11-20 modifying for System V Habitat, 9-2
PID number, 6-7 programs
pipe character, 7-8 types of, 6-1
pipes and filters prompt
running multiple commands, 7—7 question mark as, in the mail program, 11-7
POSIX locale, C-7 prompter command in MH, 11-20
pr command, 3-7 prompts for shells, 7-5
prev command in MH, 11-20 protecting files, 5-3
prevent erasure of files, 3-20 ps command, 6-8, 6-9
print public directory (UUCP), 14-1
working directory (pwd), 2—7 put subcommand (ftp), 12-5
print (p) subcommand (ed editor), B-3 pwd command, 2-7
printer Bourne shell, 8-19
specifying in print command, 3-10 Korn shell, 8-34
printer queues, 3-10, 3-12 pwd subcommand (ftp), 12-7

Index—-16

Q

question mark

as mail prompt, 11-7
queues

printer, 3-10
quit (q) command (vi editor), A—4
quit (q) command (vi text editor), A-16
quit (g) subcommand (ed editor), B-6
quit subcommand (ftp), 12-5
quit subcommand (telnet), 13-4
quotes

double, 7-13

single, 7-12
quoting, 7-11

backslash, 7-12

double quotes, 7-13

single quotes, 7-12

to display variable names, 7-12

R

R command in mail, 11-10

r command in mail, 11-10

r (read) permission, 5-9
rcvstore command in MH, 11-20
read permission, 5-5

read (r) subcommand (ed editor), B-6, B-8

reading input, 6-2
reading input from pipes, 7-8
reading mail messages, 11-7

by number, 11-8
reading messagesin MH, 11-18
receiving files (UUCP), 14-21
record variable for mail, 11-17
recv subcommand (ftp), 12-5

redirecting
errors, 64
input, 6-2
output, 3-27, 6-2, 6-3
output, of background processes, 6-7
redirecting both standard errors and output,
6-5
redirecting errors, 64
Bourne shell, 64
C shell, 6-5
Korn shell, 64
redirecting input/output, 6-1
reexecuting commands, 8-26, 8-9
reference pages, 1-9
referencing variables, 7-20, 7-21
refile command in MH, 11-20
rehash command (C shell), 8-13
relative pathname, 2-10
remote commands, running in UUCP, 14-14
remote file transfers (UUCP), 14-14
remote host
running commands from (UUCP), 14-18
remote login, 13-1, 13-3
remove directory command, 4-12
removing
absolute permissions, 5-11
characters
ed editor, B-16
vi text editor, A-13
current directory, 4-12
directories, 4-10, 4-11, 4-12
file links, 3-17
files, 3-27, 3-28
jobs from print queue, 3-13
links, 3-17

Index—-17

removing files
with verification, 3-29
rename subcommand (ftp), 12—7
renaming
files and directories, 3-22
renaming directories, 4-10
repeat command (C shell), 8-13
replacing character strings
ed editor, B-13
vi text editor, A—20
reply command in MH, 11-20
replying to mail messages, 11-10
caution when, 11-10
including other recipients in your reply,
11-10
reset environment variables, 7-21
restart a process, 6-13
Restricted Bourne shell, 7-1
restricted Bourne shell, 74
restricted charactersin file names, 2-6
restricting file access, 5-15
restricting user environment
restricted Bourne shell, 74
restrictions
password, 1-8
resuming a process, 6-13
returning to local host during remote
connection (UUCP), 14-14, 14-8
rlogin command, 13-1
rm command, 3-17, 3-27, 3-28
rmdir command, 4-10, 4-11, 4-12
rmdir subcommand (ftp), 12—7
rmf command in MH, 11-20
rmm command in MH, 11-20
root directory, 2-9

Index—-18

root user
becoming, 5-19
defining shell for, 5-19
tasks performed by, 5-18
run shell, 7-28
runigue subcommand (ftp), 12-5
running
background processes, 6-6, 6-7
commands conditionally, 7-8
commands in sequence, 7—7
foreground processes, 6-6
shell procedures, 7-27, 7-28

running commands on a remote host (UUCP),

14-18
ruptime command, 10-5

S

s (set) permission, 5-9
saving
text filesin vi, 2-3
saving mail messages
in files, 11-13
in folders, 11-13
saving part of afile
ed editor, B-5
vi text editor, A—21
saving text
ed editor, B-2, B4, B-5
vi text editor, A-16
scan command in MH, 11-20
security
enhanced system, 1-1
group, 5-2
restricted Bourne shell, 74
user, 5-2

security considerations, 5-20
security files, 5-1
selecting a folder in mail, 11-13
semicolon
running commands in sequence, 7-7
send command in MH, 11-20
send subcommand (ftp), 12-5
sending
files to remote hosts (UUCP), 14-14
files via UUCP, 14-21
local messages, 11-21
mail messages, 11-2
sending a long message, 12-9
sending mail messages, 11-3
set command
Bourne shell, 8-19
C shell, 8-13
Korn shell, 8-34
set user/group ID permission, 5-9
setenv command, 7-20
setenv command (C shell), 8-13
setting
absolute permissions, 5-11
dliasesin C and Korn shells, 7-3
default file permissions, 5-13
environment variables, 7-14, 7-18
environment variables in all shells, 7-21
environment variables in C shell, 7-20
file and directory permissions, 5-8
file permissions, 5-3
PATH variable, 7-24
permissions using octal numbers, 5-11
user mask, 5-13
setting password
with enhanced security system, 1-1

shell
aliases, 8-10, 8-30

assign default values to environment, 7-13

built-in commands, 8-12, 8-18, 8-33
built-in variables, 8-11, 8-17, 8-32
changing, 74
changing permanently, 76
changing temporarily, 7-5
command history, 8-25, 8-8
command interpreter, 1-4
comparison of features, 8-2
default prompts, 7-5
default run shell, 7-28
default shell, 7-1
defining custom variables, 7-19
defining for root user, 5-19
editing command lines, 8-27
features, 8-1
filename completion, 8-29, 8-9
login script, 8-14, 8-20, 8-22
mailing files from, 11-6
metacharacters, 8-16, 8-24, 86
program, 1-3
prompt, 1-2
restricting users, 74
sample C shell login script, 8-3
scripts, 7-26
setting environment variables, 7-21
using the source command, 11-18e
specia characters, 2-6, 7-11
subshells, 7-2

SHELL environment variable, 7-15

shell scripts, 7-26
compatibility with System V, 94
writing, 7-26

Index—19

shell variables, 7-16
defining custom, 7-19
show command in MH, 11-20
showmatch environment variable, A—23
single quotes, 7-12
soft links, 3-14
sort command, 3-26
sort file contents, 3-26
sort rules, C-3
sorting file contents, 3-26
sortm command in MH, 11-20
sour ce command
in C shell, 8-13
to invoke shell options for MH, 11-18e
special characters, 7-11
specifying
default run shell, 7-28
files with pattern matching, 2—13
printer in print command, 3-10
standard error, 6-1, 64
standard input, 6-1, 6-2
filtering, 7-9
standard output, 6-1, 6-2
starting the ed editor, B-2
starting the vi text editor, A—4
status information (UUCP), 14-27
status subcommand (ftp), 12-8
status subcommand (telnet), 134
stderr, 6-2
stdin, 6-2
stdout, 6-2
stop and restart a process, 6-13
stopping a process with Ctrl/C, 6-11
stopping commands, 1-6
stopping (killing) a job or process, 6-12

Index—20

structure of directories, 2-8
su command, 5-17
subcommands (ftp), 12-5, 12—7, 12-8
subdirectories, 2-7
subject
entering for a mail message, 11-16, 11-3
getting a prompt for in mail, 11-16
subshdlls, 7-11, 7-2
subsituting
parameters, 7-21
substitute (s) subcommand (ed editor), B-13
substitution
global, in vi text editor, A—20
sunique subcommand (ftp), 12-5
superuser, 5-17
superuser authority, 5-5
tasks, 5-18
suspend a process, 6-13
switch to root user, 5-19
symbolic links, 3-14
and inode numbers, 3-17
system administrator responsibilities, 5-18
system prompts, 7-5
System V habitat, 9-1 to 9-5
accessing, 9-2
command summary, 94 to 9-5
location of, 9-3
modifying .cshrc file for, 9-2
modifying .login file for, 9-2
modifying .profile file for, 9-2

T

tabstop environment variable, A—23
talk command
use of CRT screen by, 11-24

tasks performed by root user, 5-18
telephone number, specifying with cu
command (UUCP), 14-5
telnet command, 13-3
how to use, 13-3
TERM environment variable, 7-15
terminating a connection (local
communications), 11-22, 11-23
terminating a job or process, 6-12
terminating a UUCP job with the uustat
command, 14-27
terminating remote cu connection (UUCP),
14-8
terminating remote tip connection (UUCP),
1414
territory
part of locale, C-2
text editors
overview of, 2-1
tilde
in text files, 2-2
notation in pathname, 2—12
tilde as escape character in mail, E-1
time command (C shell), 8-13
time format, C4
punctuation in, C4
times command
Bourne shell, 8-19
Korn shell, 8-34
tip command (UUCP)
options, connecting to a remote computer,
14-8
options, connecting to a remote host, 14-9
using local commands, 14-12, 14-9
touch command, 3-29

transfer (t) subcommand (ed editor), B—23
transfer-status information (UUCP), 14-27
trap command
Bourne shell, 8-19
Korn shell, 8-34
tree structure, 2-8
tree structure (file system), 2-5
types of programs, 6-1
typing errors, correcting
ed editor, B-3
vi text editor, A-11
TZ environment variable, 7-15

U

umask

permission combinations, 5-14
umask command, 5-13

Bourne shell, 8-19

C shell, 85

Korn shell, 8-34
unalias command

C shell, 8-13

Korn shell, 8-34
undo (u) command (vi text editor), A-15
UNIX

case sensitive, 26

UNIX-to-UNIX Copy Program (UUCP), 14-1

unset command, 7—-23

Bourne shell, 8-19

C shell, 8-13

Korn shell, 8-34
unsetenv command, 7-23
unsetenv command (C shell), 8-13
upper case characters, 2-6
user commands

summary, 9-5

Index—-21

user environment, 7-13
assign default values, 7-13
user identity
confirming, 5-18
user mask, 5-13
activating in login script, 5-16
default, 5-17
username, 1-2
users
displaying inactive, 6-15
displaying who is logged in, 6-14
using
backslash to quote a single character, 7-12
braces to group commands, 7-11
commands, 1-4
delete key to correct mistakes, 1-5
filters, 7-8
parentheses to group commands, 7-11
pipelines, 7-8
pipes and filters to run multiple commands,
-7
tilde in pathname, 2-12
wildcards in filenames, 2-13
Jusr/spool/uucppublic file (UUCP), 14-1
UUCP, 14-1
uulog command (UUCP), 14-31
uumonitor command (UUCP), 14-32
uustat command (UUCP), 14-27
uuto command (UUCP)
copying files, local host control, options,
14-24
uux command (UUCP), 14-18
options, used to run remote commands,
14-14

Index—22

Vv

variable name
displaying, 7-12
variables
clearing values of, 7-22
displaying values for, 7-22
in mailx, D-1
mail, 11-16 to 11-17
referencing, 7-20
shell built-in, 8-11
variables, shell built-in, 8-17, 8-32
verbose subcommand (ftp), 12-8
vi command, 2-2
vi editor
$ cursor movement command, A-8
(cursor movement command, A-8
) cursor movement command, A—8
{ cursor movement command, A—-8
} cursor movement command, A-8
0 cursor movement command, A—8
b cursor movement command, A—7
command mode, A—6
Ctrl/B cursor movement command, A-8
Ctrl/F cursor movement command, A-8
h cursor movement command, A—6
j cursor movement command, A—6
k cursor movement command, A—6
| cursor movement command, A—6
used to edit mail messages, 114
moving within afile, A—6
quit (g) command, A—4
w cursor movement command, A—7
Vi environment variables
errorname, A-23
ignorecase, A-23
noignorecase, A—23

Vi environment variables (cont.)
nonumber, A-23
noshowmatch, A—23
number, A-23
showmatch, A-23
tabstop, A—23
wrapmargin, A—23
wrapscan, A-23

Vi text editor
/ search command, A-16
add (a) command, A-10
append text (A) command, A-11
change (¢) command, A-14
change word (cw) command, A-14
clearing aline (D) command, A-14
context searching, A—16
copying text, A-18
correcting typing errors, A-11
customizing your environment, A—22
delete character (x) command, A-13
delete line (dd) command, A-13
delete word (dw) command, A-13
deleting a block of text, A—22
environment variables, A—23
ex line editor commands, A-18
getting started, A-2
insert (i) command, A-10
insert text (1) command, A-11
locating text, A—16
map command, A—23
moving text, A-17
next (n) search command, A-17
open line (0) command, A-11

open previous line (O) command, A-11

opening text files, A—4
paste (p) command, A-17

vi text editor (cont.)
quit (g) command, A-16
saving part of afile, A—21
saving text files, A—16
saving your customizations, A—24
searching for text, A—16
starting the editor, A—4
substituting text, A—20
undo (u) command, A-15
using advanced techniques, A—16
write (w) command, A-16

virus, 5-21

wW

w command, 6-15
w (write) permission, 5-9
whatnow command in MH, 11-20
who command, 6-14
who islogged on, 1-10
whoami command, 5-17
confirming identity, 5-18
whom command in MH, 11-20
wildards
removing multiple directories, 4-12
wildcards, 2-13
changing file permissions with, 5-10
use in removing files, 3-29
working directory, 2—7
wrapmargin environment variable, A—23
wrapscan environment variable, A—23
write command (local communications),
11-21
write permission, 5-5, 5-9
write (w) command (vi text editor), A-16
write (w) subcommand (ed editor), B—4, B-6

Index—23

writing
logout script, 7-24
mail messages, E-1
shell scripts, 7-26
shell scripts (example), 7-27

X

X (execute) permission, 5-9

Z

z subcommand (telnet), 134

Index—24

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact
Continental USA, 800-DIGITAL Digital Equipment Corporation
Alaska, or Hawaii P.O. Box CS2008

Nashua, New Hampshire 03061
Puerto Rico 809-754-7575 Local Digital subsidiary
Canada 800-267-6215 Digital Equipment of Canada

Attn: DECdirect Operations KAO2/2
P.O. Box 13000

100 Herzberg Road

Kanata, Ontario, Canada K2K 2A6

International —_— Local Digital subsidiary or
approved distributor
Internal2 _— SSB Order Processing — NQO/V 19

or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road

Nashua, NH 03063-1260

aFor internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader’s Comments Digital UNIX
Command and Shell User's Guide
AA-PS2HD-TE

Digital welcomes your comments and suggestions on this manual. Your input will help us to
write documentation that meets your needs. Please send your suggestions using one of the
following methods:

e This postage-paid form

* Internet electronic mail: r eaders_coment @k3. dec. com

* Fax: (603) 881-0120, Attn: UEG Publications, ZKO3-3/Y 32

If you are not using this form, please be sure you include the name of the document, the page
number, and the product name and version.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manua says)

Completeness (enough information)

Clarity (easy to understand)

Organization (structure of subject matter)

Figures (useful)

Examples (useful)

Index (ability to find topic)

Usability (ability to access information quickly)

Please list errorsyou have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the softwar e described by this manual are you using?

Name/Title Dept.
Company Date
Mailing Address

Email Phone

_______ Do Not Cut or Tear — Fold Here and Tape ____ _ el __.

™
Hﬂﬂﬂnau NO POSTAGE

NECESSARY IF
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
UEG PUBLICATIONS MANAGER
ZKO3-3/Y32

110 SPIT BROOK RD

NASHUA NH 03062-9987

Do Not Cut or Tear — Fold Here

Cut on
Dotted
Line

