Digital UNIX

Developing Applications for the
Display PostScript System

Order Number: AA-Q15WB-TE

March 1996
Product Version: Digital UNIX Version 4.0 or higher

This manual introduces the Display PostScript system extension of
Digital’s Worksystem Software and describes how to develop
applications that use this extension.

Digital Equipment Corporation
Maynard, Massachusetts

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

O Digital Equipment Corporation 1989,1992,1993,1994,1996
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, Alpha AXP, AlphaGeneration, AlphaServer, AlphaStation, AXP, Bookreader,
CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem,
DECterm, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, OpenVMS,

POLY CENTER, Q-bus, StorageWorks, TruCluster, TURBOchannel, ULTRIX, ULTRIX Mail
Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS, XUI, and
the DIGITAL logo.

Adobe, PostScript, and Display PostScript are registered trademarks of Adobe Systems, Inc.
UNIX is aregistered trademark in the United States and other countries licensed exclusively
through X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Manual

U T [T o PN iX
OFganiZaIION ...eeveeie ettt e et et e e e e e e et e e eeee iX
Related DOCUMENTS iiiiii et e e e e e e e e eaens iX
Reader’ S COMMENES ...ciiiii e e e e e e e e e e eaens X
(0010177 01110 1S Xi

1 Introduction to the Display PostScript System

1.1 Overview of the Display PostScript System —.......coeiviiiiiiiiiiiineeeeees 1-1
1.2 PostScript Language Imaging Capabilitiescccooveeiiiiiiiiinieneens 1-1
1.3 Display PostScript System in WS ..o 1-2

2 Components and Concepts

2.1 COMPONENES .eieeiiieiii ettt e e e e e e e e e reeen s 2-1
211 POSISCript INTErPreter ..o 2-1
212 Client Library ...ooooooeeeiiiceeiis e 22
213 The Trandation Program: PSWIapcceeeeeeeveiiiinnnneenennns 2-2

2.2 CONCEPES ettt ettt 2-2
221 CONMEXES et 2-2

2211 EXecution CONEXE ...oocevvvviiiiiieeeeceeiie e 2-3

A T = R 0] | (=) A 2-3

31
32
33

34

35

3.6

4.1
4.2
4.3

2.2.2 Context Record and DPSContext Handle ccoevvvveinnnen. 2-3

2.2.3 CONEXE SLALUS ..onivieieiei e e aeas 24
2.24 CUurrent CoNEXE ..vieeieii e 24
225 GPBCE e 2-4
2.2.6 TAENLITIEIS e 2-4
227 Coordinate SYStEMS ..ooeniiiiii e 25

Getting Started

Developing a Typical Application —ooooviiiiiiii e 31
Basic Application ReqUIreMents ccoovveiiiieriiiiieeeie e 34
Sample Application: examplemainc.coooiiiiiiiinneii e 35
331 What the Sample Application DOES ccooveviieiiiiieieiies 36
332 TheMain Codecooooviiiiiiiiiiii e 36
3.3.3 SourceFilefor Wrap oooviiiieii e 39
3.34 Running examplemainccccooiiuiiieiiiiineeee e 3-10
Building XDPS AppPliCatioNS uniiiiiiiieieiie e 3-10
341 Including Header Files o.ooiiiiiiiiiiei e 3-10
34.2 ComPiling oo 311
34.3 LinKING oo 311
3.4.4 Invoking pswrap from aMakefileooiiiiiiiiii 311
345 Sample Makefile ..o 3-12
More Sample AppliCatioNS ...ocoeviiieiee e 3-13
3.5.1 Examples Contrasting Design Approachesccccceeeeeee 3-13
3.5.2 Running the Sample Applicationsccccoiviiiiiiiiiiiineens 3-15
Summary of BaSiC TaSKS ...oeeveeiiiiiiiiieeii e 3-16

Advanced Concepts and Tasks

PostScript Language ENCOdiNg evnveeiiiiiiiiieeeeiee e 41
Buffering and the Client Library —........cooooiiiiiiiiii e 4-2
Accessing Fileson the Server ... 4-2

iv Contents

4.4

4.5

4.6
4.7
4.8
4.9

51
52
53
54

6.1
6.2
6.3

Converting CoordiNatesS cc.uuierieiieeeeia e et e e e eeeiee e 4-2
441 Preparing to Convert Coordinates ocoevveeveiiiieiiineeeenn, 4-2
442 X Coordinates to User Space Coordinatescccvueeeenn. 4-3
4.4.3 User Space Coordinates to X Coordinatescccceeveeeeenns 44

ReSIZING WINAOWS .o e 44
451 Window Resizing and the Clipping Path cccooooeeii. 44
45.2 Window Resizing and the User Space Origin -ccceeeeeen. 44

Synchronizing the Display PostScript System and X cccooeeeees 4-6

Synchronizing Client and Context covviiiiiiiiiiie e 47

Sharing Contexts and SPaceS ooveveieiiii i 47

LU LS T oo N @] o 47

4-8
4-8
4-9
4-10
4-11
4-11

49.1 Converting Colors and Shades into Pixel Values
49.2 Defining aColor Cubeand Gray Ramp coovviiieiineenenn.

4921 UsingtheColor Cubeccoiiiiiiiiiiiiieee,
4922 Usingthe Gray Ramp ooovviiiiiiiiieeii e,

49.3 Rendering Colors Not in the Color Cube ccccoeeevvieeeen.
49.4 The colorinfo Array and XStandardColormaps

Client Library Routines for WS

System-Specific Header File ... 5-1
X-SPeCific SINGIEOPS i 5-2
Naming CONVENLIONS uuuieiiieiii e 54
Client Library Routine DesCriptionS cocovvvvriinineeeiiiiiiineeeeeenns 54

X-Specific Operators for WS

ADOUL the OPErators oeeiei e 6-1
OPEraLOr EITOIS oottt et eeas 6-2
Operator DESCIiPliONS .eevuiieeiii e 6-3

Contents v

Index

Examples
3-1: Sample Application: examplemaincccooeeeviiiiieiii e 3-6
3-2: Source File for Wrap Called by examplemain cccc.coovivieeennnnn. 39
3-3: Makefile for examplemain —ccooeviiiiiiiiiiie e 3-12
4-1: Wrap Returning CTM, Its Inverse, and Current User Space Origin ... 4-3
5-1: Definitions of X-specific SINGIEOPS .covvviviiiiiieiie e, 5-2
Figures
1-1: Display PostScript System as Implemented in WS ..., 1-2
2-1: X Coordinate SYSIEM ..oeiiiii e 2-5
2-2: User Space Coordinate System Used by the PostScript Language 26
2-3: Initial User Space Origin Offset from X Origin cccooeveiviiiieeeennnnn. 2—7
3-1: Developing aTypical Applicationccocovviiieiiiiiieieie e, 32
3-2: Output of the examplemain Programccccoeeviiiiieiiiiiiecce e, 35
3-3: Output of the Sample Calculator Programs —ccoeevevvivevviiiieneennnnn. 3-14
4-1: Resizing a Window with NorthWest Bit Gravity —.........cccooeveveiinens 4-5
4-2: Resizing a Window with SouthWest Bit Gravity —........ccccoeveviiienens 4-6
Tables
3-1: Online Sample Programs oovueiieiiiii e 3-14
3-2: Summary of BaSiC TASKS ..ecuvuiiiiiiiieeiii e 3-16
4-1: Default PostScript Language Encodings for XDPS ccccocevvvs 4-1
4-2: Mapping Between colorinfo Array and X StandardColormap Storing

COlOr CUDE e 4-12
4-3. Mapping Between colorinfo Array and X StandardColormap Storing

Gray RamMPD oo 4-12

vi Contents

5-1:
5-2:
6-1:
6-2:

Arguments Used by X-Specific SINgleops coovvviiiiiiieiiiiees 5-3
Naming Conventions in the Client Library —.........cccoooiiiiiiiinnnnn, 54
Operands and Results for X-Specific Operators —..........cccccceveeiieeerens 62

Errors for X-Specific Operators

.. 6-3

Contents vii

About This Manual

This manual introduces the Display PostScript system extension of Digital’s
Worksystem Software (WS). This manual describes the WS-specific
concepts, tasks, and facts that programmers must know to write Display
PostScript applications for WS.

This manual supplements Display PostScript system documentation written
by Adobe Systems, Inc.

Audience

This manual is intended for experienced Worksystem application
programmers who are familiar with C language programming; it assumes that
the reader is familiar with the PostScript language.

Organization

This manual comprises six chapters:

Chapter 1
Chapter 2
Chapter 3

Chapter 4
Chapter 5

Chapter 6

Introduces the Display PostScript system and lists the capahilities it
adds to WS,

Describes the main components that make up the Display PostScript
system and summarizes key concepts.

Explains how to start writing applications for the Display PostScript
system and presents a simple example program.

Presents advanced concepts and tasks.

Describes the WS-specific header file of the Display PostScript system
Client Library and describes each WS-specific Client Library routine.

Describes X-specific operators provided by WS.

Related Documents

The following books, published by Addison-Wesley Publishing Company,
Inc., help you understand the PostScript language:

» PostScript Language Reference Manual
* PostScript Language Tutorial and Cookbook
» PostScript Language Program Design

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code
General users G Blue

System and network administrators S Red
Programmers P Purple
Device driver writers D Orange
Reference page users R Green

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides
information on all of the books in the Digital UNIX documentation set.

Reader’'s Comments

Digital welcomes any comments and suggestions you have on this and other
Digital UNIX manuals.

Y ou can send your comments in the following ways:
» Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y 32
* Internet electronic mail: r eaders_conment @k3. dec. com

A Reader’s Comment form is located on line in the following location:
[usr/ doc/readers_conment . t xt

e Mail:

Digital Equipment Corporation
UEG Publications Manager
ZK03-3/Y 32

110 Spit Brook Road

X About This Manual

Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed manual.
The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

* Thefull title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

* The section numbers and page numbers of the information on which you
are commenting.

» Theversion of Digital UNIX that you are using.

» If known, the type of processor that is running the Digital UNIX
software.

The Digital UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Digital technical support office.
Information provided with the software media explains how to send problem
reports to Digital.

Conventions
The following typographical conventions are used in this manual:

In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

cat (1) A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat (1) indicates
that you can find information on the cat command in Section 1
of the reference pages.

symnbol In text and examples, all directory names, file names, routine
names, PostScript operator names, and code samples appear in
this typeface.

About This Manual xi

Introduction to the Display PostScript
System 1

To display or print graphics, an application must have an imaging model, a
set of rules for describing pictures and text. One of the most popular
imaging models is that of the PostScript page-description language, from
Adobe Systems, Inc. Originally developed for hardcopy output devices, such
as laser printers, the PostScript language imaging model has been adapted for
bitmap displays through Adobe's Display PostScript system.

Digital’ s implements the imaging models of the X Window System and the
Display PostScript system. WS applications can mix X and PostScript
language imaging calls, even within a single window, using a single network
connection to an X server. This manual introduces the Display PostScript
system and shows how to develop WS applications that use it.

1.1 Overview of the Display PostScript System

The Display PostScript system is software that extends the PostScript
imaging model to bitmap display systems. With the Display PostScript
system, you can design and write applications in a general-purpose language
like C, yet describe their images and text using the device-independent
PostScript imaging model.

1.2 PostScript Language Imaging Capabilities

You are probably familiar with the capabilities of X imaging. The following
capabilities are found in PostScript language imaging but not in X imaging:

» Coordinate system that can be moved, rotated, and scaled

» Bezier curves

» Device-independent color model with dithered (approximated) colors
e Text that can be scaled and rotated

» Image operators for scanned images
(scaling, rotating, transformations, gray-scale manipulation)

1.3 Display PostScript System in WS

The Display PostScript system is a system-independent client/server
architecture that can be implemented on a variety of windowing systems. In
this architecture, the server consists mainly of a PostScript interpreter, which
executes PostScript language code that displays images on a user’s screen.
The client is an application that communicates with the server through a set
of routines known as the Client Library.

WS implements the Display PostScript system as an extension to the X
Window System, on which WS is based. The Display PostScript system
server is an extension to the X server; the Client Library is an extension to
Xlib. The Display PostScript system extension of WS lets a C language
application display images in an X window by calling functions that send
PostScript language code.

Figure 1-1 shows the WS implementation of the Display PostScript system.
(For brevity, this manual often refers to this implementation as XDPS.) For
more information about how WS implements the Display PostScript system,
see Chapter 2.

Figure 1-1: Display PostScript System as Implemented in WS

X Drawable
Client PostScript
X Client Library Interpreter
Application | |
Written < >
inC) X Protocol
Xlib with X Server
Extension
for Display
PostScript
System

ZK-0840U-R

1-2 Introduction to the Display PostScript System

To understand and use the Display PostScript system in WS, you must be
familiar with these subjects:

* The operating system

» The C programming language

* WS programming

* The PostScript language

* The system-independent aspects of the Display PostScript system
» The WS-specific aspects of the Display PostScript system

This manual describes mainly the WS-specific aspects of the Display
PostScript system.

Introduction to the Display PostScript System 1-3

Components and Concepts 2

Even for WS programmers who are familiar with the PostScript language, the
Display PostScript system for WS introduces new concepts. For instance,
some familiar terms such as ‘“client,”” **context,”” and *‘state’’ take on new
meanings.

This chapter summarizes components and concepts of the Display PostScript
system. Some of these topics are system-independent; others are system-
gpecific. In this manual, the term system-independent refers to components
and concepts found in al implementations of the Display PostScript system.
System-specific refers to components found in only some implementations of
the Display PostScript system and whose exact names and capabilities vary
among implementations.

The Display PostScript system for WS is the systembeing described in this
manual, so W S-specific and system-specific mean the same thing here. Note
that some WS-specific components are also X-specific: they exist only in
X-based implementations of the Display PostScript system.

This chapter emphasizes mainly WS-specific concepts and components,

2.1 Components

211

The Display PostScript system consists of three main components:

» PostScript interpreter

* Client Library

* The psw ap tranglation program

In WS, the PostScript interpreter resides on the X server; the Client Library

is linked with the X client. The client and server can reside on the same
workstation or on different workstations connected by a network.

PostScript Interpreter

In WS, the PostScript interpreter is an X server extension that executes
PostScript language code sent from applications. The interpreter implements
the full PostScript language, including operators for color and display. You
can imagine the PostScript interpreter as a PostScript printer. Unlike a
printer, however, the interpreter can concurrently execute several jobs.

2.1.2

2.1.3

Client Library

The Client Library is the set of C language routines through which
applications communicate with the PostScript interpreter. The Client Library
routines communicate with the PostScript interpreter by calling Xlib routines
and low-level Display PostScript system routines implemented as extensions
to Xlib. Note that, athough there is currently no toolkit interface to Display
PostScript system itself, applications that use the system can use toolkit
interfacesto X as usual.

Note

Except where noted, the term application means a WS
application program that uses the Display PostScript system.

The Client Library routines and data structures that make up the application
programming interface to the Display PostScript system are defined in six
header files. Only one of these six filesis X-specific: dpsXcli ent. h.
(For more information about dpsXcl i ent . h, see Chapter 5.)

The Translation Program: pswrap

The pswr ap trandator is a program that converts procedures written in the
PostScript language into routines that can be called from applications written
in C. The converted routines are called wrapped procedures, or wraps. In
WS, pswr ap isinstaled in the directory / usr / bi n.

A special set of ready-to-call wraps is included in the Client Library; most of
these wraps send a single PostScript operator. These single-operator wrapped
procedures are called singleops. (For more information on singleops, see
Chapter 5.

2.2 Concepts

221

Before you can write an application that uses the Display PostScript system,
you should understand a few essential concepts. The following section
introduces those concepts.

Contexts

The term context is familiar to X programmers. In the Display PostScript
system, however, a context is not an X Graphic Context (GC). Instead, a
context is a destination to which an application sends PostScript language
code. A PostScript context is either an execution context or a text context.
Except where noted otherwise, the term context refers to a PostScript
context; the X Graphic Context is referred to as the GC or as the X Graphic

2—-2 Components and Concepts

Context. Also, except where noted, the term context includes both execution
contexts and text contexts.

2.2.1.1 Execution Context

An execution context is a destination that executes PostScript language code
sent from an application. In WS, that destination is the PostScript interpreter
of the X server. Just as the interpreter is like a PostScript printer, an
execution context is like a print job.

In WS, a PostScript execution context is usually associated with an X
display, an X drawable, and a GC. The PostScript execution context uses
only the following fields of the GC:

clip_mask

clip_x_ origin

clip_y origin

pl ane_nask

subwi ndow_node

The Display PostScript system in WS treats the X drawable and GC as part
of the PostScript graphics state, a data structure that defines how PostScript
operators execute.

2.2.1.2 Text Context

222

A text context is a destination that does not execute the PostScript language
input it receives from an application. For example, the destination might be a
text file or a WS stream, such as st dout . The destination is specified in the
text-handling routine that the application assigns when creating the text
context.

Sending PostScript language input to a text context provides a way to get a
printable copy of input that would otherwise be sent to an execution context.
This capability is particularly useful in debugging applications.

Note

In this manual, except where noted otherwise, the term input
means input to a context on the server, not to an application on
the client. Conversely, output means output from a context.

Context Record and DPSContext Handle

All contexts reside on the server. However, on the client, each context is
represented by a context record, whose data type is DPSCont ext Rec.
The DPSCont ext Rec stores the attributes of the context, for instance, the
pointer to its error-handling routine.

Components and Concepts 2—-3

Applications do not access the DPSCont ext Rec directly. Instead, when
calling Client Library routines, applications explicitly or implicitly pass a
pointer to the DPSCont ext Rec. This pointer, or handle, is of type
DPSCont ext and is known as the DPSContext handle.

2.2.3 Context Status

An execution context can be in any of several states. For example, a context
might be ready to execute, or it might be waiting for PostScript language
code from the application. An application can monitor the execution state of
a context by requesting context status events from the server. A context
status event is an X event whose integer value represents the execution state
of the context: its context status. Each time the context status changes, the
server generates a context status event.

Although the server generates context status events, it does not automatically
send them. To receive context status events, an application must explicitly set
the context status mask, a data structure associated with each execution
context. (For more information about the context status mask, see the
description of the Client Library routine XDPSSet St at usMask in Chapter
5)

2.2.4 Current Context

A typical application creates only one context. For this reason, the Display
PostScript system lets an application specify one context as the current
context. The current context is the default context for Client Library routines
that take an implicit context argument.

2.2.5 Space

On the server, each execution context has virtual memory (VM) known as a
space. In addition to the space of each execution context, there is shared
VM, which is shared among all execution contexts of a server.

If an application creates multiple contexts, it can make them share a single
space, thereby simplifying communication among them.

2.2.6 Identifiers

In WS, execution contexts and spaces are associated with X resources on the
server. For this reason, execution contexts and spaces have, in addition to
their PostScript language ID, an X resource ID (XID). Application
programmers, however, seldom need to reference these XIDs.

2—-4 Components and Concepts

2.2.7 Coordinate Systems

The Display PostScript system and X both use a coordinate system for
imaging, but the coordinate system used by the Display PostScript system
differs from that used by X. This section briefly explains both coordinate
systems and explains how they interact in WS.

Each X window has a coordinate system whose origin is aways the upper
left corner. From this X origin, x increases from left to right; y increases
from top to bottom, as shown in Figure 2-1.

Figure 2-1: X Coordinate System

®
[0,0] X origin X increasing

y increasing

ZK-0841U-R

The origin used by the Display PostScript system is called the user space
origin. Unlike the X origin, the user space origin can be specified.

From the initial user space origin, x increases from left to right (asin X), but
y increases from bottom to top, as shown in Figure 2-2.

Components and Concepts 2-5

Figure 2-2: User Space Coordinate System Used by the
PostScript Language

y increasing

X increasing

[0,0]
Initial user space origin
ZK-0842U-R

In WS, the initial user space origin is offset from the X origin. That is,
applications specify the initial user space origin as a point in the X
coordinate system, as shown in Figure 2-3.

In this figure, an application has created a window measuring 300 x 300
pixels. The application has specified the X coordinates[0, 300] (the
window’s lower left corner) as the initial user space origin. Thus, the
window’s lower left corner becomes the origin [0, 0] of the user space
coordinate system.

2—-6 Components and Concepts

Figure 2-3:

.[0,0] X origin

[

3

[0,300]

Initial User Space Origin Offset from X Origin

y increasing

300 pixels<

X increasing

X coordinate=[0,0]
Initial user space origin

ZK-0843U-R

When an X window is resized, its user space origin moves according to the
bit gravity of the window. (For more information on how resizing a window
affects its user space origin, see Section 4.5.)

Components and Concepts 2—7

Getting Started 3

This chapter describes the steps you follow to develop atypical application
for the Display Postscript system and explains the steps that such an
application performs. The chapter then presents a sample application.

Before reading this chapter, be sure you understand the following
components and concepts, covered in Chapter 2; if you understand these, you
are ready to start:

PostScript interpreter

Client Library

The pswr ap translation program
PostScript context

3.1 Developing a Typical Application

To develop atypical application, you follow six main steps, as shown in
Figure 3-1. (Steps 3 through 5 take much less time than the others.)

1
2.

Design the application.

Write the main C-language module and any custom PostScript language
procedures that the application calls.

Convert the custom PostScript language procedures into C-callable
routines by running the pswr ap translation program.

Compile the C-language code with:
* The output files from pswr ap
» The X header files

» The header file dpsXcl i ent . h and any optional XDPS header
files, like dpsops. h

Link the resulting object file with the X libraries and with the Client
Library.

Run and debug the executable application.

Figure 3-1: Developing a Typical Application

(1) DESIGN PHASE
v v
@ | examplemain.c examplewraps.psw

e pswrap
translator
$ $ v

examplemain.c || examplewraps.c | | examplewraps.h | | dpsXclient.h | | dpsops.h || Xlib.h

]

; \ A 4 *
e =/C Compiler\<

(5] Xlib —»C Linker >47 Client Library

v

Executable

(6] Application
Program

ZK-0844U-R
Step 1: Design the Application

In WS, Display PostScript system applications are written in C and send
PostScript language code to a context, usually an X server. To design an
application you must make several decisions; For example, you must decide:

* Whether to code mostly in C or mostly in the PostScript language

* Whether to create one PostScript context or several

* Whether to send PostScript language code by custom wraps, by
singleops, as text, or by a combination of these methods

For atypical simple application, the following design decisions are usualy
best:

3-2 Getting Started

* Code mostly in C; use the PostScript language for imaging-related tasks
only.

» Create only one PostScript context.

» Send lengthy PostScript language segments as custom wraps; send single
PostScript language statements as singleops.

A complete discussion of application design is beyond the scope of this
book. To help you see and understand how design decisions affect XDPS
applications, the WS distribution kit includes source files for several sample
applications. (For more information about these sample applications, see
Section 3.5.)

Step 2: WriteYour C Code and PostScript Language Code

After you have designed your application, you write the C-language code and
the PostScript language procedures that your application sends.

It is also possible to write applications that read PostScript |anguage code
from the user’s keyboard or from a file. For a sample program of this type,
see the program DPSt est . By default, the source files for DPSt est are
installed in the directory / usr / exanpl es/ dps/ dpst est. (For
instructions on running the program, see Section 3.5.)

Step 3: Convert Your PostScript Language Procedures

If you have written any PostScript language procedures for your application,
you should convert them to wraps, that is, to routines that can be called from
your C-language code. To convert the PostScript language procedures, you
process them with the pswr ap trandation program.

For each PostScript language input file, pswr ap can produce two output
files. a C-callable procedure and an associated header file.

Steps4 and 5: Compile and Link

After you have converted your PostScript language procedures to C-callable

routines, you compile and link your source files. That is, you compile your

main C-language file with:

» The output files from pswr ap

* The X header files

* ThedpsXclient. h header file and, optionally, other Client Library
header files

You link your application with the Client Library and with the X libraries.
(For instructions on compiling and linking XDPS applications, see Section
34)

Getting Started 3—-3

Step 6: Run and Debug Your Application
Y ou are now ready to run and debug your application.

3.2 Basic Application Requirements

All applications send PostScript language statements to a context. Typically,
the context is an execution context — in XDPS, the PostScript interpreter of
an X server. Most XDPS applications perform three main steps:

1. Initialization
2. Communication
3. Termination

Step 1. Initialization
Typically, to initialize an XDPS application, you perform three steps.

1. Establish communication with an X server, create a window, and create a
GC.

2. Create a PostScript execution context by calling an X-specific Client
Library routine such as XDPSCr eat eSi npl eCont ext . (For more
information on creating contexts, see the descriptions of
XDPSCr eat eSi npl eCont ext and XDPSCr eat eCont ext in
Chapter 5.)

3. Perform any additional X-specific initialization, such as mapping the
window.

Step 2. Communication

After initializing, most XDPS applications call custom wraps, singleops, or
other Client Library routines to send text and PostScript language statements
to a context. For example, to send information to a context, an application
might either call a custom wrap or call one of two Client Library routines:
DPSW i t ePost Scri pt (for PostScript language statements) or

DPSW i t eDat a (for data).

To process text or errors from a context, the Client Library calls the text-
handling routine or error-handling routine that the application assigned when
creating the context. The Client Library defines a default text-handling
routine (DPSDef aul t Text Backst op) and a default error-handling
routine (DPSDef aul t Er r or Pr oc). Although these routines are called
default routines, to use them you must specify them explicitly when creating
a context. (For more information on the default routines, see their
descriptions in Chapter 5.)

3—4 Getting Started

Step 3: Termination

Terminating a typical XDPS application is like terminating any other typical
X application. When you terminate an application, the X Window System
destroys the application’ s contexts, their spaces, and any other X resources
belonging to the application.

3.3 Sample Application: examplemain

This section presents exanpl emai n, asimple program that shows the
fundamentals of XDPS programming. The program uses the Display
PostScript system to paint a shaded square in a window of the user’s screen,
as shown in Figure 3-2.

Figure 3-2: Output of the examplemain Program

*kkKKk | <4 | _||

| 1
ZK-0839U-R

The exanpl enmai n program uses the Xlib interface to X, calls a custom
wrap to pick the shade of gray for painting, and calls a Client Library single-
operator procedure to do the actual painting.

Getting Started 3-5

3.3.1 What the Sample Application Does
The sample application exanpl emai n performs the following operations:
1. Connects the client to an X server with XOpenDi spl ay.
2. Creates awindow with XCr eat eSi npl eW ndow.
3. Selects X event types Expose and ButtonPress with XSel ect | nput .
4

. Creates a Display PostScript execution context with
XDPSCr eat eSi npl eCont ext , using the default text handler, the
default error handler, and the default GC.

Displays the window with XMapW ndow.

6. Chooses the shade of gray for painting, with a custom wrapped PostScript
language procedure named ChooseG ay.

7. Sets the shade of gray with DPSset gr ay, a singleop from the Client
Library.

o

8. Paints a gray square with the singleop DPSr ect fi | | each time an
Expose event is received, and exits when a ButtonPress event is received.

9. Destroys the context and space with DPSDest r oy Space, then closes
the display connection and exits.

Unlike a more complete application, exanpl ermai n does not handle
resizing of the X window. (For information about window resizing in XDPS
applications, see Section 4.5.)

3.3.2 The Main Code

Example 3-1 is a complete listing of exanpl emai n. ¢, the main C
language file of the sample application.

Example 3-1: Sample Application: examplemain

/*

* exanplemain.c -- Sinple X application that uses the DPS
* systemto draw a shaded square in a wi ndow, then exits
* when the user clicks the nouse.

*/

#i ncl ude <stdio. h>

#i ncl ude <Xlib. h> /* Standard X Wndow C-lang library */
#i nclude <dpsXclient.h> /* Xinterface to DPS Cient Library */
#i ncl ude <dpsops. h> /* Decl arations of singleops */

#i ncl ude "exanplewaps.h" /* Interface to wapped PS | ang code*/

main ()

3-6 Getting Started

Example 3-1: (continued)

{

Di spl ay *dpy; /* An X display */

W ndow wi ndow; /* A wi ndow of the X display */
DPSCont ext context; /* A single PostScript context */
float graylLevel; /* The shade of gray for the square */
XEvent event; /* An X event */

voi d TextQut(); /* Forward decl aration */

void Fatal Error(); /* Forward declaration */

/*

* Qpen a connection to the X display specified in the arg
* to the XOpenbDisplay routine. The NULL argunent causes
* XOpenDi splay to open a connection to the display specified
* py the DI SPLAY vari abl e of the user’s environnent.
*/
dpy = XOpenDi spl ay(NULL) ;
/*
* |f unable to open the display, return an error nessage and
* exit inmediately.
*/
if (dpy == NULL)
Fatal Error("Can’'t open display.0);
/
Create a wi ndow on the X display. Wen mapped, the
wi ndow wi Il be 10 pixels fromthe | eft edge and 20 pixels
fromthe upper edge. The window will be 800 pixels high
by 800 pixels wide, with a black border 1 pixel w de
and a white background.
/
w ndow = XCr eat eSi npl eW ndow(dpy, Def aul t Root W ndow(dpy),
10, 20, 800, 800, 1,
Bl ackPi xel (dpy, DefaultScreen(dpy)),
Whi t ePi xel (dpy, Defaul t Screen(dpy)));

* F F X X X *

/*
* Select the X event types that the wi ndow accepts from
* the X server. The w ndow accepts Expose events and
* ButtonPress events.
*/
XSel ect | nput (dpy, wi ndow, ExposureMask | ButtonPressMask);
/*
* Create a PostScript execution context to draw in the w ndow.
* The origin of the context’s coordinate grid is the point
* (0, 800) of the window. The origin is therefore the bottom
* |eft corner of the window (the typical origin for a
* Post Script context).
*/
cont ext = XDPSCr eat eSi npl eCont ext (dpy, wi ndow,
Def aul t GC(dpy, Defaul t Screen(dpy)),
0, 800,
Text Qut, DPSDef aul t ErrorProc, NULL);
/*
* |f unable to create the context, return an error nessage
* and exit inmmediately.
*/

Getting Started 3—7

Example 3-1: (continued)

if (context == NULL)
Fatal Error ("DPS refused to create a context.O0);

*
* Map the window-that is, make it appear on the display.
* The wi ndow wi || appear only after the w ndow nanager of
* the X server is free to process the mappi ng request.

* \Wen the wi ndow appears, the context receives an Expose
* event as notification.

XMapW ndow(dpy, wi ndow) ;

* Generate a random nunber that corresponds to the shade
* of gray (the graylevel) to be used when painting.

* To generate this number, call the ChooseGay routine,
* which is exported fromthe exanpl ewaps.c file.

* ChooseGray sends wrapped Post Script |anguage code to

* the context, which then executes the code.

ChooseGray(context, &graylLevel);

/*

* Set the current graylevel to the shade of gray chosen by
* ChooseGray. Setting the grayl evel does not cause any

* painting; so you can set the graylevel even if the w ndow
* has not yet appeared.

*/

DPSset gray(cont ext, graylLevel);

/*

*

Wait for events fromthe X server; process each one

recei ved. For each Expose event, paint the same gray square
in the same place on the display. To do this, call the
DPSrectfill routine, a single-operator w apped procedure
decl ared in dpsops.h, a DPS Client Library header file.

The bottom | eft corner of the square is 100 points above
the origin and 100 points to the right of it. Each side of
the square is 300 points.

* % X X X X X X X

Wien a ButtonPress event is received, exit the
* event - processi ng | oop.
*/
for (;;) {
XNext Event (dpy, &event);
if (event.type == Expose) {
DPSrectfill (context, 100.0, 100.0, 300.0, 300.0);
} else if (event.type == ButtonPress) {
br eak;
}

*

* Exit in an orderly manner. First, destroy the context by

* destroying its space (its menory). Next, destroy

* the window. Finally, close the connection to the X display.
*/

DPSDest r oy Space(DPSSpaceFr omCont ext (cont ext));

}
/

3-8 Getting Started

Example 3-1: (continued)

XDest r oyW ndow(dpy, w ndow) ;
Xd oseDi spl ay(dpy);

/*
* Qutput procedure for plain text messages fromthe context.
* Qutput is sent directly to standard error.
*/
voi d Text Qut (context, buffer, count)

DPSCont ext cont ext;

char *buffer;

unsi gned count;

fwite(buffer, 1, count, stderr);
fflush(stderr);

}
/*
* Error procedure. The application has encountered an error
* fromwhich it cannot recover, so exit inmediately.
*/
voi d Fatal Error(mnmsg)
char *nsg;

fprintf(stderr, msg);
exit(1);
}

3.3.3 Source File for Wrap

Example 3-2 is a complete listing of exanpl ewr aps. psw, the PostScript
language source file for the wrapped procedure called by the sample
application exanpl emai n.

Processing exanpl ewr aps. pswwith the pswr ap translator produces two
output files: exanpl ewr aps. ¢ and exanpl ew aps. h. These output
files must then be compiled with exanpl enai n. c.

Example 3-2: Source File for Wrap Called by examplemain

/
exanpl ewr aps. psw -- source file for wapped Post Scri pt
| anguage procedure

This is an exanpl e of PostScript |anguage code to be converted
to Cient Library calls by pswap.

Thi s Post Scri pt | anguage routi ne, ChooseG ay, generates a random
nunber that corresponds to the graylevel (shade of gray) to be
used when the Display PostScript systempaints. Note that the
Post Scri pt operator rand al ways generates the same sequence of
random nunbers. So each tinme the program exanpl emai n runs,
ChooseGray chooses the sane grayl evel.

* % kX X X X X X X X X F

Getting Started 3-9

3.3.4

Example 3-2: (continued)
*/

defi neps ChooseGray (DPSContext ctx| float *result)

rand % Pi ck a random nunber between 0 and 2731 - 1.
2 31 exp % 2”31
div % Random nunber between 0.0 and 1.0
resul t % Return result.
endps

Running examplemain

By default, all the program-specific files needed to compile, link, and run
exanpl emai n areinstalled in the/ usr / exanpl es/ dps/ gr ay-

squar e directory of your system. For instructions on compiling and linking,
see Section 3.4.

3.4 Building XDPS Applications

3.4.1

After you code an application, you build it by compiling and linking it. The
following sections describe how to build an application, assuming that you
are using the WS nmake utility. (For more information, see the make(1)
reference page.)

Section 3.4.5 includes a complete makefile for the exanpl emai n program
presented in Section 3.3.2.

Including Header Files

Before building an XDPS application, make sure that the main source
module includes the appropriate X header files and the WS-specific Client
Library header file, dpsXcl i ent . h.

ThedpsXcl i ent. h fileis the only Client Library header file that all
XDPS applications must include. It, in turn, includes all other Client Library
header files, except psops. h, dpsops. h, and dpsexcept . h.

If your application calls singleops, you should also include psops. h or
dpsops. h, or both, depending on which defines the singleops that your
application calls. If your application uses the exception handling capability of
the Display PostScript system, you must also include dpsexcept . h. (Not
to be confused with error handling; exception handling is an advanced
capability that few applications require.)

3-10 Getting Started

3.4.2

3.4.3

3.4.4

Compiling

Y ou compile the main C-language module of your XDPS application with:
* The X header files—for example, Xl i b. h

* ThedpsXclient. h header file

* Thepsops. h and dpsops. h header files (if application calls
singleops)

* The output files from pswr ap (if application calls custom wraps)

The Display PostScript system header files (among them, dpsXcl i ent . h,
psops. h, and dpsops. h) areinstalled in the directory
/usr/include/ DPS. To automatically include these files at compilation,
add the following statement to your makefile:

CFLAGS = -1/usr/include/ DPS

The option - | / usr /i ncl ude/ DPS causes the Workstation Software C
compiler to search for include filesin / usr /i ncl ude/ DPS.

Linking
You link your XDPS application with the following libraries, in the order
listed:

Library Linker Option
Client Library -1 dps

Xlib extensions for Display PostScript system - | Xext
DECwindows toolkit library - dwt

Xlib library -1 X11
Workstation Station math library -Im

Invoking pswrap from a Makefile

Y our makefile can automatically convert PostScript language procedures to
C-calable routines by running the pswr ap translation program. For
example, if the PostScript language procedures have file names ending in

. psw, the following make statements convert the procedures automatically:

Getting Started 3-11

. SUFFI XES: $(. SUFFI XES) . psw .h

. psw. o: $*. psw
${ PSWRAP} -0 $*.c $*.psw
$(CC) $(CFLAGS) -c $*.c
rms$*.c

.psw. h: $*. psw
${PSWRAP} -h $*.h $*.psw > /dev/null

3.4.5 Sample Makefile
Example 3-3 shows a complete Makefile that builds the exanpl enai n
program presented earlier in this chapter.

Example 3-3: Makefile for examplemain
@#) Makefile 1.5 9/2/88

DESTDI R=
EXAMPLETOPDI R=${ DESTDI R}/ usr / exanpl es/ dps
EXAMPLESUBDI R=${ EXAMPLETOPDI R}/ gr ay- squar e

I NSTALLLI ST = Makefil e exanpl emain.c *.psw
OBJS = exanpl emai n. 0 exanpl ew aps. o
PSWRAP= ${DESTDI R}/ usr/ bi n/ pswr ap

. SUFFI XES: $(. SUFFI XES) .psw .h
.psw. 0: $*. psw
${ PSWRAP} -0 $*.c $*.psw
$(CC $(CFLAGS) -c $*.c
rms$*.c

.psw. h: $*. psw
${PSVRAP} -h $*.h $*.psw > /dev/null

. SUFFI XES: .uil .uid

CFLAGS = -g -1${DESTDI R}/ usr/include/ X11 \
-1 ${ DESTDI R}/ usr /i ncl ude/ DPS \
-1 ${ DESTDI R}/ usr/i ncl ude -1.

LIBS = ${DESTDI R}/ usr/1ib/1ibdps.a \
${DESTDI R}/ usr/lib/libXext.a \
${DESTDI R}/ usr/1i b/ libdwt.a \

${DDI FROOT}/ usr/lib/libddif.a \
${DESTDI R}/ usr/lib/1ibXll.a \

-Im

al | : exanpl emai n

exanpl emai n: $(0BIS)

3-12 Getting Started

Example 3-3: (continued)
$(CC) -0 exanplemain $(OBIS) $(LIBS)

exanpl emai n. o: exanpl emai n. ¢ exanpl ew aps. h

cl ean:
rm-f *.0 exanpl enai n exanpl ew aps.[ch] #* *~ core

cl obber: cl ean
-rm-f *

relink::
rm-f exanpl emai n

relink:: all

3.5 More Sample Applications

In addition to exanpl emai n, the WS software includes source listings of
several other sample XDPS applications.

3.5.1 Examples Contrasting Design Approaches

WS includes source listings and makefiles for four related sample programs:
cal c0, cal c1, cal ¢2, and cal ¢c3. Each of these sample programsis an
implementation of the same application: a desktop calculator. Although all
four programs present a similar user interface (shown in Figure 3-3), the
source code of each program shows a different approach to XDPS application
design.

Getting Started 3-13

Figure 3-3: Output of the Sample Calculator Programs

—| calco [

clr 7 8 9 /

0 +

ZK-0838U-R

For the location of the sample calculator programs, see Table 3-1, which lists
and describes the sample Display PostScript system applications included in
WS.

Table 3-1: Online Sample Programs

Program Name Description Location

cal cO Calculator coded mainly ~ / usr/ exanpl es/ dps/ cal c0
in C, with one window
and one context

calcl Calculator coded mainly ~ / usr/ examnpl es/ dps/ cal c1
in the PostScript
language, with one
window and one context

cal c2 Calculator coded mainly ~ / usr/ exanpl es/ dps/ cal c2
in C, with multiple
windows and one context

3-14 Getting Started

3.5.2

Table 3-1: (continued)

Program Name Description Location

cal c3 Calculator coded mainly ~ / usr/ examnpl es/ dps/ cal c3

in C, with multiple
windows, multiple
contexts, and intercontext
communication

DPSt est Executes PostScript [usr/ exanpl es/ dps/ dpst est

language statements
entered from the keyboard

exanpl enai n Displays a gray square [usr/ exanpl es/ dps/ gr ay-

generated from acustom squar e
wrap and a singleop

pscl ock An implementation of [usr/ exanpl es/ dps/ pscl ock

xcl ock that uses the
Display PostScript system

psdraw A graphic editor that [usr/ exanpl es/ dps/ psdr aw

paints PostScript language
images; a complex sample
application

pyro Displays fireworks [usr/ exanpl es/ dps/ pyro

generated from custom
wraps

Running the Sample Applications
To run a sample application, you must first build it by following these steps:

1

2.

Log on to your system and find the subdirectory where the sample
application is stored.

Copy the entire contents of that subdirectory to a subdirectory in your
account. (Note that the sample programs cal cO, cal c1, cal c2, and
cal ¢3 must be copied to sibling directories, that is, to subdirectories at
the same level of the file system.)

Set your working directory to the subdirectory that received the copiesin
Step 2.

Invoke the WS make utility by entering the command make at the
system prompt. The make utility compiles and links the program. (Note
that for the sample application psdr aw, you must enter make

i nstal |l instead of make. For information, see the make(1) reference
page.

Getting Started 3-15

Y ou can then run the program by entering its name at the system prompt.
(For more information on building XDPS applications, see Section 3.4.)

3.6 Summary of Basic Tasks

Table 3-2 lists common XDPS programming tasks, shows the operators (in
bold type), and Client Library routines for performing each task.

Table 3-2: Summary of Basic Tasks

Task

Create an execution context

Create a text context

Use the default text handler
Use the default error handler
Find the space of a context

Find the default user space origin
Set the default user space origin
Find the GC of a context

Set the GC of a context

Restart a context

Find the current drawable

Set the current drawable

Convert between PostScript
language IDs and X1Ds

Destroy a space
Destroy a context

3-16 Getting Started

Associated Routines and Operators
XDPSCreateSimpleContext or
XDPSCr eat eCont ext

XDPSCr eat eText Cont ext
DPSDef aul t Text Backst op
DPSDef aul t Er r or Backst op
DPSSpaceFr onCont ext

cur rent Xof f set

set Xof f set

cur rent Xgcdr awabl e

set Xgcdr awabl e

DPSReset Cont ext

cur rent Xgcdr awabl e

set Xgcdr awabl e

XDPSXI DFr omCont ext
XDPSXI DFr onfSpace
XDPSCont ext Fr omXI D
XDPSSpaceFr omXl D

DPSDest r oy Space
DPSDest r oy Cont ext

Advanced Concepts and Tasks 4

In Chapter 2 and Chapter 3 you learned the basic concepts and tasks you
need to write simple applications using XDPS. To write more complex
applications, however, you need the additional concepts and tasks described
in this chapter.

4.1 PostScript Language Encoding

In XDPS, PostScript language code can be sent to a context in three
encodings. as abinary object sequence, as binary-encoded tokens, or as
ASCII text. Each PostScript context has two encoding parameters.
DPSPr ogr anEncodi ng and DPSNanmeEncodi ng.

XDPS uses default values for the encoding parameters, so application
programmers can usually ignore encoding. Table 4-1 shows the default
values for the encoding parameters.

Table 4-1: Default PostScript Language Encodings for XDPS

Context Type Encoding Parameter Default Value

execution DPSProgramEncoding Binary object
sequence
(dps_bi nhj Seq)
execution DPSNameEncoding User name index
(dps_i ndexed)
text DPSProgramEncoding ASCII characters
(dps_asci i)
text DPSNameEncoding User name string

(dps_string)

XDPS lets you change the encoding parameters of a context to any of the
three possible encodings. To change the encoding parameters, use the Client
Library routine DPSChangeEncodi ng, described in Chapter 5.

4.2 Buffering and the Client Library

In most implementations of the Display PostScript system, the Client Library
buffers its communications with the Display PostScript server. But in XDPS,
the Client Library communicates with the server by way of Xlib, which
buffers its own communication. To avoid duplicate buffering, the XDPS
Client Library performs no internal buffering. Instead, all buffering of Client
Library communication occurs in Xlib. As aresult, the XDPS Client Library
routine DPSFI ushCont ext performs the same tasks as the Xlib procedure
XFl ush.

4.3 Accessing Files on the Server

To preserve security on servers, XDPS lets applications access only certain
files stored on the server. Specifically, XDPS lets applications access only
files stored in two directories referred to hereast enpdi r and per ndi r .

Thet enpdi r directory istemporary: its contents are deleted each time the
XDPS server is started or reset, such as when the user logs out. In contrast,
per mdi r isapermanent directory: resetting and restarting does not affect
its contents. Applications can both read fromt enpdi r and write to it.
Applications can only read from per ndi r ; they cannot write to it.

To specify afile stored int enpdi r, an application must prefix the filename
with % enp% To specify afilein per ndi r, an application must use the
prefix %per mdo If afilename is preceded by neither % enp%nor %per ntg
XDPS searches for thefilefirst int enpdi r and then in per ndi r. XDPS
does not let applications access file names that include a slash (/), a bracket
(D, or acolon (2).

By default, t enpdi r isthedirectory / usr/1i b/ DPS/ t enpdi r;
perndir is/usr/1i b/ DPS/ perndir. You can, however, assign other
directory names. To do so, specify those names in the XDPS server startup
command.

4.4 Converting Coordinates

44.1

The X Window System and the PostScript language use different coordinate
systems to specify points within the drawing area. As aresult, XDPS
applications sometimes need to convert user space coordinates (used by the
PostScript language) into X coordinates, and vice versa.

Preparing to Convert Coordinates

Before converting coordinates, an application should create a context and
perform the following steps:

4-2 Advanced Concepts and Tasks

1. Perform any user space transformations.

2. Get the current transformational matrix (CTM), its inverse, and the X
coordinates of the current user space origin.

3. Store these valuesin the VM associated with the context.

The application can then perform coordinate conversions for the context.

To get the CTM, its inverse, and the X coordinates of the current user space
origin, an application can call a custom wrap such as PSWeet Tr ansf or m
whose pswr ap source file is shown in Example 4-1.

Example 4-1: Wrap Returning CTM, Its Inverse, and Current User
Space Origin

defi neps PSWGet Tr ansf or m(DPSCont ext ctxt | float ctni{6], invctn{6];
int *xOfset, *yOfset)
matrix currentmatrix dup ctm
matrix invertmatrix invctm
current Xof fset exch xOfset yOfset
endps

The following C language code calls PSWGet Tr ansf or m

DPSCont ext ct xt;

float ctn{6], invctn6];

int xOfset, yOfset;

PSWGet Transforn{ctxt, ctm invctm &Ofset, & O fset);

4.4.2 X Coordinates to User Space Coordinates

To convert an X coordinate into a user space coordinate, an application can
execute the following C language code:

#define A COEFF 0O

#define B_COEFF 1

#define C_COEFF 2

#define D _COEFF 3

#define TX_CONS 4

#define TY_CONS 5

int x,y; /* X coordinate */

float ux, uy; /* user space coordinate */

x -= xOf fset;
y -= yOffset;
ux = invetnf A COEFF] * x + invetnf C COEFF] * y + invctni TX _CONS];
uy = invctniB_COEFF] * x + invctniD COEFF] * y + invctn TY_CONS];

Advanced Concepts and Tasks 4-3

4.4.3

User Space Coordinates to X Coordinates
To convert a user space coordinate into an X coordinate, an application can
execute the following C language code:

ctn{ A_COEFF] * ux + ctn{C_COEFF] * uy + ctn{ TX_OONS] + xOffset;
ctn{B_COEFF] * ux + ctn{D _COEFF] * uy + ctn{ TY_CONS] + yOffset;

X
y

4.5 Resizing Windows

45.1

45.2

An application or user can resize the window in which XDPS paints.
Resizing can affect two PostScript language settings, the clipping path and
the user space origin, as described in the following sections.

Window Resizing and the Clipping Path

PostScript language painting occurs only within the area known as the
clipping path. When initiaizing a context, XDPS sets the clipping path
egual to the size of the window. If the window is resized, however, XDPS
does not reset the clipping path. Instead, each time the window is resized, the
application should execute the PostScript language operator i ni t cl i p,
which reinitializes the clipping path to match the window’s new size. The
application can then reexecute any code that performs further clipping.

Window Resizing and the User Space Origin

When an application resizes the window of a context, the user space origin
moves according to the bit gravity of the window. Bit gravity isan X
window attribute that governs how partial window contents are preserved
when awindow is resized. (Bit gravity is not to be confused with window
gravity, an X attribute that does not affect the user space origin.) In X,
specifying the bit gravity of awindow is optional: the default valueis
Forget Gravity. XDPStreats For get Gravi ty asNor t hWest
gravity.

Because a window’ s user space origin moves according to the window’s bit
gravity, resizing does not change the distance between the user space origin
and any PostScript language images already displayed. Because this distance
is unchanged, future PostScript language images align with those aready
displayed.

Compare Figure 4-1 and Figure 4-2. The left side of Figure 4-1 shows a
window displaying the text ‘*NorthWest.”” As shown, the user space origin
is the window’ s lower left corner, and the bit gravity is Nor t h\W\ést .

The right side of the figure shows the same window after resizing. Notice
that the user space origin (and hence the displayed text) remains a constant
distance from the window’ s upper left corner: its ‘*NorthWest'" corner.

4-4 Advanced Concepts and Tasks

Figure 4-1: Resizing a Window with NorthWest Bit Gravity

NorthWest

\ User space origin

NorthWest
Resize To . ..

User space origin

ZK-0845U-R

In Figure 4-2, the size of the window on the left and the position of its text
are the same asin Figure 4-1. Also the same is the user space origin: the
lower left corner. In Figure 4-2, however, the bit gravity is Sout hWest .
Therefore, when the window is resized, the user space origin and displayed
text remain a constant distance from the window’s lower |eft corner: its

“‘SouthWest'’ corner.

Advanced Concepts and Tasks 4-5

Figure 4-2: Resizing a Window with SouthWest Bit Gravity

Southec: >

Resize To . ..

i
_____ ,:,_____
l\ SouthWest
User space origin

User space origin
ZK-0846U-R

The user space origin is typically the lower left corner of the drawing space.
For this reason, typical XDPS applications should explicitly set the bit
gravity of windows to Sout h\Wést .

4.6 Synchronizing the Display PostScript System and X

X imaging calls complete atomically. Therefore, XDPS applications need not
take specia precautions when issuing X imaging calls before PostScript
language imaging calls. PostScript contexts, however, complete
nonatomically and asynchronously within the X server. Thus, when an
application issues X imaging calls immediately after issuing PostScript
language calls, the X calls can sometimes execute before the PostScript
language calls. That is, it is possible for X and the Display PostScript system
to become unsynchronized.

Few applications need to synchronize the Display PostScript system and X
explicitly. To do so, an application can call the Client Library routine
DPSWai t Cont ext beforeissuing the X imaging calls that follow
PostScript language calls. DPSWai t Cont ext forces the PostScript
language calls to complete before the X calls. Note that DPSWAI t Cont ext
causes a round trip to the server. Such trips impair performance, so call
DPSWai t Cont ext only when needed.

4-6 Advanced Concepts and Tasks

4.7 Synchronizing Client and Context

Applications, or clients, sometimes need to pause the execution of a context.
Pausing a context lets an application take control when the PostScript
interpreter reaches certain points within a PostScript language procedure.

To pause a context, an application sends the system-specific PostScript
language operator cl i ent sync. Thecl i ent sync operator causes a
context to enter the FROZEN state. The context remains in that state until the
application calls the Client Library routine XDPSUnf r eezeCont ext . (For
more information on cl i ent sync, seeits description in Chapter 6. For a
description of XDPSUnf r eezeCont ext , see Chapter 5.)

4.8 Sharing Contexts and Spaces

Although the XDPS Client Library lets applications share contexts and
spaces, it does not coordinate the sharing. Instead, the applications
themselves must coordinate any sharing of resources.

The sharing applications must avoid race conditions and deadlocks. In
addition, if one application obtains the XID of a resource created by ancther,
the application that obtained the XID must create records and handles to
access the shared resource through the Client Library.

A context or space cannot be destroyed while shared. If such aresourceis
shared, the routines DPSDest r oy Cont ext and DPSDest r oy Space
destroy the client data structures created to access the shared resource but do
not destroy the resource itself. After aresource is no longer shared, an
application can destroy it by calling DPSDest r oyCont ext or

DPSDest r oy Space.

4.9 Using Color

In XDPS, the Display PostScript system paints colors and gray shades on an
X server. An X server can render only afinite number of exact colors and
shades simultaneoudly; it represents each as a pixel value. In contrast, the
PostScript language represents colors and shades not as pixel values but as
““pure’’ colorsand ‘‘pure’’ shades, without regard for whether the output
device can render them exactly. As aresult, to paint on an X display, a
PostScript context must first find whether there is a pixel value that matches

Advanced Concepts and Tasks 4—7

49.1

4.9.2

the pure color or shade specified by the PostScript language.

Converting Colors and Shades into Pixel Values

To find the pixel value that matches a particular color or shade, a context
searches the color cube or gray ramp. The color cube and gray ramp
specify pixel values that correspond to a subset of all possible pure colors
and shades.

The color cube defines a set of colormap cells whose values form a series of
color ramps (progressive changes in color). Each axis of the color cube
represents one of three hues. red, green, or blue (r/g/b); al displayed colors
are composites of these hues. Values along the axes of the cube represent
intensity of hue and increase from 0% to 100% of the displayed color. Note
that the color cube is not a cube in the strict sense of the word: the axes
need not have the same “‘length,”’ that is, the same number of values.

The gray ramp defines a set of colormap cells whose values form a single
color ramp of gray shades. Values along the gray ramp represent comparative
intensities of black and white. Along the ramp, the intensity of white
increases from 0% to 100%.

If the color cube or gray ramp contains a pixel value that exactly matches the
specified pure color or shade, the context uses the pixel value to paint the
pure color or shade. Otherwise, the context approximates the color or shade
by dithering, by painting a pattern of colors or gray shades from its color
cube or gray ramp.

Defining a Color Cube and Gray Ramp

When creating a context, an application must allocate and define a color cube
and gray ramp. If the application defines no color cube, the context renders
colors by dithering from the gray ramp. If the application defines neither a
color cube nor a gray ramp, the context cannot paint.

Typically, applications create contexts by calling

XDPSCr eat eSi npl eCont ext . This routine allocates and defines a color
cube and gray ramp using the XSt andar dCol or map structures
RGB_DEFAULT_MAP and RGB_GRAY_MAP. If these structures do not exist,
XDPSCr eat eSi npl eCont ext allocates them. To alocate and define a
different color cube and gray ramp, an application can use either of two
methods:

» Create the context by calling XDPSCr eat eCont ext .

» Create the context by calling either XDPSCr eat eSi npl eCont ext or
XDPSCr eat eCont ext , then use the X-specific operator
set Xgcdr awabl ecol or to redefine the color cube and gray ramp.

4-8 Advanced Concepts and Tasks

To alocate and define a color cube and gray ramp, an application performs
the following steps:

1. Cdll XCr eat eCol or map to create a colormap. (This optional step is
needed only if the application does not use the default colormap.)

2. Cal XAl | ocCol or Cel | s to alocate the colormap cells needed to
store the color cube and gray ramp.

3. Call XSt or eCol or s to store a color for each pixel value in the color
cube and gray ramp.

4. Cadl XDPSCr eat eCont ext to create a context and pass the
XSt andar dCol or map structures describing the color cube and gray
ramp.

The following sections describe how XDPS uses the color cube and gray
ramp, referring to the following elements of the color cube and gray ramp:

maxred rednul t

maxgr een greennul t
maxbl ue bl uenul t
maxgrays graynul t

firstgray firstcol or
col or mapi d

These names are the same as those used for elements of the col ori nf o
array, which is accessed by the X-specific operators

set Xgcdr awabl ecol or and cur r ent Xgcdr awabl ecol or. (For
more information, see the description of these operators in Chapter 6.)

4.9.2.1 Using the Color Cube

To render an exact color, XDPS searches the colormap for the pixel value
matching the r/g/b value specified in the color cube. Conceptually, the color
cube is three-dimensional; the colormap, however, is conceptually one-
dimensional. Thus, to find the pixel value that matches an r/g/b value, XDPS
uses the following formula:

Pi xel Value=r * rednult + g* greennult + b* bl uenul t +
firstcol or

Inthisformula, r, b, and g are integers. The integer r isin the range [0;
maxr ed]; g isintherange [0; maxgr een]; and b isin the range [O;
maxbl ue].

Advanced Concepts and Tasks 4-9

A color cube must start at pixel fi rst col or inthe X colormap

col or mapi d. Along the red, green and blue axes of the cube, values
should increase from zero to the maximum values for each axis. For
example, one common color allocation is 3/3/2 (three reds, three greens, and
two blues). This alocation results in the following maximum value for each
hue:

maxred =2
maxgreen =2
maxbl ue =1

Inthe col ori nf o array, the elements r ednul t, gr eennul t, and

bl uenul t are the scale factors that determine the spacing of the cube in the
linear colormap. For the 3/3/2 color cube mentioned earlier, appropriate
values might be:

redmult =32
greenmult =4
bluenmult =1

Note

In an empty color cube, maxr ed, maxgr een, and maxbl ue
each equal -1, not zero.

4.9.2.2 Using the Gray Ramp

The gray ramp must start at pixel fi r st gr ay in XStandardColormap
col or mapi d. To find the pixel value that matches a gray value, XDPS
uses the following formula, where gr ay is an integer in the range [0;
maxgr ays]:

Pi xel Val ue =gray * graynult + firstgray

For example, suppose you want to define a 5-cell gray ramp whose values
increase from 0% to 100% in steps of 20%. If the corresponding five
colormap entries are contiguous, you can describe the map by setting
maxgray to4 and graynul t to 1.

A gray ramp must consist of at least two cells: one for black, one for white.
If the colormap is associated with the default visual type, you can use the
following values to form a 2-cell gray ramp consisting of Bl ackPi xel and
Wi t ePi xel :

maxgrays =1
graynul t = Whi t ePi xel — Bl ackPi xel
firstgray = Bl ackPi xel

4-10 Advanced Concepts and Tasks

4.9.3

4.9.4

Rendering Colors Not in the Color Cube

By default, XDPS dithers to render any color not in the color cube. To
render such an additional color exactly, an application must cause the X
server to allocate a colormap cell for the additional color.

To control whether additional colors are rendered exactly or by dithering, an
application can set the act ual element of the col ori nf o array. The

act ual element specifies the maximum number of additional colormap cells
that the server attempts to allocate. Thus, it limits the number of additional
colors that the server attempts to render exactly.

If act ual is nonzero, the server attempts to allocate a colormap cell for
each additional color until it has allocated act ual cells. After act ual
cells have been allocated, the server renders any future additional colors by
dithering. If act ual equals zero, the server dithers to render all colors not
found in the color cube.

To override the maximum set by act ual , an application can use the X-
specific operator set r gbXact ual .
Note

XDPS does not limit the number of colormap cells that one
context or one application can allocate.

The colorinfo Array and XStandardColormaps

The color cube and gray ramp are passed to XDPSCr eat eCont ext as

XSt andar dCol or map structures. Table 4-2 and Table 4-3 show how the
entries in these XSt andar dCol or map structures correspond to elementsin
the colorinfo array.

Advanced Concepts and Tasks 4-11

Table 4-2: Mapping Between colorinfo Array and
XStandardColormap Storing Color Cube

colorinfo Element

maxred
rednul t
maxgreen
greennul t
maxbl ue

bl uenul t
firstcol or

XStandardColormap Element

red_max
red_mul t
gr een_nmax
green_nul t
bl ue_max
bl ue_nul t
base_pi xel

Table 4-3: Mapping Between colorinfo Array and
XStandardColormap Storing Gray Ramp

colorinfo Element

maxgrays
graynul t
firstgray
col or mapi d

4-12 Advanced Concepts and Tasks

XStandardColormap Element

red_max
red _mult
base_pi xel
col ormap

Client Library Routines for WS 5

The Client Library is the set of C language routines by which XDPS
applications access a server, that is, the PostScript interpreter of an X server.
The Client Library includes routines that create, communicate with, and
destroy PostScript contexts on the server.

Most Client Library routines are common to all windowing systems that
implement the Display PostScript system. But for any particular windowing
system, such as X, additional routines and data structures must be added to
the Client Library.

This chapter describes WS-specific routines and data structures that have
been added to the Client Library.

For the rest of this chapter, except where noted, the term *“Client Library’’
refers to the Display PostScript system Client Library as implemented in WS.

The Client Library routines are defined in six C-language header files:

e dpsclient.h

 dpsfriends.h

» dpsexcept.h

 dpsops. h

* psops.h

e dpsXclient.h

The first five of these files are common to all implementations of the Display

PostScript system. The sixth file, dpsXcl i ent . h, is specific to XDPS and
is described in the following section.

5.1 System-Specific Header File

The header file dpsXcl i ent . h defines the system-specific Client Library
routines and data structures of XDPS. Like the other Display PostScript
system header files, dpsXcl i ent . h islocated in the directory
/usr/include/ DPS. ThedpsXcli ent. h fileisthe only Client
Library header file that all XDPS applications must include.

5.2 X-Specific Singleops

The Client Library includes a set of routines called singleops (single-operator
wrapped procedures). Each singleop sends one or more operators to a
context. For instance, the singelop PSshowpage sends operator
showpage.

For each operator, the Client Library defines two singleops. one takes an
implicit context argument (always the current context); the other takes an
explicit context argument. For example, the Client Library contains the
singleops PSshowpage and DPSshowpage. Although both singleops
execute the operator showpage, PSshowpage takes an implicit context
argument; DPSshowpage takes an explicit one.

Implicit-context singleops are defined in the header file psops. h; explicit-
context singleops are defined in dpsops. h. If your application creates only
one context, using implicit-context singleops can make coding easier.

The Client Library includes X-specific singleops. Each of these singleops
sends an X-specific operator, for example, set Xgcdr awabl e. Like other
singleops, X-specific singleops are of two types. implicit-context and
explicit-context. X-specific singleops that take an implicit context argument
are defined in the file pscust onops. h, which isincluded by psops. h.
X-specific singleops that take an explicit context are defined in

dpscust onmops. h, which isincluded by dpsops. h.

Example 5-1 shows the definitions of the X-specific singleops. Table 5-1
describes the arguments used in the definitions. For descriptions of the
operators that the X-specific singleops send, see Chapter 6.

Example 5-1: Definitions of X-specific Singleops

extern void DPSclientsync(/* DPSContext ctxt; */);

extern void DPScurrent Xgcdrawabl e(/* DPSContext ctxt; int *gc, *d,
*X, *y; */)’
extern void DPScurrent Xgcdr awabl ecol or (/* DPSCont ext ctxt;
int *gc, *d, *x, *y,
colorlnfo[12]; */);

extern void DPScurrent Xoffset(/* DPSContext ctxt; int *xOfset,
*yOfFfset; */);

extern void DPSset Xgcdrawabl e(/* DPSContext ctxt; int gc, d, x, y; */);

extern void DPSset Xgcdr awabl ecol or (/* DPSCont ext ctxt;
int gc, d, x, y, colorinfo[12]; */);

extern void DPSset Xof fset(/* DPSContext ctxt; short int x, y; */);

extern void DPSset Xrgbactual (/* DPSContext ctxt; int r, g, b;
Bool ean *success; */);

5-2 Client Library Routines for WS

Example 5-1: (continued)

extern void
extern void

extern void

extern void
extern void

extern void

extern void

extern void

Table 5-1:

Name

PScl i entsync();
PScurrent Xgcdrawabl e(/* int *gc, *d, *x, *y; */);

PScurrent Xgcdr awabl ecol or(/* int *gc, *d, *x, *y,
colorlnfo[12]; */);

PScurrent Xof fset(/* int *xOfset, *yOffset; */);
PSset Xgcdrawabl e(/* int gc, d, x, y; */);

PSset Xgcdr awabl ecolor(/* int gc, d, X, v,
colorlnfo[12]; */);

PSset Xoffset(/* int x, y; */);

PSset Xrgbactual (/* int r, g, b; Bool ean *success; */);
Arguments Used by X-Specific Singleops

Type Description

col orl nfo[12] integer array Stores color attributes of the context. The

gc

r,g, b

success

elements of this array are gr aynax,
graymul t, firstgray, rednax,
rednul t, greenmax, greennul t,
bl uemax, bl uenul t, fi rstcol or,
col or mapi d, and nunmact ual .

integer The X resource ID of an X drawable. If d
equals zero, all drawing operations are ignored.
integer The GCont ext resource ID for the X Graphic

Context of dr anabl e. If gc equals zero, al
drawing operations are ignored. To abtain a
value for gc, cal the Xlib routine

(XGCont ext Fr on30), passing the Xlib data
type GC of the current X Graphic Context as the

argument.

integer Levelsfor red, green, and blue, in the X color
space [0..65535].

Boolean When nonzero, shows that the singleop

completed without a PostScript language error.
When zero, shows that the singleop produced a
PostScript language error on the server.

Client Library Routines for WS 5-3

Table 5-1: (continued)

Name Type Description

X and y integer The horizontal and vertical coordinates (in X
units) for the default user space origin of the
current drawable. If x equals zero, and y equals
the height of the drawable (in pixels), the
default user space origin is at the lower left
corner of the drawable. In the PostScript
language, this is the typical location for the
default user space origin.

XOf fset and integer Same as x y ; see descriptions in this table.
yOFfset

5.3 Naming Conventions

Table 5-2 shows conventions used to name the WS-specific Client Library
routines.

Table 5-2: Naming Conventions in the Client Library

Type of Routine Naming Convention
System-specific Routine DPSMhenoni ¢c_nane
X-gpecific Client Library XDPSMhenoni ¢_nane
routine

Singleop with implicit PSoper at or _nane

context argument

Singleop with explicit DPSoper at or _nane
context argument

5.4 Client Library Routine Descriptions

This section describes the following system-specific Client Library routines:

DPSChangeEncodi ng
DPSCont ext Fr onCont ext | D
DPSCr eat eText Cont ext
DPSDef aul t Text Backst op
DPSNewUser Cbj ect | ndex
XDPSCont ext Fr onShar edl D
XDPSCont ext Fr omXI D

5—4 Client Library Routines for WS

XDPSCr eat eCont ext
XDPSCr eat eSi npl eCont ext
XDPSFi ndCont ext
XDPSRegi st er St at usPr oc
XDPSSet St at usMask
XDPSSpaceFr onhar edl D
XDPSSpaceFr onXl D
XDPSUnf r eezeCont ext
XDPSXI DFr omCont ext
XDPSXI DFr onSpace

In the following list, the routines are arranged al phabetically by name. Each
description provides the C-language defintion of the routine, followed by text
describing what the routine does and what its arguments represent.

DPSChangeEncodi ng

voi d DPSChangeEncodi ng

(/* DPSContext ctxt;
DPSPr ogr anEncodi ng newPr ogEncodi ng;
DPSNaneEncodi ng newNaneEncodi ng */);

The DPSChangeEncodi ng routine sets the value of one or both
encoding parameters of the context specified by ct xt . If the encoding
parameters are set to values other than the default values,

DPSW i t ePost Scri pt, singleops, and custom wraps convert
PostScript language code to the specified encoding before sending it to
context ct xt .

For alist of the default encodings, see Section 4.1.

DPSCont ext Fr onCont ext | D

DPSCont ext

DPSCont ext FronCont ext | D(/ *
DPSCont ext ct xt;
long int cid;
DPSText Proc text Proc;
DPSErrorProc errorProc */);

The DPSCont ext Fr omCont ext | D routine returns the

DPSCont ext handle of the context whose PostScript language ID is
ci d. Context ci d isone created when a preexistent context, ct xt ,
executed the PostScript operator f or k. The arguments t ext Pr oc and
er r or Pr oc specify the two routines with which the calling client
handles text and errors from the context c¢i d.

If the calling client has no context record for context ¢/ d,

DPSCont ext Fr onCont ext | D creates one. The new context record
uses the text handler and error handler passed in t ext Proc and
errorProc. If textProc or errorProcisNULL, the new context
record uses the text handler and error handler of ct xt .

Except for the text handler, error handler, and chaining pointers, the

Client Library Routines for WS 5-5

created context record inherits all its characteristics from ct xt .

DPSCr eat eText Cont ext

DPSCont ext

DPSCr eat eText Cont ext (/ *
DPSText Proc text Proc;
DPSErrorProc errorProc */);

The DPSCr eat eText Cont ext routine creates a context record and a
DPSCont ext handle not associated with an execution context. When
this DPSCont ext handle is passed as the argument to a Client Library
routine, that routine converts all context input into ASCII text, then
passes that text to the text-handling routine t ext Pr oc. The routine
specified by er r or Pr oc handles errors that result from improper
context usage. (For example, one such error occurs if the context is
invalid.)

Do not use the er r or Pr oc routine to handle errors that result from
executing t ext Proc. For example, if your t ext Pr oc routine writes
text to afile, do not use er r or Pr oc to handle file-related errors, such
as those that occur when afile is write-protected.

DPSDef aul t Text Backst op

voi d DPSDef aul t Text Backst op
(/* DPSContext ctxt;

char *buf;

unsi gned count */);

The DPSDef aul t Text Backst op routine is a text-handling routine;
it is the default text backstop installed by the Client Library. Because
DPSDef aul t Text Backst op is of type DPSText Pr oc, it can be
specified as the text-handling routine (t ext Pr oc) in context-creation
routines, such as XDPSCr eat eSi npl eCont ext .

DPSDef aul t Text Backst op writes text to WS st dout and flushes
st dout .

DPSNewUs er Cbj ect | ndex
| ong int DPSNewUser Cbj ect | ndex();

The DPSNewUser Cbj ect | ndex routine returns a new user object
index. All new user object indexes are alocated by the Client Library.

User object indexes are dynamic; do not compute with them or store
them in long-term storage, such asin afile.

5-6 Client Library Routines for WS

XDPSCont ext Fr ontShar edl D

DPSCont ext
XDPSCont ext Fr onShar edl D(/ *
Di spl ay *dpy;
PSCont ext | D ci d;
DPSText Proc text Proc;
DPSError Proc errorProc */);

The XDPSCont ext Fr onShar edl| D routine returns the

DPSCont ext handle of an existing context, specified by PostScript
language ID (ci d) and X display (dpy). If the calling client has no
such DPSCont ext , XDPSCont ext Fr onShar edl D creates a
DPSCont ext and the associated DPSCont ext Rec.

The arguments t ext Pr oc and er r or Pr oc specify the two routines
with which the calling client handles text and errors from the specified
context.

XDPSCont ext Fr onShar edl D lets one client access a context
created by another client, thereby letting multiple clients share a single
context. When sending names to shared contexts,

XDPSCont ext Fr onShar ed| D uses name string encoding.

XDPSCont ext Fr omXl D

DPSCont ext

XDPSCont ext FromXI D(/ *
Di splay *dpy;
XID xid */);

The XDPSCont ext Fr omXl D routine returns the DPSCont ext handle
of an existing context, specified by X resource ID (xi d) and X display

(dpy).

XDPSCr eat eCont ext

DPSCont ext

XDPSCr eat eCont ext (/ *
Di spl ay *dpy;
Dr awabl e drawabl e;
GC gc;
int x,vy;
unsi gned i nt event mask;
XSt andar dCol or map *grayr anp;
XSt andar dCol or map *ccube;
int actual;
DPSText Proc text Proc;
DPSError Proc errorProc;
DPSSpace space */);

The XDPSCr eat eCont ext routine creates an execution context and
the associated DPSCont ext Rec data structure. It returns a
DPSCont ext handle.

Unlike XDPSCr eat eSi npl eCont ext , XDPSCr eat eCont ext lets

Client Library Routines for WS 5-7

you explicitly specify all characteristics of the context, including its
colormap entries. But, unless your application uses color in an unusual
way, you need not use XDPSCr eat eCont ext ; use

XDPSCr eat eSi npl eCont ext instead.

When called, XDPSCr eat eCont ext checks whether the X server
dpy supports a Display PostScript system extension. If not, the routine
returns NULL ; if so, it checks that the specified drawable and GC exist
on the same screen. |If they do not, the X server returns a BadMat ch
error. If they do, XDPSCr eat eCont ext creates a PostScript context
having the characteristics specified in the arguments passed.

If the argument dr avabl e or GCis NULL, the created context can
receive and execute PostScript language input, but cannot paint images
until the calling application specifies an X drawable and GC. (To specify
these values, the application must send an X-specific operator, such as
set Xgcdr awabl e, described in Chapter 6.)

The following table describes the arguments of
XDPSCr eat eCont ext :

dpy

dr avabl e
GC

xand y

event mask

grayranp
ccube and graymap

5-8 Client Library Routines for WS

An X display.
An X drawable on di spl ay.
The X Graphic Context associated with dr anabl e.

The horizontal and vertical coordinates (in X units) for
the default user space origin of dr anabl e. If x
equals zero and y equals the height of dr awabl e (in
pixels), the default user space origin is at the lower left
corner of dr awabl e. Inthe PostScript language, this
is the typical location for the default user space origin.

Ignored; reserved for future use. Use zero as the value
of this argument.

(See ccube.)

ccube identifies a set of color cells defined as a series
of color ramps; gr ayr anp identifies a set of color
cells defined as a gray ramp. The context uses ccube
and gr ayr anp to produce actual colors and dithered
colors.

If ccube equals NULL, colors are rendered in shades
of gray only. If gr ayr anp equals NULL, the context
does not paint. The gray ramp must have at least two
elements. one for black and one for white.

The X client must allocate and define ccube and
grayr anp and must install the associated colormap.
In generd, if the client specifies a plane mask, ccube
and gr ayr anp should be within the planes selected
by the plane mask, to ensure that the Display
PostScript system interacts properly with the plane
Section 4.9.)

mask. (For more information, see

act ual Specifies whether the application prefers to paint with
actual (not dithered) colors and, if so, specifies how
many actual colorsit needs. The act ual argument is
a hint to the X server: dithering and actual color
alotment are governed by the X server, not by the
application

If act ual equals zero, the application paints by
dithering colors from gr ayr anp and ccube. |f
act ual isnot zero, the application paints using a
maximum of act ual actual colors; al additional
colors are dithered.

t ext Proc The routine that this context calls to handle text outpuit.

errorProc The routine that this context calls if it encounters an
error condition.

space The private VM in which this context executes. |If

space isNULL, anew space is created for the
context; otherwise, the context shares the specified
space.

XDPSCr eat eSi npl eCont ext

DPSCont ext
XDPSCr eat eSi npl eCont ext (/ *
Di spl ay *dpy;
Dr awabl e dr awabl e;
CC gc;
int x,vy;

DPSText Proc text Proc;

DPSError Proc errorProc;

DPSSpace space */);
The XDPSCr eat eSi npl eCont ext routine creates an execution
context and the associated DPSCont ext Rec data structure. It returns a
DPSCont ext handle.

When called, XDPSCr eat eSi npl eCont ext checks whether the X
server dpy supports a Display PostScript system extension. If not, the
routine returns NULL ; if so, it checks that the specified drawable and GC
exist on the same screen. If they do not, the X server returns a

BadMat ch error. If they do, XDPSCr eat eSi npl eCont ext creates

Client Library Routines for WS 5-9

a PostScript context having the characteristics specified in the arguments
passed.

If the argument dr avabl e or GCis NULL, the created context can
receive and execute PostScript language input, but cannot paint images
until the calling application specifies an X drawable and GC. (To specify
these values, the application must send an X-specific operator, such as
set Xgcdr awabl e, described in Chapter 6.)

The following table describes the arguments of
XDPSCr eat eSi npl eCont ext :

dpy An X display.

dr avabl An X drawable on di spl ay.

GC The X Graphic Context associated with dr anabl/ e.
xand y The horizontal and vertical coordinates (in X units) for

the default user space origin of dr anabl e. If x
equals zero and y equals the height of dr anabl e, the
default user space origin is at the lower left corner of
dr anabl e. Inthe PostScript language, thisis the
typical location for the default user space origin.

t ext Proc The routine that this context calls to handle text output.
error Proc The routine that this context calls if it encounters an
error condition.

space The private VM in which this context executes. If
space isNULL, anew spaceis created for the
context; otherwise, the context shares the specified
space.

Unlike the XDPSCr eat eCont ext routine,

XDPSCr eat eSi npl eCont ext does not let you explicitly specify the
colormap of the created context, nor does it let you set characteristics of
the colormap. Instead, the routine uses standard colormaps as described
in the following paragraph.

XDPSCr eat eSi npl eCont ext accessesthe X server dpy, and finds
out whether the standard colormaps RGB_DEFAULT_MAP and
RGB_GRAY_MAP are defined. If they are defined,

XDPSCr eat eSi npl eCont ext uses them; otherwise, the routine
defines them.

After these values are defined, any context that the application creates
by calling XDPSCr eat eSi npl eCont ext uses RGB_DEFAULT_MAP
and RGB_GRAY_NMAP. Note, however, that contexts created by calling
XDPSCr eat eCont ext use the color cube and gray ramp specified in
the call to that routine. For information on explicitly specifying the
color characteristics of a context, see the description of

5-10 Client Library Routines for WS

XDPSCr eat eCont ext in this chapter.)

XDPSFi ndCont ext

DPSCont ext
XDPSFi ndCont ext (/ *
Di splay *dpy;
long int cid */);
The XDPSFi ndCont ext routine returns the DPSCont ext handle of
the context whose ID is specified in ¢i d.

The argument ¢/ d is the result returned by an operator such as
current cont ext ; dpy specifies the X display where the context is
running.

XDPSRegi st er St at usPr oc

typedef void (*XDPSStatusProc) (/*
DPSCont ext ct xt;
int code */);

voi d

XDPSRegi st er St at usProc (/*
DPSCont ext ct xt;
XDPSSt at usProc proc */);

The XDPSRegi st er St at usPr oc routine specifies the routine that an
application calls to handle status events (XDPSSt at usEvent) from
the context ct xt. That is, XDPSRegi st er St at usPr oc registers, or
associates, the XDPSSt at usPr oc event-handling routine pr oc with
the context ct xt .

The routine pr oc has two arguments. ct xt and code. The argument
ct xt specifies the context with which pr oc is registered; code shows
the status code of the event for which pr oc was called. The client can
cal proc at any time to process status events.

If an XDPSSt at usPr oc routine is already registered with the context
ct xt, XDPSRegi st er St at usPr oc supersedes the existing
registration with the value of pr oc.

XDPSSet St at usMask

voi d

XDPSSet St at usMask(/ *
DPSCont ext ct xt;
unsi gned | ong enabl eMask;
unsi gned | ong di sabl eMask;
unsi gned | ong next Mask */);

The XDPSSet St at usMask routine sets the context status mask of the
context specified in the argument ct xt . (For an explanation of context
status and the context status mask, see Section 2.2.3.)

The argument enabl eMask specifies which kinds of context status

Client Library Routines for WS 5-11

events the XDPS server sends to the calling application;

di sabl eMask specifies the kinds of context status events the server
does not send. The argument next Mask causes the server to send only
the next instance of each specified kind of context status event. The
enabl eMask, di sabl eMask, and next Mask arguments each
represent one or more of the values listed in the following code extract:

#defi ne PSRUNNI NGVASK 0x0001
#defi ne PSNEEDSI NPUTMASK 0x0002
#def i ne PSZOVBI EMASK 0x0004
#def i ne PSFROZENVASK 0x0008

To assign more than one value to a single argument, perform a bitwise
inclusive OR operation (|) on the values you wish to assign, asin the
following example:

XDPSSet St at usMask(PSRUNNI NGVASK | PSNEEDSI NPUTMASK, 0, 0) ;

The following table describes the valid values for enabl eMask,
di sabl eMask, and next Mask:

PSFRQZENVASK Events that show the context is frozen

PSNEEDSI NPUTMASK Events that show the context needs input

PSRUNNI NGVASK Events that show the context is in the runnable state
PSZOVBI EMASK Events that show the context is in the zombie state

Note that, if an application sends input to a context that is in the zombie
state, the application receives a zombie status event, regardless of how
the status mask is set.

XDPSSpaceFr ontshar edl D

DPSSpace
XDPSSpaceFr onthar edl D(/ *

Di splay *dpy;

SpaceXID sid */);
XDPSSpaceFr onthar edl D returns the DPSSpace handle of an
existing private context space, specified by X resource ID (si d) and
display (dpy). If the calling client has no such DPSSpace,
XDPSSpaceFr onhar edl D creates the DPSSpace and associated
DPSSpaceRec data structure.

XDPSSpaceFr onShar edl D lets a context created by one X client
share the private space of a context created by another X client. When
sending names to shared context whose private space is shared,
XDPSSpaceFr onthar edl D uses ASCII encoding.

5-12 Client Library Routines for WS

XDPSSpaceFr onmXl D

DPSSpace
XDPSSpaceFr onXl D(/ *
Di splay *dpy;
XID xid */);
XDPSSpaceFr onXl D returns the DPSSpace pointer of an existing
private context space, specified by X resource ID (si d) and display
(dpy).
XDPSUnf r eezeCont ext

voi d
XDPSUnf r eezeCont ext (/*
DPSCont ext ctxt */);

XDPSUnf r eezeCont ext causes the specified frozen context to
resume executing. The argument ct xt isthe ID of a context whose
status is PSFROZEN.

XDPSXI DFr omCont ext

Xl D
XDPSXI DFr onCont ext (/ *

Di spl ay **Pdpy;

DPSCont ext ctxt */);
XDPSXI DFr onCont ext returns the X resource ID of the context
whose DPSCont ext handleis ct xt. In addition, the routine returns
the argument Pdpy, which points to the X Di spl ay structure
associated with ct xt .

XDPSXI DFr onSpace

X D
XDPSXI DFr onfspace(/ *

Di spl ay **Pdpy;

DPSSpace spc */);
XDPSXI DFr onSpace returns the X resource ID of the context
associated with the DPSSpace pointer spc. In addition, the routine
returns the argument Pdpy, which points to the X Di spl ay structure
associated with spc.

Client Library Routines for WS 5-13

X-Specific Operators for WS 6

The Display PostScript system extends the PostScript language to include
operators for generic window-related tasks; but for tasks that relate
specifically to X, the window system of UWS, additional operators are
needed. To fill this need, UWS extends the PostScript language to include
X-specific operators.

This chapter describes the X-specific operators for UWS.

The Client Library defines single-operator procedures that execute the X-
specific operators. For information on these procedures, see Chapter 5.

6.1 About the Operators

The operators described in the rest of this chapter are arranged al phabetically
by operator name. Each description follows this format:

oper andl operandN operator resultl.. resultM

Text describing what the operator does
EXAMPLE: (Optional)

Sanpl e Post Scri pt | anguage code showi ng how to use the
oper at or

ERRORS:
comma-separ ated list of errorsthis operator might execute

Each operator description begins with a syntax summary. Init, oper and1

through oper andN are the operands that the operator requires;, oper and1
is the top element on the operand stack. A dash (=} in the operand position
means the operator accepts ho operands.

The operator pops the operands from the stack, and processes them. After
executing, the operator pushes r esul t 1 through r esul t Mon the stack;
resul t Mis the top element. A dash (=} in the result position means the
operator returns no results.

Table 6-1 describes the values used as operands and results by the X-specific
operators for WS. All operands are required.

Table 6-1: Operands and Results for X-Specific Operators

Name Type Description

colorinfo integer aray Stores color attributes of the context. The 12
elements of col ori nf o are gr aymax,
graynmul t,firstgray,redmax,
redmul t, gr eenmax, greenmul t,
bl uemax, bl uenul t, firstcol or,
col or mapi d, and nunmact ual . (For more
information, see Section 4.9.4.)

dr avabl e integer The X window ID or pixmap ID of an X
drawable. If dr anabl e equals zero, al
drawing operations are ignored.

gc integer The GCont ext resource ID for the X Graphic
Context of dr anabl e. If gc equals zero, al
drawing operations are ignored. To obtain a
value for gc, cal the Xlib routine
XGCont ext Fr ontaC, passing the Xlib data
type GC of the current Graphic Context as the

argument.
red, float Three real numbers in the range 0.0 to 1.0 that,
green, and together, specify a color (as in the operator
bl ue setrgbcol or).
success integer When nonzero, indicates that the operator
completed without error.
xand y integer The horizontal and vertical coordinates (in X

units) for the default user space origin of the
current drawable. If x equals zero and y equals
the height of the drawable, the default user
space origin is at the lower left corner of the
drawable. In the PostScript language, this is the
typical location for the default origin.

Note that dr awabl e, gc, x, and y are part of the PostScript graphics state,
which can be saved and restored using the PostScript language operators
gsave and grest ore.

6.2 Operator Errors
Table 6-2 describes the errors for the X-specific operators.

6—2 X-Specific Operators for WS

Table 6-2: Errors for X-Specific Operators

Error Probable Cause

rangecheck Bad match: the drawable and GC do not have the
same depth, or their visual does not match the
colormap associated with the context.

st ackunder f | ow Too few operands on the operand stack.
t ypecheck Invalid ID for drawable or for GC.
undefi ned Context not associated with a display device.

6.3 Operator Descriptions

Following is an alphabetical list and description of the X-specific operators
for WS. The format for these descriptions is explained in Section 6.1.

— clientsync —

Thecl i ent sync operator pauses the current context, sets the status of
the context to FROZEN, and causes the X server to return a PSFROZEN
status event. The context stays frozen until the application calls the
Client Library routine XDPSUnf r eezeCont ext (). Thus,

cl i ent sync synchronizes the application with the current context.

One possible use of ¢l i ent sync isto display PostScript language
output one page at a time by pausing the current context after each page,
as in the following example. This example redefines the operator
showpage, so that the operator first pauses the current context.

EXAMPLE:

/ showpage {
clientsync
showpage

} bind def

ERRORS:
None

— current Xgcdr awabl e gc dravabl e x y

The cur r ent Xgcdr awabl e operator returns the X Graphic Context,
drawable, and default user space origin of the current context.

Note that the results returned by cur r ent Xgcdr awabl e can be used
as the operands of set Xgcdr awabl e.

X-Specific Operators for WS 6-3

ERRORS:
undefined

— current Xgcdr awabl ecol or gc drawabl e x y col ori nfo

The cur r ent Xgcdr awabl ecol or operator returns the GC,
drawable, default user space origin, and color attributes of the current
context.

Note that the results returned by cur r ent Xgcdr awabl ecol or can
be used as the operands of set Xgcdr awabl ecol or.

ERRORS:
undefined

— current Xoffset xy

The cur r ent Xof f set operator returns the default user space origin
of the current context.

Note that the results returned by cur r ent Xof f set can be used as the
operands of set Xof f set .

ERRORS:
undefined

red green bl ue setrgbXactual success

Theset r gbXact ual operator allocates a new colormap entry to
display the color specified by r ed, gr een, bl ue. If the allocation
succeeds (if success is nonzero), future painting of this color uses the
new colormap entry instead of dithering from the colorcube.

Note that set r gbXact ual does not affect the graphics state. Thus, to
paint with the specified color, you must first execute the operator
setrgbcol or.

ERRORS:
stackunder flow, undefined, typecheck

gc drawabl e x y set Xgcdr awabl e —

The set Xgcdr awabl e operator sets the X Graphic Context, drawable,
and default user space origin of the current context. The values supplied
as operands supersede any existing values for these attributes. The

set Xgcdr awabl e operator causes all subsequent operations of the
current context to occur in the specified X drawable, with the specified
Graphic Context and default user space origin.

6—4 X-Specific Operators for WS

To make the effects of set Xgcdr awabl e temporary, use it between
the operators gsave and gr est or e.

ERRORS:
rangecheck, stackunderflow, typecheck, undefined

gc drawabl e x y col ori nfo set Xgcdr awabl ecol or —

Xy

The set Xgcdr awabl ecol or operator sets the GC, drawable, default
user space origin, and color attributes of the current context.

ERRORS:
rangecheck, stackunderflow, typecheck, undefined

set Xof f set —

The set Xof f set operator sets the default user space origin for the
current context.

ERRORS:
stackunderflow, undefined

X-Specific Operators for WS 6-5

A

Application
basic requirements, 34 to 3-5
building, 3-10 to 3-13
developing typical, 3-1 to 34
sample
See Sample applications

B

Basic tasks, summary, 3-16
Bit gravity, 44
Buffering, 4-2

C

Client Library

described, 2—2

header files, 5-1

naming conventions

See Naming conventions, Client Library

Client Library routines, 54 to 5-13
clientsync operator, 6-3
Clipping path, 44
Color cube

See Color, using
Color, using, 4-7 to 4-12
Colormap

See Color, using

Index

Colormap (cont.)
See also setrgbXactual operator
allocating entries in, 4-8 to 4-10
Compiling
See Application, building
Context
color attributes
obtaining, 64
setting, 6-5
creating
execution context, 57, 5-9
text context, 56
defined, 2-2 to 2-3
finding
See DPSContext handle
pausing, 6-3
sharing, 4—7
unfreezing, 5-13
XID, 5-13
Context record, 2-3
Context status events, 24
See also XDPSRegisterStatusProc routine
and XDPSSetStatusMask routine
Context status mask, 24
See also XDPSSetStatusMask routine
Coordinate systems, 2-5 to 27
Coordinates, converting, 4-2 to 4-3

Current context, 24

See also Context
currentXgcdrawable operator, 6-3
currentXgcdrawablecolor operator, 64
currentXoffset operator, 64

D

Default text backstop

See DPSDefaultTextBackstop routine
Default user space origin

See User space origin
DPSChangeEncoding routine, 5-5
DPSContext handle

defined, 24

finding, 5-11, 5-5, 5-6, 5-7

DPSContextFromContextl D routine, 5-5

DPSContextRec data type

See Context record
DPSCreateT extContext routine, 5-6
DPSDefaultTextBackstop routine, 56
DPSNewUser ObjectIndex routine, 5-6
DPSSpace handle

finding, 5-12
dpsXclient.h file

See System-specific header file
Drawable

See also Window

setting

See setXgedrawable operator

E

Encoding, PostScript language, 4-1, 5-5
Example applications
See Sample applications

Index—2

examplemain sample application, 3-5 to 3-13

Execution context
See Context

F

Files, accessing, 4-2

G

GC

See X Graphic Context
Graphic Context

See X Graphic Context
Graphics state, 2-3, 6-2, 64
Gray ramp

See Color, using

H

Header files
See Client Library, header files
See also Application, building

| dentifiers, 24
Imaging model, 1-1
Input, defined, 2-3

L

Linking
See Application, building

M

M akefile, sample
See Application, building

N

Naming conventions, Client Library, 54

O

Operators, 6-1 to 6-5

See also individual operator names
Origin

See Coordinate systems

See also User space origin
Output, defined, 2-3

P

Pixel value

See Color, using
PostScript interpreter, 2-1
PostScript language encoding

See Encoding, PostScript language
Postscript language imaging, 1-1
pswrap translation program, 2-2

S

Sample applications

running, 3-15

summary of, 3-14
setrgbXactual operator, 64
setXgcdrawable operator, 6-4
setX gedrawablecolor operator, 6-5
setXoffset operator, 6-5
Singleops, 5-2 to 54

Space

defined, 24

finding

See DPSSpace handle

sharing, 4-7
Synchronization

client and context, 4—7

Display PostScript System and X, 4-6
System-specific header file, 5-1

T

Text context
See Context

U

User object index, new

See DPSNewUserObjectindex routine
User space coor dinate system

See Coordinate systems
User space origin

defined, 2-5

obtaining, 6-3, 64

setting, 64, 6-5

Vv

Virtual memory
See VM
VM, 24

wW

Window, resizing, 44 to 46

Index-3

X

X coordinate system

See Coordinate systems
X Graphic Context

defined, 2-2

setting, 64, 6-5
X-specific operators

See Operators
XDPSContextFromShared| D routine, 5—7
XDPSContextFromXID routine, 5-7
XDPSCreateContext routine, 5-7
XDPSCreateSimpleContext routine, 5-9
XDPSFindContext routine, 5-11
XDPSRegister StatusProc routine, 5-11
XDPSSetStatusM ask routine, 5-11
XDPSSpaceFromsShar edI D routine, 5-12
XDPSSpaceFromXID routine, 5-13
XDPSUnfreezeContext routine, 5-13
XDPSXIDFromContext routine, 5-13
XDPSXIDFromSpace routine, 5-13
XStandardColormap

See Color, using

Index—4

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact
Continental USA, 800-DIGITAL Digital Equipment Corporation
Alaska, or Hawaii P.O. Box CS2008

Nashua, New Hampshire 03061
Puerto Rico 809-754-7575 Local Digital subsidiary
Canada 800-267-6215 Digital Equipment of Canada

Attn: DECdirect Operations KAO2/2
P.O. Box 13000

100 Herzberg Road

Kanata, Ontario, Canada K2K 2A6

International —_— Local Digital subsidiary or
approved distributor
Internal2 _— SSB Order Processing — NQO/V 19

or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road

Nashua, NH 03063-1260

aFor internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader’s Comments Digital UNIX
Developing Applications for the

Display PostScript System

AA-Q15WB-TE

Digital welcomes your comments and suggestions on this manual. Your input will help us to
write documentation that meets your needs. Please send your suggestions using one of the
following methods:

e This postage-paid form

* Internet electronic mail: r eaders_coment @k3. dec. com

* Fax: (603) 881-0120, Attn: UEG Publications, ZKO3-3/Y 32

If you are not using this form, please be sure you include the name of the document, the page
number, and the product name and version.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manua says)

Completeness (enough information)

Clarity (easy to understand)

Organization (structure of subject matter)

Figures (useful)

Examples (useful)

Index (ability to find topic)

Usability (ability to access information quickly)

Please list errorsyou have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the softwar e described by this manual are you using?

Name/Title Dept.
Company Date
Mailing Address

Email Phone

_______ Do Not Cut or Tear — Fold Here and Tape ____ _ el __.

™
Hﬂﬂﬂnau NO POSTAGE

NECESSARY IF
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
UEG PUBLICATIONS MANAGER
ZKO3-3/Y32

110 SPIT BROOK RD

NASHUA NH 03062-9987

Do Not Cut or Tear — Fold Here

Cut on
Dotted
Line

