
Digital UNIX
Guide to Realtime Programming
Order Number: AA–PS33D–TE

March 1996

This guide describes how to use POSIX 1003.1b functions to write realtime
applications that run on Digital UNIX systems. This guide is intended for
experienced application programmers.

Operating System and Version: Digital UNIX Version 4.0 or higher

Digital Equipment Corporation
Maynard, Massachusetts

Revised, March 1993
Revised, August 1994
Revised, March 1996

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1992, 1993, 1994, 1996.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’s Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: CDA, DDIF, DDIS, DEC,
DECdts, DECnet, DECstation, DECsystem, DECthreads, DEC OSF/1, DECUS, DECwindows,
Digital UNIX, DTIF, MASSBUS, MicroVAX, PrintServer 40, Q–bus, ReGIS, ULTRIX, ULTRIX
Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX DOCUMENT, VT, XUI, and the
DIGITAL logo.

The following are third-party trademarks:

X Window System, Version 11 and its derivations (X, X11, X Version) are trademarks of the
Massachusetts Institute of Technology.

UNIX is a registered trademark in the United States and other countries licensed exclusively
through X/Open Company Ltd.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of
the Open Software Foundation, Inc.

POSTSCRIPT® and Adobe are registered trademarks of Adobe Systems Incorporated.

X/Open is a trademark of the X/Open Company, Ltd. in the U.K. and other countries.

System V and AT&T are registered trademarks of American Telephone & Telegraph Company in
the U.S. and other countries.

BSD is a trademark of University of California, Berkeley.

NFS is a trademark of Sun Microsystems, Inc.

All other trademarks are registered trademarks are property of their respective holders.

This document is available on CD–ROM

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

About This Guide . xi

1 Introduction to Realtime Programming

1.1 Realtime Overview . 1–2
1.2 Digital UNIX Realtime System Capabilities 1–4
1.2.1 The Value of a Preemptive Kernel . 1–5
1.2.1.1 Nonpreemptive Kernel . 1–5
1.2.1.2 Preemptive Kernel . 1–6
1.2.1.3 Comparing Latency . 1–6
1.2.2 Fixed-Priority Scheduling Policies . 1–7
1.2.3 Realtime Clocks and Timers . 1–9
1.2.4 Memory Locking . 1–10
1.2.5 Asynchronous I/O . 1–10
1.2.6 Synchronized I/O . 1–11
1.2.7 Realtime Interprocess Communication 1–11
1.3 Process Synchronization . 1–12
1.3.1 Waiting for a Specified Period of Time or an Absolute

Time . 1–14
1.3.2 Waiting for Semaphores . 1–14
1.3.3 Waiting for Communication . 1–15
1.3.4 Waiting for Another Process . 1–16
1.3.5 Realtime Needs and System Solutions 1–16
1.4 POSIX Standards . 1–17
1.5 Enabling Digital UNIX Realtime Features 1–19
1.6 Building Realtime Applications . 1–19
1.6.1 Defining the POSIX Environment . 1–19
1.6.2 Compiling Realtime Applications . 1–20

iii

2 The Digital UNIX Scheduler

2.1 Scheduler Fundamentals . 2–1
2.1.1 Schedulable Entities . 2–2
2.1.2 Thread States . 2–2
2.1.3 Scheduler Database . 2–2
2.1.4 Quantum . 2–2
2.1.5 Scheduler Transitions . 2–3
2.2 Scheduling Policies . 2–6
2.2.1 The Nature of the Work . 2–6
2.2.2 Timesharing Scheduling . 2–7
2.2.3 Fixed-Priority Scheduling . 2–7
2.2.3.1 First-In First-Out Scheduling . 2–8
2.2.3.2 Round-Robin Scheduling . 2–9
2.3 Process Priorities . 2–11
2.3.1 Priorities for the nice Interface . 2–11
2.3.2 Priorities for the Realtime Interface 2–12
2.3.3 Displaying Realtime Priorities . 2–15
2.3.4 Configuring Realtime Priorities . 2–16
2.4 Scheduling Functions . 2–17
2.4.1 Determining Limits . 2–18
2.4.2 Retrieving the Priority and Scheduling Policy 2–19
2.4.3 Setting the Priority and Scheduling Policy 2–19
2.4.4 Yielding to Another Process . 2–22
2.5 Priority and Policy Example . 2–23

3 Shared Memory

3.1 Memory Objects . 3–1
3.1.1 Opening a Shared-Memory Object . 3–3
3.1.2 Opening Memory-Mapped Files . 3–5
3.1.3 Mapping Memory-Mapped Files . 3–6
3.1.4 Using File Functions . 3–8
3.1.5 Controlling Memory-Mapped Files . 3–9
3.1.6 Removing Shared Memory . 3–10
3.2 Locking Shared Memory . 3–10
3.3 Using Shared Memory with Semaphores 3–12

iv

4 Memory Locking

4.1 Memory Management . 4–1
4.2 Memory-Locking and Unlocking Functions 4–2
4.2.1 Locking and Unlocking a Specified Region 4–3
4.2.2 Locking and Unlocking an Entire Process Space 4–6

5 Signals

5.1 POSIX Signal Functions . 5–2
5.2 Signal Handling Basics . 5–3
5.2.1 Specifying a Signal Action . 5–7
5.2.2 Setting Signal Masks and Blocking Signals 5–9
5.2.3 Suspending a Process and Waiting for a Signal 5–11
5.2.4 Setting Up an Alternate Signal Stack 5–12
5.3 Realtime Signal Handling . 5–12
5.3.1 Additional Realtime Signals . 5–15
5.3.2 Queuing Signals to a Process . 5–16
5.3.2.1 The siginfo_t Structure . 5–17
5.3.2.2 The ucontext_t and sigcontext Structures 5–18
5.3.2.3 Sending a Realtime Signal With the sigqueue

Function . 5–19
5.3.3 Asynchronous Delivery of Other Realtime Signals 5–19
5.3.4 Responding to Realtime Signals Using the sigwaitinfo and

sigtimedwait Functions . 5–20

6 Clocks and Timers

6.1 Clock Functions . 6–2
6.1.1 Retrieving System Time . 6–4
6.1.2 Setting the Clock . 6–4
6.1.3 Converting Time Values . 6–5
6.1.4 System Clock Resolution . 6–6
6.1.5 High-Resolution Clock . 6–7
6.2 Types of Timers . 6–7
6.3 Timers and Signals . 6–8
6.4 Data Structures Associated with Timing Facilities 6–9
6.4.1 Using the timespec Data Structure . 6–9
6.4.2 Using the itimerspec Data Structure 6–9
6.4.3 Using the sigevent Data Structure . 6–11
6.5 Timer Functions . 6–12
6.5.1 Creating Timers . 6–12
6.5.2 Setting Timer Values . 6–13

v

6.5.3 Retrieving Timer Values . 6–15
6.5.4 Getting the Overrun Count . 6–15
6.5.5 Disabling Timers . 6–16
6.6 High-Resolution Sleep . 6–16
6.7 Clocks and Timers Example . 6–16

7 Asynchronous Input and Output

7.1 Data Structures Associated with Asynchronous I/O 7–2
7.1.1 Identifying the Location . 7–2
7.1.2 Specifying a Signal . 7–3
7.2 Asynchronous I/O Functions . 7–4
7.2.1 Reading and Writing . 7–5
7.2.2 Using List-Directed Input/Output . 7–6
7.2.3 Determining Status . 7–7
7.2.4 Canceling I/O . 7–8
7.2.5 Blocking to Completion . 7–9
7.2.6 Asynchronous File Synchronization . 7–9
7.3 Asynchronous I/O to Raw Devices . 7–10
7.4 Asynchronous I/O Examples . 7–10
7.4.1 Using the aio Functions . 7–10
7.4.2 Using the lio_listio Function . 7–16

8 File Synchronization

8.1 How to Assure Data or File Integrity . 8–2
8.1.1 Using Function Calls . 8–2
8.1.2 Using File Descriptors . 8–2

9 Semaphores

9.1 Overview of Semaphores . 9–1
9.2 The Semaphore Interface . 9–3
9.2.1 Creating and Opening a Semaphore 9–4
9.2.2 Locking and Unlocking Semaphores 9–6
9.2.3 Priority Inversion with Semaphores . 9–7
9.2.4 Closing a Semaphore . 9–7
9.3 Semaphore Example . 9–8

vi

10 Messages

10.1 Message Queues . 10–1
10.2 The Message Interface . 10–2
10.2.1 Opening a Message Queue . 10–3
10.2.2 Sending and Receiving Messages . 10–6
10.2.3 Asynchronous Notification of Messages 10–7
10.2.4 Prioritizing Messages . 10–8
10.2.5 Using Message Queue Attributes . 10–8
10.2.6 Closing and Removing a Message Queue 10–9
10.3 Message Queue Examples . 10–9

11 Realtime Performance and System Tuning

11.1 Realtime Responsiveness . 11–1
11.1.1 Interrupt Service Routine Latency . 11–2
11.1.2 Process Dispatch Latency . 11–2
11.2 Improving Realtime Responsiveness . 11–3

A Digital UNIX Realtime Functional Summary

Index

Examples

2–1 Initializing Priority and Scheduling Policy Fields 2–20
2–2 Using Priority and Scheduling Functions 2–23
3–1 Including a Shared-Memory Object . 3–5
3–2 Locking a Memory Object . 3–10
4–1 Aligning and Locking a Memory Segment 4–5
4–2 Using the mlockall Function . 4–8
5–1 Sending a Signal to Another Process 5–3
5–2 Sending a Realtime Signal to Another Process 5–14
5–3 Using the sigwaitinfo Function . 5–21
5–4 Using the sigwaitinfo Function . 5–23
6–1 Returning Time . 6–4
6–2 Using Timers . 6–17
7–1 Using Asynchronous I/O . 7–11
7–2 Using lio_listio in Asynchronous I/O 7–16

vii

9–1 Locking a Semaphore . 9–6
9–2 Using Semaphores and Shared Memory 9–9
10–1 Opening a Message Queue . 10–5
10–2 Using Message Queues to Send Data 10–9
10–3 Using Message Queues to Receive Data 10–12

Figures

1–1 Nonpreemptive Kernel . 1–7
1–2 Preemptive Kernel . 1–7
2–1 Order of Execution . 2–4
2–2 Process Events . 2–5
2–3 Preemption—Finishing a Quantum . 2–10
2–4 Priority Ranges for the nice and Realtime Interfaces 2–14
4–1 Memory Allocation with mlock . 4–4
4–2 Memory Allocation with mlockall . 4–7
5–1 Signal Mask that Blocks Two Signals 5–10

Tables

1–1 Realtime Needs and System Solutions 1–17
2–1 Priority Ranges for the nice Interface 2–12
2–2 Priority Ranges for the Digital UNIX Realtime Interface . . . 2–13
2–3 P1003.1b Process Scheduling Functions 2–18
3–1 Shared-Memory Functions . 3–2
3–2 Memory-Mapping Functions . 3–2
3–3 Status Flags and Access Modes for the shm_open

Function . 3–4
3–4 File Functions Used with Memory-Mapped Files 3–8
4–1 Memory-Locking Functions . 4–3
5–1 POSIX 1003.1 Signal Functions . 5–2
5–2 POSIX 1003.1b Signal Functions . 5–3
5–3 POSIX Signals . 5–6
6–1 Clock Functions . 6–3
6–2 Date and Time Conversion Functions 6–5
6–3 Values Used in Setting Timers . 6–10
6–4 Timer Functions . 6–12

viii

7–1 Asynchronous I/O Functions . 7–4
9–1 Semaphore Functions . 9–3
10–1 Message Functions . 10–2
10–2 Status Flags and Access Modes for the mq_open Function . . . 10–4
A–1 Process Control . A–2
A–2 P1003.1b Priority Scheduling . A–3
A–3 P1003.1b Clocks . A–3
A–4 Date and Time Conversion . A–3
A–5 P1003.1b Timers . A–4
A–6 BSD Clocks and Timers . A–4
A–7 P1003.1b Memory Locking . A–5
A–8 System V Memory Locking . A–5
A–9 P1003.1b Asynchronous I/O . A–5
A–10 POSIX Synchronized I/O . A–6
A–11 BSD Synchronized I/O . A–6
A–12 P1003.1b Messages . A–6
A–13 P1003.1b Shared Memory . A–7
A–14 P1003.1b Semaphores . A–7
A–15 POSIX 1003.1b Realtime Signals . A–7
A–16 Signal Control and Other Signal Operations A–8
A–17 sigsetops Primitives . A–8
A–18 Process Ownership . A–9
A–19 Input and Output . A–9
A–20 Device Control . A–10
A–21 System Database . A–10

ix

About This Guide

This guide is designed for programmers who are using systems running
Digital UNIX® and want to use realtime functions. Users may be writing
new realtime applications or they may be porting existing realtime applications
from other systems.

Purpose of this Guide
This guide explains how to use POSIX 1003.1b (formerly POSIX 1003.4 Draft 14)
functions in combination with other system and library functions to write
realtime applications. This guide does not attempt to teach programmers how
to write applications.

The audience for this guide is application programmers or system engineers
who are already familiar with the C programming language. The audience
using realtime features is expected to have experience with UNIX operating
systems. They also should have experience with UNIX program development
tools.

This guide does not present function syntax or reference information. The
online reference pages present syntax and explanations of POSIX 1003.1b
functions.

New and Changed Features
This guide has been revised to document all of the changes to realtime
programming that are part of the current release, including conformance to the
POSIX 1003.1b standard. It includes:

• A completely revised chapter about realtime signals, Chapter 5

• New examples of asynchronous I/O in Chapter 7

• The following new chapters:

Chapter 8, File Synchronization

Chapter 11, Realtime Performance and System Tuning

xi

Structure of this Guide
This guide consists of eleven chapters and one appendix, organized as follows:

• Chapter 1, Introduction to Realtime Programming, describes the realtime
functionality supported by the Digital UNIX operating system.

• Chapter 2, The Digital UNIX Scheduler, describes the use of P1003.1b
functions to determine and set priority for processes in your application.
This chapter also describes the priority scheduling policies provided by the
Digital UNIX operating system.

• Chapter 3, Shared Memory, describes the creation and use of P1003.1b
shared memory for interprocess communication.

• Chapter 4, Memory Locking, describes the use of P1003.1b functions for
locking and unlocking memory.

• Chapter 5, Signals, describes the creation and use of POSIX 1003.1b
realtime signals for interprocess communication.

• Chapter 6, Clocks and Timers, describes use of P1003.1b functions for
constructing and using high-resolution clocks and timers.

• Chapter 7, Asynchronous Input and Output, describes the use of P1003.1b
functions for asynchronous input and output.

• Chapter 8, File Synchronization, describes the use of POSIX 1003.1b
functions for synchronized input and output.

• Chapter 9, Semaphores, describes the creation and use of P1003.1b
semaphores for interprocess synchronization. An example illustrates how
to use semaphores and shared memory in combination.

• Chapter 10, Messages, describes the creation and use of message queues for
interprocess communication and synchronization in realtime applications.

• Chapter 11, Realtime Performance and System Tuning, describes tuning
techniques for improving realtime system performance.

• Appendix A, Digital UNIX Realtime Functional Summary, provides tables
of commands and functions useful for realtime application development.

xii

Related Documents
The following documents are relevant to writing realtime applications:

• Digital UNIX Application Programmer’s Guide

• Digital UNIX POSIX.1 Conformance Document

• The C Programming Language by Kernighan and Ritchie

• Guide to Developing International Software

• Online Reference Pages

To view online reference pages for P1003.1b functions, use the man or whatis
command.

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You can
order the printed documentation from Digital.) This color coding is reinforced
with the use of an icon on the spines of books. The following list describes this
convention:

Audience Icon Color Code

General users G Blue

System and network administrators S Red

Programmers P Purple

Device driver writers D Orange

Reference page users R Green

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also
used by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides information
on all of the books in the Digital UNIX documentation set.

xiii

Using the man Command
Additional information about system commands and library functions
(including P1003.1b functions) is shipped on the system software kit, and
can be accessed through the man command. The man command provides
online displays of the reference pages. You can use options to direct the man
command to display online summaries of specific reference pages, to use special
formatting when preparing the reference page for viewing or printing, and to
search alternate reference page directories for specified reference pages.

Use the man command to access the online reference pages for the P1003.1b
functions discussed in this guide. If you need help using the man command, use
this command:

% man man

If you do not specify an option, the man command formats and displays one or
more specified reference pages. If multiple reference pages match a specified
name, only the first matching reference page is displayed. If there are multiple
matches in one section for a specified name, the matching page in the first
alphabetically occurring subsection is displayed.

Conventions
The following conventions are used in this guide:

Convention Meaning

% The default user prompt is the user’s system name followed by a right
angle bracket. In this guide, a percent sign (%) is used to represent
this prompt.

A number sign is the default superuser prompt.

>>
CPUnn>>

The console subsystem prompt is two right angle brackets. On a
system with more than one central processing unit (CPU), the prompt
displays two numbers: the number of the CPU, and the number of the
processor slot containing the board for that CPU.

user input This bold typeface is used in interactive examples to indicate typed
user input.

system
output

In text, this typeface indicates the exact name of a command, function,
option, partition, pathname, directory, or file. This typeface is used in
interactive examples to indicate system output. It is also used in code
examples and other screen displays.

variable This typeface indicates variable information, such as user-supplied
information in commands, syntax, or example text.

xiv

Convention Meaning

... Horizontal ellipsis indicates that the preceding item can be repeated
one or more times. It is used in syntax descriptions and function
definitions.

.

.

.

Vertical ellipsis indicates that a portion of an example that would
normally be present is not shown.

UPPERCASE
lowercase

The system differentiates between lowercase and uppercase
characters. Literal strings that appear in text, examples, syntax
descriptions, and function definitions must be typed exactly as shown.

cat (1) Cross-references to the online reference pages include the appropriate
section number in parentheses. For example, a reference to cat (1)
indicates that you can find the material on the cat command in
Section 1 of the online reference pages.

Reader’s Comments
Digital welcomes any comments and suggestions you have on this and other
Digital UNIX manuals. You can send your comments in the following ways:

• FAX: 603-881-0120 Attn: UEG Publications, ZK03-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on line in the following location:

/usr/doc/readers_comment.txt

• Mail:
Digital Equipment Corporation
UEG Publications Manager
ZK03-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comments form is located in the back of each printed manual.
The form is postage paid, if mailed in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which you
are commenting.

xv

• The version of Digital UNIX that you are using. For example, Digital
UNIX Version 4.0.

• If known, the type of processor that is running the Digital UNIX software.
For example, AlphaServer 2000.

The Digital UNIX Publications group cannot respond to system problems
or technical support inquiries. Please address technical questions to your
local system vendor or to the appropriate Digital technical support office.
Information provided with the software media explains how to send problem
reports to Digital.

xvi

1
Introduction to Realtime Programming

A realtime application is one in which the correctness of the application
depends on the timeliness and predictability of the application as well as
the results of computations. To assist the realtime application designer in
meeting these goals, Digital UNIX provides features that facilitate efficient
interprocess communication and synchronization, a fast interrupt response
time, asynchronous input and output (I/O), memory management functions,
file synchronization, and facilities for satisfying timing requirements. Digital
UNIX provides realtime facilities as part of the standard Digital UNIX kernel
and optional subsets.

Realtime applications are becoming increasingly important in our daily lives
and can be found in diverse environments such as the automatic braking
system on an automobile, a lottery ticket system, or robotic environmental
samplers on a space station. The use of realtime programming techniques
is rapidly becoming a common means for improving the predictability of our
technology.

This chapter includes the following sections:

• Realtime Overview, Section 1.1

• Digital UNIX Realtime System Capabilities, Section 1.2

• Process Synchronization, Section 1.3

• POSIX Standards, Section 1.4

• Enabling Digital UNIX Realtime Features, Section 1.5

• Building Realtime Applications, Section 1.6

Introduction to Realtime Programming 1–1

1.1 Realtime Overview
Realtime applications provide an action or an answer to an external event in
a timely and predictable manner. While many realtime applications require
high-speed compute power, realtime applications cover a wide range of tasks
with differing time dependencies. Timeliness has a different definition in
each realtime application. What may be fast in one application may be slow or
late in another. For example, an experimenter in high-energy physics needs to
collect data in microseconds while a meteorologist monitoring the environment
might need to collect data in intervals of several minutes. However, the success
of both applications depends on well-defined time requirements.

The concept of predictability has many connotations, but for realtime
applications it generally means that a task or set of tasks can always
be completed within a predetermined amount of time. Depending on the
situation, an unpredictable realtime application can result in loss of data, loss
of deadlines, or loss of plant production. Examples of realtime applications
include process control, factory automation robotics, vehicle simulation,
scientific data acquisition, image processing, built-in test equipment, music or
voice synthesis, and analysis of high-energy physics.

To have control over the predictability of an application, the programmer must
understand which time bounds are significant. For example, an understanding
of the average time it takes for a context switch does not guarantee task
completion within a predictable timeframe. Realtime programmers must know
the worst-case time requirements so that they can design an application that
will always meet worst-case deadlines.

Realtime systems also use techniques to reduce the hazards associated with a
worst-case scenario. In some situations, a worst-case realtime deadline may be
significantly faster than the non-realtime, average time.

Realtime applications can be classified as either hard or soft realtime. Hard
realtime applications require a response to events within a predetermined
amount of time for the application to function properly. If a hard realtime
application fails to meet specified deadlines, the application fails. While many
hard realtime applications require high-speed responses, the granularity of the
timing is not the central issue in a hard realtime application. An example of
a hard realtime application is a missile guidance control system where a late
response to a needed correction leads to disaster.

Soft realtime applications do not fail if a deadline is missed. Some soft realtime
applications can process large amounts of data or require a very fast response
time, but the key issue is whether or not meeting timing constraints is a
condition for success. An example of a soft realtime application is an airline
reservation system where an occasional delay is tolerable.

1–2 Introduction to Realtime Programming

Many realtime applications require high I/O throughput and fast response
time to asynchronous external events. The ability to process and store large
amounts of data is a key metric for data collection applications. Realtime
applications that require high I/O throughput rely on continuous processing of
large amounts of data. The primary requirement of such an application is the
acquisition of a number of data points equally spaced in time.

High data throughput requirements are typically found in signal-processing
applications such as:

• Sonar and radar analysis

• Telemetry

• Vibration analysis

• Speech analysis

• Music synthesis

Likewise, a continuous stream of data points must be acquired for many
of the qualitative and quantitative methods used in the following types of
applications:

• Gas and liquid chromatography

• Mass spectrometry

• Automatic titration

• Colorimetry

For some applications, the throughput requirements on any single channel
are modest. However, an application may need to handle multiple data
channels simultaneously, resulting in a high aggregate throughput. Realtime
applications, such as medical diagnosis systems, need a response time of about
one second while simultaneously handling data from, perhaps, ten external
sources.

High I/O throughput may be important for some realtime control systems,
but another key metric is the speed at which the application responds
to asynchronous external events and its ability to schedule and provide
communication among multiple tasks. Realtime applications must capture
input parameters, perform decision-making operations, and compute updated
output parameters within a given timeframe.

Introduction to Realtime Programming 1–3

Some realtime applications, such as flight simulation programs, require a
response time of microseconds while simultaneously handling data from a
large number of external sources. The application might acquire several
hundred input parameters from the cockpit controls, compute updated position,
orientation, and speed parameters, and then send several hundred output
parameters to the cockpit console and a visual display subsystem.

Realtime applications are usually characterized by a blend of requirements.
Some portions of the application may consist of hard, critical tasks, all of
which must meet their deadlines. Other parts of the application may require
heavy data throughput. Many parts of a realtime application can easily run
at a lower priority and require no special realtime functionality. The key to a
successful realtime application is the developer’s ability to accurately define
application requirements at every point in the program. Resource allocation
and realtime priorities are used only when necessary so that the application is
not overdesigned.

1.2 Digital UNIX Realtime System Capabilities
The Digital UNIX operating system supports facilities to enhance the
performance of realtime applications. Digital UNIX realtime facilities make it
possible for the operating system to guarantee that the realtime application
has access to resources whenever it needs them and for as long as it needs
them. That is, the realtime applications running on the Digital UNIX
operating system can respond to external events regardless of the impact on
other executing tasks or processes.

Realtime applications written to run on the Digital UNIX operating system
make use of and rely on the following system capabilities:

• A preemptive kernel

• Fixed-priority scheduling policies

• Realtime clocks and timers

• Memory locking

• Asynchronous I/O

• File synchronization

• Queued realtime signals

• Process communication facilities

All of these realtime facilities work together to form the Digital UNIX realtime
environment. In addition, realtime applications make full use of process
synchronization techniques and facilities, as summarized in Section 1.3.

1–4 Introduction to Realtime Programming

1.2.1 The Value of a Preemptive Kernel
The responsiveness of the operating system to asynchronous events is a critical
element of realtime systems. Realtime systems must be capable of meeting the
demands of hard realtime tasks with tight deadlines. To do this, the operating
system’s reaction time must be short and the scheduling algorithm must be
simple and efficient.

The amount of time it takes for a higher-priority process to displace a lower-
priority process is referred to as process preemption latency. In a realtime
environment, the primary concern of application designers is the maximum
process preemption latency that can occur at runtime, the worst-case scenario.

Every application can interact with the operating system in two modes: user
mode and kernel mode. User-mode processes call utilities, library functions,
and other user applications. A process running in user mode can be preempted
by a higher-priority process. During execution, a user-mode process often
makes system calls, switching context from user to kernel mode where the
process interacts with the operating system. Under the traditional timesharing
scheduling algorithm, a process running in kernel mode cannot be preempted.

A preemptive kernel guarantees that a higher-priority process can quickly
interrupt a lower-priority process, regardless of whether the low-priority
process is in user or kernel mode. Whenever a higher-priority process becomes
runnable, a preemption is requested, and the higher-priority process displaces
the running, lower-priority process.

1.2.1.1 Nonpreemptive Kernel
The standard UNIX kernel is a nonpreemptive kernel; it does not allow a user
process to preempt a process executing in kernel mode. Once a running process
issues a system call and enters kernel mode, preemptive context switches
are disabled until the system call is completed. Although there are context
switches, a system call may take an arbitrarily long time to execute without
voluntarily giving up the processor. During that time, the process that made
the system call may delay the execution of a higher-priority, runnable, realtime
process.

The maximum process preemption latency for a nonpreemptive kernel is the
maximum amount of time it can take for the running, kernel-mode process to
switch out of kernel mode back into user mode and then be preempted by a
higher-priority process. Under these conditions it is not unusual for worst-case
preemption to take seconds, which is clearly unacceptable for many realtime
applications.

Introduction to Realtime Programming 1–5

1.2.1.2 Preemptive Kernel
A preemptive kernel, such as the Digital UNIX kernel with realtime
preemption enabled, allows the operating system to respond quickly to a
process preemption request. When a realtime user process engages one of the
fixed-priority scheduling policies, the Digital UNIX kernel can break out of
kernel mode to honor the preemption request.

A preemptive kernel supports the concept of process synchronization with the
ability to respond quickly to interrupts while maintaining data integrity. The
kernel employs mechanisms to protect the integrity of kernel data structures,
and defines restrictions on when the kernel can preempt execution.

The maximum process preemption latency for a preemptive kernel is the exact
amount of time required to preserve system and data integrity and preempt
the running process. Under these conditions it is not unusual for worst-case
preemption to take only milliseconds.

1.2.1.3 Comparing Latency
Figure 1–1 and Figure 1–2 illustrate the process preemption latency that can
be expected from a nonpreemptive kernel and a preemptive kernel. In both
figures, a higher-priority realtime process makes a preemption request, but the
amount of elapsed time until the request is honored depends on the kernel.
Latency is represented as the shaded area.

Figure 1–1 shows the expected latency of a nonpreemptive kernel. In this
situation, the currently running process moves back and forth between user
and kernel mode as it executes. The higher-priority, realtime process advances
to the beginning of the priority process list, but cannot preempt the running
process while it runs in kernel mode. The realtime process must wait until the
running process either finishes executing or changes back to user mode before
the realtime process is allowed to preempt the running process.

Figure 1–2 shows the expected latency of a preemptive kernel. In this situation
the running process is quickly preempted and the higher-priority, realtime
process takes its place on the run queue.

1–6 Introduction to Realtime Programming

Figure 1–1 Nonpreemptive Kernel

Latency

Kernel
Mode

User
Mode

User
Mode

Preemption
Request

Preemption
Honored

MLO-007312

Higher-Priority
Process Runs

Running Process

Figure 1–2 Preemptive Kernel

Latency

Preemption
Request

Preemption
Honored

Higher-Priority
Process Runs

MLO-007313

Running Process

1.2.2 Fixed-Priority Scheduling Policies
The scheduler determines how CPU resources are allocated to executing
processes. Each process has a priority that associates the process with a run
queue. Each process begins execution with a base priority that can change as
the application executes depending on the algorithm used by the scheduler or
application requirements.

The algorithm or set of rules that governs how the scheduler selects runnable
processes, how processes are queued, and how much time each process is given
to run is called a scheduling policy. Scheduling policies work in conjunction
with priority levels. Generally speaking, the higher a process’s priority, the
more frequently the process is allowed to execute. But the scheduling policy
may determine how long the process executes. The realtime application

Introduction to Realtime Programming 1–7

designer balances the nature of the work performed by the process with the
process’s priority and scheduling policy to control use of system resources.

If the realtime subset is installed on your system, the Digital UNIX operating
system supports two distinctly different scheduling interfaces: the nice
interface and the realtime interface. The nice interface provides functions
for managing nonrealtime applications running at nonrealtime priority level.
The nice interface uses the timesharing scheduling policy, which allows the
scheduler to dynamically adjust priority levels of a process. You have access to
the realtime scheduling interface only if you have installed the realtime subset.

The Digital UNIX realtime interface supports a nonrealtime (timesharing)
scheduling policy and two fixed-priority, preemptive scheduling policies for
realtime applications. Under the timesharing scheduling policy, process
priorities are automatically adjusted by the scheduler. Under the fixed-priority
scheduling policies (round-robin and first-in, first-out), the scheduler will
never automatically change the priority of a process. Instead, the application
designer determines when it is appropriate for a process to change priorities.

The realtime interface provides a number of functions to allow the realtime
application designer to control process execution. In addition, realtime
scheduling policies are attached to individual processes, giving the application
designer control over individual processes.

POSIX scheduling policies have overlapping priority ranges: The highest
priority range is reserved for realtime applications, the middle priority range
is used by the operating system, and the lowest priority range is used for
nonprivileged user processes. Realtime priority ranges loosely map to the nice
priority range, but provide a wider range of priorities for a realtime process.
Figure 2–4 illustrates the priority ranges for both the nice and realtime
scheduling interfaces.

Not all realtime processes need to run in the realtime priority range.
When using the realtime interface, each process begins execution under
the timesharing scheduling policy with an associated timesharing priority. The
application designer determines which processes are time-critical and under
what circumstances processes should run at an elevated priority level. The
application designer calls P1003.1b functions to set the appropriate priority
and scheduling policy.

Under the first-in first-out (SCHED_FIFO) scheduling policy, a running process
continues to execute if there are no other higher-priority processes. The user
can raise the priority of a running process to avoid its being preempted by
another process. Therefore, a high-priority, realtime process running under
the first-in first-out scheduling policy can use system resources as long as
necessary to finish realtime tasks.

1–8 Introduction to Realtime Programming

Under the round-robin (SCHED_RR) scheduling policy, the highest-priority
process runs until either its allotted time (quantum) is complete or the process
is preempted by another, higher-priority process. When a process reaches the
end of its quantum, it takes its place at the end of the run queue for processes
that have the same priority. Processes at that priority continue to execute
as long as the waiting processes are lower-priority. Therefore, high-priority
processes running under the round-robin scheduling policy can share the
processor with other time-critical processes.

When a process raises its priority and preempts a running process, the
scheduler saves the runtime context of the preempted process so that context
can be restored once the process is allowed to run again. The preempted
process remains in a runnable state even though it was preempted.

For information on using priority and scheduling policy functions, refer to
Chapter 2.

1.2.3 Realtime Clocks and Timers
Realtime timers often schedule tasks and events in time increments
considerably smaller than the traditional one-second timeframe. Because
the system clock and realtime timers use seconds and nanoseconds as the basis
for time intervals, the resolution for the system clock, realtime timers, and
the nanosleep function has a fine granularity. For example, in a robotic data
acquisition application, information retrieval and recalculation operations may
need to be completed within a 4-millisecond timeframe. Timers are created to
fire every 4 milliseconds to trigger the collection of another round of data. On
expiration, a timer sends a signal to the calling process.

Realtime timers must be flexible enough to allow the application to set timers
based on either absolute or relative time. Furthermore, timers must be able to
fire as a one-shot or periodic timer. The application creates timers in advance,
but specifies timer characteristics when the timer is set.

Realtime applications use timers to coordinate and monitor the correctness of
a realtime application. Some applications may require only one per-process
timer; others may require multiple timers. Each timer is created and armed
independently, which means that the application designer controls the action of
each timer.

The Digital UNIX system clock provides the timing base for realtime per-
process timers, and is the source for timer synchronization. This clock
maintains user and system time as well as the current time and date. An
option is also available for using a high-resolution clock (see Section 6.1.5).

Introduction to Realtime Programming 1–9

Clock and timer functions allow you to retrieve and set the system clock,
suspend execution for a period of time, provide high-resolution timers, and use
asynchronous signal and realtime signal notification.

For information on using clock and timer functions, refer to Chapter 6.

1.2.4 Memory Locking
Memory locking is one of the primary tools available to the Digital UNIX
realtime application designer for reducing latency. Without locking time-
critical processes into memory, the latency caused by paging would introduce
involuntary and unpredictable time delays at runtime.

A realtime application needs a mechanism for guaranteeing that time-critical
processes are locked into memory and not subjected to memory management
appropriate only for timesharing applications. (In a virtual memory system,
a process may have part of its address space paged in and out of memory in
response to system demands for critical space.)

The P1003.1b memory-locking functions allow the application designer to lock
process address space into memory. The application can lock in not only the
current address space, but also any future address space the process may use
during execution.

For information on using memory-locking functions, refer to Chapter 4.

1.2.5 Asynchronous I/O
Digital UNIX asynchronous I/O allows the calling process to resume execution
immediately after an I/O operation is queued, in contrast to synchronous I/O.
Asynchronous I/O is desirable in many different applications ranging from
graphics and file servers to dedicated realtime data acquisition and control
systems. The process immediately continues execution, thus overlapping
operations.

Often, one process simultaneously performs multiple I/O functions while other
processes continue execution. For example, an application may need to gather
large quantities of data from multiple channels within a short, bounded period
of time. In such a situation, blocking I/O may work at cross purposes with
application timing constraints. Asynchronous I/O performs nonblocking I/O,
allowing simultaneous reads and writes, which frees processes for additional
processing.

Notification of asynchronous I/O completion is optional and can be done
without the overhead of calling signal functions by using the aiocb data
structure, providing faster interprocess communication.

For information on using asynchronous I/O functions, refer to Chapter 7.

1–10 Introduction to Realtime Programming

1.2.6 Synchronized I/O
Synchronized I/O may be preferable to asynchronous I/O when the integrity of
data and files is critical to an application. Synchronized output assures that
data that is written to a device is actually stored there. Synchronized input
assures that data that is read from a device is a current image of data on that
device. For both synchronized input and output, the function does not return
until the operation is complete and verified.

Synchronized I/O offers two separate options:

• Ensure integrity of file data and file control information

• Ensure integrity of file data and only that file control information which is
needed to access the data

For information on using synchronized I/O features, refer to Chapter 8.

1.2.7 Realtime Interprocess Communication
Interprocess communication (IPC) is the exchange of information between two
or more processes. In single-process programming, modules within a single
process communicate by using global variables and function calls with data
passing between the functions and the callers. In multiprocess programming
with images running in separate address space, you need to use additional
communication mechanisms for passing data.

Digital UNIX interprocess communication facilities allow the realtime
application designer to synchronize independently executing processes by
passing data within an application. Processes can pursue their own tasks
until they must synchronize with other processes at some predetermined point.
When they reach that point, they wait for some form of communication to
occur. Interprocess communication can take any of the following forms:

• Shared memory, Chapter 3
Shared memory is the fastest form of interprocess communication. As soon
as one process writes data to the shared memory area, it is available to
other processes using the same shared memory. Digital UNIX supports
P1003.1b shared memory.

• Signals, Chapter 5
Signals provide a means to communicate to a large number of processes.
Signals for timer expiration and asynchronous I/O completion use a data
structure, making signal delivery asynchronous, fast, and reliable. Posix
1003.1b realtime signals include:

• A range of priority-ordered, application-specific signals from
SIGRTMIN to SIGRTMAX.

Introduction to Realtime Programming 1–11

• A mechanism for queueing signals for delivery to a process.

• A mechanism for providing additional information about a signal to the
process to which it is delivered.

• Features that allow efficient signal delivery to a process when a POSIX
1003.1b timer expires, when a message arrives on an empty message
queue, or when an asynchronous I/O operation completes.

• Functions that allow a process to respond more quickly to signal
delivery.

• Semaphores, Chapter 9
Semaphores are most commonly used to control access to system resources
such as shared memory regions. Digital UNIX supports P1003.1b
semaphores.

• Messages, Chapter 10
Cooperating processes can communicate by accessing system-wide message
queues. The message queue interface is a set of structures and data that
allows processes to send and receive messages to a message queue.

Some forms of interprocess communication are traditionally supplied by
the operating system and some are specifically modified for use in realtime
functions. All allow a user-level or kernel-level process to communicate with
a user-level process. Interprocess communication facilities are used to notify
processes that an event has occurred or to trigger the process to respond to
an application-defined occurrence. Such occurrences can be asynchronous I/O
completion, timer expiration, data arrival, or some other user-defined event.

To provide rapid signal communication on timer expiration and asynchronous
I/O completion, these functions send signals through a common data structure.
It is not necessary to call signal functions.

1.3 Process Synchronization
Use of synchronization techniques and restricting access to resources can
ensure that critical and noncritical tasks execute at appropriate times with
the necessary resources available. Concurrently executing processes require
special mechanisms to coordinate their interactions with other processes and
their access to shared resources. In addition, processes may need to execute at
specified intervals.

1–12 Introduction to Realtime Programming

Realtime applications synchronize process execution through the following
techniques:

• Waiting for a specified period of time

• Waiting for semaphores

• Waiting for communication

• Waiting for other processes

The basic mechanism of process synchronization is waiting. A process must
synchronize its actions with the arrival of an absolute or relative time, or until
a set of conditions is satisfied. Waiting is necessary when one process requires
another process to complete a certain action, such as releasing a shared system
resource, or allowing a specified amount of time to elapse, before processing
can continue.

The point at which the continued execution of a process depends on the state
of certain conditions is called a synchronization point. Synchronization
points represent intersections in the execution paths of otherwise independent
processes, where the actions of one process depend on the actions of another
process.

The application designer identifies synchronization points between
processes and selects the functions best suited to implement the required
synchronization.

The application designer identifies resources such as message queues and
shared memory that the application will use. Failure to control access to
critical resources can result in performance bottlenecks or inconsistent data.
For example, the transaction processing application of a national ticket agency
must be prepared to process purchases simultaneously from sites around
the country. Ticket sales are transactions recorded in a central database.
Each transaction must be completed as either rejected or confirmed before
the application performs further updates to the database. The application
performs the following synchronization operations:

• Restricts access to the database

• Provides a reasonable response time

• Ensures against overbookings

Processes compete for access to the database. In doing so, some processes must
wait for either confirmation or rejection of a transaction.

Introduction to Realtime Programming 1–13

1.3.1 Waiting for a Specified Period of Time or an Absolute Time
A process can postpone execution for a specified period of time or until a
specified time and date. This synchronization technique allows processes
to work periodically and to carry out tasks on a regular basis. To postpone
execution for a specified period of time, use one of these methods:

• Sleep functions

• Per-process timers

The sleep function has a granularity of seconds while the nanosleep function
uses nanoseconds. The granularity of the nanosleep function may make it
more suitable for realtime applications. For example, a vehicle simulator
application may rely on retrieval and recalculation operations that are
completed every 5 milliseconds. The application requires a number of per-
process timers armed with repetition intervals that allow the application to
retrieve and process information within the 5-millisecond deadline.

Realtime clocks and timers allow an application to synchronize and coordinate
activities according to a predefined schedule. Such a schedule might require
repeated execution of one or more processes at specific time intervals or only
once. A timer is set (armed) by specifying an initial start time value and an
interval time value. Realtime timing facilities provide applications with the
ability to use relative or absolute time and to schedule events on a one-shot or
periodic basis.

1.3.2 Waiting for Semaphores
The semaphore allows a process to synchronize its access to a resource shared
with other processes, most commonly, shared memory. A semaphore is a
kernel data structure shared by two or more processes that controls metered
access to the shared resource. Metered access means that up to a specified
number of processes can access the resource simultaneously. Metered access is
achieved through the use of counting semaphores.

The semaphore takes its name from the signaling system railroads developed to
prevent more than one train from using the same length of track, a technique
that enforces exclusive access to the shared resource of the railroad track. A
train waiting to enter the protected section of track waits until the semaphore
shows that the track is clear, at which time the train enters the track and sets
the semaphore to show that the track is in use. Another train approaching the
protected track while the first train is using it waits for the signal to show that
the track is clear. When the first train leaves the shared section of track, it
resets the semaphore to show that the track is clear.

1–14 Introduction to Realtime Programming

The semaphore protection scheme works only if all the trains using the shared
resource cooperate by waiting for the semaphore when the track is busy and
resetting the semaphore when they have finished using the track. If a train
enters a track marked busy without waiting for the signal that it is clear, a
collision can occur. Conversely, if a train exiting the track fails to signal that
the track is clear, other trains will think the track is in use and refrain from
using it.

The same is true for processes synchronizing their actions through the use of
semaphores and shared memory. To gain access to the resource protected by
the semaphore, cooperating processes must lock and unlock the semaphore. A
calling process must check the state of the semaphore before performing a task.
If the semaphore is locked, the process is blocked and waits for the semaphore
to become unlocked. Semaphores restrict access to a shared resource by
allowing access to only one process at a time.

An application can protect the following resources with semaphores:

• Global variables, such as file variables, pointers, counters, and data
structures. Synchronizing access to these variables means preventing
simultaneous access, which also prevents one process from reading
information while another process is writing it.

• Hardware resources, such as tape drives. Hardware resources require
controlled access for the same reasons as global variables; that is,
simultaneous access could result in corrupted data.

• The kernel. A semaphore can allow processes to alternate execution by
limiting access to the kernel on an alternating basis.

For information on using shared memory and semaphores, refer to Chapter 3
and Chapter 9.

1.3.3 Waiting for Communication
Typically, communication between processes is used to trigger process execution
so the flow of execution follows the logical flow of the application design. As
the application designer maps out the program algorithm, dependencies
are identified for each step in the program. Information concerning the
status of each dependency is communicated to the relevant processes so that
appropriate action can be taken. Processes synchronize their execution by
waiting for something to happen; that is, by waiting for communication that
an event occurred or a task was completed. The meaning and purpose of the
communication are established by the application designer.

Introduction to Realtime Programming 1–15

Interprocess communication facilitates application control over the following:

• When and how a process executes

• The sequence of execution of processes

• How resources are allocated to service requests from the processes

Section 1.2.7 introduced the forms of interprocess communication available
to the realtime application designer. For further information on using
interprocess communication facilities refer to Chapters 3, 5, 9, and 10.

1.3.4 Waiting for Another Process
Waiting for another process means waiting until that process has terminated.
For example, a parent process can wait for a child process or thread to
terminate. The parent process creates a child process which needs to complete
some task before the waiting parent process can continue. In such a situation,
the actions of the parent and child processes are sometimes synchronized in
the following way:

1. The parent process creates the child process.

2. The parent process synchronizes with the child process.

3. The child process executes until it terminates.

4. The termination of the child process signals the parent process.

5. The parent process resumes execution.

The parent process can continue execution in parallel with the child process.
However, if child processes are used as a form of process synchronization, the
parent process can use other synchronization mechanisms such as signals and
semaphores while the child process executes.

For information on using signals, refer to Chapter 5, and for information on
using semaphores, refer to Chapter 9.

1.3.5 Realtime Needs and System Solutions
Table 1–1 summarizes the common realtime needs and the solutions available
through P1003.1b functions and the Digital UNIX operating system. The
realtime needs in the left column of the table are ordered according to their
requirement for fast system performance.

1–16 Introduction to Realtime Programming

Table 1–1 Realtime Needs and System Solutions

Realtime Need Realtime System Solution

Change the availability of a process for
scheduling

Use scheduler functions to set the
scheduling policy and priority of the process

Keep critical code or data highly
accessible

Use memory locking functions to lock the
process address space into memory

Perform an operation while another
operation is in progress

Create a child process or separate thread,
or use asynchronous I/O

Perform higher throughput or special
purpose I/O

Use asynchronous I/O

Ensure that data read from a device is
actually a current image of data on that
device, or that data written to a device is
actually stored on that device

Use synchronized I/O

Share data between processes Use shared memory, or use memory-
mapped files

Synchronize access to resources shared
between cooperating processes

Use semaphores

Communicate between processes Use messages, semaphores, shared memory,
signals, pipes, and named pipes

Synchronize a process with a time
schedule

Set and arm per-process timers

Synchronize a process with an external
event or program

Use signals, use semaphores, or cause
the process to sleep and to awaken when
needed

1.4 POSIX Standards
The purpose of standards is to enhance the portability of programs and
applications; that is, to support creation of code that is independent of
the hardware or even the operating system on which the application runs.
Standards allow users to move between systems without major retraining.
In addition, standards introduce internationalization concepts as part of
application portability.

The POSIX standards and draft standards apply to the operating system. For
the most part, these standards apply to applications coded in the C language.
These standards are not mutually exclusive; the Digital UNIX realtime
environment uses a complement of these standards.

Introduction to Realtime Programming 1–17

POSIX is a set of standards generated and maintained by standards
organizations — they are developed and approved by the Institute of Electrical
and Electronics Engineers, Inc. (IEEE) and adopted by the International
Organization for Standardization (ISO) and the International Electrotechnical
Commission (IEC). Digital’s POSIX implementations follow the standards and
drafts defined by the POSIX standards.

Formal standards to date include POSIX 1003.1 for basic system interfaces,
and POSIX 1003.13 for assertions a vendor must test to claim conformance to
POSIX 1003.1. Draft standards are not formal standards. They are working
documents that will evolve over time into formal standards.

POSIX standards for the programming interface (P1003.1), POSIX threads
(P1003.1c), and realtime programming extensions (P1003.1b) are supported by
Digital UNIX.

• POSIX 1003.1 defines the standard for basic system services on an
operating system, and describes how system services can be used by POSIX
applications. These services allow an application to perform operations
such as process creation and execution, file system access, and I/O device
management.

• POSIX 1003.1c defines a set of thread functions that can be used in the
design and creation of multithreaded realtime applications in the Digital
UNIX environment.

• POSIX 1003.1b provides support for functions that support the needs
of realtime applications, such as enhanced interprocess communication,
scheduling and memory management control, asynchronous I/O operations,
and file synchronization.

As Digital adds support for evolving and final standards, customers should
modify their POSIX applications to conform to the latest version of these
standards. Because draft standards are working documents and not formal
standards, the level of backward compatibility and formal support for older
versions (drafts) will be less than that normally expected from a stable Digital
product.

An application that strictly conforms to any combination of these standards can
be developed on one system and then ported to another system that supports
the same POSIX standards. (A strictly conforming application uses only the
facilities within the applicable standards.) Similarly, an application developed
on a non-Digital platform, if it strictly conforms to the POSIX standards and
drafts supported by Digital systems, can be ported and run on a Digital system
on which the POSIX software is installed.

1–18 Introduction to Realtime Programming

It is the source code of an application that is portable. Most applications
written for a POSIX environment use the C programming language. Each
system that supports a POSIX environment includes POSIX runtime libraries
as well as C runtime libraries. A portable application that requires an
executable image must be compiled and linked on a system after being ported.
It is important that you compile and link your POSIX applications against the
runtime libraries on the system where they will run.

The POSIX standards are based on the UNIX environment. However, POSIX
specifies an interface to an operating system, not the operating system itself.
Additional information on POSIX standards is contained in the IEEE Standard
Portable Operating System Interface for Computer Environments manuals,
published by the Institute of Electrical and Electronics Engineers, Inc.

1.5 Enabling Digital UNIX Realtime Features
The files that make up the realtime facility are included with the base system
software, and are installed when you choose the realtime option during
installation. This provides extended features such as realtime and symmetric
multiprocessing.

Note

If you install Digital UNIX with the default options, realtime
preemption is disabled. See the Installation Guide for complete
installation instructions.

1.6 Building Realtime Applications
To build a Digital UNIX realtime application you must first define the POSIX
environment, then compile the application with the appropriate compile
command switches. These steps draw POSIX header information and realtime
libraries into your code.

1.6.1 Defining the POSIX Environment
Realtime applications should include the unistd.h header file before any
other header files are included in the application. This header file defines
the standard macros, for example _POSIX_C_SOURCE, that are required to
compile programs containing POSIX 1003.1b functions. If you need to exclude
any of the standards definitions provided by the unistd.h header file, you
should explicitly define those standards macros in the source file or on the
compilation command line.

Introduction to Realtime Programming 1–19

As a general rule, use specific definitions in your application only if your
application must exclude certain definitions related to other unneeded
standards, such as XPG3. For example, if you defined _POSIX_C_SOURCE
(#define _POSIX_C_SOURCE 199506L) in your application, you would get only the
definitions for POSIX 1003.1b and other definitions pulled in by that definition,
such as, POSIX 1003.1.

The following example shows the code you would include as the first line of
code in either your local header file or your application code:

#include <unistd.h>

Because the unistd.h header file defines all the standards needed for realtime
applications, it is important that this #include is the first line of code in your
application.

1.6.2 Compiling Realtime Applications
You must explicitly load the required realtime runtime libraries when you
compile realtime applications. The -l switch forces the linker to include the
specified library and the -L switch indicates the search path for the linker
to use to locate the libraries. You can specify the shareable realtime library,
librt.so , or the nonshareable library, librt.a .

To find the realtime library, the ld linker expands the command specification
by replacing the -l with lib and adding the specified library characters and
the .a suffix. Since the linker searches default directories in an attempt to
locate the realtime archive library, you must specify the pathname if you do
not want to use the default.

The following example specifies that the realtime archive library, librt.a , is to
be included from the /usr/ccs/lib directory.

cc -non_shared myprogram.c -L/usr/ccs/lib -lrt

When you compile an application that uses asynchronous I/O, include the
threads library on the compile command line. The following example shows
the specification required if your application uses asynchronous I/O.

cc -non_shared myprogram.c -L/usr/ccs/lib -laio -pthread

The realtime library uses the libc.a library. When you compile an application,
the libc.a library is automatically pulled into the compilation.

Most drivers allow you to view the passes of the driver program and the
libraries being searched by specifying the -v option on the compile command.

1–20 Introduction to Realtime Programming

If, for some reason, you want to just link your realtime application, you must
explicitly include the libc.a library. Since files are processed in the order
in which they appear on the link command line, libc.a must appear after
librt.a . For example, you would link an application with the realtime library,
librt.a , as follows:

ld -non_shared myprogram.o -L/usr/ccs/lib -lrt -lc

If your application fails to compile, you may need to check your programming
environment to make sure that the realtime options are installed on your
system. The lack of the realtime software and its function library will cause
your program to fail.

Introduction to Realtime Programming 1–21

2
The Digital UNIX Scheduler

On a single-processor system, only one process’s code is executing at a time.
Which process has control of the CPU is decided by the scheduler. The
scheduler chooses which process should execute based on priority, therefore the
highest priority process will be the one that is executing.

The scheduler has 64 priority levels; every process on the system is at one
of these priority levels. The priority level at which a process is allowed to
execute, its scheduling interactions with other processes at that level, and if or
how it moves between priority levels are determined by its scheduling policy.

Digital UNIX provides two interfaces to the scheduler: the traditional UNIX
timesharing interface (nice) and the POSIX 1003.1b realtime execution
scheduling interface.

This chapter includes the following sections:

• Scheduler Fundamentals, Section 2.1

• Scheduling Policies, Section 2.2

• Process Priorities, Section 2.3

• Scheduling Functions, Section 2.4

• Priority and Policy Example, Section 2.5

2.1 Scheduler Fundamentals
The terms and mechanisms needed to understand the Digital UNIX scheduler
are explained in the following sections.

The Digital UNIX Scheduler 2–1

2.1.1 Schedulable Entities
The scheduler operates on threads. A thread is a single, sequential flow of
control within a process. Within a single thread, there is a single point of
execution. Most traditional processes consist of a single thread.

Using DECthreads, Digital’s multithreading run-time library, a programmer
can create several threads within a process. Threads execute independently,
and within a multithreaded process, each thread has its own point of execution.

The scheduler considers all threads on the system and runs the one with the
highest priority.

2.1.2 Thread States
Every thread has a state. The thread currently executing in the CPU is in
the ‘‘run’’ state. Threads that are ready to run are in the ‘‘runnable’’ state.
Threads that are waiting for a condition to be satisfied are in the ‘‘wait’’ state.
Examples of conditions a thread may be waiting for are a signal from another
process, a timer expiration, or an I/O completion.

The scheduler selects the highest priority thread in the running or runnable
state to execute on the CPU. Thus the running thread will always be the one
with the highest priority.

2.1.3 Scheduler Database
All runnable threads have entries in the scheduler database. The scheduler
database is an array of 64 lists, one list for each priority level.

The scheduler orders the processes on each priority level list by placing the
process that should run next at the head of the list, and the process that
should wait the longest to run at the tail of the list.

2.1.4 Quantum
Each thread has a value associated with it, known as a quantum, that defines
the maximum amount of contiguous CPU time it may use before being forced
to yield the CPU to another thread of the same priority.

A thread’s quantum is set according to its scheduling policy. The goal of the
timesharing policy is to choose a short enough time so that multiple users all
think the system is responsive while allowing a long enough time to do useful
work. Some realtime policies have an infinite quantum since the work to be
done is considered so important that it should not be interrupted by a process
of equal priority.

2–2 The Digital UNIX Scheduler

2.1.5 Scheduler Transitions
A new thread is selected to run when one of the following events occurs:

• The running process enters a wait state

• A higher priority process becomes runnable

• A process changes scheduling policy

• The quantum of the running process expires

When an event occurs, the scheduler updates the scheduler database. If a
thread in the database now has priority higher than that of the currently
running thread, the current thread is preempted, placed into the scheduler
database, and the highest priority thread is made the running thread. A
scheduler that works in this manner is known as a preemptive priority
scheduler.

When a thread is placed into a priority list in the scheduler database, it
is placed at the tail of the list unless it has just been preempted. If it has
just been preempted, the threads scheduling policy determines whether it
is inserted at the head (realtime scheduling policy) or the tail (timeshare
scheduling policy).

Figure 2–1 illustrates the general principles of process scheduling.

The Digital UNIX Scheduler 2–3

Figure 2–1 Order of Execution

30

29

15

14

13

Priority

A B C

D

G H I J

30

29

15

14

13

Priority

D

E

G H I J

Runnable Processes

Before Priority Change After Priority Change

MLO-007315

F

FA B C

E

Processes A, B, and C are in the process list for the highest priority used
in this illustration. Process A is at the beginning of the process list for
priority 30. That means that process A executes first, then processes B and C,
respectively. When no more processes remain in the process list for priority 30,
the scheduler looks to the next lowest priority, finds process D at the beginning
of the process list, and executes process D.

When a process changes priority, it goes to the end of the process list for its
new priority. Figure 2–1 shows process F changing priority from 15 to 30. At
priority 15 process F is at the end of the process list. When process F changes
to priority 30, the process goes to the end of the process list for priority 30. At
priority 30 process F is queued to execute after process C, but before process D.

Figure 2–2 illustrates how processes can change from the running state to
the runnable state within the queue for a single priority. In this illustration,
processes running under the SCHED_RR scheduling policy move in and out of
the running state.

2–4 The Digital UNIX Scheduler

Figure 2–2 Process Events

The Running
Process Is: The Runnable Processes Are:Event Reaction

G G moves to running

H I

reaches beginning of
the queue and starts
its quantum

A G preempted - goes tois a higher priority,
becomes runnable, and
preempts G

G H I

A G runs again to finishyields or enters
waiting state

H I

G G goes to the end of thefinishes its quantum

I G

A H preempted - goes tois a higher priority,
becomes runnable, and
preempts H

H I G

A Kraises priority of K

H I G K

G

A

G

H

A

A

the beginning of the

its quantum

queue

moves to running

the beginning of the

changes priority

goes to the end of the
queue

H

K

queue

queue

MLO-007316

As processes are selected to run or move from the end to the beginning of the
process list, the scheduler continually updates the kernel database and the
process list for each priority.

The Digital UNIX Scheduler 2–5

2.2 Scheduling Policies
Whether or not a timesharing process runs is often determined not by the
needs of the application, but by the scheduler’s algorithm. The scheduler
determines the order in which processes execute and sometimes forces
resource-intensive processes to yield to other processes.

Other users’ activities on the system at that time affect scheduling. Whether
or not a realtime process yields to another process can be based on a quantum
or the scheduling policy.

2.2.1 The Nature of the Work
Scheduling policies are designed to give you flexibility and control in
determining how work is performed so that you can balance the nature of
the work with the behavior of the process. Essentially, there are three broad
categories of work:

• Timesharing Processing

Used for interactive and noninteractive applications with no critical time
limits but a need for reasonable response time and high throughput.

• System Processing

Used for work on behalf of the system such as paging, networking, and
accessing files. The responsiveness of system processing impacts the
responsiveness of the whole system.

• Realtime Processing

Used for critical work that must be completed within a certain time period,
such as data collection or device control. The nature of realtime processing
often means that missing a deadline makes the data invalid or causes
damage.

To control scheduling policies, you must use P1003.1b realtime scheduling
functions and select an appropriate scheduling policy for your process.
Digital UNIX P1003.1b scheduling policies are set only through a call to the
sched_setscheduler function. The sched_setscheduler function recognizes
the scheduling policies by keywords beginning with SCHED_ as follows:

• SCHED_OTHER, timesharing scheduling

• SCHED_FIFO, first-in first-out scheduling

• SCHED_RR, round-robin scheduling

2–6 The Digital UNIX Scheduler

All three scheduling policies have overlapping priority ranges to allow for
maximum flexibility in scheduling. When selecting a priority and scheduling
policy for a realtime process, consider the nature of the work performed by the
process. Regardless of the scheduling policy, the scheduler selects the process
at the beginning of the highest-priority, nonempty process list to become a
running process.

2.2.2 Timesharing Scheduling
The P1003.1b timesharing scheduling policy, SCHED_OTHER, allows realtime
applications to return to a nonrealtime scheduling policy. In timesharing
scheduling, a process starts with an initial priority that either the user or
the scheduler can change. Timesharing processes run until the scheduler
recalculates process priority, based on the system load, the length of time
the process has been running, or the value of nice . Section 2.3.1 describes
timesharing priority changes in more detail.

Under the timesharing scheduling policy, the scheduler enforces a quantum.
Processes are allowed to run until they are preempted, yield to another process,
or finish their quantum. If no equal or higher-priority processes are waiting
to run, the executing process is allowed to continue. However, while a process
is running, the scheduler changes the process’s priority. Over time, it is likely
that a higher-priority process will exist because the scheduler adjusts priority.
If a process is preempted or yields to another process, it goes to the end of the
process list for the new priority.

2.2.3 Fixed-Priority Scheduling
With a fixed-priority scheduling policy, the scheduler does not adjust process
priorities. If the application designer sets a process at priority 30, it will
always be queued to the priority 30 process list, unless the application or the
user explicitly changes the priority.

As with all scheduling policies, fixed-priority scheduling is based on the
priorities of all runnable processes. If a process waiting on the process list has
a higher priority than the running process, the running process is preempted
for the higher-priority process. However, the two fixed-priority scheduling
policies (SCHED_FIFO and SCHED_RR) allow greater control over the length
of time a process waits to run.

Fixed-priority scheduling relies on the application designer or user to manage
the efficiency of process priorities relative to system workloads. For example,
you may have a process that must be allowed to finish executing, regardless
of other activities. In this case, you may elect to increase the priority of your
process and use the first-in first-out scheduling policy, which guarantees that
a process will never be placed at the end of the process list if it is preempted.

The Digital UNIX Scheduler 2–7

In addition, the process’s priority will never be adjusted and it will never
be moved to another process list. With fixed-priority scheduling policies,
you must explicitly set priorities by calling either the sched_setparam or
sched_setscheduler function. Thus, realtime processes using fixed-priority
scheduling policies are free to yield execution resources to each other in an
application-dependent manner.

If you are using a fixed-priority scheduling policy and you call the nice or
renice function to adjust priorities, the function returns without changing the
priorities.

2.2.3.1 First-In First-Out Scheduling
The first-in first-out scheduling policy, SCHED_FIFO, gives maximum control
to the application. This scheduling policy does not enforce a quantum. Rather,
each process runs to completion or until it voluntarily yields or is preempted
by a higher-priority process.

Processes scheduled under the first-in first-out scheduling policy are chosen
from a process priority list that is ordered according to the amount of time its
processes have been on the list without being executed. Under this scheduling
policy, the process at the beginning of the highest-priority, nonempty process
list is executed first. The next process moves to the beginning of the list and is
executed next. Thus execution continues until that priority list is empty. Then
the process at the beginning of the next highest-priority, nonempty process list
is selected and execution continues. A process runs until execution finishes or
the process is preempted by a higher-priority process.

The process at the beginning of a process list has waited at that priority the
longest amount of time, while the process at the end of the list has waited the
shortest amount of time. Whenever a process becomes runnable, it is placed
on the end of a process list and waits until the processes in front of it have
executed. When a process is placed in an empty high-priority process list, the
process will preempt a lower-priority running process.

If an application changes the priority of a process, the process is removed from
its list and placed at the end of the new priority process list.

The following rules determine how runnable processes are queued for execution
using the first-in first-out scheduling policy:

• When a process is preempted, it goes to the beginning of the process list for
its priority.

• When a blocked process becomes runnable, it goes to the end of the process
list for its priority.

2–8 The Digital UNIX Scheduler

• When a running process changes the priority or scheduling policy of
another process, the changed process goes to the end of the new priority
process list.

• When a process voluntarily yields to another process, it goes to the end of
the process list for its priority.

The first-in first-out scheduling policy is well suited for the realtime
environment because it is deterministic. That is, processes with the highest
priority always run, and among processes with equal priorities, the process
that has been runnable for the longest period of time is executed first. You can
achieve complex scheduling by altering process priorities.

Also, under the first-in first-out scheduling policy, the user can raise the
priority of a running process to avoid its being preempted by another process.
Therefore, a high-priority, realtime process running under the first-in first-
out scheduling policy can use system resources as long as necessary to finish
realtime tasks.

2.2.3.2 Round-Robin Scheduling
The round-robin scheduling policy, SCHED_RR, is a logical extension of the
first-in first-out scheduling policy. A process running under the round-robin
scheduling policy is subject to the same rules as a process running under the
fixed-priority scheduling policy, but a quantum is imposed on the running
process. When a process finishes its quantum, it goes to the end of the process
list for its priority.

Processes under the round-robin scheduling policy may be preempted by a
higher-priority process before the quantum has expired. A preempted process
goes to the beginning of its priority process list and completes the previously
unexpired portion of its quantum when the process resumes execution. This
ensures that a preempted process regains control as soon as possible.

Figure 2–3 shows process scheduling using a quantum. One portion of the
figure shows the running process; the other portion of the figure shows what
happens to running processes over time. Process G is removed from the
beginning of the process list, placed in the run queue, and begins execution.
Process B, a higher priority process, enters the runnable state while process
G is running. The scheduler preempts process G to execute process B. Since
process G had more time left in its quantum, the scheduler returns process G
to the beginning of the process list, keeps track of the amount of time left in
process G’s quantum, and executes process B. When process B finishes, process
G is again moved into the run queue and finishes its quantum. Process H, next
in the process list, executes last.

The Digital UNIX Scheduler 2–9

Figure 2–3 Preemption—Finishing a Quantum

Priority

Process G Process G

Process B

Process H

Process B
Executes

Process G
Preempted Process G Completes,

Process H Executes

Process G Resumes

1

2

3 4

G H

B

G H G H H

Time

Process List

MLO-007317

1 2 3 4

HighHigh

Low

Round-robin scheduling is designed to provide a facility for implementing
time-slice algorithms. You can use the concept of a quantum in combi-
nation with process priorities to facilitate time-slicing. You can use the
sched_rr_get_interval function to retrieve the quantum used in round-robin
scheduling. If a process, running under the round-robin scheduling policy,
runs without blocking or yielding for more than this amount of time, it may be
preempted by another runnable process at the same priority.

2–10 The Digital UNIX Scheduler

2.3 Process Priorities
All applications are given an initial priority, either implicitly by the operating
system or explicitly by the user. If you fail to specify a priority for a process,
the kernel assigns the process an initial priority.

You can specify and manage a process’s priority using either nice or
P1003.1b functions. The nice functions are useful for managing priorities
for nonrealtime, timesharing applications. However, realtime priorities are
higher than the nice priorities and make use of the P1003.1b scheduling
policies. Realtime priorities can be managed only by using the associated
P1003.1b functions.

In general, process scheduling is based on the concept that tasks can be
prioritized, either by the user or by the scheduler. Each process table entry
contains a priority field used in process scheduling. Conceptually, each priority
level consists of a process list. The process list is ordered with the process that
should run first at the beginning of the list and the process that should run
last at the end of the list. Since a single processor can execute only one process
at a time, the scheduler selects the first process at the beginning of the highest
priority, nonempty process list for execution.

Priority levels are organized in ranges. The nonprivileged user application
runs in the same range as most applications using the timesharing scheduling
policy. Most users need not concern themselves with priority ranges above
this range. Privileged applications (system or realtime) use higher priorities
than nonprivileged user applications. In some instances, realtime and system
processes can share priorities, but most realtime applications will run in a
priority range that is higher than the system range.

2.3.1 Priorities for the nice Interface
The nice interface priorities are divided into two ranges: the higher range
is reserved for the operating system, and the lower range for nonprivileged
user processes. With the nice interface, priorities range from 20 through –20,
where 20 is the lowest priority. Nonprivileged user processes typically run in
the 20 through 0 range. Many system processes run in the range 0 through
–20. Table 2–1 shows the nice interface priority ranges.

The Digital UNIX Scheduler 2–11

Table 2–1 Priority Ranges for the nice Interface

Range Priority Level

Nonprivileged user 20 through 0

System 0 through –20

A numerically low value implies a high priority level. For example, a process
with a priority of 5 has a lower priority than a process with a priority of 0.
Similarly, a system process with a priority of –5 has a lower priority than a
process with a priority of –15. System processes can run at nonprivileged user
priorities, but a user process can only increase its priority into the system
range if the owner of the user process has superuser privileges.

Processes start at the default base priority for a nonprivileged user process (0).
Since the only scheduling policy supported by the nice interface is timesharing,
the priority of a process changes during execution. That is, the nice parameter
represents the highest priority possible for a process. As the process runs, the
scheduler adds offsets to the initial priority, adjusting the process’s priority
downward from or upward toward the initial priority. However, the priority
will not exceed (be numerically lower than) the nice value.

The nice interface supports relative priority changes by the user through a call
to the nice , renice , or setpriority functions. Interactive users can specify
a base priority at the start of application execution using the nice command.
The renice command allows users to interactively change the priority of a
running process. An application can read a process’s priority by calling the
getpriority function. Then the application can change a process’s priority by
calling the setpriority function. These functions are useful for nonrealtime
applications but do not affect processes running under one of the P1003.1b
fixed-priority scheduling policies described in Section 2.2.

Refer to the reference pages for more information on the getpriority ,
setpriority , nice , and renice functions.

2.3.2 Priorities for the Realtime Interface
Realtime interface priorities are divided into three ranges: the highest range
is reserved for realtime, the middle range is used by the operating system, and
the low range is used for nonprivileged user processes. Digital UNIX realtime
priorities loosely map to the nice priority range, but provide a wider range of
priorities. Processes using the P1003.1b scheduling policies must also use the
Digital UNIX realtime interface priority scheme. Table 2–2 shows the Digital
UNIX realtime priority ranges.

2–12 The Digital UNIX Scheduler

Table 2–2 Priority Ranges for the Digital UNIX Realtime Interface

Range Priority Level

Nonprivileged user SCHED_PRIO_USER_MIN through SCHED_PRIO_USER_
MAX

System SCHED_PRIO_SYSTEM_MIN through SCHED_PRIO_
SYSTEM_MAX

Realtime SCHED_PRIO_RT_MIN through SCHED_PRIO_RT_MAX

Realtime interface priority levels are the inverse of the nice priority levels; a
numerically high value implies a high priority level. A realtime process with a
priority of 32 has a higher priority than system processes, but a lower priority
than another realtime process with a priority of 45. Realtime and system
processes can run at nonprivileged user priorities, but a nonprivileged user
process cannot increase its priority into the system or realtime range without
superuser privileges.

The default initial priority for processes using realtime priorities is 19. The
default scheduling policy is timesharing.

Figure 2–4 illustrates the relationship between these two priority interfaces.

The Digital UNIX Scheduler 2–13

Figure 2–4 Priority Ranges for the nice and Realtime Interfaces

-20, -19

-1, 0, 1

63

29

32
31
30

26
25
24

20
19
18

9

0

-18

-3, -2

2, 3

19, 20

Realtime
Priorities

Realtime
Interface

System
Priorities

User
Priorities

nice
Interface

System Default

User Default

Privileged
User

Nonprivileged
User

Low
Priority

High
Priority

MLO-007318

Note that hardware interrupts are unaffected by process priorities, even the
highest realtime priority.

Digital UNIX does not support priority inheritance between processes. This is
important to remember in prioritizing processes in such a way to avoid priority
inversion. Priority inversion takes place when a higher priority process is
blocked by the effects of a lower priority process.

2–14 The Digital UNIX Scheduler

For example, a client program running at a priority of 60 (realtime priority)
blocks while waiting for the receipt of data. This allows a loop program to run
at the lower priority of 40 (also realtime priority), but the network thread that
dequeues the network packets is running at a system priority of 30. The loop
program blocks the network thread, which in turn blocks the higher priority
client process which is still waiting for the receipt of data.

In this case, the inversion may be resolved by running the network thread at a
higher priority than the loop program. When running realtime processes at the
exclusive realtime priority level, it is important to ensure that the processes
give up the CPU in order for normal system processes to run.

2.3.3 Displaying Realtime Priorities
The ps command displays current process status and can be used to give
realtime users snapshots of process priorities. Realtime users can use POSIX
realtime functions to change process priority. Therefore, the ps command is a
useful tool for determining if realtime processes are running at the expected
priority.

The ps command captures the states of processes, but the time required to
capture and display the data from the ps command may result in some minor
discrepancies.

Priorities used in the realtime scheduling interface are displayed when you use
the specifier psxpri in conjunction with the -o or -O switch on the ps command.
Fields in the output format include the process ID (PID), POSIX scheduling
priority (PPR), the state of the process (S), control terminal of the process
(TTY), CPU time used by the process (TIME), and the process command
(COMM).

The following example shows information regarding processes, with or without
terminals, and displays timesharing and POSIX priorities. Note that the
display indicates that the ps command is also running.

% ps -aeO psxpri
PID PPR S TTY TIME COMMAND

0 31 R < ?? 16:52:49 kernel idle
1 19 I ?? 28:28.03 init
7 19 I ?? 0:02.72 kloadsrv

11 19 I ?? 0:00.94 dxterm
.
.
.

14737 60 S< p2 0:00.01 ./tests/work
13848 15 R ttyv3 0:01.12 ps

The Digital UNIX Scheduler 2–15

In the example above, two processes are using realtime priorities. The first
process (PID 0) is running at maximum system priority. The second realtime
process (PID 14737) has been sleeping for less than twenty seconds at priority
60. The processes with PIDs 1, 7, and 11 are idle at the maximum user
priority.

For more information, see the reference page for the ps command.

2.3.4 Configuring Realtime Priorities
You should assign realtime priorities according to the critical nature of the
work the processes perform. Some applications may not need to have all
processes running in the realtime priority range. Applications that run in
a realtime range for long periods may prevent the system from performing
necessary services, which could cause network and device timeouts or data
overruns. Some processes perform adequately if they run under a fixed-priority
scheduling policy at priority 19. Only critical processes running under a fixed-
priority scheduling policy should run with priorities in the realtime range, 32
through 63.

Although P1003.1b functions let you change the scheduling policy while
your application is running, it is better to select a scheduling policy during
application initialization than to change the scheduling policy while the
application executes. However, you may find it necessary to adjust priorities
within a scheduling policy as the application executes.

It is recommended that all realtime applications provide a way to configure
priorities at runtime. You can configure priorities using the following methods:

1. Providing a default priority within the realtime priority range by calling
the sched_get_priority_max and sched_get_priority_min functions

2. Using a .rc initialization file, which overrides the default priority, or using
environment variables, which override the default priority

3. Adjusting priority during initialization by calling the sched_setparam
function

Each process should have a default base priority appropriate for the kind of
work it performs and each process should provide a configuration mechanism
for changing that base priority. To simplify system management, make the
hardcoded default equal to the highest priority used by the application. At
initialization, the application should set its process priorities by subtracting
from the base priority. Use the constants given in the sched.h header file as a
guide for establishing your default priorities.

2–16 The Digital UNIX Scheduler

The sched.h header file provides the following constants that may be useful in
determining the optimum default priority:

SCHED_PRIO_USER_MIN
SCHED_PRIO_USER_MAX
SCHED_PRIO_SYSTEM_MIN
SCHED_PRIO_SYSTEM_MAX
SCHED_PRIO_RT_MIN
SCHED_PRIO_RT_MAX

These values are the current values for default priorities. When coding your
application, use the constants rather than numerical values. The resulting
application will be easier to maintain should default values change.

Debug your application in the nonprivileged user priority range before running
the application in the realtime range. If a realtime process is running at
a level higher than kernel processes and the realtime process goes into an
infinite loop, you must reboot the system to stop process execution.

Although priority levels for Digital UNIX system priorities can be adjusted
using the nice or renice functions, these functions have a ceiling that is
below the realtime priority range. To adjust realtime priorities, use the
sched_getparam and sched_setparam P1003.1b functions, discussed in
Section 2.4.3. You should adjust process priorities for your own application
only. Adjusting system process priorities could have unexpected consequences.

2.4 Scheduling Functions
Realtime processes must be able to select the most appropriate priority level
and scheduling policy dynamically. A realtime application often modifies
the scheduling policy and priority of a process, performs some function, and
returns the process to its previous priority. Realtime processes must also be
able to yield system resources to each other in response to specified conditions.
Eight P1003.1b functions, summarized in Table 2–3, satisfy these realtime
requirements. Refer to the reference pages for a complete description of these
functions.

The Digital UNIX Scheduler 2–17

Table 2–3 P1003.1b Process Scheduling Functions

Function Description

sched_getscheduler Returns the scheduling policy of a specified process

sched_getparam Returns the scheduling priority of a specified
process

sched_get_priority_max Returns the maximum priority allowed for a
scheduling policy

sched_get_priority_min Returns the minimum priority allowed for a
scheduling policy

sched_rr_get_interval Returns the current quantum for the round-robin
scheduling policy

sched_setscheduler Sets the scheduling policy and priority of a specified
process

sched_setparam Sets the scheduling priority of a specified process

sched_yield Yields execution to another process

All the preceding functions, with the exception of the sched_yield function,
require a process ID parameter (pid). In all P1003.1b priority and scheduling
functions, a pid value of zero indicates that the function call refers to the
calling process. Use zero in these calls to eliminate using the getpid or
getppid functions.

The priority and scheduling policy of a process are inherited across a fork or
exec system call.

Changing the priority or scheduling policy of a process causes the process to
be queued to the end of the process list for its new priority. You must have
superuser privileges to change the realtime priorities or scheduling policies of
a process.

2.4.1 Determining Limits
Three functions allow you to determine scheduling policy parameter limits.
The sched_get_priority_max and sched_get_priority_min functions return
the appropriate maximum or minimum priority permitted by the scheduling
policy. These functions can be used with any of the P1003.1b scheduling
policies: first-in first-out, round-robin, or timesharing. You must specify one of
the following keywords when using these functions:

• SCHED_FIFO

• SCHED_RR

2–18 The Digital UNIX Scheduler

• SCHED_OTHER

The sched_rr_get_interval function returns the current quantum for process
execution under the round-robin scheduling policy.

2.4.2 Retrieving the Priority and Scheduling Policy
Two functions return the priority and scheduling policy for realtime processes,
sched_getparam and sched_getscheduler , respectively. You do not need
special privileges to use these functions, but you need superuser privileges to
set priority or scheduling policy.

If the pid is zero for either function, the value returned is the priority or
scheduling policy for the calling process. The values returned by a call to
the sched_getscheduler function indicate whether the scheduling policy is
SCHED_FIFO, SCHED_RR, or SCHED_OTHER.

2.4.3 Setting the Priority and Scheduling Policy
Use the sched_getparam function to determine the initial priority of a process;
use the sched_setparam function to establish a new priority. Adjusting priority
levels in response to predicted system loads and other external factors allows
the system administrator or application user greater control over system
resources. When used in conjunction with the first-in first-out scheduling
policy, the sched_setparam function allows a critical process to run as soon as
it is runnable, for as long as it needs to run. This occurs because the process
preempts other lower-priority processes. This can be important in situations
where scheduling a process must be as precise as possible.

The sched_setparam function takes two parameters: pid and param. The pid
parameter specifies the process to change. If the pid parameter is zero, priority
is set for the calling process. The param parameter specifies the new priority
level. The specified priority level must be within the range for the minimum
and maximum values for the scheduling policy selected for the process.

The sched_setscheduler function sets both the scheduling policy and priority
of a process. Three parameters are required for the sched_setscheduler
function: pid, policy, and param. If the pid parameter is zero, the scheduling
policy and priority will be set for the calling process. The policy parameter
identifies whether the scheduling policy is to be set to SCHED_FIFO,
SCHED_RR, or SCHED_OTHER. The param parameter indicates the priority
level to be set and must be within the range for the indicated scheduling policy.

Notification of a completed priority change may be delayed if the calling
process has been preempted. The calling process is notified when it is again
scheduled to run.

The Digital UNIX Scheduler 2–19

If you are designing portable applications (strictly conforming POSIX
applications), be careful not to assume that the priority field is the only
field in the sched_param structure. All the fields in a sched_param structure
should be initialized before the structure is passed as the param argument
to the sched_setparam or sched_setscheduler . Example 2–1 shows how a
process can initialize the fields using only constructs provided by the P1003.1b
standard.

Example 2–1 Initializing Priority and Scheduling Policy Fields

/* Change to the SCHED_FIFO policy and the highest priority, then */
/* lowest priority, then back to the original policy and priority. */

#include <unistd.h>
#include <sched.h>

#define CHECK(sts,msg) \
if (sts == -1) { \

perror(msg); \
exit(-1); \

}

main ()
{

struct sched_param param;
int my_pid = 0;
int old_policy, old_priority;
int sts;
int low_priority, high_priority;

/* Get parameters to use later. Do this now */
/* Avoid overhead during time-critical phases.*/

high_priority = sched_get_priority_max(SCHED_FIFO);
CHECK(high_priority,"sched_get_priority_max");
low_priority = sched_get_priority_min(SCHED_FIFO);
CHECK(low_priority,"sched_get_priority_min");

/* Save the old policy for when it is restored. */

old_policy = sched_getscheduler(my_pid);
CHECK(old_policy,"sched_getscheduler");

/* Get all fields of the param structure. This is where */
/* fields other than priority get filled in. */

sts = sched_getparam(my_pid, ¶m);
CHECK(sts,"sched_getparam");

/* Keep track of the old priority. */

(continued on next page)

2–20 The Digital UNIX Scheduler

Example 2–1 (Cont.) Initializing Priority and Scheduling Policy Fields

old_priority = param.sched_priority;

/* Change to SCHED_FIFO, highest priority. The param */
/* fields other than priority get used here. */

param.sched_priority = high_priority;
sts = sched_setscheduler(my_pid, SCHED_FIFO, ¶m);
CHECK(sts,"sched_setscheduler");

/* Change to SCHED_FIFO, lowest priority. The param */
/* fields other than priority get used here, too. */

param.sched_priority = low_priority;
sts = sched_setparam(my_pid, ¶m);
CHECK(sts,"sched_setparam");

/* Restore original policy, parameters. Again, other */
/* param fields are used here. */

param.sched_priority = old_priority;
sts = sched_setscheduler(my_pid, old_policy, ¶m);
CHECK(sts,"sched_setscheduler 2");

exit(0);
}

A process is allowed to change the priority of another process only if the target
process runs on the same node as the calling process and at least one of the
following conditions is true:

• The calling process is a privileged process with a real or effective UID of
zero.

• The real user UID or the effective user UID of the calling process is equal
to the real user UID or the saved-set user UID of the target process.

• The real group GID or the effective group GID of the calling process is
equal to the real group GID or the saved-set group GID of the target
process, and the calling process has group privilege.

Before changing the priority of another process, determine which UID is
running the application. Use the getuid system call to determine the real UID
associated with a process.

The Digital UNIX Scheduler 2–21

2.4.4 Yielding to Another Process
Sometimes, in the interest of cooperation, it is important that a running
process give up the kernel to another process at the same priority level. Using
the sched_yield function causes the scheduler to look for another process at
the same priority level to run, and forces the caller to return to the runnable
state. The process that calls the sched_yield function resumes execution after
all runnable processes of equal priority have been scheduled to run. If there
are no other runnable processes at that priority, the caller continues to run.
The sched_yield function causes the process to yield for one cycle through the
process list. That is, after a call to sched_yield , the target process goes to the
end of its priority process list. If another process of equal priority is created
after the call to sched_yield , the new process is queued up after the yielding
process.

The sched_yield function is most useful with the first-in first-out scheduling
policy. Since the round-robin scheduling policy imposes a quantum on the
amount of time a process runs, there is less need to use sched_yield . The
round-robin quantum regulates the use of system resources through time-
slicing. The sched_yield function is also useful when a process does not have
permission to set its priority but still needs to yield execution.

2–22 The Digital UNIX Scheduler

2.5 Priority and Policy Example
Example 2–2 shows how the amount of time in a round-robin quantum can be
determined, the current scheduling parameters saved, and a realtime priority
set. Using the round-robin scheduling policy, the example loops through a test
until a call to the sched_yield function causes the process to yield.

Example 2–2 Using Priority and Scheduling Functions
#include <unistd.h>
#include <time.h>
#include <sched.h>
#define LOOP_MAX 10000000
#define CHECK_STAT(stat, msg) \

if (stat == -1) \
{ perror(msg); \

exit(-1); \
}

main()
{

struct sched_param my_param;
int my_pid = 0;
int old_priority, old_policy;
int stat;

struct timespec rr_interval;
int try_cnt, loop_cnt;
volatile int tmp_nbr;

/* Determine the round-robin quantum */

stat = sched_rr_get_interval (my_pid, &rr_interval);
CHECK_STAT(stat, "sched_rr_get_interval");
printf("Round-robin quantum is %lu seconds, %ld nanoseconds\n",

rr_interval.tv_sec, rr_interval.tv_nsec);

/* Save the current scheduling parameters */

old_policy = sched_getscheduler(my_pid);
stat = sched_getparam(my_pid, &my_param);
CHECK_STAT(stat, "sched_getparam - save old priority");
old_priority = my_param.sched_priority;

/* Set a realtime priority and round-robin */
/* scheduling policy */

my_param.sched_priority = SCHED_PRIO_RT_MIN;
stat = sched_setscheduler(my_pid, SCHED_RR, &my_param);
CHECK_STAT(stat, "sched_setscheduler - set rr priority");

/* Try the test */

(continued on next page)

The Digital UNIX Scheduler 2–23

Example 2–2 (Cont.) Using Priority and Scheduling Functions

for (try_cnt = 0; try_cnt < 10; try_cnt++)

/* Perform some CPU-intensive operations */

{for(loop_cnt = 0; loop_cnt < LOOP_MAX; loop_cnt++)
{

tmp_nbr+=loop_cnt;
tmp_nbr-=loop_cnt;
}

printf("Completed test %d\n",try_cnt);
sched_yield();
}

/* Lower priority and restore policy */

my_param.sched_priority = old_priority;
stat = sched_setscheduler(my_pid, old_policy, &my_param);
CHECK_STAT(stat, "sched_setscheduler - to old priority");
}

2–24 The Digital UNIX Scheduler

3
Shared Memory

Shared memory and memory-mapped files allow processes to communicate by
incorporating data directly into process address space. Processes communicate
by sharing portions of their address space. When one process writes to
a location in the shared area, the data is immediately available to other
processes sharing the area. Communication is fast because there is none of the
overhead associated with system calls. Data movement is reduced because it is
not copied into buffers.

This chapter includes the following sections:

• Memory Objects, Section 3.1

• Locking Shared Memory, Section 3.2

• Using Shared Memory with Semaphores, Section 3.3

A process manipulates its address space by mapping or removing portions
of memory objects into the process address space. When multiple processes
map the same memory object, they share access to the underlying data.
Shared-memory functions allow you to open and unlink the shared-memory
files.

3.1 Memory Objects
The memory-mapping and shared-memory functions allow you controlled
access to shared memory so that the application can coordinate the use of
shared address space.

When you use a shared, mapped file, the changes initiated by a single process
or multiple processes are reflected back to the file. Other processes using the
same path and opening the connection to the memory object have a shared
mapping of the file. Use memory-mapping or file control functions to control
usage and access. If the mappings allow it, data written into the file through
the address space of one process appears in the address space of all processes
mapping the same portion of the file.

Shared Memory 3–1

Memory-mapped objects are persistent; their names and contents remain until
all processes that have accessed the object unlink the file.

Shared memory and memory-mapped files follow the same general usage, as
follows:

1. Get a file descriptor with a call to the open or shm_open function.

2. Map the object using the file descriptor with a call to the mmapfunction.

3. Unmap the object with a call to the munmapfunction.

4. Close the object with a call to the close function.

5. Remove the shared-memory object with a call to the shm_unlink function or
optionally remove a memory-mapped file with a call to the unlink function.

Often shared-memory objects are created and used only while an application
is executing. Files, however, may need to be saved and reused each time the
application is run. The unlink and shm_unlink functions remove (delete) the
file and its contents. Therefore, if you need to save a shared file, close the file
but do not unlink it.

You can use memory-mapped files without using shared memory, but
this chapter assumes that you will want to use them together. Table 3–1
summarizes the functions used to open and unlink shared memory.

Table 3–1 Shared-Memory Functions

Function Description

shm_open Opens a shared-memory object, returning a file descriptor

shm_unlink Removes the name of the shared-memory object

Table 3–2 lists the functions for creating and controlling memory-mapped
objects.

Table 3–2 Memory-Mapping Functions

Function Description

mmap Maps the memory object into memory

mprotect Modifies protections of memory objects

(continued on next page)

3–2 Shared Memory

Table 3–2 (Cont.) Memory-Mapping Functions

Function Description

msync Synchronizes a memory-mapped object

munmap Unmaps a previously mapped region

A memory object can be created and opened by a call to the shm_open function.
Then the object can be mapped into process address space. File control
functions allow you to control access permissions, such as read and write
permission or the timing of a file update.

Data written to an object through the address space of one process is available
to all processes that map the same region. Child processes inherit the address
space and all mapped regions of the parent process. Once the object is
opened, the child process can map it with the mmapfunction to establish a map
reference. If the object is already mapped, the child process also inherits the
mapped region.

Unrelated processes can also use the object, but must first call the open or
shm_open function (as appropriate) and then use the mmapfunction to establish
a connection to the shared memory.

3.1.1 Opening a Shared-Memory Object
A process can create and open shared-memory regions early in the life of
the application and then dynamically control access to the shared-memory
object. Use the shm_open function to open (establish a connection to) a shared-
memory object. After a process opens the shared-memory object, each process
that needs to use the shared-memory object must use the same name as the
controlling process when creating its own connections to the shared-memory
object by also calling the shm_open function. The name can either be a string
or a pathname, but in either case, processes must use the same name to refer
to a specific shared-memory object.

The shm_open function provides a set of flags that prescribe the action of the
function and define access modes to the shared-memory object. Shared-memory
access is determined by the OR of the file status flags and access modes listed
in Table 3–3.

Shared Memory 3–3

Table 3–3 Status Flags and Access Modes for the shm_open Function

Flag Description

O_RDONLY Open for read access only

O_RDWR Open for read and write access

O_CREAT Create the shared-memory object, if it does not already exist

O_EXCL Create an exclusive connection to a shared-memory object, when used
with O_CREAT

O_TRUNC Truncate to zero length

The first process to call the shm_open function should use the O_CREAT flag
to create the shared-memory object, to set the object’s user ID to that of the
calling process, and to set the object’s group ID to the effective group ID of the
calling process. This establishes an environment whereby the calling process,
all cooperating processes, and child processes share the same effective group
ID with the shared-memory object.

A process can create an exclusive connection to a shared-memory object
by using the O_CREAT and O_EXCL flags. In this case, other processes
attempting to create the shared-memory object at the same time will fail.

The oflag argument of the shm_open function requests specific actions from
the shm_open code. For example, the following code creates an exclusive
shared-memory object and opens it for read and write access.

fd = shm_open("all_mine", (O_CREAT|O_EXCL|O_RDWR), 0);

Once a shared-memory object is created, its state and name (including all
associated data) are persistent. Its state and name remain until the shared
memory is unlinked with a call to the shm_unlink function and until all other
references to the shared memory are gone.

3–4 Shared Memory

Example 3–1 shows the code sequence to include shared-memory objects in an
application.

Example 3–1 Including a Shared-Memory Object
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <fcntl.h>

main ()
{

int md;
int status;
long pg_size;
caddr_t virt_addr;

/* Create shared memory object */

md = shm_open ("my_memory", O_CREAT|O_RDWR, 0);
pg_size = sysconf(_SC_PAGE_SIZE);

if((ftruncate(md, pg_size)) == -1){ /* Set the size */
perror("ftruncate failure");
exit();

}
/* Map one page */

virt_addr = mmap(0, pg_size, PROT_WRITE, MAP_SHARED, md, 0);
.
.
.

status = munmap(virt_addr, pg_size); /* Unmap the page */
status = close(md); /* Close file */
status = shm_unlink("my_memory"); /* Unlink shared-memory object */

}

3.1.2 Opening Memory-Mapped Files
The open function points to the data you intend to use; the mmapfunction
establishes how much of the data will be mapped and how it will be accessed.
Use the same access permissions that you would normally use on any call to
the open function. If you intend to read the file only, specify read permission
only on the open function. If you intend to read and write to the file, open the
file with both read and write permission. After opening a file, call the mmap
function to map the file into application address space.

Shared Memory 3–5

When you have finished using a memory-mapped file, unmap the object by
calling the munmapfunction, then close the object with the close function. Any
memory locks resulting from a call to the mlock function associated with the
address range are removed when the munmapfunction is called. The application
could then remove the data file by calling the unlink function.

3.1.3 Mapping Memory-Mapped Files
The mmapfunction maps data from a file into memory. The parameters to the
mmapfunction specify the starting address and length in bytes for the new
region, access permissions, attributes of the mapped region, file descriptor, and
an offset for the address. The MAP_SHARED flag indicates the object will be
accessible by other processes. A call to the munmapfunction unmaps the same
region.

The address, length, and offset of the new mapped region should be a multiple
of the page size returned by a call to the sysconf (_SC_PAGE_SIZE) function. If
the length is not specified as a multiple of the page size returned by sysconf ,
then any reference to an address between the end of the region and the end
of the page containing the end of the region is undefined. Note, too, that the
offset must be aligned and sized properly. Other size parameters may also
need to be aligned, depending on whether you specified MAP_FIXED.

The prot argument determines the type of access permitted to the data being
mapped. As with other file permissions, the argument is constructed from the
bitwise inclusive-OR of one or more of the following flags:

PROT_READ — Data can be read.
PROT_WRITE — Data can be written.
PROT_EXEC — Data can be executed.
PROT_NONE — Data cannot be accessed.

Whatever protection options you specify as the prot argument, the file
descriptor must have been opened with at least read access. If you specify
PROT_WRITE, the file descriptor must have been opened with write
permission, unless MAP_PRIVATE is specified in the flags parameter.

The flags parameter provides additional information about how to handle
mapped data. The flags parameter uses one of the following flags:

MAP_SHARED — Share changes
MAP_PRIVATE — Changes are private
MAP_FIXED — Interpret the addr argument exactly

3–6 Shared Memory

MAP_SHARED, MAP_PRIVATE, and MAP_FIXED are the only flags
specified by POSIX 1003.1b. The MAP_ANONYMOUS, MAP_FILE, and
MAP_VARIABLE flags are not part of the POSIX 1003.1b interface, but are
supported by Digital UNIX. For more information on these flags, see the
reference page for the mmapfunction.

The MAP_FIXED flag controls the location of the new region. No matter
what flag is specified, a mapped region is never placed at address zero or at
an address where it would overlap with an existing region. When multiple
processes use the mapped object, the call to the mmapfunction can specify
the address, and subsequent calls to the mmapfunction can use MAP_FIXED
to request the same address in other processes. Cooperating processes must
also use care to communicate this address among themselves. If you specify
MAP_FIXED and for some reason the system is unable to place the new region
at the specified address, the call fails.

The MAP_SHARED and MAP_PRIVATE flags control the visibility of
modifications to the mapped file or shared-memory region. The MAP_SHARED
flag specifies that modifications made to the mapped file region are
immediately visible to other processes which are mapped to the same region
and also use the MAP_SHARED flag. Changes to the region are written to the
file.

The MAP_PRIVATE flag specifies that modifications to the region are not
visible to other processes whether or not the other process used MAP_SHARED
or MAP_PRIVATE. Modifications to the region are not written to the file.

Access to the mapped region or shared-memory region is controlled by the flags
specified in the prot parameter. These flags function much the way they do
for any other file descriptor: access is specified as the OR of read, write, and
execute, with an additional flag to indicate that data cannot be accessed. The
mprotect function changes the protection on a specified address range. That
range should be within the range specified on the call to the mmapfunction.
Protection flags can interact with the MAP_SHARED, MAP_PRIVATE, and
MAP_FIXED flags. Refer to the online reference pages for mmapand mprotect
for specifics.

When you unmap a mapped region or shared memory, be sure to specify an
address and length in the range of the parameters used in the call to the mmap
function.

Shared Memory 3–7

3.1.4 Using File Functions
Shared-memory objects and memory-mapped files use the file system name
space to map global names for memory objects. As such, POSIX.1 file control
functions can be used on shared-memory objects and memory-mapped files,
just as these functions are used for any other file control. Table 3–4 lists some
of the file functions available.

Table 3–4 File Functions Used with Memory-Mapped Files

Function Description

fchmod Changes permissions on files

fcntl Controls operations on files and memory objects

flock Locks a file as shared or exclusive

fstat Provides information about file status

ftruncate Sets the length of a memory object

The fchmod function can be used to change access permissions on a file. If
you are the owner of the file or have superuser privileges, you can use the
fchmod function to set the access mode and grant or deny permissions to the
group, user, or others. The fcntl function can be used to retrieve and set the
value of the close-on-exec flag, status flags and access modes, or set and clear
locks. Using the fcntl function, you can override locks set with the flock
function. The fstat function returns information about the file, such as access
permissions, link references, and type and size of file. You can use this function
to obtain information for use in subsequent calls to other file control functions.

You can apply a lock to a shared-memory object or mapped file by using
a variety of file control functions, including fcntl and flock . Both these
functions apply a lock on an open file, but they differ in how the lock is
performed and the range of other tasks they can perform.

Note that the locks applied with these functions are for files, not file
descriptors. That means that under most circumstances, file locks are not
inherited across a fork. If a parent process holds a lock on a file and the parent
process forks, the child process will inherit the file descriptor, but not the lock
on the file. A file descriptor that is duplicated with one of the dup functions
does not inherit the lock.

The fcntl function is used for general file control. In addition to locking and
unlocking an open file, the fcntl function is used to return or set status,
return a new file descriptor, or return process IDs.

3–8 Shared Memory

The flock function is limited to applying locks on a file and is not used for
general file control.

Refer to the online reference pages for more information on using file control
functions.

3.1.5 Controlling Memory-Mapped Files
Several functions let you manipulate and control access to memory-mapped
files and shared memory. These functions include msync and mprotect . Using
these functions, you can modify access protections and synchronize writing to a
mapped file.

The msync function synchronizes the caching operations of a memory-mapped
file or shared-memory region. Using this function, you can ensure that
modified pages in the mapped region are transferred to the file’s underlying
storage device or you can control the visibility of modifications with respect to
file system operations.

Flags used on the msync function specify whether the cache flush is to
be synchronous (MS_SYNC), asynchronous (MS_ASYNC), or invalidated
(MS_INVALIDATE). Either the MS_SYNC or MS_ASYNC flag can be specified,
but not both.

When you use the MS_SYNC flag, the msync function does not return until
all write operations are complete and the integrity of the data is assured. All
previous modifications to the mapped region are visible to processes using the
read parameter.

When you use the MS_ASYNC flag, the msync function returns immediately
after all of the write operations are scheduled.

When you invalidate previously cached copies of the pages, other users are
required to get new copies of the pages from the file system the next time they
are referenced. In this way, previous modifications to the file made with the
write function are visible to the mapped region.

When using the msync function, you should use pages within the same address
and length specified in the call to the mmapfunction to ensure that the entire
mapped region is synchronized.

The mprotect function changes the access protection of a mapped file or
shared-memory region. When using the mprotect function, use pages within
the same address and length specified in the call to the mmapfunction.
Protection flags used on the mprotect function are the same as those used
on the mmapfunction.

Shared Memory 3–9

Note that use of the mprotect function modifies access only to the specified
region. If the access protection of some pages within the range were changed
by some other means, the call to the mprotect function may fail.

3.1.6 Removing Shared Memory
When a process has finished using a shared-memory segment, you can remove
the name from the file system namespace with a call to the shm_unlink
function, as shown in the following example:

status = shm_unlink("my_file");

The shm_unlink function unlinks the shared-memory object. Memory objects
are persistent, which means the contents remain until all references have been
unmapped and the shared-memory object has been unlinked with a call to the
shm_unlink function.

Every process using the shared memory should perform the cleanup tasks of
unmapping and closing.

3.2 Locking Shared Memory
You can lock and unlock a shared-memory segment into physical memory to
eliminate paging. The MCL_FUTURE argument to the mlockall function
causes new shared-memory regions to be locked automatically. See Chapter 4
for more information on using the mlock and mlockall functions.

Example 3–2 shows how to map a file into the address space of the process
and lock it into memory. When the file is unmapped, the lock on the address is
removed.

Example 3–2 Locking a Memory Object
/* This program locks the virtual memory address that */
/* was returned from the mmap() function into memory. */

#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
#include <sys/file.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <errno.h>

(continued on next page)

3–10 Shared Memory

Example 3–2 (Cont.) Locking a Memory Object

main()
{
int fd;
caddr_t pg_addr;

int size = 5000;
int mode = S_IRWXO|S_IRWXG|S_IRWXU;

/* Create a file */

fd = shm_open("example", O_RDWR|O_CREAT, mode);
if(fd < 0){

perror("open error ");
exit();

}

/* Set the size */

if((ftruncate(fd, size)) == -1){
perror("ftruncate failure");
exit();

}

/* Map the file into the address space of the process */
pg_addr = (caddr_t) mmap(0, size, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_SHARED, fd, 0);

if(pg_addr == (caddr_t) -1){
perror("mmap failure");
exit();

}

/* Lock the mapped region into memory */

if(mlock(pg_addr,size) != 0){
perror("mlock failure");
exit();

}

/* Unmap of the address region removes the memory lock */
/* established on the address region by this process */

if(munmap(pg_addr, size) < 0)
perror("unmap error");

close(fd);
shm_unlink("example");
exit();
}

You can also lock the file so that other processes cannot use it, making it an
exclusive resource for a process and its descendants. See Section 3.1.4 for more
information on locking files.

Shared Memory 3–11

3.3 Using Shared Memory with Semaphores
When using shared memory, processes map the same area of memory into
their address space. This allows for fast interprocess communication because
the data is immediately available to any other process using the same shared
memory. If your application has multiple processes contending for the same
shared-memory resource, you must coordinate access.

Semaphores provide an easy means of regulating access to a memory object
and determining if the memory resource is available. Typically, an application
will begin execution at a nonrealtime priority level, then perform the following
tasks when using mapped or shared-memory objects and semaphores:

1. Create the shared-memory object

2. Determine the address and map the region into memory

3. Create a semaphore

4. Adjust the process priority and scheduling policy as needed

5. Before a read or write operation, lock (reserve) the semaphore

6. After a read or write operation, unlock (release) the semaphore

A process can lock the semaphore associated with a mapped or shared-memory
object to indicate that the process requires exclusive access. Cooperating
processes normally wait until the semaphore is unlocked before accessing a
region.

Refer to Chapter 9 for information on semaphores and for an example using
semaphores and shared memory.

3–12 Shared Memory

4
Memory Locking

Memory management facilities ensure that processes have effective and
equitable access to memory resources. The operating system maps and controls
the relationship between physical memory and the virtual address space of a
process. These activities are, for the most part, transparent to the user and
controlled by the operating system. However, for many realtime applications
you may need to make more efficient use of system resources by explicitly
controlling virtual memory usage.

This chapter includes the following sections:

• Memory Management, Section 4.1

• Memory-Locking and Unlocking Functions, Section 4.2

Memory locking is one way to ensure that a process stays in main memory
and is exempt from paging. In a realtime environment, a system must be
able to guarantee that it will lock a process in memory to reduce latency for
data access, instruction fetches, buffer passing between processes, and so
forth. Locking a process’s address space in memory helps ensure that the
application’s response time satisfies realtime requirements. As a general rule,
time-critical processes should be locked into memory.

4.1 Memory Management
In a multiprogramming environment, it is essential for the operating system
to share available memory effectively among processes. Memory management
policies are directly related to the amount of memory required to execute
those processes. Memory management algorithms are designed to optimize the
number of runnable processes in primary memory while avoiding conflicts that
adversely affect system performance. If a process is to remain in memory, the
kernel must allocate adequate units of memory. If only part of a process needs
to be in primary memory at any given time, then memory management can
work together with the scheduler to make optimal use of resources.

Memory Locking 4–1

Virtual address space is divided into fixed-sized units, called pages. Each
process usually occupies a number of pages, which are independently moved in
and out of primary memory as the process executes. Normally, a subset of a
process’s pages resides in primary memory when the process is executing.

Since the amount of primary memory available is finite, paging is often done
at the expense of some pages; to move pages in, others must be moved out. If
the page that is going to be replaced is modified during execution, that page
is written to a file area. That page is brought back into primary memory as
needed and execution is delayed while the kernel retrieves the page.

Paging is generally transparent to the current process. The amount of paging
can be decreased by increasing the size of physical memory or by locking
the pages into memory. However, if the process is very large or if pages are
frequently being paged in and out, the system overhead required for paging
may decrease efficiency.

For realtime applications, having adequate memory is more important than for
nonrealtime applications. Realtime applications must ensure that processes
are locked into memory and that there is an adequate amount of memory
available for both realtime processes and the system. Latency due to paging is
often unacceptable for critical realtime tasks.

4.2 Memory-Locking and Unlocking Functions
Realtime application developers should consider memory locking as a required
part of program initialization. Many realtime applications remain locked for
the duration of execution, but some may want to lock and unlock memory as
the application runs. Digital UNIX memory-locking functions let you lock the
entire process at the time of the function call and throughout the life of the
application, or selectively lock and unlock as needed.

Memory locking applies to a process’s address space. Only the pages mapped
into a process’s address space can be locked into memory. When the process
exits, pages are removed from the address space and the locks are removed.

Two functions, mlock and mlockall , are used to lock memory. The mlock
function allows the calling process to lock a selected region of address space.
The mlockall function causes all of a process’s address space to be locked.
Locked memory remains locked until either the process exits or the application
calls the corresponding munlock or munlockall function.

Memory locks are not inherited across a fork and all memory locks associated
with a process are unlocked on a call to the exec function or when the process
terminates.

4–2 Memory Locking

For most realtime applications the following control flow minimizes program
complexity and achieves greater determinism by locking the entire address into
memory.

1. Perform nonrealtime tasks, such as opening files or allocating memory

2. Lock the address space of the process calling mlockall function

3. Perform realtime tasks

4. Release resources and exit

Table 4–1 lists the memory-locking functions.

Table 4–1 Memory-Locking Functions

Function Description

mlock Locks a specified region of a process’s address space

munlock Unlocks a specified region of a process’s address space

mlockall Locks all of a process’s address space

munlockall Unlocks all of a process’s address space

You must have superuser privileges to call the memory locking functions.

4.2.1 Locking and Unlocking a Specified Region
The mlock function locks a preallocated specified region. The address and size
arguments of the mlock function determine the boundaries of the preallocated
region. On a successful call to mlock , the specified region becomes locked.
Memory is locked by the system according to system-defined pages. If the
address and size arguments specify an area smaller than a page, the kernel
rounds up the amount of locked memory to the next page. The mlock function
locks all pages containing any part of the requested range, which can result in
locked addresses beyond the requested range.

Repeated calls to mlock could request more physical memory than is available;
in such cases, subsequent processes must wait for locked memory to become
available. Realtime applications often cannot tolerate the latency introduced
when a process must wait for lockable space to become available. Preallocating
and locking regions is recommended for realtime applications.

If the process requests more locked memory than will ever be available in the
system, an error is returned.

Memory Locking 4–3

Figure 4–1 illustrates memory allocation before and after a call to the mlock
function. Prior to the call to the mlock function, buffer space in the data area
is not locked and is therefore subject to paging. After the call to the mlock
function the buffer space cannot be paged out of memory.

Figure 4–1 Memory Allocation with mlock

Stack

Before mlock
Call

Heap

Data

Stack

Heap

Data

After mlock (buffer, 1024);
Call

char buffer [1024]; char buffer [1024];

= Pageable

= Locked in physical memory (not pageable)

MLO-007319

Text
(Code)

Text
(Code)

The mlock function locks all pages defined by the range addr to addr+len–1
(inclusive). The area locked is the same as if the len argument were rounded
up to a multiple of the next page size before decrementing by 1. The address
must be on a page boundary and all pages mapped by the specified range are
locked. Therefore, you must determine how far the return address is from a
page boundary and align it before making a call to the mlock function.

4–4 Memory Locking

Use the sysconf(_SC_PAGE_SIZE) function to determine the page size. The
size of a page can vary from system to system. To ensure portability, call
the sysconf function as part of your application or profile when writing
applications that use the memory-locking functions. The sys/mman.h header
file defines the maximum amount of memory that can be locked. Use the
getrlimit function to determine the amount of total memory.

Exercise caution when you lock memory; if your processes require a large
amount of memory and your application locks memory as it executes, your
application may take resources away from other processes. In addition, you
could attempt to lock more virtual pages than can be contained in physical
memory.

Locked space is automatically unlocked when the process exits, but you can
also explicitly unlock space. The munlock function unlocks the specified address
range regardless of the number of times the mlock function was called. In other
words, you can lock address ranges over multiple calls to the mlock function,
but can remove the locks with a single call to the munlock function. Space
locked with a call to the mlock function must be unlocked with a corresponding
call to the munlock function.

Example 4–1 shows how to lock and unlock memory segments. Each user-
written function determines page size, adjusts boundaries, and then either
locks or unlocks the segment.

Example 4–1 Aligning and Locking a Memory Segment
#include <unistd.h> /* Support all standards */
#include <sys/mman.h> /* Memory locking functions */

#define DATA_SIZE 2048

lock_memory(char *addr,
size_t size)

{
unsigned long page_offset, page_size;

page_size = sysconf(_SC_PAGE_SIZE);
page_offset = (unsigned long) addr % page_size;

addr -= page_offset; /* Adjust addr to page boundary */
size += page_offset; /* Adjust size with page_offset */

return (mlock(addr, size)); /* Lock the memory */
}

(continued on next page)

Memory Locking 4–5

Example 4–1 (Cont.) Aligning and Locking a Memory Segment

unlock_memory(char *addr,
size_t size)

{
unsigned long page_offset, page_size;

page_size = sysconf(_SC_PAGE_SIZE);
page_offset = (unsigned long) addr % page_size;

addr -= page_offset; /* Adjust addr to page boundary */
size += page_offset; /* Adjust size with page_offset */

return (munlock(addr, size)); /* Unlock the memory */
}

main()
{

char data[DATA_SIZE];

if (lock_memory(data, DATA_SIZE) == -1)
perror("lock_memory");

/* Do work here */

if (unlock_memory(data, DATA_SIZE) == -1)
perror("unlock_memory");

}

4.2.2 Locking and Unlocking an Entire Process Space
The mlockall function locks all of the pages mapped by a process’s address
space. On a successful call to mlockall , the specified process becomes locked
and memory-resident. The mlockall function takes two flags, MCL_CURRENT
and MCL_FUTURE, which determine whether the pages to be locked are those
currently mapped, or if pages mapped in the future are to be locked. You must
specify at least one flag for the mlockall function to lock pages. If you specify
both flags, the address space to be locked is constructed from the logical OR of
the two flags.

If you specify MCL_CURRENT only, all currently mapped pages of the
process’s address space are memory-resident and locked. Subsequent growth in
any area of the specified region is not locked into memory. If you specify the
MCL_FUTURE flag only, all future pages are locked in memory. If you specify
both MCL_CURRENT and MCL_FUTURE, then the current pages are locked
and subsequent growth is automatically locked into memory.

4–6 Memory Locking

Figure 4–2 shows memory allocation before and after a call to the mlockall
function with both MCL_CURRENT and MCL_FUTURE flags. Prior to the call
to the mlockall function, space is not locked and is therefore subject to paging.
After a call to the mlockall function, which specifies the MCL_CURRENT and
MCL_FUTURE flags, all memory used by the process, both currently and in
the future, is locked into memory. The call to the malloc function increases the
amount of memory locked for the process.

Figure 4–2 Memory Allocation with mlockall

Before mlockall
Call

After malloc
Call

After mlockall
Call

= Pageable

= Locked in physical memory (not pageable)

= Unmapped address space

Text
(Code)

Heap

Data

Stack

Heap

Data

Text
(Code)

Stack

MLO-010124

Stack

Data

Text
(Code)

Heap

The munlockall function unlocks all pages mapped by a call to the mlockall
function, even if the MCL_FUTURE flag was specified on the call. The call
to the munlockall function cancels the MCL_FUTURE flag. If you want
additional locking later, you must call the memory-locking functions again.

Example 4–2 illustrates how the mlockall function might be used to lock
current and future address space.

Memory Locking 4–7

Example 4–2 Using the mlockall Function
#include <unistd.h> /* Support all standards */
#include <stdlib.h> /* malloc support */
#include <sys/mman.h> /* Memory locking functions */

#define BUFFER 2048

main()
{

void *p[3]; /* Array of 3 pointers to void */

p[0] = malloc(BUFFER);

/* Currently no memory is locked */

if (mlockall(MCL_CURRENT) == -1)
perror("mlockall:1");

/* All currently allocated memory is locked */

p[1] = malloc(BUFFER);

/* All memory but data pointed to by p[1] is locked */

if (munlockall() == -1)
perror("munlockall:1");

/* No memory is now locked */

if (mlockall(MCL_FUTURE) == -1)
perror("mlockall:2");

/* Only memory allocated in the future */
/* will be locked */

p[2] = malloc(BUFFER);

/* Only data pointed to by data[2] is locked */

if (mlockall(MCL_CURRENT|MCL_FUTURE) == -1)
perror("mlockall:3");

/* All memory currently allocated and all memory that */
/* gets allocated in the future will be locked */

}

4–8 Memory Locking

5
Signals

The UNIX operating system uses signals as a means of notifying a process
that some event, often unrelated to the process’s current activity, has occurred
that requires the process’s attention. Signals are delivered to a process
asynchronously; a process cannot predict when a signal might arrive.

Signals originate from a number of sources:

• An exception, such as a divide-by-zero or segmentation violation, may be
detected by hardware, causing the UNIX kernel to generate an appropriate
signal (such as SIGFPE or SIGSEGV) and send it to the current process.

• A user may press certain terminal keys, such as Ctrl/C, to control the
behavior of the currently running program. This causes the terminal
driver program to send a signal (such as SIGINT) to the user-level process
in which the program is running. (To see which signals are mapped to keys
on your keyboard, issue the command stty everything . Signals sent from
a keyboard are received by all processes in the process group currently
associated with the terminal.)

• One user-level process may send a signal to another process. Traditionally,
it does this using the kill function, although POSIX 1003.1b provides the
sigqueue function for this purpose.

• A process may request a signal from the operating system when a timer
expires, an asynchronous I/O operation completes, or a message arrives at
an empty message queue.

The signal interface is also a traditional form of interprocess communication.
Multitasking applications in particular take advantage of signals as a means
of allowing components to coordinate activities across a number of processes.
Because of the asynchronous nature of signals, a process can perform useful
work while waiting for a significant event (for instance, it does not need to
wait on a semaphore) and, when the event occurs, the process is notified
immediately.

Signals 5–1

A process can specify what to do when it receives a signal. It can:

• Ignore the signal completely

• Handle the signal by establishing a function that is called whenever a
particular signal is delivered

• Block the signal until it is able to deal with it. Typically the blocked signal
has an established handler

An application can alternatively accept the default consequences of the delivery
of a specific signal. These consequences vary from signal to signal, but can
result in process termination, the process dumping core, the signal being
ignored, or the process being restarted or continued. The default action of most
signals is to terminate the process. If sudden process termination for the wide
variety of conditions that cause signals is not desirable, an application should
be prepared to deal with signals properly.

5.1 POSIX Signal Functions
POSIX 1003.1 standardized the reliable signal functions developed under
4.3BSD and SVR3. Table 5–1 lists the POSIX 1003.1 signal functions.

Table 5–1 POSIX 1003.1 Signal Functions

Function Description

sigemptyset Initializes a signal set such that all signals are excluded

sigfillset Initializes a signal set such that all signals are included

sigaddset Adds a signal to a signal set

sigdelset Removes a signal from a signal set

sigismember Tests whether a signal is a member of a signal set

sigprocmask Sets the process’s current blocked signal mask

sigaction Specifies the action a process takes when a particular signal is
delivered

sigsuspend Replaces the process’s current blocked signal mask, waits for a
signal, and, upon its delivery, calls the handler established for
the signal and returns

sigpending Returns a signal set that represents those signals that are
blocked from delivery to the process but are pending

kill Sends a signal to a process or a group of processes

POSIX 1003.1b extended the POSIX 1003.1 definition to include better support
for signals in realtime environments. Table 5–2 lists the POSIX 1003.1b signal

5–2 Signals

functions. A realtime application uses the sigqueue function instead of the
kill function. It may also use the sigwaitinfo or sigtimedwait function
instead of the sigsuspend function.

Table 5–2 POSIX 1003.1b Signal Functions

Function Description

sigqueue Sends a signal, plus identifying information, to a process.

sigwaitinfo Waits for a signal and, upon its delivery, returns the signal
number and any identifying information the signaling process
provided.

sigtimedwait Waits for a signal for the specified amount of time and, if the
signal is delivered within that time, returns the signal number
and any identifying information the signaling process provided.

To better explain the use of the POSIX 1003.1b extensions by realtime
applications, this chapter first focuses on the basics of POSIX 1003.1 signal
handling.

5.2 Signal Handling Basics
Example 5–1 shows the code for a process that creates a child that, in turn,
creates and registers a signal handler, catchit .

Example 5–1 Sending a Signal to Another Process
#include <unistd.h>
#include <signal.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>

#define SIG_STOP_CHILD SIGUSR1 1

main()
{
pid_t pid;
sigset_t newmask, oldmask;

if ((pid = fork()) == 0) { 2 /*Child*/
struct sigaction action; 3
void catchit();

(continued on next page)

Signals 5–3

Example 5–1 (Cont.) Sending a Signal to Another Process

sigemptyset(&newmask); 4
sigaddset(&newmask, SIG_STOP_CHILD); 5
sigprocmask(SIG_BLOCK, &newmask, &oldmask); 6

action.sa_flags = 0; 7
action.sa_handler = catchit;

if (sigaction(SIG_STOP_CHILD, &action, NULL) == -1) { 8
perror("sigusr: sigaction");
_exit(1);

}
sigsuspend(&oldmask); 9

}
else { /* Parent */

int stat;
sleep(1); 1 0
kill(pid, SIG_STOP_CHILD); 1 1

pid = wait(&stat); 1 2
printf("Child exit status = %d\n", WEXITSTATUS(stat));

_exit(0);
}

}
void catchit(int signo) 1 3
{

printf("Signal %d received from parent\n", signo);
_exit(0);

}

In this example:

1 The program defines one of the two signals POSIX 1003.1 reserves for
application-specific purposes (SIGUSR1) to be a SIG_STOP_CHILD signal.

2 The main program forks, creating a child process.

3 The child process declares a sigaction structure named action and a
signal handler named catchit .

4 The child process initializes the newmask sigset_t structure to zero.

5 The child process calls the sigaddset function to set the bit corresponding
to the SIG_STOP_CHILD signal in the newmask sigset_t structure.

6 The child process specifies the newmask sigset_t structure to a
sigprocmask function call, thus blocking the SIG_STOP_CHILD signal.

5–4 Signals

7 The child process fills in the sigaction structure: first by calling the
sigemptyset function to initialize the signal set to exclude all signals, then
clearing the sa_flags member and moving the address of the catchit
signal handler into the sa_handler member.

8 The child process calls the sigaction function to set up the catchit signal
handler so that it is called when the process receives the SIG_STOP_
CHILD signal.

9 The child process calls the sigsuspend function. As a result, the SIG_
STOP_CHILD signal is unblocked and the child process pauses until the
SIG_STOP_CHILD signal is delivered (and causes its catchit signal
handler to run

1 0 The parent process sleeps for one second, allowing the child to run.

1 1 The parent process calls the kill function to send the SIG_STOP_CHILD
signal to the child process.

1 2 It waits for the child process to terminate, printing the child’s exit status
when it does. Before this can occur, however, the child’s catchit signal
handler must run.

1 3 The catchit signal handler prints a message that acknowledges that the
child received and handled the SIG_STOP_CHILD signal.

As in Example 5–1, under POSIX 1003.1, a process sends a signal to another
process using the kill function. The first argument to the kill function is the
process ID of the receiving process, or one of the following special values:

• 0

Sends the signal to all processes with the same process group ID as that of
the sender

• –1

Sends the signal to all processes with a process group ID equal to the
effective user ID of the sender

The second argument to the kill function is the name or number of the signal
to be sent.

The permissions checking allowed by the first argument helps ensure that
signals cannot be sent that arbitrarily or accidentally terminate any process on
the system. Inasmuch as a process must have the identical user ID or effective
user ID as the process it is signaling, it is often the case that it has spawned
these processes or explicitly called the setuid function to set their effective
user IDs. See the kill (2) reference page for additional discussion of the kill
function.

Signals 5–5

The full set of signals supported by the Digital UNIX operating system is
defined in signal.h and discussed in the signal (4) reference page. POSIX
1003.1 and POSIX 1003.1b require a subset of these signals; this subset is
listed in Table 5–3.

Table 5–3 POSIX Signals

Signal Description Default Action

SIGABRT Abort process (see
abort (3))

Process termination and core dump

SIGALRM Alarm clock expiration Process termination

SIGFPE Arithmetic exception
(such as an integer divide-
by-zero operation or a
floating-point exception)

Process termination and core dump

SIGHUP Hangup Process termination

SIGILL Invalid instruction Process termination and core dump

SIGINT Interrupt Process termination

SIGKILL Kill (cannot be caught,
blocked, or ignored)

Process termination

SIGPIPE Write on a pipe that has
no reading process

Process termination

SIGQUIT Quit Process termination and core dump

SIGSEGV Segmentation (memory
access) violation

Process termination and core dump

SIGTERM Software termination Process termination

SIGUSR1 Application-defined Process termination

SIGUSR2 Application-defined Process termination

SIGCHLD Child termination (sent to
parent)

Ignored

SIGSTOP Stop (cannot be caught,
blocked, or ignored)

Process is stopped (suspended)

SIGTSTP Interactive stop Process is stopped (suspended)

SIGCONT Continue if stopped
(cannot be caught,
blocked, or ignored)

Process is restarted (resumed)

(continued on next page)

5–6 Signals

Table 5–3 (Cont.) POSIX Signals

Signal Description Default Action

SIGTTOU Background write
attempted to controlling
terminal

Process is stopped (suspended)

SIGTTIN Background read
attempted from
controlling terminal

Process is stopped (suspended)

SIGRTMIN–
SIGRTMAX

Additional application-
defined signals provided
by POSIX 1003.1b

Process termination

5.2.1 Specifying a Signal Action
The sigaction function allows a process to specify the action to be taken
for a given signal. When you set a signal-handling action with a call to the
sigaction function, the action remains set until you explicitly reset it with
another call to the sigaction function.

The first argument to the sigaction function specifies the signal for which the
action is to be defined. The second and third arguments, unless specified as
NULL, specify sigaction structures:

• The second argument is a sigaction structure that specifies the action
to be taken when the process receives the signal specified in the first
argument. If this argument is specified as NULL, signal handling is
unchanged by the call to the sigaction function, but the call can be used
to inquire about the current handling of a specified signal.

• The third argument is a sigaction structure that receives from the
sigaction function the action that was previously established for the
signal. An application typically specifies this argument so that it can use
it in a subsequent call to the sigaction function that restores the previous
signal state. This allows you to activate handlers only when they are
needed, and deactivate them when they may interfere with other handlers
set up elsewhere for the same signal.

Signals 5–7

The sigaction structure has two different formats, defined in signal.h ,
distinguished by whether the sa_handler member specifies a traditional POSIX
1003.1 signal handler or a POSIX 1003.1b realtime signal handler:

• For POSIX 1003.1 signal handling:

struct sigaction (
void (*sa_handler) (int);
sigset_t sa_mask;
int sa_flags;
};

• For POSIX 1003.1b signal handling:

struct sigaction (
void (*sa_sigaction) (int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
};

The remainder of this section focuses on the definition of a traditional signal
handler in the sa_handler member of the sigaction structure. Note that, for
realtime signals (those defined as SIGRTMIN through SIGRTMAX, you define
the sa_sigaction member, not the sa_handler member. Section 5.3 describes the
definition of a realtime signal handler in the sa_sigaction member.

Use the sa_handler member of the sigaction structure to identify the action
associated with a specific signal, as follows:

• To ignore the signal, specify SIG_IGN. In this case, the signal is never
delivered to the process. Note that you cannot ignore the SIGKILL or
SIGSTOP signals.

• To accept the default action for a signal, specify SIG_DFL.

• To handle the signal, specify a pointer to a signal handling function. When
the signal handler is called, it is passed a single integer argument, the
number of the signal. The handler is executed, passes control back to
the process at the point where the signal was received, and execution
continues. Handlers can also send error messages, save information about
the status of the process when the signal was received, or transfer control
to some other point in the application.

The sa_mask field identifies the additional set of signals to be added to the
process’s current signal mask before the signal handler is actually called.
This signal mask, plus the current signal, is active while the process’s signal
handler is running (unless it modified by another call to the sigaction
function, or a call to the sigprocmask or sigsuspend functions). If the signal
handler completes successfully, the original mask is restored.

5–8 Signals

The sa_flags member specifies various flags that direct the operating system’s
dispatching of a signal. For a complete listing of these flags and a description
of their meaning, see the sigaction (2) reference page.

5.2.2 Setting Signal Masks and Blocking Signals
A process blocks a signal to protect certain sections of code from receiving
signals when the code cannot be interrupted. Unlike ignoring a signal,
blocking a signal postpones the delivery of the signal until the process is
ready to handle it. A blocked signal is marked as pending when it arrives and
is handled as soon as the block is released. Under POSIX 1003.1, multiple
occurrences of the same signal are not saved; that is, if a signal is generated
again while the signal is already pending, only the one instance of the signal is
delivered. The signal queuing capabilities introduced in POSIX 1003.1b allow
multiple occurrences of the same signal to be preserved and distinguished (see
Section 5.3).

Each process has an associated signal mask that determines which signals are
delivered to it and which signals are blocked from delivery. (A child process
inherits its parent’s signal mask when the parent forks.) Each bit represents
a signal, as defined in the signal.h header file. For instance, if the nth bit in
the mask is set, then signal n is blocked.

Note

As described in Chapter 2, the Digital UNIX operating system actually
schedules threads, not processes. For multithreaded applications, a
signal can be delivered to a thread, using the pthread_kill function,
and a thread signal mask can be created using the pthread_sigmask
function. These functions are provided in the DECthreads POSIX
1003.1c library (libpthread.so). See the appropriate reference pages
and the Guide to DECthreads for a discussion of using signals with
multithreaded applications.

Figure 5–1 represents a mask blocking two signals. In this illustration, two
signal bits are set, blocking signal delivery for the specified signals.

Signals 5–9

Figure 5–1 Signal Mask that Blocks Two Signals

Process

Mask

Unblocked Signal

Blocked Signal

Unblocked Signal

Blocked Signal

MLO-006770

The sigprocmask function lets you replace or alter the signal mask of the
calling process; the value of the first argument to this function determines the
action taken:

• SIG_BLOCK

Adds the set of signals specified in the second argument to the process’s
signal mask

• SIG_UNBLOCK

Subtracts the set of signals specified in the second argument from the
process’s signal mask

• SIG_SETMASK

Replaces the process’s signal mask with the set of signals specified in the
third argument

The third argument to the sigprocmask function is a sigset_t structure that
receives the process’s previous signal mask.

Prior to calling the sigprocmask function, you use either the sigemptyset or
sigfillset function to create the signal set (a sigset_t structure) that you
provide as its second argument. The sigemptyset function creates a signal set
with no signals in it. The sigfillset function creates a signal set containing
all signals. You adjust the signal set you create with one of these functions by
calling the sigaddset and sigdelset functions. You can determine whether a
given signal is a member of a signal set by using the sigismember function.

The sigprocmask function is also useful when you want to set a mask but are
uncertain as to which signals are still blocked. You can retrieve the current
signal mask by calling sigprocmask (SIG_BLOCK, NULL, &oldmask) .

5–10 Signals

Once a signal is sent, it is delivered, unless delivery is blocked. When blocked,
the signal is marked pending. Pending signals are delivered immediately once
they are unblocked. To determine whether a blocked signal is pending, use the
sigpending function.

5.2.3 Suspending a Process and Waiting for a Signal
The sigsuspend function replaces a process’s signal mask with the mask
specified as its only argument and waits for the delivery of an unblocked
signal. If the signal delivery causes a signal handler to run, the sigsuspend
function returns after the signal handler completes, having restored the
process’s signal mask to its previous state. If the signal delivery causes process
termination, the sigsuspend function does not return.

Because sigsuspend sets the signal mask and waits for an unblocked signal in
one atomic operation, the calling process does not miss delivery of a signal that
may occur just before it is suspended.

A process typically uses the sigsuspend function to coordinate with the
asynchronous completion of some work by some other process. For instance,
it may block certain signals while executing a critical section and wait for a
signal when it completes:

.

.

.
sigset_t newmask, oldmask;

sigemptyset(&newmask);
sigemptyset(&oldmask);
sigaddset(&newset, SIGUSR1);
sigaddset(&newset, SIGUSR2);
sigprocmask(SIG_BLOCK, &newmask, &oldmask);

/* Code protected from SIGUSR1 and SIGUSR2 goes here */

/* Release blocked signals and restore old mask */

sigsuspend(&oldmask);
.
.
.

Signals 5–11

5.2.4 Setting Up an Alternate Signal Stack
The XPG4-UNIX specification defines the sigaltstack function to allow a
process to set up a discrete stack area on which signals can be processed.
The alternate signal stack is used if the sa_flags member of the sigaction
structure for the signal specifies the SA_ONSTACK flag.

The stack_t structure supplied to a call to the sigaltstack function
determines the configuration and use of the alternate signal stack by the
values of the following members:

• The ss_sp member contains a pointer to the location of the signal stack.

• If the ss_flags member is not NULL, it can specify the SS_DISABLE flag,
in which case the stack is disabled upon creation.

• The ss_size member specifies the size of the stack.

See the sigaltstack (2) reference page for additional information on the
sigaltstack (2) function.

5.3 Realtime Signal Handling
Traditional signals, as defined by POSIX 1003.1, have several limitations that
make them unsuitable for realtime applications:

• There are too few user-defined signals.

There are only two signals available for application use, SIGUSR1
and SIGUSR2. For those applications that are constructed from
various general-purpose and special-purpose components, all executing
concurrently, the same signal could trigger different actions, depending
on the sender. To avoid the risk of calling the wrong signal handler, code
must become more complex and avoid asynchronous, unpredictable signal
delivery.

• There is no priority ordering to the delivery of signals.

When multiple signals are pending to a process, the order in which they
are delivered is undefined.

• Blocked signals are lost.

A signal can be lost if it is not delivered immediately. A single bit in a
signal set is set when a blocked signal arrives and is pending delivery to
a process. When the signal is unblocked and delivered, this bit is cleared.
While it is set, however, multiple instances of the same signal can arrive
and be discarded.

5–12 Signals

• The signal delivery carries no information that distinguishes the signal
from others of the same type.

From the perspective of the receiving process, there is no information
associated with signal delivery that explains where the signal came from or
how it is different from other such signals it may receive.

To overcome some of these limitations, POSIX 1003.1b extends the POSIX
1003.1 signal functionality to include the following facilitators for realtime
signals:

• A range of priority-ordered, application-specific signals from SIGRTMIN to
SIGRTMAX

• A mechanism for queuing signals for delivery to a process

• A mechanism for providing additional information about a signal to the
process to which it is delivered

• Features that allow efficient signal delivery to a process when a POSIX
1003.1b timer expires, when a message arrives on an empty message
queue, or when an asynchronous I/O operation completes

• Functions that allow a process to respond more quickly to signal delivery

Example 5–2 shows some modifications to Example 5–1 that allow it to process
realtime signals more efficiently.

Signals 5–13

Example 5–2 Sending a Realtime Signal to Another Process
#include <unistd.h>
#include <signal.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>

#define SIG_STOP_CHILD SIGRTMIN+1 1

main()
{
pid_t pid;
sigset_t newmask, oldmask;

if ((pid = fork()) == 0) { 2 /*Child*/
struct sigaction action;
void catchit();

sigemptyset(&newmask);
sigaddset(&newmask, SIG_STOP_CHILD);
sigprocmask(SIG_BLOCK, &newmask, &oldmask);

action.sa_flags = SA_SIGINFO; 3
action.sa_sigaction = catchit;

if (sigaction(SIG_STOP_CHILD, &action, NULL) == -1) { 4
perror("sigusr: sigaction");
_exit(1);

}
sigsuspend(&oldmask);

}
else { /* Parent */

union sigval sval; 5
sval.sigev_value.sival_int = 1;
int stat;
sleep(1); 6
sigqueue(pid, SIG_STOP_CHILD, sval); 7
pid = wait(&stat); 8
printf("Child exit status = %d\n", WEXITSTATUS(stat));
_exit(0);

}
}
void catchit(int signo, siginfo_t *info, void *extra) 9
{

void *ptr_val = info->si_value.sival_ptr;
int int_val = info->si_value.sival_int;
printf("Signal %d, value %d received from parent\n", signo, int_val);
_exit(0);

}

5–14 Signals

In this example:

1 The program defines one of the realtime signals defined by POSIX 1003.1b
(SIGRTMIN+1) to be a SIG_STOP_CHILD signal.

2 The main program forks, creating a child process. The child process’s
initialization of the signal sets and creation of the process signal mask is
the same as in the nonthreaded example in Example 5–1.

3 By specifying the SA_SIGINFO flag in the sa_flags member of the
sigaction structure, the child process indicates that the associated signal
will be using the realtime queued signaling behavior.

4 As in Example 5–1, the child process calls the sigaction function to set up
the catchit signal handler so that it is called when the process receives
the SIG_STOP_CHILD signal. It also calls the sigsuspend function to wait
for a signal.

5 The parent process declares a sigval union. The member of this union can
either be an integer or a pointer, depending on the value the parent sends
to its child’s signal handler. In this case, the value is an integer.

6 As in Example 5–1, the parent process sleeps for one second, allowing the
child to run.

7 The parent process calls the sigqueue function to send the SIG_STOP_
CHILD signal, plus a signal value, to the child process.

8 As in Example 5–1, the parent waits for the child process to terminate,
printing the child’s exit status when it does. Before this can occur, however,
the child’s catchit signal handler must run.

9 The catchit signal handler prints a message that acknowledges that the
child received the SIG_STOP_CHILD signal and the signal value.

The following sections describe the POSIX 1003.1b extensions illustrated in
this example.

5.3.1 Additional Realtime Signals
POSIX 1003.1 specified only two signals for application-specific purposes,
SIGUSR1 and SIGUSR2. POSIX 1003.1b defines a range of realtime signals
from SIGRTMIN to SIGRTMAX, the number of which is determined by the
RTSIG_MAX constant in the rt_limits.h header file (which is included in the
limits.h header file).

Signals 5–15

You specify these signals (in sigaction and other functions) by referring to
them in terms of SIGRTMIN or SIGRTMAX: for instance, SIGRTMIN+1 or
SIGRTMAX-1. Beware that SIGRTMIN and SIGRTMAX are not constants, so
avoid compiler declarations that use them. You can determine the number of
realtime signals on the system by calling sysconf(_SC_RTSIG_MAX) .

Although there is no defined delivery order for non-POSIX 1003.1b signals, the
POSIX 1003.1b realtime signals are ranked from SIGRTMIN to SIGRTMAX
(that is, the lowest numbered realtime signal has the highest priority). This
means that, when these signals are blocked and pending, SIGRTMIN signals
will be delivered first, SIGRTMIN+1 signals will be delivered next, and so
on. Note that POSIX 1003.1b does not specify any priority ordering for non-
realtime signals, nor does it indicate the ordering of realtime signals relative
to nonrealtime signals.

If you want a function to use only these new realtime signal numbers, you can
block the old POSIX 1003.1 signal numbers in process signal masks.

5.3.2 Queuing Signals to a Process
As shown in Section 5.2.1, the sigaction structure a realtime process passes
to the sigaction function has the following format:

struct sigaction {
void (*sa_sigaction) (int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;

};

A process specifies the POSIX 1003.1b realtime signaling behavior (including
signal queuing and the passing of additional information about the signal to
its handler) by setting the SA_SIGINFO flag in the sa_flags member of this
structure. Setting the SA_SIGINFO bit has the following effects:

• It causes the signal, if blocked, to be queued to the process, instead of being
marked as pending in the process’s pending signal set.

• It causes the signal handler defined in the sa_sigaction member of the
sigaction structure to be called.

• It causes the signal handler to be called with two arguments in addition to
the signal number.

5–16 Signals

5.3.2.1 The siginfo_t Structure
The second argument provided to the signal handler is a siginfo_t structure
that provides information that identifies the sender of the signal and the
reason why the signal was sent. The siginfo_t structure is defined in the
siginfo.h header file (included by the signal.h header file), as follows:

typedef struct siginfo {
int si_signo;
int si_errno;
int si_code;
pid_t si_pid;
uid_t si_uid;
int si_status;
union sigval si_value;
void *si_addr;
long si_band;
int si_fd;

} siginfo_t;

The following list describes the members of the siginfo_t structure:

• The si_signo member contains the signal number. It is identical to the
value passed as the first argument passed to the signal handler.

• The si_errno member contains the errno value that is associated with the
signal.

• The si_code member provides information that identifies the source of the
signal. For POSIX.1b signals, it can contain one of the following values:

SI_ASYNCIO
The signal was sent on completion of an asynchronous I/O operation
(see Section 5.3.3).

SI_MESGQ
The signal was sent on arrival of a message to an empty message queue
(see Section 5.3.3).

SI_QUEUE
The signal was sent by the sigqueue function.

SI_TIMER
The signal was sent because of a timer expiration (see Section 5.3.3).

SI_USER
The signal was sent by kill function or a similar function such as
abort or raise .

Signals 5–17

For XPG4-UNIX signals, this member can contain other values, as
described in the siginfo (5) reference page.

• The si_pid member contains the process identification (PID) of the sending
process.

• The si_uid member contains the user identification (UID) of the sending
process. It is valid only when the si_code member contains the value SI_
USER.

• The si_status member contains the exit value returned from the child
process when a SIGCHLD signal is generated.

• The si_value member contains an application-specific value that has been
passed to the signal handler in the last argument to the sigqueue function
that generated the signal. The si_value member can contain either of the
following members, depending upon whether the application-specific value
is an integer or a pointer:

typedef union sigval {
int sival_int;
void *sival_ptr;

} sigval_t;

• The si_addr member contains a pointer to the faulting instruction or
memory reference. It is valid only for the SIGILL, SIGFPE, SIGSEGV, and
SIGBUS signals.

• The si_band member contains the band event job-control character (POLL_
OUT, POLL_IN, or POLL_MSG) for the SIGPOLL signal. See the poll (2)
reference page for additional information on poll events.

• The si_fd member contains a pointer to the file descriptor of the poll event
associated with the SIGPOLL signal.

5.3.2.2 The ucontext_t and sigcontext Structures
The third argument passed to a signal handler when the SA_SIGINFO flag
is specified in the sa_flags member of the sigaction structure is defined by
POSIX.1b as an ‘‘extra’’ argument. The Digital UNIX operating system uses
this field to pass a ucontext_t structure to a signal handler in an XPG4-UNIX
environment, or a sigcontext structure in a BSD environment.

Both structures contain the receiving process’s context at the time at which
it was interrupted by the signal. The sigcontext structure is defined in the
signal.h header file. The ucontext_t structure is defined in the ucontext.h
header file and is fully described in the ucontext (5) reference page.

5–18 Signals

5.3.2.3 Sending a Realtime Signal With the sigqueue Function
Where a process uses the kill function to send a nonrealtime signal to another
process, it uses the sigqueue function to send a realtime signal. The sigqueue
function resembles the kill function, except that it provides an additional
argument, an application-defined signal value that is passed to the signal
handler in the si_value member of the siginfo_t structure if the receiving
process has enabled the SA_SIGINFO flag in the sa_flags member of the
signal’s sigaction structure.

The sigqueue function queues the specified signal to the receiving process.
The permissions checking for the sigqueue function are the same as those
applied to the kill function (see Section 5.2). Nonprivileged callers are
restricted in the number of signals they can have actively queued at any
time. This per-process quota value is defined in the rt_limits.h header file
(which is included in the limits.h header file) as SIGQUEUE_MAX and is
configurable by the system administrator. You can retrieve its value by calling
sysconf(_SC_SIGQUEUE_MAX) .

5.3.3 Asynchronous Delivery of Other Realtime Signals
Besides providing the sigqueue function to send realtime signals to processes,
the POSIX 1003.1b standard defines additional features that extend realtime
signal generation and delivery to functions that require asynchronous
notification. Realtime functions are provided that automatically generate
realtime signals for the following events:

• Asynchronous I/O completion (as initiated by the aio_read , aio_write , or
lio_listio function)

• Timer expiration (for a timer established by the timer_create function)

• Arrival of a message to an empty message queue (for a message queue
created by the mq_notify function)

When using the functions that trigger these events, you do not need to call
a separate function to deliver signals. Realtime signal delivery for these
events employs a sigevent structure, which is supplied as an argument
(either directly or indirectly) to the appropriate function call. The sigevent
structure contains information that describes the signal (or, prospectively,
another mechanism of asynchronous notification to be used). It is defined in
the signal.h header file and contains the following members:

int sigev_notify;
union sigval sigev_value;
int sigev_signo;

Signals 5–19

The sigev_notify member specifies the notification mechanism to use when an
asynchronous event occurs. There are two values defined for sigev_notify in
POSIX 1003.1b:

• SIGEV_SIGNAL

Indicates that a queued signal with an application-defined value is
delivered when an event occurs.

• SIGEV_NONE Indicates that no asynchronous notification is delivered
when an event occurs.

If the sigev_notify member contains SIGEV_SIGNAL, the other two members
of the sigevent structure are meaningful.

The sigev_value member is an application-defined value to be passed to the
signal catching function at the time of signal delivery. It can contain either of
the following members, depending upon whether the application-specific value
is an integer or a pointer:

typedef union sigval {
int sival_int;
void *sival_ptr;

} sigval_t;

The sigev_signo member specifies the signal number to be sent on completion
of the asynchronous I/O operation, timer expiration, or delivery of a message
to the message queue. For any of these events, you must use the sigaction
function to set up a signal handler to execute once the signal is received. Refer
to Chapter 6 and Chapter 7 for examples of using signals with these functions.

5.3.4 Responding to Realtime Signals Using the sigwaitinfo and
sigtimedwait Functions

The sigsuspend function, described in Section 5.2.3, allows a process to block
while waiting for signal delivery. When the signal arrives, the process’s signal
handler is called. When the handler, completes, the process is unblocked and
continues execution.

The sigwaitinfo and sigtimedwait functions, defined in POSIX 1003.1b,
also allow a process to block waiting for signal delivery. However, unlike
sigsuspend , they do not call the process’s signal handler when a signal arrives.
Rather, they immediately unblock the process, returning the number of the
received signal as a status value.

5–20 Signals

The first argument to these functions is a signal mask that specifies which
signals the process is waiting for. The process must have blocked the signals
specified in this mask; otherwise, they will be dispatched to any established
signal handler. The second argument is an optional pointer to a location to
which the function returns siginfo_t structure that describes the signal.

The sigtimedwait function further allows you to specify a timeout value,
allowing you to set a limit to the time the process waits for a signal.

Example 5–3 shows a version of Example 5–2 that eliminates the signal
handler that runs when the child process receives a SIG_STOP_CHILD signal
from its parent. Instead, the child process blocks the signal and calls the
sigwaitinfo function to wait for its delivery.

Example 5–3 Using the sigwaitinfo Function
#include <unistd.h>
#include <signal.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>

#define SIG_STOP_CHILD SIGRTMIN+1

main()
{
pid_t pid;
sigset_t newmask;
int rcvd_sig; 1
siginfo_t info; 2

if ((pid = fork()) == 0) { /*Child*/

sigemptyset(&newmask);
sigaddset(&newmask, SIG_STOP_CHILD);
sigprocmask(SIG_BLOCK, &newmask, NULL); 3

(continued on next page)

Signals 5–21

Example 5–3 (Cont.) Using the sigwaitinfo Function

while (1) { 4
rcvd_sig = sigwaitinfo(&newmask, &info) 5
if (rcvd_sig == -1) {

perror("sigusr: sigwaitinfo");
_exit(1);

}
else { 6

printf("Signal %d, value %d received from parent\n",
rcvd_sig, info.si_value.sival_int);

_exit(0);
}

}
}
else { /* Parent */

union sigval sval;
sval.sigev_value.sival_int = 1;
int stat;
sleep(1);
sigqueue(pid, SIG_STOP_CHILD, sval);
pid = wait(&stat);
printf("Child exit status = %d\n", WEXITSTATUS(stat));
_exit(0);

}
}

In this example:

1 The program defines a variable to which the sigwaitinfo call returns the
value of the delivered signal (or returns –1, indicating an error).

2 The program defines a variable to which the sigwaitinfo call returns the
siginfo_t structure that describes the received signal.

3 The child process sets up a signal mask to blocks the SIG_STOP_CHILD
signal. Notice that it has not defined a signal handler to run when the
signal is delivered. The sigwaitinfo function does not call a signal
handler.

4 The child process loops waiting for signal delivery.

5 The child process calls sigwaitinfo function, specifying the newmask signal
mask to block the SIG_STOP_CHILD signal and wait for its delivery.

6 When the signal is delivered, the child process prints a message indicating
that it has received the signal. It also prints the signal value that may
accompany the realtime signal.

5–22 Signals

An additional example using the sigwaitinfo function is shown in
Example 5–4. In this example, the child process sends to its parent the
maximum number of signals that the system allows to be queued. When a
SIG signal is delivered to it, the parent counts it and prints an informative
message. After it has received _SC_SIGQUEUE_MAX signals, the parent
prints a message that indicates the number of signals it has received.

Example 5–4 Using the sigwaitinfo Function
#include <unistd.h>
#include <stdio.h>
#include <sys/siginfo.h>
#include <sys/signal.h>

main()
{

sigset_t set, pend;
int i, sig, sigq_max, numsigs = 0;
siginfo_t info;
int SIG = SIGRTMIN;

sigq_max = sysconf(_SC_SIGQUEUE_MAX);
sigemptyset(&set);
sigaddset(&set, SIG);
sigprocmask(SIG_SETMASK, &set, NULL);
printf("\nNow create a child to send signals...\n");
if (fork() == 0) { /* child */

pid_t parent = getppid();
printf("Child will signal parent %d\n", parent);
for (i = 0; i < sigq_max; i++) {

if (sigqueue(parent, SIG, i) < 0)
perror("sigqueue");

}
exit(1);

}
printf("Parent sigwait for child to queue signal...\n");
sigpending(&pend);
printf("Is signal pending: %s\n",

sigismember(&pend, SIG) ? "yes" : "no");
for (i = 0; i < sigq_max; i++) {

sig = sigwaitinfo(&set, &info);
if (sig < 0) {

perror("sigwait");
exit(1);

}
printf("Main woke up after signal %d\n", sig);
printf("signo = %d, pid = %d, uid = %d, val = %d,\n",

info.si_signo, info.si_pid, info.si_uid, info.si_int);

(continued on next page)

Signals 5–23

Example 5–4 (Cont.) Using the sigwaitinfo Function
numsigs++;

}
printf("Main: done after %d signals.\n", numsigs);

}

5–24 Signals

6
Clocks and Timers

Realtime applications must be able to operate on data within strict timing
constraints in order to schedule application or system events. Timing
requirements can be in response to the need for either high system throughput
or fast response time. Applications requiring high throughput may process
large amounts of data and use a continuous stream of data points equally
spaced in time. For example, electrocardiogram research uses a continuous
stream of data for qualitative and quantitative analysis.

Applications requiring a fast response to asynchronous external events
must capture data as it comes in and perform decision-making operations
or generate new output data within a given time frame. For example, flight
simulator applications may acquire several hundred input parameters from the
cockpit controls and visual display subsystem with calculations to be completed
within a 5 millisecond time frame.

Digital UNIX P1003.1b timing facilities allow applications to use relative
or absolute time and to schedule events on a one-shot or periodic basis.
Applications can create multiple timers for each process.

This chapter includes the following sections:

• Clock Functions, Section 6.1

• Types of Timers, Section 6.2

• Timers and Signals, Section 6.3

• Data Structures Associated with Timing Facilities, Section 6.4

• Timer Functions, Section 6.5

• High-Resolution Sleep, Section 6.6

• Clocks and Timers Example, Section 6.7

Clocks and Timers 6–1

The correctness of realtime applications often depends on satisfying timing
constraints. A systemwide clock is the primary source for synchronization and
high-resolution timers to support realtime requirements for scheduling events.
The P1003.1b timing functions perform the following tasks:

• Set a systemwide clock and obtain the current value of the clock

• Set per-process timers to expire once or multiple times (arm the timers)

• Use asynchronous signals on timer expiration

• Retrieve the resolution of the systemwide clock

• Permit the calling thread or process to suspend execution for a period of
time or until a signal is delivered

Timing facilities are most useful when combined with other synchronization
techniques.

Although non-POSIX functions are available for creating timers, application
programmers striving for standards conformance, portability, and use of
multiple per-process timers should use the P1003.1b timing facilities described
in this chapter.

6.1 Clock Functions
The supported time-of-day clock is the CLOCK_REALTIME clock, defined in
the time.h header file. The CLOCK_REALTIME clock is a systemwide clock,
visible to all processes running on the system. If all processes could read the
clock at the same time, each process would see the same value.

The CLOCK_REALTIME clock measures the amount of time that has elapsed
since 00:00:00 January 1, 1970 Greenwich Mean Time (GMT). 1

The CLOCK_REALTIME clock measures time in nanoseconds; clock resolution
does not reflect fractions of nanoseconds. For example, when the resolution for
CLOCK_REALTIME is calculated at 1 sec / 1024 Hz, the result is 976562.5
nanoseconds. The clock resolution returned by the call to clock_getres for
CLOCK_REALTIME is 976562. The fractional nanoseconds are ignored. The
system self-corrects at the end of every second and adjusts time to correct
for disparities. See Section 6.1.4 for more information about system clock
resolution.

1 Otherwise known as the "Epoch."

6–2 Clocks and Timers

Table 6–1 lists P1003.1b timing functions for a specified clock.

Table 6–1 Clock Functions

Function Description

clock_getres Returns the resolution of the specified clock

clock_gettime Returns the current value for the specified clock

clock_settime Sets the specified clock to the specified value

Use the name CLOCK_REALTIME as the clock_id argument in all P1003.1b
clock functions.

The clock_getres function returns the clock resolution. Note that you
cannot set the resolution of the specified clock, although you can specify a
high-resolution option that gives the appearance of higher resolution (see
Section 6.1.5).

The values returned by the clock_gettime function can be used to determine
values for the creation of realtime timers.

When the clock_settime function is called, the time argument is truncated
to a multiple of the clock resolution, if it is not already a multiple of the clock
resolution. Similarly, the clock resolution is used when setting interval timers.

The following example calls the clock_getres function to determine clock
resolution:

#include <unistd.h>
#include <time.h>

main()
{
struct timespec clock_resolution;
int stat;

stat = clock_getres(CLOCK_REALTIME, &clock_resolution);

printf("Clock resolution is %d seconds, %ld nanoseconds\n",
clock_resolution.tv_sec, clock_resolution.tv_nsec);

}

Clocks and Timers 6–3

6.1.1 Retrieving System Time
Both the time and clock_gettime functions return the value of the systemwide
clock as the number of elapsed seconds since the Epoch. The timespec data
structure (used for the clock_gettime function) also contains a member to hold
the value of the number of elapsed nanoseconds not comprising a full second.

Example 6–1 shows the difference between the time as returned by the time
and clock_gettime functions.

Example 6–1 Returning Time
#include <unistd.h>
#include <time.h>

main()
{
struct timespec ts;

/* Call time */
printf("time returns %d seconds\n", time(NULL);)

/* Call clock_gettime */

clock_gettime(CLOCK_REALTIME, &ts);
printf("clock_gettime returns:\n");
printf("%d seconds and %ld nanoseconds\n", ts.tv_sec, ts.tv_nsec);
}

In Example 6–1, 876,764,530 seconds is returned from the time function,
and 876,764,530 seconds and 000,0674,633 nanoseconds is returned from the
clock_gettime function.

The time function returns a long integer containing the number of seconds that
have elapsed since the Epoch. The clock_gettime function receives a pointer
to the timespec structure and returns the values in the tv_sec and tv_nsec
members.

If you plan to write the current time to a device or file, you may want to
convert the time format returned by the clock_gettime function.

6.1.2 Setting the Clock
The clock_settime function lets you set the time for the specified clock.
If you have an application that monitors time over the network use the
clock_settime function to synchronize with other systems. However, under
normal circumstances you would not need to call the clock_settime function.

If timers are pending execution, use the adjtime function to adjust the clock
slowly; armed timers are not affected by this function. Refer to the reference
page for adjtime for complete information about this function.

6–4 Clocks and Timers

You must have superuser privileges to use the clock_settime and adjtime
functions.

6.1.3 Converting Time Values
Realtime clock and timer functions use the number of seconds and nanoseconds
since the Epoch. Although this method is precise and suitable for the machine,
it is not meaningful for application users. If your application prints or receives
time information from users, you will want to convert time data to a more
readable format.

If you use the time function to retrieve system time, the input and return
values are expressed in elapsed seconds since the Epoch. Your application
should define the format for both user input and output and then convert these
time values for use by the program. Applications can store the converted time
values for future use.

The C language provides a number of functions to convert and store time in
both a tm structure and an ASCII format. Note that although these C routines
use seconds as the smallest unit of time, they provide users with a readable
format.

When you pass the time in seconds to these functions, some functions return a
pointer to a tm structure. This structure breaks down time into units such as
hours, minutes, and seconds, and stores the data in the appropriate fields.

Digital UNIX provides date and time functions that deal with these time units
and calendar time, making conversions as necessary. Table 6–2 describes date
and time conversion functions. To select the most appropriate time conversion
function for your application, refer to the reference pages for each of these
functions.

Table 6–2 Date and Time Conversion Functions

C Function Description

asctime Converts time units (hours, minutes, and seconds) into a 26-character
string

ctime Converts a time in seconds since the Epoch to an ASCII string in the
form generated by asctime

difftime Computes the difference between two calendar times (time1–time0) and
returns the difference expressed in seconds

(continued on next page)

Clocks and Timers 6–5

Table 6–2 (Cont.) Date and Time Conversion Functions

C Function Description

gmtime Converts a calendar time into time units, expressed as GMT

localtime Converts a time in seconds since the Epoch into time units

mktime Converts the time units in the tm structure pointed to by timeptr into
a calendar time value with the same encoding as that of the values
returned by time

tzset Sets the external variable tzname, which contains current time zone
names

The converted time values for the functions listed in Table 6–2 are placed in a
time structure (tm) defined in the time.h header file, as follows:

struct tm {
int tm_sec, /* Time in seconds (0-59) */

tm_min, /* Time in minutes (0-59) */
tm_hour, /* Time in hours (0-23) */
tm_mday, /* Day of the month (1 to 31) */
tm_mon, /* Month (0 to 11) */
tm_year, /* Year (last 2 digits) */
tm_wday, /* Day of the week (Sunday=0) */
tm_yday, /* Day of the year (0 to 365) */
tm_isdst; /* Daylight savings time (always 0) */

long tm_gmtoff; /* Offset from GMT in seconds */
char *tm_zone /* Time zone */

};

6.1.4 System Clock Resolution
System clock resolution on Digital Alpha systems is 1/1024 second, or roughly
976 microseconds. The system maintains time by adding 976 microseconds at
every clock interrupt. The actual time period between clock ticks is exactly
1/1024 second = 976.5625 microseconds.

The missing 576 microseconds (1024 * .5625) are added at the end of the
1024th tick (that is, every second), to make sure that the system time matches
with the observed ‘‘wall-clock’’ time.

This implies that each clock tick increments the system time by 976
microseconds except the 1024th one, which advances the time by 1552
microseconds (976 + 576). Thus there is a spike in the time as maintained
by Digital UNIX.

6–6 Clocks and Timers

The POSIX 1003.1a specification mandates that the system quantize all
timer values passed by a program to the next multiple of the clock tick. If an
application program requests a timer value that is not an exact multiple of
the system clock resolution (an exact multiple of 976.5625 microseconds), the
actual time period counted down by the system will be slightly larger than the
requested time period.

A program that asks for a periodic timer of 50 milliseconds will actually get
a time period of 50.78 milliseconds (.976562 * 52). Unless accounted for,
the additional .78 milliseconds every 50 milliseconds will result in a wrong
calculation of the elapsed time as calculated by the program.

Possible solutions to the above anomaly are to either always ask for time
periods that are integral multiples of the system clock resolution, or to not use
the periodic timer for the purpose of time keeping.

6.1.5 High-Resolution Clock
Version 4.0 of Digital UNIX adds the capability of an optional high-resolution
clock. To enable the high-resolution clock, add the following line to the kernel
configuration file and rebuild the kernel:

options MICRO_TIME

The system clock (CLOCK_REALTIME) resolution as returned by
clock_getres(3) will not change; timer resolution remains the same.
However, time as returned by the clock_gettime(3) routine will now be
extrapolated between the clock ticks. The granularity of the time returned will
now be in microseconds. The time values returned are SMP safe, monotonically
increasing, and have 1 microsecond as the apparent resolution.

The high-resolution clock can be used for time stamping and for measuring
events which are of the order of microseconds, such as time spent in some
critical code path.

6.2 Types of Timers
Two types of timers are provided to support realtime timing facilities: one-shot
timers and periodic timers. Timers can be set up to expire only once (one-shot)
or on a repetitive (periodic) schedule. A one-shot timer is armed with an initial
expiration time, expires only once, and then is disarmed. A timer becomes a
periodic timer with the addition of a repetition value. The timer expires, then
loads the repetition interval, rearming the timer to expire after the repetition
interval has elapsed.

Clocks and Timers 6–7

The initial expiration value can be relative to the current time or an absolute
time value. A relative timer has an initial expiration time based on the
amount of time elapsed, such as 30 seconds from the start of the application
or 0.5 seconds from the last timer expiration. An absolute timer expires at a
calendar date and time.

Often, a timer uses both concepts of absolute and relative timers. You can
establish a timer to fire as an absolute timer when it first expires, and set
subsequent timer expirations relative to the first expiration. For example,
an application may need to collect data between midnight and 3:00 A.M. Data
collection during this three-hour period may be staged in 12-minute intervals.
In this case, absolute times are used to start and stop the data collection
processes at midnight and 3:00 A.M. respectively. Relative time is used to
initiate data collection at 12-minute intervals.

The values specified in the arguments to the timer_settime function determine
whether the timer is a one-shot or periodic and absolute or relative type. Refer
to Section 6.5.2 for more information on the timer_settime function.

6.3 Timers and Signals
You create a timer with the timer_create function, which is associated with a
sigevent structure. When using timers, you specify an initial expiration value
and an interval value. When the timer expires, the system sends the specified
signal to the process that created the timer. Therefore, you should set up a
signal handler to catch the signal after it is sent to the calling process.

To use signals with timers, include the following steps in your application:

1. Create and declare a signal handler.

2. Set the sigevent structure to specify the signal you want sent on timer
expiration.

3. Establish a signal handler with the sigaction function.

4. Create the timer.

If you do not choose to use realtime signals, then identical signals delivered
from multiple timers are compressed into a single signal. In this case, you may
need to specify a different signal for each timer. If you use realtime signals,
identical signals are queued to the calling process. Refer to Chapter 5 for more
information on signals and signal handling.

6–8 Clocks and Timers

6.4 Data Structures Associated with Timing Facilities
The timespec and itimerspec data structures in the timers.h header file
are used in many of the P1003.1b realtime clock and timer functions. The
timespec data structure contains members for both second and nanosecond
values. This data structure sets up a single time value and is used by many
P1003.1b functions that accept or return time value specifications. The
itimerspec data structure contains two timespec data structures. This data
structure sets up an initial timer and repetition value used by P1003.1b timer
functions.

The signal.h header file contains a sigevent structure for specifying the
signal to be sent on timer expiration.

6.4.1 Using the timespec Data Structure
The timespec data structure consists of two members, tv_sec and tv_nsec, and
takes the following form:

typedef struct timespec {
time_t tv_sec; /* Seconds */
long tv_nsec; /* Nanoseconds */

} timespec_t;

The tv_nsec member is valid only if its value is greater than zero and less than
the number of nanoseconds in a second. The time interval described by the
timespec structure is (tv_sec � 109) + tv_nsec nanoseconds. (The minimum
possible time interval is limited by the resolution of the specified clock.)

The timespec structure is used in P1003.1b functions to set and return the
specified clock, return the resolution of the clock, set and return timer values,
and specify nanosleep values.

6.4.2 Using the itimerspec Data Structure
The itimerspec data structure consists of two timespec structures and takes
the following form:

struct itimerspec {
struct timespec it_interval; /* Timer interval */
struct timespec it_value; /* Initial expiration */

};

The two timespec structures specify an interval value and an initial expiration
value, both of which are used in all timer functions related to setting up timers.
The values specified for the member structures identify the timer as one-shot
or periodic. Table 6–3 summarizes the ways that values for the two members
of the itimerspec structure are used to specify timers.

Clocks and Timers 6–9

Table 6–3 Values Used in Setting Timers

Member Zero Non-Zero

it_value No expiration value Expiration value

Disarm the timer Arm the timer

it_interval No reload value Interval reload value

One-shot timer Periodic timer

The it_value specifies the initial amount of time before the timer expires. A
nonzero value for the it_value member indicates the amount of time until the
timer’s first expiration.

TIMER_ABSTIME is a flag which, when set, makes the timer an absolute
timer. The time until the next timer expiration is specified in seconds and
nanoseconds since the Epoch and is the difference between the absolute time
specified by the it_value member and the current clock value.

If the TIMER_ABSTIME flag is not set, the time until the next timer
expiration is set equal to the interval specified by the it_value member,
and the timer is a relative timer.

A zero value for the it_value member disarms the timer.

Once the timer expires for the first time, the it_interval member specifies the
interval after which the timer will expire again. That is, the value of the
it_interval member is reloaded when the timer expires and timing continues.
A nonzero value for the it_interval member specifies a periodic timer. A zero
value for the it_interval member causes the timer to expire only once; after the
first expiration the it_value member is set to zero and the timer is disarmed.

For example, to specify a timer that executes only once, 5.25 seconds from now,
specify the following values for the members of the itimerspec structure:

mytimer.it_value.tv_sec = 5;
mytimer.it_value.tv_nsec = 250000000;
mytimer.it_interval.tv_sec = 0;
mytimer.it_interval.tv_nsec = 0;

To arm a timer to execute 15 seconds from now and then at 0.5 second
intervals, specify the following values:

mytimer.it_value.tv_sec = 15;
mytimer.it_value.tv_nsec = 0;
mytimer.it_interval.tv_sec = 0;
mytimer.it_interval.tv_nsec = 500000000;

6–10 Clocks and Timers

In the preceding examples, the timer is armed relative to the current time.
To set up a timer with an absolute initial expiration time, such as 10:00 A.M.,
convert the absolute initial expiration value (in seconds and nanoseconds) to
the correct offset from the current time.

Because the value of the tv_nsec member is expressed in nanoseconds, it
may be somewhat cumbersome. To simplify specifying values for the tv_nsec
member as fractions of a second, you could define a symbolic constant:

#define NSECS_PER_SEC 1000000000;

After defining this constant, you could specify 1/4 second as follows:

mytimer.it_value.tv_nsec = NSECS_PER_SEC/4;

See Section 6.5 for more information on relative and absolute timers.

6.4.3 Using the sigevent Data Structure
The sigevent structure delivers the signal on timer expiration. The evp
argument of the timer_create function points to a sigevent structure, which
contains the signal to be sent upon expiration of each timer.

The sigevent structure is defined in the signal.h header file and contains the
following members:

union sigval sigev_value; /* Application-defined value */
int sigev_signo; /* Signal to raise */
int sigev_notify; /* Notification type */

The sigval union contains at least the following members:

int sival_int; /* Used when sigev_value is of type int */
void *sival_ptr; /* Used when sigev_value is of type ptr */

The sigev_value member is an application-defined value to be passed to the
signal-catching function at the time of signal delivery.

The sigev_signo member specifies the signal number to be sent on completion of
the asynchronous I/O operation or on timer expiration. In both instances, you
must set up a signal handler to execute when the signal is received. You can
use the sigaction function to specify the action required. Refer to Chapter 5
for more information about the sigaction function.

The sigev_notify member specifies the notification mechanism to use when
an asynchronous event occurs. There are two values defined for sigev_notify
in P1003.1b: SIGEV_NONE and SIGEV_SIGNAL. SIGEV_NONE indicates
that no asynchronous notification is delivered when an event occurs. SIGEV_
SIGNAL indicates that a queued signal with an application-defined value is
delivered when an event occurs.

Clocks and Timers 6–11

6.5 Timer Functions
Clocks and timers allow an application to synchronize and coordinate activities
according to a user-defined schedule. Digital UNIX P1003.1b timers have
the ability to issue periodic timer requests initiated by a single call from the
application.

Table 6–4 lists the P1003.1b timing functions available for realtime
applications.

Table 6–4 Timer Functions

Function Definition

timer_create Returns a unique timer ID used in subsequent calls to
identify a timer based on the systemwide clock

timer_delete Removes a previously allocated, specified timer

timer_getoverrun Returns the timer expiration overrun count for the specified
timer

timer_gettime Returns the amount of time before the specified timer is due
to expire and the repetition value

timer_settime Sets the value of the specified timer either to an offset from
the current clock setting or to an absolute value

Timers do not have global IDs, which means that they are not inherited
by a child process after a call to the fork or exec system calls. You cannot
arm a timer, call the exec system call, and have the new image receive the
signal. The newly created timer structures are inherited across a fork, but any
pending timer signals will be delivered only to the parent process.

6.5.1 Creating Timers
The timer_create function allocates a timer and returns a timer ID that is
unique within the calling process and exists for the life of that timer. The
timer is not armed until you make a call to the timer_settime function, which
sets the values for the specified timer.

The timer functions perform a series of tasks necessary for setting up timers.
To create a timer, you must set up appropriate data structures, set up a signal
handler to catch the signal when the timer expires, and arm the timer. To use
timers in a realtime application, follow these steps:

1. Include time.h and signal.h in the application source file.

2. Declare the variable names for your itimerspec data structure to specify
interval and expiration values.

6–12 Clocks and Timers

3. Establish a sigevent structure containing the signal to be passed to the
process on timer expiration.

4. Set up a signal handler in the calling process to catch the signal when the
timer expires.

5. Call the timer_create function to create a timer and associate it with the
specified clock. Specify a signal to be delivered when the timer expires.

6. Initialize the itimerspec data structure with the required values.

7. Call the timer_settime function to initialize and activate the timer as
either an absolute or relative timer.

8. Call the timer_delete function when you want to remove the timer.

The number of per-process timers (TIMER_MAX) is defined in the limits.h
header file.

The timer_create function also takes an evp argument which, if non-NULL, is
a pointer to a sigevent structure. This structure defines the signal and value
to be sent to the calling process when the timer expires. If the sigev_notify
member of evp is SIGEV_SIGNAL, the structure must contain the signal
number and data value to send to the process when the timer expires. If the
sigev_notify member is SIGEV_NONE, no notification will be sent.

If the evp argument is NULL, the default signal SIGALRM is used.

6.5.2 Setting Timer Values
The timer_settime function determines whether the timer is an absolute or
relative timer. This function sets the initial expiration value for the timer as
well as the interval time used to reload the timer once it has reached the initial
expiration value. The interval you specify is rounded up to the next integral
multiple of the system clock resolution. See Section 6.1.4 for more information
about system clock resolution.

The arguments for the timer_settime function perform the following functions:

1. The timerid argument identifies the timer.

2. The flags argument determines whether the timer behaves as an absolute
or relative timer.

If the TIMER_ABSTIME flag is set, the timer is set with a specified
starting time (the timer is an absolute timer). If the TIMER_ABSTIME
flag is not set, the timer is set relative to the current time (the timer is a
relative timer).

Clocks and Timers 6–13

3. The value argument points to an itimerspec structure, which contains the
initial expiration value and repetition value for the timer.

• The it_value member of the value argument establishes the initial
expiration time.

For absolute timers, the timer_settime function interprets the next
expiration value as equal to the difference between the absolute time
specified by the it_value member of the value argument and the
current value of the specified clock. The timer then expires when the
clock reaches the value specified by the it_value member of the value
argument.

For relative timers, the timer_settime function interprets the next
expiration value as equal to the interval specified by the it_value
member of the value argument. The timer will expire in it_value
seconds and nanoseconds from when the call was made. After a timer
is started as an absolute or relative timer, its behavior is driven by
whether it is a one-shot or periodic timer.

• The it_value member of the value argument can disable a timer.

To disable a periodic timer, call the timer and specify the value zero for
the it_value member.

• The it_interval member of the value argument establishes the repetition
value.

The timer interval is specified as the value of the it_interval member
of the itimerspec structure in the value argument. This value
determines whether the timer functions as a one-shot or periodic
timer.

After a one-shot timer expires, the expiration value (it_value member)
is set to zero. This indicates that no next expiration value is specified,
which disarms the timer.

A periodic timer is armed with an initial expiration value and a
repetition interval. When the initial expiration time is reached, it is
reloaded with the repetition interval and the timer starts again. This
continues until the application exits. To arm a periodic timer, set the
it_value member of the value argument to the desired expiration value
and set the it_interval member of the value argument to the desired
repetition interval.

6–14 Clocks and Timers

4. The ovalue argument points to an itimerspec structure that contains the
time remaining on an active timer. If the timer is not armed, the ovalue
is equal to zero. If you delete an active timer, the ovalue will contain the
amount of time remaining in the interval.

You can use the timer_settime function to reuse an existing timer ID. If
a timer is pending and you call the timer_settime function to pass in new
expiration times, a new expiration time is established.

6.5.3 Retrieving Timer Values
The timer_gettime function returns two values: the amount of time before the
timer expires and the repetition value set by the last call to the timer_settime
function. If the timer is disarmed, a call to the timer with the timer_gettime
function returns a zero for the value of the it_value member. To arm the timer
again, call the timer_settime function for that timer ID and specify a new
expiration value for the timer.

6.5.4 Getting the Overrun Count
Under POSIX.1b, timer expiration signals for a specific timer are not queued
to the process. If multiple timers are due to expire at the same time, or a
periodic timer generates an indeterminate number of signals with each timer
request, a number of signals will be sent at essentially the same time. There
may be instances where the requesting process can service the signals as fast
as they occur, and there may be other situations where there is an overrun of
the signals.

The timer_getoverrun function helps track whether or not a signal was
delivered to the calling process. Digital UNIX P1003.1b timing functions
keep a count of timer expiration signals for each timer created. The
timer_getoverrun function returns the counter value for the specified timer
ID. If a signal is sent, the overrun count is incremented, even if the signal was
not delivered or if it was compressed with another signal. If the signal cannot
be delivered to the calling process or if the signal is delayed for some reason,
the overrun count contains the number of extra timer expirations that occurred
during the delay. A signal may not be delivered if, for instance, the signal is
blocked or the process was not scheduled. Use the timer_getoverrun function
to track timer expiration and signal delivery as a means of determining the
accuracy or reliability of your application.

If the signal is delivered, the overrun count is set to zero and remains at zero
until another overrun occurs.

Clocks and Timers 6–15

6.5.5 Disabling Timers
When a one-shot timer expires, the timer is disarmed but the timer ID is still
valid. The timer ID is still current and can be rearmed with a call to the
timer_settime function. To remove the timer ID and disable the timer, use the
timer_delete function.

6.6 High-Resolution Sleep
To suspend process execution temporarily using the P1003.1b timer interface,
call the nanosleep function. The nanosleep function suspends execution for
a specified number of nanoseconds, providing a high-resolution sleep. A call
to the nanosleep function suspends execution until either the specified time
interval expires or a signal is delivered to the calling process.

Only the calling thread sleeps with a call to the nanosleep function. In a
threaded environment, other threads within the process continue to execute.

The nanosleep function has no effect on the delivery or blockage of signals.
The action of the signal must be to invoke a signal-catching function or to
terminate the process. When a process is awakened prematurely, the rmtp
argument contains the amount of time remaining in the interval.

6.7 Clocks and Timers Example
Example 6–2 demonstrates the use of P1003.1b realtime timers. The program
creates both absolute and relative timers. The example demonstrates concepts
using multiple signals to distinguish between timer expirations. The program
loops continuously until the program is terminated by a Ctrl/C from the user.

6–16 Clocks and Timers

Example 6–2 Using Timers
/*

* The following program demonstrates the use of various types of
* POSIX 1003.1b Realtime Timers in conjunction with 1003.1 Signals.
*
* The program creates a set of timers and then blocks waiting for
* either timer expiration or program termination via SIGINT.
* Pressing CTRL/C after a number of seconds terminates the program
* and prints out the kind and number of signals received.
*
* To build:
*
* cc -g3 -O -non_shared -o timer_example timer_example.c -L/usr/ccs/lib -lrt
*/

#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
#include <sys/limits.h>
#include <time.h>
#include <sys/signal.h>
#include <sys/errno.h>

/*
* Constants and Macros
*/

#define FAILURE -1
#define ABS TIMER_ABSTIME
#define REL 0
#define TIMERS 3

#define MIN(x,y) (((x) < (y)) ? (x) : (y))

sig_handler();
void timeaddval();
struct sigaction sig_act;

/*
* Control Structure for Timer Examples
*/

struct timer_definitions {
int type; /* Absolute or Relative Timer */
struct sigevent evp; /* Event structure */
struct itimerspec timeout; /* Timer interval */

};

(continued on next page)

Clocks and Timers 6–17

Example 6–2 (Cont.) Using Timers

/*
* Initialize timer_definitions array for use in example as follows:
*
* type, { sigev_value, sigev_signo }, { it_iteration, it_value }
*
*/

struct timer_definitions timer_values[TIMERS] = {
{ ABS, {0,SIGALRM}, {0,0, 3,0} },
{ ABS, {0,SIGUSR1}, {0,500000000, 2,0} },
{ REL, {0,SIGUSR2}, {0,0, 5,0} }

};

timer_t timerid[TIMERS];
int timers_available; /* number of timers available */
volatile int alrm, usr1, usr2;
sigset_t mask;

main()
{

int status, i;
int clock_id = CLOCK_REALTIME;
struct timespec current_time;

/*
* Initialize the sigaction structure for the handler.
*/

sigemptyset(&mask);
sig_act.sa_handler = (void *)sig_handler;
sig_act.sa_flags = 0;
sigemptyset(&sig_act.sa_mask);
alrm = usr1 = usr2 = 0;

/*
* Determine whether it’s possible to create TIMERS timers.
* If not, create TIMER_MAX timers.
*/

timers_available = MIN(sysconf(_SC_TIMER_MAX),TIMERS);

/*
* Create "timer_available" timers, using a unique signal
* type to denote the timer’s expiration. Then initialize
* a signal handler to handle timer expiration for the timer.
*/

(continued on next page)

6–18 Clocks and Timers

Example 6–2 (Cont.) Using Timers

for (i = 0; i < timers_available; i++) {
status = timer_create(clock_id, &timer_values[i].evp,

&timerid[i]);
if (status == FAILURE) {

perror("timer_create");
exit(FAILURE);

}
sigaction(timer_values[i].evp.sigev_signo, &sig_act, 0);

}

/*
* Establish a handler to catch CTRL-c and use it for exiting.
*/

sigaction(SIGINT, &sig_act, NULL); /* catch crtl-c */

/*
* Queue the following Timers: (see timer_values structure for details)
*
* 1. An absolute one shot timer (Notification is via SIGALRM).
* 2. An absolute periodic timer. (Notification is via SIGUSR1).
* 3. A relative one shot timer. (Notification is via SIGUSR2).
*
* (NOTE: The number of TIMERS queued actually depends on
* timers_available)

*/

for (i = 0; i < timers_available; i++) {
if (timer_values[i].type == ABS) {

status = clock_gettime(CLOCK_REALTIME, ¤t_time);
timeaddval(&timer_values[i].timeout.it_value,

¤t_time);
}
status = timer_settime(timerid[i], timer_values[i].type,

&timer_values[i].timeout, NULL);
if (status == FAILURE) {

perror("timer_settime failed: ");
exit(FAILURE);

}
}

/*
* Loop forever. The application will exit in the signal handler
* when a SIGINT is issued (CRTL/C will do this).
*/

for(;;) pause();

}

(continued on next page)

Clocks and Timers 6–19

Example 6–2 (Cont.) Using Timers

/*
* Handle Timer expiration or Program Termination.
*/

sig_handler(signo)
int signo;
{

int i, status;

switch (signo) {
case SIGALRM:

alrm++;
break;

case SIGUSR1:
usr1++;
break;

case SIGUSR2:
usr2++;
break;

case SIGINT:
for (i = 0; i < timers_available; i++) /* delete timers */

status = timer_delete(timerid[i]);
printf("ALRM: %d, USR1: %d, USR2: %d\n", alrm, usr1, usr2);
exit(1); /* exit if CRTL/C is issued */

}
return;

}

/*
* Add two timevalues: t1 = t1 + t2
*/

void timeaddval(t1, t2)
struct timespec *t1, *t2;
{

t1->tv_sec += t2->tv_sec;
t1->tv_nsec += t2->tv_nsec;
if (t1->tv_nsec < 0) {

t1->tv_sec--;
t1->tv_nsec += 1000000000;

}
if (t1->tv_nsec >= 1000000000) {

t1->tv_sec++;
t1->tv_nsec -= 1000000000;

}
}

6–20 Clocks and Timers

7
Asynchronous Input and Output

I/O operations on a file can be either synchronous or asynchronous. For
synchronous I/O operations, the process calling the I/O request is blocked until
the I/O operation is complete and regains control of execution only when the
request is completely satisfied or fails. For asynchronous I/O operations, the
process calling the I/O request immediately regains control of execution once
the I/O operation is queued to the device. When the I/O operation is completed
(either successfully or unsuccessfully), the calling process can be notified of the
event by a signal passed through the aiocb structure for the asynchronous
I/O function. Alternatively, the calling process can poll the aiocb structure for
completion status.

This chapter includes the following sections:

• Data Structures Associated with Asynchronous I/O, Section 7.1

• Asynchronous I/O Functions, Section 7.2

• Asynchronous I/O to Raw Devices, Section 7.3

• Asynchronous I/O Examples, Section 7.4

Asynchronous I/O is most commonly used in realtime applications requiring
high-speed or high-volume data collection and/or low-priority journaling
functions. Compute-intensive processes can use asynchronous I/O instead
of blocking. For example, an application may collect intermittent data from
multiple channels. Because the data arrives asynchronously, that is, when it is
available rather than according to a set schedule, the receiving process must
queue up the request to read data from one channel and immediately be free to
receive the next data transmission from another channel. Another application
may require such a high volume of reads, writes, and computations that it
becomes practical to queue up a list of I/O operation requests and continue
processing while the I/O requests are being serviced. Applications can perform
multiple I/O operations to multiple devices while making a minimum number
of function calls. The P1003.1b asynchronous I/O functions are designed to
help meet these realtime needs.

Asynchronous Input and Output 7–1

You can perform asynchronous I/O operations using any open file descriptor.

7.1 Data Structures Associated with Asynchronous I/O
The P1003.1b asynchronous I/O functions use the asynchronous I/O control
block aiocb . This control block contains asynchronous operation information
such as the initial point for the read operation, the number of bytes to be
read, and the file descriptor on which the asynchronous I/O operation will be
performed. The control block contains information similar to that required
for a read or write function, but additionally contains members specific to
asynchronous I/O operations. The aiocb structure contains the following
members:

int aio_fildes; /* File descriptor */
off_t aio_offset; /* File offset */
volatile void *aio_buf; /* Pointer to buffer */
size_t aio_nbytes; /* Number of bytes to transfer */
int aio_reqprio; /* Request priority offset */
struct sigevent aio_sigevent; /* Signal structure */
int aio_lio_opcode;/* Specifies type of I/O operation */

Note that you cannot reuse the aiocb structure while an asynchronous
I/O request is pending. To determine whether the aiocb is in use, use the
aio_error function.

7.1.1 Identifying the Location
When you call either the aio_read or aio_write function, you must specify
how to locate the data to be read or to position the data to be written.

The aio_offset and aio_nbytes members of the aiocb structure provide
information about the starting point and length of the data to be read
or written. The aio_buf member provides information about where the
information should be read or written in memory.

When you use the aio_write function to write to a new file, data is written to
the end of a zero-length file. On additional write operations, if the O_APPEND
flag is set, write operations are appended to the file in the same order as the
calls to the aio_write function were made. If the O_APPEND flag is not set,
write operations take place at the absolute position in the file as given by
the aio_offset as if the lseek function were called immediately prior to the
operation with an offset equal to aio_offset and a whence equal to SEEK_SET.

On a call to the aio_read function, the read operation takes place at the
absolute position in the file as given by aio_offset as if the lseek function were
called immediately prior to the operation with an offset equal to aio_offset and
a whence equal to SEEK_SET.

7–2 Asynchronous Input and Output

After a successful call to queue an asynchronous write operation with O_
APPEND or to queue an asynchronous read, you must update the value of the
offset with the value returned from the read or write operation. The file offset
is not dynamically updated, and failure to update the value of the offset can
produce incorrect results.

To determine whether the read or write operation was successful, call the
aio_error function. If the operation was successful, call the aio_return
function to update the value of the aio_offset member after each successful
read or write operation. See Section 7.2.3 for an example of using these
functions to determine status.

7.1.2 Specifying a Signal
You can send a signal on completion of every read and write operation,
regardless of whether the operation is issued from a call to the aio_read ,
aio_write , or lio_listio function. In addition, you can send a signal on
completion of the lio_listio function. See Chapter 5 for more information on
signals and signal handling.

The aio_sigevent member refers to a sigevent structure that contains the
signal number of the signal to be sent upon completion of the asynchronous
I/O request. The sigevent structure is defined in the signal.h header file and
contains the following members:

union sigval sigev_value; /* Application-defined value */
int sigev_signo; /* Signal to raise */
int sigev_notify /* Notification type */

The sigev_notify member specifies the notification mechanism to use when
an asynchronous event occurs. There are two values defined for sigev_
notify in P1003.1b: SIGEV_NONE and SIGEV_SIGNAL. SIGEV_NONE
indicates that no asynchronous notification is delivered when an event occurs.
SIGEV_SIGNAL indicates that the signal number specified in sigev_signo
and the application-defined value specified in sigev_value are queued when
an event occurs. When the signal is queued to the process, the value of aio_
sigevent.sigev_value will be the si_value component of the generated signal.
See Chapter 5 for more information.

The sigev_signo member specifies the signal number to be sent on completion
of the asynchronous I/O operation. Setting the sigev_signo member to a legal
signal value will cause that signal to be posted when the operation is complete,
if sigev_notify equals SIGEV_SIGNAL. Setting the value to NULL means that
no signal is sent, but the error status and return value for the operation are
set appropriately and can be retrieved using the aio_error and aio_return
functions.

Asynchronous Input and Output 7–3

Instead of specifying a signal, you can poll for I/O completion when you expect
the I/O operation to be complete.

7.2 Asynchronous I/O Functions
The asynchronous I/O functions combine a number of tasks normally performed
by the user during synchronous I/O operations. With synchronous I/O, the
application typically calls the lseek function, performs the I/O operation, and
then waits to receive the return status.

Asynchronous I/O functions provide the following capabilities:

• Both regular and special files can handle I/O requests.

• One file descriptor can handle multiple read and write operations.

• Multiple read and write operations can be issued to multiple open file
descriptors.

• Both sequential and random access devices can handle I/O requests.

• Outstanding I/O requests can be canceled.

• The process can be suspended to wait for I/O completion.

• I/O requests can be tracked when the request is queued, in progress, and
completed.

Table 7–1 lists the functions for performing and managing asynchronous I/O
operations. Refer to the online reference pages for a complete description of
these functions.

Table 7–1 Asynchronous I/O Functions

Function Description

aio_cancel Cancels one or more requests pending against a file descriptor

aio_error Returns the error status of a specified operation

aio_fsync Asynchronously writes system buffers containing a file’s modified data
to permanent storage

aio_read Initiates a read request on the specified file descriptor

aio_return Returns the status of a completed operation

aio_suspend Suspends the calling process until at least one of the specified
requests has completed

(continued on next page)

7–4 Asynchronous Input and Output

Table 7–1 (Cont.) Asynchronous I/O Functions

Function Description

aio_write Initiates a write request to the specified file descriptor

lio_listio Initiates a list of requests

7.2.1 Reading and Writing
Asynchronous and synchronous I/O operations are logically parallel operations.
The asynchronous functions aio_read and aio_write perform the same I/O
operations as the read and write functions. However, the aio_read and
aio_write functions return control to the calling process once the I/O is
initiated, rather than after the I/O operation is complete. For example, when
reading data from a file synchronously, the application regains control only
after all the data is read. Execution of the calling process is delayed until the
read operation is complete.

In contrast, when reading data from a file asynchronously, the calling process
regains control right after the call is issued, before the read-and-return cycle is
complete. The aio_read function returns once the read request is initiated or
queued for delivery, even if delivery could be delayed. The calling process can
use the time normally required to transfer data to execute some other task.

A typical application using asynchronous I/O includes the following steps:

1. Create and fill the asynchronous I/O control block (aiocb).

2. Call the open function to open a specified file and get a file descriptor for
that file. After a call to the open function, the file pointer is set to the
beginning of the file. Select flags as appropriate.1

3. If you use signals, establish a signal handler to catch the signal returned
on completion of the asynchronous I/O operation.

4. Call the aio_read , aio_write , or aio_fsync function to request
asynchronous I/O operations.

5. Call aio_suspend if your application needs to wait for the I/O operations to
complete; or continue execution and poll for completion with aio_error ; or
continue execution until the signal arrives.

6. After completion, call the aio_return function to retrieve completion value.

1 Do not use the select system call with asynchronous I/O; the results are undefined.

Asynchronous Input and Output 7–5

7. Call the close function to close the file. The close function waits for all
asynchronous I/O to complete before closing the file.

On a call to either the _exit or fork function, the status of outstanding
asynchronous I/O operations is undefined. If you plan to use asynchronous
I/O operations in a child process, call the exec function before you call the I/O
functions.

7.2.2 Using List-Directed Input/Output
To submit list-directed asynchronous read or write operations, use the
lio_listio function. As with other asynchronous I/O functions, you must
first establish the control block structures for the individual read and write
operations. The information contained in this structure is used during the
operations. The lio_listio function takes as an argument an array of
pointers to I/O control block structures, which allows the calling process to
initiate a list of I/O requests. Therefore, you can submit multiple operations as
a single function call.

You can control whether the lio_listio function returns immediately after
the list of operations has been queued or waits until all the operations have
been completed. The mode argument controls when the lio_listio function
returns and can have one of the following values:

• LIO_NOWAIT — queues the operation, returns, and can signal when the
operation is complete.

• LIO_WAIT — queues the operation, suspends the calling process until the
operation is complete, and does not signal when the lio_listio operation
is complete.

Completion means that all the individual operations in the list have completed,
either successfully or unsuccessfully. In either case, the return value indicates
only the success or failure of the lio_listio function call, not the status
of individual I/O requests. In some cases one or more of the I/O requests
contained in the list may fail. Failure of an individual request does not prevent
completion of any other individual request. To determine the outcome of each
I/O request, examine the error status associated with each lio_aiocb control
block.

The list argument to the lio_listio function is a pointer to an array of aiocb
structures.

The aio_lio_opcode member of the aiocb structure defines the I/O operation
to be performed and the aio_fildes member identifies the file descriptor. The
combination of these members makes it possible to specify individual read and
write operations as if they had been submitted individually. Each read or write

7–6 Asynchronous Input and Output

operation in list-directed asynchronous I/O has its own status, return value,
and sigevent structure for signal delivery.

To use list-directed asynchronous I/O in your application, use the following
steps:

1. Create and fill the aiocb control blocks.

2. Call the open function to open the specified files and get file descriptors
for the files. After a call to the open function, the file pointer is set to the
beginning of the file. Select flags as appropriate.

3. If you use signals, establish signal handlers to catch the signals returned
on completion of individual operations after the lio_listio function
completes, or to catch a signal returned on completion of the entire list of
I/O operations in the lio_listio request.

4. Call the lio_listio function.

5. Call the close function to close the files. The close function waits for all
I/O to complete before closing the file.

As with other asynchronous I/O operations, any open function that returns a
file descriptor is appropriate. On a call to either the _exit or fork function,
the status of outstanding asynchronous I/O operations is undefined.

7.2.3 Determining Status
Asynchronous I/O functions provide status values when the operation is
successfully queued for servicing and provides both error and return values
when the operation is complete. The status requirements for asynchronous
I/O are more complex than the functionality provided by the errno function,
so status retrieval for asynchronous I/O is accomplished through using the
aio_error and aio_return functions in combination with each other.

The aiocbp argument to the aio_error or aio_return function provides the
address of an aiocb structure, unique for each asynchronous I/O operation.
The aio_error function returns the error status associated with the specified
aiocbp. The error status is the errno value that is set by the corresponding
asynchronous I/O read or write operation.

The aio_error function returns EINPROGRESS if the operation is ongoing.
Once the asynchronous I/O operation is complete, EINPROGRESS is not
returned. A subsequent call to the aio_return function will show if the
operation is successful.

Asynchronous Input and Output 7–7

Once you call the aio_return function, the system resources associated with
the aiocb for the duration of the I/O operation are returned to the system. If
the aio_return function is called for an aiocb with incomplete I/O, the result
of the operation is undefined. To avoid losing data, use the aio_error function
to ensure completion before you call the aio_return function. Then use the
aio_return function to retrieve the number of bytes read or written during the
asynchronous I/O operation.

If you do not call the aio_return function, the number of asynchronous I/O
resources available for use in your application is reduced by one for every
completed asynchronous I/O operation that does not return data through a call
to the aio_return function.

The following example shows how to use the aio_error and aio_return
functions to track the progress of asynchronous write operations.

.

.

.
return_value = aio_error(aiocbp);
if (return_value != EINPROGRESS) {

total = aio_return(aiocbp);
if (total == -1) {

errno = return_value;
perror("aio_read");
}

}
.
.
.

In this example the variable total receives the number of bytes read in the
operation. This variable is then used to update the offset for the next read
operation.

If you use list-directed asynchronous I/O, each asynchronous I/O operation in
the list has an aiocb structure and a unique aiocbp.

7.2.4 Canceling I/O
Sometimes there is a need to cancel an asynchronous I/O operation after it has
been issued. For example, there may be outstanding requests when a process
exits, particularly if the application uses slow devices, such as terminals.

The aio_cancel function cancels one or more outstanding I/O requests against
a specified file descriptor. The aiocbp argument points to an aiocb control
block for a specified file descriptor. If the operation is successfully canceled,
the error status indicates success. If, for some reason, the operation cannot be
canceled, normal completion and notification take place.

7–8 Asynchronous Input and Output

The aio_cancel function can return one of the following values:

• AIO_ALLDONE indicates that none of the requested operations could
be canceled because they had already completed when the call to the
aio_cancel function was made.

• AIO_CANCELED indicates that all requested operations were canceled.

• AIO_NOTCANCELED indicates that some of the requested operations
could not be canceled because they were in progress when the call to the
aio_cancel function was made.

If the value of AIO_NOTCANCELED is returned, call the aio_error function
and check the status of the individual operations to determine which ones were
canceled and which ones could not be canceled.

7.2.5 Blocking to Completion
The aio_suspend function lets you suspend the calling process until at least
one of the asynchronous I/O operations referenced by the aiocbp argument
has completed or until a signal interrupts the function. If the operation had
completed when the call to the aio_suspend function was made, the function
returns without suspending the calling process. Before using the aio_suspend
function, your application must already have initiated an I/O request with a
call to the aio_read , aio_write , aio_fsync , or lio_listio function.

7.2.6 Asynchronous File Synchronization
The aio_fsync function is similar to the fsync function; however, it executes
in an asynchronous manner, in the same way that aio_read performs an
asynchronous read.

The aio_fsync function requests that all I/O operations queued to the specified
file descriptor at the time of the call to aio_fsync be forced to the synchronized
I/O completion state. Unlike fsync , aio_fsync returns control to the calling
process once the operation has been initiated, rather than after the operation is
complete. I/O operations that are subsequently initiated on the file descriptor
are not guaranteed to be completed by any previous calls to aio_fsync .

Like the aio_read and aio_write functions, aio_fsync takes an aiocbp value
as an argument, which can then be used in subsequent calls to aio_error
and aio_return in order to determine the error and return status of the
asynchronous operation. In addition, the aio_sigevent member of aiocbp can be
used to define the signal to be generated when the operation is complete.

Note that the aio_fsync function will force to completion all I/O operations on
the specified file descriptor, whether initiated by synchronous or asynchronous
functions.

Asynchronous Input and Output 7–9

7.3 Asynchronous I/O to Raw Devices
You may have applications which call for performing asynchronous I/O
operations by reading to and writing from raw partitions. Digital UNIX
provides the libaio_raw.a library for those applications which will only
perform asynchronous I/O operations to raw devices, When using this library,
you are not required to link with pthreads, libmach, or libc_r.

If you attempt to perform asynchronous I/O operations to a file when linked
with libaio_raw.a , the request fails with an error of ENOSYS.

The syntax for compiling or linking with libaio_raw.a is as follows:

% cc -o binary_name my_program -laio_raw

7.4 Asynchronous I/O Examples
The examples in this section demonstrate the use of the asynchronous
I/O functions. Example 7–1 uses the aio functions; Example 7–2 uses the
lio_listio function.

7.4.1 Using the aio Functions
In Example 7–1, the input file (read synchronously) is copied to the output file
(asynchronously) using the specified transfer size. A signal handler counts the
number of completions, but is not required for the functioning of the program.
A call to the aio_suspend function is sufficient.

7–10 Asynchronous Input and Output

Example 7–1 Using Asynchronous I/O
/*

* Command line to build the program:
* cc -o aio_copy aio_copy.c -laio -pthread
*/

/* * * * aio_copy.c * * * */

#include <unistd.h>
#include <aio.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/file.h>
#include <signal.h>
#include <errno.h>
#include <malloc.h>

#define BUF_CNT 2 /* number of buffers */
/* To run completion code in the signal handler, define the following: */
#define COMPLETION_IN_HANDLER

struct sigaction sig_act;
volatile int sigcnt = 0;
volatile int total = 0;

/* * * * Signal handler * * * */

/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/
void sig_action(signo,info,context)
int signo;
siginfo_t *info;
void *context;
{

printf("Entered sig_action\n");
printf(" signo = %d \n",signo);
printf(" si_code = %d \n",info->si_code);

#ifndef COMPLETION_IN_HANDLER
printf(" si_value.sival_int = %d decimal

\n",info->si_value.sival_int);

#else
printf(" si_value.sival_ptr = %lx hex \n",info->si_value.sival_ptr);

/* Call aio_error and aio_return from the signal handler.
* Note that si_value is the address of the write aiocb.
*/

while (aio_error((struct aiocb *)info->si_value.sival_ptr) ==
EINPROGRESS);

(continued on next page)

Asynchronous Input and Output 7–11

Example 7–1 (Cont.) Using Asynchronous I/O

/* * * * Update total bytes written to set new file offset * * * */
total += aio_return((struct aiocb *)info->si_value.sival_ptr);

#endif
/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/

sigcnt++;
return;

}

void sig_handler(signo)
int signo;
{
/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/

printf("Entered sig_handler, signo = %d \n",signo);
/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/

sigcnt++;
return;

}

/* * * * Main Routine * * * */

main(int argc, char **argv)
{

int in_file, out_file, rec_cnt = 0;
typedef char *buf_p;
buf_p buf[BUF_CNT];
aiocb_t a_write;
size_t xfer_size;
int buf_index, ret;

/* * * * Check number of input arguments * * * */

if (argc < 4) {
fprintf(stderr, "Usage: %s input-file output-file buf-size-in-Kb\n",

argv[0]);
exit(0);

}

/* * * * Open input file * * * */

if ((in_file = open(argv[1], O_RDONLY)) == -1) {
perror(argv[1]);
exit(errno);

}
printf("Opened Input File\n");

(continued on next page)

7–12 Asynchronous Input and Output

Example 7–1 (Cont.) Using Asynchronous I/O
/* * * * Open output file * * * */

/* If O_APPEND is added to flags, all writes will appear at end */
if ((out_file = open(argv[2], O_WRONLY|O_CREAT, 0777)) == -1) {

perror(argv[2]);
exit(errno);

}
printf("Opened Output File \n");

/* * * * Calculate transfer size (# bufs * 1024) * * * */

xfer_size = atol(argv[3]) * 1024;

/* * * * Allocate buffers for file copy * * * */

for (buf_index = 0; buf_index < BUF_CNT; buf_index++)
buf[buf_index] = (buf_p) malloc(xfer_size);

buf_index = 0;

/* * * * Init. signal action structure for SIGUSR1 * * * */
/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/

sigemptyset(&sig_act.sa_mask); /* block only current signal */

/* If the SA_SIGINFO flag is set in the sa_flags field then
* the sa_sigaction field of sig_act structure specifies the
* signal catching function:
*/

sig_act.sa_flags = SA_SIGINFO;
sig_act.sa_sigaction = sig_action;

/* If the SA_SIGINFO flag is NOT set in the sa_flags field
* then the the sa_handler field of sig_act structure specifies
* the signal catching function, and the signal handler will be

* invoked with 3 arguments instead of 1:
* sig_act.sa_flags = 0;
* sig_act.sa_handler = sig_handler;
*/

/* * * * Estab. signal handler for SIGUSR1 signal * * * */

printf("Establish Signal Handler for SIGUSR1\n");
if (ret = sigaction (SIGUSR1, /* Set action for SIGUSR1 */

&sig_act, /* Action to take on signal */
0)) /* Don’t care about old actions */
perror("sigaction");

/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/

/* * * * Init. aio control block (aiocb) * * * */

(continued on next page)

Asynchronous Input and Output 7–13

Example 7–1 (Cont.) Using Asynchronous I/O

a_write.aio_fildes = out_file;
a_write.aio_offset = 0; /* write from current */

/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/
a_write.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
a_write.aio_sigevent.sigev_signo = SIGUSR1; /* completion signal */

#ifdef COMPLETION_IN_HANDLER
/* Fill in a user-specified value which will be the si_value

* component of the generated signal. sigev_value is a union
* of either an int (sival_int) or a void * (sival_ptr).
* In this example, we use the sival_ptr field, and pass

* the address of the aiocbp into the signal handler, so
* that the signal handler can call aio_error and aio_return directly:
*/

a_write.aio_sigevent.sigev_value.sival_ptr = &a_write;
#else

/* Pass an integer value into the signal handler: */
a_write.aio_sigevent.sigev_value.sival_int = 1;

#endif
/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/

/* * * * Copy from in_file to out_file * * * */

while (in_file != -1) {
int buf_len;

/* * * * Read next buffer of information * * * */

buf_len = read(in_file, buf[buf_index], xfer_size);

#ifdef COMPLETION_IN_HANDLER
if (rec_cnt) { /* will be >1 on all but first write... */

aiocb_t *wait_list = &a_write;

/* Wait until previous write completes */
aio_suspend(&wait_list,1,NULL);

} /* if (rec_cnt) */

#else

if (rec_cnt) { /* will be >1 on all but first write... */

(continued on next page)

7–14 Asynchronous Input and Output

Example 7–1 (Cont.) Using Asynchronous I/O

/* previous write completed? If not, wait */
while (aio_error(&a_write) == EINPROGRESS) {

aiocb_t *wait_list = &a_write;
/*^^^*/

/* No timeout specified */
aio_suspend(&wait_list,1,NULL);
/* aio_suspend(1, &wait_list); */

/*^^^*/
}

/* * * * Update total bytes written to set new file offset * * * */

total += aio_return(&a_write);
} /* if (rec_cnt) */

#endif

/* * * * Check for end-of-file (won’t have filled buffer) * * */

if (buf_len <= 0)
break;

/* * * * Set buffer up for next write * * * */

a_write.aio_nbytes = buf_len;
a_write.aio_buf = buf[buf_index];

/* if file is opened for append, can ignore offset field */

a_write.aio_offset = total;
ret = aio_write(&a_write);
if (ret) { perror ("aio_write"); exit(ret); }

/* * * Update record count, and position to next buffer * * */

rec_cnt++;
buf_index ^= 1;

}

printf("total number of bytes written to output file = %d\n",total);

/* * * * Close files * * * */

close(in_file);
printf("Closed Input File\n");
close(out_file);
printf("Closed Output File\n");
printf("Copied: %d records, %d signals taken\n", rec_cnt, sigcnt);

}

Asynchronous Input and Output 7–15

7.4.2 Using the lio_listio Function
In Example 7–2 the input file is read synchronously to a specified number
of output files (asynchronously) using the specified transfer size from the
lio_listio function. After the list-directed I/O completes, it checks the return
status and value for the write to each file and continues in a loop until the
copy is complete.

Example 7–2 Using lio_listio in Asynchronous I/O
/*

*

* Command line to build the program:
* cc -o lio_copy lio_copy.c -non_shared -O0 -L/usr/ccs/lib \
* -laio -pthread
*/

/* * * * lio_copy.c * * * */

#include <unistd.h>
#include <aio.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/file.h>
#include <signal.h>
#include <errno.h>
#include <malloc.h>

#define FOR_EACH_FILE for (i = 0; i < out_cnt; i++)

#define BUF_CNT 2 /* number of buffers */

/* * * * ------------------ Main Routine ------------------- * * * */

main(int argc, char **argv)
{

register int i, rec_cnt = 0, out_cnt = 0;
char outname[128], temp[8];
int in_file, out_file[AIO_LISTIO_MAX], len;
typedef char *buf_p;
buf_p buf[BUF_CNT];
aiocb_t a_write[AIO_LISTIO_MAX], *wait_list[AIO_LISTIO_MAX];
size_t xfer_size;
int buf_index, total[AIO_LISTIO_MAX], ret;
struct sigevent lio_sigevent = {0,0};

/* * * * Check the number of input arguments * * * */

(continued on next page)

7–16 Asynchronous Input and Output

Example 7–2 (Cont.) Using lio_listio in Asynchronous I/O

if (argc < 5) {
fprintf(stderr, "Usage: %s in_file out_file buffsz-in-kb

#-out-files\n", argv[0]);
exit(0);

}

/* * * * Open the input file * * * */

if ((in_file = open(argv[1], O_RDONLY)) == -1) {
perror(argv[1]);
exit(errno);

}
printf("\tOpened Input File %s\n", argv[1]);

/* * * * Open the output files * * * */

out_cnt = atoi(argv[4]);
if ((out_cnt <= 0) || (out_cnt > AIO_LISTIO_MAX)) {

fprintf(stderr, "Number of output files must be 1-%d.\n",
AIO_LISTIO_MAX);

exit(EINVAL);
}

outname[0] = ’\0’;
len = strlen(argv[2]);
strcpy(outname, argv[2]);

FOR_EACH_FILE {
sprintf(&outname[len], "%d", i);
/*

* If O_APPEND is added to flags, all writes will appear at
* end
*/

if ((out_file[i] = open(outname, O_WRONLY|O_CREAT, 0777))
== -1) {

perror(outname);
exit(errno);

}
printf("\tOpened output file %s\n", outname);

}

/* * * * Calculate the transfer size (# bufs * 1024) * * * */

xfer_size = atol(argv[3]) * 1024;

/* * * * Allocate buffers for file copy * * * */

(continued on next page)

Asynchronous Input and Output 7–17

Example 7–2 (Cont.) Using lio_listio in Asynchronous I/O

for (buf_index = 0; buf_index < BUF_CNT; buf_index++) {
buf[buf_index] = (buf_p) malloc(xfer_size);
if (buf[buf_index] == NULL) {

perror("malloc");
exit(1);

}
}

buf_index = 0;

/* * * * Init the aio control blocks and wait list * * * */

FOR_EACH_FILE {
a_write[i].aio_fildes = out_file[i];
a_write[i].aio_lio_opcode = LIO_WRITE;
a_write[i].aio_sigevent.sigev_signo = 0;
wait_list[i] = &a_write[i];
total[i] = 0;

}

/* * * * Copy from in_file to out_file * * * */

while (in_file != -1) {
int buf_len;

/* * * * Read the next buffer of information * * * */

buf_len = read(in_file, buf[buf_index], xfer_size);

if (rec_cnt) { /* will be >1 on all but the first write... */

/* * * * Update the bytes written to set new offset * * * */

FOR_EACH_FILE {
errno = aio_error(&a_write[i]);
ret = aio_return(&a_write[i]);
if (ret == -1) {

perror("Write error");
exit(1);

} else {
total[i] += ret;

}
}

}

/* * * * Check for end-of-file (won’t have filled buffer) * * */

if (buf_len <= 0)
break;

/* * * * Set the buffer up for the next write * * * */

(continued on next page)

7–18 Asynchronous Input and Output

Example 7–2 (Cont.) Using lio_listio in Asynchronous I/O

FOR_EACH_FILE {
a_write[i].aio_nbytes = buf_len;
a_write[i].aio_buf = buf[buf_index];
/* if opened for append, ignore offset field */
a_write[i].aio_offset = total[i];

}

ret = lio_listio(LIO_WAIT, wait_list, out_cnt, &lio_sigevent);
if (ret) /* report failure status, but don’t exit yet */

perror("lio_listio");

/* * * Update record count, and position to next buffer * * */

buf_index ^= 1;
rec_cnt++;

}

/* * * * Close the files * * * */

close(in_file);
printf("\tClosed input file\n");
FOR_EACH_FILE {

close(out_file[i]);
}
printf("\tClosed output files\n");
printf("Copied %d records to %d files\n", rec_cnt * out_cnt, out_cnt);

}

Note

Use of the printf function in this example is for illustrative purposes
only. You should avoid using printf and any similar functions in signal
handlers because they can affect scheduling characteristics.

Asynchronous Input and Output 7–19

8
File Synchronization

By default, UNIX systems read from and write to a buffer cache that is kept in
memory, and avoid actually transferring data to disk until the buffer is full,
or until the application calls a sync function to flush the buffer cache. This
increases performance by avoiding the relatively slow mechanical process of
writing to disk more often then necessary.

Realtime input and output operations are of two types:

• Asynchronous I/O, which frees the application to perform other tasks while
input is written or read (see Chapter 7)

• Synchronized I/O, which performs the write or read operation and verifies
its completion before returning

Digital UNIX supports POSIX 1003.1b file synchronization for the UFS and
AdvFS file systems, as described in this chapter. However, Digital recommends
use of the UFS file system for better realtime performance.

Synchronized I/O is useful when the integrity of data and files is critical to an
application. Synchronized output assures that data that is written to a device
is actually stored there. Synchronized input assures that data that is read
from a device is a current image of data on that device.

Two levels of file synchronization are available, data integrity and file integrity:

• Data integrity

Write operations: data in the buffer is transferred to disk, along with
file system information necessary to retrieve the data.

Read operations: any pending write operations relevant to the data
being read complete with data integrity before the read operation is
performed.

• File integrity

Write operations: data in the buffer and all file system information
related to the operation are transferred to disk.

File Synchronization 8–1

Read operations: any pending write operations relevant to the data
being read complete with file integrity before the read operation is
performed.

8.1 How to Assure Data or File Integrity
You can assure data integrity or file integrity at specific times by using function
calls, or you can set file status flags to force automatic file synchronization for
each read or write call associated with that file.

Use of synchronized I/O may degrade system performance; see Chapter 11.

8.1.1 Using Function Calls
You can choose to write to buffer cache as usual, and call functions explicitly
when you want the program to flush the buffer to disk. For instance, you may
want to use the buffer cache when a lot of I/O is occurring, and call these
functions when activity slows down. Two functions are available:

• fdatasync — flushes data only, providing data integrity completion

• fsync — flushes data and file control information, providing file integrity
completion

Refer to online reference pages for a complete description of these functions.

8.1.2 Using File Descriptors
If you want to write data to disk in all cases automatically, you can set file
status flags to force this behavior instead of making explicit calls to fdatasync
or fsync .

To set this behavior, use these flags with the open or fcntl function:

• O_DSYNC — forces data synchronization for each write operation.

Example:

fd = open("my_file", O_RDWR | O_CREAT | O_DSYNC, 0666);

• O_SYNC — forces file and data synchronization for each write operation.

Example:

fd = open("my_file", O_RDWR | O_CREAT | O_SYNC, 0666);

• O_RSYNC — when either of the other two flags is in effect, forces the same
file synchronization level for each read as well as each write operation. Use
of O_RSYNC has no effect in the absence of O_DSYNC or O_SYNC.

8–2 File Synchronization

Examples:

fd = open("my_file", O_RDWR | O_CREAT | O_SYNC | O_RSYNC, 0666);
fd = open("my_file", O_RDWR | O_CREAT | O_DSYNC | O_RSYNC, 0666);

If both the O_DSYNC and O_SYNC flags are set using the open or fcntl
function, O_SYNC takes precedence.

File Synchronization 8–3

9
Semaphores

POSIX 1003.1b semaphores provide an efficient form of interprocess
communication. Cooperating processes can use semaphores to synchronize
access to resources, most commonly, shared memory. Semaphores can
also protect the following resources available to multiple processes from
uncontrolled access:

• Global variables, such as file variables, pointers, counters, and data
structures. Protecting these variables prevents simultaneous access by
more than one process, such as reading information as it is being written
by another process.

• Hardware resources, such as disk and tape drives. Hardware resources
require controlled access because simultaneous access can result in
corrupted data.

This chapter includes the following sections:

• Overview of Semaphores, Section 9.1

• The Semaphore Interface, Section 9.2

• Semaphore Example, Section 9.3

9.1 Overview of Semaphores
Semaphores are used to control access to shared resources by processes.
Counting semaphores have a positive integral value representing the number
of processes that can concurrently lock the semaphore.

There are named and unnamed semaphores. Named semaphores provide
access to a resource between multiple processes. Unnamed semaphores provide
multiple accesses to a resource within a single process or between related
processes. Some semaphore functions are specifically designed to perform
operations on named or unnamed semaphores.

Semaphores 9–1

The semaphore lock operation checks to see if the resource is available or is
locked by another process. If the semaphore’s value is a positive number, the
lock is made, the semaphore value is decremented, and the process continues
execution. If the semaphore’s value is zero or a negative number, the process
requesting the lock waits (is blocked) until another process unlocks the
resource. Several processes may be blocked waiting for a resource to become
available.

The semaphore unlock operation increments the semaphore value to indicate
that the resource is not locked. A waiting process, if there is one, is unblocked
and it accesses the resource. Each semaphore keeps count of the number of
processes waiting for access to the resource.

Semaphores are global entities and are not associated with any particular
process. In this sense, semaphores have no owners making it impossible to
track semaphore ownership for any purpose, for example, error recovery.

Semaphore protection works only if all the processes using the shared
resource cooperate by waiting for the semaphore when it is unavailable
and incrementing the semaphore value when relinquishing the resource.
Since semaphores lack owners, there is no way to determine whether one
of the cooperating processes has become uncooperative. Applications using
semaphores must carefully detail cooperative tasks. All of the processes that
share a resource must agree on which semaphore controls the resource.

POSIX 1003.1b semaphores are persistent. The value of the individual
semaphore is preserved after the semaphore is no longer open. For example, a
semaphore may have a value of 3 when the last process using the semaphore
closes it. The next time a process opens that semaphore, it will find the
semaphore has a value of 3. For this reason, cleanup operations are advised
when using semaphores.

Note that because semaphores are persistent, you should call the sem_unlink
function after a system reboot. After calling sem_unlink , you should call the
sem_open function to establish new semaphores.

The semaphore descriptor is inherited across a fork . A parent process can
create a semaphore, open it, and fork. The child process does not need to open
the semaphore and can close the semaphore if the application is finished with
it.

9–2 Semaphores

9.2 The Semaphore Interface
Table 9–1 lists the functions that allow you to create and control P1003.1b
semaphores.

Table 9–1 Semaphore Functions

Function Description

sem_close Deallocates the specified named semaphore

sem_destroy Destroys an unnamed semaphore

sem_getvalue Gets the value of a specified semaphore

sem_init Initializes an unnamed semaphore

sem_open Opens/creates a named semaphore for use by a process

sem_post Unlocks a locked semaphore

sem_trywait Performs a semaphore lock on a semaphore only if it can
lock the semaphore without waiting for another process to
unlock it

sem_unlink Removes a specified named semaphore

sem_wait Performs a semaphore lock on a semaphore

You create an unnamed semaphore with a call to the sem_init function, which
initializes a counting semaphore with a specific value. To create a named
semaphore, call sem_open with the O_CREAT flag specified. The sem_open
function establishes a connection between the named semaphore and a process.

Semaphore locking and unlocking operations are accomplished with calls to
the sem_wait , sem_trywait , and sem_post functions. You use these functions
for named and unnamed semaphores. To retrieve the value of a counting
semaphore, use the sem_getvalue function.

When the application is finished with an unnamed semaphore, the semaphore
name is destroyed with a call to sem_destroy . To deallocate a named
semaphore, call the sem_close function. The sem_unlink function removes a
named semaphore. The semaphore is removed only when all processes using
the semaphore have deallocated it using the sem_close function.

Semaphores 9–3

9.2.1 Creating and Opening a Semaphore
A call to the sem_init function creates an unnamed counting semaphore with
a specific value. If you specify a non-zero value for the pshared argument, the
semaphore can be shared between processes. If you specify the value zero, the
semaphore can be shared among threads of the same process.

The sem_open function establishes a connection between a named semaphore
and the calling process. Two flags control whether the semaphore is created
or only accessed by the call. Set the O_CREAT flag to create a semaphore if it
does not already exist. Set the O_EXCL flag along with the O_CREAT flag to
indicate that the call to sem_open should fail if the semaphore already exists.

Subsequent to creating a semaphore with either sem_init or sem_open , the
calling process can reference the semaphore by using the semaphore descriptor
address returned from the call. The semaphore is available in subsequent calls
to the sem_wait , sem_trywait , and sem_post functions, which control access
to the shared resource. You can also retrieve the semaphore value by calls to
sem_getvalue .

If your application consists of multiple processes that will use semaphores to
synchronize access to a shared resource, each of these processes must first open
the semaphore by a call to the sem_open function. After the initial call to the
sem_init or sem_open function to establish the semaphore, each cooperating
function must also call the sem_open function. If all cooperating processes are
in the same working directory, just the name is sufficient. If the processes are
contained in different working directories, the full pathname must be used. It
is strongly recommended that the full pathname be used, such as /tmp/mysem1 .
The directory must exist for the call to succeed.

On the first call to the sem_init or sem_open function, the semaphore is
initialized to the value specified in the call.

The following example initializes an unnamed semaphore with a value of 5,
which can be shared among processes.

/*
* Initializes an unnamed semaphore with a value of 5 which can be shared
* between related processes
*/

#include <sys/types.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <semaphore.h>

...

9–4 Semaphores

sem_t mysem;
int pshared = TRUE;
unsigned int value = 5;
int sts;

...

sts = sem_init(&mysem, pshared, value);
if (sts) {

perror("sem_init() failed");
}

The following example creates a semaphore named /tmp/mysem with a value of
3:

#include <sys/types.h>
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
#include <semaphore.h>
#include <sys/stat.h>

...

sem_t *mysemp;
int oflag = O_CREAT;
mode_t mode = 0644;
const char semname[] = "/tmp/mysem"
unsigned int value = 3;
int sts;

...

mysemp = sem_open(semname, oflag, mode, value);
if (mysemp == (void *)-1) {

perror(sem_open() failed ");
}

To access a previously created semaphore, a process must call the sem_open
function using the name of the semaphore.

To determine the value of a previously created semaphore, use the
sem_getvalue function. Pass the semaphore and the location for storing
the value to the function; it returns the value of the semaphore specified when
the sem_init or sem_open function was called.

The name of the semaphore remains valid until the semaphore is removed with
a call to the sem_unlink function.

Semaphores 9–5

9.2.2 Locking and Unlocking Semaphores
After you create the semaphore with a call to the sem_init or sem_open
function, you can use the sem_wait , sem_trywait , and sem_post functions to
lock and unlock the semaphore.

Using semaphores to share resources among processes works only if processes
unlock a resource immediately after they finish using it. As you code your
application, do not attempt to unlock a semaphore you did not previously lock.

To lock a semaphore, you can use either the sem_wait or sem_trywait function.
If the semaphore value is greater than zero, the sem_wait function locks the
specified semaphore. If the semaphore value is less than or equal to zero, the
process is blocked (sleeps) and must wait for another process to release the
semaphore and increment the semaphore value.

To be certain that the process is not blocked while waiting for a semaphore to
become available, use the sem_trywait function. The sem_trywait function
will lock the specified semaphore if, and only if, it can do so without waiting.
That is, the specified semaphore must be available at the time of the call to the
sem_trywait function. If not, the sem_trywait function returns a –1 and errno
is set to EAGAIN.

Example 9–1 locks a semaphore by using the sem_trywait function.

Example 9–1 Locking a Semaphore
...

int oflag = 0; /* open an existing semaphore; do not create new one */

...

mysemp = sem_open(semname, oflag, mode, value);
if (mysemp == (void *)-1) {

perror(sem_open() failed ");
}

sts = sem_trywait(mysemp);

if (sts == 0)
printf("sem_trywait() succeeded!\n");

else if (errno == EAGAIN)
printf("semaphore is locked\n");

else
perror("sem_trywait() failure");

The sem_post function unlocks the specified semaphore. Any process with
access to the semaphore can call the sem_post function and unlock a
semaphore. If more than one process is waiting for the semaphore, the highest
priority process is allowed access to the semaphore first.

9–6 Semaphores

9.2.3 Priority Inversion with Semaphores
Process priority inversion can occur when using semaphores to lock a resource
shared by processes of different priorities. If a low-priority process locks a
semaphore to control access to a resource and a higher-priority process is
waiting for the same resources, the higher-priority process is delayed if the
semaphore value is equal to or less than zero. If the lower-priority process is
then preempted by a medium-priority process, the higher-priority process is
further delayed. In this situation, the higher-priority process is delayed while
waiting for a resource locked by lower-priority processes, and the result is
priority inversion.

Since semaphores are global in nature and lack owners, there is no mechanism
for priority inheritance with semaphores. Therefore, semaphore locks are
separate from process priorities. Be careful when designing the use of
semaphores in your application.

9.2.4 Closing a Semaphore
When an application is finished using an unnamed semaphore, it should
destroy the semaphore with a call to the sem_destroy function. For named
semaphores, the application should deallocate the semaphore with a call to the
sem_close function. The semaphore name is disassociated from the process.
A named semaphore is removed using the sem_unlink function, which takes
effect once all processes using the semaphore have deallocated the semaphore
with calls to sem_close . If needed, the semaphore can be reopened for use
through a call to the sem_open function. Since semaphores are persistent, the
state of the semaphore is preserved, even though the semaphore is closed.
When you reopen the semaphore, it will be in the state it was when it was
closed, unless altered by another process.

As with other interprocess communication methods, you can set up a signal
handler to remove the semaphore as one of the tasks performed by the last
process in your application.

When the controlling process is finished using an unnamed semaphore, remove
the semaphore from memory as follows:

/*
* Removing unnamed semaphore
*/

...

sts = sem_destroy(&mysem);

Semaphores 9–7

When the controlling process is finished using a named semaphore, close and
unlink the semaphore as follows:

/*
* Closing named semaphore and then unlinking it
*/

...

sts = sem_close(mysemp);
sts = sem_unlink(semname);

9.3 Semaphore Example
It is important that two processes not write to the same area of shared memory
at the same time. Semaphores protect access to resources such as shared
memory. Before writing to a shared memory region, a process can lock the
semaphore to prevent another process from accessing the region until the write
operation is completed. When the process is finished with the shared memory
region, the process unlocks the semaphore and frees the shared memory region
for use by another process.

Example 9–2 consists of two programs, both of which open the shared-memory
object. The two processes, writer and reader, use semaphores to ensure that
they have exclusive, alternating access to a shared memory region.

The writer.c program creates the semaphore with a call to the sem_open
function. The reader.c program opens the semaphore previously created by
the writer.c program. Because the writer.c program creates the semaphore,
writer.c needs to be executed before reader.c .

9–8 Semaphores

Example 9–2 Using Semaphores and Shared Memory
/*
** These examples use semaphores to ensure that writer and reader
** processes have exclusive, alternating access to the shared-memory region.
*/

/********** writer.c ***********/

#include <unistd.h>
#include <semaphore.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/fcntl.h>

char shm_fn[] = "my_shm";
char sem_fn[] = "my_sem";

/**** WRITER ****/

main(){
caddr_t shmptr;
unsigned int mode;
int shmdes, index;
sem_t *semdes;
int SHM_SIZE;

mode = S_IRWXU|S_IRWXG;

/* Open the shared memory object */

if ((shmdes = shm_open(shm_fn,O_CREAT|O_RDWR|O_TRUNC, mode)) == -1) {
perror("shm_open failure");
exit();

}

/* Preallocate a shared memory area */

SHM_SIZE = sysconf(_SC_PAGE_SIZE);

if(ftruncate(shmdes, SHM_SIZE) == -1){
perror("ftruncate failure");
exit();

}

if((shmptr = mmap(0, SHM_SIZE, PROT_WRITE|PROT_READ, MAP_SHARED,
shmdes,0)) == (caddr_t) -1){

perror("mmap failure");
exit();

}

/* Create a semaphore in locked state */

(continued on next page)

Semaphores 9–9

Example 9–2 (Cont.) Using Semaphores and Shared Memory

sem_des = sem_open(sem_fn, O_CREAT, 0644, 0);

if(sem_des == (void*)-1){
perror("sem_open failure");
exit();

}

/* Access to the shared memory area */

for(index = 0; index < 100; index++){
printf("write %d into the shared memory shmptr[%d]\n", index*2, index);
shmptr[index]=index*2;
}

/* Release the semaphore lock */

sem_post(semdes);
munmap(shmptr, SHM_SIZE);

/* Close the shared memory object */

close(shmdes);

/* Close the Semaphore */

sem_close(semdes);

/* Delete the shared memory object */

shm_unlink(shm_fn);

}

/***
***/

/********** reader.c ***********/

#include <sys/types.h>
#include <sys/mman.h>
#include <semaphore.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/fcntl.h>

char shm_fn[] = "my_shm";
char sem_fn[] = "my_sem";

/**** READER ****/

(continued on next page)

9–10 Semaphores

Example 9–2 (Cont.) Using Semaphores and Shared Memory

main(){
caddr_t shmptr;
int shmdes, index;
sem_t *semdes;
int SHM_SIZE;

/* Open the shared memory object */

SHM_SIZE = sysconf(_SC_PAGE_SIZE);

if ((shmdes = shm_open(shm_fn, O_RDWR, 0)) == -1) {
perror("shm_open failure");
exit();

}

if((shmptr = mmap(0, SHM_SIZE, PROT_WRITE|PROT_READ, MAP_SHARED,
shmdes,0)) == (caddr_t) -1){

perror("mmap failure");
exit();

}

/* Open the Semaphore */

semdes = sem_open(sem_fn, 0, 0644, 0);

if(semdes == (void*) -1){
perror("sem_open failure");
exit();

}

/* Lock the semaphore */

if(!sem_wait(semdes)){

/* Access to the shared memory area */

for(index = 0; index < 100; index++)
printf("The shared memory shmptr[%d] = %d\n", index,shmptr[index]);

/* Release the semaphore lock */

sem_post(semdes);

}

munmap(shmptr, SHM_SIZE);

/* Close the shared memory object */

close(shmdes);

/* Close the Semaphore */

(continued on next page)

Semaphores 9–11

Example 9–2 (Cont.) Using Semaphores and Shared Memory

sem_close(semdes);
sem_unlink(sem_fn);

}

9–12 Semaphores

10
Messages

Message queues work by exchanging data in buffers. Any number of processes
can communicate through message queues, regardless of whether they are
related; if a process has adequate access permission, it can send or receive
messages through the queue. Message notification can be synchronous or
asynchronous. Message queues can store multiple messages, be accessed
by multiple processes, be read in any order, and be prioritized according to
application needs.

This chapter includes the following sections:

• Message Queues, Section 10.1

• The Message Interface, Section 10.2

• Message Queue Examples, Section 10.3

10.1 Message Queues
The POSIX 1003.1b message passing facilities provide a deterministic, efficient
means for interprocess communication (IPC). Realtime message passing is
designed to work with shared memory in order to accommodate the needs
of realtime applications with an efficient, deterministic mechanism to pass
arbitrary amounts of data between cooperating processes. Predictability is the
primary emphasis behind the design for realtime message passing.

Cooperating processes can send and receive messages by accessing system-wide
message queues. These message queues are accessed through names that may
be pathnames.

The maximum size of each message is defined by the system to optimize the
message sending and receiving functions. Message buffers are preallocated,
ensuring the availability of resources when they are needed.

If your application involves heavy message traffic, you can prioritize the order
in which processes receive messages by assigning a priority to the message or
controlling the priority of the receiving process.

Messages 10–1

Asynchronous notification of the availability of a message on a queue allows a
process to do useful work while waiting to receive a message.

Message passing operations that contribute to kernel overhead have been
eliminated in the realtime message queue interface. If your application
requires the ability to wait on multiple message queues simultaneously or the
broadcast of a single message to multiple queues, you may need to write this
functionality into your application.

10.2 The Message Interface
The message queue interface is a set of structures and data that allows you to
use a message queue for sending and receiving messages. The message queue
is a linked list that serves as a holding place for messages being sent to and
received by processes sharing access to the message queue.

Table 10–1 lists the POSIX 1003.1b message queue functions that allow you
controlled access to messaging operations on a message queue.

Table 10–1 Message Functions

Function Description

mq_close Closes a message queue

mq_unlink Removes a message queue

mq_getattr Retrieves the attributes of a message queue

mq_notify Requests that a process be notified when a message is available on
a queue

mq_open Opens a message queue

mq_receive Receives a message from a queue

mq_send Sends a message to a queue

mq_setattr Sets the attributes of a message queue

General usage for message queues is as follows:

1. Get a message queue descriptor with a call to the mq_open function.

2. Send and receive messages with calls to the mq_send and mq_receive
functions.

3. Close the message queue with a call to the mq_close function.

4. Remove the message queue with a call to the mq_unlink function.

10–2 Messages

Data written to a message queue created by one process is available to all
processes that open the same message queue. Message queues are persistent;
once unlinked, their names and contents remain until all processes that have
opened the queue call the mq_close function. Child processes inherit the
message queue descriptor created by the parent process. Once the message
queue is opened, the child process can read or write to it according to access
permissions. Unrelated processes can also use the message queue, but must
first call the mq_open function to establish the connection.

You can identify message queue attributes with a call to the mq_getattr
function. You can specify whether the message operation is blocking or
non-blocking by calling the mq_setattr function.

A call to the mq_receive function receives the oldest, highest-priority message
on the queue. If two or more processes are waiting for an incoming message
on the same queue, the process with the highest priority that has been waiting
the longest receives the next message.

Often message queues are created and used only while an application is
executing. The mq_unlink function removes (deletes) the message queue and
its contents, unless processes still have the queue open. The message queue is
deleted only when all processes using it have closed the queue.

10.2.1 Opening a Message Queue
To set up a message queue, first create a new message queue or open an
existing queue using the mq_open function. If a message queue of the specified
name does not already exist, a new message queue is allocated and initialized.
If one already exists, the mq_open function checks permissions.

A process can create and open message queues early in the life of the
application. Use the mq_open function to open (establish a connection to) a
message queue. After a process opens the message queue, each process that
needs to use it must call the mq_open function specifying the same pathname.

The mq_open function provides a set of flags that prescribe the characteristics
of the message queue for the process and define access modes for the message
queue. Message queue access is determined by the OR of the file status flags
and access modes listed in Table 10–2.

Messages 10–3

Table 10–2 Status Flags and Access Modes for the mq_open Function

Flag Description

O_RDONLY Open for read access only

O_WRONLY Open for write access only

O_RDWR Open for read and write access

O_CREAT Create the message queue, if it does not already exist

O_EXCL When used with O_CREAT, creates and opens a message queue
if a queue of the same name does not already exist. If a message
queue of the same name exists, the message queue is not opened.

O_NONBLOCK Determines whether a send or receive operation is blocking or
nonblocking

The first process to call the mq_open function should use the O_CREAT flag
to create the message queue, to set the queue’s user ID to that of the calling
process, and to set the queue’s group ID to the effective group ID of the calling
process. This establishes an environment whereby the calling process, all
cooperating processes, and child processes share the same effective group ID
with the message queue. All processes that subsequently open the message
queue must have the same access permission as the creating process.

Each process that uses a message queue must begin by calling the mq_open
function. This call can accomplish several objectives:

• Create and open the message queue, if it does not yet exist (specify the
O_CREAT flag).

• Open an existing message queue.

• Attempt to create and open the queue but fail if the queue already exists
(specify both the O_CREAT and O_EXCL flags).

• Open access to the queue for the calling process and establish a connection
between the queue and a descriptor. All threads within the same process
using the queue use the same descriptor.

• Specify the access mode for the process:

— Read only

— Write only

— Read/write

10–4 Messages

• Specify whether the process will block or fail when unable to send a
message (the queue is full) or receive a message (the queue is empty) with
the oflags argument.

The mode bit is checked to determine if the caller has permission for the
requested operation. If the calling process is not the owner and is not in the
group, the mode bits must be set for world access before permission is granted.
In addition, the appropriate access bits must be set before an operation is
performed. That is, to perform a read operation, the read bit must be set.

For example, the following code creates a message queue and, if it does not
already exist, opens it for read and write access.

fd = mq_open("new_queue", (O_CREAT|O_EXCL|O_RDWR);

Once a message queue is created, its name and resources are persistent.
It exists until the message queue is unlinked with a call to the mq_unlink
function and all other references to the queue are gone.

The message flag parameter is either 0 or O_NONBLOCK. If you specify a
flag of 0, then a sending process sleeps if the message cannot be sent to the
specified queue, due to the queue being full. The process will sleep until other
messages have been removed from the queue and space becomes available.
When the flag is specified as O_NONBLOCK, the mq_send function returns
immediately with an error status.

Example 10–1 shows the code sequence to establish a connection to a message
queue descriptor.

Example 10–1 Opening a Message Queue
#include <unistd.h>
#include <sys/types.h>
#include <mqueue.h>
#include <fcntl.h>

main ()
int md;
int status;

/* Create message queue */

md = mq_open ("my_queue", O_CREAT|O_RDWR);

/*
* code to close and unlink the message queue goes here
*/

(continued on next page)

Messages 10–5

Example 10–1 (Cont.) Opening a Message Queue

status = mq_close(md); /* Close message queue */
status = mq_unlink("my_queue"); /* Unlink message queue */

Use the same access permissions that you would normally use on a call to the
file open function. If you intend to only read the queue, specify read permission
only on the mq_open function. If you intend to read and write to the queue,
open the queue with both read and write permissions.

When finished using a message queue, close the queue with the mq_close
function, and remove the queue by calling the mq_unlink function.

10.2.2 Sending and Receiving Messages
For an application in which the intended recipients of messages might be
ambiguous because they all use a single message queue, you can establish
multiple queues. In some cases you may need to provide a separate queue for
each process that receives a message. Two processes that carry on two-way
communication between them normally require two message queues:

• Process X sends messages to queue A; process Y receives from it

• Process Y sends messages to queue B; process X receives from it

Use of a single queue by multiple processes could be appropriate for an
application that collects and processes data. Consider an application that
consists of five processes that monitor data points and a sixth process that
accumulates and interprets the data. Each of the five monitoring processes
could send information to a single message queue. The sixth process could
receive the messages from the queue, with assurance that it is receiving
information according to the specified priorities of the incoming messages, in
first-in first-out order within each priority.

When a process receives a message from a queue, it removes that message
from the queue. Therefore, an application that requires one process to send
the same message to several other processes should choose one of the following
communication methods:

• Set up a message queue for each receiving process, and send each message
to each queue

• Communicate by using signals and shared memory

10–6 Messages

Once a message queue is open, you can send messages to another process using
the mq_send function. The mq_send function takes four parameters, including:
the message queue descriptor, a pointer to a message buffer, the size of the
buffer, and the message priority. The read/write permissions are checked along
with the length of the message, the status of the message queue, and the
message flag. If all checks are successful, the message is added to the message
queue. If the queue is already full, the sending process can block until space
in the queue becomes available, or it can return immediately, according to
whether it set the O_NONBLOCK flag when it called the mq_open function.

Once a message has been placed on a queue, you can retrieve the message
with a call to the mq_receive function. The mq_receive function includes
four parameters: the message queue descriptor, a pointer to a buffer to hold
the incoming message, the size of the buffer, and the priority of the message
received (the priority is returned by the function). The size of the buffer must
be at least the size of the message queue’s size attribute.

As with the mq_send function, the read/write operation permissions are checked
on a call to the mq_receive function. If more than one process is waiting to
receive a message when a message arrives at an empty queue, then the process
with the highest priority that has been waiting the longest is selected to
receive the message.

When a process uses the mq_receive function to read a message from a queue,
the queue may be empty. The receiving process can block until a message
arrives in the queue, or it can return immediately, according to the state of the
O_NONBLOCK flag established with a preceding call to the mq_open function.

10.2.3 Asynchronous Notification of Messages
A process that wants to read a message from a message queue has three
options:

• Set the queue to blocking mode, and wait for a message to be received by
calling mq_receive

• Set the queue to non-blocking mode, and call mq_receive multiple times
until a message is received

• Set the queue to non-blocking mode, and call mq_notify specifying a signal
to be sent when the queue goes from empty to non-empty

The last option is a good choice for a realtime application. The mq_notify
function is used to register a request for asynchronous notification by a signal
when a message becomes available on a previously empty queue. The process
can then do useful work until a message arrives, at which time a signal is sent
according to the signal information specified in the notification argument of

Messages 10–7

the mq_notify function. After notification, the process can call mq_receive to
receive the message.

Only one notification request at a time is allowed per message queue descriptor.
The previous notification request is canceled when another signal is sent; thus,
the request must be re-registered by calling mq_notify again.

10.2.4 Prioritizing Messages
A process can control the relative priority of messages it sends to a specified
queue by setting the msg_prio parameter in the mq_send function.

If msg_prio is specified on the mq_send function, the message is inserted into
the message queue according to its priority relative to other messages on the
queue. A message with a larger numeric value (higher priority) is inserted
into the queue before messages with a lower numeric value. The mq_receive
function always returns the first message on the queue, so if you assign higher
priorities to messages of higher importance, you can receive the most important
messages first. If you assign lower priorities to less important messages, you
can delay delivery of the messages as more important messages are sent.
Messages of equal priority are inserted in a first-in, first-out manner. The
ability to assign priorities to messages on the queue reduces the possibility of
priority inversion in the realtime messaging interface.

10.2.5 Using Message Queue Attributes
Use the mq_getattr function to determine the message queue attributes of an
existing message queue. The attributes are as follows:

• mq_flags — The message queue flags

• mq_maxmsg — The maximum number of messages allowed

• mq_msgsize — The maximum message size allowed for the queue

• mq_curmsgs — The number of messages on the queue

The mq_curmsgs attribute describes the current queue status. If necessary, call
the mq_setattr function to reset the flags. The mq_maxmsg and mq_msgsize
attributes cannot be modified after the initial queue creation. The mqueue.h
header file contains information concerning system-wide maximums and other
limits pertaining to message queues.

10–8 Messages

10.2.6 Closing and Removing a Message Queue
Each process that uses a message queue should close its access to the queue
by calling the mq_close function before exiting. When all processes using the
queue have called this function, the software removes the queue.

A process can remove a message queue by calling the mq_unlink function.
However, if other processes still have the message queue open, the mq_unlink
function returns immediately and destruction of the queue is postponed until
all references to the queue have been closed.

10.3 Message Queue Examples
Example 10–2 creates a message queue and sends a loop of messages. The
message queue is created using O_CREAT.

Example 10–2 Using Message Queues to Send Data
/*

* test_send.c
*
* This test goes with test_receive.c.
* test_send.c does a loop of mq_sends,
* and test_receive.c does a loop of mq_receives.
*/

#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <time.h>
#include <sched.h>
#include <sys/mman.h>
#include <sys/fcntl.h>
#include <signal.h>
#include <sys/rt_syscall.h>
#include <mqueue.h>
#include <errno.h>

#define PMODE 0666
extern int errno;

(continued on next page)

Messages 10–9

Example 10–2 (Cont.) Using Message Queues to Send Data

int main()
{
int i;
int status = 0;
mqd_t mqfd;
char msg_buffer[P4IPC_MSGSIZE];
struct mq_attr attr;
int open_flags = 0;
int num_bytes_to_send;
int priority_of_msg;

printf("START OF TEST_SEND \n");

/* Fill in attributes for message queue */
attr.mq_maxmsg = 20;
attr.mq_msgsize = P4IPC_MSGSIZE;
attr.mq_flags = 0;

/* Set the flags for the open of the queue.
* Make it a blocking open on the queue, meaning it will block if
* this process tries to send to the queue and the queue is full.
* (Absence of O_NONBLOCK flag implies that the open is blocking)
*
* Specify O_CREAT so that the file will get created if it does not
* already exist.
*
* Specify O_WRONLY since we are only planning to write to the queue,
* although we could specify O_RDWR also.
*/

open_flags = O_WRONLY|O_CREAT;

/* Open the queue, and create it if the receiving process hasn’t
* already created it.
*/

mqfd = mq_open("myipc",open_flags,PMODE,&attr);
if (mqfd == -1)

{
perror("mq_open failure from main");
exit(0);
};

(continued on next page)

10–10 Messages

Example 10–2 (Cont.) Using Message Queues to Send Data

/* Fill in a test message buffer to send */
msg_buffer[0] = ’P’;
msg_buffer[1] = ’R’;
msg_buffer[2] = ’I’;
msg_buffer[3] = ’O’;
msg_buffer[4] = ’R’;
msg_buffer[5] = ’I’;
msg_buffer[6] = ’T’;
msg_buffer[7] = ’Y’;
msg_buffer[8] = ’1’;
msg_buffer[9] = ’a’;

num_bytes_to_send = 10;
priority_of_msg = 1;

/* Perform the send 10 times */
for (i=0; i<10; i++)

{
status = mq_send(mqfd,msg_buffer,num_bytes_to_send,priority_of_msg);
if (status == -1)

perror("mq_send failure on mqfd");
else

printf("successful call to mq_send, i = %d\n",i);
}

/* Done with queue, so close it */
if (mq_close(mqfd) == -1)

perror("mq_close failure on mqfd");

printf("About to exit the sending process after closing the queue \n");

}

Example 10–3 creates a message queue and receives a loop of messages. The
message queue is created using O_CREAT.

Messages 10–11

Example 10–3 Using Message Queues to Receive Data
/*

* test_receive.c
*
* This test goes with test_send.c.
* test_send.c does a loop of mq_sends,
* and test_receive.c does a loop of mq_receives.
*/

#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <time.h>
#include <sched.h>
#include <sys/mman.h>
#include <sys/fcntl.h>
#include <signal.h>
#include <sys/rt_syscall.h>
#include <mqueue.h>
#include <errno.h>

#define PMODE 0666
extern int errno;

int main()
{
int i;
mqd_t mqfd;
/* Buffer to receive msg into */
char msg_buffer[P4IPC_MSGSIZE];
struct mq_attr attr;
int open_flags = 0;
ssize_t num_bytes_received = 0;
msg_buffer[10] = 0; /* For printing a null terminated string for testing */

printf("START OF TEST_RECEIVE \n");

/* Fill in attributes for message queue */
attr.mq_maxmsg = 20;
attr.mq_msgsize = P4IPC_MSGSIZE;
attr.mq_flags = 0;

(continued on next page)

10–12 Messages

Example 10–3 (Cont.) Using Message Queues to Receive Data

/* Set the flags for the open of the queue.
* Make it a blocking open on the queue,
* meaning it will block if this process tries to
* send to the queue and the queue is full.
* (Absence of O_NONBLOCK flag implies that
* the open is blocking)
*
* Specify O_CREAT so that the file will get
* created if it does not already exist.
*
* Specify O_RDONLY since we are only
* planning to write to the queue,
* although we could specify O_RDWR also.
*/

open_flags = O_RDONLY|O_CREAT;

/* Open the queue, and create it if the sending process hasn’t
* already created it.
*/

mqfd = mq_open("myipc",open_flags,PMODE,&attr);
if (mqfd == -1)

{
perror("mq_open failure from main");
exit(0);
};

/* Perform the receive 10 times */
for (i=0;i<10;i++)

{
num_bytes_received = mq_receive(mqfd,msg_buffer,P4IPC_MSGSIZE,0);
if (num_bytes_received == -1)

{
perror("mq_receive failure on mqfd");
}

else
printf("data read for iteration %d = %s \n",i,msg_buffer);

}

/* Done with queue, so close it */
if (mq_close(mqfd) == -1)

perror("mq_close failure on mqfd");

/* Done with test, so unlink the queue,
* which destroys it.
* You only need one call to unlink.
*/

if (mq_unlink("myipc") == -1)
perror("mq_unlink failure in test_ipc");

(continued on next page)

Messages 10–13

Example 10–3 (Cont.) Using Message Queues to Receive Data

printf("Exiting receiving process after closing and unlinking queue \n");

}

10–14 Messages

11
Realtime Performance and System Tuning

Chapter 1 describes the basic issues that concern a realtime application,
and what services a realtime operating system can provide to users to help
meet their realtime needs. It mainly describes issues within the scope of
the user’s application code itself, such as how to set priority and scheduling
priorities, how to lock down process memory, and how to use asynchronous
I/O. Chapter 1 also discusses the value of a preemptive kernel in reducing the
process preemption latency of a realtime application.

This chapter explores more deeply the latency issues of a system and how
they affect the realtime performance of an application. This involves a greater
understanding of the interaction of the application with the underlying UNIX
system, and with devices involved directly or indirectly with the application.
Section 11.2 outlines some ways that a user can improve application
performance.

11.1 Realtime Responsiveness
Realtime applications require a predictable response time to external events,
such as device interrupts. A typical realtime application involves:

• An interrupt-generating device

• An interrupt service routine that collects data from the device

• User-level code that processes the collected data

Realtime responsiveness is a characterization of how quickly an operating
system and an application, working together, can respond to external events.
One way of measuring responsiveness is through a system’s latency. The time
it takes for hardware and the operating system to respond to external events is
latency, and is expressed as a delay time. Understanding the causes of latency
and minimizing their effects is a key to successful realtime program design,
and is the focus of this chapter.

Two types of latency are described in the following sections:

• Interrupt service routine (ISR) latency

Realtime Performance and System Tuning 11–1

• Process dispatch latency (PDL)

11.1.1 Interrupt Service Routine Latency
A system’s interrupt service routine (ISR) latency is the elapsed time from
when an interrupt occurs until execution of the first instruction in the
interrupt service routine. The system must first recognize that an interrupt
has occurred, and then dispatch to the ISR code. If critical postprocessing is
done in the ISR, then the user must be concerned with completion time of the
ISR code, not just the time it takes to begin execution of its first instruction.
Thus there are two concerns: ISR latency and ISR execution. There are factors
that cause ISR latency and ISR execution to vary in duration, and these factors
make it more difficult to assign latency a deterministic value.

The most important factor is the relative interrupt priority level (IPL) at which
the ISR executes. When there are other ISRs of equal or greater interrupt
priority level running at the time that the realtime device interrupts, the
realtime device ISR is blocked from running until the current ISR is finished.

There could be multiple ISRs waiting to execute that have an equal or higher
IPL at the time of the realtime interrupt, and all will hold off the realtime
ISR until they complete. In addition, once the realtime ISR is running, it
can be preempted or held off by one or more devices of higher IPL, and the
realtime ISR will be delayed by the collective duration of these ISRs. Thus, it
is important to know the relative IPLs of all the devices that could potentially
interrupt during critical realtime processing, including system-provided devices
such as a network driver or disk driver.

11.1.2 Process Dispatch Latency
Process Dispatch Latency (PDL) is the time it takes from when an interrupt
occurs until a process that was blocked waiting on the interrupt executes.
Process dispatch latency includes:

• ISR latency

• ISR execution time

• Time required to return from the ISR

• Time required for the context switch back to the process-level code which is
waiting on the interrupt

There are many more factors that can potentially increase the process dispatch
latency of a realtime application. Any process that is currently executing code
that holds a simple lock, is funneled to the master process, or has its IPL
raised, will not be preemptable by the realtime process and thus will hold off
the realtime process from running. (Note that a user process cannot hold a

11–2 Realtime Performance and System Tuning

simple lock, be funneled to the master process, or have its IPL raised, except
through a system call.) Once a process is able to run, it must compete against
other processes in order to actually run, and the process with the highest
priority will run.

Note that process priority can affect PDL, but cannot affect ISR latency. In
other words, no matter how high the priority of an application process, even
if it is in the realtime priority range, all ISRs that need servicing at the time
that the realtime device’s ISR needs servicing will be serviced before process
code can execute, no matter in what order or at what interrupt priority level
the ISRs run.

11.2 Improving Realtime Responsiveness
This section contains guidelines for improving realtime responsiveness.

Minimize Paging by Locking Down Memory
Be sure that there is sufficient memory on your system, and always lock
down memory in the user process to reduce paging. Paging will occur when
there are many threads and processes running on the system that do not
collectively fit into system memory, and must be paged in and out as necessary.
Application code and data that are locked in memory will not be paged. Paging
affects process dispatch latency because it executes code in the kernel that is
protected by simple locks, and thus cannot be preempted. Note that certain
system daemons are not locked in memory, so a secondary effect is paging from
those systems.

Turn On Kernel Preemption
Turn on kernel preemption and set your application code scheduling priority to
SCHED_FIFO. This is described in Chapter 2.

Manage Priorities
Always consider the process priority level of your application in terms of
relative importance in the overall system. You may need to use priorities in
the realtime range. This affects process dispatch latency when there are other
processes ready to run at the same time that the realtime application is ready
to run. The process with the highest priority that has been waiting the longest
among the waiting processes of that priority will run first.

Note, however, that always running in the realtime priority range is not
necessarily what you should do. If you need to interact with system services
that have threads or processes associated with them such as the network, you
need to run at a priority at or below the priority of those threads or processes,
as well as the priority of anything on which those threads or processes depend.

Realtime Performance and System Tuning 11–3

In the kernel, there are multiple threads. The purpose of these threads is to
perform activities that have the potential of blocking, and thus serve as the
delivery mechanism of information between ISRs and user processes. These
kernel threads do not have much of the state information that processes have.

Kernel threads use the first-in first-out scheduling policy, and are scheduled
along with POSIX processes. The kernel sets priorities as Mach priorities,
which are the inverse of POSIX priorities: 0 is the highest priority Mach
thread and 63 is the lowest. Under POSIX, 64 is the highest priority and 0 is
the lowest.

You can use the ps command to display thread priorities. Because the ps
program predates the use of threads, its ability to display information clearly
about threads is limited. The following example shows an example of using the
command ps axm -o L5FMT,psxpri to display L5FMT format and append the
POSIX priority field:

% ps axm -o L5FMT,psxpri
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD PPR
3 R < 0 0 0 0.0 32 -12 0 3.4M * ?? 05:02:40 kernel idle 31

R N 0.0 63 19 - 0:00.00 0
U < 0.0 38 -6 malloc_ 0:00.51 25
U < 0.0 32 -12 402cb0 0:49.47 31
U < 0.0 32 -12 402eac 0:00.00 31
S < 0.0 33 -11 netisr 05:01:23 30
U < 0.0 32 -12 3e3f18 0:00.00 31
U < 0.0 38 -6 4c3b80 0:00.00 25
U 0.0 42 0 ubc_dir 0:00.52 21
U < 0.0 37 -7 4c2678 0:00.01 26
U < 0.0 37 -7 4c2680 0:03.77 26
U < 0.0 38 -6 4c33b0 0:12.69 25
U < 0.0 32 -12 4e36d8 0:00.01 31
U < 0.0 37 -7 4e36d8 0:00.12 26
U < 0.0 37 -7 4ba2d8 0:00.00 26
U < 0.0 38 -6 4e3078 0:00.00 25
U < 0.0 42 -2 24ce30 0:00.03 21
I 0.0 42 0 nfsiod_ 0:01.49 21
I 0.0 42 0 nfsiod_ 0:01.65 21
I 0.0 42 0 nfsiod_ 0:01.82 21
I 0.0 42 0 nfsiod_ 0:00.61 21
I 0.0 42 0 nfsiod_ 0:01.71 21
I 0.0 44 0 nfsiod_ 0:01.26 19
I 0.0 42 0 nfsiod_ 0:01.78 21

80048001 I 0 1 0 0.0 44 0 0 40K pause ?? 0:03.12 init 19
8001 IW 0 3 1 0.0 44 0 0 0K sv_msg_ ?? 0:00.12 kloadsrv 19
8001 S 0 17 1 0.0 44 0 0 48K pause ?? 03:58:06 update 19
8001 I 0 81 1 0.0 44 0 0 120K event ?? 0:02.64 syslogd 19
8001 IW 0 83 1 0.0 42 0 0 0K event ?? 0:00.03 binlogd 21
8001 S 0 135 1 0.0 44 0 0 80K event ?? 8:13.21 routed 19
8001 S 0 226 1 0.0 44 0 0 104K event ?? 8:25.31 portmap 19
8001 IW 0 234 1 0.0 44 0 0 0K event ?? 0:00.21 ypbind 19
.
.
.

11–4 Realtime Performance and System Tuning

You can use the dbx command from a root account to display more information
about kernel threads, as follows:

dbx -k /vmunix
(dbx) set $pid=0
(dbx) tlist [shows kernel threads]
(dbx) tset thread-name ;t [shows which routine a thread is running]
(dbx) p thread->sched_pri [shows Mach priority for the current thread]

The following example shows use of the dbx command:
dbx -k /vmunix
dbx version 3.11.8
Type ’help’ for help.

stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available

warning: Files compiled -g3: parameter values probably wrong
(dbx) set $pid=0
(dbx) tlist
thread 0xfffffc0003fd1be8 stopped at [thread_run:2388 ,0xfffffc00002a2560] Source not available
thread 0xfffffc0003fd6000 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd62c0 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd6580 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd6dc0 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd7080 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd7340 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd7600 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd78c0 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd7b80 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6a000 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6a2c0 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6a580 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6a840 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6ab00 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6adc0 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd1950 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6b080 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6b340 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6b600 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6b8c0 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6bb80 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0000926000 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
(dbx) tset 0xfffffc0003f6bb80;t
thread 0xfffffc0003f6bb80 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
> 0 thread_block() ["/usr/sde/osf1/build/ptos.bl8/src/kernel/kern/sched_prim.c":2017,

0xfffffc00002a1d9c]
1 async_io_thread(0x0, 0x0, 0x0, 0x0, 0x0) ["../../../../src/kernel/nfs/nfs_vnodeops.c":2828,

0xfffffc00002f4898]
(dbx) p thread->sched_pri
44

Realtime Performance and System Tuning 11–5

Manage Physical Memory
By default, the parameter ubc_maxpercent in the file /sys/conf/param.c is set
to 100. That means that up to 100% of physical memory can be consumed by
the Unified Buffer Cache (UBC) for buffering file data. Some systems perform
better when not all physical memory is allowed to be taken by the UBC.

For improved realtime responsiveness, change this the value of /sys/conf
/param.c to between 50 and 80, depending on the amount of file system
activity done on the system. This can improve system realtime latency, because
when the UBC has consumed its maximum allocation of memory for buffering
file data, the least recently used buffers must be flushed to disk if they are
modified. Flushing these buffers is done with a simple lock held, and therefore
can effect process dispatch latency. The more memory that the UBC is allowed
to use before flushing, the longer it will take to perform the flushing. Lowering
the value of the ubc_maxpercent parameter will cause the flushing to occur
more frequently, but take less time.

Write Effective Device Drivers
When writing device drivers, follow these guidelines:

• Avoid holding locks for long periods
Holding a lock prevents context switches from occurring.

• Avoid funneling
Funneled device drivers take a lock upon entry.

• Interrupt service routines should be brief
Consider use of a kernel thread to do ISR postprocessing. While an ISR
is executing, other interrupts of equal or lower IPL are delayed, and no
process can run until all ISR activity is completed. Consider use of the
rt_post_callout function for ISR postprocessing that needs to execute
before any process code, but after any ISRs. See Writing Device Drivers:
Tutorial for information about the rt_post_callout function.

11–6 Realtime Performance and System Tuning

Avoid Configuring Peripheral Devices in the System
Use devices with care that could interfere with realtime responsiveness, such
as:

a. The network driver

Do not configure the network driver into your system if it is not a necessary
part of your realtime application. If it is necessary, then be sure that
it is used only in postprocessing, and not during critical phases of your
application when you are attempting to minimize latency.

b. The disk driver

Be sure that postprocessing data is written to permanent storage during
non-critical sections of your application, and that all data is properly
flushed and synchronized to disk at appropriate times. See Chapter 8 for
more information about synchronized I/O.

In general, keep all peripheral devices that can cause spurious interrupts out
of the configuration of the most critical systems. Other devices can possibly
cause interrupt latency as well as bus contention with the critical devices. If
other devices are a necessary part of the system, analyze the interrupt rate
and attempt to avoid interrupt overload on the system.

Consider Use of Symmetrical Multiprocessing
Consider a symmetrical multiprocessing (SMP) system as a possible means of
improving realtime responsiveness, by dividing the application across multiple
processors using the runon command.

Realtime Performance and System Tuning 11–7

A
Digital UNIX Realtime Functional Summary

This appendix summarizes the functions that are of particular interest to
realtime application developers. The source of these functions ranges from
System V to POSIX 1003.1 and POSIX 1003.1b. The tables given in this
appendix serve as a guide in application development, but you may need to
consult the online reference pages for additional information or pointers to
additional functions and commands.

The function tables are arranged according to the following categories:

• Process Control

• P1003.1b Priority Scheduling

• P1003.1b Clocks

• Date and Time Conversion

• P1003.1b Timers

• BSD Clocks and Timers

• P1003.1b Memory Locking

• System V Memory Locking

• P1003.1b Asynchronous I/O

• POSIX Synchronized I/O

• BSD Synchronized I/O

• P1003.1b Messages

• P1003.1b Shared Memory

• P1003.1b Semaphores

• POSIX 1003.1b Realtime Signals

• Signal Control and Other Signal Operations

• sigsetops Primitives

Digital UNIX Realtime Functional Summary A–1

• Process Ownership

• Input and Output

• Device Control

• System Database

Table A–1 Process Control

Function Purpose

alarm Sends the calling process a SIGALRM signal after a
specified number of seconds

exit Terminates the calling process

exec Runs a new image, replacing the current running
image

fork Creates a new process

getenv Reads an environment list

isatty Verifies whether a file descriptor is associated with
a terminal

kill Sends a signal to a process or a group of processes

malloc Allocates memory

pause Suspends the calling process until a signal of a
certain type is delivered

sleep Suspends the current process either for a specified
period or until a signal of a certain class is delivered

sysconf Gets the current value of a configurable system
limit or option

uname Returns information about the current state of the
operating system

wait Lets a parent process get status information for
a child that has stopped, and delays the parent
process until a signal arrives

waitpid Lets a parent process get status information for
a specific child that has stopped and delays the
parent process until a signal arrives from that child
or that child terminates

A–2 Digital UNIX Realtime Functional Summary

Table A–2 P1003.1b Priority Scheduling

Function Purpose

sched_getscheduler Returns the scheduling policy of a specified process

sched_get_priority_max Returns the maximum priority allowed for a
scheduling policy

sched_get_priority_min Returns the minimum priority allowed for a
scheduling policy

sched_rr_get_interval Returns the interval time limit allowed for the
round-robin scheduling policy

sched_getparam Returns the scheduling priority of a specified
process

sched_setscheduler Sets the scheduling policy and priority of a specified
process

sched_setparam Sets the scheduling priority of a specified process

sched_yield Yields execution to another process

Table A–3 P1003.1b Clocks

Function Purpose

clock_gettime Returns the current value for the specified clock

clock_getres Returns the resolution and maximum value of the
specified clock

clock_settime Sets the specified clock to the specified value

Table A–4 Date and Time Conversion

Function Purpose

asctime Converts a broken-down time into a 26-character
string

ctime Converts a time in seconds since the Epoch to an
ASCII string in the form generated by asctime

difftime Computes the difference between two calendar
times (time1–time0) and returns the difference
expressed in seconds

(continued on next page)

Digital UNIX Realtime Functional Summary A–3

Table A–4 (Cont.) Date and Time Conversion

Function Purpose

gmtime Converts a calendar time into a broken-down time,
expressed as GMT

localtime Converts a time in seconds since the Epoch into a
broken-down time

mktime Converts the broken-down local time in the tm
structure pointed to by timeptr into a calendar time
value with the same encoding as that of the values
returned by time

tzset Sets the external variable tzname, which contains
current timezone names

Table A–5 P1003.1b Timers

Function Purpose

nanosleep Causes the calling process to suspend execution for
a specified period of time

timer_create Returns a unique timer ID used in subsequent calls
to identify a timer based on the systemwide clock

timer_delete Removes a previously allocated, specified timer

timer_getoverrun Returns the timer expiration overrun count for the
specified timer.

timer_gettime Returns the amount of time before the specified
timer is due to expire and the repetition value

timer_settime Sets the value of the specified timer to either an
offset from the current clock setting or an absolute
value

Table A–6 BSD Clocks and Timers

Function Purpose

getitimer Returns the amount of time before the timer expires
and the repetition value

gettimeofday Gets the time of day

(continued on next page)

A–4 Digital UNIX Realtime Functional Summary

Table A–6 (Cont.) BSD Clocks and Timers

Function Purpose

setitimer Sets the value of the specified timer

settimeofday Sets the time of day

Table A–7 P1003.1b Memory Locking

Function Purpose

mlock Locks a specified region of a process’s address space

mlockall Locks a process’s address space

munlock Unlocks a specified region of a process’s address
space

munlockall Unlocks a process’s address space

Table A–8 System V Memory Locking

Function Purpose

plock Locks and unlocks a process, text, or data in
memory

Table A–9 P1003.1b Asynchronous I/O

Function Purpose

aio_cancel Cancels one or more requests pending against the
file descriptor

aio_error Returns the error status of a specified operation

aio_fsync Asynchronously writes changes in a file to
permanent storage

aio_read Initiates a read request on the specified file
descriptor

aio_return Returns the value of an operation

aio_suspend Suspends the calling process until at least one of
the specified requests has completed

(continued on next page)

Digital UNIX Realtime Functional Summary A–5

Table A–9 (Cont.) P1003.1b Asynchronous I/O

Function Purpose

aio_write Initiates a write request to the specified file
descriptor

lio_listio Initiates a list of requests

Table A–10 POSIX Synchronized I/O

Function Purpose

fcntl Performs controlling operations on the specified
open file

fdatasync Writes changes to a file to permanent storage
— saves all modified data, and only file system
information needed to access the data

fsync Writes changes to a file to permanent storage —
saves all modified data and file control information

Table A–11 BSD Synchronized I/O

Function Purpose

sync Updates all file systems — all information in
memory that should be on disk is written out

Table A–12 P1003.1b Messages

Function Purpose

mq_close Closes a message queue

mq_getattr Returns the status and attributes of a message
queue

mq_notify Attaches a request for asynchronous signal
notification to a message queue

mq_open Opens a message queue

mq_receive Receives the oldest, highest-priority message from
the message queue

(continued on next page)

A–6 Digital UNIX Realtime Functional Summary

Table A–12 (Cont.) P1003.1b Messages

Function Purpose

mq_send Places a message in the message queue

mq_setattr Sets the attributes associated with a message queue

mq_unlink Removes a message queue

Table A–13 P1003.1b Shared Memory

Function Purpose

shm_open Opens a shared memory object, creating the object
if necessary

shm_unlink Removes a shared memory object created by a call
to shm_open

Table A–14 P1003.1b Semaphores

Function Purpose

sem_close Deallocates the specified semaphore

sem_destroy Removes or destroys the specified semaphore

sem_getvalue Gets the value of a specified semaphore

sem_trywait Conditionally performs a semaphore lock on a
semaphore

sem_init Creates a new semaphore

sem_open Opens a semaphore for use by a process

sem_post Releases a locked semaphore

sem_wait Performs a semaphore lock on a semaphore

Table A–15 POSIX 1003.1b Realtime Signals

Function Purpose

sigaction Examines or specifies the action taken on delivery
of a specified signal

(continued on next page)

Digital UNIX Realtime Functional Summary A–7

Table A–15 (Cont.) POSIX 1003.1b Realtime Signals

Function Purpose

sigqueue Sends and queues the specified signal with optional
data delivery to the specified process

sigtimedwait For a specified period of time, suspends a calling
thread until a signal arrives

sigwaitinfo Suspends a calling thread until a signal arrives

Table A–16 Signal Control and Other Signal Operations

Function Purpose

signal Changes the action of a signal

sigpending Stores a set of pending signals in a specified space

sigprocmask Examines or changes the signal mask of the calling
process

sigsetops Manipulates signal sets

sigsuspend Replaces the signal mask of the calling process and
then suspends the process

sigwait Suspends a calling thread until a signal arrives

Table A–17 sigsetops Primitives

Function Purpose

sigaddset Adds the specified signal to the signal set

sigdelset Deletes the specified signal from the signal set

sigemptyset Initializes the signal set to exclude all signals given
in POSIX 1003.1

sigfillset Initializes the signal set to include all signals given
in POSIX 1003.1

sigismember Tests if the specified signal is a member of the
signal set

A–8 Digital UNIX Realtime Functional Summary

Table A–18 Process Ownership

Function Purpose

geteuid Returns the effective user ID of the calling process

getegid Returns the effective group ID of the calling process

getgid Returns the real group ID of the calling process

getpgrp Returns the process group ID of the calling process

getpid Returns the process ID of the calling process

getppid Returns the process ID of the parent of the calling
process

getuid Returns the real user ID of the calling process

setgid Sets the group ID of the calling process

setsid Creates a new session, for which the calling process
is the session leader

setuid Sets the user ID of the calling process

Table A–19 Input and Output

Function Purpose

close Closes a file

dup Duplicates a file descriptor

dup2 Duplicates a file descriptor

fileno Retrieves a file descriptor

lseek Moves a pointer to a record within a file

mkfifo Creates fifo special files

open Opens a file

pipe Creates an interprocess channel

read Reads the specified number of bytes from a file

write Writes the specified number of bytes to a file

Digital UNIX Realtime Functional Summary A–9

Table A–20 Device Control

Function Purpose

cfgetispeed Retrieves the input baud rate for a terminal

cfgetospeed Retrieves the output baud rate for a terminal

cfsetispeed Sets the input baud rate for a terminal

cfsetospeed Sets the output baud rate for a terminal

isatty Verifies whether a file descriptor is associated with
a terminal

tcdrain Causes a process to wait until all output has been
transmitted

tcflow Suspends or restarts the transmission or reception
of data

tcflush Discards data that is waiting to be transmitted

tcgetattr Retrieves information on the state of a terminal

tcsendbreak Sends a break character for a specified amount of
time

tcsetattr Applies a set of attributes to a terminal

Table A–21 System Database

Function Purpose

getgrgid Returns group information when passed a group ID

getgrnam Returns group information when passed a group
name

getpwnam Returns user information when passed a user name

getpwuid Returns user information when passed a user ID

A–10 Digital UNIX Realtime Functional Summary

Index

A
Access permission

memory objects, 3–5
message queues, 10–6

access system call, 2–21
aiocb structure, 7–2, 7–5, 7–6, 7–7, 7–8
aio_cancel function, 7–4, 7–8, A–5
AIO_CANCELED status, 7–9
aio_error function, 7–3, 7–4, 7–5, 7–7,

7–9, A–5
aio_fsync function, 7–9, A–5
AIO_NOTCANCELED status, 7–9
aio_read function, 5–19, 7–3, 7–4, 7–5,

7–9, A–5
aio_return function, 7–3, 7–5, 7–7, 7–9
aio_sigevent member, 7–9
aio_suspend function, 7–4, 7–5, 7–8, 7–9,

A–5
aio_write function, 5–19, 7–3, 7–4, 7–5,

7–9, A–5
alarm function, 6–8, A–2
ALL_DONE status, 7–9
asctime function, 6–5, A–3
Asynchronous I/O, 1–4, 1–10, 7–1 to 7–19

blocking, 7–9
canceling, 7–8
data structures, 7–2
example, 7–10, 7–11
example using lio_listio , 7–16
functions, 7–4
identifying the location, 7–2
list-directed, 7–6
raw devices, 7–10

Asynchronous I/O (cont’d)
return values, 7–7
signals, 1–10, 7–3
specifying a signal, 7–3
status, 7–7
summary, 7–4
using signals, 5–19

Asynchronous I/O library
compiling, 1–20

C
cfgetispeed function, A–10
cfgetospeed function, A–10
cfsetispeed function, A–10
cfsetospeed function, A–10
Clocks, 1–9, 6–1 to 6–20

resolution, 6–9
returning, 6–9
setting, 6–4, 6–9
systemwide, 6–2
using with timers, 6–16

clock_getres function, 6–3, A–3
clock_gettime function, 6–3, 6–4, 6–5,

A–3
CLOCK_REALTIME

granularity, 6–2
resolution, 6–2

CLOCK_REALTIME clock, 6–2, 6–3
clock_setdrift function, non-POSIX, 6–5
clock_settime function, 6–3, 6–4, 6–5,

A–3
close function, 7–5, 7–7, A–9

Index–1

Compiling
asynchronous I/O libraries, 1–20
in a POSIX environment, 1–19
with the realtime library, 1–20

ctime function, 6–5, 6–9, A–3

D
Data integrity, 8–1
Data structures

for asynchronous I/O, 7–2
for system clock, 6–9
for timers, 6–9
itimerspec , 6–9
timers, 6–9
timespec , 6–9

difftime function, 6–5, A–3
Digital UNIX

kernel
accessing, 1–19
installing, 1–19

POSIX, 1–19
Digital UNIX realtime facilities, 1–4, A–1
Drift rate

and timers, 6–4
Driver programs

viewing passes, 1–20
dup function, 3–8, A–9
dup2 function, A–9

E
Epoch, 6–2
errno function, 7–7
exec function, 4–2, 4–5, 6–8, 6–11, 6–12,

A–2
exec system call, 2–18
exit function, 7–7, A–2
_exit function, 7–6

F
fchmod function, 3–8, 3–9
fcntl function, 3–8, 3–9, A–6
fdatasync function, A–6
File integrity, 8–1
fileno function, A–9
First-in first-out scheduling, 2–6, 2–7, 2–8
Fixed-priority scheduling, 1–8, 2–6, 2–7
flock function, 3–8
fork function, 4–2, 6–12, 7–6, 7–7, A–2
fork system call

with priorities, 2–18
fstat function, 3–8, 3–9
fsync function, A–6
ftruncate function, 3–8

G
getegid function, A–9
getenv function, A–2
geteuid function, A–9
getgid function, A–9
getgrgid function, A–10
getgrnam function, A–10
getitimer function, A–4
getpgrp function, A–9
getpid function, 2–18, A–9
getppid function, 2–18, A–9
getpriority function, 2–12
getpwnam function, A–10
getpwuid function, A–10
getrlimit function, 4–5
gettimeofday function, A–4
getuid function, A–9
getuid system call, 2–21
GID, changing priority, 2–21
GMT, 6–2
gmtime function, 6–5, A–3
granularity

CLOCK_REALTIME, 6–2
Greenwich Mean Time (GMT), 6–2

Index–2

H
.h files

See Header files
Hardware exception, 5–1
Hardware interrupts, 2–14

and priorities, 2–16
Header files

conforming POSIX applications, 1–20
limits.h , 6–13
mqueue.h , 10–8
sched.h , 2–10, 2–17
signal.h , 5–8, 5–9, 5–19, 6–12, 7–3
sys/mman.h , 4–5
time.h , 6–2, 6–6, 6–9, 6–12
unistd.h , 1–20

I
Interprocess communication
I/O

See Asynchronous I/O
Integrity

of data and files, 8–2
Interrupt service routine (ISR) latency, 11–2
IPC

See Memory-mapped files
See Messages
See Semaphores
See Shared memory
See Signals

isatty function, A–2, A–10
ISR latency, 11–2
itimerspec structure, 6–9, 6–12, 6–13,

6–14
it_interval member, itimerspec , 6–9, 6–14
it_value member, itimerspec , 6–9, 6–14

J
Job control, 5–1

K
Kernel

nonpreemptive, 1–5
preemptive, 1–5, 1–6

Kernel mode preemption, 1–5
kill function, 5–2, 5–5, A–2

L
Latency

comparing, 1–6
interrupt service routine (ISR), 11–2
ISR, 11–2
memory locking, 1–10, 4–1
nonpreemptive kernel, 1–5
PDL, 11–2
preemption, 1–5
preemptive kernel, 1–6
process dispatch latency (PDL), 11–2
reducing, 1–10

libaio_raw.a library, 7–10
librt.a library, 1–20, 1–21
limits.h header file, 6–13
Linking

realtime libraries, 1–20
specifying a search path, 1–21

lio_listio function, 5–19, 7–3, 7–4, 7–6,
7–7, 7–8, 7–9, A–5

and signals, 7–6
example, 7–16

LIO_NOWAIT mode, 7–6
LIO_WAIT mode, 7–6
List-directed I/O, 7–6
localtime function, 6–5
Locking memory, 4–2

entire process, 4–6
region, 4–3
shared, 3–10

Index–3

lseek function, 7–4, A–9

M
malloc function, 4–5, 4–7, A–2
man command, xiv
MCL_CURRENT flags, 4–6
MCL_FUTURE flags, 4–6
Memory alignment, example, 4–5
Memory locking, 1–4, 1–10, 4–1 to 4–8

across a fork , 4–2
across an exec , 4–2
and paging, 4–1
example, 4–7
realtime requirements, 4–1
removing locks, 4–5
specifying a range, 4–3
specifying all, 4–3

Memory object
locking example, 3–10

Memory unlocking
example, 4–7

Memory-mapped files, 3–1 to 3–12
controlling, 3–9
locking, 3–8
mapping, 3–5
overview, 3–1
unmapping, 3–5

Message queue, 10–1
See Messages
access permission, 10–6
closing, 10–9
creating, 10–3
opening, 10–3
opening example, 10–5
removing, 10–9
setting attributes, 10–8

Messages, 1–12, 10–1 to 10–14
creating, 10–2
functions, 10–2
overview, 10–1
prioritizing, 10–2, 10–8
receiving, 10–7
sending, 10–5, 10–7
sending and receiving, 10–6

Messages (cont’d)
using queues examples, 10–9, 10–11
using queues to receive data, 10–11
using queues to send data, 10–9
using shared memory, 10–6
using signals, 10–6
using the interface, 10–2, 10–3

mkfifo function, A–9
mktime function, 6–5, A–3
mlock function, 3–10, 4–2, 4–3, 4–5, A–5

example, 4–7
mlockall function, 3–10, 4–2, 4–3, 4–6,

A–5
example, 4–7
MCL_CURRENT flag, 4–6
MCL_FUTURE flag, 4–6

mmapfunction, 3–2, 3–5, 3–6
mprotect function, 3–2, 3–9
mqueue.h header file, 10–8
mq_close function, 10–2
mq_close function, 10–9, A–6
mq_getattr function, 10–2
mq_getattr function, 10–8, A–6
mq_notify function, 10–2
mq_notify function, 5–19, A–6
mq_open function, 10–2
mq_open function, 10–3, 10–4, 10–7, A–6
mq_receive function, 10–2
mq_receive function, 10–3, 10–7, A–6
mq_send function, 10–2
mq_send function, 10–5, 10–7, A–6
mq_setattr function, 10–2
mq_setattr function, A–6
mq_unlink function, 10–2, 10–9, A–6
msync function, 3–2, 3–9
munlock function, 4–2, 4–3, 4–5, A–5

example, 4–7
munlockall function, 4–2, 4–3, 4–5, A–5

example, 4–7
munmapfunction, 3–2, 3–5

Index–4

N
nanosleep function, 1–9, 1–14, 6–9, 6–16,

A–4
effect on signals, 6–16

nice function, 2–7, 2–12, 2–17
and realtime, 2–8

nice interface, 1–8, 2–11, 2–12
default priority, 2–12
priorities, 2–11

Non-blocking I/O
See Asynchronous I/O

Nonpreemptive kernel
latency, 1–5

O
open function, 7–1, 7–5, 7–7, A–9
O_CREAT flag

with messages, 10–9, 10–11
O_NONBLOCK flag

with messages, 10–5

P
Page size

determining, 4–5
Paging, 4–1, 4–2
pause function, A–2
PDL latency, 11–2
Per-process timers

See Timers
Performance and system tuning, 11–1 to

11–7
PID in process scheduling, 2–18
pipe function, A–9
plock function, A–5
Policy, setting scheduling, 2–23
Portability of timers, 6–2
POSIX

Digital UNIX, 1–19
runtime libraries, 1–19

POSIX environment, 1–17
compiling, 1–19

POSIX portability, 2–20, 6–2
_POSIX_C_SOURCE symbol, 1–19
Preemption latency, 1–5
Preemptive kernel, 1–4, 1–5, 1–6

latency, 1–6
Preemptive priority scheduling, 2–7, 2–8
Priorities

and hardware interrupts, 2–16
and scheduling policies, 2–11, 2–12, 2–16
configuring, 2–16
determinging limits, 2–18
displaying, 2–15
nonprivileged user, 2–11
realtime, 2–12
relationships, 2–13
using the ps command, 2–15

Priority, 2–1 to 2–24
and preemption, 1–5
and shared memory, 3–12
base level, 2–12
change notification, 2–19
changing, 2–9, 2–20
determining, 2–19
inheritance not supported, 2–14
initial, 2–11, 2–19
initializing, 2–20
inversion, 2–14
of messages, 10–8
ranges, 1–8, 2–11, 2–12
setting, 2–19, 2–21, 2–23
using to improve realtime responsiveness,

11–3
Priority inversion

with semaphores, 9–7
Priority ranges, 2–7, 2–11
Privileges

superuser , 6–5
Process

priority, 1–7
Process dispatch latency (PDL), 11–2
Process list, 2–8, 2–11

Index–5

Process preemption latency, 1–5
Process scheduling, 2–1 to 2–24

setting policy, 2–23
yielding, 2–22

ps command, 2–15
pthread_kill function, 5–9
pthread_sigmask function, 5–9

Q
Quantum, 1–9

in process scheduling, 2–7
round robin scheduling, 2–22
round-robin scheduling, 2–9

R
read function, 7–1, 7–2, 7–5, A–9
Realtime

building applications, 1–19
definition of, 1–2
environment, 1–4
features, 1–16
function summary, A–1
hard, 1–2
interface, 1–8, 2–13
librt.a library, 1–20
linking libraries, 1–20
POSIX standards, 1–18 to 1–19
priorities, 2–12, 2–17

adjusting, 2–17
default, 2–13
using nice , 2–17
using renice , 2–17

process synchronization, 1–12
processing, 2–6
signals, 6–11
soft, 1–2

Realtime clocks
See Clocks

Realtime IPC
See Messages

Realtime scheduling policies
See Scheduling policies

Realtime timers
See Timers

Reference pages
finding information, xiv

renice function, 2–12, 2–17
and realtime, 2–8

resolution
CLOCK_REALTIME, 6–2

Resolution
clocks, 6–9

Responsiveness, improving realtime, 11–3
avoiding configuring peripheral devices,

11–7
considering use of symmetrical

multiprocessing, 11–7
device drivers, writing, 11–6
locking memory, 11–3
managing physical memory, 11–6
managing priorities, 11–3
turning on preemption, 11–3

Round-robin scheduling, 2–6, 2–7, 2–9

S
sched.h header file, 2–10, 2–17
Scheduler, 1–7
Scheduling, 2–1 to 2–24

fixed-priority, 1–8
functions, 2–17
interfaces, 1–8
policies, 1–7, 1–8
priority-based, 1–7
quantum, 1–9

Scheduling policies, 1–4, 2–6
and shared memory, 3–12
changing, 2–20
determining limits, 2–18
determining type, 2–19
first-in first-out, 2–6, 2–8
fixed-priority, 2–6
priority ranges, 2–7
round-robin, 2–6, 2–9
SCHED_FIFO, 2–6
SCHED_OTHER, 2–6
SCHED_RR, 2–6

Index–6

Scheduling policies (cont’d)
setting, 2–6, 2–17, 2–19
timesharing, 2–6, 2–7

SCHED_FIFO keyword, 2–6
SCHED_FIFO policy, 2–8, 2–18, 2–19
sched_getparam function, 2–18, 2–19, A–3
sched_getscheduler function, 2–18, 2–19,

A–3
sched_get_priority_max function, 2–18,

A–3
sched_get_priority_min function, 2–18,

A–3
SCHED_OTHER keyword, 2–6
SCHED_OTHER policy, 2–18, 2–19
sched_param structure, 2–20
SCHED_PRIO_RT_MAX constant, 2–17
SCHED_PRIO_RT_MIN constant, 2–17
SCHED_PRIO_SYSTEM_MAX constant,

2–17
SCHED_PRIO_SYSTEM_MIN constant,

2–17
SCHED_PRIO_USER_MAX constant, 2–17
SCHED_PRIO_USER_MIN constant, 2–17
SCHED_RR keyword, 2–6
SCHED_RR policy, 2–9, 2–18, 2–19
sched_rr_get_interval function, 2–18,

2–19, A–3
sched_setparam function, 2–8, 2–18, 2–19,

A–3
sched_setscheduler function, 2–8, 2–18,

2–19, A–3
sched_yield function, 2–18, 2–22, A–3

and the process list, 2–22
with SCHED_FIFO, 2–22
with SCHED_RR, 2–22

Search path linking, 1–21
select function, with asynchronous I/O,

7–5
Semaphores, 1–12, 9–1 to 9–12

and shared memory, 3–12
blocking, 9–2
closing, 9–7
controlling access, 9–1
counting, 9–1
creating named, 9–4, 9–5

Semaphores (cont’d)
creating unnamed, 9–4
example, 9–8
functions, 9–3
locking, 9–2, 9–6
named, 9–1
opening, 9–4
persistence, 9–2
priority inversion, 9–7
releasing shared memory, 3–12
removing named, 9–8
removing unnamed, 9–7
reserving, 9–6
reserving shared memory, 3–12
unlocking, 9–2, 9–6
unnamed, 9–1
using the interface, 9–3, 9–4

sem_close function, 9–3, 9–7, A–7
sem_destroy function, 9–3, 9–7, A–7
sem_getvalue function, 9–3, 9–5, A–7
sem_init function, 9–3, 9–4, A–7
sem_open function, 9–3, 9–4, 9–7, A–7
sem_post function, 9–3, 9–6, A–7
sem_trywait function, 9–3, 9–6, A–7
sem_unlink function, 9–3, 9–7, A–7
sem_wait function, 9–3, 9–6, A–7
setgid function, A–9
setitimer function, A–4
setpriority function, 2–12
setsid function, A–9
settimeofday function, A–4
setuid function, A–9
Shared memory, 1–11, 3–1 to 3–12

and semaphores, 3–12
creating, 3–3
example with semaphores, 9–8
locking, 3–10
opening, 3–2
opening an object, 3–3
opening example, 3–5
overview, 3–1
releasing with a semaphore, 3–12
reserving with a semaphore, 3–12
unlinking, 3–2, 3–10
unlocking, 3–11

Index–7

shm_open function, 3–2, 3–3, A–7
shm_unlink function, 3–2, 3–10, A–7
sigaction function, 5–2, 5–7, 6–11, A–7
sigaction structure, 5–8
sigaddset function, 5–2, A–8
SIGALRM signal, 6–8
sigaltstack function, 5–12
sigcontext structure, 5–18
sigdelset function, 5–2, A–8
sigemptyset function, 5–2, 5–10, A–8
sigevent structure, 5–19 to 5–20, 6–11,

6–12, 6–13, 7–3
sigfillset function, 5–2, 5–10, A–8
siginfo_t structure, 5–17 to 5–18
sigismember function, 5–2, 5–10, A–8
signal function, 6–8, 6–11, 7–4
signal.h header file, 5–19, 6–12, 7–3
Signals, 1–11, 5–1

accepting default action for, 5–8
and timers, 6–8, 6–11
blocking, 5–9
ignoring, 5–8
limitations, 5–12
list of, 5–6
nonrealtime, 5–3 to 5–12
POSIX-defined functions, 5–2
realtime, 5–12 to 5–24
receiving, 5–3
responding to, 5–1
sending, 5–3
sending to another process, 5–3
specifying a handler for, 5–8
specifying action, 5–7
unblocking, 5–11
using sigaction , 5–7
using the interface, 5–3
using with asynchronous I/O, 5–19, 7–3
using with timers, 5–19

sigpending function, 5–2, 5–11, A–8
sigprocmask function, 5–2, 5–10, A–8
sigqueue function, 5–3, 5–16 to 5–19, A–8
sigsetops function, A–8
sigsuspend function, 5–2, 5–11, A–8

sigtimedwait function, 5–3, 5–20, A–8
sigwait function, A–8
sigwaitinfo function, 5–3, 5–20, A–8
sleep function, 6–16, A–2
Sleep, high-resolution, 6–16
Software interrupt

See Signals
Standards, 1–17

ISO, 1–17
POSIX, 1–17

Status, asynchronous I/O, 7–7
superuser privileges, 2–13, 2–18, 6–5
sync function, A–6
Synchronization, 1–12

by communication, 1–15
by other processes, 1–16
by semaphores, 1–14
by time, 1–14
timing facilities, 6–2

Synchronization point, 1–13
Synchronized I/O, 1–11, 8–2

using file descriptors, 8–2
using function calls, 8–2

sysconf function, 4–5, A–2
sys/mman.h header file, 4–5
System clock

high-resolution option, 6–7
resolution, 6–6
time spike, 6–6

System processing, 2–6
System tuning, 11–1 to 11–7

T
tcdrain function, A–10
tcflow function, A–10
tcflush function, A–10
tcgetattr function, A–10
tcsendbreak function, A–10
tcsetattr function, A–10
Threads

displaying priority using ps command,
11–4

kernel, using dbx command to display
information, 11–5

Index–8

Time
getting local, 6–5
retrieving, 6–4
returning, 6–4

time function, 6–4, 6–5
TIME-OF-DAY clock, 6–2
time.h header file, 6–2, 6–6, 6–12
Timer functions, 6–12, A–4
Timers, 1–9, 6–1 to 6–20

absolute, 1–9, 6–8, 6–13
and signals, 1–9
arming, 6–10
compressed signals, 6–15
creating, 6–13, 6–14
disabling, 6–14, 6–16
disarming, 6–10, 6–15, 6–16
expiration, 6–14
expiration value, 6–13
getting the overrun count, 6–15
interval time, 6–14
one-shot, 1–9, 6–7, 6–14
periodic, 1–9, 6–7, 6–14
relative, 1–9, 6–8, 6–13
repetition value, 6–14
resetting, 6–15, 6–16
returning values, 6–15
setting, 6–9
sleep, 6–16
types, 6–7
using signals, 5–19, 6–8, 6–11
using the sigevent structure, 6–11
using with clocks, 6–16

timers.h header file, 6–9
timer_create function, 5–19, 6–8, 6–12,

6–13, A–4
timer_delete function, 6–12, 6–13, 6–16,

A–4
timer_getoverrun function, 6–12, 6–15,

A–4
timer_gettime function, 6–12, 6–14, 6–15,

A–4
TIMER_MAX constant, 6–13

timer_settime function, 6–8, 6–12, 6–13,
6–15, 6–16, A–4

Timesharing processing, 2–6
Timesharing scheduling, 1–8, 2–6, 2–7

using nice , 2–7
timespec structure, 6–4, 6–9
tm structure, 6–5, 6–6
tv_nsec member, timespec , 6–9
tv_sec member, timespec , 6–9
tzset function, 6–5, A–3

U
ucontext_t structure, 5–18
UID, changing priority, 2–21
uname function, A–2
unistd.h header file, 1–20
Unlocking memory, 3–11, 4–2, 4–5
User mode and preemption, 1–5

W
wait function, A–2
waitpid function, A–2
write function, 7–1, 7–2, 7–5, A–9

Y
Yielding, to another process, 2–22

Index–9

