
Digital UNIX
Kernel Debugging

Part Number: AA-PS2TE-TE

March 1996

Product Version: Digital UNIX Version 4.0 or higher

This manual explains how to use tools to debug a kernel and analyze a crash
dump of the Digital UNIX operating system. Also, this manual explains how
to write extensions to the kernel debugging tools.

Digital Equipment Corporation
Maynard, Massachusetts

© Digital Equipment Corporation 1996
All rights reserved.

The following are trademarks of Digital Equipment Corporation: ALL–IN–1, Alpha AXP, AlphaGeneration,
AXP, Bookreader, CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet, DECstation,
DECsystem, DECterm, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, MSCP, OpenVMS,
POLYCENTER, Q–bus, TMSCP, TURBOchannel, TruCluster, ULTRIX, ULTRIX Mail Connection,
ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS, XUI, and the Digital logo.

NFS is a registered trademark of Sun Microsystems, Inc. Open Software Foundation, OSF, OSF/1,
OSF/Motif, and Motif are trademarks of the Open Software Foundation, Inc. UNIX is a registered
trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the manner
described in this publication will not infringe on existing or future patent rights, nor do the descriptions
contained in this publication imply the granting of licenses to make, use, or sell equipment or software in
accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a
valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety and
health of its employees, customers, and the community.

Contents

About This Manual

1 Introduction to Kernel Debugging
1.1 Linking a Kernel Image for Debugging 1–2

1.2 Debugging Kernel Programs 1–3

1.3 Debugging the Running Kernel 1–4

1.4 Analyzing a Crash Dump File 1–5

2 Kernel Debugging Utilities
2.1 The dbx Debugger 2–2

2.1.1 Kernel Debugging Flag 2–2

2.1.2 Debugging Stripped Images 2–3

2.1.3 Examining Memory Contents 2–4

2.1.4 Printing the Values of Variables and Data Structures 2–6

2.1.5 Displaying a Data Structure Format 2–6

2.1.6 Debugging Multiple Threads 2–7

2.1.7 Examining the Exception Frame 2–7

2.1.8 Extracting the Preserved Message Buffer 2–8

2.1.9 Debugging on SMP Systems 2–9

2.2 The kdbx Debugger 2–11

2.2.1 Beginning a kdbx Session 2–11

2.2.2 The kdbx Debugger Commands 2–12

2.2.3 Using kdbx Debugger Extensions 2–14

Contents iii

2.2.3.1 Displaying the Address Resolution Protocol Table 2–15
2.2.3.2 Performing Commands on Array Elements 2–15
2.2.3.3 Displaying the Buffer Table 2–17

2.2.3.4 Displaying the Callout Table and Absolute Callout
Table 2–17

2.2.3.5 Casting Information Stored in a Specific Address 2–18
2.2.3.6 Displaying Machine Configuration 2–19
2.2.3.7 Converting the Base of Numbers 2–19
2.2.3.8 Displaying CPU Use Statistics 2–20
2.2.3.9 Disassembling Instructions 2–20
2.2.3.10 Displaying Remote Exported Entries 2–21
2.2.3.11 Displaying the File Table 2–21
2.2.3.12 Displaying the udb and tcb Tables 2–22
2.2.3.13 Performing Commands on Lists 2–22
2.2.3.14 Displaying the lockstats Structures 2–24
2.2.3.15 Displaying lockinfo Structures 2–25
2.2.3.16 Displaying the Mount Table 2–26
2.2.3.17 Displaying the Namecache Structures 2–27
2.2.3.18 Displaying Processes’ Open Files 2–27
2.2.3.19 Converting the Contents of Memory to Symbols 2–28
2.2.3.20 Displaying the Process Control Block for a Thread .. . 2–28
2.2.3.21 Formatting Command Arguments 2–29
2.2.3.22 Displaying the Process Table 2–29
2.2.3.23 Converting an Address to a Procedure name 2–30
2.2.3.24 Displaying Sockets from the File Table 2–31
2.2.3.25 Displaying a Summary of the System Information .. . 2–31
2.2.3.26 Displaying a Summary of Swap Space 2–32
2.2.3.27 Displaying the Task Table 2–32
2.2.3.28 Displaying Information About Threads 2–33
2.2.3.29 Displaying a Stack Trace of Threads 2–33
2.2.3.30 Displaying a u Structure 2–35
2.2.3.31 Displaying References to the ucred Structure 2–36
2.2.3.32 Removing Aliases 2–37
2.2.3.33 Displaying the vnode Table 2–37
2.3 The kdebug Debugger 2–39
2.3.1 Getting Ready to Use the kdebug Debugger 2–41
2.3.2 Invoking the kdebug Debugger 2–43
2.3.3 Diagnosing kdebug Setup Problems 2–45

iv Contents

2.3.4 Notes on Using the kdebug Debugger 2–47

2.4 The crashdc Utility 2–48

3 Writing Extensions to the kdbx Debugger
3.1 Basic Considerations for Writing Extensions 3–1
3.2 Standard kdbx Library Functions 3–2
3.2.1 Special kdbx Extension Data Types 3–2
3.2.2 Converting an Address to a Procedure Name 3–4
3.2.3 Getting a Representation of an Array Element 3–4
3.2.4 Retrieving an Array Element Value 3–5
3.2.5 Returning the Size of an Array 3–6
3.2.6 Casting a Pointer to a Data Structure 3–7
3.2.7 Checking Arguments Passed to an Extension 3–8
3.2.8 Checking the Fields in a Structure 3–8
3.2.9 Setting the kdbx Context 3–9
3.2.10 Passing Commands to the dbx Debugger 3–10
3.2.11 Dereferencing a Pointer 3–11
3.2.12 Displaying the Error Messages Stored in Fields 3–11
3.2.13 Converting a Long Address to a String Address 3–12
3.2.14 Freeing Memory 3–13
3.2.15 Passing Commands to the kdbx Debugger 3–13
3.2.16 Getting the Address of an Item in a Linked List 3–15
3.2.17 Passing an Extension to kdbx 3–16
3.2.18 Getting the Next Token as an Integer 3–16
3.2.19 Getting the Next Token as a String 3–17
3.2.20 Displaying a Message 3–18
3.2.21 Displaying Status Messages 3–19
3.2.22 Exiting from an Extension 3–19
3.2.23 Reading the Values in Structure Fields 3–20
3.2.24 Returning a Line of kdbx Output 3–21
3.2.25 Reading an Area of Memory 3–21
3.2.26 Reading the Response to a kdbx Command 3–22
3.2.27 Reading Symbol Representations 3–23
3.2.28 Reading a Symbol’s Address 3–23
3.2.29 Reading the Value of a Symbol 3–24
3.2.30 Getting the Address of a Data Representation 3–25
3.2.31 Converting a String to a Number 3–25
3.3 Examples of kdbx Extensions 3–26
3.4 Compiling Custom Extensions 3–40

Contents v

3.5 Debugging Custom Extensions 3–41

4 Managing Crash Dumps
4.1 Crash Dump Creation 4–2

4.2 Choosing the Contents of Crash Dumps 4–4

4.2.1 Including User Page Tables in Partial Crash Dumps 4–5
4.2.2 Selecting Partial or Full Crash Dumps 4–6
4.3 Planning Crash Dump Space 4–6
4.3.1 Estimating the Size of Partial Crash Dumps 4–7

4.3.2 Estimating the Size of Full Crash Dumps 4–8
4.3.3 Adjusting the Primary Swap Partition’s Crash Dump

Threshold 4–8
4.4 Crash Dump File Creation and Crash Dump Logging 4–9
4.4.1 Crash Dump File Creation 4–9
4.4.2 Crash Dump Logging 4–10
4.5 Planning and Allocating File System Space for Crash Dump

Files 4–11
4.6 Compressing and Uncompressing Crash Dump Files 4–13
4.7 Creating Dumps of a Hung System 4–13

5 Crash Analysis Examples
5.1 Guidelines for Examining Crash Dump Files 5–1
5.2 Identifying a Crash Caused by a Software Problem 5–2
5.2.1 Using dbx to Determine the Cause of a Software Panic . . 5–3
5.2.2 Using kdbx to Determine the Cause of a Software Panic . 5–3
5.3 Identifying a Hardware Exception 5–4
5.3.1 Using dbx to Determine the Cause of a Hardware Error . 5–5
5.3.2 Using kdbx to Determine the Cause of a Hardware Error 5–8
5.4 Finding a Panic String in a Thread Other Than the Current

Thread 5–9
5.5 Identifying the Cause of a Crash on an SMP System 5–11

A Output from the crashdc Command

Index

Examples
3–1 Template Extension Using Lists 3–26

vi Contents

3–2 Extension That Uses Linked Lists: callout.c 3–28

3–3 Template Extensions Using Arrays 3–31

3–4 Extension That Uses Arrays: file.c 3–33

3–5 Extension That Uses Global Symbols: sum.c 3–39

Figures
2–1 Using a Gateway System During Remote Debugging 2–40

4–1 Default dump_sp_threshold Attribute Setting 4–3

4–2 Crash Dump Written to Multiple Devices 4–4

Tables
2–1 The dbx Address Modes 2–5

Contents vii

About This Manual

This manual provides information on the tools used to debug a kernel and
analyze a crash dump file of the Digital UNIX operating system. It also
explains how to write extensions to the kernel debugging tools. You can use
extensions to display customized information from kernel data structures
or a crash dump file.

Audience

This manual is intended for system programmers who write programs that
use kernel data structures and are built into the kernel. It is also intended
for system administrators who are responsible for managing the operating
system. System programmers and administrators should have in-depth
knowledge of operating system concepts, commands, and utilities.

New and Changed Features

The following list describes changes that have been made to this manual
for Digital UNIX Version 4.0 or higher:

• Section 1.1, describing how to debug a kernel that is linked at
bootstrap time, has been added.

• Section 2.1.2, describing how to debug images that are stripped of
symbol table information, has been added.

• The new abscallout kdbx extension is explained in Section 2.2.3.4.

• Example 3–2, Example 3–4, andExample 3–5 have been updated.

Organization

This manual consists of five chapters and one appendix:

About This Manual ix

Chapter 1 Introduces the concepts of kernel debugging and crash dump analysis.

Chapter 2 Describes the tools used to debug kernels and analyze crash dump
files.

Chapter 3 Describes how to write a kdbx debugger extension. This chapter
assumes you have purchased and installed a Digital UNIX Source Kit
and so have access to source files.

Chapter 4 Describes the crash dump file creation process and explains how to
manage crash dump files on your system.

Chapter 5 Provides background information useful for and examples of
analyzing crash dump files.

Appendix A Contains example output from the crashdc utility.

Related Documents

For additional information, refer to the following manuals:

• The Alpha Architecture Reference Manual describes how the operating
system interfaces with the Alpha hardware.

• The Alpha Architecture Handbook gives an overview of the Alpha
hardware architecture and describes the 64-bit Alpha RISC (Reduced
Instruction Set Computing) instruction set.

• The Installation Guide describes how to install your operating system.

• The System Administration manual provides information on managing
and monitoring your system.

• The Programmer’s Guide provides information on the tools, specifically
the dbx debugger, for programming on the Digital UNIX operating
system. This manual also provides information about creating
configurable kernel subsystems.

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

x About This Manual

Audience Icon Color Code

General users G Blue

System and network
administrators

S Red

Programmers P Purple

Device driver writers D Orange

Reference page users R Green

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides
information on all of the books in the Digital UNIX documentation set.

Reader’s Comments

Digital welcomes any comments and suggestions you have on this and
other Digital UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on line in the following location:

/usr/doc/readers_comment.txt

• Mail:

Digital Equipment Corporation
UEG Publications Manager
ZK03-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed
manual. The form is postage paid if you mail it in the United States.

About This Manual xi

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Digital UNIX that you are using.

• If known, the type of processor that is running the Digital UNIX
software.

The Digital UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Digital technical support office.
Information provided with the software media explains how to send
problem reports to Digital.

Conventions

The following conventions are used in this manual:

%

$

A percent sign represents the C shell system
prompt. A dollar sign represents the system prompt
for the Bourne and Korn shells.

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]
{ | }

In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

... A vertical ellipsis indicates that a portion of an
example that would normally be present is not
shown.

xii About This Manual

cat (1) A cross-reference to a reference page includes the
appropriate section number in parentheses. For
example, cat (1) indicates that you can find
information on the cat command in Section 1 of the
reference pages.

Ctrl/x This symbol indicates that you hold down the first
named key while pressing the key or mouse button
that follows the slash. In examples, this key
combination is enclosed in a box (for example, Ctrl/C).

About This Manual xiii

1
Introduction to Kernel Debugging

Kernel debugging is a task normally performed by systems engineers
writing kernel programs. A kernel program is one that is built as part of
the kernel and that references kernel data structures. System
administrators might also debug the kernel in the following situations:

• A process is hung or stops running unexpectedly

• The need arises to examine, and possibly modify, kernel parameters

• The system itself hangs, panics, or crashes

This manual describes how to use Digital UNIX tools to debug kernel
programs and the kernel. It also includes information about managing and
analyzing crash dump files.

In addition to the information provided here, tracing a kernel problem can
require a basic understanding of one or more of the following technical
areas:

• The hardware architecture

See the Alpha Architecture Handbook for an overview of the Alpha
hardware architecture and a description of the 64-bit Alpha RISC
instruction set.

• The internal design of the operating system at a source code and data
structure level

See the Alpha Architecture Reference Manual for information on how
the Digital UNIX operating system interfaces with the hardware.

This chapter provides an overview of the following topics:

• Linking a kernel image prior to debugging for systems that are running
a kernel built at boot time. (Section 1.1)

• Debugging kernel programs (Section 1.2)

• Debugging the running kernel (Section 1.3)

Introduction to Kernel Debugging 1–1

• Analyzing a crash dump file(Section 1.4)

1.1 Linking a Kernel Image for Debugging

By default, the kernel that runs on Digital UNIX systems is a statically
linked image that resides in the file /vmunix . However, your system might
be configured so that it is linked at bootstrap time. Rather than being a
bootable image, the boot file is a text file that describes the hardware and
software that will be present on the running system. Using this
information, the bootstrap linker links the modules that are needed to
support this hardware and software. The linker builds the kernel directly
into memory. (For more information about bootstrap-linked kernels, see the
manual Writing Device Drivers: Tutorial.)

You cannot directly debug a bootstrap-linked kernel because you must
supply the name of an image to the kernel debugging tools. Without the
image, the tools have no access to symbol names, variable names, and so
on. Therefore, the first step in any kernel debugging effort is to determine
whether your kernel was linked at bootstrap time. If the kernel was linked
at bootstrap time, you must then build a kernel image file to use for
debugging purposes.

The best way to determine whether your system is bootstrap linked or
statically linked is to use the file command to test the type of file from
which your system was booted. If your system is a bootstrap-linked system,
it was booted from an ASCII text file; otherwise, it was booted from an
executable image file. For example, issue the following command to
determine the type of file from which your system was booted:

#/usr/bin/file ‘/usr/sbin/sizer -b‘
/etc/sysconfigtab: ascii text

The sizer -b command returns the name of the file from which the
system was booted. This file name is input to the file command, which
determines that the system was booted from an ASCII text file. The output
shown in the preceeding example indicates that the system is a
bootstrap-linked system. If the system had been booted from an executable
image file named vmunix , the output from the file command would have
appeared as follows:

vmunix:COFF format alpha executable or object module
not stripped

1–2 Introduction to Kernel Debugging

If your system is running a bootstrap-linked kernel, build a kernel image
that is identical to the bootstrap-linked kernel your system is running, by
entering the following command:

/usr/bin/ld -o vmunix.image ‘/usr/sbin/sizer -m‘

The output from the sizer -m command is a list of the exact modules and
linker flags used to build the currently running bootstrap-linked kernel.
This output causes the ld command to create a kernel image that is
identical to the bootstrap-linked kernel running on your system. The kernel
image is written to the file named by the -o flag, in this case the
vmunix.image file.

Once you create this image, you can debug the kernel as described in this
manual, using the dbx , kdbx , and kdebug debuggers. When you invoke the
dbx or kdbx debugger, remember to specify the name of the kernel image
file you created with the ld command, such as the vmunix.image file
shown here.

When you are finished debugging the kernel, you can remove the kernel
image file you created for debugging purposes.

1.2 Debugging Kernel Programs

Kernel programs can be difficult to debug because you normally cannot
control kernel execution. To make debugging kernel programs more
convenient, the Digital UNIX system provides the kdebug debugger. The
kdebug debugger is code that resides inside the kernel and allows you use
the dbx debugger to control execution of a running kernel in the same
manner as you control execution of a user space program. To debug a
kernel program in this manner, follow these steps:

1. Build your kernel program into the kernel on a test system.

2. Set up the kdebug debugger, as described in Section 2.3.

3. Issue the dbx -remote command on a remote build system, supplying
the pathname of the kernel running on the test system.

4. Set breakpoints and enter dbx commands as you normally would.
Section 2.1 describes some of the commands that are useful during
kernel debugging. For general information about using dbx , see the
Programmer’s Guide.

Introduction to Kernel Debugging 1–3

The Digital UNIX system also provides the kdbx debugger, which is
designed especially for debugging kernel code. This debugger contains a
number of special commands, called extensions, that allow you to display
kernel data structures in a readable format. Section 2.2 describes using
kdbx and its extensions. (You cannot use the kdbx debugger with the
kdebug debugger.)

Another feature of kdbx is that you can customize it by writing your own
extensions. The system contains a set of kdbx library routines that you can
use to create extensions that display kernel data structures in ways that
are meaningful to you. Chapter 3 describes writing kdbx extensions.

1.3 Debugging the Running Kernel

When you have problems with a process or set of processes, you can
attempt to identify the problem by debugging the running kernel. You
might also invoke the debugger on the running kernel to examine the
values assigned to system parameters. (You can modify the value of the
parameters using the debugger, but this practice can cause problems with
the kernel and should be avoided.)

You use the dbx or kdbx debugger to examine the state of processes
running on your system and to examine the value of system parameters.
The kdbx debugger provides special commands, called extensions, that you
can use to display kernel data structures. (Section 2.2.3 describes the
extensions.)

To examine the state of processes, you invoke the debugger (as described in
Section 2.1 or Section 2.2) using the following command:

dbx -k /vmunix /dev/mem

This command invokes dbx with the kernel debugging flag, −k , which maps
kernel addresses to make kernel debugging easier. The /vmunix and
/dev/mem parameters cause the debugger to operate on the running kernel.

Once in the dbx environment, you use dbx commands to display process
IDs and trace execution of processes. You can perform the same tasks using
the kdbx debugger. The following example shows the dbx command you
use to display process IDs:

(dbx) kps
PID COMM

00000 kernel idle

1–4 Introduction to Kernel Debugging

00001 init
00014 kloadsrv
00016 update
...

If you want to trace the execution of the kloadsrv daemon, use the dbx
command to set the $pid symbol to the process ID of the kloadsrv
daemon. Then, enter the t command:

(dbx) set $pid = 14
(dbx) t
> 0 thread_block() ["/usr/sde/build/src/kernel/kern/sched_prim.c":1623, 0xfffffc0000\
43d77c]

1 mpsleep(0xffffffff92586f00, 0x11a, 0xfffffc0000279cf4, 0x0, 0x0) ["/usr/sde/build\
/src/kernel/bsd/kern_synch.c":411, 0xfffffc000040adc0]

2 sosleep(0xffffffff92586f00, 0x1, 0xfffffc000000011a, 0x0, 0xffffffff81274210) ["/usr/sde\
/build/src/kernel/bsd/uipc_socket2.c":654, 0xfffffc0000254ff8]

3 sosbwait(0xffffffff92586f60, 0xffffffff92586f00, 0x0, 0xffffffff92586f00, 0x10180) ["/usr\
/sde/build/src/kernel/bsd/uipc_socket2.c":630, 0xfffffc0000254f64]

4 soreceive(0x0, 0xffffffff9a64f658, 0xffffffff9a64f680, 0x8000004300000000, 0x0) ["/usr/sde\
/build/src/kernel/bsd/uipc_socket.c":1297, 0xfffffc0000253338]

5 recvit(0xfffffc0000456fe8, 0xffffffff9a64f718, 0x14000c6d8, 0xffffffff9a64f8b8,\
0xfffffc000043d724) ["/usr/sde/build/src/kernel/bsd/uipc_syscalls.c":1002,\
0xfffffc00002574f0]

6 recvfrom(0xffffffff81274210, 0xffffffff9a64f8c8, 0xffffffff9a64f8b8, 0xffffffff9a64f8c8,\
0xfffffc0000457570) ["/usr/sde/build/src/kernel/bsd/uipc_syscalls.c":860,\
0xfffffc000025712c]

7 orecvfrom(0xffffffff9a64f8b8, 0xffffffff9a64f8c8, 0xfffffc0000457570, 0x1, 0xfffffc0000456fe8)\
["/usr/sde/build/src/kernel/bsd/uipc_syscalls.c":825, 0xfffffc000025708c]

8 syscall(0x120024078, 0xffffffffffffffff, 0xffffffffffffffff, 0x21, 0x7d) ["/usr/sde\
/build/src/kernel/arch/alpha/syscall_trap.c":515, 0xfffffc0000456fe4

9 _Xsyscall(0x8, 0x12001acb8, 0x14000eed0, 0x4, 0x1400109d0) ["/usr/sde/build\
/src/kernel/arch/alpha/locore.s":1046, 0xfffffc00004486e4]
(dbx) exit

Often, looking at the trace of a process that is hanging or has unexpectedly
stopped running reveals the problem. Once you find the problem, you can
modify system parameters, restart daemons, or take other corrective
actions.

For more information about the commands you can use to debug the
running kernel, see Section 2.1 and Section 2.2.

1.4 Analyzing a Crash Dump File

If your system crashes, you can often find the cause of the crash by using
dbx or kdbx to debug or analyze a crash dump file.

The operating system can crash because one of the following occurs:

• Hardware exception

• Software panic

Introduction to Kernel Debugging 1–5

• Hung system

When a system hangs, it is often necessary to force the system to create
dumps that you can analyze to determine why the system hung.
Section 4.7 describes the procedure for forcing a crash dump of a hung
system.

• Resource exhaustion

The system crashes or hangs because it cannot continue executing.
Normally, even in the case of a hardware exception, the operating system
detects the problem. (For example a machine-checking routine might
discover a hardware problem and begin the process of crashing the system.)
In general, the operating system performs the following steps when it
detects a problem from which it cannot recover:

1. Calls the system panic function.

The panic function saves the contents of registers and sends the panic
string (a message describing the reason for the system panic) to the
error logger and the console terminal.

If the system is a Symmetric Multiprocessing (SMP) system, the panic
function notifies the other CPUs in the system that a panic has
occurred. The other CPUs then also execute the panic function and
record the following panic string:

cpu_ip_intr: panic request

Once each CPU has recorded the system panic, execution continues only
on the master CPU. All other CPUs in the SMP system stop execution.

2. Calls the system boot function

The boot function records the stack.

3. Calls the dump function

The dump function copies core memory into swap partitions and the
system stops running or the reboot process begins. Console environment
variables control whether the system reboots automatically. (The
Installation Guide describes these environment variables.)

At system reboot time, the copy of core memory saved in the swap
partitions is copied into a file, called a crash dump file. You can analyze the
crash dump file to determine what caused the crash. For information about

1–6 Introduction to Kernel Debugging

managing crash dumps and crash dump files, see Chapter 4. For examples
of analyzing crash dump files, see Chapter 5.

Introduction to Kernel Debugging 1–7

2
Kernel Debugging Utilities

The Digital UNIX system provides several tools you can use to debug the
kernel and kernel programs. The Ladebug debugger (available separately
from the Digital UNIX operating system) is also capable of debugging the
kernel. For information about the Ladebug debugger, contact your Digital
sales representative.

This chapter describes three debuggers and one crash dump analysis utility:

• The dbx debugger, which is described for kernel debugging in
Section 2.1. (For general dbx user information, see the Programmer’s
Guide.)

You can use the dbx debugger to display the values of kernel variables
and kernel structures. However, you must understand the structures
and be prepared to follow the address links to find the information you
need. You cannot use dbx alone to control execution of the running
kernel, for example by setting breakpoints.

• The kdbx debugger, which is described in Section 2.2.

The kdbx debugger is an interface to dbx that is tailored specifically to
debugging kernel code. The kdbx debugger has knowledge of the
structure of kernel data and so displays kernel data in a readable
format. Also, kdbx is extensible, allowing you to create commands that
are tailored to your kernel-debugging needs. (Chapter 3 describes how
to tailor the kdbx debugger.) However, you cannot use dbx command
line editing features when you use the kdbx debugger.

• The kdebug debugger, which is described in Section 2.3.

The kdebug debugger is a kernel-debugging program that resides
inside the kernel. Working with a remote version of the dbx debugger,
the kdebug debugger allows you to set breakpoints in and control the
execution of kernel programs and the kernel.

• The crashdc utility, which is described in Section 2.4.

Kernel Debugging Utilities 2–1

The crashdc utility is a crash dump analysis tool. This utility is useful
when you need to determine why the system is hanging or crashing.

The sections that follow describe how to use these tools to debug the kernel
and kernel programs.

2.1 The dbx Debugger

The dbx debugger is a symbolic debugger that allows you to examine,
modify, and display the variables and data structures found in stripped or
nonstripped kernel images.

The following sections describe how to invoke the dbx debugger for kernel
debugging and how to use its commands to perform tasks such as the
following:

• Debugging stripped images

• Examining memory contents

• Displaying the values of kernel variables, and the value and format of
kernel data structures

• Debugging multiple threads

Also included are examples of examining the exception frame and the
preserved character message buffer. For more information on dbx , see the
Programmer’s Guide.

2.1.1 Kernel Debugging Flag

To debug kernel code with the dbx debugger, you use the −k flag. This flag
causes dbx to map memory addresses. When you use the dbx −k command,
the debugger operates on two separate files that reflect the current state of
the kernel that you want to examine. These files are as follows:

• The disk version of the executable kernel image

• The system core memory image

These files may be files from a running system, such as /vmunix and
/dev/mem , or dump files, such as vmunix. n and vmcore. n, which usually
reside in the /var/adm/crash directory.

2–2 Kernel Debugging Utilities

_______________________ Note _______________________

You might need to be the superuser (root login) to examine the
running system or crash dump files produced by savecore .
Whether you need to be the superuser depends on the directory
and file protections for the files you attempt to examine with the
dbx debugger.

Use the following dbx command to examine the running system:

dbx −k /vmunix /dev/mem

Use the following command to examine crash dump files with bounds
equal to one:

dbx −k vmunix.1 vmcore.1

2.1.2 Debugging Stripped Images

By default, the kernel is compiled with a debugging flag that does not strip
all of the symbol table information from the executable kernel image. The
kernel is also partially optimized during the compilation process by default.
If the kernel or any other file is fully optimized and stripped of all symbol
table information during compilation, your ability to debug the file is
greatly reduced. However, the dbx debugger provides commands to aid you
in debugging stripped images.

When you attempt to display the contents of a symbol during a debugging
session, you might encounter messages such as the following:

No local symbols.
Undefined symbol.
Inactive symbol.

These messages might indicate that you are debugging a stripped image.

To see the contents of all symbols during a debugging session, you can
leave the debugging session, rebuild all stripped modules (but do not strip
them), and reenter the debugging session. However, on certain occasions,
you might want to add a symbol table to your current debugging session

Kernel Debugging Utilities 2–3

rather than end the session and start a new one. To add a symbol table to
your current debugging session, follow these steps:

1. Go to a window other than the one in which the debugger is running, or
put the debugger in the background, and rebuild the modules for which
you need a symbol table.

2. Once the modules build correctly, use the ostrip command to strip a
symbol table out of the resulting executable file. For example, if your
executable file is named kernel_program , issue a command such as
the following one:

% /usr/ucb/ostrip -t kernel_program

The -t flag causes the ostrip command to produce two files. One,
named kernel_program , is the stripped executable image. The other,
named kernel_program.stb , contains the symbol table information
for the kernel_program module. (For more information about the
ostrip command, see ostrip (1).)

3. Return to the debugging session and add the symbol table file by
issuing the dbx command stbadd as follows:

dbx> stbadd kernel_program.stb

You can specify an absolute or relative pathname on the stbadd
command line.

Once you issue this command, you can display the contents of symbols
included in the symbol table just as if you had built the module you are
debugging without stripping.

You can also delete symbol tables from a debugging session using the dbx
command stbdel . For more information about this command, see dbx (1).

2.1.3 Examining Memory Contents

To examine memory contents with dbx , use the following syntax:

address/count[mode]

The count argument specifies the number of items that the debugger
displays at the specified address , and the mode argument determines how
dbx displays memory. If you omit the mode argument, the debugger uses

2–4 Kernel Debugging Utilities

the previous mode. The initial default mode is X (hexadecimal). Table 2–1
lists the dbx address modes.

Table 2–1: The dbx Address Modes

Mode Description

b Displays a byte in octal.

c Displays a byte as a character.

d Displays a short word in decimal.

D Displays a long word in decimal.

f Displays a single precision real number.

g Displays a double precision real number.

i Displays machine instructions.

n Displays data in typed format.

o Displays a short word in octal.

O Displays a long word in octal.

s Displays a string of characters that ends in a null.

x Displays a short word in hexadecimal.

X Displays a long word in hexadecimal.

The following examples show how to use dbx to examine kernel images:

(dbx) _realstart/X
fffffc00002a4008: c020000243c4153e
(dbx) _realstart/i
[_realstart:153, 0xfffffc00002a4008] subq sp, 0x20, sp
(dbx) _realstart/10i

[_realstart:153, 0xfffffc00002a4008] subq sp, 0x20, sp
[_realstart:154, 0xfffffc00002a400c] br r1, 0xfffffc00002a4018
[_realstart:156, 0xfffffc00002a4010] call_pal 0x4994e0
[_realstart:157, 0xfffffc00002a4014] bgt r31, 0xfffffc00002a3018
[_realstart:171, 0xfffffc00002a4018] ldq gp, 0(r1)
[_realstart:172, 0xfffffc00002a401c] stq r31, 24(sp)
[_realstart:177, 0xfffffc00002a4020] bis r16, r31, r9
[_realstart:178, 0xfffffc00002a4024] bis r17, r31, r10
[_realstart:179, 0xfffffc00002a4028] bis r18, r31, r11
[_realstart:181, 0xfffffc00002a402c] bis r19, r31, r12

Kernel Debugging Utilities 2–5

2.1.4 Printing the Values of Variables and Data Structures

You can use the print command to examine values of variables and data
structures. The print command has the following syntax:

print expression

p expression

For example:

(dbx) print utsname
struct {

sysname = "OSF1"
nodename = "system.dec.com"
release = "1.4"
version = "1.2"
machine = "alpha"

}

Note that dbx has a default alias of p for print :

(dbx) p utsname

2.1.5 Displaying a Data Structure Format

You can use the whatis command to display the format for many of the
kernel data structures. The whatis command has the following syntax:

whatis type name

The following example displays the itimerval data structure:

(dbx) whatis struct itimerval
struct itimerval {

struct timeval {
int tv_sec;
int tv_usec;

} it_interval;
struct timeval {

int tv_sec;
int tv_usec;

} it_value;
};

2–6 Kernel Debugging Utilities

2.1.6 Debugging Multiple Threads

You can use the dbx debugger to examine the state of the kernel’s threads
with the querying and scoping commands described in this section. You use
these commands to show process and thread lists and to change the
debugger’s context (by setting its current process and thread variables) so
that a stack trace for a particular thread can be displayed. Use these
commands to examine the state of the kernel’s threads:

print $tid Display the thread ID of the current
thread

print $pid Display the process ID of the current
process

trace Display a stack trace for the current
thread

tlist Display a list of kernel threads for the
current process

kps Display a list of processes (not available
when used with kdebug)

set $pid= process_id Change the context to another process (a
process ID of 0 changes context to the
kernel)

tset thread_id Change the context to another thread

tstack Displays the stack trace for all threads.

2.1.7 Examining the Exception Frame

When you work with a crash dump file to debug your code, you can use dbx
to examine the exception frame. The exception frame is a stack frame
created during an exception. It contains the registers that define the state
of the routine that was running at the time of the exception. Refer to the
/usr/include/machine/reg.h header file to determine where registers
are stored in the exception frame.

The savedefp variable contains the location of the exception frame. (Note
that no exception frames are created when you force a system to dump, as
described in Section 4.7.) The following example shows an example
exception frame:

Kernel Debugging Utilities 2–7

(dbx) print savedefp/33X
ffffffff9618d940: 0000000000000000 fffffc000046f888
ffffffff9618d950: ffffffff86329ed0 0000000079cd612f
ffffffff9618d960: 000000000000007d 0000000000000001
ffffffff9618d970: 0000000000000000 fffffc000046f4e0
ffffffff9618d980: 0000000000000000 ffffffff9618a2f8
ffffffff9618d990: 0000000140012b20 0000000000000000
ffffffff9618d9a0: 000000014002ee10 0000000000000000
ffffffff9618d9b0: 00000001400075e8 0000000140026240
ffffffff9618d9c0: ffffffff9618daf0 ffffffff8635af20
ffffffff9618d9d0: ffffffff9618dac0 00000000000001b0
ffffffff9618d9e0: fffffc00004941b8 0000000000000000
ffffffff9618d9f0: 0000000000000001 fffffc000028951c
ffffffff9618da00: 0000000000000000 0000000000000fff
ffffffff9618da10: 0000000140026240 0000000000000000
ffffffff9618da20: 0000000000000000 fffffc000047acd0
ffffffff9618da30: 0000000000901402 0000000000001001
ffffffff9618da40: 0000000000002000

2.1.8 Extracting the Preserved Message Buffer

The preserved message buffer (pmsgbuf) contains information such as the
firmware version, operating system version, pc value, and device
configuration. You can use dbx to extract the preserved message buffer
from a running system or dump files. For example:

(dbx) print *pmsgbuf
struct {

msg_magic = 405601
msg_bufx = 1537
msg_bufr = 1537
msg_bufc = "Alpha boot: available memory from 0x7c6000 to 0x6000000

Digtal UNIX X4.0-7 (Rev. 5); Sun Jul 03 11:20:36 EST 1995
physical memory = 96.00 megabytes.
available memory = 84.57 megabytes.
using 360 buffers containing 2.81 megabytes of memory
tc0 at nexus
scc0 at tc0 slot 7
asc0 at tc0 slot 6
rz1 at scsi0 target 1 lun 0 (LID=0) (DEC RZ25 (C) DEC 0700)
rz2 at scsi0 target 2 lun 0 (LID=1) (DEC RZ25 (C) DEC 0700)
rz3 at scsi0 target 3 lun 0 (LID=2) (DEC RZ26 (C) DEC T384)
rz4 at scsi0 target 4 lun 0 (LID=3) (DEC RRD42 (C) DEC 4.5d)
tz5 at scsi0 target 5 lun 0 (DEC TLZ06 (C)DEC 0374)
scsi1 at tc0 slot 7
fb0 at tc0 slot 8

1280X1024
ln0: DEC LANCE Module Name: PMAD-BA
ln0 at tc0 slot 7
.
.
.

2–8 Kernel Debugging Utilities

2.1.9 Debugging on SMP Systems

Debugging in an SMP environment can be difficult because an SMP system
optimized for performance keeps the minimum of lock debug information.

The Digital UNIX system supports a lock mode to facilitate debugging SMP
locking problems. The lock mode is implemented in the lockmode boot
time system attribute. By default, the lockmode attribute is set to a value
between 0 and 3, depending upon whether the system is an SMP system
and whether the RT_PREEMPTION_OPTattribute is set. (This attribute
optimizes system performance.)

For debugging purposes, set the lockmode attribute to 4. Follow these
steps to set the lockmode attribute to 4:

1. Create a stanza-formatted file named, for example, generic.stanza
that appears as follows:

generic:
lockmode=4

The contents of this file indicate that you are modifying the lockmode
attribute of the generic subsystem.

2. Add the new definition of lockmode to the /etc/sysconfigtab
database:

sysconfigdb -a -f generic.stanza generic

3. Reboot your system.

Some of the debugging features provided with lockmode set to 4 are as
follows:

• Automatic lock hierarchy checking and minimum spl checking when
any kernel lock is acquired (assuming a lockinfo structure exists for
the lock class in question). This checking helps you find potential
deadlock situations.

• Lock initialization checking.

• Additional debug information maintenance, including information
about simple and complex locks.

Kernel Debugging Utilities 2–9

For simple locks, the system records an array of the last 32 simple
locks which were acquired on the system (slock_debug). The system
creates a slock_debug array for each CPU in the system.

For complex locks, the system records the locks owned by each thread
in the thread structure (up to eight complex locks).

To get a list of the complex locks a thread is holding use these
commands:

dbx -k /vmunix
(dbx) print thread->lock_addr
{

[0] 0xe4000002a67e0030
[1] 0xc3e0005b47ff0411
[2] 0xb67e0030a6130048
[3] 0xa67e0030d34254e5
[4] 0x279f0200481e1617
[5] 0x4ae33738a7730040
[6] 0x477c0101471c0019
[7] 0xb453004047210402

}
(dbx) print slock_debug
{

[0] 0xfffffc000065c580
[1] 0xfffffc000065c780

}

• Lock statistics are recorded to allow you to determine what kind of
contention you have on a particular lock. Use the kdbx lockstats
extension as shown in the following example to display lock statistics:

kdbx /vmunix
(kdbx) lockstats

Lockstats li_name cpu count tries misses %misses waitsum waitmax waitmin trmax
=========== ===================== === ====== ========== ======= ====== ============ ======= ======= ======
k0x00657d40 inode.i_io_lock 1 1784 74268 1936 2.61 110533 500 6 10
k0x00653400 nfs_daemon_lock 0 1 7 0 0.00 0 0 0 0
k0x00657d80 nfs_daemon_lock 1 1 0 0 0.00 0 0 0 0
k0x00653440 lk_lmf 0 1 0 0 0.00 0 0 0 0
k0x00657dc0 lk_lmf 1 1 2 0 0.00 0 0 0 0
k0x00653480 procfs_global_lock 0 1 3 0 0.00 0 0 0 0
k0x00657e00 procfs_global_lock 1 1 5 0 0.00 0 0 0 0
k0x006534c0 procfs.pr_trace_lock 0 40 0 0 0.00 0 0 0 0
k0x00657e40 procfs.pr_trace_lock 1 40 0 0 0.00 0 0 0

2–10 Kernel Debugging Utilities

2.2 The kdbx Debugger

The kdbx debugger is a crash analysis and kernel debugging tool; it serves
as a front end to the dbx debugger. The kdbx debugger is extensible,
customizable, and insensitive to changes to offsets and field sizes in
structures. The only dependencies on kernel header files are for bit
definitions in flag fields.

The kdbx debugger has facilities for interpreting various symbols and
kernel data structures. It can format and display these symbols and data
structures in the following ways:

• In a predefined form as specified in the source code modules that
currently accompany the kdbx debugger

• As defined in user-written source code modules according to a
standardized format for the contents of the kdbx modules

All dbx commands (except signals such as Ctrl/P) are available when you
use the kdbx debugger. In general, kdbx assumes hexadecimal addresses
for commands that perform input and output.

The sections that follow explain using kdbx to debug kernel programs.

2.2.1 Beginning a kdbx Session

Using the kdbx debugger, you can examine the running kernel or dump
files created by the savecore utility. In either case, you examine an object
file and a core file. For running systems, these files are usually /vmunix
and /dev/mem , respectively. The savecore utility saves dump files it
creates in the directory specified by the /sbin/init.d/savecore script.
By default, the savecore utility saves dump files in the /var/adm/crash
directory.

To examine a running system, enter the kdbx command with the following
parameters:

kdbx −k /vmunix /dev/mem

To examine an object file and core file created by the savecore utility,
enter a kdbx command similar to the following:

kdbx −k vmunix.1 vmcore.1

Kernel Debugging Utilities 2–11

The version number (vmunix. n and vmcore. n) is determined by the value
contained in the bounds file, which is located in the default crash directory
(/var/adm/crash) or an alternate directory specified by the
/sbin/init.d/savecore script.

When you begin a debugging session, kdbx reads and executes the
commands in the system initialization file /var/kdbx/system.kdbxrc .
The initialization file contains setup commands and alias definitions. (For a
list of kdbx aliases, see the kdbx (1) reference page.) You can further
customize the kdbx environment by adding commands and aliases to:

• The /var/kdbx/site.kdbxrc file

This file contains customized commands and alias definitions for a
particular system.

• The /˜ .kdbxrc file

This file contains customized commands and alias definitions for a
specific user.

• The ./.kdbxrc file

This file contains customized commands and alias definitions for a
specific project. This file must reside in the current working directory
when kdbx is invoked.

2.2.2 The kdbx Debugger Commands

The kdbx debugger provides the following commands:

alias [name]
[command-string]

Sets or displays aliases. If you omit all arguments,
alias displays all aliases. If you specify the
variable name, alias displays the alias for name, if
one exists. If you specify name and
command-string , alias establishes name as an
alias for command-string .

context proc |
user

Sets context to the user’s aliases or the extension’s
aliases. This command is used only by the
extensions.

coredata
start_address
end_address

Dumps, in hexadecimal, the contents of the core file
starting at start_address and ending before
end_address .

2–12 Kernel Debugging Utilities

dbx
command-string

Passes the command-string to dbx . Specifying
dbx is optional; if kdbx does not recognize a
command, it automatically passes that command to
dbx . See the dbx (1) reference page for a complete
description of dbx commands.

help [-long]
[args]

Prints help text.

pr [flags]
[extensions]
[arguments]

Executes an extension and gives it control of the
kdbx session until it quits. You specify the name of
the extension in extension and pass arguments to
it in arguments .

−debug Causes kdbx to display
input to and output from
the extension on the screen.

−pipe in_pipe
out_pipe

Used in conjunction with
the dbx debugger for
debugging extensions. See
Chapter 3 for information
on using the −pipe flag.

−print_output Causes the output of the
extension to be sent to the
invoker of the extension
without interpretation as
kdbx commands.

−redirect_output Used by extensions that
execute other extensions to
redirect the output from the
called extensions; otherwise,
the user receives the output.

−tty Causes kdbx to
communicate with the
subprocess through a
terminal line instead of
pipes. If you specify the
−pipe flag, proc ignores it.

print string Displays string on the terminal. If this command
is used by an extension, the terminal receives no
output.

Kernel Debugging Utilities 2–13

quit Exits the kdbx debugger.

source [-x]
[file(s)]

Reads and interprets files as kdbx commands in the
context of the current aliases. If the you specify the
−x flag, the debugger displays commands as they
are executed.

unalias name Removes the alias, if any, from name.

The kdbx debugger contains many predefined aliases, which are defined in
the kdbx startup file /var/kdbx/system.kdbxrc .

2.2.3 Using kdbx Debugger Extensions

In addition to its commands, the kdbx debugger provides extensions. You
execute extensions using the kdbx command pr . For example, to execute
the arp extension, you enter this command:

kdbx> pr arp

Some extensions are provided with your Digital UNIX system and reside in
the /var/kdbx directory. Aliases for each of these extensions are also
provided that let you omit the pr command from an extension command
line. Thus, another way to execute the arp extension is to enter the
following command:

kdbx> arp

This command has the same effect as the pr arp command.

You can create your own kdbx extensions as described in Chapter 3.

For extensions that display addresses as part of their output, some use a
shorthand notation for the upper 32-bits of an address to keep the output
readable. The following table lists the notation for each address type.

Notation Address Type Replaces Example

v virtual ffffffff v0x902416f0

e virtual fffffffe e0x12340000

k kseg fffffc00 k0x00487c48

u user space 00000000 u0x86406200

? Unrecognized or
random type

?0x3782cc33

2–14 Kernel Debugging Utilities

The sections that follow describe the kdbx extensions that are supplied
with your system.

2.2.3.1 Displaying the Address Resolution Protocol Table

The arp extension displays the contents of the address resolution protocol
(arp) table. The arp extension has the following form:

arp [−]

If you specify the optional hyphen (−), arp displays the entire arp table;
otherwise, it displays those entries that have nonzero values in the
iaddr.s_addr and at_flags fields.

For example:

(kdbx) arp
NAME BUCK SLOT IPADDR ETHERADDR MHOLD TIMER FLAGS

=================== ==== ==== ============ =============== ===== ===== =====
sys1.zk3.dec.com 11 0 16.140.128.4 170.0.4.0.91.8 0 450 3
sys2.zk3.dec.com 18 0 16.140.128.1 0.0.c.1.8.e8 0 194 3
sys3.zk3.dec.com 31 0 16.140.128.6 8.0.2b.24.23.64 0 539 103

2.2.3.2 Performing Commands on Array Elements

The array_action extension performs a command action on each element
of an array. This extension allows you to step through any array in the
operating system kernel and display specific components or values as
described in the list of command flags.

This extension has the following format:

array_action " type " length start_address [flags] command

The arguments to the array_action extension are as follows:

" type " The type of address of an element in the specified
array.

length The number of elements in the specified array.

start_address The address of an array. The address can be
specified as a variable name or a number. The more
common syntax or notation used to refer to the
start_address is usually of the form
&arrayname[0] .

Kernel Debugging Utilities 2–15

flags If the you specify the −head flag, the next argument
appears as the table header.

If the you specify the −size flag, the next argument
is used as the array element size; otherwise, the
size is calculated from the element type.

If the you specify the −cond flag, the next argument
is used as a filter. It is evaluated by dbx for each
array element, and if it evaluates to TRUE, the
action is taken on the element. The same
substitutions that are applied to the command are
applied to the condition.

command The kdbx or dbx command to perform on each
element of the specified array.

_______________________ Note _______________________

The kdbx debugger includes several aliases, such as
file_action , that may be easier to use than using the
array_action extension directly.

Substitutions similar to printf can be performed on the command for each
array element. The possible substitutions are as follows:

Conversion Character Description

%a Address of element

%c Cast of address to pointer to array
element

%i Index of element within the array

%s Size of element

%t Type of pointer to element

For example:

(kdbx) array_action "struct kernargs *" 11 &kernargs[0] p %c.name
0xfffffc00004737f8 = "askme"
0xfffffc0000473800 = "bufpages"
0xfffffc0000473810 = "nbuf"
0xfffffc0000473818 = "memlimit"

2–16 Kernel Debugging Utilities

0xfffffc0000473828 = "pmap_debug"
0xfffffc0000473838 = "syscalltrace"
0xfffffc0000473848 = "boothowto"
0xfffffc0000473858 = "do_virtual_tables"
0xfffffc0000473870 = "netblk"
0xfffffc0000473878 = "zalloc_physical"
0xfffffc0000473888 = "trap_debug"
(kdbx)

2.2.3.3 Displaying the Buffer Table

The buf extension displays the buffer table. This extension has the
following format:

buf [addresses−free|−all]

If you omit arguments, the debugger displays the buffers on the hash list.

If you specify addresses, the debugger displays the buffers at those
addresses. Use the −free flag to display buffers on the free list. Use the
−all flag to display first buffers on the hash list, followed by buffers on the
free list.

For example:

(kdbx) buf
BUF MAJ MIN BLOCK COUNT SIZE RESID VNO FWD BACK FLAGS
=========== === ===== ====== ===== ===== ===== =========== =========== =========== ===========
Bufs on hash lists:
v0x904e1b30 8 2 54016 8192 8192 0 v0x902220d0 v0x904f23a8 v0x904e1d20 write cache
v0x904e21f8 8 1025 131722 1024 8192 0 v0x90279800 v0x904e3748 v0x904e22f0 write cache
v0x904e46c8 8 1025 107952 2048 8192 0 v0x90220fa8 v0x904e22f0 v0x904e23e8 read cache
v0x904e9ef0 8 2050 199216 8192 8192 0 v0x90221560 v0x904f2b68 v0x904e66c0 read cache
v0x904df758 8 1025 107968 8192 8192 0 v0x90220fa8 v0x904eac80 v0x904df378 write cache
v0x904eb538 8 2050 223840 8192 8192 0 v0x90221560 v0x904ec990 v0x904eb440 read
v0x904e5930 8 2050 379600 8192 8192 0 v0x90221560 v0x904f3fc0 v0x904ec5b0 read cache
v0x904eae70 8 2050 625392 2048 8192 0 v0x90221560 v0x904df378 v0x904e08c8 write cache
v0x904f3ec8 8 1025 18048 8192 8192 0 v0x90220fa8 v0x904dff18 v0x904e1560 write cache
.
.
.
(kdbx)

2.2.3.4 Displaying the Callout Table and Absolute Callout Table

The callout extension displays the callout table. This extension has the
following format:

callout

For example:

Kernel Debugging Utilities 2–17

(kdbx) callout
Processor: 0
Current time (in ticks): 615421360

FUNCTION ARGUMENT TICKS(delta)
============================= ============ ============
realitexpire k0x008ab220 30772
wakeup k0x005d98e0 36541
wakeup k0x0187a220 374923
thread_timeout k0x010ee950 376286
thread_timeout k0x0132f220 40724481
realitexpire k0x01069950 80436086
thread_timeout k0x01bba950 82582849

The abscallout extension displays the absolute callout table. This table
contains callout entries with the absolute time in fractions of seconds. This
extension has the following format:

abscallout

For example:

(kdbx) abscallout
Processor: 0

FUNCTION ARGUMENT SECONDS
============================= =========== =============
psx4_tod_expire k0x01580808 86386.734375
psx4_tod_expire k0x01580840 172786.734375
psx4_tod_expire k0x01580878 259186.734375
psx4_tod_expire k0x015808b0 345586.718750
psx4_tod_expire k0x015808e8 431986.718750
psx4_tod_expire k0x01580920 518386.718750
psx4_tod_expire k0x01580958 604786.750000
psx4_tod_expire k0x01580990 691186.750000
psx4_tod_expire k0x015809c8 777586.750000
psx4_tod_expire k0x01580a00 863986.750000

2.2.3.5 Casting Information Stored in a Specific Address

The cast extension forces dbx to display part of memory as the specified
type and is equivalent to the following command:

dbx print *((type) address)

2–18 Kernel Debugging Utilities

The cast extension has the following format:

cast address type

For example:

(kdbx) cast 0xffffffff903e3828 char
’^@’

2.2.3.6 Displaying Machine Configuration

The config extension displays the configuration of the machine. This
extension has the following format:

config

For example:

(kdbx) config
Bus #0 (0xfffffc000048c6a0): Name - "tc" Connected to - "nexus"

Config 1 - tcconfl1 Config 2 - tcconfl2
Controller "scc" (0xfffffc000048c970)

(kdbx)

2.2.3.7 Converting the Base of Numbers

The convert extension converts numbers from one base to another. This
extension has the following format:

convert [−in 8|10|16] [−out 2|8|10|16] [args]

The −in and −out flags specify the input and output bases, respectively. If
you omit −in , the input base is inferred from the arguments. The
arguments can be numbers or variables.

For example:

(kdbx) convert -in 16 -out 10 864c2a14
2253138452
(kdbx)

Kernel Debugging Utilities 2–19

2.2.3.8 Displaying CPU Use Statistics

The cpustat extension displays statistics about CPU use. Statistics
displayed include percentages of time the CPU spends in the following
states:

• Running user level code

• Running system level code

• Running at a priority set with the nice() function

• Idle

• Waiting (idle with input or output pending)

This extension has the following format:

cpustat [−update n] [−cpu n]

The −update flag specifies that kdbx update the output every n seconds.

The −cpu flag controls the CPU for which kdbx displays statistics. By
default, kdbx displays statistics for all CPUs in the system.

For example:

(kdbx) cpustat
Cpu User (%) Nice (%) System (%) Idle (%) Wait (%)

===== ========== ========== ========== ========== ==========
0 0.23 0.00 0.08 99.64 0.05
1 0.21 0.00 0.06 99.68 0.05

2.2.3.9 Disassembling Instructions

The dis extension disassembles some number of instructions. This
extension has the following format:

dis start-address [num-instructions]

The num-instructions , argument specifies the number of instructions to
be disassembled. The start-address argument specifies the starting
address of the instructions. If you omit the num-instructions argument,
1 is assumed.

For example:

2–20 Kernel Debugging Utilities

(kdbx) dis 0xffffffff864c2a08 5
[., 0xffffffff864c2a08] call_pal 0x20001
[., 0xffffffff864c2a0c] call_pal 0x800000
[., 0xffffffff864c2a10] ldg $f18, -13304(r3)
[., 0xffffffff864c2a14] bgt r31, 0xffffffff864c2a14
[., 0xffffffff864c2a18] call_pal 0x4573d0

(kdbx)

2.2.3.10 Displaying Remote Exported Entries

The export extension displays the exported entries that are mounted
remotely. This extension has the following format:

export

For example:

(kdbx) export
ADDR EXPORT MAJ MIN INUM GEN MAP FLAGS PATH
================== === ===== ===== ========== ==== ===== =================
0xffffffff863bfe40 8 4098 2 1308854383 -2 0 /cdrom
0xffffffff863bfdc0 8 2050 67619 736519799 -2 0 /usr/users/user2
0xffffffff863bfe00 8 2050 15263 731712009 -2 0 /usr/staff/user
0xffffffff863bfe80 8 1024 6528 731270099 -2 0 /mnt

2.2.3.11 Displaying the File Table

The file extension displays the file table. This extension has the following
format:

file [addresses]

If you omit the arguments, the extension displays file entries with nonzero
reference counts; otherwise, it displays the file entries located at the
specified addresses.

For example:

(kdbx) file
Addr Type Ref Msg Fileops f_data Cred Offset Flags
=========== ==== === === ======= =========== =========== ====== =====
v0x90406000 file 4 0 vnops v0x90259550 v0x863d5540 68 r w
v0x90406058 file 1 0 vnops v0x9025b5b8 v0x863d5e00 4096 r
v0x904060b0 file 1 0 vnops v0x90233908 v0x863d5d60 0 r
v0x90406108 file 2 0 vnops v0x90233908 v0x863d5d60 602 w
v0x90406160 file 2 0 vnops v0x90228d78 v0x863d5b80 904 r
v0x904061b8 sock 2 0 sockops v0x863b5c08 v0x863d5c20 0 r w
v0x90406210 file 1 0 vnops v0x90239e10 v0x863d5c20 2038 r
v0x90406268 file 1 0 vnops v0x90245140 v0x863d5c20 301 w a

Kernel Debugging Utilities 2–21

v0x904062c0 file 3 0 vnops v0x90227880 v0x863d5900 23 r w
v0x90406318 file 2 0 vnops v0x90228b90 v0x863d5c20 856 r
v0x90406370 sock 2 0 sockops v0x863b5a08 v0x863d5c20 0 r w
.
.
.

2.2.3.12 Displaying the udb and tcb Tables

The inpcb extension displays the udb and tcb tables. This extension has
the following format:

inpcb [−udp] [−tcp] [addresses]

If you omit the arguments, kdbx displays both tables. If you specify the
−udp flag or the −tcp flag, the debugger displays the corresponding table.

If you specify the address argument, the inpcb extension ignores the
−udp and −tcp flags and displays entries located at the specified address.

For example:

(kdbx) inpcb -tcp
TCP:

Foreign Host FPort Local Host LPort Socket PCB Options
0.0.0.0 0 0.0.0.0 47621 u0x00000000 u0x00000000
system.dec.com 6000 comput.dec.com 1451 v0x8643f408 v0x863da408
system.dec.com 998 comput.dec.com 1020 v0x8643fc08 v0x863da208
system.dec.com 999 comput.dec.com 514 v0x8643ac08 v0x8643d008
system.dec.com 6000 comput.dec.com 1450 v0x863fba08 v0x863dad08
system.dec.com 1008 comput.dec.com 1021 v0x86431e08 v0x86414708
system.dec.com 1009 comput.dec.com 514 v0x86412808 v0x8643ce08
system.dec.com 6000 comput.dec.com 1449 v0x86436608 v0x86415e08
system.dec.com 6000 comput.dec.com 1448 v0x86431808 v0x863daa08
.
.
.
0.0.0.0 0 0.0.0.0 806 v0x863e3e08 v0x863dbe08
0.0.0.0 0 0.0.0.0 793 v0x863d1808 v0x8635a708
0.0.0.0 0 0.0.0.0 0 v0x86394408 v0x8635b008
0.0.0.0 0 0.0.0.0 1024 v0x86394208 v0x8635b108
0.0.0.0 0 0.0.0.0 111 v0x863d1e08 v0x8635b208

2.2.3.13 Performing Commands on Lists

The list_action extension performs some command on each element of a
linked list. This extension provides the capability to step through any
linked list in the operating system kernel and display particular
components. This extension has the following format:

list_action " type " next-field end-addr start-addr [flags] command

The arguments to the list_action extension are as follows:

2–22 Kernel Debugging Utilities

" type " The type of an element in the specified list.

next-field The name of the field that points to the next
element.

end-addr The value of the next field that terminates the list.
If the list is NULL-terminated, the value of the
end-addr argument is zero (0). If the list is
circular, the value of the end-addr argument is
equal to the start-addr argument.

start_addr The address of the list. This argument can be a
variable name or a number address.

flags Use the −head header flag to display the header
argument as the table header.

Use the −cond arg flag to filter input as specified
by arg . The debugger evaluates the condition for
each array element, and if it evaluates to true, the
action is taken on the element. The same
substitutions that are applied to the command are
applied to the condition.

command The debugger command to perform on each element
of the list.

The kdbx debugger includes several aliases, such as procaddr , that might
be easier than using the list_action extension directly.

The kdbx debugger applies substitutions in the same style as printf
substitutions for each command element. The possible substitutions are as
follows:

Conversion Character Description

%a Address of an element

%c Cast of an address to a pointer to a list
element

%i Index of an element within the list

%n Name of the next field

%t Type of pointer to an element

For example:

Kernel Debugging Utilities 2–23

(kdbx) list_action "struct proc *" p_nxt 0 allproc p \
%c.task.u_address.uu_comm %c.p_pid
"list_action" 1382
"dbx" 1380
"kdbx" 1379
"dbx" 1301
"kdbx" 1300
"sh" 1296
"ksh" 1294
"csh" 1288
"rlogind" 1287
...

2.2.3.14 Displaying the lockstats Structures

The lockstats extension displays the lock statistics contained in the
lockstats structures. Statistics are kept for each lock class on each CPU
in the system. These structures provide the following information:

• The address of the structure

• The class of lock for which lock statistics are being recorded

• The CPU for which the lock statistics are being recorded

• The number of instances of the lock

• The number of times processes have tried to get the lock

• The number of times processes have tried to get the lock and missed

• The percentage of time processes miss the lock

• The total time processes have spent waiting for the lock

• The maximum amount of time a single process has waited for the lock

• The minimum amount of time a single process has waited for the lock

The lock statistics recorded in the lockstats structures are dynamic.

This extension is available only when the lockmode system attribute is set
to 4.

This extension has the following format:

lockstats −class name |−cpu number |−read |−sum |−total |−update n

2–24 Kernel Debugging Utilities

If you omit all flags, lockstats displays statistics for all lock classes on all
CPUs. The following describes the flags you can use:

−class name Displays the lockstats structures for the specified
lock class. (Use the lockinfo command to display
information about the names of lock classes.)

−cpu number Displays the lockstats structures for the specified
CPU.

−read Displays the reads, sleeps attributes, and waitsums
or misses.

−sum Displays summary data for all CPUs and all lock
types.

−total Displays summary data for all CPUs.

−update n Updates the display every n seconds.

For example:

(kdbx) lockstats
Lockstats li_name cpu count tries misses %misses waitsum waitmax waitmin trmax

=========== ==================== === ====== ========== ======= ======= ============ ======= ======= ========
k0x00657d40 inode.i_io_lock 1 1784 74268 1936 2.61 110533 500 6 10
k0x00653400 nfs_daemon_lock 0 1 7 0 0.00 0 0 0 0
k0x00657d80 nfs_daemon_lock 1 1 0 0 0.00 0 0 0 0
k0x00653440 lk_lmf 0 1 0 0 0.00 0 0 0 0
k0x00657dc0 lk_lmf 1 1 2 0 0.00 0 0 0 0
k0x00653480 procfs_global_lock 0 1 3 0 0.00 0 0 0 0
k0x00657e00 procfs_global_lock 1 1 5 0 0.00 0 0 0 0
k0x006534c0 procfs.pr_trace_lock 0 40 0 0 0.00 0 0 0 0
k0x00657e40 procfs.pr_trace_lock 1 40 0 0 0.00 0 0 0 0
.
.
.

2.2.3.15 Displaying lockinfo Structures

The lockinfo extension displays static lock class information contained in
the lockinfo structures. Each lock class is recorded in one lockinfo
structure, which contains the following information:

• The address of the structure

• The index into the array of lockinfo structures

• The class of lock for which information is provided

• The number of instances of the lock

• The lock flag, as defined in the /sys/include/sys/lock.h header file

Kernel Debugging Utilities 2–25

This extension is available only when the lockmode system attribute is set
to 4.

This extension has the following format:

lockinfo [−class name]

The −class flag allows you to display the lockinfo structure for a
particular class of locks. If you omit the flag, lockinfo displays the
lockinfo structures for all classes of locks.

For example:

(kdbx) lockinfo
Lockinfo Index li_name li_count li_flgspl

================== ===== =========================== ========== =========
xfffffc0000652030 3 cfg_subsys_lock 21 0xd0
0xfffffc0000652040 4 subsys_tbl_lock 1 0xc0
0xfffffc0000652050 5 inode.i_io_lock 4348 0x90
0xfffffc0000652060 6 nfs_daemon_lock 1 0xc0
0xfffffc0000652070 7 lk_lmf 1 0xc0
0xfffffc0000652080 8 procfs_global_lock 1 0xc0
0xfffffc0000652090 9 procfs.pr_trace_lock 40 0xc0
0xfffffc00006520a0 10 procnode.prc_ioctl_lock 0 0xc0
0xfffffc00006520b0 11 semidq_lock 1 0xc0
0xfffffc00006520c0 12 semid_lock 16 0xc0
0xfffffc00006520d0 13 undo_lock 1 0xc0
0xfffffc00006520e0 14 msgidq_lock 1 0xc0
0xfffffc00006520f0 15 msgid_lock 64 0xc0
0xfffffc0000652100 16 pgrphash_lock 1 0xc0
0xfffffc0000652110 17 proc_relation_lock 1 0xc0
0xfffffc0000652120 18 pgrp.pg_lock 20 0xd0

2.2.3.16 Displaying the Mount Table

The mount extension displays the mount table, and has the following
format:

mount [−s] [address]

The −s flag displays a short form of the table. If you specify one or more
addresses, kdbx displays the mount entries named by the addresses.

For example:

(kdbx) mount
MOUNT MAJ MIN VNODE ROOTVP TYPE PATH FLAGS

=========== ===== ===== ============ =========== ==== ======================== =====
v0x8196bb30 8 0 NULL v0x8a75f600 ufs /
loc
v0x8196a910 v0x8a62de00 v0x8a684e00 nfs /share/cia/build/alpha.dsk5 ro
v0x8196aae0 v0x8a646800 v0x8a625400 nfs /share/xor/build/agosminor.dsk1 ro
v0x8196acb0 v0x8a684800 v0x8a649400 nfs /share/buffer/build/submits.dsk2 ro
v0x8196ae80 v0x8a67ea00 v0x8a774800 nfs /share/cia/build/goldos.dsk6 ro

2–26 Kernel Debugging Utilities

v0x8196b050 v0x8a67c400 v0x8a767800 nfs /usr/staff/alpha1/user
v0x8196b220 v0x8a651800 v0x8a781000 nfs /usr/sde
ro
v0x8196b3f0 8 2050 v0x8a61ca00 v0x8a77fe00 ufs /usr3
loc
v0x8196b5c0 8 7 v0x8a61c000 v0x8a79c200 ufs /usr2
loc
v0x8196b790 8 6 v0x8a5c4800 v0x8a760600 ufs /usr
loc
v0x8196b960 0 0 v0x8a5c5000 NULL procfs /proc

2.2.3.17 Displaying the Namecache Structures

The namecache extension displays the namecache structures on the
system, and has the following format:

namecache

For example:

(kdbx) namecache
namecache nc_vp nc_vpid nc_nlen nc_dvp nc_name
=========== =========== ======= ======= ============ =============
v0x9047b2c0 v0x9021f4f8 24 4 v0x9021e5b8 sbin
v0x9047b310 v0x9021e988 0 11 v0x9021e7a0 swapdefault
v0x9047b360 v0x9021e5b8 0 2 v0x9021e7a0 ..
v0x9047b3b0 v0x9021e7a0 199 3 v0x9021e5b8 dev
v0x9047b400 v0x9021ed58 0 4 v0x9021eb70 rz1g
v0x9047b4a0 v0x9021f128 0 4 v0x9021e7a0 init
v0x9047b4f0 v0x9021f310 0 7 v0x9021e5b8 upgrade
v0x9047b540 v0x9021fab0 20 3 v0x9021e5b8 etc
v0x9047b590 v0x9021f6e0 0 7 v0x9021f4f8 inittab
v0x9047b5e0 v0x9021eb70 28 3 v0x9021e5b8 var
v0x9047b630 v0x9021f310 34 3 v0x9021e5b8 usr
v0x9047b6d0 v0x9021fc98 0 7 v0x9021eb70 console
v0x9047b720 v0x9021fe80 0 2 v0x9021e7a0 sh
v0x9047b770 v0x90220068 0 3 v0x9021f4f8 nls
v0x9047b810 v0x90220250 0 8 v0x9021e7a0 bcheckrc
v0x9047b8b0 v0x90220438 0 4 v0x9021e7a0 fsck
v0x9047b900 v0x90220620 0 5 v0x9021f4f8 fstab
v0x9047b950 v0x90220808 0 8 v0x9021e7a0 ufs_fsck
v0x9047b9a0 v0x902209f0 0 4 v0x9021eb70 rz1a
v0x9047b9f0 v0x90220bd8 0 5 v0x9021eb70 rrz1a

.

.

.

2.2.3.18 Displaying Processes’ Open Files

The ofile extension displays the open files of processes and has the
following format.

ofile [−proc address|−pid pid|−v]

Kernel Debugging Utilities 2–27

If you omit arguments, ofile displays the files opened by each process. If
you specify −proc address or −pid pid the extension displays the open
files owned by the specified process. The −v flag displays more information
about the open files.

For example:

(kdbx) ofile -pid 1136 -v
Proc=0xffffffff9041e980 pid= 1136

ADDR_FILE f_cnt ADDR_VNODE V_TYPE V_TAG USECNT V_MOUNT INO# QSIZE
=========== ===== =========== ====== ====== ====== =========== ====== =====
v0x90408520 27 v0x902c1390 VCHR VT_UFS 3 v0x863abab8 1103 0
v0x90408520 27 v0x902c1390 VCHR VT_UFS 3 v0x863abab8 1103 0
v0x90408520 27 v0x902c1390 VCHR VT_UFS 3 v0x863abab8 1103 0
v0x90408368 1 v0x9026e6b8 VDIR VT_UFS 18 v0x863ab728 64253 512

2.2.3.19 Converting the Contents of Memory to Symbols

The paddr extension converts a range of memory to symbolic references
and has the following format:

paddr address number-of-longwords

The arguments to the paddr extension are as follows:

address The starting address.

number-of-longwords The number of longwords to display.

For example:

(kdbx) paddr 0xffffffff90be36d8 20
[., 0xffffffff90be36d8]: [h_kmem_free_memory_:824, 0xfffffc000037f47c] 0x0000000000000000
[., 0xffffffff90be36e8]: [., 0xffffffff8b300d30] [hardclock:394, 0xfffffc00002a7d5c]
[., 0xffffffff90be36f8]: 0x0000000000000000 [., 0xffffffff863828a0]
[., 0xffffffff90be3708]: [setconf:133, 0xfffffc00004949b0] [., 0xffffffff90be39f4]
[., 0xffffffff90be3718]: 0x00000000000004e0 [thread_wakeup_prim:858, 0xfffffc0000328454]
[., 0xffffffff90be3728]: 0x0000000000000001 0xffffffff0000000c
[., 0xffffffff90be3738]: [., 0xffffffff9024e518] [hardclock:394, 0xfffffc00002a7d5c]
[., 0xffffffff90be3748]: 0x00000000004d5ff8 0xffffffffffffffd4
[., 0xffffffff90be3758]: 0x00000000000bc688 [setconf:133, 0xfffffc00004946f0]
[., 0xffffffff90be3768]: [thread_wakeup_prim:901, 0xfffffc00003284d0] 0x000003ff85ef4ca0

2.2.3.20 Displaying the Process Control Block for a Thread

The pcb extension displays the process control block for a given thread
structure located at thread_address . The extension also displays the
contents of integer and floating-point registers (if nonzero).

This extension has the following format:

2–28 Kernel Debugging Utilities

pcb thread_address

For example:

(kdbx) pcb 0xffffffff863a5bc0
Addr pcb ksp usp pc ps
v0x90e8c000 v0x90e8fb88 0x0 0xfffffc00002dc110 0x5
sp ptbr pcb_physaddr
0xffffffff90e8fb88 0x2ad4 0x55aa000
r9 0xffffffff863a5bc0
r10 0xffffffff863867a0
r11 0xffffffff86386790
r13 0x5

2.2.3.21 Formatting Command Arguments

The printf extension formats one argument at a time to work around the
dbx debugger’s command length limitation. It also supports the %s string
substitution, which the dbx debugger’s printf command does not. This
extension has the following format:

printf format-string [args]

The arguments to the printf extension are as follows:

format-string A character string combining literal characters with
conversion specifications.

args The arguments for which you want kdbx to display
values.

For example:

(kdbx) printf "allproc = 0x%lx" allproc
allproc = 0xffffffff902356b0

2.2.3.22 Displaying the Process Table

The proc extension displays the process table. This extension has the
following format:

proc [address]

Kernel Debugging Utilities 2–29

If you specify an address, the proc extension displays only the proc
structures at that address; otherwise, the extension displays all proc
structures.

For example:

(kdbx) proc
.
.
.
Addr PID PPID PGRP UID NICE SIGCATCH P_SIG Event Flags
=========== ===== ===== ===== ===== ==== ======== ======== =========== ============
v0x8191e210 0 0 0 0 0 00000000 00000000 NULL in sys
v0x8197cd80 1 0 1 0 0 207a7eff 00000000 NULL in pagv exec
v0x8198a210 13 1 13 0 0 00002000 00000000 NULL in pagv
v0x819a8d80 120 1 120 0 0 00086001 00000000 NULL in pagv
v0x819a8210 122 1 122 0 0 00004001 00000000 NULL in pagv
v0x81a14210 5249 1 5267 1138 0 00081000 00000000 NULL in pagv exec
v0x819b6210 131 1 131 0 0 20006003 00000000 NULL in pagv
v0x81a18d80 5266 5267 5267 1138 0 00080000 00000000 NULL in pagv exec
v0x81a2ed80 5267 4938 5267 1138 0 00007efb 00000000 NULL in pagv exec
v0x81a42d80 5268 5266 5267 1138 0 00004007 00000000 NULL in pagv exec
v0x81a18210 5270 5273 5267 1138 0 00000000 00000000 NULL in pagv exec
v0x8198ed80 5273 5266 5267 1138 0 00000000 00000000 NULL in pagv exec
v0x81a0ad80 5276 5279 5276 1138 0 01880003 00000000 NULL
in pagv ctty exec
v0x81a26d80 5278 5249 5278 1138 0 00080002 00000000 NULL
in pagv ctty exec
v0x819f2d80 5279 1 5267 1138 0 00081000 00000000 NULL in pagv exec
v0x81a14d80 5281 1 5267 1138 0 00081000 00000000 NULL in pagv exec
v0x81a3cd80 5287 5281 5287 1138 0 01880003 00000000 NULL
in pagv ctty exec
v0x81a28210 5301 5276 5301 1138 0 00080002 00000000 NULL
in pagv ctty exec
v0x819aad80 195 1 195 0 0 00080628 00000000 NULL in pagv
v0x8197c210 6346 1 6346 0 0 00004006 00000000 NULL in pagv exec
v0x819c4210 204 1 0 0 0 00086efe 00000000 NULL in pagv
:

2.2.3.23 Converting an Address to a Procedure name

The procaddr extension converts the specified address to a procedure
name. This extension has the following format:

procaddr [address]

For example:

(kdbx) procaddr callout.c_func
xpt_pool_free

2–30 Kernel Debugging Utilities

2.2.3.24 Displaying Sockets from the File Table

The socket extension displays those files from the file table that are
sockets with nonzero reference counts. This extension has the following
format:

socket

For example:

(kdbx) socket
Fileaddr Sockaddr Type PCB Qlen Qlim Scc Rcc

=========== =========== ===== =========== ==== ==== === ====
v0x904061b8 v0x863b5c08 DGRAM v0x8632dc88 0 0 0 0
v0x90406370 v0x863b5a08 DGRAM v0x8632db08 0 0 0 0
v0x90406478 v0x863b5808 DGRAM v0x8632da88 0 0 0 0
v0x904064d0 v0x863b5608 DGRAM v0x8632d688 0 0 0 0
v0x904065d8 v0x863b5408 DGRAM v0x8632dc08 0 0 0 0
v0x90406630 v0x863b5208 DGRAM v0x8632d588 0 0 0 0
v0x904067e8 v0x863b4208 DGRAM v0x8632d608 0 0 0 0
v0x90406840 v0x863b4008 DGRAM v0x8632d788 0 0 0 0
v0x904069a0 v0x8641f008 STRM v0x8632c808 0 0 0 0
v0x90406aa8 v0x863b4c08 STRM v0x8632d508 0 2 0 0
v0x90406bb0 v0x863b4e08 STRM v0x8632da08 0 0 0 0
...

2.2.3.25 Displaying a Summary of the System Information

The sum extension displays a summary of system information and has the
following format:

sum

For example:

(kdbx) sum
Hostname : system.dec.com
cpu: DEC3000 - M500 avail: 1
Boot-time: Tue Nov 3 15:01:37 1992
Time: Fri Nov 6 09:59:00 1992
Kernel : OSF1 release 1.2 version 1.2 (alpha)
(kdbx)

Kernel Debugging Utilities 2–31

2.2.3.26 Displaying a Summary of Swap Space

The swap extension displays a summary of swap space and has the
following format:

swap

For example:

(kdbx) swap
Swap device name Size In Use Free

-------------------------------- ---------- ---------- ----------
/dev/rz3b 131072k 32424k 98648k Dumpdev

16384p 4053p 12331p
/dev/rz2b 131072k 8k 131064k

16384p 1p 16383p
-------------------------------- ---------- ---------- ----------
Total swap partitions: 2 262144k 32432k 229712k

32768p 4054p 28714p
(kdbx)

2.2.3.27 Displaying the Task Table

The task extension displays the task table. This extension has the
following format:

task [proc_address]

If you specify addresses, the extension displays the task structures named
by the argument addresses; otherwise, the debugger displays all tasks.

For example:

(kdbx) task
.
.
.
Task Addr Ref Threads Map Swap_state Utask Addr Proc Addr Pid
=========== === ======= =========== ========== =========== =========== ======
v0x8191e000 17 15 v0x808f7ef0 INSWAPPED v0x8191e3b0 v0x8191e210 0
v0x8197cb70 3 1 v0x808f7760 INSWAPPED v0x8197cf20 v0x8197cd80 1
v0x8198a000 3 1 v0x808f7550 INSWAPPED v0x8198a3b0 v0x8198a210 13
v0x819a8b70 3 1 v0x808f7340 INSWAPPED v0x819a8f20 v0x819a8d80 120
v0x819a8000 3 1 v0x808f7290 INSWAPPED v0x819a83b0 v0x819a8210 122
v0x81a14000 3 1 v0x819f1ad0 INSWAPPED v0x81a143b0 v0x81a14210 5249
v0x819b6000 3 1 v0x808f6fd0 INSWAPPED v0x819b63b0 v0x819b6210 131
v0x81a18b70 3 1 v0x819f1a20 INSWAPPED v0x81a18f20 v0x81a18d80 5266
v0x81a2eb70 3 1 v0x819f1340 INSWAPPED v0x81a2ef20 v0x81a2ed80 5267
v0x81a42b70 3 1 v0x819f1080 INSWAPPED v0x81a42f20 v0x81a42d80 5268
v0x81a18000 3 1 v0x819f1970 INSWAPPED v0x81a183b0 v0x81a18210 5270
v0x8198eb70 3 1 v0x808f74a0 INSWAPPED v0x8198ef20 v0x8198ed80 5273
v0x81a0ab70 3 1 v0x819f1ce0 INSWAPPED v0x81a0af20 v0x81a0ad80 5276
v0x81a26b70 3 1 v0x819f1760 INSWAPPED v0x81a26f20 v0x81a26d80 5278
v0x819f2b70 3 1 v0x819f1e40 INSWAPPED v0x819f2f20 v0x819f2d80 5279

2–32 Kernel Debugging Utilities

v0x81a14b70 3 1 v0x819f1b80 INSWAPPED v0x81a14f20 v0x81a14d80 5281
v0x81a3cb70 3 1 v0x819f11e0 INSWAPPED v0x81a3cf20 v0x81a3cd80 5287
v0x81a28000 3 1 v0x819f1550 INSWAPPED v0x81a283b0 v0x81a28210 5301
v0x819aab70 3 1 v0x808f71e0 INSWAPPED v0x819aaf20 v0x819aad80 195
v0x8197c000 3 1 v0x808f76b0 INSWAPPED v0x8197c3b0 v0x8197c210 6346
v0x819c4000 3 1 v0x808f6e70 INSWAPPED v0x819c43b0 v0x819c4210 204
.
.
.

2.2.3.28 Displaying Information About Threads

The thread extension displays information about threads and has the
following format:

thread [proc_address]

If you specify addresses, the thread extensions displays thread structures
named by the addresses; otherwise, information about all threads is
displayed.

For example:

(kdbx) thread
Thread Addr Task Addr Proc Addr Event pcb state
=========== =========== =========== =========== =========== =====
v0x8644d690 v0x8637e440 v0x9041e830 v0x86420668 v0x90f50000 wait
v0x8644d480 v0x8637e1a0 v0x9041eec0 v0x86421068 v0x90f48000 wait
v0x863a17b0 v0x86380ba0 v0x9041db10 v0x8640e468 v0x90f30000 wait
v0x863a19c0 v0x86380e40 v0x9041d9c0 v0x8641f268 v0x90f2c000 wait
v0x8644dcc0 v0x8637ec20 v0x9041e6e0 v0x8641fc00 v0x90f38000 wait
v0x863a0520 v0x8637f400 v0x9041ed70 v0x8640ea00 v0x90f3c000 wait
v0x863a0310 v0x8637f160 v0x9041e980 u0x00000000 v0x90f44000 run
v0x863a2410 v0x863818c0 v0x9041dc60 v0x8640f268 v0x90f18000 wait
v0x863a15a0 v0x86380900 v0x9041d480 v0x8641ec00 v0x90f24000 wait
.
.
.

2.2.3.29 Displaying a Stack Trace of Threads

The trace extension displays the stack of one or more threads. This
extension has the following format:

trace [thread_address... −k|−u|−a]

If you omit arguments, trace displays the stack trace of all threads. If you
specify a list of thread addresses, the debugger displays the stack trace of
the specified threads. The following table explains the trace flags:

−a Displays the stack trace of the active thread on
each CPU

Kernel Debugging Utilities 2–33

−k Displays the stack trace of all kernel threads

−u Displays the stack trace of all user threads

For example:

(kdbx) trace
*** stack trace of thread 0xffffffff819af590 pid=0 ***
> 0 thread_run(new_thread = 0xffffffff819af928)
["../../../../src/kernel/kern/sched_prim.c":1637, 0xfffffc00002f9368]

1 idle_thread() ["../../../../src/kernel/kern/sched_prim.c":2717,
0xfffffc00002fa32c]
*** stack trace of thread 0xffffffff819af1f8 pid=0 ***
> 0 thread_block() ["../../../../src/kernel/kern/sched_prim.c":1455,
0xfffffc00002f9084]

1 softclock_main() ["../../../../src/kernel/bsd/kern_clock.c":810,
0xfffffc000023a6d4]
.
.
.
*** stack trace of thread 0xffffffff819fc398 pid=0 ***
> 0 thread_block() ["../../../../src/kernel/kern/sched_prim.c":1471,
0xfffffc00002f9118]

1 vm_pageout_loop() ["../../../../src/kernel/vm/vm_pagelru.c":375,
0xfffffc0000395664]

2 vm_pageout() ["../../../../src/kernel/vm/vm_pagelru.c":834,
0xfffffc00003961e0]
.
.
.
*** stack trace of thread 0xffffffff819fce60 pid=2 ***
> 0 thread_block() ["../../../../src/kernel/kern/sched_prim.c":1471,
0xfffffc00002f9118]

1 msg_dequeue(message_queue = 0xffffffff819a5970, max_size = 8192,
option = 0, tout = 0, kmsgptr = 0xffffffff916e3980)
["../../../../src/kernel/kern/ipc_basics.c":884, 0xfffffc00002e8b54]

2 msg_receive_trap(header = 0xfffffc00005bc150, option = 0, size =
8192, name = 0, tout = 0)
["../../../../src/kernel/kern/ipc_basics.c":1245, 0xfffffc00002e92a4]

3 msg_receive(header = 0xfffffc00005be150, option = 6186352, tout =
0) ["../../../../src/kernel/kern/ipc_basics.c":1107, 0xfffffc00002e904c]

4 ux_handler() ["../../../../src/kernel/builtin/ux_exception.c":221,
0xfffffc000027269c]
*** stack trace of thread 0xffffffff81a10730 pid=13 ***
> 0 thread_block() ["../../../../src/kernel/kern/sched_prim.c":1471,
0xfffffc00002f9118]

1 mpsleep(chan = 0xffffffff819f3270 =

"H4\237\201\377\377\377\377^X0\237\201\377\377\377\377^ ^YR", pri =
296, wmesg = 0xfffffc000042f5e0 =

"\200B\260\300B\244KA\340\3038F]\244\377, timo = 0,
lockp = (nil), flags = 0)
["../../../../src/kernel/bsd/kern_synch.c":341, 0xfffffc0000250250]

2 sigsuspend(p = 0xffffffff81a04278, args = 0xffffffff9170b8a8,
retval = 0xffffffff9170b898)
.
.
.

2–34 Kernel Debugging Utilities

2.2.3.30 Displaying a u Structure

The u extension displays a u structure. This extension has the following
format:

u [proc-addr]

If you omit arguments, the extension displays the u structure of the
currently running process.

For example:

(kdbx) u ffffffff9027ff38
procp 0x9027ff38
ar0 0x90c85ef8
comm cfgmgr
args g B* u¨
u_ofile_of: 0x86344e30 u_pofile_of: 0x86345030

0 0xffffffff902322d0
1 0xffffffff90232278
2 0xffffffff90232278
3 0xffffffff90232328
4 0xffffffff90232380 Auto-close
5 0xffffffff902324e0

sizes 29 45 2 (clicks)
u_outime 0
sigs

40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40

sigmask
0 fffefeff fffefeff fffefeff 0 0 0 0
0 0 0 0 0 fffefeff 0 fffefeff
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

sigonstack 0
oldmask 2000
sigstack 0 0
cdir rdir 901885b8 0
timers
start 0 723497702
acflag 193248
(kdbx)

Kernel Debugging Utilities 2–35

2.2.3.31 Displaying References to the ucred Structure

The ucred extension displays all instances of references to ucred
structures. This extension has the following format:

ucred [−proc|−uthread|−file|−buf|−ref addr|−check addr|checkall]

If you omit all flags, ucred displays all references to ucred structures. The
following describes the flags you can specify:

-proc Displays all ucreds referenced by the proc
structures

-uthread Displays all ucreds referenced by the uthread
structures

-file Displays all ucreds referenced by the file
structures

-buf Displays all ucreds referenced by the buf
structures

-ref address Displays all references to a given ucred

-check address Checks the reference count of a particular ucred

-checkall Checks the reference count of all ucreds , with
mismatches marked by an asterisk (*)

For example:

(kdbx) ucred
ADDR OF UCRED ADDR OF Ref Ref Type cr_ref cr_uid cr_gid cr_ruid

=================== ================== ======== ====== ====== ====== =======
0xffffffff863d4960 0xffffffff90420f90 proc 3 0 1 0
0xffffffff8651fb80 0xffffffff9041e050 proc 18 0 1 0
0xffffffff86525c20 0xffffffff90420270 proc 2 0 1 0
0xffffffff86457ea0 0xffffffff90421380 proc 4 1139 15 1139
0xffffffff86457ea0 0xffffffff9041f6a0 proc 4 1139 15 1139
0xffffffff8651b5e0 0xffffffff9041f010 proc 2 0 1 0
0xffffffff8651efa0 0xffffffff9041e1a0 proc 2 1138 10 1138
.
.
.
0xffffffff863d4960 0xffffffff90fb82e0 uthread 3 0 1 0
0xffffffff8651fb80 0xffffffff90fbc2e0 uthread 18 0 1 0
0xffffffff86525c20 0xffffffff90fb02e0 uthread 2 0 1 0
0xffffffff86457ea0 0xffffffff90f882e0 uthread 4 1139 15 1139
0xffffffff86457ea0 0xffffffff90f902e0 uthread 4 1139 15 1139
0xffffffff8651b5e0 0xffffffff90fc02e0 uthread 2 0 1 0
0xffffffff8651efa0 0xffffffff90fac2e0 uthread 2 1138 10 1138
.
.
.
0xffffffff863d5c20 0xffffffff90406790 file 16 0 0 0

2–36 Kernel Debugging Utilities

0xffffffff863d5b80 0xffffffff904067e8 file 7 0 0 0
0xffffffff863d5c20 0xffffffff90406840 file 16 0 0 0
0xffffffff863d5b80 0xffffffff90406898 file 7 0 0 0
0xffffffff86456000 0xffffffff904068f0 file 15 1139 15 1139
0xffffffff863d5c20 0xffffffff90406948 file 16 0 0 0
.
.
.
(kdbx) ucred -ref 0xffffffff863d5a40

ADDR OF UCRED ADDR OF Ref Ref Type cr_ref cr_uid cr_gid cr_ruid
=================== ================== ======== ====== ====== ====== =======
0xffffffff863d5a40 0xffffffff9041c0d0 proc 4 0 0 0
0xffffffff863d5a40 0xffffffff90ebc2e0 uthread 4 0 0 0
0xffffffff863d5a40 0xffffffff90406f78 file 4 0 0 0
0xffffffff863d5a40 0xffffffff90408730 file 4 0 0 0
(kdbx) ucred -check 0xffffffff863d5a40

ADDR OF UCRED cr_ref Found
=================== ====== =======
0xffffffff863d5a40 4 4

2.2.3.32 Removing Aliases

The unaliasall extension removes all aliases, including the predefined
aliases. This extension has the following format:

unaliasall

For example:

(kdbx) unaliasall

2.2.3.33 Displaying the vnode Table

The vnode extension displays the vnode table and has the following
format:

vnode [−free|−all|−ufs|−nfs|−cdfs|−advfs|−fs address|−u uid|−g gid|−v]

If you omit flags, vnode displays ACTIVE entries in the vnode table.
(ACTIVE means that usecount is nonzero.) The following describes the
flags you can specify:

-free Displays INACTIVE entries in the vnode table

-all Prints ALL (both ACTIVE and INACTIVE) entries
in the vnode table

-ufs Displays all UFS entries in the vnode table

-nfs Displays all NFS entries in the vnode table

Kernel Debugging Utilities 2–37

-cdfs Displays all CDFS entries in the vnode table

-advfs Displays all ADVFS entries in the vnode table

-fs address Displays the vnode entries of a mounted file system

-u uid Displays vnode entries of a particular user

-g gid Displays vnode entries of a particular group

-v Displays related inode , rnode , or cdnode
information (used with -ufs , -nfs , or -cdfs only)

For example:

(kdbx) vnode
ADDR_VNODE V_TYPE V_TAG USECNT V_MOUNT
=========== ====== ====== ====== ===========
v0x9021e000 VBLK VT_NON 1 k0x00467ee8
v0x9021e1e8 VBLK VT_NON 83 v0x863abab8
v0x9021e3d0 VBLK VT_NON 1 k0x00467ee8
v0x9021e5b8 VDIR VT_UFS 34 v0x863abab8
v0x9021e7a0 VDIR VT_UFS 1 v0x863abab8
v0x9021ed58 VBLK VT_UFS 1 v0x863abab8
v0x9021ef40 VBLK VT_NON 1 k0x00467ee8
v0x9021f128 VREG VT_UFS 3 v0x863abab8
v0x9021f310 VDIR VT_UFS 1 v0x863abab8
v0x9021f8c8 VREG VT_UFS 1 v0x863abab8
v0x9021fe80 VREG VT_UFS 1 v0x863abab8
v0x902209f0 VDIR VT_UFS 1 v0x863abab8
v0x90220fa8 VBLK VT_UFS 9 v0x863abab8
v0x90221190 VBLK VT_NON 1 k0x00467ee8
v0x90221560 VREG VT_UFS 1 v0x863abab8
v0x90221748 VBLK VT_UFS 3153 v0x863abab8
.
.
.
(kdbx) vnode -nfs -v
ADDR_VNODE V_TYPE V_TAG USECNT V_MOUNT FILEID MODE UID GID QSIZE
=========== ====== ====== ====== =========== ====== ====== ==== ==== ======
v0x90246820 VDIR VT_NFS 1 v0x863ab560 205732 40751 1138 23 2048
v0x902471a8 VDIR VT_NFS 1 v0x863ab398 378880 40755 1138 10 5120
v0x90247578 VDIR VT_NFS 1 v0x863ab1d0 2 40755 0 0 1024
v0x90247948 VDIR VT_NFS 1 v0x863ab008 116736 40755 1114 0 512
v0x9026d1c0 VDIR VT_NFS 1 v0x863ab1d0 14347 40755 0 10 512
v0x9026e8a0 VDIR VT_NFS 1 v0x863aae40 2 40755 0 10 512
v0x9026ea88 VDIR VT_NFS 1 v0x863ab1d0 36874 40755 0 10 512
v0x90272788 VDIR VT_NFS 1 v0x863ab1d0 67594 40755 0 10 512
v0x902fd080 VREG VT_NFS 1 v0x863ab1d0 49368 100755 8887 177 455168
v0x902ff888 VREG VT_NFS 1 v0x863ab1d0 49289 100755 8887 177 538200
v0x90326410 VREG VT_NFS 1 v0x863aae40 294959 100755 3 4 196608
.
.
.
(kdbx) vnode -ufs -v
ADDR_VNODE V_TYPE V_TAG USECNT V_MOUNT INODE# MODE UID GID QSIZE
=========== ====== ====== ====== =========== ====== ====== ==== ==== ======
v0x9021e5b8 VDIR VT_UFS 34 v0x863abab8 2 40755 0 0 1024
v0x9021e7a0 VDIR VT_UFS 1 v0x863abab8 1088 40755 0 0 2560
v0x9021ed58 VBLK VT_UFS 1 v0x863abab8 1175 60600 0 0 0

2–38 Kernel Debugging Utilities

v0x9021f128 VREG VT_UFS 3 v0x863abab8 7637 100755 3 4 147456
v0x9021f310 VDIR VT_UFS 1 v0x863abab8 8704 40755 3 4 512
v0x9021f8c8 VREG VT_UFS 1 v0x863abab8 7638 100755 3 4 90112
v0x9021fe80 VREG VT_UFS 1 v0x863abab8 7617 100755 3 4 196608
v0x902209f0 VDIR VT_UFS 1 v0x863abab8 9792 41777 0 10 512
v0x90220fa8 VBLK VT_UFS 9 v0x863abab8 1165 60600 0 0 0
v0x90221560 VREG VT_UFS 1 v0x863abab8 7635 100755 3 4 245760
v0x90221748 VBLK VT_UFS 3151 v0x863abab8 1184 60600 0 0 0
.
.
.

2.3 The kdebug Debugger

The kdebug debugger allows you to debug running kernel programs. You
can start and stop kernel execution, examine variable and register values,
and perform other debugging tasks, just as you would when debugging user
space programs.

The ability to debug a running kernel is provided through remote
debugging. The kernel code you are debugging runs on a test system. The
dbx debugger runs on a remote build system. The debugger communicates
with the kernel code you are debugging over a serial communication line or
through a gateway system. You use a gateway system when you cannot
physically connect the test and build systems. Figure 2–1 shows the
connections needed when you use a gateway system.

Kernel Debugging Utilities 2–39

Figure 2–1: Using a Gateway System During Remote Debugging

ZK−0974U−R

Test SystemGateway SystemBuild System

Network

Serial Line

Kernel Codedbx Debugger

As shown in Figure 2–1, when you use a gateway system, the build system
is connected to it using a network line. The gateway system is connected to
the test system using a serial communication line.

Prior to running the kdebug debugger, the test, build, and gateway
systems must meet the following requirements:

• The test system must be running Digital UNIX Version 2.0 or higher,
must have the Kernel Debugging Tools subset loaded, and must have
the Kernel Breakpoint Debugger kernel option configured.

• The build system must be running Digital UNIX Version 2.0 or higher
and must have the Kernel Debugging Tools subset loaded. Also, this
system must contain a copy of the kernel code you are testing and,
preferably, the source used to build that kernel code.

• The gateway system must be running Digital UNIX Version 2.0 or
higher and must have the Kernel Debugging Tools subset loaded.

To use the kdebug debugger, you must set up your build, gateway, and test
systems as described in Section 2.3.1. Once you complete the setup, you
invoke dbx as described in Section 2.3.2 and enter commands as you
normally would. Refer to Section 2.3.3 if you have problems with the setup
of your remote kdebug debugging session.

2–40 Kernel Debugging Utilities

2.3.1 Getting Ready to Use the kdebug Debugger

To use the kdebug debugger, you must do the following:

1. Attach the test system and the build (or gateway) system.

To attach the serial line between the test and build (or gateway)
systems, locate the serial line used for kernel debugging. In general, the
correct serial line is either /dev/tty00 or /dev/tty01 . For example,
if you have a DEC 3000 family workstation, kdebug debugger input
and output is always to the RS232C port on the back of the system. By
default, this port is identified as /dev/tty00 at installation time.

If your system is an AlphaStation or AlphaServer system with an ace
console serial interface, the system uses one of two serial ports for
kdebug input and output. By default, these systems use the COMM1
serial port (identified as /dev/tty00) when operating as a build or
gateway system. These systems use the COMM2 serial port (identified
as /dev/tty01) when operating as the test system.

To make it easier to connect the build or gateway system and the test
system for kernel debugging, you can modify your system setup. You
can change the system setup so that the COMM2 serial port is always
used for kernel debugging whether the system is operating as a build
system, a gateway system, or a test system.

To make COMM2 the serial port used for kernel debugging on
AlphaStations and AlphaServers, modify your /etc/remote file. On
these systems, the default kdebug debugger definition in the
/etc/remote file appears as follows:

kdebug:dv=/dev/tty00:br#9600:pa=none:

Modify this definition so that the device is /dev/tty01 (COMM2), as
follows:

kdebug:dv=/dev/tty01/br#9600:pa=none:

2. On the build system, install the Product Authorization Key (PAK) for
the Developer’s kit (OSF-DEV), if it is not already installed. For the
gateway and tests systems, the OSF-BASE license PAK is all that is
needed. For information about installing PAKs, see the Software
License Management guide.

Kernel Debugging Utilities 2–41

3. On the build system, modify the setting of the $kdebug_host ,
$kdebug_line , or $kdebug_dbgtty as needed.

The $kdebug_host variable is the name of the gateway system. By
default, $kdebug_host is set to localhost , assuming no gateway
system is being used.

The $kdebug_line variable selects the serial line definition to use in
the /etc/remote file of the build system (or the gateway system, if
one is being used). By default, $kdebug_line is set to kdebug .

The $kdebug_dbgtty variable sets the terminal on the gateway
system to display the communication between the build and test
systems, which is useful in debugging your setup. To determine the
terminal name to supply to the $kdebug_dbgtty variable, enter the
tty command in the correct window on the gateway system. By
default, $kdebug_dbgtty is null.

For example, the following $HOME/.dbxinit file sets the
$kdebug_host variable to a system named gatewy:

set $kdebug_host="gatewy"

4. Recompile kernel files, if necessary.

By default, the kernel is compiled with only partial debugging
information. Occasionally, this partial information causes kdebug to
display erroneous arguments or mismatched source lines. To correct
this, recompile selected source files on the test system specifying the
CDEBUGOPTS=−g argument.

5. Make a backup copy of the kernel running on the test system so that
you can restore that kernel after testing:

mv /vmunix /vmunix.save

6. Copy the kernel to be tested to /vmunix on the test system and reboot
the system:

cp vmunix.test /vmunix
shutdown -r now

2–42 Kernel Debugging Utilities

7. If you are debugging on an SMP system, set the lockmode system
attribute to 4 on the test system, as follows:

a. Create a stanza-formatted file named, for example
generic.stanza , that appears as follows:

generic:
lockmode = 4

This file indicates that you are modifying the lockmode attribute
in the generic subsystem.

b. Use the sysconfigdb command to add the contents of the file to
the /etc/sysconfigtab database:

sysconfigdb -a -f generic.stanza generic

c. Reboot your system.

Setting this system attribute makes debugging on an SMP system
easier. For information about the advantages provided see Section 2.1.9.

8. Set the OPTIONS KDEBUG configuration file option in your test
kernel. To set this option, run the doconfig command without flags,
as shown:

doconfig

Choose KERNEL BREAKPOINT DEBUGGING from the kernel options
menu when it is displayed by doconfig . Once doconfig finishes
building a new kernel, copy that kernel to the /vmunix file and reboot
your system. For more information about using the kernel options
menu to modify the kernel, see the System Administration guide.

2.3.2 Invoking the kdebug Debugger

You invoke the kdebug debugger as follows:

1. Invoke the dbx debugger on the build system, supplying the pathname
of the test kernel. Set a breakpoint and start running dbx as follows:

dbx -remote vmunix
dbx version 3.12.1
Type ’help’ for help.
main: 602 p = &proc[0];

Kernel Debugging Utilities 2–43

(dbx) stop in main
[2] stop in main
(dbx) run

Note that you can set a breakpoint anytime after the execution of the
kdebug_bootstrap() routine. Setting a breakpoint prior to the
execution of this routine can result in unpredictable behavior.

You can use all valid dbx flags with the -remote flag and define
entries in your $HOME/.dbxinit file as usual. For example, suppose
you start the dbx session in a directory other than the one that
contains the source and object files used to build the vmunix kernel you
are running on the test system. In this case, use the -I command flag
or the use command in your $HOME/.dbxinit file to point dbx to the
appropriate source and object files. For more information, see dbx (1)
and the Programmer’s Guide.

2. Halt the test system and, at the console prompt (three right angle
brackets), set the boot_osflags console variable to contain the k
option, and then boot the system. For example:

>>> set boot_osflags "k"
>>> boot

Once you boot the kernel, it begins executing. The dbx debugger will
halt execution at the breakpoint you specified, and you can begin
issuing dbx debugging commands. See Section 2.1, the dbx (1) reference
page, or the Programmer’s Guide for information on dbx debugging
commands.

If you are unable to bring your test kernel up to a fully operational
mode, you can reboot the halted system running the generic kernel, as
follows:

>>> set boot_osflags "S"
>>> set boot_file "/genvmunix"
>>> boot

Once the system is running, you can run the bcheckrc script manually
to check and mount your local file systems. Then, copy the appropriate
kernel to the root (/) directory.

2–44 Kernel Debugging Utilities

When you are ready to resume debugging, copy the test kernel to
/vmunix and reset the console variables and boot the system, as
follows:

>>> set boot_osflags "k"
>>> set boot_file "/vmunix"
>>> boot

When you have completed your debugging session, reset the console
variables on the test system to their normal values, as follows:

>>> set boot_osflags "A"
>>> set boot_file "/vmunix"
>>> set auto_action boot

You might also need to replace the test kernel with a more reliable kernel.
For example, you should have saved a copy of the vmunix file that is
normally used to run the test system. You can copy that file to /vmunix
and shutdown and reboot the system:

mv /vmunix.save /vmunix
shutdown -r now

2.3.3 Diagnosing kdebug Setup Problems

If you have completed the kdebug setup as described in Section 2.3.2 and it
fails to work, refer to the following list for help in diagnosing and fixing the
setup problem:

• Determine whether the serial line is attached properly and then use
the tip command to test the connection.

Once you determine that the serial line is attached properly, log on to
the build system (or the gateway system if one is being used) as root
and enter the following command:

tip kdebug

If the command does not return the message connected , another
process, such as a print daemon, might be using the serial line port

Kernel Debugging Utilities 2–45

that you have dedicated to the kdebug debugger. To remedy this
condition, do the following:

– Check the /etc/inittab file to see if any processes are using that
line. If so, disable these lines until you finish with the kdebug
session. See the inittab (4) reference page for information on
disabling lines.

– Examine your /etc/remote file to determine which serial line is
associated with the kdebug label. Then, use the ps command to see
if any processes are using the line. For example, if you are using
the /dev/tty00 serial port for your kdebug session, check for
other processes using the serial line with the following command:

ps agxt00

If a process is using tty00 , either kill that process or modify the
kdebug label so that a different serial line is used.

If the serial line specified in your /etc/remote file is used as the
system’s serial console, do not kill the process. In this case, use
another serial line for the kdebug debugger.

– Determine whether any unused kdebugd gateway daemons are
running with the following command:

ps agx | grep kdebugd

After ensuring the daemons are unused, kill the daemon processes.

• If the test system boots to single user or beyond, then kdebug has not
been configured into the kernel as specified in Section 2.3.1. Ensure
that the boot_osflags console environment variable specifies the k
flag and try booting the system again:

>>> set boot_osflags k
>>> boot

• Be sure you defined the dbx variables in your $HOME/.dbxinit file
correctly.

Determine which terminal line you ran tip from by issuing the
/usr/bin/tty command. For example:

/usr/bin/tty
/dev/ttyp2

2–46 Kernel Debugging Utilities

This example shows that you are using terminal /dev/ttyp2 . Edit
your $HOME/.dbxinit file on the build system as follows:

– Set the $kdebug_dbgtty variable to /dev/ttyp2 as follows:

set $kdebug_dbgtty="/dev/ttyp2"

– Set the $kdebug_host variable to the host name of the system from
which you entered the tip command. For example, if the host name
is MYSYS, the entry in the $HOME/.dbxinit file will be as follows:

set $kdebug_host="mysys"

– Remove any settings of the $kdebug_line variable as follows:

set $kdebug_line=

• Start dbx on the build system. You should see informational messages
on the terminal line /dev/ttyp2 that kdebug is starting.

• If you are using a gateway system, ensure that the inetd daemon is
running on the gateway system. Also, check the TCP/IP connection
between the build and gateway systems using one of the following
commands: rlogin , rsh , or rcp .

2.3.4 Notes on Using the kdebug Debugger

The following list contains information that can help you use the kdebug
debugger effectively:

• Breakpoint behavior on SMP systems

If you set breakpoints in code that is executed on an SMP system, the
breakpoints are handled serially. When a breakpoint is encountered on
a particular CPU, the state of all the other processors in the system is
saved and those processors spin. This behavior is similar to how
execution stops when a simple lock is obtained on a particular CPU.

Processing resumes on all processors when the breakpoint is dismissed;
for example, when you enter a step or cont command to the debugger.

• Reading instructions from disk

By default, the dbx debugger reads instructions from the remote
kernel’s memory. Reading instructions from memory allows the
debugger to help you examine self-modifying code, such as spl routines.

Kernel Debugging Utilities 2–47

You can force the debugger to look at instructions in the on-disk copy of
the kernel by adding the following line to your $HOME/.dbxinit file:

set $readtextfile = 1

Setting the $readtextfile variable might improve the speed of the
debugger while it is reading instructions.

Be aware that the instructions the debugger reads from the on-disk
copy of the kernel might be made obsolete by self-modifying code. The
on-disk copy of the kernel does not contain any modifications made to
the code as it is running. Obsolete instructions that the debugger reads
from the on-disk copy can cause the kernel to fail in an unpredictable
way.

2.4 The crashdc Utility

The crashdc utility collects critical data from operating system crash
dump files or from a running kernel. You can use the data it collects to
analyze the cause of a system crash. The crashdc utility uses existing
system tools and utilities to extract information from crash dumps. The
information garnered from crash dump files or from the running kernel
includes the hardware and software configuration, current processes, the
panic string (if any), and swap information.

The crashdc utility is invoked each time the system is booted. If it finds a
current crash dump, crashdc creates a data collection file with the same
numerical file name extension as the crash dump (see Section 4.5 for
information about crash dump names).

You can also invoke crashdc manually. The syntax of the command for
invoking the data collection script is as follows:

/bin/crashdc vmunix. n /vmcore. n

See Appendix A for an example of the output from the crashdc command.

2–48 Kernel Debugging Utilities

3
Writing Extensions to the kdbx Debugger

To assist in debugging kernel code, you can write an extension to the kdbx
debugger. Extensions interact with kdbx and enable you to examine kernel
data relevant to debugging the source program. This chapter provides the
following:

• A list of considerations before you begin writing extensions (Section 3.1)

• A description of the kdbx library routines that you can use to write
extensions (Section 3.2)

• Examples of kdbx extensions (Section 3.3)

• Instructions for compiling extensions (Section 3.4)

• Information to help you debug your kdbx extensions (Section 3.5)

The Digital UNIX Kernel Debugging Tools subset must be installed on your
system before you can create custom extensions to the kdbx debugger. This
subset contains header files and libraries needed for building kdbx
extensions. See Section 3.1 for more information.

3.1 Basic Considerations for Writing Extensions

Before writing an extension, consider the following:

• The information that is needed

Identify the kernel variables and symbols that you need to examine.

• The means for displaying the information

Display the information so that anyone who needs to use it can read
and understand it.

• The need to provide useful error checking

As with any good program, it is important to provide informational
error messages in the extension.

Writing Extensions to the kdbx Debugger 3–1

Before you write an extension, become familiar with the library routines in
the libkdbx.a library. These library routines provide convenient methods
of extracting and displaying kernel data. The routines are declared in the
/usr/include/kdbx.h header file and described in Section 3.2.

You should also study the extensions that are provided on your system in
the /var/kdbx directory. These extensions and the example extensions
discussed in Section 3.3 can help you understand what is involved in
writing an extension and provide good examples of using the kdbx library
functions.

3.2 Standard kdbx Library Functions

The kdbx debugger provides a number of library functions that are used by
the resident extensions. You can use these functions, which are declared in
the ./usr/include/kdbx.h header file, to develop customized extensions
for your application. To use the functions, you must include the
./usr/include/kdbx.h header file in your extension.

The sections that follow describe the special data types defined for use in
kdbx extensions and the library routines you use in extensions. The library
routine descriptions show the routine syntax and describe the routine
arguments. Examples included in the descriptions show significant lines in
boldface type.

3.2.1 Special kdbx Extension Data Types

The routines described in this section use the following special data types:
StatusType , Status , FieldRec , and DataStruct . The uses of these data
types are as follows:

• The StatusType data type is used to declare the status type and can
take on any one of the following values:

– OK, which indicates that no error occurred

– Comm, which indicates a communication error

– Local , which indicates other types of errors

The following is the type definition for the StatusType data type:

typedef enum { OK, Comm, Local } StatusType;

3–2 Writing Extensions to the kdbx Debugger

• The Status data type is returned by some library routines to inform
the caller of the status of the call. Library routines using this data type
fill in the type field with the call status from StatusType . Upon
return, callers check the type field, and if it is not set to OK, they can
pass the Status structure to the print_status routine to generate a
detailed error message.

The following is the type definition for the Status data type:

typedef struct {
StatusType type;
union {

int comm;
int local;

} u;
} Status;

The values in command local provide the error code interpreted by
print_status .

• The FieldRec data type, which is used to declare a field of interest in
a data structure.

The following is the type definition for the FieldRec data type:

typedef struct {
char *name;
int type;
caddr_t data;
char *error;

} FieldRec;

The char * name declaration is the name of the field in question. The
int type declaration is the type of the field, for example, NUMBER,
STRUCTURE, POINTER. The caddr_t data and char * error
declarations are initially set to NULL. The read_field_vals function
fills in these values.

• The DataStruct , data type, which is used to declare data structures
with opaque data types.

The following is the type definition for the DataStruct data type:

typedef long DataStruct;

Writing Extensions to the kdbx Debugger 3–3

3.2.2 Converting an Address to a Procedure Name

The addr_to_proc function returns the name of the procedure that begins
the address you pass to the function. If the address is not the beginning of
a procedure, then a string representation of the address is returned. The
return value is dynamically allocated by malloc and should be freed by the
extension when it is no longer needed.

This function has the following syntax:

char *addr_to_proc(long addr);

Argument Input/Output Description

addr Input Specifies the address that you want converted
to a procedure name

For example:

conf1 = addr_to_proc((long) bus_fields[3].data);
conf2 = addr_to_proc((long) bus_fields[4].data);
sprintf(buf, "Config 1 - %sConfig 2 - %s", conf1, conf2);
free(conf1);
free(conf2);

3.2.3 Getting a Representation of an Array Element

The array_element function returns a representation of one element of
an array. The function returns non-NULL if it succeeds or NULL if an
error occurs. When the value of error is non-NULL, the error argument is
set to point to the error message. This function has the following syntax:

DataStruct array_element(DataStruct sym , int i , char ** error);

Argument Input/Output Description

sym Input Names the array

i Input Specifies the index of the element

error Output Returns a pointer to an error message, if the
return value is NULL

3–4 Writing Extensions to the kdbx Debugger

You usually use the array_element function with the read_field_vals
function. You use the array_element function to get a representation of
an array element that is a structure or pointer to a structure. You then
pass this representation to the read_field_vals function to get the
values of fields inside the structure. For an example of how this is done, see
Example 3–4 in Section 3.3.

The first argument of the array_element function is usually the result
returned from the read_sym function.

_______________________ Note _______________________

The read_sym , array_element , and read_field_vals
functions are often used together to retrieve the values of an
array of structures pointed to by a global pointer. (For more
information about using these functions, see the description of
the read_sym function in Section 3.2.27.)

For example:

if((ele = array_element(sz_softc, cntrl, &error)) == NULL){
fprintf(stderr, "Couldn’t get %d’th element of sz_softc:\n, cntrl");
fprintf(stderr, "%s\n", error);

}

3.2.4 Retrieving an Array Element Value

The array_element_val function returns the value of an array element.
It returns the integer value if the data type of the array element is an
integer data type. It returns the pointer value if the data type of the array
element is a pointer data type.

This function returns TRUE if it is successful, FALSE otherwise. When the
return value is FALSE, an error message is returned in an argument to the
function.

This function has the following syntax:

Boolean array_element_val(DataStruct sym , int i , long * ele_ret , char **
error);

Writing Extensions to the kdbx Debugger 3–5

Argument Input/Output Description

sym Input Names the array

i Input Specifies the index of the element

ele_ret Output Returns the value of the pointer

error Output Returns a pointer to an error message if the
return value is FALSE

You use the array_element_val function when the array element is of a
basic C type. You also use this function if the array element is of a pointer
type and the pointer value is what you actually want. This function returns
a printable value. The first argument of the array_element_val function
usually comes from the returned result of the read_sym function.

For example:

static char get_ele(array, i)
DataStruct array;
int i;
{

char *error, ret;
long val;

if(!array_element_val(array, i, &val, &error)){
fprintf(stderr, "Couldn’t read array element:\n");
fprintf(stderr, "%s\n", error);
quit(1);

}
ret = val;
return(ret);

}

3.2.5 Returning the Size of an Array

The array_size function returns the size of the specified array. This
function has the following syntax:

unsigned int array_size(DataStruct sym , char **error);

3–6 Writing Extensions to the kdbx Debugger

Argument Input/Output Description

sym Input Names the array

error Output Returns a pointer to an error message if the
return value is non-NULL

For example:

busses = read_sym("bus_list");

if((n = array_size(busses, &error)) == -1){
fprintf(stderr, "Couldn’t call array_size:\n");
fprintf(stderr, "%s\n", error);
quit(1);

}

3.2.6 Casting a Pointer to a Data Structure

The cast function casts the pointer to a structure as a structure data type
and returns the structure. This function has the following syntax:

Boolean cast(long addr, char * type, DataStruct * ret_type, char ** error);

Argument Input/Output Description

addr Input Specifies the address of the data structure you
want returned

type Input Specifies the datatype of the data structure

ret_type Output Returns the name of the data structure

error Output Returns a pointer to an error message if the
return value is FALSE

You usually use the cast function with the read_field_vals function.
Given the address of a structure, you call the cast function to convert the
pointer from the type long to the type DataStruct . Then, you pass the
result to the read_field_vals function, as its first argument, to retrieve
the values of data fields in the structure.

For example:

Writing Extensions to the kdbx Debugger 3–7

if(!cast(addr, "struct file", &fil, &error)){
fprintf(stderr, "Couldn’t cast address to a file:\n");
fprintf(stderr, "%s\n", error);
quit(1);

}

3.2.7 Checking Arguments Passed to an Extension

The check_args function checks the arguments passed to an extension or
displays a help message. The function displays a help message when the
user specifies the −help flag on the command line.

This function has the following syntax:

void check_args(int argc, char ** argv, char * help_string);

Argument Input/Output Description

argc Input Passes in the first argument to the command

argv Input Passes in the second argument to the command

help_string Input Specifies the help message to be displayed to
the user

You should include the check_args function early in your extension to be
sure that arguments are correct.

For example:

check_args(argc, argv, help_string);
if(!check_fields("struct sz_softc", fields, NUM_FIELDS, NULL)){

field_errors(fields, NUM_FIELDS);
quit(1);

}

3.2.8 Checking the Fields in a Structure

The check_fields function verifies that the specified function consists of
the expected number of fields and that those fields have the correct data
type. If the function is successful, TRUE is returned; otherwise, the error
parts of the affected fields are filled in with errors, and FALSE is returned.

This function has the following syntax:

3–8 Writing Extensions to the kdbx Debugger

Boolean check_fields(char * symbol, FieldRec * fields, int nfields, char **
hints);

Argument Input/Output Description

symbol Input Names the structure to be checked

fields Input Describes the fields to be checked

nfields Input Specifies the size of the fields argument

hints Input Unused and should always be set to NULL

You should check the structure type using the check_fields function
before using the read_field_vals function to read field values.

For example:

FieldRec fields[] = {
{ ".sc_sysid", NUMBER, NULL, NULL },
{ ".sc_aipfts", NUMBER, NULL, NULL },
{ ".sc_lostarb", NUMBER, NULL, NULL },
{ ".sc_lastid", NUMBER, NULL, NULL },
{ ".sc_active", NUMBER, NULL, NULL }

};

check_args(argc, argv, help_string);
if(!check_fields("struct sz_softc", fields, NUM_FIELDS, NULL)){

field_errors(fields, NUM_FIELDS);
quit(1);

}

3.2.9 Setting the kdbx Context

The context function sets the context to user context or proc context. If
the context is set to the user context, aliases defined in the extension
affect user aliases.

This function has the following syntax:

void context(Boolean user);

Writing Extensions to the kdbx Debugger 3–9

Argument Input/Output Description

user Input Sets the context to user if TRUE or proc if
FALSE

For example:

if(head) print(head);
context(True);
for(i=0;i<len;i++){
...

3.2.10 Passing Commands to the dbx Debugger

The dbx function passes a command to the dbx debugger. The function has
an argument, expect_output , that controls when it returns. If you set the
expect_output argument to TRUE, the function returns after the
command is sent, and expects the extension to read the output from dbx . If
you set the expect_output argument to FALSE, the function waits for
the command to complete execution, reads the acknowledgement from
kdbx , and then returns.

void dbx(char * command, Boolean expect_output);

Argument Input/Output Description

command Input Specifies the command to be passed to dbx

expect_output Input Indicates whether the extension expects
output and determines when the function
returns

For example:

dbx(out, True);
if((buf = read_response(&status)) == NULL){

print_status("main", &status);
quit(1);

}
else {

process_buf(buf);
quit(0);

}

3–10 Writing Extensions to the kdbx Debugger

3.2.11 Dereferencing a Pointer

The deref_pointer function returns a representation of the object
pointed to by a pointer. The function displays an error message if the data
argument passed is not a valid address.

This function has the following syntax:

DataStruct deref_pointer(DataStruct data);

Argument Input/Output Description

data Input Names the data structure that is being
dereferenced

For example:

structure = deref_pointer(struct_pointer);

3.2.12 Displaying the Error Messages Stored in Fields

The field_errors function displays the error messages stored in fields by
the check_fields function. This function has the following syntax:

void field_errors(FieldRec * fields, int nfields);

Argument Input/Output Description

fields Input Names the fields that contain the error
messages

nfields Input Specifies the size of the fields argument

For example:

if(!read_field_vals(proc, fields, NUM_FIELDS)){
field_errors(fields, NUM_FIELDS);
return(False);

}

Writing Extensions to the kdbx Debugger 3–11

3.2.13 Converting a Long Address to a String Address

The format_addr function converts a 64-bit address of type long into a
32-bit address of type char . This function has the following syntax:

extern char *format_addr(long addr, char * buffer);

Argument Input/Output Description

addr Input Specifies the address to be converted

buffer Output Returns the converted address and must be at
least 12 characters long

Use this function to save space on the output line. For example, the 64-bit
address 0xffffffff12345678 is converted into v0x12345678 .

For example:

static Boolean prfile(DataStruct ele, long vn_addr, long socket_addr)
{

char *error, op_buf[12], *ops, buf[256], address[12], cred[12], data[12];
if(!read_field_vals(ele, fields, NUM_FIELDS)){

field_errors(fields, NUM_FIELDS);
return(False);

}
if((long) fields[1].data == 0) return(True);
if((long) (fields[5].data) == 0) ops = " *Null* ";
else if((long) (fields[5].data) == vn_addr) ops = " vnops ";
else if((long) (fields[5].data) == socket_addr) ops = " socketops ";
else format_addr((long) fields[5].data, op_buf);
format_addr((long) struct_addr(ele), address);
format_addr((long) fields[2].data, cred);
format_addr((long) fields[3].data, data);
sprintf(buf, "%s %s %4d %4d %s %s %s %6d %s%s%s%s%s%s%s%s%s",

address, get_type((int) fields[0].data), fields[1].data,
fields[2].data, ops, cred, data, fields[6].data,
((long) fields[7].data) & FREAD ? " read" : ,
((long) fields[7].data) & FWRITE ? " write" : ,
((long) fields[7].data) & FAPPEND ? " append" : ,
((long) fields[7].data) & FNDELAY ? " ndelay" : ,
((long) fields[7].data) & FMARK ? " mark" : ,
((long) fields[7].data) & FDEFER ? " defer" : ,
((long) fields[7].data) & FASYNC ? " async" : ,
((long) fields[7].data) & FSHLOCK ? " shlck" : ,
((long) fields[7].data) & FEXLOCK ? " exlck" :);

print(buf);
return(True);

}

3–12 Writing Extensions to the kdbx Debugger

3.2.14 Freeing Memory

The free_sym function releases the memory held by a specified symbol.
This function has the following syntax:

void free_sym(DataStruct sym);

Argument Input/Output Description

sym Input Names the symbol that is using memory that
can be freed

For example:

free_sym(rec->data);

3.2.15 Passing Commands to the kdbx Debugger

The krash function passes a command to kdbx for execution. You specify
the command you want passed to kdbx as the first argument to the krash
function. The second argument allows you to pass quotation marks (""),
apostrophes (’), and backslash characters (\) to kdbx . The function has an
argument, expect_output , which controls when it returns. If you set the
expect_output argument to TRUE, the function returns after the
command is sent, and expects the extension to read the output from dbx . If
you set the expect_output argument to FALSE, the function waits for
the command to complete execution, reads the acknowledgement from
kdbx , and then returns.

This function has the following syntax:

void krash(char * command, Boolean quote, Boolean expect_output);

Writing Extensions to the kdbx Debugger 3–13

Argument Input/Output Description

command Input Names the command to be executed

quote Input If set to TRUE causes the quote
character, apostrophe, and backslash to
be appropriately quoted so that they are
treated normally, instead of as special
characters

expect_output Input Indicates whether the extension expects
output and determines when the
function returns

For example:

do {
:

if(doit){
format(command, buf, type, addr, last, i, next);
context(True);

krash(buf, False, True);
while((line = read_line(&status)) != NULL){

print(line);
free(line);

}
:

addr = next;
i++;

Suppose the preceding example is used to list the addresses of each node in
the system mount table, which is a linked list. The following list describes
the arguments to the format function in this case:

• The commandargument contains the dbx command to be executed,
such as p for print .

• The buf argument contains the full dbx command line; for example,
buf might contain:

p ((struct mount *) 0xffffffff8196db30).m_next

• The type argument contains the data type of each node in the list, as
in struct mount * .

3–14 Writing Extensions to the kdbx Debugger

• The addr argument contains the address of the current node in the list;
for example, the current node might be at address
0xffffffff8196db30 .

• The last argument contains the address of the previous node in the
list. In this case, last contains zero (0).

• The i argument is the current node’s index. In this case, i contains 1.

• The next argument is the address of the next node in the list; for
example, the next node might be at address 0xffffffff8196d050 .

3.2.16 Getting the Address of an Item in a Linked List

The list_nth_cell function returns the address of one of the items in a
linked list. This function has the following format:

Boolean list_nth_cell(long addr, char * type, int n,char * next_field,
Boolean do_check, long * val_ret, char ** error);

Argument Input/Output Description

addr Input Specifies the starting address of the linked list

type Input Specifies the data type of the item for which
you are requesting an address

n Input Supplies a number indicating which list item’s
address is being requested

next_field Input Gives the name of the field that points to the
next item in the linked list

do_check Input Determines whether kdbx checks the
arguments to ensure that correct information
is being sent (TRUE setting)

val_ret Output Returns the address of the requested list item

error Output Returns a pointer to an error message if the
return value is FALSE

For example:

long root_addr, addr;
if (!read_sym_val("rootfs", NUMBER, &root_addr, &error)){

.

.

.
}

Writing Extensions to the kdbx Debugger 3–15

if(!list_nth_cell(root_addr, "struct mount", i, "m_next", True, &addr,
&error)){

fprintf(stderr, "Couldn’t get %d’th element of mount table\n", i);
fprintf(stderr, "%s\n", error);
quit(1);

}

3.2.17 Passing an Extension to kdbx

The new_proc function directs kdbx to execute a proc command with
arguments specified in args . The args arguments can name a
Digital-supplied extension or an extension that you create.

This function has the following syntax:

void new_proc(char * args, char ** output_ret);

Argument Input/Output Description

args Input Names the extensions to be passed to kdbx

output_ret Output Returns the output from the extension, if it is
non-NULL

For example:

static void prmap(long addr)
{

char cast_addr[36], buf[256], *resp;

sprintf(cast_addr, "((struct\ vm_map_t\ *)\ 0x%p)", addr);
sprintf(buf, "printf

cast_addr);
new_proc(buf, &resp);
print(resp);
free(resp);

}

3.2.18 Getting the Next Token as an Integer

The next_number function converts the next token in a buffer to an
integer. The function returns TRUE if successful, or FALSE if there was an
error.

3–16 Writing Extensions to the kdbx Debugger

This function has the following syntax:

Boolean next_number(char * buf, char ** next, long * ret);

Argument Input/Output Description

buf Input Names the buffer containing the value to be
converted

next Output Returns a pointer to the next value in the
buffer, if that value is non-NULL

ret Output Returns the integer value

For example:

resp = read_response_status();
next_number(resp, NULL, &size);
ret->size = size;

3.2.19 Getting the Next Token as a String

The next_token function returns a pointer to the next token in the
specified pointer to a string. A token is a sequence of nonspace characters.
This function has the following syntax:

char *next_token(char * ptr, int * len_ret, char ** next_ret);

Argument Input/Output Description

ptr Input Specifies the name of the pointer

len_ret Output Returns the length of the next token, if
non-NULL

next_ret Output Returns a pointer to the first character after,
but not included in the current token, if
non-NULL

You use this function to extract words or other tokens from a character
string. A common use, as shown in the example that follows, is to extract
tokens from a string of numbers. You can then cast the tokens to a
numerical data type, such as the long data type, and use them as numbers.

Writing Extensions to the kdbx Debugger 3–17

For example:

static long *parse_memory(char *buf, int offset, int size)
{

long *buffer, *ret;
int index, len;
char *ptr, *token, *next;
NEW_TYPE(buffer, offset + size, long, long *, "parse_memory");
ret = buffer;
index = offset;
ptr = buf;
while(index < offset + size){

if((token = next_token(ptr, &len, &next)) == NULL){
ret = NULL;
break;

}
ptr = next;
if(token[len - 1] == ’:’) continue;
buffer[index] = strtoul(token, &ptr, 16);
if(ptr != &token[len]){

ret = NULL;
break;

}
index++;

}
if(ret == NULL) free(buffer);
return(ret);

}

3.2.20 Displaying a Message

The print function displays a message on the terminal screen. Because of
the input and output redirection done by kdbx , all output to stdout from a
kdbx extension goes to dbx . As a result, a kdbx extension cannot use
normal C output functions such as printf and fprintf(stdout, ...) to
display information on the screen. Although the fprintf(stderr, ...)
function is still available, the recommended method is to first use the
sprintf function to print the output into a character buffer and then use
the kdbx library function print to display the contents of the buffer to the
screen.

The print function automatically displays a newline character at the end
of the output, it fails if it detects a newline character at the end of the
buffer.

This function has the following format:

void print(char * message);

3–18 Writing Extensions to the kdbx Debugger

Argument Input/Output Description

message Input The message to be displayed

For example:

if(do_short){
if(!check_fields("struct mount", short_mount_fields,

NUM_SHORT_MOUNT_FIELDS, NULL)){
field_errors(short_mount_fields, NUM_SHORT_MOUNT_FIELDS);
quit(1);

}
print("SLOT MAJ MIN TYPE DEVICE MOUNT POINT");

}

3.2.21 Displaying Status Messages

The print_status function displays a status message that you supply
and a status message supplied by the system. This function has the
following format:

void print_status(char * message, Status * status);

Argument Input/Output Description

message Input Specifies the extension-defined status message

status Input Specifies the status returned from another
library routine

For example:

if(status.type != OK){
print_status("read_line failed", &status);
quit(1);

}

3.2.22 Exiting from an Extension

The quit function sends a quit command to kdbx . This function has the
following format:

void quit(int i);

Writing Extensions to the kdbx Debugger 3–19

Argument Input/Output Description

i Input The status at the time of the exit from the
extension

For example:

if (!read_sym_val("vm_swap_head", NUMBER, &end, &error)) {
fprintf(stderr, "Couldn’t read vm_swap_head:\n");
fprintf(stderr, "%s\n", error);
quit(1);

}

3.2.23 Reading the Values in Structure Fields

The read_field_vals function reads the value of fields in the specified
structure. If this function is successful, then the data parts of the fields are
filled in and TRUE is returned; otherwise, the error parts of the affected
fields are filled in with errors and FALSE is returned.

This function has the following format:

Boolean read_field_vals(DataStruct data, FieldRec * fields, int nfields);

Argument Input/Output Description

data Input Names the structure that contains the field to
be read

fields Input Describes the fields to be read

nfields Input Contains the size of the field array

For example:

if(!read_field_vals(pager, fields, nfields)){
field_errors(fields, nfields);
return(False);

}

3–20 Writing Extensions to the kdbx Debugger

3.2.24 Returning a Line of kdbx Output

The read_line function returns the next line of the output from the last
kdbx command executed. If the end of the output is reached, this function
returns NULL and a status of OK. If the status is something other than
OK when the function returns NULL, an error occurred.

This function has the following format:

char *read_line(Status * status);

Argument Input/Output Description

status Output Contains the status of the request, which is
OK for successful requests

For example:

while((line = read_line(&status)) != NULL){
print(line);
free(line);

}

3.2.25 Reading an Area of Memory

The read_memory function reads an area of memory starting at the
address you specify and running for the number of bytes you specify. The
read_memory function returns TRUE if successful and FALSE if there was
an error.

This function has the following format:

Boolean read_memory(long start_addr, int n, char * buf, char ** error)

Argument Input/Output Description

start_addr Input Specifies the starting address for the read

n Input Specifies the number of bytes to read

buf Output Returns the memory contents

error Output Returns a pointer to an error message if the
return value is FALSE

Writing Extensions to the kdbx Debugger 3–21

You can use this function to look up any type of value, however it is most
useful for retrieving the value of pointers that point to other pointers.

For example:

start_addr = (long) ((long *)utask_fields[7].data + i-NOFILE_IN_U);
if(!read_memory(start_addr , sizeof(long *), (char *)&val1, &error) ||

!read_memory((long)utask_fields[8].data , sizeof(long *), (char *)&val2,
&error)){

fprintf(stderr, "Couldn’t read_memory\n");
fprintf(stderr, "%s\n", error);
quit(1);

}

3.2.26 Reading the Response to a kdbx Command

The read_response function reads the response to the last kdbx
command entered. If any errors occurred, NULL is returned and the status
argument is filled in.

This function has the following syntax:

char *read_response(Status * status);

Argument Input/Output Description

status Output Contains the status of the last kdbx command

For example:

if(!*argv) Usage();
command = argv;
if(size == 0){

sprintf(buf, "print sizeof(*((%s) 0))", type);
dbx(buf, True);

if((resp = read_response(&status)) == NULL){
print_status("Couldn’t read sizeof", &status);
quit(1);

}
size = strtoul(resp, &ptr, 0);
if(ptr == resp){

fprintf(stderr, "Couldn’t parse sizeof(%s):\n", type);
quit(1);

}

3–22 Writing Extensions to the kdbx Debugger

free(resp);
}

3.2.27 Reading Symbol Representations

The read_sym function returns a representation of the named symbol.
This function has the following format:

DataStruct read_sym(char * name);

Argument Input/Output Description

name Input Names the symbol, which is normally a pointer
to a structure or an array of structures inside
the kernel

Often you use the result returned by the read_sym function as the input
argument of the array_element , array_element_val , or
read_field_vals function.

For example:

busses = read_sym("bus_list");

3.2.28 Reading a Symbol’s Address

The read_sym_addr function reads the address of the specified symbol.
This function has the following format:

Boolean read_sym_addr(char * name, long * ret_val, char ** error);

Argument Input/Output Description

name Input Names the symbol for which an address is
required

ret_val Output Returns the address of the symbol

error Output Returns a pointer to an error message when
the return status is FALSE

For example:

Writing Extensions to the kdbx Debugger 3–23

if(argc == 0) fil = read_sym("file");
if(!read_sym_val("nfile", NUMBER, &nfile, &error) ||

!read_sym_addr("vnops", &vn_addr, &error) ||
!read_sym_addr("socketops", &socket_addr, &error)){

fprintf(stderr, "Couldn’t read nfile:\n");
fprintf(stderr, "%s\n", error);
quit(1);

}

3.2.29 Reading the Value of a Symbol

The read_sym_val function returns the value of the specified symbol. This
function has the following format:

Boolean read_sym_val(char * name, int type, long * ret_val, char ** error);

Argument Input/Output Description

name Input Names the symbol for which a value is needed

type Input Specifies the data type of the symbol

ret_val Output Returns the value of the symbol

error Output Returns a pointer to an error message when
the status is FALSE

You use the read_sym_val function to retrieve the value of a global
variable. The value returned by the read_sym_val function has the type
long , unlike the value returned by the read_sym function which has the
type DataStruct .

For example:

if(argc == 0) fil = read_sym("file");
if(!read_sym_val("nfile", NUMBER, &nfile, &error) ||

!read_sym_addr("vnops", &vn_addr, &error) ||
!read_sym_addr("socketops", &socket_addr, &error)){

fprintf(stderr, "Couldn’t read nfile:\n");
fprintf(stderr, "%s\n", error);
quit(1);

}

3–24 Writing Extensions to the kdbx Debugger

3.2.30 Getting the Address of a Data Representation

The struct_addr function returns the address of a data representation.
This function has the following format:

char *struct_addr(DataStruct data);

Argument Input/Output Description

data Input Specifies the structure for which an address is
needed

For example:

if(bus_fields[1].data != 0){
sprintf(buf, "Bus #%d (0x%p): Name - \"%s\"\tConnected to - \"%s\,

i, struct_addr(bus), bus_fields[1].data, bus_fields[2].data);
print(buf);
sprintf(buf, "\tConfig 1 - %s\tConfig 2 - %s",

addr_to_proc((long) bus_fields[3].data),
addr_to_proc((long) bus_fields[4].data));

print(buf);
if(!prctlr((long) bus_fields[0].data)) quit(1);
print();

}

3.2.31 Converting a String to a Number

The to_number function converts a string to a number. The function
returns TRUE if successful, or FALSE if conversion was not possible.

This function has the following format:

Boolean to_number(char * str, long * val);

Argument Input/Output Description

str Input Contains the string to be converted

val Output Contains the numerical equivalent of the string

This function returns TRUE if successful, FALSE if conversion was not
possible.

For example:

Writing Extensions to the kdbx Debugger 3–25

check_args(argc, argv, help_string);
if(argc < 5) Usage();
size = 0;
type = argv[1];
if(!to_number(argv[2], &len)) Usage();
addr = strtoul(argv[3], &ptr, 16);
if(*ptr != ’\0’){

if(!read_sym_val(argv[3], NUMBER, &addr, &error)){
fprintf(stderr, "Couldn’t read %s:\n", argv[3]);
fprintf(stderr, "%s\n", error);
Usage();

}
}

3.3 Examples of kdbx Extensions

This section contains examples of the three types of extensions provided by
the kdbx debugger:

• Extensions that use lists. Example 3–1 provides a C language template
and Example 3–2 is the source code for the /var/kdbx/callout
extension, which shows how to use linked lists in developing an
extension.

• Extensions that use arrays. Example 3–3 provides a C language
template and Example 3–4 is the source code for the /var/kdbx/file
extension, which shows how to develop an extension using arrays.

• Extensions that use global symbols. Example 3–5 is the source code for
the /var/kdbx/sum extensions, which shows how to pull global
symbols from the kernel. A template is not provided because the means
for pulling global symbols from a kernel can vary greatly, depending
upon the desired output.

Example 3–1: Template Extension Using Lists

#include <stdio.h>
#include <kdbx.h>
static char *help_string =

3–26 Writing Extensions to the kdbx Debugger

Example 3–1: Template Extension Using Lists (cont.)

" <Usage info goes here> \\\n\ 1
";
FieldRec fields[] = {

{ ". <name of next field> ", NUMBER, NULL, NULL }, 2

<data fields>
};

#define NUM_FIELDS (sizeof(fields)/sizeof(fields[0]))

main(argc, argv)
int argc;
char **argv;
{

DataStruct head;
unsigned int next;
char buf[256], *func, *error;

check_args(argc, argv, help_string);
if(!check_fields(" <name of list structure> ", fields, NUM_FIELDS, NULL)){ 3

field_errors(fields, NUM_FIELDS);
quit(1);

}

if(!read_sym_val(" <name of list head> ", NUMBER, (caddr_t *) &next, &error)){ 4
fprintf(stderr, "%s\n", error);
quit(1);

}
sprintf(buf, " <table header> "); 5
print(buf);
do {

if(!cast(next, " <name of list structure> ", &head, &error)){ 6
fprintf(stderr, "Couldn’t cast to a <struct>:\n"); 7
fprintf(stderr, "%s:\n", error);

}
if(!read_field_vals(head, fields, NUM_FIELDS)){

field_errors(fields, NUM_FIELDS);
break;

}
<print data in this list cell> 8
next = (int) fields[0].data;

} while(next != 0);
quit(0);

}

1. The help string is output by the check_args function if the user
enters the help extension_name command at the kdbx prompt.The
first line of the help string should be a one-line description of the
extension. The rest should be a complete description of the arguments.
Also, each line should end with the string \\\n\ .

Writing Extensions to the kdbx Debugger 3–27

2. Every structure field to be extracted needs an entry. The first field is
the name of the next extracted field; the second field is the type. The
last two fields are for output and initialize to NULL.

3. Specifies the type of the list that is being traversed.

4. Specifies the variable that holds the head of the list.

5. Specifies the table header string.

6. Specifies the type of the list that is being traversed.

7. Specifies the structure type.

8. Extracts, formats, and prints the field information.

Example 3–2: Extension That Uses Linked Lists: callout.c

#include <stdio.h>
#include <errno.h>
#include <kdbx.h>

#define KERNEL
#include <sys/callout.h>

static char *help_string =
"callout - print the callout table \\\n\

Usage : callout [cpu] \\\n\
";

FieldRec processor_fields[] = {
{ ".calltodo.c_u.c_ticks", NUMBER, NULL, NULL },
{ ".calltodo.c_arg", NUMBER, NULL, NULL },
{ ".calltodo.c_func", NUMBER, NULL, NULL },
{ ".calltodo.c_next", NUMBER, NULL, NULL },
{ ".lbolt", NUMBER, NULL, NULL },
{ ".state", NUMBER, NULL, NULL },

};

FieldRec callout_fields[] = {
{ ".c_u.c_ticks", NUMBER, NULL, NULL },
{ ".c_arg", NUMBER, NULL, NULL },
{ ".c_func", NUMBER, NULL, NULL },
{ ".c_next", NUMBER, NULL, NULL },

};

#define NUM_PROCESSOR_FIELDS
(sizeof(processor_fields)/sizeof(processor_fields[0]))
#define NUM_CALLOUT_FIELDS (sizeof(callout_fields)/sizeof(callout_fields[0]))

main(int argc, char **argv)
{

DataStruct processor_ptr, processor, callout;

3–28 Writing Extensions to the kdbx Debugger

Example 3–2: Extension That Uses Linked Lists: callout.c (cont.)

long next, ncpus, ptr_val, i;
char buf[256], *func, *error, arg[13];
int cpuflag = 0, cpuarg = 0;

long headptr;
Status status;
char *resp;

if (!(argc == 1 || argc == 2)) {
fprintf(stderr, "Usage: callout [cpu]\n");
quit(1);

}

check_args(argc, argv, help_string);

if (argc == 2) {
cpuflag = 1;
errno = 0;
cpuarg = atoi(argv[1]);
if (errno != 0)

fprintf(stderr, "Invalid argument value for the cpu number.\n");
}

if(!check_fields("struct processor", processor_fields, NUM_PROCESSOR_FIELDS,
NULL)){

field_errors(processor_fields, NUM_PROCESSOR_FIELDS);
quit(1);

}

if(!check_fields("struct callout", callout_fields, NUM_CALLOUT_FIELDS, NULL)){
field_errors(callout_fields, NUM_CALLOUT_FIELDS);
quit(1);

}

/* This gives the same result as "(kdbx) p processor_ptr" */
if(!read_sym_addr("processor_ptr", &headptr, &error)){

fprintf(stderr, "%s\n", error);
quit(1);

}

/* get ncpus */
if(!read_sym_val("ncpus", NUMBER, &ncpus, &error)){

fprintf(stderr, "Couldn’t read ncpus:\n");
fprintf(stderr, "%s\n", error);
quit(1);

}

for (i=0; i < ncpus; i++) {

/* if user wants only one cpu and this is not the one, skip */
if (cpuflag)

if (cpuarg != i) continue;

/* get the ith pointer (values) in the array */

sprintf(buf, "set $hexints=0");

Writing Extensions to the kdbx Debugger 3–29

Example 3–2: Extension That Uses Linked Lists: callout.c (cont.)

dbx(buf, False);
sprintf(buf, "p *(long *)0x%lx", headptr+8*i);
dbx(buf, True);
if((resp = read_response(&status)) == NULL){

print_status("Couldn’t read value of processor_ptr[i]:", &status);
quit(1);

}
ptr_val = strtoul(resp, (char**)NULL, 10);
free(resp);

if (! ptr_val) continue; /* continue if this slot is disabled */

if(!cast(ptr_val, "struct processor", &processor, &error)){
fprintf(stderr, "Couldn’t cast to a processor:\n");
fprintf(stderr, "%s:\n", error);
quit(1);

}

if(!read_field_vals(processor, processor_fields, NUM_PROCESSOR_FIELDS)){
field_errors(processor_fields, NUM_PROCESSOR_FIELDS);
quit(1);

}

if (processor_fields[5].data == 0) continue;

print("");
sprintf(buf, "Processor: %10u", i);
print(buf);
sprintf(buf, "Current time (in ticks): %10u",

processor_fields[4].data); /*lbolt*/
print(buf);

/* for first element, we are interested in time only */

print("");

sprintf(buf, " FUNCTION ARGUMENT TICKS(delta)");
print(buf);
print("============================= ============ ============");

/* walk through the rest of the list */
next = (long) processor_fields[3].data;
while(next != 0) {

if(!cast(next, "struct callout", &callout, &error)){
fprintf(stderr, "Couldn’t cast to a callout:\n");
fprintf(stderr, "%s:\n", error);

}
if(!read_field_vals(callout, callout_fields, NUM_CALLOUT_FIELDS)){

field_errors(callout_fields, NUM_CALLOUT_FIELDS);
break;

}
func = addr_to_proc((long) callout_fields[2].data);
format_addr((long) callout_fields[1].data, arg);
sprintf(buf, "%-32.32s %12s %12d", func, arg,

((long)callout_fields[0].data & CALLTODO_TIME) -

3–30 Writing Extensions to the kdbx Debugger

Example 3–2: Extension That Uses Linked Lists: callout.c (cont.)

(long)processor_fields[4].data);
print(buf);
next = (long) callout_fields[3].data;

}

} /* end of for */

quit(0);

} /* end of main() */

Example 3–3: Template Extensions Using Arrays

#include <stdio.h>
#include <kdbx.h>

static char *help_string =
" <Usage info> \\\n\ 1
";

FieldRec fields[] = {
<data fields> 2

};
#define NUM_FIELDS (sizeof(fields)/sizeof(fields[0]))
main(argc, argv)
int argc;
char **argv;
{

int i, size;
char *error, *ptr;
DataStruct head, ele;
check_args(argc, argv, help_string);

if(!check_fields(" <array element type> ", fields, NUM_FIELDS, NULL)){ 3
field_errors(fields, NUM_FIELDS);
quit(1);

}

if(argc == 0) head = read_sym("<file>"); 4

if(!read_sym_val(" <symbol containing size of array> ", NUMBER, 5
(caddr_t *) &size, &error) ||

fprintf(stderr, "Couldn’t read size:\n");
fprintf(stderr, "%s\n", error);
quit(1);

}

Writing Extensions to the kdbx Debugger 3–31

Example 3–3: Template Extensions Using Arrays (cont.)

<print header> 6
if(argc == 0){

for(i=0;i<size;i++){
if((ele = array_element(head, i, &error)) == NULL){

fprintf(stderr, "Couldn’t get array element\n");
fprintf(stderr, "%s\n", error);
return(False);

}
<print fields in this element> 7

}
}

}

1. The help string is output by the check_args function if the user
enters the help extension_name command at the kdbx prompt. The
first line of the help string should be a one-line description of the
extension. The rest should be a complete description of the arguments.
Also, each line should end with the string \\\n\ .

2. Every structure field to be extracted needs an entry. The first field is
the name of the next extracted field; the second field is the type. The
last two fields are for output and initialize to NULL.

3. Specifies the type of the element in the array.

4. Specifies the variable containing the beginning address of the array.

5. Specifies the variable containing the size of the array. Note that
reading variables is only one way to access this information. Other
methods include the following:

• Defining the array size with a #define macro call. If you use this
method, you need to include the appropriate header file and use the
macro in the extension.

• Querying dbx for the array size as follows:

dbx("print sizeof(array//sizeof(array[0]")

• Hard coding the array size.

6. Specifies the string to be displayed as the table header.

7. Extracts, formats, and prints the field information.

3–32 Writing Extensions to the kdbx Debugger

Example 3–4: Extension That Uses Arrays: file.c

#include <stdio.h>
#include <sys/fcntl.h>
#include <kdbx.h>
#include <nlist.h>
#define SHOW_UTT
#include <sys/user.h>
#define KERNEL_FILE
#include <sys/file.h>
#include <sys/proc.h>

static char *help_string =
"file - print out the file table \\\n\

Usage : file [addresses...] \\\n\
If no arguments are present, all file entries with non-zero reference \\\n\
counts are printed. Otherwise, the file entries named by the addresses\\\n\
are printed. \\\n\

";

char buffer[256];

/* *** Implement addresses *** */

FieldRec fields[] = {
{ ".f_type", NUMBER, NULL, NULL },
{ ".f_count", NUMBER, NULL, NULL },
{ ".f_msgcount", NUMBER, NULL, NULL },
{ ".f_cred", NUMBER, NULL, NULL },
{ ".f_data", NUMBER, NULL, NULL },
{ ".f_ops", NUMBER, NULL, NULL },
{ ".f_u.fu_offset", NUMBER, NULL, NULL },
{ ".f_flag", NUMBER, NULL, NULL }

};

FieldRec fields_pid[] = {
{ ".pe_pid", NUMBER, NULL, NULL },
{ ".pe_proc", NUMBER, NULL, NULL },

};

FieldRec utask_fields[] = {
{ ".uu_file_state.uf_lastfile", NUMBER, NULL, NULL }, /* 0 */
{ ".uu_file_state.uf_ofile", ARRAY, NULL, NULL }, /* 1 */
{ ".uu_file_state.uf_pofile", ARRAY, NULL, NULL }, /* 2 */
{ ".uu_file_state.uf_ofile_of", NUMBER, NULL, NULL }, /* 3 */
{ ".uu_file_state.uf_pofile_of", NUMBER, NULL, NULL },/* 4 */
{ ".uu_file_state.uf_of_count", NUMBER, NULL, NULL }, /* 5 */

};

#define NUM_FIELDS (sizeof(fields)/sizeof(fields[0]))
#define NUM_UTASK_FIELDS (sizeof(utask_fields)/sizeof(utask_fields[0]))

static char *get_type(int type)
{

static char buf[5];

switch(type){

Writing Extensions to the kdbx Debugger 3–33

Example 3–4: Extension That Uses Arrays: file.c (cont.)

case 1: return("file");
case 2: return("sock");
case 3: return("npip");
case 4: return("pipe");
default:

sprintf(buf, "*%3d", type);
return(buf);

}
}

long vn_addr, socket_addr;
int proc_size; /* will be obtained from dbx */

static Boolean prfile(DataStruct ele)
{

char *error, op_buf[12], *ops, buf[256], address[12], cred[12], data[12];

if(!read_field_vals(ele, fields, NUM_FIELDS)){
field_errors(fields, NUM_FIELDS);
return(False);

}
if((long) fields[1].data == 0) return(True);
if((long) (fields[5].data) == 0) ops = " *Null*";
else if((long) (fields[5].data) == vn_addr) ops = " vnops";
else if((long) (fields[5].data) == socket_addr) ops = "sockops";
else format_addr((long) fields[5].data, op_buf);
format_addr((long) struct_addr(ele), address);
format_addr((long) fields[3].data, cred);
format_addr((long) fields[4].data, data);
sprintf(buf, "%s %s %4d %4d %s %11s %11s %6d%s%s%s%s%s%s%s%s%s",

address, get_type((int) fields[0].data), fields[1].data,
fields[2].data, ops, data, cred, fields[6].data,
((long) fields[7].data) & FREAD ? " r" : "",
((long) fields[7].data) & FWRITE ? " w" : "",
((long) fields[7].data) & FAPPEND ? " a" : "",
((long) fields[7].data) & FNDELAY ? " nd" : "",
((long) fields[7].data) & FMARK ? " m" : "",
((long) fields[7].data) & FDEFER ? " d" : "",
((long) fields[7].data) & FASYNC ? " as" : "",
((long) fields[7].data) & FSHLOCK ? " sh" : "",
((long) fields[7].data) & FEXLOCK ? " ex" : "");

print(buf);
return(True);

}

static Boolean prfiles(DataStruct fil, int n)
{

DataStruct ele;
char *error;

if((ele = array_element(fil, n, &error)) == NULL){
fprintf(stderr, "Couldn’t get array element\n");
fprintf(stderr, "%s\n", error);
return(False);

}
return(prfile(ele));

3–34 Writing Extensions to the kdbx Debugger

Example 3–4: Extension That Uses Arrays: file.c (cont.)

}

static void Usage(void){
fprintf(stderr, "Usage : file [addresses...]\n");
quit(1);

}

main(int argc, char **argv)
{

int i;
long nfile, addr;
char *error, *ptr, *resp;
DataStruct fil;
Status status;

check_args(argc, argv, help_string);
argv++;
argc--;

if(!check_fields("struct file", fields, NUM_FIELDS, NULL)){
field_errors(fields, NUM_FIELDS);
quit(1);

}
if(!check_fields("struct pid_entry", fields_pid, 2, NULL)){

field_errors(fields, 2);
quit(1);

}
if(!check_fields("struct utask", utask_fields, NUM_UTASK_FIELDS, NULL)){

field_errors(fields, NUM_UTASK_FIELDS);
quit(1);

}

if(!read_sym_addr("vnops", &vn_addr, &error) ||
!read_sym_addr("socketops", &socket_addr, &error)){

fprintf(stderr, "Couldn’t read vnops or socketops:\n");
fprintf(stderr, "%s\n", error);
quit(1);

}
print("Addr Type Ref Msg Fileops F_data Cred Offset

Flags");
print("=========== ==== === === ======= =========== =========== ======

=====");
if(argc == 0){

/*
* New code added to access open files in processes, in
* the absence of static file table, file, nfile, etc..
*/

/*
* get the size of proc structure
*/

sprintf(buffer, "set $hexints=0");
dbx(buffer, False);
sprintf(buffer, "print sizeof(struct proc)");
dbx(buffer, True);
if((resp = read_response(&status)) == NULL){

Writing Extensions to the kdbx Debugger 3–35

Example 3–4: Extension That Uses Arrays: file.c (cont.)

print_status("Couldn’t read sizeof proc", &status);
proc_size = sizeof(struct proc);

}
else

proc_size = strtoul(resp, (char**)NULL, 10);
free(resp);

if (get_all_open_files_from_active_processes()) {
fprintf(stderr, "Couldn’t get open files from processes:\n");
quit(1);

}
}
else {

while(*argv){
addr = strtoul(*argv, &ptr, 16);
if(*ptr != ’\0’){

fprintf(stderr, "Couldn’t parse %s to a number\n", *argv);
quit(1);

}
if(!cast(addr, "struct file", &fil, &error)){

fprintf(stderr, "Couldn’t cast address to a file:\n");
fprintf(stderr, "%s\n", error);
quit(1);

}
if(!prfile(fil))

fprintf(stderr, "Continuing with next file address.\n");
argv++;

}
}
quit(0);

}

/*
* Figure out the location of the utask structure in the supertask
* #define proc_to_utask(p) (long)(p+sizeof(struct proc))
*/

/*
* Figure out if this a system with the capability of
* extending the number of open files per process above 64
*/

#ifdef NOFILE_IN_U
define OFILE_EXTEND
#else
define NOFILE_IN_U NOFILE
#endif

/*
* Define a generic NULL pointer
*/

#define NIL_PTR(type) (type *) 0x0

get_all_open_files_from_active_processes()
{

3–36 Writing Extensions to the kdbx Debugger

Example 3–4: Extension That Uses Arrays: file.c (cont.)

long pidtab_base; /* Start address of the process table */
long npid; /* Number of processes in the process table */
char *error;

if (!read_sym_val("pidtab", NUMBER, &pidtab_base, &error) ||
!read_sym_val("npid", NUMBER, &npid, &error)){

fprintf(stderr, "Couldn’t read pid or npid:\n");
fprintf(stderr, "%s\n", error);
quit(1);

}

if (check_procs (pidtab_base, npid))
return(0);

else
return(1);

}

check_procs(pidtab_base, npid)
long pidtab_base;
long npid;

{
int i, index, first_file;
long addr;
DataStruct pid_entry_struct, pid_entry_ele, utask_struct, fil;
DataStruct ofile, pofile;
char *error;
long addr_of_proc, start_addr, val1, fp, last_fp;
char buf[256];

/*
* Walk the pid table
*/

pid_entry_struct = read_sym("pidtab");

for (index = 0; index < npid; index++)
{

if((pid_entry_ele = array_element(pid_entry_struct, index, &error))==NULL){
fprintf(stderr, "Couldn’t get pid array element %d\n", index);
fprintf(stderr, "%s\n", error);
continue;

}
if(!read_field_vals(pid_entry_ele, fields_pid, 2)) {

fprintf(stderr, "Couldn’t get values of pid array element %d\n", index);
field_errors(fields_pid, 2);
continue;

}
addr_of_proc = (long)fields_pid[1].data;
if (addr_of_proc == 0)

continue;
first_file = True;
addr = addr_of_proc + proc_size;

if(!cast(addr, "struct utask", &utask_struct, &error)){

Writing Extensions to the kdbx Debugger 3–37

Example 3–4: Extension That Uses Arrays: file.c (cont.)

fprintf(stderr, "Couldn’t cast address to a utask (bogus?):\n");
fprintf(stderr, "%s\n", error);
continue;

}
if(!read_field_vals(utask_struct, utask_fields, 3)) {

fprintf(stderr, "Couldn’t read values of utask:\n");
field_errors(fields_pid, 3);
continue;

}
addr = (long) utask_fields[1].data;
if (addr == NULL)

continue;

for(i=0;i<=(int)utask_fields[0].data;i++){
if(i>=NOFILE_IN_U){

if (utask_fields[3].data == NULL)
continue;

start_addr = (long)((long *)utask_fields[3].data + i-NOFILE_IN_U) ;
if(!read_memory(start_addr , sizeof(struct file *), (char *)&val1,

&error)) {
fprintf(stderr,"Start addr:0x%lx bytes:%d\n", start_addr, sizeof(long

*));
fprintf(stderr, "Couldn’t read memory for extn files: %s\n", error);
continue;

}
}
else {

ofile = (DataStruct) utask_fields[1].data;
pofile = (DataStruct) utask_fields[2].data;

}
if (i < NOFILE_IN_U)

if(!array_element_val(ofile, i, &val1, &error)){
fprintf(stderr,"Couldn’t read %d’th element of ofile|pofile:\n", i);
fprintf(stderr, "%s\n", error);
continue;

}
fp = val1;
if(fp == 0) continue;
if(fp == last_fp) continue; /* eliminate duplicates */
last_fp = fp;
if(!cast(fp, "struct file", &fil, &error)){

fprintf(stderr, "Couldn’t cast address to a file:\n");
fprintf(stderr, "%s\n", error);
quit(1);

}
if (first_file) {

sprintf(buf, "[Process ID: %d]", fields_pid[0].data);
print(buf);
first_file = False;

}
if(!prfile(fil))

fprintf(stderr, "Continuing with next file address.\n");
}

} /* for loop */

return(True);

3–38 Writing Extensions to the kdbx Debugger

Example 3–4: Extension That Uses Arrays: file.c (cont.)

} /* end */

Example 3–5: Extension That Uses Global Symbols: sum.c

#include <stdio.h>
#include <kdbx.h>

static char *help_string =
"sum - print a summary of the system \\\n\

Usage : sum \\\n\
";

static void read_var(name, type, val)
char *name;
int type;
long *val;
{

char *error;
long n;

if(!read_sym_val(name, type, &n, &error)){
fprintf(stderr, "Reading %s:\n", name);
fprintf(stderr, "%s\n", error);
quit(1);

}
*val = n;

}

main(argc, argv)
int argc;
char **argv;
{

DataStruct utsname, cpup, time;
char buf[256], *error, *resp, *sysname, *release, *version, *machine;
long avail, secs, tmp;

check_args(argc, argv, help_string);
read_var("utsname.nodename", STRING, &resp);
sprintf(buf, "Hostname : %s", resp);
print(buf);
free(resp);
read_var("ncpus", NUMBER, &avail);

/*
* cpup no longer exists, emmulate platform_string(),
* a.k.a. get_system_type_string().

read_var("cpup.system_string", STRING, &resp);
*/

read_var("rpb->rpb_vers", NUMBER, &tmp);
if (tmp < 5)

Writing Extensions to the kdbx Debugger 3–39

Example 3–5: Extension That Uses Global Symbols: sum.c (cont.)

resp = "Unknown System Type";
else

read_var(
"(char *)rpb + rpb->rpb_dsr_off + "
"((struct rpb_dsr *)"

" ((char *)rpb + rpb->rpb_dsr_off))->rpb_sysname_off + sizeof(long)",
STRING, &resp);

sprintf(buf, "cpu: %s\tavail: %d", resp, avail);
print(buf);
free(resp);
read_var("boottime.tv_sec", NUMBER, &secs);
sprintf(buf, "Boot-time:\t%s", ctime(&secs));
buf[strlen(buf) - 1] = ’\0’;
print(buf);
read_var("time.tv_sec", NUMBER, &secs);
sprintf(buf, "Time:\t%s", ctime(&secs));
buf[strlen(buf) - 1] = ’\0’;
print(buf);
read_var("utsname.sysname", STRING, &sysname);
read_var("utsname.release", STRING, &release);
read_var("utsname.version", STRING, &version);
read_var("utsname.machine", STRING, &machine);
sprintf(buf, "Kernel : %s release %s version %s (%s)", sysname, release,

version, machine);
print(buf);
quit(0);

}

3.4 Compiling Custom Extensions

After you have written the extension, you need to compile it. To compile the
extension, enter the following command:

% cc -o test test.c -lkdbx

This cc command compiles an extension named test.c . The kdbx.a
library is linked with the extensions, as specified by the −l flag. The output
from this command is named test , as specified by the −o flag.

Once the extension compiles successfully, you should test it and, if
necessary, debug it as described in Section 3.5.

When the extension is ready for use, place it in a directory that is
accessible to other users. Digital UNIX extensions are located in the
/var/kdbx directory.

3–40 Writing Extensions to the kdbx Debugger

The following example shows how to invoke the test extension from
within the kdbx debugger:

kdbx -k /vmunix
dbx version 3.12.1

Type ’help’ for help.

(kdbx) test
Hostname : system.dec.com
cpu: DEC3000 - M500 avail: 1
Boot-time: Fri Nov 6 16:09:10 1992
Time: Mon Nov 9 10:51:48 1992
Kernel : OSF1 release 1.2 version 1.2 (alpha)
(kdbx)

3.5 Debugging Custom Extensions

The kdbx debugger and the dbx debugger include the capability to
communicate with each other using two named pipes. The task of
debugging an extension is easier if you use a workstation with two windows
or two terminals. In this way, you can dedicate one window or terminal to
the kdbx debugger and one window or terminal to the dbx debugger.
However, you can debug an extension from a single terminal. This section
explains how to begin your kdbx and dbx sessions when you have two
windows or terminals and when you have a single terminal. The examples
illustrate debugging the test extension that was compiled in Section 3.4.

If you are using a workstation with two windows or have two terminals,
perform the following steps to set up your kdbx and dbx debugging
sessions:

1. Open two sessions: one running kdbx on the running kernel and the
other running dbx on the source file for the custom extension test as
follows:

Begin the kdbx session:

kdbx -k /vmunix
dbx version 3.12.1
Type ’help’ for help.

stopped at [thread_block:1440 ,0xfffffc00002de5b0] Source not available

Begin the dbx session:

Writing Extensions to the kdbx Debugger 3–41

dbx test
dbx version 3.12.1
Type ’help’ for help.

(dbx)

2. Set up kdbx and dbx to communicate with each other. In the kdbx
session, enter the procpd alias to create the files /tmp/pipein and
/tmp/pipeout as follows:

(kdbx) procpd

The file pipein directs output from the dbx session to the kdbx
session. The file pipeout directs output from the kdbx session to the
dbx session.

3. In the dbx session, enter the run command to execute the test
extension in the kdbx session, specifying the files /tmp/pipein and
/tmp/pipeout on the command line as follows:

(dbx) run < /tmp/pipeout > /tmp/pipein

4. As you step through the extension in the dbx session, you see the
results of any action in the kdbx session. At this point, you can use the
available dbx commands and options.

If you are using one terminal, perform the following steps to set up your
kdbx and dbx sessions:

1. Issue the following command to invoke kdbx with the debugging
environment:

echo ’procpd’ | kdbx -k /vmunix &
dbx version 3.12.1
Type ’help’ for help.

stopped at [thread_block:1403 ,0xfffffc000032d860] Source not available

#

2. Invoke the dbx debugger as follows:

dbx test
dbx version 3.12.1
Type ’help’ for help.

(dbx)

3–42 Writing Extensions to the kdbx Debugger

3. As you step through the extension in the dbx session, you see the
results of any action in the kdbx session. At this point, you can use the
available dbx commands and options.

Writing Extensions to the kdbx Debugger 3–43

4
Managing Crash Dumps

When a Digital UNIX system crashes, it writes all or part of physical
memory to disk. This information is called a crash dump. During the reboot
process, the system moves the crash dump into a file and copies the kernel
executable image to another file. Together, these files are the crash dump
files. You can use the information in the crash dump files to help you to
determine the cause of the system crash.

To ensure that you can analyze crash dump files following a system crash,
you must understand how crash dump files are created. You must reserve
space on disks for the crash dump and crash dump files. The amount of
space you reserve depends on your system configuration and the type of
crash dump you want the system to perform.

This chapter gives the following information to help you manage crash
dumps and crash dump files:

• How the system saves a crash dump to disk partitions at the time of
the crash (Section 4.1)

• The types of crash dumps available and the procedures for choosing
what type of crash dump is created (Section 4.2)

• Guidelines for deciding how much disk space to allow for crash dumps
and procedures for controlling where crash dumps are written
(Section 4.3)

• How the system moves the crash dump and the executable kernel
image into crash dump files at system reboot time and a description of
how crash logging is performed at system reboot time (Section 4.4)

• Guidelines for deciding how much disk space to allocate for crash dump
files and the procedure for changing the location to which crash dump
files are written (Section 4.5)

• Information about compressing and uncompressing crash dump files
(Section 4.6)

• How to cause a hung system to crash so that a crash dump is created
(Section 4.7)

Managing Crash Dumps 4–1

For information about analyzing the contents of crash dump files, see
Chapter 5.

4.1 Crash Dump Creation

When the system creates a crash dump, it writes the dump to the swap
partitions. The system uses the swap partitions because the information
stored in those partitions has meaning only for a running system. Once the
system crashes, the information is useless and can be safely overwritten.

Before the system writes a crash dump, it determines how the dump fits
into the swap partitions. The following list describes how the system
determines where to write the crash dump:

1. If the crash dump fits in the primary swap partition, (swap1 in the
/etc/fstab file) the system writes the dump to the end of that
partition. The system writes the dump as far toward the end of the
partition as possible, leaving the beginning of the partition available for
swapping done at system reboot time.

2. If the crash dump is too large for the primary swap partition, the
system writes the crash dump to the secondary swap partitions (swap2
in the /etc/fstab file.) You can have multiple secondary swap
partitions on multiple devices.

3. If the crash dump is too large for the secondary swap partitions, the
system writes the crash dump to the secondary swap partitions until
those partitions are full. It then writes the remaining crash dump
information to end of the primary swap partition, possibly filling that
partition.

_______________________ Note _______________________

If the aggregate size of all the swap partitions is too small to
contain the crash dump, the system creates no crash dump.

Each crash dump contains a header, which the system always writes to the
end of the primary swap partition. The header contains information about
the size of the dump and where the dump is stored. This information
allows the system to find and save the dump at system reboot time.

You can configure the system so that it fills the secondary swap partitions
with dump information before writing any information (except the dump

4–2 Managing Crash Dumps

header) to the primary swap partition. The attribute that you use to
configure where crash dumps are written first is the dump_sp_threshold
attribute.

The value in the dump_sp_threshold attribute indicates the amount of
space you normally want available for swapping as the system reboots. By
default, this attribute is set to 4096 blocks, meaning that the system
attempts to leave 2 MB of disk space open in the primary swap partition
after the dump is written.

Figure 4–1 shows the default setting of the dump_sp_threshold attribute
for a 40 MB swap partition.

Figure 4–1: Default dump_sp_threshold Attribute Setting

ZK−1024U−AI

 Space
 Open After
 Crash Dump

 Space for
Crash Dumps

2 MB

38 MBb

0

The system can write 38 MB of dump information to the primary swap
partion shown in Figure 4–1. Therefore, a 30 MB dump fits on the primary
swap partition and is written to that partition. However, a 40 MB dump is
too large; the system writes the crash dump header to the end of the
primary swap partition and writes the rest of the crash dump to secondary
swap partitions.

Setting the dump_sp_threshold attribute to a high value causes the
system to fill the secondary swap partitions before it writes dump
information to the primary swap partion. For example, if you set the

Managing Crash Dumps 4–3

dump_sp_threshold attribute to a value that is equal to the size of the
primary swap partition, the system fills the secondary swap partitions first.
(Setting the dump_sp_threshold attribute is described in Section 4.3.3.)
Figure 4–2 illustrates how a crash dump is written to secondary swap
partitions on multiple devices.

Figure 4–2: Crash Dump Written to Multiple Devices

ZK−1023U−AI

rz1 rz2 rz3

b

c

Primary
Swap
Partition Secondary

Swap
Partition

e
Secondary
Swap
Partition

= Crash Dump Header

= Dump Information

0 0 0

If the crash dump fills partition e in Figure 4–2, the system writes the
remaining crash dump information to the end of the primary swap
partition. Note that the system fills as much of the primary swap partition
as is necessary to store the entire dump. The dump is written to the end of
the primary swap partition to attempt to protect it from system swapping.
However, the dump can fill the entire primary swap partition and might be
corrupted by swapping that occurs as the system reboots.

4.2 Choosing the Contents of Crash Dumps

Crash dumps are partial (the default) or full. Normally, partial crash
dumps provide the information that you need to determine the cause of a
crash. However, you might want the system to generate full crash dumps if

4–4 Managing Crash Dumps

you have a recurring crash problem and partial crash dumps have not been
helpful in finding the cause of the crash.

A partial crash dump contains the following:

• The crash dump header

• A copy of part of physical memory

The system writes the part of physical memory believed to contain
significant information at the time of the system crash. By default, the
system omits user page table entries.

A full crash dump contains the following:

• The crash dump header

• A copy of the entire contents of physical memory at the time of the crash

As explained in the sections that follow, you can control the contents of
crash dumps in the following two ways:

• By overriding the default so that the system writes user page table
entries to partial crash dumps

• By selecting partial or full crash dumps

4.2.1 Including User Page Tables in Partial Crash Dumps

By default, the system omits user page tables from partial crash dumps.
These tables do not normally help you determine the cause of a crash and
omitting them reduces the size of crash dumps and crash dump files.

If you want the system to include user page tables in partial crash dumps,
set the value of the dump-user-pte-pages attribute to 1. The
dump-user-pte-pages attribute is in the vm subsystem. The following
example shows the command you issue to set this attribute:

sysconfig -r vm dump-user-pte-pages = 1

The sysconfig command changes the value of system attributes for the
currently running kernel. To store the new value of the
dump-user-pte-pages attribute in the sysconfigtab database, modify
that database using the sysconfigdb command. For information about
the sysconfigtab database and the sysconfigdb command, see the
System Administration manual and the sysconfigdb (8) reference page.

Managing Crash Dumps 4–5

To return to the system default of not writing user page tables to partial
crash dumps, set the value of the dump-user-pte-pages attribute to 0
(zero).

4.2.2 Selecting Partial or Full Crash Dumps

By default, the system generates partial crash dumps. If you want the
system to generate full crash dumps, you can modify the default behavior
in the following ways:

• Specify the d flag to the boot_osflags console environment variable.

To set this console environment variable, shut down and halt your
system. At the console prompt, enter the following command:

>>> set boot_osflags d

The boot_osflags variable controls other boot options, such as
whether the system boots to single-user mode or multiuser mode;
therefore, use care when setting this variable. For more information
about boot_osflags , see the System Administration manual.

• Set the kernel’s partial_dump variable to 0 (zero) using the dbx
debugger as follows:

(dbx) a partial_dump = 0

To return to partial crash dumps, remove the d flag from the
boot_osflags environment variable or set the partial_dump variable to
1.

4.3 Planning Crash Dump Space

Because crash dumps are written to the swap partitions on your system,
you allow space for crash dumps by adjusting the size of your swap
partitions. For information about modifying the size of swap partitions, see
the System Administration manual and the Installation Guide.

4–6 Managing Crash Dumps

_______________________ Note _______________________

Be sure to list all swap partitions in the /etc/fstab file. The
savecore command, which copies the crash dump from swap
partitions to a file, uses the information in the /etc/fstab file
to find the swap partitions. If you omit a swap partition from
/etc/fstab , the savecore command might be unable to find
the omitted partition.

The sections that follow give guidelines for estimating the amount of space
required for partial and full crash dumps. In addition, setting the
dump_sp_threshold attribute is described.

4.3.1 Estimating the Size of Partial Crash Dumps

Normally, a partial crash dump contains only a part of physical memory, so
you allocate less disk space to saving a partial crash dump than you
allocate for a full crash dump. The amount of space required to save a
partial crash dump varies, depending on the level of system activity. For
example, suppose your system has 128 MB of memory, but your peak
system activity level is low (never uses more than 60 MB of memory.) In
this case, you might allow 70 MB of disk space for storing crash dumps.

If your swap partitions are too small to store a partial crash dump, the
system creates no crash dump. Therefore, overestimate the amount of
space you need and adjust the amount of space you allocate to saving crash
dumps, if necessary, after your system creates a few crash dumps.

Because crash dumps are about the same size as crash dump files, you can
determine how large a crash dump was by examining the size of the
resulting crash dump file. For example, to determine how large the first
crash dump file created by your system is, issue the following command:

ls -s /var/adm/crash/vmcore.0
20480 vmcore.0

This command displays the number of 512-byte blocks occupied by the
crash dump file. In this case, the file occupies 20,480 blocks, so you know
that the crash dump written to the swap partitions also occupied about
20,480 blocks. Be sure to use the ls -s command to display the size of
crash dump files. The size that the ls -l command displays is incorrect.

Managing Crash Dumps 4–7

The ls -l command includes file “holes” in the size of the crash dump file.
(See Section 4.6 for more information.)

In some cases, a system contains so much active memory that it cannot
store a crash dump on a single disk. For example, suppose your system
contains 2 GB of memory and system activity level is high (uses most of
memory). Crash dumps for this system are too large to fit on a single
device. To cause crash dumps to spread across multiple disks, set the
dump_sp_threshold attribute to a high value, as described in
Section 4.3.3, and create secondary swap partitions on several disks. The
system automatically writes dumps that are too large to fit in the primary
swap partition to secondary swap partitions. The System Administration
manual describes configuring swap space.

4.3.2 Estimating the Size of Full Crash Dumps

Full crash dumps provide you the maximum information about the system
at the time of the crash. However, this type of crash dump occupies a large
amount of disk space. If you intend to save full crash dumps, you need to
create swap partitions equal to the size of memory, plus 1 additional block
for the crash dump header. For example, if your system has 128 MB of
memory, your swap partitions must provide at least 129 MB of disk space,
with at least 1 block of disk space in the primary swap partition to store
the crash dump header.

If your system contains a large amount (2 GB, for example) of memory, it
might need to spread crash dumps across multiple disks. To cause crash
dumps to spread across multiple disks, set the dump_sp_threshold
attribute to a high value, as described in Section 4.3.3, and create
secondary swap partitions on several disks. The system automatically
writes dumps that are too large to fit in the primary swap partition to
secondary swap partitions. The System Administration manual describes
configuring swap space.

If you chose to have the system perform a full dump when it crashes and
your swap partitions are too small to store a full dump, the system
performs a partial dump.

4.3.3 Adjusting the Primary Swap Partition’s Crash Dump Threshold

To configure your system so that it writes crash dumps to secondary swap
partitions before the primary swap partition, use the dump_sp_threshold
attribute. As described in Section 4.1, the value you assign to this attribute

4–8 Managing Crash Dumps

indicates the amount of space that you normally want available for system
swapping after a system crash.

To adjust the dump_sp_threshold attribute, issue the sysconfig
command. For example, suppose your primary swap partition is 40 MB. To
raise the value so that the system writes crash dumps to secondary
partitions, issue the following command:

sysconfig -r generic dump_sp_threshold=20480

In the preceding example, the dump_sp_threshold attribute, which is in
the generic subsystem, is set to 20,480 512-byte blocks (40 MB). In this
example, the system attempts to leave the entire primary swap partition
open for system swapping. The system automatically writes the crash
dump to secondary swap partitions and the crash dump header to the end
of the primary swap partition.

The sysconfig command changes the value of system attributes for the
currently running kernel. To store the new value of the
dump_sp_threshold attribute in the sysconfigtab database, modify
that database using the sysconfigdb command. For information about
the sysconfigtab database and the sysconfigdb command, see the
System Administration manual and the sysconfigdb (8) reference page.

4.4 Crash Dump File Creation and Crash Dump Logging

After a system crash, you normally reboot your system by issuing the boot
command at the console prompt. During a system reboot, the
/sbin/init.d/savecore script invokes the savecore command. This
command moves crash dump information from the swap partitions into a
file and copies the kernel that was running at the time of the crash into
another file. You can analyze these files to help you determine the cause of
a crash. The savecore command also logs the crash in system log files.

You can invoke the savecore command from the command line. For
information about the command syntax, see the savecore (8) reference
page.

4.4.1 Crash Dump File Creation

When the savecore command begins running during the reboot process, it
determines whether a crash dump occurred and whether the file system
contains enough space to save it. (The system saves no crash dump if you

Managing Crash Dumps 4–9

shut it down and reboot it; that is, the system saves a crash dump only
when it crashes.)

If a crash dump exists and the file system contains enough space to save
the crash dump files, the savecore command moves the crash dump and a
copy of the kernel into files in the default crash directory,
/var/adm/crash . (You can modify the location of the crash directory, as
described in Section 4.5.) The savecore command stores the kernel image
in a file named vmunix. n, and it stores the contents of physical memory in
a file named vmcore. n.

The n variable specifies the number of the crash. The number of the crash
is recorded in the bounds file in the crash directory. After the first crash,
the savecore command creates the bounds file and stores the number 1
in it. The command increments that value for each succeeding crash.

The savecore command runs early in the reboot process so that little or
no system swapping occurs before the command runs. This practice helps
ensure that crash dumps are not corrupted by swapping.

4.4.2 Crash Dump Logging

Once the savecore command writes the crash dump files, it performs the
following steps to log the crash in system log files:

1. Writes a reboot message to the /var/adm/syslog/auth.log file. If
the system crashed due to a panic condition, the panic string is
included in the log entry.

You can cause the savecore command to write the reboot message to
another file by modifying the auth facility entry in the syslog.conf
file. If you remove the auth entry from the syslog.conf file, the
savecore command does not save the reboot message.

2. Attempts to save the kernel message buffer from the crash dump. The
kernel message buffer contains messages created by the kernel that
crashed. These messages might help you determine the cause of the
crash.

The savecore command saves the kernel message buffer in the
/var/adm/crash/msgbuf.savecore file, by default. You can change
the location to which savecore writes the kernel message buffer by
modifying the msgbuf.err entry in the /etc/syslog.conf file. If you

4–10 Managing Crash Dumps

remove the msgbuf.err entry from the /etc/syslog.conf file,
savecore does not save the kernel message buffer.

Later in the reboot process, the syslogd daemon starts up, reads the
contents of the msgbuf.err file, and moves those contents into the
/var/adm/syslog/kern.log file, as specified in the
/etc/syslog.conf file. The syslogd daemon then deletes the
msgbuf.err file. For more information about how system logging is
performed, see the System Administration manual and the syslogd (8)
reference page.

3. Attempts to save the binary event buffer from the crash dump. The
binary event buffer contains messages that can help you identify the
problem that caused the crash, particularly if the crash was due to a
hardware error.

The savecore command saves the binary event buffer in the
/usr/adm/crash/binlogdumpfile file by default. You can change
the location to which savecore writes the binary event buffer by
modifying the dumpfile entry in the /etc/binlog.conf file. If you
remove the dumpfile entry from the /etc/binlog.conf file,
savecore does not save the binary event buffer.

Later in the reboot process the binlogd daemon starts up, reads the
contents of the /usr/adm/crash/binlogdumpfile file, and moves
those contents into the /usr/adm/binary.errlog file, as specified in
the /etc/binlog.conf file. The binlogd daemon then deletes the
binlogdumpfile file. For more information about how binary error
logging is performed, see the System Administration manual and the
binlogd (8) reference page.

4.5 Planning and Allocating File System Space for Crash
Dump Files

The size of crash dump files varies, depending on whether you use partial
crash dumps or full crash dumps. In the case of partial crash dumps, the
size of the files also depends on the level of system activity at the time of the
crash. A general guideline is to reserve, at a minimum, the amount of space
you estimate you need to save crash dumps, plus 6 MB. The vmunix .n file
occupies about 6 MB of disk space. You can adjust this amount if need be
once your system has attempted to save several crash dump files.

For example, suppose you save partial crash dumps. Your system has 96
MB of memory, but your peak system activity level is 80 MB. You have

Managing Crash Dumps 4–11

reserved 85 MB of disk space for crash dumps and swapping. In this case,
you should reserve 91 MB of space in the file system for storing crash
dump files. You need to reserve considerably more space if you want to
save files from more than one crash dump. If you want to save files from
multiple crash dumps, consider compressing older crash dump files. See
Section 4.6 for information about compressing and uncompressing partial
crash dump files.

By default, savecore writes crash dump files to the /var/adm/crash
directory. To reserve space for crash dump files in the default directory, you
must mount the /var/adm/crash directory on a file system that has a
sufficient amount of disk space. (For information about mounting file
systems, see the System Administration manual and the mount (8)
reference page.) If you expect your crash dump files to be large, you might
need to use a Logical Storage Manager (LSM) file system to store crash
dump files. For information about creating LSM file systems, see the
Logical Storage Manager manual.

If your system cannot save crash dump files due to insufficient disk space,
the system returns to single-user mode. This return to single-user mode
prevents system swapping from corrupting the crash dump. Once in
single-user mode, you can make space available in the crash directory or
change the crash directory. One possibility in this situation is to issue the
savecore command at the single-user mode prompt. On the command
line, specify the name of a directory that contains a sufficient amount of file
space to save the crash dump files. For example, the following savecore
command writes crash dump files to the /usr/adm/crash2 directory:

savecore /usr/adm/crash2

Once savecore has saved the crash dump files, you can bring your system
to multiuser mode.

Specifying a directory on the savecore command line changes the crash
directory only for the duration of that command. If the system crashes later
and the system startup script invokes the savecore script, savecore
copies the crash dump to files in the default directory, which is normally
/var/adm/crash .

You can control the default location of the crash directory with the rcmgr
command. For example, to save crash dump files in the /usr/adm/crash2
directory by default (at each system startup), issue the following command:

/usr/sbin/rcmgr set SAVECORE_DIR /usr/adm/crash2

4–12 Managing Crash Dumps

If you want the system to return to multiuser mode, regardless of whether
it saved a crash dump, issue the following command:

/usr/sbin/rcmgr set SAVECORE_FLAGS M

4.6 Compressing and Uncompressing Crash Dump Files

If you want to store files from more than one crash, you might find it useful
to compress the crash dump files. In particular, you should compress the
vmcore .n files.

If you compress a vmcore .n dump file from a partial crash dump, you
must use care when you uncompress it. Using the uncompress command
with no flags results in a vmcore .n file requiring space equal to the size of
memory. In other words, the uncompressed file requires the same amount
of disk space as a vmcore .n file from a full crash dump.

This situation occurs because the original vmcore .n file contains UNIX
File System (UFS) file “holes.” UFS files can contain regions, called holes,
that have no associated data blocks. When a process, such as the
uncompress command, reads from a hole in a file, the file system returns
zero-valued data. Thus, memory omitted from the partial dump is added
back into the uncompressed vmcore .n file as disk blocks containing all
zeros.

To ensure that the uncompressed core file remains at its partial dump size,
you must pipe the output from the uncompress command with the -c flag
to the dd command with the conv=sparse option. For example, to
uncompress a file named vmcore.0.Z , issue the following command:

uncompress -c vmcore.0.Z | dd of=vmcore.0 conv=sparse
262144+0 records in
262144+0 records out

4.7 Creating Dumps of a Hung System

You can force the system to create a crash dump when the system hangs.
On most hardware platforms, you force a crash dump by following these
steps:

1. If your system has a switch for enabling and disabling the Halt button,
set that switch to the Enable position.

2. Press the Halt button.

Managing Crash Dumps 4–13

3. At the console prompt, enter the crash command.

Some systems have no Halt button. In this case, follow these steps to force
a crash dump on a hung system:

1. Press Ctrl/P at the console.

2. At the console prompt, enter the crash command.

If your system hangs and you force a crash dump, the panic string recorded
in the crash dump is the following:

hardware restart

This panic string is always the one recorded when system operation is
interrupted by pressing the Halt button or Ctrl/P.

4–14 Managing Crash Dumps

5
Crash Analysis Examples

Finding problems in crash dump files is a task that takes practice and
experience to do well. Exactly how you determine what caused a crash
varies depending on how the system crashed. The cause of some crashes is
relatively easy to determine, while finding the cause of other crashes is
difficult and time-consuming.

This chapter helps you analyze crash dump files by providing the following
information:

• Guidelines for examining crash dump files (Section 5.1)

• Examples of identifying the cause of a software panic (Section 5.2)

• Examples of identifying the cause of a hardware trap (Section 5.3)

• An example of finding a panic string that is not in the current thread
(Section 5.4)

• An example of identifying the cause of a crash on an SMP system
(Section 5.5)

For information about how crash dump files are created, see Chapter 4.

5.1 Guidelines for Examining Crash Dump Files

In examining crash dump files, there is no one way to determine the cause
of a system crash. However, following these steps should help you identify
the events that lead to most crashes:

1. Gather some facts about the system; for example, operating system
type, version number, revision level, hardware configuration.

2. Locate the thread executing at the time of the crash. Most likely, this
thread contains the events that lead to the panic.

3. Look at the panic string, if one exists. This string is contained in the
preserved message buffer (pmsgbuf) and in the panicstr global
variable. The panic string gives a reason for the crash.

Crash Analysis Examples 5–1

4. Identify the function that called the panic or trap function. That
function is the one that caused the system to crash.

5. Examine the source code for the function that caused the crash to infer
the error that caused the crash. You might also need to examine
related data structures and functions that appear earlier in the stack.
An earlier function might have passed corrupt data to the function that
caused a crash.

6. Determine whether you can fix the problem.

If the system crashed because of a hardware problem (for example,
because a memory board became corrupt), correcting the problem
probably requires repairing or replacing the hardware. You might be
able to disconnect the hardware that caused the problem and operate
without it until it is repaired or replaced. If you need to repair or
replace Digital hardware, call the nearest Digital service center or sales
office.

If a software panic caused the crash, you can fix the problem if it is in
software you or someone else at your company wrote. Otherwise, you
must request that the producer of the software fix the problem. If the
problem is in software from Digital, you file a Software Performance
Report (SPR) to request a correction to the Digital software.

For information about reporting problems to Digital, contact your local
Digital service center or sales office.

5.2 Identifying a Crash Caused by a Software Problem

When software encounters a state from which it cannot continue, it calls
the system panic function. For example, if the software attempts to access
an area of memory that is protected from access, the software might call
the panic function and crash the system.

In most cases, only system programmers can fix the problem that caused a
panic because most panics are caused by software errors. However, some
system panics reflect other problems. For example, if a memory board
becomes corrupted, software that attempts to write to that board might call
the panic function and crash the system. In this case, the solution might
be to replace the memory board and reboot the system.

The sections that follow demonstrate finding the cause of a software panic
using the dbx and kdbx debuggers. You can also examine output from the

5–2 Crash Analysis Examples

crashdc crash data collection tool to help you determine the cause of a
crash. Sample output from crashdc is shown and explained in Appendix A.

5.2.1 Using dbx to Determine the Cause of a Software Panic

The following example shows a method for identifying a software panic
with the dbx debugger:

dbx -k vmunix.0 vmcore.0
dbx version 3.11.1
Type ’help’ for help.

stopped at [boot:753 ,0xfffffc00003c4ae4] Source not available

(dbx) p panicstr 1
0xfffffc000044b648 = "ialloc: dup alloc"
(dbx) t 2
> 0 boot(paniced = 0, arghowto = 0) ["../../../../src/kernel/arch/alpha/machdep.\
c":753, 0xfffffc00003c4ae4]

1 panic(s = 0xfffffc000044b618 = "mode = 0%o, inum = %d, pref = %d fs = %s\n")\
["../../../../src/kernel/bsd/subr_prf.c":1119, 0xfffffc00002bdbb0]

2 ialloc(pip = 0xffffffff8c6acc40, ipref = 57664, mode = 0, ipp = 0xffffffff8c\
f95af8) ["../../../../src/kernel/ufs/ufs_alloc.c":501, 0xfffffc00002dab48]

3 maknode(vap = 0xffffffff8cf95c50, ndp = 0xffffffff8cf922f8, ipp = 0xffffffff\
8cf95b60) ["../../../../src/kernel/ufs/ufs_vnops.c":2842, 0xfffffc00002ea500]

4 ufs_create(ndp = 0xffffffff8cf922f8, vap = 0xfffffc00002fe0a0) ["../../../..\
/src/kernel/ufs/ufs_vnops.c":602, 0xfffffc00002e771c]

5 vn_open(ndp = 0xffffffff8cf95d18, fmode = 4618, cmode = 416) ["../../../../s\
rc/kernel/vfs/vfs_vnops.c":258, 0xfffffc00002fe138]

6 copen(p = 0xffffffff8c6efba0, args = 0xffffffff8cf95e50, retval = 0xffffffff\
8cf95e40, compat = 0) ["../../../../src/kernel/vfs/vfs_syscalls.c":1379, 0xfffffc\
00002fb890]

7 open(p = 0xffffffff8cf95e40, args = (nil), retval = 0x7f4) ["../../../../src\
/kernel/vfs/vfs_syscalls.c":1340, 0xfffffc00002fb7bc]

8 syscall(ep = 0xffffffff8cf95ef8, code = 45) ["../../../../src/kernel/arch/al\
pha/syscall_trap.c":532, 0xfffffc00003cfa34]

9 _Xsyscall() ["../../../../src/kernel/arch/alpha/locore.s":703, 0xfffffc00003\
c31e0]
(dbx) q

1. Display the panic string (panicstr). The panic string shows that the
ialloc function called the panic function.

2. Perform a stack trace. This confirms that the ialloc function at line
501 in file ufs_alloc.c called the panic function.

5.2.2 Using kdbx to Determine the Cause of a Software Panic

The following example shows a method of finding a software panic using
the kdbx debugger:

Crash Analysis Examples 5–3

kdbx -k vmunix.3 vmcore.3
dbx version 3.11.1
Type ’help’ for help.

stopped at [boot:753 ,0xfffffc00003c4b04] Source not available

(kdbx) sum 1
Hostname : system.dec.com
cpu: DEC3000 - M500 avail: 1
Boot-time: Mon Dec 14 12:06:31 1992
Time: Mon Dec 14 12:17:16 1992
Kernel : OSF1 release 1.2 version 1.2 (alpha)
(kdbx) p panicstr 2
0xfffffc0000453ea0 = "wdir: compact2"
(kdbx) t 3
> 0 boot(paniced = 0, arghowto = 0) ["../../../../src/kernel/arch/alpha/machdep\
.c":753, 0xfffffc00003c4b04]

1 panic(s = 0xfffffc00002e0938 = "p") ["../../../../src/kernel/bsd/subr_prf.c"\
:1119, 0xfffffc00002bdbb0]

2 direnter(ip = 0xffffffff00000000, ndp = 0xffffffff9d38db60) ["../../../../sr\
c/kernel/ufs/ufs_lookup.c":986, 0xfffffc00002e2adc]

3 ufs_mkdir(ndp = 0xffffffff9d38a2f8, vap = 0x100000020) ["../../../../src/ker\
nel/ufs/ufs_vnops.c":2383, 0xfffffc00002e9cbc]

4 mkdir(p = 0xffffffff9c43d7c0, args = 0xffffffff9d38de50, retval = 0xffffffff\
9d38de40) ["../../../../src/kernel/vfs/vfs_syscalls.c":2579, 0xfffffc00002fd930]

5 syscall(ep = 0xffffffff9d38def8, code = 136) ["../../../../src/kernel/arch/a\
lpha/syscall_trap.c":532, 0xfffffc00003cfa54]

6 _Xsyscall() ["../../../../src/kernel/arch/alpha/locore.s":703, 0xfffffc00003\
c3200]
(kdbx) q
dbx (pid 29939) died. Exiting...

1. Use the sum command to get a summary of the system.

2. Display the panic string (panicstr).

3. Perform a stack trace of the current thread block. The stack trace
shows that the direnter function, at line 986 in file ufs_lookup.c ,
called the panic function.

5.3 Identifying a Hardware Exception

Occasionally, your system might crash due to a hardware error. During a
hardware exception, the hardware encounters a situation from which it
cannot continue. For example, the hardware might detect a parity error in
a portion of memory that is necessary for its successful operation. When a
hardware exception occurs, the hardware stores information in registers
and stops operation. When control returns to the software, it normally calls
the panic function and the system crashes.

The sections that follow show how to identify hardware traps using the dbx
and kdbx debuggers. You can also examine output from the crashdc crash

5–4 Crash Analysis Examples

data collection tool to help you determine the cause of a crash. Sample
output from crashdc is shown and explained in Appendix A.

5.3.1 Using dbx to Determine the Cause of a Hardware Error

The following example shows a method for identifying a hardware trap
with the dbx debugger:

dbx -k vmunix.1 vmcore.1
dbx version 3.11.1
Type ’help’ for help.
(dbx) sh strings vmunix.1 | grep ’(Rev’ 1
DEC OSF/1 X2.0A-7 (Rev. 1);

(dbx) p utsname 2
struct {

sysname = "OSF1"
nodename = "system.dec.com"
release = "2.0"
version = "2.0"
machine = "alpha"

}

(dbx) p panicstr 3
0xfffffc0000489350 = "trap: Kernel mode prot fault\n"

(dbx) t 4
> 0 boot(paniced = 0, arghowto = 0) ["/usr/sde/alpha/build/alpha.nightly/src/ker\
nel/arch/alpha/machdep.c":

1 panic(s = 0xfffffc0000489350 = "trap: Kernel mode prot fault\n") ["/usr/sde\
/alpha/build/alpha.nightly/src/kernel/bsd/subr_prf.c":1099, 0xfffffc00002c0730]

2 trap() ["/usr/sde/alpha/build/alpha.nightly/src/kernel/arch/alpha/trap.c":54\
4, 0xfffffc00003e0c78]

3 _XentMM() ["/usr/sde/alpha/build/alpha.nightly/src/kernel/arch/alpha/locore.\
s":702, 0xfffffc00003d4ff4]

(dbx) kps 5
PID COMM

00000 kernel idle
00001 init
00002 device server
00003 exception hdlr
00663 ypbind
00018 cfgmgr
00219 automount
.
.
.
00265 cron
00293 xdm
02311 inetd
00278 lpd
01443 csh
01442 rlogind
01646 rlogind
01647 csh

(dbx) p $pid 6

Crash Analysis Examples 5–5

2311

(dbx) p *pmsgbuf 7
struct {

msg_magic = 405601
msg_bufx = 62
msg_bufr = 3825
msg_bufc = "nknown flag

printstate: unknown flag
printstate: unknown flag
de: table is full
<3>vnode: table is full
.
.
.
<3>arp: local IP address 0xffffffff82b40429 in use by
hardware address 08:00:2B:20:19:CD
<3>arp: local IP address 0xffffffff82b40429 in use by
hardware address 08:00:2B:2B:F6:3B

va=0000000000000028, status word=0000000000000000, pc=fffffc000032972c
panic: trap: Kernel mode prot fault
syncing disks... 3 3 done
printstate: unknown flag
printstate: unknown flag
printstate: unknown flag
printstate: unknown flag
printstate: u"
}

(dbx) px savedefp
0xffffffff89b2b4e0

(dbx) p savedefp
0xffffffff89b2b4e0

(dbx) p savedefp[28]
18446739675666356012

(dbx) px savedefp[28] 8
0xfffffc000032972c

(dbx) savedefp[28]/i 9
[nfs_putpage:2344, 0xfffffc000032972c] ldl r5, 40(r1)

(dbx) savedefp[23]/i 10
[ubc_invalidate:1768, 0xfffffc0000315fe0] stl r0, 84(sp)

(dbx) func nfs_putpage 11
(dbx) file 12
/usr/sde/alpha/build/alpha.nightly/src/kernel/kern/sched_prim.c
(dbx) func ubc_invalidate 13

5–6 Crash Analysis Examples

ubc_invalidate: Source not available

(dbx) file 14
/usr/sde/alpha/build/alpha.nightly/src/kernel/vfs/vfs_ubc.c

(dbx) q

1. You can use the sh command to enter commands to the shell. In this
case, enter the stings and grep commands to pull the operating
system revision number in the vmunix.1 dump file.

2. Display the utsname structure to obtain more information about the
operating system version.

3. Display the panic string (panicstr). The panic function was called by
a trap function.

4. Perform a stack trace. This confirms that the trap function called the
panic function. However, the stack trace does not show what caused
the trap.

5. Look to see what processes were running when the system crashed by
entering the kps command.

6. Look to see what the process ID (PID) was pointing to at the time of
the crash. In this case, the PID was pointing to process 2311, which is
the inetd daemon, from the kps command output.

7. Display the preserved message buffer (pmsgbuf). Note that this buffer
contains the program counter (pc) value, which is displayed in the
following line:

va=0000000000000028, status word=0000000000000000, pc=fffffc000032972c

8. Display register 28 of the exception frame pointer (savedefp). This
register always contains the pc value. You can always obtain the pc
value from either the preserved message buffer or register 28 of the
exception frame pointer.

9. Disassemble the pc to determine its contents. The pc at the time of the
crash contained the nfs_putpage function at line 2344.

10. Disassemble the return address to determine its contents. The return
value at the time of the crash contained the ubc_invalidate function
at line 1768.

11. Point the dbx debugger to the nfs_putpage function.

12. Display the name of the source file that contains the nfs_putpage
function.

Crash Analysis Examples 5–7

13. Point the dbx debugger to the ubc_invalidate function.

14. Display the name of the source file that contains the ubc_invalidate
function.

The result from this example shows that the ubc_invalidate function,
which resides in the /vfs/vfs_ubc.c file at line number 1768, called the
nfs_putpage function at line number 2344 in the /kern/sched_prim.c
file and the system stopped.

5.3.2 Using kdbx to Determine the Cause of a Hardware Error

The following example shows a method for identifying a hardware error by
using the kdbx debugger:

kdbx -k vmunix.5 vmcore.5
dbx version 3.11.1
Type ’help’ for help.

stopped at [boot:753 ,0xfffffc00003c4b04] Source not available
(kdbx) sum 1
Hostname : system.dec.com
cpu: DEC3000 - M500 avail: 1
Boot-time: Thu Jan 7 08:12:30 1993
Time: Thu Jan 7 08:13:23 1993
Kernel : OSF1 release 1.2 version 1.2 (alpha)
(kdbx) p panicstr 2
0xfffffc0000471030 = "ECC Error"
(kdbx) t 3
> 0 boot(paniced = 0, arghowto = 0) ["../../../../src/kernel/arch/alpha/machdep.\
c":753, 0xfffffc00003c4b04]

1 panic(s = 0x670) ["../../../../src/kernel/bsd/subr_prf.c":1119, 0xfffffc00002\
bdbb0]

2 kn15aa_machcheck(type = 1648, cmcf = 0xfffffc00000f8050 = , framep = 0xffff\
ffff94f79ef8) ["../../../../src/kernel/arch/alpha/hal/kn15aa.c":1269, 0xfffffc000\
03da62c]

3 mach_error(type = -1795711240, phys_logout = 0x3, regs = 0x6) ["../../../../s\
rc/kernel/arch/alpha/hal/cpusw.c":323, 0xfffffc00003d7dc0]

4 _XentInt() ["../../../../src/kernel/arch/alpha/locore.s":609, 0xfffffc00003c3\
148]
(kdbx) q
dbx (pid 337) died. Exiting...

1. Use the sum command to get a summary of the system.

2. Display the panic string (panicstr).

3. Perform a stack trace. Because the kn15aa_machcheck function
(which is a hardware checking function) called the panic function, the
system crash was probably the result of a hardware error.

5–8 Crash Analysis Examples

5.4 Finding a Panic String in a Thread Other Than the
Current Thread

The dbx and kdbx debuggers have the concept of the current thread. In
many cases, when you invoke one of the debuggers to analyze a crash
dump, the panic string is in the current thread. At times, however, the
current thread contains no panic string and so is probably not the thread
that caused the crash.

The following example shows a method for stepping through kernel threads
to identify the events that lead to the crash:

dbx -k ./vmunix.2 ./vmcore.2
dbx version 3.11.1
Type ’help’ for help.
thread 0x8d431c68 stopped at [thread_block:1305 +0x114,0xfffffc000033961c] \

Source not available
(dbx) p panicstr 1
0xfffffc000048a0c8 = "kernel memory fault"
(dbx) t 2

> 0 thread_block() ["../../../../src/kernel/kern/sched_prim.c":1305, 0xfffffc0\
e
00033961c]

1 mpsleep(chan = 0xffffffff8d4ef450 = , pri = 282, wmesg = 0xfffffc000046f\
290 = "network", timo = 0, lockp = (nil), flags = 0) ["../../../../src/kernel/\
bsd/kern_synch.c":267, 0xfffffc00002b772c]

2 sosleep(so = 0xffffffff8d4ef408, addr = 0xffffffff906cfcf4 = "^P", pri = 2 \
82,tmo = 0) ["../../../../src/kernel/bsd/uipc_socket2.c":612, 0xfffffc00002d3784]

3 accept1(p = 0xffffffff8f8bfde8, args = 0xffffffff906cfe50, retval = 0xffff \
ffff906cfe40, compat_43 = 1) ["../../../../src/kernel/bsd/uipc_syscalls.c":300 \
, 0xfffffc00002d4c74]

4 oaccept(p = 0xffffffff8d431c68, args = 0xffffffff906cfe50, retval = 0xffff \
ffff906cfe40) ["../../../../src/kernel/bsd/uipc_syscalls.c":250, 0xfffffc00002d\
4b0c]

5 syscall(ep = 0xffffffff906cfef8, code = 99, sr = 1) ["../../../../src/kern \
el/arch/alpha/syscall_trap.c":499, 0xfffffc00003ec18c]

6 _Xsyscall() ["../../../../src/kernel/arch/alpha/locore.s":675, 0xfffffc000\
03df96c]
(dbx) tlist 3
thread 0x8d431a60 stopped at [thread_block:1305 +0x114,0xfffffc000033961c] \
Source not available
thread 0x8d431858 stopped at [thread_block:1289 +0x18,0xfffffc00003394b8] \
Source not available
thread 0x8d431650 stopped at [thread_block:1289 +0x18,0xfffffc00003394b8] \
Source not available
thread 0x8d431448 stopped at [thread_block:1305 +0x114,0xfffffc000033961c] \
Source not available
thread 0x8d431240 stopped at [thread_block:1305 +0x114,0xfffffc000033961c] \
Source not available
.
.
.
thread 0x8d42f5d0 stopped at [boot:696 ,0xfffffc00003e119c] Source not
\
available
thread 0x8d42f3c8 stopped at [thread_block:1289 +0x18,0xfffffc00003394b8] \

Crash Analysis Examples 5–9

Source not available
thread 0x8d42f1c0 stopped at [thread_block:1289 +0x18,0xfffffc00003394b8] \
Source not available
thread 0x8d42efb8 stopped at [thread_block:1289 +0x18,0xfffffc00003394b8] \
Source not available
thread 0x8d42dd70 stopped at [thread_block:1289 +0x18,0xfffffc00003394b8] \
Source not available
(dbx) tset 0x8d42f5d0 4
thread 0x8d42f5d0 stopped at [boot:696 ,0xfffffc00003e119c] Source not ava\
ilable
(dbx) t 5
> 0 boot(paniced = 0, arghowto = 0) ["../../../../src/kernel/arch/alpha/mac\
hdep.c":694, 0xfffffc00003e1198]

1 panic(s = 0xfffffc000048a098 = " sp contents at time of fault: 0x%l01\
6x\r\n\n") ["../../../../src/kernel/bsd/subr_prf.c":1110, 0xfffffc00002beef4]

2 trap() ["../../../../src/kernel/arch/alpha/trap.c":677, 0xfffffc00003ecc70]
3 _XentMM() ["../../../../src/kernel/arch/alpha/locore.s":828, 0xfffffc000\

03dfb1c]
4 pmap_release_page(pa = 18446744071785586688) ["../../../../src/kernel/ar\

ch/alpha/pmap.c":640, 0xfffffc00003e3ecc]
5 put_free_ptepage(page = 5033216) ["../../../../src/kernel/arch/alpha/pma\

p.c" :534, 0xfffffc00003e3ca0]
6 pmap_destroy(map = 0xffffffff8d5bc428) ["../../../../src/kernel/arch/alp\

ha/p map.c":1891, 0xfffffc00003e6140]
7 vm_map_deallocate(map = 0xffffffff81930ee0) ["../../../../src/kernel/vm/\

vm_map.c":482, 0xfffffc00003d03c0]
8 task_deallocate(task = 0xffffffff8d568d48) ["../../../../src/kernel/kern\

/task.c":237, 0xfffffc000033c1dc]
9 thread_deallocate(thread = 0x4e4360) ["../../../../src/kernel/kern/threa\

d.c":689, 0xfffffc000033d83c]
10 reaper_thread() ["../../../../src/kernel/kern/thread.c":1952, 0xfffffc00\

0033e920]
11 reaper_thread() ["../../../../src/kernel/kern/thread.c":1901, 0xfffffc00\

0033e8ac]
(dbx) q

1. Display the panic string (panicstr) to view the panic message, if any.
This message indicates that a memory fault occurred.

2. Perform a stack trace of the current thread. Because this thread does
not show a call to the panic function, you need to look at other threads.

3. Examine the system’s threads. The thread most likely to contain the
panic is the boot thread because the boot function always executes
immediately before the system crashes. If the boot thread does not
exist, you must examine every thread of every process in the process
list.

4. Point dbx to the boot thread at address 0x8d42f5d0 .

5. In this example, the problem is in the pmap_release_page function at
line 640 of the pmap.c file.

5–10 Crash Analysis Examples

5.5 Identifying the Cause of a Crash on an SMP System

If you are analyzing crash dump files from an SMP system, you must first
determine on which CPU the panic occurred. You can then continue crash
dump analysis as you would on a single processor system.

The following example shows a method for determining which CPU caused
the crash and which function called the panic function:

% dbx -k ./vmunix.1 ./vmcore.1
dbx version 3.11.6
Type ’help’ for help.
stopped at [boot:1494 ,0xfffffc0000442918] Source not available
(dbx) p ustsname 1
struct {

sysname = "OSF1"
nodename = "wasted.zk3.dec.com"
release = "V3.0"
version = "358"
machine = "alpha"

}

(dbx) print paniccpu 2
0
(dbx) p machine_slot[1] 3
struct {

is_cpu = 1
cpu_type = 15
cpu_subtype = 3
running = 1
cpu_ticks = {

[0] 416162
[1] 83260
[2] 1401080
[3] 11821212
[4] 1095581

}
clock_freq = 1024
error_restart = 0
cpu_panicstr = 0xfffffc000059f6a0 = "cpu_ip_intr: panic request"
cpu_panic_thread = 0xffffffff8109a780

}

(dbx) p panicstr 4
0xfffffc0000558ad0 = "simple_lock: uninitialized lock"
(dbx) tset active_threads[paniccpu] 5
stopped at [boot:1494 ,0xfffffc0000442918]
(dbx) t 6
> 0 boot(0x0, 0x4, 0xac35c0000000a, 0xfffffc00004403fc, 0xfffffc000000000e) \
["../../../../src/kernel/arch/alpha/machdep.c":1494, 0xfffffc0000442918]

1 panic(s = 0xfffffc0000558b40 = "simple_lock: hierarchy violation") ["../\
2 simple_lock_fault(slp = 0xfffffc00006292f0, state = 0, caller = 0xfffffc\

000046f384, arg = 0xfffffc0000534fd8 = "session.s_fpgrp_lock", fmt = 0xfffffc\
0000558de8 = " class already locked: %s\n", error = 0xfffffc0000558b40 = "\
simple_lock: hierarchy violation") ["../../../../src/kernel/kern/lock.c":1558\
, 0xfffffc00003c34ec]

3 simple_lock_hierarchy_violation(slp = 0xfffffc000046f384, state = 184467\

Crash Analysis Examples 5–11

39675668500440, caller = 0xfffffc0000558de8, curhier = 5606208) ["../../../..\
/src/kernel/kern/lock.c":1616, 0xfffffc00003c3620]

4 xnaintr(0xfffffc00005a5158, 0x2, 0xffffffffb53ef238, 0xfffffc000068a754,\
0xfffffc000055891d) ["../../../../src/kernel/io/dec/netif/if_xna.c":1077, 0x\

fffffc000046f384]
5 _XentInt(0x2, 0xfffffc0000447174, 0xfffffc00005b7d40, 0x2, 0x0) ["../../\
6 swap_ipl(0x2, 0xfffffc0000447174, 0xfffffc00005b7d40, 0x2, 0x0) ["../../\
7 boot(0x0, 0x0, 0xffffffffa52c6000, 0xffffffffb53ef1f8, 0xfffffc00003bf4f\

c) ["../../../../src/kernel/arch/alpha/machdep.c":1434, 0xfffffc000044280c]
8 panic(s = 0xfffffc0000558ad0 = "simple_lock: uninitialized lock") ["../.\
9 simple_lock_fault(slp = 0xffffffffa52c6000, state = 1719, caller = 0xfff\

ffc00003734c4, arg = (nil), fmt = (nil), error = 0xfffffc0000558ad0 = "simple\
_lock: uninitialized lock") ["../../../../src/kernel/kern/lock.c":1558, 0xfff\
ffc00003c34ec]

10 simple_lock_valid_violation(slp = 0xfffffc00003734c4, state = 0, caller \
= (nil)) ["../../../../src/kernel/kern/lock.c":1584, 0xfffffc00003c3578]

11 pgrp_ref(0xffffffffa52c6000, 0x0, 0xfffffc000023ee20, 0x6b7, 0xfffffc000\
05e1080) ["../../../../src/kernel/bsd/kern_proc.c":561, 0xfffffc00003734c4]

12 exit(0xffffffffb53ef740, 0x100, 0x1, 0xffffffffa42e5e80, 0x1) ["../../..\
/../src/kernel/bsd/kern_exit.c":868, 0xfffffc000023ef30]

13 rexit(0xffffffff814d2d80, 0xffffffffb53ef758, 0xffffffffb53ef8b8, 0x1000\
00001, 0x0) ["../../../../src/kernel/bsd/kern_exit.c":546, 0xfffffc000023e7dc]

14 syscall(0xffffffffb53ec000, 0xfffffc000068a300, 0x0, 0x51, 0x1) ["../../\
15 _Xsyscall(0x8, 0x3ff800e6938, 0x14000d0f0, 0x1, 0x11ffffc18) ["../../../\

(dbx) p *pmsgbuf 7
struct {

msg_magic = 405601
msg_bufx = 701
msg_bufr = 134
msg_bufc = "0.64.143, errno 22

NFS server: stale file handle fs(742,645286) file 573 gen 32779
getattr, client address = 16.140.64.143, errno 22

simple_lock: uninitialized lock

pc of caller: 0xfffffc00003734c4
lock address: 0xffffffffa52c6000
lock class name: (unknown_simple_lock)
current lock state: 0x00000000e0e9b04a (cpu=0,pc=0xfffffc00e0e9b048,free)

panic (cpu 0): simple_lock: uninitialized lock

simple_lock: hierarchy violation

pc of caller: 0xfffffc000046f384
lock address: 0xfffffc00006292f0
lock info addr: 0xfffffc0000672cc0
lock class name: xna_softc.lk_xna_softc
class already locked: session.s_fpgrp_lock

.

.

.
}
(dbx) quit

1. Display the ustname structure to obtain information about the system.

5–12 Crash Analysis Examples

2. Display the number of the CPU on which the panic occurred, in this
case CPU 0 was the CPU that started the system panic.

3. Display the machine_slot structure for a CPU other than the one
that started the system panic. Notice that the panic string contains:

cpu_ip_intro: panic_request

This panic string indicates that this CPU was not the one that started
the system panic. This CPU was requested to panic and stop operation.

4. Display the panic string, which in this case indicates that a process
attempted to obtain an uninitialized lock.

5. Set the context to the CPU that caused the system panic to begin.

6. Perform a stack trace on the CPU that started the system panic.

Notice that the panic function appears twice in the stack trace. The
series of events that resulted in the first call to the panic function
caused the crash. The events that occurred after the first call to the
panic function were performed after the system was corrupt and
during an attempt to save data. Normally, any events that occur after
the initial call to the panic function will not help you determine why
the system crashed.

In this example, the problem is in the pgrp_ref function on line 561 in
the kern_proc.c file.

If you follow the stack trace after the pgrp_ref function, you can see
that the pgrp_ref function calls the simple_lock_valid_violation
function. This function displays information about simple locks, which
might be helpful in determining why the system crashed.

7. Retrieve the information from the simple_lock_valid_violation
function by displaying the preserved message buffer.

Crash Analysis Examples 5–13

A
Output from the crashdc Command

This appendix contains a sample crash-data .n file created by the
crashdc command. The output is explained in the list following the
example.

#
Crash Data Collection (Version 1.4)
#
_crash_data_collection_time: Fri Sep 2 15:01:07 EDT 1994 1
_current_directory: /
_crash_kernel: /var/adm/crash/vmunix.0
_crash_core: /var/adm/crash/vmcore.0
_crash_arch: alpha
_crash_os: DEC OSF/1
_host_version: DEC OSF/1 3.0 (Rev. 331); Thu Sep 1 09:24:01 EDT 1994
_crash_version: DEC OSF/1 3.0 (Rev. 331); Thu Sep 1 09:24:01 EDT 1994
_crashtime: struct {

tv_sec = 746996332
tv_usec = 145424

}
_boottime: struct {

tv_sec = 746993148
tv_usec = 92720

}
_config: struct {

sysname = "OSF1"
nodename = "madmax.zk3.dec.com"
release = "3.0"
version = "331"
machine = "alpha"

}
_cpu: 30
_system_string: 0xfffffc0000442fa8 = "DEC3000 - M500"
_avail_cpus: 1
_partial_dump: 1
_physmem(MBytes): 96
_panic_string: 0xfffffc000043cf70 = "kernel memory fault" 2
_preserved_message_buffer_begin: 3
struct {

msg_magic = 0x63061
msg_bufx = 0x56e
msg_bufr = 0x432
msg_bufc = "Alpha boot: available memory from 0x678000 to 0x6000000

DEC OSF/1 T2.0-1 (Rev. 114.2); Wed Sep 1 09:24:01 EDT 1993
physical memory = 94.00 megabytes.
available memory = 84.50 megabytes.
using 360 buffers containing 2.81 megabytes of memory
tc0 at nexus
scc0 at tc0 slot 7

Output from the crashdc Command A–1

tcds0 at tc0 slot 6
asc0 at tcds0 slot 0
rz0 at asc0 bus 0 target 0 lun 0 (DEC RZ26 (C) DEC T384)
rz4 at asc0 bus 0 target 4 lun 0 (DEC RRD42 (C) DEC 4.5d)
tz5 at asc0 bus 0 target 5 lun 0 (DEC TLZ06 (C)DEC 0374)
asc1 at tcds0 slot 1
rz8 at asc1 bus 1 target 0 lun 0 (DEC RZ57 (C) DEC 5000)
rz9 at asc1 bus 1 target 1 lun 0 (DEC RZ56 (C) DEC 0300)
fb0 at tc0 slot 8

1280X1024
bba0 at tc0 slot 7
ln0: DEC LANCE Module Name: PMAD-BA
ln0 at tc0 slot 7
ln0: DEC LANCE Ethernet Interface, hardware address: 08-00-2b-2c-f3-83
DEC3000 - M500 system
Firmware revision: 2.4
PALcode: OSF version 1.28
lvm0: configured.
lvm1: configured.
<3>/var: file system full
<3>/var: file system full
<3>/var: file system full
<3>/var: file system full
<3>/var: file system full

trap: invalid memory ifetch access from kernel mode

faulting virtual address: 0x0000000000000000
pc of faulting instruction: 0x0000000000000000
ra contents at time of fault: 0xfffffc000028951c
sp contents at time of fault: 0xffffffff96199a48

panic: kernel memory fault
syncing disks... done
"
}
_preserved_message_buffer_end:
_kernel_process_status_begin: 4

PID COMM
00000 kernel idle
00001 init
00002 exception hdlr
00342 xdm
00012 update
00341 Xdec
00239 nfsiod
00113 syslogd
00115 binlogd
00240 nfsiod
00241 nfsiod
00340 csh
00124 routed
00188 portmap
00197 ypbind
00237 nfsiod
00249 sendmail
00294 internet_mom
00297 snmp_pe
00291 mold
00337 xdm

A–2 Output from the crashdc Command

00325 lpd
00310 cron
00305 inetd
00489 tar
_kernel_process_status_end:
_current_pid: 489 5
_current_tid: 0xffffffff863d36c0 6
_proc_thread_list_begin:
thread 0x863d36c0 stopped at [boot:1118,0xfffffc0000374a08] Source not available
_proc_thread_list_end:
_dump_begin: 7
> 0 boot(reason = 0, howto = 0) ["../../../../src/kernel/arch/alpha/machdep.c":
1118, 0xfffffc0000374a08]
mp = 0xffffffff961962f8
nmp = 0xffffffff86333ab8
fsp = (nil)
rs = 5368785696
error = -1776721160
ind = 2424676
nbusy = 4643880

1 panic(s = 0xfffffc000043cf70 = "kernel memory fault") ["../../../../src\
/kernel/bsd/subr_prf.c"\
:616, 0xfffffc000024ff60]
bootopt = 0

2 trap() ["../../../../src/kernel/arch/alpha/trap.c":945, 0xfffffc0000381440]
t = 0xffffffff863d36c0
pcb = 0xffffffff96196000
task = 0xffffffff86306b80
p = 0xffffffff95aaf6a0
syst = struct {

tv_sec = 0
tv_usec = 0

}
nofault_save = 0
exc_type = 18446739675665756628
exc_code = 0
exc_subcode = 0
i = -2042898428
s = 2682484
ret = 536993792
map = 0xffffffff808fc5a0
prot = 5
cp = 0xffffffff95a607a0 =
i = 0
result = 18446744071932830456
pexcsum = 0xffffffff00000000
i = 16877
pexcsum = 0xffffffff00001000
i = 2682240
ticks = -1784281184
tv = 0xfffffffc00500068

3 _XentMM() ["../../../../src/kernel/arch/alpha/locore.s":949, 0xfffff\
c0000372dec]

_dump_end:

warning: Files compiled -g3: parameter values probably wrong

Output from the crashdc Command A–3

_kernel_thread_list_begin: 8
thread 0x8632faf0 stopped at [thread_block:1427 ,0xfffffc00002ca3a0] Source\

not available
thread 0x8632f8d8 stopped at [thread_block:1427 ,0xfffffc00002ca3a0] Source\

not available
.
.
.
thread 0x8632d328 stopped at [thread_block:1400 +0x1c,0xfffffc00002ca2f8] \
Source not available
thread 0x8632d110 stopped at [thread_block:1400 +0x1c,0xfffffc00002ca2f8] \
Source not available
_kernel_thread_list_end:
_savedefp: 0xffffffff96199940 9
_kernel_memory_fault_data_begin: 10
struct {

fault_va = 0x0
fault_pc = 0x0
fault_ra = 0xfffffc000028951c
fault_sp = 0xffffffff96199a48
access = 0xffffffffffffffff
status = 0x0
cpunum = 0x0
count = 0x1
pcb = 0xffffffff96196000
thread = 0xffffffff863d36c0
task = 0xffffffff86306b80
proc = 0xffffffff95aaf6a0

}
_kernel_memory_fault_data_end:
Invalid character in input
_uptime: .88 hours

_stack_trace_begin: 11
> 0 boot(reason = 0, howto = 0) ["../../../../src/kernel/arch/alpha/machdep.c"\
:1118, 0xfffffc0000374a08]

1 panic(s = 0xfffffc000043cf70 = "kernel memory fault") ["../../../. ./src\
/kernel/bsd/subr_prf.c":616, 0xfffffc000024ff60]

2 trap() ["../../../../src/kernel/arch/alpha/trap.c":945, 0xfffffc0000381\
440]

3 _XentMM() ["../../../../src/kernel/arch/alpha/locore.s":949, 0xfffffc000\
0372dec]
_stack_trace_end:
_savedefp_exception_frame_(savedefp/33X): 12
ffffffff96199940: 0000000000000000 fffffc000046f888
ffffffff96199950: ffffffff863d36c0 0000000079c2c93f
ffffffff96199960: 000000000000007d 0000000000000001
ffffffff96199970: 0000000000000000 fffffc000046f4e0
ffffffff96199980: 0000000000000000 ffffffff961962f8
ffffffff96199990: 0000000140012b20 0000000000000000
ffffffff961999a0: 0000000140045690 0000000000000000
ffffffff961999b0: 00000001400075e8 0000000140026240
ffffffff961999c0: ffffffff96199af0 ffffffff8635adc0
ffffffff961999d0: ffffffff96199ac0 00000000000001b0
ffffffff961999e0: fffffc00004941b8 0000000000000000
ffffffff961999f0: 0000000000000001 fffffc000028951c
ffffffff96199a00: 0000000000000000 0000000000000fff
ffffffff96199a10: 0000000140026240 0000000000000000
ffffffff96199a20: 0000000000000000 fffffc000047acd0
.
.
.

A–4 Output from the crashdc Command

ffffffff96199a30: 0000000000901402 0000000000001001
ffffffff96199a40: 0000000000002000
_savedefp_exception_frame_ptr: 0xffffffff96199940
_savedefp_stack_pointer: 0x140026240
_savedefp_processor_status: 0x0
_savedefp_return_address: 0xfffffc000028951c
_savedefp_pc: 0x0
_savedefp_pc/i:

can’t read from process (address 0x0)
_savedefp_return_address/i:

[spec_open:997, 0xfffffc000028951c] bis r0, r0, r19
_kernel_memory_fault_data.fault_pc/i:

can’t read from process (address 0x0)
_kernel_memory_fault_data.fault_ra/i:

[spec_open:997, 0xfffffc000028951c] bis r0, r0, r19

_kdbx_sum_start:
Hostname : madmax.zk3.dec.com
cpu: DEC3000 - M500 avail: 1
Boot-time: Thu Sep 2 14:05:48 1993
Time: Thu Sep 2 14:58:52 1993
Kernel : OSF1 release T2.0 version 114.2 (alpha)
_kdbx_sum_end:
_kdbx_swap_start: 13

Swap device name Size In Use Free
----------------------------- ---------- ---------- ----------
/dev/rz0b 131072k 10560k 120512k Dumpdev

16384p 1320p 15064p
----------------------------- ---------- ---------- ----------
Total swap partitions: 1 131072k 10560k 120512k

16384p 1320p 15064p
_kdbx_swap_end:
_kdbx_proc_start: 14
Addr PID PPID PGRP UID NICE SIGCATCH P_SIG Event Flags
=========== === ==== ==== === ==== ======== ======== ===== =====
v0x95aaf6a0 489 340 489 0 0 00000000 00000000 NULL in pagv ctty
v0x95aad5d0 342 337 342 0 0 00000000 00000000 NULL in pagv ctty
v0x95aad8f0 341 337 341 0 0 00000000 00000000 NULL in pagv
.
.
.
v0x95aad2b0 1 0 1 0 0 00000000 00000000 NULL in omask pagv
v0x95aad120 0 0 0 0 0 00000000 00000000 NULL in sys
kdbx_proc_end:

Audit subsystem not installed
#
_crash_data_collection_finished:

1. The first several lines of output display the contents of system
variables that give statistics about the crash, such as:

• The kernel image file and crash core file from which crashdc
collected data.

• The operating system version.

Output from the crashdc Command A–5

• The time of the crash and the time at which the system was
rebooted.

• Whether data is from a partial or full dump. (Data is from a partial
dump when the value of the partial_dump variable is 1. Data is
from a full dump when the value of this variable is 0.)

• The platform on which the operating system is running; a
DECstation 3000 in this case.

• The amount of physical memory available on the system.

2. The _panic_string label marks the message that indicates why the
crash occurred. In this case the message is kernel memory fault ,
indicating that a memory operation failed in the kernel.

3. The preserved message buffer contains status and other information
about the devices connected to the system: Notice the following
message:

trap: invalid memory ifetch access from kernel mode

This message describes the kernel memory fault and indicates that the
kernel was unable to fetch a needed instruction.

The preserved message buffer also contains the faulting virtual
address, the pc of the instruction that failed, the contents of the return
address register, and the stack pointer at the time of the memory fault.

4. The kernel process status list shows the processes that were active at
the time of the crash.

5. The _current_pid label marks the process ID of the process that was
executing at the time of the crash. In this case, it is the tar process,
which is identified as process 489 in the kernel process status list.

6. The _current_tid label marks the address of the thread that was
executing at the time of the crash.

7. The dump section shows information about the variables passed to the
routines executing at the time of the crash. In this case, the dump
displays variable information for the boot , panic , and trap functions.

8. The kernel thread list shows the threads of execution in the kernel.
This information can be helpful for verifying which routine called the
panic function.

9. The savedefp variable contains a pointer to the exception frame.

A–6 Output from the crashdc Command

10. The kernel memory fault data displays the following information,
recorded at the time of the memory fault:

• The fault_va variable contains the faulting virtual address.

• The fault_pc variable contains the pc.

• The fault_ra variable contains the return address of the calling
routine.

• The fault_sp variable contains the stack pointer.

• The access variable contains the access code, which is zero (0) for
read access, 1 for write access, and -1 for execute access.

• The status variable contains the process status register.

• The cpunum variable contains the number of the CPU that faulted.

• The count variable contains the number of CPUs on the system.

• The pcb variable contains a pointer to the process control block.

• The thread variable contains a pointer to the current thread.

• The task variable contains a pointer to the current task.

• The proc variable contains the address of the process status table.

11. The _stack_trace_begin line begins a trace of the current thread
block’s stack at the time of the crash. In this case the _XentMM function
called the trap function. The trap function called the panic function,
which called the boot function and the system crashed.

12. The exception frame is a stack frame created to store the state of the
process running at the time of the exception. It stores the registers and
pc associated with the process. To determine where registers are stored
in the exception frame, refer to the /usr/include/machine/reg.h
header file.

13. Swap information is shown to help you determine whether swap space
is sufficient.

14. The process table gives information about the processes active at the
time of the crash. The information includes:

• The process ID of each process.

• The process ID of the parent process for each process.

• The process group ID for each process.

Output from the crashdc Command A–7

• The UID of the of the user that started each process. In this case
all process are started by root .

• The priority at which the process was running at the time of the
memory fault.

• The event the process was waiting for, if any. An event might be
the completion of an input or output request, for example.

• Any flags assigned to the process. For example, the ctty flag
indicates that the process has a controlling terminal and, the sys
flag indicates that the process is a swapper or pager process.

A–8 Output from the crashdc Command

Index

A
abscallout kdbx extension, 2–18
access variable, A–7
addr_to_proc function, 3–4
alias command, 2–12
Alpha hardware architecture

documentation, 1–1
arp kdbx extension, 2–15
array

using in a kdbx extension, 3–31e
using in kdbx extension, 3–33e

array_action kdbx extension, 2–15
array_element function, 3–4
array_element_val function, 3–5
array_size function, 3–6
auth.log file, 4–10

B
binlog.conf file, 4–11
binlogd daemon, 4–11
binlogdumpfile file, 4–11
boot function, 1–6
boot_osflags console environment

variable, 4–6
bootstrap-linked kernel

debugging, 1–2
bounds file

description of, 4–10
breakpoint

setting on an SMP system, 2–47
buf kdbx extension, 2–17
build system, 2–40

C
callout kdbx extension, 2–17
cast function, 3–7
cast kdbx extension, 2–18
cc command

using to compile a kdbx
extension, 3–40

check_args function, 3–8
check_fields function, 3–8
complex lock

displaying debug information
for, 2–10

compress command
(See uncompress command)

config kdbx extension, 2–19
context command, 2–12
context function, 3–9
convert kdbx extension, 2–19
coredata command, 2–12
count variable, A–7
cpunum variable, A–7
cpustat extension, 2–20
crash command, 4–14

using at the console prompt, 4–13
crash data collection, 2–48, A–1
crash directory

changing the location of, 4–12
default location, 4–10

crash dump
how created, 4–2

crash dump analysis
collecting data with crashdc, 2–48
examples of, 5–1
for SMP systems, 5–11

Index–1

guidelines for, 5–1
overview, 1–1

crash dump files
allocating space for, 4–11
changing default location of, 4–12
compressing and

uncompressing, 4–13
example of using dbx to

examine, 5–3
example of using kdbx to

examine, 5–3
how created, 4–9
invoking dbx debugger to

examine, 2–2
invoking kdbx debugger to

examine, 2–11
vmcore.n, 4–10
vmunix.n, 4–10

crash dump header, 4–2
crash dumps

estimating the size of full
dumps, 4–8

estimating the size of partial
dumps, 4–7

forcing on a hung system, 4–13
including user page tables in

partial dumps, 4–5
saving in files, 4–4
selecting partial or full, 4–6
version number assignment, 4–10

crash-data.n file
explanation of contents, A–1

crashdc command
explanation of output from, A–1
overview of, 2–48

customizing kdbx debugger
environment, 2–12

D
data structure

displaying the format of with
dbx debugger, 2–6

displaying with the dbx
debugger, 2–6

data types used by kdbx
extensions, 3–2

DataStruct data type, 3–3
dbx command, 2–13
dbx debugger, 2–2

breakpoint handling on an SMP
system, 2–47

displaying format of data
structures with, 2–6

displaying preserved message
buffer, 2–8

displaying variables and data
structures with, 2–6

example of using for crash
dump analysis, 5–3, 5–5

kernel debugging flag, 2–2
syntax for address formats, 2–2
syntax for examining dump

files, 2–2
using to debug kdbx extensions,

3–41
using to examine the exception

frame, 2–7
dbx debugger commands

using in a kdbx extension, 3–10
dbx function, 3–10
debugging kernel threads with

dbx, 5–9
debugging kernels

(See kernel debugging)
deref_pointer function, 3–11
device configuration

displaying, 2–8
dis kdbx extension, 2–20
disassembling instructions, 2–20
disassembling return addresses,

5–7
disassembling the pc value, 5–7
dump

(See crash dumps)
dump files

(See crash dump files)

Index–2

guidelines for examining, 5–1
dump function, 1–6
dump-user-pte-page system

attribute, 4–5
dump_sp_threshold system

attribute, 4–2

E
exception frame, A–7

examining with the dbx
debugger, 2–7

export kdbx extension, 2–21
extensions to kdbx, 2–14

F
fault_pc variable, A–7
fault_ra variable, A–7
fault_sp variable, A–7
fault_va variable, A–7
field_errors function, 3–11
FieldRec data type, 3–3
file command

using to determine type of
kernel, 1–2

file kdbx extension, 2–21
firmware version

displaying, 2–8
format_addr function, 3–12
free_sym function, 3–13
full crash dumps

(See crash dump files)
(See crash dumps)

G
gateway system, 2–40
global symbols

using in kdbx extension, 3–39e

H
hardware exception

example of debugging, 5–4
hardware problem

reporting to Digital, 5–2
help command, 2–13
hung system

forcing a crash dump on, 4–13

I
inpcb kdbx extension, 2–22
instructions

disassembling using kdbx, 2–20

K
kdbx debugger

(See also specific library
routines)

(See also specific kdbx
extensions)

breakpoint handling on an SMP
system, 2–47

command aliases, 2–14
command syntax, 2–11
commands, 2–12
compiling custom extension for,

3–40
customizing environment of, 2–12
debugging extensions of, 3–41
description of, 2–11
example of using for crash

dump analysis, 5–3, 5–8
extensions, 2–15
initialization files, 2–12
library functions, 3–2
special data types, 3–2

Index–3

writing extensions for, 3–1
using arrays, 3–33e
using arrays template, 3–31e
using global symbols, 3–39e
using linked lists, 3–28e
using lists template, 3–26e

kdbx extensions
checking arguments passed to,

3–8
compiling, 3–40
library routines for writing, 3–2
using arrays, 3–31e, 3–33e
using global symbols, 3–39e
using linked lists, 3–28e
using lists template, 3–26e

kdbxrc file, 2–12
kdebug debugger

description of, 2–39
invoking, 2–43
overview of, 1–3
problems with setup of, 2–45
requirements for, 2–40
setting up, 2–41

kernel
(See vmunix.n file)
determining boot method of, 1–2

kernel debugging
debugging customized tools, 3–41
developing customized tools, 3–1
overview, 1–1
using kdbx debugger, 2–11
using kdebug debugger, 2–39
using the dbx debugger, 2–2

kernel thread list
location of in crashdc output,

A–6
kps command, 5–7
krash function, 3–13

L
ld command

using to build a kernel image
file, 1–3

libkdbx.a library, 3–2
library routines

for writing kdbx extensions, 3–2
linked list

using in a kdbx extension, 3–28e
list_action kdbx extension, 2–22
list_nth_cell function, 3–15
lock

(See complex lock)
(See simple lock)

lockinfo kdbx extension, 2–25
lockmode system attribute, 2–9
lockstats kdbx extension, 2–24
logging

(See system logging)

M
machine_slot structure, 5–13
memory

/dev/mem, 2–2
mount kdbx extension, 2–26
msgbuf.savecore file, 4–10

N
namecache kdbx extension, 2–27
new_proc function, 3–16
next_number function, 3–16
next_token function, 3–17

O
ofile kdbx extension, 2–27
operating system version

displaying, 2–8
location of in crashdc output,

A–5

P
p command, 5–3, 5–4
paddr kdbx extension, 2–28

Index–4

panic function, 1–6
panic string

for hardware restart, 4–14
for hung system, 4–14
location of in crashdc output,

A–6
where stored, 5–1

paniccpu variable, 5–11
panicstr variable

example of displaying, 5–3
partial crash dumps

(See crash dump files)
(See crash dumps)

partial_dump variable, 4–6
pc value

determining with kdbx, 5–7
disassembling, 5–7

pcb kdbx extension, 2–28
pcb variable, A–7
PID

displaying, 5–7
pointer

casting to a data structure, 3–7
pr command, 2–13
preserved message buffer

contents of, A–6
examining with the dbx

debugger, 2–8
example of displaying, 5–7

primary swap partition
(See swap space)

print command, 2–13
print function, 3–18
print_status function, 3–19
printf kdbx extension, 2–29
proc kdbx extension, 2–29
procaddr kdbx extension, 2–30
process control block

displaying for a thread, 2–28
process ID

location of in crashdc output,
A–6

process table, A–7
displaying, 2–29

Q
quit command, 2–14
quit function, 3–19

R
read_field_vals function, 3–20
read_line function, 3–21
read_memory function, 3–21
read_response function, 3–22
read_sym function, 3–23
read_sym_addr function, 3–23
read_sym_val function, 3–24
reboot

(See system reboot)
reg.h header file

(See
/usr/include/machine/reg.h
header file)

remote debugging, 2–39
requirements for the kdebug

debugger, 2–40

S
savecore command, 4–9

changing dump files location,
4–12

creation of bounds file, 4–10
creation of crash dump files, 4–9
default location of dump files,

4–10
logging performed for crash

dumps, 4–10
savecore utility

default dump file location, 2–11
SAVECORE_DIR variable

setting, 4–12
SAVECORE_FLAGS variable

setting, 4–13
savedefp variable, 2–7

location of in crashdc output,
A–6

Index–5

secondary swap partition
(See swap space)

set command
using at the console prompt, 4–6

setting up the kdebug debugger,
2–41

simple lock
displaying debug information

for, 2–10
sizer command

using to determine type of
kernel, 1–2

slock_debug array, 2–10
SMP system

determining on which CPU a
panic occurred, 5–11

socket kdbx extension, 2–31
software panic

example of debugging, 5–2
software problem

reporting to Digital, 5–2
source command, 2–14
stack trace

example of, 5–7
multiple panic messages in, 5–13

Status data type, 3–3
status variable, A–7
StatusType data type, 3–2
struct_addr function, 3–25
sum command, 5–4
sum kdbx extension, 2–31
swap kdbx extension, 2–32
swap space

displaying with kdbx, 2–32
use of for storing crash dumps,

4–2
sysconfig command

using to adjust the
dump_sp_threshold
attribute, 4–9

using to set the
dump-user-pte-pages
attribute, 4–5

using to set the lockmode
attribute, 2–9

syslog.conf file, 4–10
syslogd daemon, 4–11
system

displaying information about
with kdbx, 2–31

System boot method
determining, 1–2

system crash
dump created during, 4–2
identifying the cause of, 5–2
logging of by system, 4–10
process of, 1–6
reasons for, 1–5
using dbx to find the cause of,

2–2
using kdbx to fing the cause of,

2–11
system log file

crash dump logging in, 4–10
system logging, 4–10
system reboot

crash dump information created
during, 4–9

system.kdbxrc file, 2–12

T
t command, 5–4
task ID

location of in crashdc output,
A–6

task kdbx extension, 2–32
task variable, A–7, A–7
tcb table

displaying using the inpcb kdbx
extension, 2–22

test system, 2–40
testing kernels, 2–39
thread

displaying the process control
block for, 2–28

thread kdbx extension, 2–33

Index–6

thread variable, A–7
to_number function, 3–25
trace command, 5–3
trace kdbx extension, 2–33
tracing execution

during crash dump analysis, 5–4
on an SMP system, 5–13

tset command, 5–13

U
u kdbx extension, 2–35
ucred kdbx extension, 2–36
udb table

displaying using the inpcb kdbx
extension, 2–22

unalias command, 2–14
unaliasall kdbx extension, 2–37

uncompress command
using to uncompress core dump

files, 4–13
user page table

including in partial crash
dumps, 4–5

/usr/include/machine/reg.h header
file, 2–7

ustname structure
example of displaying, 5–7

V
/var/adm/crash directory, 4–10
vmcore.n file, 4–10
vmunix.n file, 4–10
vnode extension, 2–37

Index–7

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825)
before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact

Continental USA,
Alaska, or Hawaii

800-DIGITAL Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Puerto Rico 809-754-7575 Local Digital subsidiary

Canada 800-267-6215 Digital Equipment of Canada
Attn: DECdirect Operations KAO2/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

International — Local Digital subsidiary or approved distributor

Internal
(submit an
Internal Software
Order Form,
EN-01740-07)

— SSB Order Processing – NQO/V19
or
U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

Reader’s Comments

Digital UNIX
Kernel Debugging
AA-PS2TE-TE

Digital welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 881-0120, Attn: UEG Publications, ZK03-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number, and
the product name and version.

Please rate this manual:
Excellent Good Fair Poor

Accuracy (software works as manual says) � � � �

Clarity (easy to understand) � � � �

Organization (structure of subject matter) � � � �

Figures (useful) � � � �

Examples (useful) � � � �

Index (ability to find topic) � � � �

Usability (ability to access information quickly) � � � �

Please list errors you have found in this manual:

Page Description
_________ __
_________ __
_________ __
_________ __

Additional comments or suggestions to improve this manual:

__
__
__
__

What version of the software described by this manual are you using? ________________________

Name, title, department __
Mailing address ___
Electronic mail __
Telephone ___
Date __

UEG PUBLICATIONS MANAGER

BUSINESS REPLY MAIL

 Do Not Cut or Tear − Fold Here

 Do Not Cut or Tear − Fold Here and Tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST−CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3−3/Y32
110 SPIT BROOK RD

TM

DIGITAL EQUIPMENT CORPORATION

NASHUA NH 03062−9987

Cut on
Dotted

Line

