Digital UNIX

Network Programmer’s Guide

Order Number: AA-PS2WD-TE

March 1996
Product Version: Digital UNIX Version 4.0 or higher

This manual describes the Digital UNIX network programming
environment. It describes the sockets and STREAMS frameworks,
including information about system calls, header files, libraries, and
software bridges that allow sockets programs to use STREAMS drivers
and STREAMS programs to use BSD-based drivers. Additionally, it
describes how to write programs to the X/Open Transport Interface
(XTI), as well as how to port sockets-based applications to XTI. It aso
describes the Digital UNIX eSNMP API.

Digital Equipment Corporation
Maynard, Massachusetts

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

Portions of this document O Digital Equipment Corporation 1994, 1995, 1996. All rights
reserved.

Portions of this document are adapted from A STREAMS-based Data Link Provider Interface
—Version 2 0 1991 UNIX International, Inc. Permission to use, copy, modify, and distribute
this documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name UNIX International not be used
in advertising or publicity pertaining to distribution of the software without specific, written
prior permission. UNIX International makes no representations about the suitability of this
documentation for any purpose. It is provided ‘‘asis’ without express or implied warranty.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, Alpha AXP, AlphaGeneration, AlphaServer, AlphaStation, AXP, Bookreader,
CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem,
DECterm, DECUS, DECwindows, DTIF, LinkWorks, MASSBUS, MicroVAX, OpenVMS,
POLY CENTER, Q-bus, StorageWorks, TruCluster, TURBOchannel, ULTRIX, ULTRIX Mail
Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS, XUI, and
the DIGITAL logo.

AT&T is aregistered trademark of American Telephone & Telegraph Co. BSD isa
trademark of Uunet Technologies. |EEE is a registered trademark of the Institute of Electrical
and Electronic Engineers, Inc. Intel is atrademark of Intel Corporation. Adobe, PostScript,
and Display PostScript are registered trademarks of Adobe Systems, Inc. UNIX is aregistered
trademark in the United States and other countries licensed exclusively through X/Open
Company Ltd. X/Open is atrademark of X/Open Company Ltd. Xerox is a registered
trademark of Xerox Corporation.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Manual

U T [T o PN XVii
New and Changed FEaIUrES cooiiiiiiiiiiiee e XViii
OFQaniZaLION ...eevueie ettt e e et et e e e e e e e e e eeee XViii
Related DOCUMENTS iiiiiiecii e e e e e e e e e eaens XiX
Reader’ S COMMENES ...ciiiii e e e e e e e e e eaens XX
(0010177 01110 1S XXi

1 Introduction to the Network Programming Environment

1.1 DaaLink INterfacescoveviviiiiiiie e 1-3
1.2 Sockets and STREAMS Frameworks —.........cooovvviiiiiiieiiiiiiiiiineeeeees 1-3
1.3 X/Open Transport INtErface ovvuiiiieiiiiiiiie e 1-5
1.4 EXtensible SNMP ..o 1-7
15 Sockets and STREAMS INteraction covivveeiiiiiiiiineeeeeeiii e 1-7
1.6 Putting It All TOgether ..o 1-9

2 Data Link Provider Interface

2.1 Modes of COMMUNICALION ...evvueiieiiiiiiiee e 2-3
2.2 TYPES Of SEIVICE oeiiiiiii ettt e 2-4
221 Loca Managment SEfVICES ...oeovvvviieiiiiiiiiii e 2-5

23
24
25

31
32

33

2.2.2 Connection-MoOdE SEIVICES ..vviviieieeiee e 2-5

2.2.3 Connectionless-Mode SErVICES ovvviiveiiiiiieeeiieie e 26
224 Acknowledged Connectionless-Mode Data Transfer —............ 26
DLPI AdAressing oeeeeeioeeeiie e e 2—7
DLPI PrimitiVES oottt eeeeeeeneees 2-8
Identifying Available PPAS .o 2-11

X/Open Transport Interface

OVEVIEW OF XTI oo 32
XTI FEAUIES oo 34
321 Modesof Service and EXECULION ccovvvviiiiieiiiiiiiiiieeeeeens 34
3.21.1 Connection-Oriented and Connectionless Service 34
3.21.2 Asynchronous and Synchronous Execution 35
3.22 The XTI Library, TLI Library, and Header Files 36
3221 XTland TLI Header Filesoovviviviiiiiiiiiiiein, 36
3222 XTI Library Callscoooiiiiiiiiiiiiii 37
323 EventSand SHAES ovvviiieiiiiii e 3-10
3231 XTIEVENS oo 3-10
3232 XTI SHAES ooooiiieeeeieeeeeeeeee 3-13
324 Tracking XTI EVENLS ...ooiiiiiiieiii e 3-14
3.24.1 0Outgoing EVENtS oiiiiiiiie e 3-14
3.24.2 Incoming EVENtS cooiiiiiii e 3-16
3.25 A Map of XTI Functions, Events, and States 317
3.2.6 Synchronization of Multiple Processes and Endpoints 3-20
USING XTI e e eeeaeees 321
3.3.1 Guiddines for Sequencing FUNCLIONS ooeevvviiiiiiieeeiees 321
3.3.2 State Management by the Transport Provider 3-23
3.3.3 Writing a Connection-Oriented Applicationccccee. 3-24
3.3.3.1 Initidizing an Endpoint coiieiiiii e, 324
3.3.34 TransferringData cooeoieiiiiiiieii e 3-30
3.3.35 Releasing CoNNECLiONS coveveveiiiieeeeie e, 3-33

iv Contents

34
35

3.6

3.3.3.6 Denitializing EndpointScccoeeviiiiiiiiiieeiieeeeen 3-36

3.34 Writing a Connectionless Application ccoooeeiiiiveiiinens 3-37
3.3.4.1 Initidizing an Endpoint ... 3-37
3.34.2 TransferringDataccooiveiiiiiei e 3-37
3.34.3 Denitializing Endpoints ccooeveiiiiiiiiiiieeeeeen 3-39

Phase-Independent FUNCLIONS oooiiiiiiiiiieee e 340
POrtiNg tO XTI oo 341

3.5.1 Protocol Independence and Portability —...........ccccciiiiiennnns 341

352 XTIl and TLI Compatibility —........oovvieiiiiiiiiiei e 343

3.5.3 Rewriting a Socket Application to Use XTIccoviiiiiennnns 345

Differences Between XPG3 and XPG4 cooiiiiiiiiiiiiiecieei e 347

3.6.1 Maor DIfferenCescoooeeiiiiiiiiiiieeeee e 348

3.6.2 Source Code Migrationcceuuiiieeeimmiiiiiieeeeieeiee e eeeenns 348
3.6.2.1 Usethe Older Binaries of your Application 349
3.6.22 Unaltered SOUrCES coovvviiiiiiiieiiiiiiiee e 349
3.6.2.3 SPEC1170 Compliant Applicationccceiveeeennn. 349

3.6.3 Binary Compatibilitycooiiiiiiiii 349

3.6.4 PacKaginNg .oeeeieiiiiiieei e 3-50

3.6.5 Interoperabilityccoooiiiiii 3-50

3.6.6 UsSIiNg XTI OPLIONS .oeeviiieiiii e 3-50
3.6.6.1 Using XTI Optionsin XPG4ccoovviiiiiieiiiiiiiineee 3-51
General INfOrmation cooovviiiiiieeiiie e 3-51
Format of OptioNS ...eeeniiiiii e 352
Elements of Negotiation cc.iviiiiiiiiii e 3-53
Multiple Options and Options Levels ccoooviiiiiiiiiiieeeeenne. 353
[legal OPtiONS oeeiiiiiiii e 353
Initiating an Option Negotiation cccoeiiiiiiiiiieiiiieeeee, 354
Responding to a Negotiation Proposal cocvoiveiiiiiieneennnnnn. 3-56
Retrieving Information About Options ccooveiiiiiiieinnnnen. 357
Privileged and Read-Only Options cccceiiiiiiiiiiieiiieeeeiene. 359
Option Management of a Transport Endpoint c.......... 3-60
The Option Value T_UNSPEC ..., 3-62
The info Argument ... 3-62
Portability ISSUES ..ceeeeieeee e 3-63
3.6.6.2 Negotiating Protocol Optionsin XPG3 3-63

Contents v

A G I T = (o =T
3.8 Configuring XTI Transport Providerscccoooveiiieiiiiieiiieeeeeenn,
4 Sockets

4.1 Overview of the Sockets Framework —ocoeveiriini e,

411 Communication Properties of SOCKELSccevvvvviiiineennnns

41.1.1 Socket ADSIraction ...oooveieiii s

41.1.2 Communication DOMAaINS oevveveiiiriiieiieieeaaienenns

4.1.1.3 SOCKEE TYPES ovviiiieiiieeiiie e ee et

4.1.1.4 SOCKEL NAIMES oooieieiie it aenns

4.2 Application Interface to SOCKELS ovevieiiiiiiii i

421 Modes of COMMUNICALION ...eueeieieieeiie et eeaeens

4211 Connection-Oriented Communicationcccoveuenss

4.2.1.2 Connectionless CommuniCationccoevveveeveninienenns

422 Client/Server Paradigmoovviiiiiiiiiiiiiieeeeeeei e
423 System Calls, Library Calls, Header Files, and Data

S 0 (o (0 (=

4231 Socket System Calls ..oooiiiiiii e

4232 Socket Library Calls ..ooviviiiiiieieee e,

4233 Header FIlES oo

4234 Socket Related Data StrUCIUIrES o.vvvvvieeieeeeeeieeeens

4.3 Using Sockets

431

4.3.2
4.3.3
434
435
4.3.6

vi Contents

Creating SOCKELS ...oieeiieee e

4311

Setting Modes of Execution cooooiiiiiiiiiiie.

Binding Names and Addresses oovvevieiieieiiiieeceeeeeeee
Establishing Connections ocooviiiiiiiiiiiicii e
Accepting CoONNECLIONS oiiiiiiieii e
Setting and Getting Socket OptionNs vvvivviviiiiiiiieeeeeeene
Transferring Dala ...oeeneveeiieee e

4.3.6.1
4.3.6.2
4.3.6.3

Using theread System Call ...,
Using the write System Call cooiiiiiiii
Using the send, sendto, recv and recvfrom System

CallS

4-2
4-3

4-3
4-3
4-5

47
47

4-9

4-9
4-10
4-15
4-16

4-18
4-19

4-21

4-22
4-23
4-25
4-27
4-29

4-29
4-30

4-30

4.4

45
4.6

51

52

4.3.6.4 Using the sendmsg and recvmsg System Calls

4.3.7 Shutting Down SOCKELS coovvviiiiieiiiiiiii e,
4.3.8 CloSiNg SOCKELS ...oevvviiieeeiieiii e
BSD Socket INterface cooevveeiiiniieeeiiii e
441 Variable-Length Network Addressesc.cceeeennen.
442 Receving Protocol Datawith User Data —
Common SOCKEL EITOrS coovvviiiiiieeieieii e
Advanced TOPICS oeveeiieeiii e
46.1 Selecting Specific Protocols ooevviiiiiii
4.6.2 Binding Namesand AddresseScccooeevevnieeeennnnnn.
4.6.2.1 Binding to the Wildcard Address
4.6.2.2 Bindinginthe UNIX Domainc..........
4.6.3 Out-0f-Band Dafacccovvvmiiiieiiiiiiiiie e,
4.6.4 Internet Protocol Multicasting —ccovviviiiiieeinnnnnn.
46.4.1 Sending IP Multicast Datagrams
46.4.2 Receiving IP Multicast Datagrams —...............
4.6.5 Broadcasting and Determining Network Configuration
4.6.6 Theinetd Daemoncccoooiiiiiiieiiiiiii e
4.6.7 Input/Output MUItipPIEXING ..ovvviieeieeiei e,
4.6.8 Interrupt Driven Socket 1/O ooiiiiiiiin
469 Signalsand Process GroUpPS .ooeevvvveveeeieeeeinieeeeennnnn.
4.6.10 PseudoterminalSccooeiiiiiiiiieii e

Digital UNIX STREAMS

Overview of the STREAMS Framework —c.ccoevevennnnnn.
511 A Review of STREAMS Componentscc.....

Application Interfaceto STREAMS ...,

521 Header Filesand Data TYPES .coeeveviieeveiiiieieiieeeeenn.
522 STREAMS FUNCLIONS iiiiiiiieiiii e

5221 Theopen FUnCtioncccoooiiiiiiiiiiiiniiinneen.
5222 Theclose Functioncccooevviiiiiiiiiiiinnnn,

......... 4-51

........... 4-54
........... 4-55
........... 4-58
........... 4-58
........... 4-59

........... 5-1
........... 52

........... 55
........... 55

........... 5-7

Contents vii

5223 Theread FUNCLION ...ooiviieii e 58

5224 Thewrite FUNCLION ..o 58
5225 Theioctl FUNCLION ocooiiiiiiiie e 59
5226 Themkfifo Functioncccoooiiiiiiiiiiiiiiiie, 59
5227 Thepipe FUNCtiON cooiiiiiiiiei e, 5-10
5.2.2.8 The putmsg and putpmsg Functions 511
5.2.2.9 The getmsg and getpmsg Functions cc.......... 511
52210 Thepoll FUNCLION ...ccooviiiiiiiee e, 5-12
52211 Theisastream FUNClION ccovvviiiiiiiiiiieiiie, 5-13
52212 Thefattach FUNCIONooiiiiiiiiii e 5-14
52213 Thefdetach Functioncccooiiiiiiiiiiiiiiinee, 5-14
53 Kernd Level FUNCLIONS ooovviiiiiiiiiii e 5-17
531 Module Data StrUCtUIES ccovviiiiiiieeeeeeii e 5-17
5.32 Message Data SITUCTUrES ..eeeceeiiiee e e 5-18
5.3.3 STREAMS Processing Routines for Drivers and Modules ... 5-20
5.3.3.1 openand close Processing coveveveieieiiineeeiiieeeeeenn, 520
5.3.3.2 Configuration Processing ccoeveveiveveiiinereiiineeeennn. 521
5.3.3.3 Read Side Put and Write Side Put Processing —.......... 522
5.3.34 Read Side Service and Write Side Service Processing . 522
534 Digitadl UNIX STREAMS CONCEPLS ovvvvviiieeiiiiiiiiie e 5-23
5341 Synchronizationccoooiviiiieiiiiiieieii e, 523
5342 TIMEOUL ..o 5-25
5.4 Configuring a User-Written STREAMS-Based Module or Driver in
the Digital UNIX Kernel ..o 525
5.5 Device Special FIleS ... 529
5.6 Error and Event LOGQiNGg ..eeeoieiinieiiiii e 5-31

6 Extensible SNMP Application Programming Interface

6.1 Overview of ESNMP o 6-2
6.1.1 Components of ESNMPo 62
B6.1.2 AIChITECIUIE ..o, 6-3
6.1.3 SNMP VESIONS, oot 64

6.2 Overview of the Extensible SNMP Application Programming
INEEITACE e 64

viii Contents

6.3

6.2.1 Subtrees
6.2.2 Object Tables

The subtree thl.h File
The subtree thl.cFile

6.2.3 Implementing a Subagent.
6.2.4 Subagent Protocol Operations

6.22.1
6.2.2.2

6.24.1
6.24.2

Order of Operationscccceeeeeeeene
Function Return Values

Extensible SNMP Application Programming Interface

6.3.1 Cadling Interface

6311
6.3.12
6.3.1.3
6.3.14
6.3.1.5
6.3.1.6
6.3.1.7
6.3.1.8

6.3.21
6.3.2.2

6.3.2.3

6.3.3.1
6.3.3.2
6.3.3.3
6.3.34
6.3.3.5
6.3.3.6
6.3.3.7
6.3.3.8
6.3.3.9

The esnmp_init Routine
The esnmp_register Routine
The esnmp_unregister Routine —..........
The esnmp_poll Routine —..................
The esnmp_are_you_there Routine ...
The esnmp_trap Routine
The esnmp_term Routine
The esnmp_sysuptime Routine —..........

6.3.2 Method Routine Calling Interface

The*_get Routinecccoivivennnnnn.
The* _set Method Routine —................
Overall Processing of the *_set Routine
Method Routines ccoviieiiiinnees

Value Representation
6.3.3 Thelibsnmp Support Routines

The o_integer Routine
The o_octet Routine cocovvevinneees
The o oid Routinec.cceeveviiiiinnnnns
The o_string Routine ccceeeneee.
The str2oid Routine oooeeveiieeennnnee.
The sprintoid Routine —
The instance2oid Routine —.................
The oid2instance Routine —.................
Theinst2ip Routine cccoeeeeeennee.
6.3.3.10 The cmp_oid Routine
6.3.3.11 Thecmp_oid prefix Routine

..................... 6-10

..................... 6-12
..................... 6-15

..................... 6-16
..................... 6-16

................... 6-18

..................... 6-18

..................... 6-19
..................... 6-20
..................... 6-22
..................... 6-23
..................... 6-23
..................... 624
..................... 6-25
..................... 6-25

..................... 626

..................... 626
..................... 628
..................... 6-31
..................... 6-33

..................... 6-35
..................... 6-37

..................... 6-38
..................... 6-39
..................... 640
..................... 641

..................... 645
..................... 646
..................... 649
..................... 6-50

Contents ix

6.3.3.12 Theclone oid Routinecccoeeiiiiiiiiieiiiiciieceis 6-50

6.3.3.13 Thefree oid RoUtiNEcovvvviniiiiiiiii e, 6-51
6.3.3.14 Theclone buf Routinecccoceiiiiiiiiiiies 6-52
6.3.3.15 Themem2oct Routinecccoovviiiiiiiiiieiiieeeeee, 6-52
6.3.3.16 Thecmp_oct Routineccoovviiiiiiiiiiiieeeeeeeee, 6-53
6.3.3.17 Theclone oct ROULINE coevviiiiiiiiiiriiieeee e 6-53
6.3.3.18 Thefree oct RoUtineccovvviiiiiiiiiiii e 6-54
6.3.3.19 Thefree varbind dataRoutinecccoeeeviiennnnes 6-55
6.3.3.20 Theset_debug level Routine ..., 6-55
6.3.3.21 Theis debug level Routinec.ocoeeviiiiiiinennennn. 6-56
6.3.3.22 The ESNMP_LOG ROULINEccevvvviiieeeeeeiiiiinnnn. 6-57

7 Digital UNIX STREAMS/Sockets Coexistence

7.1 Bridging STREAMS Drivers to Sockets Protocol Stacks —................ -2
7.11 The STREAMSDIIVEN i 7-3
7.1.1.1 Using theifnet STREAMS Moduleccc..c. -4

7.1.1.2 DatalLink Provider Interface Primitives 7-10

7.2 Bridging BSD Driversto STREAMS Protocol Stacks —cc...... 7-11
7.21 Supported DLPI Primitives and Media Typescccceeeeeee 7-12
7.2.2 Using the STREAMS Pseudodriverocoeveiveiiiiiiiiiiiines 7-12

A Sample STREAMS Module

B Socket and XTI Programming Examples

B.1 Connection-Oriented Programs c.ccoveveeiiieeeiiiieeeeiie e eeiaeeeeeens B-2
B.1.1 Socket Server Programoovveevieiiiiiieeeeeeeiie e B-2
B.1.2 Socket Client Programcco.oiieeeiiinieeiiii e e e B—6
B.1.3 XTI Server Program c.coveveriiiieieinieee e e B-9
B.1.4 XTI Client Programcooouiieiiiiieeeei e B-14

B.2 Connectionless Programs ooveeueiieeii e e e B-17
B.2.1 Socket Server Programcovveeeieeiiiiieieeeeeeei e B-17
B.2.2 Socket Client Program ccooiieieeiiniieiiie e B-20

x Contents

B.3

C1
C2
C3

D.1
D.2
D.3
D4

E.l
E.2

B.2.3 XTI Server Program c.ooveiereiieieieee e eeen e

B.2.4 XTI Client Programcooouiieriiiieeeis e

COMIMON GO0 ettt ettt e e eaenen
B.3.1 Thecommonh Header File ...oooovieniniii e
B.3.2 TheserverhHeader File ..o
B.3.3 Thesarverauth.C File ..o
B.3.4 ThesarverdD.CFile .o
B.3.5 The XUEmor.C File .o
B.3.6 Theclienth Header File ...oooiviiieii e
B.3.7 Theclientauth.C FIl€ovieiie e
B.3.8 Thechientdb.C File ..o e

TCP Specific Programming Information

TCP Throughput and Window SIzecccoiiieiiiiiiiieeeeeeiie
Programming the TCP Socket Buffer Sizesocoiiiiiiiiiieeennnn.
TCP Window Scale Option ccoeuuiiiiiiieeeee e
C.3.1 Increasing the Socket Buffer Size Limit cccooeeeeniies

Information for Token Ring Driver Developers

Enabling Source ROULING iiviiiiii e
Using Canonical AdAreSSES nivieeiiieiiii e
Avoiding Unaligned ACCESS oieeieieiiii e
Setting Fields in the softc Structure of the Driver —cooovviinnnnen.

The Data Link Interface

Prerequisites for DLI Programming ccccoveeviiiieneiiieeeeine e
DLI OVEIVIBIW oot

E.21 DLI SEIVICES oot
E.22 Hardware SUPPOIT oooiiiiiiiiiieeeeeeei e

C-1
C-2
C-2

D-1
D-2
D-3
D4

E-1

E-3
E-3

Contents xi

E.2.3
E24

Using DLI to Accessthe Local Area Network —....................
Including Higher-Level Servicesooovivviiiiiiiiiiiieciieenn,

E.3 TheDLI Socket Address Data StrUCIUIE ...vvvveeeieeieeeee e

E3.1
E.3.2
E.3.3

E.3.4

Standard Frame FOrMEaLS ...o.oveeeie i eeeae
How the sockaddr_dI Structure Works —cccoooiiiiiiieinnnin.
The Ethernet SUDSITUCLUrE ...o.oviiee e

E.3.3.1 How Ethernet FramesWork —..........cccoeiveviiiiieieennnns.
E.3.3.2 Defining Ethernet Substructure Values —....................

The 802.2 SUDSITUCEUIE .oevveee et e e

E.3.4.1 Defining 802 Substructure Valuesccccevveen.

E.4 Writing DLI Programs oooveiiieiiie e

E4.1
E4.2
E.4.3
E4.4
E.4.5
E.4.6

E4.7
E.4.8
E.49

Supplying Data Link Servicesccccoivevieiiiiiiiiiieeeeiieees
Using Digital UNIX System Calls ocoiviiiiiiiiiieeeeee
Creating @ SOCKEL ...oiiii e
Setting Socket OPtioNS ...oeeeiieeiii e
Binding the Socket ...
Filling in the sockaddr_dI Structure —..........cooiiiiiiiiierennnn.

E.46.1 Specifying the Address Family ccccocoiiiiiennnn.n.
E.46.2 Specifyingthel/O DevicelD ccoovviiiiiieeiiiinnnnnn.
E.4.6.3 Specifying the Substructure Typecccovevevieeeennnnnn.

Calculating the Buffer Size coovvviiiiiiii e
Transferring Dala ..ocevnieviiiieee e
Deactivating the Socket ooiiiiiii e

E.5 DLI Programming EXamplescooiiiiiiiiii e

E51
E.5.2
E.5.3
E.54
E.55

Xii Contents

Sample DLI Client Program Using Ethernet Format Packets .
Sample DLI Server Program Using Ethernet Format Packets .
Sample DLI Client Program Using 802.3 Format Packets

Sample DLI Server Program Using 802.3 Format Packets
Sample DLI Program Using getsockopt and setsockopt —

Glossary
Index

Examples

5-1: Sample Moduleoovvviiiii e

B-1. Connection-Oriented Socket Server Program
B-2: Connection-Oriented Socket Client Program

B-3: Connection-Oriented XTI Server Program
B-4. Connection-Oriented XTI Client Program
B-5: Connectionless Socket Server Program —cceee..
B-6: Connectionless Socket Client Programcccee.
B-7: Connectionless XTI Server Program cccoeveeeennn.
B-8: Connectionless XTI Client Program —cccceveeeenenn.
B-9: The common.h Header Fileccccoviiiiiiiiiiiiis
B-10: The server.h Header Fileoooiiiiiiiiiiis
B-11: Theserverauth.CFile ...
B-12: Thesarverdb.CFilecccoooiviiiiiiiii e,
B-13: Thextierror.CFile ..o,
B-14: Theclienth Fileccccooiiiiiiiii e,
B-15: Theclientauth.c Fileccoooviiiiiiiiii e,
B-16: Theclientdb.C Fileccooiiiiiiiiiiiii e

E-1: Filling the sockaddr_dI structure for Ethernet
E-2: Filling the sockaddr_dI structure for 802.2

Contents xiii

Figures

1-1:
1-2:
1-3:
1-4:
1-5:
2-1:
2-2:
2-3:
31
32
33
3-4:
4-1:
4-2:
4-3:
51
5-2:
7-1:
7-2

D-1:
E-1:
E-2
E-3:
E-4:
E-5:

Sockets and STREAMS Frameworks —ovveevveeviiiineeeiceiiiien e 14
XTI, STREAMS, and Sockets InteraCtions evveeeviiiiiiinneennnnns 1-6
Bridging STREAMS Driversto Sockets Protocol Stacks —................. 1-8
Bridging BSD Driversto STREAMS Protocol Stacks —ccoec..e. 1-9
The Network Programming Environment ccccoeveeiiiiieviiinens 1-10
DLPI INEITACE 1oieieiii e 2-2
DLPI Service INterface vviiiiiiiiiiiie e 2-3
Identifying Components of aDLPI Address ccooevvviiiiciiiineenenn, 2—7
X/Open Transport Interface oooeviiiiiii e 32
A Transport ENdPOint ...ooovniiiiiieeee e 3-3
State Transitions for Connection-Oriented Transport Services 3-22
State Transitions for the Connectionless Transport Service 3-23
The Sockets Framework —vueiviiiiiiiiei e 4-2
4.3BSD and 4.4BSD sockaddr Structurescceveveeiiiiiiiiinnennennns 4-38
4.3BSD, 4.4BSD, and XPG4 msghdr Structures —cccoevvevvvnnenns 4-40
The STREAMS Framework —cooeeiieiiiiiieeeeeiiiiin et 5-2
Example of aStreamcoooiiiiii i 5-3
Theifnet STREAMS MOdUIE oeniiiiiiiiii e 7-3
DLPI STREAMS PSeudodriVEr ovviviiiiiiiiiiiiiiaeeeeeee e ee e eeeee 7-11
TYpIiCaAl Frame ..o D4
DLI and the Digital UNIX Network Programming Environment E-2
The Ethernet Frame Format oovviiiiiiiii e E4
The 802.3 Frame FOrmat coovuviiiiieiiiiiiii e E-5
The FDDI Frame FOrmat ooovviiiiiieeiiii e E-5
The 802.2 SITUCLUIES ...veieeceeeeee e E-6

Xxiv Contents

Tables

1-1:
2-1:
31
32
33
3-4:
3-5:
3-6:
3-7:
3-8
3-9:

3-10:
3-11:
3-12:
3-13:
3-14:
3-15:

4-1:
4-2:
4-3:
4-4:
4-5:
51
E-1:
E-2:

Components of the Network Programming Environment 1-1
DLPI Primitives Supported in Digital UNIX ccoooeiiiiiiinee, 2-8
Header Files for XTI and TLI .ooooiiiiiiiiee e 37
XTI Library CallsS oo 3-8
Asynchronous XTI EVENLS oiiiiiiii e 3-10
Asynchronous Events and Consuming Functions —cocceevveeens 3-12
XTI Functions that Return TLOOK ovviiiiiiiiiiiiie e 3-12
XTI SEAEES eeiiieiiiieieeie ittt e e e e e e e e e e e e e e e e aeeeeeeeeeeeseneneee 3-13
Outgoing XTI EVENES ..vveiiiiiiiceie e 3-15
InComMing XTI EVENES .oovvniiiiiie e 3-16
State Transitions for Initialization of Connection-Oriented or
Connectionless Transport SErVICES vuvveveviieiiiiiieecee e, 3-17
State Transitions for Connectionless Transport Services 3-18
State Transitions for Connection-Oriented Transport Services. Part 1 . 3-18
State Transitions for Connection-Oriented Transport Services. Part 2 . 3-19
Phase-Independent FUNCLIONS oiiiiiiiiiicie e 340
Comparison of XTI and Socket FUNCLIONS cccvvveviiiiecciieeeee, 3-45
Comparison of Socket and XTI MeSSageS ovevvvviveveiiieeeiiiieeeennn, 347
Characteristics of the UNIX and Internet Communication Domains ... 44
Socket System CallS .ovvniiei 4-9
Socket Library CallS ...onoeveiicce e 4-14
Header Files for the Socket Interfaceccceevvieiiiiiiiiiiiieeeiinn, 4-16
Common Errors and DiagnostiCS coevvniiiiviiieeiiie e 4-40
STREAMS Reference Pagesoovvveiiiiiiie e, 5-15
Calling Sequence for DLI Programs —cccceevevviiieeeeiie e, E-16
Data Transfer System Calls Used With DLI cooooiiiiiiiiinieen, E-22

Contents xv

About This Manual

This manual explains how to write programs with the X/Open Transport
Interface (XTI) calls, STREAMS I/O calls, and the Berkeley Software
Distribution (BSD) socket calls. For XTI and sockets, it provides conceptual
and programming information. Additionally, it explains how to port
applications from Transport Layer Interface (TLI) to XTI and from sockets to
XTI. For STREAMS, this manual explains any differences between the
Digital UNIXO It also provides information on the Digital UNIX Extensible
System Network Management Protocol (eSNMP) application programming
interface.

After reading this manual, you should be able to:

Understand the programming support provided in Digital UNIX for
networking

Write an XTI application by using either connection-oriented or
connectionless service

Understand the Digital UNIX implementation of STREAMS
Write a socket application

Understand the differences between TLI and XTI and between sockets
and XTI

Write an eSNMP application

Audience

This manual addresses experienced UNIX programmers. We assume you are
familiar with the following:

C language
Programming interfaces for UNIX operating systems

Basic networking concepts, including an understanding of the Open
Systems Interconnection (OSl) 7-layer model

Efforts required to write networking applications

New and Changed Features

This revision of the Network Programmer’s Guide contains the following
changes.

A new section has been added to Chapter 3 that provides information on
the XPG4 version of XTI. This section includes the major differences
between the XPG3 and XPG4 versions, migration, and maintaining
existing XTI programs.

Chapter 4 has been revised. The chapter now provides information on the
XPG4 compliant version of the sockets programming interface. It also
includes a section that compares the BSD, XPG3, and XPG4 interfaces.

Chapter 6 has been added to provide information on the Extensible
Simple Network Management Protocol (eSNMP) application
programming interface.

Chapter 7 has been added to provide information on the i f net
STREAMS module.

Organization
This manual is organized as follows:
Chapter 1 Provides an overview of XTI, STREAMS, sockets, and the

programming tasks required for network applications.

Chapter 2 Describes the dl b pseudodriver, which implements a subset of the the

Data Link Provider Interface (DLP).

Chapter 3 Describes the fundamental concepts associated with XTI, how to write

connection-oriented and connectionless applications, compatibility
issues with TLI, and how to port applicationsto XTI. XTI errors are
also covered in this chapter.

Chapter 4 Describes the concepts associated with the 4.3BSD socket interface,

and how to write socket applications.

Chapter 5 Describes Digital UNIX’s STREAMS implementation.
Chapter 6 Describes Digital UNIX's Extensible System Network Management

Application Programming Interface.

Chapter 7 Describesthei f net STREAMS module and dl b STREAMS

pseudodriver communication bridges.

Appendix A Provides a sample STREAMS module.
Appendix B Provides XTI and sockets programming examples.
Appendix C Provides Transport Protocol Control (TCP) specific programming

information.

Appendix D Provides information required by token ring driver developers.

xviii About This Manual

Appendix E Describes the Data Link Interface (DLI) and provides programming
examples.

This guide also contains a glossary of terms and an index.

Related Documents

For general information about programming with Digital UNIX, refer to the
Programmer’s Guide.

For additional information about XTI, refer to the following manuals:

» X/Open Portability Guide Volume 7: Networking Services, ISBN 0-13-
685892-9

» Application Environment Specification (AES) Operating System
Programming Interfaces Volume, ISBN 0-13-043522-8, published by
Prentice-Hall, includes all of the mandatory XTI calls

» X/Open CAE Specification: Networking Services, Issue 4 ISBN 1-85912-
049-0

For additional information about the STREAMS 1/0O framework, refer to the

following manuals:

* Programmer’s Guide: STREAMS. Englewood Cliffs:Prentice-Hall, Inc.,
1990.

This manua explains how to write applications, modules, and device
drivers with STREAMS.

* AT&T System V Release 4 Programmer’s Reference Manual. Englewood
Cliffs:Prentice-Hall, Inc., 1989.

This manual contains the reference pages for all programming interfaces,
including those for STREAMS.

* |AT&T System V Release 4 System Administrator’s Reference Manual.
Englewood Cliffs.Prentice-Hall, Inc., 1989.

This manual contains the reference pages for STREAMS i oct |
commands.

» Transport Provider Interface (TPI) Specification, yet to be published by
AT&T.

About This Manual xix

For additional information about the 4.3BSD socket interface, refer to the
following books:

* Internetworking with TCP/IP: Principles, Protocols, and Architecture.
Englewood Cliffs:Prentice-Hall, Inc., 1988.

This book, by Douglas Comer, includes a chapter that describes the
socket interface.

» Design and Implementation of the 4.3BSD UNIX Operating System.
Reading: Addison-Wesley Publishing Company, 1989.
This book, by Leffler, McKusick, Karels, and Quarterman, includes
information about the purpose and use of sockets.

For information about administering networking interfaces, refer to the
System Administration guide and the Network Administration guide.

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code
General users G Blue

System and network administrators S Red
Programmers P Purple
Device driver writers D Orange
Reference page users R Green

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides
information on all of the books in the Digital UNIX documentation set.

Reader's Comments

Digital welcomes any comments and suggestions you have on this and other
Digital UNIX manuals.

Y ou can send your comments in the following ways:

xx About This Manual

e Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y 32
* Internet electronic mail: r eaders_conment @k3. dec. com

A Reader’s Comment form is located on line in the following location:
/usr/ doc/ readers_conment . t xt

« Mail:

Digital Equipment Corporation
UEG Publications Manager
ZK03-3/Y 32

110 Spit Brook Road

Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed manual.
The form is postage paid if you mail it in the United States.
Please include the following information along with your comments:

» Thefull title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

» The section numbers and page numbers of the information on which you
are commenting.

e Theversion of Digital UNIX that you are using.
» |f known, the type of processor that is running the Digital UNIX
software.

The Digital UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Digital technical support office.
Information provided with the software media explains how to send problem
reports to Digital.

Conventions
This document uses the following typographic conventions:

% A percent sign represents the C shell system prompt. A dollar

$ sign represents the system prompt for the Bourne and Korn shells.
A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates typed user input.
file Italic (slanted) type indicates variable values, placeholders, and

function argument names.

About This Manual xxi

cat (1)

Return

Citrl/x

xxii About This Manual

In syntax definitions, brackets indicate items that are optional and
braces indicate items that are required. Vertical bars separating
items inside brackets or braces indicate that you choose one item
from among those listed.

In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat (1) indicates
that you can find information on the cat command in Section 1
of the reference pages.

In an example, a key name enclosed in a box indicates that you
press that key.

This symbol indicates that you hold down the first named key

while pressing the key or mouse button that follows the slash. In
examples, this key combination is enclosed in a box (for example,
Ctrl/C).

Introduction to the Network
Programming Environment 1

The network programming environment includes the programming interfaces
for application, kernel, and driver devel opers writing network applications
and implementing network protocols. Additionally, it includes the kernel-
level resources that an application requires to process and transmit data, some
of which include libraries, data structures, header files, and transport
protocols.

This chapter introduces Digital UNIX’s network programming environment
by focussing on how the data link and application programming interfaces
work to get data from an application in user space, through the network
layersin kernel space, out onto the network, and back again.

Information about the kernel resources that support the interfacesis included
in later chaptersin this book. Individual chapters describe the particular
system and library calls, data structures, and other programming
considerations for each interface.

The primary components of the network programming environment are
summarized in Table 1-1.

Table 1-1: Components of the Network Programming
Environment

Component Interface Description
Data Link Data Link Interface Allows programs written to DLI on the
Interfaces (DLI) ULTRIX operating system to use DLI on

the Digital UNIX operating system to
access the data link layer. Digital UNIX
provides DLI for backward compatibility
with ULTRIX. See Appendix E.

Table 1-1: (continued)

Component Interface
dl b interface
Application Sockets
Programming
Interfaces
STREAMS
XTI/TLI
eSNMP

Description

Kernel-level interface targeted for
STREAMS protocol modules that either use
or provide datalink services. Thedl b
STREAMS pseudodriver implements a
subset of the Data Link Provider Interface
(DLPI). See Chapter 2 and the Data Link
Provider Specification (dl pi . ps) located
inthe/ usr/ shar e/ docl i b/ dl pi
directory. Note that the OSFPGMK 200
subset must be installed to access the DLPI
specification online.

The de facto industry standard
programming interface. Digital UNIX
implements the 4.3BSD socket interface as
its default. You can use a special option to
access the 4.4BSD interface.

The Internet Protocol Suite, which consists
of TCP, UDP, IP, ARP, ICMP, and SLIPis
implemented over sockets. See RFC 1200:
|AB Protocol Standards and Chapter 4.

A kernel mechanism that supports the
implementation of device drivers and
networking protocol stacks. The
STREAMS framework defines interface
standards for character input and output
within the kernel as well as between the
kernel and user levels. The Digital UNIX
operating system provides an AT&T,
System V Release 4.0 compatible version
of STREAMS. See Chapter 5.

A protocol independent, transport layer
application interface that consists of a series
of functions. XTI is based on the Transport
Layer Interface (TLI) and the transport
service definition for the Open Systems
Interconnection (OSI) model. See Chapter
3 and the X/Open Portability Guide
Networking Services, Part 7.

A set of routines that enables you to extend
the SNMP agent process by creating MIBs.

1-2 Introduction to the Network Programming Environment

Table 1-1: (continued)

Component Interface Description

Communication i fnet STREAMS Allows STREAMS-based network device
Bridges Between module drivers to access the sockets-based TCP/IP
STREAMS and protocol stack provided on Digital UNIX.
Sockets See Chapter 7.

dl b pseudodriver Allows applications that use STREAMS-
based protocol stacks to access BSD-based
drivers. Thedl b pseudodriver implements
a subset of the DLPI specification. See
Chapter 7.

It is easiest to understand the network programming environment by
examining each component. The following sections introduce the
environment piece by piece, starting with the components closest to the
network and working up.

1.1 Data Link Interfaces

The Digital UNIX network programming environment supports both the Data
Link Interface (DLI) and the Data Link Provider Interface (DLPI). DLI
enables you to port programs that run on ULTRIX systems to Digital UNIX
systems. See Appendix E for information about DLI.

DLPI is a kernel-level interface that maps to the data link layer of the OSI
referencemodel. DLPI freesits users from specific knowledge of the
characteristics of the data link provider, allowing them to be implemented
independently of a specific communications medium. Chapter 2 describesin
greater detail DLPI, Digital UNIX'sdl b pseudodriver, and the supported
primitives.

1.2 Sockets and STREAMS Frameworks

The Digital UNIX operating system supports AT&T's System V Release 4
STREAMS and BSD sockets frameworks for writing networking applications
and for doing kernel-level network input/output (1/0). A framework
comprises a particular programming interface and the kernel-level resources
that the system requires to transmit and receive data.

Sockets is the de facto industry standard interface for writing networking
applications. The sockets framework is BSD-based, consisting of a series of
system and library calls, header files, and data structures. Applications can
access kernel-resident networking protocols, such as the Internet Protocol
suite, through socket system calls. Applications can also use socket library

Introduction to the Network Programming Environment 1-3

calls to manipulate network information; for example, mapping service
names to service numbers or tranglating the byte order of incoming data to
that appropriate for the local system’s architecture.

The STREAMS framework provides an aternative to sockets. The
STREAMS interface was developed by AT& T and consists of system calls,
kernel routines, and kernel utilities that are used to implement everything
from networking protocol suites to device drivers. Applications in user space
access the kernel portions of the STREAMS framework using system calls
such asopen, cl ose, put nsg, get nsg, andi octl . Figure 1-1
illustrates the STREAMS and sockets frameworks.

Figure 1-1: Sockets and STREAMS Frameworks

STREAMS Sockets
Application Application

| Stream head I

user space

kernel space

' DLI
| STREAMS

]

1

module

ifnet layer

STREAMS driver BSD driver

Network

ZK-0554U-R

The dotted lines in Figure 1-1 indicate a supported configuration but not one
that is provided by Digital UNIX.

With sockets, the application in user space passes data to the appropriate
socket system calls, which then pass it to the network layer. Finally, the
network layer passesit, viathei f net layer, to the BSD driver, which puts
it on to the network.

1-4 Introduction to the Network Programming Environment

With STREAMS, the application in user space passes data to the Stream
head, which passes it to any STREAMS modules that have been pushed on
the Stream to processit. Each module passes the data to the next module
until it finally reachesthe STREAMS driver, which puts it out on to the

network.
Note
Digital UNIX does not provide any STREAM S-based transport
providers.

1.3 X/Open Transport Interface

The X/Open Transport Interface (XTI) defines a transport layer application
interface that is independent of any transport provider. This means that
programs written to XTI can be run over a variety of transport providers,
such as the Transmission Control Protocol (TCP) or the User Datagram
Protocol (UDP). The application specifies which transport provider to use.

Because XTI provides an interface that is independent of a transport provider,
application devel opers are encouraged to write programs to XTI instead of
STREAMS or sockets. Figure 1-2 illustrates the interaction between XTI
and the STREAMS and sockets frameworks.

Introduction to the Network Programming Environment 1-5

Figure 1-2: XTI, STREAMS, and Sockets Interactions

Sockets
XTITLI I Application

Stream head

user space

kernel space

socket
layer
TCP UDP
DLI

_____ [——

| STREAMS _

1 module ifnet layer
1

BSD driver

SLIP
driver

p====-

STREAMS driver I

/

Depending on the transport provider specified by the application, data can
flow along one of two paths:

1. If aSTREAMS-based transport provider is specified, data follows the
same route that it did for an application written to run over STREAMS,
It passes first through the Stream head, then to any modules that the
application pushed onto the Stream, and finally to the STREAMS driver,
which puts it on to the network.

Network

ZK-0555U-R

Note

Digital UNIX does not provide any STREAM S-based
transport providers.

2. |If asocket-based transport provider is specified (TCP or UDP), datais
passed through t i mod and xt i so. The appropriate socket layer
routines are called and the data is passed through the Internet protocols

1-6 Introduction to the Network Programming Environment

andi f net layer to the BSD-based driver, which puts it on to the
network.

1.4 Extensible SNMP

The Digital UNIX SNMP agent provides a framework for extensibility
(called eSNMP). The SNMP daemon functions as an extensible master-
agent, communicating with various subagents via the eSNMP protocol. The
master agent implements the SNMP on behalf of the entire system, while
subagents provide the actual MIB instrumentation. The eSNMP subagent
development tools and API provide the mechanism for users to develop
subagents that communicate with the master-agent and extend the MIB view
on the Digital UNIX system.

1.5 Sockets and STREAMS Interaction

Digital UNIX providesthei f net STREAMS module to allow programs
using Digital UNIX’s BSD-based TCP/IP to access STREAM S-based
drivers. It provides the dl b pseudodriver to allow programs using a
STREAMS-based protocol stack to access BSD-based drivers provided on
Digital UNIX.

Figure 1-3 illustrates an application using the BSD-based TCP/IP provided
on Digital UNIX and accessing a STREAM S-based driver.

Introduction to the Network Programming Environment 1-7

Figure 1-3: Bridging STREAMS Drivers to Sockets Protocol

Sockets
Application

Stacks

STREAMS

Application

user space

kernel space
Stream head

1

i

i socket

! layer

H

i

! TCP UDP
1

E DLI
H

1

H

H

..... demimamm, ifnet

! STREAMS STREAMS
] module module

DLPI Interface

ifnet layer

BSD driver

Network

ZK-0556U-R

In Figure 1-3, data travels from a sockets-based application through the
appropriate sockets system calls and is processed by the Internet protocols.
Thenthe BSD i f net layer of the networking subsystem, whose function is
tomap BSD i f net messages to DLPI, passes the data to thei f net
STREAMS module. Thei f net STREAMS module processes it so that the
STREAMS driver can put it on to the network. When information for the
sockets-based application is returned, the STREAMS driver picks it up off of
the network and passes it to the DLPI interface of thei f net STREAMS
module. The DLPI interface of thei f net STREAMS module translates
DLPI messagesto BSD i f net and passes it back to the BSD i f net layer.
The data is then processed by the Internet protocols and passed back to the
application.

Figure 1-4 illustrates an application using a STREAM S-based protocol stack
and accessing a BSD-based driver.

1-8 Introduction to the Network Programming Environment

Figure 1-4: Bridging BSD Drivers to STREAMS Protocol Stacks
Sockets
Application
user space
kernel space
| Stream head I
socket
layer
TCP I UDP

IP

STREAMS
Application

prmm—————

STREAMS
module

dib
pseudodriver

TS S —

STREAMS |
module

ifnet layer

BSD driver

STREAMS driver

Network

ZK-0557U-R

In Figure 1-4, data travels from a STREAM S-based application through the
Stream head and is processed by whatever Streams modules have been
pushed onto the stack. Instead of finally being passed to a STREAMS driver,
the data is passed to the dl b STREAMS pseudodriver and is then forwarded
tothei f net layer of the sockets framework. From thereit is further
processed by a BSD driver and put on to the network.

1.6 Putting It All Together

Figure 1-5 represents the entire network programming environment.
Variations of this figure appear in each chapter to give you perspective on the
information being presented.

Introduction to the Network Programming Environment 1-9

Figure 1-5: The Network Programming Environment

STREAMS Sockets
Application XTUTLI Application
| |

Stream head
socket
R S layer
| STREAMS
1
- TCP | UDPI
P

user space

kernel space

pseudodriver

[e]

___________ . ifnet
| STREAMS STREAMS ifnet layer
L__module module

v DLPI Interface BSD driver

STREAMS driver

Network

ZK-0547U-R

1-10 Introduction to the Network Programming Environment

Data Link Provider Interface 2

Digital UNIX provides the dl b STREAMS pseudodriver, which is a partia
implementation of the Data Link Provider Interface (DLPI).

This chapter describes the dl b STREAMS pseudodriver and the basics of
DLPI. A PostScript copy of the DLPI specification (dl pi . ps) is located
inthe/ usr/ shar e/ docl i b/ dl pi directory.

Note

Y ou must have the OSFPGMK 200 subset installed to access the
DLPI specification online.

Figure 2-1 highlights the data link interfaces and shows their relationship to
the rest of the network programming environment.

Figure 2-1: DLPI Interface

STREAMS Sockets
Application XTI/TLI Application

| | user space
1 1

kernel space
Stream head

! timod i
i | i socket
i xtiso 1 layer
! STREAMS / \
! module
; , TCP UDP
3 |DLPI Interface DLI
i dlb - — P
i pseudodriver
: l \
1 ifnet itnet laver
STREAMS STREAMS linet layer SLIP
) driver
mod‘ule module BSD driver IV
i IDLPI Interface

STREAMS driver

i

ZK-0677U-R

Note

The dl b STREAMS pseudodriver supports a subset of DLPI
primitives. See Section 2.4 for alist of the supported primitives.

The data link interface is the boundary between the network and data link
layers of the OSI reference model. A network application, or data link
service user (DLS user), uses the services of the data link interface. A driver,
pseudodriver, or data link service provider (DLS provider), provides the
services to the data link layer.

DLPI specifiesa STREAMS kernel-level service interface that maps to the
OSI reference model. It defines an interface to the services of the data link
layer and provides a definition of service primitives that make up the
interface.

2-2 Data Link Provider Interface

Figure 2-2 shows the components of DLPI. The DLS user communicates
with the DLS provider using request/response primitives, the DLS provider
communicates with the DLS user with indication/confirmation primitives.

Figure 2-2: DLPI Service Interface

--Network Interface

Data Link Service User

Request/Response
Primitives

l

DLPI Interface

Data Link Service Indication/Confirmation

Primitives

Provider

ZK-0731U-R

The primitives that Digital UNIX supports are listed in Section 2.4.

2.1 Modes of Communication
DLPI supports three modes of communication:

Connection

Enables a DL S user to establish a data link connection, transfer data over
that connection, reset the link, and release the connection when the
conversation has terminated.

The connection service establishes a data link connection between aloca
DLS user and aremote DL S user for the purpose of sending data. Only
one data link connection is alowed on each Stream.

Connectionless

Enables a DL S user to transfer units of datato peer DL S users without
incurring the overhead of establishing and releasing a connection. The
connectionless service does not, however, guarantee reliable delivery of
data units between peer DLS users (for instance, lack of flow control may
cause buffer resource shortages that result in data being discarded).

Once a Stream has been initialized using the local management services,
it may be used to send and receive connectionless data units.

Data Link Provider Interface 2—3

Note

Digital UNIX supports only the connectionless mode of
communication.

e Acknowledged connectionless

Designed for general use for the reliable transfer of information between
peer DLS users. These services are intended for applications that require
acknowledgement of cross-LAN data unit transfer, but wish to avoid the
complexity associated with the connection-mode services. Although the
exchange service is connectionless, in-sequence delivery is guaranteed for
data sent by the initiating station.

2.2 Types of Service

This section describes the types of service, or phases of communication,
supported by DLPI. Note that the types of service available depend on the
mode of communication (connection, connectionless, acknowledged
connectionless) between the DLS provider and the DLS user.

DLPI supports the following types of service:
» Local management services
— Information reporting service
— Attach service
— Bind service
» Connection-mode services
— Connection establishment
— Datatransfer
— Connection release
— Reset service
e Connectionless-mode services
— Connectionless data transfer
— Quality of Service (QOS) management
— Error reporting
» Acknowledged connectionless-mode services
— Acknowledged connectionless-mode data transfer
— Quality of service (QOS) management
— Error reporting

2—4 Data Link Provider Interface

2.2.1 Local Managment Services

The local management services apply to all three modes of communication
supported by DLPI. They enable a DLS user to initidlize a Stream that is
connected to a DL'S provider and to establish an identity with that provider.
The local management services support the following:

2.2.2

Information reporting service
Provides information about the DLPI Stream to the DLS user.
Attach service

Assigns a physical point of attachment (PPA) to a Stream. See Section
2.3 for more information.

Bind service
Associates a data link service access point (DLSAP) with a Stream.

Connection-Mode Services

The connection-mode services alow two DLS users to establish a data link
connection between them to exchange data, and to reset the link and release
the connection when the conversation is through. The connection-mode
services support the following:

Connection establishment service

Establishes a data link connection between alocal DLS user and a remote
DLS user for the purposes of sending data.

Data transfer service

Provides for the exchange of user data in either direction or both
directions smultaneously. Datais sent in logical groups called data link
service data units (DLSDUSs) and is guaranteed to be delivered in the
order in which it was sent.

Connection release service

Enables either the DLS user or DLS provider to break an established
connection.

Reset service

Allows a DLS user to resynchronize the use of a data link connection, or
a DL S provider to report detected loss of data unrecoverable within the
datalink service.

Data Link Provider Interface 2-5

2.2.3 Connectionless-Mode Services

The connectionless-mode services allow DL S users to exchange data without
incurring the overhead of establishing and releasing a connection. The
connectionless-mode services support the following:

224

Connectionless data transfer service

Provides for the exchange of user data (DLSDU) in either direction or in
both directions simultaneously.

Quality of service (QOS) management service

Enables a DL'S user to specify the quality of service it can expect for each
invocation of the connectionless data transfer service.

Error reporting service

Provides a means to notify a DL S user that a previously sent data unit
either produced an error or could not be delivered. However, the error
reporting service does not guarantee that an error indication will be issued
for every undeliverable data unit.

Acknowledged Connectionless-Mode Data Transfer

The acknowledged connectionless-mode data transfer services are designed
for general use for the reliable transfer of data between peer DLS users.
These services are intended for applications that require acknowledgment of
data transfer between local area networks, but wish to avoid using the
connection mode services. In-sequence delivery is guaranteed for data sent
by the initiating station. The following services are supported:

Acknowledged connectionless-mode data transfer service

Provides for the exchange of DLSDUs which are acknowledged at the
LLC sublayer.

Quality of service (QOS) management service

Enables a DLS user to specify the quality of service it can expect for each
invocation of the connectionless data transfer service.

Error reporting service

Provides a means to notify a DL S user that a previously sent data unit
either produced an error or could not be delivered. However, the error
reporting service does not guarantee that an error indication will be issued
for every undeliverable data unit.

2—6 Data Link Provider Interface

2.3 DLPI Addressing

Each DLPI user must establish an identity to communicate with other data
link users. This identity consists of the following pieces of information:

» Physical attachment identification

This identifies the physical medium over which the DLS user
communicates. The importance of identifying the physical medium is
particularly evident on systems that are attached to multiple physical
media. See Section 2.5 for information about identifying the available
physical points of attachment (PPAS) on your system.

e Datalink user identification

The DLS user must register with the DLS provider so that the provider
can deliver protocol data units destined for that user.

The format of the DLSAP address is an unsigned character array containing
the Medium Access Control (MAC) addresses followed by the bound Service
Access Point (SAP). The SAP is usually two bytes in the case of Ethernet,
or one byte in the case of 1SO 8802-2 (IEEE 802.2). The one exception is
when aHIERACHICAL DL_SUBS BI ND_REQis processed. In that case,
the DLSAP address consists of the MAC address, the SNAP SAP (0xAA),
and a five-byte SNAP.

Figure 2-3 illustrates the components of this identification approach.

Figure 2-3: Identifying Components of a DLPI Address

DLS Users
DLS
Provider

PPA

T Physical Media T
ZK-0678U-R

The PPA is the point at which a system attaches itself to a physical
communications medium. All communication on that physical medium
funnels through the PPA. On systems where a DL'S provider supports more

Data Link Provider Interface 2—7

than one physical medium, the DLS user must identify the medium through
which it will communicate. A PPA isidentified by a unique PPA identifier.

DLPI defines the following two styles of DLS provider, which are
distinguished by the way they enable a DL S user to choose a particular PPA:

* Thestyle 1 provider assigns a PPA based on the major/minor device the
DLS user opened. A style 1 driver can be implemented so that it reserves
amajor device for each PPA the data link driver would support.

This implementation of a style 1 driver alows the STREAMS clone open
feature to be used for each PPA configured. Style 1 providers are
appropriate when few PPAs are supported.

* The style 2 provider requires a DLS user to identify a PPA explicitly,
using a specia at t ach service primitive. For a style 2 driver, the open
system call creates a Stream between the DLS user and DLS provider.
Then, the at t ach primitive associates a particular PPA with that
Stream. The format of the PPA identifier is specific to the DLS provider.

Digital UNIX supports only the style 2 provider because it is more
suitable for supporting large numbers of PPAs.

2.4 DLPI Primitives

Table 2-1 lists and describes the DLPI primitives that Digital UNIX supports
inthedl b STREAMS pseudodriver. For a complete list of DLPI primitives
see the DLPI specification inthe/ usr/ share/ docli b/ dl pi /dl pi. ps
file.

Table 2-1: DLPI Primitives Supported in Digital UNIX

Primitive Description

DL_ATTACH REQ Requests that the DLS provider associate a
physical point of attachment (PPA) with a
Stream. Used on style 2 providers only.

DL_BI ND_REQ Requests that the DLS provider bind a DLSAP
to the Stream. The DLS user must identify the
address of the DLSAP to be bound to the
Stream.

DL_BI ND_ACK Reports the successful bind of a DLSAP to a
Stream, and returns the bound DL SAP address
to the DLS user. Generated in response to a
DL_BIND_REQ.

2—-8 Data Link Provider Interface

Table 2-1: (continued)

Primitive

DL_UNBI ND_REQ

DL_DETTACH_REQ

DL_DI SABMULTI _REQ

DL_ENABMULTI _REQ

DL_ERROR_ACK
DL_I NFO_ACK
DL_I NFO_REQ

DL_OK_ACK

DL_PHYS_ADDR_REQ

DL_PHYS_ADDR_ACK

DL_SUBS_BI ND_ACK

Description

Requests that the DLS provider unbind the
DL SAP that was bound by a previous
DL_BIND_REQ from this Stream.

Requests the DLS provider disassociate a
physical point of attachment (PPA) with a
Sstream.

Reguest the DLS provider disable the multicast
address.

Request the DL S provider enable a specific
multicast address. (The current implementation
of the DLB driver requires the state to be

DL_I DLE))

Informs DLS user of a previously issued request
which was invalid.

Response to DL_| NFO_REQ primitive; conveys
information about the DLPI stream.

Requests the DL S provider return information
about the DLPI stream.

Acknowledges to the DL S user that a previously
issued request primitive was successfully
received.

Requests that the DLS provider return either the
default (factory) or current value of the physical
address associated with the Stream, depending
upon the value of the address type selected in
the request.

Returns the value for the physical address to the
link user in response to a
DL_PHYS ADDR_REQ.

Is the positive response to a
DL_SUBS BI ND_REQfrom the DLS provider.

Data Link Provider Interface 2—-9

Table 2-1: (continued)

Primitive

DL_SUBS_BI ND_REQ

DL_SUBS_UNBI ND_REQ

DL_TEST_CON
DL_TEST_I ND
DL_TEST_REQ
DL_TEST_RES
DL_UDERROR | ND

DL_UNI TDATA_REQ

DL_UNI TDATA | ND
DL_XI D_CON
DL_XI D_I ND

DL_XI D_REQ

2—-10 Data Link Provider Interface

Description

Requests the DLS provider bind a subsequent
DLSAP to stream. There are two classes of
subsequent bind requests. HIERACHICAL and
PEER.

HIERACHICAL requests are only valid for
SNAPs (see the IEEE 802.1 specification) and
you must have bound to the SNAP sap (OxAA)
with a DL_BI NDS_REQ before issuing the
DL_SUBS_BI ND_REQfor the SNAP.

The PEER request binds to additional saps but
does not change the DLSAP address of the
stream.

Requests the DLS provider to unbind a sap
which was previously bound by a
DL_SUBS_BI ND_REQ.

Conveys that a DLSDU TEST response was
received in responseto aDL_TEST_REQ.

Conveys to the DLS user that a TEST cmd
DL SDU was received.

Requests the DLS provider to transmit a TEST
cmd DLSDU on behalf of the DLS user.

Requests the DLS provider to send a TEST
response command on behalf of the DLS user.

Informs DLS user that a previously sent
DL_UNI TDATA REQfailed.

Conveys one DLSDU from the DLS user to the
DLS provider for transmission to a peer DLS
user.

Conveys one DLSDU from the DLS provider to
the DLS user.

Conveys that a XID DLSDU was received in
responseto aDL_XI D_REQ.

Conveys to the DLS user that a XI1D DLSDU
was received.

Requests the DLS provider to transmit a X1D
DLSDU on behalf of the DLS user.

Table 2-1: (continued)
Primitive Description

DL_XI D _RES Requests the DL S provider to send a XID
DLSDU on behalf of the DLS user. Thisisin
repsonseto aDL_Xl D_RES.

2.5 lIdentifying Available PPAs

When compiled and run as root on a Digital UNIX system, the following
program opens the STREAMS device/ dev/ st r eans/ dl b and prints to
the screen the PPAs available on the system. The PPA number should be
passed in using the dI _ppa field of the DL_ATTACH_REQDLPI primitive.

#i ncl ude <sys/ioctl.h>
#i ncl ude <stropts. h>
#i ncl ude <errno. h>

#i ncl ude <fcntl. h>

#define ND_GET ('N << 8 + 0)
#defi ne BUFSI ZE 256

mai n()

int i;

int fd;

char buf [BUFSI ZE];
struct strioctl stri;

fd = open("/dev/streans/dl b", O RDWR, 0);
if (fd < 0) {

perror("open");

exit(1);
}

sprintf(buf, "dl_ifnames");
stri.ic_cnmd = ND_GET,;
stri.ic_timut = -1;
stri.ic_len = BUFSI ZE;
stri.ic_dp = buf;

if (ioctl(fd, I_STR &stri) < 0) {

perror("ioctl");
exit(1);

Data Link Provider Interface 2—-11

printf("Valid PPA nanes on this systemare:\n");
for (i=0; i<stri.ic_len; i++) {
if (buf[i] == 0)
printf(" ");
el se

printf("%",buf[i]);
}
printf("\n");
}
a. out
Valid PPA nanes on this system are:
ssccO (PPA 1) In0 (PPA 2) dsy0 (PPA 3) dsyl (PPA 4) \
sl0 (PPA 5) sl1 (PPA 6) |00
#

2—-12 Data Link Provider Interface

X/Open Transport Interface 3

The X/Open Transport Interface (XTI) is a transport layer application
interface that consists of a series of functions designed to be independent of
the specific transport provider used. In the Digital UNIX operating system
XTI isimplemented according to the XPG3 and XPG4 specifications. XPG4
is the default. (XPG3 is provided for backward compatibility and is available
by using a compiler switch.) For more information about XPG3 and XPG4,
see the X/Open Portability Guide Volume 7: Networking Services. The
Digital UNIX implementation of XTI is also thread safe.

Although similar in concept to the Berkeley socket interface, XTI is based on
the AT&T Transport Layer Interface (TLI). TLI, in turn, is based on the
transport service definition for the Open Systems Interconnection (OSI)
model.

Note

Digital UNIX includes the Transport Control Protocol (TCP) and
User Datagram Protocol (UDP) transport providers. Although
the information provided in this chapter applies to al transport
providers that Digital UNIX XTI supports, such as DECnet/OSl,
the examples are specific to TCP or UDP. For more specific
information using XTI over TCP and UDP, see the

xti _i nternet (7) reference page. For examples and
information specific to other transport providers, see the
documentation that accompanies their software.

This chapter contains the following information:

* Overview of XTI

e Description of XTI features

* Instructions on how to use XTI

» Instructions on how to port applications to XTI

» Information on the differences between XPG3 and XPGA4.
» Explanation of XTI errors and error messages

» Information on configuring transport providers.

Figure 3-1 highlights XTI and its relationship to the Digital UNIX
implementation of the Internet Protocol suite. It also shows how XTI and the
Internet Protocol suite fit into the rest of the network programming
environment.

Figure 3-1: X/Open Transport Interface

XTI/TLI
user space

kernel space

Stream head

socket
layer

ifnet layer

SLIP
driver

BSD driver

ZK-0558U-R

3.1 Overview of XTI

XTI involves the interaction of the following entities:
e Transport providers

A transport provider is atransport protocol, such as TCP or UDP, that
offers transport layer services.

e Transport users

A transport user is an application program that requires the services of a
transport provider to send data to or receive data from another program.

3-2 X/Open Transport Interface

A transport user communicates with a transport provider over a
communications path identified by a transport endpoint.

» Transport endpoints

A transport endpoint is created when an application issues at _open
library call. All of the transport user’s requests to the transport provider
pass through the endpoint associated with that provider.

The transport user activates a transport endpoint by binding a transport
addressto it. Once an endpoint is active, a transport user can send data over
it. The transport provider routes the data to the appropriate peer user or other
destination.

When using a connection-oriented transport service, such as TCP, the
transport user must establish a connection between itself and a peer transport
user with at _connect function, specifying an active endpoint, before
sending data. In atransport connection, the transport user initiating the
connection is the active user, or client, and the peer transport user
responding to the connection request is the passive user, or server. Figure
3-2 summarizes the relationship between transport providers, transport users,
and transport endpoints.

Figure 3-2: A Transport Endpoint

Transport User

Transport Endpoint ——» Transport Interface
(Identified by File Descriptor)

v

Transport Provider

ZK-0522U-R

X/Open Transport Interface 3-3

3.2 XTI Features

XTI consists of library calls, header files, and the rules and restrictions
elaborating how XTI processes work and interact. This section describes the
library calls and header files, as well as the regulations that govern the
interaction between communicating processes.

3.2.1

Modes of Service and Execution

Transport users use different service modes and execution modes to
determine how data is exchanged with transport providers. The following
sections introduce the service modes and execution modes available in XTI.

3.2.1.1 Connection-Oriented and Connectionless Service
In XTI, an endpoint can support one of the following modes of service:

Connection-oriented transport service

A circuit-oriented service that transfers data over an established
connection in areliable, sequenced manner.

Connection-oriented transport is useful for applications that require long,
order dependent and reliable, stream-oriented interactions. With
connection-oriented transport, transport users and providers can negotiate
the parameters and options that govern data transfer. In addition, because
a connection provides identification of both parties, the transport user
avoids the overhead of transmitting and resolving addresses during data
transfer. A connection also provides a context that logically relates
successive units of data.

Connectionless transport service

A message-oriented service that transfers data in self-contained units or
datagrams, which have no logical sequence with respect to one another.

Connectionless transport is best suited for applications that have the
following qualities:

— Short-term request and response interactions
— Dynamic reconfiguration of connections to multiple endpoints
— No need for the guaranteed, sequential delivery of data

Each data unit is self-contained and has no relationship to previous or
successive data units, so the transport provider can route it independently.

3—4 X/Open Transport Interface

3.2.1.2 Asynchronous and Synchronous Execution

Execution modes provide a means for transport users to handle completion of
functions and receipt of events. An event is an occurrence or happening that
is significant to a transport user. XTI supports two execution modes:

Synchronous mode

Waits for transport primitives to complete before returning control to the
transport user. Also known as blocking mode.

Synchronous mode is suited for applications that want to wait for
functions to complete or maintain only a single transport connection. In
synchronous mode, the transport user cannot perform other tasks while
waiting for a function to complete. For example, if the transport user
issuesat _r cv function in synchronous mode, t _r cv waits until datais
received before returning control to the transport user.

Even while using synchronous mode, it is possible to get some event
notification, which the transport user does not ordinarily expect. Such
asynchronous events are returned to the user through a special error,
TLOOK.

If an asynchronous event occurs while a function is executing, the
function returns the TLOOK error; the transport user can then issue the
t | ook function to retrieve the event.

Asynchronous mode

Returns control to the transport user before transport primitives complete.
Also known as nonblocking mode.

Asynchronous mode is useful for applications that have long delays
between completion of functions and other tasks to perform in the
meantime. This mode is also useful for applications that handle multiple
connections simultaneously. Many applications handle networking
functions in asynchronous mode because they can perform useful work
while waiting for particular networking functions to complete. For
example, if atransport user issuesat _r cv function call in asynchronous
mode, the function returns control to the user immediately if no datais
available. The user periodically polls for data until the data arrives.

By default, all functions that process incoming events operate in synchronous
mode, blocking until the task completes. To select asynchronous mode, the
transport user specifies the O_NONBLOCK flag with thet _open function
when the endpoint is created or before executing a function or group of
functions with the f cnt | operating system call.

For afull discussion of the specific events supported by XTI, see Section
3.2.3.

X/Open Transport Interface 3-5

3.2.2 The XTI Library, TLI Library, and Header Files

XTI functions are implemented as part of the XTI library, | i bxti.a. TLI
functions are implemented in a separate TLI library, | i btli . a. Thereare
also shared versions of these libraries, | i bxti.soandlibtli. so.

Digital UNIX provides shared library support by default when you link an
XTI or TLI application with the XTI or TLI library.

For XTI or TLI applications built in the Digital UNIX Version 1.2
environment to use shared library support, you must relink the required
object files with the appropriate library. Y ou do not need to recompile
source files.

The first of the following examples illustrates how to relink an XTI
application’s object files with the XTI shared library; the second illustrates
how to relink a TLI application’s object files with the TLI shared library:

% cc -0 XTlapp XTl apprain.o XTlapputil.o -1xti

% cc -0 TLlI app TLI apprain.o TLI apputil.o -1tli

To link programs statically with the XTI or TLI libraries (as was the default
in Digital UNIX Version 1.2), use the non_shar ed option to the cc
command.

The following example illustrates how to link an XTI application’s object
files to the XTI library staticaly:

% cc -non_shared -o XTIl app XTl appnai n.o XTl apputil.o -1xti

See the cc(1) reference page for more information.

To make a program thread safe, build the program with DECthreads
pt hr eads routines. For more information, see Guide to DECthreads.

The few differences between XTI and TLI are described in Section 3.5.2,
which also describes how to link your programs with the correct library at
compile time.

3.2.2.1 XTland TLI Header Files

XTI and TLI header files contain data definitions, structures, constants,
macros, and options used by the XTIl and TLI library calls. An application
program must include the appropriate header file to make use of structures or
other information a particular XTI or TLI library call requires. Table 3-1
lists the XTI and TLI header files.

3-6 X/Open Transport Interface

Table 3-1: Header Files for XTIl and TLI

File Name Description

<tiuser.h> Contains data definitions and structures for TLI applications.
Y ou must include this file for all TLI applications.

<xti.h> Contains data definitions and structures for XTI applications.
Y ou must include this file for all XTI applications.

<fcntl. h> Defines flags for modes of execution for thet _open
function. You must include thisfile for al XTIl and TLI
applications.

Note

Typically, header file names are enclosed in angle brackets (< >).
To obtain the absolute path to the header file, prepend
{fusr/include/ totheinformation enclosed in the angle
brackets. For example, the absolute path for thet i user. h file
is/usr/include/tiuser.h.

3.2.2.2 XTI Library Calls

Some of the calls apply to connection-oriented transport (COTS), some to
connectionless transport (CLTS), some to connection-oriented transport when
used with the orderly release feature (COTS_ORD), and some to al service
modes. A small group of the calls are utility functions and do not apply to a
particular service mode. Table 3-2 lists the name, purpose, and service mode
of each XTI library call. Each call has an associated reference page by the
same hame.

Digital UNIX provides XTI reference pages only; it does not provide TLI
reference pages. For information about TLI and for the TLI reference pages
see the UNIX System V Programmer’s Guide: Networking Interfaces, which
isissued by UNIX System Laboratories, Inc. Digital UNIX provides
reference pages for each of the functions. For more information, see the
X/Open CAE Specification: Networking Services.

X/Open Transport Interface 3—7

Table 3-2: XTI Library Calls

Name of Call

t _accept
t _alloc

t _bind

t _cl ose
t _connect

t_error
t free

t _getinfo

t _get prot addr?@
t_getstate

t listen
t | ook

t _open
t _opt ngnt

t_rcv
t _rcvconnect

t_rcvdis

t rcvrel®

t _rcvudata
t _rcvuderr

3-8 X/Open Transport Interface

Purpose

Accepts a connection request

Allocates memory for alibrary
structure

Binds an address to a transport
endpoint

Closes a transport endpoint

Establishes a connection with
another transport user

Produces an error message

Frees memory previously
allocated for alibrary structure

Returns protocol-specific
information

Returns the protocol address

Returns the current state for the
transport endpoint

Listens for a connection request

Returns the current event on
the transport endpoint

Establishes a transport endpoint

Retrieves, verifies, or
negotiates protocol options

Receives data or expedited data
over a connection

Receives the confirmation from
a connection request

Identifies the cause of a
disconnect, and retrieves
information sent with a

disconnect

Acknowledges receipt of an
orderly release indication

Receives a data unit

Receives information about an
error associated with a data
unit

Service Mode

COTS, COTS_ORD
All

All

All
COTS, COTS_ORD

All
All

All

All
All

COTS, COTS_ORD
All

All
All

COTS, COTS_ORD
COTS, COTS_ORD

COTS, COTS_ORD

COTS_ORD

CLTS
CLTS

Table 3-2: (continued)

Name of Call Purpose Service Mode

t _snd Sends data or expedited data COTS, COTS ORD
over a connection

t _snddis Initiates arelease on an COTS, COTS ORD

established connection, or
rejects a connection request

t sndrel® Initiates an orderly release COTS ORD
t _sndudat a Sends a data unit CLTS
t_strerror?@ Produces and error message All
string
t_sync Synchronizes the data All
structures in the transport
library
t _unbi nd Disables a transport endpoint All
Table notes:

a. Thisfunction is supported in XPG4 only.

b. Digital UNIX as supplied by Digital does not provide a transport provider
that supports the use of COTS_ORD; therefore, this function returns an
error.

XTI supports an orderly release mechanism, t _sndrel andt _rcvrel
functions. (See Table 3-2 for more information.) However, if your
applications need to be portable to the SO transport layer, we recommend
that you do not use this mechanism.

Finally, the XTI header file defines the following constants to identify service
modes:

» T_COTS — Connection-oriented transport service (for example, OSI
transport)

e T_CLTS - Connectionless transport service (for example, UDP)
« T_COTS _ORD - Connection-oriented transport service with the orderly
release mechanism implemented (for example, TCP)

These service modes are returned by the transport provider in the ser vt ype
field of thei nf o structure when you create an endpoint with thet _open
function.

X/Open Transport Interface 3-9

3.2.3 Events and States

Each transport provider has a particular state associated with it, as viewed by
the transport user. The state of a transport provider and its transition to the
next alowable state is governed by outgoing and incoming events, which
correspond to the successful return of specified user-level transport functions.
Outgoing events correspond to functions that send a request or response to
the transport provider, whereas incoming events correspond to functions that
retrieve data or event information from the transport provider. This section
describes the possible states of the transport provider, the outgoing and
incoming events that can occur, and the allowable sequence of function calls.

3.2.3.1 XTI Events

XTI applications must manage asynchronous events. An asynchronous event
is identified by a mnemonic which is defined as a constant in the XTI header
file. Table 3-3 lists the name, purpose, and service mode for each type of
asynchronous event in XTI.

Table 3-3: Asynchronous XTI Events

Event Name Purpose Service Mode

T_CONNECT The transport provider received a COTS,
connection response. This event COTS_ORD
usualy occurs after the transport
user issuesthet connect
function.

T _DATA The transport provider received COTS, CLTS,
normal data, which is al or part COTS _ORD
of a Transport Service Data Unit

(TSDU).
T _DISCONNECT The transport provider received a COTS,
disconnect request. This event COTS ORD

usually occurs after the transport
user issues data transfer functions,
thet _accept function, or the

t _snddi s function.

T_EXDATA The transport provider received COTS,
expedi t ed data. COTS _ORD
T _GODATA The flow control restrictionsonthe COTS, CLTS,

flow of normal dataarelifted. The COTS ORD
transport user can send normal
data again.

3-10 X/Open Transport Interface

Table 3-3: (continued)

Event Name Purpose Service Mode
T _GOEXDATA The flow control restrictionson the COTS,
flow of expedited data are lifted. COTS ORD
The transport user can send
expedited data again.
T _LISTEN The transport provider received a COTS,

connection request from a remote COTS_ORD
user. This event occurs only when

the file descriptor is bound to a

valid address and no transport

connection is established.

T_ORDREL The transport provider received a COTS_ORD
regquest for an orderly release.
T_UDERR An error was found on a datagram CLTS

that was previoudly sent. This
event usually occurs after the
transport user issues the

t _rcvudataort_unbi nd
functions.

XTI stores al events that occur at a transport endpoint.

If using a synchronous mode of execution, the transport user returns from the
function it was executing with a value of -1 and then checks for a value of
TLOOK int _errno and retrieves the event with thet _| ook function. In
asynchronous made, the transport user continues doing productive work and
periodically checks for new events.

Every event at atransport endpoint is consumed by a specific XTI function,
or it remains outstanding. Exceptions arethe T_GODATA and
T_GOEXDATA events, which are cleared by retrieving them witht _| ook.
Thus, once the transport user receives a TLOOK error from a function,
subsequent calls to that function or a different function continue to return the
TLOOK error until the transport user consumes the event. Table 3-4
summarizes the consuming functions for each asynchronous event.

X/Open Transport Interface 3—-11

Table 3-4: Asynchronous Events and Consuming Functions

Event

T_CONNECT

T _DATA

T_DISCONNECT

T_EXDATA
T_GODATA
T_GOEXDATA
T_LISTEN
T_ORDREL
T_UDERR

Cleared by t look Consuming Function(s)

No t _connect,
t _rcvconnect
No t _rcv, t_rcvudata
No t _rcvdis
No t_rcv
Yes t _snd, t_sndudata
Yes t_snd
No t listen
No t_rcvrel
No t _rcvuderr

Table 3-5 lists the events that cause a specific XTI function to return the
TLOOK error. This information may be useful when you structure the event
checking mechanisms in your XTI applications.

Table 3-5: XTI Functions that Return TLOOK

Function

t _accept
t _connect
t listen
t_rcv
t _rcvconnect
t _rcvrel

t _rcvudata
t_snd

t _snddis

t _sndrel

t _sndudat a

t _unbi nd

Events Causing TLOOK

T_DISCONNECT, T_LISTEN
T_DISCONNECT, T_LISTEN @
T_DISCONNECT b
T_DISCONNECT, T_ORDREL ¢
T_DISCONNECT
T_DISCONNECT

T_UDERR

T_DISCONNECT, T_ORDREL
T_DISCONNECT
T_DISCONNECT

T_UDERR

T _LISTEN, T DATAd

3-12 X/Open Transport Interface

Table notes:

a. Thisevent occursonly whent _connect isissued for an endpoint that
was bound with a q/ en > 0, and has a pending connection indication.

b. This event indicates a disconnect on an outstanding connection indication.
¢. This occurs only when al pending data has been read.
d. T_DATA may only occur for the connetionless mode.

Each XTI function manages one transport endpoint at atime. It is not
possible to wait for several events from different sources, particularly from
several transport connections at atime. The Digital UNIX implementation of
XTI alows the transport user to monitor input and output on a set of file
descriptors with the pol | function. See pol | (2) for more information.

3.2.3.2 XTI States

XTI uses eight states to manage communication over a transport endpoint.
Both the active and passive user have a unique state that reflects the function
in process.

Table 3-6 describes the purpose of each XTI state. A service mode of COTS
indicates the state occurs regardless of whether or not orderly serviceis
implemented. A service mode of COTS_ORD indicates the state occurs only
when orderly service is implemented.

Table 3-6: XTI States

State Description Service Mode

T_UNINIT Uninitialized. Initial and final state of COTS, CLTS,
the interface. To establish a transport COTS_ORD
endpoint, the user must issue a
t _open.

T _UNBIND Unbound. The user can bind an COTS, CLTS,
address to a transport endpoint or close COTS _ORD
a transport endpoint.

T IDLE Idle. The active user can establish a COTS, CLTS,
connection with a passive user (COTS), COTS ORD
disable a transport endpoint (COTS,

CLTS), or send and receive data units
(CLTS). The passive user can listen
for a connection request (COTYS).

T_OUTCON Outgoing connection pending. The COTS, COTS _ORD
active user can receive confirmations
for connection reguests.

X/Open Transport Interface 3—-13

3.24

Table 3-6: (continued)

State Description Service Mode
T_INCON Incoming connection pending. The COTS, COTS_ORD
passive user can accept connection
requests.

T DATAXFER Datatransfer. Theactiveuser cansend COTS, COTS ORD
data to and receive data from the
passive user. The passive user can
send data to and receive data from the

active user.

T _OUTREL Outgoing orderly release. Theuser can COTS _ORD
respond to an orderly release
indication.

T_INREL Incoming orderly release. Theuser can COTS _ORD

send an orderly release indication.

If you are writing a connection-oriented application, note that your program
can release a connection at any time during the connection-establishment
state or data-transfer state.

Tracking XTI Events

The XTI library keeps track of outgoing and incoming events to manage the
legal states of transport endpoints. The following sections describe these
outgoing and incoming events.

3.2.4.1 Outgoing Events

Outgoing events are caused by XTI functions that send a request or response
to the transport provider. An outgoing event occurs when a function returns
successfully. Some functions produce different events, depending on the
following values:

ocnt A count of outstanding connection indications (those passed to the transport
user but not yet accepted or rejected). This count is only meaningful for the
current transport endpoint (f d).

fd The file descriptor of the current transport endpoint.
resfd Thefile descriptor of the endpoint where a connection will be accepted.

Table 3-7 describes the outgoing events available in XTI. A service mode of
COTS indicates the event occurs for a connection-oriented service regardless
of whether or not orderly serviceis implemented. A service mode of

3-14 X/Open Transport Interface

COTS_ORD indicates the event occurs only when orderly serviceis
implemented.

Table 3-7: Outgoing XTI Events

Event Description Service Mode

opened Successful return of t _open function. COTS, CLTS,
COTS_ORD

bind Successful return of t _bi nd function. COTS, CLTS,
COTS_ORD

optmgmt Successful return of t _opt ngmt function. COTS, CLTS,
COTS_ORD

unbind Successful return of t _unbi nd function. COTS, CLTS,
COTS_ORD

closed Successful return of t _cl ose function. COTS, CLTS,
COTS_ORD

connectl Successful return of t _connect function in COTS, COTS _ORD

synchronous execution mode.
connect2 Thet _connect function returned the COTS, COTS_ORD

TNODATA error in asynchronous mode, or
returned the TLOOK error because a disconnect
indication arrived on the transport endpoint.

acceptl Successful return of t _accept function, where COTS, COTS_ORD
ocnt ==1and fd==resfd.

accept2 Successful return of t _accept function, where COTS, COTS_ORD
ocnt ==1land fd!=resfd.

accept3 Successful return of t _accept function, where COTS

ocnt >1.
snd Successful return of t _snd function. COTS
snddisl Successful return of t _snddi s function, where COTS, COTS _ORD
<=
snddis2 gﬁtl:chssfullfeturn of t _snddi s function, where COTS, COTS ORD
ocnt >1.
sndrel Successful return of t _sndr el function. COTS ORD
sndudata Successful return of t _sndudat a function. CLTS

X/Open Transport Interface 3—-15

3.2.4.2 Incoming Events

Incoming events are caused by XTI functions that retrieve data or events
from the transport provider. An incoming event occurs when a function
returns successfully. Some functions produce different events, depending on
the value of the ocnt variable. This variableis a count of outstanding
connection indications (those passed to the transport user but not yet accepted
or regjected). This count is only meaningful for the current transport endpoint
(f d).

The pass_conn incoming event is not associated directly with the successful
return of afunction on a given endpoint. The pass_conn event occurs on the
endpoint that is being passed a connection from the current endpoint. No
function occurs on the endpoint where the pass_conn event occurs.

Table 3-8 describes the incoming events available in XTI. A service mode of
COTS indicates the event occurs regardless of whether or not orderly service
isimplemented. A service mode of COTS_ORD indicates the event occurs
only when orderly service is implemented.

Table 3-8: Incoming XTI Events

Event Description Service Mode

listen Successful return of thet _| i st en function COTS, COTS_ORD

rcvconnect Successful return of thet _rcvconnect COTS, COTS ORD
function

rev Successful return of thet _r cv function COTS, COTS ORD

rcvdisl Successful return of thet _r cvdi s function, COTS, COTS ORD
where ocnt ==

revdis2 Successful return of thet _r cvdi s function, COTS, COTS ORD
where ocnt ==

rcvdis3 Successful return of thet _r cvdi s function, COTS, COTS ORD
where ocnt > 1

rcevrel Successful return of thet _rcvrel function COTS ORD

rcvudata Successful return of thet _r cvudat a function CLTS

rcvuderr Successful return of thet _rcvuderr function CLTS

pass conn Successfully received a connection that was COTS, COTS_ORD

passed from another transport endpoint

3-16 X/Open Transport Interface

3.2.5 A Map of XTI Functions, Events, and States

This section describes the relationship among XTI functions, outgoing and
incoming events, and states. Since XTI has well-defined rules about state
transitions, it is possible to know the next allowable state given the current
state and most recently received event. This section provides detailed tables
that map the current event and state to the next allowable state.

This section excludesthet _getstate,t_getinfo,t_alloc,t_free,
t _| ook, t_sync,andt _error functions from discussions of state
transitions. These utility functions do not affect the state of the transport
interface, so they can be issued from any state except the uninitialized
(T_UNINIT) state.

To use Table 3-9, Table 3-10, and Table 3-11, find the row that matches the
current incoming or outgoing event and the column that matches the current
state. Go to the intersection of the row and column to find the next alowable
state. A dash (—) at the intersection indicates an invalid combination of
event and state. Some state transitions are marked by a number in
parentheses that indicates an action that the transport user must take. The
numbers and their meanings are listed at the end of the appropriate table.

Table 3-9 shows the state transitions for initialization and deinitialization
functions, functions that are common to both the connection-oriented and
connectionless modes of service. For example, if the current event and state
are bind and T_UNBND, the next alowable stateis T_IDLE. In addition,
the transport user must set the count of outstanding connection indications to
zero, as indicated by the numeral 1.

Table 3-9: State Transitions for Initialization of Connection-
Oriented or Connectionless Transport Services

Event T _UNINIT T _UNBND T IDLE
State State State

opened T_UNBND — —

bind — T IDLE? —

unbind — — T_UNBND

closed — T _UNINIT T _UNINIT

Table notes:

a. Set the count of outstanding connection indications, ocnt , to 0.

Table 3-10 shows the state transitions for data transfer functionsin
connectionless transport services.

X/Open Transport Interface 3-17

Table 3-10: State Transitions for Connectionless Transport

Services
T_IDLE
Event State
sndudata T_IDLE
rcvudata T IDLE
rcvuderr T IDLE

Table 3-11 and Table 3-12 show the transitions for connection, release, and
data transfer functions in connection-oriented transport services for incoming
and outgoing events. For example, if the current event and state are

accept 2 and T_INCON, the next allowable state is T_IDLE, providing the
transport user decrements the count of outstanding connection indications and
passes a connection to another transport endpaint.

Table 3-11: State Transitions for Connection-Oriented Transport
Services: Part 1

Event T_IDLE State T_OUTCON T_INCON State T_DATAXFER
State State

connectl T_DATAXFER — — —

connect2 T_OUTCON — — —

rcveonnect — T_DATAXFER — —

listen T_INCON (a) — T_INCON (a) —
acceptl — — T_DATAXFER (a) —
accept2 — — T_IDLE (b, ¢ —
accept3 — — T_INCON (b, c) —

snd — — — T_DATAXFER
rcv — — — T_DATAXFER
snddisl — T_IDLE T_IDLE (b) T_IDLE
snddis2 — — T_INCON (b) —
revdisl — T_IDLE — T_IDLE
revdis2 — — T_IDLE (b) —

3-18 X/Open Transport Interface

Table 3-11: (continued)

Event T_IDLE State T_OUTCON T_INCON State T_DATAXFER
State State

revdis3 — — T_INCON (b) —

sndrel — — — T_OUTREL

revrel — — — T_INREL

pass conn T_DATAXFER — — —

optmgmt T IDLE T_OUTCON T_INCON T_DATAXFER
closed T_UNINIT T_UNINIT T_UNINIT T_UNINIT
Table notes:

a. Increment the count of outstanding connection indications.
b. Decrement the count of outstanding connection indications.

c. Pass a connection to another transport endpoint, as indicated in the
t _accept function.

Table 3-12: State Transitions for Connection-Oriented Transport
Services: Part 2

Event T_OUTREL State T_INREL State T_UNBND State
connectl — — —

connect2 — — —
rcveconnect — — —
listen — — —
acceptl — — -
accept2 — — _
accept3 — — —
snd — T_INREL —
rev T_OUTREL — —
snddisl T_IDLE T_IDLE —
snddis2 — — —

revdisl T IDLE T IDLE —

X/Open Transport Interface 3-19

3.2.6

Table 3-12: (continued)

Event T_OUTREL State T_INREL State T_UNBND State
revdis2 — — _
revdis3 — — —

sndrel — T_IDLE —

revrel T_IDLE — —
pass_conn — — T_DATAXFER
optmgmt T_OUTREL T_INREL T_UNBND
closed T_UNINIT T_UNINIT —

Synchronization of Multiple Processes and Endpoints

In general, if you use multiple processes, you heed to synchronize them
carefully to avoid violating the state of the interface.

Although transport providers treat all transport users of a transport endpoint
as a single user, the following situations are possible:

» One process can create severa transport endpoints simultaneously.
» Multiple processes can share a single endpoint simultaneously.

For a single process to manage severa endpoints in synchronous execution
mode, the process must manage the actions on each endpoint serially instead
of in paralel. Optionally, you can write a server to manage several endpoints
at once. For example, the process can listen for an incoming connection
indication on one endpoint and accept the connection on a different endpoint,
S0 as not to block incoming connections. Then, the application can fork a
child process to service the requests from the new connection.

Multiple processes that share a single endpoint must coordinate actions to
avoid violating the state of the interface. To do this, each process calls the
t _sync function, which retrieves the current state of the transport provider,
before issuing other functions. If all processes do not cooperate in this
manner, another process or an incoming event can change the state of the
interface.

Similarly, while several endpoints can share the same protocol address, only
one can listen for incoming connections. Other endpoints sharing the
protocol address can be in data transfer state or in the process of establishing
a connection without causing a conflict. This means that an address can have
only one server, but multiple endpoints can call the address at the same time.

3-20 X/Open Transport Interface

3.3 Using XTI

This section presents guidelines to help you sequence functions, manage
states, and use XTI options. It then describes the steps required to write both
connection-oriented and connectionless programs to XTI.

3.3.1 Guidelines for Sequencing Functions

Figure 3-3 shows the typical sequence of functions and state transitions for

an active user and passive user communicating with a connection-oriented
transport service in nonblocking mode. The solid lines in the figure show the
state transitions for the active user, while the dashed lines show the
transitions for the passive user. Each line represents the call of afunction,
while each ellipse represents the resulting state. This example does not
include the orderly release feature.

X/Open Transport Interface 3-21

Figure 3-3: State Transitions for Connection-Oriented Transport
Services

t_unbind

t_listen 7
7

’
4 !
’ ll

t_connect

7

K !
!
1
N 1

N !

t_accept /! t_rcvconnect

T_DATAXFER

t_rcv t_snd

Key

— » Active User
——————— ¥ Passive User

ZK-0524U-R

Figure 3-4 shows the typical sequence of functions and transitions in state for
two users communicating with the connectionless transport service. Each line
in the figure represents the call of a function, while each ellipse represents the
resulting state. Both users are represented by solid lines.

3-22 X/Open Transport Interface

Figure 3-4: State Transitions for the Connectionless Transport
Service

>
VE

t_open t_close

T_UNBND

A

t_bind t_unbind

T_IDLE

t_rcvudata t_sndudata

ZK-0525U-R

¢

3.3.2 State Management by the Transport Provider

All transport providers take the following actions with respect to states:
» Keep arecord of the state of the interface as seen by the transport user.

* Rgject any requests or responses that would place the interface out of
state and return an error. In this case, the state does not change. For
example, if the user passes data with a function and the interface is not in
T_DATAXFER state, the transport provider does not accept or forward
the data.

The uninitialized state (T_UNINIT) serves two purposes:

» Theinitia state of atransport endpoint. The transport user must initialize
and bind the transport endpoint before the transport provider views it as
active.

» Thefina state of atransport endpoint. The transport provider must view
the endpoint as unused. When the transport user issuesthet _cl ose
function, the transport provider is closed, and the resources associated
with the transport library are freed for use by another endpoint.

X/Open Transport Interface 3-23

3.3.3 Writing a Connection-Oriented Application
Follow these steps to write a connection-mode application:
1. Initialize an endpoint

Establish a connection

Transfer data

Release a connection

Deinitialize an endpoint

o~ w DN

3.3.3.1 Initializing an Endpoint
To initialize an endpoint, complete the following steps:
1. Open the endpoint
2. Bind an address to the endpoint
3. Negotiate protocol options

Note that the steps described here for initializing an endpoint for connection-
oriented service are identical for connectionless service.

Opening a Transport Endpoint

Both connection-ariented and connectionless applications must open a
transport endpoint using thet _open function. The syntax of thet _open
function is as follows:

fd =t_open (name,oflag,&info);

In the preceding statement:

fd
Identifies the file descriptor for the endpoint. Y ou use the file descriptor

in subsequent calls to identify this transport endpoint.

Thet _open function returns a file descriptor upon successful
completion. Otherwise, t _open returnsavaueof -1, and t _errnois
set to one of the values described in Section 3.7. (For multithreaded
applications, t _er r no is thread specific.)

nane
I dentifies the transport provider to be accessed. Currently, the XTI
implemented in Digital UNIX uses pathnames to device special files to
identify transport providers, which is the same method asin the AT&T
TLI. The device special files on a Digital UNIX system corresponding
to TCP or UDP transport providers reside in the
/ dev/ streans/ xti so directory. If you use a different transport

3-24 X/Open Transport Interface

provider, see its documentation for the correct device name.

Note

Using the specia device with any mechanism other than
XTI/TLI, for example, direct open, read, or wi t e cals,
isillegal and will generate undefined results.

of I ag
Specifies whether the endpoint will block on functions to wait for
completion. Specify O_RDWR to indicate that the endpoint supports
reading and writing by functions and blocks on them, or specify the
bitwise inclusive OR of O_RDWR and O_NONBLOCK to indicate the
endpoint supports reading and writing by functions but does not block
on them. You must use O_RDWR optionally with OR with
O_NONBLOCK for the mode flag passed tot _open. In other words,
the XTI specification forbids the use of O_RDONLY or O WRONLY
to make the endpoint either read-only or write-only as expected.

info
Returns the pointer to a structure containing the default characteristics of
the transport provider. You use these characteristics to determine
subsequent calls. The i nf o parameter points to the t _i nf o structure.
Seet _open(3) for more information.

If you are designing a protocol -independent program, you can determine
data buffer sizes by accessing the information that thet _open function
returns about the t i nf o structure. If the transport user exceeds the
allowed data size, you receive an error. Alternatively, you can use the

t _al | oc function to allocate data buffers.

Seet _open(3) for more information.

The following is an example of thet _open function for the TCP transport
provider:

if ((newfd = t_open("/dev/streans/xtiso/tcp" , ORDAR , NULL) == -1)
(void) t_error("could not open tcp transport");

exit (1);
}

Binding an Address to the Endpoint

Once you open an endpoint, you need to bind a protocol address to the
endpoint. By binding the address, you activate the endpoint. In connection
mode, you also direct the transport provider to begin accepting connection
indications or servicing connection requests on the transport endpoint. To
determine if the transport provider has accepted a connection indication, you

X/Open Transport Interface 3-25

canissuethet _|i st en function. In connectionless mode, once you bind
the address, you can send or receive data units through the transport
endpoint.

To bind an address to an endpoint, issue thet _bi nd function with the
following syntax:

t_bind (fd,req,ret);

In the preceding statement:

fd
Identifies the file descriptor for the endpoint, which is returned by the
t _open function.

req
Specifies a pointer to the structure containing the address you wish to
bind to the endpoint.

ret
Returns a pointer to the structure containing the address that XTI bound
to the endpoint.

Seet _bi nd(3) for more information.

If the transport provider supports the automatic generation of addresses, you
have the following choices in binding addresses:

» Set req toanull pointer if you do not wish to specify an address. The
transport provider will assign an address to the transport endpoint.

e Set ret toanull pointer if you do not need to determine the actual
address that was bound to the endpoint.

 Setreqandret tonull pointersif you want the transport provider to
both assign the address and not notify you of what it was.

» If the address that you requested in r eq is not available, the transport
provider will assign an appropriate address.

To determine if the transport provider generates addresses, do not specify one
inthet _bi nd function (set r eqg to anull pointer). If the transport provider
supplies addresses, the function returns an assigned address in ther et field.
If the transport provider does not supply addresses, the function returns an
error of TNOADDR.

If you accept a connection on an endpoint that is used for listening for
connection indications, the bound address is busy for the duration of the
connection. You cannot bind any other endpoint for listening on that same
address while the initial listening endpoint is actively transferring data or in
T_IDLE state.

3-26 X/Open Transport Interface

You can use the get host bynane routine, described in Section 4.2.3.2, to
obtain host information when either TCP or UDP is the underlying transport
provider.

If you use a method to retrieve host information other than the
get host bynane routine, consider the following:

* Your applications must pass XTI functions a socket address in the format
that the transport provider expects. For XTI over TCP/IP, the expected
address format isasockaddr _i n structure.

* Your applications also need to pass a transport provider identifier to XTI
functions. In Digital UNIX, this identifier must already be in the format
of a pathname to the device special file for the transport provider.

Thet _bi nd function returns a value of 0 upon successful completion.
Otherwise, it returnsavalue of -1, and t _errno is set to one of the values
described in Section 3.7. (For multithreaded applications, t _errno is
thread specific.)

3.3.3.2 Using XTI Options
XPG3 and XPG4 implement option management differently.

In XPG3, option management is handled exclusively by thet _opt ngnt
function. In XPG4, severa functions contain an opt argument which is
used to convey options between a transport user and the transport provider.

For more information, see Section 3.6.6.

3.3.3.3 Establishing a Connection

The connection establishment phase typically consists of the following
actions:

1. A passive user, or server, listens for a connection request.

2. An active user, or client, initiates a connection.

3. A passive user, or server, accepts a connection request and a connection
indication is received.

These steps are described in the following sections.

Listening for Connection Indications

The passive user issues thet _| i st en function to look for enqueued
connection indications. If thet _| i st en function finds a connection
indication at the head of the queue, it returns detailed information about the
connection indication and a local sequence number that identifies the
indication. The number of outstanding connection indications that can be

X/Open Transport Interface 3-27

gueued is limited by the value of the q/ en parameter that was accepted by
the transport provider when thet _bi nd function was issued.

By default, thet _| i st en function executes synchronously by waiting for a
connection indication to arrive before returning control to the user. If you set
the O_NONBLOCK flag of thet _open function or thef cnt | function for
asynchronous execution, thet _| i st en function checks for an existing

connection indication and returns an error of TNODATA if none is available.

To listen for connection requests, issue thet _| i st en function with the
following syntax:

t_listen (fd,call);

In the preceding statement:

fd
Specifies the file descriptor of the endpoint where connection indications
arrive.

cal l
Returns a pointer to information describing the connection indication.

Seet | i st en(3) for more information.

Thet _|i st en function returns a value of O upon successful completion.
Otherwise, it returnsavalue of -1, and t _errno is set to one of the values
described in Section 3.7. (For multithreaded applications, t _errnois
thread specific.)

Initiating Connections

A connection is initiated in either synchronous or asynchronous mode. In
synchronous mode, the active user issuesthet _connect function, which
waits for the passive user’s response before returning control to the active
user. Inasynchronous mode, t _connect initiates a connection but returns
control to the active user before a response to the connection arrives. Then,
the active user can determine the status of the connection request by issuing
thet rcvconnect function. If the passive user accepted the request, the
t _rcvconnect function returns successfully and the connection
establishment phase is complete. If aresponse has not been received yet, the
t _rcvconnect function returns an error of TNODATA. The active user
should issuethet rcvconnect function again later.

To initiate a connection, issuethet connect function with the following
syntax:

t_connect (fd,sndcall,rcvcall),

3-28 X/Open Transport Interface

In the preceding statement:

fd
Specifies the file descriptor of the endpoint where the connection will be
established.

sndcal |
Points to a structure containing information that the transport provider
needs to establish the connection.

rcvcal |
Points to a structure containing information that the transport provider
associates with the connection that was just established.

Seet _connect (3) for more information.

Thet _connect function returns a value of O upon successful completion.
Otherwise, it returnsavalue of -1, and t _errno is set to one of the values
described in Section 3.7. (For multithreaded applications, t _errno is
thread specific.)

Accepting Connections

When the passive user accepts a connection indication, it can issue the
t _accept function on the same endpoint (the endpoint where it has been
listening witht _| i st en) or a different endpoint.

If the passive user accepts on the same endpoint, the endpoint can no longer
receive and enqueue incoming connection indications. The protocol address
that is bound to the endpoint remains busy for the duration it is active. No
other transport endpoints can be bound to the same protocol address as the
listening endpoint. That is, no other endpoints can be bound until the passive
user issuesthet _unbi nd function. Further, before the connection can be
accepted on the same endpoint, the passive user must respond (with either the
t _accept ort_snddi s functions) to all previous connection indications
that it has received. Otherwise, t _accept returnsan error of TBADF.

If the passive user accepts the connection on a different endpoint, the
listening endpoint can <till receive and enqueue incoming connection
requests. The different endpoint must already be bound to a protocol address
and bein the T_IDLE state. If the protocol address is the same as for the
endpoint where the indication was received, the g/ en parameter must be set
to zero (0).

For both types of endpoints, t _accept will fail and return an error of
TLOOK if there are connect or disconnect indications waiting to be received.

To accept a connection, issue thet _accept function with the following
syntax:

t_accept (fd,resfd,call),

X/Open Transport Interface 3—29

In the preceding statement:

fd
Specifies the file descriptor of the endpoint where the connection
indication arrived.

resfd
Specifies the file descriptor of the endpoint where the connection will be
established.

call
Points to information needed by the transport provider to establish the
connection.

Seet _accept (3) for more information.

Thet _accept function returns a value of 0 upon successful completion.
Otherwise, it returnsavalue of -1, and t _errno is set to one of the values
described in Section 3.7. (For multithreaded applications, t _errno is
thread specific.)

3.3.3.4 Transferring Data

Once a connection is established between two endpoints, the active and
passive users can transfer data in full-duplex fashion over the connection.
This phase of connection-oriented service is known as the data transfer phase.
The following sections describe how to send and receive data during the data
transfer phase.

Sending Data

Transport users can send either normal or expedited data over a connection
with thet _snd function. Normally, t _snd sends successfully and returns
the number of bytes accepted if the transport provider can immediately accept
al the data. If the data cannot be accepted immediately, the result of t _snd
depends on whether it is executing synchronously or asynchronously.

By default, thet _snd function executes synchronously and waits if flow
control conditions prevent the transport provider from accepting the data.
The function blocks until one of the following conditions becomes true:

» Theflow control conditions clear, and the transport provider can accept a
new data unit. Thet _snd function returns successfully.

» A disconnect indication is received. Thet snd function returns with an
error of TLOOK. If you call thet _| ook function, it returns the
T_DISCONNECT event. Any datain transit is lost.

* Aninterna problem occurs. Thet _snd function returns with an error of
TSYSERR. Any datain transit is lost.

3-30 X/Open Transport Interface

If the O_NONBLOCK flag was set when the endpoint was created, t _snd
executes asynchronously and fails immediately if flow control restrictions
exist. In some cases, only part of the data was accepted by the transport
provider, sot _snd returns a value that is less than the number of bytes that
you requested to be sent. At this point, you can do one of the following:

* Issuet _snd again with the remaining data.

* Check with thet | ook function to see if the flow control restrictions
are lifted, then resend the data. Thet | ook function is described at the
end of this chapter.

To send data or expedited data over a connection, issue thet _snd function
with the following syntax:

t_snd (fd,buf,nbytes,flags);

In the preceding statement:

fd
Specifies the file descriptor of the endpoint over which data should be
sent.

buf
Points to the data.

nbyt es
Specifies the number of bytes of data to be sent.

fl ags
Specifies any optional flags, such as the following:

« T_EXPEDI TED

Send the data as expedited data. The expedited data is subject to the
interpretations of the transport provider. Some transport providers
don’t support expedited data.

« T_MORE

Indicates that another t _snd function will follow with more data
for the current TSDU or ETSDU. The end of the TSDU or ETSDU
isindicated by at _snd function without T_MORE set.

Some transport providers do not support the concept of a TSDU or
ETSDU, so the T_MORE flag is not meaningful. To find out if the
transport provider supports TSDUs and ETSDUS, check the i nf o
argument of thet _open ort _get i nf o function. If thet sdu
field of i/ nf o is greater than zero (0), the transport provider supports
arecord-oriented mode, and the return value indicates the maximum
size of aTSDU. If the t sdu field is zero, the transport provider
supports a stream-oriented mode of sending data. The T_MORE

X/Open Transport Interface 3-31

flag has no bearing on how the data is packaged for transfer at layers
below the transport interface.

Seet _snd(3) for more information.

Thet _snd function returns a value of 0 upon successful completion.
Otherwise, it returnsavalue of -1, and t _errno is set to one of the values
described in Section 3.7. (For multithreaded applications, t _errno is
thread specific.)

Receiving Data

Transport users can receive either normal or expedited data over a connection
with thet _r cv function. Typicaly, if datais available, t _r cv returnsthe
data. If the connection has been disconnected, t _r cv returns immediately
with an error. If datais not available, but the connection still exists,t _rcv
behaves differently depending on the mode of execution:

* By default,t _r cv executes synchronously and waits for one of the
following to arrive:

— Data
— A disconnect indication
— A signa

Instead of issuingt _r cv and waiting, you can issue thet | ook
function and check for the T_DATA or T_EXDATA events.

e |f you set the O NONBLOCK flag,t _r cv executes asynchronously and
fails with an error of TNODATA if no datais available. You should
continue to poll for data by issuing thet _rcv ort | ook functions.

To receive data, issue thet _r cv function with the following syntax:

t_rcv (fd,buf,nbytes,flags);

In the preceding statement:

fd
Specifies the file descriptor of the endpoint through which data arrives.

buf
Points to a buffer where the data that is received will be placed.

nbyt es
Specifies the size of the buffer.

fl ags
Returns the following optiona flags that apply to the received data:

3-32 X/Open Transport Interface

e T_EXPEDI TED Indicates the data received is expedited data.

e T_MORE Indicates that there is more data for the TSDU or ETSDU
that must be received by using additional t _r cv functions. The
end of the TSDU or ETSDU isindicated by at _r cv function with
the T_MORE flag not set. Some transport providers do not support
the concept of a TSDU or ETSDU, so the T_MORE flag is not
meaningful. To find out if the transport provider supports TSDUs
and ETSDUSs, check the i nf o argument of thet _open or
t _geti nf o function.

If you retrieve part of a TSDU and expedited data arrives, the receipt
of the remainder of the TSDU is suspended until you process the
ETSDU. For example, if you received data with T_MORE set and
then received datawith T_EXPEDITED and T_MORE s¢t, this
indicates a situation where expedited data arrived in the middle of
your receipt of a TSDU. After you retrieve the full ETSDU, you can
retrieve the remainder of the TSDU. It is the responsibility of the
application programmer to remember that the receipt of normal data
has been interrupted.

Seet _r cv(3) for more information.

Thet _r cv function returns a value of 0 upon successful completion.
Otherwise, it returnsavalue of -1, and t _errno is set to one of the values
described in Section 3.7. (For multithreaded applications, t _errno is
thread specific.)

3.3.3.5 Releasing Connections

XTI supports two ways to release connections. abortive release and orderly
release. All transport providers support abortive release. Orderly releaseis
not provided by all transport providers. For example, the OS| transport
supports only abortive release, while TCP supports abortive release and
optionaly, orderly release.

Abortive Release

An abortive release, which can be requested by the transport user or the
transport provider, aborts a connection immediately. Abortive releases
cannot be negotiated, and once the abortive release is requested, thereis no
guarantee that user data will be delivered.

Transport users can request an abortive release in either the connection
establishment or data transfer phases. During connection establishment, a
transport user can use the abortive release to reject a connection request. In
data transfer phase, either user can release the connection at any time. If a
transport provider requests an abortive release, both users are informed that

X/Open Transport Interface 3-33

the connection no longer exists.

To request an abortive release or to reject a connection indication, issue the
t _snddi s function with the following syntax:

t_snddis (fd,call),

In the preceding statement:

fd
Specifies the file descriptor of the endpoint.

cal l
Points to the information associated with the abortive release. This field
is only meaningful if the transport user wants to send user data with the
disconnect request, or if the transport user is rejecting a connection
indication.

Seet snddi s(3) for more information.

Transport users are notified about abortive releases through the

T _DISCONNECT event. If your program receivesa T_DISCONNECT
event, it must issuethet _rcvdi s function to retrieve information about the
disconnect and to consume the T_DISCONNECT event. The following is
the syntax of thet _r cvdi s function:

t_rcvdis (fd,discon);

In the preceding statement:

fd
Specifies the file descriptor of the endpoint where the connection
existed.

di scon

Points to information about the disconnect.

Seet rcvdi s(3) for more information.

Botht snddi s andt _rcvdi s return avalue of 0 upon successful
completion. Otherwise, they return avalue of -1, and t _errno is set to one
of the values described in Section 3.7. (For multithreaded applications,

t _errno isthread specific.)

Orderly Release

An orderly release allows for release of a connection without loss of data.
Orderly release is not provided by all transport providers. If the transport
provider returned a service type of T_COTS ORD with thet _open or

t _geti nf o functions, orderly release is supported. Transport users can

3-34 X/Open Transport Interface

regquest an orderly release during the data transfer phase. The typical
sequence of orderly releaseis as follows:

1. Theactive user issuesthet _sndr el function to request an orderly
release of the connection.

2. The passive user receivesthe T_ORDREL event indicating the active
user’s request for the orderly release and issuesthet _r cvr el function
to indicate the request was received and consume the T_ORDREL event.

3. When ready to disconnect, the passive user issues thet _sndr el
function.

4. The active user responds by issuing thet _r cvrel function.

To initiate an orderly release, usethet _sndr el function which has the
following syntax:

t_sndrel (fd);

In the preceding statement:

fd
Specifies the field descriptor of the endpoint.

The transport user cannot send more data over the connection after it issues
thet sndrel function. The transport user can, however, continue to
receive data until it receives an orderly release indication (the T_ORDREL
event).

Seet _sndr el (3) for more information.

To acknowledge the receipt of an orderly release indication, issue the
t _rcvrel function with the following syntax:

t_rcvrel (fd),

In the preceding statement:

fd
Specifies the file descriptor of the endpoint.

After atransport user receives an orderly release indication (T_ORDREL), it
cannot receive more data. (If the user attempts to do so, the function blocks
indefinitely.) The transport user can, however, continue to send data until it
issuesthet sndr el function.

Seet _rcvrel (3) for more information.

Botht _sndrel andt _rcvrel return avalue of 0 upon successful
completion. Otherwise, they return avalue of -1, and t _errno is set to one
of the values described in Section 3.7. (For multithreaded applications,

t _errno isthread specific.)

X/Open Transport Interface 3-35

3.3.3.6 Deinitializing Endpoints

When you are finished using an endpoint, you deinitialize it by unbinding
and closing the endpoint with thet _unbi nd andt _cl ose functions.
Note that the steps described here for deinitializing an endpoint with
connection-oriented service are identical to those for connectionless service.

When you unbind the endpoint, you disable the endpoint so that the transport
provider no longer accepts requests for it. The syntax fort _unbi nd isas
follows:

t_unbind (fd);

In the preceding statement:

fd
Specifies the file descriptor of the endpoint.

Seet _unbi nd(3) for more information.

By closing the endpoint, you inform the transport provider that you are
finished with it and you free any library resources associated with the
endpoint.

You should call t _cl ose when the endpoint isin the T_UNBND state.
However, this function does not check state information, so it may be called
to close a transport endpoint from any state.

If you close an endpoint that is not in the T_UNBND state, the library
resources associated with the endpoint are freed automatically, and the file
associated with the endpoint is closed. If there are no other descriptorsin
this or any other process that references the endpoint, the transport
connection is broken.

To close the endpoint, issuethet _cl ose function. The syntax for
t _cl ose isasfollows:

t_close (fd),

In the preceding statement:

fd
Specifies the file descriptor of the endpoint.

Seet cl ose(3) for more information.

Botht _unbi nd andt _cl ose return avalue of 0 upon successful
completion. Otherwise, they return avalue of -1, and t _errno is set to one
of the values described in Section 3.7. (For multithreaded applications,

t _errno isthread specific.)

3-36 X/Open Transport Interface

3.3.4 Writing a Connectionless Application

This section describes the steps required to write a connectionless mode
application:

1. Initializing an endpoint
2. Transferring data
3. Deinitializing an endpoint

3.3.4.1 Initializing an Endpoint

Initializing an endpoint for connection-oriented and connectionless
applications is the same. See Section 3.3.3.1 for information on how to
initialize an endpoint for a CLTS application.

3.3.4.2 Transferring Data
The data transfer phase of connectionless service consists of the following:
» Sending data to other users
* Receiving data from other users
» Retrieving error information about previously sent data

Note that connectionless service:
» Does not support expedited data
* Reportsonly the T_UDERR, T_DATA, and T_GODATA events

Sending Data

Thet _sndudat a function can execute synchronously or asynchronously.
When executing synchronously, t _sndudat a returns control to the user
when the transport provider can accept another datagram. In some cases, the
function blocks for some time until this occurs. In asynchronous mode, the
transport provider refuses to send a new datagram if flow control restrictions
exist. Thet _sndudat a function returns an error of TFLOW, and you
must either try again later or issue thet | ook function to see when the flow
control restriction is lifted, which is indicated by the T_GODATA or
T_GOEXDATA events.

If you attempt to send a data unit before you activate the endpoint with the
t _bi nd function, the transport provider discards the data.

To send a data unit, issue thet _sndudat a function with the following
syntax:

t_sndudata (fd,unitdata);

X/Open Transport Interface 3-37

In the preceding statement:

fd
Specifies the file descriptor of the endpoint through which data is sent.

uni t dat a
Pointsto thet _uni t dat a structure.

Seet _sndudat a(3) for more information.

Thet _sndudat a function returns a value of 0 upon successful completion.
Otherwise, it returnsavalue of -1, and t _errno is set to one of the values
described in Section 3.7. (For multithreaded applications, t _errno is
thread specific.)

Receiving Data

When you call thet _r cvudat a function and data is available,

t _rcvudat a returns immediately indicating the number of octets received.
If datais not available, t _r cvudat a behaves differently depending on the
mode of execution, as follows:

* Synchronous mode

Thet _r cvudat a function blocks until either a datagram, error, or
signal isreceived. As an dternative to waiting fort _r cvudat a to
return, you can issue thet _| ook function periodically for the

T _GODATA event, and then issuet _r cvudat a to receive the data.

» Asynchronous mode

Thet _r cvudat a function returns immediately with an error. You then
must either retry the function periodically or poll for incoming data with
thet _I ook function.

To receive data, issue thet _r cvudat a function with the following syntax:

t_rcvudata (fd,unitdata,flags);

In the preceding statement:

fd
Specifies the file descriptor of the endpoint through which data is
received.

uni t dat a
Points to the data to be sent, which consists of the following fields:

e addr Returns the address of the sender.
e opt Returns any protocol-specific options that apply to the data.

3-38 X/Open Transport Interface

* ydat a Returns the data received.

fl ags
Indicates whether a complete data unit was received (no flag) or a
portion of a data unit was received (T_MORE flag).

Seet _r cvudat a(3) for more information.

Thet _r cvudat a function returns a value of 0 upon successful completion.
Otherwise, it returnsavalue of -1, and t _errno is set to one of the values
described in Section 3.7. (For multithreaded applications, t _errno is
thread specific.)

Retrieving Error Information

If you issue thet _| ook function and receive the T_UDERR event,
previousy sent data has generated an error. To clear the error and consume
the T_UDERR event, you should issue thet _r cvuderr function. This
function also returns information about the data that caused the error and the
nature of the error, if you want.

To receive an error indication with information about data, issue the
t _rcvuderr function with the following syntax:

t_rcvuderr (fd,uderr);

In the preceding statement:

fd
Specifies the file descriptor of the endpoint through which the error
report is received.

uderr
Points to thet _uder r structure, which identifies the error.

Seet rcvuderr (3) for more information.

Thet _rcvuderr function returns avalue of 0 upon successful completion.
Otherwise, it returnsavalue of -1, and t _errno is set to one of the values
described in Section 3.7. (For multithreaded applications, t _errnois
thread specific.)

3.3.4.3 Deinitializing Endpoints

Deinitializing an endpoint for connection-oriented and connectionless
applications is the same. See Section 3.3.3.6 for information on how to
deinitialize an endpoint for a connectionless application.

X/Open Transport Interface 3—-39

3.4 Phase-Independent Functions

XTI provides a number of functions that can be issued during any phase of
connection-oriented or connectionless service (except the uninitialized state)
and do not affect the state of the interface. Table 3-13 lists and briefly
describes these functions.

Table 3-13: Phase-Independent Functions

Function Description

t_getinfo Returns information about the characteristics of the transport
provider associated with the endpoint.

t _getprotaddr? Returnsthe protocol address.

t _getstate Returns the current state of the endpoint.

t_strerror? Produces and error message string.

t_sync Synchronizes the data structures managed by the transport
library with information from the transport provider.

t _alloc Allocates storage for a specified data structure.

t _ free Frees storage for a data structure that was previously
alocated by t _al | oc.

t_error Prints a message describing the last error returned by an XTI
function. (Optional)

t _I ook Returns the current event associated with the endpoint.

Table notes:

a Thisfunction is supported in XPG4 only.

Thet getinfo andt _get st at e functions can be useful for retrieving
important information. Thet _get i nf o function returns the same
information about the transport provider ast _open. It offers the advantage
that you can call it during any phase of communication, whereas you can call
t _open only during the initialization phase. If afunction returns the
TOUTSTATE error to indicate that the endpoint is not in the proper state,
you canissuet _get st at e to retrieve the current state and take action
appropriate for the state.

Thet _sync function can do the following:

» Synchronize data structures managed by the transport library with
information from the underlying transport provider.

3-40 X/Open Transport Interface

* Permit two cooperating processes to synchronize their interaction with a
transport provider.

Thet _al |l oc andt _fr ee functions are convenient for allocating and
freeing memory because you specify the names of the XTI structures rather
than information about their size. If youuset _all oc andt _freeto
manage the memory for XTI structures, and the structures change in future
releases, you will not need to change your program.

Witht _error you can print a user-supplied message (explanation) plus the
contents of ¢t _er r no to standard output.

Finally, t _| ook isan important function for retrieving the current
outstanding event associated with the endpoint. Typically, if an XTI function
returns TLOOK as an error to indicate a significant asynchronous event has
occurred, the transport user follows by issuing thet _| ook function to
retrieve the event. For more information about events, see Section 3.2.3.

3.5 Porting to XTI

3.5.1

This section provides the following:

» Guidelines for writing programs to XTI

e Information about XTI and TLI compatibility

» Information about rewriting sockets applications to use XTI

Protocol Independence and Portability

XTI was designed to provide an interface that is independent of the specific
transport protocol used. Y ou can write applications that can modify their
behavior according to any subset of the XTI functions and facilities
supported by each of the underlying transport providers.

Providers do not have to provide al the features of all the XTI functions.
Therefore, Application programmers should follow these guidelines when
writing XTI applications:

* Use only the functions that are commonly supported features of XTI.

If your application uses features that are not provided by all transport
providers, it may not be able to use them with some transport providers
or some XTI implementations.

For example, the orderly release facility (thet _sndrel andt _rcvrel
functions) is not supported by all connection-based transport protocols; in
particular it is not supported by 1SO protocols. If your application runs
in an environment with multiple protocols, make sure it does not use the
orderly release facility.

X/Open Transport Interface 3-41

As an alternative to using only the commonly supported features, write
your application so that it modifies its behavior according to the subset of
XTI functions supported by each transport provider.

* Do not assume that logical data boundaries are preserved across a
connection.

Some transport providers, such as TCP, do not support the concept of a
TSDU, so they ignore the T_MORE flag when used with thet _snd,
t _sndudata,t _rcv,andt_rcvudat a functions.

* Do not exceed the protocol-specific service limits returned on the
t _open andt _geti nf o functions.

Make sure your application retrieves these limits before transferring data
and adheres to the limits throughout the communication process.

* Do not rely on options that are protocol-specific.

Although the t _opt ngnt function allows an application to access the
default protocol options from the transport provider and pass them as an
argument to the connection-establishment function, make sure your
application avoids examining the options or relying on the existence of
certain ones.

» Do not interpret the reason codes associated with thet _r cvdi s
function or the error code associated with thet _r cvuder r function.

These codes depend on the underlying protocol so, to achieve protocol
independence, make sure your application does not attempt to interpret
the codes.

* Perform only XTI operations on the file descriptor returned by the
t _open function.

If you perform other operations, the results can vary from system to
system.

The following sections explain how to port applications from different
transport-level programming interfacesto XTI. Specifically, they discuss
how to port from the two most common transport-level programming
interfaces. Transport Layer Interface (TLI1), which many UNIX System V
applications use, and the 4.3BSD socket interface, which many Berkeley
UNIX applications use.

The information presented in the following sections presumes that you are
experienced at programming with TLI or sockets and that you understand
fundamental XTI concepts and syntax.

3-42 X/Open Transport Interface

3.5.2 XTIl and TLI Compatibility

This section discusses issues to consider before you recompile your TLI
programs and explains how to recompile them. As along-term solution,
Digital recommends that you use the XTI interface instead of the TLI
interface. As more applications and transport providers use XTI, you might
find it advantageous to do so as well.

XTI and TLI support the same functions, states, and modes of service. Note
that Digital UNIX provides shared library support by default when you link
an XTI or TLI application with the XTI or TLI library. For more
information on shared library support, see Section 3.2.2.

Before you recompile your TLI program, you should consider your
program’s current implementation of the following event management: The
System V UNIX operating system provides the pol | function as atool for
managing events. The Digital UNIX implementation of XTI supports the
pol | function, so if your application usesit, you can recompile. If your
program uses a unique mechanism for managing events, you should port that
mechanism to Digital UNIX or change to the polling mechanism provided
with Digital UNIX.

Because the Digital UNIX implementation of TLI is compatible at the source
level with AT&T TLI, you can recompile your TLI program with the Digital
UNIX TLI library using the following steps:

1. Make sure the TLI header file is included in your source code:
#include <tli/tiuser.h>

2. Recompile your application using the following command syntax:
cc -0 name name.c —ltli

If you decide to change your TLI application to an XTI application, be aware
of the following minor differences between TLI and XTI.

* InXTI,t _error isafunction of typei nt that returns an integer value
(O for success and -1 for failure), while in TLI, it is a procedure of type
voi d.

 In XTI, t _| ook does not support the T_ERROR event (asin TLI); it
returns -1 and thet _er r no instead.

» For the of I ag parameter of thet _open function, the O_ NDELAY
valuein TLI is known as the O NONBLOCK valuein XTI.

» XTI opens an endpoint with read-write access because most of its
functions require read-write access to transport providers. TLI opens with
read-only, write-only, or read-write access. Specifically, inthet _open
function, XTI uses the bitwise inclusive OR of O RDWR and
O_NONBLOCK asthe value of the of I ag parameter; TLI uses the

X/Open Transport Interface 3-43

bitwise inclusive OR of O_NDELAY and either O RDONLY,

O _WRONLY, or O RDWR. The O RDONLY and O WRONLY values
are not available in XTl; O_RDWR is the only valid value for access to
an endpoint.

e TLI assumes the transport provider has an automatic address generator;
XTI does not. If the transport provider does not have an automatic
address generator, XTI can return the proper error message if conflicting
requests are issued.

» XTI defines protocol-specific information for the TCP/IP and OS|
protocols. The Digital UNIX XTI implementation adds support for
protocol-specific options for STREAM S-based protocols; TLI does not
provide such information.

» XTI provides additional events to manage flow control, such as
T_GODATA and T_GOEXDATA; in TLI, you keep sending until
successful.

» XTI provides additional error messages to convey more precise error
information to applications. All functions that change the state of an
endpoint use the TOUTSTATE error to indicate the function was called
when the endpoint was in the wrong state. Some XTI functions return
the TLOOK error to indicate that an urgent asynchronous event occurred.
With TLI, you must call thet _| ook function explicitly before the
function or set asignal for the TLOOK event, which are less convenient.
The TBADQLEN error, returned when there are no queued connection
requests, prevents an application from waiting forever after issuing the
t _li st en function. Seethe XTI reference pages for more information
on error messages.

To make a TLI application atrue XTI application, do the following:

1. Include the XTI header file instead of the TLI header file in your source
code:

#i ncl ude <xti.h>

2. Make any changes or extensions to your program resulting from the
differences between TLI and XTI.

3. Recompile your application using the following command syntax:
cc —0 name name.c —Ixti

3-44 X/Open Transport Interface

3.5.3 Rewriting a Socket Application to Use XTI

This section explains the differences between the socket interface and XTI. It
assumes that your applications use the standard 4.3BSD socket interface and
does not account for any extensions or changes you have made to the socket
interface. See Appendix B for examples of both sockets and XTI servers and

clients.

Because it was designed eventually to replace the socket interface, XTI
shares many common functions with the socket interface. However, you
should be aware of any differences between it and your current socket
interface when rewriting an application for use with XTI.

XTI provides 25 functions. Of the 13 socket functions that map onto
corresponding XTI functions, 5 have subtle differences. Table 3-14 lists each
XTI function, its corresponding socket function (if one exists), and whether
the two functions share common semantics. Generally, socket calls pass
parameters by value, while most XTI functions pass pointers to structures
containing a combination of input and output parameters.

Table 3-14: Comparison of XTI and Socket Functions

XTI Function

t _accept

t _alloc

t _bind

t _close

t _connect
t_error

t free

t _getinfo
t_getstate
t listen
t | ook

t _open

t _opt ngmt

t_rcv
t _rcvconnect
t _rcvdis

Socket Function Shared Semantics

accept
bi nd

cl ose
connect

I'isten, accept
sel ect
socket

set sockopt,
get sockopt

recv

No

No
Yes
Yes

X/Open Transport Interface 3-45

Table 3-14: (continued)

XTI Function Socket Function Shared Semantics
t _rcvrel — —
t _rcvudata recvfrom Yes
t _rcvuderr — —
t _snd send Yes
t _snddis shut down No
t _sndrel — —
t _sndudat a sendt o Yes
t_sync — —
t _unbi nd — —
Table notes:

a. In XTI, thet | i st en function specifies the queue length parameter as
well as waiting for the incoming connection. In sockets, thel i st en
function only specifies the queue length parameter.

The XTI functions that do not share all semantics with their socket
counterparts have the following differences:

t _accept
Thet accept function takes the user-specified r esf d argument and
establishes a connection with the remote endpoint. In contrast, the
accept call from sockets asks the system to select the file descriptor to
which the connection will be established. Additionally, thet _accept
function is issued after a connection indication is received; therefore, it
does not block. Conversdly, the accept call isissued in anticipation
of a connect request and therefore may block until the connect request
occurs.

t _bind
XTI can bind one protocol address to many endpoints, while the socket
interface permits one address to be bound with only one socket.

t _| ook
Thet _| ook function returns the current event, which can be one of
nine possible events. T_LISTEN, T_CONNECT, T_DATA,
T_EXDATA, T_DISCONNECT, T_UDERR, T_OREREL,
T _GODATA, T_GOEXDATA. Thepol | function can be used to
monitor incoming events on a transport endpoint. Thesel ect call can
be used to see if a single descriptor is ready for read or write, or if an
exceptional condition is pending.

3-46 X/Open Transport Interface

t _snddis
Thet snddi s function initiates an abortive release on an established
connection or rejects a connection request. After an XTI program issues
thet _snddi s functions it can continue to listen for requests with the
t _|'i sten function or re-establish a connection with thet _connect
function. In sockets, once you shut down a connection with the
shut down and cl ose calls, the system automatically frees al local
resources that are allocated for this connection. Therefore, in order to
continue to listen for connections or establish a connection, the program
needs to reissue the socket and bi nd calls.

XTI and sockets both use a series of states to control the appropriate
sequence of calls, but each uses a different set of states. XTI states and
socket states do not share similar semantics. For example, XTI states are
mutually exclusive; socket states are not.

Few error messages are common among sockets and XTI. Table 3-15 lists
the socket error messages that have comparable XTI error messages.

Table 3-15: Comparison of Socket and XTI Messages

Socket Error XTI Error Description

EBADF TBADF Y ou specified an invalid file descriptor.

EOPNOTSUPP TNOTSUPPORT You issued afunction the underlying
transport provider does not support.

EADDRINUSE TADDRBUSY Y ou specified an address that is already
in use.

EACCES TACCES You do not have permission to use the
specified address.

Note

XTI and TLI are implemented using STREAMS. Y ou should
use the pol | function instead of the sel ect call on any
STREAMS file descriptors.

3.6 Differences Between XPG3 and XPG4

This section provides information on the differences between the XPG3 and
XPG4 implementation of XTI.

In earlier versions of Digital UNIX, the XTI implementation conformed to
X/Open's XPG3 specification. The current implementation conforms to

X/Open Transport Interface 3-47

3.6.1

3.6.2

SPEC1170's XTI (part of Networking Services specification) as well as
X/Open's XPG4 specification for XTI.

There are some changes in the specification of which you, as a programmer,
should be aware. This section outlines these differences and the related
programming issues.

Note that the implementation of Digital UNIX converges both XPG3 and
XPG4 versions of XTI in asingle subset. This section aso provides details
about the usage of the appropriate level of functionality.

In this manual, the terms SPEC1170 or SPEC1170 XTI are used to refer to
the implementation of XTI available in this version of Digital UNIX. The
terms XPG3 XTI refer to the implementation of XTI that conforms to
X/Open's XPG3 specification. Note that the latter can be available in the
current versions of Digital UNIX due to binary compatibility or source
migration features.

Major Differences

Most of the changes between the two specifications are upwardly compatible,
with the exception of thet _opt ngnt function.

The following is a quick summary of the basic changesin the XTI from
XPG3 to SPEC1170:

» Optiona functions were made mandatory. This does not affect the
Digital UNIX implementation of XTI, because Digital UNIX
implemented all the optiona functions in its XPG3 version of XTI.

* Many aspects of the XPG3 specification were clarified, which makes XTI
applications more portable.

» Some new error codes were added, ensuring better programmeatic
behavior.

» Options and management structures were revised to provide more control
over various aspects of communications.

The changesto thet _opt mgmt function are extensive and incompatible
with the XPG3 specification. In general, an application that uses the XPG3
implementation of thet _opt ngnt function cannot use thet _opt ngnt
function on a system running the XPG4 specification, without making some
modifications to the source.

Source Code Migration

If you have an application that was developed for XPG3 XTI, you have the
following choices to support it under Digital UNIX:

3-48 X/Open Transport Interface

* Usethe older binaries of the application; see Section 3.6.3.
* Recompile the unaltered sources.
» Make changes to the sources to comply with SPEC1170 XTI.

Which option you choose will depend on your situation. The following
sections describe these conditions in details.

3.6.2.1 Use the Older Binaries of your Application

This choice is appropriate if the sources and features of your application are
not going to change. It is useful to provide continued coverage by ensuring
that older releases of your products are still functional.

3.6.2.2 Unaltered Sources

This situation arises from minor changes due to correcting minor problems.
Therefore, there are no changes to the structure or features or the application.
In this case, you might want to compile the sources in the same manner as
XPG3 development environment. In that case, compile your source code
with the —-DXPG3 compiler switch. This ensures that the headers
automatically define the older features for you.

3.6.2.3 SPEC1170 Compliant Application

3.6.3

If you need to use the new features supported by SPEC1170 XTI, you will
have to make changes in your source code. Y ou cannot combine the features
from the XPG3 and SPEC1170 XTI. Therefore, if you have large
applications consisting of multiple files, you will need to recompile all files
with the new features, rather than just the few you might have changed.

Y ou need to compile your source code with the —DXOPEN_SOURCE
compiler switch. Additionally, you must ensure that the names of the
transport protocols (as provided through the streams device specia files asin
/ dev/ streans/ xti so/t cp) are updated to reflect the naming
convention used in SPEC1170 XTI. For example, the names

for TCP and UDP are/ dev/ st reans/ xti so/ t cp+ and

/ dev/ streamns/ xti so/ udp+. Check the reference manual

for the names for the other protocols.

Binary Compatibility

Application binaries developed with XPG3 XTI will run on systems running
the current version of Digital UNIX. However, there are certain conditions
of which you should be aware.

Under unusual circumstances, the errors in XPG3 programs may have been
masked due to the way in which the programs or libraries were compiled and

X/Open Transport Interface 3—49

3.6.4

3.6.5

3.6.6

linked. It isfeasible that the new implementation is able to flag such
conditions as errors. Since the error manifested is a programming error in
the application, you will have to correct it. The common programming errors
that may cause these errors are pointer overruns and uninitialized variables.

Another issue to consider is the availability of SPEC1170 features through
STREAMS specidl files. Thisis significant if your application accepts
command line input for the specifying transport protocol or imports the
protocol names from some configuration files. Since the system configured
with XTI will have the file names for SPEC1170-compliant protocols as well,
it isimportant to warn users and administrators that those special names
should not be used with applications running with binary-compatibility mode.
The results of such an action are undefined.

If you are planning to run an old applications without recompiling them,
check them for binary compatibility to avoid these problems.

Packaging

Systems running the current version of Digital UNIX and configured to run
XTI support both XPG3 and SPEC1170-compliant functionality. You cannot
run the XPG3 and SPEC1170 functionality separately. Therefore, you only
need to ensure that XTI subsystem is configured.

Interoperability

You can use the XPG3 and SPEC1170 versions of XTI on the same network.
If you are using compatible versions of your application, then the operation
should be transparent to users.

It is possible to of convert your application in simple steps, so that you have
some pieces that are XPG3 XTI compatible and some pieces that are
SPEC1170 compatible. The only thing you have to ensure is that
application-level protocol remains the same. Apart from that there will be no
issue for interoperability of these components. Therefore, if you have client
and server components of an application, you can choose to upgrade the
server component for SPEC1170 compliance, while the client component is
still operational in binary compatibility mode. Later on, once the server
functionality is updated satisfactorily, you can choose to update the client
software.

Using XTI Options
This section provides information on using XTI options in XPG4 and XPG3.

3-50 X/Open Transport Interface

3.6.6.1 Using XTI Options in XPG4
This section provides the following information on using XTI options:
* Genera information on using options
» Format of options
» Elements of negotiation
» Option management of transport endpoint

General Information

The following functions contain an opt argument of the type st r uct
net buf asan input or output parameter. This argument is used to convey
options between the transport user and the transport provider:

e t_accept
 t_connect

« t listen

+ t_optngnt

* t_rcvconnect
e t_rcvudata

e t_rcvuderr

* t_sndudata

There is no general definition about the possible contents of options. There
are general XTI options and those that are specific for each transport
provider. Some options allow you to tailor your communication needs; for
instance, by asking for high throughput or low delay. Others alow the fine-
tuning of the protocol behavior so that communication with unusual
characteristics can be handled more effectively. Other options are for
debugging purposes.

All options have default values. Their values have meaning to and are
defined by the protocol level in which they apply. However, their values can
be negotiated by atransport user. This includes the simple case where the
transport user can enforce its use. Often, the transport provider or even the
remote transport user can have the right to negotiate a value of lesser quality
than the proposed one, that is, a delay can become longer, or a throughput
may become lower.

It is useful to differentiate between options that are association-related and
those that are not. (Association-related means a pair of communication
transport users.) Association-related options are intimately related to the
particular transport connection or datagram transmission. |f the calling user

X/Open Transport Interface 3-51

specifies such an option, some ancillary information is transferred across the
network in most cases. The interpretation and further processing of this
information is protocol-dependent. For instance, in an 1SO connection-
oriented communication, the calling user can specify quality-of-service
parameters on connection establishment. These are first processed and
possibly lowered by the local transport provider, then sent to the remote
transport provider that may degrade them again, and finally conveyed to the
called user that makes the final selection and transmits the selected values
back to the caller.

Options that are not association-related do not contain information destined
for the remote transport user. Some have purely local relevance; for
example, an option that enables debugging. Others influence the
transmission; for instance, the option that setsthe IP ¢t/ ne-t o-1i ve field
or TCP_NODELAY. (Seethexti _i nt er net (7) reference page.) Local
options are negotiated solely between the transport user and the local
transport provider. The distinction between these two categories of options is
visible in XTI through the following relationship: on output, thet | i sten
andt _r cvudat a functions return association-related options only. The

t _rcvconnect andt _rcvuderr functions may return options of both
categories. On input, options of both categories may be specified with the

t _accept andt_sndudat a functions. Thet _connect and

t _opt ngnt functions can process and return both categories of options.

The transport provider has a default value for each option it supports. These
defaults are sufficient for the majority of communication relations.
Therefore, a transport user should only request options actually needed to
perform the task and leave all others at their default value.

This section describes the general framework for the use of options. This
framework is obligatory for transport providers. Thet _opt ngnt reference
page provides information on general XTI options. Thexti _i nt er net
reference page provides information on the specific options that are legal with
the TCP and UDP transport providers.

Format of Options

Options are conveyed through an opt argument of st ruct net buf .
Each option in the buffer specified is of the form st ruct t_opt hdr
possibly followed by an option value.

A transport provider embodies a stack of protocols. The / evel field of
struct t_opthdr identifiesthe XTI level or a protocol of the transport
provider as TCP or 1SO 8073:1986. The nane field identifies the option
within the level and the I en field contains the total length; that is the length
of the option header t _ophdr plus the length of the option value. The

st at us field is used by the XTI level or the transport provider to indicate
success or failure of a negotiation.

3-52 X/Open Transport Interface

Severa options can be concatenated; however, The transport user has to
ensure that each option starts at a long-word boundary. The macro
OPT_NEXTHDR(pbuf, buf | en, popt ons) can be used for that purpose.
The parameter pbuf denotes a pointer to an option buffer opt . buf and
bufl enisitslength. The parameter popt i on points to the current options
in the option buffer. OPT_NEXTHDR returns a pointer to the position of the
next option or returns a null pointer if the option buffer is exhausted. The
macro is helpful for writing and reading the option list.

Elements of Negotiation

This section describes the general rules governing the passing and retrieving
of options and the error conditions that can occur. Unless explicitly
restricted, these rules apply to all functions that allow the exchange of
options.

Multiple Options and Options Levels

When multiple options are specified in an option buffer on input, different
rules apply to the levels that may be specified, depending on the function
call. Multiple options specified on input tot _opt ngnt must address the
same option level. Options specified oninput tot _connect,t _accept,
andt sndudat a can address different levels.

lllegal Options

Only legal options can be negotiated; illegal options can cause failure. An
option isillega if the following applies:

» Thelength specified inthe t _opt hdr . | en parameter exceeds the
remaining size of the option buffer (counted from the beginning of the
option).

» Theoption valueisillegal. The legal values are defined for each option.
Seethet _opt ngnt (3) and xt i _i nt er net (7) reference pages.

If and illegal option is passed to XTI, the following will happen:
e Acdltothet _opt mgmt function failswith a TBADOPT error.

» Thet _accept ort_connect functionsfal with a TBADOPT error
or the connection establishment aborts, depending on the implementation
and the time the illegal option is detected. If the connection aborts, a
T_DISCONNECT event occurs and a synchronous call tot _connect
failswith a TLOOK error. It depends on timing and implementation
conditions whether at _accept function can still succeed or fail with a
TLOOK error in that case.

X/Open Transport Interface 3-53

« Acdltothet sndudat a function either fails with a TBADOPT error
or it successfully returns; but a T_UDERR event occurs to indicate that
the datagram was not sent.

If the transport user passes multiple options in one call and one of them is
illegal, the call fails as described previoudly. It is, however, possible that
some or even all of the submitted legal options were successfully negotiated.
The transport user can check the current status by a call to thet _opt ngnt
function with the T_CURRENT flag set. Seethet _opt ngnt (3) and

xti _i nt ernet (7) reference pages.

Specifying an option level unknown to or not supported by the protocol
selected by the option level does not cause failure. The option is discarded
incallstothet _connect,t_accept, ort _sndudat a functions. The
t _opngnt function returns T_NOTSULPORT in the / evel field of the
option.

Initiating an Option Negotiation

A transport user initiates an option negotiation when calling the
t _connect,t_sndudat a, ort _opt ngnt functions with the
T_NEGOTIATE flag set.

The negotiation rules for these functions depend on whether an option
request is an absolute requirement. This is explicitly defined for each option.
Seethet _opt ngnt (3) and xti _i nt er net (7) reference pages. In the
case of an 1SO transport provider, for example, the option that requests use of
expedited data is not an absolute requirement. On the other hand, the option
that requests protection could be an absolute requirement.

Note

The term absolute requirement originates from the quality-of-
service parametersin the 1SO 8072:1986 specification. Itsuseis
extended here to al options.

If the proposed option value is an absolute requirement, there are three
possible outcomes:

» The negotiated value is the same as the proposed one. When the result of
the negotiation is retrieved, the st at us field int _opt hdr isset to
T_SUCCESS.

» The negotiation is rejected if the option is supported but the proposed
value cannot be negotiated. This leads to the following:

— Thet _opt mgnt function successfully returns; but the returned
option hasiits st at us field set to T_FAILURE.

3-54 X/Open Transport Interface

— Any attempt to establish a connection aborts;, a T_DISCONNECT
event occurs and a synchronous call to thet _connect function fails
with a TLOOK error.

— Thet _sndudat a function fails with a TLOOK error or successfully
returns; but a T_UDERR event occurs to indicate that the datagram
was not sent.

If multiple options are submitted in one call and one of them is rejected,
XTI behaves as just described. Although the connection establishment or
the datagram transmission fails, options successfully negotiated before
some option was rejected retain their negotiated values. Thereis no roll-
back mechanism. See the Option Management of a Transport Endpoint
section for more information.

Thet _opt ngnt function attempts to negotiate each option. The
st at us fields of the returned options indicate success (T_SUCCESS) or
failure (T_FAILURE).

» If thelocal transport provider does not support the option at al, the
t _opt ngnt function reports T_NOTSULPORT in the st at us field.
Thet connect andt _sndudat a functions ignore this option.

If the proposed option value is not an absolute requirement, the following
outcomes are possible:

* The negotiated value is of equal or lesser quality than the proposed one;
for example, a delay may become longer.

When the result of the negotiation is retrieved, the st at us field in
t _opt hdr isset to T_SUCCESS if the negotiated value equals the
proposed one; otherwise, it is set to T_PARTSUCCESS.

» If thelocal transport provider does not support the option at all,
t _opt ngnt reports T_NOTSULPORT in the st at us field. The
t _connect andt _sndudat a functions ignore this option.

Unsupported options do not cause functions to fail or a connection to abort,
since different vendors possibly implement different subsets of options.
Furthermore, future enhancements of XTI might encompass additional
options that are unknown to earlier implementations of transport providers.
The decision whether or not the missing support of an option is acceptable
for the communication is left to the transport user.

The transport provider does not check for multiple occurrences of the same
options, possibly with different option values. It smply processes the
options in the option buffer sequentially. However, the user should not make
any assumption about the order of processing.

Not all options are independent of one another. A requested option value
might conflict with the value of another option that was specified in the same

X/Open Transport Interface 3-55

cal or is currently effective. See the Option Management of a Transport
Endpoint section for more information. These conflicts may not be detected
at once, but they might later lead to unpredictable results. If detected at
negotiation time, these conflicts are resolved within the rules stated above.
The outcomes may thus be quite different and depend on whether absolute or
nonabsolute requests are involved in the conflict.

Conflicts are usually detected at the time a connection is established or a
datagram is sent. If options are negotiated with thet _opt mgnt function,
conflicts are usually not detected at this time, since independent processing of
the requested options must allow for temporal inconsistencies.

When called, thet _connect, andt _sndudat a functions initiate a
negotiation of all association-related options according to the rules of this
section. Options not explicitly specified in the function calls themselves are
taken from an internal option buffer that contains the values of a previous
negotiation. See the Option Management of a Transport Endpoint section for
more information.

Responding to a Negotiation Proposal

In connection-oriented communication, some protocols give the peer
transport users the opportunity to negotiate characteristics of the transport
connection to be established. These characteristics are association-related
options. With the connect indication, the called user receives (through the
t _|'i st en function) a proposal about the option values that should be
effective for this connection. The called user can accept this proposal or
weaken it by choosing values of lower quality; for example, longer delays
than proposed. The called user can, of course, refuse the connection
establishment altogether.

The called user responds to a negotiation proposal using thet _accept
function. If the called transport user tries to negotiate an option of higher
quality than proposed, the outcome depends on the protocol to which that
option applies. Some protocols may reject the option, some protocols take
other appropriate action described in protocol-specific reference pages. If an
option is rejected, the following error occurs:

The connection fails, aT_DISCONNECT event occurs. In that case, whether
at _accept function can still succeed or fail with a TLOOK error depends
on timing and implementation conditions.

If multiple options are submitted with thet _accept function and one of
them is rejected, the connection fails as described previously. Options that
could be successfully negotiated before the erroneous option was processed
retain their negotiated value. Thereis no rollback mechanism. See the
Option Management of a Transport Endpoint section for more information.

3-56 X/Open Transport Interface

The response options can either be specified with thet _accept call or can
be preset for the responding endpoint (not the listening endpoint) resfdin a
t _opt ngnt call (action T_NEGOTIATE) prior to thet _accept call.
(See the Option Management of a Transport Endpoint section for more
information.) Note that the response to a negotiation proposal is activated
whenthet _accept functioniscaled. At _opt ngnt function call with
erroneous option values as described previously will succeed; the connection
aborts at thetime thet _accept function is called.

The connection also fails if the selected option values lead to contradictions.

Thet _accept function does not check for multiple specification of an
option. (See the Initiating an Option Negotiation section.) Unsupported
options are ignored.

Retrieving Information About Options

This section describes how a transport user can retrieve information about
options.

A transport user must be able to:

» Know the result of a negotiation; for example, at the end of a connection
establishment.

» Know the proposed option values under negotiation during connection
establishment.

» Retrieve option values sent by the remote transport user for notification
only; for example, IP options.

» Check option values currently in effect for the transport endpoint.

To this end, the following function take an output argument opt of the
struct netbuf:

* t_connect

« t listen

« t_optngnt

* t_rcvconnect

e t _rcvudata

e t_rcvuderr

The transport user has to supply a buffer to which the options will be written;
the opt . buf parameter must point to this buffer and the opt . max/ en
parameter must contain the buffer’s size. The transport user can set the

opt . maxl en parameter to zero to indicate that no options are to be
retrieved.

X/Open Transport Interface 3-57

Which options are returned depend on the function call involved:
* t_connect insynchronous modeandt _rcvconnect

The functions return the values of all association-related options that were
received with the connection response and the negotiated values of those
nonassociation-related options that had been specified on input.

However, options specified on input in thet _connect call that are not
supported or refer to an unknown option level are discarded and not
returned on outpuit.

The st at us field of each option returned with thet _connect or

t _rcvconnect function indicates if the proposed value (T_SUCCESS)
or a degraded value (T_PARTSUCCESS) has been negotiated. The

st at us field of received ancillary information (for example, | P options)
that is not subject to negotiation is always set to T_SUCCESS.

« t listen

The received association-related options are related to the incoming
connection (identified by the sequence number), not to the listening
endpoint. (However, the option values currently in effect for the listening
endpoint can affect the values retrieved by thet _| i st en function, since
the transport provider might also be involved in the negotiation process.)
Therefore, if the same options are specified in acall to thet _opt ngnt
function with action T_CURRENT, they will usually not return the same
values.

The number of received options may vary for subsequent connect
indications, since many association-related options are only transmitted
on explicit demand by the calling user; for example, 1P options or 1SO
8072:1986 throughput. It is even possible that no options at all are
returned.

The st at us field is irrelevant.
e t_rcvudata

The received association-related options are related to the incoming
datagram, not to the transport endpoint f d. Therefore, if the same
options are specified in acall to thet _opt ngnt function with action
T_CURRENT, thet _opt mgmt function will usualy not return the same
values.

The number of options received may vary from call to call.
The st at us fidd is irrelevant.
e t_rcvuderr

The returned options are related to the options input of the previous
t _sndudat a cal that produced the error. Which options are returned

3-58 X/Open Transport Interface

and which values they have depend on the specific error condition. The
St at us field isirrelevant.

t _opt mgnt
This call can process and return both categories of options. It acts on
options related to the specified transport endpoint, not on options related
to a connect indication or an incoming datagram. For more information,
seethet _opt ngnt (3) reference page.

Privileged and Read-Only Options

Only privileged users can request privileged options, or option values. The
meaning of privilege is hereby implementation-defined.

Read-only options serve for information purposes only. The transport user
may be allowed to read the option value but not to change it. For instance,
to select the value of a protocol timer or the maximum length of a protocol
data unit may be too subtle to leave to the transport user, though the
knowledge about this value might be of some interest. An option might be
read-only for all users or solely for nonprivileged users. A privileged option

might be inaccessible or read-only for nonprivileged users.

An option might be negotiable in some XTI states and read-only in other XTI
states. For instance, the 1SO quality-of-service options are negotiable in the
T_IDLE and T_INCON states, and read-only in all other states (except
T_UNINIT).

If atransport user requests negotiation of a read-only option, or a
nonprivileged user requests illegal access to a privileged option, the
following outcomes are possible:

Thet _opt mgnt function successfully returns, but the returned option
hasits st at us field set to T_NOTSULPORT if a privileged option was
requested illegally, and to T_READONLY if modification of a read-only
option was requested.

If negotiation of aread-only option is requested, thet _accept or

t _connect functions fail with TACCES or the connection
establishment aborts and a T_DISCONNECT event occurs. |If the
connection aborts, a synchronous call tot _connect fails with TLOOK.
If aprivileged option isillegally requested, the option is quietly ignored.
A nonprivileged user is not able to select an option that is privileged or
unsupported. Timing and implementation conditions determine whether a
t _accept cal ill succeeds or fails with TLOOK.

If negotiation of aread-only option is requested, thet _sndudat a
function may return TLOOK or successfully return, but a T_UDERR
event occurs to indicate that the datagram was not sent. If a privileged
option isillegally requested, the option is quietly ignored. A

X/Open Transport Interface 3-59

nonprivileged user cannot select an option that is privileged or
unsupported.

If multiple options are submitted to thet _connect,t _accept, or

t _sndudat a functions and a read-only option is rejected, the connection or
the datagram transmission fails as described. Options that could be
successfully negotiated before the erroneous option was processed retain their
negotiated values. Thereis no rollback mechanism. See the Option
Management of a Transport Endpoint section for more information.

Option Management of a Transport Endpoint

This section describes how option management works during the lifetime of a
transport endpoint.

Each transport endpoint is (logically) associated with an internal option
buffer. When a transport endpoint is created, this buffer is filled with a
system default value for each supported option. Depending on the option,
the default may be OPTION ENABLED, OPTION DISABLED, or denote a
time span, and so on. These default settings are appropriate for most uses.
Whenever an option value is modified in the course of an option negotiation,
the modified value is written to this buffer and overwrites the previous one.
At any time, the buffer contains all option values that are currently effective
for this transport endpoint.

The current value of an option can be retrieved at any time by calling the
t _opt ngnt function with the T_CURRENT flag set. Calling the

t _opt ngnt function with the T_DEFAULT flag set yields the system
default for the specified option.

A transport user can negotiate new option values by calling thet _opt ngnt
function with the T_NEGOTIATE flag set. The negotiation follows the rules
described in the Elements of Negotiation section.

Some options may be modified only in specific XTI states and are read-only
in other XTI states. Many association-related options, for instance, may not
be changed in the T_DATAXFER state, and an attempt to do so fails; see the
Privileged and Read-Only Options section. The legal states for each option
are specified with its definition.

As usual, association-related options take effect at the time a connection is
established or a datagram is transmitted. Thisis the case if they contain
information that is transmitted across the network or determine specific
transmission characteristics. If such an option is modified by a call to the
t _opt ngnt function, the transport provider checks whether the option is
supported and negotiates a value according to its current knowledge. This
value is written to the internal option buffer.

3-60 X/Open Transport Interface

The final negotiation takes place if the connection is established or the
datagram is transmitted. This can result in a degradation of the option value
or even in a negotiation failure. The negotiated values are written to the
internal option buffer.

Some options can be change in the T_DATAXFER state; for example, those
specifying buffer sizes. Such changes might affect the transmission
characteristics and lead to unexpected side effects; for example, data loss if a
buffer size was shortened.

The transport user can explicitly specify both categories of options on input
when calling thet _connect,t _accept, ort _sndudat a functions.
The options are at first locally negotiated option by option and the resulting
values written to the internal option buffer. The modified option buffer is
then used if a further negotiation step across the network is required; for
example, in connection-oriented 1SO communication. The newly negotiated
values are then written to the internal option buffer.

At any stage, a negotiation failure can cause the transmission to abort. If a
transmission aborts, the option buffer preserves the content it had at the time
the failure occurred. Options that could be negotiated before the error
occurred are written back to the option buffer, whether the XTI call fails or
succeeds.

It is up to the transport user to decide which option it explicitly specifies on
input when calling thet _connect,t_accept,ort _sndudat a
functions. The transport user need not pass options at all by setting the / en
field of the function’s input opt argument to zero (0). The current content
of the internal option buffer is then used for negotiation without prior
modification.

The negotiation procedure for options at the time of at _connect,

t _accept, ort_sndudat a call always obeys the rules in the Initiating an
Option Negotiation section whether the options were explicitly specified
during the call or implicitly taken from the internal option buffer.

The transport user should not make assumptions about the order in which
options are processed during negotiation.

A value in the option buffer is only modified as a result of a successful
negotiation of this option. It is, in particular, not changed by a connection
release. Thereis no history mechanism that would restore the buffer state
existing prior to the connection establishment of the datagram transmission.
The transport user must be aware that a connection establishment or a
datagram transmission may change the internal option buffer, even if each
option was originaly initialized to its default value.

X/Open Transport Interface 3-61

The Option Value T_UNSPEC

Some options may not aways have a fully specified value. An 1SO transport
provider, for instance, that supports several protocol classes might not have a
preselected preferred class before a connection establishment isinitiated. At
the time of the connection request, the transport provider may conclude from
the destination address, quality-of-service parameters, and other locally
available information which preferred class it should use. A transport user
asking for the default value of the preferred class option in the T_IDLE state
would get the value T_UNSPEC. This value indicates that the transport
provider did not yet select avalue. The transport user could negotiate
another value as the preferred class; for example, T_CLASS2. The transport
provider would then be forced to initiate a connect request with class 2 as the
preferred class.

An XTI implementation may also return the T_UNSPEC value if it currently
cannot access the option value. This can happen in the T_UNBND state in
systems where the protocol stacks reside on separate controller cards and not
in the host. The implementation may never return T_UNSPEC if the option
is not supported at all.

If T_UNSPEC isalega value for a specific option, it can be used on input,
aswell. Itisused to indicate that it is left to the provider to choose an
appropriate value. Thisis especially useful in complex options as SO
throughput, where the option value has an internal structure. The transport
user can leave some fields unspecified by selecting this value. If the user
proposes T_UNSPEC, the transport provider is free to select an appropriate
value. This might be the default value, some other explicit value, or
T_UNSPEC.

For each option, it is specified whether T_UNSPEC is alegal value for
negotiation purposes.

The info Argument

Thet open andt _get i nf o functions return values representing
characteristics of the transport provider in the i nf o argument. The value of
i nfo->optionsisused by thet _al | oc function to allocate storage for
an option buffer to be used in an XTI call. The value is sufficient for all
USES.

In genera, i nf o- >opt i ons aso includes the size of privileged options;
even if these are not read-only for nonprivileged users. Alternatively, an
implementation can choose to return different valuesin i nf o- >opt i ons
for privileged and nonprivileged users.

Thevaluesin i nf o- >et sdu, i nf o- >connect, and i nf o- >di scon
possibly diminish as soon asthe T_DATAXFER state is entered. Calling the

3-62 X/Open Transport Interface

t _opt ngnt function does not influence these values. For more
information, see thet _opt ngnt (3) reference page.

Portability Issues

An application programmer who writes XTI programs has the following
portability issues across the following:

* Protocol profiles
o Different system platforms

Options are intrinsically coupled with a definite protocol or protocol profile.
Therefore, explicit use of options degrades portability across protocol
profiles.

Different vendors might offer transport providers different option support.
This is due to different implementation and product policies. The lists of
options on the t _opt nmgnt (3) reference page and in the protocol -specific
reference pages are maximal sets, but do not necessarily reflect common
implementation practice. Vendors implement subsets that suit their needs.
Therefore, making careless use of options endangers portability across
different system platforms.

Every implementation of a protocol profile accessible by XTI can be used
with the default values of options. Applications can thus be written that do
not care about options at all.

An application program that processes options retrieved from an XTI
function should discard options it does not know to lessen its dependence
from different system platforms and future XTI releases with possibly
increased option support.

3.6.6.2 Negotiating Protocol Options in XPG3

The Digital UNIX XPG3 implementation of XTI provides an optional
function, t _opt ngnt , for retrieving, verifying, and negotiating protocol
options with transport providers. After you create an endpoint with t _open
and bind an address to it, you can verify or negotiate options with the
transport provider. To do so, issuethet _opt ngnt function, with the
following syntax:

t_optmgmt (fd,req,ret);

In the preceding statement:

fd
Identifies the file descriptor for the endpoint, which is returned by the
t _open function.

X/Open Transport Interface 3—63

req
Pointsto at _opt ngnt structure that sends protocol options to the
transport provider and requests actions of the transport provider.

ret
Pointsto at _opt ngnt structure that returns the valid protocol options
and the actions taken by the transport provider.

Both the r eq and r et arguments point to at _opt ngnt structure.

Note

Although other transport providers may support thet _opt ngnt
function, the Digital UNIX TCP transport provider does not. See
the transport provider documentation for information about
option management.

Seet _opt ngnt (3) for more information.

Thet _opt ngnt function returns a value of 0 upon successful completion;
otherwise, it returnsavalue of -1, and t _er r no is set to one of the values
described in Section 3.7. (For multithreaded applications, ¢ _errno is
thread specific.)

3.7 XTI Errors

XTI returns library errors and system errors. When an XTI function
encounters an error, it returns a value of -1, and can do one of the following:

» Check the external variable t _er r no to get the specific error. (For
multithreaded applications, t _er r no is thread specific.)

» Cdlthet _error function to print the text of the message associated
with the error stored in t _er r no.

» Check the state of the transport endpoint with thet _get st at e
function. Some errors change the state of the endpoint.
Note

Since a successful call to an XTI function does not clear the
contentsof t _errno, check t _errno only after an error
occurs.

3-64 X/Open Transport Interface

The <xt i . h> header file definesthe t _er r no variable as a macro as
follows:

#define t_errno(*_t_errno())

For more information on errors, see the individual XTI reference pages.

3.8 Configuring XTI Transport Providers

Use the xt i so kernel configuration option to configure XTI transport
providers. You can configure the xt i so option into your system at
installation time or you can add it to your system using the doconfi g
command. See the Installation Guide.

You can use the doconf i g command in one of the following ways:

» Usethedoconfi g command without options if you have not
customized your kernel. Without options the doconf i g command
creates a new kernel configuration file for your system.

» Usethedoconfi g —c command if you have customized your kernel
and you do not want to recustomizeit. Thedoconfi g —c command
allows you to add information to the existing kernel configuration file.

To use the doconf i g command without any options, do the following:

1. Enter the/ usr/ sbi n/ doconfi g command at the superuser prompt
#).

2. Enter aname for the kernel configuration file. It should be the name of

your system in al uppercase letters, and will probably be the default
provided in square brackets ([]). For example:

Enter a name for the kernel configuration file. [HOST1]:
RETURN

3. Enter y when the system asks whether you want to replace the system
configuration file. For example:

A configuration file with the nane ' HOST1' al ready exi sts.
Do you want to replace it? (y/n) [n]: vy
Savi ng /sys/conf/HOST1 as /sys/conf/HOST1. bck

*** KERNEL CONFI GURATI ON AND BUI LD PROCEDURE ***

4. Select the X/ Open Transport Interface (XTISO, TI MD,
TI RDWR) option from the Kernel Option Selection menu. Confirm your
choice at the prompt.

X/Open Transport Interface 3—65

For example:
*** KERNEL OPTI ON SELECTI ON ***

Sel ecti on Kernel Option
1 System V Devi ces
2 NTP V3 Kernel Phase Lock Loop (NTP_TI ME)
3 Ker nel Breakpoi nt Debugger (KDEBUG
4 Packetfilter driver (PACKETFILTER)
5 Poi nt -t 0- Poi nt Protocol (PPP)
6 STREAMS pckt nodul e (PCKT)
7 X/ Open Transport Interface (XTISO TIMD, TIRDUWR)
8 File on File File System (FFM
9 | SO 9660 Conpact Disc File System (CDFS)

10 Audit Subsystem

11 ACL Subsystem

12 Logi cal Storage Manager (LSM
13 Advanced Fil e System (ADVFS)
14 Al'l of the above

15 None of the above

16 Hel p

Enter the selection nunber for each kernel option you want.
For exanple, 1 3 [15]: 7

Enter the sel ection nunber for each kernel option you want.
For exanple, 1 3 : 7

You sel ected the foll owi ng kernel options:

X/ Open Transport Interface (XTISO TIMD, Tl RDWR)
Is that correct? (y/n) [y]: vy

Configuration file conplete.

5. Enter n when the doconf i g command asks whether you want to edit
the configuration file.

The doconf i g command then creates device special files, indicates
where alog of thefilesit created is located, and builds the new kernel.
After the new kernel is built, you must move it from the directory where
doconfi g placesit to the root directory (/) and reboot your system.

When you reboot, the st r set up —i command runs automatically,
creating the device special files for any new STREAMS modules.

6. Enter thestrset up —c command to verify that the device is
configured properly.

3-66 X/Open Transport Interface

The following example shows the output from the st r set up —c
command:

lusr/sbin/strsetup —c

STREAMS Configuration Information...Fri Nov 3 14:23:36 1995

Narme Type Maj or Mbdule ID

cl one 32 0

dl b devi ce 52 5010

ki nfo devi ce 53 5020

| og devi ce 54 44

nul s devi ce 55 5001
echo devi ce 56 5000

sad devi ce 57 45

pi pe devi ce 58 5304

xt i soUDP devi ce 59 5010
xti soTCP devi ce 60 5010
xt i soUDP+ devi ce 61 5010
xti soTCP+ devi ce 62 5010
ptm devi ce 63 7609

pts devi ce 6 7608

bba devi ce 64 24880

| at devi ce 5 5

pppi f nmodul e 6002
pppasync nmodul e 6000
pppconp nodul e 6001
buf cal | nodul e 0
nul | nmodul e 5002
pass nodul e 5003
errm nmodul e 5003

pt em nmodul e 5003
spass nmodul e 5007
rspass nmodul e 5008
pi penmod nmodul e 5303
tinod nodul e 5006
tirdw nmodul e 0
ldtty nmodul e 7701

Configured devices = 15, nmodules = 14

To usethedoconfi g —c command to add the XTISO option to the kernel
configuration file, do the following:

1. Enter thedoconfi g —c HOSTNAME command from the superuser
prompt (#). HOSTNAME is the name of your system in al uppercase

X/Open Transport Interface 3-67

letters. For example, for a system called host 1 you would enter:
doconfig —c HOST1

2. Add XTISO to the options section of the kernel configuration file.

Enter y at the prompt to edit the kernel configuration file. The
doconf i g command alows you to edit the configuration file with the
ed editor. For information about using the ed editor, see ed(1).

The following ed editing session shows how to add the XTISO option to
the kernel configuration file for host 1. The number of the line after
which you append the new line can differ between kernel configuration
files:

*** KERNEL CONFI GURATI ON AND BUI LD PROCEDURE ***

Savi ng /sys/ conf/HOST1 as /sys/conf/HOST1. bck
Do you want to edit the configuration file? (y/n) [n]: vy

Using ed to edit the configuration file. Press return when
ready, or type 'quit’ to skip the editing session:
2153

48a
options XTI SO

i, $w
2185
q

*** PERFORM NG KERNEL BUI LD ***
3. After the new kernel is built you must move it from the directory where
doconf i g placesit to the root directory (/) and reboot your system.

When you reboot, the st r set up —i command is run automatically,
creating the device specid files for any new STREAMS modules.

4. Runthestrsetup —c command to verify that the device is configured
properly.
The following example shows the output from the st r set up —c
command:

3-68 X/Open Transport Interface

lusr/sbin/strsetup —c

STREAMS Configuration Information...Fri Nov 3 14:23:36 1995

Narme Type Maj or Mbdule ID

cl one 32 0

dl b devi ce 52 5010

ki nfo devi ce 53 5020

| og devi ce 54 44

nul s devi ce 55 5001
echo devi ce 56 5000

sad devi ce 57 45

pi pe devi ce 58 5304

xt i soUDP devi ce 59 5010
xti soTCP devi ce 60 5010
xt i soUDP+ devi ce 61 5010
Xxti soTCP+ devi ce 62 5010
ptm devi ce 63 7609

pts devi ce 6 7608

bba devi ce 64 24880

| at devi ce 5 5

pppi f nmodul e 6002
pppasync nmodul e 6000
pppconp nmodul e 6001
buf cal | nodul e 0
nul | nmodul e 5002
pass nodul e 5003
errm nmodul e 5003

pt em nmodul e 5003
spass nmodul e 5007
rspass nmodul e 5008
pi penod nmodul e 5303
tinod nodul e 5006
tirdw nmodul e 0
ldtty nmodul e 7701

Configured devices = 15, nmodules = 14

For detailed information on reconfiguring your kernel or the doconfi g
command see the System Administration manual.

X/Open Transport Interface 3—69

Sockets 4

The Digital UNIX sockets programming interface supports the XPG4
standard and the Berkeley Software Distribution (BSD) socket programming
interface.

In Digital UNIX, sockets provide an interface to the Internet Protocol suite
(TCP/IP) and to the UNIX domain for interprocess communication on the
same system. However, you can use sockets to build network-based
applications that are independent of the underlying networking protocols and
hardware.

To use the XPG4 standard implementation in your program, you must
compile your program using the c89 compiler command. The examplesin
this chapter are based on the XPG4 standard. See Section 4.4 for
information on the differences between the XPG4 and the BSD interfaces.

This chapter contains the following information:

* Overview of the sockets framework

» Description of the application interface to sockets
* Information on how to use sockets

» Information on the BSD socket interfaces

» Explanation of common socket error messages

» Information about advanced topics

Figure 4-1 highlights the sockets framework and shows its relationship to the
rest of the network programming environment:

Figure 4-1: The Sockets Framework

Sockets
Application

user space

kernel space

ifnet layer

BSD driver

ZK-0560U-R

4.1 Overview of the Sockets Framework
The sockets framework consists of:

4-2 Sockets

A set of abstractions, such as communication domains and socket types,
that defines socket communication properties

A programming interface, or set of system and library calls, used by
application programs to access the socket framework

Kernel resources, including networking protocols, that application
programs access using system and library calls

Digital UNIX implements the Internet Protocol suite and UNIX domain
using sockets to achieve interprocess communication. |t also implements
BSD-based device drivers that are accessed using sockets system calls.

4.1.1 Communication Properties of Sockets

This section describes the abstractions and definitions that underlie sockets
communication properties.

41.1.1 Socket Abstraction

Sockets function as endpoints of communication. A single socket is one
endpoint; a pair of sockets constitutes a two-way communication channel that
enables unrelated processes to exchange data locally and over networks.

Application programs request the operating system to create a socket when
one is needed. The operating system returns a socket descriptor that the
program uses to reference the newly created socket for further operations.

Sockets have the following characteristics:
» Exist only as long as some process holds a descriptor referencing it.

» Arereferenced by descriptors and have qualities similar to those of a
character special device. Read, write, and select operations are performed
on sockets by using the appropriate system calls.

» Can be created in pairs or given names and used to rendezvous with other
sockets in a communications domain, accepting connections from these
sockets or exchanging messages with them.

Sockets are typed according to their communication properties. See Section
4.1.1.3 for a description of the available socket types.

41.1.2 Communication Domains

Communication domains define the semantics of communication between
systems whose hardware and software differ. Communication domains
specify the following:

» A set of protocols caled the protocol family
* A set of rules for manipulating and interpreting names
» A collection of related socket address formats (an address family)

The socket address for the Internet communication domain contains an
Internet address and a port number. The socket address for the UNIX
communication domain contains a local pathname.

See Section 4.2.3.4 for more information on socket-related data
structures.

Sockets 4-3

Digital UNIX provides default support for the following socket domainst:
* UNIX domain

Digital UNIX provides socket communication between processes running
on the same system when a domain of AF_UNIX is specified. In the
UNIX communication domain, sockets are named with UNIX pathnames,
suchas/ dev/ printer.

* [nternet domain

Digital UNIX provides socket communication between a process running
locally and one running on aremote host when a domain of AF_INET is
specified. This domain requires that TCP/IP be configured and running
on your system.

Table 4-1 summarizes the characteristics of the UNIX and Internet domains.

Table 4-1: Characteristics of the UNIX and Internet
Communication Domains

UNIX Internet

Socket Types SOCK_STREAM, SOCK_STREAM,

SOCK_DGRAM SOCK_DGRAM,
SOCK_RAW.

Naming String of ASCII 32-bit Internet address plus
characters, for example, 16-bit port number.
/dev/printer.

Security Process connecting to a Not applicable.
pathname must have write
access to it.

Raw Access Not applicable. Privileged process can access

the raw facilities of IP. Raw
socket is associated with one
IP protocol number, and
receives al traffic received for
that protocol.

1 Digital UNIX can also be configured to support the AF_DLI domain. For information about the Data
Link Interface and using the AF_DLI domain, see Appendix E.

4-4 Sockets

4.1.1.3 Socket Types

Each socket has an associated abstract type which describes the semantics of
communications using that socket type. Properties such as reliability,
ordering, and prevention of duplication of messages are determined by the
socket type. The basic set of socket types is defined in the

<sys/ socket . h> header file.

Note

Typically, header file names are enclosed in angle brackets (< >).
To obtain the absolute path to the header file, prepend
{usr/include/ totheinformation enclosed in the angle
brackets. Inthe case of <sys/ socket . h>, socket. his
located inthe/ usr /i ncl ude/ sys directory.

Within the UNIX and Internet domains you can use the following socket

types:
SOCK_DGRAM

SOCK_STREAM

Provides datagrams that are connectionless messages
of afixed maximum length where each message can
be addressed individually. This type of socket is
generally used for short messages because the order
and reliability of message delivery is not guaranteed.
An important characteristic of a datagram socket is
that record boundaries in data are preserved, so
individual datagrams are kept separate when they are
read.

Often datagrams are used for requests that require a
response or responses from the recipient, such as
with the f i nger program. If the recipient does not
respond in a specified period of time sending
application can repeat the request. The time period
varies with the communication domain.

In the UNIX domain, SOCK_DGRAM is similar to
a message queue. In the Internet domain,
SOCK_DGRAM is implemented using the User
Datagram Protocol (UDP).

Provides sequenced, two-way byte streams across a
connection with a transmission mechanism for out-
of-band data. The datais transmitted on areliable
basis, in order.

In the UNIX domain, SOCK_STREAM islike a
full-duplex pipe. In the Internet domain,
SOCK_STREAM is implemented using the
Transmission Control Protocol (TCP).

Sockets 4-5

SOCK_RAW Provides access to network protocols and interfaces.
Raw sockets are only available to privileged
processes.

A raw socket allows an application to have direct
access to lower-level communications protocols.
Raw sockets are intended for advanced users who
want to employ protocol features not directly
accessible through a normal interface, or who want
to build new protocols using existing lower-level
protocols. You can also use SOCK_RAW to
communicate with hardware interfaces.

Raw sockets are normally datagram-oriented, though
their exact characteristics depend on the interface
provided by the protocol. They are available only
within the Internet domain.

41.1.4 Socket Names

Sockets can be named, which allows unrelated processes on a system or
network to locate a specific socket and to exchange data with it. The bound
name is a variable-length byte string that is interpreted by the supporting
protocol or protocols. Its interpretation varies from communication domain
to communication domain. In the Internet domain, names contain an Internet
address and port number, and the family is AF_INET. In the UNIX domain,
names contain a pathname and the family is AF_UNIX.

Communicating processes are bound by an association. In the Internet
domain, an association comprises a protocol, local and foreign addresses, and
local and foreign ports. When a name is bound to a socket in the Internet
domain, the local address and port are specified.

In the UNIX domain, an association comprises local pathnames. Binding a
name to a socket in the UNIX domain means specifying a pathname.

In most domains, associations must be unique.

4.2 Application Interface to Sockets

The kernel implementation of sockets separates the networking subsystem
into the following three interacting layers.

» The socket layer which supplies the interface between the application
program and the lower layers, such as the Transmission Control Protocol
(TCP) or the User Datagram Protocol (UDP) and IP.

» The protocol layer which consists of transport layer protocols (TCP and
UDP) and network layer protocols (1P).

4-6 Sockets

42.1

* The device layer which consists of thei f net layer and the device
driver.

In addition to the abstractions described in Section 4.1.1, the socket interface
is comprises system and library calls, library functions, and data structures
that enable you to manipulate sockets and send and receive data.

Additionally, the kernel provides ancillary services to the sockets framework,
such as buffer management, message routing, standardized interfaces to the
protocols, and interfaces to the network interface drivers for use by the
various network protocols.

Modes of Communication

The sockets framework supports connection-oriented and connectionless
modes of communication. Connection-oriented communication means that
the application specifies a socket type in a communication domain that
supports a connection-oriented protocol. For example, an application could
open a SOCK_STREAM socket in the AF_INET domain. SOCK_STREAM
sockets in the AF_INET domain are supported by the TCP protocol, which is
a connection-oriented protocol.

Connectionless communication means that the application specifies a socket
type in a communication domain that supports a connectionless protocol. For
example, a SOCK_DGRAM socket in the AF_INET communication domain
is supported by the UDP protocol, which is a connectionless protacol.

42.1.1 Connection-Oriented Communication

TCP is the connection-oriented protocol implemented on Digital UNIX. TCP
is a reliable end-to-end transport protocol that provides for recovery of lost
data, transmission errors, and failures of intervening gateways. TCP ensures
accurate delivery of data by requiring that two processes be connected before
communicating. TCP/IP connections are often compared to telephone
connections. Data passed through a SOCK_STREAM socket in the
AF_INET domain is divided into segments and identified by sequence
numbers. The remote process acknowledges receipt of data by including
segquence numbers in the acknowledgement. |If dataislost enroute, it is
resent; thus ensuring that data arrives in the correct sequence to the
application.

For applications where large amounts of data are exchanged and the sequence
in which the data arrives is important, connection-oriented communication is
preferable. File transfer programs are a good example of applications that
benefit from the connection-oriented mode of communication offered by
TCP.

Sockets 4-7

42.1.2 Connectionless Communication

4.2.2

UDP is the connectionless protocol implemented on Digital UNIX. UDP
functions as follows:

» Deélivers messages based on the messages address information.
* Requires no connection between communicating processes

» Does not use acknowledgements to ensure that data arrives

» Does not order incoming messages

» Provides no feedback to control the rate at which data is exchanged
between hosts.

UDP messages can be lost, duplicated, or arrive out of order. UDP/IP
connections are often compared to the postal service.

Where small amounts of data are exchanged and sequencing is not vital,
connectionless communication works well. A good example of a program
that uses connectionless communication is the r whod daemon, which
periodically broadcasts UDP packets containing system information to the
network. It matters little whether or in what sequence those packets are
delivered.

UDP is also appropriate for applications that use |P multicast for delivery of
datagrams to a subset of hosts on alocal area network.

Client/Server Paradigm

The most commonly used paradigm in constructing distributed applications is
the client/server model. A server process offers services to a network; a
client process uses those services. The client and server require a well-
known set of conventions before services is rendered and accepted. This set
of conventions a protocol comprises that must be implemented at both ends
of a connection. Depending on the situation, the protocol can be
connection-oriented (asymmetric) or connectionless (Symmetric).

In a connection-oriented protocol, such as TCP, one side is always
recognized as the server and the other as the client. The server binds a
socket to a well-known address associated with the service and then passively
listens on its socket. The client requests services from the server by

initiating a connection to the server’s socket. The server accepts the
connection and then server and client can exchange data. An example of a
connection-oriented protocol application is Telnet.

In a connectionless protocol, such as UDP, either side can play the server or
client role. The client does not establish a connection with the server;
instead, it sends a datagram to the server’s address. Similarly, the server
does not accept a connection from a client. Rather, it issuesar ecvfrom
system call that waits until data arrives from a client. (See Section 4.3.6.)

4-8 Sockets

Structures

4.2.3 System Calls, Library Calls, Header Files, and Data

This section lists the system and library calls that the socket layer comprises.
It also lists the header files that define socket-related constants and structures,
and describes some of the most important data structures contained in those

header files.

4.2.3.1 Socket System Calls

Table 4-2 lists the socket system calls and briefly describes their function.
Note that each call has an associated reference page by the same name.

Table 4-2: Socket System Calls

System Call

accept

bi nd
connect

get peer nane
get socknane
get sockopt
listen

recv

recvfrom

recvmsg

send

sendnsg

Description

Accepts a connection on a socket to create a new
socket.

Binds a name to a socket.

Initiates a connection on a socket.

Gets the name of the connected peer.

Gets the socket name.

Gets options on sockets.

Listens for socket connections and specifies the
maximum number of queued requests.

Receives messages, peeks at incoming data, and
receives out-of-band data.

Receives messages. Has all of the functions of the
r ecv cdl, plus supplies the address of the peer
process.

Receives messages. Has all of the functions of the

recv and r ecvfromecalls, plus receives specially
interpreted data (access rights), and performs scatter
1/O operations on message buffers.

Sends messages. Also sends out-of-band data and
normal data without network routing.

Sends messages. Has all of the functions of the
send and sendt o calls, plus transmits specially
interpreted data (access rights), and performs gather
1/O operations on message buffers.

Sockets 4-9

Table 4-2: (continued)

System Call Description

sendt o Sends messages. Has al of the functions of the
send call, plus supplies the address of the peer
process.

set sockopt Sets socket options.

shut down Shuts down all socket send and receive operations.

socket Creates an endpoint for communication and returns a
descriptor.

socket pai r Creates a pair of connected sockets.

4.2.3.2 Socket Library Calls

Application programs use socket library calls to construct network addresses
for use by the interprocess communications facilities in a distributed
environment.

Network library subroutines map the following items:

* Host names to network addresses

* Network names to network numbers

» Protocol names to protocol humbers

e Service names to port numbers

Additional socket library calls exist to simplify manipulation of hames and
addresses.

An application program must include the <net db. h> header file when
using any of the socket library calls.

Host Names

Application programs use the following network library routines to map
Internet host names to addresses:

e get host bynane
e get host byaddr

The get host bynane routine takes an Internet host name and returns a
host ent structure, while the get host byaddr routine maps Internet host

4-10 Sockets

addresses into ahost ent structure. The host ent structure consists of the
following components:

struct hostent {

char *h_nane; /* official name of host */

char **h_ali ases; /* alias list */

int h_addrtype; /* host address type (e.g., AF_INET) */
int h_length; /* length of address */

char **h_addr_list; /* list of addresses, null term nated
first address, network byte order */
#define h_addr h_addr_list[0]

H

The get host byaddr and get host bynane subroutines return the
official name of the host and its public aliases, along with the address family
and a null terminated list of variable-length addresses. This list of addresses
is required because it is possible for a host to have many addresses with the
same name.

The database for these callsisthe / et ¢/ host s file. If the named name
server is running, the hosts database is maintained on a designated server on
the network. Because of the differences in the databases and their access
protocols, the information returned can differ. When using the

/ et c/ host s version of get host bynane, only one address is returned,
but all listed aliases are included. The named version can return aternate
addresses, but does not provide any aliases other than one given as a
parameter value.

Network Names

Application programs use the following network library routines to map
network names to numbers and network numbers to names:

e getnet byaddr

* get net byname

e getnetent

The get net byaddr, get net bynane, and get net ent routines extract

their information from the / et ¢/ net wor ks file and return a net ent
structure, as follows:

struct netent {

char *n_nane; /* official nane of net */

char **n_aliases; /* alias list */

int n_addrtype; /* net address type */

i n_addr _t n_net; /* network nunber, host byte order */

b

Sockets 4-11

Protocol Names

Application programs use the following network library routines to map
protocol names to protocol numbers:

* get prot obynunber

e get protobynane

* getprotoent

The get pr ot obynunber, get pr ot obynane, and get pr ot oent

subroutines extract their information from the / et ¢/ pr ot ocol s fileand
return the pr ot oent entry, as follows:

struct protoent {

char *p_nane; [* official protocol nane */
char **p_aliases; /* alias list */
int p_proto; /* protocol nunber */

Service Names

Application programs use the following network library routines to map
service hames to port numbers:

e getservbynane
» getservbyport
e getservent

A serviceis expected to reside at a specific port and employ a particular
communication protocol. This view is consistent with the Internet domain,
but inconsistent with other network architectures. Further, a service can
reside on multiple ports. If this occurs, the higher-level library routines must
be bypassed or extended. Services available are contained in the

/ et c/ services file. A service mapping is described by the ser vent
structure, as follows:

struct servent {

char *s_nane; /* official service name */

char **s_aliases; /* alias list */

int s_port; /* port nunber, network byte order */
char *s_proto; /* protocol to use */

}s

The get ser vbynane routine maps service names to aser vent structure
by specifying a service name and, optionally, a qualifying protocol. Thus,
the following call returns the service specification for a Telnet server by

4-12 Sockets

using any protocol:
sp = getservbynanme("telnet", (char *) NULL);

In contrast, the following call returns only the Telnet server that uses the
TCP protocol:

sp = getservbynane("telnet", "tcp");

The get servbyport and get servent routines are also provided. The
get servbyport routine has an interface similar to that provided by

get ser vbynarne; an optiona protocol name can be specified to qualify
lookups.

Network Byte Order Translation

When you have to create or interpret Internet Protocol (IP) suite datain your
program, standard methods exist for conversion. The IP suite ensures
consistency by requiring particular data formats. Digital UNIX provides
functions that let a program convert data to and from those formats.
Additionally, the Internet Protocol suite assumes that the most significant
byte is in the lowest address, a format known as big-endian. Functions are
available to convert from network-byte order to host-byte order and vice
versa

Four functions ensure that data passed by your program is interpreted
correctly by the network and vice versa:

 htonl
e htons
* ntohl
e ntohs

Application programs use the following related network library routines to
manipulate Internet address strings and 32-bit address quantities:

e inet_addr

* inet_| naof

* inet_nakeaddr

* inet_netof

* inet_network

e inet_ntoa

Table 4-3 lists and briefly describes the socket library calls. Note that each

call has an associated reference page by the same name. The socket library
calsarepart of | i bc, so thereis no need to link in a specia library.

Sockets 4-13

Table 4-3: Socket Library Calls

Name

endhost ent
endnet ent
endpr ot oent
endser vent
get host byaddr

get host bynane

get host ent

get net byaddr
get net bynane

get net ent

get pr ot obynane
get pr ot obynunber

get pr ot oent

get ser vbynane
get servbyport

get servent

ht onl

4-14 Sockets

Description

Ends a series of host entry lookups.
Ends a series of network entry lookups.
Ends a series of protocol entry lookups.
Ends a series of service entry lookups.

Given the address of a host, retrieves the host entry
from either the name server (named) or the
/ et ¢/ host s file.

Given the name of a host, retrieves the host entry
from either the name server (named) or the
/ et c/ host s file.

Retrieves the next host entry from either the name
server (naned) or the/ et ¢/ host s file, opening
this file if necessary.

Given the address of a network, retrieves the
network entry from the/ et ¢/ net wor ks file.

Given the name of a network, retrieves the network
entry from the / et ¢/ net wor ks file.

Retrieves the next network entry from the
/ et ¢/ net wor ks file, opening this file if
necessary.

Given the protocol name, retrieves the protocol entry
fromthe/ et c/ pr ot ocol s file.

Given the protocol number, retrieves the protocol
entry from the / et ¢/ pr ot ocol s file.

Retrieves the next protocol entry from the

[et c/ protocol s file, opening thisfile if
necessary.

Given the name of a service, retrieves the service
entry from the / et c/ ser vi ces file.

Given the port number of a service, retrieves the
service entry from the / et ¢/ ser vi ces file.

Retrieves the next service entry from the
/ et c/ servi ces file, opening thisfile if
necessary.

Converts a 32 hit integer from host-byte order to
Internet network-byte order.

Table 4-3: (continued)

Name

ht ons

i net _addr

i net | naof

i net _nakeaddr
i net_ntoa

i net _net of

i net _networ k

nt ohl
nt ohs

set host ent
set net ent
set pr ot oent
set servent

4.2.3.3 Header Files

Description
Converts an unsigned short integer from host-byte
order to Internet network-byte order.

Breaks apart a character string representing numbers
expressed in the Internet standard dot (.) notation,
and returns an Internet address.

Breaks apart an Internet host address and returns the
local network address.

Constructs an Internet address from an Internet
network number and alocal network address.

Trandates an Internet integer address into a dot-
formatted character string.

Breaks apart an Internet host address and returns the
network number.

Breaks apart a character string representing numbers
expressed in the Internet standard dot (.) notation,
and returns an Internet network number.

Converts a 32 hit integer from Internet network
standard-byte order to host-byte order.

Converts an unsigned short integer from Internet
network-byte order to host-byte order.

Begins a series of host entry lookups.
Begins a series of network entry lookups.
Begins a series of protocol entry lookups.
Begins a series of service entry lookups.

Socket header files contain data definitions, structures, constants, macros, and
options used by the socket system calls and subroutines. An application
program must include the appropriate header file to make use of structures or
other information a particular socket system call or subroutine requires.
Table 4-4 lists commonly used socket header files.

Sockets 4-15

Table 4-4: Header Files for the Socket Interface

File Name Description

<sys/socket. h> Contains data definitions and socket structures. You
need to include this file in all socket applications.

<sys/types. h> Contains data type definitions. Y ou need to include
thisfile in all socket applications. This header file is
included in <sys/ socket . h>.

<sys/un. h> Defines structures for the UNIX domain. Y ou need
to include this file in your application if you plan to
use UNIX domain sockets.

<netinet/in.h> Defines constants and structures for the Internet
domain. You need to include this file in your
application if you plan to use TCP/IP in the Internet
domain.

<net db. h> Contains data definitions for socket subroutines.
Y ou need to include this file in your application if
you plan to use TCP/IP and need to look up host
entries, network entries, protocol entries, or service
entries.

4.2.3.4 Socket Related Data Structures
This section describes the following data structures:
e sockaddr
* sockaddr_in
* sockaddr _un
* nsghdr
The sockaddr structures contain information about a socket’s address

format. Because the communication domain in which an application creates
a socket determines its address format, it also determines its data structure.

Socket address data structures are defined in the header files described in
Section 4.2.3.3. Which header file is appropriate depends on the type of
socket you are creating. The possible types of socket address data structures
are as follows:

struct sockaddr
Defines the generic version of the socket address structure. These
sockets are limited to 14 bytes of direct addressing. The

4-16 Sockets

<sys/ socket . h> file contains the sockaddr structure, which
contains the following elements:

unsi gned char sa_l en; /* total length */
sa_famly_t sa_famly; /* address famly */
char sa_dat a[14] ; /* actually | onger;

address val ue */

Thesa_| en parameter defines the total length. Thesa_fami |y
parameter defines the socket address family or domain, which is
AF_UNIX for the UNIX domain or AF_INET for the Internet domain.
The contents of sa_dat a depend on the protocol in use, but generally
a socket name consists of a machine-name part and a port-name or
service-name part.

struct sockaddr _un
Defines UNIX domain sockets used for communications between
processes on the same machine. These sockets require the specification
of afull pathname. The <sys/ un. h> header file contains the
sockaddr _un structure. Thesockaddr _un structure contains the
following elements:

unsi gned char sun_l en; /* sockaddr |en including null*/
sa_famly_t sun_famly; /[* AF_UN X, address fam|y*/
char sun_path[]; /* path nane */

UNIX domain protocols (AF_UNIX) have socket addresses up to
PATH_MAX plus 2 byteslong. The PATH_MAX parameter defines
the maximum number of bytes of the pathname.

struct sockaddr _in
Defines Internet domain sockets used for machine-to-machine
communication across a network and local interprocess communication.
The<neti net /i n. h> file contains the sockaddr _i n structure.
The sockaddr _i n structure contains the following elements:
unsi gned char sin_len;
sa_famly_t sin_famly;
in_port_t sin_port;
struct in_addr sin_addr;
The Internet networking routines only support 16-byte structures.
Sockets created in the Internet domain (AF_INET), therefore, have
socket addresses that do not exceed 16 bytes.

The msghdr data structure, which is defined in the <sys/ socket . h>
header file, allows applications to pass access rights to system-maintained
objects (such asfiles, devices, or sockets) using the sendnsg and r ecvinsg
system calls. (See Section 4.3.6 for information on the sendnsg and
recvneg system calls.) The processes transmitting data must be connected
with a UNIX domain socket.

Sockets 4-17

The data structure also allows AF_INET sockets to receive certain data. See
the descriptions of the IP_ RECVDSTADDR and IP_RECVOPTS options in
the i p(7) reference page.

The nsghdr data structure consists of the following components:
struct msghdr {

voi d *msg_nane; /* optional address */

size_t nsg_nanel en; /* size of address */

struct iovec *meg_i ov; /* scatter/gather array */

int nsg_i ovl en; /* # elenments in msg_iov */

voi d *msg_control; /* ancillary data, see below */
size_t nsg_controllen; /* ancillary data buffer len */
int msg_f Il ags; /* flags on received nmessage */

b

In addition to the XPG4 nsghdr data structure, Digital UNIX also supports
the 4.3BSD and the 4.4BSD versions of this data structure. The BSD
versions of the meghdr data structure are described in greater detail in
Section 4.4.

4.3 Using Sockets

This section outlines the steps required to create and use sockets.
Connection-oriented and connectionless modes of communication are
described in the following sections:

» Creating sockets

Describes how to create a socket with the socket and socket pai r
system calls.

* Binding names and addresses

Describes how to bind a name and address to a socket with the bi nd
system call.

» Establishing connections (clients)

Describes how to use the connect system call on aclient to connect to
aserver.

» Accepting connections (servers)

Describes how to usethe | i st en and accept system calls to connect a
server to aclient.

e Setting and getting socket options

Describes how to use the set sockopt and get sockopt system cals
to set and retrieve the values of socket characteristics.

» Transferring data

Describes how to usether ead and wri t e system calls, as well as the
send and r ecv related system calls to transmit data.

4-18 Sockets

e Shutting down sockets

Describes how to use the shut down system call to shut down a socket.
» Closing sockets

Describes how to use the cl ose system call to close a socket.

4.3.1 Creating Sockets

The first step in using sockets is creating a socket. Sockets are opened, or
created, with the socket or socket pai r system cals.

The syntax of the socket system call is as follows:
s = socket (domain, type, protocol);

In the preceding statement:

donai n
Specifies the communication domain; for example AF_UNIX or
AF_INET.

type
Specifies the socket type as SOCK_STREAM, SOCK_DGRAM, or
SOCK_RAW.

prot ocol
Specifies the transport protocol, such as TCP or UDP. If prot ocol is
specified as zero (0), the system selects an appropriate protocol from
those protocols that the communication domain comprises and that can
be used to support the requested socket type.

See socket (2) for more information.

The socket cal returns a socket descriptor, s, which is an a nonnegative
integer that the application program uses to reference the newly created
socket in subsequent system calls. The socket descriptor returned is the
lowest unused number available in the calling process for such descriptors
and is an index into the kernel descriptor table.

For example, to create a stream socket in the Internet domain, you can use
the following call:

if ((s = socket (AF_I NET, SOCK STREAM 0)) == -1) {
fprintf(filel, "socket() failed\n");
| ocal _flag = FAI LED,

}

This call results in the creation of a stream socket with the TCP protocol
providing the underlying communication support. To create a datagram

Sockets 4-19

socket in the UNIX domain, you can use the following call:

if ((s = socket (AF_UNI X, SOCK_DGRAM 0)) == -1) {
fprintf(filel, "socket() failed\n");
| ocal _flag = FAI LED,

}

This call results in the creation of a datagram socket with a UNIX domain
protocol providing the underlying communication support.

The socket pai r system call can also be used to create sockets. The
socket pai r system call creates an unnamed pair of sockets that are
already connected. The syntax of the socket pai r system call is as
follows:

socketpair (domain, type, protocol, socket vector2]);

In the preceding statement:

domai n
Specifies the communication domain. An application using the
socket pai r system call must specify AF_UNIX.

type
Specifies the socket type. Can be SOCK_DGRAM or
SOCK_STREAM.

prot ocol
Specifies the optional identifier used to define the transport protocol.
The value of this variable is always zero (0).

socket _vector| 2]
Specifies a two-integer array used to define the file descriptors of the
socket pair.

See socket pai r (2) for more information.

The socket pai r system call returns a pair of socket descriptors, which are
a nonnegative integers, that the application uses to reference the newly
created socket pair in subsegquent system calls.

The following example shows how to create a socket pair:
{

i n.t sv[2];

4-20 Sockets

if ((s = socketpair (AF_UNI X, SOCK_STREAM 0, sv)) < 0) {
| ocal _fl ag=FAl LED;
fprintf(filel, "socketpair() failed\n");

4.3.1.1 Setting Modes of Execution

Sockets can be set to blocking or nonblocking 1/0 mode. The
O_NONBLOCK fcnt | operation is used to determine this mode. When
O_NONBLOCK isclear (not set), which is the default, the socket isin
blocking mode. In blocking mode, when the socket triesto do ar ead and
the data is not available, it waits for the data to become available.

When O_NONBLOCK is set, the socket is in nonblocking mode. In
nonblocking mode, when the calling processtriesto do ar ead and the data
is not available, the socket returns immediately with the EWOULDBLOCK
error code. It does not wait for the data to become available. Similarly,
during writing, when a socket has O NONBLOCK set and the output queue
is full, an attempt by the socket to wr i t e causes the process to return
immediately with an error code of EWOULDBLOCK.

The following example shows how to mark a socket as nonblocking:
#i nclude <fcntl. h>

int s;

if (fentl (s, F_SETFL, O _NONBLOCK) < 0)
perror("fcntl F_SETFL, O _NONBLOCK");
exit(1);

}

When performing nonblocking I/O on sockets, a program must check for the
EWOULDBLOCK error, which is stored in the global value err no. The
EWOULDBLOCK error occurs when an operation normally blocks, but the
socket on which it was performed is marked as nonblocking. The following
socket system calls al return the EWOULDBLOCK error code:

* accept
e connect
e send

Sockets 4-21

e sendto

e sendnsg

* recv

e recvfrom

* recvmnsg
e read
e Wite

Processes that use these system calls on nonblocking sockets must be
prepared to deal with the EWOULDBLOCK return codes.

When an operation, such as asend, cannot be completed but partial writes
are permissible (for example, when using a SOCK_STREAM socket), the
data that can be sent immediately is processed, and the return value indicates
the amount of data actually sent.

4.3.2 Binding Names and Addresses

The bi nd system call associates an address with a socket. The domain for
the socket is established with the socket system call. Regardiess of the
domain in which the bi nd system call is used, it allows the local process to
fill in information about itself, for example, the local port or local pathname.
This information allows the server application to be located by a client
application.

The syntax for the bi nd system call is as follows:
bind (s, *address, address_len);

In the preceding statement:

S
Specifies the socket descriptor.

*address
Specifies a pointer to a protocol -specific address structure.

address | en
Specifies the size of the addressin *addr ess.

The following example shows how to use the bi nd system call on a

4-22 Sockets

SOCK_STREAM socket created in the Internet domain:
#def i ne PORT 3000

int retval ; /* General return value */
int sl_descr; /* Socket 1 descriptor */

struct sockaddr _in sockladdr; /* Address struct for socketl.*/

sl _descr = socket (AF_INET, SOCK_STREAM 0);
if (sl_descr < 0) /* Call failed */

bzero(&sockladdr, sizeof(sockladdr));

sockladdr.sin_famly = AF_I NET;
sockladdr. si n_addr.s_addr = | NADDR_ANY;
sockladdr. sin_port = ht ons(PORT) ;

retval = bind (sl_descr, (struct sockaddr *) &sockladdr, sizeof(sockladdr));
if (retval < 0) /* Call failed */

See Section 4.6.2 and bi nd(2) for more information.

4.3.3 Establishing Connections

Sockets are created in the unconnected state. Client processes use the
connect system call to connect to a server process or to store a server’s
address locally, depending on whether the communication is connection-
oriented or connectionless. For the Internet domain, the connect system
call typically causes the local address, local port, foreign address, and foreign
port of an association to be assigned.

The syntax of the connect system call depends on the communication
domain. The syntax of the connect system call is as follows:

connect (s, *address, address_len);

In the preceding statement:

S
Specifies the socket descriptor.

*address
Specifies the server’s address to which the client wants to connect.

address_| en
Specifies the size, in bytes, of the address of the server.

Sockets 4-23

An error is returned if the connection was unsuccessful; any hame
automatically bound by the system remains, however. Common errors
associated with sockets are listed in Table 4-5 in Section 4.5. If the
connection is successful, the socket is associated with the server and data
transfer begins.

See connect (2) for more information.

Selecting a connection-oriented protocol in the Internet domain means
choosing TCP. In such cases, the connect system call builds a TCP
connection with the destination, or returns an error if it cannot. Client
processes using TCP must call the connect system call to establish a
connection before they can transfer data through a reliable stream socket
(SOCK_STREAM).

Selecting a connectionless protocol in the Internet domain means choosing
UDP. Client processes using connectionless protocols do not have to be
connected before they are used. If connect is used under these
circumstances, it stores the destination (or server) address locally so that the
client process does not need to specify the server’s address each time a
message is sent. Any data sent on this socket is automatically addressed to
the connected server process and only data received from that server process
is delivered.

Only one connected address is permitted at any time for each socket; a
second connect system call changes the destination address and a
connect system cal to a null address (address INADDR_ANY) causes a
disconnect. Theconnect system call on a connectionless protocol returns
immediately, since it results in the operating system recording the server’s
socket’ s address (as compared to a connection-oriented protocol, where a
connect request initiates establishment of an end-to-end connection).

While a socket using a connectionless protocol is connected, errors from
recent send system calls can be returned asynchronously. These errors can
be reported on subsequent operations on the socket. A special socket option,
SO_ERROR (used with the get sockopt system call), can be used to query
the error status. A sel ect system call, issued to determine when more data
can be sent or received, will return true when a process has received an error
indication.

In any case, the next operation will return the error and clear the error status.
The syntax of the sel ect system call is as follows:

select (nfds, *readfds, *writefds, *exceptfds, *timeout);

4-24 Sockets

4.3.4

In the preceding statement:

nfds
Specifies the number of bits that represent open object file descriptors
ready for reading or writing, or that have an exception pending.

*readfds and *wri t efds
Point to an 1/0O descriptor set consisting of file descriptors of objects
open for reading or writing.

*except fds
Points to an 1/O descriptor set consisting of file descriptors for objects
opened for reading or writing that have an exception pending.

*ti nmeout
Pointsto atypeti meval structure that specifies the time to wait for a
responseto asel ect function.

See sel ect (2) for more information.

The following is an example of the sel ect system call:
if ((ret_val = select(20, & ead_mask, NULL, NULL, & p)) !'=i)

Accepting Connections

A connection-oriented server process normally listens at a well-known
address for service requests. That is, the server process remains dormant
until a connection is requested by a client’s connection to the server’s
address. Then, the server process wakes up and services the client by
performing the actions the client requests.

Connection-oriented serversuse the | i st en and accept system callsto
prepare for and then accept connections with client processes.

Thel i st en system call is usually called after the socket and bi nd
system calls. It indicates that the server is ready to receive connect requests
from clients.

The syntax of thel i st en system call is as follows:
listen (s, backlog),

In the preceding statement:

S
Specifies the socket descriptor.

backl og
Specifies the maximum number of outstanding connection requests that
this server can queue. If the queue is full, the server rejects the connect
request and the client must try again.

Sockets 4-25

Servers that process a small number of connections can specify a small
backlog. Serversthat process a high volume of connections can specify
a

larger value. The kernel imposes an upper limit on the backlog, which
is determined by the SOMAXCONN parameter.

Seel i st en(2) for more information.

The server accepts a connection to a client by using the accept system call.
The syntax of the accept system call is as follows:

accept (s, *address, *address_len);

In the preceding statement:

S
Specifies the socket descriptor.

*address
Specifies a pointer to a protocol-specific address structure. On return
this contains the address of the connecting entity.

*address | en
Specifies the size of the address structure.

See accept (2) for more information.

An accept cal blocks the server until aclient requests service. This call
returns a failure status if the call is interrupted by a signal such as
SIGCHLD. Therefore, the return value from accept is checked to ensure
that a connection was established.

When the connection is made, the server normally forks a child process
which creates another socket with the same properties as socket s (the socket
on which it is listening). Note in the following example how the socket s,
used by the parent for queuing connection requests, is closed in the child
while the socket g, which is created as a result of the accept call, is closed
in the parent. The address of the client is also handed to the doi t routine
because it is required for authenticating clients. After the accept system
call creates the new socket, it allows the new socket to service the client’s
connection request while it continues listening on the original socket; for
example:

for (;;) {

int g, len = sizeof (fron);

g = accept (s, (struct sockaddr *)& rom &l en);
if (g <0 {
if (errno !'= EINTR)
sysl og(LOG ERR, "rlogind: accept: %d);
conti nue;

4-26 Sockets

4.3.5

}

if (fork() == 0) { [* Child */
cl ose(s);
doit(g, & rom;

cl ose(Qg); /* Parent */

Connectionless servers use the bi nd system call but, instead of using the
accept system cal, they usear ecvf r omsystem call and then wait for
client requests. No connection is established between the connectionless
server and client during the process of exchanging data.

Setting and Getting Socket Options

In addition to binding a socket to alocal address or connecting to a
destination address, application programs must be able to control the socket.
For example, with protocols that use time-out and retransmission, the
application program may want to obtain or set the time-out parameters. It
may also want to control the allocation of buffer space, determine if the
socket allows transmission of a broadcast, or control processing of out-of-
band data.

The get sockopt and set sockopt system calls provide the application
program with the means to control socket operations. The set sockopt
system call allows an application program to set a socket option by using the
same set of values obtained with the get sockopt system call.

The syntax of the set sockopt system call is as follows:

setsockopt (s, level, optname, *optval, optlen);

In the preceding statement:

S
Specifies the socket file descriptor.

I evel
Specifies what portion of code in the system interprets the opt name
parameter; for example, general socket layer or protocol transport layer.
To set a socket-level option, set I evel to SOL_SOCKET, which is
defined in the <sys/ socket . h> header file. To set aTCP level
option, set / evel to IPPROTO_TCP, which is defined in the
<neti net/in. h> header file.

opt name

Specifies the name of the option to set, for example, SO_SNDBUF.
Socket options are defined in the <sys/ socket . h> header file.

Sockets 4-27

*opt val
Points to a buffer containing data specific to the option being set. This
data may specify a Boolean, integer, or some other value, including
values in structures.

optlen
Specifies the size of the buffer to which the opt val parameter points.
See set sockopt (2) for more information.

The following example shows how to set the SO_SNDBUF option on a
socket in the Internet communication domain:

incl ude <sys/ socket . h>
int retval ; /* General return value. */
int sl _descr; /* Socket 1 descriptor */

int sockbuf si ze=16384;

retval = setsockopt (sl_descr, SO._SOCKET, SO SNDBUF, (void *)
&sockbuf si ze, sizeof (sockbufsi ze));

The get sockopt system call allows an application program to request
information about the socket options that are set with the set sockopt
system call.

The syntax of the get sockopt system call is as follows:
getsockopt (s, level, optname, *optval, *optlen);
The parameters are the same as for the set sockopt system call, with the

exception of the opt | en parameter, which is a pointer to the size of the
buffer.

The following example shows how the get sockopt system call can be
used to determine the size of the SO_SNDBUF on an existing socket:

#i ncl ude <sys/socket. h>

int retval ; /* General return value. */
int sl _descr; /* Socket 1 descriptor */
int sbuf si ze;

size_t len = sizeof (sbufsize);

retval = getsockopt (sl_descr, SOL_SOCKET, SO _SNDBUF,
(void *)&sbufsize, & en);

The SOL_SOCKET parameter indicates that the general socket level codeis
to interpret the SO_SNDBUF parameter. The SO_SNDBUF parameter

4-28 Sockets

indicates the size of the send socket buffer in use on the socket.

Not all socket options apply to al sockets. The options that can be set
depend on the address family and protocol the socket uses.

4.3.6 Transferring Data

Most of the work performed by the socket layer isin sending and receiving
data. The socket layer itself does not impose any structure on data
transmitted or received through sockets. Any data interpretation or
structuring is logically isolated in the implementation of the communication

domain.

The following are the system calls that an application uses to send and
receive data:

* read

e Wite

+ send

* sendto

* recv

e recvfrom
e sendnsg
* recvmnsg

4.3.6.1 Using the read System Call

Ther ead system call allows a process to receive data on a socket without
receiving the sender’s address.

The syntax for ther ead system call is as follows:
read (s, *buf, nbytes);

In the preceding statement:

S
Specifies the socket descriptor.

*buf
Points to the buffer to receive data

Sockets 4-29

nbyt es
Specifies the size of buf in bytes.

Seer ead(2) for more information.

4.3.6.2 Using the write System Call

Thew i t e system call is used on sockets in the connected state. The
destination of data transferred with thew i t e system call is implicitly
specified by the connection.

The syntax for thewr i t e system call is as follows:
write (s, *buf, nbytes);

In the preceding statement:

S
Specifies the socket descriptor.

*buf
Points to the buffer containing data to be written.

nbyt es
Specifies the size of buf in bytes.

Seewr i t e(2) for more information.

4.3.6.3 Using the send, sendto, recv and recvfrom System Calls

Thesend, sendt o, recv, and r ecvf r omsystem calls are similar to the
read and wri t e system calls, sharing the first three parameters with them;
however, additional flags are required. The flags, defined in the

<sys/ socket . h> header file, can be defined as a nonzero value if the
application program requires one or more of the following:

Flag Description

MSG_00B Send or receive out-of-band
data

MSG_PEEK Look at data without

reading. Valid for the
recv andrecvfrom
cdls.
MSG_DONTROUTE Send data without routing
packets. Valid for the
send and sendt o calls.

4-30 Sockets

The MSG_OOB flag signifies out-of-band data, or urgent data, and is specific
to stream sockets (SOCK_STREAM). See Section 4.6.3 for more
information about out-of-band data.

The MSG_PEEK flag alows an application to preview the data that is
available to be read, without having the system discard it after ther ecv or
recvfromecall returns. When the MSG_PEEK flag is specified with a

r ecv system call, any data present is returned to the user but treated as still
unread. That is, the next r ead or r ecv system call applied to the socket
returns the data previously previewed.

The MSG_DONTROUTE flag is currently used only by the routing table
management process and is not discussed further.

send

The send system call is used on sockets in the connected state. The send
and wr i t e system calls function amost identically; the only differenceis
that send supports the flags described at the beginning of this section.

The syntax for the send system call is as follows:
send (s, *message, len, flags);

In the preceding statement:

S
Specifies the socket descriptor.

*nmessage
Points to the buffer containing data to send.

len
Specifies the length of nessage in bytes.

fl ags
Allows the sender to control message transmission. Can be one of the
three flags described at the beginning of this section.

See send(2) for more information.

sendto

The sendt o system call is used on connected or unconnected sockets. |t
alows the process explicitly to specify the destination for a message.

The syntax for the sendt o system call is as follows:
sendto (s, *message, len, flags, *dest_addr, dest len);

Sockets 4-31

In the preceding statement:

S
Specifies the socket descriptor.

*nmessage
Points to the buffer containing the message to be sent.

I en
Specifies the size of the buffer to which the nessage parameter points.

flag
Allows the sender to control message transmission. Can be one of the
three flags described at the beginning of this section.

*dest _addr
Points to the buffer containing the address of the message’ s intended
recipient. The *dest_addr parameter is ignored for
SOCK_STREAM sockets.

dest | en
Specifies the size of the addressin dest _addr.

See sendt o(2) for more information.

recv

Ther ecv system call allows a process to receive data on a socket without
receiving the sender’s address. Ther ead and r ecv system calls function
amost identically; the only differenceis that r ecv supports the flags
described at the beginning of this section.

The syntax for ther ecv system call is as follows:
recv (s, *message, len, flags),

In the preceding statement:

S
Specifies the socket descriptor.

*nmessage
Points to a buffer where the message should be placed.

len
Specifies the size of the buffer to which the nessage parameter points.

fl ags
Allows the receiver to control message reception. Can be one of the
three flags described at the beginning of this section.

4-32 Sockets

Seer ecv(2) for more information.

recvfrom

Ther ecvfr omsystem call can be used on connected or unconnected
sockets. Ther ecvf r omsystem call has similar functionality to ther ecv
call but it additionally allows an application to receive the address of a peer
with whom it is communicating.

The syntax for ther ecvf r omsystem call is as follows:
recvfrom (s, *buf, len, flags, *src_addr, *src_len);

In the preceding statement:

S
Specifies the socket descriptor.

*buf
Points to the buffer to receive data.

len
Specifies the size of the buffer in bytes.

fl ags
Allows the receiver to control message reception. Can be one of the
three flags described at the beginning of this section.

*src_addr
Points to a buffer to receive the address of the peer (sender). The
*src_addr parameter isignored for SOCK_STREAM sockets.

*src_len
Specifies the length, in bytes, of the buffer pointed to by *src_adadr.

Seer ecvf rom2) for more information.

4.3.6.4 Using the sendmsg and recvmsg System Calls

Thesendnsg and r ecvnsg system cals are distinguished from the other
send and receive related system calls in that they allow unrelated processes
on the local machine to pass file descriptors to each other. These two system
calls are the only ones that support the concept of access rights, which means
that the system has granted a process the right to access a system-maintained
object. Using the sendnsg and r ecvnsg system calls they can pass that
right to another process.

To pass access rights, the sendnsg and r ecvirsg system calls use the
nmsghdr data structure. The msghdr data structure defines two parameters,
the msg_control and msg_cont rol | en that deal with the passing and

Sockets 4-33

receiving of access rights between processes. For more information on the
nmsghdr data structure, see Section 4.2.3.4 and Section 4.4.2.

Although the sendnsg and r ecvirsg system calls can be used on
connection-oriented or connectionless protocols and in the Internet or UNIX
domains, for processes to pass descriptors they must be connected with a
UNIX domain socket.

sendmsg

The sendnsg system call is used on connected or unconnected sockets. It
transfers data using the nsghdr data structure. For more information on the
nmsghdr data structure, see Section 4.2.3.4 and Section 4.4.2.

The syntax for the sendnsg system cal is as follows:
sendmsg (s, *message, flags);

In the preceding statement:

S
Specifies the socket descriptor.

*nmessage
Points to ansghdr structure. For more information on the msghdr
structure, see Section 4.2.3.4 and Section 4.4.2.

fl ags
Contains the size and address of the buffer of control data.

See sendnsg(2) for more information.

The following is an example of the sendnsg system call:

struct msghdr send;

struct iovec saiov;

struct sockaddr dest Address;
char sendbuf [BUFSI ZE] ;

send. nsg_nanme = (void *) &Jest Addr ess;

send. nsg_nanel en = sizeof (dest Address);

send. nsg_i ov = &sai ov;

send. nsg_i ovlen = 1;

sai ov. i ov_base = sendbuf;

saiov.iov_|len = sizeof (sendbuf);

send. nsg_control = NULL;

send. msg_controllen = 0;

send. nsg_flags = O;

if ((i = sendnmsg(s, &send, 0)) < 0) {
fprintf(filel, "sendnsg() failed\n");
exit(1);

4-34 Sockets

recvmsg

Ther ecvnsg system call is used on connected or unconnected sockets. It
transfers data using the nsghdr data structure. For more information on the
nmsghdr data structure, see Section 4.2.3.4 and Section 4.4.2.

The syntax of ther ecvimsg system cal is as follows:
recvmsg (s, *message, flags);

In the preceding statement:

S
Specifies the socket descriptor.

*nmessage
Points to ansghdr structure. For more information on the msghdr
structure, see Section 4.2.3.4 and Section 4.4.2.

fl ags
Allows the sender to control the message transmission. Can be one of
the flags described at the beginning of Section 4.3.6.3.

Seer ecvnsg(2) for more information.

The following is an example of ther ecvnsg system call:

struct nmsghdr recy;

struct iovec recviov;

struct sockaddr _in recvaddress;
char recvbuf[BUFSI ZE] ;

recv. nsg_nane = (void *) &recvaddress;

recv. nsg_nanel en = sizeof (recvaddress);

recv. nsg_i ov = &recviov;

recv.nsg_iovlen = 1,

recviov.iov_base = recvbuf;

recviov.iov_|len = sizeof (recvbuf);

recv. nsg_control = NULL;

recv.nsg_controllen = 0

recv.nsg_flags = 0

if ((i =recvimeg(r, &ecv, 0)) <0) {

fprintf(filel, "recvnsg() failed\n");

exit(1l);

Sockets 4-35

4.3.7

4.3.8

Shutting Down Sockets

If an application program has no use for any pending data, it can use the
shut down system call on the socket prior to closing it. The syntax of the
shut down system call is as follows:

shutdown (s, how);

In the preceding statement:

S
Specifies the socket descriptor.

how
Specifies the type of shutdown.

See shut down(2) for more information.

Closing Sockets

The cl ose system call is used to close sockets. The syntax of the cl ose
system call is as follows:

close(s);

In the preceding statement:

S
Specifies the socket descriptor.

See cl ose(2) for more information.

Closing a socket and reclaiming its resources can be complicated. For
example, acl ose system call is never expected to fail when a process exits.
However, when a socket that is promising reliable delivery of data closes
with data still queued for transmission or awaiting acknowledgment of
reception, the socket must attempt to transmit the data. When the socket
discards the queued data to allow the cl ose cal to complete successfully, it
violates its promise to deliver datareliably. Discarding data can cause naive
processes that depend on the implicit semantics of the cl ose call to work
unreliably in a network environment.

However, if sockets block until al data is transmitted successfully, acl ose
system call may never complete in some communication domains.

The socket layer compromises in an effort to address the completion problem
and still maintain the semantics of the cl ose system cal. In normal
operation, closing a socket causes any queued but unaccepted connections to
be discarded. If the socket isin a connected state, a disconnect is initiated.
The socket is marked to indicate that a descriptor is no longer referencing it,

4-36 Sockets

and the cl ose operation returns successfully. When the disconnect request
completes, the network support notifies the socket layer, and the socket
resources are reclaimed. The network layer attempts to transmit any data
gueued in the socket’s send buffer, but there is no guarantee that it will
succeed.

Alternatively, a socket can be marked explicitly to force the application
program to linger when closing until pending datais flushed and the
connection shuts down. This option is marked in the socket data structure by
using the set sockopt system call with the SO_LINGER option.

Note

The set sockopt system call, using the linger option, takes a
I i nger structure, which is defined in the <sys/ socket . h>
header file.

When an application program indicates that a socket is to linger, it aso
specifies a duration for the lingering period. If the lingering period expires
before the disconnect is completed, the socket layer forcibly shuts down the
socket, discarding any data that is till pending.

4.4 BSD Socket Interface

In addition to the XPG4 socket interface, Digital UNIX aso supports the
4.3BSD and 4.4BSD socket interfaces. The 4.4BSD socket interface
provides a number of changesto 4.3BSD sockets. Most of the changes
between the 4.3BSD and 4.4BSD socket interfaces were designed to facilitate
the implementation of International Standards Organization (I1SO) protocol
suites under the sockets framework. The XPG4 socket interface provides a
standard version of the socket interface.

Note

The availability of the 4.4BSD socket interface does not mean
that your site supports 1SO protocols. Check with the
appropriate personnel at your site.

To use the 4.4BSD socket interface, you must add the following line to your
program or makefile:

#define _SOCKADDR LEN

The 4.4BSD socket interface includes the following changes from the
4.3BSD interface for application programs.

» A sockaddr structure for supporting variable-length (long) network
addresses

Sockets 4-37

44.1

4.4.2

* A nsghdr structureto alow receipt of protocol information and status
with data

The following sections describe these features.

Variable-Length Network Addresses

The 4.4BSD version of the sockaddr structure supports variable-length
network addresses. The structure adds a length field and is defined as
follows:

/* 4.4BSD sockaddr Structure */

struct sockaddr {

u_char sa_len; /* total length */

u_char sa_famly; /* address famly */

char sa_data[14]; /* actually longer; address value */
H
The 4.3BSD sockaddr structure contains the following fields:

u_short sa fanmly;
char sa_dat a[14] ;

Figure 4-2 compares the 4.3BSD and 4.4BSD sockaddr structures.

Figure 4-2: 4.3BSD and 4.4BSD sockaddr Structures

Family (2 Bytes)

F Address (14; Bytes)

4.3BSDsockaddr Structure

Length (1 Byte)
l Family (1 Byte)

T Address (Variable-Length)

4.4BSDsockaddr Structure

ZK-0526U-R

Receiving Protocol Data with User Data

The 4.3BSD version of the nsghdr structure (which is the default if you use
the cc command) provides the parameters needed for using the optional
functions of the sendnsg and r ecvinsg system calls.

4-38 Sockets

The 4.3BSD nsghdr structure is as follows:

/* 4.3BSD nsghdr Structure */
struct msghdr {

caddr _t nsg_nane; /* optional address */

int nmsg_nanel en; /* size of address */

struct iovec *nsg_iov; /* scatter/gather array */

int nmsg_i ovl en; /* # elements in msg_iov */

caddr _t nsg_accrights; /* access rights sent/re-
/* ceived */

int nmsg_accri ghtsl en

3

The nsg_nane and nsg_nanel en parameters are used when the socket is
not connected. The nsg_i ov and nsg_Ji ovl en parameters are used for
scatter (read) and gather (write) operations. As stated previously, the
nmsg_accri ght s and nsg_accri ght sl en parameters allow the sending
process to pass its access rights to the receiving process.

The 4.4BSD structure has additional fields that permit application programs
to include protocol information along with user data in messages.

To support the receipt of protocol data together with user data, Digital UNIX
provides the msghdr structure from the 4.4BSD socket interface. The
structure adds a pointer to control data, alength field for the length of the
control data, and aflags field, as follows:

/* 4.4BSD nsghdr Structure */
struct msghdr {

caddr _t nsg_nang; /* optional address */

u_int nmsg_nanel en; /* size of address */

struct iovec *nsg_iov; /* scatter/gather array */
u_int nmsg_i ovl en; /* # elements in msg_iov */
caddr _t nsg_control; /* ancillary data, see below */
u_int msg_controllen; /* ancillary data buffer len */
int nsg_f I ags; /* flags on received nmessage */

3

The XPG4 nsghdr data structure has the same fields as 4.4BSD. However,
the size of the nsg_nanel en and nsg_contr ol | en fields are 8 bytes
long in the XPG4 nsghdr data structure, as opposed to 4 bytes long in the
4.4BSD nsghdr data structure. Figure 4-3 shows the 4.3BSD, 4.4BSD, and
XPG4 nsghdr structures.

Sockets 4-39

Figure 4-3: 4.3BSD, 4.4BSD, and XPG4 msghdr Structures

| msg_name msg_namelen |

msg_iov msg_accrights

msg_iovlen |

msg_
accrightslen

4.3BSD msghdr Structure

| msg_name msg_namelen |

msg_
controllen

msg_iov msg_iovien | msg_control msg_flags |

4.4BSD msghdr Structure

| msg_name I

msg_namelen

msg_control msg_flags

. m o
msg_iovien I I controllen

I msg_iov

XPG4 msghdr Structure

ZK-0527U-R

In the 4.3BSD version of the nsghdr data structure, the nsg_accri ght s
and nsg_accri ght sl en fields permit the sending process to pass its
access rights to a system-maintained object, in this case a socket, to the
receiving process. In the 4.4BSD and XPG4 versions, this is done using the
nmsg_control and nsg_control | en fields.

4.5 Common Socket Errors
Table 4-5 lists some common socket error messages the problems they

indicate:

Table 4-5: Common Errors and Diagnostics

Error
[EAFNCSUPPORT]

[EBADF]
[ECONNREFUSED]
[EFAULT]

[EHOSTDOW]

[EHOSTUNREACH]
[EI NVAL]

[EMFI LE]

4-40 Sockets

Diagnostics

The protocol family does not support the addresses in
the specified address family.

The socket parameter is not valid.
The attempt to connect was rejected.

A pointer does not point to a valid part of user address
space.

The host is down.

The host is unreachable.

An invalid argument was used.

The current process has too many open file descriptors

Table 4-5:

Error

[ENETDOMN]
[ENETUNREACH]

[ENOVEM

[ENOTSOCK]
[EOPNOTSUPP]

[EOPNOTSUPP]
[EPROTONOSUPPORT]
[EPROTOTYPE]

[ETI MEDOUT]

[EWOULDBLOCK]

4.6 Advanced Topics

(continued)

Diagnostics

The network is down.

The network is unreachable. No route to the network
is present.

The system was unable to allocate kernel memory to
increase the process descriptor table.

The socket parameter refers to afile, not a socket.

The specified protocol does not permit creation of
socket pairs.

The referenced socket can not accept connections.
This system does not support the specified protocol.
The socket type does not support the specified protocol.

The connection timed out without a response from the
remote application.

The socket is marked nonblocking and the operation
could not complete.

This section contains the following information, which is of interest to
developers writing complex applications for sockets:

» Selecting specific protocols

* Binding names and addresses

e Qut-of-band data
* IP Multicasting

» Broadcasting and determining network configuration

e Thei net d daemon

* Input/output multiplexing
* Interrupt-driven socket I/O
e Signals and process groups

e Pseudoterminas

Sockets 4-41

4.6.1 Selecting Specific Protocols

The syntax of the socket system call is described in Section 4.3.1. If the
third argument to the socket cal, the pr ot ocol argument, is zero (0), the
socket call selects a default protocol to use with the returned socket
descriptor. The default protocol is usually correct and alternate choices are
not usually available. However, when using raw sockets to communicate
directly with lower-level protocols or hardware interfaces, the protocol
argument can be important for setting up demultiplexing.

For example, raw sockets in the Internet family can be used to implement a
new protocol above IP and the socket receives packets only for the protocol
specified. To obtain a particular protocol, you must determine the protocol
number as defined within the communication domain. For the Internet
domain, you can use one of the library routines described in Section 4.2.3.2.

The following code shows how to use the get pr ot obynane library call to
select the protocol newt cp for a SOCK_STREAM socket opened in the
Internet domain:

#i ncl ude <sys/types. h>

#i ncl ude <sys/socket. h>

#i ncl ude <netinet/in.h>
#i ncl ude <netdb. h>

struct protent *pp;

pp - get pr ot obynane(" newt cp");
s = socket (AF_I NET, SOCK_STREAM pp->p_proto);

4.6.2 Binding Names and Addresses
The bi nd system call associates an address with a socket.

4.6.2.1 Binding to the Wildcard Address

The local machine address for a socket can be any valid network address of
the machine. Because one system can have several valid network addresses,
binding addresses to sockets in the Internet domain can be complicated. To
simplify local address binding, the constant INADDR_ANY/, awildcard
address, is provided. The INADDR_ANY address tells the system that this
server process will accept a connection on any of its Internet interfaces, if it
has more than one.

4-42 Sockets

The following example shows how to bind the wildcard value
INADDR_ANY to alocal socket:

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <stdio. h>

mai n()

int s, length;
struct sockaddr_in nane;
char buf[1024];

/* Create name with w | dcards. */
nane. sin_famly = AF_I NET;

name. si n_l en = si zeof (nane);

nane. si n_addr.s_addr = | NADDR_ANY;
nane. si n_port = O;

if (bind(s, (struct sockaddr *)&nane, sizeof(nanme))== -1) {
perror ("bindi ng datagram socket");
exit(1);

}

}

Sockets with wildcard local addresses can receive messages directed to the
specified port number, and send to any of the possible addresses assigned to
that host. Note that the socket uses a wildcard value for its local address; a
process sending messages to the named socket must specify a valid network
address. A process can be willing to receive a message from anywhere, but it
cannot send a message anywhere.

When a server process on a system with more than one network interface
wants to allow hosts to connect to only one of its interface addresses, the
server process binds the address of the appropriate interface. For example, if
a system has two addresses 130.180.123.45 and 131.185.67.89, a server
process can bind the address 130.180.123.45. Binding that address ensures
that only connections addressed to 130.180.123.45 can connect to the server
process.

Similarly, alocal port can be left as unspecified (specified as zero), in which
case the system selects a port number for it.

Sockets 4-43

4.6.2.2 Binding in the UNIX Domain

Processes that communicate in the UNIX domain (AF_UNIX) are bound by
an association that local and foreign pathnames comprises. UNIX domain
sockets do not have to be bound to a name but, when bound, there can never
be duplicate bindings of a protocol, local pathname, or foreign pathname.
The pathnames cannot refer to files existing on the system. The process that
binds the name to the socket must have write permission on the directory
where the bound socket will reside.

The following example shows how to bind the name socket to a socket
created in the UNIX domain:

#i ncl ude <sys/types. h>

#i ncl ude <sys/socket. h>

#i ncl ude <sys/un. h>
#i ncl ude <stdi o. h>

#defi ne NAME "socket"
mai n()

int s, length;
struct sockaddr _un nane;
char buf[1024];

/* Create nane. */
name. sun_| en = sizeof (nane. sun_| en) +
si zeof (nane. sun_famly) +
strl en(NAME) ;
name. sun_famly = AF_UN X;
strcpy(nane. sun_pat h, NAME);
if (bind(s, (struct sockaddr *) &nane, sizeof(nane))==-1) {
perror ("binding nane to datagram socket");
exit(1);
}

4.6.3 Out-of-Band Data

Out-of-band data is a logically independent transmission channel associated
with each pair of connected stream sockets. Out-of-band data can be
delivered to the socket independently of the normal receive queue or within
the receive queue, depending on the status of the SO_OOBINLINE option,
set with the set sockopt system call.

The stream socket abstraction specifies that the out-of-band data facilities
must support the reliable delivery of at least one out-of-band message at a
time. This message must contain at least one byte of data and at least one
message can be pending delivery to the user at any one time.

4-44 Sockets

The socket layer supports marks in the data stream that indicate the end of
urgent data or out-of-band processing. The socket mechanism does not
return data from both sides of a mark in a single system call.

You can use MSG_PEEK to peek at out-of-band data. If the socket has a
process group, a SIGURG signal is generated when the protocol is notified of
its existence. A process can set the process group or process ID to be
informed by the SIGURG signal via the appropriatef cnt | call, as described
in Section 4.6.8 for SIGIO.

When multiple sockets have out-of-band data awaiting delivery, an
application program can use asel ect call for exceptiona conditions to
determine which sockets have such data pending. The SIGURG signal or
sel ect call notifies the application program that data is pending. The
application then must issue the appropriate call actually to receive the data.

In addition to the information passed, a logical mark is placed in the data
stream to indicate the point at which the out-of-band data was sent. When a
signal flushes any pending output, all data up to the logical mark in the data
stream is discarded.

To send an out-of-band message, the MSG_OOB flag is supplied to asend
or asendt o system call. To receive out-of-band data, an application
program must set the MSG_OOB flag when performing ar ecvf r omor
recv system call.

An application program can determine if the read pointer is currently
pointing to the mark in the data stream by using the the SSOCATMARK
ioctl:

ioctl (s, SIOCATMARK, &yes);

If yes isal on return, meaning that no out-of-band data arrived, the next
read returns data after the mark. |f out-of-band data did arrive, the next read
provides data sent by the client prior to transmission of the out-of-band
signal. The following program shows the routine used in the remote login
process to flush output on receipt of an interrupt or quit signal. This program
reads the normal data up to the mark (to discard it), then reads the out-of-
band byte:

#i ncl ude <sys/ioctl.h>
#i ncl ude <sys/file.h>

006()
{

int out = FWRITE, mark;
char wast e[BUFSI Z] ;

/* flush local term nal output */
ioctl (1, TIOCFLUSH, (char *)&out);

Sockets 4-45

4.6.4

for (55) {
if (ioctl(rem SIOCATMARK, &mark) < 0) {
perror("ioctl");
br eak;

}
if (mark)
br eak;
(void) read(rem waste, sizeof (waste));

}
if (recv(rem &mark, 1, MSG OOB) < 0) {
perror("recv");

}
}
A process can also read or peek at the out-of-band data without first reading
up to the logical mark. This s difficult when the underlying protocol
delivers the urgent in-band data with the normal data and only sends
notification of its presence ahead of time; for example, the TCP protocol.
With such protocals, when the out-of-band byte has not yet arrived and a
r ecv system call is done with the MSG_OOB flag, the call returns an
EWOULDBLOCK error. There can be enough in-band data in the input
buffer so that normal flow control prevents the peer from sending the urgent
data until the buffer is cleared. The process must then read enough of the
gueued data so that the urgent data can be delivered.

Note

Certain programs that use multiple bytes of urgent data and must
handle multiple urgent signals need to retain the position of
urgent data within the stream. The socket-level
SO_OOBINLINE option provides this capability and Digital
strongly recommends that you use it.

The socket-level SO_OOBINLINE option retains the position of the urgent
data (the logica mark). The urgent data immediately follows the mark
within the normal data stream that is returned without the MSG_OOB flag.
Reception of multiple urgent indications causes the mark to move, but no
out-of-band datais lost.

Internet Protocol Multicasting

Internet Protocol (IP) multicasting provides applications with IP layer access
to the multicast capability of Ethernet and Fiber Distribution Data Interface
(FDDI) networks. 1P multicasting, which delivers datagrams on a best-effort
basis, avoids the overhead imposed by |P broadcasting (described in Section
4.6.5) on uninterested hosts; it also avoids consumption of network
bandwidth by applications that would otherwise transmit separate packets

4-46 Sockets

with identical data to reach several destinations.

IP multicasting achieves efficient multipoint delivery through use of host
groups. A host group is a group of zero or more hosts that is identified by a
single Class D IP destination address. A Class D address has 1110 in the
four high-order bits. In dotted decimal notation, 1P multicast addresses range
from 224.0.0.0 to 239.255.255.255, with 224.0.0.0 being reserved.

A member of a particular host group receives a copy of all data sent to the IP
address representing that host group. Host groups can be permanent or
transient. A permanent group has a well-known, administratively assigned 1P
address. In permanent host groups, it is the address of the group that is
permanent, not its membership. The number of group members can
fluctuate, even dropping to zero. Theal | hosts group groupisan
example of a permanent host group whose assigned address is 224.0.0.1.
Digital UNIX systems join the al hosts group to participate in the Internet
Group Management Protocol (IGMP). (See Request for Comments 1112:
Host Extensions for 1P Multicasting for more information about IGMP and
IP multicasting.)

IP addresses that are not reserved for permanent host groups are available for
dynamic assignment to transient groups. Transient groups exist only as long
as they have one or more members.

Note

IP multicasting is not supported over connection-oriented
transports such as TCP.

IP multicasting is implemented using options to the set sockopt system
call, described in the following sections. Definitions required for multicast-
related socket options are in the <net i net /i n. h> header file. Your
application must include this header file if you intend it to receive IP
multicast datagrams.

4.6.4.1 Sending IP Multicast Datagrams

To send IP multicast datagrams, an application indicates the host group to
send to by specifying an IP destination address in the range of 224.0.0.0 to
239.255.255.255 in asendt o system call. The system maps the specified

I P destination address to the appropriate Ethernet or FDDI multicast address
prior to transmitting the datagram.

An application can explicitly control multicast options with arguments to the
set sockopt system call. The following options can be set by an
application using the set sockopt system call:

* Time-to-livefield (1 P_MJULTI CAST_TTL)

Sockets 4-47

* Multicast interface (| P_MJULTI CAST_I F)
» Disabling loopback of local delivery (1 P_MJLTI CAST_LQOOP)

Note

The syntax for and arguments to the set sockopt system call
are described in Section 4.3.5 and the set sockopt (2)
reference page. The examples here and in Section 4.6.4.2
illustrate how to use the set sockopt options that apply to IP
multicast datagrams only.

Thel P_MULTI CAST_TTL option to the set sockopt system call allows
an application to specify a value between 0 and 255 for the time-to-live
(TTL) field. Multicast datagrams with a TTL value of O restrict distribution
of the multicast datagram to applications running on the local host. Multicast
datagrams with a TTL value of 1 are forwarded only to hosts on the local
subnet. If amulticast datagram has a TTL value greater than 1 and a
multicast router is attached to the sending host’ s network, then multicast
datagrams can be forwarded beyond the local subnet. Multicast routers
forward the datagram to known networks that have hosts belonging to the
specified multicast group. The TTL value is decremented by each multicast
router in the path. When the TTL value is decremented to O, the datagram is
not forwarded further.

The following example shows how to use the | P_MJLTI CAST_TTL option
to the set sockopt system call:
u_char ttl;
ttl=2;
if (setsockopt(sock, |PPROTO P, |P_MJLTICAST TTL, &ttl,
sizeof (ttl)) == -1)
perror("setsockopt");

A datagram addressed to an |P multicast destination is transmitted from the
default network interface unless the application specifies that an aternate
network interface is associated with the socket. The default interfaceis
determined by the interface associated with the default route in the kernel
routing table or by the interface associated with an explicit route, if one
exists. Using the | P_MULTI CAST | F option to the set sockopt system
call, an application can specify a network interface other than that specified
by the route in the kernel routing table.

4-48 Sockets

The following example shows how to use the | P_MJLTI CAST_I F option
to the set sockopt system call to specify an interface other than the
default:

int sock;

struct in_addr ifaddress;
char *if_to_use = "16.141. 64. 251";

i faddress.s_addr = inet_addr(if_to_use);
if (setsockopt(sock, IPPROTO IP, |IP_MILTICAST_IF, & faddress,
si zeof (i faddress)) == -1)
perror ("error from setsockopt |P_MJILTICAST_ I F");
el se

printf ("new interface set for sending nulticast datagrans\n");

If amulticast datagram is sent to a group of which the sending host is a
member, a copy of the datagram is, by default, looped back by the IP layer
for local delivery. Thel P_MJLTI CAST_LQOOP option to the set sockopt
system call allows an application to disable this loopback delivery.

The following example shows how to use the | P_MJLTI CAST_LOOP
option to the set sockopt system call:
u_char 1 oop=0;
if (setsockopt(sock, |PPROTO IP, | P_MJILTICAST_LOOP, & oop
si zeof (1 oop)) == -1)

perror("setsockopt");
When the value of / oop is 0, loopback is disabled. When the value of
I oopisl,itisenabled. For performance reasons, Digital recommends
disabling the default, unless applications on the same host must receive
copies of the datagrams.

4.6.4.2 Receiving IP Multicast Datagrams

Before a host can receive |P multicast datagrams destined for a particular
multicast group other thantheal | host s gr oup, an application must
direct the host to become a member of that multicast group. This section
describes how an application can direct a host to add itself to and remove
itself from a multicast group.

An application can direct the host it is running on to join a multicast group
by using the | P_ADD_MEMBERSHI P option to the set sockopt system
cal asfollows:
struct ip_nreq nreq;
if (setsockopt(sock, IPPROTO IP, |IP_ADD MJULTI CAST, &nreq
sizeof (nreq)) == -1)
perror("setsockopt");

Sockets 4-49

The nr eq variable has the following structure:

struct ip_mreq{
struct in_addr imr_multiaddr; * IP multicast address of group */
struct in_addr imr_interface; /* local IP address of interface */

3

Each multicast group membership is associated with a particular interface. It
is possible to join the same group on multiple interfaces. The

i nr_i nterface variable can be specified as | NADDR_ANY, which allows
an application to choose the default multicast interface. Alternatively,
specifying one of the host’s local addresses allows an application to select a
particular, multicast-capable interface. The maximum number of
memberships that can be added on a single socket is subject to the

| P_MAX_MEMBERSHI PS value, which is defined in the

<neti net/i n. h> header file.

To drop membership in a particular multicast group use the
| P_DROP_MEMBERSHI P option to the set sockopt system call:
struct ip_nreq nreq;
if (setsockopt(sock, |IPPROTO |P, |P_DROP_MEMBERSH P, &nreq
si zeof (nreq))== -1)

perror("setsockopt");
The nr eq variable contains the same structure values used for adding
membership.

If multiple sockets request that a host join a particular multicast group, the
host remains a member of that multicast group until the last of those sockets
is closed.

To receive multicast datagrams sent to a specific UDP port, the receiving
socket must have bound to that port using the bi nd system call. More than
one process can receive UDP datagrams destined for the same port if the
bi nd system call (described in Section 4.3.2) is preceded by a
set sockopt system call that specifies the SO_REUSEPORT option. The
following example illustrates how to use the SO_REUSEPORT option to the
set sockopt system call:
int setreuse = 1;
if (setsockopt(sock, SOL_SOCKET, SO REUSEPORT, &setreuse,
si zeof (setreuse)) == -1)

perror ("setsockopt");
When the SO_REUSEPORT option is set, every incoming multicast or
broadcast UDP datagram destined for the shared port is delivered to all
sockets bound to that port.

Delivery of IP multicast datagrams to SOCK_RAW sockets is determined by
the protocol type of the destination.

4-50 Sockets

4.6.5 Broadcasting and Determining Network Configuration

Using a datagram socket, it is possible to send broadcast packets on many
networks supported by the system. The network itself must support
broadcast; the system provides no simulation of broadcast in the software.

Broadcast messages can place a high load on a network because they force
every host on the network to service them. Consequently, the ability to send
broadcast packets is limited to sockets that are explicitly marked as allowing
broadcasting.

Broadcast is typically used for one of two reasons: to find aresource on a
local network without prior knowledge of its address, or to route some
information, which requires that information be sent to all accessible

neighbors.
Note
Broadcasting is not supported over connection-oriented transports
such as TCP.

To send a broadcast message, use the following procedure:

1. Create a datagram socket; for example:
s = socket (AF_I NET, SOCK_DGRAM 0);

2. Mark the socket for broadcasting; for example:
i nt on = 1;

if (setsockopt(s, SOL_SOCKET, SO BROADCAST, &on,
sizeof (on)) == -1)
perror("setsockopt");

3. Ensurethat at least a port number is bound to the socket; for example:
sin.sin_len = sizeof(sin);
sin.sin_famly = AF_I NET;
sin.sin_addr.s_addr = htonl (1 NADDR_ANY) ;
sin.sin_port = htons(MYPORT);
if (bind(s, (struct sockaddr *) &sin, sizeof (sin)) == -1)
perror("setsockopt");

The destination address of the message depends on the network or networks
on which the message is to be broadcast. The Internet domain supports a
shorthand notation for broadcast on the local network, the addressis
INADDR_BROADCAST (asdefined in neti net/in. h).

To determine the list of addresses for all reachable neighbors requires
knowledge of the networks to which the host is connected. Digital UNIX
provides a method of retrieving this information from the system data
structures. The SIOCGIFCONF i oct | call returns the interface

Sockets 4-51

configuration of a host in the form of asinglei f conf structure. This
structure contains a data area that an array of i f r eq structures comprises,
one for each network interface to which the host is connected. These
structures are defined in the <net / i f . h> header file, as follows:

struct ifconf {
int ifc_len; /* size of associated buffer */
uni on {
caddr _t ifcu_buf;
struct ifreq *ifcu_req
} ifc_ifcu;
#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */

}
struct ifreq {
#define | FNAMSI Z 16
char i fr_nanme[| FNAMVSI Z] ; /* if nane, e.g. "en0" */
uni on {
struct sockaddr ifru_addr
struct sockaddr ifru_dstaddr
struct sockaddr ifru_broadaddr
short ifru_flags;
int ifru_netric
caddr_t ifru_data
}oifr_ifru;
#define ifr_addr ifr_ifru.ifru_addr /* address */

#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of */
/* p-to-p link */
#define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */

#define ifr_fl ags ifr_ifru.ifru_flags /* flags */
#define ifr_netric ifr_ifru.ifru_nmetric /* metric */
#define ifr_data ifr_ifru.ifru_data /* for use by */

/* interface */

}

The actual call which obtains the interface configuration is as follows:
struct ifconf ifc;

char buf[BUFSI Z] ;

ifc.ifc_len si zeof (buf);
ifc.ifc_buf buf ;
if (ioctl(s, SIOCA FCONF, (char *) & fc) < 0) {

}

After this call, buf contains onei f r eq structure for each network to which
the host is connected, and i fc. i f ¢_| en is modified to reflect the number
of bytes used by thei f r eq structures.

Each structure has a set of interface flags that tells whether the network
corresponding to that interface flag is up or down, point-to-point or
broadcast, and so on. The SIOCGIFFLAGS i oct | retrieves these flags for

4-52 Sockets

an interface specified by ani f r eq structure, as follows:

struct ifreq *ifr;
ifr = ifc.ifc_req;

for (n =ifc.ifc_len / sizeof (struct ifreq); --n >=0; ifr++) {
/*
* W& nust be careful that we don’t use an interface
* devoted to an address family other than those intended.
*/
if (ifr->fr_addr.sa_fanmily != AF_| NET)
conti nue;
if (ioctl(s, SIOCA FFLAGS, (char *) ifr) < 0) {

}

/*

* Skip irrelevant cases.

*/

if ((ifr->fr_flags & IFF_UP) == 0 ||
(ifr->ifr_flags & | FF_LOOPBACK) | |
(ifr->ifr_flags & (| FF_BROADCAST | | FF_PO NTOPO NT)) == 0)
conti nue;

Once the flags are obtained, the broadcast address must be obtained. In the
case of broadcast networks, this is done via the SIOCGIFBRDADDR

i oct | ; while, for point-to-point networks, the address of the destination
host is obtained with SIOCGIFDSTADDR. For example:

struct sockaddr dst;

if (ifr->ifr_flags & | FF_PO NTOPO NT) {
if (ioctl (s, SIOCA FDSTADDR, (char *) ifr) < 0) {

}
bcopy((char *) ifr->ifr_dstaddr, (char *) &dst,
sizeof (ifr->ifr_dstaddr));
} else if (ifr->ifr_flags & | FF_BROADCAST) {
if (ioctl (s, SIOCGA FBRDADDR, (char *) ifr) < 0) {

}
bcopy((char *) ifr->ifr_broadaddr, (char *) &dst,
sizeof (ifr->ifr_broadaddr));

}

After the appropriatei oct | calls obtain the broadcast or destination address
(now in dst), the sendt o call is used; for example:

if (sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof (dst)) < 0)
perror("sendto");

In the preceding loop, one sendt o call occurs for every interface to which
the host is connected that supports the notion of broadcast or point-to-point
addressing. |If a process only wants to send broadcast messages on a given

Sockets 4-53

4.6.6

network, code similar to that in the preceding example is used, but the loop
needs to find the correct destination address.

The inetd Daemon

Digital UNIX supportsthei net d Internet superserver daemon. Thei net d
daemon, which is invoked at boot time, readsthe/ et ¢/ i net d. conf file
to determine the servers for which it should listen.

Note

Only server applications written to run over sockets can use the
i net d daemon in Digital UNIX. Thei net d daemon in
Digital UNIX does not support server applications written to run
over STREAMS, XTI, or TLI.

For each server listed in/ et ¢/ i net d. conf thei net d daemon does the
following:

1. Creates a socket and binds the appropriate port number to it.

2. Issuesasel ect system call for read availability and waits for a process
to request a connection to the service that corresponds to that socket.

3. Issuesan accept system cal, forks, duplicates (with the dup call) the
new socket to file descriptors 0 and 1 (stdin and stdout), closes other
open file descriptors, and executes (with the exec call) the appropriate
server.

Serversthat usei net d are simplified becausei net d takes care of most of
the interprocess communication work required to establish a connection. The
server invoked by i net d expects the socket connected to its client on file
descriptors 0 and 1, and immediately performs any operations such asr ead,
wite,send,orrecv.

Serversinvoked by the i net d daemon can use buffered /O as provided by
the conventions in the <st di 0. h> header file, as long as as they remember
tousethef f I ush cal when appropriate. Seef f | ush(3) for more
information.

The get peer nane call, which returns the address of the peer (process)
connected on the other end of the socket, is useful for developers writing
server applications that usei net d. The following sample code shows how

4-54 Sockets

to log the Internet address, in dot notation, of a client connected to a server
under i net d:

struct sockaddr _i n nane;
size_t nanelen = sizeof (nane);

if (getpeername(0, (struct sockaddr *)&nane, &nanelen) < 0) {
sysl og(LOG_ERR, "getpeernane: %d');
exit(1);
} else
sysl og(LOG_ | NFO, "Connection from %", inet_ntoa(nane.sin_addr));

While the get peer nane cal is especially useful when writing programs to
run with i net d, it can be used under other circumstances.

4.6.7 Input/Output Multiplexing

Multiplexing is afacility used in applications to transmit and receive |/O
requests among multiple sockets. This can be done by using the sel ect
cdl, asfollows:

#i ncl ude <sys/tine. h>
#i ncl ude <sys/types. h>

fd_set readmask, writenask, exceptnask;
struct tinmeval tineout;

if (select(nfds, & eadmask, &witenask, &exceptmask, &tineout) < 0)
perror("select");

The sel ect call takes as arguments pointers to three sets:

1. The set of socket descriptors for which the calling application wants to
read data.

2. The socket descriptors to which data is to be written.
3. Exceptional conditions which are pending.

The corresponding argument to the sel ect call must be a null pointer,
if the application is not interested in certain conditions; for example, read,
write, or exceptions.

Sockets 4-55

Note

Because XTI and TLI are implemented using STREAMS, you
should use the pol | system call instead of the sel ect system
cal on any STREAMS file descriptors.

Each set is actually a structure that contains an array of integer bit masks.
The size of the array is set by the FD_SETSI ZE definition. The array is
long enough to hold one bit for each of the FD_SETSI ZE file descriptors.

The FD_SET (fd, &mask)and FD_CLR(fd, &mask) macros are
provided to add and remove the f d file descriptor in the mask set. The set
needs to be zeroed before use and the FD_ZERO (&mask) macro is provided
to clear the mask set.

The nf ds parameter in the sel ect call specifies the range of file
descriptors (for example, one plus the value of the largest descriptor) to be
examined in a set.

A time-out value can be specified when the selection will not last more than
a predetermined period of time. If thefieldsinti nmeout are set to zero (0),
the selection takes the form of a pall, returning immediately. If the last
parameter is a null pointer, the selection blocks indefinitely. Specifically, a
return takes place only when a descriptor is selectable or when asigna is
received by the caller, interrupting the system call.

Thesel ect call normally returns the number of file descriptors selected; if
the sel ect call returns because the time-out expired, then the value O is
returned. If the sel ect call terminates because of an error or interruption, a
-1 is returned with the error number in er r no and with the file descriptor
masks unchanged.

Assuming a successful return, the three sets indicate which file descriptors
are ready to be read from, written to, or have exceptional conditions pending.
The status of a file descriptor in a select mask can be tested with the

FD | SSET (fd, &mask) macro, which returns a nonzero valueif fdisa
member of the mask set or O if it is not.

To determine whether there are connections waiting on a socket to be used
with an accept cdl, thesel ect call isused, followed by a

FD | SSET (fd, &nmask) macro to check for read readiness on the
appropriate socket. If FD_| SSET returns a nonzero value, indicating data to
read, then a connection is pending on the socket.

4-56 Sockets

Note

In 4.2BSD, the arguments to the sel ect call were pointers to
integers instead of pointerstof d_set . This type of call works
as long as the number of file descriptors being examined is less
than the number of bits in an integer; however, the method
shown in the following code is recommended.

The following example shows how an application reads data as it becomes
available from sockets s1 and s2 with a 1-second time-out:

#i ncl ude <sys/tine. h>
#i ncl ude <sys/types. h>

fd_set read_tenplate;
struct tineval wait;

for (5;) {
wait.tv_sec = 1; /* one second */
wait.tv_usec = O;

FD_ZERQ(&r ead_t enpl at e) ;

FD SET(s1, &read_tenplate);
FD SET(s2, &read_tenplate);

nb = sel ect (FD_SETSI ZE, &read_tenplate, (fd_set *) O,
(fd_set *) 0, &nait);
if (nb <=0) {
An error occurred during the select, or
the select tined out }

if (FD_I SSET(s1l, &read_template)) {
Socket #1 is ready to be read from
}

if (FD_I SSET(s2, &read_tenmplate)) {
Socket #2 is ready to be read from
}

}

The sel ect call provides a synchronous multiplexing scheme.
Asynchronous notification of output completion, input availability, and
exceptional conditions is possible through use of the SIGIO and SIGURG
signals described in Section 4.6.9.

Sockets 4-57

4.6.8 Interrupt Driven Socket 1/0

The SIGIO signal allows a process to be notified using a signal when a
socket (or more generaly, afile descriptor) has data waiting to be read.
Using the SIGIO facility requires the following three steps:

1. The process must set up a SIGIO signa handler by using the si gnal or
si gvec cdls.

2. The process must set the process ID or process group ID that is to receive
notification of pending input to its own process ID or the process group
ID of its process group. (Note that the default process group of a socket is
group 0.) Thisisdone by using afcnt| system call.

3. The process must enable asynchronous natification of pending 1/0
requests with another f cnt | system call. The following code shows
how to allow a particular process to receive information on pending 1/0
reguests as they occur for socket s. With the addition of a handler for
SIGURG, this code can also be used to prepare for receipt of SIGURG
signals.

#i nclude <fcntl.h>

int io_handler():

signal (SIA O, io_handler);
/* Set the process receiving SIA QO SIGJRG signals to us */

if (fcntl(s, F_SETOMNN, getpid()) < 0) {
perror("fcntl F_SETOM');
exit(1);

}

/* Al'l ow recei pt of asynchronous I/O signals */

if (fentl (s, F_SETFL, FASYNC) < 0) {
perror("fcntl F_SETFL, FASYNC');
exit(1);

4.6.9 Signals and Process Groups

Each socket has an associated process number, the value of which is
initialized to zero (0). This number must be redefined with the F_ SETOWN
parameter to the f cnt | system call, as was done in Section 4.6.8, to enable
SIGURG and SIGIO signals to be caught. To set the socket’s process ID for
signals, positive arguments must be giventothef cnt | call. To set the

4-58 Sockets

socket’s process group for signals, negative arguments must be passed to the
fcntl cal. Note that the process number indicates the associated process
ID or the associated process group; it isimpossible to specify both
simultaneoudly.

The F_GETOWN parameter to thef cnt | call allows a process to determine
the current process number of a socket.

The SIGCHLD signal is aso useful when constructing server processes. This
signal is delivered to a process when any child processes change state.
Typically, servers use the SIGCHLD signal to reap child processes that
exited, without explicitly awaiting their termination or periodic polling for
exit status. If the parent server process fails to reap its children, alarge
number of zombie processes may be created. The following code shows how
to use the SIGCHLD signal:

int reaper();

si gnal (SI GCHLD, reaper);
listen(f, 5);
for (;:) {
int g;
size_t len = sizeof (fron);
g = accept(f, (struct sockaddr *)& rom & en,);
if (g <0) {
if (errno != EINTR)
sysl og(LOG ERR, "rlogind: accept: %);
conti nue;

}

#i ncl ude <wait. h>
reaper ()

uni on wait status;

while (wait3(&status, WNCHANG 0) > 0)

4.6.10 Pseudoterminals

Many programs cannot function properly without aterminal for standard
input and output. Since sockets do not provide the semantics of terminals, it
is often necessary to have a process communicating over the network do so

Sockets 4-59

through a pseudoterminal (pt y). A pseudoterminal is a pair of devices,
master and slave, that allow a process to serve as an active agent in
communication between applications and users.

Data written on the slave side of a pseudoterminal is used as input to a
process reading from the master side, while data written on the master sideis
processed as terminal input for the slave. In this way, the process
manipulating the master side of the pseudoterminal controls the information
read and written on the slave side as if it were manipulating the keyboard and
reading the screen on areal terminal. The purpose of the pseudoterminal
abstraction is to preserve terminal semantics over a network connection; that
is, the slave side appears as a normal terminal to any process reading from or
writing to it.

For example, r | ogi nd, the remote login server uses pseudoterminals for
remote login sessions. A user logging in to a machine across the network is
provided a shell with a slave pseudoterminal as standard input, standard
output, and standard error. The server process then handles the
communication between the programs invoked by the remote shell and the
user’s local client process. When a user sends a character that generates an
interrupt on the remote machine that flushes terminal output, the
pseudoterminal generates a control message for the server process. The
server then sends an out-of-band message to the client process to signa a
flush of data at the real terminal and on the intervening data buffered in the
network.

In Digital UNIX, the slave side of a pseudoterminal has a name of the form

/ dev/ttyxy, where x is any single letter, except d, and is uppercase or
lowercase. The y is a hexadecimal digit, meaning it is a single character in
the range of 0 to 9 or ato f. The master side of a pseudoterminal has a name
of the form / dev/ pt y xy, where x and y correspond to x and y on the
dlave side of the pseudoterminal.

The openpty and f or kpt y functions were added to the | i bc. a library
to make allocating pseudoterminals easier. These functions use the cl one
open call to avoid performing multiple open cals.

The following is the syntax for the openpt y and f or kpt y functions:

#include <termios.h>
#include <ioctl.h>

int openpty(
int *master,
int *slave,
char *name,
struct termios *termp,
struct winsize *winp,);

4-60 Sockets

pid_t forkpty(
int *master,
char *name,
struct termios *termp,
struct winsize *winp,);

The first two arguments of the openpt y function are pointers to integers
which, upon successful completion, hold the value of the master and slave
file descriptors respectively.

The last three arguments are optional; you should specify them as NULL if
they are not used. If they are used, they do the following:

* Thethird argument is a pointer to a character string which is the
pathname of the slave device.

* Thefourth argument is a pointer to at er mi os structure and is used to
set the slave’ s terminal characteristics.

* Thefifth argument is pointer to awi nsi ze structure which sets the
window size of the slave.

The f or kpt y function alocates a pseudoterminal. Additionally, it forks a
child process and makes the slave pseudoterminal the controlling terminal for
the child. Thef or kpt y function takes four arguments instead of five,
because the slave file descriptor is not passed back to the calling process.
Instead, the slave file descriptor is duplicated in the newly created child
process as st di n, st dout , and st der r . The other four arguments are
identical to those of the openpt y function.

Both the openpt y and f or kpt y functions return -1 to signify an error
condition. The openpt y function returns a zero (0) upon sucessful
completion, while the f or kpt y returns the pid of the child process. See the
openpt y(3) reference page for more information.

The openpt y function works as follows:

1. Upon successful completion, the slave side of the pseudoterminal is set to
the proper terminal modes. At the time the master and slave sides of the
pseudoterminal are opened, Digital UNIX performs the necessary security
checks.

2. The process then forks; the child closes the master side of the
pseudoterminal and executes (with the exec call) the appropriate
program.

3. The parent closes the dave side of the pseudoterminal and begins reading
and writing from the master side.

The following example makes use of pseudoterminal. The code in this
example makes the following assumptions:

Sockets 4-61

* A connection on a socket already exists.
» The socket is connected to a peer that wants a service of some kind.
» The process disassociated itself from any previous controlling terminal.

if (openpty(&mast, &l ave, NULL, NULL, NULL) {
sysl og(LOG ERR, "All network ports in use");

exit(1);
}
ioctl(slave, TIOCGETA, &erm; [* get default slave term os struct */
termc_iflag | = | CRNL;
termc_oflag | = OCRNL;
ioctl(slave, TIOCSETA, &erm; /* set slave characteristics */
i = fork();
if (i <0) {
sysl og(LOG ERR, "fork: %);
exit(1);
} elseif (i) { /* Parent */

cl ose(sl ave);

} else { [* Child */
(void) close(s);
(void) close(nmaster);
dup2(sl ave, 0);
dup2(sl ave, 1);
dup2(sl ave, 2);
if (slave > 2)
(void) close(slave);

}
See Section 4.3 for information about using sockets.

4-62 Sockets

Digital UNIX STREAMS 5

Digital UNIX provides a STREAMS framework as specified by AT&T's
System V, Version 4.0 release of STREAMS. This framework, which
provides an alternative to traditional UNIX character input/output (1/0),
allows you to implement 1/0 functions in a modular fashion. Modularly
developed 1/O functions allow applications to build and reconfigure
communications services easily.

Note that STREAMS refers to the entire framework whereas Stream refers to
the entity created by an application program with the open system call.

This chapter contains the following information:

* Overview of the STREAMS framework

» Description of the application interface to STREAMS

» Description of the kernel-level functions

* Instructions on how to configure modules or drivers

» Description of the Digital UNIX synchronization mechanism

» Information on how to create device specia files

» Description of error and event logging

» Information about STREAMS reference pages

This chapter provides detailed information about areas where the Digital
UNIX implementation of STREAMS differs from that of AT&T System V,
Version 4.0. Where the Digital UNIX implementation does not differ

significantly from that of AT&T, it provides pointers to the appropriate
AT&T documentation.

Note that this chapter does not explain how to program using the STREAMS
framework. For detailed programming information you should refer to the
Programmer’s Guide: STREAMS

5.1 Overview of the STREAMS Framework
The STREAMS framework consists of:

* A programming interface, or set of system calls, used by application
programs to access the STREAMS framework

» Kernel resources, such as the Stream head, and queue data structures used
by the Stream

» Kernel utilities that handle tasks such as Stream queue scheduling and
flow control, memory allocation, and error logging

Figure 5-1 highlights the STREAMS framework and shows its place in the
network programming environment.

Figure 5-1: The STREAMS Framework

STREAMS

Application

user space

kernel space
| Stream head I

STREAMS
module

1
i STREAMS driver
1

ZK-0559U-R

5.1.1 A Review of STREAMS Components

To communicate using Digital UNIX STREAMS, an application creates a
Stream, which is a full-duplex communication path between a user process
and adevice driver. The Stream itself is a kernel device and is represented
to the application as a character special file. Like any other character special
file, the Stream must be opened and otherwise manipulated with system calls.

5-2 Digital UNIX STREAMS

Every Stream has at |least a Stream head at the top and a Stream end at the
bottom. Additional modules, which consist of linked pairs of queues, can be
inserted between the Stream head and Stream end if they are required for
processing the data being passed along the Stream. Data is passed between
modules in messages.

This section briefly describes the following STREAMS components:
» Stream head

» Stream end

* Modules

It also describes messages and their role in the STREAMS framework.

Figure 5-2 illustrates a typical stream. Note that data traveling from the
Stream head to the Stream end (STREAMS driver in Figure 5-2) is said to be
traveling downstream, or in the write direction. Data traveling from the
Stream end to the Stream head is said to be traveling upstream, or in the read
direction.

Figure 5-2: Example of a Stream

Application
A User Space

Hardware/Network

ZK-0520U-R

The Stream head is a set of routines and data structures that provides an
interface between user processes and the Streams in the kernel. It is created

Digital UNIX STREAMS 5-3

when your application issues an open system call. The following are the
major tasks that the Stream head performs:

1. Interprets a standard subset of STREAMS system calls, suchaswr i t e
and put nsg.

2. Trandates them from user space into a standard range of STREAMS
messages (such as M_PROTO and M_DATA) which consist of both data
and control information.

3. Sends the messages downstream to the next module. Eventually the
messages reach the Stream end, or driver.

4. Receives messages sent upstream from the driver and transforms the
STREAMS message from kernel space to a format appropriate to the
system call (such as get nmsg or r ead) made by the application. The
format varies depending on the system call.

The Stream end is a special form of STREAMS module and can be either a
hardware or pseudodevice driver. If a hardware device driver, the Stream end
provides communication between the kernel and an external communication
device. If apseudodevice driver, the Stream end is implemented in software
and is not related to an external device. Regardless of whether it isa
hardware device driver or a pseudodevice driver, the Stream end receives
messages sent by the module above it, interprets them, and performs the
requested operations. It then returns data and control information to the
application by creating a message of the appropriate type which it sends
upstream toward the Stream head.

Drivers are like any other STREAMS modules except for the following:
» They can handle interrupts (although they do not have to).

Device drivers can have one or more interrupt routines. Interrupt routines
should queue data on the read side service routine for later processing.

* They can be connected to multiple Streams.

A driver can be implemented as a multiplexor, meaning that it is
connected to multiple Streams in either the upstream or downstream
direction. See the Programmer’s Guide: STREAMS for more
information.

» They areinitialized and deinitialized by the open and cl ose system
cals. (Other modules usethe | _PUSH and | _POP commands of the
i oct!| system call)

For detailed information on device drivers and device driver routines, see the
Writing Device Drivers: Tutorial and the Programmer’s Guide: STREAMS,

Modules process data as it passes from the Stream head to the Stream end
and back. A Stream can have zero or more modules on it, depending on the

5-4 Digital UNIX STREAMS

amount and type of processing that the data requires. If the driver can
perform al of the necessary processing on the data, no additional modules
are required.

Modules consist of apair of queues that contain data and pointers to other
structures that define what each module does. One queue handles data
moving downstream toward the driver and the other handles data moving
upstream toward the Stream head and application. Pointers link each
module's downstream and upstream queues to the next modul€e’ s downstream
and upstream queues.

Depending on their processing requirements, applications request that
particular modules be pushed onto the Stream. The Stream head assembles
the modules requested by the application and then routes the messages
through the pipeline of modules.

Information is passed from module to module using messages. Several
different types of messages are defined within the STREAMS environment.
All message types, however, fall into the following categories:

* Norma

* High priority

Normal messages, such asM_DATA and M_IOCTL, are processed in the
order that they are received, and are subject to STREAMS flow control and

gueuing mechanisms. Priority messages are passed along the stream in an
expedited manner.

For more information on messages and message data structures, see Section
5.3.2

5.2 Application Interface to STREAMS

5.2.1

The application interface to the STREAMS framework allows STREAMS
messages to be sent and received by applications. The following sections
describe the application interface, including pointers to the STREAMS
header files and data types, and descriptions of the STREAMS and
STREAMS-related system calls.

Header Files and Data Types

Definitions for the basic STREAMS data types are included in the following
header files:

* The<sys/stream h> header file must be included for all modules
and Streams applications.

 The<stropts. h> header file must be included when an application
usesthei oct | system call.

Digital UNIX STREAMS 5-5

The<st r| 0og. h> header file must be included when an application uses
the STREAMS error logger and trace facility.

Typicaly, header file names are enclosed in angle brackets (< >).
To obtain the absolute path to the header file, prepend
{usr/incl ude/ totheinformation enclosed in the angle
brackets. Inthe case of <sys/ stream h>,stream h is
located inthe/ usr /i ncl ude/ sys directory.

5.2.2 STREAMS Functions

Y our application accesses and manipulates STREAMS kernel resources
through the following functions:

This section briefly describes these functions. For detailed information about
these functions, see the Digital UNIX reference pages and the Programmer’s

open
cl ose

r ead

wite

i octl

nkfifo

pi pe

put nsg and put prmsg
get nsg and get pnsg
pol |

i sastream
fattach

f det ach

Guide: STREAMS

5.2.2.1 The open Function

Use the open function to open a Stream. The following is the syntax for the

open function:

5-6 Digital UNIX STREAMS

int open (
const char *path,
int oflag[,
mode_t mode]);

In the preceding statement:

pat h
Specifies the device pathname supplied to the open function. The
device pathnames are located in the / dev/ st r eans directory. To
determine which devices are configured on your system issue the
following command as root:

/usr/sbin/strsetup —c

of | ag
Specifies the type of access, special open processing, type of update, and
the initial state of the open file.

node
Specifies the permissions of the file that open is creating.
See open(2) for more information.

The following example shows how the open function is used:

int fd;
fd = open("/dev/streans/echo", O RDWR);

5.2.2.2 The close Function
Use the cl ose function to close a Stream.
The following is the syntax for the cl ose function:

int close(
int filedes);

In the preceding statement:
filedes

Specifies a valid open file descriptor
See cl ose(2) for more information.

The last cl ose for a stream causes the stream associated with the file
descriptor to be dismantled. Dismantling a stream includes popping any
modules on the stream and closing the driver.

Digital UNIX STREAMS 5-7

5.2.2.3 Theread Function

Use the r ead function to receive the contents of M_DATA messages
waiting at the Stream head.

The following is the syntax for the r ead function:

int read(
int filedes,
char *buffer,
unsigned int nbytes);

In the preceding statement:

filedes
Specifies a file descriptor that identifies the file to be read.

*buffer
Points to the buffer to receive the data being read.

nbyt es
Specifies the number of bytes that can be read from the file associated
with 7/ | edes.

See r ead(2) for more information.

The r ead function fails on message types other than M_DATA, and er r no
is set to EBADMSG.

5.2.2.4 The write Function

Usethewr i t e function to create one or more M_DATA messages from the
data buffer.

The following is the syntax for thewr i t e function:

int write(
int filedes,
char *buffer
unsigned int nbytes);

In the preceding statement:

filedes
Specifies a file descriptor that identifies the file to be read.

*buffer
Points to the buffer to receive the data being read.

nbyt es
Specifies the number of bytes to write from the file associated with
filedes.

5-8 Digital UNIX STREAMS

Seewr i t e(2) for more information.

5.2.25 Theioctl Function

Usethei oct | function to perform avariety of control functions on
Streams.

The following is the syntax of thei oct | function:
#include <stropts.h>

int ioctl (filedes, command, arg)
int fildes, command,

In the preceding statement:

filedes
Specifies an open file descriptor that refers to a Stream.

conmmand
Determines the control function for the Stream head or module to
perform. Many of thevalidi oct| commands are handled by the
Stream head; others are passed downstream to be handled by the
modules and driver.

arg
Specifies additional information. The type depends on the command
parameter.

See st r eamni o(7) for more information.

The following example shows how thei oct | call is used:

int fd;
fd = open("/dev/streans/echo", O RDWR, 0);
ioctl (fd, | _PUSH, "pass");

5.2.2.6 The mkfifo Function

Use the STREAMS-based nkf i f o function to create a unidirectiona
STREAM S-based file descriptor.

The following is the syntax of the STREAMS-based nkf i f o function:

int mkfifo(
const char *path,
mode_t mode);

Digital UNIX STREAMS 5-9

In the preceding statement:

pat h
Specifies the file name supplied to the mkf i f o function.

node
Specifies the type, attributes, and access permissions of the file.

Note

The default version of the nkf i f o functioninthel i bc
library is not STREAMS-based. To use the STREAMS
version of the nkf i f o function the application must link
with the sys5 library. Seethe nkf i f 0(2) reference page
for more information.

Also note that the mkf i f o function requires that the File
on File Mount File System (FFM_FS) kernel option is
configured. See the System Administration manual for
information about configuring kernel options.

5.2.2.7 The pipe Function

Use the STREAMS-based pi pe function to create a bidirectional,
STREAM S-based, communication channel. Non-STREAMS pipes and
STREAM S-based pipes differ in the following ways:

* Non-STREAMS pipes are unidirectiona
» STREAMS operations (such as st r eam 0 and put nmsg) can not be
performed on them

The following is the syntax of the pi pe function:

int pipe(
int filedes[2]);

In the preceding statement:
fil edes Specifies the address of an array of two integers into which
new file descriptors are placed.

Note

The default version of the pi pe functioninthel i bc
library is not STREAMS-based. To use the STREAMS
version of the pi pe function the application must link with
the sys5 library. Seethe pi pe(2) reference page for more
information.

5-10 Digital UNIX STREAMS

5.2.2.8 The putmsg and putpmsg Functions

Use the put nsg and put pnsg functions to generate a STREAMS message
block by using information from specified buffers.

The following is the syntax of the put nsg function:

int putmsg(
int filedes;
struct strbuf *ctlbuf,
struct strbuf *databuf,
int flags;)

In the preceding statement:

fil edes
Specifies the file descriptor that references an open Stream.

ct | buf
Pointsto ast r buf structure that holds the control part of the message.

dat abuf
Pointsto ast r buf structure that holds the data part of the message.

fl ags
An integer that specifies the type of message the application wants to
send.

See put nmsg(2) for more information.
Use the put pneg function to send priority banded data down a Stream.

The following is the syntax of the put pnsg function:

int putpmsg(
int filedes;
struct strbuf *ctlbuf,
struct strbuf *databuf,
int band,;
int flags;)

The arguments have the same meaning as for the put nsg function. The
band argument specifies the priority band of the message.

See put pnsg(2) for more information.

5.2.2.9 The getmsg and getpmsg Functions

Use the get nsg and get pnsg functions to retrieve the contents of a
message located at the Stream head r ead queue and place them into user
specified buffer(s).

Digital UNIX STREAMS 5-11

The following is the syntax of the get nsg function:

int getmsg(
int filedes
struct strbuf *ctlbuf
struct strbuf *databuf
int *flags);

In the preceding statement:

fil edes
Specifies a file descriptor that references an open Stream.

ct | buf
Pointsto ast r buf structure that returns the control part of the
message.

dat abuf
Pointsto ast r buf structure that returns the data part of the message.

fl ags
Points to an integer that specifies the type of message the application
wants to retrieve.
See get nmsg(2) for more information.
Use the get pnrsg function to receive priority banded data from a Stream.
The following is the syntax of the get pnsg function:

int getpmsg(
int filedes
struct strbuf *ctlbuf
struct strbuf *databuf
int band,;
int *flags);

The arguments have the same meaning as for the get nsg function. The
band argument points to an integer that specifies the priority band of the
message being received.

See get pnsg(2) for more information.

5.2.2.10 The poll Function

Usethe pol | function to identify the Streams to which a user can send data
and from which a user can receive data.

The following is the syntax for the pol | function:

5-12 Digital UNIX STREAMS

#include <sys/poll.h>

int poll(
struct pollfd filedes]],
unsigned int nfds,
int timeout);

In the preceding statement:

filedes
Points to an array of pol | f d structures, one for each file descriptor you
are polling. By filling in the pol | f d structure, the caller can specify a
set of events about which to be notified.

nfds
Specifies the number of pol | f d structuresinthe fi | edes array.

ti meout
Specifies the maximum length of time (in milliseconds) to wait for at
least one of the specified events to occur.

See pol | (2) for more information.

5.2.2.11 The isastream Function

Usethei sast r eamfunction to determine if afile descriptor refersto a
STREAMS file.

The following is the syntax for thei sast r eamroutine:

int isastream(
int filedes;);

In the preceding statement:

filedes
Specifies an open file desciptor.

The following example shows how to use the i sast r eamfunction to verify
that you have opened a STREAM S-based pipe instead of a sockets-based
pipe:

int fds[2];

pi pe(fds);
if (isastream(fds[0]))
printf("STREAMS based pi pe0);
el se
printf("Sockets based pipe0);

Seethei sast r eam(3) reference page for more information.

Digital UNIX STREAMS 5-13

5.2.2.12 The fattach Function

Usethef at t ach function to attach a STREAM S-based file descriptor to an
object in the file system name space.

The following is the syntax of thef at t ach function:

int fattach(
int fd,
const char *path);

In the preceding statement:

fd
Specifies an open STREAM S-based file descriptor.

pat h
Specifies the pathname of an existing file system aobject. The pathname
must reference aregular file. It can not reference, for example, a
directory or pipe.

The following example shows how to use the f at t ach function to name a
STREAM S-based pipe:

int fds[2];

pi pe(fds);
fattach(fd[0], "/tnp/pipel");
Note

Thef at t ach function requires that the FFM_FS kernel option
be configured. See the System Administration manual for
information about configuring kernel options.

Seethef at t ach(3) reference page for more information.

5.2.2.13 The fdetach Function

Use thef det ach function to detach a STREAM S-based file descriptor from
afilename. A STREAM S-based file descriptor may have been attached by
using the f at t ach function.

The following is the syntax of the f det ach function:

int fdetach(
const char *path);

5-14 Digital UNIX STREAMS

In the preceding statement:

pat h
Specifies the pathname of afile system object that was previously
attached.

Note

Thef det ach function requires that the File on File Mount File
System (FFM_FS) kernel option is configured. See the System
Administration manual for information about configuring kernel
options.

See the f det ach(3) reference page for more information.

Table 5-1 lists and briefly describes the reference pages that contain
STREAMS-related information. For further information about each
component, refer to the appropriate reference page.

Table 5-1: STREAMS Reference Pages

Reference Description
Page

aut opush(8) Command that manages the system’s database of
automatically pushed STREAMS modules.

cl one(7) STREAMS software driver that finds and opens an
unused major/minor device on another STREAMS
driver.

* cl ose(?) Function that closes the file associated with a designated
file descriptor.

dl b(7) STREAMS pseduodevice driver that provides a

communication path between BSD-style device drivers
and STREAMS protocol stacks.

fattach(8) Command that attaches a STREAM S-based file
descriptor to a node in the file system.

f det ach(8) Command that detaches a STREAM S-based file
descriptor from a file name.

f det ach(3) Function that detaches a STREAM S-based file descriptor
from a file name.

get msg(2) Functions that reference a message positioned at the

get pnsg(2) Stream head read queue.

Digital UNIX STREAMS 5-15

Table 5-1:

Reference
Page

i fnet (7)

i sast r ean(3)
mkfi f 0(2)

* open(2)

pi pe(2)

pol | (2)

put meg(2)
put pnsg(2)
* read(2)

strace(8)

strchg(l)
st rcl ean(8)
st rconf (1)
st ream o(7)

strerr(8)
strl og(7)

st rset up(8)

ti mod(7)

(continued)

Description

STREAM S-based module that provides a bridge between
STREAM S-based device drivers written to the Data Link
Provider Interface (DLPI) and sockets.

Function that determines if afile descriptor refersto a
STREAMS file.

Function that creates a unidirectiona STREAM S-based
file descriptor.

Function that establishes a connection between a file and
afile descriptor.

Function that creates a bidirectional, STREAM S-based,
interprocess communication channel.

Function that provides a general mechanism for reporting
I/O conditions associated with a set of file descriptors
and for waiting until one or more specified conditions
becomes true.

Functions that generate a STREAM S message block.

Function that reads data from a file into a designated
buffer.

Application that retrieves STREAMS event trace
messages from the STREAMS log driver.

Command that aters the configuration of a Stream.
Command that removes STREAMS error log files.
Command that queries about a Stream’ s configuration.

Command that performs a variety of control functions on
Streams.

Daemon that receives error messages from the
STREAMS log driver.

Interface that tracks log messages used by STREAMS
error logging and event tracing daemons.

Command that creates the appropriate STREAMS
pseudodevices and displays the setup of your STREAMS
modules.

Module that convertsi oct | calls from a transport user
supporting the Transport Interface (TI) into messages
that a transport protocol provider supporting Tl can
consume.

5-16 Digital UNIX STREAMS

Table 5-1: (continued)

Reference Description
Page
tirdw(7) Module that provides a transport user supporting the Tl

with an alternate interface to a transport protocol
provider supporting TI.

*write(?) Function that writes data to a file from a designated
buffer.

Table Notes: An asterisk (*) means that the page is not STREAMS specific.

5.3 Kernel Level Functions

5.3.1

This section contains information with which the kernel programmer who
writes STREAMS modules and drivers must be familiar. It contains
information about:

* Module data structures
* Message data structures
* STREAMS processing routines for modules and drivers

Module Data Structures

When a module or driver is configured into the system, it must define its read
and write queues and other module information.

Theqi ni t, nodul e_i nf o, and st r eant ab data structures, all of which
are located in the <sys/ st r eam h> header file, define read and write
gueues. STREAMS modules must fill in these structures in their declaration
sections. See Appendix A for an example.

The only external data structure a module must provide is st r eant ab.

The gi ni t structure, shown in the following example, defines the interface
routines for a queue. The read queue and write queue each have their own
set of structures.

struct qinit {

int (*qi _putp)(); /* put routine */

int (*qi _srvp)(); /* service routine */

int (*qi _qgopen) (); /* called on each open */
/* or a push */

int (*qi _qgcl ose) (); /* called on |ast close */

/* or a pop */

Digital UNIX STREAMS 5-17

5.3.2

int (*qi _gadm n) ();
struct nodul e_info * qi _m nfo;
struct nodul e_stat * qi _nstat;

b

/*
/*
/*
/*

reserved for future use */
information structure */
statistics structure (op-
tional) */

The nodul e_i nf o structure, shown in the following example, contains
module or driver identification and limit values:

struct nodule_info {
unsi gned short m _i dnum
char *m _i dnane;
| ong m _m npsz,
| ong m _mexpsz;
ul ong m _hi wat ;
ul ong m _| owat ;

b

nmodul e | D nunber */
nodul e nane */

m n packet size,
devel oper use */
max packet size,
devel oper use */
hi -water mark, for */
flow control */
| o-wat er mark,
flow control */

for */

for */

for */

The st r eant ab structure, shown in the following example, forms the
uppermost part of the declaration and is the only part which needs to be

visible outside the module or driver:

struct streantab {
struct qinit
struct qinit
struct qinit
struct qinit

st_rdinit;
st_winit;

* %k k%

Message Data Structures

st_nmuxrinit;
St _muxwi nit;

/*
/*
/*
/*

defines read QUEUE */

defines wite QUEUE */

for multiplexing drivers only */
ditto */

Digital UNIX STREAMS messages consist of one or more linked message
blocks. Each message block consists of atriplet with the following

components:
e A data buffer

The data buffer contains the binary data that makes up the message.
STREAMS imposes no alignment rules on the format of data in the data
buffer, aside from those imposed by messages processed at the Stream

head.
« A nbl k_t control structure

The nbl k_t structure contains information that the message owner can
manipulate. Two of its fields are the read and write pointers into the data

buffer.
« Adbl k_t control structure

The dbl k_t structure contains information about buffer characteristics.

5-18 Digital UNIX STREAMS

For example, two of its fields point to the limits of the data buffer, while
others contain the message type.

The Stream head creates and fills in the message data structures when data is
traveling downstream from an application. The Stream end creates and fills in
the message data structures when data is traveling upstream, as in the case of
data coming from an external communications device.

Thenbl k_t and dbl k_t structures, shown in the following examples, are
located in the <sys/ st r eam h> header file:

/* message bl ock */
struct nsgb {

struct nsgb * b_next; /* next nessage on queue */

struct msgb * b_prev; /* previous nessage on queue */

struct nsgb * b_cont; /* next nessage bl ock of nessage */
unsi gned char * b_rptr; /* first unread data byte in buffer */
unsi gned char * b_wptr; /* first unwitten data byte */

struct datab * b_datap; /* data bl ock */

unsi gned char b_band; /* message priority */

unsi gned char b_padl;

unsi gned short b_flag; /* message flags */

| ong b_pad2;

MBG_KERNEL_FI ELDS
H
typedef struct nsgb mbl k_t;

/* data descriptor */
struct datab {

uni on {
struct datab * freep;
struct free_rtn * frtnp;
} db_f;
unsi gned char * db_base; /* first byte of buffer */
unsi gned char * db_lim /* last byte+l of buffer */
unsi gned char db_ref; /* count of nessages pointing */
/* to block */
unsi gned char db_type; /* message type */
unsi gned char db_i swhat; /* nessage status */
unsi gned i nt db_si ze; /* used internally */
caddr _t db_nsgaddr; /* used internally */
| ong db_filler;
H
#define db_freep db_f.freep
#define db_frtnp db_f.frtnp

typedef struct datab dbl k_t;

/* Free return structure for esballoc */
typedef struct free_rtn {
voi d (*free_func)(char *, char *); /* Routine to free buffer */
char * free_arg; /* Paraneter to free_func */
} frin_t;

When a message is on a STREAMS queue, it is part of alist of messages
linked by b_next and b_pr ev pointers. The g_next pointer points to the
first message on the queue and the q_| ast pointer points to the last
message on the queue.

Digital UNIX STREAMS 5-19

5.3.3 STREAMS Processing Routines for Drivers and Modules

A module or driver can perform processing on the Stream that an application
requires. To perform the required processing, the STREAMS module or
driver must provide specia routines whose behavior is specified by the
STREAMS framework. This section describes the STREAMS module and
driver routines, and the following kinds of processing they provide:

» Open processing

» Close processing

» Configuration processing

* Read side put processing

» Write side put processing

* Read side service processing
» Write side service processing

Note

STREAMS modules and drivers must provide open, close, and
configuration processing. The other kinds of processing
described in this section are optional.

The format used to describe each routine in this section is

XX_routi ne_name. Digital recommends that you substitute the name of
a user-written STREAMS module or driver for the XX. For example, the
open routine for the user-written STREAMS pseudodevice driver echo
would be echo_open.

5.3.3.1 open and close Processing

Only the open and cl ose routines provide accessto the u_ar ea of the
kernel. They are alowed to sl eep only if they catch signals.

open processing

Modules and drivers must have open routines. The read side gi ni t
structure, st _rdi ni t definesthe open routineinits gi _qopen fidd. A
driver's open routine is called when the application opens a Stream. The
Stream head calls the open routine in a module when an application pushes
the module onto the Stream.

5-20 Digital UNIX STREAMS

The open routine has the following format:

XX_open(q, devp, flag, sflag, credp)
queue_t *q; /* pointer to the read queue */
dev_t *devp; [/* pointer to major/mnor nunber
for devices */
int flag; /* file flag */
int sflag; /* stream open flag */
cred_t *credp /* pointer to a credentials structure */

The open routine can allocate data structures for internal use by the
STREAMS driver or module. A pointer to the data structure is commonly
stored inthe q_pt r field of the queue_t structure. Other parts of the
module or driver can access this pointer later.

close processing

Modules and drivers must have cl ose routines. The read side gi ni t
structure, st _rdi ni t, definesthe cl ose routineinits gi _qcl ose fidd.
A driver callsthe cl ose routine when the application that opened the
Stream closes it. The Stream head calls the cl ose routine in a module
when it pops the module from the stack.

The cl ose routine has the following format:

XX_close(q, flag, credp)
queue_t *q; /* pointer to read queue */
int flag; /[* file flag */
cred_t *credp /* pointer to credentials structure */

The cl ose routine may want to free and clean up internally used data
structures.

5.3.3.2 Configuration Processing

The conf i gur e routine is used to configure a STREAMS module or driver
into the kernel. It is specific to Digital UNIX and its use isillustrated in
Section 5.4.

The conf i gur e routine has the following format:

XX_configure(op, indata, indatalen, outdata, outdatalen)

sysconfig_op_t op; /* operation - should be */
/* SYSCONFI G_CONFI GURE */
str_config t * indata; /* for drivers - describes the device */
size_t i ndat al en; /* sizeof (str_config_t) */
str_config t * outdata; /* pointer to returned data */
size_t outdatal en; /* sizeof(str_config_t) */

Digital UNIX STREAMS 5-21

5.3.3.3 Read Side Put and Write Side Put Processing

There are both read side and write side XX_Xput routines; XX_wput for
write side put processing and XX_r put for read side put processing.

Write Side Put Processing

The write side put routine, XX_wput , is called when the upstream modul€e’'s
write side issues a put next cal. The XX_wput routine is the only
interface for messages to be passed from the upstream module to the current
module or driver.

The XX_wput routine has the following format:

XX_wput (g, np) _ _
queue_t *q; /* pointer to wite queue */
mbl k_t *np; /* message pointer */

Read Side Put Processing

The read side put routine, XX_r put , is called when the downstream
modules read side issues a put next call. Because there is no downstream
module, drivers that are Stream ends do not have read side put routines. The
XX_r put routine is the only interface for messages to be passed from the
downstream module to the current module.

The XX_r put routine has the following format:
XX_rput(q, np)
queue_t *q; /* pointer to read queue */
mbl k_t *np; /* message pointer */
The XX_Xput routines must do at least one of the following:
* Process the message
» Pass the message to the next queue (using put next)
» Delay processing of the message by putting the message on the module’s
service routine (using put q)

The XX_Xput routine should leave any large amounts of processing to the
service routine.

5.3.3.4 Read Side Service and Write Side Service Processing

If an XX_Xput routine receives a message that requires extensive
processing, processing it immediately could cause flow control problems.
Instead of processing the message immediately, the XX _r put routine (using
the put g call) places the message on its read side message queue and the
XX_wput places the message on its write queue. The STREAMS module
notices that there are messages on these queues and schedules the module’s

5-22 Digital UNIX STREAMS

read or write side service routines to process them. If the module’'s
XX_r put routine never calls put g, then the module does not require aread
side service routine. Likewise, if the module’'s XX_wput routine never calls
put g, then the module does not require a write side service routine.

The code for a basic service routine, either read side or write side, has the
following format:

XXXsrv(q)
queue_t *q;
{
mbl k_t *np;

while ((np = getqg(q)) != NULL)
{

/*
* |f flowcontrol is a problem return
* the message to the queue
*/
if (!(canput(g->q_next))
return putbq(qg, np);
/*
* process nessage
*/

putnext (q, np);
}

return O;

5.3.4 Digital UNIX STREAMS Concepts

The following STREAMS concepts are unique to Digital UNIX. This
section describes these concepts and how they are implemented in Digital
UNIX:

* Synchronization
* Timeout

5.3.4.1 Synchronization

Digital UNIX supports the use of more than one kernel STREAMS thread.
Exclusive accessto STREAMS queues and associated data structures is not
guaranteed. Messages can move up and down the same Stream
simultaneoudly, and more than one process can send messages down the
same Stream.

To synchronize access to the data structures, each STREAMS module or
driver chooses the synchronizaion level it can tolerate. The synchronization
level determines the level of parallel activity allowed in the module or driver.
Synchronization levels are defined in the sa. sa_syn_| evel field of the

Digital UNIX STREAMS 5-23

st r eanadmdata structure which is defined in the module's or driver's
configuration routine. Thesa. sa_syn_I| evel field must have one of the
following values:

SQLVL_QUEUE

Queue Level Synchronizaton. This allows one thread of execution to
access any instance of the module or driver’s write queue at the same
time another thread of execution can access any instance of the module
or driver’sread queue. Queue level synchronization can be used when
the read and write queues do not share common data. The
SQLVL_QUEUE argument provides the lowest level of synchronization
available in the Digital UNIX STREAMS framework.

For example, the g_pt r field of the read and write queues do not point
to the same memory location.

SQLVL_QUEUEPAIR

Queue Pair Level Synchronizaion. Only one thread at a time can access
the read and write queues for each instance of this module or driver.
This synchronization level is common for most modules or drivers
which process data and have only per-stream state.

For example, within an instance of a module, the q_pt r field of the
read and write queues points to the same memory location. Thereis no
other shared data within the module.

SQLVL_MODULE

Module Level Synchronization. All code within this module or driver
is single threaded. No more than one thread of execution can access all
instances of the module or driver. For example, all instances of the
module or driver are accessing data.

SQLVL_ELSEWHERE

Arbitrary Level Synchronization. The module or driver is synchronized
with some other module or driver. This level is used to synchronize a
group of modules or drivers that access each other’s data. A character
string is passed with this option in the sa. sync_i nf o field of the

st r eamadmstructure. The character string is used to associate with a
set of modules or drivers. The string is decided by convention among
the cooperating modules or drivers.

For example, a networking stack such as a TCP module and an IP
module which share data might agree to pass the stringt cp/ i p. No
more than one thread of execution can access all modules or drivers
synchronized on this string.

5-24 Digital UNIX STREAMS

SQLVL_GLOBAL

Globa Level Synchronization. All modules or drivers under this level
are single threaded. Note there may be modules or drivers using other
levels not under the same protection. This option is available primarily
for debugging.

5.3.4.2 Timeout
The Digital UNIX kernel interfaceto t i meout and unt i meout isas
follows:

timeout (func, arg, ticks);
unti nmeout (func, arg);

However, to maintain source compatibilty with AT& T System V Release 4
STREAMS, the <sys/ st r eam h> header file redefinest i neout to be
the System V interface, which is:

id = timeout(func, arg, ticks);
unti nmeout (i d);

The i d variableis defined to be ani nt .
STREAMS modules and drivers must use the System V interface.

5.4 Configuring a User-Written STREAMS-Based Module
or Driver in the Digital UNIX Kernel

For your system to access any STREAMS drivers or modules that you have
written, you must configure the drivers and modules into your system’s
kernel.

STREAMS modules or drivers are considered to be configurable kernel
subsystems; therefore, follow the guidelines in the Programmer’s Guide
manual for configuring kernel subsystems.

The following sample procedure shows how to add to the kernel a

STREAM S-based module (which can be a pushable module or a hardware or
pseudodevice driver) caled nynod, with it’s source files mynodul el. ¢
and nmynodul e2. c.

1. Declare a configuration routine in your module source file, in this
example, / sys/ streanmsm mynodul el. c.

Example 5-1 shows a module (mynod_conf i gur e) that can be used by
amodule. To use the routine with a driver, do the following:

Digital UNIX STREAMS 5-25

a. Remove the comment signs from the following line:
/* sa.sa_flags = STR IS DEVICE | STR SYSV4_OPEN; */

This line follows the following comment line:
[* driver */
b. Comment out the following line:
sa.sa_fl ags = STR | S_MODULE | STR SYSV4_CPEN,

This line follows the following comment line:
/* nodul e */

Example 5-1: Sample Module
/*

* Sanpl e mynodul e. c
*
/

#i ncl ude <sys/sysconfig. h>
#i ncl ude <sys/errno. h>

struct streantab mynodinfo = { &init, &init };

cfg_subsys_attr_t mynod_attributes[] = { 1
{"",0,0,0,0,0,0} /* required | ast el enment */

}
int
nyrmod_confi gur e(

cfg_op_t op;

caddr _t i ndat a;

ul ong i ndat a_si ze;

caddr _t out dat a

ul ong out dat a_si ze)
{

dev_t devno = NODEV, 2

struct streamadm sa

if (op !'= CFG_OP_CONFI GURE) 3
return ElI NVAL,

sa. sa_version OSF_STREAMS 10

/* module */ 4

sa.sa_fl ags STR_I'S_MODULE | STR_SYSV4_OPEN,
/* driver */

/* sa.sa_flags
sa.sa_ttys
sa.sa_sync_| eve

STR IS DEVICE | STR SYSV4_OPEN; */
NULL;
SQLVL_MODULE; 5

5-26 Digital UNIX STREAMS

Example 5-1: (continued)

sa.sa_sync_info = NULL;
strcpy(sa. sa_nane, "mynod");

if ((devno = strnod_add(devno, &mrynodi nfo, &sa)) == NODEV)

return ENOCDEV,
}

return ESUCCESS;

1 The subroutine in this example supplies an empty attribute table and
no attributes are expected to be passed to the subroutine. If you
want to develop attributes for your module, refer to the
Programmer’s Guide manual.

2 Thefirst available dot in the cdevsw table is automatically
alocated for your module. If you wish to reserve a specific device
number, you should define it after examining the cdevswtablein
the conf . ¢ program. For more information on the cdevsw table
and how to add device driver entries to it, see the Writing Device
Drivers: Tutorial.

3 This example routine only supports the CFG_OP_CONFI GURE
option. See the Programmer’s Guide manual for information on
other configuration routine options.

4 The STR_SYSV4_OPEN option specifies to call the modul€e’s or
device'sopen and cl ose routines, using the AT& T System V
Release 4 calling sequence. If this bit is not specified, the AT&T
System V Release 3.2 calling sequence is used.

5 Other options for the sa. sync_| evel field are described in
Section 5.3.4.

2. Statically link your module with the kernel.

If you want to make the STREAMS module dynamically loadable, see
the Programmer’s Guide for information on configuring kernel
subsystems. If the module you are configuring is a hardware device
driver, also see the Writing Device Drivers: Tutorial.

To statically link your module with the kernel, put your module’s source
files (mynodul el. ¢ and nynodul e2. ¢) into the/ sys/ st reansm
directory and add an entry for each fileto the/ sys/ conf/fi | es file.

Digital UNIX STREAMS 5-27

The following example shows the entriesin the/ sys/ conf/fil es
file for mynodul el. ¢ and nynodul e2. c:

streansnf nynodul el. ¢ opti onal mynod Not bi nary
streanmsni nynodul e2. ¢ opti onal nynod Not bi nary

Add the MYMOD option to the kernel configuration file. The default
kernel configuration fileis/ sys/ conf / HOSTNANME (where
HOSTNANE is the name of your system in uppercase letters.) For
example, if your system is named DECOSF, add the following line to the
/ sys/ conf / DECOSF configuration file:

options MYMOD

If you are configuring a hardware device driver continue with step 3; if
not, got to step 4.

3. If you are configuring a hardware device driver, complete steps 3a to 3d.
If you are not configuring a hardware device driver, go to step 4.

If you are configuring a hardware device driver, you should already have
an XXpr obe and ani nt er r upt routine defined. See the Writing
Device Drivers: Tutorial for information about defining pr obe and

i nterrupt routines.

a. Add the following line to the top of the device driver configuration
file, which for this exampleis/ sys/ st r eans/ nydri ver. c:

#i ncl ude <i o/ conmon/ devdri ver. h>

b. Define a pointer to a controller structure; for example:
struct controller *XXinfo;
For information on the controller structure, see the Writing Device
Drivers. Tutorial.

c. Declare and initialize a driver structure; for example:

struct driver XXdriver =

XXprobe, 0, 0, 0, 0, XXstd, 0, 0, "XX', XXinfo
}s

For information on the driver structure, see the Writing Device
Drivers. Tutorial.
d. Add the controller line to the kernel configuration file.

The default kernel configuration fileis/ sys/ conf / HOSTNAVE
(where HOSTNAME is the name of your system in uppercase |etters).
For example, if your system name is DECOSF, would add a line

5-28 Digital UNIX STREAMS

similar to the following to the / sys/ conf / DECOSF configuration
file:
controller XX0 at bus vector XXintr

For information about the possible values for the bus keyword, see
the System Administration manual.

4. Reconfigure, rebuild, and boot the new kernel for this system by using
the doconf i g command. Seethe doconfi g(8) reference page or the
System Administration manual for information on reconfiguring your
kernel.

5. Runthestrsetup -c command to verify that the device is configured
properly:

/usr/sbin/strsetup -c

STREAMS Configuration Infornation...Wd Jun 2 09:30:11 1994

Nane Type Maj or M nor Module ID

cl one 32 0
ptm devi ce 37 0 7609
pts devi ce 6 0 7608
| og devi ce 36 0 44
nul s devi ce 38 0 5001
echo devi ce 39 0 5000
sad devi ce 40 0 45
pi pe devi ce 41 0 5304
ki nfo devi ce 42 0 5020
xt i soUDP devi ce 43 0 5010
xti soTCP devi ce 44 0 5010
dl b devi ce 49 0 5010
buf cal | nodul e 0
tinmod nodul e 5006
tirdw nodul e 0
i fnet nodul e 5501
ldtty nmodul e 7701
nul | nodul e 5003
pass nmodul e 5003
errm nodul e 5003
spass nmodul e 5007
rspass nmodul e 5008
pi penod nodul e 5303

Configured devices = 11, nmodules = 11

5.5 Device Special Files

This section describes the STREAMS device specia files and how they are
created. It also provides an overview of the cl one device.

Digital UNIX STREAMS 5-29

All STREAMS drivers must have a character special file created on the
system. Thesefiles are usually in the/ dev/ st r eans directory and are
created at installation, or by running the / usr/ sbi n/ st rset up utility.

A STREAMS driver has a device major number associated with it which is
determined when the driver is configured into the system. Drivers other than
STREAMS drivers usually have a character specia file defined for each
major and minor number combination. The following is an example of an
entry in the/ dev directory:

CrwW------ 1 root system 8, 1024 Aug 25 15:38 rrzla
Crw------ 1 root system 8, 1025 Aug 25 15:38 rrzlb
CrwW------ 1 root system 8, 1026 Aug 25 15:38 rrzlc

In this example, r r z1a has a major number of 8 and a minor number of
1024. Therr z1b device has a mgor number of 8 and a minor humber of
1025, and r r z1c has a mgjor number of 8 and a minor number 1026.

Y ou can also define character special files for each major and minor number
combination for STREAMS drivers. The following is an example of an entry
inthe/ dev/ st r eans directory:

CrW- W w 1 root system 32, 0 Jul 13 12:00 /dev/streans/echoO
CrW-rWrw 1 root system 32, 1 Jul 13 12:00 /dev/streans/echol

In this example, echo0 has a major number of 32 and a minor number of 0,
while echol has a magjor number of 32, and a minor number of 1.

For an application to open a unique Stream to a device, it must open a minor
version of that device that is not already in use. The first application can do
an open on/ dev/ st r eans/ echo0 while the second application can do an
openon/ dev/ streans/ echol. Since each of these devices has a
different minor number, each application acquires a unique Stream to the
echo driver. This method requires that each device (in this case, echo) have a
character special file for each minor device that can be opened to it. This
method also requires that the application determine which character specia
file it should open; it does not want to open one that is aready in use.

The cl one device offers an alternative to defining device special files for
each minor device that can be opened. When the ¢l one deviceis used,
each driver needs only one character special file and, instead of an
application having to determine which minor devices are currently available,
cl one alows a second (or third) device to be opened using its (cl one
device' s) major number. The minor number is associated with the device
being opened (in this case, echo). Each time a device is opened using

cl one device's major number, the STREAMS driver interpretsit as a
unique Stream.

5-30 Digital UNIX STREAMS

The st r set up command sets up the entriesin the / dev/ st r eans
directory to use the cl one device. The following is an example entry in the
/ dev/ streans file

CrW-rWrw 1 root system 32, 18 Jul 13 12:00 /dev/streans/echo

In this example, the system has assigned the major number 32 to the cl one
device. The number 18 is the major number associated with echo. When
an application opens/ dev/ st r eans/ echo, the cl one device intercepts
the call. Then, cl one callsthe open routine for the echo driver.
Additionally, cl one notifies the echo driver to do a clone open. When the
echo driver redlizesit is a clone open it will return its major number, 18, and
the first available minor number.

Note

The character special filesthe/ usr/ sbi n/ strsetup
command creates are created by default in the/ dev/ st r eans
directory with clone as the major number. 1f you configure into
your kernel a STREAMS driver that either does not use clone
open, or uses a different name, you must modify the

/ etc/strsetup. conf file described in the

st rset up. conf (4) reference page.

To determine the major number of the cl one device on your
system, run the st r set up —c command.

5.6 Error and Event Logging
STREAMS error and event logging involves the following:
» The error logger daemon
» The trace logger
* Thestrcl ean command

The error logger daemon, st rerr, logsin afile any error messages sent to
the STREAMS error logging and event tracing facility.

The trace logger, st r ace, writes to standard output trace messages sent to
the STREAMS error logging and event tracing facility.

The st r cl ean command can be run to clean up any old log files generated
by the st r er r daemon.

A STREAMS module or driver can send error messages and event tracing
messages to the STREAMS error logging and event tracing facility through
thestrl og kernel interface. Thisinvolvesacall tostrl og.

Digital UNIX STREAMS 5-31

The following example shows a STREAMS driver printing its major and
minor device numbers to both the STREAMS error logger and the event
tracing facility during its open routine:

#i ncl ude <sys/strl og. h>

strlog(MY_DRIVER ID, 0, 0, SL_ERROR 1 SL_TRACE,
"My driver: nydriver_open() - major=%l, nm nor=%l",
maj or (dev, mi nor (dev));

A user process can also send a message to the STREAMS error logging and
event tracing facility by opening a Stream to / dev/ st r eans/ | og and
caling put msg. The user process must contain code similar to the
following to submit alog messageto st rl og:

struct strbuf ctl, dat;
struct log ctl Ic;

char *nessage = "Last edited by <username> on <date>";
ctl _len = ctl.maxlen = sizeof (lc);

ctl.buf = (char *)&lc;

dat.len = dat.maxlen = strlen(nessage);

dat . buf = message;

lc.level = 0;

Ic.flags = SL_ERROR| SL_NOTI FY;

putnmsg (log, &ctl, &dat, 0);

5-32 Digital UNIX STREAMS

Extensible SNMP Application
Programming Interface 6

The Simple Network Management Protocol (SNMP) is an application layer
protocol that allows remote management and data collection from networked
devices. A networked device can be anything that is connected to the
network, such as a router, a bridge, or a host.

A managed networked device contains software that acts as the SNMP agent
for the device. It handles the application layer protocol for SNMP and
carries out the management commands. These commands consist of getting
information and setting of operational parameters.

There are aso network management application programs (usually running
on a host somewhere on the network) that send SNMP commands to the
various managed devices on the network to perform the management tasks.
These tasks can consist of configuration management, network traffic
monitoring and network trouble shooting.

The Extensible Simple Network Management Protocol (eSNMP) is the
SNMP agent architecture for a host machine on the network running Digital
UNIX Version 4.0 (or higher). It includes a master-agent process and
multiple related processes containing eSNMP subagents. The master-agent
performs the SNMP protocol handling and the subagents perform the
requested management commands. This section assumes you are familiar
with the following:

* SNMP protocol

* Management Information Base (MIB) definitions and Request For
Comments (RFCs)

» Object Identifiers (OIDs) and the International Standards Organization
(1SO) registration hierarchy (1.3.6.1.2.1, and so on)

» The C programming language

This chapter provides the following information:

* Overview of eSNMP

* Overview of the eSNMP application programming interface (API)
» Detailed information on the eSNMP routines

6.1 Overview of eSNMP

This section describes the components and architecture the eSNMP agent for
Digital UNIX. It contains information on the following:

» Components of eSNMP
e Architecture
e SNMP Versions

6.1.1 Components of eSNMP
The eSNMP components are as follows:
* /[usr/sbi n/ snnpd — The master-agent daemon.

e [usr/sbin/os_m bs — The subagent daemon provided by Digital
UNIX.

* /usr/sbin/mosy — The MIB compiler.

e [usr/sbin/snnmpi — The object table code generator.
 Jusr/shlib/libesnnp.so-TheeSNMP Library.
e /[usr/include/ esnnp. h —eSNMP definitions.

» [usr/exanpl es/ esnnp/ * — Example code.

The Management Information Base (MIB) defines a set of data elements that
relate to network management. Many of these are standardized in the RFCs

which are produced as a result of the Internet Engineering Task Force (IETF)
working group standardization effort of the Internet Society.

The data elements defined in the RFCs are identified using a naming scheme
with a hierarchical structure. Each name at each level of the hierarchy has a
number associated with it. Y ou can refer to the data el ements in the MIB
definitions by name or by its corresponding sequence of numbers. Thisis
called the Object Identifier (OID). You can extend an OID for an specific
data element further by adding more numbers to identify a specific instance
of the data element. The entire collection of managed data elementsiis called
the MIB tree.

Each SNMP agent implements those MIB elements that pertain to the device
being managed, plus a few common MIB elements. These are the supported
MIB tree elements. An extensible SNMP agent is one that permits its
supported MIB tree to be distributed among various processes and change
dynamically.

For eSNMP there is a single master-agent and there may be any number of
subagents. The master-agent itself does not support (implement) any MIBs,
it handles the SNMP protocol and maintains a registry of subagents and the

6—2 Extensible SNMP Application Programming Interface

6.1.2

MIBs they support. The master-agent for eSNMP is the daemon process
[usr/ sbi n/ snnpd.

The eSNMP protocol contains one standard subagent that implements the
common MIB elements contained under the m b- 2 OID name. Thisisthe
daemon process/ usr/ sbi n/ os_m bs. Another eSNMP subagent is built
into the gat ed daemon process (/ usr/ sbi n/ gat ed). Additional
subagents will be added by Digital and third parties. These subagents
communicate with the master-agent and work together to appear to the
management application programs as a single SNMP agent for the host.

Architecture

The master-agent listens on the preassigned User Datagram Protocol (UDP)
port for an incoming SNMP request. When the master-agent receives an
SNMP request, it authenticates it against the local security database and
handles any authentication or protocol errors. If the request is valid, the
snnpd daemon consults its MIB registry. (See the snnpd(8) reference page
for more information.) For each MIB object contained in the request it
determines which registered MIB could contain that object and which
subagent has registered that MIB. The master-agent then builds a series of
messages, one for each subagent that will be involved in this SNMP request.
These messages do not carry SNMP, but use the more efficient eSNMP
protocoll for communication between the master-agent and the subagents.

Each subagent program is linked with the shareable library | i besnnp. so.
This library contains the protocol implementation that enables
communication between the master-agent and the subagent. This code parses
the master-agent’ s message and consults its local object table.

The object table is a data structure that is defined and initialized in code
emitted by the MIB compiler tools. It contains an entry for each MIB object
that is contained in the MIBs implemented in that subagent. One part of an
object table entry is the address of a function which services requests for this
MIB object. These functions are called method routines.

The eSNMP library code calls into the indicated method routine for each of
the MIB variables in the master-agent’s message. The eSNMP library code
creates a response packet based on the function return values and sends it
back to the master-agent.

The master-agent starts a timer and marshals the response packets from all
involved subagents. The master-agent may rebuild and resend a new set of

1 On Digital UNIX this protocol is based on the Distributed Protocol Interface (DPI) V2, RFC 1592,
DPI V2 is an experimental protocol and Digital UNIX does not attempt to adhere to the protocol
completely. DPI was accounted for in the design so that Digital could more easily implement an eventual
standard protocol. Digital UNIX will track and support standards that emerge in the area of extensible
SNMP.

Extensible SNMP Application Programming Interface 6-3

subagent messages, depending on the specific request; for example, a

Get Next request. When the master-agent has all required data or error
responses or has timed out waiting for a response from a subagent, it builds
an SNMP response message and sends it to the originating SNMP
application. The interaction between the master-agent and subagent is
invisible to the requesting SNMP management application.

Subagent programs are linked against | i besnnp. so shareable library,
which performs all the protocol handling and dispatching. Subagent
developers need to code the method routines for their MIB objects.

6.1.3 SNMP Versions:

The IETF working group is readdressing SNMPv2 and RFCs have not been
published, at the time of this writing.

Extensible SNMP support for SNMPv2 does exist in the following areas.
This is based on the origina SNMPv2 RFCs that were submitted and
withdrawn:

* The MIB tools (the nosy and snnpi programs) support SNMPv2 SMI
and textua conventions.

* The eSNMP library API supports SNMPv2, variable binding exceptions,
and error codes. It ignores MIB objects with SNMPv2-only data types
when processing a SNMPv1 request and does not call associated method
routines.

» The master-agent currently supports SNMPv1 only and maps all
SNMPv2-specific information from the subagent into SNM Pv1-adherent
data. In afuture release the master-agent will support both SNMPv1 and
SNMPv2 in a bilingual manner. This will not require code changes
within subagents. Therefore, documented SNMPv2 features (such as
Get Bul k) are latent.

6.2 Overview of the Extensible SNMP Application
Programming Interface

The subagent’s function is to establish communications with the master-
agent, register the MIBs that it is going to handle, and process requests from
the master-agent. It must also be able to send SNMP traps on behalf of the
host application.

The subagent consist of the following:
* A main function written by the devel oper
* The eSNMP Library routines which perform the eSNMP protocol work

6—4 Extensible SNMP Application Programming Interface

» The method routines written by the developer that handle specific M1B
elements

* The object table structures generated from MIB definition files using the
nosy and snnpi programs

The subagent is usually embedded within a host application, such as a router
daemon. Here the subagent processing is only a small part of the work
performed by the process. The main routine of the host application contains
the calls to the eSNMP library to perform the eSNMP protocol. In other
cases, the subagent is a standal one daemon process that has its own main
routine.

The eSNMP library calls the method routines while processing a packet from
the master-agent. Each MIB variable in the object table has a pointer to the
method routine that is to handle that variable. Since the object tables are
generated by the nosy and snnpi programs, the method routine names are
static.

The eSNMP developer’ s kit provided with Digital UNIX consists of the
following:

* /[usr/sbin/mosy —MIB compiler utility
* /[usr/sbin/snnmpi — Object table code generator utility

* /usr/exanpl es/ esnnp/ m b-converter.sh—MIB text
extraction tool

 Jusr/shlib/libesnnp.so—eSNMP library
* /usr/include/ esnnmp. h —eSNMP definitions file
* [usr/exanpl es/ esnnp/ * — Subagent example code

The eSNMP library (1 i besnnp. so) contains the following:
* The master-agent to subagent protocol handling routines

These routines implement communication with the master-agent on behalf
of the subagent; they are:

— esnnp_i ni t —Initializes the protocol (performs a handshake with
the master-agent)

— esnnp_regi st er —Registers a MIB with the master-agent

— esnnp_pol | —Processes a packet from the master-agent

— esnnp_t r ap — Requests the master-agent to generate an SNMP trap
— esnnp_are_you_t her e — Pings the master-agent

— esnnp_unregi ster —UnregistersaMIB

— esnnp_t er m— Ends communication with the master-agent and

Extensible SNMP Application Programming Interface 6-5

terminate extensible SNMP
— esnnp_sysupt i ne — Time handling and synchronization

e Support routines

These are also resolved in libesnmp.so, and are optional routines for
convenience in developing method routines. These include, but are not
limited to, the following:

— str2oi d - Converts an ASCII dot-format string into internal O D
format; see Section 6.3.3.5 for more information.

— cnp_oi d — Compares the value of two O D structures; see Section
6.3.3.10 for a complete list.

The esnnp. h header file is associated with the eSNMP library. Thisfile
defines all data structures, constants, and function prototyes required to
implement subagents to this API.

6.2.1 Subtrees

Understanding subtrees is crucial to understanding the eSNMP API and how
your subagent will work.

Note

This section assumes that you understand the OID naming
structure used in SNMP. If not, refer to RFC1442 Structure of
Management |nformation.

The information in SNMP is structured hierarchicaly like an inverted tree.
Data can be associated with any leaf node in this hierarchy. Each node has a
name and a number. Each node can also be identified by an OID, which is
an accumulation of the numbers that make up a path from the root down to
that node in the tree.

For example, the chess MIB used in the sample code has an element with
the name chess. The OID for the element chess is
1.3.6.1.4.1.36.2.15. 2. 99, which is derived from its position in the
hierarchy: (Thechess MIB appearsin the/ usr/ exanpl es/ esnnp
directory.)
iso(l)
org(3)
dod(6)
i nternet (1)
private(4)
enterprise(1)
di gi tal (36)
ema(2)

6—6 Extensible SNMP Application Programming Interface

sysobj ect s(15)
decosf (2)
chess(99)

Any node in the MIB hierarchy can define a subtree. All elements within the
subtree have an OID that starts with OID of the subtree base. For example,
if we define chess to be a subtree base, the elements with the same prefix
asthe chess OID are all within the subtree:

chess 1.3.6.1.4.1.36.2.15.2.99
chessProduct | D 1.3.6.1.4.1.36.2.15.2.99.1 Obj ect | D
chessMaxGanes 1.3.6.1.4.1.36.2.15.2.99.2 I nt eger 32
chessNuntanes 1.3.6.1.4.1.36.2.15.2.99.3 I nt eger 32
ganeTabl e 1.3.6.1.4.1.36.2.15.2.99. 4

ganeEntry 1.3.6.1.4.1.36.2.15.2.99.4.1

ganel ndex 1.3.6.1.4.1.36.2.15.2.99.4.1.1 Integer32

gameDescr 1.3.6.1.4.1.36.2.15.2.99.4.1.2 DisplayString
gameNumibves 1.3.6.1.4.1.36.2.15.2.99.4.1.3 |Integer32

ganmesSt at us 1.3.6.1.4.1.36.2.15.2.99.4.1.4 | NTEGER
noveTabl e 1.3.6.1.4.1.36.2.15.2.99.5

noveEntry 1.3.6.1.4.1.36.2.15.2.99.5.1

novel ndex 1.3.6.1.4.1.36.2.15.2.99.5.1. 1

noveByWi te 1.3.6.1.4.1.36.2.15.2.99.5.1.2 DisplayString

nmoveByBl ack 1.3.6.1.4.1.36.2.15.2.99.5.1.3 DisplayString

novest at us 1.3.6.1.4.1.36.2.15.2.99.5.1. 4 | NTEGER
chessTraps 1.3.6.1.4.1.36.2.15.2.99.6

noveTr ap 1.3.6.1.4.1.36.2.15.2.99.6.1

It is this subtree base that is registered with the master-agent to tell it that
this subagent handles all requests related to the elements within the subtree.

The master-agent expects a subagent to handle all objects subordinate to the
registered subtree. This principle guides your choice of subtrees.

For example, registering a subtree of chess is reasonable becauseit is
realistic to assume that the subagent could handle all requests for elementsin
this subtree. Registering an entire application-specific MIB usually makes
sense because the particular application expects to handle all objects defined
in the MIB.

Registering a subtree of t r ansmi ssi on (under MIB-2) would be a
mistake, because it is unlikely that the subagent is prepared to handle every
MIB subordinate to transmission (FDDI, Token Ring, and so on).

A subagent may register as many subtrees as it wants. It can register OIDs
that overlap with other registrations by itself or other subagents; however, it
cannot register the same OID more than once. The subagents can register
and unregister subtrees at any time after it has established communication
with the master-agent.

Normally it is the nonterminal nodes that are registered as a subtree with the
master-agent. However, terminal nodes (those of one object type), or even
specific instances, can be registered as a subtree.

Extensible SNMP Application Programming Interface 6—7

6.2.2

The master-agent distributes requests to the subagent that has the subtree
with the highest priority (largest priority number) or the most recent (if
priority is equal), matching the OID on the variable bindings of the request.

Object Tables

Thenosy and snnpi utilities are used to generate the C language code that
defines the object tables from the MIBs. The object tables are defined in the
emitted files subt ree_t bl . h and subt ree_t bl . c, filesthat are
compiled into your subagent.

These modules are created by the utilities and it is not recommended that
they be edited. If the MIBs change or a future version of the eSNMP
development utilities require your object tables to be rebuilt, it is easy to
rebuild the files and recompile them if you did not edit the files.

6.2.2.1 The subtree_tbl.h File

The subt r ee_t bl . h file contains the following information:

» A declaration of the subtree structure

* Index definitions for each MIB variable in the subtree

» Enumeration definitions for MIB variables with enumerated values

» MIB group data structure definitions

» Method routine function prototypes

The first section is a declaration of the subtree structure. The subtreeis
automatically initialized by code in the subt ree_t bl . c file. A pointer to
this structure is passed to the esnnp_r egi st er routine to register a

subtree with the master-agent. All access to the object table for this subtree
is through this pointer. The declaration has the following form:

extern SUBTREE subtree_subtree;

The next section contains index definitions for each MIB variable in the
SUBTREE of the form;

#define |_mib-variable nnnn

These values are unique for each MIB variable within a subtree and are the
index into the object table for this MIB variable. These values are aso
generally used to differentiate between variables that are implemented in the
same method routine so they can be used in a switch operation.

The next section contains enumeration definitions for those integer MI1B
variables that are defined with enumerated values, as follows:

6—8 Extensible SNMP Application Programming Interface

#define D_mib-variable _enumeration-name value

These are useful since they describe the architected value that enumerated
integer MIB variables may take on; for example:
/* enunerations for ganeEntry group */

#defi ne D_ganeSt at us_conpl ete

1
#def i ne D _ganeSt at us_under way 2
#def i ne D ganeStatus_del ete 3

The next section contains the MIB group data structure definitions of the
form:

typedef struct xxx {
type mib-variable;

. char mib-variable_mark;

. } mib-group_type

One of these data structures is emitted for each MIB group within the
subtree. Each structure definition contains afield representing each MI1B
variable within the group. If the MIB variable name is not unique within the
pool of MIBs presented to the snnpi program at the time the
subt ree_tbl. h fileisbuilt, the snnpi program does not qualify the
name with the name of its parent variable (group name) to make it unique.
In addition to the MIB variable fields, the structure includes a 1-byte
m b-vari abl e_mar k field for each variable. You can use these for
maintaining status of a MIB variable; for example, the following is the group
structure for the chess MIB:
typedef struct _chess_type {

O D chessProductl D

int chessMaxGanes;
int chessNunGanes;

char chessProduct| D nark;

char chessMaxGanes_nark;

char chessNunGanmes_nmark;
} chess_type;

These MIB group structures are provided for convenience, but are not
mandatory. You can use whatever structure is easiest for you in your method
routine.

The next section is the method routine function prototypes. Each MIB group

Extensible SNMP Application Programming Interface 6-9

within the subtree has a method routine prototype defined. A MIB group is a
collection of MIB variables that are leaf nodes and share a common parent
node.

There is always a function prototype for the method routine that handles the
Get , Get Next , and Get Bul k operations. If the group contains any
writable variables, there is aso a function prototype for the method routine
that handles Set operations. Pointers to these routines appear in the
subtree’ s object table which is initialized in the subt r ee_t bl . ¢ module.
Y ou must write method routines for each prototype that is defined, as
follows:

extern int mib-group_get(METHOD *method)
extern int mib-group_set(METHOD *method)

For example:

extern int chess_get (METHOD *net hod) ;
extern int chess_set (METHOD *nmet hod);

Method routines are discussed in more detail in Section 6.3.2.3.

6.2.2.2 The subtree_tbl.c File
The subt ree_t bl . c file contains the following information:
* An array of integers representing the OIDs for each MIB variable
* Anarray of OBJECT structures. (Seeesnnp. h.)
* Theinitialized SUBTREE structure

Thefirst section is the array of integers used for the OIDs of each MIB
variable in the subtree, as follows:

static unsigned int elenms[] ={ ...

The next section is an array of OBJECT structures. Thereis one OBJECT
for each MIB variable within the subtree. (See esnnp. h.)

An OBJECT represents a MIB variable and has the following fields:

e object _index —Theconstant | _ni b-vari abl e from the
subtree_thbl. hfile

e 0i d —Thethisisthe variable’'s OID (points to a part of el ens[]).

* type —Thevariable' s data type.

e get func — The address of method routine to call for Get operations.
e setfunc — The address of method routine to call for Set operations.

6—10 Extensible SNMP Application Programming Interface

The master-agent has no knowledge of object tables or MIB variables. It
only maintains a registry of subtrees. When arequest for a particular MIB
variable arrives, it is processed as follows. In the following procedure, the
MIB variableismi b_var and the subtreeissubt ree_1:

1. The master-agent finds which subagent registered subt r ee_1 which
contains (for Get or Set reguests) or might contain (for Get Next or
Get Bul k requests) m b_var .

2. It sends an eSNMP message to the subagent that registered subt r ee_1.

3. The subagent consults its list of registered subtrees and locates
subt ree_1. It searchesthe object table of subt r ee_1 and locates
the following:

— m b_var (for Get and Set requests)

— Thefirst object lexicographically after mi b_var (for Next or Bul k
requests)

4. 1t calls the appropriate method routine. If the method routine completes
successfully, the data is returned to the master-agent. If not, for Get or
Set, an error is returned. For Next or Bul k, thel i bsnnp code keeps
trying subsequent objects in the object table of subt r ee_1 until a
method routine returns success or the table is exhausted; in either case a
response is returned.

5. If the master-agent detects subt r ee_1 could not return data on a Next
or Bul k routine, it recursively tries the subtree lexicographically after
subtree 1.

The next section is the SUBTREE structure itself. It is a pointer to this
structure that is passed to the esnnp_r egi st er eSNMP library routine to
register the subtree. It isthrough this pointer that the library routines find the
object structures. The following is an example of the chess subtree
structure:

SUBTREE chess_subtree = { "chess", "1.3.6.1.4.1.36.2.15.2.99",
{ 11, &elens[0] }, objects, |_noveStatus};

The SUBTREE structure has the following elements:
 nane — Thisisthe name of the base node of the subtree.

» dot s —The ASCII string representation of the subtree’s OID; it is what
actually gets registered.

* 0i d-The OID of the base node of the subtree; it points back to the
array of integers.

* object_tbl —A pointer to the array of abjectsin the object table. It is
indexed by the | _xxxx definitions found in the subt r ee_t bl . hfile.

Extensible SNMP Application Programming Interface 6-11

6.2.3

I ast —Thisisthe index of the last abject in the obj ect _t bl file. It
is used to determine when the end of the table has been reached.

The final section of the subt ree_t bl . ¢ contains short routines for
allocating and freeing the ni b- gr oup_t ype structures. These are
provided as a convenience and are not a required part of the API.

Implementing a Subagent.
As a subagent developer, you are usually presented with a UNIX application,

daemon, or driver (such as the gat ed daemon or ATM drivers) and have to
implement an SNMP interface. The following steps explain how you do this:

1. Obtain a MIB specification.

MIB development starts with a MIB specification. Usually these are
RFCs, written in concise MIB format according to RFC 1212. Designing
and specifying a MIB is beyond the scope of this document; it is assumed
you have a MIB specification.

The standard RFCs can be obtained from the the InterNIC directory at the
following URL:

http://ds.internic.net/ds/dspglintdoc. htm

If you have to build your own MIB specification, you can look at a
similar M1Bs written by another vendor. One source for alisting of these
is in the archives section of the Network Management page at the
following URL.:

http://smurfland. cit. buffal o. edu/ Net Man/ i ndex. ht m

You need MIBs for all of the elements you are implementing in the
subagent and for any elements referenced by these MIBs (such that al
element names resolve to the OID numbers). As a minimum you will
need the SMI MIB r f c1442. ny and the textual conventions
v2-tc. nmy. Theseareinthe/ usr/ exanpl es/ esnnp directory.

Compile your MIBs.

Once you obtain MIB definitions, use them to generate the object tables
for your new subagent. The objective is to take the MIB specification
text for each of the MIBs, remove the ASN.1 specifications, and compile
them into C language modules that contain the local object tables.

Compile your MIBs using the following tools:
— mb-converter.sh

Them b-converter. shisagawk shel script that extracts the
MIB ASN.1 definitions from the RFC text. This step removes the
text before and after the MIB definition and removes page headings

6—12 Extensible SNMP Application Programming Interface

and footings.

Them b-convert er. sh script may not remove everything that
needs to be removed; therefore, you may need to remove some things
manually, using a text editor. The following is an example of how to
usethe m b- converter. sh script:

[usr/ exanpl es/ esnnp/ m b-converter.sh nm b-def.txt >\
m b- def. ny

Be careful; some RFCs contain more than one MIB definition. You
can only use the m b- converter. sh script shell on RFCs that
contain asingle MIB definition. The nosy compiler may not handle
it either. If you use an RFC that contains more than one MIB
definition, make each one into a separate file. The resulting files
containing the MIBs should be in the following form:

mib-def.my

nmosy

The Managed Object Syntax (mosy) compiler parses. ny files
created by the mi b- convert er. sh script and compiles them into
. def s files. The. def s files describe the object hierarchy within
the MIB. The. def s files are front-ends to several tools. The
following is an example of how to use the nosy compiler:

mosy m b-def. ny

The nosy compiler produces ni b- def . def s files.

The nosy program is taken from ISODE 8.0 (distributed with the
4BSD/ISODE SNMPv2 package).

snnpi

The MIB datainitializer creation program (snnpi) reads a
concatenation of the . def files compiled by the nosy compiler and
generates the C code to define the static structures of the object table
for a specified MIB subtree.

Note

The snnpi program supplied with Digital UNIX is
different from the snnpi program in 4BSD/ISODE
SMUX.

Concatenate the . def files the nbsy compiler compiles into the
obj ect s. def s file. Be sure to include the compiled versions of
rfcl4d42. ny andv2-tc. ny. Theobj ects. def s file must

Extensible SNMP Application Programming Interface 6-13

contain enough MIBs to resolve al MIB names, even if they are not
used by your subtrees. Then generate the object table files using the
following command:

[usr/sbin/snnpi objects.defs subtree

The snnpi program has a print option that allows you to dump the
contents of the entire tree generated as a result of the objects it finds
into the obj ect s. def s file. If you are having trouble with the
subtrees you may find this to be helpful. Use the following command
to generate a listing:

/usr/sbin/snnpi -p objects.defs > objects.txt

The snnpi program outputs the subt r ee_t bl . ¢ and
subtree_tbl.h. The subt r ee is the name of the base MIB
variable name for aMIB subtree. These two files are C code used to
initialize the MIB object table for the specified subtree. (Thisisthe
local abject table referred to above.) Repeat this process for each
MIB subtree being implemented in your subagent. Note that the
snnpi program defaults to using MIB groups as the level of
granularity for method routines; that is, the assumption is made that
al MIB variables within a group should be serviced by the same
method routine. (It also provides the ni b- gr oup_t ype data
structure to help do this.)

The ni b- gr oup_t ype structure is not part of the API; it is
provided as a convenience. It is helpful to use the mi b- gr oup
organization of the object table. This is because, generally, those
objects are logicaly related and usually accessed as a group; for
example, i pRout es are returned more or less complete from the
kernel routing tables.

3. Code the method routines and the API calls.

Write the code that calls the eSNMP library API to initialize
communications with the master-agent (snnpd), and register your MIBs.
(See Section 6.2.4.)

Write the code for the required method routines. (See Section 6.3.)
Usually you need one Get method routine and one Set method routine
for each MIB group within your registered MIB subtree. The

subt ree_t bl . h files generated in the previous step define the names
and function prototype for each method routine you need.

4. Build the subagent.

An example Makef i | e isprovided in the/ usr/ exanpl es/ esnnp
directory.

5. Execute and test your subagent.

6—14 Extensible SNMP Application Programming Interface

Run your subagent like any other program or daemon. There are trace
facilities built into the eSNMP library routines to assist in the debugging
process. Usetheset _debug_| evel routinein the mai n section to
enable the trace.

Once the subagent has initialized and successfully registered a MIB
subtree, you can send SNMP requests using standard applications. For
example, POLY CENTER Netview, HP OPenview, or any MIB browser.
If you do not have access to SNMP applications, you can use the
snnp_request and snnp_t rapr cv programs to help debug
subagents.

Note that if you interactively debug, your subagent will probably cause
SNMP requests to timeout.

Normally al error and warning messages are recorded in the system’s
daemon log. When running the sample chess subagent and the
0S_m bs subagent, you specify a trace runtime argument, as follows:

os_mbs -trace

With the trace option active, the program does not daemonize and all
trace output goes to st dout ; it displays each message that is processed.

You can use this feature in your own subagents by calling the
set _debug_| evel routine and pass it the TRACE parameter.

Anything passed in the debug macro is sent to st dout , as follows:
ESNMP_LOG ((TRACE, ("message_text\n"));

To send everything to the daemon log, call the set _debug | evel
routine and pass it the WARNI NG | | DAEMON_LOG parameter or the
set _debug_| evel routine and passit the ERROR | | DAEMON LOG
parameter to suppress warning messages.

6.2.4 Subagent Protocol Operations

The eSNMP API provides for autonomous subagents that are not closely tied
to the master agent (snnpd). Subagents can be part of other subsystems or
products and have primary functions not related to SNMP. For instance, the
gat ed daemon is primarily concerned with Internet routing; however it also
functions as a subagent.

In particular, the snnpd daemon does not start or stop any subagent
daemons during its startup or shutdown procedures. It also does not maintain
any on-disk configuration information about subagents. Whenever the
snnpd daemon starts, it has no knowledge of previously registered
subagents or subtrees.

Extensible SNMP Application Programming Interface 6-15

Typicaly al daemons on a Digital UNIX system are started or stopped
together, as the system changes run levels. But subagents should correctly
handle situations where they start before the snnpd daemon, or are running
while the snimpd daemon is restarted to reload information from its
configuration file. In these situations subagents need to restart the eSNMP
protocol as described in the following sections.

6.2.4.1 Order of Operations
Subagent protocol operations follow the following sequence:
1. Initidlization (esnnp_init)
2. Regidtration (esnnp_regi ster [esnnp_register ...])
3. Data communication
The following loop happens continuously:

determ ne sockets with data pending

if the eSNMP socket has data pendi ng
esnnp_pol |

periodically call esnnp_are_you_there as required
during periods of inactivity

4. Termination (esnnp_tern

Note that is very important that subagents call theesnnp_term
function when they are stopping. This enables eSNMP to free system
resources being used by the subagent.

The example subagent in the / usr / exanpl es/ esnnp directory shows
how to code subagent protocol operations.

6.2.4.2 Function Return Values

The eSNMP API function return values indicate to a subagent both the
success or failure of the requested operation and the state of the master agent.
The following list provides a description of each return value and the
indicated subagent actions:

« ESNWP_LIB K
The operation was successful.
 ESNWP_LI B_NO CONNECTI ON

The connection between the subagent and the master agent could not be
initiated. This valueis returned by the esnnp_i ni t function.

6—16 Extensible SNMP Application Programming Interface

— Causes — The master agent is not running or is not responding.

— Action — Restart the protocol by calling the esnnp_i ni t function
again after a suitable delay.

ESNVP_LI B_DUPLI CATE

A duplicate subagent identifier has been received by the master agent.
This means that another process with the same subagent identifier is
connected to the master agent and that this process should terminate.
This value is returned by the esnnp_pol | function.

— Causes — Typically this means the subagent daemon was started more
than once; but it may indicate a different subagent used the same
identifier.

— Action — This invocation of the subagent process will never be able
successfully initialize eSNMP, so the subagent should terminate.

ESNVP_LI B_LOST_CONNECTI ON

Lost communications with the master-agent. This value is returned by
theesnnp_regi ster,esnnp_pol | ,esnnp_are_you_t here,
esnnp_unr egi st er, and esnnp_t r ap functions.

— Causes — An attempt to send a packet to the master agent’s socket
failed; this is normally due to the master agent terminating
abnormally.

— Action — Restart the protocol by calling the esnnp_i ni t function
after a suitable delay.

ESNVP_LI B_BAD_REG

The attempt to send a registration failed. This valueis returned by the
esnnp_regi ster, esnnp_unr egi ster, and esnnp_pol | .
functions.

— Causes are as follows:

« Theesnnp_i nit function has not been successfully called prior
to calling the esnnp_r egi st er function.

e Theti meout parameter intheesnnp_r egi st er functionis
invalid.
e The subtree passed to the esnnp_r egi st er function has

already been queued for registration or has been registered by this
subagent.

* A previous registration was failed by the master-agent (when
returned by the esnnp_pol | function). Seethe log file to
determine the details regarding why it failed and which subtree
was at fault.

Extensible SNMP Application Programming Interface 6-17

« Trying to unregister a subtree that was not registered
(esnnmp_unr egi st er).

— Action—Call theesnnp_r egi st er function in the proper
sequence and with correct arguments.

ESNVP_LI B_CLOSE

The master-agent is stopping. This value is returned by the
esnnp_pol | function.

— Causes — The master agent is beginning an orderly shutdown.

— Action — Restart the protocol with the esnnp_i ni t function as
suited by the subagent.

ESNVP_LI B_NOTOK

An eSNMP protocol error occurred and the packet was discarded. This
valueis returned by the esnnp_pol | , and esnnp_t r ap functions.

— Causes — This indicates a packet-level protocol error within eSNMP,
probably due to lack of memory resources within the subagent.

— Action — Continue.

6.3 Extensible SNMP Application Programming Interface

This section provides detailed information on the SNMP Application
Programming Interface, which consists of the following:

6.3.1

Calling interface
Method routine calling interface
Thel i besnnp support routines

Calling Interface

The calling interface contains the following routines:

esnnp_i ni t
esnnp_regi ster
esnnp_unr egi ster
esnnp_pol |
esnnp_are_you_t here
esnnp_trap
esnnp_term

6—18 Extensible SNMP Application Programming Interface

* esnnp_sysuptine

6.3.1.1 The esnmp_init Routine

Theesnnp_i ni t routine locally initializes the extensible SNMP subagent,
and initiates communication with the master-agent.

This call does not block waiting for a response from the master-agent. After
calling the esnnp_i ni t routine, cal the esnnp_r egi st er routine for
each subtree that is to be handled by this subagent.

Call this routine during program initialization or to restart the eSNMP
protocol. If you are restarting, the esnnp_i ni t routine clears all
registrations so each subtree must be reregistered.

Y ou should attempt to create a unique subagent _i denti fi er, perhaps
using the program name (ar gv[0]) and additional descriptive text. The
master-agent does not open communications with a subagent whose
subagent-identifier is aready in use.

The syntax for the esnnp_i ni t routine is as follows:
int esnmp_init (int *socket, char *subagent_identifier)

The arguments are defined as follows:

socket
The address of the integer that receives the socket descriptor used by
eSNMP.

subagent i dentifier
The address of a null-terminated string that uniquely identifies this
subagent (usually program name).

The return values are as follows:

Status ESNMP_LIB_NO_CONNECTION
Could not initialize or communicate with the master-agent. Try again
after a delay.

ESNMP_LIB_OK
Indicates the esnnp_i ni t routine has completed successfully.

The following is an example of theesnnp_i ni t routine:

#i ncl ude <esnnp. h>
int socket;
status = esnnp_init(&socket, "gated");

Extensible SNMP Application Programming Interface 6-19

6.3.1.2 The esnmp_register Routine

Theesnnp_r egi st er routine requests registration of asingle MIB
subtree. Before the master-agent can pass SNMP requests on to the
subagent, it must register the willingness to process all messages for MIB
variables subordinate to a subtree identifier.

The initialization routine (esnnp_i ni t) must be called prior to calling the
esnnp_r egi st er routine. Theesnnp_r egi st er function must be
called for each subtree structure corresponding to each subtree that it will be
handling. At any time subtrees can be unregistered by calling

esnnp_unr egi st er and then be reregistered by calling the
esnnp_regi ster.

When restarting the eSNMP protocol by calling esnnp_i ni t , al
registrations are cleared. All subtrees must be reregistered.

A subtree is identified by the base MIB name and its corresponding OID
number of the node which is the parent of all MIB variables that are
contained in the subtree; for example, the MIB-2 t cp subtree has an OID of
1.3.6.1.2.1. 6. All elements subordinate to this (those that have the
same first 7 digits) are included in the subtree’s object table. The subtree can
also be asingle MIB object (aleaf node) or even a specific instance.

By registering a subtree, the subagent is indicating that it will process SNMP
regquests for all MIB variables (or OIDs) within that subtree’s range.
Therefore, a subagent should register the most fully qualified (longest)
subtree that still contains its instrumented MIB variables.

For example, the Digital UNIX operating system contains support for M1B-2
implemented as an eSNMP subagent. This subagent does not register MIB-2
(1.3.6.1.2.1); instead, it registers the following MIBs. at , dot 5, egp,
fddi,icnp,interfaces,|P,snnp,systemtcp, and udp.

The master-agent requires that a subagent cannot register the same subtree
more than once. Other than this one restriction, a subagent may register
subtrees that overlap the OID range of subtrees that it previously registered
or those of subtrees registered by other subagents.

For example, consider the two Digital UNIX daemons, os_m bs and

gat ed. Theos_mi bs daemon registersthe i p subtree and the gat ed
daemon registersthe i pRout eTabl e subtree at a higher priority. Requests
for operations on MIB objects within i pRout eEnt ry, such as

i pRout el f I ndex, will go to gat ed because it is a higher priority.
Requests for other i p objects, such asi pNet ToMedi al f | ndex, will be
passed to os_ni bs. If the gat ed process should terminate or unregister
thei pRout eEnt r y subtree, subsequent requests for i pRout el f | ndex
will go to os_ni bs becausethei p subtree, which includes the

i pRout eEnt r y objects, will now be the highest priority in that range.

6—20 Extensible SNMP Application Programming Interface

When the master-agent receives a SIGUSRL1 signal, it puts its MIB registry in
tothe/ var/ t np/ snnpd_dunp. | og file. See the snnpd(8) reference
page for more information.

The syntax for the esnnp_r egi st er routine is as follows:
int esnmp_register(SUBTREE *subtree,int timeout,int priority)

The arguments are defined as follows:

subtree
A pointer to a SUBTREE structure corresponding to the subtree to be
handled. The SUBTREE structures are externally declared and initialized
in the code emitted by the nosy and snnpi utilities (xxx_t bl . ¢ and
xxx_t bl . h, where xxx is the name of the subtree) taken directly from
the MIB document.

ti neout
The number of seconds the master-agent should wait for responses when
requesting data in this subtree. This value must be between zero (0) and
ten (10). If the valueis zero (0), the default timeout is used (3 seconds).
Digital recommends you use the defaullt.

priority
This is the registration priority. The entry with largest number has the
highest priority. Therangeis 0 to 65535. The subagent that has
registered a subtree that has the highest priority over a range of Object
Identifiers (OIDs) gets al requests for that range of OIDs.

Subtrees that are registered with the same priority are ranked in order by
time of registration. The most recent registration has the highest
priority.

The pri ority argument is a mechanism for cooperating subagents to
handle different configurations.

The return values are as follows:

ESNMP_LIB_OK
Indicates the esnnp_r egi st er routine has completed successfully.

ESNMP_LIB_BAD_REG
Indicates the esnnp_i ni t routine has not been called, the timeout
parameter is invalid, or this subtree has aready been queued for
registration.

ESNMP_LIB_LOST_CONNECTION
Indicates the subagent has lost communications with the master-agent.

Note that the status indicates only the initiation of the request. The actual
status returned in the master-agent’ s response will be returned in a

Extensible SNMP Application Programming Interface 6-21

subsequent call to the esnnp_pol | routine.

The following is an example of the esnnp_r egi st er routine:

#i ncl ude <esnnp. h>

#def i ne RESPONSE_TI MEQUT 0 /* use the default tinme set
in esnnp_init nessage */

#define REG STRATION PRIORITY 10 /* priority at which subtrees
will register */

extern SUBTREE i pRout eEntry_subtree;

status = esnnp_regi ster(& pRouteEntry_subtree,
RESPONSE_TI MEQUT,
REG STRATI ON_PRICRITY);
if (status !'= ESNVMP_LIB OK) {"
printf ("Could not queue the 'ipRouteEntry’ \n");
printf ("subtree for registration\n");

6.3.1.3 The esnmp_unregister Routine

The esnnp_unr egi st er routine unregisters a MIB subtree with the
master-agent.

This routine can be called by the application code to tell the eSNMP
subagent not to process requests for variables in this subtree anymore. You
can later reregister a subtree, if needed, by caling the esnnp_r egi st er
routine.

The syntax for the esnnp_unr egi st er routine is as follows:
int esnmp_unregister(SUBTREE *subtree)

The arguments are as follows:

*subtree
A pointer to the subt r ee structure for the subt r ee to be
unregistered.

The return values are as follows:

ESNMP_LIB_OK
Indicates the routine completed successfully.

ESNMP_LIB_BAD_REG
Indicates the subtree was not registered.

ESNMP_LIB_LOST_CONNECTION
Indicates that the request to unregister the subtree could not send. You
should restart the protocol.

6—22 Extensible SNMP Application Programming Interface

6.3.1.4 The esnmp_poll Routine

Theesnnp_pol | routine processes a pending message that has been sent
by the master-agent. Thisroutine is called after the user’'ssel ect () call
has indicated data is ready on the eSNMP socket. (This socket was returned
from the call totheesnnp_i ni t routing). If no message is pending on the
socket, the esnnp_pol | routine will block until one is received.

If areceived message indicates a problem, an entry is made to the sysl og
file and an error status is returned.

If the received message is a request for SNMP data, the object table is
consulted and the appropriate method routines are called.

The syntax for the esnnp_pol | routine is as follows:
int esnmp_poll()

The return values are as follows:

ESNMP_LIB_OK
Indicates the esnnp_pol | routine has completed successfully.

ESNMP_LIB_BAD_REG
Indicates a previous registration was failed by the master-agent. See the
log file.

ESNMP_LIB_DUPLICATE
Indicates an esnnp_i ni t error, a duplicate subagent identifier has
already been received by the master-agent.

ESNMP_LIB_NO_CONNECTION
Indicates an esnnp_i ni t request was failed by master-agent, restart
after adelay. Seethelog file.

ESNMP_LIB_CLOSE
Received a CLOSE message.

ESNMP_LIB_NOTOK
Indicates an eSNMP protocol error occurred. The packet was discarded.

ESNMP_LIB_LOST_CONNECTION
Indicates that communication with master-agent was lost. Restart the
connection.

6.3.1.5 The esnmp_are_you_there Routine

Theesnnp_ar e_you_t her e routine requests the master-agent to respond
immediately that it is up and functioning. This call does not block waiting
for aresponse. It is intended to cause the master-agent to reply immediately.
The response should be processed by calling the esnnp_pol | routine.

Extensible SNMP Application Programming Interface 6—23

If no response is received within the timeout period the application code
should restart the eSNMP protocol by calling the esnnp_i ni t routine.
There are no timers maintained by the eSNMP library.

The syntax for the esnnp_ar e_you_t her e routine is as follows:
int esnmp_are_you_there()

The return values are as follows:

ESNMP_LIB_OK
The request was sent.

ESNMP_LIB_LOST_CONNECTION
Cannot send the request because the master-agent is down.

6.3.1.6 The esnmp_trap Routine

The esnnp_t r ap routine sends a trap message to the master-agent. This
function can be called at anytime. If the eSNMP protocol has not initialized
with the master-agent, traps are queued and sent when communication is
possible.

The trap message is actually sent to the master-agent after the master-agent’s
response to theesnnp_i ni t call has been processed. This processing
happens within any API cal, for most cases during subsequent calls to the
esnnp_pol | routine. The quickest way actually to send traps to the
master-agent isto call theesnnp_i nit,esnnp_pol | ,andesnnp_trap
routines.

The master-agent formats the trap into an SNMP trap message and sends it to
management stations based on its current configuration. For information on
configuring the master-agent see the snnpd(8) and snnpd. conf (4)
reference pages.

There is no response returned from the master-agent for a trap.
The syntax for the esnnp_t r ap routine is as follows:

int esnmp_trap(int generic_trap, int specific_trap, char *enterprise,
VARBIND *vb)

The arguments are as follows:

generic_trap
A generic trap code

specific_trap
A specific trap code

6—24 Extensible SNMP Application Programming Interface

enterprise
An enterprise OID string in dot notation.

vb
A VARBI ND list of data (a NULL pointer indicates no data)

The return values are as follows:

ESNMP_LIB_OK
Indicates the routine completed successfully.

ESNMP_LIB_LOST_CONNECTION
Indicates it could not send the trap message to master-agent.

ESNMP_LIB_NOTOK
Indicates something failed and message could not be generated.

6.3.1.7 The esnmp_term Routine

The esnnp_t er mroutine sends a close message to the master-agent and
shuts down the eSNMP protocol. Subagents should call this routine when
terminating, so that the master-agent can update its MIB registry more
quickly. It isimportant that terminating subagents call this routine, so that
system resources used by eSNMP on their behalf can be released.

The syntax for the esnnp_t er mroutine is as follows:
void esnmp_term(void)

The return values are;

ESNMP_LIB_OK
The esnnp_t er mroutine always returns ESNMP_LIB_OK, even if
the packet could not be sent.

6.3.1.8 The esnmp_sysuptime Routine

The esnnp_sysupt i me routine converts UNIX system time obtained from
get ti meof day into a value with the same timebase as sysUpTi ne. This
can beused asaTi meTi cks datatype (the time since the SNMP agent
started) in units of 1/100 seconds. The time base is obtained from the
master-agent in response to the esnnp_i ni t routine, so callsto this
function before that time will not be accurate.

This provides a general purpose mechanism to convert UNIX timestamps
into SNMP Ti meTi cks. The function returns the value that sysUpTi nme
was when the passed timestamp was now. Passing a null timestamp returns
the current value of sysUpTi ne.

Extensible SNMP Application Programming Interface 6-25

The syntax is as follows:

unsigned int esnmp_sysuptime(struct timeval *timestamp)

The arguments are as follows:

struct tineval *tinmestanp
Isapointer tostruct tineval containing avalue obtained from the
getti meof day system call. The structureis defined in
i ncl ude/ sys/tinme. h.

A NULL pointer means return the current sysUpTi ne.

The following is an example of the esnnp_sysupt i me routine:

#i ncl ude <include/sys/tinme. h>
#i ncl ude <esnnp. h>
struct timeval timestanp;

gettinmeof day(&t i nestanp, NULL);
o_i nteger(vb, object, esnnmp_sysuptinme(&inestanmp));
The return is as follows:

0
Indicates an error (get t i meof day failed); otherwise, t i nest anp
contains the time in 1/100ths seconds since the SNMP protocol started.

6.3.2 Method Routine Calling Interface
The method routine calling interface contains the following functions:
e * _get
e * set

Section 6.3.2.3 provides additional information on method routines.

6.3.2.1 The* _get Routine

The* _get routine is a method routine for the specified MIB item, which is
typically a MIB group (for example, syst emin MIB-2) or atable entry (for
example, i f Ent ry in MIB-2). However, it is up to your discretion. See
the snnpi (8) reference page for more information.

Thel i besnnp routines call whatever routine is specified for Get
operations in the object table identified by the registered subtree.

The syntax for the * _get routineis as follows:
int mib_item_get(METHOD *method)

6—26 Extensible SNMP Application Programming Interface

The arguments are:

nmet hod
A pointer to a METHQOD structure, which contains the following fields:

action
One of ESNMP_ACT_GET, ESNMP_ACT_GETNEXT, or
ESNMP_ACT_GETBULK.

serial _num
An integer number that is unique to this SNMP request. Each
method routine called while servicing a single SNMP request will
receive the same value of seri al _num New SNMP requests
are indicated by a new value of seri al _num

repeat _cnt
Used for Get Bul k only. This value indicates the current iteration
number of arepeating VARBI ND. This number increments from 1
tomax_repetitions, andisO for nonrepeating VARBI ND
structures.

max_repetitions
For Get Bul k. The maximum number of repetitions to perform.
This will be 0 for nonrepeating VARBI ND structures. Y ou may be
able to optimize subsequent processing by knowing the maximum
number repeat calls will be made.

var bi nd
A pointer to the VARBI ND structure for which we must fill in the
A D and datafields. Upon entry of the method routine, the
nmet hod- >var bi nd- >nane isthe OID that was requested.

Upon exit of the method routine, the met hod- >var bi nd
contains the requested data, and the net hod- >var bi nd- >nane
is updated to reflect the actual instance OID for the returned
VARBI ND.

Thel i bsnnp routines (o_i nt eger,o_string, o_oid, and
0_oct et) aregenerally used to load data. Thel i bsnmp

i nst ance2oi d routine is used to update the OID in

met hod- >var bi nd- >nane.

obj ect
A pointer to the object table entry for the MIB variable being
referenced. The net hod- >0bj ect - >obj ect _i ndex isthis
object’s unique index within the object table (useful when one
method routine services many objects).

The et hod- >o0bj ect - >0i d isthe OID defined for this object
in the MIB. The instance requested is derived by comparing this

Extensible SNMP Application Programming Interface 6-27

A D with the O D in the request found in the
met hod- >var bi nd- >nane. Theoi d2i nst ance function is
useful for this.

row
Is not used on Get operations.

fl ags
Is not used on Get operations.

security
Is a pointer to security information (SNMPv2) and is not currently
unused.

The return values for the * _get method routine are as follows:

ESNMP_MTHD_noError
Indicates the routine completed successfully.

ESNMP_MTHD_noSuchObject
The requested object cannot be returned or does not exist.

ESNMP_MTHD_noSuchlnstance
The requested instance cannot be returned or does not exist.

ESNMP_MTHD_genErr
Indicates a general processing error.

6.3.2.2 The *_set Method Routine

The* _set method routine for a specified MIB item, which istypically a
MIB group (for example, syst emin MIB-2) or atable entry (for example,
i fEntry in MIB-2). However, it is up to your discretion.

Thel i besnnp routines call whatever routine is specified for Set
operations in the object table identified by the registered subtree.

This function is pointed to by some number of elements of the subagent
object table. When arequest arrives for an object, its method routine is
caled. The*_set method routine is called in response to a Set SNMP
request.

SNMP requests may contain many Var i abl eBi ndi ngs (encoded MIB
variables). Thel i bsnnp code executing in a subagent matches each

Var i abl eBi ndi ng with an object table entry. The object table’s method
routine is then called.

Therefore, a method routine is called to service a single MIB variable and the
same method routine may be called several times during a single SNMP
request.

6—28 Extensible SNMP Application Programming Interface

The syntax for the * _set method routine is as follows:
int mib_item_set(METHOD *method)

The arguments are as follows:

met hod
Is a pointer to a METHQOD structure, which contains the following fields:

action
The act i on value can be one of the following:
ESNMP_ACT_SET, ESNMP_ACT_COMMIT,
ESNMP_ACT_UNDO, or ESNMP_ACT_CLEANUP

serial _num
An integer number that is unique to this SNMP request. Each
method routine called while servicing a single SNMP request will
receive the same value of seri al _num New SNMP requests
areindicated by anew value of seri al _num

repeat _cnt
This argument is not used for Set calls.

max_repetitions
This argument is not used for Set calls.

var bi nd
Is a pointer to the VARBI ND structure which contains the MIB
variable' s supplied data value and name (OID). The instance
information has already been extracted from the OID and placed in
nmet hod- >r ow >/ nst ance.

obj ect
Is a pointer to the object table entry for the MIB variable being
referenced. The met hod- >obj ect - >obj ect i ndex isthis
object’ s unique index within the object table (useful when one
method routine services many objects).

The net hod- >obj ect - >0/ d is the OID defined for this object
in the MIB.

fl ags
Is aread-only integer bitmask set by | i besnnp. If set, the
ESNMP_FIRST_IN_ROW hit indicates that this cal is the first
object to be set in the row. If set, the ESNMP_LAST IN_ROW
bit indicates that this call is the last object to be set in the row.
Only METHQOD structures with the ESNMP_LAST _IN_ROW bit
set are passed to the method routines for commit, undo, and
cleanup phases.

Extensible SNMP Application Programming Interface 6—29

row
Is a pointer to a ROW_CONTEXT structure (defined in the
esnnp. h header file). All Set calls to the method routine which
refer to the same group and have the same instance number will be
presented with the same row structure. The method routines can
accumulate information in the row structures during Set calls for
use during the omit and undo phases. The accumulated data can
be released by the method routines during the cleanup phase.

i nstance
Is an address of an array containing the instance OID for this
conceptual row. Thel i besnnp routine builds this array by
subtracting the obj ect oi d from the requested variable
bi ndi ng oi d.

i nstance_| en
Is the size of the met hod- >r ow >/ nst ance.

cont ext
Is a pointer to be used privately by the method routine to reference
data needed to process this request.

save
Is a pointer to be used privately by the method routine to reference
data needed to potentially undo this request.

State
Is an integer to be used privately by the method routine to hold
any state information it requires.

security
I's pointer to security info (SNMPv2) and is not currently used.

The returns for the * _set method routine are as follows:

ESNMP_MTHD_noError
Indicates the routine completed successfully.

ESNMP_MTHD_notWritable
Indicates the requested object is not settable or was not
implemented.

ESNMP_MTHD_wrongLength
Indicates the requested value is the wrong length.

ESNMP_MTHD_wrongEncoding
Indicates the requested value is represented incorrectly.

ESNMP_MTHD_wrongValue
Indicates the requested value is out of range.

6—30 Extensible SNMP Application Programming Interface

ESNMP_MTHD_noCresation
Indicates the requested instance cannot ever be created.

ESNMP_MTHD_inconsistentName
Indicates the requested instance cannot currently be created.

ESNMP_MTHD_inconsistentValue
Indicates the requested value is not consistent.

ESNMP_MTHD_resourceUnavailable
Indicates a failure due to some resource constraint.

ESNMP_MTHD_genErr
Indicates a general processing error.

ESNMP_MTHD_commitFailed
Indicates the commit phase failed.

ESNMP_MTHD_udoFailed
Indicates the undo phase failed.

Overall Processing of the *_set Routine

Every variable binding is parsed and its object is located in the object table.
A METHOD structure is created for each VARBI ND. These METHOD
structures point to a ROW CONTEXT structure, which is useful for handling
these phases. Objects in the same conceptual row all point to the same
ROW _CONTEXT structure. This determination is made by checking the
following:

* The referenced objects are in the same MIB group
* The VARBI ND structures have the same instance OIDs.

Each ROW CONTEXT structure is loaded with the instance information for
that conceptual row. The ROW CONTEXT structure cont ext and save
fields are set to NULL, and the state field is set to
ESNMP_SET_UNKNOWN structure.

The method routine for each object is called, being passed its METHOD
structure with an action code of ESNMP_ACT_SET.

If all method routines return success, a single method routine (the last one
called for the row) is called for each row, with met hod- >acti on ==
ESNVP_ACT_COW T.

If any row reports failure, all rows that have been successfully committed are
told to undo the phase. Thisis accomplished by calling a single method
routine for each row (the same one that was called for the commit phase),
with anet hod- >acti on == ESNVP_ACT_UNDO.

Extensible SNMP Application Programming Interface 6-31

Finally, each row is released. The same single method routine for each row
is called with anet hod- >acti on == ESNMP_ACT_CLEANUP. This
occurs for every row, regardless of the results of previous processing.

ESNMP_ACT_SET

Each object’s method routine is called during the Set phase, until all objects
are processed or a method routine returns an error status value. (Thisis the
only phase during which each object’s method routine is called.) For
variable bindings in the same conceptual row, met hod- >r ow points to a
common ROW CONTEXT.

The et hod- >f | ags bitmask have the ESNMP_LAST _IN_ROW bit set,
if thisis the last object being called for this ROW CONTEXT. This enables
you to do afinal consistency check, since you have seen every variable
binding for this conceptual row.

The method routine' s job in this phase is to determine if the Set Request
will work, return the correct SNMP error code if not, and prepare any context
data it needs to actually perform the Set during the commit phase.

The et hod- >r ow >cont ext is private to the method routine;

I i besnnp does not useit. A typical useis to store the address of an
emitted f 0o_t ype structure that has been loaded with the data from the
VARBI ND for the conceptua row.

ESNMP_ACT_COMMIT

Even though several variable bindings may be in a conceptua row, only the
last one in order of the Set Request is processed. So, for all the method
routines that point to a common row, only the last method routine is called.

This method routine must have available to it al necessary data and context
to perform the operation. It must also save a snapshot of current data or
whatever it needs to undo the Set if required. The net hod- >r ow >save
is intended to hold a pointer to whatever datais needed to accomplish this.

A typical useis to store the address of an emitted f 0o_t ype structure that
has been loaded with the current data for the conceptual row.

The et hod- >r ow >save is also private to the method routine;
| i besnnp does not use it.

If the set operation succeeds, return ESNMP_MTHD_noError; otherwise,
back out the commit as best you can and return a value of
ESNMP_MTHD_commitFailed.

If any errors were returned during the commit phase, | i besnnp enters the
undo phase; if not, it enters the cleanup phase.

6—32 Extensible SNMP Application Programming Interface

Note

The undo phase may occur even if the Set operation in your
subagent is successful because the Set Request spanned
subagents and a different subagent failed.

ESNMP_ACT_UNDO

For each conceptual row that was successfully committed, the same method
routine is called with met hod- >acti on == ESNMP_ACT_UNDQ. The
ROW CONTEXT structures that have not yet been called for the commit phase
are not called for the undo phase; they are called for cleanup phase.

The method routine should attempt to restore conditions to what they were
before it executed the commit phase. (Thisistypicaly done using the data
pointed to by the net hod- >r ow >save.)

If successful, return ESNMP_MTHD_noError; otherwise, return
ESNMP_MTHD_undoFail.

ESNMP_ACT_CLEANUP

Regardless of what else has happened, at this point each ROW CONTEXT
participates in cleanup phase. The same method routine that was called for
commit phase is called with net hod- >acti on ==
ESNMP_ACT_CLEANUP.

This indicates the end of processing for the Set Request . The method
routine should perform whatever cleanup is required; for instance, freeing
dynamic memory that might have been allocated and stored in et hod-
>r ow >cont ext and met hod- >r ow >save, and so on.

The function return status value is ignored for the cleanup phase.

6.3.2.3 Method Routines

Y ou must write the code for the method routines declared in the
subtree_tbl. hfile. Each method routine has one argument, which is a
pointer to the METHOD structure, as follows:

int mib-group_get(METHOD *method)
int mib-group_set(METHOD *method)

The Get method routines are used to perform Get , Get Next , and
Get Bul k operations.

Get method routines perform the following tasks:

1. Extract the instance portion of the requested OID. Y ou can do this
manually by comparing met hod- >obj ect - >oi d (the object’s base
OID) to net hod- >var bi nd- >nane (the requested OID). You can
use the oi d2i nst ance | i besnnp routine to do this.

Extensible SNMP Application Programming Interface 6—33

2. Determine the instance validity. The instance OID may be null or any
length, depending on what was requested and how your object was
selected. You may be able to fail the request immediately by checking
on the instance OID.

3. Extract the data. Based on the instance OID and net hod- >act i on,
determine what data, if any, is to be returned.

4. Load the response OID back into the method routine’'s VARBI ND. Set
the nmet hod- >var bi nd with the OID of the actual MIB variable
instance you are returning. This is usually accomplished by loading an
array of integers with the instance OID you wish to return and calling the
i nstance2d DI i besnnp routine.

5. Load the response data back into the method routine’s VARBI ND.

Use one of thel i besnnp library routine with the corresponding data
type to load the et hod- >var bi nd with the data to return:

— o_integer
— o_string
— o_octet

— o_oid

These routines make a copy of the data you specify. Thel i besnnp
function manages any memory associated with copied data. The method
routine must manage the origina data' s memory.

The routine does any necessary conversions to the type defined in the
object table for the MIB variable and copies the converted data into
nmet hod- >var bi nd.

See the Value Representation section for information on data value
representation.

6. Return the correct status value, as follows:

— ESNMP_MTHD_noError — The routine completed successfully or no
errors were found.

— ESNMP_MTHD_noSuchinstance

For SNMPV1 — Returned as an error code.

For SNMPV2 — Trandated to anoSuchl nst ance exception.
— ESNMP_MTHD_noSuchObject

For SNMPV1 — Returned asanoSuchl nst ance error.

For SNMPv2 — Translated asanoSuchQbj ect exception

— ESNMP_MTHD_ genErr — An error occurred and the routine did not
complete successfully.

6—34 Extensible SNMP Application Programming Interface

Value Representation

The values in a VARBI ND for each data type are represented as follows.
(Refer to the esnnp. h file for a definition of the OCT and O D structures.)

ESNMP_TYPE_Integer32 (var bi nd- >val ue. sl)

Thisis a 32-bit signed integer. Usethe o_i nt eger routine to insert an
integer value into the VARBI ND. Note that the prototype for the value
argument is unsigned long, so you may need to cast thisto asi gned

i nt.

ESNMP_TYPE_DisplayString, ESNMP_TY PE_NsapAddress,
ESNMP_TY PE_Opaque, ESNMP_TY PE_OctetString

(var bi nd- >val ue. oct)

Thisis an octet string. It is contained in the VARBI ND as an OCT
structure that contains a length and a pointer to a dynamically allocated
character array. Included on the end of the character array is a null
terminator that is not included in the length.

The Di spl ayStri ng isdifferent only in that the character array can be
interpreted as ASCI| text where the Cct et St ri ng can be anything.

Usethe o_stri ng routine to insert a value into the VARBI ND which is
a buffer and alength. New space will be alocated and the buffer copied
into the new space.

Usethe o_oct et routine to insert a value into the VARBI ND, which is a
pointer to an OCT structure. New space is allocated and the buffer
pointed to by the OCT structure is copied.

ESNMP_TYPE_Objectld (var bi nd- >val ue. oi d and the
var bi nd- >nane field)

This is an object identifier. It is contained in the VARBI ND as an O D
structure which contains the number of elements and a pointer to a
dynamically allocated array of unsigned integers, one for each element.

The var bi nd- >nane field is used to hold the object identifier and
instance information that identifies MIB variable. Use the

A D21 nst ance function to extract the instance elements from an
incoming OID on arequest. Usethel nst ance20d D function to
combine the instance elements with the MIB variable' s base OID to set
the VARBI ND structure's nane field when building a response.

Use the o_oi d function to insert an object identifier into the VARBI ND
when the OID value to be returned as datais in the form of a pointer to
an O D structure.

Usetheo_stri ng function to insert an object ID into the VARBI ND
when the OID value to be returned as data is in the form of a pointer to
an ASCII string containing the OID in dot format; for example

Extensible SNMP Application Programming Interface 6-35

1.3.6.1.2.1.3.1.1.2.0.
» ESNMP_TYPE_NULL

Thisisthe NULL or empty type. Thisis used to indicate that there is no
value. The length is 0 and the value union in the VARBI ND is zero-filled.

The incoming VARBI ND structures on a Get , Get Next , and Get Bul k
will have this data type. A method routine should never return such a
value. Anincoming Set request never has such avalue in a VARBI ND.

 ESNMP_TYPE_lIpAddress (var bi nd- >val ue. oct)

Thisisan IP address. It is contained in the VARBI ND in an OCT
structure which has a length of 4 and a pointer to a dynamically allocated
buffer containing the 4 bytes of the IP address in network order.

Usetheo_i nt eger function to insert an IP address into the VARBI ND
when the value is an unsigned integer in network byte order.

Usetheo_stri ng function to insert an |P address into the VARBI ND
when the value is a byte array (in network byte order). Use alength of 4.

 ESNMP_TYPE_Ulnteger32 ESNMP_TY PE_Counter32
ESNMP_TYPE_Gauge32 (var bi nd- >val ue. ul’)

The 32-bit counter and 32-bit gauge data types are stored in the
VARBI ND as an unsi gned i nt.

Usethe o_i nt eger function to insert an unsigned value into the
VARBI ND.

» ESNMP_TYPE_TimeTicks (var bi nd- >val ue. ul)

The 32-bit timeticks type values are stored in the VARBI ND as an
unsi gned i nt, in.01-second units.

Usetheo_i nt eger function to insert an unsigned value into the
VARBI ND.

 ESNMP_TYPE_BIitString (var bi nd- >val ue. oct)

TheBi t St ri ng is contained in the VARBI ND as an OCT structure
which contains a length equal to the number of bytes needed to contain
the value which is ((qty-bits - 1)/8 + 2), and a pointer to a dynamically
buffer containing the bits of the bi t st ri ng in the form

uubbbbb. . bb, where the first octet (uu) is 0x00-0x07 and indicates the
number of unused bits in the last octet (bb). The bb octets represent the
bit string itself, where bit zero (0) comes first and so on.

Usethe o_oct et routine to insert a value into the VARBI ND which is a
pointer to an OCT structure pointing to a buffer containing the bits in the
uubbbbb. . bb form. New space will be allocated and the buffer
pointed to by the OCT structure will be copied.

This is not compatible with SNMPv1. It will be returned or set only for

6—36 Extensible SNMP Application Programming Interface

SNMPV2 requests.
 ESNMP_TYPE_Counter64 (var bi nd- >val ue. ul 64)

The 64-bit counter is stored int a VARBI ND as an unsi gned | ong
which, on an Alpha machine, has a 64-bit value.

Usethe o_i nt eger function to insert an unsigned long value (64 bits)
into the VARBI ND.

This is not compatible with SNMPv1. It is returned or set for SNMPv2
requests only.

6.3.3 The libsnmp Support Routines

This section provides information on the | i bsnnp support routines, which
consists of the following:

e oO_integer

* o0_octet

e o0_o0id

e o_string

e str2oid

* sprintoid

* instance2oid

* 0i d2i nstance

e inst2ip

e cnp_oid

e cnp_oid_prefix
» clone_oid

« free_oid

* cl one_buf

* nmenRoct

* cnp_oct
 clone_oct

« free_oct

« free_varbind_data
* set_debug_I evel
* is_debug | eve

Extensible SNMP Application Programming Interface 6-37

« ESNWP_LOG

6.3.3.1 The o_integer Routine

The o_i nt eger routine loads an integer value into the VARBI ND with the
appropriate type.
The syntax is as follows:

int o_integer(VARBIND *vb, OBJECT *obj, unsigned long value)

The arguments are as follows:

VARBI ND *vb
Is a pointer to the VARBI ND structure which is to receive the data. This
function does not allocate the VARBI ND structure.

OBJECT *obj
Is a pointer to the OBJECT structure for the MIB variable associated
with the O D in the VARBI ND.

unsi gned | ong val ue
The value to be inserted into the VARBI ND.

The real type as defined in the object structure must be one of the
following; otherwise, an error is returned.

If the real typeis | pAddr ess, then it assumes that the 4-byte integer is
in network byte order and will be packaged into one of the following
octet strings:

ESNMP_TYPE_Integer32;
32-bit INTEGER

ESNMP_TY PE_Counter32:
32-bit Counter (unsigned)

ESNMP_TY PE_Gauge32:
32-bit Gauge (unsigned)
ESNMP_TYPE _TimeTicks:
32-bit TimeTicks (unsigned)
ESNMP_TY PE_UInteger32:
32-bit INTEGER (unsigned)

ESNMP_TY PE_Counter64:
64-bit Counter (unsigned)

ESNMP_TYPE_IpAddress;
| MPLI CI T OCTET STRI NG (4)

6—38 Extensible SNMP Application Programming Interface

The following is an example of the o_i nt eger routine:

#i ncl ude <esnnp. h>

#include "ip_tbl.h" <-- for ipNetToMedi aEntry_type definition
VARBI ND *vb nmet hod- >var bi nd;

OBJECT *obj ect nmet hod- >obj ect ;

i pNet ToMedi aEntry_type *dat a;

switch(arg) {
case | _atlfl ndex:
return o_integer(vb, object, data->i pNet ToMedi al fl ndex);

The following are the return values:

ESNMP_MTHD_noError
The routine completed successfully.

ESNMP_MTHD_genErr
An error has occurred.

6.3.3.2 The o_octet Routine

The o_oct et routine loads an octet value into the VARBI ND with the
appropriate type.
The syntax is as follows:

int o_octet(VARBIND *vb, OBJECT *obj, OCT *oct)

The arguments are as follows:

VARBI ND *vb
Is a pointer to the VARBI ND structure which is to receive the data. This
function does not allocate the VARBI ND structure.

Note

If the original valuein thevar bi nd vb isnot NULL, this
routine attempts to freeit. So if you mal | oc your own vb
structure, be sure to fill it with zeros before using it.

OBJECT *obj
Is a pointer to the OBJECT structure for the MIB variable associated
with the O D in the VARBI ND.

OCT *val ue
Is the value to be inserted into the VARBI ND.

The real type as defined in the object structure must be one of the
following; otherwise, an error is returned:

Extensible SNMP Application Programming Interface 6—39

ESNMP_TYPE_OCTET_STRING
OCTET STRING (ASN.1)

ESNMP_TYPE_IpAddress
IMPLICIT OCTET STRING (4) — in octet form, network byte order

ESNMP_TY PE_DisplayString
DisplayString (Textual Con)

ESNMP_TYPE_NsapAddress
IMPLICIT OCTET STRING

ESNMP_TY PE_Opague
IMPLICIT OCTET STRING

ESNMP_TYPE_BIT_STRING
BIT STRING (ASN.1) — The first byte is the number of unused bits in
the last byte.

The following is an example of the o_oct et routine:

#i ncl ude <esnnp. h>

#include "ip_tbl.h" <-- for ipNetToMedi aEntry_type definition
VARBI ND *vb = net hod- >var bi nd;

OBJECT *obj ect = net hod- >obj ect ;

i pNet ToMedi aEntry_type *dat a;

switch(arg) {
case | _at PhysAddress:
return o_octet(vb, object, &data->i pNet ToMedi aPhysAddress);

The returns are as follows:

ESNMP_MTHD_noError
Indicates that the routine completed successfully.

ESNMP_MTHD_genErr
Indicates that an error condition has occurred.

6.3.3.3 The o_oid Routine

The o_oi d routine loads an OID value into the VARBI ND with the
appropriate type.

The syntax is as follows:

int o_oid(VARBIND *vb, OBJECT *obj, OID *oid)

The arguments are as follows:

VARBI ND *vb
Is a pointer to the VARBI ND structure that is to receive the data. This

6—40 Extensible SNMP Application Programming Interface

function does not allocate the VARBI ND structure.

Note

If the original valuein the var bi nd vb isnot NULL, this
routine attempts to free it; therefore, if you mal | oc your
own vb structure, fill it with zeros (0s) before using it.

OBJECT *obj
Is a pointer to the OBJECT structure for the MIB variable associated
with the oid in the VARBI ND.

a D *val ue
Is the value to be inserted into the VARBI ND structure as data.

The real type as defined in the object structure must be the following;
otherwise, an error is returned:

ESNMP_TYPE_OBJECT_IDENTIFIER
OBJECT IDENTIFIER (ASN.1)

The following is an example of the o_oi d routine:

#i ncl ude <esnnmp. h>

#include "ip_tbl.h" <-- for ipNetToMedi aEntry_type definition
VARBI ND *vb nmet hod- >var bi nd;

OBJECT *obj ect net hod- >obj ect ;

i pNet ToMedi aEntry_type *dat a;

switch(arg) {
case | _athjectl D
return o_oid(vb, object, &data->i pNet ToMedi atbj ect|D);

The returns are as follows;

ESNMP_MTHD_noError
Indicates the routine ended successfully.

ESNMP_MTHD_genErr
Indicates an error condition has occurred.

6.3.3.4 The o_string Routine

The o_st ri ng routine loads a string value into the VARBI ND with the
appropriate type.

The syntax is as follows:
int o_string(VARBIND *vb, OBJECT *obj, unsigned char *ptr, int len)

Extensible SNMP Application Programming Interface 6—41

The arguments are as follows:

VARBI ND *vb
Is a pointer to the VARBI ND structure which is to receive the data. This
function does not allocate the VARBI ND structure.

Note

If the original valuein the var bi nd vb isnot NULL, this
routine attempts to free it; therefore, if you mal | oc your
own vb structure, fill it with zeros (0s) before using it.

OBJECT *obj
Is a pointer to the OBJECT structure for the MIB variable
associated with the oi d in the VARBI ND.

unsi gned char *ptr
Is the pointer to the buffer containing data to be inserted into the
VARBI ND as data.

int /en
Is the length of the datain buffer to which pt r points.

The real type as defined in the object structure must be one of the
following; otherwise, an error is returned:

ESNMP_TYPE_OCTET_STRING
OCTET STRING (ASN.1)

ESNMP_TYPE_IpAddress
IMPLICIT OCTET STRING (4) — in octet form, network byte
order

ESNMP_TYPE_DisplayString
DisplayString (Textual Con)

ESNMP_TYPE_NsapAddress
IMPLICIT OCTET STRING

ESNMP_TYPE_Opague
IMPLICIT OCTET STRING

ESNMP_TYPE_BIT_STRING
BIT STRING (ASN.1) — The binary value of first byte is the
number of unused bits in the last byte.

ESNMP_TYPE_OBJECT_IDENTIFIER
OBJECT IDENTIFIER (ASN.1) —in dot notation, 1.3.4.6.3

6—42 Extensible SNMP Application Programming Interface

The following is an example of the o_st ri ng routine:

#i ncl ude <esnnp. h>

#include "ip_tbl.h" <-- for ipNetToMedi aEntry_type definition
VARBI ND *vb nmet hod- >var bi nd;

OBJECT *0obj ect met hod- >obj ect ;

i pNet ToMedi aEntry_type *dat a;

switch(arg) {
case | _at PhysAddress:
return o_string(vb, object, data->i pNet ToMedi aPhysAddress. ptr,
dat a- >i pNet ToMedi aPhysAddress. | en);

The return values are as follows:

ESNMP_MTHD_noError
Indicates that the routine completed successfully.

ESNMP_MTHD_genErr
Indicates that an error condition has occurred.

6.3.3.5 The str2oid Routine

The st r 20i d routine converts a null-terminated OID string (in dot notation)
to an O D structure.

It dynamically allocates the elements buffer and inserts its pointer into the
QO D structure passed in. It is the responsibility of the caller to free this
buffer. The OID can have a maximum of 128 elements.

Note that the st r 20i d routine does not allocate an O D structure.
The syntax is as follows:
OID * str2oid (OID *oid, char *s)

The following is an example of the st r 20i d routine:

#i ncl ude <esnnp. h>

A D abc;

if (str2oid(&bc, "1.2.5.4.3.6") == NULL)
DPRI NTF((WARNI NG, "It did not work...0));

The returns are as follows:

NULL
Indicates an error has occurred; otherwise, the pointer to the O D
structure (its first argument) is returned.

Extensible SNMP Application Programming Interface 6—43

6.3.3.6 The sprintoid Routine

The spri nt oi d routine converts an O D into a null-terminated string in
dot notation. An O D can have up to 128 elements. A full sized O D can
require a large buffer.

The syntax is as follows:
char *sprintoid (char *buffer, OID *oid)

The following is an example of the spri nt oi d routine:

#i ncl ude <esnnp. h>

#defi ne SOVETH NG _BI G 1024
A D abc;

char buffer[SOVETH NG Bl G ;

assume abc gets initialized with sone val ue
printf("dots=%0, sprintoid(buffer, &bc));

The return values are its first argument.

6.3.3.7 The instance2oid Routine

Thei nst ance2o0i d routine makes a copy of the object’s base OID and
appends a copy of the instance array to make a complete OID for avalue.
Thei nst ance is an array of integersand | en is the number of elements.
The instance array may be created by oi d2i nst ance or constructed from
key values as aresult of aget _next search.

It dynamically allocates the elements buffer and inserts its pointer into the
O D structure passed in. The caller is responsible for freeing this buffer.

Point to the O D structure that is to receive the new O D values and call this
routine. Any previous value in the O D structure is freed (it calls

free_oi d first) and the new values are dynamically allocated and inserted.
Be sure the initial value of the new O Dis all zeros, if you do not want it to
be freed.

Note that thei nst ance2oi d routine does not allocate an O D structure,
only the array containing the elements.

The syntax is as follows:

OID * instance2oid (OID *new, OBJECT *obj, unsigned int *instance, int
len)

The arguments are as follows:

a D *new
Is a pointer to the O D that is to receive the new O D value.

6—44 Extensible SNMP Application Programming Interface

OBJECT *obj
Is a pointer to the object table entry for the MIB variable being
obtained. The first part of the new O Disthe O D from this MIB
object table entry.

unsi gned int *instance
Is a pointer to an array of /i nst ance values. These values are
appended to the base O D obtained from the MIB object table entry to
construct the new O D.

int /en
Is the number of elementsin the i nst ance array.

The following is an example of thei nst ance2oi d routine:

#i ncl ude <esnnp. h>

VARBI ND *vb; <-- filled in
OBJECT *object; <-- filled in
unsi gned int instance[6];

- Construct the outgoing O D in a GETNEXT --
- Instance is N1.A A A A where A's are IP address --
instance[0] = dat a- >i pNet ToMedi al f | ndex;
instance[1l] = 1;
for (i =0; i < 4; i++) {
i nstance[i +2] =((unsi gned char *)(&data->i pNet ToMedi aNet Address))[i];

i nstance2oi d(& b->nane, object, instance, 6);

The returns are as follows:

NULL
Indicates an error has occurred; otherwise, the pointer to the A D (its
first argument) is returned.

6.3.3.8 The oid2instance Routine

The oi d2i nst ance routine extracts the instance values from an O D and
copies them to the specified array of integers. It then returns the number of
elementsin the array. The instance is the elements of an OID beyond those
elements that identify the MIB variable. They are used as indexes to identify
a specific instance of aMIB value.

If there are more elements in the O D than expected (more than specified by
the max_| en parameter), the function copies the number of elements
specified by max_| en only and returns the total number of elements that
would have been copied had there been space.

The syntax is as follows:

int oid2instance (OID *oid, OBJECT *obj, unsigned int *instance, int
max_len)

Extensible SNMP Application Programming Interface 6—45

The arguments are as follows:
oi d
Is an incoming O D containing an instance or part of an instance.

obj
Is a pointer to the object table entry for the MIB variable.
i nstance

Is a pointer to an array of unsigned integers where the index will be
placed.

max_| en
Is a number of elements available in the instance array.

#i ncl ude <esnnp. h>

ab *incom ng = &mret hod- >var bi nd- >nane;
OBJECT *obj ect = net hod- >obj ect ;
int i nst Lengt h;

unsi gned int instance[6];

- in a GET operation --
- Expected Instance is N.1. A A A A where A's are |P address --
i nstLength = oi d2i nst ance(i ncom ng, object, instance, 6);
if (instLength !'= 6)
return ESNVMP_MIHD_noSuchl nst ance;

The Nwill beini nst ance[0] and the IP address will bein
i nstance[2],i nstance[3],i nstance[4],andi nstance[5].
The returns are as follows:

» Lessthan zero indicates that an error, should not be if the object was
obtained by looking at this oi d.

e Zero indicates there are no instance elements.

* Any positive integer indicates the number of elementsin the index. (This
could be larger than the max_| en parameter).

6.3.3.9 The inst2ip Routine

Thei nst 2i p routine returns an I1P address derived from an OID instance.
For evaluation of an instance for Get and Set operations use the EXACT
mode. For Get Next and Get Bul k operations use the NEXT mode. When
using the NEXT mode, this routine’ s logic assumes that the search for data
will be performed using greater than or equal to matches.

The syntax is as follows:

int inst2ip(unsigned int *inst, int length, unsigned int *ipAddr, int exact,
int carry)

6—46 Extensible SNMP Application Programming Interface

The arguments are as follows:

i nst

Is a pointer to an array of unsi gned i nt containing the instance
numbers returned by the oi d2i nst ance routine to be converted to an
IP address.

Each element is in the range 0 to 255. Using the EXACT mode, the
routine returns 1 if an element is out of range. Using NEXT mode, a
value greater than 255 causes that element to overflow. Itisset to 0 and
the next most significant element is incremented, so it returns a lexically
equivalent value of the next possiblei pAddr ess.

I ength

Is the number of elements in the instance array. Instances beyond the
fourth are ignored. If the length is less than 4, the missing values are
assumed to be 0. A negative length resultsin ani paddr value of 0.
For an exact match (such as Get) there must be at exactly four
elements.

i pAddr

Is a pointer to where to return the IP address value. It isin network
byte order; that is, the most significant element is first.

exact

Can be either TRUE or FALSE.

TRUE means do an EXACT match. If any element is greater than 255
or if there are not exactly 4 elements, return 1. The carry argument is
ignored.

FALSE means do a NEXT match. That is, return the lexically next IP
address if the carry is set and the length is at least 4. If there are fewer
than 4 elements, assume the missing values are 0. If any one element
contains a value greater than 255, then zero the value and increment the
next most significant element. Return 1 only in the case where there is
a carry from the most significant (the first) value.

carry

Is the carry to add to the IP address on a NEXT match. If you are
trying to determine the next possible IP address, passin a 1; otherwise,
passin a0. A length of less than 4 cancels the carry.

The following are examples of the i nst 2i p routine.
The following example converts an instance to an |P address for a Get

Extensible SNMP Application Programming Interface 6—47

operation, which is an EXACT match.

#i ncl ude <esnnp. h>
ab *incom ng
OBJECT *obj ect
int instLength;

unsi gned int instance[6];
unsi gned int ip_addr;

int i face;

&nmet hod- >var bi nd- >nane;
nmet hod- >obj ect ;

- The instance is N.1. A A A A where the A's are the | P address--
i nstLength = oi d2i nstance(i ncom ng, object, instance, 6);
if (instLength == 6 && !inst2i p(& nstance[2], 4, & p_addr, TRUE 0)) {
iface = (int) instance[O0];
}

el se
return ESNVP_MIHD _noSuchl nst ance;

The following example shows a Get Next where thereis only one key or
that the i paddr isthe least significant part of the key. Thisisa NEXT
match; therefore, a1l is passed in for carry.

#i ncl ude <esnnp. h>
ab *incom ng
OBJECT *obj ect
int instLength;

unsi gned int instance[6];
unsi gned int ip_addr;

int i face;

&nmet hod- >var bi nd- >nane;
nmet hod- >obj ect ;

- The instance is N.1. A A A A where the A's are the | P address--
i nstLength = oi d2i nstance(i ncom ng, object, instance, 6);
iface = (instLength < 1) ? 0 :(int) instance[O0];

iface += inst2i p(& nstance[2], instLength - 2, & p_addr, FALSE, 1);

In the following example, if there is more than one part to a search key and
you are doing a Get Next , you want to find the next possible value for the
search key so you can do a cascaded greater-than or equal-to search.

If you have a search key of a number and two i pAddr values that are
represented in the instance part of the OID as N A. A A A B. B. B. Bwith
Nas single valued integer and A. A. A. A portion making up one |P address
and the B. B. B. B portion making up a second | P address and a total length
of 9if al elements are given, you start by converting the least significant part
of the key, (that would be the B. B. B. B portion). You do that by calling the
i nst 2i p routine passing in a 1 for the carry and 5 for the length. If the
conversion of the B. B. B. B portion generated a carry (returned 1), you will
pass it on to the next most significant part of the key. Therefore, convert the
A. A A Aportion by calling the i nst 2i p routine, passing in 1 for the
length and the carry returned from the conversion of the B. B. B. B portion.
The most significant element Nis a number; therefore, add the carry from the

6—48 Extensible SNMP Application Programming Interface

A conversion to the number. If that also overflows, then this is not avalid

search key.

#i ncl ude <esnnp. h>

ab *incom ng = &mret hod- >var bi nd- >nane;
OBJECT *obj ect = net hod- >obj ect ;

int instLength;

unsi gned int instance[9];
unsi gned int ip_addrA;
unsi gned int ip_addrB;
int i face;

int carry;

-- The instance is NA AAABBBB--

instLength = oi d2i nstance(i ncom ng, object, instance, 9);

iface = (instLength < 1) 2 0 :(int) instance[0];

carry = inst2ip(& nstance[1],instLength - 1, & p_addr, FALSE, 1);
carry = inst2ip(& nstance[5],instLength - 5, & p_addr, FALSE, carry);
iface += carry;

if (iface > OXFFFFFFFF)

-- a carry caused an overflow in the nost significant el ement
return ESNVP_MIHD noSuchl nst ance;

The returns are as follows:
» |Ifthe carry isO, the routine completed successfully.

» Ifthecarry equalsl, it indicates an error if EXACT match or there was
acarry for aNEXT match. If there was a carry, the returned i pAddr is
0.

6.3.3.10 The cmp_oid Routine

The cnp_oi d routine compares two O D structures. This routine does an
element-by-element comparison starting with the most significant element
(element 0) and working toward the least significant element. If al other
elements are equal, the O D with the fewest elements is considered less.

The syntax is as follows:
int cmp_oid(OID *q, OID *p)

The returns are as follows:

e +1—Indicatesthat oi d g isgreaterthanoid p.
e O-Indicatesthatoid gisinoid p.

e —1-Indicatesthat oi d gislessthanoid p.

Extensible SNMP Application Programming Interface 6—49

6.3.3.11 The cmp_oid_prefix Routine

The cnp_oi d_pr ef i x routine compares an O D against a prefix. A prefix
could be the O D on an abject in the object table. The elements beyond the
prefix are the instance information.

This routine does an element-by-element comparison, starting with the most
significant element (element 0) and working toward the least significant
element. If al elements of the prefix O D match exactly with corresponding
elementsof O D g, it is considered an even match if O D g contains
additional elements. O D gq is considered greater than the prefix if the first
nonmatching element is larger. It is considered smaller if the first
nonmatching element is less.

The syntax is as follows:
int cmp_oid_prefix(OID *q, OID *prefix)

The following is and example of thecnp_oi d_pr ef i x routine:

#i ncl ude <esnnp. h>

ab *qg;

OBJECT *obj ect ;

if (cnp_oid_prefix(q, &object->0id) == 0)
printf("matches prefix0);

The returns are as follows:

* -1 -—Indicatesthe oi d is less than the prefix.

* 0 —Indicatesthe oi d isin the prefix.

* +0—Indicatesthe oi d is greater than the prefix.

6.3.3.12 The clone_oid Routine
The cl one_oi d routine makes a copy of the O D structure.

Pass in a pointer to the source O D structure to be cloned and a pointer to the
new O D structure that is to receive the duplicated O D values.

It dynamically allocates the element’s buffer and inserts its pointer into the
A D structure passed in.

It is the responsibility of the caller to free this buffer.

Note that any previous elements buffer pointed to by the new O D structure
will be freed and pointers to the new, dynamically allocated, buffer will be
inserted. Be sure to initialize the new O D structure with zeroes (0), unless it
contains an element buffer that can be freed.

Also note that this routine does not allocate an O D structure.

6-50 Extensible SNMP Application Programming Interface

The syntax is as follows:
OID *clone_oid (OID *new, OID *oid)

The arguments are as follows:

A D *new
Is a pointer to the O D structure that is to receive the copy.

QD *old
Is a pointer to the O D structure where the datais to be obtained.

The following is an example of the cl one_oi d routine:

#i ncl ude <esnnp. h>
A D oi di;
A D oid2;

assune oi d1 gets assigned a val ue

menset (&oi d2, 0, sizeof (OCT)):
if (clone_oid(&oid2, &oidl) == NULL)
DPRI NTF((WARNING, "It did not worko)):

The returns are as follows:

NULL
Indicates an error; otherwise, the pointer to the OID (its first argument)
is returned.

6.3.3.13 The free_oid Routine
Thef ree_oi d routine freesan O D structure’ s elements buffer.

It frees the buffer pointed to by o/ d- >el enent s then zeros that field and
oi d- >nel em

Note that this routine does not deallocate the O D structure itself, only the
elements buffer attached to it.

The syntax is as follows:
void free_oid (OID *oid)

The following is an example of thef r ee_oi d routine:

#i ncl ude <esnnp. h>
A D oid;

assunme oid was assigned a value (perhaps with cl one_oid()
and we are now finished with it.

free oi d(&oid);

Extensible SNMP Application Programming Interface 6-51

6.3.3.14 The clone_buf Routine

The cl one_buf routine duplicates a buffer in a dynamically allocated
space. One extra byte is always alocated on end and filled with \ 0. If the
length isless than 0, its length is set to 0. There is always a buffer pointer,
unlessthereisanal | oc error.

It is the callers responsibility to free the allocated buffer.
The syntax is as follows:
char *clone_buf(char *str, int len)

The arguments are as follows:

Str
Is a pointer to the buffer to be duplicated.

I en
Is a number of bytes to copy.

The following is an example of the cl one_buf routine:

#i ncl ude <esnnp. h>

char *str = "sonething nice";

char *copy;

copy = clone_buf(str, strlen(str));

The returns are as follows:

NULL
Indicatesamal | oc error; otherwise, the pointer to allocated buffer
containing a copy of the original buffer is returned.

6.3.3.15 The mem?2oct Routine

The menRoct routine converts a string, (a buffer and length) to an OCT
structure.

It dynamically allocates a new buffer, copies the indicated data into it, and
updates the OCT structure with the new buffer’ s address and length.

It is the responsibility of the caller to free the allocated buffer.

Note this routine does not allocate an OCT structure and that it does not free
data previously pointed to in the OCT structure before making the
assignment.

The syntax is as follows:
OCT * mem2oct(OCT *new, char *buffer, int len)

6-52 Extensible SNMP Application Programming Interface

The following is an example of the menRoct routine:

#i ncl ude <esnnp. h>
char buffer;

int |len;

OCT abc;

nenset (&bc, 0, sizeof (OCT));
if (menRoct (&bc, buffer, len) == NULL)

DPRI NTF((WARNI NG, "It did not work...0));
The following are the return values:

NULL
Indicates an error; otherwise, the pointer to the OCT structure (its first
argument) is returned.

6.3.3.16 The cmp_oct Routine

The cnp_oct routine compares two octets. The two octets are compared
byte-by-byte for the length of the shortest octet. If all bytes are equal, the
lengths are compared. An octet with a null pointer is considered the same as
a zero-length octet.

The syntax is as follows:
int cmp_oct (OCT *oct1, OCT *oct2)

The following is an example of the cnp_oct routine:

#i ncl ude <esnnp. h>
OCT abc, efg;

if (cnp_oct(&bc, &efg) > 0)
DPRI NTF((WARNI NG, "octet abc is larger than efg...0));

The returns are as follows:

« -1 -—The string to which the first octet points is less than the second.

* 0 -The string to which the first octet points is equal to the second.

« +1—The string to which the first octet points is greater than the second.

6.3.3.17 The clone_oct Routine
Thecl one_oct routine makes a copy of the OCT structure.

It passes in a pointer to the source OCT structure to be cloned and a pointer
to the new OCT structure that is to receive the duplicated OCT structure’'s
values.

Extensible SNMP Application Programming Interface 6-53

It dynamically allocates the buffer, copies the data, and updates the new OCT
structure with the buffer’s address and length.

It is the responsibility of the caller to free this buffer.

Note that any previous buffer to which the new OCT structure points is freed
and pointers to the new, dynamically allocated buffer are inserted. Be sure to
initialize the new OCT structure with zeros (0), unless it contains a buffer that
can be freed.

Also note that this routine does not allocate an OCT structure, only the
elements buffer pointed to by the OCT structure.

The syntax is as follows:
OCT * clone_oct (OCT *new, OCT *old)

The arguments are as follows:

OCT *new
Is a pointer to the OCT structure that is to receive the copy.

OCT *ol d
Is a pointer to the OCT structure where the datais to be obtained.

The following is an example of the routine;

#i ncl ude <esnnp. h>
OCT octet1;
OCT octet2;

assune octetl gets assigned a val ue

ﬁemset(&octetZ, 0, sizeof (CCT));
if (clone_oct(&octet2, &octetl) == NULL)
DPRI NTF((WARNI NG, "It did not work0));

The returms are as follows:

NULL
Indicates an error; otherwise, the pointer to the OCT structure (its first
argument) is returned.

6.3.3.18 The free_oct Routine
Thefree_oct routine frees the buffer attached to the OCT structure.

It frees a dynamically allocated buffer to which the OCT structure points, then
zeros (0) the pointer and length fields in the OCT structure. |If the buffer is
aready NULL this routine does nothing.

Note that this routine does not deallocate the OCT structure, only the buffer
to which it points.

6-54 Extensible SNMP Application Programming Interface

The syntax is as follows:
void free_oct (OCT *oct)

The following is an example of thef r ee_oct routine:
#i ncl ude <esnnp. h>
OCT octet;

assune octet was assigned a val ue (perhaps w th nmenRoct ()
and we are now finished with it.

free_oct(&octet);

6.3.3.19 The free_varbind_data Routine

Thefree_var bi nd_dat a routine frees the dynamically allocated fields
within the VARBI ND structure.

The routine performsaf ree_oi d (vb - > nane) operation. If the vb-
>t ypefield indicates, it then frees the vb- >val ue data using either the
free_oct orthefree_oi d routine.

It does not deallocate the VARBI ND structure itself; only the name and data
buffers to which it points.

The syntax is as follows:
void free_varbind_data(VARBIND *vb)

The following is an example of thef r ee_var bi nd_dat a routine:

#i ncl ude <esnnp. h>
VARBI ND *vb;

vb = (VARBI ND*) nal | oc(si zeof (VARBI ND)) ;
cl one_oi d(& b->nane, oid);
cl one_oct (&b->val ue. oct, data);

frée_var bi nd_dat a(vb) ;
free(vb);

6.3.3.20 The set_debug_level Routine

Theset _debug_I evel routine sets the logging level which dictates what
log messages are generated. Y ou should call the routine during program
initialization in response to runtime options. If not called, this will be set to
WARNING and ERROR messages to st dout as the defaullt.

Extensible SNMP Application Programming Interface 6-55

The following values can be set:

ERROR — For when a bad error occurred, requiring a restart.

WARNING — For when a packet cannot be handled; this also implies
ERROR.

TRACE — For when tracing all packets; this also implies ERROR and
WARNING.

DAEMON_LOG — Causes output to go to sys! og rather than to
standard outpui.

EXTERN_LOG — Causes the callback function to be called to output log
messages. |If this bit is set, you must provide the second argument, which
is a pointer to a user supplied external callback function. |If
DAEMON_LOG and EXTERN_LOG are not specified, output goes to
standard outpui.

cal | back — A user-supplied external callback function:
void callback_function(int level, char *message)

The | evel will be ERROR, WARNI NG, or TRACE. If the
EXTERN _LOG hitissetin st at , thecal | back function will be
called whenever an ESNVP_LOG macro is executed and the log level
indicates that alog message is to be generated.

This facility alows an implementer to control where eSNMP library
functions output log messages. If EXTERN _LOG bit will not be set, pass
in aNULL pointer for the callback function argument.

The syntax is as follows:
void set_debug_level(int stat, LOG_CALLBACK_ROUTINE callback_routine)

The following is an example of the set _debug_| evel routine

#i ncl ude <esnnp. h>
extern void log_handler(int |evel, char *message);

i f (daenonize)

set _debug_| evel (EXTERN_LOG | WARNI NG | og_handl er);

el se

6.3.3.21

set _debug_| evel (TRACE, NULL);

The is_debug_level Routine

Thei s_debug_| evel routine tests the log level to see if the specified
level is set. You can set the levels as follows:

ERRCOR — For when a bad error occurred, requiring restart.

6-56 Extensible SNMP Application Programming Interface

* WARNI NG - For when a packet cannot be handled.

* TRACE — For when tracing all packets.

DAEMON_LOG- For output going to sysl og.

 EXTERN_LOG- For the cal | back function is to be called to output
log messages.

The syntax is as follows:

int is_debug_level(int type)

The return values are as follows:

TRUE
The requested level is set and the ESNMP_LOG will generate output, or
output will go to the specified destination.

FALSE
Thei s_debug_| evel routineis not set.

The following is an example of thei s_debug_| evel routine:
#i ncl ude <esnnp. h>

if (is_debug_Il evel (TRACE))
dunp_packet () ;

6.3.3.22 The ESNMP_LOG Routine

The ESNVP_LOG routine is an error declaration C macro defined in the
<esnnp. h> header file. It gathers the information that it can obtain and
sendsit to the log. If DAEMON _LOGis set, log messages are sent to the
daemon log. If EXTERN LOGis set, log messages are sent to the

cal I back function; otherwise, log messages go to standard output.

Note

The esnnp_| og routine is called using the ESNMP_LOG
macro, which uses the helper routine esnnp_| ogs to format
part of the text. Do not use these functions without the
ESNVP_L OG macro.

#define ESNVP_LOG | evel, x) if (is_debug_|level(level)) { \
esnmp_l og(l evel, esnnp_logs x, __ LINE_, _ FILE);}

Where x is(t ext):

text - format, arguments,
For example apri nt f statement.

Extensible SNMP Application Programming Interface 6-57

I evel
Can be one of the following:

ERROR
Declares an error condition.

WARNI NG
Declares a warning.

TRACE
Put in log file if traceis active.
The syntax is as follows:
ESNMP_LOG(level, (format, ...))

The following is an example of the ESNVP_LOG routine:

#i ncl ude <esnnp. h>
ESNVP_LOG ERROR, ("Cannot open file 9%\n", file));

6-58 Extensible SNMP Application Programming Interface

Digital UNIX STREAMS/Sockets
Coexistence 7

This chapter describesthei f net STREAMS module and dl b STREAMS
pseudodriver communication bridges. Before reading it, you should be
familiar with basic STREAMS and sockets concepts and have reviewed the
information in Chapter 4 and Chapter 5.

The Digital UNIX network programming environment supports the
STREAMS and sockets frameworks for network programming. However,
there is no native communication path at the data link layer between the two
frameworks. The term coexistence refers to the ability to exchange data
between the sockets and STREAMS frameworks. The term communication
bridge refers to the software (i f net STREAMS module or the dl b
STREAMS pseudodriver) that enables the two frameworks to exchange data
at the data link layer.

Programs written to sockets and STREAMS must intercommunicate for the
following reasons:

A system cannot have two drivers for the same device.

Programs may need to access STREAM S-based device drivers from BSD
protocol stacks or, conversely, may need to access BSD device drivers
from STREAM S-based protocol stacks.

For example, if your system is running a STREAMS device driver and
you have an application that uses the TCP/IP implemented on Digital
UNIX, which is sockets-based, you need a path by which the data gets
from the sockets-based protocols stack to the STREAMS device driver
and back again. Thei f net STREAMS module allows an application
using TCP/IP to exchange data with a STREAMS device driver. Section
7.1 describesthe i f net STREAMS module.

Conversely, if you have a STREAMS protocol stack implemented on
your system but want to use the BSD device driver implemented on
Digital UNIX, you need a path by which the data gets from the
STREAMS protocol stack to the BSD device driver and back again. The
dl b STREAMS pseudodriver allows the STREAMS protocol stack to
route its data to the BSD device driver. Section 7.2 describesthe dl b
STREAMS pseudodriver.

7.1 Bridging STREAMS Drivers to Sockets Protocol
Stacks

Thei f net STREAMS module is a communication bridge that allows
STREAMS network drivers to access sockets-based network protocols. The
i f net STREAMS module functions like any other STREAMS module,
being pushed on the Stream above the STREAMS device driver. Onceit is
on the Stream, it handles al of the trandation required between the DLPI
interface of the STREAMS driver and the BSD i f net layer. Thei f net
STREAMS module exports both standard STREAMS interfaces as well as

i f net layer interfaces.

Note that STREAMS network drivers can also continue to use STREAMS-
based network protocols while using thei f net STREAMS module.

Figure 7-1 highlights thei f net STREAMS module and shows its place in
the network programming environment.

7-2 Digital UNIX STREAMS/Sockets Coexistence

7.1.1

Figure 7-1: The ifnet STREAMS module

STREAMS Sockets
Application XTI/TLI Application

‘ ‘ user space

kernel space
Stream head

timod i

\ socket
: layer
xtiso ‘ Y
STREAMS
moc““'e TCP | UDP I
DLPI Interface DL
dib I
pseudodriver P

L

: ifnet]
STREAMS STREAMS ifnet layer SLIP
module module N driver
DLPI Interface BSD driver

1
i STREAMS driver
1

ZK-0561U-R

The STREAMS Driver

This section describes how to prepare the system running the STREAMS
driver to use thei f net STREAMS module.

Note

Thei f net STREAMS module only supports Ethernet
STREAMS device drivers.

This section also lists the DLPI primitives that the STREAMS driver must
support in order for thei f net STREAMS module to operate successfully.

Digital UNIX STREAMS/Sockets Coexistence 7-3

7.1.1.1 Using the ifnet STREAMS Module

If your device driver supports the primitives listed in Section 7.1.1.2, no
source code changes to either the driver or STREAMS kernel code are
needed for you to use thei f net STREAMS module.

Tousethei f net STREAMS module, the STRIFNET and DLPI options
must be configured in your kernel and you must set up STREAMS for the
driver.

The STRIFNET and DLPI options may have been configured into your
system at installation time. (For information on configuring options during
installation, see the Installation Guide.) You can check to see if the options
are configured, by issuing the following command:

lusr/sbin/strsetup —c

Ifi f net and dl b appear in the Name column, the options are configured in
you kernel. If not, you must add them using the doconf i g command.

To configure STRIFNET and DLPI into your kernel, perform the following
steps:
1. Login as superuser.

2. Enter the/ usr/ sbi n/ doconfi g command. If you have a customized
configuration file, you should use the/ usr/ sbi n/ doconfig -c¢
command. For more information, see the doconf i g(8) reference page.

3. Enter aname for the kernel configuration file. It should be the name of
your system in uppercase letters, and will probably be the default
provided in square brackets ([]); for example:

Enter a name for the kernel configuration file. [HOST1]:
'RETURN

4. Enter y when the system asks whether you want to replace the system
configuration file; for example:

A configuration file with the nane 'HOST1' al ready exists.
Do you want to replace it? (y/n) [n]: vy

Savi ng /sys/ conf/HOST1 as /sys/conf/HOST1. bck

*** KERNEL CONFI GURATI ON AND BUI LD PROCEDURE ***

5. Select the options you want to include in you kernel.

7—-4 Digital UNIX STREAMS/Sockets Coexistence

Note

The STRIFNET and DLPI options are not available from this
menu. To include these options, you must edit the
configuration file, as shown in the following step.

6. Add DLPI and STRIFNET to the options section of the kernel
configuration file.

Enter y when the system asks whether you want to edit the kernel
configuration file. The doconfi g command alows you to edit the
configuration file with the ed editor. For information about using the ed
editor, see ed(2).

The following ed editing session shows how to add the DLPI and
STRIFNET options to the kernel configuration file for host 1. Note that
the number of the line after which you append the new lines can differ
between kernel configuration files:

Do you want to edit the configuration file? (y/n) [n]: vy
Using ed to edit the configuration file. Press return when

ready, or type 'quit’ to skip the editing session:
2153

48a
options DLPI
options STRI FNET

i, $w
2185
q

*** PERFORM NG KERNEL BUI LD ***
7. After the new kernel is built, you must move it from the directory where
doconfi g placesit to the root directory (/) and reboot your system.

When you reboot, the st r set up —i command runs automatically, and
creates the device specia files for any new STREAMS modules.

8. Runthestrsetup —c command to verify that the device is configured
properly.

Digital UNIX STREAMS/Sockets Coexistence 7-5

The following example shows the output from the st r set up —c
command:

lusr/sbin/strsetup —c
STREAMS Configuration Infornation...Thu Nov 9 08:38:17 1995

Nane Type Maj or Mbdule ID

cl one 32 0

dl b devi ce 52 5010

dl pi devi ce 53 800

ki nfo devi ce 54 5020

| og devi ce 55 44

nul s devi ce 56 5001
echo devi ce 57 5000

sad devi ce 58 45

pi pe devi ce 59 5304

xt i soUDP devi ce 60 5010
xti soTCP devi ce 61 5010
xt i soUDP+ devi ce 62 5010
xti soTCP+ devi ce 63 5010
ptm devi ce 64 7609

pts devi ce 6 7608

bba devi ce 65 24880

| at devi ce 5 5

pppi f nmodul e 6002
pppasync nmodul e 6000
pppconp nodul e 6001
buf cal | nodul e 0
i fnet nodul e 5501
nul | nodul e 5002
pass nmodul e 5003
errm nodul e 5003
ptem nodul e 5003
spass nodul e 5007
rspass nmodul e 5008
pi penod nodul e 5303
tinmod nodul e 5006
tirdw nodul e 0
ldtty nodul e 7701

Configured devices = 16, nmpdul es = 15

For more detailed information on reconfiguring your kernel or the
doconf i g command see the System Administration manual and the
doconf i g(8) reference page.

To set up STREAMS for the driver you must do the following:

7-6 Digital UNIX STREAMS/Sockets Coexistence

1. Write an application program similar to the following:

/*
* Application programto set up the "pifnet" streans for |IP
* and ARP. This nust be run prior to ifconfig
*/

#i ncl ude <stdio. h>

#i ncl ude <fcntl. h>

#i ncl ude <errno. h>

#i ncl ude <stropts. h>

#i ncl ude <sys/ioctl.h>

#i ncl ude <signal . h>

#i ncl ude "dl pi hdr. h"

#define | P_PROTOCOL 0x800
#defi ne ARP_PROTOCCL 0x806
#define PIFNET_| OCTL_UNIT 1236

mai n(argc, argv)
int argc;
char *argv[];

extern char *getenv();
char *p;

short unit = 0;

char devNane[256] ;

if (argc !'= 3) usage();
strcpy(devNane, argv[1]);
unit = atoi(argv[2]);

si gi gnor e(Sl GHUP) ;
setupStrean(devNane, unit, |P_PROTOCOL);
set upStrean(devNane, unit, ARP_PROTOCQOL);

/*
* sleep forever to keep the Streans alive.
*/
if (fork()) [/* detach */
exit();
pause();

}
usage()

fprintf(stderr, "usage: pifnetd devname unit-nunberO0);
exit(1);
}

setupStrean(devNanme, unit, serviced ass)
char *devNane;
short wunit;
u_l ong serviced ass;
{
int fd, status;
dl _bind_reqg_t bindreq;
dl _bi nd_ack_t bi ndack;
int flags;
struct strioctl str;
struct strbuf pstrbufctl, pstrbufdata, gstrbufctl, \
gstrbuf dat a;

Digital UNIX STREAMS/Sockets Coexistence 7-7

char ebuf[256];

/*
* build the stream
*/
fd = open(devNane, O RDWR, O0);
if (fd <0)
{
sprintf(ebuf, " open '%’' failed", devNane);
perror (ebuf);
exit(1);
L .
if (ioctl(fd, |I_PUSH "ifnet") < 0)
{
sprintf(ebuf, " ioctl |I_PUSH failed");
perror (ebuf);
exit(1);
}
/*
* tell pifnet the unit nunber for the device
*/

str.ic_cnd = PIFNET_I OCTL_UNIT;
str.ic_tinout = 15;

str.ic_len = sizeof (short);
str.ic_dp = (char *) &unit;
status = ioctl(fd, |_STR &str);
if (status < 0)

{
sprintf(ebuf, " % - ioctl");
perror (ebuf);
exit(1);

}

/*

* bind the streamto a protocol

*/

bindreq.dl _primtive = DL_BI ND_REQ

bi ndreq. dl _sap = servi ced ass;

bi ndreq. dl _max_coni nd = 0;

bi ndreq. dl _service_npbde = DL_CLDLS;

bi ndreq. dl _conn_nmgnt = O;

bi ndreq. dl _xidtest _flg = 0;
pstrbufctl.len = sizeof (dl _bind_req_t);
pstrbufctl.buf = (void *)&bindreq;

pst r buf dat a. buf (char *)O0;
pstrbufdata.l en -1;
pstrbufdata. maxl en = 0;

status = putnsg(fd, &pstrbufctl, (struct strbuf *)0, 0);
if (status < 0)

{
perror (" putnsg");
exit(1);
}
/*
* Check requested binding
*/

7-8 Digital UNIX STREAMS/Sockets Coexistence

gstrbufctl.buf = (char *)&bi ndack
gstrbufctl. maxl en = sizeof (dl _bi nd_ack_t)
gstrbufctl.len =0
status = getnsg(fd, &gstrbufctl, (struct strbuf *)0, &flags)
if (status < 0)
{
perror("getnsg")
exit(1)
}
if (bindack.dl _primtive != DL_BI ND_ACK)

{
errno = EPROTG,

perror (" DL_BI ND_ACK")
exit(1)

In this sample application the driver’snameis/ dev/ st reans/ | n.
The application creates two Streams; one for the Internet Protocol (IP)
and one for the Address Resolution Protocol (ARP). After setting up the
Streams, the application must keep running, using the pause command,
in order to keep the Streams alive.

Note that, if the driver is a style-2 driver, you must add a
DL_ATTACH_REQ to the application program. For more information
about the DL_ ATTACH_REQ primitive or style-2 drivers, see the DLPI
specification in/ usr/ shar e/ docl i b/ dl pi / dl pi . ps.

2. Generate an executable file for the application. Compile, link, and debug
the program until it runs without errors.

3. Move the executable into a directory that is convenient for you.
The executable can be located in any directory.
4. Add aline invoking the program to the/ sbi n/i ni t. d/i net file.

Although you can manually start the program each time you reboot, it is
easiest to add alineto the/ sbin/init.d/inet filetorunit
automatically when the system reboots. Be sure to add the line before the
system’si f confi g lines.

In the following example, each time the system reboots, the
/sbin/init.d/inet filerunsaprogram calledrun_i f net, which
residesin the/ et c directory:

#

Enabl e network

#

case $1 in
echo " Configuring network"
/ sbi n/ host name $HOSTNAME
echo "hostnane: \c"

Digital UNIX STREAMS/Sockets Coexistence 7-9

/ sbi n/ host nane
if ["SNETDEV.O" != "']; then
echo >/tnp/ifconfig_"$NETDEV_0".tnp
place command invoki ng executabl e BEFORE \fP
ifconfig lines
[etc/run_ifnet
/sbin/ifconfig $NETDEV_O $I FCONFIG 0 > \
/tmp/ifconfig_"$NETDEV_0".tnmp 2>&1
if [$2!=01; then
ERROR='cat /tnp/ifconfig_"$NETDEV_0".tnp’
if ["$ERROR' = "$ERRSTRING']; then
/sbin/ifconfig $NETDEV_0 up
el se
echo "$0: $ERROR'
fi
fi
rm/tnp/ifconfig_"$NETDEV_0".tnp
fi

5. Reboot the system.

Usethe/ usr/ sbi n/ shut down —r command to shut down your
system and have it reboot automatically; for example:

[usr/sbin/ shutdown —-r now

7.1.1.2 Data Link Provider Interface Primitives

Note that the STREAMS device driver can be a style-1 or astyle-2 DLPI
provider, as described in the Data Link Provider Interface specification,
which islocated in/ usr/ shar e/ docl i b/ dl pi / dl pi. ps. Note that
you must have the OSFPGMR400 subset installed to access the DLPI
specification on line.

The driver must support the following DLPI primitives. For detailed
information about these primitives and how to use them, see the DLPI
specification:

DL_PHYS ADDR REQ DL_PHYS_ ADDR_ACK

DL_BI ND_REQ DL_BI ND_ACK

DL_UNBI ND_REQ

DL_UNI TDATA REQ DL_UNI TDATA | NOY DL_UDERROR | ND

DL_OK_ACK/ DL_ERROR_ACK

7-10 Digital UNIX STREAMS/Sockets Coexistence

7.2 Bridging BSD Drivers to STREAMS Protocol Stacks

The dl b STREAMS pseudodevice driver allows you to bridge BSD-style
device drivers and STREAMS protocol stacks. The STREAMS
pseudodevice driver is the Stream end in a Stream wanting to communicate
with BSD-based drivers. The STREAMS pseudodevice driver provided by
Digital UNIX has two interfaces, a subset of the DLPI interface that
communicates with STREAMS protocol stacks and another interface that
accessesthei f net layer interface of the sockets framework.

Figure 7-2 highlights the dI b STREAMS pseudodriver and shows its place
in the network programming environment.

Figure 7-2: DLPI STREAMS Pseudodriver

STREAMS

Application

user space

kernel space
Stream head

pseudodriver

ifnet layer SLIP
driver

BSD driver

ZK-0562U-R

Digital UNIX STREAMS/Sockets Coexistence 7-11

7.2.1

1.2.2

Supported DLPI Primitives and Media Types

Thedl b STREAMS pseudodriver supports the following connectionless
mode primitive and media types. For detailed information about these
primitives and how to use them, see the Data Link Provider Interface
specification which isin/ usr/ shar e/ docl i b/ dl pi / dl pi . ps.

DL_ATTACH REQ DL_DETACH REQ DL_OK_ACK
DL_BI ND_REQ DL_BI ND_ACK/ DL_UNBI ND_REQ
DL_ENABMULTI REQ DL_DI SABLMULTI _REQ
DL_PROM SCON_REQ DL_PROM SCONOFF_REQ
DL_PHYS_ADDR_REQ DL_PHYS_ADDR ACK
DL_SET_PHYS_ADDR _REQ

DL_UNI TDATA REQ DL_UNI TDATA | ND
DL_SUBS_BI ND_REQ DL_SUBS_BI ND_ACK

DL_SUBS_UNBI ND_REQ DL_SUBS_UNBI ND_ACK

The Ethernet bus (DL_ETHER) is the media type supported by the
STREAMS pseudodriver.

Using the STREAMS Pseudodriver

To use the dl b STREAMS pseudodriver the DLPI option must be
configured into your kernel. The DLPI option may have been configured into
your system at installation time.

Y ou can check to see if the DLPI option is configured by issuing the
following command:

/usr/sbin/strsetup —c

If dl b appearsin the Name column, the option is configured in you kernel.
If not, you must add it using the doconf i g command.

For a description of how to reconfigure your kernel with the doconfi g
command, see Section 7.1.1.1.

For more information on reconfiguring your kernel or the doconfi g
command see the System Administration manual and the doconf i g(8)
reference page. For information on configuring options during installation,
see the Installation Guide.

7-12 Digital UNIX STREAMS/Sockets Coexistence

Sample STREAMS Module A

The spass module is asimple STREAMS module that passes all messages
put to it to the put next () procedure. The spass module delays the call
to put next () for the service procedure to handle. It has flow control code
built in, and both the read and write sides share a service procedure.

The following is the code for the spass module:

#i ncl ude <sys/stream h>
#i ncl ude <sys/stropts. h>
#i ncl ude <sys/sysconfig. h>

static int spass_cl ose();
static int spass_open();
static int spass_rput ();
static int spass_srv();
static int spass_wput () ;
static struct nodule_info minfo = {
0, "spass", 0, |INFPSz, 2048, 128
H

static struct qginit rinit = {
spass_rput, spass_srv, spass_open, spass_close, NULL, &mi nfo
H

static struct qginit winit = {
spass_wput, spass_srv, NULL, NULL, NULL, &mi nfo

H
struct streantab spassinfo = { &init, &init };
cfg_subsys_attr_t bufcall_attributes[] = {
{'", o, o, 0, 0, 0, O} /* must be the | ast el ement */
H
int
spass_configure(op, indata, indata_size, outdata, outdata_size)
cfg_op_t op;
caddr _t i ndat a;
ul ong i ndat a_si ze;
caddr _t out dat a;
ul ong out dat a_si ze;
{
struct streamadm sa;
dev_t devno = NODEV;

if (op != CFG_OP_CONFI GURE)
return ElI NVAL;

sa. sa_version
sa.sa_fl ags

OSF_STREAMS_10;
STR IS MODULE | STR_SYSV4_OPEN;

sa.sa_ttys 0;

sa. sa_sync_| evel SQLVL_QUEUE;
sa.sa_sync_info 0;
strcpy(sa. sa_nane, "spass");

if ((devno = strnod_add(devno, &spassinfo, &sa)) == NODEV) {
return ENCDEV;
}

return O;

}

/* Called when nmodul e i s popped or the Streamis closed */
static int
spass_cl ose (g, credp)

queue_t * q;

cred_t * credp;

{

}

/* Call ed when nodul e i s pushed */

static int

spass_open (g, devp, flag, sflag, credp)
queue_t * q;

return O;

int * devp;
int flag;
int sfl ag;
cred_t * credp;
{
return O;
}
/*

* Called to process a nessage coming upstream All nessages
* but flow control nessages are put on the read side service
* queue for |ater processing.
*/
static int
spass_rput (g, np)

queue_t * q;

mblk_t * np;
{
switch (np->b_datap->db_type) {
case M FLUSH:
if (*np->b_rptr & FLUSHR)
flushq(q, 0);
putnext (q, np);
br eak;
defaul t:
putqg(ag, np);
br eak;
return O;
}
/*

* Shared by both read and wite sides to process nessages put
* on the read or wite service queues. Wen called fromthe

A-2 Sample STREAMS Module

* wite side, sends all nessages on the wite side queue

* downstreamuntil flow control kicks in or all nessages are

* processed. When called fromthe read side sends all nessages
* on its read side service queue upstreans until flow control

* kicks in or all messages are processed.

*/

static int

spass_srv (Q)
queue_t * q;

{
mbl k_t * nm;
while (mp = getq(q)) {
if (!canput(g->q_next))
return putbqg(q, np);
put next (q, np);
}
return O;
}
/*

* Called to process a nessage com ng downstream Al nessages but
* flow control nessages are put on the wite side service queue for
* |ater processing.
*/
static int
spass_wput (g, np)

queue_t * q;

mbl k_t * np;
{
switch (np->b_datap->db_type) {
case M FLUSH:
if (*np->b_rptr & FLUSHW
flushq(q, 0);
putnext (g, np);
br eak;
defaul t:
putq(g, np);
br eak;
return O;
}

Sample STREAMS Module A-3

Socket and XTI Programming
Examples B

This appendix contains annotated files for a sample server/client! credit card
authorization program. Clients access a server on the merchant’ s behalf and
reguest authorization from the server to put a charge on the client’s credit
card. The server maintains a database of authorized merchants and their
passwords, as well as a database of credit card customers, their credit limit,
and current balance. It either authorizes or rejects a client request based on
the information in its database.

Several variations on the credit card authorization program are presented,
including connection-oriented and connectionless modes. The connection-
oriented and connectionless modes each contain socket and XTI code for the
server and client portions of the program.

Although the program uses network programming in area world application,
it has the following limitations:

e Error handling is not robust
» Accepts only integer amounts
e Performs no child process clean up

* In the case of the connection-oriented protocol examplesin Section B.1,
for each request received, the server program forks a child process to
handle the request. The database information is "detached" in the child
process' private data area. When the child process analyzes the request
and reduces the customer’s credit balance appropriately, it needs to
update this information in the original server’s data area (and on some
persistent storage as well) so that the next request for the same customer
is handled correctly. To avoid unnecessary complexity, this logic is not
included in the program.

The information is organized as follows:
» Connection-oriented mode programs
— Socket

1 The term cl i ent in this appendix refers to the program initiated by the merchant which interacts
with the server program.

B.1

B.1.1

* Server

* Client
— XTI

* Server

* Client

» Connectionless mode programs

— Socket

* Server

* Client
— XTI

* Server

* Client

e Common files

Y ou can obtain copies of these example programs from
[usr/ exanpl es/ net wor k_pr ogr anm ng.

Connection-Oriented Programs

This section contains sockets and XTI variations of the same server and
client programs, written for connection-oriented modes communication.

Socket Server Program
Example B-1 implements a server using the socket interface.

Example B-1: Connection-Oriented Socket Server Program

~

E S S

This file contains the main socket server code
for a connection-oriented node of conmunication.

Usage: socket server
/
#i ncl ude "server.h"

char *parse(char *);
struct transaction *verifycustoner(char *, int, char *);

mai n(i nt argc, char *argv[])

B—2 Socket and XTI Programming Examples

Example B-1: (continued)

{
int sockf d;
int newsockf d;
struct sockaddr_in server addr;
struct sockaddr _in clientaddr;
int clientaddrlen = sizeof(clientaddr);
struct hostent *he;
int pi d;

signal (SIGCHLD, SIG IGN);
if ((sockfd = socket(AF_I NET, SOCK_STREAM 0)) < 0) 1

perror("socket _create");
exit(1);

bzero((char *) &serveraddr,
si zeof (struct sockaddr_in)); 2

serveraddr.sin_famly = AF_I| NET;

serveraddr. sin_addr.s_addr = htonl (1 NADDR_ANY) ; 3
serveraddr. sin_port = ht ons(SERVER _PORT) ; 4
if (bind(sockfd, 5

(struct sockaddr *)&serveraddr,
si zeof (struct sockaddr_in)) < 0) {
perror ("socket _bind");

exit(2);
}
listen(sockfd, 8); 6
while(1) {

if ((newsockfd =
accept (sockfd, 7
(struct sockaddr *) &clientaddr,
&clientaddrlen)) < 0) {
if (errno == EINTR) {
printf("Bye...\n");

exit(0);
} else {
perror("socket _accept");
exit(3);
}
}
pid = fork();

switch(pid) {

Socket and XTI Programming Examples B—3

Example B-1: (continued)

case -1: /* error */
perror("dosession_fork");
br eak;

def aul t:
cl ose(newsockf d) ;
br eak;

case O: [* child */

cl ose(sockfd);
transacti ons(newsockfd);

cl ose(newsockfd);

return(0);
}
}
}
transactions(int fd)
{
int byt es;
char *reply;
int dcount;
char dat api pe[MAXBUFSI ZE+1] ;
/*
* Look at the data buffer and parse commands,
* keep track of the collected data through
* transaction_status.
*
*/
while (1) {
if ((dcount=recv(fd, datapipe, MAXBUFSI ZE))
<0 {
perror("transacti ons_receive");
br eak;
}
if (dcount == 0) {
return(0);
}
dat api pe[dcount] = "\0’;
if ((reply=parse(datapipe)) != NULL) {
send(fd, reply, strlen(reply), 0);
}
}
}

B-4 Socket and XTI Programming Examples

1 Create a socket with the socket call.

AF_INET specifies the Internet communication domain. Alternatively, if
OSlI transport were supported, a corresponding constant such as AF_OS|
would be required here. The socket type SOCK_STREAM s specified
for TCP or connection-oriented communication. This parameter indicates
that the socket is connection-oriented.

Contrast the socket call withthet _open call inthe XTI server
example (Section B.1.3).

2 Theserveraddr isof typesockaddr _i n, which is dictated by the
communication domain of the socket (AF_INET). The socket address for
the Internet communication domain contains an Internet address and a
16-bit port number, which uniquely identifies an entity on the network.
For the TCP/IP and UDP/IP this is the Internet address of the server and
the port number on which it is listening.

Note that the information contained in the sockaddr _i n structureis
dependent on the address family, which is AF_INET in this example. If
AF_OSl were used instead of AF_INET, then sockaddr _osi would
be required for the bi nd call instead of sockaddr _i n.

3 INADDRANY signifies any attached interface adapter on the system. All
numbers must be converted to the network format using appropriate
macros. See the following reference pages for more information:
ht onl (3), ht ons(3), nt ohl (3), and nt ohs(3).

4 SERVER_PORT is defined in the cormon. h header file. It is ashort
integer, which helps identify the server process from other application
processes. Numbers from O to 1024 are reserved.

5 Bind the server’s address to this socket with the bi nd call. The
combination of the address and port number identify it uniquely on the
network.

6 Specify the number of pending connections the server can queue while it
finishes processing the previous accept call. This value governs the
success rate of connections while the server processes accept cals.
Use alarger number to obtain a better success rate if multiple clients are
sending the server connect requests. The operating system imposes a
ceiling on this value.

7 Accept connections on this socket. For each connection, the server forks
a child process to handle the session to completion. The server then
resumes listening for new connection requests. Thisis an example of a
concurrent server. You can also have an iterative server, meaning that the
server handles the data itself. See Section B.2 for an example of iterative
servers.

Socket and XTI Programming Examples B-5

8 Each incoming message packet is accepted and passed to the par se
function, which tracks the information provided, such as the merchant’s
login ID, password, and customer’s credit card number. This processis
repeated until the par se function identifies a complete transaction and
returns a response packet, to be sent to the client program.

The client program can send information packets in any order (and in one
or more packets), so the par se function is designed to remember state
information sufficient to deal with this unstructured message stream.

Since the program uses a connection-oriented protocol for data transfer,
this function uses send and r ecv to send and receive messages,
respectively.

9 Receive datawith ther ecv cal.
10 Send data with the send call.

B.1.2 Socket Client Program

Example B-2 implements a client program that can communicate with the
socket ser ver interface shown in Example B-1.

Example B-2: Connection-Oriented Socket Client Program
/
Thi s generates the client program

usage: socketclient [serverhostnane]

If a host name is not specified, the |ocal
host is assuned.

* 0% X X X X X X X *

#include "client.h"

nmai n(int argc, char *argv[])

{
int sockf d;
struct sockaddr_in server addr;
struct hostent *he;
int n;
char *serverhost = "l ocal host";
struct hostent *server host p;
char buf fer[1024];
char i nbuf [1024];

if (argc>1) {

B—6 Socket and XTI Programming Examples

Example B-2: (continued)
serverhost = argv[1];

}

init();

if ((sockfd = socket (AF_I NET, SOCK STREAM 0)) < 0) 1
{ perror("socket _create");

} exit(1);

bzero((char *) &serveraddr,

si zeof (struct sockaddr_in)); 2
serveraddr.sin_famly = AF_I| NET;
if ((serverhostp = gethostbynane(serverhost)) == 3
(struct hostent *)NULL) {
fprintf(stderr, "gethostbyname on % failed\n",
serverhost);
exit(1);
}
bcopy(serverhost p- >h_addr,
(char *)&(serveraddr.sin_addr.s_addr),
server host p->h_| engt h) ;
serveraddr. sin_port = ht ons(SERVER_PORT) ; 4
/* Now connect to the server */
if (connect(sockfd, &serveraddr, sizeof(serveraddr)) 5
< 0) {
perror ("connect");
exit(2);
}
while(1) {

/* Merchant record */
sprintf(buffer, "%8RYGH#YPYSHHE",
nmer chant nane, password);

printf("\n\nSwi pe card, enter anount: ");
fflush(stdout);
if (scanf("%", inbuf) == EOF) ({
printf("bye...\n");
exit(0);
}
soundbyt es();

sprintf(buffer, "%%80a%sH##9008MNYSHE",
buffer, inbuf, sw pecard());

if (send(sockfd, buffer, strlen(buffer), 0) 6

Socket and XTI Programming Examples B—7

Example B-2: (continued)

<0) {
perror("send");
exit(1);
}

/* receive info */

if ((n =recv(sockfd, buffer, 1024)) < 0) { 7
perror("recv");
exit(1);

}
buffer[n] ="’'\0

if ((n=analyze(buffer))== 0) {
printf("transaction failure,”
'"'try again\n");
} else if (n<0) {
printf("login failed, try again\n");
init();

Create a socket with the socket call.

AF_INET is the socket type for the Internet communication domain.
Note that this parameter must match the protocol and type selected in the
corresponding server program.

Contrast the socket call withthet _open cal in the XTI client
example (Section B.1.4).

Theserver addr isof typesockaddr _i n, which is dictated by the
communication domain of the socket (AF_INET). The socket address for
the Internet communication domain contains an Internet address and a
16-bit port number, which uniquely identifies an entity on the network.
For the TCP/IP protocol suite, thisis the Internet address of the server
and the port number on which it is listening.

Note that the information contained in the sockaddr _i n structureis
dependent on the address family (or the protocol).

Getting information about the server depends on the protocol or the
address family. To get the |P address of the server, you can use the
get host bynarne routine.

SERVER PORT is defined in the conmron. h header file. It is
imperative that the same port number be used to connect to the socket
server program. The server and client select the port number, which
functions as a well known address for communication.

B-8 Socket and XTI Programming Examples

5 Clientissuesaconnect cal to connect to the server. When the
connect call isused with a connection-oriented protocol, it allows the
client to build a connection with the server before sending data. Thisis
analogous to dialing a phone number.

Send data with the send call.
Receive data with ther ecv call.

B.1.3 XTI Server Program

Example B-3 implements a server using the XTI library for network
communication. It is an alternative design for a communication program that
makes it transport independent. Compare this program with the socket server
program in Section B.1.1. This program has the same limitations described
at the beginning of the appendix.

Example B-3: Connection-Oriented XTI Server Program

/*

*

*

* This file contains the main XTI server code

* for a connection-oriented node of conmunication.
*

* Usage: xtiserver

*

*/

#i ncl ude "server.h"

char *parse(char *);

struct transaction *verifycustoner(char *, int, char *);

nmai n(int argc, char *argv[])

{
int xtifd;
int newxt i f d;
struct sockaddr_in server addr;
struct hostent *he;
int pi d;
struct t_bind *bi ndr eqp;
struct t_bind *bi ndr et p;

signal (SIGCHLD, SIG IGN);

if ((xtifd = t_open("/dev/streans/xtiso/tcp", ORDWR, 1
NULL)) < 0) {
xerror("xti_open", xtifd);
exit(1);

Socket and XTI Programming Examples B—9

Example B-3: (continued)

}

bzero((char *) &serveraddr, sizeof(struct sockaddr_in));
serveraddr.sin_famly = AF_| NET; 2
serveraddr. sin_addr.s_addr = htonl (1 NADDR_ANY) ; 3
serveraddr. sin_port = ht ons(SERVER_PORT) ; 4

/* allocate structures for the t_bind call */
if (((bindregp=(struct t_bind *)
t_alloc(xtifd, T_BIND_STR, T_ALL))
== NULL) ||
((bindretp=(struct t_bind *)
t_alloc(xtifd, T_BIND_STR, T_ALL))
== NULL)) {
xerror("xti_alloc", xtifd);
exit(3);

bi ndr eqp- >addr . buf
bi ndr eqp- >addr. | en

(char *)&serveraddr;
si zeof (serveraddr);

/*
* Speci fy how many pendi ng connections can be

* maintained, until finish accept processing
*

*/
bi ndr eqp- >ql en = §; 5
if (t_bind(xtifd, bindreqp, (struct t_bind *)NULL) 6
< 0) {
xerror("xti_bind", xtifd);
exit(4);
}
/*
* Now the socket is ready to accept connections.
* For each connection, fork a child process in charge
* of the session, and then resune accepting connections.
*
*/
while(l) {

struct t_call call;

if (t_listen(xtifd, &call) < 0) { 7
if (errno == EINTR) {
printf("Bye...\n");
exit(0);
} else {
xerror("t_listen", xtifd);

B—10 Socket and XTI Programming Examples

Example B-3: (continued)

exit(4);
}
}

/*

* Create a new transport endpoi nt on which

* to accept a connection

*

*/

if ((newxtifd=t_open("/dev/streans/xtiso/tcp", 8

O RDWR, NULL)) < 0) {

xerror("xti_newopen", xtifd);
exit(5);

}

if (t_bind(newxtifd, 9
(struct t_bind *)NULL,
(struct t_bind *)NULL) < 0) {
xerror ("xti_newbind", xtifd);
exit(6);

/* accept connection */

if (t_accept(xtifd, newxtifd, &call) < 0) { 10
xerror("xti_accept", xtifd);
exit(7);

}
pid = fork();

switch(pid) {

case -1: /* error */
xerror("dosession_fork", xtifd);
br eak;

defaul t:
t _cl ose(newxtifd);
br eak;

case O: [* child */

t_close(xtifd);
transacti ons(newxtifd);

t_cl ose(newxtifd);

return(0);
}
}
}
transactions(int fd) 11
{ int byt es;

Socket and XTI Programming Examples B—11

Example B-3: (continued)

char *reply;
int dcount;
int fl ags;

char dat api pe[MAXBUFSI ZE+1] ;

/
Look at the data buffer and parse commands, if nore data
required go get it

Since the protocol is SOCK STREAM ori ented, no data
boundaries will be preserved.

* F X X *

*

*/
while (1) {
if ((dcount=t_rcv(fd, datapipe, MAXBUFSI ZE, 12
& lags)) < 0){
/* if disconnected bid a goodbye */
if (t_errno == TLOOK) {
int tnp =t_look(fd);
if (tnp !'= T_DI SCONNECT) {
t _scope(tmp);
} else {
exit(0);
}
}
xerror("transactions_receive", fd);
br eak;
}
if (dcount == 0) {
/* consolidate all transactions */
return(0);
}
dat api pe[dcount] =" ";
if ((reply=parse(datapipe)) != NULL) {
if (t_snd(fd, reply, strlen(reply), 0) 13
< 0) {
xerror("xti_send", fd);
br eak;
}
}
}

}

1 Thet open call specifies adevice specia file name; for example
[dev/ streans/ xti so/tcp. Thisfile name provides the necessary
abstraction for the TCP transport protocol over IP. Unlike the socket
interface, where you specify the address family (for example, AF_INET),
this information is aready represented in the choice of the device specia
file. The/ dev/ streans/ xtiso/tcp fileimplies both TCP transport
and IP. See the Chapter 5 for information about STREAMS devices.

B-12 Socket and XTI Programming Examples

10
11

As mentioned in Section B.1.1, if the OSI transport were available you
would use adevice such as/ dev/ st r eans/ xt i so/ cot s.

Contrast thet _open call with the socket call in Section B.1.1.

Selection of the address depends on the choice of the transport protocol.
Note that in the socket example the address family was the same as used
inthe socket system call. With XTI, the choice is not obvious and you
must know the appropriate mapping from the transport protocol to
sockaddr. See Chapter 3 for more information.

INADDRANY signifies any attached interface adapter on the system. All
numbers must be converted to the network format using appropriate
macros. See the following reference pages for more information:

ht onl (3), ht ons(3), nt ohl (3), nt ohs(3).

SERVER_PORT is defined in the cormon. h header file. It has a data
type of short i nteger which helpsidentify the server process from
other application processes. Numbers from 0 to 1024 are reserved.

Specify the number of pending connections the server can queue while it
processes the last request.

Bind the server’'s address with thet _bi nd call. The combination of the
address and port number uniquely identify it on the network. After the
server process address is bound, the server process is registered on the
system and can be identified by the lower level kernel functions to which
to direct any requests.

Listen for connection requests with thet _| i st en function.

Create a new transport endpoint with another call to thet _open
function.

Bind the server’'s address with thet _bi nd call. The combination of the
address and port number identify it uniquely on the network.

Bind to the new transport endpoint with thet _bi nd function.
Accept the connection request with thet _accept function.

Each incoming message packet is accepted and passed to the par se
function, which tracks the information provided (such as the merchant’s
login ID, password, and customer’s credit card number). This processis
repeated until the par se function identifies a complete transaction and
returns a response packet, to be sent to the client program.

The client program can send information packets in any order (and in one
or more packets), so the par se function is designed to remember state
information sufficient to deal with this unstructured message stream.

Since the program uses a connection-oriented protocol for data transfer,
this function usest _snd andt _r cv to send and receive data,
respectively.

Socket and XTI Programming Examples B—13

12 Receive data with thet _r cv function.
13 Send data with thet _snd function.

B.1.4 XTI Client Program

Example B-4 This sample program implements a client program that can
communicate with the xt i ser ver interface shown in Section B.1.3.
Compare this program with the socket client program in Example B-3.

Example B-4: Connection-Oriented XTI Client Program
/

This file contains the main XTI client code
for a connection-oriented node of conmunication.

Usage: xticlient [serverhostnane]

If a host nanme is not specified, the |ocal
host is assuned.

EE I S T T I T

/
#include "client.h"

nmai n(int argc, char *argv[])

{
int xtifd;
struct sockaddr_in server addr;
struct sockaddr_in clientaddr;
struct hostent *he;
int n;
char *serverhost = "l ocal host";
struct hostent *server host p;
char buf fer[1024];
char i nbuf [1024] ;
struct t_call sndcal | ;
struct t_call rcvcal | ;
int flags = 0;

if (argc>1) {
serverhost = argv[1];
}

init();
if ((xtifd = t_open("/dev/streans/xtiso/tcp", ORDUR 1
NULL)) < 0) {

xerror("xti_open", xtifd);
exit(1);

B—14 Socket and XTI Programming Examples

Example B-4: (continued)

}
bzero((char *) &serveraddr, 2
si zeof (struct sockaddr_in));
serveraddr.sin_famly = AF_I| NET,; 3
if ((serverhostp = gethostbynane(serverhost)) == 4
(struct hostent *)NULL) ({
fprintf(stderr, "gethostbynane on % failed\n",
serverhost);

exit(1);

}

bcopy(serverhost p- >h_addr
(char *)&(serveraddr.sin_addr.s_addr),
server host p->h_l engt h) ;
serveraddr. sin_port = ht ons(SERVER_PORT) ; 5

if (t_bind(xtifd, (struct t_bind *)NULL, 6
(struct t_bind *)NULL) < 0) {
xerror("bind", xtifd);

exit(2);
}
sndcal | . opt . naxl en 0;
sndcal | . udat a. max| en 0;

(Ehar *) &server addr;
si zeof (serveraddr);

sndcal | . addr . buf
sndcal | . addr. | en

rcvcal | . opt. maxl en
rcvcal | . udat a. max| en
rcvcal | . addr. buf
rcvcal | . addr. max| en

0;

0;

(char *)&clientaddr;
si zeof (clientaddr);

if (t_connect(xtifd, &sndcall, 7
(struct t_call *)NULL) < 0) {
xerror ("t_connect", xtifd);
exit(3);

while(1) {
/* Merchant record */
sprintf(buffer, "%Q086m6H##YO0DYSHH"
mer chant name, password);

printf("\'n\nSwi pe card, enter anount: ");
fflush(stdout);
if (scanf("%", inbuf) == EOF) {
printf("bye...\n");
exit(0);

}
soundbyt es();

Socket and XTI Programming Examples B—-15

Example B-4: (continued)

}

sprintf(buffer, "%%A0a%sH##%000NYsHA",
buf fer, inbuf, sw pecard());

if (t_snd(xtifd, buffer, strlen(buffer), O0) 8
< 0) {
xerror("t_snd", xtifd);
exit(1);
}

if ((n=t_rcv(xtifd, buffer, 1024, &flags)) 9
< 0) {
xerror("t_rcv", xtifd);
exit(1);
}

buffer[n] ='\0";

if ((n=analyze(buffer))==0) {
printf("transaction failure,"
''try again\n");
} else if (n<0) {
printf("login failed, try again\n");
init();

1 AF_INET isthe socket type for the Internet communication domain. |If

AF_OSI were supported, it could be used to create a socket for OSI
communications. The socket type SOCK_STREAM is specified for TCP
or connection-oriented communication.

Thet open call specifies a specia device file name instead of the
socket address family, socket type, and protocol that the socket call
requires.

Contrast the socket call in Section B.1.2 with thet _open call.

Theser ver addr isof typesockaddr _i n, which is dictated by the
communication domain of the socket (AF_INET). The socket address for
the Internet communication domain contains an Internet address and a
16-bit port number, which uniquely identifies an entity on the network.
For the TCP/IP protocol suite, which includes UDP, this is the Internet
address of the server and the port number on which it is listening.

Note that the information contained in the sockaddr _i n structureis
dependent on the address family (or the protocol).

AF_INET specifies the Internet communication domain. If AF_OSI were
supported, it could be used to create a socket for OSI communications.

B-16 Socket and XTI Programming Examples

4 Obtaining information about the server depends on the protocol or the
address family. To get the IP address of the server, you can use the
get host bynarne routine.

5 SERVER_PORT is defined in the <conmon. h> header file. Itis
imperative that the same port number be used to connect to the XTI
server program. Numbers from O through 1024 are reserved.

6 Bind the server address with thet _bi nd function to enable the client to
start sending and receiving data.

Initiate a connection with the server using thet _connect function.
Send data with thet _snd function.
Receive data with thet _r cv function.

B.2 Connectionless Programs

This section contains sockets and XTI variations of the same server and
client programs, written for connectionless modes of communication.

B.2.1 Socket Server Program

Example B-5 implements the server portion of the application in a manner
similar to the socket server described in Section B.1.1. Instead of using a
connection-oriented paradigm, this program uses a connectionless
(datagram/UDP) paradigm for communicating with client programs. This
program has the limitations described at the beginning of the appendix.

Example B-5: Connectionless Socket Server Program

/*

*

* This file contains the main socket server code
* for a connectionless node of conmuni cation.

*

* Usage: socket server DG

*
*/
#i ncl ude "server.h"

char *parse(char *);
struct transaction *verifycustoner(char *, int, char *);

nmai n(int argc, char *argv[])

{

int sockf d;

int newsockf d;

struct sockaddr_in server addr;

i nt serveraddrl en = sizeof (serveraddr);

Socket and XTI Programming Examples B—17

Example B-5: (continued)

struct sockaddr_in clientaddr;

i nt clientaddrl en = sizeof(clientaddr);
struct hostent *he;

int pi d;

signal (SIGCHLD, SIG IG\);

/* Create a socket for the communications */

if ((sockfd = socket(AF_I NET, SOCK_DGRAM 0)) 1
<0) {
perror("socket _create");
exit(1);
}
bzero((char *) &serveraddr, 2

si zeof (struct sockaddr_in));
serveraddr.sin_famly AF_| NET;
serveraddr. si n_addr.s_addr ht onl (1 NADDR_ANY) ; 3

serveraddr. sin_port ht ons(SERVER_PORT) ; 4
if (bind(sockfd, 5
(struct sockaddr *)&serveraddr,
si zeof (struct sockaddr_in)) < 0) {
perror ("socket _bind");
exit(2);
}
transacti ons(sockfd);
}
transactions(int fd) 6
{
int byt es;
char *reply;
int dcount;
char dat api pe[MAXBUFSI ZE+1] ;
struct sockaddr_in server addr;
i nt serveraddrl en = sizeof (serveraddr);

bzero((char *) &serveraddr, sizeof(struct sockaddr_in));
serveraddr.sin_famly AF_| NET;

serveraddr. si n_addr.s_addr ht onl (1 NADDR_ANY) ;
serveraddr. sin_port ht ons(SERVER_PORT) ;

/*
Look at the data buffer and parse commands.
* Keep track of the collected data through

B-18 Socket and XTI Programming Examples

Example B-5: (continued)

* transaction_status.
*

*/
while (1) {
if ((dcount=recvfrom(fd, datapipe, 7
MAXBUFSI ZE, O,
(struct sockaddr *)&serveraddr,
&serveraddrlen)) < 0){
perror("transacti ons_receive");
br eak;

}

if (dcount == 0) {
return(0);

}

dat api pe[dcount] = "\0’;

if ((reply=parse(datapipe)) != NULL) {
if (sendto(fd, reply, strien(reply), 8
0,
(struct sockaddr *)&serveraddr,
serveraddrlen) < 0) {
perror("transactions_sendto");

}

1 Create a socket with the socket call.

AF_INET specifies the Internet communication domain. The socket type
SOCK_DGRAM is specified for UDP or connectionless communication.
This parameter indicates that the program is connectionless.

Contrast the socket call withthet open cal inthe XTI server
example (Section B.2.3).

2 Theserveraddr isof typesockaddr _i n, whichis dictated by the
communication domain of the socket (AF_INET). The socket address for
the Internet communication domain contains an Internet address and a
16-bit port number, which uniquely identifies an entity on the network.
For the TCP/IP protocol suite, which includes UDP, this is the Internet
address of the server and the port number on which it is listening.

The information contained in the sockaddr _i n structure is dependent
on the address family, which is AF_INET in this example. If AF_OS
were used instead of AF_INET, then sockaddr _osi would be required
for the bi nd call instead of sockaddr _i n.

3 INADDRANY signifies any attached interface adapter on the system. All
numbers must be converted to the network format using appropriate

Socket and XTI Programming Examples B—19

B.2.2

macros. See the following reference pages for more information:
ht onl (3), ht ons(3), nt ohl (3), and nt ohs(3).

SERVER_PORT is defined in the <comrmon. h> header file. It hasa
datatype of short i nt eger which helps identify the server process
from other application processes.

Bind the server’s address to this socket with the bi nd call. The
combination of the address and port number identify it uniquely on the
network.

After the server process address is bound, the server process is registered
on the system and can be identified by the lower level kernel functions to
which to direct requests.

Each incoming message packet is accepted and passed to the par se
function, which tracks the information provided (such as the merchant’s
login ID, password, and customer’s credit card number). This processis
repeated until the par se function identifies a complete transaction and
returns a response packet, to be sent to the client program.

Since this program uses a connectionless (datagram) protocol, it uses
sendt o and r ecvf r omto send and receive data, respectively.

Receive data with ther ecvf r omcall.
Send data with the sendt o call.

Socket Client Program

Example B-6 implements a socket client that can communicate with the
socket server in Example B-5. Section B.2.1. It uses the socket interface in
the connectionless, or datagram, mode.

Example B-6: Connectionless Socket Client Program

/

* 0% X X X X X X X

*

*/

This file contains the main client socket code
for a connectionless node of conmunication.

usage: socketclientDG [serverhost nane]

If a host name is not specified, the |ocal
host is assuned.

#include "client.h"

nmai n(int argc, char *argv[])

{

int sockf d;

B—20 Socket and XTI Programming Examples

Example B-6: (continued)

struct sockaddr_in server addr;

int serveraddrl en;

struct hostent *he;

int n;

char *serverhost = "|ocal host";
struct hostent *server host p;

char buf fer[1024];

char i nbuf [1024] ;

if (argc>1) {
serverhost = argv[1];
}

init();
/* Create a socket for the communications */

if ((sockfd = socket (AF_I NET, SOCK_DGRAM 0)) < 0) 1
{

perror("socket _create");

exit(1);
}
bzero((char *) &serveraddr, 2
si zeof (struct sockaddr_in));
serveraddr.sin_famly = AF_I| NET;
if ((serverhostp = gethostbynane(serverhost)) == 3
(struct hostent *)NULL) {
fprintf(stderr, "gethostbyname on % failed\n",
serverhost);
exit(1);
}

bcopy(serverhost p- >h_addr,
(char *)&(serveraddr.sin_addr.s_addr),
server host p- >h_| engt h) ;

serveraddr. sin_port = ht ons(SERVER_PORT) ; 4

/* Now connect to the server
if (connect(sockfd, &serveraddr, 5
si zeof (serveraddr)) < 0) {
perror ("connect");

exit(2);
}
*/
while(l) {

/* Merchant record */
sprintf(buffer, "%R886YsH##YRBPYSHH",

Socket and XTI Programming Examples B—21

Example B-6: (continued)
nmer chant nane, password);
printf("\n\nSwi pe card, enter anount: ");
fflush(stdout);
if (scanf("%", inbuf) == EOF) ({
printf("bye...\n");
exit(0);

}
soundbytes();

sprintf(buffer, "%%80a%sH##%008MNYSHE",
buf fer, inbuf, sw pecard());

if (sendto(sockfd, buffer, strlen(buffer), 6

&:serveraddr, si zeof (serveraddr)) < 0) {
perror("sendto");

exit(1);
}
/* receive info */
if ((n =recvfron(sockfd, buffer, 1024, O, 7
&serveraddr, &serveraddrlen))
< 0) {
perror("recvfrom');
exit(1);

}
buffer[n] ='\0";

if ((n=analyze(buffer))== 0) {
printf("transaction failure,
"try again\n");
} else if (n<0) {
printf("login failed, try again\n");
init();

}

1 Create a socket with the socket call.

AF_INET specifies the Internet communication domain. If AF_OSI were
supported, it could be used to create a socket for OSI communications.
The socket type SOCK_DGRAM s specified for UDP or connectionless
communication.

Contrast the socket call withthet open cal in the XTI client
example (Section B.2.4).

2 Theserveraddr isof typesockaddr i n, whichis dictated by the
communication domain of the socket (AF_INET). The socket address for
the Internet communication domain contains an Internet address and a

B-22 Socket and XTI Programming Examples

B.2.3

16-bit port number, which uniquely identifies an entity on the network.
For the TCP/IP protocol suite, which includes UDP, this is the Internet
address of the server and the port number on which it is listening.

Note that the information contained in the sockaddr _i n structureis
dependent on the address family (or the protocol).

Getting information about the server depends on the protocol or the
address family. To get the IP address of the server, you can use the
get host bynarne routine.

SERVER_PORT is defined in the <common. h> header file. It is a short
integer, which helps identify the server process from other application
Processes.

Client issues aconnect call to connect to the server. When the
connect call is used with a connectionless protocol, it allows the client
to store the server’s address locally. This means that the client does not
have to specify the server’s address each time it sends a message.

Send data with the sendt o call.
Receive data with ther ecvf r omcall.

XTI Server Program

Example B-7 implements a server using the XTI library for network
communication. It is an alternative design for a communication program that
makes it transport independent. Compare this program with the socket server
program in Example B-5. This program has the limitations described at the
beginning of the appendix.

Example B-7: Connectionless XTI Server Program

/

* Ok Kk ok X

*

*/

This file contains the main XTI server code
for a connectionl ess node of conmuni cation.
Usage: xti server DG

#i ncl ude "server.h"

char *par se(char *);
struct transaction *verifycustoner(char *, int, char *);

mai n(int argc, char *argv[])

{

int xtifd;
int newxti f d;

Socket and XTI Programming Examples B—23

Example B-7: (continued)

struct sockaddr_in server addr;
struct hostent *he;

int pi d;

struct t_bind *bi ndr eqp;
struct t_bind *bi ndr et p;

signal (SIGCHLD, SIG IGN);

/* Create a transport endpoint for the communications

if ((xtifd =t _open("/dev/streans/xtiso/udp"”,
O RDVWR, NULL)) < 0) {
xerror("xti_open", xtifd);
exit(1);

bzero((char *) &serveraddr,

si zeof (struct sockaddr_in));
serveraddr.sin_famly AF_| NET;
serveraddr. si n_addr.s_addr ht onl (1 NADDR_ANY) ;
serveraddr. sin_port ht ons(SERVER_PORT)

/* allocate structures for the t_bind call */
if (((bindregp=(struct t_bind *)t_alloc(xtifd,

T_BI ND_STR,
T_ALL))

== NULL) ||

((bindretp=(struct t_bind *)t_alloc(xtifd,

T_BI ND_STR,
T_ALL))

== NULL)) {

xerror("xti_alloc", xtifd);

exit(3);

bi ndr eqp- >addr . buf
bi ndr eqp- >addr. | en

(char *)&serveraddr;
si zeof (serveraddr);

/*
* Speci fy how many pendi ng connections can be

* maintained, while we finish "accept" processing
*

*/
bi ndr eqp- >ql en = 8§,
if (t_bind(xtifd, bindreqp, (struct t_bind *)NULL)
<0) {
xerror("xti_bind", xtifd);
exit(4);

B—24 Socket and XTI Programming Examples

(60N

Example B-7: (continued)
/*
* Now the server is ready to accept connections
* on this socket. For each connection, fork a child
* process in charge of the session, and then resune
* accepting connections.
*

*/
transactions(xtifd);

}
transactions(int fd) 8
{

int byt es;

char *reply;

int dcount;

int fl ags;

char dat api pe[MAXBUFSI ZE+1] ;

struct t_unitdata uni tdat a;

struct sockaddr_in clientaddr;

/*
* Look at the data buffer and parse commands.
*

If nore data required, go get it.
*

*/

while (1) {
uni t dat a. udat a. max| en MAXBUFSI ZE;
uni t dat a. udat a. buf dat api pe;

uni t dat a. addr . maxl en
uni t dat a. addr . buf
uni t dat a. opt . max| en

si zeof (clientaddr);
(char *)&clientaddr;
0;

if ((dcount=t_rcvudata(fd, &unitdata, &flags))9
<0 {
/* if disconnected bid a goodbye */
if (t_errno == TLOXK) {
int tnp =t_look(fd);

if (tnp !'= T_Dl SCONNECT) ({
t _scope(tmp);

} else {
exit(0);
}

xerror("transactions_receive", fd);
br eak;
if (unitdata.udata.len == 0) {

return(0);

Socket and XTI Programming Examples B—25

Example B-7: (continued)
}

dat api pe[uni tdata.udata.len] = '\0";
if ((reply=parse(datapipe)) != NULL) {

/* sender’s addr is in the unitdata */
unitdata.udata.len = strlen(reply);
uni tdat a. udat a. buf = reply;

if (t_sndudata(fd, &unitdata) < 0) { 10
xerror("xti_send", fd);
br eak;

1 Thet open call specifies adevice specia file name, which is
/ dev/ streans/ xti so/ udp in this example. This file name provides
the necessary abstraction for the UDP transport protocol over IP. Unlike
the socket interface, where you specify the address family (for example,
AF_INET), this information is already represented in the choice of the
device special file. The/ dev/ streans/ xti so/ udp file implies both
UDP transport and Internet Protocol. See the Chapter 5 for information
about STREAMS devices. Contrast thet _open call with the socket
call in Section B.2.1.

2 Theserveraddr isof typesockaddr i n, which is dictated by the
communication domain or address family of the socket (AF_INET). The
socket address for the Internet communication domain contains an
Internet address and a 16-bit port number, which uniquely identifies an
application entity on the network. For TCP/IP and UDP/IP thisis the
Internet address of the server and the port number on which it is listening.

The information contained in the sockaddr _i n structure is dependent
on the address family (or the protocal).

AF_INET specifies the Internet communication domain or address family.

INADDRANY signifies any attached interface adapter on the system. All
numbers must be converted to the network format using appropriate
macros. See the following reference pages for more information:

ht onl (3), ht ons(3), nt ohl (3), and nt ohs(3).

5 SERVER PORT is defined in the <common. h> header file. It is a short
integer, which helps identify the server process from other application
processes. Numbers from O to 124 are reserved.

6 Specify the number of pending connections the server can queue while it
processes the last request.

B-26 Socket and XTI Programming Examples

B.2.4

7 Bind the server’s address with thet _bi nd call. The combination of the

address and port number identify it uniquely on the network. After the
server process address is bound, the server processis registered on the
system and can be identified by the lower level kernel functions to which
to direct any requests.

Each incoming message packet is accepted and passed to the par se
function, which tracks the information provided, such as the merchant’s
login ID, password, and customer’s credit card number. This processis
repeated until the par se function identifies a complete transaction and
returns a response packet, to be sent to the client program.

The client program can send information packets in any order (and in one
or more packets), so the par se function is designed to remember state
information sufficient to deal with this unstructured message stream.

Since this program uses a connectionless (datagram) protocol, it uses
t _sndudata andt _rcvudat a to send and receive data, respectively.

9 Receive datawith thet _r cvudat a function.
10 Send data with thet _sndudat a function.

XTI Client Program

Example B-8 This sample program implements an XTI client that can
communicate with the XTI server in Example B-7. It uses the XTI interface
in the connectionless, or datagram, mode.

Example B-8: Connectionless XTI Client Program

/

* Ok Kk ok F X

*

*/

This file contains the main XTI client code
for a connectionl ess node of conmuni cation.

usage: client [serverhostnane]

#include "client.h"

mai n(int argc, char *argv[])

{

int xtifd;

struct sockaddr_in server addr;

struct hostent *he;

int n;

char *serverhost = "l ocal host";
struct hostent *server host p;

char buf f er [MAXBUFSI ZE+1] ;

char i nbuf [MAXBUFSI ZE+1] ;

Socket and XTI Programming Examples B—27

Example B-8: (continued)

struct t_unitdata uni t dat a;
struct t_call sndcal | ;
struct t_call rcvcal | ;
int flags = 0;

if (argc>1) {
serverhost = argv[1];
}

init();

if ((xtifd = t_open("/dev/streans/xtiso/udp"”, 1
O RDVR, NULL)) < 0) {
xerror("xti_open", xtifd);
exit(1);

bzero((char *) &serveraddr, 2
si zeof (struct sockaddr

_in));
serveraddr.sin_famly = AF_IN

| NET; 3
if ((serverhostp = gethostbynane(serverhost)) == 4
(struct hostent *)NULL) ({
fprintf(stderr, "gethostbynane on % failed\n",
serverhost);
exit(1);
}
bcopy(serverhost p- >h_addr,
(char *)&(serveraddr.sin_addr.s_addr),
server host p->h_l engt h) ;
/*
* SERVER PORT is a short which identifies
* the server process from other sources.

*

*/
serveraddr. sin_port = ht ons(SERVER _PORT) ; 5
if (t_bind(xtifd, (struct t_bind *)NULL, 6
(struct t_bind *)NULL) < 0) {

xerror("bind", xtifd);
exit(2);

}

while(1) {

/* Merchant record */
sprintf(buffer, "9%Q886mGHAYARPYSHHE",
mer chant name, password);

printf("\n\nSwi pe card, enter anount: ");
fflush(stdout);

B—28 Socket and XTI Programming Examples

Example B-8: (continued)

if (scanf("%", inbuf) == EOF) {
printf("bye...\n");
exit(0);

}

soundbyt es();

sprintf(buffer, "%%80a%sH##9008NYSHE",
buffer, inbuf, sw pecard());

uni t dat a. addr . buf
uni tdat a. addr. | en

(char *)&serveraddr;
si zeof (serveraddr);

uni t dat a. udat a. buf buf fer;

uni t dat a. udata. | en strlen(buffer);

unitdata.opt.len 0;

if (t_sndudata(xtifd, &unitdata) < 0) { 7
xerror("t_snd", xtifd);
exit(1);

}

uni t dat a. udat a. max! en MAXBUFSI ZE;

uni t dat a. addr . max| en si zeof (serveraddr);

/* receive info */
if ((t_rcvudata(xtifd, &unitdata, &flags)) 8

<0) {
xerror("t_rcv", xtifd);
exit(1);
}
buffer[unitdata.udata.len] ="'\0";

if ((n=anal yze(buffer))== 0) {
printf("transaction failure,
"try again\n");
} else if (n<0) {
printf("login failed, try again\n");
init();

}

1 Thet _open call specifies a device specia file name; for example
[dev/ streans/ xti so/ udp. Thisfile name provides the necessary
abstraction for the UDP transport protocol over IP. Unlike the socket
interface, where you specify the address family (for example, AF_INET),
this information is already represented in the choice of the device special
file. The/ dev/ streans/ xti so/ udp fileimplies both UDP
transport and Internet Protocol. See the Chapter 5 for information about
STREAMS devices.

Socket and XTI Programming Examples B—29

Contrast thet _open call with the socket call in Section B.2.2.

Theser ver addr isof typesockaddr _i n, which is dictated by the
communication domain of the socket (AF_INET). The socket address for
the Internet communication domain contains an Internet address and a
16-bit port number, which uniquely identifies an entity on the network.
For the TCP/IP protocol suite, which includes UDP, this is the Internet
address of the server and the port number on which it is listening.

The information contained in the sockaddr _i n structure is dependent
on the address family (or the protocal).

AF_INET specifies the Internet communication domain. If AF_OSI were
supported it could be used to create a socket for OSlI communications.

Getting information about the server depends on the protocol or the
address family. To get the IP address of the server, you can use the
get host bynane(3) routine.

SERVER_PORT is defined in the <common. h> header file. It is a short
integer, which helps identify the server process from other application
Processes.

Bind the server address with thet _bi nd function to enable the client to
start sending and receiving data.

Send data with thet _sndudat a function.
Receive data with thet r cvudat a function.

B.3 Common Code

The following header and database files are required for all or several of the
client and server portions of this application:

<common. h>
<server. h>
serverauth.c
serverdb. c
xtierror.c
<client. h>
clientauth.c
clientdb.c

B-30 Socket and XTI Programming Examples

B.3.1 The common.h Header File

Example B-9 shows the <common. h> header file. It contains common
header files and constants required by all sample programs.

Example B-9: The common.h Header File

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <sys/errno. h>
#i ncl ude <netinet/in.h>
#i ncl ude <net db. h>

#i ncl ude <string. h> 1
#i ncl ude <stdio. h>

#i ncl ude <signal . h>

#i nclude <stdlib. h>

#i nclude <fcntl. h>

#i ncl ude <xti.h>

#def i ne SEPARATOR T
#defi ne PREAMBLE "o

#defi ne PREAMBLELEN 2 2
#def i ne POSTAMBLE " HAE"

#def i ne POSTAMBLELEN 2

/* How to contact the server */

#defi ne SERVER_PORT 1234 3
/* How to contact the client (for datagramonly) */
#defi ne CLI ENT_PORT 1235

#def i ne MAXBUFSI ZE 4096

1 List of header files to include.

2 These statements define constants that allow more effective parsing of
data exchanged between the server and client.

3 SERVER PORT isawell known port that is arbitrarily assigned by the
programmer so that clients can communicate with the server.
SERVER_PORT is used to identify the service to which you want to
connect. Port numbers 0 through 1024 are reserved for the system.
Programmers can choose a number, as long as it does not conflict with
any other applications. While debugging, this number is chosen
randomly (and by trial and error). For awell-distributed application,
some policy must be used to avoid conflicts with other applications.

Socket and XTI Programming Examples B—31

B.3.2 The server.h Header File

Example B-10 shows the <ser ver . h> header file. It contains the data
structures for accessing the server’s database, as well as the data structures
for analyzing and synthesizing messages to and from clients.

Example B-10: The server.h Header File
#i ncl ude "common. h"
struct merchant {

char *nane;
char *passwd;

}s
struct custoner {
char *cardnum
char *nane;
int limt;
int bal ance;
struct transaction *tlist;
/* presunably other data */
}s
struct transaction {
struct transaction *next cust ;
struct transaction *next gl ob;
struct custoner *whose;
char *mer chant nane;
int anount ;
char *verification;
}s

extern struct transaction *alltransactions;
extern struct merchant nerchant[];

extern int mer chant count ;
extern struct custonmer custoner[];
extern int cust oner count ;

#define INVALID (struct transaction *)1

#defi ne MERCHANTAUTHERROR " ORAHH"
#defi ne USERAUTHERROR " ORAUH"
#def i ne USERAMOUNTERROR " OBV
#def i ne TRANSM TERROR "deadbeef "
/* define transaction_status flags */
#def i ne NAMVE 0x01
#defi ne PASS 0x02
#defi ne AMOUNT 0x04
#def i ne NUVBER 0x08
#def i ne AUTHMASK 0x03
#defi ne VERI MASK 0x0C

B-32 Socket and XTI Programming Examples

Example B-10: (continued)

B.3.3 The serverauth.c File
Example B-11 shows the ser ver aut h. c file.

Example B-11: The serverauth.c File
/*

* Aut horization information (not related to the
* networking interface)

*

*/

#i ncl ude "server.h"

/*
* Currently a sinple non-encrypted password nethod to search db
*/
aut hori zener chant (char *nerch, char *password)
{
struct merchant *np;
for(np = merchant; (np)->name != (char *)NULL; np++) {
if (!'strcnp(merch, (np)->nane)) {
return (!strcnp(password, (np)->passwd));
}
return(0);
}

struct transaction *
verifycustoner(char *num int amount, char *merchant)

{
char buf[64];
struct custoner *cp;
struct transaction *tp;
for(cp = custoner; (cp)->cardnum!= NULL; cp++) {

if (!strenp(num (cp)->cardnum) {
if (ambunt <= (cp)->bal ance) {
(cp) - >bal ance -= anount;
if ((tp = malloc(sizeof(
struct transaction)))
== NULL) {
printf("Malloc error\n");
return(NULL);

Socket and XTI Programming Examples B—33

Example B-11: (continued)
}

t p- >mer chant name = nerchant;
t p- >anmobunt = anount;
sprintf(buf, "vo®12d", tinme(0));
if ((tp->verification =
mal | oc(strlen(buf)+1))
== NULL) {
printf("Malloc err\n");
return(NULL) ;

strcpy(tp->verification, buf);
t p- >nextcust = cp->tlist;

t p- >whose = cp;

cp->tlist = tp;

t p- >next gl ob = alltransacti ons;
alltransactions = tp;
return(tp);

} else {
return(NULL) ;
}
}

}

return(l NVALID);
}
int transacti on_st at us;
i nt aut hori zed = 0;
int anmount = 0O;
char nunmber [256] ;
char Mer chant [256] ;
char passwor d[256] ;
char *
parse(char *cp)
{

char *dp, *ep;

unsi gned char type;

int doauth = 0;

char *puf fer;

dp = cp;

if ((buffer=malloc(256)) == NULL) {
r et ur n(TRANSM TERROR) ;

}

while (*dp) {
/* terminate the string at the postanble */
if (!(ep=strstr(dp, POSTAMBLE))) {
r et ur n(TRANSM TERROR) ;

B-34 Socket and XTI Programming Examples

Example B-11: (continued)
ep = ep + POSTAMBLELEN; 1
/* search for preanble */
if (!(dp=strstr(dp, PREAMBLE))) {
ret ur n(TRANSM TERROR) ;
}
dp += PREAMBLELEN;

/* Now get the token */

type = *dp++;
switch(type) {
case 'm:
strcpy(Merchant, dp);
transacti on_status | = NAME;
br eak;
case 'p':
strcpy(password, dp);
transacti on_status | = PASS;
br eak;
case 'n’:
transacti on_status | = NUMBER
strcpy(nunber, dp);
br eak;
case 'a’:

transaction_status | = AMOUNT;
amount = atoi (dp);
br eak;
defaul t:
printf("Bad command\n");
ret ur n(TRANSM TERROR) ;

}
if ((transaction_status & AUTHVASK) == AUTHWMASK)
transaction_status &= ~AUTHMASK;
aut hori zed = aut hori zemer chant (
Mer chant,
password) ;
if (lauthorized) ({
printf("Mrchant not"
" authorized\n");
r et ur n(MERCHANTAUTHERROR) ;

}
}
/*
* |f both anpbunt and numnber gat hered,
* do verification
*
*/

if ((authorized) &&
((transaction_st at us&VERI MASK)
==VERI MASK)) {
struct transaction *tp;

Socket and XTI Programming Examples B-35

Example B-11: (continued)

transaction_status &= ~VERI MASK;
/* send a verification back */
if ((tp=verifycustoner(nunber,
anount ,
Mer chant))
== NULL) {
r et ur n(USERAMOUNTERROR) ;
} else if (tp==INVALID) {
r et ur n(USERAUTHERROR) ;
} else {
sprintf(buffer,
" VBB HHIBBOE Vs HEYIORMS #E"
tp->verification,
t p- >whose- >nane,
t p- >ner chant nane) ;
return(buffer);

}
dp = ep;

}
return(NULL) ;
}

1 Thisfunction parses the incoming data, which includes the merchant
authorization information, customer’s credit card number, and the amount
the customer is charging. Note that the function can not assume that all
of the information is available in one message because the underlying
TCP protocaol is stream-oriented. This function can be ssmplified if a
datagram type serviceis used or if a protocol that uses sequenced packets
(SEQPACKET) isused. The function is designed to accept pieces of
information in any order and in one or more message blocks.

B.3.4 The serverdb.c File
Example B-12 shows the ser ver db. c file.

Example B-12: The serverdb.c File

/*
*
* Dat abase of valid nerchants and credit card custoners with the
* credit limts, etc.
*
*
*/
#i ncl ude "server.h"
struct merchant nmerchant[] = {
{II abC", "abC"},

B—36 Socket and XTI Programming Examples

Example B-12: (continued)

{"magi c", "magic"},
{"gasco", "gasco"},
{"furnitureco", "abc"},
{"groceryco", "groceryco"},
{"bakeryco", "bakeryco"},
{"restaurantco", "restaurantco"},
{ NULL, NULL}

b
int nerchantcount = sizeof (nerchant)/sizeof (struct merchant)-1;

struct custoner custoner[] = {

{ "4322546789701000", "John Smth", 1000, 800 1},
{ "4322546789701001", "Bill Stone", 2000, 200 },
{ "4322546789701002", "Dave Adans", 1500, 500 },
{ "4322546789701003", "Ray Jones", 1200, 800 1},
{ "4322546789701004", "Tony Zachry", 1000, 100 },
{ "4322546789701005", "Danny Einstein", 5000, 50 1},
{ "4322546789701006", "Steve Sinonyi", 10000, 5800},
{ "4322546789701007", "Mary M ng", 1100, 700 },
{ "4322546789701008", "Joan Walters", 800, 780 1},
{ "4322546789701009", "Gail New on", 1000, 900 1},
{ "4322546789701010", "Jon Robertson", 1000, 1000},
{ "4322546789701011", "Ellen Bl oop", 1300, 800 1},
{ "4322546789701012", "Sue Svelter", 1400, 347 },
{ "4322546789701013", "Suzette Ri ng", 1200, 657 },
{ "4322546789701014", "Daniel Mattis", 1600, 239 },
{ "4322546789701015", "Robert Esconis", 1800, 768 },
{ "4322546789701016", "Lisa Stiles", 1100, 974 1},
{ "4322546789701017", "Bill Brophy", 1050, 800 1},
{ "4322546789701018", "Linda Snmitten", 4000, 200 },
{ "4322546789701019", "John Norton", 1400, 900 1},
{ "4322546789701020", "Danielle Smth", 2000, 640 },
{ "4322546789701021", "Amny O ds", 1300, 100 },
{ "4322546789701022", "Steve Snmith", 2000, 832 },
{ "4322546789701023", "Robert Smart", 3000, 879 1},
{ "4322546789701024", "Jon Harris", 500, 146 },
{ "4322546789701025", "Adam Gershner”, 1600, 111 },
{ "4322546789701026", "Mary Papadi m s", 2000, 382 },
{ "4322546789701027", "Linda Jones", 1300, 578 },
{ "4322546789701028", "Lucy Barret", 1400, 865 },
{ "4322546789701029", "Marie G lligan", 1000, 904 1},
{ "4322546789701030", "Ki m Coyne", 3000, 403 },
{ "4322546789701031", "M ke Stornt, 7500, 5183},
{ "4322546789701032", "diff Cayden", 750, 430 },
{ "4322546789701033", "John Turing", 4000, 800 1},
{ "4322546789701034", "Jane Joyce", 10000, 8765},
{ "4322546789701035", "Ji m Roberts", 4000, 3247},
{ "4322546789701036", "Stevw Stephano", 1750, 894 1},
{NULL, NULL}

}s

struct transaction *

Socket and XTI Programming Examples B-37

Example B-12: (continued)

all transacti ons NULL;
i nt custonercount si zeof (cust oner)/si zeof (struct customner)-1;

B.3.5 The xtierror.c File

Example B-13 shows the xti error. c file. Itisused to generatea
descriptive message in case of an error. Note that for asynchronous errors or
events, thet _| ook function is used to get more information.

Example B-13: The xtierror.c File

#i ncl ude <xti.h>
#i ncl ude <stdio. h>

i nt
xerror(char *marker, int fd)
{
fprintf(stderr, "% error [%]\n", marker, t_errno);
t _error("Transport Error");
if (t_errno == TLOOK) {
t _scope(t_l ook(fd));
}
}
int

t _scope(int tlook)
char *tnperr;

switch(tlook) {
case T_LI STEN:
t mperr
br eak;
case T_CONNECT:
t mperr
br eak;
case T_DATA:
t mperr
br eak;
case T_EXDATA:
t mperr
br eak;
case T_DI SCONNECT:
tnperr = "di sconnect received";
br eak;
case T_UDERR:
t mperr
br eak;
case T_ORDREL:

t nperr

"connection indication";

"connect confirnmation";

"normal data received”;

"expedited data";

"datagramerror”;

"orderly rel ease indication";

B-38 Socket and XTI Programming Examples

Example B-13: (continued)

br eak;
case T_GODATA:
tnperr = "flow control restriction lifted";
br eak;
case T_GOEXDATA:
tnperr = "flow control restriction "
"on expedited data lifted";
br eak;
defaul t:
tnperr = "unknown event";

fprintf(stderr,
"Asynchronous event: %s\n",

tnperr);

B.3.6 The client.h Header File
Example B-14 shows the cl i ent . h header file.

Example B-14: The client.h File
#i ncl ude "conmon. h"

extern char mer chant name[] ;
extern char password[];

B.3.7 The clientauth.c File

Example B-15 shows the cl i ent aut h. c file. It contains the code that
obtains the merchant’ s authorization, as well as the logic to analyze the
message sent from the server. The resulting message is interpreted to see if
the authorization was granted or rejected by the server.

Example B-15: The clientauth.c File
#include "client.h"
init()

printf("\nlogin: "); fflush(stdout);
scanf ("%", nerchantnane);

printf("Password: "); fflush(stdout);
scanf (" %", password);

srandom(time(0));

Socket and XTI Programming Examples B—39

Example B-15: (continued)
/* simulate sone network activity via sound */
soundbytes()

int i;

for(i=0;i<11;i++) {
printf("");
fflush(stdout);
usl eep(27000* (randon() 9%d40+1)) ;

}
anal yze(char *cp)
char *dp, *ep;
unsi gned char type;

char custoner[128];
char verification[128];

custoner[0] = verification[0] = "'\0";
dp = cp;
while ((dp!=NULL) && (*dp)) {
/* terminate the string at the postanble */
if (!(ep=strstr(dp, POSTAMBLE))) {
return(0);

}
*ep = '\0;
ep = ep + POSTAMBLELEN;

/* search for preanble */
if (!(dp=strstr(dp, PREAMBLE))) {
return(0);

}
dp += PREAMBLELEN;

/* Now get the token */

type = *dp++;
switch(type) {
case 'm:
if (strcnp(merchantname, dp)) {
return(0);
}
br eak;
case 'c':
strcpy(custoner, dp);
br eak;
case 'U:
printf("Authorization denied\n");
return(l);

B—40 Socket and XTI Programming Examples

Example B-15:

(continued)
case

Vo
printf("Anount exceeded\n");
return(l);

case 'A':

case

return(-1);

v
strcpy(verification,
br eak;

dp);

defaul t:

}
dp = ep;

return(0);

if (*customer && *verification) {

printf("%, verification ID %\n",
custoner, verification);
return(l);
return(0);

B.3.8 The clientdb.c File

Example B-16 shows the cl i ent db. c file. It contains a database of
customer credit card numbers used to simulate the card swapping action. In a
real world application, a magnetic reader reads the numbers through an
appropriate interface. Also, the number cache is not required for a real world

application.

Example B-16: The clientdb.c File

/

will
appropriate interface.
/

* X X X X X X

#i ncl ude <tine. h>

char
char

mer chant nane[256] ;
passwor d[256] ;

char *nunbercache[] = {
"4322546789701000",
"4322546789701001",
"4322546789701002",
"4222546789701002",

Dat abase of customer credit card nunmbers to simulate
the card swappi ng action.
be read by nmmgnetic readers through an

In practice the nunbers

/* fake id */

Socket and XTI Programming Examples B—41

Example B-16: (continued)

"4322546789701003",
"4322546789701004",
"4322546789701005",
"4322546789701006",
"4322546789701007",
"4322546789701008",
"4322546789701009",
"4322546789701010",
"4322546789701011",
"4322546789701012",
"4322546789701013",
"4322546789701014",
"4322546789701015",
"4322546789701016",
"4322546789701017",
"4322546789701018",
"4222546789701018",
"4322546789701019",
"4322546789701020",
"4322546789701021",
"4322546789701022",
"4322546789701023",
"4322546789701024",
"4322546789701025",
"2322546789701025",
"4322546789701026",
"4322546789701027",
"4322546789701028",
"4322546789701029",
"4322546789701030",
"4322546789701031",
"4322546789701032",
"4322546789701033",
"4322546789701034",
"4322546789701035",
"4322546789701036",

/* fake id */

/* fake id */

s

#defi ne CACHEENTRI ES (si zeof (nunber cache)/si zeof (char *))
char *

swi pecard()

r et ur n(nunber cache[randon{) UCACHEENTRI ES]) ;

B-42 Socket and XTI Programming Examples

TCP Specific Programming
Information C

This appendix contains information about performance aspects of the
Transport Control Protocol (TCP). It discusses how programs can influence
TCP throughput by controlling the window size used by TCP via socket
options.

C.1 TCP Throughput and Window Size

C.2

TCP throughput depends on the transfer rate, which is the rate at which the
network can accept packets, and the round-trip time, which is the delay
between the time a TCP segment is sent and the time an acknowledgement
arrives for that segment. These factors determine the amount of data that
must be buffered (the window) prior to receiving acknowledgment to obtain
maximum throughput on a TCP connection.

If the transfer rate or the round-trip time or both is high, the default window
size used by TCP may be insufficient to keep the pipe fully loaded. Under
these circumstances, TCP throughput can be limited because the sender is
required to stall until acknowledgements for prior data are received.

The receive socket buffer size determines the maximum receive window for a
TCP connection. The transfer rate from a sender can also be limited by the
send socket buffer size. DEC OSF/1 currently uses a default value of 32768
bytes for TCP send and receive buffers.

Programming the TCP Socket Buffer Sizes

An application can override the default TCP send and receive socket buffer
sizes by using the set sockopt system call specifying the SO_SNDBUF
and SO_RCVBUF options, prior to establishing the connection. The largest
size that can be specified with the SO_SNDBUF and SO_RCVBUF options
is limited by the kernel variable sb_nmax. See Section C.3.1 for information
about increasing this value.

For maximum throughput, Digital recommends send and receive socket
buffers on both ends of the connection be of equal size.

When writing programs that use the set sockopt system call to change a
TCP socket buffer size (SO_SNDBUF, SO_RCVBUF), note that the actual
socket buffer size used for a TCP connection can be larger than the specified

value. This situation occurs when the specified socket buffer size is not a
multiple of the TCP Maximum Segment Size (MSS) to be used for the
connection.

TCP determines the actual size, and the specified size is rounded up to the
nearest multiple of the negotiated MSS. For local network connections, the
MSS is generally determined by the network interface type and its maximum
transmission unit (MTU).

C.3 TCP Window Scale Option

C.31

DEC OSF/1 implements the TCP window scale option, as defined in RFC
1323. TCP Extensions for High Performance. The TCP window scale
option, which alows larger windows to be used, was designed to increase
throughput of TCP over high bandwidth, long delay networks. This option
may also increase throughput of TCP in local FDDI networks.

The window field in the TCP header is 16 bits. Therefore, the largest
window that can be used without the window scale option is 2** 16 (64KB).
When the window scale option is used between cooperating systems,
windows up to (2**30)-1 bytes are allowed. The option, transmitted between
TCP peers at the time a connection is established, defines a scale factor
which is applied to the window size value in each TCP header to obtain the
actual window size.

The maximum receive window, and therefore the scale factor offered by TCP
during connection establishment, is determined by the maximum receive
socket buffer space.

If the receive socket buffer size is greater than 65535 bytes, during
connection establishment, TCP will specify the Window Scale option with a
scale factor based on the size of the receive socket buffer. Both systems
involved in the TCP connection must send the Window Scale option in their
SYN segments for window scaling to occur in either direction on the
connection. As stated previously, Digital recommends that, for maximum
throughput, send and receive buffers on both ends of the connection be of
equal size.

Increasing the Socket Buffer Size Limit

The sb_nmax kernel variable limits the amount of socket buffer space that
can be allocated for each send and receive buffer. The current default is
128K B but optionally you can increase it.

For local FDDI connections, the current value is sufficient. For long delay,
high bandwidth paths, values greater than 128KB may be required.

To change the sb_nax kernel variable, use the dbx - k command as root.
The following example shows how to increase the sb_max variable in the

C-2 TCP Specific Programming Information

kernel disk image, as well as the kernel currently in memory, to 150KB:

dbx -k /vmuni x
dbx version 9.0.1
Type 'hel p’ for help.

stopped at [thread_bl ock: 1305 +0x114, Oxfffffc000033961c] \
Source not avail abl e

(dbx) patch sb_max = (u_l ong) 153600

153600

(dbx) assign sb_nmax = (u_l ong) 153600

153600

(dbx) quit

See dbx (1) for a description of the dbx assi gn and pat ch commands.

TCP Specific Programming Information C-3

Information for Token Ring Driver
Developers D

This appendix contains the following information for developers of Token
Ring drivers for Digital UNIX:

» Enabling source routing

e Using canonical addresses

» Avoiding unaligned access

e Setting fields in the sof t ¢ structure of the driver

D.1 Enabling Source Routing

Source routing is a bridging mechanism that systems on a Token Ring local
area network (LAN) use to send messages to a system on another
interconnected Token Ring LAN. Under this mechanism, the system that is
the source of a message uses a route discover process to determine the
optimum route over Token Ring LANSs and bridges to a destination system.

To use the Token Ring source routing module you must add the TRSRCF
option to your kernel configuration file. Usethe doconfi g —c command
to add the TRSRCF option, as follows:

1. Enter thedoconfi g —c HOSTNAME command from the superuser
prompt (#). HOSTNAME is the name of your system in uppercase |etters;
for example, for a system called host 1 you would enter:

doconfig —c HOST1

2. Add TRSRCEF to the options section of the kernel configuration file.

Enter y when the system asks whether you want to edit the kernel
configuration file. The doconf i g command allows you to edit the
configuration file with the ed editor. For information about using the ed
editor, see ed(1).

The following ed editing session shows how to add the TRSRCF option
to the kernel configuration file for host 1. The number of the line after

which you append the new line can differ between kernel configuration
files:
*** KERNEL CONFI GURATI ON AND BU LD PROCEDURE ***

Savi ng /sys/conf/HOST1 as /sys/conf/HOST1. bck
Do you want to edit the configuration file? (y/n) [n]: vy

Using ed to edit the configuration file. Press return when
ready, or type 'quit’ to skip the editing session:
2153

48a
options TRSRCF

i, $w
2185
q

*** PERFORM NG KERNEL BUI LD ***

3. After the new kernel is built, you must move it from the directory where
doconfi g placesit to the root directory (/) and reboot your system.

For detailed information on reconfiguring your kernel or the doconfi g
command see the System Administration manual.

The Token Ring source routing functionality isinitialized if thet rn_uni ts
variable is greater than or equal to 1. Thetrn_uni t s variable indicates
the number of Token Ring adapters initialized on the system.

The driver should declaret r n_uni t s asfollows:
extern int trn_units;

At the end of its at t ach routine, the driver should increment the
trn_units variable as follows:

trn_units++;

For information on source routing management see the Network
Administration manual.

D.2 Using Canonical Addresses

The Token Ring driver requires that the destination address (DA) and source
address (SA) in the Media Access Control (MAC) header be in the canonical
form while presenting it to the layers above the driver.

The canonical form is also known as the Least Significant Bit (LSB) format.
It differs from the noncanonical form, known as the Most Significant Bit

D-2 Information for Token Ring Driver Developers

(MSB) format, in that it transmits the LSB first. The noncanonical form
transmits the MSB first. The two formats also differ in that the bit order
within each octet is reversed.

For example, the following address is in noncanonical form:
10: 00: d4: f0: 22: c4

The same address in canonical form is as follows:
08- 00- 2b- Of - 44- 23

If the hardware does not present the driver with a canonical addressin the
MAC header, you should convert the address to canonica form before
passing it up to the higher layers. The haddr _convert kernel routineis
available for converting canonical addresses to noncanonical, and vice versa.
It has the following format:

haddr_convert(addr)
unsigned char *addr

The addr variable is a pointer to the 6 bytes of the address that require
conversion from either noncanonical to canonical or canonical to
noncanonical form. The converted address is returned in the same buffer.

D.3 Avoiding Unaligned Access

The frame that the driver receives consists of the Media Access Control
(MAC) header, which includes the Routing Information Field (RIF) and data.
Because the length of the RIF can vary between 0 and 18 bytes, the data after
the RIF may not be aligned to alongword boundary. To avoid degraded
performance, Digital recommends that you pad the RIF field so that data
aways starts on a longword boundary.

Figure D-1 illustrates the relationship between the components of the MAC
header and the datain atypical frame.

Information for Token Ring Driver Developers D-3

Figure D-1: Typical Frame

MAC header
A

4 N
Access Frame Destination| Source Optional
Control Control Address Address RIF Data ...
1 byte 1 byte 6 bytes 6 bytes 0-18 bytes
longword _
boundary

ZK-0894U-R

D.4 Setting Fields in the softc Structure of the Driver
The sof t ¢ structure contains driver-specific information.

You must set the following field of the sof t ¢ structureintheat t ach
routine of the driver:

sc->i sac. ac_ar phr d=ARPHRD_802;
Here, sc is a pointer to the sof t ¢ structure, and ARPHRD 802 is the value
of the hardware type used in an Address Resolution Protocol (ARP) packet

sent from this interface. A value of 6 for ARPHRD 802 indicates an IEEE
802 network.

D—-4 Information for Token Ring Driver Developers

E.1l

The Data Link Interface E

The data link interface (DLI) is a programming interface that allows
programs on a Digital UNIX system directly to use the data link facility to
communicate with data link programs running on a remote system.

See Section E.5 for client and server DLI programming examples.

Prerequisites for DLI Programming

DLI programming requires both a thorough knowledge of the C
programming language and experience writing system programs. If you
intend to use the Ethernet substructure, you should be familiar with the
Ethernet protocol. If you intend to use the 802 substructure, you should be
familiar with the 802.2, 802.3, and FDDI protocols.

Y ou should be aso be familiar with the following concepts before attempting
to write programs to the DLI interface:

» Datagram sockets

Y our application uses sockets to send and receive Ethernet, 802.3 and
FDDI frames. DLI uses datagram sockets only.

For more information about using sockets, see Chapter 4.
e Logica Link Control (LLC)

LLC isasublayer of DLI that provides a set of services determined by a
value in the 802.2 frame format.

e Physical and multicast addressing

Y ou can send and receive messages over the network using physical or
multicast addresses. You can use physical addresses to send messages to
a single destination system. Multicast addresses are not associated with
any specific system; instead, a packet sent to a multicast address is
received by all systems with the multicast address enabled.

For more information about multicast addressing, see Section 4.6.
» Standard frame formats

The Ethernet frame format is a proprietary standard that belongs to
Digital Equipment Corporation, Intel Corporation, and Xerox
Corporation. The IEEE 802.3 frame format is a standard for multivendor

networking. The FDDI and |EEE 802.3 frame formats are very similar.
Both contain the LLC (or 802.2) frame within them. See Section E.3.1
for more information.

Note that running DLI applications on Digital UNIX requires superuser or
root privileges.

E.2 DLI Overview

DLI programs transfer data over networks using the standard Ethernet frame
format, the Open Systems Interconnect (OSl) 802.3 frame format, or the
FDDI frame format. Your Digital UNIX system can run Internet, DECnet,
and DLI programs concurrently.

Digital UNIX supports both Ethernet and 802.2 data link services. DLI and
IP both run over Ethernet and 802.2. FDDI and 802.3 use the 802.2 Logical
Link Control (LLC) astheir data link sublayer. TCP and UDP run over IP,
providing data delivery and message routing services to the programs that use
them. Because DLI provides direct access to the data link layer it does not
provide the higher-level services that TCP and UDP do.

Figure E-1 illustrates in greater detail the relationships between DLI and IP,
DLI and Ethernet, and DLI and 802.2.

Figure E-1: DLI and the Digital UNIX Network Programming
Environment

sockets

TCP/UDP
DLI

IP

802.2
Ethernet Ethernet

ZK-0812U-R

Sockets are the user application interface and facilitate accessto TCP, UDP,
and DLI. See Chapter 4 for information about opening sockets in the DLI
communication domain (AF_DLI).

E-2 The Data Link Interface

E.2.1

E.2.2

E.2.3

DLI Services
DLI provides the following services at the data link layer:
» Datagram service
» Logica Link Control (LLC) layer
— 1S0802.2 Class |, Type | service
* Multicast address mode
» Medium Access Control (MAC) layer
— Ethernet frames
— 802.3 frames
— FDDI frames

Hardware Support

DLI requires no knowledge of the underlying hardware. It uses Ethernet or
FDDI device drivers, which each use the pr obe routine to determine what
devices a particular system has configured. For a complete list of the
network devices that Digital UNIX supports, see the Digital UNIX Operating
System Version 3.0 Software Product Description 41.61.xX.

To determine which network devices are configured on your system, use the
/usr/sbin/netstat —i command, as follows:

% /usr/sbin/netstat —

Nane Mu Net wor k Addr ess I pkts lerrs Opkts Cerrs Coll
I n0 1500 <Li nk> 746 0 234 0 18
I n0 1500 orange-net hostl 746 0 234 0 18
sl 0* 296 <Link> 0 0 0 0 0
sl 1* 296 <Link> 0 0 0 0 0
| 00 1536 <Li nk> 74 0 74 0 0
1 00 1536 | oop | ocal host 74 0 74 0 0

The output displayed on your screen contains information about the interfaces
or devices that your system has configured. In this example, an Ethernet
hardware device (I n) is configured, as are two Seria Line Interface Protocol
devices (sl 0 and sl 1). The asterisk (*) following the sl 0 and sI 1
indicates that the support for the interfaces has not been turned on yet.

Using DLI to Access the Local Area Network

A datalink on asingle local area network (LAN) controller supports multiple
concurrent users. Each station represents an available port on the network
channel.

Because multiple users simultaneously access the network channel, your
program must use addressing mechanisms that ensure delivery of messages to

The Data Link Interface E-3

the correct recipient. Any message you transmit on the network must include
an Ethernet or FDDI address that identifies the destination system. The
message must also include an additional identifier that directs the message to
the correct user on the destination system; this identifier varies according to
the frame format you choose to use. DLI builds frames according to the
Ethernet, IEEE 802.3, or FDDI standards.

E.2.4 Including Higher-Level Services

DLI provides only datagram services. Because DLI is a direct interface to the
datalink layer, it does not offer higher-level services normally provided by
Internet and DECnet. Therefore, your application should provide the
following kinds of services:

» Packet routing and guaranteed delivery
* Flow control

* Error recovery

» Data segmentation

E.3 The DLI Socket Address Data Structure

This section describes the Ethernet, 802.3, and FDDI standard frame formats,
and the function of the DLI socket address data structure

(sockaddr _dl). It explains how you use sockaddr _dl to specify the
domain address, the network device, and the Ethernet, 802.3, or FDDI
substructure.

E.3.1 Standard Frame Formats

The following diagrams illustrate the differences and similarities between the
Ethernet, 802.3, and FDDI frames.

Figure E-2 illustrates the Ethernet frame format.

Figure E-2: The Ethernet Frame Format

PREAM DA SA PType : Data :PAD FCs

ZK-0687U-R

Figure E-3 illustrates the 802.3 frame format. Note that the 802.3 frame
format contains the 802.2 structure, which isillustrated in Figure E-5.

E—4 The Data Link Interface

Figure E-3: The 802.3 Frame Format

PREAM

DA

SA

Length

FCS

/

802.2

ZK-0688U-R

Figure E-4 illustrates the FDDI frame format. The FDDI frame format aso
contains within it the 802.2 structure illustrated in Figure E-5.

Figure E-4: The FDDI Frame Format

PREAM

SD

FC

DA

SA

FCS

/

Y

802.2
ZK-0679U-R

Figure E-5 illustrates the 802.2 LLC PDU and the 802.2 LLC SNAP PDU.
One of these two structures is contained within the 802.3 and FDDI frame

formats.

The Data Link Interface E-5

Figure E-5: The 802.2 Structures

802.2 LLC PDU
1

DSAP | SSAP | Ctl Info

802.2 LLC SNAP PDU |
1

SNAP | SNAP | Ul

Pl | Dat

ZK-0822U-R

Typically, 802 applications use the 802.2 LLC PDU format; however, an
application developer may choose to use the 802.2 LLC SNAP PDU format
for the following reasons:

» Using the SNAP_SAP is a convenient way to map Ethernet protocol
types on to 802.2 protocols. Thisis useful for applications that operate
over both Ethernet and 802.2, or are migrating from Ethernet to 802.2.

* Thel/O control flags (DLI_NORMAL, DLI_EXCLUSIVE and
DLI_DEFAULT) arevalid only for Ethernet and 802.2 SNAP frames.
These flags are meaningless when the non-SNAP 802.2 LLC PDU is
used.

» Using the SNAP_SAP alows a greater number of applications to run
over 802.2 because the SNAP SAP has a five byte Protocol I1D associated
with it. The normal 802.2 LLC PDU, on the other hand, is multiplexed
on the 7 most significant bits of the DSAP.

E.3.2 How the sockaddr_dl Structure Works

DLI provides a socket address data structure through which you can
configure the set of services required for communication at the data link
layer. The data structure sockaddr _dl is used to convey information to
DLI when an application binds to the network, or when it transmits a packet
to the network. DLI also usesit to convey information to the application
when it receives a packet from the network. This includes network device
information, the packet format to be used, and addressing information.

E—6 The Data Link Interface

The following example shows the DLI socket address structure, which is
defined in the header file<dl i / dl i _var. h>:

#defi ne DLI _ETHERNET 0
#define DLI _802 2

struct sockaddr_dI {
u_char dli_len; /* length of sockaddr */

u_char dli_famly; /* address famly (AF_DLI) */
struct dli_devid dli_device; /* id of comm device to use */
u_char dli_substructype; /* id to interpret follow ng */
/* structure */
uni on {
struct sockaddr_edl dli_eaddr; /* Ethernet */
struct sockaddr_802 dli _802addr; /* OSI 802 support */
caddr _t dli_aligner1; /* this needs to have */

/* longword alignnment */
} choose_addr

b

Any single application can send and receive both Ethernet and 802
substructures. The Ethernet substructure enables applications to communicate
across an Ethernet. The 802 substructure enables applications to use 802.2,
802.3, and FDDI protocols to communicate with each other.

You can use system calls to specify values within the socket address structure
by using either the Ethernet or 802 substructures.

The fields within the substructures are updated as a function of the system
call. For example, the bi nd system call is used to specify the domain,
network device, and most of the substructure. When using the sendt o
system call to transmit data, the domain, network device, and part of the
substructure must be specified. When using the r ecvf r omsystem call to
receive data, DLI fillsin the entire sockaddr structure.

Thedl i _econnanddli 802 3 conn user-written subroutines open a
socket and bind the associated domain, network device name, protocol type,
and other substructure information to the socket. See Section E.5 for
examples of thedl i _econn anddli _802_3 conn user-written
subroutines.

The following sections describe the functions that the Ethernet and 802.2
substructures provide within the DLI sockaddr _dl data structure.

The Data Link Interface E-7

E.3.3 The Ethernet Substructure

The following example shows the DLI Ethernet socket address substructure:
#define DLI_EADDRSIZE 6

struct sockaddr_edl {

u_char dli_ioctlflg; /* ilo control flags */
u_char dli_options; /* Ethernet options */
u_short dli_protype; /* Ethernet protocol type */
u_char dli_target[DLlI _EADDRS| ZE] ; /* Ethernet address of */
/* destination system*/
u_char dli_dest[DLl _EADDRSI ZE] ; /* Ethernet address used to */
/* address the |ocal system */
}; /* DLI places the destination */

/* address of an incom ng */

/* packet here to be used in */
/* the recvfromcall. This */
/* address can be the sys- */
/* temis address or a nulti */
/* cast address. */

The Ethernet substructure specifies the following:
e An /O control flag for the protocol type (dl i _i octl fl g)
» Whether Ethernet is padded (dl i _opti ons)

The PAD is a 2-byte length field in little-endian after the MAC/LLC
header. The following line, from <dl i / dl i _var . h>, isthe bit that
must be set inthedl i _opti ons field to turn on padding:

#defi ne DLl _ETHERPAD 0x01 /* Protocol is padded */

e TheDLI protocol type (dl i _pr ot ot ype)
» The Ethernet address of the destination system (dl i _t ar get)
» The Ethernet address used to address the local system (dl i _dest)

This information is used to create the Ethernet frame format.

E.3.3.1 How Ethernet Frames Work

All Ethernet frames contain a 16-bit identification number called an Ethernet
protocol type (PType). When a message arrives at the controller, the
protocol type is used to identify which port receives the frame. DLI
applications that communicate across the Ethernet must always enable the
same Ethernet protocol type. In addition to using protocol types to select a
user for an incoming packet, you can configure DLI to select a user as a
function of both the protocol type and the physical address of the remote
system. This allows several applications in the same system to use the same
type, which can make input/output simpler for the application.

E—8 The Data Link Interface

E.3.3.2 Defining Ethernet Substructure Values

The user specifies the values for the following fields in the Ethernet socket
address substructure. The other fields are filled in either by system calls or
DLI:

» Destination address (dl i _t ar get [DLI _EADDRSI ZE])
Youcanusethedl i _target field to specify the destination address.
» Protocol type (dli _protype)

You canusethedl i _pr ot ot ype field to specify the protocol to be
used for data transmission.

- 1/O Control Flag (dl i _i oct!fl g)

The following sections define the values for user-definable membersin the
Ethernet substructure.

Destination Node Physical Address
The destination system physical address (DA in Figure E-2) is a 48-hit
unique value assigned by the manufacturer to a station on the Ethernet. For
example, 08-00-2b-XX-XX-XX is the form a valid Ethernet address takes,
with the Xs being replaced by hexadecimal digits. DA is the address of the
remote system with respect to the local system.

If you do not specify the DA value with the bi nd call, you must specify it
when sending data by using the sendt o call. In addition, you should use the
recvf r omcal to determine the source of a data message. You can use
either the physical address or a multicast address to send messages in the
sendt o system call.

Protocol Type

The protocol type (PType in Figure E-2) is a 16-bit value in the Ethernet
frame following the source address. The Ethernet driver passes the protocol
type to DLI for use in determining the recipient of the data in the frame.
With the exception of reserved values, you can use any Ethernet protocol
typeif it is assigned to you by the manufacturer and not used elsewhere in
your system.

The following hexadecimal values are reserved for use by the system:
e 0X 0200 — PUP Protocol

e (0X 0800 — Internet Protocol

e (0X 0806 — Address Resolution Protocol

» 0X 6004 — Loca Area Transport

The Data Link Interface E-9

¢ 0X 6003 — Phase IV DECnet

* 0X 6002 — MOP CCR Protocol

* 0X 6001 — MOP Downline Load Protocol

* (0X 9000 — MOP Loopback Protocol

» 0X 1000 to 0X 100f — Internet Trailer Protocol (used by VAX only)

I/O Control Flag

The 1/O control flag, defined in the header file<dl i / dl i _var. h>,isa
value that DL uses to determine how your program reserves a protocol type.
It is used by DLI to determine whether to select a user as a function of the
protocol type alone or as a function of the combination of the protocol type
and the target audience. The following list defines the possible 1/0 control
flags and describes the conditions for their use:

* NORMAL

Allows your program to exchange messages with one destination system,
using only the specified protocol type. When using the NORMAL flag,
you must specify the destination system physical address in the bi nd
call and you can use any of the data transfer calls to send and receive
data. DLI forwards to the user all messages containing the specified
protocol type from the specified target.

« EXCLUSI VE

Gives your program exclusive use of the specified protocol type and
allows the program to exchange data with any other system using this
protocol type. In other words, the program receives all messages with the
specified protocol type. When you use the EXCLUSI VE flag, do not
specify the target address with the bi nd call. You must use the sendt o
and r ecvf r omcalls to exchange data with other systems, and you must
specify the target address with the sendt o call. In the address structure
(returned with r ecvf r o), DLI fillsin the target address with the source
address in the Ethernet frame. It also fills in the destination address with
the destination address in the Ethernet frame.

» DEFAULT

Allows your program to receive messages that contain the specified
protocol type and that are meant for no other program on the system. If
no other program is bound exclusively to the protocol type or the
protocol type/address pair in the message, the socket bound to the
protocol type gets the message by default. This mode of operation is
recommended for use in programs that listen for messages but do not
necessarily send them. When you use the DEFAULT flag, do not specify
the target address with the bi nd call. Usether ecvf r omcall to receive

E-10 The Data Link Interface

data from other systems. If you are using the DEFAULT flag, DLI fillsin
the target address with the source address in the Ethernet frame. It also
fills in the destination address with the destination address in the Ethernet
frame.

E.3.4 The 802.2 Substructure

The 802.2 substructure enables applications to communicate with each other
using the 802.2, 802.3, and FDDI protocols. It uses two basic modes of
operation: Class |, Type 1 service, and the services supplied by your
application using the 802.2 protocol.

The following example shows the DLI 802.3 socket address substructure:

struct sockaddr_802 { /* 802.3 sockaddr struct */
u_char ioctl; /* filter on incom ng packets */
/* addressed to the SNAP SAP */
u_char svc; /* service class for this portal */
struct osi_802hdr eh_802; /* OSl 802 header format */

H
The 802.2 substructure subsumes both the 802.3 and FDDI frame formats.
Y ou can specify values for the following fields:
» Destination system physical address (DA in Figure E-3 and Figure E-4)
* Serviceclass
» Destination service access points (DSAP in Figure E-5)
— Individua
— Group
» Source service access point (SSAP in Figure E-5)

The protocol identifier and 1/0 control field may be required, depending
on the type of SSAP you enable.

e Control field

E.3.4.1 Defining 802 Substructure Values

The following sections define the possible values for al members in the 802
substructure.

Destination Node Physical Address

The destination system physical address (DA) is a 48-bit unique value
assigned by the manufacturer to a station on an Ethernet or FDDI network.
For example, 08-00-2b-XX-XX-XX is avalid Ethernet or FDDI address, with
the Xs being replaced by hexadecimal digits. Thisis the address of the
remote system with which the application attempts to exchange packets. It

The Data Link Interface E-11

must be specified in the bi nd call, except when the 1/O control field is either
EXCLUSI VE or DEFAULT and the service access point (SAP) isa
SNAP_SAP type. The SAP must be specified in the sendt o call.

Service Class

The service class is avalue in the 802.2 substructure that determines the
capabilities and features provided by the Logical Link Control (LLC)
sublayer of the data link layer. The possible service classes are:

« TYPE1l

This value causes DLI to interpret al header information and provide
Class |, Type 1 service.

Note

When Type 1 serviceis used, the DLI software handles the
XI D and TEST packets. This is transparent to the
application.

DLI uses the source and destination service access points to determine
who should receive the message; it interprets the control field on behalf
of the user. Whether DL passes the data field to the user depends on the
value of the control field.

+ USER

This value provides few services. The user must, therefore, implement
most of the 802.2 protocol. In other words, the application must handle
the XI D and TEST packets. DLI uses the source and destination service
access points, but it passes the control field with the data to the user. The
user must interpret the control field. This mode must be selected if the
application needs to implement Class |1, Type 2 service.

Destination Service Access Point

The destination service access point (DSAP) is afield in the 802.2 frame that
identifies the application for which the message is intended.

You can use individual or group DSAPs to identify one user or a group of
users. You can use group DSAPs only when the service class is set to USER.
The possible values for this field are:

* Individua DSAPs
NULL_SAP — A DSAP consisting of all zeros. You can send TEST and

XI D commands and responses, but no data, to aNULL_SAP. (TEST
and Xl D are explained later in this section.) The datalink layer uses the

E-12 The Data Link Interface

NULL_SAP to talk to another data link layer, primarily for testing.

User-defined DSAP — ldentifies one user for whom the message is
intended. The user-defined individual DSAP must be an even number
greater than or equal to 2 and less than or equal to 254.

SNAP_SAP — The 802.3 Subnetwork Access Protacol.
* Group DSAP (user defined)

I dentifies more than one user for whom the message is intended. You
can send data to a maximum of 127 group DSAPs on one socket. The
user defined group DSAP must be an odd number greater than or equal to
3 and less than or equal to 255. Note that the 255 number is the global
SAP and must be enabled like any other group SAP. You can use group
SAPs only when the service classis set to USER.

Source Service Access Point

The source service access point (SSAP) is afield in the 802.2 frame that
identifies the address of the application that sent the message. You can
enable only one SSAP on a socket. The SSAP must be an even number
greater than or equal to 2 and less than or equal to 254.

Note

When using the SNAP_SAP, both the DSAP and SSAP must be
set to SNAP_SAP. |n addition, you must specify the protocol
identifier and control field. The protocol identifier is five bytes.
The control field is one byte. Enabling the SNAP_SAP is
allowed only when the service classis TYPEL.

Note aso that IEEE 802.2 standard reserves for its own
definition all SAP addresses with the second least significant bit
setto 1. Itissuggested that you use these SAP values for their
intended purposes, as defined in the IEEE 802.2 standard.

Control Field

The control field specifies the packet type. The following values are defined
for Class I, Type 1 service, and can also be used in the user-supplied mode to
provide Class |1, Type 2 service.

The Data Link Interface E-13

Note

An application using this user mode is responsible for providing
the correct services. For other operations supported by CLASS
Il service, see the |IEEE Sandards for Local Area Networks:
Logical Link Control, published by the Institute of Electrical and
Electronics Engineers, Inc.

» Exchange Identification

The value Xl D identifies the exchange identification command or
response. An 8-bit format identifier and a 16-bit parameter follow the

X1 D control field. The 16-bit parameter identifies the supported LLC
services and the receive window size. The LLC is the top sublayer in the
data link layer of the IEEE/Std 802 Local Area Network Protocol. The
following values of Xl D are defined in the DLI header file
<dli/dli_var.h>:

— XI D_PCMD

Exchange identification command with the poll bit set. The
exchange identification command conveys the types of LLC
services supported and the receive window size to the
destination LLC. This command causes the destination LLC to
reply with the XI D response Protocol Data Unit (PDU) at the
earliest opportunity. The poll bit is set to 1, soliciting a
response PDU.

— XI D_NPCMD

Exchange identification command with no poll bit set. This
command is identical to the previous command, except that you
clear the poll bit. No response is expected.

— XI D _PRSP

Exchange identification response with the poll bit set. The Data
Link layer uses the exchange identification response to reply to
an XI D command at the earliest opportunity. The XI D response
PDU identifies the responding LLC and includes an information
field like that defined for the XI D command PDU, regardless of
what information is present in the information field of the
recelved XI D command PDU. The fina bit is set to 1,
indicating that this response is sent by the LLC asareply to a
soliciting command PDU.

— XI D_NPRSP
Exchange identification response with no poll bit set. This

response is identical to the previous one, except that the final bit
is cleared.

E-14 The Data Link Interface

e LLC Protocol Data Unit Test

The value TEST identifies the LLC PDU command or response test. The
TEST control field can be followed by a datafield. The following values
of TEST are defined in the DLI header file<dl i / dl i _var. h>:

— TEST_PCMD

TEST command with the poll bit set. The TEST command tests
the LLC-to-LLC transmission path by causing the destination
LLC to respond with the TEST response PDU at the earliest
opportunity. An information field is optional with this control
field value. If used, the receiving LLC returns the information
rather than passing it to the user. The poll bit is set to 1,
soliciting a response PDU.

— TEST_NPCVD

TEST command with no poll bit set. This command is identical
to the previous command, except that the poll bit is cleared.

— TEST_PRSP

TEST response with the poll bit set. The TEST response PDU
isareply to the TEST command PDU. An information field, if
present in the TEST command PDU, is returned in the
corresponding TEST response PDU. The fina bit is set to 1,
indicating that this response is sent by the LLC asareply to a
soliciting command PDU.

— TEST_NPRSP

TEST response with no poll bit set. This response is identical
to the previous one, except that the final bit is cleared.

¢ Unnumbered Information Command

The unnumbered information command with no poll set (Ul _NPCVD)
sends information to one or more LLCs. The Ul _ NPCIVD command does
not have an LLC response PDU. This is usually passed up to the
application. Class |, Type 1 applications generally send and receive data
using this command.

E.4 Writing DLI Programs

This section explains how to use Digital UNIX system calls to write DLI
programs and describes procedures for specifying values within the Ethernet
and 802 substructures.

Section E.5 contains DLI programming examples of the procedures described
in this section.

The Data Link Interface E-15

E4.1

E.4.2

For additional information about how to use sockets and system calls to write
application programs, see Chapter 4.

Supplying Data Link Services

Because DLI provides only a datagram service, a DLI application should
provide the services that the higher levels of network software normally
provide:

* Fow control — DLI programs running on different systems must
synchronize data transfer or they will lose data.

» Error recovery — DLI reports errors, but your application must recover
from them.

» Data segmentation — Y our application must segment data during
transmission. (See Section E.4.7 for information about the buffer size for
Ethernet, 802.3 and FDDI packets.)

Using Digital UNIX System Calls

Your DLI program uses the socket interface with input arguments, structures,
and substructures specific to DLI. For example, when issuing the socket
system call, your program uses the address format AF_DL| and the protocol
DLPROTO DLI .

The beginning of any DLI program must include the header file
<dli/dli_var.h> Thenit should follow the calling sequence shown in
Table E-1.

Table E-1: Calling Sequence for DLI Programs

Function System Call
Create a socket. socket
Bind the socket to a device by specifying the address family, bi nd

the frame format type, and the device over which the
program will send the data using the sockaddr _dlI

structure.
Set socket options. This call is optional. set sockopt
Transfer data. send
recv
r ead
wite

E-16 The Data Link Interface

E.4.3

Table E-1: (continued)

Function System Call
sendt o
recvfrom

Deactivate the socket

descriptor. cl ose

See Chapter 4 and the reference page for each system call for more
information.

The following sections describe DLI functions, input arguments, and
structures.

Creating a Socket

Your DLI application must create a socket by using the socket system call
with the following input arguments:

Address family: AF_DLI
Socket type: SOCK_DGRAM
Protocol: DLPROTO DLI

The value AF_DLI specifies the DLI address family. SOCK_DGRAM creates
a datagram socket, which is the only type of socket that DLI allows. DLI
does not supply the services necessary for connecting to other programs and
for using other socket types. The value DLPROTO DLI specifiesthe DLI
protocol module.

The following example shows how the socket call is used to open a socket
to DLI:

int so;

if .((so = socket (AF_DLI, SOCK_DGRAM DLPROTO DLI)) <0)

perror("cannot open DLI socket");
return (-1);

The Data Link Interface E-17

E.4.4 Setting Socket Options

Usethe set sockopt cal to set the following socket options within the
sockaddr _dl structure:

Option Description
DLI _ENAGSAP Enables a group service access point (GSAP)
DLI _DI SGSAP Disables a group service access point (GSAP)

DLI _SET802CTL Sets the 802 control field

DLI _MULTI CAST Enables the reception of al messages addressed to a
multicast address

The following code examples show how to use the set sockopt call to set
the socket options.

The following example shows how the set sockopt call is used to enable
the GSAP option:

/* enabl e GSAPs supplied by user */
j =3
i =0
while (j < argc) {
sscanf (argv[j ++], "9%", &k);
out _opt[i++] = k;

optlen =i;

if

(set sockopt (sock, DLPROTO DLI, DLI _ENAGSAP, &out _opt [0], optlen) < 0){
perror("dli_setsockopt: Can’'t enabl e gsap");
exit(1);

}

The following example shows how the set sockopt call is used to disable
the GSAP option:

/* disable all but the last 4 or all GSAPs, */

/* whichever is smallest */

if (optlen > 4)
optlen -= 4;

if

(set sockopt (sock, DLPROTO DLI, DLI _DI SGSAP, &out _opt[0], optlen) < 0){
perror("dli_setsockopt: Can't disable gsap");

The following example shows how the set sockopt call is used to set the

E-18 The Data Link Interface

E.45

E.4.6

802 control field:

/* set 802 control field */

out _opt[0] = TEST_PCMD;

optlen = 1;

if

(set sockopt (sock, DLPROTO DLI, DLI _SET802CTL,

&out _opt [0], opt | en) <0) {
perror("dli_setsockopt: Can't set 802 control");
exit(1);

}

The following example shows how the set sockopt call is used to enable
two multicast addresses:

/* enable two nulticast addresses */
bcopy(ntast0, out_opt, sizeof(ntast0));
bcopy(nctast 1, out_opt+sizeof (ntast0), sizeof(nctastl));
if (setsockopt(sock, DLPROTO DLI, DLI_MJLTI CAST, &out_opt[0],
(sizeof (ncast0) + sizeof(ncrastl))) <0) {
perror("dli_setsockopt: can't enable nulticast");

See Section E.5 for more detailed code examples.

Binding the Socket

After you create the socket, your application must bind the socket to a
network device. At this point, you specify the type of format for the message.
Y ou assign a name to the socket, where the variable nane is a pointer to a
structure of the type sockaddr _dl . Then, you must fill in the

sockaddr _dl data structure and include the appropriate substructure
(Ethernet or 802).

To bind the socket, use the following system call:
int bind,(
int socket,

struct sockaddr_dl *name,
int namelen);

For more information about the bi nd system call, see the bi nd(2) reference
page.

Filling in the sockaddr_dl Structure

Fill in the sockaddr _dl structure with the following information:
* Address family

* 1/OdevicelD

» Substructure type

The Data Link Interface E-19

E.4.6.1 Specifying the Address Family
To specify the address family, use the value AF_DLI inthe socket call.

E.4.6.2 Specifying the I/O Device ID

The 1/O device is the controller over which your program sends and receives
data to and from the target system. The I/O device ID consists of the device
name, dl i _devnarme, and the device number, dl i _devnumnber .
Definitions for each variable follow:

« dli _devnane
Thenet st at —i command lists the devices that are available on your
system.

* dli_devnunber
The device number is set up in the system configuration file.

E.4.6.3 Specifying the Substructure Type

The substructure specifies the type of frame format that the program will use.
Definitions for each variable follow:

« dli_eaddr

Ethernet frame format (DLI _ ETHERNET)
e dli_802addr

802.3 frame format (DLI _802)

A program can send and receive Ethernet, 802.3, and FDDI frames, as long
as it has a socket associated with each type. For example, your DLI program
might communicate with one system using the Ethernet frames and another
system using 802.3 or FDDI frames. Y our choice of frame formats depends
on the frame types used by the target program; however, only one type of
frame per socket is allowed.

Y our program specifies the packet header for sending your message by filling
in the substructure of your choice. Example E-1 shows how to fill the
sockaddr _dl structure for the Ethernet protocol. Example E-2 shows how
to fill the sockaddr _dl structure for the 802 protocol:

E-20 The Data Link Interface

Example E-1: Filling the sockaddr_dl structure for Ethernet

/*
* Fill out the sockaddr_dl structure for the bind call
*/

bzer o(&out _bi nd, si zeof (out_bind));

out_bind.dli_famly = AF_DLI;

out _bind. dli_substructype = DLI _ETHERNET;

bcopy(devnane, out_bind.dli_device.dli_devnane, i);

out _bind. dli_device.dli_devhunber = devunit;

out _bi nd. choose_addr.dli _eaddr.dli _ioctlflg = ioctl;
out _bi nd. choose_addr. dli _eaddr.dli_protype = ptype;
if (taddr)

bcopy(taddr, out_bind. choose_addr.dli_eaddr.dli_target,
DLI _EADDRSI ZE) ;

if (bind(sock, &out_bind, sizeof(out_bind)) < 0)

{
perror("dli_eth, can’t bind DLI socket");
return(-1);
}
return(sock);

}

Example E-2: Filling the sockaddr_dlI structure for 802.2

/
Fill out sockaddr_dl structure for the bind call.

Note that we need to determ ne whether the

control field is 8 bits (unnunbered format) or

16 bits (informational/supervisory format). W do this

by checking the |low order 2 bits, which are both 1 only
* for unnunbered control fields.
*/

bzer o(&out _bi nd, sizeof (out_bind));

out_bind.dli_famly = AF_DLI;

out _bind.dli_substructype = DLI_802;

bcopy(devnane, out_bind.dli_device.dli_devnane, i);

out _bind.dli_device.dli_devnunber = devunit;

E N

out _bi nd. choose_addr. dli _802addr.ioctl = ioctl;
out _bi nd. choose_addr. dl i _802addr.svc = svc;
if(ctl & 3)

out _bi nd. choose_addr. dli _802addr.eh_802.ctl. U fnm=(u_char)ctl;
el se

out _bi nd. choose_addr. dli _802addr.eh_802.ctl.lI_S fnt = ctl;
out _bi nd. choose_addr. dl i _802addr. eh_802. ssap = sap;
out _bi nd. choose_addr. dli _802addr. eh_802. dsap = dsap;
if (ptype)

bcopy(ptype, out _bi nd. choose_addr. dl i _802addr. eh_802. osi _pi, 5);
if (taddr)

bcopy(taddr, out_bind. choose_addr. dl i _802addr. eh_802. dst,
DLI _EADDRSI ZE) ;

The Data Link Interface E-21

E.4.7

E.4.8

Example E-2: (continued)

if (bind(sock, &out_bind, sizeof(out_bind)) <0)
perror("dli_802, can’t bind DLI socket");
return(-1);

}

return(sock);

}

Calculating the Buffer Size

The buffer size must be no larger than the controllers on the communicating
systems can handle, or you will lose data. The maximum buffer size for
Ethernet packets is 1500 bytes.
The maximum buffer size for 802.3 packets is calculated as follows:
bytes = 1500 - [2 + (control field == U? 1:2) +
(Source SAP == SNAP SAP ? 5:0)]

The number of bytesin the control field and in the Sour ce SAP are
specified in the bi nd call.

The maximum buffer size for FDDI packets 4352 bytes.

Transferring Data

A DLI program can usethewr i t e, send, or sendt o callsto send data
and ther ead, recv, orrecvf romcalsto receive data The X’sin Table
E-2 indicate the conditions under which you can use the system callsas a
function of the I/O control flag set up during the bi nd call.

Note

You must set the target address in the bi nd call when using the
Normal control flag. You do not need to set the target addressin
the bi nd call when using the Exclusive or Default control flags.
However, if you do not set the target address then you must use

the sendt o and r ecvf r omsystem calls.

Table E-2: Data Transfer System Calls Used With DLI

System Calls Normal Exclusive Default
Control Control Control

wite X

send X

E-22 The Data Link Interface

Table E-2: (continued)

System Calls Normal Exclusive Default
Control Control Control

sendto X X X

read X

recv X

recvfrom X X X

When you set the control flag to NORMAL, set the target addressin the bi nd
call. Then use any of the following calls to transfer data: wri t e, send,
sendt o, read, recv, recvfrom

When you set the control flag to EXCLUSI VE, make the value of the target
addressin the bi nd call zero. Then, set the target addressin the sendt o
call. Useonly thesendt o and r ecvfromecallsto transfer data.

When you set the control flag to DEFAULT, make the value of the target
address in the bi nd call zero. Then use the sendt o call to send data and
set the target address in that call. Use the r ecvf r omcall to determine the
source address of any data.

E.4.9 Deactivating the Socket

When you have finished sending or receiving data, deactivate the socket by
issuing the cl ose system call.

E.5 DLIProgramming Examples

This section includes the following DLI programming examples.

* A sample DLI client program using Ethernet format packets

» A sample DLI server program using Ethernet format packets

» A sample DLI client program using 802.3 format packets

* A sample DLI server program using 802.3 format packets

. Aaﬁample DLI program using get sockopt and set sockopt system

cals

These programming examples are also available on line in the
[usr/ exanpl es/ dl i directory.

The Data Link Interface E-23

E.5.1 Sample DLI Client Program Using Ethernet Format Packets

#
#
#
#
#
#
#i
#i
#i
#i
#i
#i

/

¥k ok sk ok ok ok ok Ok Ok R R R % Rk 3k 3k 3k 3k ok Ok Ok Ok kX X F

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

<stdi o. h>
<errno. h>
<string. h>
<menory. h>
<stdlib. h>
<uni std. h>
<sys/types. h>
<sys/ socket . h>
<sys/ioctl.h>
<net/if.h>
<net/route. h>
<dli/dli_var.h>

pl e: dl i e

t h

is used.

The et her net

This program sends out a nmessage to a node where a
conpani on program dli_ethd
The ethernet packet format

echoes the nmessage back

address of the node where the conpani on programis

the protocol type

and the nessage are

by the user. The conpani on program should

be started before executing this program

target address, protoco

dl i _exam
Descri ption
runni ng
suppl i ed
I nput s: devi ce
Qut put s: Exit status

To conpile: cc -o d

i_eth dli_eth.c

type,

dli_eth I n0O 08-00-2b-02-e2-ff 6006 "Echo this"

Thi s exanpl e denpbnstrates the use of the "NORVAL"
The use of the "NORMAL" flag neans that

short message

110

we can communicate only with a single specific node

whose address is specified during the bind
we can use the norna

Because
wite & read system

the socket, because the source/destination of
that is read/witten on the socket is fi

Exanpl e
Conment s:
control flag
of this,
calls on
all data
/
/*
* Digita
* an "as-is" basis for
* does not offer any support for it,
* of Digital’s support contracts
*/
mai n(
int argc,
char **argv)
{

struct sockaddr _dl s
size_t sdllen

int ch, fd, rsize, itarget[6], ptype
u_char inbuf[4800],

E—24 The Data Link Interface

dl

u_char *src

ioctlflg

Note that Digita
nor is it covered under any

DLI _NORMAL,

xed

Equi pnent Corporation supplies this software exanple on
general customer use

errflg

0;

menset (&sdl, 0, sizeof(sdl));
while ((ch = getopt(argc, argv, "xp:")) != EOF) {
case 'x': ioctlflg = DLI _EXCLUSI VE; break;
case 'p’:
if (sscanf(optarg, "%", &ptype, &ch) '= 1) {
fprintf(stderr, "%: invalid protocol type "s
argv[0], optarg);

errfl g++;
br eak;
}
}
defaul t: errfl g++; break;
}

if (errflg || argc - optind < 5) {
fprintf(stderr, "% % %\n",

"usage: ",
argv[0],
"devi ce | an-address short-nmessage");
exit(1);
/*

* Get device nane and unit nunber.

*

/

if (sscanf(argv[optind], "% a-z]%d%", sdl.dli_device.dli_devnane,
&sdl . dli _device.dli_devnunber, &ch) '= 2) {
fprintf(stderr, "%: invalid device name
argv[0], argv[optind]);
exit(1l);

/*
* Get the address to which we will be sending
*/
if (sscanf(argv[++optind], "WW%[:-]WW[:-]1WW[:-]\
XY [-] W[-] W%",

& target[0], & target[1l], & target[2],

& target[3], & target[4], & target[5], &h) !'=6) {
fprintf(stderr, "%: invalid | an address

argv[0], argv[optind]);

exit(1l);
/*
* If the LAN Address is a nulticast, then we can’'t
* use DLI _NORMAL. Use DLI_DEFAULT i nstead.
*/

if ((itarget[0] & 1) && ioctflg == DLI _NORMAL)
ioctlflg = DLI _DEFAULT;

/*
* fill out sockaddr structure for bind/sento/recvfrom
*/
sdl.dli_famly = AF_DLI;
if (ptype < GLOBAL_SAP) {
sdl . dli_substructype = DLI_802;
sdl . choose_addr. dli _802addr.ioctl = ioctlflg;
sdl . choose_addr. dl i _802addr.svc = TYPEL;
sdl . choose_addr . dl i _802addr. eh_802. dsap = ptype;

The Data Link Interface E-25

sdl . choose_addr. dl i _802addr. eh_802. ssap = ptype;

sdl . choose_addr. dl i _802addr.eh_802.ctl. U fnt = U _NPCVD;

src = sdl.choose_addr. dli_802addr. eh_802. dst;
} else {
sdl . dl i _substructype = DLI _ETHERNET;
sdl . choose_addr.dli_eaddr.dli _ioctlflg = ioctlflg;
sdl . choose_addr.dli _eaddr.dli_protype = ptype;
src = sdl.choose_addr.dli_eaddr.dli_target;

}

/*

* |f we are using DLI_NORMAL, we nust supply

*/

if (ioctlflg == DLI _NORMAL) {
src[0] = itarget[0]; src[l] = itarget[1]; src[2] =
src[3] = itarget[3]; src[4] = itarget[4]; src[5] =

}

/*

itarget[2];
itarget[5];

* Open a socket to DLI and then bind to our protocol/address.

*/

if ((fd = socket (AF_DLI, SOCK DGRAM DLPROTO DLI)) < 0) {

fprintf(stderr, "%: DLI open failed: %\n",
argv[0], strerror(errno));
exit(1l);

if (bind(fd, (struct sockaddr *) &sdl, sizeof(sdl)) < 0) {

fprintf(stderr, "%: DLI bind failed: %\n",
argv[0], strerror(errno));
exit(2);

if (ioctlflg !'= DLI _NORMAL) {
src[0] = itarget[0]; src[1]
src[3] itarget[3]; src[4]
}

/* send response to originator. */

sdl l en = sizeof (sdl);

if (sendto(fd, argv[4], strlen(argv[4]), O,
(struct sockaddr *) &sdl, sdllen) < 0) {

itarget[1]; src[2] =
itarget[4]; src[5] =

fprintf(stderr, "%: DLI transm ssion failed: %\n"

argv[0], strerror(errno));
exit(1l);

if ((rsize = recvfrom(fd, inbuf, sizeof(inbuf), O,

itarget[2];
itarget[5];

(struct sockaddr *) &sdl, &sdllen)) <0) {

fprintf(stderr, "%: DLI reception failed: %\n",
argv[0], strerror(errno));

exit(1);

}

/* check header */

if (sdllen != sizeof(struct sockaddr_dl)) {
fprintf(stderr, "%, incorrect header supplied\n",
exit(1l);

}

if (fromdli_substructype == DLI_802)

E—26 The Data Link Interface

argv[0]);

src
el se
src = fromdli_choose_addr.dli_eaddr.dli_target;

fromdli_choose_addr.dli_802addr. eh_802. dst;

/* any data? */
fprintf(stderr, "%: Y%data received from", argv[O0]
rsize ? "" : "NO");
fprintf(stderr, "%02x-%02x-%02x- %02x- %O2x- %02x" ,
src[0], src[1], src[2], src[3], src[4], src[5]);
if (fromdli_substructype == DLI_802)
fprintf(stderr, " SAP 9%92x\n\n",
sdl . choose_addr . dl i _802addr. eh_802. ssap & ~1)
el se
fprintf(stderr, " on protocol type %94x\n\n",
sdl . choose_addr. dl i _eaddr.dli _protype)

/* print results */
printf("%\n", inbuf)
close(fd);

return O

E.5.2 Sample DLI Server Program Using Ethernet Format Packets

#i fndef |int

static char *rcsid = "@#)$RCSfile: netprog.ap-dli,v $\
$Revision: 1.1.8.7 $ (DEC) $Date: 1996/ 02/01 21:37:40 $"

#endi f

#i ncl ude <stdio. h>

#i ncl ude <ctype. h>

#i ncl ude <errno. h>

#i ncl ude <strings. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <net/if.h>

#i ncl ude <netinet/in.h>
#i ncl ude <netinet/if_ether.h>
#include <dli/dli_var.h>
#i ncl ude <sys/ioctl.h>

extern int errno

/*
* dl i _exampl e:dl i _ethd
*
* Description: This daenpbn programtransnits any nmessage it
* receives to the originating system i.e., it echoes the
* message back. The device and protocol type are supplied
* by the user. The program uses ethernet format packets
*
* | nputs: devi ce, protocol type
*
* Qut puts: Exit status
*
* To conpile: cc -o dli_ethd dli_ethd.c
*

The Data Link Interface E-27

Exanpl e: dli _ethd de0 6006

Comment s: Thi s exanpl e denonstrates the use of the "DEFAULT"
I1/O control flag, and the recvfrom & sendto systemcalls.
By specifying "DEFAULT" when binding the DLI socket to
the device we informthe systemthat this programw ||
receive any ethernet format packet with the given
protocol type which is not nmeant for any other program
on the system Since packets may arrive from

different systens we use the recvfromcall to read the
packets. This call gives us access to the packet

header information so that we can determ ne where the
packet came from Wen we wite on the socket we nust
use the sendto systemcall to explicitly give the
destination of the packet.

*
* Digital Equi pnent Corporation supplies this software

* exanple on an "as-is" basis for general custoner use. Note
* that Digital does not offer any support for it, nor is it

* covered under any of Digital’s support contracts.

*

mai n(argc, argv, envp)
int argc;
char **argv, **envp;

{

u_char inbuf[1500], outbuf[1500];
u_char devnane[16];
u_char target_eaddr[6];

char *cp;

int rsize;

unsi gned int devunit;
int i, sock, fronlen;

unsi gned int ptype;
struct sockaddr _dl from

if (argc < 3)

fprintf(stderr,
"usage: % device hex-protocol-type\n", argv[O0]);
exit(1);
}

/* get device name and unit nunber. */
bzer o(devnane, sizeof(devnane));

i =0;

cp = argv[1];

while (isal pha(*cp))
devnane[i ++] = *cp++;

sscanf (cp, "%l", &devunit);

/* get protocol type */
sscanf (argv[2], "%", &ptype);

/* open dli socket */
if

E—28 The Data Link Interface

-~

L I T N

((sock = dli_econn(devnane, devunit, ptype, NULL, \
DLl _DEFAULT)) <0)
{

perror("dli_ethd, dli_econn failed");
exit(1);

while (1) {
/* wait for nmessage */
fromdli_famly = AF_DLI;
from en = sizeof (struct sockaddr_dl);
if ((rsize = recvfrom(sock, inbuf, sizeof(inbuf),

NULL, & rom & romen)) <0) {
sprintf(inbuf, "%: DLI reception failed", argv[0]);
perror (inbuf);
exit(2);

/* check header */

if (fromen != sizeof(struct sockaddr_dl)) {
fprintf(stderr,"%, incorrect header supplied\n",argv[0]);
conti nue;

}

/* any data? */
if (! rsize)
fprintf(stderr, "%, NO data received from", argv[0]);
el se
fprintf(stderr, "%, data received from", argv[0]);
for (i =0; i <6; i++)
fprintf(stderr, "%%",
from choose_addr.dli _eaddr.dli_target[i],
((i<5)?"-":" ")),
fprintf(stderr, "on protocol type %\n",
from choose_addr.dli _eaddr.dli_protype);

/* send response to originator. */

if (sendto(sock, inbuf, rsize, NULL, & rom fromen) <0) {
sprintf(outbuf, "%: DLI transmission failed", argv[0]);
perror (out buf);

exit(2);

}

}
dl i _econn

Descri ption:

Thi s subroutine opens a dli socket, then binds an associ at ed

devi ce nane and protocol type to the socket.
I nput s:

devnane = ptr to device nane

devuni t = device unit nunber

ptype = protocol type

t addr = target address

ioctl =io control flag

The Data Link Interface E-29

Qut put s:
returns = socket handle if success, otherwi se -1

ko ok ok ok k%

/

dli _econn(devnane, devunit, ptype, taddr, ioctl)
char *devnane;

unsi gned devunit;

unsi gned ptype;

u_char *taddr;

u_char ioctl;

{
int i, sock;
struct sockaddr_dl out_bind;
if ((i =strlen(devnane)) >
si zeof (out _bi nd. dl i _devi ce. dl i _devnhane))
{
fprintf(stderr, "dli_ethd: bad device nane");
return(-1);
}
if ((sock = socket(AF_DLI, SOCK DGRAM DLPROTO DLI)) < 0)
{
perror("dli_ethd, can’t open DLI socket");
return(-1);
}
/*
* fill out bind structure
*/
bzer o(&out _bi nd, si zeof (out_bind));
out_bind.dli_famly = AF_DLI;
out _bind.dli_substructype = DLI _ETHERNET;
bcopy(devnane, out_bind.dli_device.dli_devnane, i);
out _bind.dli_device.dli_devnunber = devunit;
out _bi nd. choose_addr.dli_eaddr.dli _ioctlflg = ioctl;
out _bi nd. choose_addr.dli _eaddr.dli_protype = ptype;
if (taddr)
bcopy(taddr, out_bind. choose_addr.dli _eaddr.dli_target,
DLI _EADDRSI ZE) ;
if (bind(sock, &out_bind, sizeof(out_bind)) <0)
{
perror("dli_ethd, can’t bind DLI socket");
return(-1);
}
return(sock);
}

E-30 The Data Link Interface

E.5.3 Sample DLI Client Program Using 802.3 Format Packets

#i fndef 1int
static char *sccsid = "@#)dli_802.¢ 1.1 (DEC OSF/ 1) 5/29/92";
#endi f 1int

#i ncl ude <stdio. h>

#i ncl ude <ctype. h>

#i ncl ude <errno. h>

#i ncl ude <strings. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <net/if.h>

#i ncl ude <netinet/in.h>
#i ncl ude <netinet/if_ether.h>
#include <dli/dli_var.h>
#i ncl ude <sys/ioctl.h>

extern int errno

#defi ne PROTOCOL_I D {0x00, 0x00, 0x00, 0x00, Ox5}
u_char protocolid[] = PROTOCOL_I D;

/*
* dl i _exampl e:dl i _802
*
* Description: This program sends out a nessage to a system
* where a conpani on program dli_802d, echoes the nmessage
* back. The 802.3 packet format is used. The ethernet
* address of the system where the conpanion programis
* running, the sap, and the nmessage are supplied by the
* user. The conpani on program shoul d be started before
* executing this program
*
* | nputs: devi ce, target address, sap, short nmessage
*
* Qut puts: Exit status
*
*/
#i fndef |int

static char *rcsid = "@#)$RCSfile: netprog.ap-dli,v $\
$Revision: 1.1.8.7 $ (DEC) $Date: 1996/02/01 21:37:40 $"
#endi f

#i ncl ude <stdio. h>

#i ncl ude <ctype. h>

#i ncl ude <errno. h>

#i ncl ude <strings. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <net/if.h>

#i ncl ude <netinet/in.h>
#i ncl ude <netinet/if_ether.h>
#include <dli/dli_var.h>
#i ncl ude <sys/ioctl.h>

extern int errno

The Data Link Interface E-31

#define PROTOCOL_I| D {0x00, 0x00, 0x00, O0x00, Ox5}
u_char protocolid[] = PROTOCOL_I D

dl i _exampl e: dl i _802

Description: This program sends out a nessage to a system
where a conpani on program dli_802d, echoes the nmessage
back. The 802.3 packet format is used. The ethernet
address of the system where the conpanion programis
runni ng, the sap, and the message are supplied by the
user. The conpani on program shoul d be started before
executing this program

I nput s: device, target address, sap, short nessage.
Qut put s: Exit status.

To conpile: <cc -o dli_802 dli_802.c

Exanpl e: dli _802 qe0 08-00-2b-02-e2-ff ac "Echo this"

Coment s: Thi s exanpl e denpnstrates the use of 802 "TYPELl"
service. Wth TYPEl service, the processing of
XI D and TEST nmessages is handl ed transparently by
DLI, i.e., this program doesn’'t have to be concerned
with handling them |If the SNAP SAP (OxAA) is
selected, a 5 byte protocol id is also required.
Thi s exanpl e automatically uses a protocol id of
of PROTOCOL_I D when the SNAP SAP is used. Also,
note the use of DLI_NORVAL for the i/o control flag.
DLI mekes use of this only when that SNAP_SAP/ Prot ocol
ID pair is used. DLI will filter all incom ng nessages
by conparing the Ethernet source address and Protocol
I D against the target address and Protocol ID set up
inthe bind call. Only if a match occurs will DLI
pass the nessage up to the application.

$ock sk ok ok ok Ok R R R R Rk ok 3k 3k 3k ok ok Ok Ok R % k% Rk 3k 3k 3k 3k ok ok Ok %

Di gi tal Equi pnent Corporation supplies this software
exanpl e on an "as-is" basis for general custonmer use. Note
that Digital does not offer any support for it, nor is it
covered under any of Digital’'s support contracts.

/

E N

mai n(argc, argv, envp)
int argc;
char **argv, **envp;

{

u_char inbuf[1500], outbuf[1500];
u_char target_eaddr[6];

u_char devnane[16];

int rsize, devunit;

char *cp;

int i, sock, fronlen;

struct sockaddr_dl from

E—32 The Data Link Interface

unsi gned int obsiz, byteval;
u_int sap;
u_char *pi = 0;

if (argc <5)
{

fprintf(stderr, "% % %\n",

"usage: ",

argv[0],

"devi ce ethernet-address hex-sap short-nessage");
exit(1);

/* get device name and unit nunber. */
bzer o(devnane, sizeof(devnane));

i =0;

cp = argv[1];

while (isal pha(*cp))
devnane[i ++] = *cp++;

sscanf (cp, "%l", &devunit);

/* get phys addr of renote system */
bzero(target _eaddr, sizeof(target_eaddr));
i =0;
cp = argv[2];
while (*cp) {
if ((*ep=="-"){
cp++;
conti nue;

el se {
sscanf (cp, "9@x", &byteval);
target _eaddr[i++] = byteval;
cp += 2;

}

/* get sap */
sscanf (argv[3], "%", &sap);

/* get nessage */

bzero(out buf, sizeof (outbuf));

if ((obsiz = strlen(argv[4])) > 1500) {
fprintf(stderr, "%: nessage is too long\n", argv[O0]);
exit(2);

}
strcpy(out buf, argv[4]);

/* open dli socket. notice that if (and only if) the */

/* snap sap was selected then a protocol id nust also */

/* be provided. */

if (sap == SNAP_SAP)
pi = protocolid;

if ((sock = dli_802_3 conn(devnane, devunit, pi, target_eaddr,

DLI _NORMAL, TYPEL, sap, sap, U _NPCMD)) < 0) {

perror("dli_802, dli_econn failed");
exit(3);

The Data Link Interface E-33

/* send nessage to target. mnimum message size is 46 bytes. */

if (wite(sock
sprintf (outbuf,
perror (out buf)

exit(4)

out buf, (obsiz < 46 ? 46

obsiz)) <0) {

"%: DLI transmission failed", argv[0])

/* wait for response fromcorrect address */

while (1) {

bzero(& rom sizeof (from)
fromdli_famly = AF_DLI

fromen =
if ((rsize

si zeof (struct sockaddr_dl)
recvfrom(sock, inbuf, sizeof(inbuf)

NULL, & rom & romen)) <0) {

sprintf(inbuf, "%: DLI reception failed", argv[0])
perror (i nbuf)

exit(5)

if (fromen != sizeof(struct sockaddr_dl)) {
fprintf(stderr,"%, invalid address size\n",argv[O0])

exit(6)

if (bcrp(from choose_addr. dl i _802addr. eh_802. dst,

}

if (! rsize) {
fprintf(stderr,

exit(7)
}

/* print message */
printf("%\n",

cl ose(sock)

-~

k& ok Ok R R R % Rk 3k 3k 3k 3k ok Ok Ok Ok

d

Descri ption

| nput s:
devnane
devuni t
ptype
t addr
i oct
svec
sap
dsap
ct

E—34 The Data Link Interface

target _eaddr, sizeof(target_eaddr)) == 0)
br eak;

"%, no data returned\n", argv[O0])

i nbuf);

80

2 _3 _conn

Thi s subroutine opens a dli 802.3 socket, then binds an
associ ated device nanme and protocol type to the socket.

ptr to device nane
devi ce unit nunber
protocol type
target address

io control flag
service cl ass
source sap
destination sap
control field

Qut put s:
returns = socket handle if success, otherwi se -1

ko ok ok ok k%

/

dli _802_3 conn (devnane, devunit, ptype, taddr,ioctl, svc, sap, dsap, ctl)
char *devnane;

u_short devunit;

u_char *ptype;

u_char *taddr;

u_char ioctl;

u_char svc;

u_char sap;

u_char dsap;

u_short ctl;

t
int i, sock;
struct sockaddr_dl out_bi nd;

if ((i =strlen(devnane)) >
si zeof (out _bind. dli_device.dli_devnane))

{
fprintf(stderr, "dli_802: bad device nane");
return(-1);

}

if ((sock = socket (AF_DLI, SOCK DGRAM DLPROTO DLI)) < 0)

perror("dli_802, can't open DLI socket");
return(-1);

~

ko ok ok ok k%

fill out bind structure. note that we need to deternine
whether the ctl field is 8 bits (unnunbered format) or
16 bits (informational/supervisory format). W do this
by checking the |low order 2 bits, which are both 1 only
for unnunbered control fields.

/

bzer o(&out _bi nd, si zeof (out_bind));

out_bind.dli_famly = AF_DLI;

out _bind.dli_substructype = DLI_802;

bcopy(devnane, out_bind.dli_device.dli_devnane, i);

out _bind. dli_device.dli_devhunber = devunit;

out _bi nd. choose_addr.dli _802addr.ioctl = ioctl;
out _bi nd. choose_addr. dl i _802addr. svc = svc;
if(ctl & 3)
out _bi nd. choose_addr. dl i _802addr. eh_802.ctl. U_fnt=\
(u_char)ctl;
el se
out _bi nd. choose_addr.dli _802addr.eh_802.ctl.l_S fnt =\
ctl;

out _bi nd. choose_addr. dli _802addr. eh_802. ssap = sap;
out _bi nd. choose_addr. dl i _802addr. eh_802. dsap =

if (ptype)
bcopy(ptype, out _bi nd. choose_addr . dl i _802addr . eh_802. osi _pi , \

The Data Link Interface E-35

5);

if (taddr)

bcopy(taddr, out_bind. choose_addr. dl i _802addr. eh_802. dst,

DLI _EADDRSI ZE) ;

if (bind(sock, &out_bind, sizeof(out_bind)) < 0)
{

perror("dli_802, can't bind DLI socket")

return(-1);

}

return(sock);

E.5.4 Sample DLI Server Program Using 802.3 Format Packets

#i fndef |int
static char *rcsid = "@#)$RCSfile: netprog.ap-dli,v $\

$Revision: 1.1.8.7 $ (DEC) $Date: 1996/02/01 21:37:40 $"
#endi f

#i ncl ude <stdio. h>

#i ncl ude <ctype. h>

#i ncl ude <errno. h>

#i ncl ude <strings. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <net/if.h>

#i ncl ude <netinet/in.h>
#i ncl ude <netinet/if_ether.h>
#include <dli/dli_var.h>
#i ncl ude <sys/ioctl.h>

extern int errno

#defi ne PROTOCOL_I D {0x00, 0x00, 0x00, 0x00, Ox5}
u_char protocolid[] = PROTOCOL_I D;

To conpile: cc -o dli_802d dli_802d.c

Exanpl e: dli_802d de0 ac

/*
* dl i _exampl e: dl i _802d
*
* Description: This daenmpbn programtransnits any nmessage it
* receives to the originating system i.e., it echoes the
* message back. The device and sap are supplied by the
* user. The programuses 802.3 format packets
*
* | nputs: devi ce, sap
*
* Qut puts: Exit status
*
*
*
*
*
*
*

Comments: This exanpl e denonstrates the recvfrom & sendto
systemcalls. Since packets may arrive fromdifferent

E—36 The Data Link Interface

systens we use the recvfromcall to read the packets.
This call gives us access to the packet header information
so that we can determ ne where the packet canme from

Wen we write on the socket we nust use the sendto
systemcall to explicitly give the destination of

the packet. The use of the "DEFAULT" I/O control flag
only applies (i.e. only has an affect) when the SNAP SAP
is used. When the SNAP SAP is used, any arriving packets
whi ch have the specified protocol id and which are not
destined for sone other programw |l be given to this
program

ok ok ok Ok Ok kR % K X k%

Di gi tal Equi pnent Corporation supplies this software

exanpl e on an "as-is" basis for general customer use.

Note that Digital does not offer any support for it, nor

is it covered under any of Digital’s support contracts.
/

I

mai n(argc, argv, envp)
int argc;
char **argv, **envp;

{

u_char inbuf[1500], outbuf[1500];
u_char devnane[16];
u_char target_eaddr[6];

char *cp;
int rsize, devunit;
int i, sock, fronen;

u_char tnpsap, sap;
struct sockaddr_dl from
u_char *pi = 0;

if (argc < 3)

fprintf(stderr, "usage: % device hex-sap\n", argv[0]);
exit(1);

/* get device name and unit nunber. */
bzer o(devnane, sizeof(devnane));

i =0;

cp = argv[1];

while (isal pha(*cp))
devnane[i ++] = *cp++;

sscanf (cp, "%l", &devunit);

/* get sap */
sscanf (argv[2], "%", &sap);

/* open dli socket. note that if (and only if) the snap sap */
/* was selected then a protocol id must also be specified. */
if (sap == SNAP_SAP)
pi = protocolid;
if ((sock = dli_802_3 conn(devnane, devunit, pi, target_eaddr,
DLI _DEFAULT, TYPE1l, sap, sap, U _NPCMD)) < 0) {

The Data Link Interface E-37

perror("dli_802d, dli_conn failed");
exit(1);

/* listen and respond */
while (1) {
/* wait for nmessage */
fromdli_famly = AF_DLI;
from en = sizeof (struct sockaddr_dl);
if ((rsize = recvfrom(sock, inbuf, sizeof(inbuf), NULL,
& rom & romen)) <0) {
sprintf(inbuf, "%: DLI reception failed", argv[0]);
perror (i nbuf);
exit(2);

/* check header */
if (fromen != sizeof(struct sockaddr_dl)) {
fprintf(stderr,"%, incorrect header supplied\n",\

argv[0]);

conti nue;
}
/*
* Note that DLI swaps the source & destination saps and
* | an addresses in the sockaddr_dl structure returned
* by the recvfromcall. That is, it places the DSAP in
* eh_802.ssap and the SSAP in eh_802.dsap; it al so pl aces
* the destination |lan address in eh_802.src and the source
* |an address in eh_802.dst. This allows for mniml to
* no mani pul ation of the address structure for subsequent
* sendto or dli connection calls.
*/

/* any data? */
if (! rsize)
fprintf(stderr, "%: NO data received from", \

argv[0]);
el se
fprintf(stderr, "%: data received from", argv[0]);
for (i =0; i <6; i++)

fprintf(stderr, "%%",
from choose_addr. dl i _802addr.eh_802.dst[i],
((i<5)?2"-":" ")),
fprintf(stderr, "\n on dsap % ",
from choose_addr. dl i _802addr. eh_802. ssap) ;
if (fromchoose_addr.dli_802addr.eh_802. dsap ==
SNAP_SAP)
fprintf(stderr,
"(SNAP SAP), protocol id = - %- %- %&- %\ n
from choose_addr. dl i _802addr. eh_802. osi _pi[0],
from choose_addr. dl i _802addr. eh_802. osi _pi[1],
from choose_addr. dl i _802addr. eh_802. osi _pi[2],
from choose_addr. dl i _802addr. eh_802. osi _pi[3],
from choose_addr. dl i _802addr.eh_802. osi _pi[4]);
fprintf(stderr, " fromssap % ",
from choose_addr. dl i _802addr. eh_802. dsap) ;
fprintf(stderr, "\n\n");

/* send response to originator. */

E—38 The Data Link Interface

if (fromchoose_addr.dli_802addr.eh_802. dsap ==

SNAP_SAP)
bcopy(protocolid,

from choose_addr. dl i _802addr. eh_802. osi _pi, 5);

if (sendto(sock, inbuf,

rsize, NULL, & rom fronlen) \

<0){
sprintf(outbuf, "%: transm ssion failed", \
argv[0]);
perror (out buf);
exit(2);
}
}

}
/*
* dl i _ 802 3 _conn
*
*
*
* Description:
* This subroutine opens a dli 802.3 socket, then binds an
* associ ated devi ce nanme and protocol type to the socket.
*
* | nputs:
* devnane = ptr to device nane
* devuni t = device unit nunber
* ptype = protocol type
* t addr = target address
* ioctl = io control flag
* svec = service class
* sap = source sap
* dsap = destination sap
* ctl = control field
*
*
* Qutputs:
* returns = socket handle if success, otherw se -1
*
*
*

-~

dli _802_3_conn (devnane, devunit, ptype, taddr,ioctl, svc, sap,\

dsap, ctl)

char *devnane;
u_short devunit;
u_char *ptype;
u_char *taddr;
u_char ioctl;
u_char svc;
u_char sap;
u_char dsap;
u_short ctl;
{

int i, sock;

struct sockaddr_dl out_bind;

if ((i =strlen(devnane)) >

si zeof (out _bi nd. dl i _devi ce. dl i _devnhane))

{
fprintf(stderr,

"dli_802d: bad device nanme");

The Data Link Interface E-39

return(-1);

}
if ((sock = socket(AF_DLI, SOCK_DGRAM DLPROTO DLI)) < 0)
{
perror("dli_802d, can’t open DLI socket");
return(-1);
}
/*
* fill out bind structure. note that we need to determ ne
* whether the ctl field is 8 bits (unnunbered format) or
* 16 bits (informational/supervisory format). W do this
* by checking the low order 2 bits, which are both 1 only
* for unnunbered control fields.
*

/

bzer o(&ut _bi nd, sizeof (out_bind));
out_bind.dli_famly = AF_DLI;

out _bind.dli_substructype = DLI_802;

bzer o(&out _bi nd, si zeof (out_bind));
out_bind.dli_famly = AF_DLI;

out _bind.dli_substructype = DLI_802;

bcopy(devnane, out_bind.dli_device.dli_devnane, i);
out _bind. dli_device.dli_devhunber = devunit;

out _bi nd. choose_addr.dli _802addr.ioctl = ioctl;
out _bi nd. choose_addr. dl i _802addr. svc = svc;
if(ctl & 3)
out _bi nd. choose_addr. dl i _802addr. eh_802.ctl. U_fnt=\
(u_char)ctl;
el se
out _bi nd. choose_addr.dli _802addr.eh_802.ctl.l_S fnt =\
ctl;

out _bi nd. choose_addr. dli _802addr. eh_802. ssap = sap;

out _bi nd. choose_addr. dl i _802addr. eh_802. dsap dsap;
if (ptype)
bcopy(ptype, out _bi nd. choose_addr . dl i _802addr . eh_802. osi _pi , \
5);
if (taddr)

bcopy(taddr, out_bind. choose_addr. dl i _802addr. eh_802. dst,
DLI _EADDRSI ZE) ;

if (bind(sock, &out_bind, sizeof(out_bind)) <0)
{
perror("dli_802d, can’t bind DLI socket");

return(-1);

}

return(sock);

E—40 The Data Link Interface

E.5.5 Sample DLI Program Using getsockopt and setsockopt

#i fndef 1int
static char
#endi f 1int

#i ncl ude <stdio. h>

#i ncl ude <ctype. h>

#i ncl ude <errno. h>

#i ncl ude <strings. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <net/if.h>

#i ncl ude <netinet/in.h>
#i ncl ude <netinet/if_ether.h>
#include <dli/dli_var.h>
#i ncl ude <sys/ioctl.h>

extern int errno;
int debug = 0;

*scesid = "@#)dli_setsockopt.c

1.5 3/27/90";

#define PROTOCOL_I D
#def i ne CUSTOVERO
#defi ne CUSTOVERL

{0x00, 0x00, 0x00, 0xO00,
{Oxab, 0x00, 0x04, 0x00,
{Oxab, 0x00, 0x04, 0x00,

0x5}
0x00,
0x00,

0x00}
0x01}

u_char ntastO[]
u_char ncast1[]

CUSTQVERO,;
CUSTQOVER1,;

u_char protocolid[] = PROTOCOL_I D

/
dl i exampl e:
Descri ption:
2 nul ticast addresses,
field,
the user,
I nput s: devi ce, sap,
Qut put s: Exit status.
To conpil e:
Exanpl e:

Conment s:
all dli

reserved by | EEE.

o T T T I T

/*
* Digital

* Digital

dli _setsockopt qe0 ac

l'i setsockopt

Thi s program denonstrates the use of the DLI
get- and setsockopt calls.
changes the 802 control

enabl es a nunber of group saps supplied by
and reads the group saps that are enabl ed.

It opens a socket, enables

gr oup- saps.

cc -o dli_setsockopt dli_setsockopt.c

59d

When a packet arrives with a group dsap,
progranms that have that group sap enabled will
recei ve copi es of that packet.
those with the | ow order bit set.
is currently not allowed for custoner use.
saps with the second bit set (eg 3,7,etc) are

G oup saps are
Goup sap 1
G oup

Equi pnent Corporation supplies this software exanple
* on an "as-is" basis for general
does not offer any support for it, nor is it covered

custonmer use. Note that

The Data Link Interface E—41

* under any of Digital’'s support contracts.

*/

mai n(argc, argv, envp)
int argc;

char **argv, **envp;
{

u_char inbuf[1500], outbuf[1500];
u_char devnane[16];
u_char target_eaddr[6];

char *cp;
int rsize, devunit;
int i, j, k, sock, fromnen;

u_short obsi z;

u_char tnpsap, sap;

struct sockaddr_dl from

u_char *pi = 0;

u_char out_opt[1000], in_opt[1000];
int optlen, ioptlen = sizeof(in_opt);

if (argc < 4)

fprintf(stderr, "usage: % device hex-sap hex-groupsaps\n",
argv[0]);
exit(1);

}

/* get device name and unit nunber. */
bzer o(devnane, sizeof(devnane));

i =0;

cp = argv[1];

while (isal pha(*cp))
devnane[i ++] = *cp++;

sscanf (cp, "%l", &devunit);

/* get protocol type */
sscanf (argv[2], "%", &sap);

/* open dli socket */
if (sap == SNAP_SAP) {
fprintf(stderr,
"U: can’'t use SNAP_SAP in USER node\n", argv[0]);
exit(1);

if ((sock = dli_802_3 conn(devnane, devunit, pi,\
t ar get _eaddr,
DLI _DEFAULT, USER, sap, sap, U _NPCWD)) \
<0){
perror("dli_setsockopt: dli_conn failed");
exit(1);

/* enable two nul ticast addresses */
bcopy(nctast0, out_opt, sizeof(ntast0));
bcopy(ntast1l, out_opt+sizeof (ntast0), sizeof(ntastl));

if (setsockopt(sock, DLPROTO DLI, DLI_MJLTI CAST, \
&out _opt [0],

E—42 The Data Link Interface

(sizeof (ntast0) + sizeof(ntastl))) <0) {
perror("dli_setsockopt: can't enable nulticast");

/* set 802 control field */

out _opt[0] = TEST_PCMD;

optlen = 1;

if

(set sockopt (sock, DLPROTO DLI, DLI _SET802CTL, &out _opt[0], \

opt | en) <0) {

perror("dli_setsockopt: Can't set 802 control");
exit(1);

/* enabl e GSAPs supplied by user */
i =3
i 0;
while (j < argc) {
sscanf (argv[j ++], "9%", &k);
out _opt[i++] = k;

optlen =i;
if
(set sockopt (sock, DLPROTO DLI, DLI _ENAGSAP, &out _opt [0], \
optlen) < 0){
perror("dli_setsockopt: Can't enable gsap");
exit(1);
}

/* verify all gsaps are enabled */
bzero(in_opt, (ioptlen = sizeof(in_opt)));
if
(get sockopt (sock, DLPROTO DLI, DLI _GETGSAP, i n_opt, \
& optlen) < 0){
perror("dli_setsockopt: DLI getsockopt 2 failed");

exit(1);
}
printf("nunber of enabled GSAPs = %l, GSAPS:", ioptlen);
for(i =0; i <ioptlen; i++) {
if (! (i %10))
printf("\n");

printf("9®x ",in_opt[i]);
printf("\n");

/* disable all but the last 4 or all GSAPs, */
/* whichever is smallest */
if (optlen > 4)
optlen -= 4;
if
(set sockopt (sock, DLPROTO DLI, DLI _DI SGSAP, &out _opt[0], \
optlen) < 0){
perror("dli_setsockopt: Can't disable gsap");

}

/* verify some gsaps still enabled */
bzero(in_opt, (ioptlen = sizeof(in_opt)));
if

(get sockopt (sock, DLPROTO DLI, DLI _GETGSAP, i n_opt, \
& optlen) < 0){

The Data Link Interface E—43

perror("dli_setsockopt: getsockopt 3 failed");

exit(1);
}
printf("nunber of enabled GSAPs = %l, GSAPS:", ioptlen);
for(i =0; i <ioptlen; i++) {
if (! (i %10))
printf("\n");
printf("9®x ",in_opt[i]);
printf("\n");
}
/
dl i 802 _3 _conn
Descri ption:

Thi s subroutine opens a dli 802.3 socket and then binds
an associ ated devi ce nane and protocol type to it.

I nput s:
devnane = ptr to device nane
devuni t = device unit nunber
ptype = protocol type
t addr = target address
ioctl =io control flag
svec = service class
sap = source sap
dsap = destination sap
ctl = control field

Qut put s:
returns = socket handle if success, otherwise -1

ko Ok Ok R R kR kR 3k 3k 3k ok ok Ok Ok R Ok Ok Xk %

/

dli _802_3_conn (devnane, devunit, ptype, taddr,ioctl, svc, sap,\
dsap, ctl)
char *devnane
u_short devunit;
u_char *ptype
u_char *taddr
u_char ioctl;
u_char svc
u_char sap
u_char dsap
u_short ctl;
{
int i, sock
struct sockaddr_dl out_bind

if ((i =strlen(devnane)) >
si zeof (out _bi nd. dl i _devi ce. dl i _devnhane))
{
fprintf(stderr, "dli_setsockopt: bad device nane")
return(-1);
}

E—44 The Data Link Interface

if ((sock = socket (AF_DLI, SOCK DGRAM DLPROTO DLI)) < 0)
{

perror("dli_setsockopt: can't open DLI socket");

return(-1);
}
/*
* fill out bind structure
*/

bzer o(&out _bi nd, si zeof (out_bind));
out_bind.dli_famly = AF_DLI;

out _bind.dli_substructype = DLI_802;

bcopy(devnane, out_bind.dli_device.dli_devnane, i);
out _bind. dli_device.dli_devhunber = devunit;

out _bi nd. choose_addr.dli _802addr.ioctl = ioctl;
out _bi nd. choose_addr. dl i _802addr. svc = svc;
if(ctl & 3)
out _bi nd. choose_addr. dl i _802addr. eh_802.ctl. U_fnt=\
(u_char)ctl;
el se
out _bi nd. choose_addr.dli _802addr.eh_802.ctl.l_S fnt =\
ctl;
out _bi nd. choose_addr. dli _802addr. eh_802. ssap = sap;
out _bi nd. choose_addr. dl i _802addr. eh_802. dsap = dsap;
if (ptype)
bcopy(ptype, out _bi nd. choose_addr . dl i _802addr . eh_802. osi _pi , \
5);
if (taddr)

bcopy(taddr, out_bind. choose_addr. dl i _802addr. eh_802. dst,
DLI _EADDRSI ZE) ;
if (bind(sock, &out_bind, sizeof(out_bind)) < O0)
{
perror("dli_setsockopt: can't bind DLI socket");
return(-1);

}

return(sock);

The Data Link Interface E-45

Glossary

active user
In an XTI transport connection, the transport user that initiated the
connection. See also client process and passive user.

Address Resolution Protocol (ARP)
The Internet (TCP/IP) Protocol that can dynamically resolve an Internet
address to a physical hardware address. ARP can be used only across a
single physical network and in networks that support the hardware
broadcast feature.

asynchronous event
See event.

asynchronous execution

1. Execution of processes or threads in which each process or thread
does not await the completion of the others before starting.

2. In XTI, amode of execution that notifies the transport user of an
event without forcing it to wait.

Berkeley Software Distribution
UNIX software release of the Computer Systems Research Group
(CSRG) of the University of California at Berkeley.

blocking mode
See synchronous execution.

BSD socket interface
A transport-layer interface provided for applications to perform
interprocess communication between two unrelated processes on a single
system or on multiply connected systems. This interprocess
communications facility allows programs to use sockets for
communications between other programs, protocols, and devices.

client process
In the client/server model of communication, a process that requests
services from a server process. See also active user.

communication domain
An abstraction used by the interprocess communication facility of a
system to define the properties of a network. Properties include a set of
communication protocols, rules for manipulating and interpreting names,
and the ability to transmit access rights.

connection-oriented mode
A mode of service supported by a transport endpoint for transmitting
data over an established connection.

connectionless mode
A mode of service supported by a transport endpoint that requires no
established connection for transmitting data. Datais delivered in self-
contained units, called datagrams.

datagram
A unit of datathat is transmitted across a network by the connectionless
service of atransport provider. In addition to user data, a datagram
includes the information needed for its delivery. It is self-contained, in
that it has no relationship to any datagrams previously or successively
transmitted.

datagram socket
Socket that provides datagrams consisting of individual messages for
transmission in connectionless mode.

error
In XTI, an indicator that is returned by a function when it encounters a
system or library error in the process of executing. The object isto
allow applications to take an action based on the returned error code.

eSNMP
The Extensible Simple Network Protocol (eSNMP) enables you to create
subagents to be mananged by an SNMP management station. See
Chapter 6.

Ethernet
A 10-megabit baseband local area network (LAN) using carrier sense
multiple access with collision detection (CSMA/CD). The network

Glossary-2

allows multiple stations to access the medium at will without prior
coordination, and avoids contention by using carrier sense and
deference, and detection and transmission.

ETSDU
See Expedited Transport Service Data Unit and out-of-band data.

event
An occurrence, or happening, that is significant to a transport user.
Events are asynchronous, in that they do not happen as a result of an
action taken by the user.

event management
A mechanism by which transport providers notify transport users of the
occurrence of significant events.

expedited data
Data that is considered urgent. The semantics of this data are defined by
the transport provider. See aso out-of-band data.

Expedited Transport Service Data Unit
In XTI, an expedited message in which the identity of the data unit is
preserved from one end of a transport connection to the other.

file descriptor
A small unsigned integer that a UNIX system uses to identify afile. A
file descriptor is created by a process through issuing an open system
call for the file name. A file descriptor ceasesto exist when it is no
longer held by any process.

host group
A group of zero or more hosts that, for the purposes of |P multicasting,
are identified by a single class D IP destination address. Class D IP
addresses have 1110 as their high-order four bits. See IP Multicasting
for more information.

ICMP
See Internet Control Message Protocol.

#includefile. h
A C language precompiler directive specifying interpolation of a named
file into the file being compiled. The interpolated file is a standard

Glossary-3

header file (indicated by placing its name in angle brackets) or any other
file containing C language code (indicated by placing its name in double
guotation marks).

The absolute path name of header files whose names are placed in angle
brackets (< >) is/ usr/include/ file. h.

International Standards Organization (1SO)
An international body composed of the national standards organizations
of 89 countries. 1SO issues standards on a vast number of goods and
services, including networking software.

Internet Control Message Protocol (ICMP)
A host-to-host protocol from the Internet Protocol (1P) suite that
provides error and informational messages on the operations of the IP.

Internet Protocol (IP)
The Internet Protocol that provides a connectionless service for the
delivery of datagrams across a network.

1SO
See International Standards Organization.

IP Multicasting
IP Multicasting is a method for transmitting |P datagrams to a group of
hosts identified by a single IP destination address, or host group. Host
groups are identified by class D IP addresses. See host group for more
information.

Management Information Base
See MIB.

MIB
The Management Information Base (MIB) definitions are a set of data
elements that relate to network management. See Chapter 6.

name server
A daemon running on a system that client processes contact to obtain
the addresses of hosts or other objects in a network. This daemon
trand ates a machine’'s network name to its network IP address.

Glossary—4

name service
The service provided to client processes for identifying peer systems for
communications purposes.

nonblocking mode
See asynchronous execution.

normal data
Regular data that is sent or received in band by atransport user. See
also out-of-band data.

Object Identifier
See OID.

OID
Object Identifiers (OID) are data elements in MIB definitions that can be
referred to by name or by a corresponding sequence of numbers. See
Chapter 6.

Open Systems Interconnection (OSl)
The interconnection of open systems in accordance with SO standards.

orderly release
In XTI, an optional feature that allows a transport user to gracefully
terminate a transport connection with no loss of data.

(O
See Open Systems I nter connection.

out-of-band data
Datathat is transmitted out of the flow of normal data becauseit is
considered urgent. The receiving process is notified of the presence of
this data so that it can be retrieved.

passive user
In an XTI transport connection, the peer transport user that responded to
the connection request. See also active user and client process.

pipe
An 1/O stream that has a descriptor and can be used in unidirectional
communications between related processes. See also socketpair.

Glossary-5

raw socket
A socket that provides privileged users access to internal network
protocols and interfaces. These socket types can be used to take
advantage of protocol features not available through more normal
interfaces or to communicate with hardware interfaces.

Serial Line Internet Protocol (SLIP)
A transmission line protocol that encapsulates and transfers P
datagrams over asynchronous serial lines.

Server process
In the client/server model of communication, a process that provides
services to client processes. See also passive user.

SLIP
See Serial Line Internet Protocol.

socket
In interprocess communications, an endpoint of communication. Also,
the system call that creates a socket and the associated data structure.

socketpair
A pair of sockets that can be created in the UNIX domain for 2-way
communication. Like pipes, socketpairs require communicating
processes to be related. See also pipe.

state
In XTI, the current condition of a process that reflects the function in
progress. XTI uses eight different states to manage communications
over atransport endpoint.

stream socket
A socket that provides 2-way byte streams across a transport connection.
Also includes a mechanism for handling out-of-band data.

STREAMS
A kernel mechanism specified by AT&T that supports the
implementation of device drivers and networking protocol stacks. See
aso STREAMS framework.

STREAMS framework
Components of the AT& T STREAMS mechanism which define the

Glossary—6

interface standards for character 1/0 within the kernel and between the
kernel and user levels. It consists of functions, utility routines, kernel
facilities, and data structures.

synchronous execution
A made of execution that forces transport primitives to wait for specific
events before returning control to the transport user.

TCP
See Transmission Control Protocol.

TCP/IP
The two fundamental protocols of the Internet Protocol suite, and an
acronym that is frequently used to refer to the Internet Protocol suite.
TCP provides for the reliable transfer of data, while IP transmits the
data through the network in the form of datagrams. See also
Transmission Control Protocol and I nternet Protocol.

TLI
See Transport Layer Interface

Transmission Control Protocol (TCP)
The Internet transport-layer protocol that provides areliable, full-duplex,
connection-oriented service for applications. TCP uses the IP protocol
to transmit information through the network.

transport endpoint
A communication path over which a transport user can exchange data
with a transport provider. See aso Transport Layer Interface.

Transport Layer Interface (TLI)
An interface to the transport layer of the OSI model, designed on the
SO Transport service definition.

transport provider
A transport protocol that offers transport layer servicesin a system.

Transport Service Data Unit (TSDU)
In OSI terminology, the item of information, or message, that the
transport user passes to the transport provider.

Glossary-7

transport services
The support given by the transport layer in a system to the application
layer for the transfer of data between user processes. The two types of
services provided are connection-oriented and connectionless. See also
Transport Layer Interface.

transport user
A program needing the services of atransport protocol to send datato or
receive data from another program or point in a network. See also
Transport Layer Interface

TSDU
See Transport Service Data Unit.

UDP
See User Datagram Protocol.

User Datagram Protocol (UDP)
The Internet Protocol that allows application programs on remote
machines to send datagrams to one another. UDP uses IP to deliver the
datagrams.

X/Open Transport Interface
Protocol-independent, transport-layer interface for applications. XTI
consists of a series of C language functions based on TLI, which in turn
was based on the transport service definition for the OSI model.

XTI
See X/Open Transport Interface.

Glossary-8

Special Characters

802.3 frame format
description of, E-11
example of, E-4
processing, E-11

802.3 substructure
filling the, E-21

802.3 substructure values
control field, E-13
destination service access point, E-12
destination system physical address, E-11
exchange identification, E-14
LLC Protocol Data Unit Test, E-15
Service class, E-12
source service access point, E-13
Unnumbered Information Command, E-15
XID, E-14

A

abortiverelease in XTI, 3-10t
accept socket call
contrast to XTI t_accept function, 3-46
accept system call, 4-9t, 4-26
acceptl event, 3-15t
accept2 event, 3-15t
accept3 event, 3-15t

Index

accept2 event, 3-15
access rights
and the recvmsg system call, 4-33
and the sendmsg system call, 4-33
acknowledged connectionless mode of
communication
inDLPI, 24
acknowledged connectionless mode service
in DLPI, 2-6
active user
defined, 1, 3-3
typica state transitions, 3-21f
address family
specifying for DLI, E-17
address generation
comparison of TLI and XTI, 3-44
addressing in DLPI, 2-7
identifying components, 2—7
PPA, 2-7
advanced sockets topics, 441 to 4-55
AF_INET domain, 44
AF_UNIX
See UNIX domain
AF_UNIX domain, 44
See also UNIX domain
alignment
and the Routing Information Field, D-3

all hosts group
defined, 447
application programming interface
sockets, 1-1, 46 to 4-40
STREAMS, 1-1, 5-5 to 5-25
XTI, 1-1, 34 to 341
application programs
porting to XTI, 341
rewriting for XTI, 3-45
sockets
and the netdb.h header file, 4-10
applications
distributed
and the client/server paradigm, 4-8
asynchronous eventsin XTI, 3-10
and consuming functions, 3-11t
T_CONNECT, 3-10t
T_DATA, 3-10t
T_DISCONNECT, 3-10t
T_EXDATA, 3-10t
T_GODATA, 3-10t
T_GOEXDATA, 3-10t
T_LISTEN, 3-10t
T_ORDREL, 3-10t
T_UDERR, 3-10t
asynchronous execution in XTI
defined, 3-5
audience
of manual, xvii

B

big-endian
defined, 4-13

bind event, 3-15

bind socket call
contrast to XTI t_bind function, 3-46

Index—2

bind system call, 4-9t, 4-22, E-7
syntax, E-19
binding names to addr esses, 442
in the UNIX domain, 4-44
INADDR_ANY wildcard address, 4-42
binding names to sockets, 4-22
blocking mode
See synchronous execution
bridging
BSD drivers to STREAMS protocol stacks,
7-11
STREAMS drivers to sockets protocol
stacks, 7-2
broadcasting and deter mining networ k
configuration, 4-51
BSD
sockets, 4-37
BSD drivers
bridging to STREAMS protocol stacks, 7-11
BSD socket interface
binding names to sockets, 4-22
4.3BSD msghdr data structure, 4-39
4.4BSD msghdr data structure, 4-39
datagram sockets, 4-5
establishing connections to sockets in, 4-23
performing blocking and nonblocking
operations in, 4-21
raw sockets, 4-5
stream sockets, 4-5
transferring data in, 4-29
using socket options in, 4-27
buffer size
calculating, E-22

C

canonical addresses

and Token Ring drivers, D-2
client process

defined, 4-8

establishing connections, 4-23
client/server interaction, 4-8
clone device, 5-30
close function, 5-7
close processing, 5-21
close socket call

contrast to XTI t_snddis function, 3-47
close system call, 4-36
closed event, 3-15t
closing sockets, 4-36
CLTS

See connectionless service in XTI
coexistence

defined for Digital UNIX, 7-1

of STREAMS and sockets, 7-1 to 7-12
communication bridge

defined, 7-1

dib STREAMS pseudodriver, 1-8f, 1-7, 7-1

ifnet STREAMS module, 1-7f, 1-7, 7-1
communication domains

sockets, 4-3

Internet domain, 44
UNIX domain, 44

communication properties of sockets, 4-3
comparison

of XTI and sockets, 3-45

of XTI and TLI, 3-43
compatibility

of XTIl and TLI, 3-43to 3-44
concurrent programs

running, E-2

configuration processing, 5-21
connect system call, 4-9t, 4-23
and TCP, 4-24
and UDP, 4-24
connectl event, 3-15t
connect2 event, 3-15t
connection establishment phase
state transitions allowed, 3-18t to 3—-20t
connection indication
in XTI, 3-10t
connection mode
of communication in DLPI, 2-3
connection mode service
inDDLPI, 2-5
connection-oriented applications
initializing an endpoint, 3-24
writing, 3-24 to 3-36
connection-oriented communication
and TCP, 4-7
sockets, 47
connection-oriented programs, B-2 to B-17
connection-oriented servicein XTI
defined, 34
connection-oriented transport service
state transitions allowed in XTI, 3-18t to
3-20t
typical sequence of functions, 3-21
connectionless applications
writing, 3-37 to 3-39
connectionless communication
and UDP, 4-8
sockets, 4-8
connectionless mode of communication
in DLPI, 2-3
connectionless mode service
in DLPI, 2-6

Index-3

connectionless programs, B-17 to B-30
connectionless service in XTI

defined, 34

state transitions allowed, 317t

typical state transitions, 3-22
connections

passing to another endpoint, 3-16
consuming functions

for asynchronous XTI events, 3-11t
control field

function of, E-13
COTS

See connection-oriented transport service

D

daemon
inetd, 4-54
data flow
XTI and a sockets-based transport provider,
1-6
XTI and a STREAM S-based transport
provider, 1-6
Data Link Interface
See DLI
data link interfaces, 1-3, 2—1 to 2-12
DLPI, 2-1
Data Link Provider Interface
See DLPI
data link service provider
See DL S provider
data link service providersin DLPI, 2-8
data link service user
See DLS user
data segmentation
providing, E-4, E-16

Index—4

data structures
4.3BSD msghdr, 4-39
4.4BSD msghdr, 4-39
dblk_t, 5-19
hostent, 4-11
mblk_t, 5-19
message, 5-18
module, 5-17
module_info, 5-18
ginit, 5-17
streamtab, 5-18
msghdr, 4-17, 4-18
netent, 4-11
protoent, 4-12
servent, 4-12
sockaddr, 4-16
sockaddr_in, 4-17
sockaddr_un, 4-17
data transfer
using DLI program, E-22
data transfer phase
of connectionless service, 3-37
state transitions allowed for connectionless
transport services, 3-17t
data transfer state
in XTI, 3-13t
data units
receiving, 3-38
receiving error information, 3-39
datagram socket, 4-5, E-1, E-17
dblk_t data structure, 5-19
destination service access point
See DSAP
destination system
specifying information, E-8

destination system physical address

defined, E-9, E-11, E-12

specifying, E-9
device drivers

and Stream ends, 54

STREAMS processing routines for, 5-20
device special files, 529
Digital UNIX system calls

and DLI, E-16
distributed applications

and the client/server paradigm, 4-8
DL_ATTACH_REQ primitive, 2-8t, 7-12
DL_BIND_ACK primitive, 2-8t, 7-12
DL_BIND_REQ primitive, 2-8t, 7-12
DL_DETACH_REQ primitive, 7-12
DL_DETTACH_REQ primitive, 2-8t
DL_DISABLMULTI_REQ primitive, 7-12
DL_DISABMULTI_REQ primitive, 2-8t
DL_ENABMULTI_REQ primitive, 2-8t, 7-12
DL_ERROR_ACK primitive, 2-8t
DL_ETHER media, 7-12
DL_INFO_ACK primitive, 2-8t
DL_INFO_REQ primitive, 2-8t
DL_OK_ACK primitive, 2-8t, 7-12
DL_PHYS ADDR_ACK primitive, 2-8t, 7-12
DL_PHYS ADDR_REQ primitive, 7-12
DL_PROMISCON_REQ primitive, 7-12
DL_PROMISCONOFF_REQ primitive, 7-12
DL_SET_PHYS ADDR_REQ primitive, 7-12
DL_SUBS BIND_ACK primitive, 2-8t, 7-12
DL_SUBS BIND_REQ primitive, 2-8t, 7-12
DL_SUBS UNBIND_ACK primitive, 7-12
DL_SUBS UNBIND_REQ primitive, 2-8t,

7-12

DL_TEST_CON primitive, 2-8t

DL_TEST_IND primitive, 2-8t
DL_TEST_REQ primitive, 2-8t
DL_TEST_RES primitive, 2-8t
DL_UDERROR_IND primitive, 2-8t
DL_UNBIND_REQ primitive, 2-8t, 7-12
DL_UNIDATA_IND primitive, 2-8t
DL_UNIDATA_REQ primitive, 2-8t
DL_UNITDATA_IND primitive, 7-12
DL_UNITDATA_REQ primitive, 7-12
DL_XID_CON primitive, 2-8t
DL_XID_IND primitive, 2-8t
DL_XID_REQ primitive, 2-8t
DL_XID_RES primitive, 2-8t
dib STREAMS pseudodriver, 7-11f, 1-9, 2-2,
7-1
DLI
and accessing the local area network, E-3
and transmitting |EEE 802.3 frames, 2-2
concepts, E-1 to E-2
definition of, E-1
services, E-3
using Digital UNIX system calls, E-16
using the socket system call, E-17
DLI address family
specifying, E-17
DLI client program
using 802.3 format packets
example, E-31
using Ethernet format packets
example, E-24
DLI program
including higher-level services, E-4
transferring data, E-22
using getsockopt and setsockopt
example, E41
writing, E-15

Index-5

DLI protocol module
specifying, E-17
DLI server program
using 802.3 format packets
example, E-36
using Ethernet packets
example, E-27
DLI services
examples of, E-3
dli_802_3 conn subroutine
example, E41
using, E-7
dli_econn subroutine
example, E-27
using, E-7
DLPI
accessing specification online, 2-1n
addressing, 2—7
PPA, 2-7
and DLS provider, 2-2
and DLS user, 2-2
connection mode of communication in, 2-3
connection mode service in, 2-5
connectionless mode of communication in,
2-3
connectionless mode service in, 2—6
defined, 2-2
DLS providers, 2-8
style 1, 2-8
style 2, 2-8
local management service in, 2-5
modes of communication
acknowledged connectionless, 2—4, 2-3,
2-4
connection, 2—3
connectionless, 2-3

Index—6

DLPI (cont.)
primitives the STREAMS driver must
support, 7-10
supported media
DL_ETHER, 7-12
supported primitives, 7-12
table of, 2-8
types of service
acknowledged connectionless mode, 26,
24
connection mode, 2-5
connectionless mode, 2—-6
local management, 2-5
DLPI addressing
identifying components, 2—7
DLPI interface, 2-1f
DLPI option, 74
adding to kernel configuration file
at installation, 74
with the doconfig command, 74
DLPI primitives
supported in Digital UNIX, 2-8
DLPI service interface, 2—3f
DL S provider
defined, 2-2
DL S user
defined, 2-2
domain
specifying the, E-7
drivers
bridging BSD to STREAMS protocol stacks,
7-11
Token Ring, D-1
DSAP
defined, E-12

E

EAFNOSUPPORT socket error, 4-40t
EBADF socket error, 4-40t
ECONNREFUSED socket error, 4-40t
EFAULT socket error, 4-40t
EHOSTDOWN socket error, 4-40t
EHOSTUNREACH socket error, 4-40t
EINVAL socket error, 4-40t
EMFILE socket error, 4-40t
endhostent library call, 4-13t
endnetent library call, 4-13t
endprotoent library call, 4-13t
endservent library call, 4-13t
ENETDOWN socket error, 4-40t
ENETUNREACH socket error, 4-40t
ENOMEM socket error, 4-40t
ENOTSOCK socket error, 4-40t
EOPNOTSUPP socket error, 4-40t
EPROTONOSUPPORT socket error, 4-40t
EPROTOTY PE socket error, 4-40t
error logging

in STREAMS, 5-31
error recovery

providing, E-4, E-16
errors

comparison of XTI and sockets, 3-47t

contrast between XTI and TLI, 3-44

in XTI, 3-64 to 3-65

sockets

table of, 4-40t

eSNMP, 1-7

application interface, 6-4

architecture, 6-3

components, 6-2

implementing a subagent, 6-12

introduction, 1-7

eSNMP (cont.)
method routines, 6-33
object tables, 6-8
overview, 6-2
SNMP versions, 6-4
starting, 6-15
function return values, 6-16
order of operation, 6-16
stopping, 6-15
function return values, 6-16
order of operation, 6-16
subtree, 66
subtree thl.c file, 6-10
subtree thl.h file, 6-8
value representation, 6-35
eSNM P application programming interface
Digital UNIX support for, 6-1
Ethernet
accessing, E-3
address, E-3
multiple users, E-3
transmitting messages on, E-3
Ethernet frame structure
example of, E4, E-8
function of, E-8
specifying destination system information,
E-8
Ethernet substructure
filling the, E-20
frame structure, E-8
sending and receiving, E-7
ETIMEDOUT socket error, 4-40t
event
management
and TLI compatibility, 3-43

Index—7

event logging FDDI (cont.)

in STREAMS, 5-31 source service access point, E-13
events fdetach library call, 5-14
defined, 3-5 file descriptor
in XTI, 3-10 and protocol independence, 3-42
incoming, 3-16t, 3-10 flow control
outgoing, 3-15t, 3-10 contrast between XTI and TLI, 3-44
tracking in XTI, 3-14 in XTI, 3-10t
tracking of outgoing events providing, E-4, E-16
in XTI, 3-14 frame format
used by connectionless transport services, 802, E-1
3-37 802.3, E4, E-11
EWOULDBLOCK socket error, 4-40t Ethernet, E-1, E-4, E-8
exchange identification FDDI, E4
defined, E-14 processing, E-11
function of, E-14 standard, E-1
execution in XTI frames
modes of, 34 building, E-3
expedited data framework
and connectionless transport services, 3-37 sockets
extensible SNM P components, 4—-2
See eSNMP STREAMS, 5-1 to 5-32
components, 5-2
F end, 54
F_GETOWN parameter, 4-58 head, 5-3
F_SETOWN parameter, 4-58 modules, 5-4
fattach library call, 5-14 messages, 5-5
functions

fentl system call
F_GETOWN parameter, 4-58
F_SETOWN parameter, 4-58
fentl.h file, 3-6t
fd variable
and outgoing events, 3-14
FDDI
accessing, E-3
frame format, E4

allowed sequence of in XTI, 3-21
and protocol independence, 3-41
comparison of XTI and sockets, 3-45t
STREAMS, 5-6 to 5-17

Index—8

G

generation of addresses

comparison of TLI and XTI, 3-44
gethostbyaddr library call, 4-13t
gethostbyaddr routine, 4-10
gethostbyname library call, 4-13t
gethostbyname routine, 4-10
gethostent library call, 4-13t
getmsg function, 5-11
getnetbyaddr library call, 4-13t
getnetbyaddr routine, 4-11
getnetbyname library call, 4-13t, 4-13
getnetbyname routine, 4-11
getnetent library call, 4-13t
getnetent routine, 4-11
getpeer name system call, 4-9t
getpmsg function, 5-11
getprotobyname library call, 4-13t
getprotobyname routine, 4-12
getprotobynumber library call, 4-13t
getprotobynumber routine, 4-12
getprotoent library call, 4-13t
getprotoent routine, 4-12
getservbyname library call, 4-13t
getservbyname routine, 4-12
getservbyport library call, 4-13t
getservbyport routine, 4-12
getservent library call, 4-13t
getservent routine, 4-12
getsockname system call, 4-9t
getsockopt system call, 4-28
guaranteed delivery

providing, E-4

H

header files
conventions for specifying, 4-5n
fentl.h, 3-6t
netinet/in.h, 4-15t
sockets, 4-15 to 4-16
STREAMS, 5-5
sys/socket.h, 4-15t
sys/types.h, 4-15t
sys/un.h, 4-15t
tiuser.h, 3-6t, 343
XTI and TLI, 3-6
xti.h, 3-6t, 344
high-level services
providing, E-4, E-16
host groups
defined, 447
hostent data structure, 4-11
htonl library call, 4-13t
htons library call, 4-13t

I/O control flags
functions of, E-10
idle state
in XTI, 3-13t
ifnet STREAMS module, 7-2f, 1-7, 7-1
using, 74
required setup, 74
INADDR_ANY wildcard address
binding names to addresses, 4-42
incoming connection pending state
in XTI, 3-13t
incoming events
for tracking by programs, 3-16

Index—9

incoming events (cont.)

in XTI, 3-16t
incoming orderly release state

in XTI, 3-13t
inet_addr library call, 4-13t
inet_Inaof library call, 4-13t
inet_makeaddr library call, 4-13t
inet_netof library call, 4-13t
inet_network library call, 4-13t
inetd daemon, 4-54
initialization phase

state transitions allowed, 3—17t
input/output multiplexing, 4-55
Internet communication domain

characteristics, 4-4t
interrupt driven socket 1/0, 4-58
ioctl function, 5-9
IP multicasting, 4-46

all hosts group, 447

host groups, 4-47

receiving datagrams, 4-49

sending datagrams, 4-47
IP_ADD_MEMBERSHIP, 4-49
IP_DROP_MEMBERSHIP, 4-50
IP_MULTICAST_IF, 448
IP_MULTICAST_LOOP, 449
IP_MULTICAST_TTL, 4-48
isastream library call, 5-13

K

kernel configuration file
DLPI option, 74
STRIFNET option, 74
kernel implementation
of sockets, 46

Index-10

kernel level functions
STREAMS, 5-17 to 5-25
kernel subsystems
STREAMS drivers
configuring, 5-25
STREAMS modules
configuring, 5-25

L

libraries
XTI and TLI, 3-6
library calls
in XTI, 3-8
sockets, 4-10 to 4-15
STREAMS
fattach, 5-14
fdetach, 5-14
isastream, 5-13
XTI, 3-7
libtli.a library, 3-6
libxti.a library, 3-6
linking
with XTI and TLI libraries, 3-6
listen event, 3-16t
listen system call, 4-9t, 4-25
LLC
sublayer of DLI, E-12
LLC Protocol Data Unit Test
defined, E-15
function of, E-15
local management service
in DLPI, 2-5
logical data boundaries
and protocol independence, 3-42
Logical Link Control
SeelLLC

M

mapping
hostnames to addresses, 4-10
network names to network numbers, 4-11
protocol names to protocol numbers, 4-12
service names to port numbers, 4-12
master device, 4-59
mblk_t data structure, 5-19
message block
components, 5-18
data buffer, 5-18
dblk_t control structure, 5-18
mblk_t control structure, 5-18
message data structures, 5-18
message types
normal, 5-5
priority, 5-5
method routines
eSNMP, 6-33
mkfifo function, 5-9
modes of communication
sockets, 4-7
connection-oriented, 47
connectionless, 4-8
modes of execution
sockets
blocking mode, 4-21
nonblocking mode, 4-21
module data structures, 5-17
module_info, 5-18
qinit, 5-17
streamtab, 5-18
module_info data structure, 5-18
modules
STREAMS processing routines for, 5-20
close processing, 5-21

modules (cont.)
STREAMS processing routines for (cont.)
configuration processing, 5-21
open processing, 5-20
read side put processing, 5-22
read side service processing, 5-22
write side put processing, 5-22
write side service processing, 5-22
msghdr data structure, 4-17, 4-18
and the recvmsg system call, 4-33
and the sendmsg system call, 4-33
Digital UNIX support, 4-18
multicast addresses, E-1
using, E-9
multicasting, 4-46
multiple processes
synchronization in XTI, 3-20
multiple users
on Ethernet, E-3
multiplexing, 4-55

N

naming sockets, 4-6
netdb.h header file, 4-10
netent data structure, 4-11
netinet/in.h header file, 4-15t
networ k
accessing, E-3
network byte order transation, 4-13
network configuration
broadcasting and determining, 4-51
network device
specifying the, E-7
network library routines, 4-10, 4-11, 4-12
network programming environment
data link interfaces, 1-3

Index-11

network programming framework
sockets, 1-4f
STREAMS, 1-4f
nonblocking mode
See asynchronous execution
ntohl library call, 4-13t
ntohslibrary call, 4-13t

O

O_NDELAY value
support in TLI, 343
object tables
eSNMP, 6-8
ocnt variable, 3-17
and incoming events, 3-16
and outgoing events, 3-14
open function, 5-6
open processing, 5-20
opened event, 3-15
option management
and TCP, 3-64
optmgmt event, 3-15t
orderly release
and protocol independence, 3-42
defined, 3-9
event indicating, 3-10t
out-of-band data
handling in the socket framework, 4-44
receiving, 4-45
sending, 4-45
outgoing connection pending state
in XTI, 3-13t
outgoing events
for tracking by programs, 3-14
in XTI, 3-15t

Index—12

outgoing orderly release state
in XTI, 3-13t

P

packet routing
providing, E—4
pass_conn event, 3-16
passive user
defined, 3-3
typica state transitions, 3-21f
physical addresses, E-1
using, E-9
physical point of attachment
See PPA
pipe function, 5-10
poll function, 5-12
in XTI applications, 3-13
porting
and protocol independence, 3-41

guidelines for writing XTI applications, 3-41

porting applicationsto XTI, 3-41 to 3-47
PPA
and addressing in DLPI, 2—7
defined, 2—7
prerequisites
for DLI programming, E-1
privileges
superuser, E-1
processes
sharing a single endpoint among multiple,
3-20
synchronization of multiple processes in
XTI, 3-20
protocol independence
for XTI applications, 3-41

protocol type receiving | P multicast datagrams, 449

defined, E-9 recommendations
protocol-specific options for use of connection-oriented transport and
and protocol independence, 3-42 CLTS, 34
protocols for use of execution modes, 3-5
selecting with the socket system call, 442 recompiling TLI programs, 3-43
protoent data structure, 4-12 recv system call, 4-9t, 4-32
pseudoter minals, 4-59 recvfrom system call, 4-9t, 4-33
defined, 4-59 recvmsg system call, 4-9t, 4-35
master device, 4-59 and the msghdr data structure, 4-33
slave device, 4-59 resfd variable
putmsg function, 5-11 and outgoing events, 3-14
putpmsg function, 5-11 round-trip time
defined, C-1
Q Routing Information Field, D-3
ginit data structure, 5-17
S
R sa_family, 4-17

select socket call

contrast to XTI t_look function, 3-46
select system call, 4-24
send system call, 4-9t, 4-31
sending | P multicast datagrams, 4-47
sendmsg system call, 4-9t, 4-34

and the msghdr data structure, 4-33
sendto system call, 4-9t, 4-31, E-7
sequencing functions

in XTI, 3-21
servent data structure, 4-12

raw sockets, 4-5
rcv event, 3-16t
rcveonnect event, 3-16t
rcevdisl event, 3-16t
revdis3 event, 3-16t
rcevrel event, 3-16t
rcvudata event, 3-16t
rcvuderr event, 3-16t
read function, 5-8
read side put processing, 5-22
read side service processing, 522
read system call, 4-29
read-only access

support in TLI, 343
receiving

data units, 3-38

errors about data units, 3-39

server process
accepting connections, 4-25
connection-oriented, 4-25
connectionless, 4-27
defined, 4-8

server/client interaction, 4-8

Index-13

service class
defined, E-12
vaues, E-12
servicein XTI
modes of, 34
services
providing high-level, E-16
sethostent library call, 4-13t
setnetent library call, 4-13t
setprotoent library call, 4-13t
setservent library call, 4-13t
setsockopt system call, 4-9t, 4-27
IP_ADD_MEMBERSHIP option, 4-49
IP_DROP_MEMBERSHIP option, 4-50
IP_MULTICAST_IF option, 4-48
IP_MULTICAST_LOOP option, 4-49
IP_MULTICAST_TTL option, 4-48
SO_REUSEPORT option, 4-50
setup
to use the ifnet STREAMS module, 7-4
shared libraries
and TLI, 3-6
and XTI, 3-6
support in XTI, 3-6
shutdown system call, 4-9t, 4-36
shutting down sockets, 4-36
save device, 4-59
SNAP_SAP
using, E-13
snd event, 3-15t
snddisl event, 3-15t
snddis2 event, 3-15t
sndrel event, 3-15t
sndudata event, 3-15t
SNMP application programming interface
Digital UNIX support for, 6-1

Index—-14

SO_REUSEPORT, 4-50
SOCK_DGRAM socket, 4-5
SOCK_RAW socket, 4-5
SOCK_STREAM socket, 4-5
sockaddr data structure, 4-16
sockaddr structures

comparing 4.3BSD and 4.4BSD, 4-38f
sockaddr_dl data structure, E6

explanation of, E4

filling in, E=7
sockaddr_dl structure

and the 802.2 substructure, E-11

and the ethernet substructure, E-8
sockaddr_in data structure, 4-17
sockaddr_un data structure, 4-17
socket functions

comparison with XTI functions, 3-45t
socket interface

and TCP/IP, 4-1

Digital UNIX support for, 4-1
socketpair system call, 4-9t, 4-20
sockets

accept system call, 4-9t

advanced topics, 441 to 4-55

and handling out-of-band data, 4-44

application programming interface, 4-6 to

4-40

bind system call, 4-9t

binding names to, 4-22

BSD, 4-37

4.4BSD features

receipt of protocol data, 4-38
variable-length network addresses, 4-38

4.3BSD msghdr data structure, 4-39

characteristics, 4-3

closing, 4-36

sockets (cont.)

coexistence with STREAMS, 7-1 to 7-12
common errors, 4-40
communication bridge to STREAMS
framework, 7-1

communication domains, 4-3

Internet domain, 44

UNIX domain, 44
communication properties, 4-3
comparison with XTI, 3-45
connect system call, 4-9t
connection-oriented client program, B—6
connection-oriented programs, B2 to B—17
connection-oriented server processes, 4-25
connection-oriented server program, B—2
connectionless client program, B—20
connectionless programs, B-17 to B-30
connectionless server processes, 4-27
connectionless server program, B-17
creating, 4-19
data structures, 4—-16 to 4-18
defined, 4-3
errors

comparison with XTI, 3-47t
establishing connections

clients, 4-23

servers, 4-25
fentl system call

F_GETOWN parameter, 4-58

F_SETOWN parameter, 4-58
flushing data when closing, 4-37
getpeername system call, 4-9t
getsockname system call, 4-9t
getting socket options, 4-27
header files, 4-15 to 4-16
input/output multiplexing, 4-55

sockets (cont.)

interrupt driven 1/O, 4-58
kernel implementation, 4-6
library calls, 4-10 to 4-15
table of, 4-13
listen system call, 4-9t
mapping host names to addresses, 4-10
mapping network names to network
numbers, 4-11
mapping protocol names to protocol
numbers, 4-12
mapping service names to port numbers,
4-12
modes of communication, 47
connection-oriented, 4—7
connectionless, 4-8
modes of execution, 4-21
msghdr data structure, 4-17
naming, 46
programming TCP socket buffer sizes, C-1
reclaiming resources when closing, 4-36
recv system call, 4-9t
recvfrom system call, 4-9t
recvmsg system call, 4-9t
rewriting applications for XTI, 3-45
sample programs
client.h file, B-39
clientauth.c file, B-39
clientdb.c file, B41
common.h file, B-31
server.h file, B-32
serverauth.h file, B-33
serverdb.h file, B-36
xtierror.c file, B-38
selecting protocols, 442
send system call, 4-9t

Index—-15

sockets (cont.)
sendmsg system call, 4-9t
sendto system call, 4-9t
setsockopt system call, 4-9t
setting process groups for signals, 4-58
setting process I1Ds for signals, 4-58
setting socket options, 4-27
shutdown system call, 4-9t
shutting down sockets, 4-36
sockaddr data structure, 4-16
sockaddr_in data structure, 4-17
sockaddr_un data structure, 4-17
socket system call, 4-9t
socketpair system call, 4-9t
states
comparison between sockets and XTI,
3-47
system calls, 4-9 to 4-10
TCP specific programming information, C-1
to C-3
transferring data, 4—29
types, 4-5
SOCK_DGRAM, 4-5
SOCK_RAW, 4-5
SOCK_STREAM, 4-5
sockets and STREAMS frameworks
communication between, 1-7
sockets framework, 1-4f, 4-1f, 1-3
components, 4-2
relationship to XTI, 1-5f
sockets header files, 4-15t
sockets protocol stacks
bridging to STREAMS drivers, 7-2
sockets-based drivers
accessing from STREAM S-based protocol
stacks, 1-9

Index—-16

sour ce routing
enabling, D-1
Sour ce service access point
See SSAP
SSAP
defined, E-13
standard frame formats
802, E-1
Ethernet, E-1
state transitions
allowed for data transfer
connectionless transport services, 3-17t
alowed for initiaization phase, 3-17
states
comparison of XTI and sockets, 3-47
in XTI, 3-10, 3-13
managing in XTI, 3-23
strclean command, 5-31
Stream
defined, 5-2
ends
and device drivers, 54
head, 5-3f
module, 54
stream sockets, 4-5
STREAMS
and timeout, 5-25
application programming interface, 5-5 to
5-25
clone device, 5-30
close function, 5-7
coexistence with sockets, 7-1 to 7-12
communication bridge to sockets framework,
7-1
components, 5-2
end, 54

STREAMS (cont.)

components (cont.)
head, 5-3
modules, 54
configuring drivers, 5-25
configuring modules, 5-25
device speciad files, 529
error logging, 5-31
event logging, 5-31
strclean command, 5-31
framework, 5-1 to 5-32
functions, 5-6 to 5-17
header files, 5-5
ioctl function, 5-9
kernel-level functions, 5-17 to 5-25
library cals, 5-13, 5-14
message types
normal, 5-5
priority, 5-5
messages, 5-5
mkfifo function, 5-9
open function, 5-6
pipe function, 5-10
processing routines
close processing, 5-21
configuration processing, 5-21
for drivers and modules, 5-20
open processing, 5-20
read side put processing, 5-22
read side service processing, 5-22
write side put processing, 5-22
write side service processing, 5-22
putmsg function, 5-11
putpmsg function, 5-11
required setup to use the ifnet STREAMS
module, 74

STREAMS (cont.)

synchronization mechanism, 5-23

using the ifnet STREAMS module, 74
STREAMS concepts, 5-23
STREAMSdrivers

bridging STREAMS drivers to sockets

protocol stacks, 7-2

bridging to sockets protocol stacks, 7-2
STREAMS framework, 1-4f, 1-3, 5-1 to 5-32

relationship to XTI, 1-5f
STREAMS header files

strlog.h, 5-5

stropts.h, 5-5

sys/stream.h, 5-5
STREAMS protocol stacks

bridging to BSD drivers, 7-11
STREAM S-based drivers

accessing from sockets-based protocol stacks,

1-8

streamtab data structure, 5-18
STRIFNET option, 74

adding to kernel configuration file

at installation, 74
with the doconfig command, 7-4

strlog.h header file, 5-5
stropts.h header file, 5-5
struc sockaddr_in, 4-17
struct sockaddr, 4-16
struct sockaddr_un, 4-17
structure alignment, D-3
subagent

implementing, 6-12
substructures

802.2, E-11

Ethernet frame structure, E-8

filling in, E=7

Index—17

substructures (cont.)

sending and receiving, E-7
subtree

eSNMP, 6-6
subtree thl.c file

eSNMP, 6-10
subtree _thl.h file

eSNMP, 6-8
synchronization

of multiple processes in XTI, 3-20
synchronous execution in XTI

defined, 3-5
syncronization mechanism

in STREAMS, 5-23
sys/socket.h header file, 4-15t
sydstream.h header file, 5-5
sys/types.h header file, 4-15t
sys/un.h header file, 4-15t
system calls

caling sequence, E-16

sockets, 4-9 to 4-10

specifying values with, E-7

summary of, E-16

used to transfer data, E-22

T

t_accept function, 3-29

contrast to accept socket call, 3-46
t_alloc function, 3-40t, 3-41
t_bind function, 3-26

contrast to bind socket call, 3-46
t_close function, 3-36
T_CLTS constant, 3-9
T_CONNECT asynchronous event, 3-10t
t_connect function, 3-28

Index—-18

T_COTS constant, 3-9
T_COTS ORD constant, 3-9
T_DATA asynchronous event, 3-10t
T_DATAXFER state, 3-13t
T_DISCONNECT asynchronous event, 3-10t
t_errno variable, 3-64
T_ERROR event

support in TLI, 343
t_error function, 3-40t, 341
T_EXDATA asynchronous event, 3-10t
t_free function, 3-40t, 3-41
t_getinfo function, 3-40t, 3-40
t_getstate function, 3-40t, 3-40
T_GODATA asynchronous event, 3-10t
T_GOEXDATA asynchronous event, 3-10t
T_IDLE state, 3-13t
T_INCON state, 3-13t
T_INREL, 3-13t
T_LISTEN asynchronous event, 3-10t
t_listen function, 3-28
t_look function, 3-40t, 341

contrast to select socket call, 3-46
T_MORE flag

and protocol independence, 3-42
t_open function, 3-24
t_optmgmt function, 3-63
T_ORDREL asynchronous event, 3-10t
T_OUTCON state, 3-13t
T_OUTREL state, 3-13t
t_rcv function, 3-32
t_rcvdis function, 3-34

and protocol independence, 3-42
t_rcvrel function, 3-35

and protocol independence, 3-42
t_rcvudata function, 3-38

t_rcvuderr function, 3-39
and protocol independence, 3-42
t_snd function, 3-31
t_snddis function, 3-34
contrast to close socket call, 3-47
t_sndrel function, 3-35
and protocol independence, 3-42
t_sndudata function, 3-37
t_sync function, 3-40t, 340
T_UDERR asynchronous event, 3-10t
t_unbind function, 3-36
T_UNBIND state, 3-13t
T_UNINIT state, 3-13t
purpose of, 3-23
TCP
and round-trip time, C-1
and the connect system call, 4-24
and transfer rate, C-1
connection-oriented communication and, 4-7
programming information, C-1 to C-3
protocol, 4—7
throughput, C-1
window scale option
configuring the kernel, C-2
window size, C-1
timeout, 5-25
tiuser .h file, 3-6t, 343, 36
TLI
and XTI, 3-1
compatibility with XTI, 3-43
contrast with XTI, 3-43
header files, 3-6t
library and header files, 3-6
reference pages, 3—7
TLOOK error message
XTI events causing, 3-12

Token Ring drivers
and canonica addresses, D-2
enabling source routing, D-1
transfer rate
defined, C-1
transferring
state to another endpoint, 3-14
transferring data
with sockets, 4-29
transitions
between XTI states, 3-17
Transmission Control Protocol
See TCP
transport endpoint
defined, 3-2
Transport Layer Interface
See TLI
transport provider
and state management, 3-23
defined, 3-2
Transport Service Data Unit
See TSDU
transport user
defined, 3-2
trn_units variable
and enabling source routing, D-1
TSDU
and protocol independence, 3-42
types of service
in DLPI, 24
types of sockets, 4-5
SOCK_DGRAM, 4-5
SOCK_RAW, 4-5
SOCK_STREAM, 4-5

Index—19

U

UDP
and the connect system call, 4-24
protocol, 4-8

unbind event, 3-15t

unbound state
in XTI, 3-13t

uninitialized state
in XTI, 3-13t

UNIX communication domain, 4-4
characteristics, 4-4t

UNIX domain, 444

unnumbered information command
defined, E-15
function of, E=15

User Datagram Protocol
See UDP

Vv

value representation
eSNMP, 6-35

\W

write function, 5-8
write side put processing, 522
write side service processing, 5-22
write system call, 4-30
write-only access

support in TLI, 343

X

X/Open Transport Interface
See XTI

XID
defined, E-14

Index—20

XID (cont.)

function of, E-14

XPG3 compliance

and Digital UNIX's XTI, 3-1

XTI, 3-2f

and TLI, 3-1
and XPG3 compliance, 3-1
application programming interface, 3-4 to
341
code migration XPG3 to XPG4, 3-48
comparison with sockets, 3-45
comparison with TLI, 3-43
configuring xtiso, 3-65 to 3-69
during installation, 3-65
manually, 3-65
connection indication, 3-10t
connection-oriented client program, B-14
connection-oriented programs, B—2 to B—17
connection-oriented server program, B—9
connectionless client program, B-27
connectionless programs, B-17 to B-30
connectionless server program, B—23
constants identifying service modes
T_CLTS, 39
T_COTS, 3-9
T_COTS ORD, 3-9
contrast with TLI, 343
data flow with a sockets-based transport
provider, 1-6
data flow with a STREAM S-based transport
provider, 1-6
defined, 1-5, 3-1
differences between XPG3 and XPG4, 347
to 3-50
errors
comparison with sockets, 347t

XTI (cont.)

xti

errors (cont.)
t_errno variable, 3-64
event tracking, 3-14
events, 3-10
for tracking by programs, 3-14
incoming, 3-10
outgoing, 3-10
used by connectionless transport services,
337
events causing T_LOOK error, 3-12
functions, 37
handling errors, 3-64
header files, 3-6t
incoming events, 3-16t
interoperability of XPG3 and XPG4, 3-50
library and header files, 3-6
library calls
table of, 3-8
map of functions, events, and states, 3-17
modes of execution
asynchronous, 3-5, 34
synchronous, 3-5
modes of service, 34
connection-oriented, 34
connectionless, 34
option management, 3-64

options, 3-50
format, 3-52
info argument, 3-62
management of a transport endpoint, 3-60
negotiating, 3-53
portability, 3-63
T_UNSPEC, 3-62

XTI

outgoing connection pending state, 3-13t
outgoing events, 3-15t
outgoing orderly release state, 3-13t
overview, 3-2
passing connections to other endpoints, 3-16
phase independent functions
table of, 3-40t
porting applications to, 3-41 to 3-47
relationship to STREAMS and sockets
frameworks, 1-5f
relationships between users, providers, and
endpoints, 3-3
rewriting socket applications for, 3-45
sample programs
client.h file, B-39
clientauth.c file, B-39
clientdb.c file, B41
common.h file, B-31
server.h file, B-32
serverauth.h file, B-33
serverdb.h file, B-36
xtierror.c file, B-38
sequencing functions, 3-21
state management by transport providers,
323
states, 3-10, 3-13
comparison between XTI and sockets,
347
synchronization of multiple processes, 3-20
transport endpoint, 3-3f
using XPG3 programs, 3-49
writing connection-oriented applications
accepting a connection, 3-29
binding an address to an endpoint, 3-25,
324

Index—-21

XTI (cont.)
writing connection-oriented applications
(cont.)
deinitializing endpoints, 3-36
establishing a connection, 3-27 to 3-30
initializing an endpoint, 3-24 to 3-64
initiating a connection, 3-28
listening for connection indications, 3-27
negotiating protocol options, 3-63
opening an endpoint, 3-24
receiving data, 3-32
releasing connections, 3-33 to 3-35
sending data, 3-30
to deinitialize an endpoints in, 3-36
to use phase-independent functions, 3-40
transferring data, 3-30 to 3-33
using the abortive release of connections,
3-33
using the orderly release of connections,
3-34
writing connectionless applications
deinitializing endpoints, 3-39
initializing endpoints, 3-37
transferring data, 3-37 to 3-39
XTI asynchronous events
and consuming functions, 3-11t
table of, 3-10
XTI states
table of, 3-13
xti.h file, 3-6
xti.h header file
and t_errno variable, 3-65, 3-6
xtiso
configuring, 3-65 to 3-69

Index—22

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact
Continental USA, 800-DIGITAL Digital Equipment Corporation
Alaska, or Hawaii P.O. Box CS2008

Nashua, New Hampshire 03061
Puerto Rico 809-754-7575 Local Digital subsidiary
Canada 800-267-6215 Digital Equipment of Canada

Attn: DECdirect Operations KAO2/2
P.O. Box 13000

100 Herzberg Road

Kanata, Ontario, Canada K2K 2A6

International —_— Local Digital subsidiary or
approved distributor
Internal2 _— SSB Order Processing — NQO/V 19

or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road

Nashua, NH 03063-1260

aFor internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader’s Comments Digital UNIX
Network Programmer’s Guide
AA-PS2WD-TE

Digital welcomes your comments and suggestions on this manual. Your input will help us to
write documentation that meets your needs. Please send your suggestions using one of the
following methods:

e This postage-paid form

* Internet electronic mail: r eaders_coment @k3. dec. com

* Fax: (603) 881-0120, Attn: UEG Publications, ZKO3-3/Y 32

If you are not using this form, please be sure you include the name of the document, the page
number, and the product name and version.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manua says)

Completeness (enough information)

Clarity (easy to understand)

Organization (structure of subject matter)

Figures (useful)

Examples (useful)

Index (ability to find topic)

Usability (ability to access information quickly)

Please list errorsyou have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the softwar e described by this manual are you using?

Name/Title Dept.
Company Date
Mailing Address

Email Phone

_______ Do Not Cut or Tear — Fold Here and Tape ____ _ el __.

™
Hﬂﬂﬂnau NO POSTAGE

NECESSARY IF
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
UEG PUBLICATIONS MANAGER
ZKO3-3/Y32

110 SPIT BROOK RD

NASHUA NH 03062-9987

Do Not Cut or Tear — Fold Here

Cut on
Dotted
Line

